Sample records for active dynamic thermography

  1. Medical applications of model-based dynamic thermography

    NASA Astrophysics Data System (ADS)

    Nowakowski, Antoni; Kaczmarek, Mariusz; Ruminski, Jacek; Hryciuk, Marcin; Renkielska, Alicja; Grudzinski, Jacek; Siebert, Janusz; Jagielak, Dariusz; Rogowski, Jan; Roszak, Krzysztof; Stojek, Wojciech

    2001-03-01

    The proposal to use active thermography in medical diagnostics is promising in some applications concerning investigation of directly accessible parts of the human body. The combination of dynamic thermograms with thermal models of investigated structures gives attractive possibility to make internal structure reconstruction basing on different thermal properties of biological tissues. Measurements of temperature distribution synchronized with external light excitation allow registration of dynamic changes of local temperature dependent on heat exchange conditions. Preliminary results of active thermography applications in medicine are discussed. For skin and under- skin tissues an equivalent thermal model may be determined. For the assumed model its effective parameters may be reconstructed basing on the results of transient thermal processes. For known thermal diffusivity and conductivity of specific tissues the local thickness of a two or three layer structure may be calculated. Results of some medical cases as well as reference data of in vivo study on animals are presented. The method was also applied to evaluate the state of the human heart during the open chest cardio-surgical interventions. Reference studies of evoked heart infarct in pigs are referred, too. We see the proposed new in medical applications technique as a promising diagnostic tool. It is a fully non-invasive, clean, handy, fast and affordable method giving not only qualitative view of investigated surfaces but also an objective quantitative measurement result, accurate enough for many applications including fast screening of affected tissues.

  2. Juvenile-onset localized scleroderma activity detection by infrared thermography.

    PubMed

    Martini, G; Murray, K J; Howell, K J; Harper, J; Atherton, D; Woo, P; Zulian, F; Black, C M

    2002-10-01

    The aim of this study was to define the clinical utility of infrared thermography in disease activity detection in localized scleroderma (LS). We retrospectively reviewed 130 thermal images of 40 children with LS and calculated the sensitivity and specificity of thermography, comparing clinical descriptions of the lesions and contemporary thermographs. The reproducibility of thermography was calculated by using the weighted kappa coefficient to determine the level of agreement between two clinicians who reviewed the thermographs independently. The sensitivity of thermography was 92% and specificity was 68%. Full concordance between the two clinicians was observed in 91% of lesions, with a kappa score of 0.82, implying very high reproducibility of this technique. Our results demonstrate that thermography is a promising diagnostic tool when associated with clinical examination in discriminating disease activity, as long as it is applied to lesions without severe atrophy of the skin and subcutaneous fat. Further evaluation is needed to determine whether thermography can predict the future progression of lesions.

  3. Active thermography in qualitative evaluation of protective materials.

    PubMed

    Gralewicz, Grzegorz; Wiecek, Bogusław

    2009-01-01

    This is a study of the possibilities of a qualitative evaluation of protective materials with active thermography. It presents a simulation of a periodic excitation of a multilayer composite material. Tests were conducted with lock-in thermography on Kevlar composite consisting of 16 layers of Kevlar fabric reinforced with formaldehyde resin with implanted delamination defects. Lock-in thermography is a versatile tool for nondestructive evaluation. It is a fast, remote and nondestructive procedure. Hence, it was used to detect delaminations in the composite structure of materials used in the production of components designed for personal protection. This method directly contributes to an improvement in safety.

  4. Clinical applications of computerized thermography

    NASA Technical Reports Server (NTRS)

    Anbar, Michael

    1988-01-01

    Computerized or digital, thermography is a rapidly growing diagnostic imaging modality. It has superseded contact thermography and analog imaging thermography which do not allow effective quantization. Medical applications of digital thermography can be classified in two groups: static and dynamic imaging. They can also be classified into macro thermography (resolution greater than 1 mm) and micro thermography (resolution less than 100 microns). Both modalities allow a thermal resolution of 0.1 C. The diagnostic power of images produced by any of these modalities can be augmented by the use of digital image enhancement and image recognition procedures. Computerized thermography has been applied in neurology, cardiovascular and plastic surgery, rehabilitation and sports medicine, psychiatry, dermatology and ophthalmology. Examples of these applications are shown and their scope and limitations are discussed.

  5. Laser active thermography for non-destructive testing

    NASA Astrophysics Data System (ADS)

    Semerok, A.; Grisolia, C.; Fomichev, S. V.; Thro, P.-Y.

    2013-11-01

    Thermography methods have found their applications in different fields of human activity. The non-destructive feature of these methods along with the additional advantage by automated remote control and tests of nuclear installations without personnel attendance in the contaminated zone are of particular interest. Laser active pyrometry and laser lock-in thermography for in situ non-destructive characterization of micrometric layers on graphite substrates from European tokamaks were under extensive experimental and theoretical studies in CEA (France). The studies were aimed to obtain layer characterization with cross-checking the layer thermal contact coefficients determined by active laser pyrometry and lock-in thermography. The experimental installation comprised a Nd-YAG pulsed repetition rate laser (1 Hz - 10 kHz repetition rate frequency, homogeneous spot) and a home-made pyrometer system based on two pyrometers for the temperature measurements in 500 - 2600 K range. For both methods, the layer characterization was provided by the best fit of the experimental results and simulations. The layer thermal contact coefficients determined by both methods were quite comparable. Though there was no gain in the measurements accuracy, lock-in measurements have proved their advantage as being much more rapid. The obtained experimental and theoretical results are presented. Some practical applications and possible improvements of the methods are discussed.

  6. Recent Advances in Active Infrared Thermography for Non-Destructive Testing of Aerospace Components.

    PubMed

    Ciampa, Francesco; Mahmoodi, Pooya; Pinto, Fulvio; Meo, Michele

    2018-02-16

    Active infrared thermography is a fast and accurate non-destructive evaluation technique that is of particular relevance to the aerospace industry for the inspection of aircraft and helicopters' primary and secondary structures, aero-engine parts, spacecraft components and its subsystems. This review provides an exhaustive summary of most recent active thermographic methods used for aerospace applications according to their physical principle and thermal excitation sources. Besides traditional optically stimulated thermography, which uses external optical radiation such as flashes, heaters and laser systems, novel hybrid thermographic techniques are also investigated. These include ultrasonic stimulated thermography, which uses ultrasonic waves and the local damage resonance effect to enhance the reliability and sensitivity to micro-cracks, eddy current stimulated thermography, which uses cost-effective eddy current excitation to generate induction heating, and microwave thermography, which uses electromagnetic radiation at the microwave frequency bands to provide rapid detection of cracks and delamination. All these techniques are here analysed and numerous examples are provided for different damage scenarios and aerospace components in order to identify the strength and limitations of each thermographic technique. Moreover, alternative strategies to current external thermal excitation sources, here named as material-based thermography methods, are examined in this paper. These novel thermographic techniques rely on thermoresistive internal heating and offer a fast, low power, accurate and reliable assessment of damage in aerospace composites.

  7. Recent Advances in Active Infrared Thermography for Non-Destructive Testing of Aerospace Components

    PubMed Central

    Mahmoodi, Pooya; Pinto, Fulvio; Meo, Michele

    2018-01-01

    Active infrared thermography is a fast and accurate non-destructive evaluation technique that is of particular relevance to the aerospace industry for the inspection of aircraft and helicopters’ primary and secondary structures, aero-engine parts, spacecraft components and its subsystems. This review provides an exhaustive summary of most recent active thermographic methods used for aerospace applications according to their physical principle and thermal excitation sources. Besides traditional optically stimulated thermography, which uses external optical radiation such as flashes, heaters and laser systems, novel hybrid thermographic techniques are also investigated. These include ultrasonic stimulated thermography, which uses ultrasonic waves and the local damage resonance effect to enhance the reliability and sensitivity to micro-cracks, eddy current stimulated thermography, which uses cost-effective eddy current excitation to generate induction heating, and microwave thermography, which uses electromagnetic radiation at the microwave frequency bands to provide rapid detection of cracks and delamination. All these techniques are here analysed and numerous examples are provided for different damage scenarios and aerospace components in order to identify the strength and limitations of each thermographic technique. Moreover, alternative strategies to current external thermal excitation sources, here named as material-based thermography methods, are examined in this paper. These novel thermographic techniques rely on thermoresistive internal heating and offer a fast, low power, accurate and reliable assessment of damage in aerospace composites. PMID:29462953

  8. Thermography to Inspect Insulation of Large Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Arens, Ellen; Youngquist, Robert

    2011-01-01

    Thermography has been used in the past to monitor active, large, cryogenic storage tanks. This approach proposes to use thermography to monitor new or refurbished tanks, prior to filling with cryogenic liquid, to look for insulation voids. Thermography may provide significant cost and schedule savings if voids can be detected early before a tank is returned to service.

  9. Evaluation of fiber reinforced polymers using active infrared thermography system with thermoelectric cooling modules

    NASA Astrophysics Data System (ADS)

    Chady, Tomasz; Gorący, Krzysztof

    2018-04-01

    Active infrared thermography is increasingly used for nondestructive testing of various materials. Properties of this method are creating a unique possibility to utilize it for inspection of composites. In the case of active thermography, an external energy source is usually used to induce a thermal contrast inside tested objects. The conventional heating methods (like halogen lamps or flash lamps) are utilized for this purpose. In this study, we propose to use a cooling unit. The proposed system consists of a thermal imaging infrared camera, which is used to observe the surface of the inspected specimen and a specially designed cooling unit with thermoelectric modules (the Peltier modules).

  10. Advanced multispectral dynamic thermography as a new tool for inspection of gas-fired furnaces

    NASA Astrophysics Data System (ADS)

    Pregowski, Piotr; Goleniewski, Grzegorz; Komosa, Wojciech; Korytkowski, Waldemar

    2004-04-01

    The main special feature of elaborated method is that the dynamic IR thermography (DIRT) bases on forming of single image consisting of pixels of chosen minimum (IMAX) or maximum (IMAX) value, noted during adequately long sequence of thermograms with total independence to the moment of its (image's) capture. In this way, additive or suppressed interferences of fluctuating character become bypassed. Due to this method thereafter elaborated in classic way such "artificial thermogram" offers the quality impossible to achieve with a classic "one shot" method. Although preliminary, results obtained clearly show great potential of the method. and confirmed the validity in decreasing errors caused by fluctuating disturbances. In the case of process furnaces of gas-fired type and especially of coal-fired, application of presented solutions should result in significant increasing the reliability of IR thermography application. By use of properly chosen optical filters and algorithm, elaborated method offers a new potential attractive to test temperature problems other than in tubes , as for example symmetry and efficiency of the furnace heaters.

  11. Dynamic Infrared Thermography Study of Blood Flow Relative to Lower Limp Position

    NASA Astrophysics Data System (ADS)

    Stathopoulos, I.; Skouroliakou, K.; Michail, C.; Valais, I.

    2015-09-01

    Thermography is an established method for studying skin temperature distribution. Temperature distribution on body surface is influenced by a variety of physiological mechanisms and has been proven a reliable indicator of various physiological disorders. Blood flow is an important factor that influences body heat diffusion and skin temperature. In an attempt to validate and further elucidate thermal models characterizing the human skin, dynamic thermography of the lower limp in horizontal and vertical position was performed, using a FLIR T460 thermographic camera. Temporal variation of temperature was recorded on five distinct points of the limp. Specific points were initially cooled by the means of an ice cube and measurements of the skin temperature were obtained every 30 seconds as the skin temperature was locally reduced and afterwards restored at its initial value. The return to thermal balance followed roughly the same pattern for all points of measurement, although the heating rate was faster when the foot was in horizontal position. Thermal balance was achieved faster at the spots that were positioned on a vein passage. Our results confirm the influence of blood flow on the thermal regulation of the skin. Spots located over veins exhibit different thermal behaviour due to thermal convection through blood flow. Changing the position of the foot from vertical to horizontal, effectively affects blood perfusion as in the vertical position blood circulation is opposed by gravity.

  12. Clinical applications of dynamic infrared thermography in plastic surgery: a systematic review

    PubMed Central

    John, Hannah Eliza; Niumsawatt, Vachara; Whitaker, Iain S.

    2016-01-01

    Background Infrared thermography (IRT) has become an increasingly utilized adjunct to more expensive and/or invasive investigations in a range of surgical fields, no more so than in plastic surgery. The combination of functional assessment, flow characteristics and anatomical localization has led to increasing applications of this technology. This article aims to perform a systematic review of the clinical applications of IRT in plastic surgery. Methods A systematic literature search using the keywords ‘IRT’ and ‘dynamic infrared thermography (DIRT)’ has been accomplished. A total of 147 papers were extracted from various medical databases, of which 34 articles were subjected to a full read by two independent reviewers, to ensure the papers satisfied the inclusion and exclusion criteria. Studies focusing on the use of IRT in breast cancer diagnosis were excluded. Results A systematic review of 29 publications demonstrated the clinical applications of IRT in plastic surgery today. They include preoperative planning of perforators for free flaps, post operative monitoring of free flaps, use of IRT as an adjunct in burns depth analysis, in assessment of response to treatment in hemangioma and as a diagnostic test for cutaneous melanoma and carpal tunnel syndrome (CTS). Conclusions Modern infrared imaging technology with improved standardization protocols is now a credible, useful non-invasive tool in clinical practice. PMID:27047781

  13. IR thermography for dynamic detection of laminar-turbulent transition

    NASA Astrophysics Data System (ADS)

    Simon, Bernhard; Filius, Adrian; Tropea, Cameron; Grundmann, Sven

    2016-05-01

    This work investigates the potential of infrared (IR) thermography for the dynamic detection of laminar-turbulent transition. The experiments are conducted on a flat plate at velocities of 8-14 m/s, and the transition of the laminar boundary layer to turbulence is forced by a disturbance source which is turned on and off with frequencies up to 10 Hz. Three different heating techniques are used to apply the required difference between fluid and structure temperature: a heated aluminum structure is used as an internal structure heating technique, a conductive paint acts as a surface bounded heater, while an IR heater serves as an example for an external heating technique. For comparison of all heating techniques, a normalization is introduced and the frequency response of the measured IR camera signal is analyzed. Finally, the different heating techniques are compared and consequences for the design of experiments on laminar-turbulent transition are discussed.

  14. Infrared thermography, a new method for detection of brown adipose tissue activity after a meal in humans

    NASA Astrophysics Data System (ADS)

    Habek, Nikola; Kordić, Milan; Jurenec, Franjo; Dugandžić, Aleksandra

    2018-03-01

    The activation of brown adipose tissue (BAT) after cold exposure leads to heat production. However, the activation of BAT activity after a meal as part of diet induced thermogenesis is still controversial. A possible reason is that measuring BAT activity by positron emission tomography-computed tomography (PET CT) via accumulation of radiotracer fludeoxyglucose (18F-FDG), which competes with an increase in glucose concentration after a meal, fails as the method of choice. In this study, activity of BAT was determined by infrared thermography. Activation of BAT 30 min after a meal increases glucose consumption, decreases plasma glucose concentration, and leads to changes of body temperature (diet-induced thermogenesis). Detecting pathophysiological changes in BAT activity after a meal by infrared thermography, a non-invasive more sensitive method, will be of great importance for people with increased body weight and diabetes mellitus type 2.

  15. 3D thermography in non-destructive testing of composite structures

    NASA Astrophysics Data System (ADS)

    Hellstein, Piotr; Szwedo, Mariusz

    2016-12-01

    The combination of 3D scanners and infrared cameras has lead to the introduction of 3D thermography. Such analysis produces results in the form of three-dimensional thermograms, where the temperatures are mapped on a 3D model reconstruction of the inspected object. All work in the field of 3D thermography focused on its utility in passive thermography inspections. The authors propose a new real-time 3D temperature mapping method, which for the first time can be applied to active thermography analyses. All steps required to utilise 3D thermography are discussed, starting from acquisition of three-dimensional and infrared data, going through image processing and scene reconstruction, finishing with thermal projection and ray-tracing visualisation techniques. The application of the developed method was tested during diagnosis of several industrial composite structures—boats, planes and wind turbine blades.

  16. Heat Flux Sensors for Infrared Thermography in Convective Heat Transfer

    PubMed Central

    Carlomagno, Giovanni Maria; de Luca, Luigi; Cardone, Gennaro; Astarita, Tommaso

    2014-01-01

    This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR) thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors' research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described. PMID:25386758

  17. Non Destructive Testing by active infrared thermography coupled with shearography under same optical heat excitation

    NASA Astrophysics Data System (ADS)

    Theroux, Louis-Daniel; Dumoulin, Jean; Maldague, Xavier

    2014-05-01

    As infrastructures are aging, the evaluation of their health is becoming crucial. To do so, numerous Non Destructive Testing (NDT) methods are available. Among them, thermal shearography and active infrared thermography represent two full field and contactless methods for surface inspection. The synchronized use of both methods presents multiples advantages. Most importantly, both NDT are based on different material properties. Thermography depend on the thermal properties and shearography on the mechanical properties. The cross-correlation of both methods result in a more accurate and exact detection of the defects. For real site application, the simultaneous use of both methods is simplified due to the fact that the excitation method (thermal) is the same. Active infrared thermography is the measure of the temperature by an infrared camera of a surface subjected to heat flux. Observation of the variation of temperature in function of time reveal the presence of defects. On the other hand, shearography is a measure of out-of-plane surface displacement. This displacement is caused by the application of a strain on the surface which (in our case) take the form of a temperature gradient inducing a thermal stress To measure the resulting out-of-plane displacement, shearography exploit the relation between the phase difference and the optical path length. The phase difference is measured by the observation of the interference between two coherent light beam projected on the surface. This interference is due to change in optical path length as the surface is deformed [1]. A series of experimentation have been conducted in laboratory with various sample of concrete reinforced with CFRP materials. Results obtained reveal that with both methods it was possible to detect defects in the gluing. An infrared lamp radiating was used as the active heat source. This is necessary if measurements with shearography are to be made during the heating process. A heating lamp in the

  18. Detection of seal contamination in heat-sealed food packaging based on active infrared thermography

    NASA Astrophysics Data System (ADS)

    D'huys, Karlien; Saeys, Wouter; De Ketelaere, Bart

    2015-05-01

    In the food industry packaging is often applied to protect the product from the environment, assuring quality and safety throughout shelf life if properly performed. Packaging quality depends on the material used and the closure (seal). The material is selected based on the specific needs of the food product to be wrapped. However, proper closure of the package is often harder to achieve. One problem possibly jeopardizing seal quality is the presence of food particles between the seal. Seal contamination can cause a decreased seal strength and thus an increased packaging failure risk. It can also trigger the formation of microchannels through which air and microorganisms can enter and spoil the enclosed food. Therefore, early detection and removal of seal-contaminated packages from the production chain is essential. In this work, a pulsed-type active thermography method using the heat of the sealing bars as an excitation source was studied for detecting seal contamination. The cooling profile of contaminated seals was recorded. The detection performance of four processing methods (based on a single frame, a fit of the cooling profile, pulsed phase thermography and a matched filter) was compared. High resolution digital images served as a reference to quantify contamination. The lowest detection limit (equivalent diameter of 0.63 mm) and the lowest processing time (0.42 s per sample) were obtained for the method based on a single frame. Presumably, practical limitations in the recording stage prevented the added value of active thermography to be fully reflected in this application.

  19. Sub-surface defects detection of by using active thermography and advanced image edge detection

    NASA Astrophysics Data System (ADS)

    Tse, Peter W.; Wang, Gaochao

    2017-05-01

    Active or pulsed thermography is a popular non-destructive testing (NDT) tool for inspecting the integrity and anomaly of industrial equipment. One of the recent research trends in using active thermography is to automate the process in detecting hidden defects. As of today, human effort has still been using to adjust the temperature intensity of the thermo camera in order to visually observe the difference in cooling rates caused by a normal target as compared to that by a sub-surface crack exists inside the target. To avoid the tedious human-visual inspection and minimize human induced error, this paper reports the design of an automatic method that is capable of detecting subsurface defects. The method used the technique of active thermography, edge detection in machine vision and smart algorithm. An infrared thermo-camera was used to capture a series of temporal pictures after slightly heating up the inspected target by flash lamps. Then the Canny edge detector was employed to automatically extract the defect related images from the captured pictures. The captured temporal pictures were preprocessed by a packet of Canny edge detector and then a smart algorithm was used to reconstruct the whole sequences of image signals. During the processes, noise and irrelevant backgrounds exist in the pictures were removed. Consequently, the contrast of the edges of defective areas had been highlighted. The designed automatic method was verified by real pipe specimens that contains sub-surface cracks. After applying such smart method, the edges of cracks can be revealed visually without the need of using manual adjustment on the setting of thermo-camera. With the help of this automatic method, the tedious process in manually adjusting the colour contract and the pixel intensity in order to reveal defects can be avoided.

  20. Development of Active Microwave Thermography for Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Foudazi, Ali

    Active Microwave Thermography (AMT) is an integrated nondestructive testing and evaluation (NDT&E) method that incorporates aspects of microwave NDT and thermography techniques. AMT uses a microwave excitation to generate heat and the surface thermal profile of the material or structure under test is subsequently measured using a thermal camera (or IR camera). Utilizing a microwave heat excitation provides advantages over traditional thermal excitations (heat lamps, etc.) including the potential for non-contact, selective and focused heating. During an AMT inspection, two heating mechanisms are possible, referred to as dielectric and induction heating. Dielectric heating occurs as a result of the interaction of microwave energy with lossy dielectric materials which results in dissipated microwave energy and a subsequent increase in temperature. Induction heating is a result of induced surface current on conductive materials with finite conductivity under microwave illumination and subsequently ohmic loss. Due to the unique properties of microwave signals including frequency of operation, power level, and polarization, as well as their interaction with different materials, AMT has strong potential for application in various industries including infrastructure, transportation, aerospace, etc. As such, this Dissertation explores the application of AMT to NDT&E needs in these important industries, including detection and evaluation of defects in single- or multi-layered fiber-reinforced polymer-strengthened cement-based materials, evaluation of steel fiber percentage and distributions in steel fiber reinforced structures, characterization of corrosion ratio on corroded reinforcing steel bars (rebar), and evaluation of covered surface cracks orientation and size in metal structures.

  1. Aerial thermography for energy conservation

    NASA Technical Reports Server (NTRS)

    Jack, J. R.

    1978-01-01

    Thermal infrared scanning from an aircraft is a convenient and commercially available means for determining relative rates of energy loss from building roofs. The need to conserve energy as fuel costs makes the mass survey capability of aerial thermography an attractive adjunct to community energy awareness programs. Background information on principles of aerial thermography is presented. Thermal infrared scanning systems, flight and environmental requirements for data acquisition, preparation of thermographs for display, major users and suppliers of thermography, and suggested specifications for obtaining aerial scanning services were reviewed.

  2. Infrared thermography in the restoration of cultural properties

    NASA Astrophysics Data System (ADS)

    Carlomagno, Giovanni M.; Carosena, Meola

    2001-03-01

    Some of the work carried out at DETEC on the use of infrared thermography in the architectural restoration field is examined. Three different techniques, pulse thermography (PT), modulated thermography (MT) and pulse phase thermography (PPT) are analyzed through the control of some art treasures such as mosaics and frescoes. In particular, the following artifacts are considered: mosaics covering some external walls of the building of the Faculty of Engineering of Naples, frescoes in the Duomo of Sarno, frescoes in the Cripta SS. Stefani in Vaste (Le), mosaics and frescoes in the Archeological Museum of Naples coming from Pompeii and Ruvo. It is found that the choice of the technique depends on the specific surface to be tested: if only qualitative information about detachments and cracks are needed the pulse thermography is sufficient; if the surface is not very sensitive to temperature rising, the pulse phase thermography can be applied which gives information about the location of the defected zone. If instead, the analysis regards rare art treasures, lockin thermography is the only response.

  3. Optically and non-optically excited thermography for composites: A review

    NASA Astrophysics Data System (ADS)

    Yang, Ruizhen; He, Yunze

    2016-03-01

    Composites, such as glass fiber reinforced polymer (GFRP) and carbon fiber reinforced polymer (CFRP), and adhesive bonding are being increasingly used in fields of aerospace, renewable energy, civil and architecture, and other industries. Flaws and damages are inevitable during either fabrication or lifetime of composites structures or components. Thus, nondestructive testing (NDT) are extremely required to prevent failures and to increase reliability of composite structures or components in both manufacture and in-service inspection. Infrared thermography techniques including pulsed thermography, pulsed phase thermography, and lock-in thermography have shown the great potential and advantages. Besides conventional optical thermography, other sources such as laser, eddy current, microwave, and ultrasound excited thermography are drawing increasingly attentions for composites. In this work, a fully, in-depth and comprehensive review of thermography NDT techniques for composites inspection was conducted based on an orderly and concise literature survey and detailed analysis. Firstly, basic concepts for thermography NDT were defined and introduced, such as volume heating thermography. Next, the developments of conventional optic, laser, eddy current, microwave, and ultrasound thermography for composite inspection were reviewed. Then, some case studies for scanning thermography were also reviewed. After that, the strengths and limitations of thermography techniques were concluded through comparison studies. At last, some research trends were predicted. This work containing critical overview, detailed comparison and extensive list of references will disseminates knowledge between users, manufacturers, designers and researchers involved in composite structures or components inspection by means of thermography NDT techniques.

  4. Active and passive infrared thermography applied to the detection and characterization of hidden defects in structure

    NASA Astrophysics Data System (ADS)

    Dumoulin, Jean

    2013-04-01

    Infrared thermography for Non Destructive Testing (NDT) has encountered a wide spreading this last 2 decades, in particular thanks to emergence on the market of low cost uncooled infrared camera. So, infrared thermography is not anymore a measurement technique limited to laboratory application. It has been more and more involved in civil engineering and cultural heritage applications, but also in many other domains, as indicated by numerous papers in the literature. Nevertheless, laboratory, measurements are done as much as possible in quite ideal conditions (good atmosphere conditions, known properties of materials, etc.), while measurement on real site requires to consider the influence of not controlled environmental parameters and additional unknown thermal properties. So, dedicated protocol and additional sensors are required for measurement data correction. Furthermore, thermal excitation is required to enhance the signature of defects in materials. Post-processing of data requires to take into account the protocol used for the thermal excitation and sometimes its nature to avoid false detection. This analysis step is based on signal and image processing tool and allows to carry out the detection. Characterization of anomalies detected at the previous step can be done by additional signal processing in particular for manufactured objects. The use of thermal modelling and inverse method allows to determine properties of the defective area. The present paper will first address a review of some protocols currently in use for field measurement with passive and/or active infrared measurements. Illustrations in various experiments carried out on civil engineering structure will be shown and discussed. In a second part, different post-processing approaches will be presented and discussed. In particular, a review of the most standard processing methods like Fast Fourier Analysis, Principal Components Analysis, Polynomial Decomposition, defect characterization using

  5. Department of National Defence's use of thermography for facilities maintenance

    NASA Astrophysics Data System (ADS)

    Kittson, John E.

    1990-03-01

    Since the late seventies DND through the Director General Works has been actively encouraging the use of thermography as an efficient and effective technique for supporting preventive maintenance quality assurance and energy conservation programs at Canadian Forces Bases (CFBs). This paper will provide an overview of DND''s experiences in the utilization of thermography for facilities maintenance applications. 1. HISTORICAL MILESTONES The following are milestones of DND''s use of thermography: a. Purchase of Infrared Equipment In 1976/77 DND purchased five AGA 750 Infrared Thermovision Systems which were distributed to commands. In 1980/81/82 six AGA liOs five AGA TPT8Os two AGA 782s and one AGA 720 were acquired. Finally DND also purchased seven AGEMA 870 systems during 1987/88. b. First and Second Interdepartaental Building Thermography Courses In 1978 and 1980 DND hosted two building thermography courses that were conducted by Public Works Canada. c. CE Thermographer Specialist Training Courses DND developed a training standard in 1983 for Construction Engineering (CE) Thermographer qualification which included all CE applications of thermography. The first annual inhouse training course was conducted at CFB Borden Ontario in 1984. These are now being conducted at the CFB Chilliwack Detachment in Vernon British Columbia. 2 . MARKETING FACILITIES MAINTENANCE IR Of paramount importance for successfully developing DND appreciation for thermography was providing familiarization training to CE staff at commands and bases. These threeday presentations emphasized motivational factors conducting thermographic surveys and utilizing infrared data of roofs electrical/mechanical systems heating plants steam distribution and building enclosures. These factors consisted mainly of the following objectives: a. preventive maintenance by locating deficiencies to be repaired b. quality assurance by verification of workmanship materials and design c. energy conservation by locating

  6. Normalized Temperature Contrast Processing in Infrared Flash Thermography

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2016-01-01

    The paper presents further development in normalized contrast processing used in flash infrared thermography method. Method of computing normalized image or pixel intensity contrast, and normalized temperature contrast are provided. Methods of converting image contrast to temperature contrast and vice versa are provided. Normalized contrast processing in flash thermography is useful in quantitative analysis of flash thermography data including flaw characterization and comparison of experimental results with simulation. Computation of normalized temperature contrast involves use of flash thermography data acquisition set-up with high reflectivity foil and high emissivity tape such that the foil, tape and test object are imaged simultaneously. Methods of assessing other quantitative parameters such as emissivity of object, afterglow heat flux, reflection temperature change and surface temperature during flash thermography are also provided. Temperature imaging and normalized temperature contrast processing provide certain advantages over normalized image contrast processing by reducing effect of reflected energy in images and measurements, therefore providing better quantitative data. Examples of incorporating afterglow heat-flux and reflection temperature evolution in flash thermography simulation are also discussed.

  7. Exit Presentation: Infrared Thermography on Graphite/Epoxy

    NASA Technical Reports Server (NTRS)

    Comeaux, Kayla

    2010-01-01

    This slide presentation reports on the internship project that was accomplished during the summer of 2010. The objectives of the project were to: (1) Simulate Flash Thermography on Graphite/Epoxy Flat Bottom hole Specimen and thin void specimens, (2) Obtain Flash Thermography data on Graphite/Epoxy flat bottom hole specimens, (3) Compare experimental results with simulation results, Compare Flat Bottom Hole Simulation with Thin Void Simulation to create a graph to determine size of IR Thermography detected defects

  8. Screening for dry eye disease using infrared ocular thermography.

    PubMed

    Tan, Li Li; Sanjay, Srinivasan; Morgan, Philip B

    2016-12-01

    To evaluate the efficacy of infrared (IR) ocular thermography in screening for dry eye disease (DED). IR ocular thermography was performed on 62 dry eye and 63 age- and sex-matched control subjects. Marking of ocular surface and temperature acquisition was done using a novel 'diamond' demarcation method. 30 static- and 30 dynamic-metrics were studied and receiver operating characteristic curves were plotted. Efficacy of the temperature metrics in detecting DED were evaluated singly and in combination in terms of their area under the curve (AUC), Youden's index and discrimination power (DP). Absolute temperature of the extreme nasal conjunctiva 5s and 10s after eye opening were best detectors for DED. With threshold value for the first metric set at 34.7°C, sensitivity and specificity was 87.1% (95% CI: 76.2-94.3%) and 50.8% (95% CI: 37.9-63.6%) respectively. With threshold value for the second metric set at 34.5°C, sensitivity and specificity was 77.6% (95% CI: 64.7-87.5%) and 61.9% (95% CI: 48.8-73.9%) respectively. The two metrics had moderate accuracy and limited performances with AUC of 72% (95% CI: 63-81%) and 73% (95% CI: 64-82%); Youden index of about 0.4 and DP of 1.07 and 1.05 respectively. None of the dynamic metrics was good detector for DED. Combining metrics was not able to increase the AUC. This work suggests some utility for the application of IR ocular thermography for evaluation of dry eye patients. Copyright © 2016 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  9. Thermography detection on the fatigue damage

    NASA Astrophysics Data System (ADS)

    Yang, Bing

    It has always been a great temptation in finding new methods to in-situ "watch" the material fatigue-damage processes so that in-time reparations will be possible, and failures or losses can be minimized to the maximum extent. Realizing that temperature patterns may serve as fingerprints for stress-strain behaviors of materials, a state-of-art infrared (IR) thermography camera has been used to "watch" the temperature evolutions of both crystalline and amorphous materials "cycle by cycle" during fatigue experiments in the current research. The two-dimensional (2D) thermography technique records the surface-temperature evolutions of materials. Since all plastic deformations are related to heat dissipations, thermography provides an innovative method to in-situ monitor the heat-evolution processes, including plastic-deformation, mechanical-damage, and phase-transformation characteristics. With the understanding of the temperature evolutions during fatigue, thermography could provide the direct information and evidence of the stress-strain distribution, crack initiation and propagation, shear-band growth, and plastic-zone evolution, which will open up wide applications in studying the structural integrity of engineering components in service. In the current research, theoretical models combining thermodynamics and heat-conduction theory have been developed. Key issues in fatigue, such as in-situ stress-strain states, cyclic softening and hardening observations, and fatigue-life predictions, have been resolved by simply monitoring the specimen-temperature variation during fatigue. Furthermore, in-situ visulizations as well as qualitative and quantitative analyses of fatigue-damage processes, such as Luders-band evolutions, crack propagation, plastic zones, and final fracture, have been performed by thermography. As a method requiring no special sample preparation or surface contact by sensors, thermography provides an innovative and convenient method to in-situ monitor

  10. Line Scanning Thermography for Rapid Nondestructive Inspection of Large Scale Composites

    NASA Astrophysics Data System (ADS)

    Chung, S.; Ley, O.; Godinez, V.; Bandos, B.

    2011-06-01

    As next generation structures are utilizing larger amounts of composite materials, a rigorous and reliable method is needed to inspect these structures in order to prevent catastrophic failure and extend service life. Current inspection methods, such as ultrasonic, generally require extended down time and man hours as they are typically carried out via point-by-point measurements. A novel Line Scanning Thermography (LST) System has been developed for the non-contact, large-scale field inspection of composite structures with faster scanning times than conventional thermography systems. LST is a patented dynamic thermography technique where the heat source and thermal camera move in tandem, which allows the continuous scan of long surfaces without the loss of resolution. The current system can inspect an area of 10 in2 per 1 second, and has a resolution of 0.05×0.03 in2. Advanced data gathering protocols have been implemented for near-real time damage visualization and post-analysis algorithms for damage interpretation. The system has been used to successfully detect defects (delamination, dry areas) in fiber-reinforced composite sandwich panels for Navy applications, as well as impact damage in composite missile cases and armor ceramic panels.

  11. A Review of Microwave Thermography Nondestructive Testing and Evaluation

    PubMed Central

    Zhang, Hong; Yang, Ruizhen; He, Yunze; Foudazi, Ali; Cheng, Liang; Tian, Guiyun

    2017-01-01

    Microwave thermography (MWT) has many advantages including strong penetrability, selective heating, volumetric heating, significant energy savings, uniform heating, and good thermal efficiency. MWT has received growing interest due to its potential to overcome some of the limitations of microwave nondestructive testing (NDT) and thermal NDT. Moreover, during the last few decades MWT has attracted growing interest in materials assessment. In this paper, a comprehensive review of MWT techniques for materials evaluation is conducted based on a detailed literature survey. First, the basic principles of MWT are described. Different types of MWT, including microwave pulsed thermography, microwave step thermography, microwave pulsed phase thermography, and microwave lock-in thermography are defined and introduced. Then, MWT case studies are discussed. Next, comparisons with other thermography and NDT methods are conducted. Finally, the trends in MWT research are outlined, including new theoretical studies, simulations and modelling, signal processing algorithms, internal properties characterization, automatic separation and inspection systems. This work provides a summary of MWT, which can be utilized for material failures prevention and quality control. PMID:28505130

  12. Buying Thermography

    NASA Astrophysics Data System (ADS)

    Madding, Robert P.

    1981-01-01

    The cost of thermographic information obtained by contracting for a service is compared to that of buying equipment and doing the work in-house. A breakeven analysis method is used to find the number of days per year an instrument must be used to justify buying it. Life-cycle costing techniques are used to find the equivalent annual cost of various classes of thermographic instruments. Results indicate that a full-time person earning 20,000 annually must use a 30,000 instrument at least 73 days per year if thermography can otherwise be contracted for $675 per day. By devoting a person to thermography part-time, the number of inspection days for this case can be reduced to about 28. Further in-house advantage can be gained by considering investment tax credits, salvage value and, to some extent, accelerated depreciation. Techniques for finding the breakeven number of inspection days for other costs are developed. A nomogram is included for rapid comparisons.

  13. Effects of peripheral dynamic movements on the lower-limb circulation assessed by thermography: three one-group studies

    NASA Astrophysics Data System (ADS)

    Kaerki, Anne; Laehdeniemi, Matti

    2002-03-01

    Peripheral dynamic movements are used as part of postoperative protocols and for preventing vascular complications during bed rest. The effects of peripheral movements have not been studied. The purposes of these studies were to explain the effects of peripheral dynamic movements on lower limb circulation. The aim was also to explain how other factors like sex, age, BMI, medication, smoking, sports activity etc. affect the circulation. Healthy young subjects (N=19), healthy elderly subjects (N=19) and diabetic subjects (N=21) participated in the studies between 1997 and 1999. The study design was the same in each study. Infrared technology and image processing belong to our focus fields of applied research and IR is widely used in our real time industrial applications including also ongoing research of new possibilities. This paper presents the results of our newest application of IR thermography, where it was used to measure the skin temperature over the soleus muscle during and after dynamic ankle movements. The results showed that the skin temperature increased further during the recovery period after movements, and temperature was highest after 3- 5 minutes. Diabetic male subjects were the only subgroup that had immediate decrease during recovery period. The studies showed that smoking had a negative effect on circulation. BMI had also negative correlation (-0,356), showing that subjects with higher BMI had less increase. The results proved that peripheral movements were effective for increasing circulation in the soleus muscle and the effect was still seen after 15 minutes.

  14. Detection and Inspection of Steel Bars in Reinforced Concrete Structures Using Active Infrared Thermography with Microwave Excitation and Eddy Current Sensors.

    PubMed

    Szymanik, Barbara; Frankowski, Paweł Karol; Chady, Tomasz; John Chelliah, Cyril Robinson Azariah

    2016-02-16

    The purpose of this paper is to present a multi-sensor approach to the detection and inspection of steel bars in reinforced concrete structures. In connection with our past experience related to non-destructive testing of different materials, we propose using two potentially effective methods: active infrared thermography with microwave excitation and the eddy current technique. In this article active infrared thermography with microwave excitation is analyzed both by numerical modeling and experiments. This method, based on thermal imaging, due to its characteriatics should be considered as a preliminary method for the assessment of relatively shallowly located steel bar reinforcements. The eddy current technique, on the other hand, allows for more detailed evaluation and detection of deeply located rebars. In this paper a series of measurement results, together with the initial identification of certain features of steel reinforcement bars will be presented.

  15. Active thermography and post-processing image enhancement for recovering of abraded and paint-covered alphanumeric identification marks

    NASA Astrophysics Data System (ADS)

    Montanini, R.; Quattrocchi, A.; Piccolo, S. A.

    2016-09-01

    Alphanumeric marking is a common technique employed in industrial applications for identification of products. However, the realised mark can undergo deterioration, either by extensive use or voluntary deletion (e.g. removal of identification numbers of weapons or vehicles). For recovery of the lost data many destructive or non-destructive techniques have been endeavoured so far, which however present several restrictions. In this paper, active infrared thermography has been exploited for the first time in order to assess its effectiveness in restoring paint covered and abraded labels made by means of different manufacturing processes (laser, dot peen, impact, cold press and scribe). Optical excitation of the target surface has been achieved using pulse (PT), lock-in (LT) and step heating (SHT) thermography. Raw infrared images were analysed with a dedicated image processing software originally developed in Matlab™, exploiting several methods, which include thermographic signal reconstruction (TSR), guided filtering (GF), block guided filtering (BGF) and logarithmic transformation (LN). Proper image processing of the raw infrared images resulted in superior contrast and enhanced readability. In particular, for deeply abraded marks, good outcomes have been obtained by application of logarithmic transformation to raw PT images and block guided filtering to raw phase LT images. With PT and LT it was relatively easy to recover labels covered by paint, with the latter one providing better thermal contrast for all the examined targets. Step heating thermography never led to adequate label identification instead.

  16. Reliable aerial thermography for energy conservation

    NASA Technical Reports Server (NTRS)

    Jack, J. R.; Bowman, R. L.

    1981-01-01

    A method for energy conservation, the aerial thermography survey, is discussed. It locates sources of energy losses and wasteful energy management practices. An operational map is presented for clear sky conditions. The map outlines the key environmental conditions conductive to obtaining reliable aerial thermography. The map is developed from defined visual and heat loss discrimination criteria which are quantized based on flat roof heat transfer calculations.

  17. Infrared Thermography for Temperature Measurement and Non-Destructive Testing

    PubMed Central

    Usamentiaga, Rubèn; Venegas, Pablo; Guerediaga, Jon; Vega, Laura; Molleda, Julio; Bulnes, Francisco G.

    2014-01-01

    The intensity of the infrared radiation emitted by objects is mainly a function of their temperature. In infrared thermography, this feature is used for multiple purposes: as a health indicator in medical applications, as a sign of malfunction in mechanical and electrical maintenance or as an indicator of heat loss in buildings. This paper presents a review of infrared thermography especially focused on two applications: temperature measurement and non-destructive testing, two of the main fields where infrared thermography-based sensors are used. A general introduction to infrared thermography and the common procedures for temperature measurement and non-destructive testing are presented. Furthermore, developments in these fields and recent advances are reviewed. PMID:25014096

  18. Detection and Inspection of Steel Bars in Reinforced Concrete Structures Using Active Infrared Thermography with Microwave Excitation and Eddy Current Sensors

    PubMed Central

    Szymanik, Barbara; Frankowski, Paweł Karol; Chady, Tomasz; John Chelliah, Cyril Robinson Azariah

    2016-01-01

    The purpose of this paper is to present a multi-sensor approach to the detection and inspection of steel bars in reinforced concrete structures. In connection with our past experience related to non-destructive testing of different materials, we propose using two potentially effective methods: active infrared thermography with microwave excitation and the eddy current technique. In this article active infrared thermography with microwave excitation is analyzed both by numerical modeling and experiments. This method, based on thermal imaging, due to its characteriatics should be considered as a preliminary method for the assessment of relatively shallowly located steel bar reinforcements. The eddy current technique, on the other hand, allows for more detailed evaluation and detection of deeply located rebars. In this paper a series of measurement results, together with the initial identification of certain features of steel reinforcement bars will be presented. PMID:26891305

  19. U.S. market for infrared thermography equipment

    NASA Astrophysics Data System (ADS)

    Fulop, Gabor F.

    1995-03-01

    The market for infrared thermography is undergoing dramatic changes. Focal plane array technologies previously dominated by the military are being opened up to the commercial sector, new uncooled technologies are advancing rapidly and entirely new applications are emerging. Maxtech International has carried out its second in-depth analysis of these markets within two years. In 1994, the U.S. market for commercial (and dual-use) infrared thermography equipment reached 100 million and is expected to grow to 250 million by 1999. As part of the analysis, a survey of over 3,900 users of infrared thermography equipment has been completed. Included are segmentation by end-user industry and expected spending projections in various market segments.

  20. The value of dynamic infrared thermography (DIRT) in perforatorselection and planning of free DIEP flaps.

    PubMed

    de Weerd, Louis; Weum, Sven; Mercer, James B

    2009-09-01

    The aim of this paper is to evaluate dynamic infrared thermography (DIRT) as a technique to assist in preoperative perforator selection and planning of free deep inferior epigastric perforator (DIEP) flaps. Twenty-seven patients, scheduled for secondary autologous breast reconstruction with either a free DIEP flap or superficial inferior epigastric artery flap, were included in this prospective clinical study. Preoperative mapping of perforators was performed with a hand-held Doppler and DIRT. A multidetector computer tomography scan was additionally carried out in the last 8 patients. In 23 patients a DIEP flap was used. The perforator as selected from DIRT was a suitable perforator in all DIEP flaps. The location and quality of the selected perforator from DIRT corresponded well with the multidetector computer tomography scan results. Preoperative perforator selection and planning of DIEP flaps is facilitated with the use of DIRT. The technique is noninvasive and easy to use.

  1. Challenges to Global Implementation of Infrared Thermography Technology: Current Perspective.

    PubMed

    Shterenshis, Michael

    2017-01-01

    Medical infrared thermography (IT) produces an image of the infrared waves emitted by the human body as part of the thermoregulation process that can vary in intensity based on the health of the person. This review analyzes recent developments in the use of infrared thermography as a screening and diagnostic tool in clinical and nonclinical settings, and identifies possible future routes for improvement of the method. Currently, infrared thermography is not considered to be a fully reliable diagnostic method. If standard infrared protocol is established and a normative database is available, infrared thermography may become a reliable method for detecting inflammatory processes.

  2. Detecting defects in marine structures by using eddy current infrared thermography.

    PubMed

    Swiderski, W

    2016-12-01

    Eddy current infrared (IR) thermography is a new nondestructive testing (NDT) technique used for the detection of cracks in electroconductive materials. By combining the well-established inspection methods of eddy current NDT and IR thermography, this technique uses induced eddy currents to heat test samples. In this way, IR thermography allows the visualization of eddy current distribution that is distorted in defect sites. This paper discusses the results of numerical modeling of eddy current IR thermography procedures in application to marine structures.

  3. Challenges to Global Implementation of Infrared Thermography Technology: Current Perspective

    PubMed Central

    Shterenshis, Michael

    2017-01-01

    Medical infrared thermography (IT) produces an image of the infrared waves emitted by the human body as part of the thermoregulation process that can vary in intensity based on the health of the person. This review analyzes recent developments in the use of infrared thermography as a screening and diagnostic tool in clinical and nonclinical settings, and identifies possible future routes for improvement of the method. Currently, infrared thermography is not considered to be a fully reliable diagnostic method. If standard infrared protocol is established and a normative database is available, infrared thermography may become a reliable method for detecting inflammatory processes. PMID:29138741

  4. The Effect of Penetration Depth on Thermal Contrast of NDT by Thermography

    NASA Technical Reports Server (NTRS)

    Chu, Tsuchin Philip; DiGregorio, Anthony; Russell, Samuel S.

    1999-01-01

    Nondestructive evaluation by Thermography (TNDE) is generally classified into two categories, the passive approach and the active approach. The passive approach is usually performed by measuring the natural temperature difference between the ambient and the material or structure to be tested. The active approach, on the other hand, requires the application of an external energy source to stimulate the material for inspection. A laser, a heater, a hot air blower, a high power thermal pulse, mechanical, or electromagnetic energy may provide the energy sources. For the external heating method to inspect materials for defects and imperfection at ambient temperature, a very short burst of heat can be introduced to one of the surfaces or slow heating of the side opposite to the side being observed. Due to the interruption of the heat flow through the defects, the thermal images will reveal the defective area by contrasting against the surrounding good materials. This technique is called transient Thermography, pulse video Thermography, or thermal wave imaging. As an empirical rule, the radius of the smallest defect should be at least one to two times larger than its depth under the surface. Thermography is being used to inspect void, debond, impact damage, and porosity in composite materials. It has been shown that most of the defects and imperfection can be detected. However, the current method of inspection using thermographic technique is more of an art than a practical scientific and engineering approach. The success rate of determining the defect location and defect type is largely depend on the experience of the person who operates thermography system and performs the inspection. The operator has to try different type of heat source, different duration of its application time, as well as experimenting with the thermal image acquisition time and interval during the inspection process. Further-more, the complexity of the lay-up and structure of composites makes it

  5. Infrared thermography in the evaluation of meibomian gland dysfunction.

    PubMed

    Su, Tai-Yuan; Ho, Wei-Ting; Chiang, Shu-Chiung; Lu, Chien-Yi; Chiang, Huihua Kenny; Chang, Shu-Wen

    2017-07-01

    To evaluate meibomian gland dysfunction (MGD) by infrared thermography. An observational study was conducted at the Department of Ophthalmology, Far Eastern Memorial Hospital, New Taipei City, Taiwan. Participants included 89 MGD patients (30 in Grade 1, 49 in Grade 2, and 10 in Grade 3) and 65 controls. The close-eye thermographic images of the eyelid were obtained noninvasively by infrared thermography. Temperatures at 8 regions of interest (ROIs) of the eyelid margin and a reference temperature at the center of the upper eyelid were measured. The temperature ratio was defined as the temperature of ROI divided by the reference temperature. Eyelid margin temperature measured by infrared thermography increased from temporal side (ROI 1) to the nasal side (ROI 8) of the eye in both MGD patients and control groups. The temperature ratios were significantly higher in MGD participants than in controls, especially at ROI 8. The eyelid margin temperature measured by infrared thermography was higher in MGD participants. Further development of this infrared thermography system may become a rapid and non-invasive tool for MGD screening. Copyright © 2016. Published by Elsevier B.V.

  6. Airborne thermography of temperature patterns in sugar beet piles

    NASA Technical Reports Server (NTRS)

    Moore, D. G.; Bichsel, S.

    1975-01-01

    An investigation was conducted to evaluate the use of thermography for locating spoilage areas (chimneys) within storage piles and to subsequently use the information for the scheduling of their processing. Thermal-infrared quantitative scanner data were acquired initially on January 16, 1975, over the storage piles at Moorhead, Minnesota, both during the day and predawn. Photographic data were acquired during the day mission to evaluate the effect of uneven snow cover on the thermal emittance, and the predawn thermography was used to locate potential chimneys. The piles were examined the day prior for indications of spoilage areas, and the ground crew indicated that no spoilage areas were located using their existing methods. Nine spoilage areas were interpreted from the thermography. The piles were rechecked by ground methods three days following the flights. Six of the nine areas delineated by thermography were actual spoilage areas.

  7. Improving visibility of rear surface cracks during inductive thermography of metal plates using Autoencoder

    NASA Astrophysics Data System (ADS)

    Xie, Jing; Xu, Changhang; Chen, Guoming; Huang, Weiping

    2018-06-01

    Inductive thermography is one kind of infrared thermography (IRT) technique, which is effective in detection of front surface cracks in metal plates. However, rear surface cracks are usually missed due to their weak indications during inductive thermography. Here we propose a novel approach (AET: AE Thermography) to improve the visibility of rear surface cracks during inductive thermography by employing the Autoencoder (AE) algorithm, which is an important block to construct deep learning architectures. We construct an integrated framework for processing the raw inspection data of inductive thermography using the AE algorithm. Through this framework, underlying features of rear surface cracks are efficiently extracted and new clearer images are constructed. Experiments of inductive thermography were conducted on steel specimens to verify the efficacy of the proposed approach. We visually compare the raw thermograms, the empirical orthogonal functions (EOFs) of the prominent component thermography (PCT) technique and the results of AET. We further quantitatively evaluated AET by calculating crack contrast and signal-to-noise ratio (SNR). The results demonstrate that the proposed AET approach can remarkably improve the visibility of rear surface cracks and then improve the capability of inductive thermography in detecting rear surface cracks in metal plates.

  8. Calibration and Evaluation of Ultrasound Thermography using Infrared Imaging

    PubMed Central

    Hsiao, Yi-Sing; Deng, Cheri X.

    2015-01-01

    Real-time monitoring of the spatiotemporal evolution of tissue temperature is important to ensure safe and effective treatment in thermal therapies including hyperthermia and thermal ablation. Ultrasound thermography has been proposed as a non-invasive technique for temperature measurement, and accurate calibration of the temperature-dependent ultrasound signal changes against temperature is required. Here we report a method that uses infrared (IR) thermography for calibration and validation of ultrasound thermography. Using phantoms and cardiac tissue specimens subjected to high-intensity focused ultrasound (HIFU) heating, we simultaneously acquired ultrasound and IR imaging data from the same surface plane of a sample. The commonly used echo time shift-based method was chosen to compute ultrasound thermometry. We first correlated the ultrasound echo time shifts with IR-measured temperatures for material-dependent calibration and found that the calibration coefficient was positive for fat-mimicking phantom (1.49 ± 0.27) but negative for tissue-mimicking phantom (− 0.59 ± 0.08) and cardiac tissue (− 0.69 ± 0.18 °C-mm/ns). We then obtained the estimation error of the ultrasound thermometry by comparing against the IR measured temperature and revealed that the error increased with decreased size of the heated region. Consistent with previous findings, the echo time shifts were no longer linearly dependent on temperature beyond 45 – 50 °C in cardiac tissues. Unlike previous studies where thermocouples or water-bath techniques were used to evaluate the performance of ultrasound thermography, our results show that high resolution IR thermography provides a useful tool that can be applied to evaluate and understand the limitations of ultrasound thermography methods. PMID:26547634

  9. NASA MUST Paper: Infrared Thermography of Graphite/Epoxy

    NASA Technical Reports Server (NTRS)

    Comeaux, Kayla; Koshti, Ajay

    2010-01-01

    The focus of this project is to use Infrared Thermography, a non-destructive test, to detect detrimental cracks and voids beneath the surface of materials used in the space program. This project will consist of developing a simulation model of the Infrared Thermography inspection of the Graphite/Epoxy specimen. The simulation entails finding the correct physical properties for this specimen as well as programming the model for thick voids or flat bottom holes. After the simulation is completed, an Infrared Thermography inspection of the actual specimen will be made. Upon acquiring the experimental test data, an analysis of the data for the actual experiment will occur, which includes analyzing images, graphical analysis, and analyzing numerical data received from the infrared camera. The simulation will then be corrected for any discrepancies between it and the actual experiment. The optimized simulation material property inputs can then be used for new simulation for thin voids. The comparison of the two simulations, the simulation for the thick void and the simulation for the thin void, provides a correlation between the peak contrast ratio and peak time ratio. This correlation is used in the evaluation of flash thermography data during the evaluation of delaminations.

  10. A Method to Measure and Estimate Normalized Contrast in Infrared Flash Thermography

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2016-01-01

    The paper presents further development in normalized contrast processing used in flash infrared thermography method. Method of computing normalized image or pixel intensity contrast, and normalized temperature contrast are provided. Methods of converting image contrast to temperature contrast and vice versa are provided. Normalized contrast processing in flash thermography is useful in quantitative analysis of flash thermography data including flaw characterization and comparison of experimental results with simulation. Computation of normalized temperature contrast involves use of flash thermography data acquisition set-up with high reflectivity foil and high emissivity tape such that the foil, tape and test object are imaged simultaneously. Methods of assessing other quantitative parameters such as emissivity of object, afterglow heat flux, reflection temperature change and surface temperature during flash thermography are also provided. Temperature imaging and normalized temperature contrast processing provide certain advantages over normalized image contrast processing by reducing effect of reflected energy in images and measurements, therefore providing better quantitative data. Examples of incorporating afterglow heat-flux and reflection temperature evolution in flash thermography simulation are also discussed.

  11. Effect of perspiration on skin temperature measurements by infrared thermography and contact thermometry during aerobic cycling

    NASA Astrophysics Data System (ADS)

    Priego Quesada, Jose Ignacio; Martínez Guillamón, Natividad; Cibrián Ortiz de Anda, Rosa M.a.; Psikuta, Agnes; Annaheim, Simon; Rossi, René Michel; Corberán Salvador, José Miguel; Pérez-Soriano, Pedro; Salvador Palmer, Rosario

    2015-09-01

    The aim of the present study was to compare infrared thermography and thermal contact sensors for measuring skin temperature during cycling in a moderate environment. Fourteen cyclists performed a 45-min cycling test at 50% of peak power output. Skin temperatures were simultaneously recorded by infrared thermography and thermal contact sensors before and immediately after cycling activity as well as after 10 min cooling-down, representing different skin wetness and blood perfusion states. Additionally, surface temperature during well controlled dry and wet heat exchange (avoiding thermoregulatory responses) using a hot plate system was assessed by infrared thermography and thermal contact sensors. In human trials, the inter-method correlation coefficient was high when measured before cycling (r = 0.92) whereas it was reduced immediately after the cycling (r = 0.82) and after the cooling-down phase (r = 0.59). Immediately after cycling, infrared thermography provided lower temperature values than thermal contact sensors whereas it presented higher temperatures after the cooling-down phase. Comparable results as in human trials were observed for hot plate tests in dry and wet states. Results support the application of infrared thermography for measuring skin temperature in exercise scenarios where perspiration does not form a water film.

  12. Breast cancer detection in rotational thermography images using texture features

    NASA Astrophysics Data System (ADS)

    Francis, Sheeja V.; Sasikala, M.; Bhavani Bharathi, G.; Jaipurkar, Sandeep D.

    2014-11-01

    Breast cancer is a major cause of mortality in young women in the developing countries. Early diagnosis is the key to improve survival rate in cancer patients. Breast thermography is a diagnostic procedure that non-invasively images the infrared emissions from breast surface to aid in the early detection of breast cancer. Due to limitations in imaging protocol, abnormality detection by conventional breast thermography, is often a challenging task. Rotational thermography is a novel technique developed in order to overcome the limitations of conventional breast thermography. This paper evaluates this technique's potential for automatic detection of breast abnormality, from the perspective of cold challenge. Texture features are extracted in the spatial domain, from rotational thermogram series, prior to and post the application of cold challenge. These features are fed to a support vector machine for automatic classification of normal and malignant breasts, resulting in a classification accuracy of 83.3%. Feature reduction has been performed by principal component analysis. As a novel attempt, the ability of this technique to locate the abnormality has been studied. The results of the study indicate that rotational thermography holds great potential as a screening tool for breast cancer detection.

  13. Applicability of active infrared thermography for screening of human breast: a numerical study

    NASA Astrophysics Data System (ADS)

    Dua, Geetika; Mulaveesala, Ravibabu

    2018-03-01

    Active infrared thermography is a fast, painless, noncontact, and noninvasive imaging method, complementary to mammography, ultrasound, and magnetic resonance imaging methods for early diagnosis of breast cancer. This technique plays an important role in early detection of breast cancer to women of all ages, including pregnant or nursing women, with different sizes of breast, irrespective of either fatty or dense breast. This proposed complementary technique makes use of infrared emission emanating from the breast. Emanating radiations from the surface of the breast under test are detected with an infrared camera to map the thermal gradients over it, in order to reveal hidden tumors inside it. One of the reliable active infrared thermographic technique, linear frequency modulated thermal wave imaging is adopted to detect tumors present inside the breast. Further, phase and amplitude images are constructed using frequency and time-domain data analysis schemes. Obtained results show the potential of the proposed technique for early diagnosis of breast cancer in fatty as well as dense breasts.

  14. Infrared thermography of evaporative fluxes and dynamics of salt deposition on heterogeneous porous surfaces

    NASA Astrophysics Data System (ADS)

    Nachshon, Uri; Shahraeeni, Ebrahim; Or, Dani; Dragila, Maria; Weisbrod, Noam

    2011-12-01

    Evaporation of saline solutions from porous media, common in arid areas, involves complex interactions between mass transport, energy exchange and phase transitions. We quantified evaporation of saline solutions from heterogeneous sand columns under constant hydraulic boundary conditions to focus on effects of salt precipitation on evaporation dynamics. Mass loss measurements and infrared thermography were used to quantify evaporation rates. The latter method enables quantification of spatial and temporal variability of salt precipitation to identify its dynamic effects on evaporation. Evaporation from columns filled with texturally-contrasting sand using different salt solutions revealed preferential salt precipitation within the fine textured domains. Salt precipitation reduced evaporation rates from the fine textured regions by nearly an order of magnitude. In contrast, low evaporation rates from coarse-textured regions (due to low capillary drive) exhibited less salt precipitation and consequently less evaporation rate suppression. Experiments provided insights into two new phenomena: (1) a distinct increase in evaporation rate at the onset of evaporation; and (2) a vapor pumping mechanism related to the presence of a salt crust over semidry media. Both phenomena are related to local vapor pressure gradients established between pore water and the surface salt crust. Comparison of two salts: NaCl and NaI, which tend to precipitate above the matrix surface and within matrix pores, respectively, shows a much stronger influence of NaCl on evaporation rate suppression. This disparity reflects the limited effect of NaI precipitation on matrix resistivity for solution and vapor flows.

  15. Narrative review: Diabetic foot and infrared thermography

    NASA Astrophysics Data System (ADS)

    Hernandez-Contreras, D.; Peregrina-Barreto, H.; Rangel-Magdaleno, J.; Gonzalez-Bernal, J.

    2016-09-01

    Diabetic foot is one of the major complications experienced by diabetic patients. An early identification and appropriate treatment of diabetic foot problems can prevent devastating consequences such as limb amputation. Several studies have demonstrated that temperature variations in the plantar region can be related to diabetic foot problems. Infrared thermography has been successfully used to detect complication related to diabetic foot, mainly because it is presented as a rapid, non-contact and non-invasive technique to visualize the temperature distribution of the feet. In this review, an overview of studies that relate foot temperature with diabetic foot problems through infrared thermography is presented. Through this research, it can be appreciated the potential of infrared thermography and the benefits that this technique present in this application. This paper also presents the different methods for thermogram analysis and the advantages and disadvantages of each one, being the asymmetric analysis the method most used so far.

  16. Augmented reality and dynamic infrared thermography for perforator mapping in the anterolateral thigh

    PubMed Central

    Cifuentes, Ignacio Javier; Dagnino, Bruno Leonardo; Salisbury, María Carolina; Perez, María Eliana; Ortega, Claudia; Maldonado, Daniela

    2018-01-01

    Dynamic infrared thermography (DIRT) has been used for the preoperative mapping of cutaneous perforators. This technique has shown a positive correlation with intraoperative findings. Our aim was to evaluate the accuracy of perforator mapping with DIRT and augmented reality using a portable projector. For this purpose, three volunteers had both of their anterolateral thighs assessed for the presence and location of cutaneous perforators using DIRT. The obtained image of these “hotspots” was projected back onto the thigh and the presence of Doppler signals within a 10-cm diameter from the midpoint between the lateral patella and the anterior superior iliac spine was assessed using a handheld Doppler device. Hotspots were identified in all six anterolateral thighs and were successfully projected onto the skin. The median number of perforators identified within the area of interest was 5 (range, 3–8) and the median time needed to identify them was 3.5 minutes (range, 3.3–4.0 minutes). Every hotspot was correlated to a Doppler sound signal. In conclusion, augmented reality can be a reliable method for transferring the location of perforators identified by DIRT onto the thigh, facilitating its assessment and yielding a reliable map of potential perforators for flap raising. PMID:29788686

  17. Augmented reality and dynamic infrared thermography for perforator mapping in the anterolateral thigh.

    PubMed

    Cifuentes, Ignacio Javier; Dagnino, Bruno Leonardo; Salisbury, María Carolina; Perez, María Eliana; Ortega, Claudia; Maldonado, Daniela

    2018-05-01

    Dynamic infrared thermography (DIRT) has been used for the preoperative mapping of cutaneous perforators. This technique has shown a positive correlation with intraoperative findings. Our aim was to evaluate the accuracy of perforator mapping with DIRT and augmented reality using a portable projector. For this purpose, three volunteers had both of their anterolateral thighs assessed for the presence and location of cutaneous perforators using DIRT. The obtained image of these "hotspots" was projected back onto the thigh and the presence of Doppler signals within a 10-cm diameter from the midpoint between the lateral patella and the anterior superior iliac spine was assessed using a handheld Doppler device. Hotspots were identified in all six anterolateral thighs and were successfully projected onto the skin. The median number of perforators identified within the area of interest was 5 (range, 3-8) and the median time needed to identify them was 3.5 minutes (range, 3.3-4.0 minutes). Every hotspot was correlated to a Doppler sound signal. In conclusion, augmented reality can be a reliable method for transferring the location of perforators identified by DIRT onto the thigh, facilitating its assessment and yielding a reliable map of potential perforators for flap raising.

  18. Damage detection in composites using nonlinear ultrasonically modulated thermography

    NASA Astrophysics Data System (ADS)

    Malfense Fierro, G.-P.; Dionysopoulos, D.; Meo, M.; Ciampa, F.

    2018-03-01

    This paper proposes a novel nonlinear ultrasonically stimulated thermography technique for a quick and reliable assessment of material damage in carbon fibre reinforced plastic (CFRP) composite materials. The proposed nondestructive evaluation (NDE) method requires narrow sweep ultrasonic excitation using contact piezoelectric transducers in order to identify dual excitation frequencies associated with the damage resonance. High-amplitude signals and higher harmonic generation are necessary conditions for an accurate identification of these two input frequencies. Dual periodic excitation using high- and low-frequency input signals was then performed in order to generate frictional heating at the crack location that was measured by an infrared (IR) camera. To validate this concept, an impact damaged CFRP composite panel was tested and the experimental results were compared with traditional flash thermography. A laser vibrometer was used to investigate the response of the material with dual frequency excitation. The proposed nonlinear ultrasonically modulated thermography successfully detected barely visible impact damage in CFRP composites. Hence, it can be considered as an alternative to traditional flash thermography and thermosonics by allowing repeatable detection of damage in composites.

  19. Normalized Temperature Contrast Processing in Flash Infrared Thermography

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2016-01-01

    The paper presents further development in normalized contrast processing of flash infrared thermography method by the author given in US 8,577,120 B1. The method of computing normalized image or pixel intensity contrast, and normalized temperature contrast are provided, including converting one from the other. Methods of assessing emissivity of the object, afterglow heat flux, reflection temperature change and temperature video imaging during flash thermography are provided. Temperature imaging and normalized temperature contrast imaging provide certain advantages over pixel intensity normalized contrast processing by reducing effect of reflected energy in images and measurements, providing better quantitative data. The subject matter for this paper mostly comes from US 9,066,028 B1 by the author. Examples of normalized image processing video images and normalized temperature processing video images are provided. Examples of surface temperature video images, surface temperature rise video images and simple contrast video images area also provided. Temperature video imaging in flash infrared thermography allows better comparison with flash thermography simulation using commercial software which provides temperature video as the output. Temperature imaging also allows easy comparison of surface temperature change to camera temperature sensitivity or noise equivalent temperature difference (NETD) to assess probability of detecting (POD) anomalies.

  20. Fuselage disbond inspection procedure using pulsed thermography

    NASA Astrophysics Data System (ADS)

    Ashbaugh, Mike; Thompson, Jeffrey G.

    2002-05-01

    One use of pulsed thermography that has shown promise in aircraft inspection for some time is an inspection for disbonds in metallic structures. The FAA has funded research at Wayne State University in this area and Boeing identified a specific inspection requirement for disbonds on Boeing 747 aircraft. Laboratory and subsequent field testing monitored by the AANC has demonstrated the reliability of this type of inspection. As a result Boeing expects to approve a general fuselage disbond inspection procedure using pulsed thermography in the 2nd Quarter of 2001.

  1. Thermal comfort of seats as visualized by infrared thermography.

    PubMed

    Sales, Rosemary Bom Conselho; Pereira, Romeu Rodrigues; Aguilar, Maria Teresa Paulino; Cardoso, Antônio Valadão

    2017-07-01

    Published studies that deal with the question of how the temperature of chair seats influences human activities are few, but the studies considering such a factor, a function of the type of material, could contribute to improvements in the design of chairs. This study evaluates seat temperatures of 8 types of chairs made of different materials. The parts of the furniture that people come into contact with, and the thermal response of the material to heating and cooling have been evaluated. Infrared thermography was used for this, as it is a non-contact technique that does not present any type of risk in the measurement of temperatures. Seats made of synthetic leather (leatherette), wood and polyester fabric were found to have the highest temperatures, and the plywood seat showed the lowest. The study has also revealed that thermography can contribute to studies of thermal comfort of chair seats in addition to determining the most suitable material. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Noninvasive Assessment of Tissue Heating During Cardiac Radiofrequency Ablation Using MRI Thermography

    PubMed Central

    Kolandaivelu, Aravindan; Zviman, Menekhem M.; Castro, Valeria; Lardo, Albert C.; Berger, Ronald D.; Halperin, Henry R.

    2010-01-01

    Background Failure to achieve properly localized, permanent tissue destruction is a common cause of arrhythmia recurrence after cardiac ablation. Current methods of assessing lesion size and location during cardiac radiofrequency ablation are unreliable or not suited for repeated assessment during the procedure. MRI thermography could be used to delineate permanent ablation lesions because tissue heating above 50°C is the cause of permanent tissue destruction during radiofrequency ablation. However, image artifacts caused by cardiac motion, the ablation electrode, and radiofrequency ablation currently pose a challenge to MRI thermography in the heart. In the current study, we sought to demonstrate the feasibility of MRI thermography during cardiac ablation. Methods and Results An MRI-compatible electrophysiology catheter and filtered radiofrequency ablation system was used to perform ablation in the left ventricle of 6 mongrel dogs in a 1.5-T MRI system. Fast gradient-echo imaging was performed before and during radiofrequency ablation, and thermography images were derived from the preheating and postheating images. Lesion extent by thermography was within 20% of the gross pathology lesion. Conclusions MR thermography appears to be a promising technique for monitoring lesion formation and may allow for more accurate placement and titration of ablation, possibly reducing arrhythmia recurrences. PMID:20657028

  3. Thermography in the detection and follow up of chondromalacia patellae.

    PubMed Central

    Vujcić, M; Nedeljković, R

    1991-01-01

    Although diagnostic criteria for chondromalacia patellae exist, the disease is often accompanied by physical signs which are limited or non-diagnostic. Thermographic examination was performed in 157 patients with clinical diagnosis of chondromalacia patellae in 86 patients after surgical treatment for chondromalacia, and in 308 controls. Thermography can help the clinicians in establishing the diagnosis of chondromalacia patellae, but by itself is not sufficiently specific. The specificity of thermography was dependent on age, ranging from 90% for the 15-24 year age group to 65% for the 45-54 year age group. Sensitivity of the method was 68%. Thermography can disclose other knee disorders which imitate chondromalacia patellae. Images PMID:1768161

  4. Remote sensing of land-based voids using computer enhanced infrared thermography

    NASA Astrophysics Data System (ADS)

    Weil, Gary J.

    1989-10-01

    Experiments are described in which computer-enhanced infrared thermography techniques are used to detect and describe subsurface land-based voids, such as voids surrounding buried utility pipes, voids in concrete structures such as airport taxiways, abandoned buried utility storage tanks, and caves and underground shelters. Infrared thermography also helps to evaluate bridge deck systems, highway pavements, and garage concrete. The IR thermography techniques make it possible to survey large areas quickly and efficiently. The paper also surveys the advantages and limitations of thermographic testing in comparison with other forms of NDT.

  5. Applicability of active infrared thermography for screening of human breast: a numerical study.

    PubMed

    Dua, Geetika; Mulaveesala, Ravibabu

    2018-03-01

    Active infrared thermography is a fast, painless, noncontact, and noninvasive imaging method, complementary to mammography, ultrasound, and magnetic resonance imaging methods for early diagnosis of breast cancer. This technique plays an important role in early detection of breast cancer to women of all ages, including pregnant or nursing women, with different sizes of breast, irrespective of either fatty or dense breast. This proposed complementary technique makes use of infrared emission emanating from the breast. Emanating radiations from the surface of the breast under test are detected with an infrared camera to map the thermal gradients over it, in order to reveal hidden tumors inside it. One of the reliable active infrared thermographic technique, linear frequency modulated thermal wave imaging is adopted to detect tumors present inside the breast. Further, phase and amplitude images are constructed using frequency and time-domain data analysis schemes. Obtained results show the potential of the proposed technique for early diagnosis of breast cancer in fatty as well as dense breasts. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  6. Calibration and Evaluation of Ultrasound Thermography Using Infrared Imaging.

    PubMed

    Hsiao, Yi-Sing; Deng, Cheri X

    2016-02-01

    Real-time monitoring of the spatiotemporal evolution of tissue temperature is important to ensure safe and effective treatment in thermal therapies including hyperthermia and thermal ablation. Ultrasound thermography has been proposed as a non-invasive technique for temperature measurement, and accurate calibration of the temperature-dependent ultrasound signal changes against temperature is required. Here we report a method that uses infrared thermography for calibration and validation of ultrasound thermography. Using phantoms and cardiac tissue specimens subjected to high-intensity focused ultrasound heating, we simultaneously acquired ultrasound and infrared imaging data from the same surface plane of a sample. The commonly used echo time shift-based method was chosen to compute ultrasound thermometry. We first correlated the ultrasound echo time shifts with infrared-measured temperatures for material-dependent calibration and found that the calibration coefficient was positive for fat-mimicking phantom (1.49 ± 0.27) but negative for tissue-mimicking phantom (-0.59 ± 0.08) and cardiac tissue (-0.69 ± 0.18°C-mm/ns). We then obtained the estimation error of the ultrasound thermometry by comparing against the infrared-measured temperature and revealed that the error increased with decreased size of the heated region. Consistent with previous findings, the echo time shifts were no longer linearly dependent on temperature beyond 45°C-50°C in cardiac tissues. Unlike previous studies in which thermocouples or water bath techniques were used to evaluate the performance of ultrasound thermography, our results indicate that high-resolution infrared thermography is a useful tool that can be applied to evaluate and understand the limitations of ultrasound thermography methods. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  7. Evaluation of the Predictive Validity of Thermography in Identifying Extravasation With Intravenous Chemotherapy Infusions.

    PubMed

    Matsui, Yuko; Murayama, Ryoko; Tanabe, Hidenori; Oe, Makoto; Motoo, Yoshiharu; Wagatsuma, Takanori; Michibuchi, Michiko; Kinoshita, Sachiko; Sakai, Keiko; Konya, Chizuko; Sugama, Junko; Sanada, Hiromi

    Early detection of extravasation is important, but conventional methods of detection lack objectivity and reliability. This study evaluated the predictive validity of thermography for identifying extravasation during intravenous antineoplastic therapy. Of 257 patients who received chemotherapy through peripheral veins, extravasation was identified in 26. Thermography was performed every 15 to 30 minutes during the infusions. Sensitivity, specificity, positive predictive value, and negative predictive value using thermography were 84.6%, 94.8%, 64.7%, and 98.2%, respectively. This study showed that thermography offers an accurate prediction of extravasation.

  8. Evaluation of the Predictive Validity of Thermography in Identifying Extravasation With Intravenous Chemotherapy Infusions

    PubMed Central

    Murayama, Ryoko; Tanabe, Hidenori; Oe, Makoto; Motoo, Yoshiharu; Wagatsuma, Takanori; Michibuchi, Michiko; Kinoshita, Sachiko; Sakai, Keiko; Konya, Chizuko; Sugama, Junko; Sanada, Hiromi

    2017-01-01

    Early detection of extravasation is important, but conventional methods of detection lack objectivity and reliability. This study evaluated the predictive validity of thermography for identifying extravasation during intravenous antineoplastic therapy. Of 257 patients who received chemotherapy through peripheral veins, extravasation was identified in 26. Thermography was performed every 15 to 30 minutes during the infusions. Sensitivity, specificity, positive predictive value, and negative predictive value using thermography were 84.6%, 94.8%, 64.7%, and 98.2%, respectively. This study showed that thermography offers an accurate prediction of extravasation. PMID:29112585

  9. Parameterisation of non-homogeneities in buried object detection by means of thermography

    NASA Astrophysics Data System (ADS)

    Stepanić, Josip; Malinovec, Marina; Švaić, Srećko; Krstelj, Vjera

    2004-05-01

    Landmines and their natural environment form a system of complex dynamics with variable characteristics. A manifestation of that complexity within the context of thermography-based landmines detection is excessive noise in thermograms. That has severely suppressed application of thermography in landmines detection for the purposes of humanitarian demining. (To be differentiated from military demining and demining for military operations other than war [Land Mine Detection DOD's Research Program Needs a Comprehensive Evaluation Strategy, US GAO Report, GAO-01 239, 2001; International Mine Action Standards, Chapter 4.--Glossary. Available at: < http://www.mineactionstandards.org/IMAS_archive/Final/04.10.pdf>].) The discrepancy between the existing role and the actual potential of thermography in humanitarian demining motivated systematic approach to sources of noise in thermograms of buried objects. These sources are variations in mine orientation relative to soil normal, which modify the shape of mine signature on thermograms, as well as non-homogeneities in soil and vegetation layer above the mine, which modify the overall quality of thermograms. This paper analyses the influence of variable mines, and more generally the influence of axially symmetric buried object orientation on the quality of its signature on thermograms. The following two angles have been extracted to serve as parameters describing variation in orientation: (i) θ--angle between the local vertical axis and mine symmetry axis and (ii) ψ--angle between local vertical axis and soil surface normal. Their influence is compared to the influence of (iii) d--the object depth change, which serves as control parameter. The influences are quantified and ranked within a statistically planned experiment. The analysis has proved that among the parameters listed, the most influential one is statistical interaction dψ, followed with the statistical interaction dθ. According to statistical tests, these two

  10. Implementing Recommendations of the Columbia Accident Investigation Board: Development of On-Orbit IR Thermography

    NASA Technical Reports Server (NTRS)

    Ottens, Brian P.; Parker, Bradford; Stephan, Ryan

    2005-01-01

    One of NASA's Space Shuttle Return-to-Flight (RTF) efforts has been to develop thermography for the on-orbit inspection of the Reinforced Carbon Carbon (RCC) portion of the Orbiter Wing Leading Edge (WLE). This paper addresses the capability of thermography to detect cracks in RCC by using in-plane thermal gradients that naturally occur on-orbit. Crack damage, which can result from launch debris impact, is a detection challenge for other on-orbit sensors under consideration for RTF, such as the Intensified Television Camera and Laser Dynamic Range Imager. We studied various cracks in RCC, both natural and simulated, along with material characteristics, such as emissivity uniformity, in steady-state thermography. Severity of crack, such as those likely and unlikely to cause burn through were tested, both in-air and in-vacuum, and the goal of this procedure was to assure crew and vehicle safety during reentry by identification and quantification of a damage condition while on-orbit. Expected thermal conditions are presented in typical shuttle orbits, and the expected damage signatures for each scenario are presented. Finally, through statistical signal detection, our results show that even at very low in-plane thermal gradients, we are able to detect damage at or below the threshold for fatality in the most critical sections of the WLE, with a confidence exceeding 1 in 10,000 probability of false negative.

  11. Implementing Recommendations of the Columbia Accident Investigation Board - Development of on-Orbit RCC Thermography

    NASA Technical Reports Server (NTRS)

    Ottens, Brian; Parker, Brad; Stephen, Ryan

    2005-01-01

    One of NASA s Space Shuttle Return-to-Flight (RTF) efforts has been to develop thermography for the on-orbit inspection of the Reinforced Carbon Carbon (RCC) portion of the Orbiter Wing Leading Edge (WLE). This paper addresses the capability of thermography to detect cracks in RCC by using in-plane thermal gradients that naturally occur on-orbit. Crack damage, which can result from launch debris impact, is a detection challenge for other on-orbit sensors under consideration for RTF, such as the Intensified Television Camera and Laser Dynamic Range Imager. We studied various cracks in RCC, both natural and simulated, along with material characteristics, such as emissivity uniformity, in steady-state thermography. Severity of crack, such as those likely and unlikely to cause burn through were tested, both in-air and in-vacuum, and the goal of this procedure was to assure crew and vehicle safety during re-entry by identification and quantification of a damage condition while on-orbit. Expected thermal conditions are presented in typical shuttle orbits, and the expected damage signatures for each scenario are presented. Finally, through statistical signal detection, our results show that even at very low in-plane thermal gradients, we are able to detect damage at or below the threshold for fatality in the most critical sections of the WLE, with a confidence exceeding 1 in 10,000 probability of false negative.

  12. 3D thermography imaging standardization technique for inflammation diagnosis

    NASA Astrophysics Data System (ADS)

    Ju, Xiangyang; Nebel, Jean-Christophe; Siebert, J. Paul

    2005-01-01

    We develop a 3D thermography imaging standardization technique to allow quantitative data analysis. Medical Digital Infrared Thermal Imaging is very sensitive and reliable mean of graphically mapping and display skin surface temperature. It allows doctors to visualise in colour and quantify temperature changes in skin surface. The spectrum of colours indicates both hot and cold responses which may co-exist if the pain associate with an inflammatory focus excites an increase in sympathetic activity. However, due to thermograph provides only qualitative diagnosis information, it has not gained acceptance in the medical and veterinary communities as a necessary or effective tool in inflammation and tumor detection. Here, our technique is based on the combination of visual 3D imaging technique and thermal imaging technique, which maps the 2D thermography images on to 3D anatomical model. Then we rectify the 3D thermogram into a view independent thermogram and conform it a standard shape template. The combination of these imaging facilities allows the generation of combined 3D and thermal data from which thermal signatures can be quantified.

  13. Recent use of medical infrared thermography in skin neoplasms.

    PubMed

    Magalhaes, C; Vardasca, R; Mendes, J

    2018-03-25

    Infrared thermal imaging captures the infrared radiation emitted by the skin surface. The thermograms contain valuable information, since the temperature distribution can be used to characterize physiological anomalies. Thus, the use of infrared thermal imaging (IRT) has been studied as a possible medical tool to aid in the diagnosis of skin oncological lesions. The aim of this review is to assess the current state of the applications of IRT in skin neoplasm identification and characterization. A literature survey was conducted using the reference bibliographic databases: Scopus, PubMed and ISI Web of Science. Keywords (thermography, infrared imaging, thermal imaging and skin cancer) were combined and its presence was verified at the title and abstract of the article or as a main topic. Only articles published after 2013 were considered during this search. In total, 55 articles were encountered, resulting in 14 publications for revision after applying the exclusion criteria. It was denoted that IRT have been used to characterize and distinguish between malignant and benign neoplasms and different skin cancer types. IRT has also been successfully applied in the treatment evaluation of these types of lesions. Trends and future challenges have been established to improve the application of IRT in this field, disclosing that dynamic thermography is a promising tool for early identification of oncological skin conditions. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Breast reconstruction with absorbable mesh sling: dynamic infrared thermography of skin envelope

    PubMed Central

    Hashimoto, Yoko; Yuasa, Takeshi; Suzuki, Yoshinori; Saisho, Hiroshi

    2017-01-01

    Background To immediate reconstruct ptosis breasts, we used polyglactin (Vicryl; Ethicon Inc., Somerville, NJ, USA) mesh as an inferolateral sling. However, Vicryl mesh is absorbable and losing function as a supporting structure. We doubt about the stability of the blood supply to the inferior part of the flap when it is in direct contact with inner implant. In this study, we examine the complications and the safety of the skin flap of this absorbable mesh sling (AMS) procedure. Methods The outcomes of 80 cases were examined, and the 1-year safety record of 40 cases was assessed. Complications were divided into minor complications, major complications requiring surgical intervention, and major complications requiring the reconstructive surgery to be halted. In addition, we examined the blood perfusion of the skin flap by dynamic infrared thermography (DIRT). Results Among 80 patients with AMS procedure, 73 breasts were reconstructed immediately and in one-stage. Complication outcomes are presented; there were 4 cases of minor flap necrosis (5%) and 4 of major complications resulting in surgical correction (5%). One patient required additional surgery, and the implant was moved into the musculocutaneous flap (1.3%). In 40 patients 1 year after surgery, DIRT showed significant decreased of blood perfusion in the ipsilateral inferior sites in comparison with the superior sites. Conclusions Blood perfusion was comparably insufficient in the inferior area of the reconstructed breast mound with AMS, where the pectoralis muscle could not be used to line the inside of the envelope. However, there were no severe flap complications due to ischemia. PMID:28210555

  15. Tracking composite material damage evolution using Bayesian filtering and flash thermography data

    NASA Astrophysics Data System (ADS)

    Gregory, Elizabeth D.; Holland, Steve D.

    2016-05-01

    We propose a method for tracking the condition of a composite part using Bayesian filtering of ash thermography data over the lifetime of the part. In this demonstration, composite panels were fabricated; impacted to induce subsurface delaminations; and loaded in compression over multiple time steps, causing the delaminations to grow in size. Flash thermography data was collected between each damage event to serve as a time history of the part. The ash thermography indicated some areas of damage but provided little additional information as to the exact nature or depth of the damage. Computed tomography (CT) data was also collected after each damage event and provided a high resolution volume model of damage that acted as truth. After each cycle, the condition estimate, from the ash thermography data and the Bayesian filter, was compared to 'ground truth'. The Bayesian process builds on the lifetime history of ash thermography scans and can give better estimates of material condition as compared to the most recent scan alone, which is common practice in the aerospace industry. Bayesian inference provides probabilistic estimates of damage condition that are updated as each new set of data becomes available. The method was tested on simulated data and then on an experimental data set.

  16. Detection of defects in multi-layered aramid composites by ultrasonic IR thermography

    NASA Astrophysics Data System (ADS)

    Pracht, Monika; Swiderski, Waldemar

    2017-10-01

    In military applications, laminates reinforced with aramid, carbon, and glass fibers are used for the construction of protection products against light ballistics. Material layers can be very different by their physical properties. Therefore, such materials represent a difficult inspection task for many traditional techniques of non-destructive testing (NDT). Defects which can appear in this type of many-layered composite materials usually are inaccuracies in gluing composite layers and stratifications or delaminations occurring under hits of fragments and bullets. IR thermographic NDT is considered as a candidate technique to detect such defects. One of the active IR thermography methods used in nondestructive testing is vibrothermography. The term vibrothermography was created in the 1990s to determine the thermal test procedures designed to assess the hidden heterogeneity of structural materials based on surface temperature fields at cyclical mechanical loads. A similar procedure can be done with sound and ultrasonic stimulation of the material, because the cause of an increase in temperature is internal friction between the wall defect and the stimulation mechanical waves. If the cyclic loading does not exceed the flexibility of the material and the rate of change is not large, the heat loss due to thermal conductivity is small, and the test object returns to its original shape and temperature. The most commonly used method is ultrasonic stimulation, and the testing technique is ultrasonic infrared thermography. Ultrasonic IR thermography is based on two basic phenomena. First, the elastic properties of defects differ from the surroundings, and acoustic damping and heating are always larger in the damaged regions than in the undamaged or homogeneous areas. Second, the heat transfer in the sample is dependent on its thermal properties. In this paper, both modelling and experimental results which illustrate the advantages and limitations of ultrasonic IR

  17. Feasibility of determining flat roof heat losses using aerial thermography

    NASA Technical Reports Server (NTRS)

    Bowman, R. L.; Jack, J. R.

    1979-01-01

    The utility of aerial thermography for determining rooftop heat losses was investigated experimentally using several completely instrumented test roofs with known thermal resistances. Actual rooftop heat losses were obtained both from in-situ instrumentation and aerial thermography obtained from overflights at an altitude of 305 m. In general, the remotely determined roof surface temperatures agreed very well with those obtained from ground measurements. The roof heat losses calculated using the remotely determined roof temperature agreed to within 17% of those calculated from 1/R delta T using ground measurements. However, this agreement may be fortuitous since the convective component of the heat loss is sensitive to small changes in roof temperature and to the average heat transfer coefficient used, whereas the radiative component is less sensitive. This, at this time, it is felt that an acceptable quantitative determination of roof heat losses using aerial thermography is only feasible when the convective term is accurately known or minimized. The sensitivity of the heat loss determination to environmental conditions was also evaluated. The analysis showed that the most reliable quantitative heat loss determinations can probably be obtained from aerial thermography taken under conditions of total cloud cover with low wind speeds and at low ambient temperatures.

  18. Computer Assisted Thermography And Its Application In Ovulation Detection

    NASA Astrophysics Data System (ADS)

    Rao, K. H.; Shah, A. V.

    1984-08-01

    Hardware and software of a computer-assisted image analyzing system used for infrared images in medical applications are discussed. The application of computer-assisted thermography (CAT) as a complementary diagnostic tool in centralized diagnostic management is proposed. The authors adopted 'Computer Assisted Thermography' to study physiological changes in the breasts related to the hormones characterizing the menstrual cycle of a woman. Based on clinical experi-ments followed by thermal image analysis, they suggest that 'differential skin temperature (DST)1 be measured to detect the fertility interval in the menstrual cycle of a woman.

  19. IR Thermography of International Space Station Radiator Panels

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay; Winfree, WIlliam; Morton, Richard; Howell, Patricia

    2010-01-01

    Several non-flight qualification test radiators were inspected using flash thermography. Flash thermography data analysis used raw and second derivative images to detect anomalies (Echotherm and Mosaic). Simple contrast evolutions were plotted for the detected anomalies to help in anomaly characterization. Many out-of-family indications were noted. Some out-of-family indications were classified as cold spot indications and are due to additional adhesive or adhesive layer behind the facesheet. Some out-of-family indications were classified as hot spot indications and are due to void, unbond or lack of adhesive behind the facesheet. The IR inspection helped in assessing expected manufacturing quality of the radiators.

  20. Seismic risk evaluation aided by IR thermography

    NASA Astrophysics Data System (ADS)

    Grinzato, E.; Cadelano, G.; Bison, P.; Petracca, A.

    2009-05-01

    Conservation of buildings in areas at seismic risk must take prevention into account. The safeguard architectonic heritage is an ambitious objective, but a priority for planning programmes at varying levels of decision making. Preservation and restoration activities must be optimized to cover a vast and widespread historical and architectonic heritage present in many countries. Masonry buildings requires an adequate level of knowledge based on the importance of structural geometry, which may include the damage, details of construction and properties of materials. For identification and classification of masonry is necessary to find shape, type and size of the elements, texture, size of mortar joints, assemblage. The recognition can be done through a visual inspection of the surface of walls, which can be examined, where is not visible, removing a layer of plaster. Thermography is an excellent tool for a fast survey and collection of vital information for this purpose, but it is extremely important define a precise procedure in the development of more efficient monitoring tools. Thermography is a non-destructive method that allows recognizing the structural damage below plaster, detecting the presence of discontinuity in masonry, for added storeys, cavity, filled openings, and repairs. Furthermore, the fast identification of subsurface state allows to select areas where other methods either more penetrating or partially destructive have to be applied. The paper reports experimental results achieved in the mainframe of the European project RECES Modiquus. The main aim of the project is to improve methods, techniques and instruments for facing antiseismic options. Both passive and active thermographic techniques have been applied in different weather conditions and time schemes. A dedicated algorithm has been developed to enhance the visibility of wall bonding.

  1. Infrared Thermography in the Architectural Field

    PubMed Central

    2013-01-01

    Infrared thermography is becoming ever more popular in civil engineering/architecture mainly due to its noncontact character which includes two great advantages. On one side, it prevents the object, under inspection, from any alteration and this is worthwhile especially in the presence of precious works of art. On the other side, the personnel operate in a remote manner far away from any hazard and this complies well with safety at work regulations. What is more, it offers the possibility to quickly inspect large surfaces such as the entire facade of a building. This paper would be an overview of the use of infrared thermography in the architectural and civil engineering field. First, some basic testing procedures are described, and then some key examples are presented owing to both laboratory tests and applications in situ spanning from civil habitations to works of art and archaeological sites. PMID:24319358

  2. Infrared thermography in the architectural field.

    PubMed

    Meola, Carosena

    2013-01-01

    Infrared thermography is becoming ever more popular in civil engineering/architecture mainly due to its noncontact character which includes two great advantages. On one side, it prevents the object, under inspection, from any alteration and this is worthwhile especially in the presence of precious works of art. On the other side, the personnel operate in a remote manner far away from any hazard and this complies well with safety at work regulations. What is more, it offers the possibility to quickly inspect large surfaces such as the entire facade of a building. This paper would be an overview of the use of infrared thermography in the architectural and civil engineering field. First, some basic testing procedures are described, and then some key examples are presented owing to both laboratory tests and applications in situ spanning from civil habitations to works of art and archaeological sites.

  3. Computer aided diagnosis of diabetic foot using infrared thermography: A review.

    PubMed

    Adam, Muhammad; Ng, Eddie Y K; Tan, Jen Hong; Heng, Marabelle L; Tong, Jasper W K; Acharya, U Rajendra

    2017-12-01

    Diabetes mellitus (DM) is a chronic metabolic disorder that requires regular medical care to prevent severe complications. The elevated blood glucose level affects the eyes, blood vessels, nerves, heart, and kidneys after the onset. The affected blood vessels (usually due to atherosclerosis) may lead to insufficient blood circulation particularly in the lower extremities and nerve damage (neuropathy), which can result in serious foot complications. Hence, an early detection and treatment can prevent foot complications such as ulcerations and amputations. Clinicians often assess the diabetic foot for sensory deficits with clinical tools, and the resulting foot severity is often manually evaluated. The infrared thermography is a fast, nonintrusive and non-contact method which allows the visualization of foot plantar temperature distribution. Several studies have proposed infrared thermography-based computer aided diagnosis (CAD) methods for diabetic foot. Among them, the asymmetric temperature analysis method is more superior, as it is easy to implement, and yielded satisfactory results in most of the studies. In this paper, the diabetic foot, its pathophysiology, conventional assessments methods, infrared thermography and the different infrared thermography-based CAD analysis methods are reviewed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Improved image processing of road pavement defect by infrared thermography

    NASA Astrophysics Data System (ADS)

    Sim, Jun-Gi

    2018-03-01

    This paper intends to achieve improved image processing for the clear identification of defects in damaged road pavement structure using infrared thermography non-destructive testing (NDT). To that goal, 4 types of pavement specimen including internal defects were fabricated to exploit the results obtained by heating the specimens by natural light. The results showed that defects located down to a depth of 3 cm could be detected by infrared thermography NDT using the improved image processing method.

  5. Examining the time course of genital and subjective sexual responses in women and men with concurrent plethysmography and thermography.

    PubMed

    Huberman, Jackie S; Dawson, Samantha J; Chivers, Meredith L

    2017-10-01

    Sexual response is a dynamic process, though there is limited knowledge of the time course and relationships among its psychological and physiological components. To address this gap, we concurrently assessed self-reported sexual arousal, genital temperature (with thermography), and genital vasocongestion (with vaginal photoplethysmography [VPP] or penile plethysmography [PPG]) during sexual and nonsexual films in 28 androphilic women (attracted to men) and 27 gynephilic men (attracted to women). Men and women had similarly strong agreement between subjective and genital responses (sexual concordance) with thermography, but this agreement was stronger in men than women with PPG/VPP. The time course of changes in self-reported arousal was most similar to changes in genital temperature (i.e., time to onset and peak response). Time-lagged correlations and multilevel modeling revealed changes in the strength of relationships between aspects of sexual response over time. Results highlight the dynamic nature of sexual response and drawbacks of relying on zero-order correlations to characterize sexual concordance. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Subsurface defect detection in first layer of pavement structure and reinforced civil engineering structure by FRP bonding using active infrared thermography

    NASA Astrophysics Data System (ADS)

    Dumoulin, Jean; Ibos, Laurent

    2010-05-01

    In many countries road network ages while road traffic and maintenance costs increase. Nowadays, thousand and thousand kilometers of roads are each year submitted to surface distress survey. They generally lean on pavement surface imaging measurement techniques, mainly in the visible spectrum, coupled with visual inspection or image processing detection of emergent distresses. Nevertheless, optimisation of maintenance works and costs requires an early detection of defects within the pavement structure when they still are hidden from surface. Accordingly, alternative measurement techniques for pavement monitoring are currently under investigation (seismic methods, step frequency radar). On the other hand, strengthening or retrofitting of reinforced concrete structures by externally bonded Fiber Reinforced Polymer (FRP) systems is now a commonly accepted and widespread technique. However, the use of bonding techniques always implies following rigorous installing procedures. To ensure the durability and long-term performance of the FRP reinforcements, conformance checking through an in situ auscultation of the bonded FRP systems is then highly suitable. The quality-control program should involve a set of adequate inspections and tests. Visual inspection and acoustic sounding (hammer tap) are commonly used to detect delaminations (disbonds) but are unable to provide sufficient information about the depth (in case of multilayered composite) and width of debonded areas. Consequently, rapid and efficient inspection methods are also required. Among the non destructive methods under study, active infrared thermography was investigated both for pavement and civil engineering structures through experiments in laboratory and numerical simulations, because of its ability to be also used on field. Pulse Thermography (PT), Pulse Phase Thermography (PPT) and Principal Component Thermography (PCT) approaches have been tested onto pavement samples and CFRP bonding on concrete

  7. Field testing of hand-held infrared thermography, phase II TPF-5(247) : final report.

    DOT National Transportation Integrated Search

    2016-05-01

    This report is the second of two volumes that document results from the pooled fund study TPF-5 (247), Development of : Handheld Infrared Thermography, Phase II. The interim report (volume I) studied the implementation of handheld thermography : by p...

  8. Improving spatial resolution in skin-contact thermography: comparison between a spline based and linear interpolation.

    PubMed

    Giansanti, Daniele

    2008-07-01

    A wearable device for skin-contact thermography [Giansanti D, Maccioni G. Development and testing of a wearable integrated thermometer sensor for skin contact thermography. Med Eng Phys 2006 [ahead of print

  9. Damage Detection in Rotorcraft Composite Structures Using Thermography and Laser-Based Ultrasound

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Zalameda, Joseph N.; Madaras, Eric I.

    2004-01-01

    New rotorcraft structural composite designs incorporate lower structural weight, reduced manufacturing complexity, and improved threat protection. These new structural concepts require nondestructive evaluation inspection technologies that can potentially be field-portable and able to inspect complex geometries for damage or structural defects. Two candidate technologies were considered: Thermography and Laser-Based Ultrasound (Laser UT). Thermography and Laser UT have the advantage of being non-contact inspection methods, with Thermography being a full-field imaging method and Laser UT a point scanning technique. These techniques were used to inspect composite samples that contained both embedded flaws and impact damage of various size and shape. Results showed that the inspection techniques were able to detect both embedded and impact damage with varying degrees of success.

  10. Principal Components of Thermography analyses of the Silk Tomb, Petra (Jordan)

    NASA Astrophysics Data System (ADS)

    Gomez-Heras, Miguel; Alvarez de Buergo, Monica; Fort, Rafael

    2015-04-01

    This communication presents the results of an active thermography survey of the Silk Tomb, which belongs to the Royal Tombs compound in the archaeological city of Petra in Jordan. The Silk Tomb is carved in the variegated Palaeozoic Umm Ishrin sandstone and it is heavily backweathered due to surface runoff from the top of the cliff where it is carved. Moreover, the name "Silk Tomb" was given because of the colourful display of the variegated sandstone due to backweathering. A series of infrared images were taken as the façade was heated by sunlight to perform a Principal Component of Thermography analyses with IR view 1.7.5 software. This was related to indirect moisture measurements (percentage of Wood Moisture Equivalent) taken across the façade, by means of a Protimeter portable moisture meter. Results show how moisture retention is deeply controlled by lithological differences across the façade. Research funded by Geomateriales 2 S2013/MIT-2914 and CEI Moncloa (UPM, UCM, CSIC) through a PICATA contract and the equipment from RedLAbPAt Network

  11. A new measurement method of coatings thickness based on lock-in thermography

    NASA Astrophysics Data System (ADS)

    Zhang, Jin-Yu; Meng, Xiang-bin; Ma, Yong-chao

    2016-05-01

    Coatings have been widely used in modern industry and it plays an important role. Coatings thickness is directly related to the performance of the functional coatings, therefore, rapid and accurate coatings thickness inspection has great significance. Existing coatings thickness measurement method is difficult to achieve fast and accurate on-site non-destructive coatings inspection due to cost, accuracy, destruction during inspection and other reasons. This paper starts from the introduction of the principle of lock-in thermography, and then performs an in-depth study on the application of lock-in thermography in coatings inspection through numerical modeling and analysis. The numerical analysis helps explore the relationship between coatings thickness and phase, and the relationship lays the foundation for accurate calculation of coatings thickness. The author sets up a lock-in thermography inspection system and uses thermal barrier coatings specimens to conduct an experiment. The specimen coatings thickness is measured and calibrated to verify the quantitative inspection. Experiment results show that the lock-in thermography method can perform fast coatings inspection and the inspection accuracy is about 95%. Therefore, the method can meet the field testing requirements for engineering projects.

  12. Detection of foreign substances in food using thermography

    NASA Astrophysics Data System (ADS)

    Meinlschmidt, Peter; Maergner, Volker

    2002-03-01

    This paper gives a short introduction into the possibility of detecting foreign bodies in food by using IR thermography. The first results shown for combinations of cherries and chocolate and berries contaminated with leaves, stalks, pedicel and thorns could be easily evaluated manually. Therefore the differing emissivity coefficients or the different heat conductivities and/or capacities are used for differentiation. Applying pulse thermography, first heat conductivity measurements of different food materials are performed. Calculating the contrast of possible food / contaminant combinations shows the difficulty of differentiating certain materials. A possible automatic evaluation for raisins contaminated with wooden sticks and almonds blended with stones could be shown. The power of special adapted algorithms using statistical or morphological analysis is shown to distinguish the foreign bodies from the foodstuff.

  13. Highly sensitive time-resolved thermography and multivariate image analysis of the cerebral cortex for intrasurgical diagnostics

    NASA Astrophysics Data System (ADS)

    Hollmach, Julia; Hoffmann, Nico; Schnabel, Christian; Küchler, Saskia; Sobottka, Stephan; Kirsch, Matthias; Schackert, Gabriele; Koch, Edmund; Steiner, Gerald

    2013-03-01

    Time-resolved thermography is a novel method to assess thermal variations and heterogeneities in tissue and blood. The recent generation of thermal cameras provides a sensitivity of less than mK. This high sensitivity in conjunction with non-invasive, label-free and radiation-free monitoring makes thermography a promising tool for intrasurgical diagnostics. In brain surgery, time-resolved thermography can be employed to distinguish between normal and anomalous tissue. In this study, we investigated and discussed the potential of time-resolved thermography in neurosurgery for the intraoperative detection and demarcation of tumor borders. Algorithms for segmentation, reduction of movement artifacts and image fusion were developed. The preprocessed image stacks were subjected to discrete wavelet transform to examine individual frequency components. K-means clustering was used for image evaluation to reveal similarities within the image sequence. The image evaluation shows significant differences for both types of tissue. Tumor and normal tissues have different time characteristics in heat production and transfer. Furthermore, tumor could be highlighted. These results demonstrate that time-resolved thermography is able to support the detection of tumors in a contactless manner without any side effects for the tissue. The intraoperative usage of time-resolved thermography improves the accuracy of tumor resections to prevent irreversible brain damage during surgery.

  14. Thermography applied acupuncture and qi-gong

    NASA Astrophysics Data System (ADS)

    Qin, Yuwen; Ji, Hong-Wei; Chen, Jin-Long; Li, Hong-Qi

    1997-04-01

    Thermographic technique can be used to measure temperature distribution of body surface in real-time, non-contact and full-field, which has been successfully used in medical diagnosis, remote sensing, and NDT, etc. The authors have developed a thermographic experiment that can be applied to inspect the effect of action of acupuncture and qi-gong (a system of deep breathing exercises) by measuring the temperature of hand and arm. The observation is performed respectively by thermography for the dynamic changes of temperature of the arm and hand after acupuncture therapy and qi-gong therapy. Thermographic results show that the temperature on the collateral channels increases markedly. In the meantime, it can be seen that the above therapies of Chinese medicine can stimulate the channel collateral system. This also contributes a new basis to the effect of action of the therapies of Chinese medicine. The work shows that thermographic technique is a powerful tool for research in Chinese medicine. In this paper, some thermal images are obtained from the persons treated with acupuncture and qi- gong.

  15. Flash Thermography to Evaluate Porosity in Carbon Fiber Reinforced Polymer (CFRPs)

    PubMed Central

    Meola, Carosena; Toscano, Cinzia

    2014-01-01

    It is a fact that the presence of porosity in composites has detrimental effects on their mechanical properties. Then, due to the high probability of void formation during manufacturing processes, it is necessary to have the availability of non-destructive evaluation techniques, which may be able to discover the presence and the distribution of porosity in the final parts. In recent years, flash thermography has emerged as the most valuable method, but it is still not adequately enclosed in the industrial enterprise. The main reason of this is the lack of sufficient quantitative data for a full validation of such a technique. The intention of the present work is to supply an overview on the current state-of-the-art regarding the use of flash thermography to evaluate the porosity percentage in fiber reinforced composite materials and to present the latest results, which are gathered by the authors, on porous carbon fiber reinforced polymer laminates. To this end, several coupons of two different stacking sequences and including a different amount of porosity are fabricated and inspected with both non-destructive and destructive testing techniques. Data coming from non-destructive testing with either flash thermography or ultrasonics are plotted against the porosity percentage, which was previously estimated with the volumetric method. The new obtained results are a witness to the efficacy of flash thermography. Some key points that need further consideration are also highlighted. PMID:28788527

  16. Defect characterization by inductive heated thermography

    NASA Astrophysics Data System (ADS)

    Noethen, Matthias; Meyendorf, Norbert

    2012-05-01

    During inductive-thermographic inspection, an eddy current of high intensity is induced into the inspected material and the thermal response is detected by an infrared camera. Anomalies in the surface temperature during and after inductive heating correspond to inhomogeneities in the material. A finite element simulation of the surface crack detection process using active thermography with inductive heating has been developed. The simulation model is based on the finite element software ANSYS. The simulation tool was tested and used for investigations on steel components with different longitudinal orientated cracks, varying in shape, width and height. This paper focuses on surface connected longitudinal orientated cracks in austenitic steel. The results show that depending on the excitation frequency the temperature distribution of the material under test are different and a possible way to measure the depth of the crack will be discussed.

  17. Fabrication of 0.0075-Scale Orbiter Phosphor Thermography Test Models for Shuttle RTF Aeroheating Studies

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M.; Powers, Michael A.; Griffith, Mark S.; Hopins, John W.; Veneris, Pete H.; Kuykendoll, Kathryn

    2006-01-01

    This report details the techniques and fidelity associated with aeroheating models constructed in support of the return-to-flight boundary layer transition (BLT) activity for STS-114. This report provides technical descriptions of the methods, materials, and equipment used, as well as the surface quality results obtained with the cast ceramic phosphor thermography models.

  18. Endoscopic Shearography and Thermography Methods for Nondestructive Evaluation of Lined Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Lansing, Matthew D.; Bullock, Michael W.

    1996-01-01

    The goal of this research effort was the development of methods for shearography and thermography inspection of coatings, bonds, or laminates inside rocket fuel or oxidizer tanks, fuel lines, and other closed structures. The endoscopic methods allow imaging and inspection inside cavities which are traditionally inaccessible with shearography or thermography cameras. The techniques are demonstrated and suggestions for practical application are made in this report. Drawings of the experimental setups, detailed procedures, and experimental data are included.

  19. Computed Tomography and Thermography Increases CMC Material and Process Development Efficiency and Testing Effectiveness

    NASA Technical Reports Server (NTRS)

    Effinger, Michael; Beshears, Ron; Hufnagle, David; Walker, James; Russell, Sam; Stowell, Bob; Myers, David

    2002-01-01

    Nondestructive characterization techniques have been used to steer development and testing of CMCs. Computed tomography is used to determine the volumetric integrity of the CMC plates and components. Thermography is used to determine the near surface integrity of the CMC plates and components. For process and material development, information such as density uniformity, part delamination, and dimensional tolerance conformity is generated. The information from the thermography and computed tomography is correlated and then specimen cutting maps are superimposed on the thermography images. This enables for tighter data and potential explanation of off nominal test data. Examples of nondestructive characterization utilization to make decisions in process and material development and testing are presented.

  20. Infrared thermography based on artificial intelligence for carpal tunnel syndrome diagnosis.

    PubMed

    Jesensek Papez, B; Palfy, M; Turk, Z

    2008-01-01

    Thermography for the measurement of surface temperatures is well known in industry, although is not established in medicine despite its safety, lack of pain and invasiveness, easy reproducibility, and low running costs. Promising results have been achieved in nerve entrapment syndromes, although thermography has never represented a real alternative to electromyography. Here an attempt is described to improve the diagnosis of carpal tunnel syndrome with thermography using a computer-based system employing artificial neural networks to analyse the images. Method reliability was tested on 112 images (depicting the dorsal and palmar sides of 26 healthy and 30 pathological hands), with the hand divided into 12 segments and compared relative to a reference. Palmar segments appeared to have no beneficial influence on classification outcome, whereas dorsal segments gave improved outcome with classification success rates near to or over 80%, and finger segments influenced by the median nerve appeared to be of greatest importance. These are preliminary results from a limited number of images and further research will be undertaken as our image database grows.

  1. Visualization of self-heating of an all climate battery by infrared thermography

    NASA Astrophysics Data System (ADS)

    Zhang, Guangsheng; Tian, Hua; Ge, Shanhai; Marple, Dan; Sun, Fengchun; Wang, Chao-Yang

    2018-02-01

    Self-heating Li-ion battery (SHLB), a.k.a. all climate battery, has provided a novel and practical solution to the low temperature power loss challenge. During its rapid self-heating, it is critical to keep the heating process and temperature distributions uniform for superior battery performance, durability and safety. Through infrared thermography of an experimental SHLB cell activated from various low ambient temperatures, we find that temperature distribution is uniform over the active electrode area, suggesting uniform heating. We also find that a hot spot exists at the activation terminal during self-heating, which provides diagnostics for improvement of next generation SHLB cells without the hot spot.

  2. Detection of micro solder balls using active thermography and probabilistic neural network

    NASA Astrophysics Data System (ADS)

    He, Zhenzhi; Wei, Li; Shao, Minghui; Lu, Xingning

    2017-03-01

    Micro solder ball/bump has been widely used in electronic packaging. It has been challenging to inspect these structures as the solder balls/bumps are often embedded between the component and substrates, especially in flip-chip packaging. In this paper, a detection method for micro solder ball/bump based on the active thermography and the probabilistic neural network is investigated. A VH680 infrared imager is used to capture the thermal image of the test vehicle, SFA10 packages. The temperature curves are processed using moving average technique to remove the peak noise. And the principal component analysis (PCA) is adopted to reconstruct the thermal images. The missed solder balls can be recognized explicitly in the second principal component image. Probabilistic neural network (PNN) is then established to identify the defective bump intelligently. The hot spots corresponding to the solder balls are segmented from the PCA reconstructed image, and statistic parameters are calculated. To characterize the thermal properties of solder bump quantitatively, three representative features are selected and used as the input vector in PNN clustering. The results show that the actual outputs and the expected outputs are consistent in identification of the missed solder balls, and all the bumps were recognized accurately, which demonstrates the viability of the PNN in effective defect inspection in high-density microelectronic packaging.

  3. Thermography-based blood flow imaging in human skin of the hands and feet: a spectral filtering approach.

    PubMed

    Sagaidachnyi, A A; Fomin, A V; Usanov, D A; Skripal, A V

    2017-02-01

    The determination of the relationship between skin blood flow and skin temperature dynamics is the main problem in thermography-based blood flow imaging. Oscillations in skin blood flow are the source of thermal waves propagating from micro-vessels toward the skin's surface, as assumed in this study. This hypothesis allows us to use equations for the attenuation and dispersion of thermal waves for converting the temperature signal into the blood flow signal, and vice versa. We developed a spectral filtering approach (SFA), which is a new technique for thermography-based blood flow imaging. In contrast to other processing techniques, the SFA implies calculations in the spectral domain rather than in the time domain. Therefore, it eliminates the need to solve differential equations. The developed technique was verified within 0.005-0.1 Hz, including the endothelial, neurogenic and myogenic frequency bands of blood flow oscillations. The algorithm for an inverse conversion of the blood flow signal into the skin temperature signal is addressed. The examples of blood flow imaging of hands during cuff occlusion and feet during heating of the back are illustrated. The processing of infrared (IR) thermograms using the SFA allowed us to restore the blood flow signals and achieve correlations of about 0.8 with a waveform of a photoplethysmographic signal. The prospective applications of the thermography-based blood flow imaging technique include non-contact monitoring of the blood supply during engraftment of skin flaps and burns healing, as well the use of contact temperature sensors to monitor low-frequency oscillations of peripheral blood flow.

  4. Applications of the thermography in the animal production

    NASA Astrophysics Data System (ADS)

    Piñeiro, Carlos; Vizcaino, Elena; Morales, Joaquín.; Manso, Alberto; Díaz, Immaculada; Montalvo, Gema

    2015-04-01

    Infrared thermography is a working technology for over decades, which have been applied mainly in the buildings. We want to move this use to the animal production in order to help us to detect problems of energy efficiency in the facilities preventing, for example, the animal's welfare. In animal production it is necessary to provide a suitable microclimate according to age and production stage of the animals. This microclimate is achieved in the facilities through the environment modification artificially, providing an appropriate comfort for the animals. Many of the problems detected in farms are related to a poor environmental management and control. This is where infrared thermography becomes an essential diagnostic tool to detect failures in the facilities that will be related with health and performance of the animals. The use of this technology in energy audits for buildings, facilities, etc. is becoming more frequent, enabling the technician to easily detect and assess the temperature and energy losses, and it can be used as a support to draft reports and to transmit the situation to the owner in a visual format. In this way, both will be able to decide what improvements are required. Until now, there was not an appropriate technology with affordable prices and easy to manage enough in order to allow the use of the thermography like a routine tool for the diagnostic of these problems, but currently there are some solutions which are starting to appear on the market to meet the requirements needed by the industry.

  5. Infrared thermography as a diagnostic tool to indicate sick-house-syndrome: a case-study

    NASA Astrophysics Data System (ADS)

    Ljungberg, Sven-Ake

    1996-03-01

    Every third child and many adults in Sweden have allergic reactions caused by indoor environmental problems. A lot of buildings constructed during the building-boom period of 1950 - 1990 expose the sick-house-syndrome, due to built-in moisture problems and poor ventilation performance of the building. Leaky building construction, transport of humid air condensing on thermal bridges within the construction gives rise to a humid environment, and forms a base for a microbial deterioration process of organic materials, with emissions hazardous for human health. So far there are no universal and cost efficient techniques or methods developed which could be used to reveal the sick-house-syndrome. In this paper we present the results of a case-study of the sick-house-syndrome, and an investigation concept with a combination of different techniques and methods to detect and to map underlying factors that form the base for microbial activities. The concept includes mobile and indoor thermography, functional control of ventilation systems, tracer gas techniques for measurement of air flow exchange rate in different rooms, microbial investigation of emissions, field inspections within the building construction and the building envelope, and medical investigation of the health status of the people working in the building. Mobile thermography of the exterior facades has been performed with a longwave AGEMA THV 900, respectively THV 1000 infrared system, during the period December 1994 - June 1995, at different and similar weather and radiation conditions, and with the building pressurized at one accession. Indoor thermography has been performed with a shortwave AGEMA THV 470 system, for a selection of objects/surfaces with thermal deviations, indicated in thermograms from the different mobile thermographic surveys. Functional control was performed for the ventilation systems, and air flow rates were measured using tracer gas technique for a selection of rooms with different

  6. In-Flight Flow Visualization Using Infrared Thermography

    NASA Technical Reports Server (NTRS)

    vanDam, C. P.; Shiu, H. J.; Banks D. W.

    1997-01-01

    The feasibility of remote infrared thermography of aircraft surfaces during flight to visualize the extent of laminar flow on a target aircraft has been examined. In general, it was determined that such thermograms can be taken successfully using an existing airplane/thermography system (NASA Dryden's F-18 with infrared imaging pod) and that the transition pattern and, thus, the extent of laminar flow can be extracted from these thermograms. Depending on the in-flight distance between the F-18 and the target aircraft, the thermograms can have a spatial resolution of as little as 0.1 inches. The field of view provided by the present remote system is superior to that of prior stationary infrared thermography systems mounted in the fuselage or vertical tail of a subject aircraft. An additional advantage of the present experimental technique is that the target aircraft requires no or minimal modifications. An image processing procedure was developed which improves the signal-to-noise ratio of the thermograms. Problems encountered during the analog recording of the thermograms (banding of video images) made it impossible to evaluate the adequacy of the present imaging system and image processing procedure to detect transition on untreated metal surfaces. The high reflectance, high thermal difussivity, and low emittance of metal surfaces tend to degrade the images to an extent that it is very difficult to extract transition information from them. The application of a thin (0.005 inches) self-adhesive insulating film to the surface is shown to solve this problem satisfactorily. In addition to the problem of infrared based transition detection on untreated metal surfaces, future flight tests will also concentrate on the visualization of other flow phenomena such as flow separation and reattachment.

  7. The hybrid thermography approach applied to architectural structures

    NASA Astrophysics Data System (ADS)

    Sfarra, S.; Ambrosini, D.; Paoletti, D.; Nardi, I.; Pasqualoni, G.

    2017-07-01

    This work contains an overview of infrared thermography (IRT) method and its applications relating to the investigation of architectural structures. In this method, the passive approach is usually used in civil engineering, since it provides a panoramic view of the thermal anomalies to be interpreted also thanks to the use of photographs focused on the region of interest (ROI). The active approach, is more suitable for laboratory or indoor inspections, as well as for objects having a small size. The external stress to be applied is thermal, coming from non-natural apparatus such as lamps or hot / cold air jets. In addition, the latter permits to obtain quantitative information related to defects not detectable to the naked eyes. Very recently, the hybrid thermography (HIRT) approach has been introduced to the attention of the scientific panorama. It can be applied when the radiation coming from the sun, directly arrives (i.e., possibly without the shadow cast effect) on a surface exposed to the air. A large number of thermograms must be collected and a post-processing analysis is subsequently applied via advanced algorithms. Therefore, an appraisal of the defect depth can be obtained passing through the calculation of the combined thermal diffusivity of the materials above the defect. The approach is validated herein by working, in a first stage, on a mosaic sample having known defects while, in a second stage, on a Church built in L'Aquila (Italy) and covered with a particular masonry structure called apparecchio aquilano. The results obtained appear promising.

  8. Liquid ingress recognition in honeycomb structure by pulsed thermography

    NASA Astrophysics Data System (ADS)

    Chen, Dapeng; Zeng, Zhi; Tao, Ning; Zhang, Cunlin; Zhang, Zheng

    2013-05-01

    Pulsed thermography has been proven to be a fast and effective method to detect fluid ingress in aircraft honeycomb structure; however, water and hydraulic oil may have similar appearance in the thermal image sequence. It is meaningful to identify what kind of liquid ingress it is for aircraft maintenance. In this study, honeycomb specimens with glass fiber and aluminum skin are injected different kinds of liquids: water and oil. Pulsed thermography is adopted; a recognition method is proposed to first get the reference curve by linear fitting the beginning of the logarithmic curve, and then an algorithm based on the thermal contrast between liquid and reference is used to recognize what kind of fluid it is by calculating their thermal properties. It is verified with the results of theory and the finite element simulation.

  9. Infrared thermography for inspecting of pipeline specimen

    NASA Astrophysics Data System (ADS)

    Chen, Dapeng; Li, Xiaoli; Sun, Zuoming; Zhang, Xiaolong

    2018-02-01

    Infrared thermography is a fast and effective non-destructive testing method, which has an increasing application in the field of Aeronautics, Astronautic, architecture and medical, et al. Most of the reports about the application of this technology are focus on the specimens of planar, pulse light is often used as the heat stimulation and a plane heat source is generated on the surface of the specimen by the using of a lampshade, however, this method is not suitable for the specimen of non-planar, such as the pipeline. Therefore, in this paper, according the NDT problem of a steel and composite pipeline specimen, ultrasonic and hot water are applied as the heat source respectively, and an IR camera is used to record the temperature varies of the surface of the specimen, defects are revealed by the thermal images sequence processing. Furthermore, the results of light pulse thermography are also shown as comparison, it is indicated that choose the right stimulation method, can get a more effective NDT results for the pipeline specimen.

  10. Year-Round Use Of Thermography In House Doctoring

    NASA Astrophysics Data System (ADS)

    Gadsby, Kenneth J.; Harrje, David T.; Dutt, Gautam S.

    1983-03-01

    There have been many presentations of thermographic residential building analyses at the past ThermosInse conferences. A number of these papers have dealt with evaluation of insulation voids and more recently a few have described air leakage detection 2,3 during the colder winter months. This paper will focus on the thermographic application in the House Doctor instrumented energy analysis approach as developed by Princeton University. The central theme will be the application to a year-round research or commercial activity. Some of the conditions that could create thermographic problems, as well as techniques that may be used to lessen these difficulties, thereby extending the thermographic "season" is discussed. Our experiences in summer thermography with and without the use of a building pressurization system is also covered.

  11. A relative-intensity two-color phosphor thermography system

    NASA Technical Reports Server (NTRS)

    Merski, N. Ronald

    1991-01-01

    The NASA LaRC has developed a relative-intensity two-color phosphor thermography system. This system has become a standard technique for acquiring aerothermodynamic data in LaRC Hypersonic Facilities Complex (HFC). The relative intensity theory and its application to the LaRC phosphor thermography system is discussed along with the investment casting technique which is critical to the utilization of the phosphor method for aerothermodynamic studies. Various approaches to obtaining quantitative heat transfer data using thermographic phosphors are addressed and comparisons between thin-film data and thermographic phosphor data on an orbiter-like configuration are presented. In general, data from these two techniques are in good agreement. A discussion is given on the application of phosphors to integration heat transfer data reduction techniques (the thin film method) and preliminary heat transfer data obtained on a calibration sphere using thin-film equations are presented. Finally, plans for a new phosphor system which uses target recognition software are discussed.

  12. Integration of infrared thermography into various maintenance methodologies

    NASA Astrophysics Data System (ADS)

    Morgan, William T.

    1993-04-01

    Maintenance methodologies are in developmental stages throughout the world as global competitiveness drives all industries to improve operational efficiencies. Rapid progress in technical advancements has added an additional strain on maintenance organizations to progressively change. Accompanying needs for advanced training and documentation is the demand for utilization of various analytical instruments and quantitative methods. Infrared thermography is one of the primary elements of engineered approaches to maintenance. Current maintenance methodologies can be divided into six categories; Routine ('Breakdown'), Preventive, Predictive, Proactive, Reliability-Based, and Total Productive (TPM) maintenance. Each of these methodologies have distinctive approaches to achieving improved operational efficiencies. Popular though is that infrared thermography is a Predictive maintenance tool. While this is true, it is also true that it can be effectively integrated into each of the maintenance methodologies for achieving desired results. The six maintenance strategies will be defined. Infrared applications integrated into each will be composed in tabular form.

  13. Analysis of lubricating oils in shear friction tests using infrared thermography

    NASA Astrophysics Data System (ADS)

    Da Silva, José Jorge; Maribondo, Juscelino de Farias

    2018-03-01

    The aim of this work is to analyze the ability of Thermography to monitor the behavior of SAE 20 W50 API SJ and ISO VG 10 lubricating oils from the thermal point of view until the moment of the lubricant film rupture, characterized by the sudden increase in friction, noise, vibration and Temperature in a shear friction test. The methodology used is based on the analysis of thermograms that indicate temperature profiles during the friction tests and at the moment of mechanical failure, comparing these results with those obtained by a thermocouple. The specimens, consisting of SAE 1045 steel cylindrical pins, are rubbed against a wear ring consisting of a weld-locked bearing under the condition of a boundary lubrication regime. Tests were performed by increasing load conditions up to 180 N at 10, 15 and 20 Hz rotations (600, 900 and 1200 rpm). The results show the qualitative and quantitative capacity of the Thermography in the detection of scuffing considering the emissivity of the lubricating oil film equal to 0,82. It is concluded that the Thermography can be used for the detection of the breaking of the lubricating film in pin-on-ring friction tests.

  14. Infrared Contrast Analysis Technique for Flash Thermography Nondestructive Evaluation

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay

    2014-01-01

    The paper deals with the infrared flash thermography inspection to detect and analyze delamination-like anomalies in nonmetallic materials. It provides information on an IR Contrast technique that involves extracting normalized contrast verses time evolutions from the flash thermography infrared video data. The paper provides the analytical model used in the simulation of infrared image contrast. The contrast evolution simulation is achieved through calibration on measured contrast evolutions from many flat bottom holes in the subject material. The paper also provides formulas to calculate values of the thermal measurement features from the measured contrast evolution curve. Many thermal measurement features of the contrast evolution that relate to the anomaly characteristics are calculated. The measurement features and the contrast simulation are used to evaluate flash thermography inspection data in order to characterize the delamination-like anomalies. In addition, the contrast evolution prediction is matched to the measured anomaly contrast evolution to provide an assessment of the anomaly depth and width in terms of depth and diameter of the corresponding equivalent flat-bottom hole (EFBH) or equivalent uniform gap (EUG). The paper provides anomaly edge detection technique called the half-max technique which is also used to estimate width of an indication. The EFBH/EUG and half-max width estimations are used to assess anomaly size. The paper also provides some information on the "IR Contrast" software application, half-max technique and IR Contrast feature imaging application, which are based on models provided in this paper.

  15. Infrared thermography: A non-invasive window into thermal physiology.

    PubMed

    Tattersall, Glenn J

    2016-12-01

    Infrared thermography is a non-invasive technique that measures mid to long-wave infrared radiation emanating from all objects and converts this to temperature. As an imaging technique, the value of modern infrared thermography is its ability to produce a digitized image or high speed video rendering a thermal map of the scene in false colour. Since temperature is an important environmental parameter influencing animal physiology and metabolic heat production an energetically expensive process, measuring temperature and energy exchange in animals is critical to understanding physiology, especially under field conditions. As a non-contact approach, infrared thermography provides a non-invasive complement to physiological data gathering. One caveat, however, is that only surface temperatures are measured, which guides much research to those thermal events occurring at the skin and insulating regions of the body. As an imaging technique, infrared thermal imaging is also subject to certain uncertainties that require physical modelling, which is typically done via built-in software approaches. Infrared thermal imaging has enabled different insights into the comparative physiology of phenomena ranging from thermogenesis, peripheral blood flow adjustments, evaporative cooling, and to respiratory physiology. In this review, I provide background and guidelines for the use of thermal imaging, primarily aimed at field physiologists and biologists interested in thermal biology. I also discuss some of the better known approaches and discoveries revealed from using thermal imaging with the objective of encouraging more quantitative assessment. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Roles For Thermography In Utility Company Residential Energy Audits

    NASA Astrophysics Data System (ADS)

    Schott, William A.

    1981-01-01

    Basin Electric Power Cooperative, Bismarck, North Dakota, provides wholesale electricity to more than 100 rural electric cooperatives of the Missouri Pasin Region. The Cooperative, in cooperation with Aadland*Hoffmann*Pieri Energy Associates, Inc., Minneapolis, MN has developed a three-fold program which involves the analytical approach, the instructional approach and the motivational approach (A'IsM) to an energy audit. This three-fold program utilizes infrared thermography to pinpoint where heat loss is occurring in the home. The auditor can motivate the homeowner to initiate energy conserving improvements and practices by showing where money can be saved. Infrared thermography is a most valuable tool in helping the rural electrics conserve energy and the nation's natural resources. Over 180 energy auditors have been trained through this program in this area and 5,000 trained in the nation.

  17. Heterodyne lock-in thermography of early demineralized in dental tissues

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Liu, Jun-yan; Mohummad, Oliullah; Wang, Xiao-chun; Wang, Yang

    2017-12-01

    Heterodyne lock-in thermography (HeLIT) is a highly sensitive method to detect early demineralized in dental tissues, which is based on nonlinear photothermal phenomena of dental tissues. In this paper, the nonlinear photothermal phenomena of dental tissues was introduced, and then the system of HeLIT was developed. The relationship between laser modulated parameters (modulated frequency and laser intensity) and heterodyne lock-in thermal wave signal was investigated. The comparison between HeLIT and homodyne lock-in thermography (HoLIT) for detecting the different types of dental caries (smooth surface caries, proximal surface caries and occlusal surface caries) were carried out. Experimental results illustrate that the HeLIT has the merits of high sensitivity and high specificity in detecting different types of early caries.

  18. Single frequency thermal wave radar: A next-generation dynamic thermography for quantitative non-destructive imaging over wide modulation frequency ranges.

    PubMed

    Melnikov, Alexander; Chen, Liangjie; Ramirez Venegas, Diego; Sivagurunathan, Koneswaran; Sun, Qiming; Mandelis, Andreas; Rodriguez, Ignacio Rojas

    2018-04-01

    Single-Frequency Thermal Wave Radar Imaging (SF-TWRI) was introduced and used to obtain quantitative thickness images of coatings on an aluminum block and on polyetherketone, and to image blind subsurface holes in a steel block. In SF-TWR, the starting and ending frequencies of a linear frequency modulation sweep are chosen to coincide. Using the highest available camera frame rate, SF-TWRI leads to a higher number of sampled points along the modulation waveform than conventional lock-in thermography imaging because it is not limited by conventional undersampling at high frequencies due to camera frame-rate limitations. This property leads to large reduction in measurement time, better quality of images, and higher signal-noise-ratio across wide frequency ranges. For quantitative thin-coating imaging applications, a two-layer photothermal model with lumped parameters was used to reconstruct the layer thickness from multi-frequency SF-TWR images. SF-TWRI represents a next-generation thermography method with superior features for imaging important classes of thin layers, materials, and components that require high-frequency thermal-wave probing well above today's available infrared camera technology frame rates.

  19. Single frequency thermal wave radar: A next-generation dynamic thermography for quantitative non-destructive imaging over wide modulation frequency ranges

    NASA Astrophysics Data System (ADS)

    Melnikov, Alexander; Chen, Liangjie; Ramirez Venegas, Diego; Sivagurunathan, Koneswaran; Sun, Qiming; Mandelis, Andreas; Rodriguez, Ignacio Rojas

    2018-04-01

    Single-Frequency Thermal Wave Radar Imaging (SF-TWRI) was introduced and used to obtain quantitative thickness images of coatings on an aluminum block and on polyetherketone, and to image blind subsurface holes in a steel block. In SF-TWR, the starting and ending frequencies of a linear frequency modulation sweep are chosen to coincide. Using the highest available camera frame rate, SF-TWRI leads to a higher number of sampled points along the modulation waveform than conventional lock-in thermography imaging because it is not limited by conventional undersampling at high frequencies due to camera frame-rate limitations. This property leads to large reduction in measurement time, better quality of images, and higher signal-noise-ratio across wide frequency ranges. For quantitative thin-coating imaging applications, a two-layer photothermal model with lumped parameters was used to reconstruct the layer thickness from multi-frequency SF-TWR images. SF-TWRI represents a next-generation thermography method with superior features for imaging important classes of thin layers, materials, and components that require high-frequency thermal-wave probing well above today's available infrared camera technology frame rates.

  20. The role of capillaroscopy and thermography in the assessment and management of Raynaud's phenomenon.

    PubMed

    Herrick, Ariane L; Murray, Andrea

    2018-05-01

    Most patients with Raynaud's phenomenon (RP) have "benign" primary RP (PRP), but a minority have an underlying cause, for example a connective tissue disease such as systemic sclerosis (SSc). Secondary RP can be associated with structural as well as functional digital vascular changes and can be very severe, potentially progressing to digital ulceration or gangrene. The first step in management is to establish why the patient has RP. This short review discusses the role of nailfold capillaroscopy and thermography in the assessment of RP. Nailfold capillaroscopy examines microvascular structure, which is normal in PRP but abnormal in most patients with SSc: the inclusion of abnormal nailfold capillaries into the 2013 classification criteria for SSc behoves clinicians diagnosing connective tissue disease to be familiar with the technique. For those without access to the gold standard of high magnification videocapillaroscopy, a low magnification dermatoscope or USB microscope can be used. Thermography measures surface temperature and is therefore an indirect measure of blood blow, assessing digital vascular function (abnormal in both PRP and SSc). Until now, the use of thermography has been mainly confined to specialist centres and used mainly in research: this may change with development of mobile phone thermography. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Infrared thermography based studies on the effect of age on localized cold stress induced thermoregulation in human

    NASA Astrophysics Data System (ADS)

    Lahiri, B. B.; Bagavathiappan, S.; Nishanthi, K.; Mohanalakshmi, K.; Veni, L.; Saumya; Yacin, S. M.; Philip, John

    2016-05-01

    Thermoregulatory control of blood flow plays an important role in maintaining the human body temperature and it provides physiological resistance against extreme environmental thermal stresses. To understand the role of age on thermal signals from veins and the thermoregulatory mechanism, the dynamic variation of the vein temperature on the hands of 17 human subjects, under a localized cold stress, was studied using infrared thermography. It was observed that the vein temperature of the stimulated hand initially decreased with time up to a time interval (called 'inversion time'), which was attributed to the localized cutaneous vasoconstriction. Beyond inversion time, a rise in the vein temperature of the stimulated hand was observed. A shift in the inversion time to higher values was observed for the older subjects, which was attributed to the reduced efficiency and responsiveness of the cutaneous vasoconstriction mechanism in these subjects. Our studies indicated that the inversion time increased linearly with subject age with strong positive Pearson's correlation coefficient of 0.94. It was also observed that the contralateral symmetry in vasoconstriction was much lower in older subjects than the younger subjects. The absolute difference between the left and right inversion time varied between 11-118 s and 5-28 s for the older and younger subjects, respectively. Our study clearly demonstrated that infrared thermography is one of the most effective experimental tool for studying dynamic variation in vein pixel temperature under localized thermal stresses.

  2. Biomechanical stress maps of an artificial femur obtained using a new infrared thermography technique validated by strain gages.

    PubMed

    Shah, Suraj; Bougherara, Habiba; Schemitsch, Emil H; Zdero, Rad

    2012-12-01

    Femurs are the heaviest, longest, and strongest long bones in the human body and are routinely subjected to cyclic forces. Strain gages are commonly employed to experimentally validate finite element models of the femur in order to generate 3D stresses, yet there is little information on a relatively new infrared (IR) thermography technique now available for biomechanics applications. In this study, IR thermography validated with strain gages was used to measure the principal stresses in the artificial femur model from Sawbones (Vashon, WA, USA) increasingly being used for biomechanical research. The femur was instrumented with rosette strain gages and mechanically tested using average axial cyclic forces of 1500 N, 1800 N, and 2100 N, representing 3 times body weight for a 50 kg, 60 kg, and 70 kg person. The femur was oriented at 7° of adduction to simulate the single-legged stance phase of walking. Stress maps were also obtained using an IR thermography camera. Results showed good agreement of IR thermography vs. strain gage data with a correlation of R(2)=0.99 and a slope=1.08 for the straight line of best fit. IR thermography detected the highest principal stresses on the superior-posterior side of the neck, which yielded compressive values of -91.2 MPa (at 1500 N), -96.0 MPa (at 1800 N), and -103.5 MPa (at 2100 N). There was excellent correlation between IR thermography principal stress vs. axial cyclic force at 6 locations on the femur on the lateral (R(2)=0.89-0.99), anterior (R(2)=0.87-0.99), and posterior (R(2)=0.81-0.99) sides. This study shows IR thermography's potential for future biomechanical applications. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  3. Non-destructive testing of composite materials used in military applications by eddy current thermography method

    NASA Astrophysics Data System (ADS)

    Swiderski, Waldemar

    2016-10-01

    Eddy current thermography is a new NDT-technique for the detection of cracks in electro conductive materials. It combines the well-established inspection techniques of eddy current testing and thermography. The technique uses induced eddy currents to heat the sample being tested and defect detection is based on the changes of induced eddy currents flows revealed by thermal visualization captured by an infrared camera. The advantage of this method is to use the high performance of eddy current testing that eliminates the known problem of the edge effect. Especially for components of complex geometry this is an important factor which may overcome the increased expense for inspection set-up. The paper presents the possibility of applying eddy current thermography method for detecting defects in ballistic covers made of carbon fiber reinforced composites used in the construction of military vehicles.

  4. Motion-induced eddy current thermography for high-speed inspection

    NASA Astrophysics Data System (ADS)

    Wu, Jianbo; Li, Kongjing; Tian, Guiyun; Zhu, Junzhen; Gao, Yunlai; Tang, Chaoqing; Chen, Xiaotian

    2017-08-01

    This letter proposes a novel motion-induced eddy current based thermography (MIECT) for high-speed inspection. In contrast to conventional eddy current thermography (ECT) based on a time-varying magnetic field created by an AC coil, the motion-induced eddy current is induced by the relative motion between magnetic field and inspected objects. A rotating magnetic field created by three-phase windings is used to investigate the heating principle and feasibility of the proposed method. Firstly, based on Faraday's law the distribution of MIEC is investigated, which is then validated by numerical simulation. Further, experimental studies are conducted to validate the proposed method by creating rotating magnetic fields at different speeds from 600 rpm to 6000 rpm, and it is verified that rotating speed will increase MIEC intensity and thereafter improve the heating efficiency. The conclusion can be preliminarily drawn that the proposed MIECT is a platform suitable for high-speed inspection.

  5. [Diagnostic relevance of contact thermography in renal transplantation (author's transl)].

    PubMed

    Kopsa, H

    1980-01-01

    102 renal transplant recipients were checked by contact thermography according to Tricoire for 2 1/2 years. Diagnostic value of this non invasive, quickly available and reproduceable method was investigated. The grafted kidney reveals on the thermographic screen its size, site, and vascularisation. The thermograhic pattern of a well functioning transplant shows warm areas in green, blue and violet colour. Onset of acute or chronic renal rejection leads to impaired heat conduction to the body surface either by oedema or by diminished blood flow. By photographic documentation in natural colour spotted or diffuse cold regions of brown, maroon and orange are seen. In the very early posttransplant period up to two months thermography is helpful in differential diagnosis for those recipients requiring initial haemodialysis treatment. Information is available between non functioning grafts with diminished renal blood supply and transplants with acute tubular necrosis. Impressive thermograms are found by rupture and subrupture of the kidney respectively. Superficial perirenal changes lead to topical temperature elevation as well. The high reliability of 92% correct diagnoses depends on exact application of the thermosensitive film and on determination of the basic individual skin temperature in reference to repeated examinations of the grafted area. Temperature measurement is influenced by subcutaneous abdominal fat distribution and muscle thickness as well as by deep position of the transplant or asymmetry of the lower abdominal region. In the wide field of diagnostic procedures necessary for transplant recipients with complications thermography by Tricoire is recommended.

  6. Application of Air Coupled Acoustic Thermography (ACAT) for Inspection of Honeycomb Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Zalameda, Joseph N.; Pergantis, Charles; Flanagan, David; Deschepper, Daniel

    2009-01-01

    The application of a noncontact air coupled acoustic heating technique is investigated for the inspection of advanced honeycomb composite structures. A weakness in the out of plane stiffness of the structure, caused by a delamination or core damage, allows for the coupling of acoustic energy and thus this area will have a higher temperature than the surrounding area. Air coupled acoustic thermography (ACAT) measurements were made on composite sandwich structures with damage and were compared to conventional flash thermography. A vibrating plate model is presented to predict the optimal acoustic source frequency. Improvements to the measurement technique are also discussed.

  7. Detection and assessment of electrocution in endangered raptors by infrared thermography

    PubMed Central

    2013-01-01

    Background Most European birds of prey find themselves in a poor state of conservation, with electrocution as one of the most frequent causes of unnatural death. Since early detection of electrocution is difficult, treatment is usually implemented late, which reduces its effectiveness. By considering that electrocution reduces tissue temperature, it may be detectable by thermography, which would allow a more rapid identification. Three individuals from three endangered raptor species [Spanish imperial eagle (Aquila adalberti), Lammergeier (Gypaetus barbatus) and Osprey (Pandion haliaetus)] were studied thermographically from the time they were admitted to a rehabilitation centre to the time their clinical cases were resolved. Cases presentation The three raptors presented lesions lacking thermal bilateral symmetry and were consistent with electrocution of feet, wings and eyes, visible by thermography before than clinically; lesions were well-defined and showed a lower temperature than the surrounding tissue. Some lesions evolved thermally and clinically until the appearance of normal tissue recovered, while others evolved and became necrotic. A histopathological analysis of a damaged finger amputated off a Lammergeier, and the necropsy and histopathology examination of an osprey, confirmed the electrocution diagnosis. Conclusions These results suggest that thermography is effective and useful for the objective and early detection and monitoring of electrocuted birds, and that it may prove especially useful for examining live animals that require no amputation or cannot be subjected to invasive histopathology. PMID:23880357

  8. Detection and assessment of electrocution in endangered raptors by infrared thermography.

    PubMed

    Melero, Mar; González, Fernando; Nicolás, Olga; López, Irene; Jiménez, María de Los Ángeles; Jato-Sánchez, Susana; Sánchez-Vizcaíno, José Manuel

    2013-07-23

    Most European birds of prey find themselves in a poor state of conservation, with electrocution as one of the most frequent causes of unnatural death. Since early detection of electrocution is difficult, treatment is usually implemented late, which reduces its effectiveness. By considering that electrocution reduces tissue temperature, it may be detectable by thermography, which would allow a more rapid identification. Three individuals from three endangered raptor species [Spanish imperial eagle (Aquila adalberti), Lammergeier (Gypaetus barbatus) and Osprey (Pandion haliaetus)] were studied thermographically from the time they were admitted to a rehabilitation centre to the time their clinical cases were resolved. The three raptors presented lesions lacking thermal bilateral symmetry and were consistent with electrocution of feet, wings and eyes, visible by thermography before than clinically; lesions were well-defined and showed a lower temperature than the surrounding tissue. Some lesions evolved thermally and clinically until the appearance of normal tissue recovered, while others evolved and became necrotic. A histopathological analysis of a damaged finger amputated off a Lammergeier, and the necropsy and histopathology examination of an osprey, confirmed the electrocution diagnosis. These results suggest that thermography is effective and useful for the objective and early detection and monitoring of electrocuted birds, and that it may prove especially useful for examining live animals that require no amputation or cannot be subjected to invasive histopathology.

  9. Neonatal infrared thermography imaging: Analysis of heat flux during different clinical scenarios

    NASA Astrophysics Data System (ADS)

    Abbas, Abbas K.; Heimann, Konrad; Blazek, Vladimir; Orlikowsky, Thorsten; Leonhardt, Steffen

    2012-11-01

    IntroductionAn accurate skin temperature measurement of Neonatal Infrared Thermography (NIRT) imaging requires an appropriate calibration process for compensation of external effects (e.g. variation of environmental temperature, variable air velocity or humidity). Although modern infrared cameras can perform such calibration, an additional compensation is required for highly accurate thermography. This compensation which corrects any temperature drift should occur during the NIRT imaging process. We introduce a compensation technique which is based on modeling the physical interactions within the measurement scene and derived the detected temperature signal of the object. Materials and methodsIn this work such compensation was performed for different NIRT imaging application in neonatology (e.g. convective incubators, kangaroo mother care (KMC), and an open radiant warmer). The spatially distributed temperatures of 12 preterm infants (average gestation age 31 weeks) were measured under these different infant care arrangements (i.e. closed care system like a convective incubator, and open care system like kangaroo mother care, and open radiant warmer). ResultsAs errors in measurement of temperature were anticipated, a novel compensation method derived from infrared thermography of the neonate's skin was developed. Moreover, the differences in temperature recording for the 12 preterm infants varied from subject to subject. This variation could be arising from individual experimental setting applied to the same region of interest over the neonate's body. The experimental results for the model-based corrections is verified over the selected patient group. ConclusionThe proposed technique relies on applying model-based correction to the measured temperature and reducing extraneous errors during NIRT. This application specific method is based on different heat flux compartments present in neonatal thermography scene. Furthermore, these results are considered to be

  10. NDT of railway components using induction thermography

    NASA Astrophysics Data System (ADS)

    Netzelmann, U.; Walle, G.; Ehlen, A.; Lugin, S.; Finckbohner, M.; Bessert, S.

    2016-02-01

    Induction or eddy current thermography is used to detect surface cracks in ferritic steel. The technique is applied to detect surface cracks in rails from a moving test car. Cracks were detected at a train speed between 2 and 15 km/h. An automated demonstrator system for testing railway wheels after production is described. While the wheel is rotated, a robot guides the detection unit consisting of inductor and infrared camera over the surface.

  11. Detection of pathogenic gram negative bacteria using infrared thermography

    NASA Astrophysics Data System (ADS)

    Lahiri, B. B.; Divya, M. P.; Bagavathiappan, S.; Thomas, Sabu; Philip, John

    2012-11-01

    Detection of viable bacteria is of prime importance in all fields of microbiology and biotechnology. Conventional methods of enumerating bacteria are often time consuming and labor-intensive. All living organisms generate heat due to metabolic activities and hence, measurement of heat energy is a viable tool for detection and quantification of bacteria. In this article, we employ a non-contact and real time method - infrared thermography (IRT) for measurement of temperature variations in four clinically significant gram negative pathogenic bacteria, viz. Vibrio cholerae, Vibrio mimicus, Proteus mirabilis and Pseudomonas aeruginosa. We observe that, the energy content, defined as the ratio of heat generated by bacterial metabolic activities to the heat lost from the liquid medium to the surrounding, vary linearly with the bacterial concentration in all the four pathogenic bacteria. The amount of energy content observed in different species is attributed to their metabolisms and morphologies that affect the convection velocity and hence heat transport in the medium.

  12. Toward the design of a wearable system for contact thermography in telemedicine.

    PubMed

    Giansanti, Daniele; Maccioni, Giovanni; Bernhardt, Paola

    2009-04-01

    Thermal imaging of the skin has been used for several decades for monitoring of temperature distribution of human skin for the detection of thermal abnormalities indicating pathologies (malignancies, inflammation, infection, and vascular, dermatological, and rheumatic disorders). Literature has shown that to detect and monitor the thermal abnormalities related to pathologic conditions, there is a need to extend acquisition over 8, 12, 16, or 24 hours. A wearable device is strongly needed in contact thermography to reach the objective of long-term monitoring of contact thermography, especially in telemedicine applications. A wearable system has been designed and constructed that allows the continuous thermographic monitoring of a skin region at the point of affixation. Measurement allowed by this system is direct and not hampered by the influence of the environment--as with IR thermography--nor by the geometry of skin surface (curvatures, roughness) thanks to the flexible adaptation of the sensing head to the surface. The validation of the system embedded in a pilot preliminary telemedicine application was successful. The next step will be the wide focusing and adaptation to telemedicine clinical applications to assess the response to the chemotherapy and tune the therapy at home of the breast cancer or the response to the inflammation care.

  13. Nde of Frp Wrapped Columns Using Infrared Thermography

    NASA Astrophysics Data System (ADS)

    Halabe, Udaya B.; Dutta, Shasanka Shekhar; GangaRao, Hota V. S.

    2008-02-01

    This paper investigates the feasibility of using Infrared Thermography (IRT) for detecting debonds in Fiber Reinforced Polymer (FRP) wrapped columns. Laboratory tests were conducted on FRP wrapped concrete cylinders of size 6″×12″ (152.4 mm×304.8 mm) in which air-filled and water-filled debonds of various sizes were placed underneath the FRP wraps. Air-filled debonds were made by cutting plastic sheets into the desired sizes whereas water-filled debonds were made by filling water in custom made polyethylene pouches. Both carbon and glass fiber reinforced wraps were considered in this study. Infrared tests were conducted using a fully radiometric digital infrared camera which was successful in detecting air-filled as well as water-filled subsurface debonds. In addition to the laboratory testing, two field trips were made to Moorefield, West Virginia for detecting subsurface debonds in FRP wrapped timber piles of a railroad bridge using infrared testing. The results revealed that infrared thermography can be used as an effective nondestructive evaluation tool for detecting subsurface debonds in structural components wrapped with carbon or glass reinforced composite fabrics.

  14. Using infrared thermography for understanding and quantifying soil surface processes

    NASA Astrophysics Data System (ADS)

    de Lima, João L. M. P.

    2017-04-01

    At present, our understanding of the soil hydrologic response is restricted by measurement limitations. In the literature, there have been repeatedly calls for interdisciplinary approaches to expand our knowledge in this field and eventually overcome the limitations that are inherent to conventional measuring techniques used, for example, for tracing water at the basin, hillslope and even field or plot scales. Infrared thermography is a versatile, accurate and fast technique of monitoring surface temperature and has been used in a variety of fields, such as military surveillance, medical diagnosis, industrial processes optimisation, building inspections and agriculture. However, many applications are still to be fully explored. In surface hydrology, it has been successfully employed as a high spatial and temporal resolution non-invasive and non-destructive imaging tool to e.g. access groundwater discharges into waterbodies or quantify thermal heterogeneities of streams. It is believed that thermal infrared imagery can grasp the spatial and temporal variability of many processes at the soil surface. Thermography interprets the heat signals and can provide an attractive view for identifying both areas where water is flowing or has infiltrated more, or accumulated temporarily in depressions or macropores. Therefore, we hope to demonstrate the potential for thermal infrared imagery to indirectly make a quantitative estimation of several hydrologic processes. Applications include: e.g. mapping infiltration, microrelief and macropores; estimating flow velocities; defining sampling strategies; identifying water sources, accumulation of waters or even connectivity. Protocols for the assessment of several hydrologic processes with the help of IR thermography will be briefly explained, presenting some examples from laboratory soil flumes and field.

  15. Infrared dermal thermography on diabetic feet soles to predict ulcerations: a case study

    NASA Astrophysics Data System (ADS)

    Liu, Chanjuan; van der Heijden, Ferdi; Klein, Marvin E.; van Baal, Jeff G.; Bus, Sicco A.; van Netten, Jaap J.

    2013-03-01

    Diabetic foot ulceration is a major complication for patients with diabetes mellitus. If not adequately treated, these ulcers may lead to foot infection, and ultimately to lower extremity amputation, which imposes a major burden to society and great loss in health-related quality of life for patients. Early identification and subsequent preventive treatment have proven useful to limit the incidence of foot ulcers and lower extremity amputation. Thus, the development of new diagnosis tools has become an attractive option. The ultimate objective of our project is to develop an intelligent telemedicine monitoring system for frequent examination on patients' feet, to timely detect pre-signs of ulceration. Inflammation in diabetic feet can be an early and predictive warning sign for ulceration, and temperature has been proven to be a vicarious marker for inflammation. Studies have indicated that infrared dermal thermography of foot soles can be one of the important parameters for assessing the risk of diabetic foot ulceration. This paper covers the feasibility study of using an infrared camera, FLIR SC305, in our setup, to acquire the spatial thermal distribution on the feet soles. With the obtained thermal images, automated detection through image analysis was performed to identify the abnormal increased/decreased temperature and assess the risk for ulceration. The thermography for feet soles of patients with diagnosed diabetic foot complications were acquired before the ordinary foot examinations. Assessment from clinicians and thermography were compared and follow-up measurements were performed to investigate the prediction. A preliminary case study will be presented, indicating that dermal thermography in our proposed setup can be a screening modality to timely detect pre-signs of ulceration.

  16. Using Infrared Thermography to Assess Emotional Responses to Infants.

    PubMed

    Esposito, Gianluca; Nakazawa, Jun; Ogawa, Shota; Stival, Rita; Putnick, Diane L; Bornstein, Marc H

    2015-01-01

    Adult-infant interactions operate simultaneously across multiple domains and at multiple levels - from physiology to behavior. Unpackaging and understanding them, therefore, involves analysis of multiple data streams. In this study, we tested physiological responses and cognitive preferences for infant and adult faces in adult females and males. Infrared thermography was used to assess facial temperature changes as a measure of emotional valence, and we used a behavioral rating system to assess adults' expressed preferences. We found greater physiological activation in response to infant stimuli in females than males. As for cognitive preferences, we found greater responses to adult stimuli than to infant stimuli, both in males and females. The results are discuss in light of the Life History Theory. Finally, we discuss the importance of integrating the two data streams on our conclusions.

  17. Detection and location of fouling on photovoltaic panels using a drone-mounted infrared thermography system

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Zhang, Lifu; Wu, Taixia; Zhang, Hongming; Sun, Xuejian

    2017-01-01

    Due to weathering and external forces, solar panels are subject to fouling and defects after a certain amount of time in service. These fouling and defects have direct adverse consequences such as low-power efficiency. Because solar power plants usually have large-scale photovoltaic (PV) panels, fast detection and location of fouling and defects across large PV areas are imperative. A drone-mounted infrared thermography system was designed and developed, and its ability to detect rapid fouling on large-scale PV panel systems was investigated. The infrared images were preprocessed using the K neighbor mean filter, and the single PV module on each image was recognized and extracted. Combining the local and global detection method, suspicious sites were located precisely. The results showed the flexible drone-mounted infrared thermography system to have a strong ability to detect the presence and determine the position of PV fouling. Drone-mounted infrared thermography also has good technical feasibility and practical value in the detection of PV fouling detection.

  18. Lock-in thermography using a cellphone attachment infrared camera

    NASA Astrophysics Data System (ADS)

    Razani, Marjan; Parkhimchyk, Artur; Tabatabaei, Nima

    2018-03-01

    Lock-in thermography (LIT) is a thermal-wave-based, non-destructive testing, technique which has been widely utilized in research settings for characterization and evaluation of biological and industrial materials. However, despite promising research outcomes, the wide spread adaptation of LIT in industry, and its commercialization, is hindered by the high cost of the infrared cameras used in the LIT setups. In this paper, we report on the feasibility of using inexpensive cellphone attachment infrared cameras for performing LIT. While the cost of such cameras is over two orders of magnitude less than their research-grade counterparts, our experimental results on block sample with subsurface defects and tooth with early dental caries suggest that acceptable performance can be achieved through careful instrumentation and implementation of proper data acquisition and image processing steps. We anticipate this study to pave the way for development of low-cost thermography systems and their commercialization as inexpensive tools for non-destructive testing of industrial samples as well as affordable clinical devices for diagnostic imaging of biological tissues.

  19. Infrared thermography in newborns: the first hour after birth.

    PubMed

    Christidis, Iris; Zotter, Heinz; Rosegger, Hellfried; Engele, Heidi; Kurz, Ronald; Kerbl, Reinhold

    2003-01-01

    It was the aim of this study to investigate the surface temperature in newborns within the first hour after delivery. Furthermore, the influence of different environmental conditions with regard to surface temperature was documented. Body surface temperature was recorded under several environmental conditions by use of infrared thermography. 42 newborns, all delivered at term and with weight appropriate for date, were investigated under controlled conditions. The surface temperature immediately after birth shows a uniform picture of the whole body; however, it is significantly lower than the core temperature. Soon after birth, peripheral sites become cooler whereas a constant temperature is maintained at the trunk. Bathing in warm water again leads to a more even temperature profile. Radiant heaters and skin-to-skin contact with the mother are both effective methods to prevent heat loss in neonates. Infrared thermography is a simple and reliable tool for the measurement of skin temperature profiles in neonates. Without the need of direct skin contact, it may be helpful for optimizing environmental conditions at delivery suites and neonatal intensive-care units. Copyright 2003 S. Karger AG, Basel

  20. Modeling of the ITER-like wide-angle infrared thermography view of JET.

    PubMed

    Aumeunier, M-H; Firdaouss, M; Travère, J-M; Loarer, T; Gauthier, E; Martin, V; Chabaud, D; Humbert, E

    2012-10-01

    Infrared (IR) thermography systems are mandatory to ensure safe plasma operation in fusion devices. However, IR measurements are made much more complicated in metallic environment because of the spurious contributions of the reflected fluxes. This paper presents a full predictive photonic simulation able to assess accurately the surface temperature measurement with classical IR thermography from a given plasma scenario and by taking into account the optical properties of PFCs materials. This simulation has been carried out the ITER-like wide angle infrared camera view of JET in comparing with experimental data. The consequences and the effects of the low emissivity and the bidirectional reflectivity distribution function used in the model for the metallic PFCs on the contribution of the reflected flux in the analysis are discussed.

  1. Quantitative analysis of pulse thermography data for degradation assessment of historical buildings

    NASA Astrophysics Data System (ADS)

    Di Maio, Rosa; Piegari, Ester; Mancini, Cecilia; Chiapparino, Antonella

    2015-06-01

    In the last decades, infrared thermography has been successfully applied to various materials and structures for the assessment of their state of conservation and planning suitable restoration works. To this aim, mathematical models are required to characterize thermal anomaly sources, such as detachments, water infiltration and material decomposition processes. In this paper, an algorithm based on the conservative finite difference method is used to analyse pulse thermography data acquired on an ancient building in the Pompeii archaeological site (Naples, Italy). The numerical study is applied to both broad and narrow elongated thermal anomalies. In particular, from the comparison between simulated and experimental thermal decays, the plaster thickness was characterized in terms of thermal properties and areas of possible future detachments, and moisture infiltration depths were identified.

  2. Application of Infrared Thermography as a Diagnostic Tool of Knee Osteoarthritis

    NASA Astrophysics Data System (ADS)

    Arfaoui, Ahlem; Bouzid, Mohamed Amine; Pron, Hervé; Taiar, Redha; Polidori, Guillaume

    This paper aimed to study the feasibility of application of infrared thermography to detect osteoarthritis of the knee and to compare the distribution of skin temperature between participants with osteoarthritis and those without pathology. All tests were conducted at LACM (Laboratory of Mechanical Stresses Analysis) and the gymnasium of the University of Reims Champagne Ardennes. IR thermography was performed using an IR camera. Ten participants with knee osteoarthritis and 12 reference healthy participants without OA participated in this study. Questionnaires were also used. The participants with osteoarthritis of the knee were selected on clinical examination and a series of radiographs. The level of pain was recorded by using a simple verbal scale (0-4). Infrared thermography reveals relevant disease by highlighting asymmetrical behavior in thermal color maps of both knees. Moreover, a linear evolution of skin temperature in the knee area versus time has been found whatever the participant group is in the first stage following a given effort. Results clearly show that the temperature can be regarded as a key parameter for evaluating pain. Thermal images of the knee were taken with an infrared camera. The study shows that with the advantage of being noninvasive and easily repeatable, IRT appears to be a useful tool to detect quantifiable patterns of surface temperatures and predict the singular thermal behavior of this pathology. It also seems that this non-intrusive technique enables to detect the early clinical manifestations of knee OA.

  3. Flash Infrared Thermography Contrast Data Analysis Technique

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay

    2014-01-01

    This paper provides information on an IR Contrast technique that involves extracting normalized contrast versus time evolutions from the flash thermography inspection infrared video data. The analysis calculates thermal measurement features from the contrast evolution. In addition, simulation of the contrast evolution is achieved through calibration on measured contrast evolutions from many flat-bottom holes in the subject material. The measurement features and the contrast simulation are used to evaluate flash thermography data in order to characterize delamination-like anomalies. The thermal measurement features relate to the anomaly characteristics. The contrast evolution simulation is matched to the measured contrast evolution over an anomaly to provide an assessment of the anomaly depth and width which correspond to the depth and diameter of the equivalent flat-bottom hole (EFBH) similar to that used as input to the simulation. A similar analysis, in terms of diameter and depth of an equivalent uniform gap (EUG) providing a best match with the measured contrast evolution, is also provided. An edge detection technique called the half-max is used to measure width and length of the anomaly. Results of the half-max width and the EFBH/EUG diameter are compared to evaluate the anomaly. The information provided here is geared towards explaining the IR Contrast technique. Results from a limited amount of validation data on reinforced carbon-carbon (RCC) hardware are included in this paper.

  4. Electromagnetic Thermography Nondestructive Evaluation: Physics-based Modeling and Pattern Mining

    PubMed Central

    Gao, Bin; Woo, Wai Lok; Tian, Gui Yun

    2016-01-01

    Electromagnetic mechanism of Joule heating and thermal conduction on conductive material characterization broadens their scope for implementation in real thermography based Nondestructive testing and evaluation (NDT&E) systems by imparting sensitivity, conformability and allowing fast and imaging detection, which is necessary for efficiency. The issue of automatic material evaluation has not been fully addressed by researchers and it marks a crucial first step to analyzing the structural health of the material, which in turn sheds light on understanding the production of the defects mechanisms. In this study, we bridge the gap between the physics world and mathematical modeling world. We generate physics-mathematical modeling and mining route in the spatial-, time-, frequency-, and sparse-pattern domains. This is a significant step towards realizing the deeper insight in electromagnetic thermography (EMT) and automatic defect identification. This renders the EMT a promising candidate for the highly efficient and yet flexible NDT&E. PMID:27158061

  5. Use of aerial thermography in Canadian energy conservation programs

    NASA Technical Reports Server (NTRS)

    Cihlar, J.; Brown, R. J.; Lawrence, G.; Barry, J. N.; James, R. B.

    1977-01-01

    Recent developments in the use of aerial thermography in energy conservation programs within Canada were summarized. Following a brief review of studies conducted during the last three years, methodologies of data acquisition, processing, analysis and interpretation was discussed. Examples of results from an industrial oriented project were presented and recommendations for future basic work were outlined.

  6. Low-temperature infiltration identified using infrared thermography in patients with subcutaneous edema revealed ultrasonographically: A case report.

    PubMed

    Oya, Maiko; Takahashi, Toshiaki; Tanabe, Hidenori; Oe, Makoto; Murayama, Ryoko; Yabunaka, Koichi; Matsui, Yuko; Sanada, Hiromi

    Infiltration is a frequent complication of infusion therapy. We previously demonstrated the usefulness of infrared thermography as an objective method of detecting infiltration in healthy people. However, whether thermography can detect infiltration in clinical settings remains unknown. Therefore, we report two cases where thermography was useful in detecting infiltration at puncture sites. In both cases, tissue changes were verified ultrasonographically. The patients were a 56-year-old male with cholangitis and a 76-year-old female with hepatoma. In both cases, infiltration symptoms such as swelling and erythema occurred one day after the insertion of a peripheral intravenous catheter. Thermographic images from both patients revealed low-temperature areas spreading from the puncture sites; however, these changes were not observed in other patients. The temperature difference between the low-temperature areas and their surrounding skin surface exceeded 1.0°C. Concurrently, ultrasound images revealed that tissues surrounding the vein had a cobblestone appearance, indicating edema. In both patients, subcutaneous tissue changes suggested infiltration and both had low-temperature areas spreading from the puncture sites. Thus, subcutaneous edema may indicate infusion leakage, resulting in a decrease in the temperature of the associated skin surface. These cases suggest that infrared thermography is an effective method of objectively and noninvasively detecting infiltration.

  7. Non-Destructive Thermography Analysis of Impact Damage on Large-Scale CFRP Automotive Parts

    PubMed Central

    Maier, Alexander; Schmidt, Roland; Oswald-Tranta, Beate; Schledjewski, Ralf

    2014-01-01

    Laminated composites are increasingly used in aeronautics and the wind energy industry, as well as in the automotive industry. In these applications, the construction and processing need to fulfill the highest requirements regarding weight and mechanical properties. Environmental issues, like fuel consumption and CO2-footprint, set new challenges in producing lightweight parts that meet the highly monitored standards for these branches. In the automotive industry, one main aspect of construction is the impact behavior of structural parts. To verify the quality of parts made from composite materials with little effort, cost and time, non-destructive test methods are increasingly used. A highly recommended non-destructive testing method is thermography analysis. In this work, a prototype for a car’s base plate was produced by using vacuum infusion. For research work, testing specimens were produced with the same multi-layer build up as the prototypes. These specimens were charged with defined loads in impact tests to simulate the effect of stone chips. Afterwards, the impacted specimens were investigated with thermography analysis. The research results in that work will help to understand the possible fields of application and the usage of thermography analysis as the first quick and economic failure detection method for automotive parts. PMID:28788464

  8. Non-Destructive Thermography Analysis of Impact Damage on Large-Scale CFRP Automotive Parts.

    PubMed

    Maier, Alexander; Schmidt, Roland; Oswald-Tranta, Beate; Schledjewski, Ralf

    2014-01-14

    Laminated composites are increasingly used in aeronautics and the wind energy industry, as well as in the automotive industry. In these applications, the construction and processing need to fulfill the highest requirements regarding weight and mechanical properties. Environmental issues, like fuel consumption and CO₂-footprint, set new challenges in producing lightweight parts that meet the highly monitored standards for these branches. In the automotive industry, one main aspect of construction is the impact behavior of structural parts. To verify the quality of parts made from composite materials with little effort, cost and time, non-destructive test methods are increasingly used. A highly recommended non-destructive testing method is thermography analysis. In this work, a prototype for a car's base plate was produced by using vacuum infusion. For research work, testing specimens were produced with the same multi-layer build up as the prototypes. These specimens were charged with defined loads in impact tests to simulate the effect of stone chips. Afterwards, the impacted specimens were investigated with thermography analysis. The research results in that work will help to understand the possible fields of application and the usage of thermography analysis as the first quick and economic failure detection method for automotive parts.

  9. Is it possible to revive the flagging interest in thermography for neurology?

    NASA Astrophysics Data System (ADS)

    Stulin, Igor D.

    1993-11-01

    The paper describes the results of twenty-years of experience in applying thermography (thermal imaging) in routine and urgent neurology, based on the study of more than ten thousand patients. Stress is laid on the fact that thermography is of great significance for diagnosing dextrocerebral hemorrhagic insult with a manifestation of pronounced hemihypothermia in the paralyzed limbs, identifying paraorbital hyperthermia on the side of rhinogenous cerebral abscess, for instrumental registration of transitory heat-up of the nasolabial region in the case of patients suffering from hypertensive nasal bleeding. Much attention is given to diagnosis of intra- and extracerebral phlebopathy in urgent neurology -- early diagnosis of iatrogenic catheterization phlebitis, interference with the venous return in the paralyzed lower limb. The novelty here is the employment of telethermography for complex diagnosis of cerebral death.

  10. Measurement of defect thickness of the wall thinning defect pipes by lock-in infrared thermography technique

    NASA Astrophysics Data System (ADS)

    Kim, Kyeongsuk; Kim, Kyungsu; Jung, Hyunchul; Chang, Hosub

    2010-03-01

    Mostly piping which is using for the nuclear power plants are made up of carbon steel pipes. The wall thinning defects occurs by the effect of the flow accelerated corrosion of fluid that flows in carbon steel pipes. The defects could be found on the welding part and anywhere in the pipes. The infrared thermography technique which is one of the non-destructive testing method has used for detecting the defects of various kinds of materials over the years. There is a limitation for measuring the defect of metals that have a big coefficient of thermal diffusion. However, a technique using lock-in method gets over the difficulty. Consequently, the lock-in infrared thermography technique has been applied to the various industry fields. In this paper, the defect thickness of the straight pipe which has an artificial defect the inside of the pipes was measured by using the lock-in infrared thermography technique and the result could be utilized in detecting defects of carbon steel pipes.

  11. Infrared thermography for examination of paper structure

    NASA Astrophysics Data System (ADS)

    Kiiskinen, Harri T.; Pakarinen, Pekka I.

    1998-03-01

    The paper industry has used IR cameras primarily for troubleshooting, where the most common examples include the examination of the condition of dryer fabrics and dryer cylinders and the analysis of moisture variations in a paper web. Another application extensively using IR thermography is non-destructive testing of composite materials. This paper presents some recently developed laboratory methods using an IR camera to examine paper structure. Specific areas include cockling, moisture content, thermal uniformity, mechanism of failure, and an analysis of the copying process.

  12. Air-coupled acoustic thermography for in-situ evaluation

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N. (Inventor); Winfree, William P. (Inventor); Yost, William T. (Inventor)

    2010-01-01

    Acoustic thermography uses a housing configured for thermal, acoustic and infrared radiation shielding. For in-situ applications, the housing has an open side adapted to be sealingly coupled to a surface region of a structure such that an enclosed chamber filled with air is defined. One or more acoustic sources are positioned to direct acoustic waves through the air in the enclosed chamber and towards the surface region. To activate and control each acoustic source, a pulsed signal is applied thereto. An infrared imager focused on the surface region detects a thermal image of the surface region. A data capture device records the thermal image in synchronicity with each pulse of the pulsed signal such that a time series of thermal images is generated. For enhanced sensitivity and/or repeatability, sound and/or vibrations at the surface region can be used in feedback control of the pulsed signal applied to the acoustic sources.

  13. A novel pulse compression algorithm for frequency modulated active thermography using band-pass filter

    NASA Astrophysics Data System (ADS)

    Chatterjee, Krishnendu; Roy, Deboshree; Tuli, Suneet

    2017-05-01

    This paper proposes a novel pulse compression algorithm, in the context of frequency modulated thermal wave imaging. The compression filter is derived from a predefined reference pixel in a recorded video, which contains direct measurement of the excitation signal alongside the thermal image of a test piece. The filter causes all the phases of the constituent frequencies to be adjusted to nearly zero value, so that on reconstruction a pulse is obtained. Further, due to band-limited nature of the excitation, signal-to-noise ratio is improved by suppressing out-of-band noise. The result is similar to that of a pulsed thermography experiment, although the peak power is drastically reduced. The algorithm is successfully demonstrated on mild steel and carbon fibre reference samples. Objective comparisons of the proposed pulse compression algorithm with the existing techniques are presented.

  14. Infrared ocular thermography in dogs with and without keratoconjunctivitis sicca.

    PubMed

    Biondi, Flávia; Dornbusch, Peterson T; Sampaio, Manuella; Montiani-Ferreira, Fabiano

    2015-01-01

    Infrared thermography was used to measure temperature differences of the corneal surface between nasal and temporal limbus regions and central cornea of normal dogs and dogs with keratoconjunctivitis sicca (KCS), in order to establish temperature values in normal canine eyes and in patients with decreased Schirmer tear tests (STT) values. Dogs investigated were all either patients seen at the Veterinary Teaching Hospital of Federal University of Paraná or normal dogs that belonged to the same institution. STT were performed in all eyes. A total of 40 control eyes (STT ≥15 mm/min) and 20 eyes with low STT values (STT ≤14 mm/min) were examined. The mean STT value for eyes with normal STT values was 22.9 ± 3.9 mm/min (mean ± standard deviation), and the mean STT value for eyes with low STT value was 7.2 ± 4.8 mm/min. The mean corneal temperature was significantly lower in eyes with low STT values than in control eyes (P < 0.0001). The following significant correlations were found: (i) Schirmer and breakup time (BUT) (P = 0.0001, r = 0.5); (ii) STT values and corneal surface temperature (P = 0.001, r = 0.256); (iii) STT values and age (P = 0.0001, r = -0.448); (iv) age and corneal surface temperature (P = 0.0001, r = -0.281); and (v) BUT and corneal surface temperature (P = 0.0001, r = 0.36). Thermography is a method that can differentiate between eyes with normal and abnormal STT values. In the future, thermography might be incorporated as part of the ophthalmic examination and perhaps become a popular ancillary test for the diagnoses of ocular surface disorders. © 2013 American College of Veterinary Ophthalmologists.

  15. Photothermal and infrared thermography characterizations of thermal diffusion in hydroxyapatite materials

    NASA Astrophysics Data System (ADS)

    Bante-Guerra, J.; Conde-Contreras, M.; Trujillo, S.; Martinez-Torres, P.; Cruz-Jimenez, B.; Quintana, P.; Alvarado-Gil, J. J.

    2009-02-01

    Non destructive analysis of hydroxyapatite materials is an active research area mainly in the study of dental pieces and bones due to the importance these pieces have in medicine, archeology, dentistry, forensics and anthropology. Infrared thermography and photothermal techniques constitute highly valuable tools in those cases. In this work the quantitative analysis of thermal diffusion in bones is presented. The results obtained using thermographic images are compared with the ones obtained from the photothermal radiometry. Special emphasis is done in the analysis of samples with previous thermal damage. Our results show that the treatments induce changes in the physical properties of the samples. These results could be useful in the identification of the agents that induced modifications of unknown origin in hydroxyapatite structures.

  16. Pulsed Thermography for Depth Profiling in Marble Sulfation

    NASA Astrophysics Data System (ADS)

    Bison, P.; Clarelli, F.; Vannozzi, A.

    2015-06-01

    Deterioration of stones is a complex problem and one of the main concern for people working in the field of conservation and restoration of cultural heritage. One important point in cultural heritage is to obtain information about the damage in a non-invasive way. By this paper, we propose a new non-invasive tool that permits evaluation of the thickness of (gypsum) grown (sulfation) on marble stones, using a mathematical model on data detected by pulsed infrared thermography.

  17. Evaluation of Different Techniques of Active Thermography for Quantification of Artificial Defects in Fiber-Reinforced Composites Using Thermal and Phase Contrast Data Analysis

    NASA Astrophysics Data System (ADS)

    Maierhofer, Christiane; Röllig, Mathias; Gower, Michael; Lodeiro, Maria; Baker, Graham; Monte, Christian; Adibekyan, Albert; Gutschwager, Berndt; Knazowicka, Lenka; Blahut, Ales

    2018-05-01

    For assuring the safety and reliability of components and constructions in energy applications made of fiber-reinforced polymers (e.g., blades of wind turbines and tidal power plants, engine chassis, flexible oil and gas pipelines) innovative non-destructive testing methods are required. Within the European project VITCEA complementary methods (shearography, microwave, ultrasonics and thermography) have been further developed and validated. Together with partners from the industry, test specimens have been constructed and selected on-site containing different artificial and natural defect artefacts. As base materials, carbon and glass fibers in different orientations and layering embedded in different matrix materials (epoxy, polyamide) have been considered. In this contribution, the validation of flash and lock-in thermography to these testing problems is presented. Data analysis is based on thermal contrasts and phase evaluation techniques. Experimental data are compared to analytical and numerical models. Among others, the influence of two different types of artificial defects (flat bottom holes and delaminations) with varying diameters and depths and of two different materials (CFRP and GFRP) with unidirectional and quasi-isotropic fiber alignment is discussed.

  18. Extraction of thermal Green's function using diffuse fields: a passive approach applied to thermography

    NASA Astrophysics Data System (ADS)

    Capriotti, Margherita; Sternini, Simone; Lanza di Scalea, Francesco; Mariani, Stefano

    2016-04-01

    In the field of non-destructive evaluation, defect detection and visualization can be performed exploiting different techniques relying either on an active or a passive approach. In the following paper the passive technique is investigated due to its numerous advantages and its application to thermography is explored. In previous works, it has been shown that it is possible to reconstruct the Green's function between any pair of points of a sensing grid by using noise originated from diffuse fields in acoustic environments. The extraction of the Green's function can be achieved by cross-correlating these random recorded waves. Averaging, filtering and length of the measured signals play an important role in this process. This concept is here applied in an NDE perspective utilizing thermal fluctuations present on structural materials. Temperature variations interacting with thermal properties of the specimen allow for the characterization of the material and its health condition. The exploitation of the thermographic image resolution as a dense grid of sensors constitutes the basic idea underlying passive thermography. Particular attention will be placed on the creation of a proper diffuse thermal field, studying the number, placement and excitation signal of heat sources. Results from numerical simulations will be presented to assess the capabilities and performances of the passive thermal technique devoted to defect detection and imaging of structural components.

  19. An evaluation of the validity of thermography as a physiological measure of sexual arousal in a non-university adult sample.

    PubMed

    Kukkonen, Tuuli M; Binik, Yitzchak M; Amsel, Rhonda; Carrier, Serge

    2010-08-01

    Thermography is a promising technology for the physiological measurement of sexual arousal in both men and women. This study was designed to extend our previous college student thermography study findings to an older sample (M age = 37.05 years), add an anxiety control group to further examine the specificity of temperature change, and examine the relationship between genital temperature and a continuous measure of subjective sexual arousal. Healthy men (n = 40) and women (n = 39) viewed a neutral film clip after which they were randomly assigned to view one of four other videos: neutral (n = 20), humor (n = 19), anxiety provoking (n = 20) or sexually explicit (n = 20). Genital and thigh temperature were continuously recorded using a TSA ImagIR thermographic camera. Continuous and discrete reports of subjective sexual arousal were also obtained. Results supported the validity of thermography as a measure of sexual arousal: temperature change was specific to the genitals during the sexual arousal condition and was significantly correlated with subjective continuous and discrete reports of sexual arousal. Further development should assess the potential of thermography as a tool for the diagnosis and treatment evaluation of sexual arousal difficulties and for studying sex differences.

  20. Determination Of Bridge Deck Subsurface Anomalies Using Infrared Thermography And Ground Penetrating Radar

    DOT National Transportation Integrated Search

    1996-09-01

    The purpose of this study was to evaluate the use of infrared (IR) thermography and ground penetrating radar (GPR) to find subsurface anomalies, delaminations and de-bonding, on asphalt concrete overlaid concrete bridge decks. The traditional "chaini...

  1. Use of infrared thermography for the diagnosis and grading of sprained ankle injuries

    NASA Astrophysics Data System (ADS)

    Oliveira, João; Vardasca, Ricardo; Pimenta, Madalena; Gabriel, Joaquim; Torres, João

    2016-05-01

    -Wallis tests for non-parametric samples, however, did not confer statistical significance to the differences encountered in the graphics analysis (p > 0.05). The major conclusions were that thermographic analysis of ankle sprain injuries might have some potential to be used clinically, especially in acute settings such as those that occur in hospital emergency areas and in sports practice. There is currently no practical technology to be used for grading ankle sprain lesions, with the gold standard being magnetic resonance imaging. Thermography provides results rapidly and without the need for extensive equipment operating expertise. Based on scientific data present in the literature, this is the first description of the use of this technology with such an objective regarding ankle sprain lesions. Further work is needed, nonetheless, to amplify the sample number with the herein chosen parameters and possibly use dynamic thermography.

  2. Integration of ground-penetrating radar, ultrasonic tests and infrared thermography for the analysis of a precious medieval rose window

    NASA Astrophysics Data System (ADS)

    Nuzzo, L.; Calia, A.; Liberatore, D.; Masini, N.; Rizzo, E.

    2010-04-01

    The integration of high-resolution, non-invasive geophysical techniques (such as ground-penetrating radar or GPR) with emerging sensing techniques (acoustics, thermography) can complement limited destructive tests to provide a suitable methodology for a multi-scale assessment of the state of preservation, material and construction components of monuments. This paper presents the results of the application of GPR, infrared thermography (IRT) and ultrasonic tests to the 13th century rose window of Troia Cathedral (Apulia, Italy), affected by widespread decay and instability problems caused by the 1731 earthquake and reactivated by recent seismic activity. This integrated approach provided a wide amount of complementary information at different scales, ranging from the sub-centimetre size of the metallic joints between the various architectural elements, narrow fractures and thin mortar fillings, up to the sub-metre scale of the internal masonry structure of the circular ashlar curb linking the rose window to the façade, which was essential to understand the original building technique and to design an effective restoration strategy.

  3. A protocol for analysing thermal stress in insects using infrared thermography.

    PubMed

    Gallego, Belén; Verdú, José R; Carrascal, Luis M; Lobo, Jorge M

    2016-02-01

    The study of insect responses to thermal stress has involved a variety of protocols and methodologies that hamper the ability to compare results between studies. For that reason, the development of a protocol to standardize thermal assays is necessary. In this sense, infrared thermography solves some of the problems allowing us to take continuous temperature measurements without handling the individuals, an important fact in cold-blooded organisms like insects. Here, we present a working protocol based on infrared thermography to estimate both cold and heat thermal stress in insects. We analyse both the change in the body temperature of individuals and their behavioural response. In addition, we used partial least squares regression for the statistical analysis of our data, a technique that solves the problem of having a large number of variables and few individuals, allowing us to work with rare or endemic species. To test our protocol, we chose two species of congeneric, narrowly distributed dung beetles that are endemic to the southeastern part of the Iberian Peninsula. With our protocol we have obtained five variables in the response to cold and twelve in the response to heat. With this methodology we discriminate between the two flightless species of Jekelius through their thermal response. In response to cold, Jekelius hernandezi showed a higher rate of cooling and reached higher temperatures of stupor and haemolymph freezing than Jekelius punctatolineatus. Both species displayed similar thermoregulation ranges before reaching lethal body temperature with heat stress. Overall, we have demonstrated that infrared thermography is a suitable method to assess insect thermal responses with a high degree of sensitivity, allowing for the discrimination between closely related species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Use Of Thermography In The Diagnostics Of Energy Use In Multifamily Dwellings.

    NASA Astrophysics Data System (ADS)

    Gadsby, Kenneth J.; Harrje, David T.

    1984-03-01

    Rising energy costs have placed a heavy burden on multifamily complex managers in recent years. To reduce energy expenditures these managers are then faced with making difficult decisions as to which building retrofits will prove to be most cost-effective. The Building Energy Research Group at Princeton University has embarked on the development of analysis procedures that will provide these managers with a prioritized list of energy conservation opportunities (ECOs). The case studies presented here illustrate the importance of thermography in this analysis procedure, its impact on the inspection time, and the value of the information gained. The infrared scan often eliminates large areas of the thermal envelope from further inspection and aids the analyst in locating energy losses through construction that would otherwise be difficult to find. Not only does thermography guide us in the choice of ECOs but it also provides us with information that should lead to the construction of better buildings in the future.

  5. A combined approach of self-referencing and Principle Component Thermography for transient, steady, and selective heating scenarios

    NASA Astrophysics Data System (ADS)

    Omar, M. A.; Parvataneni, R.; Zhou, Y.

    2010-09-01

    Proposed manuscript describes the implementation of a two step processing procedure, composed of the self-referencing and the Principle Component Thermography (PCT). The combined approach enables the processing of thermograms from transient (flash), steady (halogen) and selective (induction) thermal perturbations. Firstly, the research discusses the three basic processing schemes typically applied for thermography; namely mathematical transformation based processing, curve-fitting processing, and direct contrast based calculations. Proposed algorithm utilizes the self-referencing scheme to create a sub-sequence that contains the maximum contrast information and also compute the anomalies' depth values. While, the Principle Component Thermography operates on the sub-sequence frames by re-arranging its data content (pixel values) spatially and temporally then it highlights the data variance. The PCT is mainly used as a mathematical mean to enhance the defects' contrast thus enabling its shape and size retrieval. The results show that the proposed combined scheme is effective in processing multiple size defects in sandwich steel structure in real-time (<30 Hz) and with full spatial coverage, without the need for a priori defect-free area.

  6. Karst Groundwater Hydrologic Analyses Based on Aerial Thermography

    NASA Technical Reports Server (NTRS)

    Campbell, C. Warren; Keith, A. G.

    2000-01-01

    On February 23, 1999, thermal imagery of Marshall Space Flight Center, Alabama was collected using an airborne thermal camera. Ground resolution was I in. Approximately 40 km 2 of thermal imagery in and around Marshall Space Flight Center (MSFC) was analyzed to determine the location of springs for groundwater monitoring. Subsequently, forty-five springs were located ranging in flow from a few ml/sec to approximately 280 liter/sec. Groundwater temperatures are usually near the mean annual surface air temperature. On thermography collected during the winter, springs show up as very warm spots. Many of the new springs were submerged in lakes, streams, or swamps; consequently, flow measurements were difficult. Without estimates of discharge, the impacts of contaminated discharge on surface streams would be difficult to evaluate. An approach to obtaining an estimate was developed using the Environmental Protection Agency (EPA) Cornell Mixing Zone Expert System (CORMIX). The thermography was queried to obtain a temperature profile down the center of the surface plume. The spring discharge was modeled with CORMIX, and the flow adjusted until the surface temperature profile was matched. The presence of volatile compounds in some of the new springs also allowed MSFC to unravel the natural system of solution cavities of the karst aquifer. Sampling results also showed that two springs on either side of a large creek had the same water source so that groundwater was able to pass beneath the creek.

  7. Medical Infrared Thermography assistance in the surgical treatment of axillary Hidradenitis Suppurativa: A case report.

    PubMed

    Polidori, G; Renard, Y; Lorimier, S; Pron, H; Derruau, S; Taiar, R

    2017-01-01

    The purpose of this case report is to highlight for the first time the way Medical Infrared Thermography can be a helpful tool to assist the surgeon in the surgical treatment of Hidradenitis Suppurativa inflammatory disease. A 36-year-old man with a 7-year history of Hidradenitis Suppurativa presented inflammatory nodules in the left axilla area corresponding to Hurley stage II. Choice is made to surgically treat this patient using a wide excision protocol combined with a postoperative second intention healing. For the study purpose, an IR FLIR SC620 camera (FLIR Systems, Wilsonville, OR), having a high resolution pixel detector of 640×480 pixels for greater accuracy and higher resolution, has been used. For the first time in the literature, this case report on HS disease supports the idea that real-time medical infrared thermography may be helpful in establishing the true extent of disease preoperatively in the surgical room and in a similar manner, that this technique allows the surgeon to ensure all diseased lesions are removed during surgery. At least, medical infrared thermography seems to be a powerful tool to control the final wide surgical wound, in order to minimize recurrence risk of such a disease. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. Measurement of Three-Dimensional Anisotropic Thermal Diffusivities for Carbon Fiber-Reinforced Plastics Using Lock-In Thermography

    NASA Astrophysics Data System (ADS)

    Ishizaki, Takuya; Nagano, Hosei

    2015-11-01

    A new measurement technique to measure the in-plane thermal diffusivity, the distribution of in-plane anisotropy, and the out-of-plane thermal diffusivity has been developed to evaluate the thermal conductivity of anisotropic materials such as carbon fiber-reinforced plastics (CFRPs). The measurements were conducted by using a laser-spot-periodic-heating method. The temperature of the sample is detected by using lock-in thermography. Thermography can analyze the phase difference between the periodic heat input and the temperature response of the sample. Two kinds of samples, unidirectional (UD) and cross-ply (CP) pitch-based CFRPs, were fabricated and tested in an atmospheric condition. All carbon fibers of the UD sample run in one direction [90°]. The carbon fibers of the CP sample run in two directions [0°/90°]. It is found that, by using lock-in thermography, it is able to visualize the thermal anisotropy and calculate the angular dependence of the in-plane thermal diffusivity of the CFRPs. The out-of-plane thermal diffusivity of CFRPs was also measured by analyzing the frequency dependence of the phase difference.

  9. Nondestructive Evaluation of Carbon Fiber Bicycle Frames Using Infrared Thermography

    PubMed Central

    Ibarra-Castanedo, Clemente; Klein, Matthieu; Maldague, Xavier; Sanchez-Beato, Alvaro

    2017-01-01

    Bicycle frames made of carbon fibre are extremely popular for high-performance cycling due to the stiffness-to-weight ratio, which enables greater power transfer. However, products manufactured using carbon fibre are sensitive to impact damage. Therefore, intelligent nondestructive evaluation is a required step to prevent failures and ensure a secure usage of the bicycle. This work proposes an inspection method based on active thermography, a proven technique successfully applied to other materials. Different configurations for the inspection are tested, including power and heating time. Moreover, experiments are applied to a real bicycle frame with generated impact damage of different energies. Tests show excellent results, detecting the generated damage during the inspection. When the results are combined with advanced image post-processing methods, the SNR is greatly increased, and the size and localization of the defects are clearly visible in the images. PMID:29156650

  10. Field testing of hand-held infrared thermography, phase II TPF-5(247) interim report.

    DOT National Transportation Integrated Search

    2015-12-01

    This report describes research completed to develop and implement infrared thermography, a nondestructive evaluation (NDE) : technology for the condition assessment of concrete bridge components. The overall goal of this research was to develop new :...

  11. Pulsed infrared thermography for assessment of ultrasonic welds

    NASA Astrophysics Data System (ADS)

    McGovern, Megan E.; Rinker, Teresa J.; Sekol, Ryan C.

    2018-03-01

    Battery packs are a critical component in electric vehicles. During pack assembly, the battery cell tab and busbar are ultrasonically welded. The properties of the welds ultimately affect battery pack durability. Quality inspection of these welds is important to ensure durable battery packs. Pack failure is detrimental economically and could also pose a safety hazard, such as thermal runaway. Ultrasonic welds are commonly checked by measuring electrical resistance or auditing using destructive mechanical testing. Resistance measurements are quick, but sensitive to set-up changes. Destructive testing cannot represent the entire weld set. It is possible for a weak weld to satisfy the electrical requirement check, because only sufficient contact between the tabs and busbar is required to yield a low resistance measurement. Laboratory techniques are often not suitable for inline inspection, as they may be time-consuming, use couplant, or are only suitable for coupons. The complex surface geometry also poses difficulties for conventional nondestructive techniques. A method for inspection of ultrasonic welds is proposed using pulsed infrared thermography to identify discrepant welds in a manufacturing environment. Thermal measurements of welds were compared to electrical and mechanical measurements. The heat source distribution was calculated to obtain thermal images with high temporal and spatial resolution. All discrepant welds were readily identifiable using two thermographic techniques: pixel counting and the gradient image. A positive relationship between pixel count and mechanical strength was observed. The results demonstrate the potential of pulsed thermography for inline inspection, which can complement, or even replace, conventional electrical resistance measurements.

  12. Effects of different excitation waveforms on detection and characterisation of delamination in PV modules by active infrared thermography

    NASA Astrophysics Data System (ADS)

    Sinha, Archana; Gupta, Rajesh

    2017-10-01

    Delamination significantly affects the performance and reliability of photovoltaic (PV) modules. Recently, an active infrared thermography approach using step heating has been exploited for the detection and characterisation of delamination in PV modules. However, step heating takes longer observation time and causes overheating problems. This paper presents the effects of different thermal excitation waveforms namely rectangular, half-sine and short pulse, on the detection and characterisation of delamination in PV module by experiments and simulations. For simulation, a 3-dimensional electro-thermal model of heat conduction, based on resistance-capacitance network approach, has been exploited to study the variation in maximum thermal contrast and peak contrast time with the delamination thickness and heating parameters. Results show that the rectangular waveform provides better detection of delamination due to higher absolute contrast, while the half-sine waveform allows better characterisation of delamination in the PV modules with low-cost and low-power heat source. The high-energy short pulse enabled quick visualisation of delamination, but has limited practical implementation. The advantages and limitations of each waveform have been highlighted to assess the specific requirement for appropriate choice in the non-destructive thermographic inspection of delamination in PV modules at the manufacturing units or outdoor fields.

  13. Analysis of pulse thermography using similarities between wave and diffusion propagation

    NASA Astrophysics Data System (ADS)

    Gershenson, M.

    2017-05-01

    Pulse thermography or thermal wave imaging are commonly used as nondestructive evaluation (NDE) method. While the technical aspect has evolve with time, theoretical interpretation is lagging. Interpretation is still using curved fitting on a log log scale. A new approach based directly on the governing differential equation is introduced. By using relationships between wave propagation and the diffusive propagation of thermal excitation, it is shown that one can transform from solutions in one type of propagation to the other. The method is based on the similarities between the Laplace transforms of the diffusion equation and the wave equation. For diffusive propagation we have the Laplace variable s to the first power, while for the wave propagation similar equations occur with s2. For discrete time the transformation between the domains is performed by multiplying the temperature data vector by a matrix. The transform is local. The performance of the techniques is tested on synthetic data. The application of common back projection techniques used in the processing of wave data is also demonstrated. The combined use of the transform and back projection makes it possible to improve both depth and lateral resolution of transient thermography.

  14. AN EVALUATION OF INFRARED THERMOGRAPHY FOR DETECTION OF BUMBLEFOOT (PODODERMATITIS) IN PENGUINS.

    PubMed

    Duncan, Ann E; Torgerson-White, Lauri L; Allard, Stephanie M; Schneider, Tom

    2016-06-01

    The objective of this study was to evaluate infrared thermography as a noninvasive screening tool for detection of pododermatitis during the developing and active stages of disease in three species of penguins: king penguin (Aptenodytes patagonicus) , macaroni penguin (Eudyptes chrysolophus), and rockhopper penguin (Eudyptes chrysocome). In total, 67 penguins were examined every 3 mo over a 15-mo period. At each exam, bumblefoot lesions were characterized and measured, and a timed series of thermal images were collected over a 4-min period. Three different methods were compared for analysis of thermograms. Feet with active lesions that compromise the surface of the foot were compared to feet with inactive lesions and no lesions. The hypothesis was that feet with active lesions would have warmer surface temperatures than the other conditions. Analysis of the data showed that although feet with active bumblefoot lesions are warmer than feet with inactive or no lesions, the variability seen in each individual penguin from one exam day to the next and the overlap seen between temperatures from each condition made thermal imaging an unreliable tool for detection of bumblefoot in the species studied.

  15. Building thermography as a tool in energy audits and building commissioning procedure

    NASA Astrophysics Data System (ADS)

    Kauppinen, Timo

    2007-04-01

    A Building Commissioning-project (ToVa) was launched in Finland in the year 2003. A comprehensive commissioning procedure, including the building process and operation stage was developed in the project. This procedure will confirm the precise documentation of client's goals, definition of planning goals and the performance of the building. It is rather usual, that within 1-2 years after introduction the users complain about the defects or performance malfunctions of the building. Thermography is one important manual tool in verifying the thermal performance of the building envelope. In this paper the results of one pilot building (a school) will be presented. In surveying the condition and energy efficiency of buildings, various auxiliary means are needed. We can compare the consumption data of the target building with other, same type of buildings by benchmarking. Energy audit helps to localize and determine the energy saving potential. The most general and also most effective auxiliary means in monitoring the thermal performance of building envelopes is an infrared camera. In this presentation some examples of the use of thermography in energy audits are presented.

  16. Infrared thermography for wood density estimation

    NASA Astrophysics Data System (ADS)

    López, Gamaliel; Basterra, Luis-Alfonso; Acuña, Luis

    2018-03-01

    Infrared thermography (IRT) is becoming a commonly used technique to non-destructively inspect and evaluate wood structures. Based on the radiation emitted by all objects, this technique enables the remote visualization of the surface temperature without making contact using a thermographic device. The process of transforming radiant energy into temperature depends on many parameters, and interpreting the results is usually complicated. However, some works have analyzed the operation of IRT and expanded its applications, as found in the latest literature. This work analyzes the effect of density on the thermodynamic behavior of timber to be determined by IRT. The cooling of various wood samples has been registered, and a statistical procedure that enables one to quantitatively estimate the density of timber has been designed. This procedure represents a new method to physically characterize this material.

  17. Assessment of techniques of massage and pumping in the treatment of breast engorgement by thermography

    PubMed Central

    Heberle, Anita Batista dos Santos; de Moura, Marcos Antônio Muniz; de Souza, Mauren Abreu; Nohama, Percy

    2014-01-01

    Objective to evaluate techniques of massage and pumping in the treatment of postpartum breast engorgement through thermography. Method the study was conducted in the Human Milk Bank of a hospital in Curitiba, Brazil. We randomly selected 16 lactating women with engorgement with the classification lobar, ampullary and glandular, moderate and intense. We compared the differential patterns of temperature, before and after the treatment by means of massage and pumping. Results we found a negative gradient of 0.3°C of temperature between the pre- and post-treatment in the experimental group. Breasts with intense engorgement were 0.7°C warmer when compared with moderate engorgement. Conclusion massage and electromechanical pumping were superior to manual methods when evaluated by thermography. REBEC: U1111-1136-9027. PMID:26107836

  18. Improvement of energy efficiency: the use of thermography and air-tightness test in verification of thermal performance of school buildings

    NASA Astrophysics Data System (ADS)

    Kauppinen, Timo; Siikanen, Sami

    2011-05-01

    The improvement of energy efficiency is the key issue after the energy performance of buildings directive came into the force in European Union countries. The city of Kuopio participate a project, in which different tools will be used, generated and tested to improve the energy efficiency of public buildings. In this project there are 2 schools, the other consuming much more heating energy than the other same type of school. In this paper the results of the thermography in normal conditions and under 50 Pa pressure drop will be presented; as well as the results of remote controlled air tightness test of the buildings. Thermography combined with air tightness test showed clearly the reasons of specific consumption differences of heating energy - also in the other hand, the measurements showed the problems in the performance of ventilation system. Thermography, air tightness test and other supporting measurements can be used together to solve energy loss problems - if these measurements will be carried out by proper way.

  19. 3D medical thermography device

    NASA Astrophysics Data System (ADS)

    Moghadam, Peyman

    2015-05-01

    In this paper, a novel handheld 3D medical thermography system is introduced. The proposed system consists of a thermal-infrared camera, a color camera and a depth camera rigidly attached in close proximity and mounted on an ergonomic handle. As a practitioner holding the device smoothly moves it around the human body parts, the proposed system generates and builds up a precise 3D thermogram model by incorporating information from each new measurement in real-time. The data is acquired in motion, thus it provides multiple points of view. When processed, these multiple points of view are adaptively combined by taking into account the reliability of each individual measurement which can vary due to a variety of factors such as angle of incidence, distance between the device and the subject and environmental sensor data or other factors influencing a confidence of the thermal-infrared data when captured. Finally, several case studies are presented to support the usability and performance of the proposed system.

  20. Technologies of high-performance thermography systems

    NASA Astrophysics Data System (ADS)

    Breiter, R.; Cabanski, Wolfgang A.; Mauk, K. H.; Kock, R.; Rode, W.

    1997-08-01

    A family of 2 dimensional detection modules based on 256 by 256 and 486 by 640 platinum silicide (PtSi) focal planes, or 128 by 128 and 256 by 256 mercury cadmium telluride (MCT) focal planes for applications in either the 3 - 5 micrometer (MWIR) or 8 - 10 micrometer (LWIR) range was recently developed by AIM. A wide variety of applications is covered by the specific features unique for these two material systems. The PtSi units provide state of the art correctability with long term stable gain and offset coefficients. The MCT units provide extremely fast frame rates like 400 Hz with snapshot integration times as short as 250 microseconds and with a thermal resolution NETD less than 20 mK for e.g. the 128 by 128 LWIR module. The unique design idea general for all of these modules is the exclusively digital interface, using 14 bit analog to digital conversion to provide state of the art correctability, access to highly dynamic scenes without any loss of information and simplified exchangeability of the units. Device specific features like bias voltages etc. are identified during the final test and stored in a memory on the driving electronics. This concept allows an easy exchange of IDCAs of the same type without any need for tuning or e.g. the possibility to upgrade a PtSi based unit to an MCT module by just loading the suitable software. Miniaturized digital signal processor (DSP) based image correction units were developed for testing and operating the units with output data rates of up to 16 Mpixels/s. These boards provide the ability for freely programmable realtime functions like two point correction and various data manipulations in thermography applications.

  1. Application of in situ thermography for evaluating the high-cycle and very high-cycle fatigue behaviour of cast aluminium alloy AlSi7Mg (T6).

    PubMed

    Krewerth, D; Weidner, A; Biermann, H

    2013-12-01

    The present paper illustrates the application of infrared thermal measurements for the investigation of crack initiation point and crack propagation in the high-cycle and the very high-cycle fatigue range of cast AlSi7Mg alloy (A356). The influence of casting defects, their location, size and amount was studied both by fractography and thermography. Besides internal and surface fatigue crack initiation as a further crack initiation type multiple fatigue crack initiation was observed via in situ thermography which can be well correlated with the results from fractography obtained by SEM investigations. In addition, crack propagation was studied by the development of the temperature measured via thermography. Moreover, the frequency influence on high-cycle fatigue behaviour was investigated. The presented results demonstrate well that the combination of fractography and thermography can give a significant contribution to the knowledge of crack initiation and propagation in the VHCF regime. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Comparison between whole-body and head and neck neurovascular coils for 3-T magnetic resonance proton resonance frequency shift thermography guidance in the head and neck region.

    PubMed

    Ginat, Daniel Thomas; Anthony, Gregory J; Christoforidis, Gregory; Oto, Aytekin; Dalag, Leonard; Sammet, Steffen

    2018-02-01

    The purpose of this study is to compare the image quality of magnetic resonance (MR) treatment planning images and proton resonance frequency (PRF) shift thermography images and inform coil selection for MR-guided laser ablation of tumors in the head and neck region. Laser ablation was performed on an agar phantom and monitored via MR PRF shift thermography on a 3-T scanner, following acquisition of T1-weighted (T1W) planning images. PRF shift thermography images and T2-weighted (T2W) planning images were also performed in the neck region of five normal human volunteers. Signal-to-noise ratios (SNR) and temperature uncertainty were calculated and compared between scans acquired with the quadrature mode body integrated coil and a head and neck neurovascular coil. T1W planning images of the agar phantom produced SNRs of 4.0 and 12.2 for the quadrature mode body integrated coil and head and neck neurovascular coil, respectively. The SNR of the phantom MR thermography magnitude images obtained using the quadrature mode body integrated coil was 14.4 versus 59.6 using the head and neck coil. The average temperature uncertainty for MR thermography performed on the phantom with the quadrature mode body integrated coil was 1.1 versus 0.3 °C with the head and neck coil. T2W planning images of the neck in five human volunteers produced SNRs of 28.3 and 91.0 for the quadrature mode body integrated coil and head and neck coil, respectively. MR thermography magnitude images of the neck in the volunteers obtained using the quadrature mode body integrated coil had a signal-to-noise ratio of 8.3, while the SNR using the head and neck coil was 16.1. The average temperature uncertainty for MR thermography performed on the volunteers with the body coil was 2.5 versus 1.6 °C with the head and neck neurovascular coil. The quadrature mode body integrated coil provides inferior image quality for both basic treatment planning sequences and MR PRF shift thermography compared with a

  3. Diagnosis of X-Linked Hypohidrotic Ectodermal Dysplasia by Meibography and Infrared Thermography of the Eye.

    PubMed

    Kaercher, Thomas; Dietz, Jasna; Jacobi, Christina; Berz, Reinhold; Schneider, Holm

    2015-09-01

    X-linked hypohidrotic ectodermal dysplasia (XLHED) is the most common form of ectodermal dysplasia. Clinical characteristics include meibomian gland disorder and the resulting hyperevaporative dry eye. In this study, we evaluated meibography and ocular infrared thermography as novel methods to diagnose XLHED. Eight infants, 12 boys and 14 male adults with XLHED and 12 healthy control subjects were subjected to a panel of tests including the ocular surface disease index (OSDI), meibography and infrared thermography, non-invasive measurement of tear film break-up time (NIBUT) and osmolarity, Schirmer's test, lissamine green staining and fluorescein staining. Sensitivity and specificity were determined for single tests and selected test combinations. Meibography had 100% sensitivity and specificity for identifying XLHED. Infrared thermography, a completely non-invasive procedure, revealed a typical pattern for male subjects with XLHED. It was, however, less sensitive (86% for adults and 67% for children) than meibography or a combination of established routine tests. In adults, OSDI and NIBUT were the best single routine tests (sensitivity of 86% and 71%, respectively), whereas increased tear osmolarity appeared as a rather unspecific ophthalmic symptom. In children, NIBUT was the most convincing routine test (sensitivity of 91%). Meibography is the most reliable ophthalmic examination to establish a clinical diagnosis in individuals with suspected hypohidrotic ectodermal dysplasia, even before genetic test results are available. Tear film tests and ocular surface staining are less sensitive in children, but very helpful for estimating the severity of ocular surface disease in individuals with known XLHED.

  4. Evaluation of dynamic infrared thermography as an alternative to CT angiography for perforator mapping in breast reconstruction: a clinical study.

    PubMed

    Weum, Sven; Mercer, James B; de Weerd, Louis

    2016-07-15

    The current gold standard for preoperative perforator mapping in breast reconstruction with a DIEP flap is CT angiography (CTA). Dynamic infrared thermography (DIRT) is an imaging method that does not require ionizing radiation or contrast injection. We evaluated if DIRT could be an alternative to CTA in perforator mapping. Twenty-five patients scheduled for secondary breast reconstruction with a DIEP flap were included. Preoperatively, the lower abdomen was examined with hand-held Doppler, DIRT and CTA. Arterial Doppler sound locations were marked on the skin. DIRT examination involved rewarming of the abdominal skin after a mild cold challenge. The locations of hot spots on DIRT were compared with the arterial Doppler sound locations. The rate and pattern of rewarming of the hot spots were analyzed. Multiplanar CT reconstructions were used to see if hot spots were related to perforators on CTA. All flaps were based on the perforator selected with DIRT and the surgical outcome was analyzed. First appearing hot spots were always associated with arterial Doppler sounds and clearly visible perforators on CTA. The hot spots on DIRT images were always slightly laterally located in relation to the exit points of the associated perforators through the rectus abdominis fascia on CTA. Some periumbilical perforators were not associated with hot spots and showed communication with the superficial inferior epigastric vein on CTA. The selected perforators adequately perfused all flaps. This study confirms that perforators selected with DIRT have arterial Doppler sound, are clearly visible on CTA and provide adequate perfusion for DIEP breast reconstruction. Retrospectively registered at ClinicalTrials.gov with identifier NCT02806518 .

  5. Use of infrared thermography to detect thermal segregation in asphalt overlay and reflective cracking potential.

    DOT National Transportation Integrated Search

    2015-03-01

    The objectives of this study were to assess whether temperature differentials measured using Infrared : Thermography (IRT) occur in an overlay built on top of discontinuities such as joints and cracks and to : study the horizontal and vertical therma...

  6. Thermography and Sonic Anemometry to Analyze Air Heaters in Mediterranean Greenhouses

    PubMed Central

    López, Alejandro; Valera, Diego L.; Molina-Aiz, Francisco; Peña, Araceli

    2012-01-01

    The present work has developed a methodology based on thermography and sonic anemometry for studying the microclimate in Mediterranean greenhouses equipped with air heaters and polyethylene distribution ducts to distribute the warm air. Sonic anemometry allows us to identify the airflow pattern generated by the heaters and to analyze the temperature distribution inside the greenhouse, while thermography provides accurate crop temperature data. Air distribution by means of perforated polyethylene ducts at ground level, widely used in Mediterranean-type greenhouses, can generate heterogeneous temperature distributions inside the greenhouse when the system is not correctly designed. The system analyzed in this work used a polyethylene duct with a row of hot air outlet holes (all of equal diameter) that expel warm air toward the ground to avoid plant damage. We have observed that this design (the most widely used in Almería's greenhouses) produces stagnation of hot air in the highest part of the structure, reducing the heating of the crop zone. Using 88 kW heating power (146.7 W·m−2) the temperature inside the greenhouse is maintained 7.2 to 11.2 °C above the outside temperature. The crop temperature (17.6 to 19.9 °C) was maintained above the minimum recommended value of 10 °C. PMID:23202025

  7. Thermography and sonic anemometry to analyze air heaters in Mediterranean greenhouses.

    PubMed

    López, Alejandro; Valera, Diego L; Molina-Aiz, Francisco; Peña, Araceli

    2012-10-16

    The present work has developed a methodology based on thermography and sonic anemometry for studying the microclimate in Mediterranean greenhouses equipped with air heaters and polyethylene distribution ducts to distribute the warm air. Sonic anemometry allows us to identify the airflow pattern generated by the heaters and to analyze the temperature distribution inside the greenhouse, while thermography provides accurate crop temperature data. Air distribution by means of perforated polyethylene ducts at ground level, widely used in Mediterranean-type greenhouses, can generate heterogeneous temperature distributions inside the greenhouse when the system is not correctly designed. The system analyzed in this work used a polyethylene duct with a row of hot air outlet holes (all of equal diameter) that expel warm air toward the ground to avoid plant damage. We have observed that this design (the most widely used in Almería's greenhouses) produces stagnation of hot air in the highest part of the structure, reducing the heating of the crop zone. Using 88 kW heating power (146.7 W ∙ m(-2)) the temperature inside the greenhouse is maintained 7.2 to 11.2 °C above the outside temperature. The crop temperature (17.6 to 19.9 °C) was maintained above the minimum recommended value of 10 °C.

  8. Evaluation of the diagnostic power of thermography in breast cancer using Bayesian network classifiers.

    PubMed

    Nicandro, Cruz-Ramírez; Efrén, Mezura-Montes; María Yaneli, Ameca-Alducin; Enrique, Martín-Del-Campo-Mena; Héctor Gabriel, Acosta-Mesa; Nancy, Pérez-Castro; Alejandro, Guerra-Hernández; Guillermo de Jesús, Hoyos-Rivera; Rocío Erandi, Barrientos-Martínez

    2013-01-01

    Breast cancer is one of the leading causes of death among women worldwide. There are a number of techniques used for diagnosing this disease: mammography, ultrasound, and biopsy, among others. Each of these has well-known advantages and disadvantages. A relatively new method, based on the temperature a tumor may produce, has recently been explored: thermography. In this paper, we will evaluate the diagnostic power of thermography in breast cancer using Bayesian network classifiers. We will show how the information provided by the thermal image can be used in order to characterize patients suspected of having cancer. Our main contribution is the proposal of a score, based on the aforementioned information, that could help distinguish sick patients from healthy ones. Our main results suggest the potential of this technique in such a goal but also show its main limitations that have to be overcome to consider it as an effective diagnosis complementary tool.

  9. Evaluation of the Diagnostic Power of Thermography in Breast Cancer Using Bayesian Network Classifiers

    PubMed Central

    Nicandro, Cruz-Ramírez; Efrén, Mezura-Montes; María Yaneli, Ameca-Alducin; Enrique, Martín-Del-Campo-Mena; Héctor Gabriel, Acosta-Mesa; Nancy, Pérez-Castro; Alejandro, Guerra-Hernández; Guillermo de Jesús, Hoyos-Rivera; Rocío Erandi, Barrientos-Martínez

    2013-01-01

    Breast cancer is one of the leading causes of death among women worldwide. There are a number of techniques used for diagnosing this disease: mammography, ultrasound, and biopsy, among others. Each of these has well-known advantages and disadvantages. A relatively new method, based on the temperature a tumor may produce, has recently been explored: thermography. In this paper, we will evaluate the diagnostic power of thermography in breast cancer using Bayesian network classifiers. We will show how the information provided by the thermal image can be used in order to characterize patients suspected of having cancer. Our main contribution is the proposal of a score, based on the aforementioned information, that could help distinguish sick patients from healthy ones. Our main results suggest the potential of this technique in such a goal but also show its main limitations that have to be overcome to consider it as an effective diagnosis complementary tool. PMID:23762182

  10. High-frequency heterodyne lock-in thermography (HeLIT): A highly sensitive method to detect early caries

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Liu, Jun-yan; Yang, Jun-han; Oliullah, Md.; Wang, Xiao-chun; Wang, Yang

    2016-10-01

    In this letter, a nonlinear photothermal characteristic of dental tissues has been verified by photothermal radiometry at a given frequency with changing of the laser intensity. Subsequently, the high-frequency heterodyne lock-in thermography (HeLIT) scheme has been introduced to overcome shortages of the low infrared camera frame rate and the poor signal-noise ratio. The smooth surface tooth was artificially demineralized at a different time, and then it was detected by HeLIT, Results illustrated that the phase delay increases with the extension of the demineralized treatment time. The comparison experiments between HeLIT and the homodyne lock-in thermography for detecting artificial caries were carried out. Experimental results illustrated that the HeLIT has the merits of high sensitivity and specificity in detecting early caries.

  11. Risks of online advertisement of direct-to-consumer thermography for breast cancer screening.

    PubMed

    Lovett, Kimberly M; Liang, Bryan A

    2011-12-01

    Direct-to-consumer online advertising for thermography as a sole agent with which to diagnose breast cancer is misleading and exploits women who are seeking preventive health care for breast cancer. Regulatory action should be taken against companies who continue to mislead the public to ensure patient safety and evidence-based public health information.

  12. [Usefulness of contact thermography for the evaluation of chemotherapeutic effectiveness in breast cancer].

    PubMed

    Kurihara, T; Higashi, Y; Suemasu, K; Kanoh, T; Tabei, T; Inoue, K

    1993-05-01

    We examined temperature differences between a cancerous breast and its counterpart normal one by contact thermography before and after preoperative chemotherapy, and evaluated the relationship between the changes in the thermograms and response to chemotherapy in six patients with breast cancer. We used the following definitions: 1) delta Tmean: temperature differences between a mean temperature of a cancerous breast and that of the contralateral healthy breast; 2) delta Tmax: temperature differences between a cancer-related hyperthermic area in a breast and the mirror area of contralateral breast; 3) and the thermal patterns in thermogram were estimated by the criteria of Tada et al. In responders the thermograms after chemotherapy indicated an improvement in the hyperthermic vascular pattern (HVP) or hyperthermic area and a decrease of delta Tmean and delta Tmax. In contrast, little or no changes were observed in the thermograms of non-responders. Degrees of changes in thermograms reflected the effectiveness of chemotherapy. Our study showed that chemotherapeutic effectiveness may be better evaluated by combining contact thermography with the present method measuring tumor sizes than by only the present one.

  13. Early events in plant hypersensitive response leaves revealed by IR thermography

    NASA Astrophysics Data System (ADS)

    Boccara, Martine; Boue, Christine; De Paepe, Rosine; Boccara, Albert C.

    2001-10-01

    Infrared thermography is used to reveal the establishment of Erwinia amylovora harpin-induced hypersensitive response (HR) in Nicotiana sylvestris leaves. We observed a decrease in temperature (1-2 degree(s)C) in the harpin infiltrated zone, correlated with an increase in stomatal opening, strongly suggesting that the temperature decrease is due to higher transpiration rate. IRT experiments were conducted in a laboratory environment and could be widely applied for genotype screening and monitoring drug effects.

  14. Visualization of hot spot formation in energetic materials under periodic mechanical excitation using phosphor thermography

    NASA Astrophysics Data System (ADS)

    Casey, Alex; Fenoglio, Gabriel; Detrinidad, Humberto

    2017-06-01

    Under mechanical excitation, energy is known to localize within an energetic material resulting in `hot spot' formation. While many formation mechanisms have been proposed, additional insight to heat generation mechanisms, the effect of binder/crystal interfaces, and predication capabilities can be gained by quantifying the initiation and growth of the hot spots. Phosphor thermography is a well established temperature sensing technique wherein an object's temperature is obtained by collecting the temperature dependent luminescence of an optically excited phosphor. Herein, the phosphor thermography technique has been applied to Dow Corning Sylgard® 184/octahydro 1,3,5,7 tetranitro 1,3,5,7 tetrazocine (HMX) composite materials under mechanical excitation in order to visualize the evolution of the temperature field, and thus hot spot formation, within the binder. Funded by AFOSR. Supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  15. Phosphor thermography technique in hypersonic wind tunnel - Feasibility study

    NASA Astrophysics Data System (ADS)

    Edy, J. L.; Bouvier, F.; Baumann, P.; Le Sant, Y.

    Probative research has been undertaken at ONERA on a new technique of thermography in hypersonic wind tunnels. This method is based on the heat sensitivity of a luminescent coating applied to the model. The luminescent compound, excited by UV light, emits visible light, the properties of which depend on the phosphor temperature, among other factors. Preliminary blowdown wind tunnel tests have been performed, firstly for spot measurements and then for cartographic measurements using a 3-CCD video camera, a BETACAM video recorder and a digital image processing system. The results provide a good indication of the method feasibility.

  16. Convective heat transfer and infrared thermography.

    PubMed

    Carlomagno, Giovanni M; Astarita, Tommaso; Cardone, Gennaro

    2002-10-01

    Infrared (IR) thermography, because of its two-dimensional and non-intrusive nature, can be exploited in industrial applications as well as in research. This paper deals with measurement of convective heat transfer coefficients (h) in three complex fluid flow configurations that concern the main aspects of both internal and external cooling of turbine engine components: (1) flow in ribbed, or smooth, channels connected by a 180 degrees sharp turn, (2) a jet in cross-flow, and (3) a jet impinging on a wall. The aim of this study was to acquire detailed measurements of h distribution in complex flow configurations related to both internal and external cooling of turbine components. The heated thin foil technique, which involves the detection of surface temperature by means of an IR scanning radiometer, was exploited to measure h. Particle image velocimetry was also used in one of the configurations to precisely determine the velocity field.

  17. Application of infrared thermography in computer aided diagnosis

    NASA Astrophysics Data System (ADS)

    Faust, Oliver; Rajendra Acharya, U.; Ng, E. Y. K.; Hong, Tan Jen; Yu, Wenwei

    2014-09-01

    The invention of thermography, in the 1950s, posed a formidable problem to the research community: What is the relationship between disease and heat radiation captured with Infrared (IR) cameras? The research community responded with a continuous effort to find this crucial relationship. This effort was aided by advances in processing techniques, improved sensitivity and spatial resolution of thermal sensors. However, despite this progress fundamental issues with this imaging modality still remain. The main problem is that the link between disease and heat radiation is complex and in many cases even non-linear. Furthermore, the change in heat radiation as well as the change in radiation pattern, which indicate disease, is minute. On a technical level, this poses high requirements on image capturing and processing. On a more abstract level, these problems lead to inter-observer variability and on an even more abstract level they lead to a lack of trust in this imaging modality. In this review, we adopt the position that these problems can only be solved through a strict application of scientific principles and objective performance assessment. Computing machinery is inherently objective; this helps us to apply scientific principles in a transparent way and to assess the performance results. As a consequence, we aim to promote thermography based Computer-Aided Diagnosis (CAD) systems. Another benefit of CAD systems comes from the fact that the diagnostic accuracy is linked to the capability of the computing machinery and, in general, computers become ever more potent. We predict that a pervasive application of computers and networking technology in medicine will help us to overcome the shortcomings of any single imaging modality and this will pave the way for integrated health care systems which maximize the quality of patient care.

  18. HeatWave: the next generation of thermography devices

    NASA Astrophysics Data System (ADS)

    Moghadam, Peyman; Vidas, Stephen

    2014-05-01

    Energy sustainability is a major challenge of the 21st century. To reduce environmental impact, changes are required not only on the supply side of the energy chain by introducing renewable energy sources, but also on the demand side by reducing energy usage and improving energy efficiency. Currently, 2D thermal imaging is used for energy auditing, which measures the thermal radiation from the surfaces of objects and represents it as a set of color-mapped images that can be analysed for the purpose of energy efficiency monitoring. A limitation of such a method for energy auditing is that it lacks information on the geometry and location of objects with reference to each other, particularly across separate images. Such a limitation prevents any quantitative analysis to be done, for example, detecting any energy performance changes before and after retrofitting. To address these limitations, we have developed a next generation thermography device called Heat Wave. Heat Wave is a hand-held 3D thermography device that consists of a thermal camera, a range sensor and color camera, and can be used to generate precise 3D model of objects with augmented temperature and visible information. As an operator holding the device smoothly waves it around the objects of interest, Heat Wave can continuously track its own pose in space and integrate new information from the range and thermal and color cameras into a single, and precise 3D multi-modal model. Information from multiple viewpoints can be incorporated together to improve the accuracy, reliability and robustness of the global model. The approach also makes it possible to reduce any systematic errors associated with the estimation of surface temperature from the thermal images.

  19. Brown adipose tissue activation as measured by infrared thermography by mild anticipatory psychological stress in lean healthy females.

    PubMed

    Robinson, Lindsay J; Law, James M; Symonds, Michael E; Budge, Helen

    2016-04-01

    What is the central question of this study? Does psychological stress, which is known to promote cortisol secretion, simultaneously activate brown adipose tissue function in healthy adult females? What is the main finding and its importance? One explanation for the pronounced differences in brown adipose tissue function between individuals lies in their responsiveness to psychological stress and, as such, should be taken into account when examining its in vivo stimulation. Brown adipose tissue (BAT) has been implicated in the pathogenesis of obesity, type 2 diabetes and the metabolic syndrome and is a potential therapeutic target. Brown adipose tissue can have a significant impact on energy balance and glucose homeostasis through the action of uncoupling protein 1, dissipating chemical energy as heat following neuroendocrine stimulation. We hypothesized that psychological stress, which is known to promote cortisol secretion, would simultaneously activate BAT at thermoneutrality. Brown adipose tissue activity was measured using infrared thermography to determine changes in the temperature of the skin overlying supraclavicular BAT (TSCR ). A mild psychological stress was induced in five healthy, lean, female, Caucasian volunteers using a short mental arithmetic (MA) test. The TSCR was compared with a repeated assessment, in which the MA test was replaced with a period of relaxation. Although MA did not elicit an acute stress response, anticipation of MA testing led to an increase in salivary cortisol, indicative of an anticipatory stress response, that was associated with a trend towards higher absolute and relative TSCR . A positive correlation between TSCR and cortisol was found during the anticipatory phase, a relationship that was enhanced by increased cortisol linked to MA. Our findings suggest that subtle changes in the level of psychological stress can stimulate BAT, findings that may account for the high variability and inconsistency in reported BAT

  20. Infrared Thermography-based Biophotonics: Integrated Diagnostic Technique for Systemic Reaction Monitoring

    NASA Astrophysics Data System (ADS)

    Vainer, Boris G.; Morozov, Vitaly V.

    A peculiar branch of biophotonics is a measurement, visualisation and quantitative analysis of infrared (IR) radiation emitted from living object surfaces. Focal plane array (FPA)-based IR cameras make it possible to realize in medicine the so called interventional infrared thermal diagnostics. An integrated technique aimed at the advancement of this new approach in biomedical science and practice is described in the paper. The assembled system includes a high-performance short-wave (2.45-3.05 μm) or long-wave (8-14 μm) IR camera, two laser Doppler flowmeters (LDF) and additional equipment and complementary facilities implementing the monitoring of human cardiovascular status. All these means operate synchronously. It is first ascertained the relationship between infrared thermography (IRT) and LDF data in humans in regard to their systemic cardiovascular reactivity. Blood supply real-time dynamics in a narcotized patient is first visualized and quantitatively represented during surgery in order to observe how the general hyperoxia influences thermoregulatory mechanisms; an abrupt increase in temperature of the upper limb is observed using IRT. It is outlined that the IRT-based integrated technique may act as a take-off runway leading to elaboration of informative new methods directly applicable to medicine and biomedical sciences.

  1. Infrared-thermography imaging system multiapplications for manufacturing

    NASA Astrophysics Data System (ADS)

    Stern, Sharon A.

    1990-03-01

    Imaging systems technology has been utilized traditionally for diagnosing structural envelope or insulation problems in the general thermographic comunity. Industrially, new applications for utilizing thermal imaging technology have been developed i n pred i cti ve/preventi ye mai ntenance and prod uct moni tori ng prociures at Eastman Kodak Company, the largest photographic manufacturering producer in the world. In the manufacturing processes used at Eastman Kodak Company, new applications for thermal imaging include: (1) Fluid transfer line insulation (2) Web coating drying uniformity (3) Web slitter knives (4) Heating/cooling coils (5) Overheated tail bearings, and (6) Electrical phase imbalance. The substantial cost benefits gained from these applications of infrared thermography substantiate the practicality of this approach and indicate the desirability of researching further appl i cati ons.

  2. A Classification Method for Seed Viability Assessment with Infrared Thermography.

    PubMed

    Men, Sen; Yan, Lei; Liu, Jiaxin; Qian, Hua; Luo, Qinjuan

    2017-04-12

    This paper presents a viability assessment method for Pisum sativum L. seeds based on the infrared thermography technique. In this work, different artificial treatments were conducted to prepare seeds samples with different viability. Thermal images and visible images were recorded every five minutes during the standard five day germination test. After the test, the root length of each sample was measured, which can be used as the viability index of that seed. Each individual seed area in the visible images was segmented with an edge detection method, and the average temperature of the corresponding area in the infrared images was calculated as the representative temperature for this seed at that time. The temperature curve of each seed during germination was plotted. Thirteen characteristic parameters extracted from the temperature curve were analyzed to show the difference of the temperature fluctuations between the seeds samples with different viability. With above parameters, support vector machine (SVM) was used to classify the seed samples into three categories: viable, aged and dead according to the root length, the classification accuracy rate was 95%. On this basis, with the temperature data of only the first three hours during the germination, another SVM model was proposed to classify the seed samples, and the accuracy rate was about 91.67%. From these experimental results, it can be seen that infrared thermography can be applied for the prediction of seed viability, based on the SVM algorithm.

  3. Ultrasound Burst Phase Thermography (UBP) for Applications in the Automotive Industry

    NASA Astrophysics Data System (ADS)

    Zweschper, T.; Riegert, G.; Dillenz, A.; Busse, G.

    2003-03-01

    The use of elastic waves in combination with thermal waves allows to separate structural information about investigated components from defect specific thermal signatures. Ultrasound Burst Phase thermography (UBP) is an defect-selective and fast imaging tool for damage detection. This contribution presents results obtained on various kinds of problems related to modern automobile production (crack detection in grey cast iron and aluminum, characterization of adhesive-bonded joints etc.). Advances resulting from frequency modulated ultrasound excitation will be presented.

  4. Detecting hidden exfoliation corrosion in aircraft wing skins using thermography

    NASA Astrophysics Data System (ADS)

    Prati, John

    2000-03-01

    A thermal wave (pulse) thermography inspection technique demonstrated the ability to detect hidden subsurface exfoliation corrosion adjacent to countersunk fasteners in aircraft wing skins. In the wing skin, exfoliation corrosion is the result of the interaction between the steel fastener and the aluminum skin material in the presence of moisture. This interaction results in corrosion cracks that tend to grow parallel to the skin surface. The inspection technique developed allows rapid detection and evaluation of hidden (not visible on the surface) corrosion, which extends beyond the head of fastener countersinks in the aluminum skins.

  5. Thickness determination of polymeric multilayer surface protection systems for concrete by means of pulse thermography

    NASA Astrophysics Data System (ADS)

    Altenburg, S. J.; Krankenhagen, R.; Bavendiek, F.

    2017-02-01

    For thickness determination of polymer based surface protection systems for concrete surfaces, so far only destructive measurement techniques are available. Pulse thermography appears to be well suited for non-destructive thickness evaluation in these systems. Here, we present first results of the development of a respective measurement and analysis procedure. Since surface protection systems consist of a number of layers, a model for the calculation of the surface temperature of a multi-layer structure on a semi-infinite (concrete) substrate in pulse thermography setup was developed. It considers semitransparency of the upmost layer and thermal losses at the surface. It also supports the use of an arbitrary temporal shape of the heating pulse to properly describe the measurement conditions for different heat sources. Simulations for one and three layers on the substrate are presented and first results from fitting the model to experimental data for thickness determination and verification of the model are presented.

  6. Insights into the use of thermography to assess burn wound healing potential: a reliable and valid technique when compared to laser Doppler imaging

    NASA Astrophysics Data System (ADS)

    Jaspers, Mariëlle E. H.; Maltha, Ilse; Klaessens, John H. G. M.; de Vet, Henrica C. W.; Verdaasdonk, Rudolf M.; van Zuijlen, Paul P. M.

    2016-09-01

    Adequate assessment of burn wounds is crucial in the management of burn patients. Thermography, as a noninvasive measurement tool, can be utilized to detect the remaining perfusion over large burn wound areas by measuring temperature, thereby reflecting the healing potential (HP) (i.e., number of days that burns require to heal). The objective of this study was to evaluate the clinimetric properties (i.e., reliability and validity) of thermography for measuring burn wound HP. To evaluate reliability, two independent observers performed a thermography measurement of 50 burns. The intraclass correlation coefficient (ICC), the standard error of measurement (SEM), and the limits of agreement (LoA) were calculated. To assess validity, temperature differences between burned and nonburned skin (ΔT) were compared to the HP found by laser Doppler imaging (serving as the reference standard). By applying a visual method, one ΔT cutoff point was identified to differentiate between burns requiring conservative versus surgical treatment. The ICC was 0.99, expressing an excellent correlation between two measurements. The SEM was calculated at 0.22°C, the LoA at -0.58°C and 0.64°C. The ΔT cutoff point was -0.07°C (sensitivity 80% specificity 80%). These results show that thermography is a reliable and valid technique in the assessment of burn wound HP.

  7. Investigation of the use of thermography for research and clinical applications in pregnant women

    NASA Astrophysics Data System (ADS)

    Topalidou, Anastasia; Downe, Soo

    2016-03-01

    Background: The possibility of using thermal imaging, as a non-invasive method, in medicine may provide potential ability of advanced imaging. Objective: The conduction of a preliminary study in healthy non-pregnant females in order to investigate the imaging ability of thermography and its implementation; and to determine hot and cold areas in order to create a "map" of temperature distribution of the abdomen and the torso. Methods: Participants were 18-45 years old non-pregnant women (n = 10), who were measured at 4 different distances. Two thermal imaging cameras and their corresponding software were used to measure abdomen, low back, left and right side of the torso. Results: There were no statistically significant differences in the mean values of the exported temperatures according the distance and the angle between the camera and the subject. The inferior part of the rectus abdominis muscle recorded the coldest zone and the umbilicus appeared as the most prominent hot spot. Conclusions: Thermography shows to be a potential non-invasive technique offering new options in the evaluation of pregnant and laboring women.

  8. Adhesive quality inspection of wind rotor blades using thermography

    NASA Astrophysics Data System (ADS)

    Li, Xiaoli; Sun, Jiangang; Shen, Jingling; Wang, Xun; Zhang, Cunlin; Zhao, Yuejin

    2018-04-01

    Wind power is playing an increasingly important role in ensuring electrical safety for human beings. Because wind rotor blades are getting larger and larger in order to harvest wind energy more efficiently, there is a growing demand for nondestructive testing. Due to the glue structure of rotor blades, adhesive quality evaluation is needed. In this study, three adhesive samples with a wall thickness of 13mm, 28mm or 31mm were each designed with a different adhesive situation. The transmission thermography was applied to inspect the samples. The results illustrate that this method is effective to inspect adhesive quality of wind rotor blades.

  9. Influence of the ventilatory mode on acute adverse effects and facial thermography after noninvasive ventilation

    PubMed Central

    Pontes, Suzy Maria Montenegro; Melo, Luiz Henrique de Paula; Maia, Nathalia Parente de Sousa; Nogueira, Andrea da Nóbrega Cirino; Vasconcelos, Thiago Brasileiro; Pereira, Eanes Delgado Barros; Bastos, Vasco Pinheiro Diógenes; Holanda, Marcelo Alcantara

    2017-01-01

    ABSTRACT Objective: To compare the incidence and intensity of acute adverse effects and the variation in the temperature of facial skin by thermography after the use of noninvasive ventilation (NIV). Methods: We included 20 healthy volunteers receiving NIV via oronasal mask for 1 h. The volunteers were randomly divided into two groups according to the ventilatory mode: bilevel positive airway pressure (BiPAP) or continuous positive airway pressure (CPAP). Facial thermography was performed in order to determine the temperature of the face where it was in contact with the mask and of the nasal dorsum at various time points. After removal of the mask, the volunteers completed a questionnaire about adverse effects of NIV. Results: The incidence and intensity of acute adverse effects were higher in the individuals receiving BiPAP than in those receiving CPAP (16.1% vs. 5.6%). Thermographic analysis showed a significant cooling of the facial skin in the two regions of interest immediately after removal of the mask. The more intense acute adverse effects occurred predominantly among the participants in whom the decrease in the mean temperature of the nasal dorsum was lower (14.4% vs. 7.2%). The thermographic visual analysis of the zones of cooling and heating on the face identified areas of hypoperfusion or reactive hyperemia. Conclusions: The use of BiPAP mode was associated with a higher incidence and intensity of NIV-related acute adverse effects. There was an association between acute adverse effects and less cooling of the nasal dorsum immediately after removal of the mask. Cutaneous thermography can be an additional tool to detect adverse effects that the use of NIV has on facial skin. PMID:28538774

  10. Sodium sulfate crystallisation monitoring using IR thermography

    NASA Astrophysics Data System (ADS)

    Vazquez, P.; Thomachot-Schneider, C.; Mouhoubi, K.; Bodnar, J.-L.; Avdelidis, N. P.; Charles, D.; Benavente, D.

    2018-03-01

    In this work, the evaporation of sodium sulfate droplets with different concentrations and at different temperatures were studied using infrared thermography (IRT). IRT allows to detect the evaporation evolution, the crystal growth and for the first time, to observe in vivo the heat release related to sodium sulfate crystallisation. A detailed study revealed that dendritic Thenardite III crystals appeared at the edge of all the crystallised droplets, though they showed a fast increase of temperature related to crystallisation only when a hydrated phase crystallised also from the droplet. The observation of the heat of crystallisation is thus directly related to the supersaturation of the droplet and consequently to temperature. In addition, IRT detection is circumscribed by the location of crystallisation. The heat can be observed and measured only when the crystallisation occurs in the interface solution - air.

  11. Single nanowire thermal conductivity measurements by Raman thermography.

    PubMed

    Doerk, Gregory S; Carraro, Carlo; Maboudian, Roya

    2010-08-24

    A facile, rapid, and nondestructive technique for determining the thermal conductivity of individual nanowires based on Raman temperature mapping has been demonstrated. Using calculated absorption efficiencies, the thermal conductivities of single cantilevered Si nanowires grown by the vapor-liquid-solid method are measured and the results agree well with values predicted by diffuse phonon boundary scattering. As a measurement performed on the wire, thermal contact effects are avoided and ambient air convection is found to be negligible for the range of diameters measured. The method's versatility is further exemplified in the reverse measurement of a single nanowire absorption efficiency assuming diffuse phonon boundary scattering. The results presented here outline the broad utility that Raman thermography may have for future thermoelectric and photovoltaic characterization of nanostructures.

  12. Qualitative study of sexual functioning in couples with erectile dysfunction: prospective evaluation of the thermography diagnostic system.

    PubMed

    Ng, Wan Kee; Ng, Yin Kwee; Tan, Yung Khan

    2009-01-01

    To evaluate the prospective use of the thermography diagnostic system in assessing sexual function in patients with erectile dysfunction (ED). Thermographs were taken on 14 subjects in a clinical trial conducted at Tan Tock Seng Hospital. After a thorough clinical interview with a standardized questionnaire, patients were scanned for baseline temperature profile before being given an oral dose of sildenafil 100 mg. Subjects were scanned again in the same setting an hour later. If so desired, subjects were given visual stimulation and were allowed minimum direct stimulation, excluding the penis, to elicit erection. Temperature profiles were analyzed using the thermography analysis software in the VarioCAM camera. Three representative cases are presented to illustrate the potential for using the Infrared thermography (IR) diagnostic system in differentiating psychogenic ED. IR was able to capture a significant difference in blood flow to the corpus cavernosum. Subjects with psychogenic ED have higher surface temperatures (34.3 degrees C +/- 0.71 in the flaccid state and 35.3 degrees C +/- 0.2 during erection) compared to subjects with organic ED (33.64 degrees C +/- 0.4 in flaccid and 33.55 degrees C +/- 0.91 during erection). The difference in surface temperature between flaccid and erected states in subjects with organic ED was not significant. The proposed diagnostic test based on IR has tremendous clinical potential in differentiating psychogenic ED from organic ED. IR could potentially be a portable, noninvasive and convenient adjunct in the diagnosis and management of ED.

  13. Combining Passive Thermography and Acoustic Emission for Large Area Fatigue Damage Growth Assessment of a Composite Structure

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Horne, Michael R.; Madaras, Eric I.; Burke, Eric R.

    2016-01-01

    Passive thermography and acoustic emission data were obtained for improved real time damage detection during fatigue loading. A strong positive correlation was demonstrated between acoustic energy event location and thermal heating, especially if the structure under load was nearing ultimate failure. An image processing routine was developed to map the acoustic emission data onto the thermal imagery. This required removing optical barrel distortion and angular rotation from the thermal data. The acoustic emission data were then mapped onto thermal data, revealing the cluster of acoustic emission event locations around the thermal signatures of interest. By combining both techniques, progression of damage growth is confirmed and areas of failure are identified. This technology provides improved real time inspections of advanced composite structures during fatigue testing.Keywords: Thermal nondestructive evaluation, fatigue damage detection, aerospace composite inspection, acoustic emission, passive thermography

  14. Application of the Quadrupole Method for Simulation of Passive Thermography

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Zalameda, Joseph N.; Gregory, Elizabeth D.

    2017-01-01

    Passive thermography has been shown to be an effective method for in-situ and real time nondestructive evaluation (NDE) to measure damage growth in a composite structure during cyclic loading. The heat generation by subsurface flaw results in a measurable thermal profile at the surface. This paper models the heat generation as a planar subsurface source and calculates the resultant temperature profile at the surface using a three dimensional quadrupole. The results of the model are compared to finite element simulations of the same planar sources and experimental data acquired during cyclic loading of composite specimens.

  15. Endoscopic Shearography and Thermography Methods for Nondestructive Evaluation of Lined Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Russell, S. S.; Lansing, M. D.

    1997-01-01

    The goal of this research effort was the development of methods for shearographic and thermographic inspection of coatings, bonds, or laminates inside rocket fuel or oxidizer tanks, fuel lines, and other closed structures. The endoscopic methods allow imaging and inspection inside cavities that are traditionally inaccessible with shearography or thermography cameras. The techniques are demonstrated and suggestions for practical application are made in this report. Drawings of the experimental setups, detailed procedures, and experimental data are included.

  16. Evaluation of Microbolometer-Based Thermography for Gossamer Space Structures

    NASA Technical Reports Server (NTRS)

    Miles, Jonathan J.; Blandino, Joseph R.; Jenkins, Christopher H.; Pappa, Richard S.; Banik, Jeremy; Brown, Hunter; McEvoy, Kiley

    2005-01-01

    In August 2003, NASA's In-Space Propulsion Program contracted with our team to develop a prototype on-board Optical Diagnostics System (ODS) for solar sail flight tests. The ODS is intended to monitor sail deployment as well as structural and thermal behavior, and to validate computational models for use in designing future solar sail missions. This paper focuses on the thermography aspects of the ODS. A thermal model was developed to predict local sail temperature variations as a function of sail tilt to the sun, billow depth, and spectral optical properties of front and back sail surfaces. Temperature variations as small as 0.5 C can induce significant thermal strains that compare in magnitude to mechanical strains. These thermally induced strains may result in changes in shape and dynamics. The model also gave insight into the range and sensitivity required for in-flight thermal measurements and supported the development of an ABAQUS-coupled thermo-structural model. The paper also discusses three kinds of tests conducted to 1) determine the optical properties of candidate materials; 2) evaluate uncooled microbolometer-type infrared imagers; and 3) operate a prototype imager with the ODS baseline configuration. (Uncooled bolometers are less sensitive than cooled ones, but may be necessary because of restrictive ODS mass and power limits.) The team measured the spectral properties of several coated polymer samples at various angles of incidence. Two commercially available uncooled microbolometer imagers were compared, and it was found that reliable temperature measurements are feasible for both coated and uncoated sides of typical sail membrane materials.

  17. Clinical Application Of Advanced Infrared Thermography (IRT) In Locomotor Diseases

    NASA Astrophysics Data System (ADS)

    Engel, Joachim-Michael

    1983-11-01

    Locomotor diseases is a wide range of about 450 different illnesses with all different pathologies, clinical and prognostic features and response to treatment. No single method will be able to cover the whole spectrum of local and systemic signs and symptoms. Nevertheless there is a need for objective measurements at the site of disease: clinical examination is often enough depending from subjective estimations and personal experiance of the clinician. Laboratory tests only show the systemic effect of the disease, like inflammation. X-rays are restricted to the detection of structural changes appearing late during the pathological process, even when using different techniques. Here IRT offers several advantages to the clinician as well as to the patient. As a non invasive method it monitors the course of disease at the anatomic site of pathology. Quantitative figures calculated from the thermogram,either taken at steady-state or during dynamic tests, are essential for differential diagnosis and follow-up. Advanced IRT camera systems fulfill all requirements set up for medical thermography recently by the National Bureau of Standards. Although, the user should check his system daily with regard to precision of absolute temperature measurements. Standardisation of recording technique is essential as well,to get reliable results. Ambient conditions must be adapted to the locomotor disease pathology under study. Advanced IRT systems , e.g. ZEISS-IKOTHERM, together with image processing capability and special software, e.g. THERMOTOM package, are valuable tools to the rheumatologist for diagnosing and monitoring locomotor diseases.

  18. Advanced Image Processing for Defect Visualization in Infrared Thermography

    NASA Technical Reports Server (NTRS)

    Plotnikov, Yuri A.; Winfree, William P.

    1997-01-01

    Results of a defect visualization process based on pulse infrared thermography are presented. Algorithms have been developed to reduce the amount of operator participation required in the process of interpreting thermographic images. The algorithms determine the defect's depth and size from the temporal and spatial thermal distributions that exist on the surface of the investigated object following thermal excitation. A comparison of the results from thermal contrast, time derivative, and phase analysis methods for defect visualization are presented. These comparisons are based on three dimensional simulations of a test case representing a plate with multiple delaminations. Comparisons are also based on experimental data obtained from a specimen with flat bottom holes and a composite panel with delaminations.

  19. Integration of infrared thermography and high-frequency electromagnetic methods in archaeological surveys

    NASA Astrophysics Data System (ADS)

    Carlomagno, Giovanni Maria; Di Maio, Rosa; Fedi, Maurizio; Meola, Carosena

    2011-09-01

    This work is focused on the integration of infrared thermography and ground penetrating radar for the inspection of architectonic structures. First, laboratory tests were carried out with both techniques by considering an ad hoc specimen made of concrete and with the insertion of anomalies of a different nature and at different depths. Such tests provided helpful information for ongoing inspections in situ, which were later performed in two important Italian archaeological sites, namely Pompeii (Naples) and Nora (Cagliari). In the first site, the exploration was devoted to the analysis of the wall paintings of Villa Imperiale with the aim of evaluating the state of conservation of frescoes as well of the underneath masonry structure. As main findings, the applied techniques allowed outlining some areas, which were damaged by ingression in-depth of moisture and/or by disaggregation of the constituent materials, and also for recognition of previous restoration. In the archaeological area of Nora, instead, the attention was driven towards the evaluation of the state of degradation of the theatre remnants. Our prospections show that the front side of the theatre, being more strongly affected by degradation, needs a massive restoration work. As a general result, we demonstrated that a joint interpretation of infrared thermography and ground penetrating radar data supplies detailed 3D information from near-surface to deep layers, which may assist in restoration planning.

  20. Localization of wood floor structure by infrared thermography

    NASA Astrophysics Data System (ADS)

    Cochior Plescanu, C.; Klein, M.; Ibarra-Castanedo, C.; Bendada, A.; Maldague, X.

    2008-03-01

    One of our industrial partners, Assek Technologie, is interested in developing a technique that would improve the drying process of wood floor in basements after flooding. In order to optimize the procedure, the floor structure and the damaged (wet) area extent must first be determined with minimum intrusion (minimum or no dismantling). The present study presents the use of infrared thermography to reveal the structure of (flooded) wood floors. The procedure involves opening holes in the floor. Injecting some hot air through those holes reveals the framing structure even if the floor is covered by vinyl or ceramic tiles. This study indicates that thermal imaging can also be used as a tool to validate the decontamination process after drying. Thermal images were obtained on small-scale models and in a demonstration room.

  1. Comparison of IR thermography and thermocouple measurement of heat loss from rabbit pinna.

    PubMed

    Mohler, F S; Heath, J E

    1988-02-01

    The temperature of the pinnae of male New Zealand White rabbits was measured by use of infrared thermography. At ambient temperatures of 15, 20, and 25 degrees C, the average pinna temperatures were 23.0, 28.7, and 36.2 degrees C, respectively. From these temperatures, average heat loss from the total pinna surface area was calculated to be 2.8, 3.3, and 4.4 W, respectively. Preoptic temperature changes also affect the vasomotor state of the rabbit. At an ambient temperature of 20 degrees C, cooling the preoptic area of the rabbit by approximately 1 degree C resulted in an average pinna temperature of 26.5 degrees C and a heat loss of 2.4 W. Heating the preoptic area by approximately 1 degree C resulted in an average pinna temperature of 33.5 degrees C and a heat loss of 5.4 W. Finally, pinna temperatures were measured by use of a thermocouple and infrared thermography simultaneously. When the pinnae were vasodilated, the thermocouple measurements were consistently higher than the pinna surface temperatures measured thermographically. When the pinnae were vasoconstricted, the thermocouple measurements were consistently lower than the pinna surface temperatures measured thermographically. The discrepancy between the two methods of measurement is discussed.

  2. Body Functions and Structures Pertinent to Infrared Thermography-Based Access for Clients with Severe Motor Disabilities

    ERIC Educational Resources Information Center

    Memarian, Negar; Venetsanopoulos, Anastasios N.; Chau, Tom

    2011-01-01

    Infrared thermography has been recently proposed as an access technology for individuals with disabilities, but body functions and structures pertinent to its use have not been documented. Seven clients (2 adults, 5 youth) with severe disabilities and their primary caregivers participated in this study. All clients had a Gross Motor Functional…

  3. Coupling IR Thermography and BIA to analyse body reaction after one acupuncture session

    NASA Astrophysics Data System (ADS)

    Piquemal, M.

    2013-04-01

    Coupling both thermography and bio-Impedance, some biophysical acupuncture mechanisms are statically studied on a small population of 18 subjects. Results show that a possible way of understanding acupuncture, in an electrical way, should be to consider ionic flux redistribution between vascular and extra cell compartments. This is a two steps mechanism. The first one is starting with needles insertion and the second one is lasting with more intensity after removing them from skin.

  4. Infrared thermography quantitative image processing

    NASA Astrophysics Data System (ADS)

    Skouroliakou, A.; Kalatzis, I.; Kalyvas, N.; Grivas, TB

    2017-11-01

    Infrared thermography is an imaging technique that has the ability to provide a map of temperature distribution of an object’s surface. It is considered for a wide range of applications in medicine as well as in non-destructive testing procedures. One of its promising medical applications is in orthopaedics and diseases of the musculoskeletal system where temperature distribution of the body’s surface can contribute to the diagnosis and follow up of certain disorders. Although the thermographic image can give a fairly good visual estimation of distribution homogeneity and temperature pattern differences between two symmetric body parts, it is important to extract a quantitative measurement characterising temperature. Certain approaches use temperature of enantiomorphic anatomical points, or parameters extracted from a Region of Interest (ROI). A number of indices have been developed by researchers to that end. In this study a quantitative approach in thermographic image processing is attempted based on extracting different indices for symmetric ROIs on thermograms of the lower back area of scoliotic patients. The indices are based on first order statistical parameters describing temperature distribution. Analysis and comparison of these indices result in evaluating the temperature distribution pattern of the back trunk expected in healthy, regarding spinal problems, subjects.

  5. Neonatal non-contact respiratory monitoring based on real-time infrared thermography

    PubMed Central

    2011-01-01

    Background Monitoring of vital parameters is an important topic in neonatal daily care. Progress in computational intelligence and medical sensors has facilitated the development of smart bedside monitors that can integrate multiple parameters into a single monitoring system. This paper describes non-contact monitoring of neonatal vital signals based on infrared thermography as a new biomedical engineering application. One signal of clinical interest is the spontaneous respiration rate of the neonate. It will be shown that the respiration rate of neonates can be monitored based on analysis of the anterior naris (nostrils) temperature profile associated with the inspiration and expiration phases successively. Objective The aim of this study is to develop and investigate a new non-contact respiration monitoring modality for neonatal intensive care unit (NICU) using infrared thermography imaging. This development includes subsequent image processing (region of interest (ROI) detection) and optimization. Moreover, it includes further optimization of this non-contact respiration monitoring to be considered as physiological measurement inside NICU wards. Results Continuous wavelet transformation based on Debauches wavelet function was applied to detect the breathing signal within an image stream. Respiration was successfully monitored based on a 0.3°C to 0.5°C temperature difference between the inspiration and expiration phases. Conclusions Although this method has been applied to adults before, this is the first time it was used in a newborn infant population inside the neonatal intensive care unit (NICU). The promising results suggest to include this technology into advanced NICU monitors. PMID:22243660

  6. Modeling of the Multiparameter Inverse Task of Transient Thermography

    NASA Technical Reports Server (NTRS)

    Plotnikov, Y. A.

    1998-01-01

    Transient thermography employs preheated surface temperature variations caused by delaminations, cracks, voids, corroded regions, etc. Often, it is enough to detect these changes to declare a defect in a workpiece. It is also desirable to obtain additional information about the defect from the thermal response. The planar size, depth, and thermal resistance of the detected defects are the parameters of interest. In this paper a digital image processing technique is applied to simulated thermal responses in order to obtain the geometry of the inclusion-type defects in a flat panel. A three-dimensional finite difference model in Cartesian coordinates is used for the numerical simulations. Typical physical properties of polymer graphite composites are assumed. Using different informative parameters of the thermal response for depth estimation is discussed.

  7. Mapping Soil Surface Macropores Using Infrared Thermography: An Exploratory Laboratory Study

    PubMed Central

    de Lima, João L. M. P.; Abrantes, João R. C. B.; Silva, Valdemir P.; de Lima, M. Isabel P.; Montenegro, Abelardo A. A.

    2014-01-01

    Macropores and water flow in soils and substrates are complex and are related to topics like preferential flow, nonequilibrium flow, and dual-continuum. Hence, the quantification of the number of macropores and the determination of their geometry are expected to provide a better understanding on the effects of pores on the soil's physical and hydraulic properties. This exploratory study aimed at evaluating the potential of using infrared thermography for mapping macroporosity at the soil surface and estimating the number and size of such macropores. The presented technique was applied to a small scale study (laboratory soil flume). PMID:25371915

  8. Evaluation of stator core loss of high speed motor by using thermography camera

    NASA Astrophysics Data System (ADS)

    Sato, Takeru; Enokizono, Masato

    2018-04-01

    In order to design a high-efficiency motor, the iron loss that is generated in the motor should be reduced. The iron loss of the motor is generated in a stator core that is produced with an electrical steel sheet. The iron loss characteristics of the stator core and the electrical steel sheet are agreed due to a building factor. To evaluate the iron loss of the motor, the iron loss of the stator core should be measured more accurately. Thus, we proposed the method of the iron loss evaluation of the stator core by using a stator model core. This stator model core has been applied to the surface mounted permanent magnet (PM) motors without windings. By rotate the permanent magnet rotor, the rotating magnetic field is generated in the stator core like a motor under driving. To evaluate the iron loss of the stator model core, the iron loss of the stator core can be evaluated. Also, the iron loss can be calculated by a temperature gradient. When the temperature gradient is measured by using thermography camera, the iron loss of entire stator core can be evaluated as the iron loss distribution. In this paper, the usefulness of the iron loss evaluation method by using the stator model core is shown by the simulation with FEM and the heat measurement with thermography camera.

  9. Combining Magnetic Resonance Imaging (MRI) and Medical Infrared Thermography (MIT) in the pre- and per-operating management of severe Hidradenitis Suppurativa (HS).

    PubMed

    Derruau, Stéphane; Renard, Yohann; Pron, Hervé; Taiar, Redha; Abdi, Ellie; Polidori, Guillaume; Lorimier, Sandrine

    2018-05-12

    Hidradenitis suppurativa (HS) is a chronic, inflammatory, and recurrent skin disease. Surgical excision of wounds appears to be the only curative treatment for the prevention of recurrence of moderate to severe stages. Magnetic resonance imaging (MRI) is a standard reference examination for the detection of HS peri-anal inflammatory fistula. In this case study, the use of real-time medical infrared thermography, in combination with MRI as appropriate imaging, is proposed. The aim is to assist surgeons in the pre- and peri-surgical management of severe perianal hidradenitis suppurativa with the intent to ensure that all diseased lesions were removed during surgery and therefore to limit recurrence. The results show that medical infrared thermography (MIT), coupled with MRI, could be highly effective strategy to address thermally distinguished health tissues and inflammatory sites during excision, as characterised by differential increases in temperature. Medical infrared thermography could be used to check the total excision of inflammatory lesions as a noninvasive method that is not painful, not radiant, and is easily transportable during surgery. Ultimately, this method could be complementary with MRI in providing clinicians with objective data on the status of tissues below the perianal skin surface in the pre- and per-operating management of severe hidradenitis suppurativa. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. High-definition infrared thermography of ice nucleation and propagation in wheat under natural frost conditions and controlled freezing

    USDA-ARS?s Scientific Manuscript database

    Infrared thermography has been used to visualize the freezing process in plants and has greatly enhanced our knowledge of ice nucleation and propagation in plants. The majority of IR analyses have been conducted under controlled rather than natural conditions and often on plant parts instead of wh...

  11. Aerial thermography studies of power plant heated lakes

    NASA Astrophysics Data System (ADS)

    Villa-Aleman, Eliel; Garrett, Alfred J.; Kurzeja, Robert J.; Pendergast, Malcolm M.

    2000-03-01

    Remote sensing temperature measurements of water bodies is complicated by the temperature differences between the true surface or `skin' water and the bulk water below. Weather conditions control the reduction of the skin temperature relative to the bulk water temperature. Typical skin temperature depressions range from a few tenths of a degree Celsius to more than one degree. In this research project, the Savannah River Technology Center used aerial thermography and surface-based meteorological and water temperature measurements to study a power plant cooling lake in South Carolina. Skin and bulk water temperatures were measured simultaneously for imagery calibration and to product a database for modeling of skin temperature depressions as a function of weather and bulk water temperatures. This paper will present imagery that illustrates how the skin temperature depression was affected by different conditions in several locations on the lake and will present skin temperature modeling results.

  12. Nonlinear ultrasonic stimulated thermography for damage assessment in isotropic fatigued structures

    NASA Astrophysics Data System (ADS)

    Fierro, Gian Piero Malfense; Calla', Danielle; Ginzburg, Dmitri; Ciampa, Francesco; Meo, Michele

    2017-09-01

    Traditional non-destructive evaluation (NDE) and structural health monitoring (SHM) systems are used to analyse that a structure is free of any harmful damage. However, these techniques still lack sensitivity to detect the presence of material micro-flaws in the form of fatigue damage and often require time-consuming procedures and expensive equipment. This research work presents a novel "nonlinear ultrasonic stimulated thermography" (NUST) method able to overcome some of the limitations of traditional linear ultrasonic/thermography NDE-SHM systems and to provide a reliable, rapid and cost effective estimation of fatigue damage in isotropic materials. Such a hybrid imaging approach combines the high sensitivity of nonlinear acoustic/ultrasonic techniques to detect micro-damage, with local defect frequency selection and infrared imaging. When exciting structures with an optimised frequency, nonlinear elastic waves are observed and higher frictional work at the fatigue damaged area is generated due to clapping and rubbing of the crack faces. This results in heat at cracked location that can be measured using an infrared camera. A Laser Vibrometer (LV) was used to evaluate the extent that individual frequency components contribute to the heating of the damage region by quantifying the out-of-plane velocity associated with the fundamental and second order harmonic responses. It was experimentally demonstrated the relationship between a nonlinear ultrasound parameter (βratio) of the material nonlinear response to the actual temperature rises near the crack. These results demonstrated that heat generation at damaged regions could be amplified by exciting at frequencies that provide nonlinear responses, thus improving the imaging of material damage and the reliability of NUST in a quick and reproducible manner.

  13. Examining gender specificity of sexual response with concurrent thermography and plethysmography.

    PubMed

    Huberman, Jackie S; Chivers, Meredith L

    2015-10-01

    Men's genital responses are significantly greater to sexual stimuli of their preferred gender compared to their nonpreferred gender (gender-specific), whereas androphilic (i.e., sexually attracted to men) women's genital responses are similar to sexual stimuli depicting either women or men (gender-nonspecific). This gendered pattern of genital response has only been demonstrated using vaginal photoplethysmography (VPP) in women and primarily penile plethysmography (PPG) in men. These measures assess different aspects of genital vasocongestion, thereby limiting comparisons between genders. Thermography is a newer sexual psychophysiology methodology that measures genital vasocongestion via temperature change and is better suited to assess sexual response between genders because the dependent measure, change in genital temperature, is similar for women and men. Further, previous studies have assessed gender specificity of sexual response across relatively short sexual stimuli, allowing only the examination of initial phases of sexual response. We examined gender specificity of sexual arousal by measuring women's and men's genital responses to lengthier stimuli with concurrent thermography and VPP/PPG. Gynephilic men (i.e., sexually attracted to women; n = 27) and androphilic women (n = 28) viewed 10-min films depicting men masturbating, women masturbating, and a nonsexual film, and reported feelings of sexual arousal while genital responses were assessed. Across measures, men's sexual responses were gender-specific and women's responses were gender-nonspecific, indicating that the gender difference in gender specificity of arousal is robust to methodology and stimulus duration. These findings replicate previous research, extend knowledge of gendered sexual response, and highlight the utility of multimethod approaches in sexual psychophysiology. © 2015 Society for Psychophysiological Research.

  14. Skin vasomotor hemiparesis followed by overactivity: characteristic thermography findings in a patient with Horner syndrome due to spinal cord infarction.

    PubMed

    Kobayashi, Makoto

    2016-04-01

    We present a 21-year-old female with Horner syndrome due to spinal cord infarction. In this patient, infrared thermography revealed a hemibody skin temperature increase followed by excessive focal decreases, indicating skin vasomotor hemiparesis and overactivity.

  15. Dynamic infrared thermography (DIRT) for assessment of skin blood perfusion in cranioplasty: a proof of concept for qualitative comparison with the standard indocyanine green video angiography (ICGA).

    PubMed

    Rathmann, P; Chalopin, C; Halama, D; Giri, P; Meixensberger, J; Lindner, D

    2018-03-01

    Complications in wound healing after neurosurgical operations occur often due to scarred dehiscence with skin blood perfusion disturbance. The standard imaging method for intraoperative skin perfusion assessment is the invasive indocyanine green video angiography (ICGA). The noninvasive dynamic infrared thermography (DIRT) is a promising alternative modality that was evaluated by comparison with ICGA. The study was carried out in two parts: (1) investigation of technical conditions for intraoperative use of DIRT for its comparison with ICGA, and (2) visual and quantitative comparison of both modalities in a proof of concept on nine patients. Time-temperature curves in DIRT and time-intensity curves in ICGA for defined regions of interest were analyzed. New perfusion parameters were defined in DIRT and compared with the usual perfusion parameters in ICGA. The visual observation of the image data in DIRT and ICGA showed that operation material, anatomical structures and skin perfusion are represented similarly in both modalities. Although the analysis of the curves and perfusion parameter values showed differences between patients, no complications were observed clinically. These differences were represented in DIRT and ICGA equivalently. DIRT has shown a great potential for intraoperative use, with several advantages over ICGA. The technique is passive, contactless and noninvasive. The practicability of the intraoperative recording of the same operation field section with ICGA and DIRT has been demonstrated. The promising results of this proof of concept provide a basis for a trial with a larger number of patients.

  16. Rewarming index of the lower leg assessed by infrared thermography in adolescents with type 1 diabetes mellitus.

    PubMed

    Zotter, Heinz; Kerbl, Reinhold; Gallistl, Siegfried; Nitsche, Hilde; Borkenstein, Martin

    2003-12-01

    The aim of this study was to determine whether infrared thermography before and after challenge of the lower leg in cold water may be a useful tool to detect abnormalities in skin blood flow in adolescent asymptomatic patients with type 1 diabetes mellitus (DM1) and to assess the optimal setting of skin temperature measurements. Twenty-five adolescents (10 female, 15 male, mean age 21.2 +/- 6.2 years, body mass index [BMI] 23.0 +/- 2.1 kg/m2) with a duration of DMI of 13.8 +/- 5.4 years and mean HbA1c levels 8.5 +/- 1.3% were compared to age- and sex-matched controls (BMI 22.9 +/- 2.2 kg/m2). Seven defined sites of the lower leg were assessed by infrared thermography before and for 10 min after exposure of the leg to 14 degrees C cold water. As skin temperature before exposure to cold water differs from individual to individual and basal temperature was significantly warmer in patients at the tip of the first (p < 0.05) and fifth (p < 0.05) toe, the rewarming index was calculated in order to compare data. Rewarming indexes of skin temperature during the whole measurement procedure (0-10 min) were significantly lower at the tip of the first (p < 0.05) and fifth (p < 0.01) toes and from minute 2-10 also at the inner ankle (p < 0.05) in patients compared to healthy controls. Rewarming indexes of the other four sites were not significantly different between patients and controls. Infrared thermography of the lower leg after cold water exposure is an easily applicable method and a useful tool to detect abnormalities of skin blood flow in adolescents with DM1 especially at the tips of the first and fifth toes and the inner ankle.

  17. Dynamics of thermographic skin temperature response during squat exercise at two different speeds.

    PubMed

    Formenti, Damiano; Ludwig, Nicola; Trecroci, Athos; Gargano, Marco; Michielon, Giovanni; Caumo, Andrea; Alberti, Giampietro

    2016-07-01

    Low intensity resistance training with slow movement and tonic force generation has been shown to create blood flow restriction within muscles that may affect thermoregulation through the skin. We aimed to investigate the influence of two speeds of exercise execution on skin temperature dynamics using infrared thermography. Thirteen active males performed randomly two sessions of squat exercise (normal speed, 1s eccentric/1s concentric phase, 1s; slow speed, 5s eccentric/5s concentric phase, 5s), using ~50% of 1 maximal repetition. Thermal images of ST above muscles quadriceps were recorded at a rate of 0.05Hz before the exercise (to determine basal ST) and for 480s following the initiation of the exercise (to determine the nonsteady-state time course of ST). Results showed that ST changed more slowly during the 5s exercise (p=0.002), whereas the delta (with respect to basal) excursions were similar for the two exercises (p>0.05). In summary, our data provided a detailed nonsteady-state portrait of ST changes following squat exercises executed at two different speeds. These results lay the basis for further investigations entailing the joint use of infrared thermography and Doppler flowmetry to study the events taking place both at the skin and the muscle level during exercises executed at slow speed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Advances in the Use of Thermography to Inspect Composite Tanks for Liquid Fuel Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Lansing, Matthew D.; Russell, Samuel S.; Walker, James L.; Jones, Clyde S. (Technical Monitor)

    2001-01-01

    This viewgraph presentation gives an overview of advances in the use of thermography to inspect composite tanks for liquid fuel propulsion systems. Details are given on the thermographic inspection system, thermographic analysis method (includes scan and defect map, method of inspection, and inclusions, ply wrinkle, and delamination defects), graphite composite cryogenic feedline (including method, image map, and deep/shallow inclusions and resin rich area defects), and material degradation nondestructive evaluation.

  19. Electromagnetic pulsed thermography for natural cracks inspection

    NASA Astrophysics Data System (ADS)

    Gao, Yunlai; Tian, Gui Yun; Wang, Ping; Wang, Haitao; Gao, Bin; Woo, Wai Lok; Li, Kongjing

    2017-02-01

    Emerging integrated sensing and monitoring of material degradation and cracks are increasingly required for characterizing the structural integrity and safety of infrastructure. However, most conventional nondestructive evaluation (NDE) methods are based on single modality sensing which is not adequate to evaluate structural integrity and natural cracks. This paper proposed electromagnetic pulsed thermography for fast and comprehensive defect characterization. It hybrids multiple physical phenomena i.e. magnetic flux leakage, induced eddy current and induction heating linking to physics as well as signal processing algorithms to provide abundant information of material properties and defects. New features are proposed using 1st derivation that reflects multiphysics spatial and temporal behaviors to enhance the detection of cracks with different orientations. Promising results that robust to lift-off changes and invariant features for artificial and natural cracks detection have been demonstrated that the proposed method significantly improves defect detectability. It opens up multiphysics sensing and integrated NDE with potential impact for natural understanding and better quantitative evaluation of natural cracks including stress corrosion crack (SCC) and rolling contact fatigue (RCF).

  20. Electromagnetic pulsed thermography for natural cracks inspection

    PubMed Central

    Gao, Yunlai; Tian, Gui Yun; Wang, Ping; Wang, Haitao; Gao, Bin; Woo, Wai Lok; Li, Kongjing

    2017-01-01

    Emerging integrated sensing and monitoring of material degradation and cracks are increasingly required for characterizing the structural integrity and safety of infrastructure. However, most conventional nondestructive evaluation (NDE) methods are based on single modality sensing which is not adequate to evaluate structural integrity and natural cracks. This paper proposed electromagnetic pulsed thermography for fast and comprehensive defect characterization. It hybrids multiple physical phenomena i.e. magnetic flux leakage, induced eddy current and induction heating linking to physics as well as signal processing algorithms to provide abundant information of material properties and defects. New features are proposed using 1st derivation that reflects multiphysics spatial and temporal behaviors to enhance the detection of cracks with different orientations. Promising results that robust to lift-off changes and invariant features for artificial and natural cracks detection have been demonstrated that the proposed method significantly improves defect detectability. It opens up multiphysics sensing and integrated NDE with potential impact for natural understanding and better quantitative evaluation of natural cracks including stress corrosion crack (SCC) and rolling contact fatigue (RCF). PMID:28169361

  1. Infrared thermography to assess proliferation and involution of infantile hemangiomas: a prospective cohort study.

    PubMed

    Mohammed, Javed Ayoub; Balma-Mena, Alexandra; Chakkittakandiyil, Ajith; Matea, Florentina; Pope, Elena

    2014-09-01

    Infantile hemangiomas (IHs) are common benign tumors of infancy that have the potential to interfere with vital organ function and cause permanent disfigurement. Currently, few objective and validated measures exist to assess IHs. To determine the utility of infrared thermography in assessing and monitoring the growth of IHs. In a prospective cohort study conducted at an outpatient dermatology clinic of a tertiary care hospital between February 2011 and December 2012, a convenience sample of 42 infants aged 0 to 6 months with an IH were enrolled. The mean age of the study group was 3.7 months, with the majority of IHs being mixed type (57%) affecting the head and neck (81%). Of the infants, 36 (86%) were receiving active treatment during the study period, and patients were followed for a minimum of 3 clinical visits, at least 1 month apart. Ability of infrared thermography to assess the proliferation and involution of IHs compared with a visual analog scale. Secondary outcomes were reliability, ease of use, and parental acceptance of the instrument. The mean temperature difference at baseline was 1.9°F (95% CI, 1.2°F to 2.7°F), which peaked at 3 months to 2.5°F (95% CI, 0.8°F to 4.2°F), and decreased progressively to 0.2°F (95% CI, -1.1°F to 1.4°F) at 18.5 months (P < .001). This change in temperature was inversely correlated with mean visual analog scale (r = -0.25). Mean temperature differences recorded at baseline and 30 minutes later were not significant (least squares mean baseline temperature, 87.9°F [95% CI, 87.4°F to 88.3°F], vs least squares mean temperature after 30 minutes, 88.1°F [95% CI, 87.7°F to 88.6°F] [P = .14]). Multivariate analysis demonstrated facial location (F(1,365) = 47.63, P < .001), IH type (F(2,365) = 3.26, P = .04), age (F(2,365) = 7.03, P = .001), and surface area at baseline (F(2,365) = 8.18, P < .001) as factors significantly affecting temperature difference over time. Only

  2. USE OF CORTICAL BONE FENESTRATION, AUTOGENOUS FREE SKIN GRAFT, AND THERMOGRAPHY FOR WOUND TREATMENT AND MONITORING IN A RED WOLF (CANIS RUFUS GREGORYI).

    PubMed

    Hurley-Sanders, Jennifer L; Sladky, Kurt K; Nolan, Elizabeth C; Loomis, Michael R

    2015-09-01

    A 2-yr-old female red wolf (Canis rufus gregoryi) sustained a degloving injury to the left thoracic limb while in a display habitat. Initial attempts to resolve the extensive wound by using conservative measures were unsuccessful. Subsequent treatment using a free skin graft consisted first of establishment of an adequate granulation bed via cortical bone fenestration. After establishment of a healthy granulation bed was achieved, free skin graft was harvested and transposed over the bed. To monitor viability and incorporation of the graft, serial thermographic imaging was performed. Thermography noninvasively detects radiant heat patterns and can be used to assess vascularization of tissue, potentially allowing early detection of graft failure. In this case, thermography documented successful graft attachment.

  3. Key technique study and application of infrared thermography in hypersonic wind tunnel

    NASA Astrophysics Data System (ADS)

    LI, Ming; Yang, Yan-guang; Li, Zhi-hui; Zhu, Zhi-wei; Zhou, Jia-sui

    2014-11-01

    The solutions to some key techniques using infrared thermographic technique in hypersonic wind tunnel, such as temperature measurement under great measurement angle, the corresponding relation between model spatial coordinates and the ones in infrared map, the measurement uncertainty analysis of the test data etc., are studied. The typical results in the hypersonic wind tunnel test are presented, including the comparison of the transfer rates on a thin skin flat plate model with a wedge measured with infrared thermography and thermocouple, the experimental study heating effect on the flat plate model impinged by plume flow and the aerodynamic heating on the lift model.

  4. [Evaluation of the thermal effects of the plasma microtorch by infrared thermography].

    PubMed

    Lhuisset, F; Zeboulon, S; Bouchier, G

    1991-01-01

    This study presents a detailed example of the examination of the tooth treated by thermal therapy, by infrared thermography and the different manners to show the results of the examination. The results of the work shows: the thermal diffusion into the tooth is similar to the thermal diffusion into an isotropic environment, the fusion heat of the dentine is reached without any damage to the pulp. The study of the tooth treated by the thermal action of the MICRO PLASMA SYSTEM confirms the thérapeutical effects of the thermal treatment without any damage to the pulp.

  5. Real time capable infrared thermography for ASDEX Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sieglin, B., E-mail: Bernhard.Sieglin@ipp.mpg.de; Faitsch, M.; Herrmann, A.

    2015-11-15

    Infrared (IR) thermography is widely used in fusion research to study power exhaust and incident heat load onto the plasma facing components. Due to the short pulse duration of today’s fusion experiments, IR systems have mostly been designed for off-line data analysis. For future long pulse devices (e.g., Wendelstein 7-X, ITER), a real time evaluation of the target temperature and heat flux is mandatory. This paper shows the development of a real time capable IR system for ASDEX Upgrade. A compact IR camera has been designed incorporating the necessary magnetic and electric shielding for the detector, cooler assembly. The cameramore » communication is based on the Camera Link industry standard. The data acquisition hardware is based on National Instruments hardware, consisting of a PXIe chassis inside and a fibre optical connected industry computer outside the torus hall. Image processing and data evaluation are performed using real time LabVIEW.« less

  6. Pulse thermography for quantitative nondestructive evaluation of sound, de-mineralized and re-mineralized enamel

    NASA Astrophysics Data System (ADS)

    Ando, Masatoshi; Sharp, Nathan; Adams, Douglas

    2012-04-01

    Current limitations for diagnosing mineralization state of tooth enamel can lead to improper surgical treatments. A method is investigated by which the tooth health state is characterized according to its thermal response, which is hypothesized to be sensitive to increased porosity in enamel that is caused by demineralization. Several specimens consisting of previously extracted human teeth a re prepared by exposure to Streptococcus mutans A32-2 in trypticase-soy-borth supplemented with 5% sucrose at 37°C for 3 or 6 days to de-mineralize two 1×1mm2-windows on each tooth. One of these windows is then re-mineralized with 250 or 1,100ppm-F as NaF for 10 days by pH-cyclic-model. Pulse thermography is used to measure the thermal response of these sections as well as the sound (healthy) portions of the specimen. A spatial profile of the thermal parameters of the specimens is then extracted from the thermography data and are used to compare the sound, de-mineralized, and re-mineralized areas. Results show that the thermal parameters are sensitive to the mineralization state of the tooth and that this method has the potential to accurately and quickly characterize the mineralization state of teeth, thereby allowing future dentists to make informed decisions regarding the best treatment for teeth that have experienced demineralization.

  7. Development of a rapid soil water content detection technique using active infrared thermal methods for in-field applications.

    PubMed

    Antonucci, Francesca; Pallottino, Federico; Costa, Corrado; Rimatori, Valentina; Giorgi, Stefano; Papetti, Patrizia; Menesatti, Paolo

    2011-01-01

    The aim of this study was to investigate the suitability of active infrared thermography and thermometry in combination with multivariate statistical partial least squares analysis as rapid soil water content detection techniques both in the laboratory and the field. Such techniques allow fast soil water content measurements helpful in both agricultural and environmental fields. These techniques, based on the theory of heat dissipation, were tested by directly measuring temperature dynamic variation of samples after heating. For the assessment of temperature dynamic variations data were collected during three intervals (3, 6 and 10 s). To account for the presence of specific heats differences between water and soil, the analyses were regulated using slopes to linearly describe their trends. For all analyses, the best model was achieved for a 10 s slope. Three different approaches were considered, two in the laboratory and one in the field. The first laboratory-based one was centred on active infrared thermography, considered measurement of temperature variation as independent variable and reported r = 0.74. The second laboratory-based one was focused on active infrared thermometry, added irradiation as independent variable and reported r = 0.76. The in-field experiment was performed by active infrared thermometry, heating bare soil by solar irradiance after exposure due to primary tillage. Some meteorological parameters were inserted as independent variables in the prediction model, which presented r = 0.61. In order to obtain more general and wide estimations in-field a Partial Least Squares Discriminant Analysis on three classes of percentage of soil water content was performed obtaining a high correct classification in the test (88.89%). The prediction error values were lower in the field with respect to laboratory analyses. Both techniques could be used in conjunction with a Geographic Information System for obtaining detailed information on soil heterogeneity.

  8. Development of a Rapid Soil Water Content Detection Technique Using Active Infrared Thermal Methods for In-Field Applications

    PubMed Central

    Antonucci, Francesca; Pallottino, Federico; Costa, Corrado; Rimatori, Valentina; Giorgi, Stefano; Papetti, Patrizia; Menesatti, Paolo

    2011-01-01

    The aim of this study was to investigate the suitability of active infrared thermography and thermometry in combination with multivariate statistical partial least squares analysis as rapid soil water content detection techniques both in the laboratory and the field. Such techniques allow fast soil water content measurements helpful in both agricultural and environmental fields. These techniques, based on the theory of heat dissipation, were tested by directly measuring temperature dynamic variation of samples after heating. For the assessment of temperature dynamic variations data were collected during three intervals (3, 6 and 10 s). To account for the presence of specific heats differences between water and soil, the analyses were regulated using slopes to linearly describe their trends. For all analyses, the best model was achieved for a 10 s slope. Three different approaches were considered, two in the laboratory and one in the field. The first laboratory-based one was centred on active infrared thermography, considered measurement of temperature variation as independent variable and reported r = 0.74. The second laboratory–based one was focused on active infrared thermometry, added irradiation as independent variable and reported r = 0.76. The in-field experiment was performed by active infrared thermometry, heating bare soil by solar irradiance after exposure due to primary tillage. Some meteorological parameters were inserted as independent variables in the prediction model, which presented r = 0.61. In order to obtain more general and wide estimations in-field a Partial Least Squares Discriminant Analysis on three classes of percentage of soil water content was performed obtaining a high correct classification in the test (88.89%). The prediction error values were lower in the field with respect to laboratory analyses. Both techniques could be used in conjunction with a Geographic Information System for obtaining detailed information on soil

  9. Scrotal infrared digital thermography as a predictor of seasonal effects on sperm traits in Braford bulls

    NASA Astrophysics Data System (ADS)

    Menegassi, Silvio Renato Oliveira; Barcellos, Júlio Otavio Jardim; Dias, Eduardo Antunes; Koetz, Celso; Pereira, Gabriel Ribas; Peripolli, Vanessa; McManus, Concepta; Canozzi, Maria Eugênia Andrighetto; Lopes, Flávio Guiselli

    2015-03-01

    The aim of this study was to assess the seasonal effects of the environment on semen quality in bulls, using infrared thermography. Sperm motility (M), mass motion (MM), and vigor (VIG) were evaluated in sperm samples from 17 Bradford bulls aged approximately 24 months at the beginning of the study. Infrared thermography images and data were collected using an infrared FLIR T 300 camera and Quick Report 1.2 SP2 software to determine the temperature of the proximal and distal poles of the testis and to assess the testicular temperature gradient. The seasonal effects on physiological, seminal, and climatic variables were analyzed by the GLM ANOVA and CORR procedures using SAS®. The microclimatic factors were recorded in hourly intervals, and the daily mean temperature and mean relative humidity were calculated to determine the daily temperature-humidity index (THI) every day for 1 year. The temperature gradient (TG) variations of the testes were significantly higher in the autumn (4.5 °C), winter (4.0 °C), and spring (2.9 °C) compared to summer (0.9 °C) ( P < 0.05). Ocular globe temperatures were lower in the winter (27.6 °C) and autumn (26.8 °C) compared to summer (33.9 °C) and spring (31.1 °C) ( P < 0.05). The average MM (2.58), M (52.64), and VIG (2.70) of the semen decreased in the summer compared to other seasons ( P < 0.01). The TG was negatively correlated with THI (-0.44; P < 0.05). For the seminal variables, MaD (-0.45; P < 0.05) and TD (-0.50; P < 0.01) presented a negative correlation with TG. The TG had a positive correlation between M and VIG, which had values of 0.36 and 0.35, respectively ( P < 0.05). We have concluded that infrared thermography can be used to assess the testicular temperature gradient and its consequences on physical and quantitative aspects of sperm.

  10. Detection and Characterization of Boundary-Layer Transition in Flight at Supersonic Conditions Using Infrared Thermography

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.

    2008-01-01

    Infrared thermography is a powerful tool for investigating fluid mechanics on flight vehicles. (Can be used to visualize and characterize transition, shock impingement, separation etc.). Updated onboard F-15 based system was used to visualize supersonic boundary layer transition test article. (Tollmien-Schlichting and cross-flow dominant flow fields). Digital Recording improves image quality and analysis capability. (Allows accurate quantitative (temperature) measurements, Greater enhancement through image processing allows analysis of smaller scale phenomena).

  11. Regional Skin Temperature Response to Moderate Aerobic Exercise Measured by Infrared Thermography

    PubMed Central

    Fernandes, Alex de Andrade; Amorim, Paulo Roberto dos Santos; Brito, Ciro José; Sillero-Quintana, Manuel; Bouzas Marins, João Carlos

    2016-01-01

    Background: Infrared thermography (IRT) does not require contact with the skin, and it is a convenient, reliable and non-invasive technique that can be used for monitoring the skin temperature (TSK). Objectives: The aim of this study was to monitor the variations in the regional TSK during exercise on 28 regions of interest (ROIs) (forehead, face, chest, abdomen, back, lumbar, anterior and posterior neck, and posterior and anterior views of the right and left hands, forearms, upper arms, thighs, and legs) with IRT. Patients and Methods: 12 physically active young males were monitored with IRT during the following three phases: a) 30 minutes before exercise b) while performing one hour of moderate intensity exercise on a treadmill at 60% of the VO2max, and c) 60 minutes after exercise. Results: During pre-exercise, all TSK reached a steady-state (P ≤ 0.05), which ensured adequate thermal stabilisation. At the beginning of exercise, there was a significant reduction in the TSK in most ROIs after 10 minutes of activity, except for the lower limbs (legs and thighs). After one hour of recovery, in the anterior view of the hands and thighs and in the posterior view of the legs, there were significant increases in the TSK compared to pre-exercise. Conclusions: There were significant distinctions in the skin temperature distribution during exercise according to the activity of the area under consideration during exercise, which may be important in the development of physiological models and heat flux analyses for different purposes. PMID:27217931

  12. Soil salinity assessment through satellite thermography for different irrigated and rainfed crops

    NASA Astrophysics Data System (ADS)

    Ivushkin, Konstantin; Bartholomeus, Harm; Bregt, Arnold K.; Pulatov, Alim; Bui, Elisabeth N.; Wilford, John

    2018-06-01

    The use of canopy thermography is an innovative approach for salinity stress detection in plants. But its applicability for landscape scale studies using satellite sensors is still not well investigated. The aim of this research is to test the satellite thermography soil salinity assessment approach on a study area with different crops, grown both in irrigated and rainfed conditions, to evaluate whether the approach has general applicability. Four study areas in four different states of Australia were selected to give broad representation of different crops cultivated under irrigated and rainfed conditions. The soil salinity map was prepared by the staff of Geoscience Australia and CSIRO Land and Water and it is based on thorough soil sampling together with environmental modelling. Remote sensing data was captured by the Landsat 5 TM satellite. In the analysis we used vegetation indices and brightness temperature as an indicator for canopy temperature. Applying analysis of variance and time series we have investigated the applicability of satellite remote sensing of canopy temperature as an approach of soil salinity assessment for different crops grown under irrigated and rainfed conditions. We concluded that in all cases average canopy temperatures were significantly correlated with soil salinity of the area. This relation is valid for all investigated crops, grown both irrigated and rainfed. Nevertheless, crop type does influence the strength of the relations. In our case cotton shows only minor temperature difference compared to other vegetation classes. The strongest relations between canopy temperature and soil salinity were observed at the moment of a maximum green biomass of the crops which is thus considered to be the best time for application of the approach.

  13. Biomechanical fatigue analysis of an advanced new carbon fiber/flax/epoxy plate for bone fracture repair using conventional fatigue tests and thermography.

    PubMed

    Bagheri, Zahra S; El Sawi, Ihab; Bougherara, Habiba; Zdero, Radovan

    2014-07-01

    The current study is part of an ongoing research program to develop an advanced new carbon fiber/flax/epoxy (CF/flax/epoxy) hybrid composite with a “sandwich structure” as a substitute for metallic materials for orthopedic long bone fracture plate applications. The purpose of this study was to assess the fatigue properties of this composite, since cyclic loading is one of the main types of loads carried by a femur fracture plate during normal daily activities. Conventional fatigue testing, thermographic analysis, and scanning electron microscopy (SEM) were used to analyze the damage progress that occurred during fatigue loading. Fatigue strength obtained using thermography analysis (51% of ultimate tensile strength) was confirmed using the conventional fatigue test (50–55% of ultimate tensile strength). The dynamic modulus (E⁎) was found to stay almost constant at 47 GPa versus the number of cycles, which can be related to the contribution of both flax/epoxy and CF/epoxy laminae to the stiffness of the composite. SEM images showed solid bonding at the CF/epoxy and flax/epoxy laminae, with a crack density of only 0.48% for the plate loaded for 2 million cycles. The current composite plate showed much higher fatigue strength than the main loads experienced by a typical patient during cyclic activities; thus, it may be a potential candidate for bone fracture plate applications. Moreover, the fatigue strength from thermographic analysis was the same as that obtained by the conventional fatigue tests, thus demonstrating its potential use as an alternate tool to rapidly evaluate fatigue strength of composite biomaterials.

  14. Investigation of non-reciprocal magnon propagation using lock-in thermography

    NASA Astrophysics Data System (ADS)

    Wid, Olga; Bauer, Jan; Müller, Alexander; Breitenstein, Otwin; Parkin, Stuart S. P.; Schmidt, Georg

    2017-04-01

    We have investigated the unidirectional spin wave heat conveyer effect in a 200 nm thin yttrium iron garnet (YIG) film using lock-in thermography (LIT). This originates from the non-reciprocal propagation of magnons, which leads to an asymmetric heat transport. To excite the spin waves we use two different respective antenna geometries: a coplanar waveguide (CPW) or a ‘microstrip’-like antenna on top of the YIG. By using the CPW and comparing the results for the Damon-Eshbach and the backward volume modes we are able to show that the origin of the asymmetric heat profile are indeed the non-reciprocal spin waves. Using the ‘microstrip’-like geometry we can confirm these results and we can even observe a distinct excitation profile along the antenna due to small field inhomogeneities.

  15. Porosity Measurement in Laminated Composites by Thermography and FEA

    NASA Technical Reports Server (NTRS)

    Chu, Tsuchin Philip; Russell, Samuel S.; Walker, James L.; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    This paper presents the correlation between the through-thickness thermal diffusivity and the porosity of composites. Finite element analysis (FEA) was used to determine the transient thermal response of composites that were subjected to laser heating. A series of finite element models were built and thermal responses for isotropic and orthographic materials with various thermal diffusivities subjected to different heating conditions were investigated. Experiments were conducted to verify the models and to estimate the unknown parameters such as the amount of heat flux. The analysis and experimental results show good correlation between thermal diffusivity and porosity in the composite materials. They also show that both laser and flash heating can be used effectively to obtain thermal diffusivity. The current infrared thermography system is developed for use with flash heating. The laser heating models and the FEA results can provide useful tools to develop practical thermal diffusivity measurement scheme using laser heat.

  16. Detection and characterization of exercise induced muscle damage (EIMD) via thermography and image processing

    NASA Astrophysics Data System (ADS)

    Avdelidis, N. P.; Kappatos, V.; Georgoulas, G.; Karvelis, P.; Deli, C. K.; Theodorakeas, P.; Giakas, G.; Tsiokanos, A.; Koui, M.; Jamurtas, A. Z.

    2017-04-01

    Exercise induced muscle damage (EIMD), is usually experienced in i) humans who have been physically inactive for prolonged periods of time and then begin with sudden training trials and ii) athletes who train over their normal limits. EIMD is not so easy to be detected and quantified, by means of commonly measurement tools and methods. Thermography has been used successfully as a research detection tool in medicine for the last 6 decades but very limited work has been reported on EIMD area. The main purpose of this research is to assess and characterize EIMD, using thermography and image processing techniques. The first step towards that goal is to develop a reliable segmentation technique to isolate the region of interest (ROI). A semi-automatic image processing software was designed and regions of the left and right leg based on superpixels were segmented. The image is segmented into a number of regions and the user is able to intervene providing the regions which belong to each of the two legs. In order to validate the image processing software, an extensive experimental investigation was carried out, acquiring thermographic images of the rectus femoris muscle before, immediately post and 24, 48 and 72 hours after an acute bout of eccentric exercise (5 sets of 15 maximum repetitions), on males and females (20-30 year-old). Results indicate that the semi-automated approach provides an excellent bench-mark that can be used as a clinical reliable tool.

  17. Thermography Inspection for Early Detection of Composite Damage in Structures During Fatigue Loading

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Burke, Eric R.; Parker, F. Raymond; Seebo, Jeffrey P.; Wright, Christopher W.; Bly, James B.

    2012-01-01

    Advanced composite structures are commonly tested under controlled loading. Understanding the initiation and progression of composite damage under load is critical for validating design concepts and structural analysis tools. Thermal nondestructive evaluation (NDE) is used to detect and characterize damage in composite structures during fatigue loading. A difference image processing algorithm is demonstrated to enhance damage detection and characterization by removing thermal variations not associated with defects. In addition, a one-dimensional multilayered thermal model is used to characterize damage. Lastly, the thermography results are compared to other inspections such as non-immersion ultrasonic inspections and computed tomography X-ray.

  18. Active polar two-fluid macroscopic dynamics.

    PubMed

    Pleiner, H; Svenšek, D; Brand, H R

    2013-11-01

    We study the dynamics of systems with a polar dynamic preferred direction. Examples include the pattern-forming growth of bacteria as well as shoals of fish, flocks of birds and migrating insects. Due to the fact that the preferred direction only exists dynamically, but not statically, the macroscopic variable of choice is the macroscopic velocity associated with the motion of the active units, which are typically biological in nature. We derive the macroscopic equations for such a system and discuss novel static, reversible and irreversible cross-couplings connected to a second velocity as a variable. We analyze in detail how the macroscopic behavior of an active system with a polar dynamic preferred direction compares to other systems with two velocities including immiscible liquids and electrically neutral quantum liquids such as superfluid (4)He and (3)He . We critically discuss changes in the normal mode spectrum when comparing uncharged superfluids, immiscible liquids and active system with a polar dynamic preferred direction. We investigate the influence of a macroscopic hand (collective effects of chirality) on the macroscopic behavior of such active media.

  19. Mid-infrared thermal imaging for an effective mapping of surface materials and sub-surface detachments in mural paintings: integration of thermography and thermal quasi-reflectography

    NASA Astrophysics Data System (ADS)

    Daffara, C.; Parisotto, S.; Mariotti, P. I.

    2015-06-01

    Cultural Heritage is discovering how precious is thermal analysis as a tool to improve the restoration, thanks to its ability to inspect hidden details. In this work a novel dual mode imaging approach, based on the integration of thermography and thermal quasi-reflectography (TQR) in the mid-IR is demonstrated for an effective mapping of surface materials and of sub-surface detachments in mural painting. The tool was validated through a unique application: the "Monocromo" by Leonardo da Vinci in Italy. The dual mode acquisition provided two spatially aligned dataset: the TQR image and the thermal sequence. Main steps of the workflow included: 1) TQR analysis to map surface features and 2) to estimate the emissivity; 3) projection of the TQR frame on reference orthophoto and TQR mosaicking; 4) thermography analysis to map detachments; 5) use TQR to solve spatial referencing and mosaicking for the thermal-processed frames. Referencing of thermal images in the visible is a difficult aspect of the thermography technique that the dual mode approach allows to solve in effective way. We finally obtained the TQR and the thermal maps spatially referenced to the mural painting, thus providing the restorer a valuable tool for the restoration of the detachments.

  20. Uses of infrared thermography in the low-cost solar array program

    NASA Technical Reports Server (NTRS)

    Glazer, S. D.

    1982-01-01

    The Jet Propulsion Laboratory has used infrared thermography extensively in the Low-Cost Solar Array (LSA) photovoltaics program. A two-dimensional scanning infrared radiometer has been used to make field inspections of large free-standing photovoltaic arrays and smaller demonstration sites consisting of integrally mounted rooftop systems. These field inspections have proven especially valuable in the research and early development phases of the program, since certain types of module design flaws and environmental degradation manifest themselves in unique thermal patterns. The infrared camera was also used extensively in a series of laboratory tests on photovoltaic cells to obtain peak cell temperatures and thermal patterns during off-design operating conditions. The infrared field inspections and the laboratory experiments are discussed, and sample results are presented.

  1. Defect Detection in Fuel Cell Gas Diffusion Electrodes Using Infrared Thermography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulsh, Michael; Porter, Jason M.; Bittinat, Daniel C.

    2016-04-01

    Polymer electrolyte membrane fuel cells are energy conversion devices that offer high power densities and high efficiencies for mobile and other applications. Successful introduction into the marketplace requires addressing cost barriers such as production volumes and platinum loading. For cost reduction, it is vital to minimize waste and maximize quality during the manufacturing of platinum-containing electrodes, including gas diffusion electrodes (GDEs). In this work, we report on developing a quality control diagnostic for GDEs, involving creating an ex situ exothermic reaction on the electrode surface and using infrared thermography to measure the resulting temperature profile. Experiments with a moving GDEmore » containing created defects were conducted to demonstrate the applicability of the diagnostic for real-time web-line inspection.« less

  2. Activity-Dependence of Synaptic Vesicle Dynamics

    PubMed Central

    Forte, Luca A.

    2017-01-01

    The proper function of synapses relies on efficient recycling of synaptic vesicles. The small size of synaptic boutons has hampered efforts to define the dynamical states of vesicles during recycling. Moreover, whether vesicle motion during recycling is regulated by neural activity remains largely unknown. We combined nanoscale-resolution tracking of individual synaptic vesicles in cultured hippocampal neurons from rats of both sexes with advanced motion analyses to demonstrate that the majority of recently endocytosed vesicles undergo sequences of transient dynamical states including epochs of directed, diffusional, and stalled motion. We observed that vesicle motion is modulated in an activity-dependent manner, with dynamical changes apparent in ∼20% of observed boutons. Within this subpopulation of boutons, 35% of observed vesicles exhibited acceleration and 65% exhibited deceleration, accompanied by corresponding changes in directed motion. Individual vesicles observed in the remaining ∼80% of boutons did not exhibit apparent dynamical changes in response to stimulation. More quantitative transient motion analyses revealed that the overall reduction of vesicle mobility, and specifically of the directed motion component, is the predominant activity-evoked change across the entire bouton population. Activity-dependent modulation of vesicle mobility may represent an important mechanism controlling vesicle availability and neurotransmitter release. SIGNIFICANCE STATEMENT Mechanisms governing synaptic vesicle dynamics during recycling remain poorly understood. Using nanoscale resolution tracking of individual synaptic vesicles in hippocampal synapses and advanced motion analysis tools we demonstrate that synaptic vesicles undergo complex sets of dynamical states that include epochs of directed, diffusive, and stalled motion. Most importantly, our analyses revealed that vesicle motion is modulated in an activity-dependent manner apparent as the reduction in

  3. The mental and subjective skin: Emotion, empathy, feelings and thermography.

    PubMed

    Salazar-López, E; Domínguez, E; Juárez Ramos, V; de la Fuente, J; Meins, A; Iborra, O; Gálvez, G; Rodríguez-Artacho, M A; Gómez-Milán, E

    2015-07-01

    We applied thermography to investigate the cognitive neuropsychology of emotions, using it as a somatic marker of subjective experience during emotional tasks. We obtained results that showed significant correlations between changes in facial temperature and mental set. The main result was the change in the temperature of the nose, which tended to decrease with negative valence stimuli but to increase with positive emotions and arousal patterns. However, temperature change was identified not only in the nose, but also in the forehead, the oro-facial area, the cheeks and in the face taken as a whole. Nevertheless, thermic facial changes, mostly nasal temperature changes, correlated positively with participants' empathy scores and their performance. We found that temperature changes in the face may reveal maps of bodily sensations associated with different emotions and feelings like love. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. IR-thermography for Quality Prediction in Selective Laser Deburring

    NASA Astrophysics Data System (ADS)

    Möller, Mauritz; Conrad, Christian; Haimerl, Walter; Emmelmann, Claus

    Selective Laser Deburring (SLD) is an innovative edge-refinement process being developed at the Laser Zentrum Nord (LZN) in Hamburg. It offers a wear-free processing of defined radii and bevels at the edges as well as the possibility to deburr several materials with the same laser source. Sheet metal parts of various applications need to be post-processed to remove sharp edges and burrs remaining from the initial production process. Thus, SLD will provide an extended degree of automation for the next generation of manufacturing facilities. This paper investigates the dependence between the deburring result and the temperature field in- and post-process. In order to achieve this, the surface temperature near to the deburred edge is monitored with IR-thermography. Different strategies are discussed for the approach using the IR-information as a quality assurance. Additional experiments are performed to rate the accuracy of the quality prediction method in different deburring applications.

  5. Measuring and Estimating Normalized Contrast in Infrared Flash Thermography

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2013-01-01

    Infrared flash thermography (IRFT) is used to detect void-like flaws in a test object. The IRFT technique involves heating up the part surface using a flash of flash lamps. The post-flash evolution of the part surface temperature is sensed by an IR camera in terms of pixel intensity of image pixels. The IR technique involves recording of the IR video image data and analysis of the data using the normalized pixel intensity and temperature contrast analysis method for characterization of void-like flaws for depth and width. This work introduces a new definition of the normalized IR pixel intensity contrast and normalized surface temperature contrast. A procedure is provided to compute the pixel intensity contrast from the camera pixel intensity evolution data. The pixel intensity contrast and the corresponding surface temperature contrast differ but are related. This work provides a method to estimate the temperature evolution and the normalized temperature contrast from the measured pixel intensity evolution data and some additional measurements during data acquisition.

  6. Active Dendrites Enhance Neuronal Dynamic Range

    PubMed Central

    Gollo, Leonardo L.; Kinouchi, Osame; Copelli, Mauro

    2009-01-01

    Since the first experimental evidences of active conductances in dendrites, most neurons have been shown to exhibit dendritic excitability through the expression of a variety of voltage-gated ion channels. However, despite experimental and theoretical efforts undertaken in the past decades, the role of this excitability for some kind of dendritic computation has remained elusive. Here we show that, owing to very general properties of excitable media, the average output of a model of an active dendritic tree is a highly non-linear function of its afferent rate, attaining extremely large dynamic ranges (above 50 dB). Moreover, the model yields double-sigmoid response functions as experimentally observed in retinal ganglion cells. We claim that enhancement of dynamic range is the primary functional role of active dendritic conductances. We predict that neurons with larger dendritic trees should have larger dynamic range and that blocking of active conductances should lead to a decrease in dynamic range. PMID:19521531

  7. Evaluation of thermal load during laser corneal refractive surgery using infrared thermography

    NASA Astrophysics Data System (ADS)

    Brunsmann, U.; Sauer, U.; Arba-Mosquera, S.; Magnago, T.; Triefenbach, N.

    2010-09-01

    Infrared thermography is used for evaluation of the mean temperature as a measure of thermal load during corneal refractive surgery. An experimental method to determine emissivity and to calibrate the thermografic system is presented. In a case study on the porcine eye two dimensional temperature distributions with lateral resolution of 170 μm and line scans with temporal resolution of 13 μs are discussed with respect to the meaning of mean temperature. Using the newest generation of surgery equipment it is shown, that the mean temperature rise can be kept below 5 °C during myopic laser in situ keratomileusis (LASIK) treatments corresponding to an aberration-free correction of -2.75 diopter.

  8. Determination of depth and size of defects in carbon-fiber-reinforced plastic with different methods of pulse thermography

    NASA Astrophysics Data System (ADS)

    Popow, Vitalij; Gurka, Martin

    2018-03-01

    The main advantage of high performance composite material is its exceptional light-weight capability due to individual tailoring of anisotropic fiber lay-up. Its main draw-back is a brittle and complex failure behavior under dynamic loading which requires extensive quality assurance measures and short maintenance intervals. For this reason efficient test methods are required, which not only generate good and reliable results, but are also simple in handling, allow rapid adaptation to different test situations and short measuring times. Especially the knowledge about size and position of a defect is necessary to decide about acceptance or rejection of a structure under investigation. As a promising method for contactless in-line and off-line inspection we used pulsed thermography. For the determination of the depth of the defects we used logarithmic peak second derivative, a widely accepted method. Alternatively an analytical model, describing the adiabatic heating of a solid plate by an instantaneous pulse, was fitted directly to the measurement data. For the determination of defect size four different approaches were investigated and compared with exact values. The measurements were done with continuous carbon-fiber reinforced materials.

  9. Research on defects inspection of solder balls based on eddy current pulsed thermography.

    PubMed

    Zhou, Xiuyun; Zhou, Jinlong; Tian, Guiyun; Wang, Yizhe

    2015-10-13

    In order to solve tiny defect detection for solder balls in high-density flip-chip, this paper proposed feasibility study on the effect of detectability as well as classification based on eddy current pulsed thermography (ECPT). Specifically, numerical analysis of 3D finite element inductive heat model is generated to investigate disturbance on the temperature field for different kind of defects such as cracks, voids, etc. The temperature variation between defective and non-defective solder balls is monitored for defects identification and classification. Finally, experimental study is carried on the diameter 1mm tiny solder balls by using ECPT and verify the efficacy of the technique.

  10. Infrared contrast data analysis method for quantitative measurement and monitoring in flash infrared thermography

    NASA Astrophysics Data System (ADS)

    Koshti, Ajay M.

    2015-04-01

    The paper provides information on a new infrared (IR) image contrast data post-processing method that involves converting raw data to normalized contrast versus time evolutions from the flash infrared thermography inspection video data. Thermal measurement features such as peak contrast, peak contrast time, persistence time, and persistence energy are calculated from the contrast evolutions. In addition, simulation of the contrast evolution is achieved through calibration on measured contrast evolutions from many flat bottom holes in a test plate of the subject material. The measurement features are used to monitor growth of anomalies and to characterize the void-like anomalies. The method was developed to monitor and analyze void-like anomalies in reinforced carbon-carbon (RCC) materials used on the wing leading edge of the NASA Space Shuttle Orbiters, but the method is equally applicable to other materials. The thermal measurement features relate to the anomaly characteristics such as depth and size. Calibration of the contrast is used to provide an assessment of the anomaly depth and width which correspond to the depth and diameter of the equivalent flat bottom hole (EFBH) from the calibration data. An edge detection technique called the half-max is used to measure width and length of the anomaly. Results of the half-max width and the EFBH diameter are compared with actual widths to evaluate utility of IR Contrast method. Some thermal measurements relate to gap thickness of the delaminations. Results of IR Contrast method on RCC hardware are provided. Keywords: normalized contrast, flash infrared thermography.

  11. Diagnosis of response and non-response to dry eye treatment using infrared thermography images

    NASA Astrophysics Data System (ADS)

    Acharya, U. Rajendra; Tan, Jen Hong; Vidya, S.; Yeo, Sharon; Too, Cheah Loon; Lim, Wei Jie Eugene; Chua, Kuang Chua; Tong, Louis

    2014-11-01

    The dry eye treatment outcome depends on the assessment of clinical relevance of the treatment effect. The potential approach to assess the clinical relevance of the treatment is to identify the symptoms responders and non-responders to the given treatments using the responder analysis. In our work, we have performed the responder analysis to assess the clinical relevance effect of the dry eye treatments namely, hot towel, EyeGiene®, and Blephasteam® twice daily and 12 min session of Lipiflow®. Thermography is performed at week 0 (baseline), at weeks 4 and 12 after treatment. The clinical parameters such as, change in the clinical irritations scores, tear break up time (TBUT), corneal staining and Schirmer's symptoms tests values are used to obtain the responders and non-responders groups. We have obtained the infrared thermography images of dry eye symptoms responders and non-responders to the three types of warming treatments. The energy, kurtosis, skewness, mean, standard deviation, and various entropies namely Shannon, Renyi and Kapoor are extracted from responders and non-responders thermograms. The extracted features are ranked based on t-values. These ranked features are fed to the various classifiers to get the highest performance using minimum features. We have used decision tree (DT), K nearest neighbour (KNN), Naves Bayesian (NB) and support vector machine (SVM) to classify the features into responder and non-responder classes. We have obtained an average accuracy of 99.88%, sensitivity of 99.7% and specificity of 100% using KNN classifier using ten-fold cross validation.

  12. Detection of defects in laser powder deposition (LPD) components by pulsed laser transient thermography

    NASA Astrophysics Data System (ADS)

    Santospirito, S. P.; Słyk, Kamil; Luo, Bin; Łopatka, Rafał; Gilmour, Oliver; Rudlin, John

    2013-05-01

    Detection of defects in Laser Powder Deposition (LPD) produced components has been achieved by laser thermography. An automatic in-process NDT defect detection software system has been developed for the analysis of laser thermography to automatically detect, reliably measure and then sentence defects in individual beads of LPD components. A deposition path profile definition has been introduced so all laser powder deposition beads can be modeled, and the inspection system has been developed to automatically generate an optimized inspection plan in which sampling images follow the deposition track, and automatically control and communicate with robot-arms, the source laser and cameras to implement image acquisition. Algorithms were developed so that the defect sizes can be correctly evaluated and these have been confirmed using test samples. Individual inspection images can also be stitched together for a single bead, a layer of beads or multiple layers of beads so that defects can be mapped through the additive process. A mathematical model was built up to analyze and evaluate the movement of heat throughout the inspection bead. Inspection processes were developed and positional and temporal gradient algorithms have been used to measure the flaw sizes. Defect analysis is then performed to determine if the defect(s) can be further classified (crack, lack of fusion, porosity) and the sentencing engine then compares the most significant defect or group of defects against the acceptance criteria - independent of human decisions. Testing on manufactured defects from the EC funded INTRAPID project has successful detected and correctly sentenced all samples.

  13. Active Polar Two-Fluid Macroscopic Dynamics

    NASA Astrophysics Data System (ADS)

    Pleiner, Harald; Svensek, Daniel; Brand, Helmut R.

    2014-03-01

    We study the dynamics of systems with a polar dynamic preferred direction. Examples include the pattern-forming growth of bacteria (in a solvent, shoals of fish (moving in water currents), flocks of birds and migrating insects (flying in windy air). Because the preferred direction only exists dynamically, but not statically, the macroscopic variable of choice is the macroscopic velocity associated with the motion of the active units. We derive the macroscopic equations for such a system and discuss novel static, reversible and irreversible cross-couplings connected to this second velocity. We find a normal mode structure quite different compared to the static descriptions, as well as linear couplings between (active) flow and e.g. densities and concentrations due to the genuine two-fluid transport derivatives. On the other hand, we get, quite similar to the static case, a direct linear relation between the stress tensor and the structure tensor. This prominent ``active'' term is responsible for many active effects, meaning that our approach can describe those effects as well. In addition, we also deal with explicitly chiral systems, which are important for many active systems. In particular, we find an active flow-induced heat current specific for the dynamic chiral polar order.

  14. Association of digital cushion thickness with sole temperature measured with the use of infrared thermography.

    PubMed

    Oikonomou, G; Trojacanec, P; Ganda, E K; Bicalho, M L S; Bicalho, R C

    2014-07-01

    The main objective of this study was to investigate the association between digital cushion thickness and sole temperature measured by infrared thermography. Data were collected from 216 lactating Holstein cows at 4 to 10d in milk (DIM). Cows were locomotion scored and sole temperature was measured after claw trimming (a minimum delay of 3 min was allowed for the hoof to cool) using an infrared thermography camera. Temperature was measured at the typical ulcer site of the lateral digit of the left hind foot. Immediately after the thermographic image was obtained, the thickness of the digital cushion was measured by ultrasonography. Rumen fluid samples were collected with a stomach tube and sample pH was measured immediately after collection. Additionally, a blood sample was obtained and used for measurements of serum concentrations of β-hydroxybutyrate (BHBA), nonesterified fatty acids (NEFA), and haptoglobin. To evaluate the associations of digital cushion thickness with sole temperature, a linear regression model was built using the GLIMMIX procedure in SAS software (SAS Institute Inc., Cary, NC). Sole temperature was the response variable, and digital cushion thickness quartiles, locomotion score group, rumen fluid pH, rumen fluid sample volume, environmental temperature, age in days, and serum levels of NEFA, BHBA, and haptoglobin were fitted in the model. Only significant variables were retained in the final model. Simple linear regression scatter plots were used to illustrate associations between sole temperature (measured by infrared thermography at the typical ulcer site) and environmental temperature and between NEFA and BHBA serum levels and haptoglobin. One-way ANOVA was used to compare rumen fluid pH for different locomotion score groups and for different digital cushion quartiles. Results from the multivariable linear regression model showed that sole temperature increased as locomotion scores increased and decreased as digital cushion thickness

  15. Infrared thermography for condition monitoring - A review

    NASA Astrophysics Data System (ADS)

    Bagavathiappan, S.; Lahiri, B. B.; Saravanan, T.; Philip, John; Jayakumar, T.

    2013-09-01

    Temperature is one of the most common indicators of the structural health of equipment and components. Faulty machineries, corroded electrical connections, damaged material components, etc., can cause abnormal temperature distribution. By now, infrared thermography (IRT) has become a matured and widely accepted condition monitoring tool where the temperature is measured in real time in a non-contact manner. IRT enables early detection of equipment flaws and faulty industrial processes under operating condition thereby, reducing system down time, catastrophic breakdown and maintenance cost. Last three decades witnessed a steady growth in the use of IRT as a condition monitoring technique in civil structures, electrical installations, machineries and equipment, material deformation under various loading conditions, corrosion damages and welding processes. IRT has also found its application in nuclear, aerospace, food, paper, wood and plastic industries. With the advent of newer generations of infrared camera, IRT is becoming a more accurate, reliable and cost effective technique. This review focuses on the advances of IRT as a non-contact and non-invasive condition monitoring tool for machineries, equipment and processes. Various conditions monitoring applications are discussed in details, along with some basics of IRT, experimental procedures and data analysis techniques. Sufficient background information is also provided for the beginners and non-experts for easy understanding of the subject.

  16. Medical applications of infrared thermography: A review

    NASA Astrophysics Data System (ADS)

    Lahiri, B. B.; Bagavathiappan, S.; Jayakumar, T.; Philip, John

    2012-07-01

    Abnormal body temperature is a natural indicator of illness. Infrared thermography (IRT) is a fast, passive, non-contact and non-invasive alternative to conventional clinical thermometers for monitoring body temperature. Besides, IRT can also map body surface temperature remotely. Last five decades witnessed a steady increase in the utility of thermal imaging cameras to obtain correlations between the thermal physiology and skin temperature. IRT has been successfully used in diagnosis of breast cancer, diabetes neuropathy and peripheral vascular disorders. It has also been used to detect problems associated with gynecology, kidney transplantation, dermatology, heart, neonatal physiology, fever screening and brain imaging. With the advent of modern infrared cameras, data acquisition and processing techniques, it is now possible to have real time high resolution thermographic images, which is likely to surge further research in this field. The present efforts are focused on automatic analysis of temperature distribution of regions of interest and their statistical analysis for detection of abnormalities. This critical review focuses on advances in the area of medical IRT. The basics of IRT, essential theoretical background, the procedures adopted for various measurements and applications of IRT in various medical fields are discussed in this review. Besides background information is provided for beginners for better understanding of the subject.

  17. Biomechanical fatigue analysis of an advanced new carbon fiber/flax/epoxy plate for bone fracture repair using conventional fatigue tests and thermography.

    PubMed

    Bagheri, Zahra S; El Sawi, Ihab; Bougherara, Habiba; Zdero, Radovan

    2014-07-01

    The current study is part of an ongoing research program to develop an advanced new carbon fiber/flax/epoxy (CF/flax/epoxy) hybrid composite with a "sandwich structure" as a substitute for metallic materials for orthopedic long bone fracture plate applications. The purpose of this study was to assess the fatigue properties of this composite, since cyclic loading is one of the main types of loads carried by a femur fracture plate during normal daily activities. Conventional fatigue testing, thermographic analysis, and scanning electron microscopy (SEM) were used to analyze the damage progress that occurred during fatigue loading. Fatigue strength obtained using thermography analysis (51% of ultimate tensile strength) was confirmed using the conventional fatigue test (50-55% of ultimate tensile strength). The dynamic modulus (E(⁎)) was found to stay almost constant at 47GPa versus the number of cycles, which can be related to the contribution of both flax/epoxy and CF/epoxy laminae to the stiffness of the composite. SEM images showed solid bonding at the CF/epoxy and flax/epoxy laminae, with a crack density of only 0.48% for the plate loaded for 2 million cycles. The current composite plate showed much higher fatigue strength than the main loads experienced by a typical patient during cyclic activities; thus, it may be a potential candidate for bone fracture plate applications. Moreover, the fatigue strength from thermographic analysis was the same as that obtained by the conventional fatigue tests, thus demonstrating its potential use as an alternate tool to rapidly evaluate fatigue strength of composite biomaterials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Correlation Study Of Diffenrential Skin Temperatures (DST) For Ovulation Detection Using Infra-Red Thermography

    NASA Astrophysics Data System (ADS)

    Rao, K. H. S.; Shah, A. v.; Ruedi, B.

    1982-11-01

    The importance of ovulation time detection in the Practice of Natural Birth Control (NBC) as a contraceptive tool, and for natural/artificial insemination among women having the problem of in-fertility, is well known. The simple Basal Body Temperature (BBT) method of ovulation detection is so far unreliable. A newly proposed Differential Skin Temperature (DST) method may help minimize disturbing physiological effects and improve reliability. This paper explains preliminary results of a detailed correlative study on the DST method, using Infra-Red Thermography (IRT) imaging, and computer analysis techniques. Results obtained with five healthy, normally menstruating women volunteers will be given.

  19. The roles of vibration analysis and infrared thermography in monitoring air-handling equipment

    NASA Astrophysics Data System (ADS)

    Wurzbach, Richard N.

    2003-04-01

    Industrial and commercial building equipment maintenance has not historically been targeted for implementation of PdM programs. The focus instead has been on manufacturing, aerospace and energy industries where production interruption has significant cost implications. As cost-effectiveness becomes more pervasive in corporate culture, even office space and labor activities housed in large facilities are being scrutinized for cost-cutting measures. When the maintenance costs for these facilities are reviewed, PdM can be considered for improving the reliability of the building temperature regulation, and reduction of maintenance repair costs. An optimized program to direct maintenance resources toward a cost effective and pro-active management of the facility can result in reduced operating budgets, and greater occupant satisfaction. A large majority of the significant rotating machinery in a large building environment are belt-driven air handling units. These machines are often poorly designed or utilized within the facility. As a result, the maintenance staff typically find themselves scrambling to replace belts and bearings, going from one failure to another. Instead of the reactive-mode maintenance, some progressive and critical institutions are adopting predictive and proactive technologies of infrared thermography and vibration analysis. Together, these technologies can be used to identify design and installation problems, that when corrected, significantly reduce maintenance and increase reliability. For critical building use, such as laboratories, research facilities, and other high value non-industrial settings, the cost-benefits of more reliable machinery can contribute significantly to the operational success.

  20. Active site dynamics of ribonuclease.

    PubMed Central

    Brünger, A T; Brooks, C L; Karplus, M

    1985-01-01

    The stochastic boundary molecular dynamics method is used to study the structure, dynamics, and energetics of the solvated active site of bovine pancreatic ribonuclease A. Simulations of the native enzyme and of the enzyme complexed with the dinucleotide substrate CpA and the transition-state analog uridine vanadate are compared. Structural features and dynamical couplings for ribonuclease residues found in the simulation are consistent with experimental data. Water molecules, most of which are not observed in crystallographic studies, are shown to play an important role in the active site. Hydrogen bonding of residues with water molecules in the free enzyme is found to mimic the substrate-enzyme interactions of residues involved in binding. Networks of water stabilize the cluster of positively charged active site residues. Correlated fluctuations between the uridine vanadate complex and the distant lysine residues are mediated through water and may indicate a possible role for these residues in stabilizing the transition state. Images PMID:3866234

  1. Achieving thermography with a thermal security camera using uncooled amorphous silicon microbolometer image sensors

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Wei; Tesdahl, Curtis; Owens, Jim; Dorn, David

    2012-06-01

    Advancements in uncooled microbolometer technology over the last several years have opened up many commercial applications which had been previously cost prohibitive. Thermal technology is no longer limited to the military and government market segments. One type of thermal sensor with low NETD which is available in the commercial market segment is the uncooled amorphous silicon (α-Si) microbolometer image sensor. Typical thermal security cameras focus on providing the best image quality by auto tonemaping (contrast enhancing) the image, which provides the best contrast depending on the temperature range of the scene. While this may provide enough information to detect objects and activities, there are further benefits of being able to estimate the actual object temperatures in a scene. This thermographic ability can provide functionality beyond typical security cameras by being able to monitor processes. Example applications of thermography[2] with thermal camera include: monitoring electrical circuits, industrial machinery, building thermal leaks, oil/gas pipelines, power substations, etc...[3][5] This paper discusses the methodology of estimating object temperatures by characterizing/calibrating different components inside a thermal camera utilizing an uncooled amorphous silicon microbolometer image sensor. Plots of system performance across camera operating temperatures will be shown.

  2. Force Dynamics During T Cell Activation

    NASA Astrophysics Data System (ADS)

    Garcia, David A.; Upadhyaya, Arpita

    T cell activation is an essential step in the adaptive immune response. The binding of the T cell receptor (TCR) with antigen triggers signaling cascades and cell spreading. Physical forces exerted on the TCR by the cytoskeleton have been shown to induce signaling events. While cellular forces are known to depend on the mechanical properties of the cytoskeleton, the biophysical mechanisms underlying force induced activation of TCR-antigen interactions unknown. Here, we use traction force microscopy to measure the force dynamics of activated Jurkat T cells. The movements of beads embedded in an elastic gel serve as a non-invasive reporter of cytoskeletal and molecular motor dynamics. We examined the statistical structure of the force profiles throughout the cell during signaling activation. We found two spatially distinct active regimes of force generation characterized by different time scales. Typically, the interior of the cells was found to be more active than the periphery. Inhibition of myosin motor activity altered the correlation time of the bead displacements indicating additional sources of stochastic force generation. Our results indicate a complex interaction between myosin activity and actin polymerization dynamics in producing cellular forces in immune cells.

  3. Evaluation of tear evaporation from ocular surface by functional infrared thermography.

    PubMed

    Tan, Jen-Hong; Ng, E Y K; Acharya, U Rajendra

    2010-11-01

    A novel technique was developed to measure tear evaporation and monitor its variation with respect to time, for the studying of ocular physiology based on dynamic functional infrared thermography and the first law of thermodynamics using the measured ocular surface temperatures (OSTs). This is a noninvasive, noncontact temperature measuring method that is widely applied in the field of biomedicine. A simple method based on the ocular thermal data was proposed to measure the rate of tear evaporation. The OST of 60 normal subjects were recorded in the form of sequential thermal images. For each thermal sequence, the ocular region was selected and warped to a standard form. Thermal data within the regions were processed, on the basis of the first law of thermodynamics to derive the evaporation rate. For elder subjects (aged above 35), the rate was determined to be 55.82 Wm(-2) and for younger subjects, the rate was 58.9 Wm(-2). The corneal rate of evaporation in elder subjects was found statistically (p < 0.11) larger than their younger counterparts. The rate of blinking was observed to be related to the variation of evaporation rate. The authors have measured the evaporation rate on a sequence of thermographic images. A region of interest was selected at first and the same region on all the images were warped into a standard form. Calculations were performed based on the thermal data in those regions to obtain the values of interest. The authors found that the tear evaporation rate for subjects of all age groups was 57.36 +/- 12.73 Wm(-2) and the corneal tear evaporation was higher in elder subjects. The corneal rate of evaporation fluctuated in a larger magnitude in subjects who blinked more than average.

  4. Assessment of anxiety in open field and elevated plus maze using infrared thermography.

    PubMed

    Lecorps, Benjamin; Rödel, Heiko G; Féron, Christophe

    2016-04-01

    Due to their direct inaccessibility, affective states are classically assessed by gathering concomitant physiological and behavioral measures. Although such a dual approach to assess emotional states is frequently used in different species including humans, the invasiveness of procedures for physiological recordings particularly in smaller-sized animals strongly restricts their application. We used infrared thermography, a non-invasive method, to assess physiological arousal during open field and elevated plus maze tests in mice. By measuring changes in surface temperature indicative of the animals' emotional response, we aimed to improve the inherently limited and still controversial information provided by behavioral parameters commonly used in these tests. Our results showed significant and consistent thermal responses during both tests, in accordance with classical physiological responses occurring in stressful situations. Besides, we found correlations between these thermal responses and the occurrence of anxiety-related behaviors. Furthermore, initial temperatures measured at the start of each procedure (open field, elevated plus maze), which can be interpreted as a measure of the animals' initial physiological arousal, predicted the levels of activity and of anxiety-related behaviors displayed during the tests. Our results stress the strong link between physiological correlates of emotions and behaviors expressed during unconditioned fear tests. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Distal limb cast sores in horses: risk factors and early detection using thermography.

    PubMed

    Levet, T; Martens, A; Devisscher, L; Duchateau, L; Bogaert, L; Vlaminck, L

    2009-01-01

    There is a lack of evidence-based data on the prevalence, outcome and risk factors of distal limb cast sores, and no objective tool has been described for the early detection of cast sores. To investigate the prevalence, location, outcome and risk factors of cast sores after application of a distal limb cast and to determine whether static thermography of the cast is a valuable tool for the assessment of sores. A prospective study was conducted on horses treated with a distal limb cast. At each cast removal, cast sores were graded as superficial sores (SS), deep dermal sores (DS) or full thickness skin ulcerations (FS). In several cases, a thermographic evaluation of the cast was performed immediately prior to removal and differences in temperature (AT) between the coolest point of the cast and 2 cast regions predisposed for sore development (dorsoproximal mc/mtIII and palmar/plantar fetlock) were calculated. Mean +/- s.d. total casting time of 70 horses was 31 +/- 18 days. Overall, 57 legs (81%) developed at least SS. Twenty-four legs (34%) ultimately developed DS and one horse had an FS. Multivariable analysis showed that the severity of sores was positively associated with increasing age (OR: 1.111, P = 0.028), a normal (vs. swollen) limb (OR: 3387, P = 0.023) and an increase in total casting time (OR per week: 1.363, P = 0.002). The thermographic evaluation (35 casts) revealed that the severity of sores was positively associated with increasing deltaT (OR: 2.100, P = 0.0005). The optimal cut-off values for the presence of SS and DS were set at, respectively, deltaT = 23 and 43 degrees C. Distal limb cast is a safe coaptation technique with increasing risk of developing sores with time. Thermography is a valuable and rapid clinical tool to monitor the development of cast sores.

  6. [Diagnosing Low Health and Wood Borer Attacked Trees of Chinese Arborvitae by Using Thermography].

    PubMed

    Wang, Fei; Wu, De-jun; Zhai, Guo-feng; Zang, Li-peng

    2015-12-01

    Water and energy metabolism of plants is very important actions in their lives. Although the studies about these actions by using thermography were often reported, seldom were found in detecting the health status of forest trees. In this study, we increase the measurement accuracy and comparability of thermo-images by creating the difference indices. Based on it, we exam the water and energy status in stem of Chinese arborvitae (Platycladus orientalis (L.) Franco) by detecting the variance of far infrared spectrum between sap-wood and heart-wood of the cross-section of felling trees and the cores from an increment borer using thermography. The results indicate that the sap rate between sapwood and heartwood is different as the variance of the vigor of forest trees. Meanwhile, the image temperature of scale leaves from Chinese arborvitae trees with different vigor is also dissimilar. The far infrared spectrum more responds the sap status not the wood percentage in comparing to the area rate between sapwood and heartwood. The image temperature rate can be used in early determining the health status of Chinese arborvitae trees. The wood borers such as Phloeosinus aubei Perris and Semanotus bifasciatus Motschulsky are the pests which usually attack the low health trees, dying trees, wilted trees, felled trees and new cultivated trees. This measuring technique may be an important index to diagnose the health and vigor status after a large number of measurements for Chinese arborvitae trees. Therefore, there is potential to be an important index to check the tree vigor and pest damage status by using this technique. It will be a key in the tending and management of ecological and public Chinese arborvitae forest.

  7. Layerwise Monitoring of the Selective Laser Melting Process by Thermography

    NASA Astrophysics Data System (ADS)

    Krauss, Harald; Zeugner, Thomas; Zaeh, Michael F.

    Selective Laser Melting is utilized to build parts directly from CAD data. In this study layerwise monitoring of the temperature distribution is used to gather information about the process stability and the resulting part quality. The heat distribution varies with different kinds of parameters including scan vector length, laser power, layer thickness and inter-part distance in the job layout. By integration of an off-axis mounted uncooled thermal detector, the solidification as well as the layer deposition are monitored and evaluated. This enables the identification of hot spots in an early stage during the solidification process and helps to avoid process interrupts. Potential quality indicators are derived from spatially resolved measurement data and are correlated to the resulting part properties. A model of heat dissipation is presented based on the measurement of the material response for varying heat input. Current results show the feasibility of process surveillance by thermography for a limited section of the building platform in a commercial system.

  8. Dynamic perfusion assessment during perforator flap surgery: an up-to-date

    PubMed Central

    MUNTEAN, MAXIMILIAN VLAD; MUNTEAN, VALENTIN; ARDELEAN, FILIP; GEORGESCU, ALEXANDRU

    2015-01-01

    Flap monitoring technology has progressed alongside flap design. The highly variable vascular anatomy and the complexity associated with modern perforator flaps demands dynamic, real-time, intraoperative information about the vessel location, perfusion patterns and flap physiology. Although most surgeons still assess flap perfusion and viability based solely on clinical experience, studies have shown that results may be highly variable and often misleading. Poor judgment of intraoperative perfusion leads to major complications. Employing dynamic perfusion imaging during flap reconstruction has led to a reduced complication rate, lower morbidity, shorter hospital stay, and an overall better result. With the emergence of multiple systems capable of intraoperative flap evaluation, the purpose of this article is to review the two systems that have been widely accepted and are currently used by plastic surgeons: Indocyanine green angiography (ICGA) and dynamic infrared thermography (DIRT). PMID:26609259

  9. FPA-based infrared thermography as applied to the study of cutaneous perspiration and stimulated vascular response in humans.

    PubMed

    Vainer, Boris G

    2005-12-07

    This review gives an overview of focal plane array (FPA)-based infrared (IR) thermography as a powerful research method in the field of physiology and medicine. Comparison of the gained results with the data previously obtained by other authors with other research tools is given. Outer thermoregulatory manifestations displayed by the human organism subjected to whole-body heating (sauna bath) and physical loads (exercise bicycling) are quantitatively analysed. Some details of human body emotional sweating (psycho-physiological effect) are reported. Particular attention is paid to studying active sweat glands as individual objects. All experimental data were obtained with the help of a high-sensitivity (0.03 degrees C) fast 128 x 128 InAs IR detector-based thermal imaging system operating in the short-wave spectral region (2.5 to 3 microm) and perfectly suiting medical purposes. It is shown that IR thermography makes it possible to overcome limitations inherent to contact measuring means that were traditionally used before in thermal studies. It is also shown that heterogeneous thermograms displayed by organisms with disturbed inner equilibrium can be quantitatively analysed in terms of statistical parameters of related surface-temperature histograms, such as the mean temperature and the standard deviation of temperature (SDT). The increase and the decrease in SDT turned out to be typical of prolonged physical load and subsequent relaxation, and of external whole-body heating, respectively. Explanation of this result based on a hypothesis advanced within the context of the doctrine of human-organism evolution is given. Skin-temperature distribution function accompanying the relaxed organism in normality was found to closely resemble normal-distribution function. Symmetry break down and variation of the shape of this characteristic may serve as an indicator of homeostasis shift and can be used as a quantitative criterion for the latter. A new phenomenon, stable

  10. Characterization of emission microscopy and liquid crystal thermography in IC fault localization

    NASA Astrophysics Data System (ADS)

    Lau, C. K.; Sim, K. S.

    2013-05-01

    This paper characterizes two fault localization techniques - Emission Microscopy (EMMI) and Liquid Crystal Thermography (LCT) by using integrated circuit (IC) leakage failures. The majority of today's semiconductor failures do not reveal a clear visual defect on the die surface and therefore require fault localization tools to identify the fault location. Among the various fault localization tools, liquid crystal thermography and frontside emission microscopy are commonly used in most semiconductor failure analysis laboratories. Many people misunderstand that both techniques are the same and both are detecting hot spot in chip failing with short or leakage. As a result, analysts tend to use only LCT since this technique involves very simple test setup compared to EMMI. The omission of EMMI as the alternative technique in fault localization always leads to incomplete analysis when LCT fails to localize any hot spot on a failing chip. Therefore, this research was established to characterize and compare both the techniques in terms of their sensitivity in detecting the fault location in common semiconductor failures. A new method was also proposed as an alternative technique i.e. the backside LCT technique. The research observed that both techniques have successfully detected the defect locations resulted from the leakage failures. LCT wass observed more sensitive than EMMI in the frontside analysis approach. On the other hand, EMMI performed better in the backside analysis approach. LCT was more sensitive in localizing ESD defect location and EMMI was more sensitive in detecting non ESD defect location. Backside LCT was proven to work as effectively as the frontside LCT and was ready to serve as an alternative technique to the backside EMMI. The research confirmed that LCT detects heat generation and EMMI detects photon emission (recombination radiation). The analysis results also suggested that both techniques complementing each other in the IC fault localization

  11. Non-Destructive Evaluation of Aircraft Structural Components and Composite Materials at DSTO Using Sonic Thermography

    DTIC Science & Technology

    2011-02-01

    for a 256 x 256 array to 2 kHz 2 UNCLASSIFIED UNCLASSIFIED DSTO–TN–0986 for a central 64 x 64 sub-array. The second camera, a FLIR SC6000, has an...The first group of inserts (1, 3, 5, 7 and 9) were located at a depth of 15% of the total thickness and the second group (2, 4, 6, 8 and 10) were...thermography was conducted with a nominal input power of 480 W over 1 second duration. The thermal data was acquired at a frame rate of 50 Hz over 750 frames

  12. A synchronized particle image velocimetry and infrared thermography technique applied to an acoustic streaming flow

    PubMed Central

    Sou, In Mei; Layman, Christopher N.; Ray, Chittaranjan

    2013-01-01

    Subsurface coherent structures and surface temperatures are investigated using simultaneous measurements of particle image velocimetry (PIV) and infrared (IR) thermography. Results for coherent structures from acoustic streaming and associated heating transfer in a rectangular tank with an acoustic horn mounted horizontally at the sidewall are presented. An observed vortex pair develops and propagates in the direction along the centerline of the horn. From the PIV velocity field data, distinct kinematic regions are found with the Lagrangian coherent structure (LCS) method. The implications of this analysis with respect to heat transfer and related sonochemical applications are discussed. PMID:24347810

  13. Outdoor thermal monitoring of large scale structures by infrared thermography integrated in an ICT based architecture

    NASA Astrophysics Data System (ADS)

    Dumoulin, Jean; Crinière, Antoine; Averty, Rodolphe

    2015-04-01

    An infrared system has been developed to monitor transport infrastructures in a standalone configuration. Results obtained on bridges open to traffic allows to retrieve the inner structure of the decks. To complete this study, experiments were carried out over several months to monitor two reinforced concrete beams of 16 m long and 21 T each. Detection of a damaged area over one of the two beams was made by Pulse Phase Thermography approach. Measurements carried out over several months. Finally, conclusion on the robustness of the system is proposed and perspectives are presented.

  14. Internal dynamics of semiflexible polymers with active noise

    NASA Astrophysics Data System (ADS)

    Eisenstecken, Thomas; Gompper, Gerhard; Winkler, Roland G.

    2017-04-01

    The intramolecular dynamics of flexible and semiflexible polymers in response to active noise is studied theoretically. The active noise may either originate from interactions of a passive polymer with a bath of active Brownian particles or the polymer itself is comprised of active Brownian particles. We describe the polymer by the continuous Gaussian semiflexible-polymer model, taking into account the finite polymer extensibility. Our analytical calculations predict a strong dependence of the polymer dynamics on the activity. In particular, active semiflexible polymers exhibit a crossover from a bending elasticity-dominated dynamics at weak activity to that of flexible polymers at strong activity. The end-to-end vector correlation function decays exponentially for times longer than the longest polymer relaxation time. Thereby, the polymer relaxation determines the decay of the correlation function for long and flexible polymers. For shorter and stiffer polymers, the relaxation behavior of individual active Brownian particles dominates the decay above a certain activity. The diffusive dynamics of a polymer is substantially enhanced by the activity. Three regimes can be identified in the mean square displacement for sufficiently strong activities: an activity-induced ballistic regime at short times, followed by a Rouse-type polymer-specific regime for any polymer stiffness, and free diffusion at long times, again determined by the activity.

  15. Dynamics differentiate between active and inactive inteins

    PubMed Central

    Cronin, Melissa; Coolbaugh, Michael J; Nellis, David; Zhu, Jianwei; Wood, David W.; Nussinov, Ruth; Ma, Buyong

    2014-01-01

    The balance between stability and dynamics for active enzymes can be somewhat quantified by studies of intein splicing and cleaving reactions. Inteins catalyze the ligation of flanking host exteins while excising themselves. The potential for applications led to engineering of a mini-intein splicing domain, where the homing endonuclease domain of the Mycobacterium tuberculosis RecA (Mtu recA) intein was removed. The remaining domains were linked by several short peptides, but splicing activity in all was substantially lower than the full-length intein. Native splicing activity was restored in some cases by a V67L mutation. Using computations and experiments, we examine the impact of this mutation on the stability and conformational dynamics of the mini-intein splicing domain. Molecular dynamics simulations were used to delineate the factors that determine the active state, including the V67L mini-intein mutant, and peptide linker. We found that (1) the V67L mutation lowers the global fluctuations in all modeled mini-inteins, stabilizing the mini-intein constructs; (2) the connecting linker length affects intein dynamics; and (3) the flexibilities of the linker and intein core are higher in the active structure. We have observed that the interaction of the linker region and a turn region around residues 35-41 provides the pathway for the allostery interaction. Our experiments reveal that intein catalysis is characterized by non-linear Arrhenius plot, confirming the significant contribution of protein conformational dynamics to intein function. We conclude that while the V67L mutation stabilizes the global structure, cooperative dynamics of all intein regions appear more important for intein function than high stability. Our studies suggest that effectively quenching the conformational dynamics of an intein through engineered allosteric interactions could deactivate intein splicing or cleaving. PMID:25087201

  16. A simple blackbody simulator with several possibilities and applications on thermography

    NASA Astrophysics Data System (ADS)

    dos Santos, Laerte; Lemos, Alisson Maria; Abi-Ramia, Marco Antônio

    2016-05-01

    Originally designed to make the practical examination on thermography certification1 possible, the device presented in this paper has demonstrated to be a very useful and versatile didactic tool for training centers and educational institutions, it can also be used as a low cost blackbody simulator to verify calibration of radiometers. It is a simple device with several functionalities for studying and for applications on heat transfer and radiometry, among them the interesting ability to thermally simulate the surface of real objects. On that functionality, if the device is seen by a thermographic camera, it reproduces the surface apparent temperatures of the object that it is simulating, at the same time, if it is seen by a naked eye it shows a visible image of that same surface. This functionality makes the practical study in the classroom possible, from different areas such as electrical, mechanical, medical, building, veterinary, etc.

  17. Shuttle Entry Imaging Using Infrared Thermography

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas; Berry, Scott; Alter, Stephen; Blanchard, Robert; Schwartz, Richard; Ross, Martin; Tack, Steve

    2007-01-01

    During the Columbia Accident Investigation, imaging teams supporting debris shedding analysis were hampered by poor entry image quality and the general lack of information on optical signatures associated with a nominal Shuttle entry. After the accident, recommendations were made to NASA management to develop and maintain a state-of-the-art imagery database for Shuttle engineering performance assessments and to improve entry imaging capability to support anomaly and contingency analysis during a mission. As a result, the Space Shuttle Program sponsored an observation campaign to qualitatively characterize a nominal Shuttle entry over the widest possible Mach number range. The initial objectives focused on an assessment of capability to identify/resolve debris liberated from the Shuttle during entry, characterization of potential anomalous events associated with RCS jet firings and unusual phenomenon associated with the plasma trail. The aeroheating technical community viewed the Space Shuttle Program sponsored activity as an opportunity to influence the observation objectives and incrementally demonstrate key elements of a quantitative spatially resolved temperature measurement capability over a series of flights. One long-term desire of the Shuttle engineering community is to calibrate boundary layer transition prediction methodologies that are presently part of the Shuttle damage assessment process using flight data provided by a controlled Shuttle flight experiment. Quantitative global imaging may offer a complementary method of data collection to more traditional methods such as surface thermocouples. This paper reviews the process used by the engineering community to influence data collection methods and analysis of global infrared images of the Shuttle obtained during hypersonic entry. Emphasis is placed upon airborne imaging assets sponsored by the Shuttle program during Return to Flight. Visual and IR entry imagery were obtained with available airborne

  18. Spatial-time-state fusion algorithm for defect detection through eddy current pulsed thermography

    NASA Astrophysics Data System (ADS)

    Xiao, Xiang; Gao, Bin; Woo, Wai Lok; Tian, Gui Yun; Xiao, Xiao Ting

    2018-05-01

    Eddy Current Pulsed Thermography (ECPT) has received extensive attention due to its high sensitive of detectability on surface and subsurface cracks. However, it remains as a difficult challenge in unsupervised detection as to identify defects without knowing any prior knowledge. This paper presents a spatial-time-state features fusion algorithm to obtain fully profile of the defects by directional scanning. The proposed method is intended to conduct features extraction by using independent component analysis (ICA) and automatic features selection embedding genetic algorithm. Finally, the optimal feature of each step is fused to obtain defects reconstruction by applying common orthogonal basis extraction (COBE) method. Experiments have been conducted to validate the study and verify the efficacy of the proposed method on blind defect detection.

  19. Assessing honeybee and wasp thermoregulation and energetics—New insights by combination of flow-through respirometry with infrared thermography

    PubMed Central

    Stabentheiner, Anton; Kovac, Helmut; Hetz, Stefan K.; Käfer, Helmut; Stabentheiner, Gabriel

    2012-01-01

    Endothermic insects like honeybees and some wasps have to cope with an enormous heat loss during foraging because of their small body size in comparison to endotherms like mammals and birds. The enormous costs of thermoregulation call for optimisation. Honeybees and wasps differ in their critical thermal maximum, which enables the bees to kill the wasps by heat. We here demonstrate the benefits of a combined use of body temperature measurement with infrared thermography, and respiratory measurements of energy turnover (O2 consumption or CO2 production via flow-through respirometry) to answer questions of insect ecophysiological research, and we describe calibrations to receive accurate results. To assess the question of what foraging honeybees optimise, their body temperature was compared with their energy turnover. Honeybees foraging from an artificial flower with unlimited sucrose flow increased body surface temperature and energy turnover with profitability of foraging (sucrose content of the food; 0.5 or 1.5 mol/L). Costs of thermoregulation, however, were rather independent of ambient temperature (13–30 °C). External heat gain by solar radiation was used to increase body temperature. This optimised foraging energetics by increasing suction speed. In determinations of insect respiratory critical thermal limits, the combined use of respiratory measurements and thermography made possible a more conclusive interpretation of respiratory traces. PMID:22723718

  20. Active Brownian Particles. From Individual to Collective Stochastic Dynamics

    NASA Astrophysics Data System (ADS)

    Romanczuk, P.; Bär, M.; Ebeling, W.; Lindner, B.; Schimansky-Geier, L.

    2012-03-01

    We review theoretical models of individual motility as well as collective dynamics and pattern formation of active particles. We focus on simple models of active dynamics with a particular emphasis on nonlinear and stochastic dynamics of such self-propelled entities in the framework of statistical mechanics. Examples of such active units in complex physico-chemical and biological systems are chemically powered nano-rods, localized patterns in reaction-diffusion system, motile cells or macroscopic animals. Based on the description of individual motion of point-like active particles by stochastic differential equations, we discuss different velocity-dependent friction functions, the impact of various types of fluctuations and calculate characteristic observables such as stationary velocity distributions or diffusion coefficients. Finally, we consider not only the free and confined individual active dynamics but also different types of interaction between active particles. The resulting collective dynamical behavior of large assemblies and aggregates of active units is discussed and an overview over some recent results on spatiotemporal pattern formation in such systems is given.

  1. Evaluation of infrared thermography as a diagnostic tool to predict heat stress events in feedlot cattle.

    PubMed

    Unruh, Ellen M; Theurer, Miles E; White, Brad J; Larson, Robert L; Drouillard, James S; Schrag, Nora

    2017-07-01

    OBJECTIVE To determine whether infrared thermographic images obtained the morning after overnight heat abatement could be used as the basis for diagnostic algorithms to predict subsequent heat stress events in feedlot cattle exposed to high ambient temperatures. ANIMALS 60 crossbred beef heifers (mean ± SD body weight, 385.8 ± 20.3 kg). PROCEDURES Calves were housed in groups of 20 in 3 pens without any shade. During the 6 am and 3 pm hours on each of 10 days during a 14-day period when the daily ambient temperature was forecasted to be > 29.4°C, an investigator walked outside each pen and obtained profile digital thermal images of and assigned panting scores to calves near the periphery of the pen. Relationships between infrared thermographic data and panting scores were evaluated with artificial learning models. RESULTS Afternoon panting score was positively associated with morning but not afternoon thermographic data (body surface temperature). Evaluation of multiple artificial learning models indicated that morning body surface temperature was not an accurate predictor of an afternoon heat stress event, and thermographic data were of little predictive benefit, compared with morning and forecasted weather conditions. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated infrared thermography was an objective method to monitor beef calves for heat stress in research settings. However, thermographic data obtained in the morning did not accurately predict which calves would develop heat stress later in the day. The use of infrared thermography as a diagnostic tool for monitoring heat stress in feedlot cattle requires further investigation.

  2. Understanding human dynamics in microblog posting activities

    NASA Astrophysics Data System (ADS)

    Jiang, Zhihong; Zhang, Yubao; Wang, Hui; Li, Pei

    2013-02-01

    Human activity patterns are an important issue in behavior dynamics research. Empirical evidence indicates that human activity patterns can be characterized by a heavy-tailed inter-event time distribution. However, most researchers give an understanding by only modeling the power-law feature of the inter-event time distribution, and those overlooked non-power-law features are likely to be nontrivial. In this work, we propose a behavior dynamics model, called the finite memory model, in which humans adaptively change their activity rates based on a finite memory of recent activities, which is driven by inherent individual interest. Theoretical analysis shows a finite memory model can properly explain various heavy-tailed inter-event time distributions, including a regular power law and some non-power-law deviations. To validate the model, we carry out an empirical study based on microblogging activity from thousands of microbloggers in the Celebrity Hall of the Sina microblog. The results show further that the model is reasonably effective. We conclude that finite memory is an effective dynamics element to describe the heavy-tailed human activity pattern.

  3. Depth estimation of multi-layered impact damage in PMC using lateral thermography

    NASA Astrophysics Data System (ADS)

    Whitlow, Travis; Kramb, Victoria; Reibel, Rick; Dierken, Josiah

    2018-04-01

    Characterization of impact damage in polymer matrix composites (PMCs) continues to be a challenge due to the complex internal structure of the material. Nondestructive characterization approaches such as normal incident immersion ultrasound and flash thermography are sensitive to delamination damage, but do not provide information regarding damage obscured by the delaminations. Characterization of material state below a delamination requires a technique which is sensitive to in-plane damage modes such as matrix cracking and fiber breakage. Previous studies of the lateral heat flow through a composite laminate showed that the diffusion time was sensitive to the depth of the simulated damage zone. The current study will further evaluate the lateral diffusion model to provide sensitivity limits for the modeled flaw dimensions. Comparisons between the model simulations and experimental data obtained using a concentrated heat source and machined targets will also be presented.

  4. Development of composite calibration standard for quantitative NDE by ultrasound and thermography

    NASA Astrophysics Data System (ADS)

    Dayal, Vinay; Benedict, Zach G.; Bhatnagar, Nishtha; Harper, Adam G.

    2018-04-01

    Inspection of aircraft components for damage utilizing ultrasonic Non-Destructive Evaluation (NDE) is a time intensive endeavor. Additional time spent during aircraft inspections translates to added cost to the company performing them, and as such, reducing this expenditure is of great importance. There is also great variance in the calibration samples from one entity to another due to a lack of a common calibration set. By characterizing damage types, we can condense the required calibration sets and reduce the time required to perform calibration while also providing procedures for the fabrication of these standard sets. We present here our effort to fabricate composite samples with known defects and quantify the size and location of defects, such as delaminations, and impact damage. Ultrasonic and Thermographic images are digitally enhanced to accurately measure the damage size. Ultrasonic NDE is compared with thermography.

  5. Reconstructing Dynamic Promoter Activity Profiles from Reporter Gene Data.

    PubMed

    Kannan, Soumya; Sams, Thomas; Maury, Jérôme; Workman, Christopher T

    2018-03-16

    Accurate characterization of promoter activity is important when designing expression systems for systems biology and metabolic engineering applications. Promoters that respond to changes in the environment enable the dynamic control of gene expression without the necessity of inducer compounds, for example. However, the dynamic nature of these processes poses challenges for estimating promoter activity. Most experimental approaches utilize reporter gene expression to estimate promoter activity. Typically the reporter gene encodes a fluorescent protein that is used to infer a constant promoter activity despite the fact that the observed output may be dynamic and is a number of steps away from the transcription process. In fact, some promoters that are often thought of as constitutive can show changes in activity when growth conditions change. For these reasons, we have developed a system of ordinary differential equations for estimating dynamic promoter activity for promoters that change their activity in response to the environment that is robust to noise and changes in growth rate. Our approach, inference of dynamic promoter activity (PromAct), improves on existing methods by more accurately inferring known promoter activity profiles. This method is also capable of estimating the correct scale of promoter activity and can be applied to quantitative data sets to estimate quantitative rates.

  6. The Use of Infrared Thermography for Porosity Assessment of Intact Rock

    NASA Astrophysics Data System (ADS)

    Mineo, S.; Pappalardo, G.

    2016-08-01

    Preliminary results on a new test for the indirect assessment of porosity through infrared thermography are presented. The study of the cooling behavior of rock samples in laboratory, through the analysis of thermograms, proved an innovative tool for the estimation of such an important property, which is one of the main features affecting the mechanical behavior of rocks. A detailed experimentation was performed on artificially heated volcanic rock samples characterized by different porosity values. The cooling trend was described both graphically and numerically, with the help of cooling curves and Cooling Rate Index. The latter, which proved strictly linked to porosity, was employed to find reliable equations for its indirect estimation. Simple and multiple regression analyses returned satisfactory outcomes, highlighting the great match between predicted and measured porosity values, thus confirming the goodness of the proposed model. This study brings a novelty in rock mechanics, laying the foundation for future researches aimed at refining achieved results for the validation of the model in a larger scale.

  7. Surface temperature/heat transfer measurement using a quantitative phosphor thermography system

    NASA Technical Reports Server (NTRS)

    Buck, G. M.

    1991-01-01

    A relative-intensity phosphor thermography technique developed for surface heating studies in hypersonic wind tunnels is described. A direct relationship between relative emission intensity and phosphor temperature is used for quantitative surface temperature measurements in time. The technique provides global surface temperature-time histories using a 3-CCD (Charge Coupled Device) video camera and digital recording system. A current history of technique development at Langley is discussed. Latest developments include a phosphor mixture for a greater range of temperature sensitivity and use of castable ceramics for inexpensive test models. A method of calculating surface heat-transfer from thermal image data in blowdown wind tunnels is included in an appendix, with an analysis of material thermal heat-transfer properties. Results from tests in the Langley 31-Inch Mach 10 Tunnel are presented for a ceramic orbiter configuration and a four-inch diameter hemisphere model. Data include windward heating for bow-shock/wing-shock interactions on the orbiter wing surface, and a comparison with prediction for hemisphere heating distribution.

  8. Statistical Analysis of an Infrared Thermography Inspection of Reinforced Carbon-Carbon

    NASA Technical Reports Server (NTRS)

    Comeaux, Kayla

    2011-01-01

    Each piece of flight hardware being used on the shuttle must be analyzed and pass NASA requirements before the shuttle is ready for launch. One tool used to detect cracks that lie within flight hardware is Infrared Flash Thermography. This is a non-destructive testing technique which uses an intense flash of light to heat up the surface of a material after which an Infrared camera is used to record the cooling of the material. Since cracks within the material obstruct the natural heat flow through the material, they are visible when viewing the data from the Infrared camera. We used Ecotherm, a software program, to collect data pertaining to the delaminations and analyzed the data using Ecotherm and University of Dayton Log Logistic Probability of Detection (POD) Software. The goal was to reproduce the statistical analysis produced by the University of Dayton software, by using scatter plots, log transforms, and residuals to test the assumption of normality for the residuals.

  9. An investigation of noise performance in optical lock-in thermography

    NASA Astrophysics Data System (ADS)

    Rajic, Nik; Antolis, Cedric

    2017-12-01

    An investigation into the noise performance of optical lock-in thermography (OLT) is described. The study aims to clarify the influence of infrared detector type and key inspection parameters such as illumination strength and lock-in duration on the quality of OLT amplitude and phase imagery. The study compares the performance of a state-of-the-art cooled photon detector with several lower-cost microbolometers. The results reveal a significant noise performance advantage to the photon detector. Under certain inspection regimes the advantage with respect to phase image quality is disproportionately high relative to detector sensitivities. This is shown to result from an explicit dependence in the phase signal variance on the ratio between the signal amplitude and the detector sensitivity. While this finding supports the preferred use of photon detectors for OLT inspections, it does not exclude microbolometers from a useful role. In cases where the significantly lower capital cost and improved practicality of microbolometers provide an advantage it is shown that performance shortfalls can be overcome with a relatively small factorial increase in optical illumination intensity.

  10. Comparison of infrared and 3D digital image correlation techniques applied for mechanical testing of materials

    NASA Astrophysics Data System (ADS)

    Krstulović-Opara, Lovre; Surjak, Martin; Vesenjak, Matej; Tonković, Zdenko; Kodvanj, Janoš; Domazet, Željko

    2015-11-01

    To investigate the applicability of infrared thermography as a tool for acquiring dynamic yielding in metals, a comparison of infrared thermography with three dimensional digital image correlation has been made. Dynamical tension tests and three point bending tests of aluminum alloys have been performed to evaluate results obtained by IR thermography in order to detect capabilities and limits for these two methods. Both approaches detect pastification zone migrations during the yielding process. The results of the tension test and three point bending test proved the validity of the IR approach as a method for evaluating the dynamic yielding process when used on complex structures such as cellular porous materials. The stability of the yielding process in the three point bending test, as contrary to the fluctuation of the plastification front in the tension test, is of great importance for the validation of numerical constitutive models. The research proved strong performance, robustness and reliability of the IR approach when used to evaluate yielding during dynamic loading processes, while the 3D DIC method proved to be superior in the low velocity loading regimes. This research based on two basic tests, proved the conclusions and suggestions presented in our previous research on porous materials where middle wave infrared thermography was applied.

  11. TOPICAL REVIEW: FPA-based infrared thermography as applied to the study of cutaneous perspiration and stimulated vascular response in humans

    NASA Astrophysics Data System (ADS)

    Vainer, Boris G.

    2005-12-01

    This review gives an overview of focal plane array (FPA)-based infrared (IR) thermography as a powerful research method in the field of physiology and medicine. Comparison of the gained results with the data previously obtained by other authors with other research tools is given. Outer thermoregulatory manifestations displayed by the human organism subjected to whole-body heating (sauna bath) and physical loads (exercise bicycling) are quantitatively analysed. Some details of human body emotional sweating (psycho-physiological effect) are reported. Particular attention is paid to studying active sweat glands as individual objects. All experimental data were obtained with the help of a high-sensitivity (0.03 °C) fast 128 × 128 InAs IR detector-based thermal imaging system operating in the short-wave spectral region (2.5 to 3 µm) and perfectly suiting medical purposes. It is shown that IR thermography makes it possible to overcome limitations inherent to contact measuring means that were traditionally used before in thermal studies. It is also shown that heterogeneous thermograms displayed by organisms with disturbed inner equilibrium can be quantitatively analysed in terms of statistical parameters of related surface-temperature histograms, such as the mean temperature and the standard deviation of temperature (SDT). The increase and the decrease in SDT turned out to be typical of prolonged physical load and subsequent relaxation, and of external whole-body heating, respectively. Explanation of this result based on a hypothesis advanced within the context of the doctrine of human-organism evolution is given. Skin-temperature distribution function accompanying the relaxed organism in normality was found to closely resemble normal-distribution function. Symmetry break down and variation of the shape of this characteristic may serve as an indicator of homeostasis shift and can be used as a quantitative criterion for the latter. A new phenomenon, stable punctate

  12. Lock-in thermography approach for imaging the efficiency of light emitters and optical coolers

    NASA Astrophysics Data System (ADS)

    Radevici, Ivan; Tiira, Jonna; Oksanen, Jani

    2017-02-01

    Developing optical cooling technologies requires access to reliable efficiency measurement techniques and ability to detect spatial variations in the efficiency and light emission of the devices. We investigate the possibility to combine the calorimetric efficiency measurement principles with lock-in thermography (LIT) and conventional luminescence microscopy to enable spatially resolved measurement of the efficiency, current spreading and local device heating of double diode structures (DDS) serving as test vessels for developing thermophotonic cooling devices. Our approach enables spatially resolved characterization and localization of the losses of the double diode structures as well as other light emitting semiconductor devices. In particular, the approach may allow directly observing effects like current crowding and surface recombination on the light emission and heating of the DDS devices.

  13. 3D thermography for improving temperature measurements in thermal vacuum testing

    NASA Astrophysics Data System (ADS)

    Robinson, D. W.; Simpson, R.; Parian, J. A.; Cozzani, A.; Casarosa, G.; Sablerolle, S.; Ertel, H.

    2017-09-01

    The application of thermography to thermal vacuum (TV) testing of spacecrafts is becoming a vital additional tool in the mapping of structures during thermal cycles and thermal balance (TB) testing. Many of the customers at the European Space Agency (ESA) test centre, European Space Research and Technology Centre (ESTEC), The Netherlands, now make use of a thermal camera during TB-TV campaigns. This complements the use of embedded thermocouples on the structure, providing the prospect of monitoring temperatures at high resolution and high frequency. For simple flat structures with a well-defined emissivity, it is possible to determine the surface temperatures with reasonable confidence. However, for most real spacecraft and sub-systems, the complexity of the structure's shape and its test environment creates inter-reflections from external structures. This and the additional complication of angular and spectral variations of the spacecraft surface emissivity make the interpretation of the radiation detected by a thermal camera more difficult in terms of determining a validated temperature with high confidence and well-defined uncertainty. One solution to this problem is: to map the geometry of the test specimen and thermal test environment; to model the surface temperatures and emissivity variations of the structures and materials; and to use this model to correct the apparent temperatures recorded by the thermal camera. This approach has been used by a team from NPL (National Physical Laboratory), Psi-tran, and PhotoCore, working with ESA, to develop a 3D thermography system to provide a means to validate thermal camera temperatures, based on a combination of thermal imaging photogrammetry and ray-tracing scene modeling. The system has been tested at ESTEC in ambient conditions with a dummy spacecraft structure containing a representative set of surface temperatures, shapes, and spacecraft materials, and with hot external sources and a high power lamp as a sun

  14. The uses of infrared thermography to evaluate the effects of climatic variables in bull's reproduction

    NASA Astrophysics Data System (ADS)

    Menegassi, Silvio Renato Oliveira; Pereira, Gabriel Ribas; Dias, Eduardo Antunes; Koetz, Celso; Lopes, Flávio Guiselli; Bremm, Carolina; Pimentel, Concepta; Lopes, Rubia Branco; da Rocha, Marcela Kuczynski; Carvalho, Helena Robattini; Barcellos, Júlio Otavio Jardim

    2016-01-01

    The objective of this study was to evaluate the seasonal effects of the environment on sperm quality in subtropical region determined by temperature and humidity index (THI). We used 20 Brangus bulls (5/8 Angus × 3/8 Nellore) aged approximately 24 months at the beginning of the study. Semen evaluations were performed twice per season during 1 year. Climate THI data were collected from an automatic weather station from the National Institute of Meteorology. Infrared thermography images were used to determine the temperature of the proximal and distal poles of the testis to assess the testicular temperature gradient (TG). The seasonal effects on seminal and climatic variables were analyzed with ANOVA using MIXED procedure of SAS. Sperm motility in spring (60.1 %), summer (57.6 %), and autumn (64.5 %) showed difference compared to winter (73.0 %; P < 0.01). TG was negatively correlated with THI at 18 days (spermiogenesis) (-0.76; P < 0.05) and at 12 days (epididymal transit) (-0.85; P < 0.01). Ocular temperature (OcT) had a positive correlation with THI at 18 days (0.78; P < 0.05) and at 12 days (0.84; P < 0.01). Motility showed a negative correlation with THI only at 18 days (-0.79; P < 0.05). During spermiogenesis, the TG had higher negative correlation compared to OcT (-0.97; P < 0.01) and rectal temperature (-0.72; P < 0.05). Spermatozoa with distal midpiece reflex were correlated with THI during transit epididymis (0.72; P < 0.05). Seminal parameters are not affected when THI reaches 93.0 (spermiogenesis) and 88.0 (epididymal transit). We concluded that infrared thermography can be adopted as an indirect method in order to assess the effect of environmental changes in TG and OcT of Brangus bulls.

  15. Magnetic hyperthermia study in water based magnetic fluids containing TMAOH coated Fe3O4 using infrared thermography

    NASA Astrophysics Data System (ADS)

    Lahiri, B. B.; Ranoo, Surojit; Philip, John

    2017-01-01

    We study the alternating magnetic field induced heating of a water based ferrofluid containing tetramethyl ammonium hydroxide coated iron oxide nanoparticles using infrared thermography and compare the results obtained from the conventional fiber optic temperature sensor. Experiments are performed on ferrofluid samples of five different concentrations and under four different external field amplitudes at a fixed frequency. The temperature rise curves measured using both the infrared thermography and fiber optic sensor are found to be very similar up to a certain time interval, above which deviations are observed, which are attributed to the internal and external convection phenomena. A correction methodology is developed to account for the convection losses. The convection corrected specific absorption rate is found to be in good agreement with the values obtained from the conventional fiber optic temperature sensor, within a maximum error of ±3.4%. The highest specific absorption rate obtained in the present study is 135.98 (±4.6) W/gFe for a sample concentration of 3 wt.%, at an external field amplitude and a frequency of 63.0 kA m-1 and 126 kHz, respectively. The specific absorption rate is found to decrease with increasing sample concentration, due to the enhancement of dipolar interaction with increasing sample concentration due to agglomeration. This study validates the efficacy and universal applicability of IRT as an alternate, real time, non-contact and wide area temperature measurement methodology for magnetic fluid hyperthermia experiments without any sample contamination.

  16. Real Time Fatigue Damage Growth Assessment of a Composite Three-Stringer Panel Using Passive Thermography

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Burke, Eric R.; Horne, Michael R.; Bly, James B.

    2015-01-01

    Fatigue testing of advanced composite structures is critical to validate both structural designs and damage prediction models. In-situ inspection methods are necessary to track damage onset and growth as a function of load cycles. Passive thermography is a large area, noncontact inspection technique that is used to detect composite damage onset and growth in real time as a function of fatigue cycles. The thermal images are acquired in synchronicity to the applied compressive load using a dual infrared camera acquisition system for full (front and back) coverage. Image processing algorithms are investigated to increase defect contrast areas. The thermal results are compared to non-immersion ultrasound inspections and acoustic emission data.

  17. Evaluation of coating thickness by thermal wave imaging: A comparative study of pulsed and lock-in infrared thermography - Part I: Simulation

    NASA Astrophysics Data System (ADS)

    Shrestha, Ranjit; Kim, Wontae

    2017-06-01

    This paper investigates the possibilities of evaluating non-uniform coating thickness using thermal wave imaging method. A comparative study of pulsed thermography (PT) and lock-in thermography (LIT) based on evaluating the accuracy of predicted coating thickness is presented. In this study, a transient thermal finite element model was created in ANSYS 15. A single square pulse heating for PT and a sinusoidal heating at different modulation frequencies for LIT were used to stimulate the sample according to the experimental procedures. The response of thermally excited surface was recorded and data processing with Fourier transform was carried out to obtain the phase angle. Then calculated phase angle was correlated with the coating thickness. The method demonstrated potential in the evaluation of coating thickness and was successfully applied to measure the non-uniform top layers ranging from 0.1 mm to 0.6 mm; within an accuracy of 0.0003-0.0023 mm for PT and 0.0003-0.0067 mm for LIT. The simulation model enabled a better understanding of PT and LIT and provided a means of establishing the required experimental set-up parameters. This also led to optimization of experimental configurations, thus limiting the number of physical tests necessary.

  18. Automated diagnosis of dry eye using infrared thermography images

    NASA Astrophysics Data System (ADS)

    Acharya, U. Rajendra; Tan, Jen Hong; Koh, Joel E. W.; Sudarshan, Vidya K.; Yeo, Sharon; Too, Cheah Loon; Chua, Chua Kuang; Ng, E. Y. K.; Tong, Louis

    2015-07-01

    Dry Eye (DE) is a condition of either decreased tear production or increased tear film evaporation. Prolonged DE damages the cornea causing the corneal scarring, thinning and perforation. There is no single uniform diagnosis test available to date; combinations of diagnostic tests are to be performed to diagnose DE. The current diagnostic methods available are subjective, uncomfortable and invasive. Hence in this paper, we have developed an efficient, fast and non-invasive technique for the automated identification of normal and DE classes using infrared thermography images. The features are extracted from nonlinear method called Higher Order Spectra (HOS). Features are ranked using t-test ranking strategy. These ranked features are fed to various classifiers namely, K-Nearest Neighbor (KNN), Nave Bayesian Classifier (NBC), Decision Tree (DT), Probabilistic Neural Network (PNN), and Support Vector Machine (SVM) to select the best classifier using minimum number of features. Our proposed system is able to identify the DE and normal classes automatically with classification accuracy of 99.8%, sensitivity of 99.8%, and specificity if 99.8% for left eye using PNN and KNN classifiers. And we have reported classification accuracy of 99.8%, sensitivity of 99.9%, and specificity if 99.4% for right eye using SVM classifier with polynomial order 2 kernel.

  19. Topological structure dynamics revealing collective evolution in active nematics

    PubMed Central

    Shi, Xia-qing; Ma, Yu-qiang

    2013-01-01

    Topological defects frequently emerge in active matter like bacterial colonies, cytoskeleton extracts on substrates, self-propelled granular or colloidal layers and so on, but their dynamical properties and the relations to large-scale organization and fluctuations in these active systems are seldom touched. Here we reveal, through a simple model for active nematics using self-driven hard elliptic rods, that the excitation, annihilation and transportation of topological defects differ markedly from those in non-active media. These dynamical processes exhibit strong irreversibility in active nematics in the absence of detailed balance. Moreover, topological defects are the key factors in organizing large-scale dynamic structures and collective flows, resulting in multi-spatial temporal effects. These findings allow us to control the self-organization of active matter through topological structures. PMID:24346733

  20. In-situ infrared thermography measurements to master transmission laser welding process parameters of PEKK

    NASA Astrophysics Data System (ADS)

    Villar, M.; Garnier, C.; Chabert, F.; Nassiet, V.; Samélor, D.; Diez, J. C.; Sotelo, A.; Madre, M. A.

    2018-07-01

    The temperature field along the thickness of the specimens has been measured during transmission laser welding. Polyetherketoneketone (PEKK) is a very high performance thermoplastic with tunable properties. We have shown that this grade of PEKK can be turned to quasi-amorphous or semi-crystalline material, due to its slow kinetics of crystallization. Its glass transition temperature is 150 °C. The effect of its crystalline rate directly impacts its optical properties: the transmittance of quasi-amorphous PEKK is about 60% in the NIR region (wavelength range from 0.4 to 1.2 μm) whereas it is less than 3% for the semi-crystalline material. The welding tests have been carried out with an 808 nm laser diode apparatus. The heat field is recorded during the welding experiment by infrared thermography with the camera sensor perpendicular to the lasersheet and to the sample's length to focus on the welded interface. The study is divided in two steps: firstly, a single specimen is irradiated with an energy density of 22 J.mm-²: the whole sample thickness is heated up, the maximum temperature reaches 222 ± 7 °C. This temperature corresponds to about Tg + 70 °C, but the polymer does not reach its melting temperature. After that, welding tests were performed: a transparent (quasi-amorphous) sample as the upper part and an opaque (semi-crystalline) one as the lower part were assembled in static conditions. The maximum temperature reached at the welded interface is about 295 °C when the upper specimen is irradiated for 16 s with an energy density of 28 J.mm-². The temperature at the welded interface stays above Tg during 55 s and reached the melting temperature during 5 s before rapid cooling. These parameters are suitable to assemble both polymeric parts in a strong weld. This work shows that infrared thermography is an appropriate technique to improve the reliability of laser welding process of high performance thermoplastics.

  1. Dynamic Modulation of Human Motor Activity When Observing Actions

    PubMed Central

    Press, Clare; Cook, Jennifer; Blakemore, Sarah-Jayne; Kilner, James

    2012-01-01

    Previous studies have demonstrated that when we observe somebody else executing an action many areas of our own motor systems are active. It has been argued that these motor activations are evidence that we motorically simulate observed actions; this motoric simulation may support various functions such as imitation and action understanding. However, whether motoric simulation is indeed the function of motor activations during action observation is controversial, due to inconsistency in findings. Previous studies have demonstrated dynamic modulations in motor activity when we execute actions. Therefore, if we do motorically simulate observed actions, our motor systems should also be modulated dynamically, and in a corresponding fashion, during action observation. Using magnetoencephalography, we recorded the cortical activity of human participants while they observed actions performed by another person. Here, we show that activity in the human motor system is indeed modulated dynamically during action observation. The finding that activity in the motor system is modulated dynamically when observing actions can explain why studies of action observation using functional magnetic resonance imaging have reported conflicting results, and is consistent with the hypothesis that we motorically simulate observed actions. PMID:21414901

  2. Crack detection in oak flooring lamellae using ultrasound-excited thermography

    NASA Astrophysics Data System (ADS)

    Pahlberg, Tobias; Thurley, Matthew; Popovic, Djordje; Hagman, Olle

    2018-01-01

    Today, a large number of people are manually grading and detecting defects in wooden lamellae in the parquet flooring industry. This paper investigates the possibility of using the ensemble methods random forests and boosting to automatically detect cracks using ultrasound-excited thermography and a variety of predictor variables. When friction occurs in thin cracks, they become warm and thus visible to a thermographic camera. Several image processing techniques have been used to suppress the noise and enhance probable cracks in the images. The most successful predictor variables captured the upper part of the heat distribution, such as the maximum temperature, kurtosis and percentile values 92-100 of the edge pixels. The texture in the images was captured by Completed Local Binary Pattern histograms and cracks were also segmented by background suppression and thresholding. The classification accuracy was significantly improved from previous research through added image processing, introduction of more predictors, and by using automated machine learning. The best ensemble methods reach an average classification accuracy of 0.8, which is very close to the authors' own manual attempt at separating the images (0.83).

  3. Study Methods to Characterize and Implement Thermography Nondestructive Evaluation (NDE)

    NASA Technical Reports Server (NTRS)

    Walker, James L.

    1998-01-01

    The limits and conditions under which an infrared thermographic nondestructive evaluation can be utilized to assess the quality of aerospace hardware is demonstrated in this research effort. The primary focus of this work is on applying thermography to the inspection of advanced composite structures such as would be found in the International Space Station Instrumentation Racks, Space Shuttle Cargo Bay Doors, Bantam RP-1 tank or RSRM Nose Cone. Here, the detection of delamination, disbond, inclusion and porosity type defects are of primary interest. In addition to composites, an extensive research effort has been initiated to determine how well a thermographic evaluation can detect leaks and disbonds in pressurized metallic systems "i.e. the Space Shuttle Main Engine Nozzles". In either case, research into developing practical inspection procedures was conducted and thermographic inspections were performed on a myriad of test samples, subscale demonstration articles and "simulated" flight hardware. All test samples were fabricated as close to their respective structural counterparts as possible except with intentional defects for NDE qualification. As an added benefit of this effort to create simulated defects, methods were devised for defect fabrication that may be useful in future NDE qualification ventures.

  4. Use Of Infrared Thermography For The Identification Of Design And Construction Faults In Buildings

    NASA Astrophysics Data System (ADS)

    Seeber, Stephen A.

    1984-03-01

    Many design and construction details can affect building energy consumption in unex-pected ways. Further, design and construction errors can increase building energy consumption, result in discomfort to building occupants and cause structural damage to the building. Infrared inspections can easily evaluate the energy efficiency of various aspects of a building's design and identify flaws that might otherwise be detected as a result of occupants' complaints or damage to the building's mechanical or structural systems. Infrared thermography can be used by the architect to evaluate his designs and by the contractor to control the quality of construction. This paper discusses a number of issues that can help determine the effectiveness of infrared building surveys. Following this, three case stud-ies will be presented to illustrate design flaws that were detected through infrared build-ing surveys.

  5. Overview af MSFC's Applied Fluid Dynamics Analysis Group Activities

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto; Griffin, Lisa; Williams, Robert

    2004-01-01

    This paper presents viewgraphs on NASA Marshall Space Flight Center's Applied Fluid Dynamics Analysis Group Activities. The topics include: 1) Status of programs at MSFC; 2) Fluid Mechanics at MSFC; 3) Relevant Fluid Dynamics Activities at MSFC; and 4) Shuttle Return to Flight.

  6. Use of infrared thermography in children with shock: A case series

    PubMed Central

    Ortiz-Dosal, Alejandra; Rivera-Vega, Rosalina; Simón, Jorge; González, Francisco J

    2014-01-01

    Shock is a complex clinical syndrome caused by an acute failure of circulatory function resulting in inadequate tissue and organ perfusion. Digital infrared thermal imaging is a non-invasive technique that can detect changes in blood perfusion by detecting small changes in the temperature of the skin. In this preliminary study, eight pediatric patients (five boys, three girls), ages ranging from 6 to 14 years (average: 9.8 years), were admitted to the Intensive Care Unit at “Dr. Ignacio Morones Prieto” Central Hospital; here, the patients were examined using digital infrared thermal imaging. Patients in shock showed a significant decrease in distal temperature (at least 7°), compared to critically ill patients without shock. The latter group presented a skin temperature pattern very similar to the one previously reported for healthy children. The results show that infrared thermography can be used as a non-invasive method for monitoring the temperature in pediatric patients in intensive care units in order to detect shock in its early stages. PMID:27489669

  7. Use of infrared thermography in children with shock: A case series.

    PubMed

    Ortiz-Dosal, Alejandra; Kolosovas-Machuca, Eleazar S; Rivera-Vega, Rosalina; Simón, Jorge; González, Francisco J

    2014-01-01

    Shock is a complex clinical syndrome caused by an acute failure of circulatory function resulting in inadequate tissue and organ perfusion. Digital infrared thermal imaging is a non-invasive technique that can detect changes in blood perfusion by detecting small changes in the temperature of the skin. In this preliminary study, eight pediatric patients (five boys, three girls), ages ranging from 6 to 14 years (average: 9.8 years), were admitted to the Intensive Care Unit at "Dr. Ignacio Morones Prieto" Central Hospital; here, the patients were examined using digital infrared thermal imaging. Patients in shock showed a significant decrease in distal temperature (at least 7°), compared to critically ill patients without shock. The latter group presented a skin temperature pattern very similar to the one previously reported for healthy children. The results show that infrared thermography can be used as a non-invasive method for monitoring the temperature in pediatric patients in intensive care units in order to detect shock in its early stages.

  8. Experiments on Hypersonic Roughness Induced Transition by Means of Infrared Thermography

    NASA Astrophysics Data System (ADS)

    Schrijer, F. F. J.; Scarano, F.; van Oudheusden, B. W.; Bannink, W. J.

    2005-02-01

    Roughness induced boundary layer transition is experimentally investigated in the hypersonic flow regime at M = 9. The primary interest is the possible effect of stepwise geometry imperfections (2D isolated roughness) on (boundary layer) transition which may be caused on the EXPERT vehicle by the difference in thermal expansion due to the different materials used in the vehicle-nose construction. Also 3D isolated and 3D distributed roughness configurations were studied. Quantitative Infra-Red Thermography (QIRT) is used as primary diagnostic technique to measure the surface convective heat transfer and to detect boundary layer laminar-to-turbulent transition. The investigation shows that for a given height of the roughness element, the boundary layer is least sensitive to a step-like disturbance, whereas distributed 3D roughness was found to be effective in triggering transition. The experimental results have been compared to existing hypersonic transition correlations (PANT and Shuttle). Finally a transition criterion is evaluated which is based on the critical roughness height Reynolds number. Usage of this criterion enables a straightforward extrapolation to flight. Key words: hypersonic flow, boundary layer transition.

  9. Phase sensitive thermography for quality assessment of giant magnetostrictive composite materials

    NASA Astrophysics Data System (ADS)

    Yang, Peng; Law, Chiu T.; Elhajjar, Rani

    2017-04-01

    Giant magnetostrictive materials are increasingly proposed for smart material applications such as in sensors, actuators, and energy harvesting applications. In a composites form, the materials are combined in particle form with polymer matrix composites. Reviewing the literature on this topic, the reader observes a large amount of variability in the reported properties that are typically based on recording (overall or localized) strain and magnetic field with non-collocating strain gages and a gauss meter, i.e. far field measurements. Previously the linking of the microstructure in magnetostrictive composite to the spatial variability of the localized magnetostrictive response, a significant factor for the composite performance in sensing and acutuation, has not been received adequate attention. In this paper, a full-field phase-sensitive thermography method is proposed to use full-field infrared measurements to infer changes in the microstructure in magnetostrictive polymer composites under a cyclic magnetic field. The results show how defects in the material can be rapidly identified from the proposed approach in inspecting the manufactured smart composites.

  10. Quantitative Detection of Cracks in Steel Using Eddy Current Pulsed Thermography.

    PubMed

    Shi, Zhanqun; Xu, Xiaoyu; Ma, Jiaojiao; Zhen, Dong; Zhang, Hao

    2018-04-02

    Small cracks are common defects in steel and often lead to catastrophic accidents in industrial applications. Various nondestructive testing methods have been investigated for crack detection; however, most current methods focus on qualitative crack identification and image processing. In this study, eddy current pulsed thermography (ECPT) was applied for quantitative crack detection based on derivative analysis of temperature variation. The effects of the incentive parameters on the temperature variation were analyzed in the simulation study. The crack profile and position are identified in the thermal image based on the Canny edge detection algorithm. Then, one or more trajectories are determined through the crack profile in order to determine the crack boundary through its temperature distribution. The slope curve along the trajectory is obtained. Finally, quantitative analysis of the crack sizes was performed by analyzing the features of the slope curves. The experimental verification showed that the crack sizes could be quantitatively detected with errors of less than 1%. Therefore, the proposed ECPT method was demonstrated to be a feasible and effective nondestructive approach for quantitative crack detection.

  11. International standards for pandemic screening using infrared thermography

    NASA Astrophysics Data System (ADS)

    Pascoe, D. D.; Ring, E. F.; Mercer, J. B.; Snell, J.; Osborn, D.; Hedley-Whyte, J.

    2010-03-01

    The threat of a virulent strain of influenza, severe acute respiratory syndrome (SARS), tuberculosis, H1N1/A virus (swine flu) and possible mutations are a constant threat to global health. Implementation of pandemic infrared thermographic screening is based on the detection of febrile temperatures (inner canthus of the eyes) that are correlated with an infectious disease. Previous attempts at pandemic thermal screening have experienced problems (e.g. SARS outbreak, Singapore 2003) associated with the deployment plan, implementation and operation of the screening thermograph. Since this outbreak, the International Electrotechnical Commission has developed international standards that set minimum requirements for thermographic system fever screening and procedures that insure reliable and reproducible measurements. These requirements are published in IEC 80601-2-59:2008, Medical electrical equipment - Part 2-59: Particular requirements for the basic safety and essential performance of screening thermographs for human febrile temperature screening. The International Organization for Standardization has developed ISO/TR 13154:2009, Medical Electrical Equipment - which provides deployment, implementation and operational guidelines for identifying febrile humans using a screening thermograph. These new standards includes recommendations for camera calibrations, use of black body radiators, view field, focus, pixels within measurement site, image positioning, and deployment locations. Many current uses of thermographic screening at airports do not take into account critical issues addressed in the new standard, and are operating below the necessary effectiveness and efficiency. These documents, related thermal research, implications for epidemiology screening, and the future impact on medical thermography are discussed.

  12. Reduction and Analysis of Phosphor Thermography Data With the IHEAT Software Package

    NASA Technical Reports Server (NTRS)

    Merski, N. Ronald

    1998-01-01

    Detailed aeroheating information is critical to the successful design of a thermal protection system (TPS) for an aerospace vehicle. This report describes NASA Langley Research Center's (LaRC) two-color relative-intensity phosphor thermography method and the IHEAT software package which is used for the efficient data reduction and analysis of the phosphor image data. Development of theory is provided for a new weighted two-color relative-intensity fluorescence theory for quantitatively determining surface temperatures on hypersonic wind tunnel models; an improved application of the one-dimensional conduction theory for use in determining global heating mappings; and extrapolation of wind tunnel data to flight surface temperatures. The phosphor methodology at LaRC is presented including descriptions of phosphor model fabrication, test facilities and phosphor video acquisition systems. A discussion of the calibration procedures, data reduction and data analysis is given. Estimates of the total uncertainties (with a 95% confidence level) associated with the phosphor technique are shown to be approximately 8 to 10 percent in the Langley's 31-Inch Mach 10 Tunnel and 7 to 10 percent in the 20-Inch Mach 6 Tunnel. A comparison with thin-film measurements using two-inch radius hemispheres shows the phosphor data to be within 7 percent of thin-film measurements and to agree even better with predictions via a LATCH computational fluid dynamics solution (CFD). Good agreement between phosphor data and LAURA CFD computations on the forebody of a vertical takeoff/vertical lander configuration at four angles of attack is also shown. In addition, a comparison is given between Mach 6 phosphor data and laminar and turbulent solutions generated using the LAURA, GASP and LATCH CFD codes. Finally, the extrapolation method developed in this report is applied to the X-34 configuration with good agreement between the phosphor extrapolation and LAURA flight surface temperature predictions

  13. Infrared thermography applied to the study of heated and solar pavement: from numerical modeling to small scale laboratory experiments

    NASA Astrophysics Data System (ADS)

    Le Touz, N.; Toullier, T.; Dumoulin, J.

    2017-05-01

    The present study addresses the thermal behaviour of a modified pavement structure to prevent icing at its surface in adverse winter time conditions or overheating in hot summer conditions. First a multi-physic model based on infinite elements method was built to predict the evolution of the surface temperature. In a second time, laboratory experiments on small specimen were carried out and the surface temperature was monitored by infrared thermography. Results obtained are analyzed and performances of the numerical model for real scale outdoor application are discussed. Finally conclusion and perspectives are proposed.

  14. Dynamic neural activity during stress signals resilient coping

    PubMed Central

    Sinha, Rajita; Lacadie, Cheryl M.; Constable, R. Todd; Seo, Dongju

    2016-01-01

    Active coping underlies a healthy stress response, but neural processes supporting such resilient coping are not well-known. Using a brief, sustained exposure paradigm contrasting highly stressful, threatening, and violent stimuli versus nonaversive neutral visual stimuli in a functional magnetic resonance imaging (fMRI) study, we show significant subjective, physiologic, and endocrine increases and temporally related dynamically distinct patterns of neural activation in brain circuits underlying the stress response. First, stress-specific sustained increases in the amygdala, striatum, hypothalamus, midbrain, right insula, and right dorsolateral prefrontal cortex (DLPFC) regions supported the stress processing and reactivity circuit. Second, dynamic neural activation during stress versus neutral runs, showing early increases followed by later reduced activation in the ventrolateral prefrontal cortex (VLPFC), dorsal anterior cingulate cortex (dACC), left DLPFC, hippocampus, and left insula, suggested a stress adaptation response network. Finally, dynamic stress-specific mobilization of the ventromedial prefrontal cortex (VmPFC), marked by initial hypoactivity followed by increased VmPFC activation, pointed to the VmPFC as a key locus of the emotional and behavioral control network. Consistent with this finding, greater neural flexibility signals in the VmPFC during stress correlated with active coping ratings whereas lower dynamic activity in the VmPFC also predicted a higher level of maladaptive coping behaviors in real life, including binge alcohol intake, emotional eating, and frequency of arguments and fights. These findings demonstrate acute functional neuroplasticity during stress, with distinct and separable brain networks that underlie critical components of the stress response, and a specific role for VmPFC neuroflexibility in stress-resilient coping. PMID:27432990

  15. Active Polar Gels: a Paradigm for Cytoskeletal Dynamics

    NASA Astrophysics Data System (ADS)

    Julicher, Frank

    2006-03-01

    The cytoskeleton of eucaryotic cells is an intrinsically dynamic network of rod-like filaments. Active processes on the molecular scale such as the action of motor proteins and the polymerization and depolymerization of filaments drive active dynamic behaviors while consuming chemical energy in the form of a fuel. Such emergent dynamics is regulated by the cell and is important for many cellular processes such as cell locomotion and cell division. From a general point of view the cytoskeleton represents an active gel-like material with interesting material properties. We present a general theory of active viscoelastic materials made of polar filaments which is motivated by the the cytoskeleton. The continuous consumption of a fuel generates a non- equilibrium state characterized by the generation of flows and stresses. Our theory can be applied to experiments in which cytoskeletal patterns are set in motion by active processes such as those which are at work in cells. It can also capture generic aspects of the flows and stress profiles which occur during cell locomotion.

  16. Rectification of depth measurement using pulsed thermography with logarithmic peak second derivative method

    NASA Astrophysics Data System (ADS)

    Li, Xiaoli; Zeng, Zhi; Shen, Jingling; Zhang, Cunlin; Zhao, Yuejin

    2018-03-01

    Logarithmic peak second derivative (LPSD) method is the most popular method for depth prediction in pulsed thermography. It is widely accepted that this method is independent of defect size. The theoretical model for LPSD method is based on the one-dimensional solution of heat conduction without considering the effect of defect size. When a decay term considering defect aspect ratio is introduced into the solution to correct the three-dimensional thermal diffusion effect, we found that LPSD method is affected by defect size by analytical model. Furthermore, we constructed the relation between the characteristic time of LPSD method and defect aspect ratio, which was verified with the experimental results of stainless steel and glass fiber reinforced plate (GFRP) samples. We also proposed an improved LPSD method for depth prediction when the effect of defect size was considered, and the rectification results of stainless steel and GFRP samples were presented and discussed.

  17. Long Hole Film Cooling Dataset for CFD Development . Part 1; Infrared Thermography and Thermocouple Surveys

    NASA Technical Reports Server (NTRS)

    Shyam, Vikram; Thurman, Douglas; Poinsatte, Phillip; Ameri, Ali; Eichele, Peter; Knight, James

    2013-01-01

    An experiment investigating flow and heat transfer of long (length to diameter ratio of 18) cylindrical film cooling holes has been completed. In this paper, the thermal field in the flow and on the surface of the film cooled flat plate is presented for nominal freestream turbulence intensities of 1.5 and 8 percent. The holes are inclined at 30deg above the downstream direction, injecting chilled air of density ratio 1.0 onto the surface of a flat plate. The diameter of the hole is 0.75 in. (0.01905 m) with center to center spacing (pitch) of 3 hole diameters. Coolant was injected into the mainstream flow at nominal blowing ratios of 0.5, 1.0, 1.5, and 2.0. The Reynolds number of the freestream was approximately 11,000 based on hole diameter. Thermocouple surveys were used to characterize the thermal field. Infrared thermography was used to determine the adiabatic film effectiveness on the plate. Hotwire anemometry was used to provide flowfield physics and turbulence measurements. The results are compared to existing data in the literature. The aim of this work is to produce a benchmark dataset for Computational Fluid Dynamics (CFD) development to eliminate the effects of hole length to diameter ratio and to improve resolution in the near-hole region. In this report, a Time-Filtered Navier Stokes (TFNS), also known as Partially Resolved Navier Stokes (PRNS), method that was implemented in the Glenn-HT code is used to model coolant-mainstream interaction. This method is a high fidelity unsteady method that aims to represent large scale flow features and mixing more accurately.

  18. Overview of MSFC's Applied Fluid Dynamics Analysis Group Activities

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto; Griffin, Lisa; Williams, Robert

    2002-01-01

    This viewgraph report presents an overview of activities and accomplishments of NASA's Marshall Space Flight Center's Applied Fluid Dynamics Analysis Group. Expertise in this group focuses on high-fidelity fluids design and analysis with application to space shuttle propulsion and next generation launch technologies. Topics covered include: computational fluid dynamics research and goals, turbomachinery research and activities, nozzle research and activities, combustion devices, engine systems, MDA development and CFD process improvements.

  19. A subharmonic dynamical bifurcation during in vitro epileptiform activity

    NASA Astrophysics Data System (ADS)

    Perez Velazquez, Jose L.; Khosravani, Houman

    2004-06-01

    Epileptic seizures are considered to result from a sudden change in the synchronization of firing neurons in brain neural networks. We have used an in vitro model of status epilepticus (SE) to characterize dynamical regimes underlying the observed seizure-like activity. Time intervals between spikes or bursts were used as the variable to construct first-return interpeak or interburst interval plots, for studying neuronal population activity during the transition to seizure, as well as within seizures. Return maps constructed for a brief epoch before seizures were used for approximating the local system dynamics during that time window. Analysis of the first-return maps suggests that intermittency is a dynamical regime underlying the observed epileptic activity. This type of analysis may be useful for understanding the collective dynamics of neuronal populations in the normal and pathological brain.

  20. Lock-in thermography, penetrant inspection, and scanning electron microscopy for quantitative evaluation of open micro-cracks at the tooth-restoration interface

    NASA Astrophysics Data System (ADS)

    Streza, M.; Hodisan, I.; Prejmerean, C.; Boue, C.; Tessier, Gilles

    2015-03-01

    The evaluation of a dental restoration in a non-invasive way is of paramount importance in clinical practice. The aim of this study was to assess the minimum detectable open crack at the cavity-restorative material interface by the lock-in thermography technique, at laser intensities which are safe for living teeth. For the analysis of the interface, 18 box-type class V standardized cavities were prepared on the facial and oral surfaces of each tooth, with coronal margins in enamel and apical margins in dentine. The preparations were restored with the Giomer Beautifil (Shofu) in combination with three different adhesive systems. Three specimens were randomly selected from each experimental group and each slice has been analysed by visible, infrared (IR), and scanning electron microscopy (SEM). Lock-in thermography showed the most promising results in detecting both marginal and internal defects. The proposed procedure leads to a diagnosis of micro-leakages having openings of 1 µm, which is close to the diffraction limit of the IR camera. Clinical use of a thermographic camera in assessing the marginal integrity of a restoration becomes possible. The method overcomes some drawbacks of standard SEM or dye penetration testing. The results support the use of an IR camera in dentistry, for the diagnosis of micro-gaps at bio-interfaces.

  1. Dynamics of Deformable Active Particles under External Flow Field

    NASA Astrophysics Data System (ADS)

    Tarama, Mitsusuke

    2017-10-01

    In most practical situations, active particles are affected by their environment, for example, by a chemical concentration gradient, light intensity, gravity, or confinement. In particular, the effect of an external flow field is important for particles swimming in a solvent fluid. For deformable active particles such as self-propelled liquid droplets and active vesicles, as well as microorganisms such as euglenas and neutrophils, a general description has been developed by focusing on shape deformation. In this review, we present our recent studies concerning the dynamics of a single active deformable particle under an external flow field. First, a set of model equations of active deformable particles including the effect of a general external flow is introduced. Then, the dynamics under two specific flow profiles is discussed: a linear shear flow, as the simplest example, and a swirl flow. In the latter case, the scattering dynamics of the active deformable particles by the swirl flow is also considered.

  2. In-flight investigations of the unsteady behaviour of the boundary layer with infrared thermography

    NASA Astrophysics Data System (ADS)

    Szewczyk, Mariusz; Smusz, Robert; de Groot, Klaus; Meyer, Joerg; Kucaba-Pietal, Anna; Rzucidlo, Pawel

    2017-04-01

    Infrared thermography (IRT) has been well established in wind tunnel and flight tests for the last decade. Former applications of IRT were focused, in nearly all cases, on steady measurements. In the last years, requirements of unsteady IRT measurements (up to 10 Hz) have been formulated, but the problem of a very slow thermal response of common materials of wind tunnel models or airplane components has to be overcome by finding a surface modification with a fast thermal response (low heat capacity, low thermal conductivity and high thermal diffusivity). Therefore, lab investigations of potential material combinations and flight tests with a ‘low cost’ aircraft, i.e. a glider with a modified wing surface, were conducted. In order to induce unsteady conditions (rapid change of laminar-turbulent boundary layer transition), special maneuvers of a glider during IRT measurements were performed.

  3. LATERAL HEAT FLOW INFRARED THERMOGRAPHY FOR THICKNESS INDEPENDENT DETERMINATION OF THERMAL DIFFUSIVITY IN CFRP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tralshawala, Nilesh; Howard, Don; Knight, Bryon

    2008-02-28

    In conventional infrared thermography, determination of thermal diffusivity requires thickness information. Recently GE has been experimenting with the use of lateral heat flow to determine thermal diffusivity without thickness information. This work builds on previous work at NASA Langley and Wayne State University but we incorporate thermal time of flight (tof) analysis rather than curve fitting to obtain quantitative information. We have developed appropriate theoretical models and a tof based data analysis framework to experimentally determine all components of thermal diffusivity from the time-temperature measurements. Initial validation was carried out using finite difference simulations. Experimental validation was done using anisotropicmore » carbon fiber reinforced polymer (CFRP) composites. We found that in the CFRP samples used, the in-plane component of diffusivity is about eight times larger than the through-thickness component.« less

  4. Eddy Current Pulsed Thermography with Different Excitation Configurations for Metallic Material and Defect Characterization.

    PubMed

    Tian, Gui Yun; Gao, Yunlai; Li, Kongjing; Wang, Yizhe; Gao, Bin; He, Yunze

    2016-06-08

    This paper reviews recent developments of eddy current pulsed thermography (ECPT) for material characterization and nondestructive evaluation (NDE). Due to the fact that line-coil-based ECPT, with the limitation of non-uniform heating and a restricted view, is not suitable for complex geometry structures evaluation, Helmholtz coils and ferrite-yoke-based excitation configurations of ECPT are proposed and compared. Simulations and experiments of new ECPT configurations considering the multi-physical-phenomenon of hysteresis losses, stray losses, and eddy current heating in conjunction with uniform induction magnetic field have been conducted and implemented for ferromagnetic and non-ferromagnetic materials. These configurations of ECPT for metallic material and defect characterization are discussed and compared with conventional line-coil configuration. The results indicate that the proposed ECPT excitation configurations can be applied for different shapes of samples such as turbine blade edges and rail tracks.

  5. Structure and dynamics of a constitutively active neurotensin receptor

    PubMed Central

    Krumm, Brian E.; Lee, Sangbae; Bhattacharya, Supriyo; Botos, Istvan; White, Courtney F.; Du, Haijuan; Vaidehi, Nagarajan; Grisshammer, Reinhard

    2016-01-01

    Many G protein-coupled receptors show constitutive activity, resulting in the production of a second messenger in the absence of an agonist; and naturally occurring constitutively active mutations in receptors have been implicated in diseases. To gain insight into mechanistic aspects of constitutive activity, we report here the 3.3 Å crystal structure of a constitutively active, agonist-bound neurotensin receptor (NTSR1) and molecular dynamics simulations of agonist-occupied and ligand-free receptor. Comparison with the structure of a NTSR1 variant that has little constitutive activity reveals uncoupling of the ligand-binding domain from conserved connector residues, that effect conformational changes during GPCR activation. Furthermore, molecular dynamics simulations show strong contacts between connector residue side chains and increased flexibility at the intracellular receptor face as features that coincide with robust signalling in cells. The loss of correlation between the binding pocket and conserved connector residues, combined with altered receptor dynamics, possibly explains the reduced neurotensin efficacy in the constitutively active NTSR1 and a facilitated initial engagement with G protein in the absence of agonist. PMID:27924846

  6. Emotional facial activation induced by unconsciously perceived dynamic facial expressions.

    PubMed

    Kaiser, Jakob; Davey, Graham C L; Parkhouse, Thomas; Meeres, Jennifer; Scott, Ryan B

    2016-12-01

    Do facial expressions of emotion influence us when not consciously perceived? Methods to investigate this question have typically relied on brief presentation of static images. In contrast, real facial expressions are dynamic and unfold over several seconds. Recent studies demonstrate that gaze contingent crowding (GCC) can block awareness of dynamic expressions while still inducing behavioural priming effects. The current experiment tested for the first time whether dynamic facial expressions presented using this method can induce unconscious facial activation. Videos of dynamic happy and angry expressions were presented outside participants' conscious awareness while EMG measurements captured activation of the zygomaticus major (active when smiling) and the corrugator supercilii (active when frowning). Forced-choice classification of expressions confirmed they were not consciously perceived, while EMG revealed significant differential activation of facial muscles consistent with the expressions presented. This successful demonstration opens new avenues for research examining the unconscious emotional influences of facial expressions. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Vibration characteristics measurement of beam-like structures using infrared thermography

    NASA Astrophysics Data System (ADS)

    Talai, S. M.; Desai, D. A.; Heyns, P. S.

    2016-11-01

    Infrared thermography (IRT) has matured and is now widely accepted as a condition monitoring tool where temperature is measured in a non-contact way. Since the late 1970s, it has been extensively used in vibrothermography (Sonic IR) non-destructive technique for the evaluation of surface cracks through the observation of thermal imaging of the vibration-induced crack heat generation. However, it has not received research attention on prediction of structural vibration behaviour, hence; the concept to date is not understood. Therefore, this paper explores its ability to fill the existing knowledge gap. To achieve this, two cantilever beam-like structures couple with a friction rod subjected to a forced excitations while infrared cameras capturing the thermal images on the friction interfaces. The analysed frictional temperature evolution using the Matlab Fast Fourier Transform (FFT) algorithm and the use of the heat conduction equation in conjunction with a finite difference approach successfully identifies the structural vibration characteristics; with maximum error of 0.28% and 20.71% for frequencies and displacements, respectively. These findings are particularly useful in overcoming many limitations inherent in some of the current vibration measuring techniques applied in structural integrity management such as strain gauge failures due to fatigue.

  8. Rheology, thermography, and interlayer welding in polymer extrusion 3D printing

    NASA Astrophysics Data System (ADS)

    Seppala, Jonathan; Davis, Chelsea; Migler, Kalman

    In polymer extrusion 3D printing, thermoplastic filament is extruded though a rastering nozzle onto previously deposited layers. The resulting strength of the 3D produced part is limited by the strength of the weld between each layer. During this thermal processing, the temperature of the interface between layers dictates the chain mobility, interdiffusion, entanglement, and thus weld strength. In quiescent welding experiments, it has been found that the weld strength in symmetric linear polymer systems scales with t 0.25, where t is the isothermal annealing time, before plateauing to the bulk strength. However, 3D printing is highly non isothermal and we calculated an equivalent isothermal annealing time using a combination of in situ infrared thermography and horizontal shift factors from offline rheological measurements of the neat polymer. Interlayer adhesion energy was measured directly by mode III fracture using a simplified geometry limiting the measurement to a single interlayer. Since the processing conditions are known a prioi this approach provides the data needed to estimate the final build strength at time of design. The resulting agreement between annealing time and adhesion energy for a range of printing conditions and thermoplastics are discussed.

  9. Protein dynamics in organic media at varying water activity studied by molecular dynamics simulation.

    PubMed

    Wedberg, Rasmus; Abildskov, Jens; Peters, Günther H

    2012-03-01

    In nonaqueous enzymology, control of enzyme hydration is commonly approached by fixing the thermodynamic water activity of the medium. In this work, we present a strategy for evaluating the water activity in molecular dynamics simulations of proteins in water/organic solvent mixtures. The method relies on determining the water content of the bulk phase and uses a combination of Kirkwood-Buff theory and free energy calculations to determine corresponding activity coefficients. We apply the method in a molecular dynamics study of Candida antarctica lipase B in pure water and the organic solvents methanol, tert-butyl alcohol, methyl tert-butyl ether, and hexane, each mixture at five different water activities. It is shown that similar water activity yields similar enzyme hydration in the different solvents. However, both solvent and water activity are shown to have profound effects on enzyme structure and flexibility.

  10. IR thermography for the assessment of the thermal conductivity of aluminum alloys

    NASA Astrophysics Data System (ADS)

    Nazarov, S.; Rossi, S.; Bison, P.; Calliari, I.

    2017-05-01

    Aluminium alloys are here considered as a structural material for aerospace applications, guaranteeing lightness and strength at the same time. As aluminium alone is not particularly performing from a mechanical point of view, in this experimental solution it is produced as an alloy with Lithium added at 6 % in weight. To increase furtherly the strength of the material, two new alloys are produced by adding 0.5 % in weight of the rare earth elements Neodymium (Nd) and Yttrium (Y). The improvement of the mechanical properties is measured by means of hardness tests. At the same time the thermophysical properties are measured as well, at various temperature, from 80 °C to 500 °C. Thermal diffusivity is measured by Laser Flash equipment in vacuum. One possible drawback of the Al-Li alloy produced at so high percentage of Li (6 %) is an essential anisotropy that is evaluated by IR thermography thank to its imaging properties that allows to measure simultaneously both the in-plane and through-depth thermal diffusivity.

  11. Stochastic dynamics of coupled active particles in an overdamped limit

    NASA Astrophysics Data System (ADS)

    Ann, Minjung; Lee, Kong-Ju-Bock; Park, Pyeong Jun

    2015-10-01

    We introduce a model for Brownian dynamics of coupled active particles in an overdamped limit. Our system consists of several identical active particles and one passive particle. Each active particle is elastically coupled to the passive particle and there is no direct coupling among the active particles. We investigate the dynamics of the system with respect to the number of active particles, viscous friction, and coupling between the active and passive particles. For this purpose, we consider an intracellular transport process as an application of our model and perform a Brownian dynamics simulation using realistic parameters for processive molecular motors such as kinesin-1. We determine an adequate energy conversion function for molecular motors and study the dynamics of intracellular transport by multiple motors. The results show that the average velocity of the coupled system is not affected by the number of active motors and that the stall force increases linearly as the number of motors increases. Our results are consistent with well-known experimental observations. We also examine the effects of coupling between the motors and the cargo, as well as of the spatial distribution of the motors around the cargo. Our model might provide a physical explanation of the cooperation among active motors in the cellular transport processes.

  12. Avalanche dynamics for active matter in heterogeneous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reichhardt, C. J. O.; Reichhardt, C.

    Using numerical simulations, we examine the dynamics of run-and-tumble disks moving in a disordered array of fixed obstacles. As a function of increasing active disk density and activity, we find a transition from a completely clogged state to a continuous flowing phase, and in the large activity limit, we observe an intermittent state where the motion occurs in avalanches that are power law distributed in size with an exponent ofmore » $$\\beta =1.46$$. In contrast, in the thermal or low activity limit we find bursts of motion that are not broadly distributed in size. We argue that in the highly active regime, the system reaches a self-jamming state due to the activity-induced self-clustering, and that the intermittent dynamics is similar to that found in the yielding of amorphous solids. Our results show that activity is another route by which particulate systems can be tuned to a nonequilibrium critical state.« less

  13. Avalanche dynamics for active matter in heterogeneous media

    DOE PAGES

    Reichhardt, C. J. O.; Reichhardt, C.

    2017-12-21

    Using numerical simulations, we examine the dynamics of run-and-tumble disks moving in a disordered array of fixed obstacles. As a function of increasing active disk density and activity, we find a transition from a completely clogged state to a continuous flowing phase, and in the large activity limit, we observe an intermittent state where the motion occurs in avalanches that are power law distributed in size with an exponent ofmore » $$\\beta =1.46$$. In contrast, in the thermal or low activity limit we find bursts of motion that are not broadly distributed in size. We argue that in the highly active regime, the system reaches a self-jamming state due to the activity-induced self-clustering, and that the intermittent dynamics is similar to that found in the yielding of amorphous solids. Our results show that activity is another route by which particulate systems can be tuned to a nonequilibrium critical state.« less

  14. Avalanche dynamics for active matter in heterogeneous media

    NASA Astrophysics Data System (ADS)

    Reichhardt, C. J. O.; Reichhardt, C.

    2018-02-01

    Using numerical simulations, we examine the dynamics of run-and-tumble disks moving in a disordered array of fixed obstacles. As a function of increasing active disk density and activity, we find a transition from a completely clogged state to a continuous flowing phase, and in the large activity limit, we observe an intermittent state where the motion occurs in avalanches that are power law distributed in size with an exponent of β =1.46. In contrast, in the thermal or low activity limit we find bursts of motion that are not broadly distributed in size. We argue that in the highly active regime, the system reaches a self-jamming state due to the activity-induced self-clustering, and that the intermittent dynamics is similar to that found in the yielding of amorphous solids. Our results show that activity is another route by which particulate systems can be tuned to a nonequilibrium critical state.

  15. Role of activity in human dynamics

    NASA Astrophysics Data System (ADS)

    Zhou, T.; Kiet, H. A. T.; Kim, B. J.; Wang, B.-H.; Holme, P.

    2008-04-01

    The human society is a very complex system; still, there are several non-trivial, general features. One type of them is the presence of power-law-distributed quantities in temporal statistics. In this letter, we focus on the origin of power laws in rating of movies. We present a systematic empirical exploration of the time between two consecutive ratings of movies (the interevent time). At an aggregate level, we find a monotonous relation between the activity of individuals and the power law exponent of the interevent time distribution. At an individual level, we observe a heavy-tailed distribution for each user, as well as a negative correlation between the activity and the width of the distribution. We support these findings by a similar data set from mobile phone text-message communication. Our results demonstrate a significant role of the activity of individuals on the society-level patterns of human behavior. We believe this is a common character in the interest-driven human dynamics, corresponding to (but different from) the universality classes of task-driven dynamics.

  16. Structure and dynamics of a constitutively active neurotensin receptor

    DOE PAGES

    Krumm, Brian E.; Lee, Sangbae; Bhattacharya, Supriyo; ...

    2016-12-07

    Many G protein-coupled receptors show constitutive activity, resulting in the production of a second messenger in the absence of an agonist; and naturally occurring constitutively active mutations in receptors have been implicated in diseases. To gain insight into mechanistic aspects of constitutive activity, we report here the 3.3 Å crystal structure of a constitutively active, agonist-bound neurotensin receptor (NTSR1) and molecular dynamics simulations of agonist-occupied and ligand-free receptor. Comparison with the structure of a NTSR1 variant that has little constitutive activity reveals uncoupling of the ligand-binding domain from conserved connector residues, that effect conformational changes during GPCR activation. Furthermore, molecularmore » dynamics simulations show strong contacts between connector residue side chains and increased flexibility at the intracellular receptor face as features that coincide with robust signalling in cells. In conclusion, the loss of correlation between the binding pocket and conserved connector residues, combined with altered receptor dynamics, possibly explains the reduced neurotensin efficacy in the constitutively active NTSR1 and a facilitated initial engagement with G protein in the absence of agonist.« less

  17. Structure and dynamics of a constitutively active neurotensin receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krumm, Brian E.; Lee, Sangbae; Bhattacharya, Supriyo

    Many G protein-coupled receptors show constitutive activity, resulting in the production of a second messenger in the absence of an agonist; and naturally occurring constitutively active mutations in receptors have been implicated in diseases. To gain insight into mechanistic aspects of constitutive activity, we report here the 3.3 Å crystal structure of a constitutively active, agonist-bound neurotensin receptor (NTSR1) and molecular dynamics simulations of agonist-occupied and ligand-free receptor. Comparison with the structure of a NTSR1 variant that has little constitutive activity reveals uncoupling of the ligand-binding domain from conserved connector residues, that effect conformational changes during GPCR activation. Furthermore, molecularmore » dynamics simulations show strong contacts between connector residue side chains and increased flexibility at the intracellular receptor face as features that coincide with robust signalling in cells. In conclusion, the loss of correlation between the binding pocket and conserved connector residues, combined with altered receptor dynamics, possibly explains the reduced neurotensin efficacy in the constitutively active NTSR1 and a facilitated initial engagement with G protein in the absence of agonist.« less

  18. The use of high-resolution infrared thermography (HRIT) for the study of ice nucleation and ice propagation in plants.

    PubMed

    Wisniewski, Michael; Neuner, Gilbert; Gusta, Lawrence V

    2015-05-08

    Freezing events that occur when plants are actively growing can be a lethal event, particularly if the plant has no freezing tolerance. Such frost events often have devastating effects on agricultural production and can also play an important role in shaping community structure in natural populations of plants, especially in alpine, sub-arctic, and arctic ecosystems. Therefore, a better understanding of the freezing process in plants can play an important role in the development of methods of frost protection and understanding mechanisms of freeze avoidance. Here, we describe a protocol to visualize the freezing process in plants using high-resolution infrared thermography (HRIT). The use of this technology allows one to determine the primary sites of ice formation in plants, how ice propagates, and the presence of ice barriers. Furthermore, it allows one to examine the role of extrinsic and intrinsic nucleators in determining the temperature at which plants freeze and evaluate the ability of various compounds to either affect the freezing process or increase freezing tolerance. The use of HRIT allows one to visualize the many adaptations that have evolved in plants, which directly or indirectly impact the freezing process and ultimately enables plants to survive frost events.

  19. Random bursts determine dynamics of active filaments.

    PubMed

    Weber, Christoph A; Suzuki, Ryo; Schaller, Volker; Aranson, Igor S; Bausch, Andreas R; Frey, Erwin

    2015-08-25

    Constituents of living or synthetic active matter have access to a local energy supply that serves to keep the system out of thermal equilibrium. The statistical properties of such fluctuating active systems differ from those of their equilibrium counterparts. Using the actin filament gliding assay as a model, we studied how nonthermal distributions emerge in active matter. We found that the basic mechanism involves the interplay between local and random injection of energy, acting as an analog of a thermal heat bath, and nonequilibrium energy dissipation processes associated with sudden jump-like changes in the system's dynamic variables. We show here how such a mechanism leads to a nonthermal distribution of filament curvatures with a non-Gaussian shape. The experimental curvature statistics and filament relaxation dynamics are reproduced quantitatively by stochastic computer simulations and a simple kinetic model.

  20. Random bursts determine dynamics of active filaments

    PubMed Central

    Weber, Christoph A.; Suzuki, Ryo; Schaller, Volker; Aranson, Igor S.; Bausch, Andreas R.; Frey, Erwin

    2015-01-01

    Constituents of living or synthetic active matter have access to a local energy supply that serves to keep the system out of thermal equilibrium. The statistical properties of such fluctuating active systems differ from those of their equilibrium counterparts. Using the actin filament gliding assay as a model, we studied how nonthermal distributions emerge in active matter. We found that the basic mechanism involves the interplay between local and random injection of energy, acting as an analog of a thermal heat bath, and nonequilibrium energy dissipation processes associated with sudden jump-like changes in the system’s dynamic variables. We show here how such a mechanism leads to a nonthermal distribution of filament curvatures with a non-Gaussian shape. The experimental curvature statistics and filament relaxation dynamics are reproduced quantitatively by stochastic computer simulations and a simple kinetic model. PMID:26261319

  1. Infrared thermography for detection of laminar-turbulent transition in low-speed wind tunnel testing

    NASA Astrophysics Data System (ADS)

    Joseph, Liselle A.; Borgoltz, Aurelien; Devenport, William

    2016-05-01

    This work presents the details of a system for experimentally identifying laminar-to-turbulent transition using infrared thermography applied to large, metal models in low-speed wind tunnel tests. Key elements of the transition detection system include infrared cameras with sensitivity in the 7.5- to 14.0-µm spectral range and a thin, insulating coat for the model. The fidelity of the system was validated through experiments on two wind-turbine blade airfoil sections tested at Reynolds numbers between Re = 1.5 × 106 and 3 × 106. Results compare well with measurements from surface pressure distributions and stethoscope observations. However, the infrared-based system provides data over a much broader range of conditions and locations on the model. This paper chronicles the design, implementation and validation of the infrared transition detection system, a subject which has not been widely detailed in the literature to date.

  2. Bridge deck surface temperature monitoring by infrared thermography and inner structure identification using PPT and PCT analysis methods

    NASA Astrophysics Data System (ADS)

    Dumoulin, Jean

    2013-04-01

    One of the objectives of ISTIMES project was to evaluate the potentialities offered by the integration of different electromagnetic techniques able to perform non-invasive diagnostics for surveillance and monitoring of transport infrastructures. Among the EM methods investigated, we focused our research and development efforts on uncooled infrared camera techniques due to their promising potential level of dissemination linked to their relative low cost on the market. On the other hand, works were also carried out to identify well adapted implementation protocols and key limits of Pulse Phase Thermography (PPT) and Principal Component Thermography (PCT) processing methods to analyse thermal image sequence and retrieve information about the inner structure. So the first part of this research works addresses infrared thermography measurement when it is used in quantitative mode (not in laboratory conditions) and not in qualitative mode (vision applied to survey). In such context, it requires to process in real time thermal radiative corrections on raw data acquired to take into account influences of natural environment evolution with time, thanks to additional measurements. But, camera sensor has to be enough smart to apply in real time calibration law and radiometric corrections in a varying atmosphere. So, a complete measurement system was studied and developed [1] with low cost infrared cameras available on the market. In the system developed, infrared camera is coupled with other sensors to feed simplified radiative models running, in real time, on GPU available on small PC. The whole measurement system was implemented on the "Musmeci" bridge located in Potenza (Italy). No traffic interruption was required during the mounting of our measurement system. The infrared camera was fixed on top of a mast at 6 m elevation from the surface of the bridge deck. A small weather station was added on the same mast at 1 m under the camera. A GPS antenna was also fixed at the

  3. Acquisition of the spatial temperature distribution of rock faces by using infrared thermography

    NASA Astrophysics Data System (ADS)

    Beham, Michael; Rode, Matthias; Schnepfleitner, Harald; Sass, Oliver

    2013-04-01

    Rock temperature plays a central role for weathering and therefore influences the risk potential originating from rockfall processes. So far, for the acquisition of temperature mainly point-based measuring methods have been used and accordingly, two-dimensional temperature data is rare. To overcome this limitation, an infrared camera was used to collect and analyse data on the spatial temperature distribution on 10 x 10 m sections of rock faces in the Gesäuse (900m a.s.l.) and in the Dachsteingebirge (2700m a.s.l.) within the framework of the research project ROCKING ALPS (FWF-P24244). The advantage of infrared thermography to capture area-wide temperatures has hardly ever been used in this context. In order to investigate the differences between north-facing and south-facing rock faces at about the same period of time it was necessary to move the camera between the sites. The resulting offset of the time lapse infrared images made it necessary to develop a sophisticated methodology to rectify the captured images in order to create matching datasets for future analysis. With the relatively simple camera used, one of the main challenges was to find a way to convert the colour-scale or grey-scale values of the rectified image back to temperature values after the rectification process. The processing steps were mainly carried out with MATLAB. South-facing rock faces generally experienced higher temperatures and amplitudes compared to the north facing ones. In view of the spatial temperature distribution, the temperatures of shady areas were clearly below those of sunny ones, with the latter also showing the highest amplitudes. Joints and sun-shaded areas were characterised by attenuated diurnal temperature fluctuations closely paralleled to the air temperature. The temperature of protruding rock parts and of loose debris responded very quick to changes in radiation and air temperatures while massive rock reacted more slowly. The potential effects of temperature on

  4. A sub-μs thermal time constant electrically driven Pt nanoheater: thermo-dynamic design and frequency characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ottonello Briano, Floria, E-mail: floria@kth.se; Sohlström, Hans; Forsberg, Fredrik

    2016-05-09

    Metal nanowires can emit coherent polarized thermal radiation, work as uncooled bolometers, and provide localized heating. In this paper, we engineer the temperature dynamics of electrically driven Pt nanoheaters on a silicon-on-insulator substrate. We present three designs and we electrically characterize and model their thermal impedance in the frequency range from 3 Hz to 3 MHz. Finally, we show a temperature modulation of 300 K while consuming less than 5 mW of power, up to a frequency of 1.3 MHz. This result can lead to significant advancements in thermography and absorption spectroscopy.

  5. Mean-field theory of active electrolytes: Dynamic adsorption and overscreening

    NASA Astrophysics Data System (ADS)

    Frydel, Derek; Podgornik, Rudolf

    2018-05-01

    We investigate active electrolytes within the mean-field level of description. The focus is on how the double-layer structure of passive, thermalized charges is affected by active dynamics of constituting ions. One feature of active dynamics is that particles adhere to hard surfaces, regardless of chemical properties of a surface and specifically in complete absence of any chemisorption or physisorption. To carry out the mean-field analysis of the system that is out of equilibrium, we develop the "mean-field simulation" technique, where the simulated system consists of charged parallel sheets moving on a line and obeying active dynamics, with the interaction strength rescaled by the number of sheets. The mean-field limit becomes exact in the limit of an infinite number of movable sheets.

  6. Self-assembly of active colloidal molecules with dynamic function

    NASA Astrophysics Data System (ADS)

    Soto, Rodrigo; Golestanian, Ramin

    2015-05-01

    Catalytically active colloids maintain nonequilibrium conditions in which they produce and deplete chemicals and hence effectively act as sources and sinks of molecules. While individual colloids that are symmetrically coated do not exhibit any form of dynamical activity, the concentration fields resulting from their chemical activity decay as 1 /r and produce gradients that attract or repel other colloids depending on their surface chemistry and ambient variables. This results in a nonequilibrium analog of ionic systems, but with the remarkable novel feature of action-reaction symmetry breaking. We study solutions of such chemically active colloids in dilute conditions when they join up to form molecules via generalized ionic bonds and discuss how we can achieve structures with time-dependent functionality. In particular, we study a molecule that adopts a spontaneous oscillatory pattern of conformations and another that exhibits a run-and-tumble dynamics similar to bacteria. Our study shows that catalytically active colloids could be used for designing self-assembled structures that possess dynamical functionalities that are determined by their prescribed three-dimensional structures, a strategy that follows the design principle of proteins.

  7. Infrared thermography based studies on mobile phone induced heating

    NASA Astrophysics Data System (ADS)

    Lahiri, B. B.; Bagavathiappan, S.; Soumya, C.; Jayakumar, T.; Philip, John

    2015-07-01

    Here, we report the skin temperature rise due to the absorption of radio frequency (RF) energy from three handheld mobile phones using infrared thermography technique. Experiments are performed under two different conditions, viz. when the mobile phones are placed in soft touch with the skin surface and away from the skin surface. Additionally, the temperature rise of mobile phones during charging, operation and simultaneous charging and talking are monitored under different exposure conditions. It is observed that the temperature of the cheek and ear regions monotonically increased with time during the usage of mobile phones and the magnitude of the temperature rise is higher for the mobile phone with higher specific absorption rate. The increase in skin temperature is higher when the mobile phones are in contact with the skin surface due to the combined effect of absorption of RF electromagnetic power and conductive heat transfer. The increase in the skin temperature in non-contact mode is found to be within the safety limit of 1 °C. The measured temperature rise is in good agreement with theoretical predictions. The empirical equation obtained from the temperature rise on the cheek region of the subjects correlates well with the specific absorption rate of the mobile phones. Our study suggests that the use of mobile phones in non-contact mode can significantly lower the skin temperature rise during its use and hence, is safer compared to the contact mode.

  8. Breast thermography is a noninvasive prognostic procedure that predicts tumor growth rate in breast cancer patients.

    PubMed

    Head, J F; Wang, F; Elliott, R L

    1993-11-30

    Our recent retrospective analysis of the clinical records of patients who had breast thermography demonstrated that an abnormal thermogram was associated with an increased risk of breast cancer and a poorer prognosis for the breast cancer patient. This study included 100 normal patients, 100 living cancer patients, and 126 deceased cancer patients. Abnormal thermograms included asymmetric focal hot spots, areolar and periareolar heat, diffuse global heat, vessel discrepancy, or thermographic edge sign. Incidence and prognosis were directly related to thermographic results: only 28% of the noncancer patients had an abnormal thermogram, compared to 65% of living cancer patients and 88% of deceased cancer patients. Further studies were undertaken to determine if thermography is an independent prognostic indicator. Comparison to the components of the TNM classification system showed that only clinical size was significantly larger (p = 0.006) in patients with abnormal thermograms. Age, menopausal status, and location of tumor (left or right breast) were not related to thermographic results. Progesterone and estrogen receptor status was determined by both the cytosol-DCC and immunocytochemical methods, and neither receptor status showed any clear relationship to the thermographic results. Prognostic indicators that are known to be related to tumor growth rate were then compared to thermographic results. The concentration of ferritin in the tumor was significantly higher (p = 0.021) in tumors from patients with abnormal thermograms (1512 +/- 2027, n = 50) compared to tumors from patients with normal thermograms (762 +/- 620, n = 21). Both the proportion of cells in DNA synthesis (S-phase) and proliferating (S-phase plus G2M-phase, proliferative index) were significantly higher in patients with abnormal thermograms. The expression of the proliferation-associated tumor antigen Ki-67 was also associated with an abnormal thermogram. The strong relationships of thermographic

  9. Hysteretic dynamics of active particles in a periodic orienting field

    PubMed Central

    Romensky, Maksym; Scholz, Dimitri; Lobaskin, Vladimir

    2015-01-01

    Active motion of living organisms and artificial self-propelling particles has been an area of intense research at the interface of biology, chemistry and physics. Significant progress in understanding these phenomena has been related to the observation that dynamic self-organization in active systems has much in common with ordering in equilibrium condensed matter such as spontaneous magnetization in ferromagnets. The velocities of active particles may behave similar to magnetic dipoles and develop global alignment, although interactions between the individuals might be completely different. In this work, we show that the dynamics of active particles in external fields can also be described in a way that resembles equilibrium condensed matter. It follows simple general laws, which are independent of the microscopic details of the system. The dynamics is revealed through hysteresis of the mean velocity of active particles subjected to a periodic orienting field. The hysteresis is measured in computer simulations and experiments on unicellular organisms. We find that the ability of the particles to follow the field scales with the ratio of the field variation period to the particles' orientational relaxation time, which, in turn, is related to the particle self-propulsion power and the energy dissipation rate. The collective behaviour of the particles due to aligning interactions manifests itself at low frequencies via increased persistence of the swarm motion when compared with motion of an individual. By contrast, at high field frequencies, the active group fails to develop the alignment and tends to behave like a set of independent individuals even in the presence of interactions. We also report on asymptotic laws for the hysteretic dynamics of active particles, which resemble those in magnetic systems. The generality of the assumptions in the underlying model suggests that the observed laws might apply to a variety of dynamic phenomena from the motion of

  10. Active Polymers — Emergent Conformational and Dynamical Properties: A Brief Review

    NASA Astrophysics Data System (ADS)

    Winkler, Roland G.; Elgeti, Jens; Gompper, Gerhard

    2017-10-01

    Active matter exhibits a wealth of emerging nonequilibrium behaviours. A paradigmatic example is the interior of cells, where active components, such as the cytoskeleton, are responsible for its structural organization and the dynamics of the various components. Of particular interest are the properties of polymers and filaments. The intimate coupling of thermal and active noise, hydrodynamic interactions, and polymer conformations implies the emergence of novel structural and dynamical features. In this article, we review recent theoretical and simulation developments and results for the structural and dynamical properties of polymers exposed to activity. Two- and three-dimensional filaments are considered propelled by different mechanisms such as active Brownian particles or hydrodynamically-coupled force dipoles.

  11. Integration of Infrared Thermography and Photogrammetric Surveying of Built Landscape

    NASA Astrophysics Data System (ADS)

    Scaioni, M.; Rosina, E.; L'Erario, A.; Dìaz-Vilariño, L.

    2017-05-01

    The thermal analysis of buildings represents a key-step for reduction of energy consumption, also in the case of Cultural Heritage. Here the complexity of the constructions and the adopted materials might require special analysis and tailored solutions. Infrared Thermography (IRT) is an important non-destructive investigation technique that may aid in the thermal analysis of buildings. The paper reports the application of IRT on a listed building, belonging to the Cultural Heritage and to a residential one, as a demonstration that IRT is a suitable and convenient tool for analysing the existing buildings. The purposes of the analysis are the assessment of the damages and energy efficiency of the building envelope. Since in many cases the complex geometry of historic constructions may involve the thermal analysis, the integration of IRT and accurate 3D models were developed during the latest years. Here authors propose a solution based on the up-to-date photogrammetric solutions for purely image-based 3D modelling, including automatic image orientation/sensor calibration using Structure-from-Motion and dense matching. Thus, an almost fully automatic pipeline for the generation of accurate 3D models showing the temperatures on a building skin in a realistic manner is described, where the only manual task is given by the measurement of a few common points for co-registration of RGB and IR photogrammetric projects.

  12. Assessment of Lower Limb Prosthesis through Wearable Sensors and Thermography

    PubMed Central

    Cutti, Andrea Giovanni; Perego, Paolo; Fusca, Marcello C.; Sacchetti, Rinaldo; Andreoni, Giuseppe

    2014-01-01

    This study aimed to explore the application of infrared thermography in combination with ambulatory wearable monitoring of temperature and relative humidity, to assess the residual limb-to-liner interface in lower-limb prosthesis users. Five male traumatic transtibial amputees were involved, who reported no problems or discomfort while wearing the prosthesis. A thermal imaging camera was used to measure superficial thermal distribution maps of the stump. A wearable system for recording the temperature and relative humidity in up to four anatomical points was developed, tested in vitro and integrated with the measurement set. The parallel application of an infrared camera and wearable sensors provided complementary information. Four main Regions of Interest were identified on the stump (inferior patella, lateral/medial epicondyles, tibial tuberosity), with good inter-subject repeatability. An average increase of 20% in hot areas (P < 0.05) is shown after walking compared to resting conditions. The sensors inside the cuff did not provoke any discomfort during recordings and provide an inside of the thermal exchanges while walking and recording the temperature increase (a regime value is ∼+1.1 ± 0.7 °C) and a more significant one (∼+4.1 ± 2.3%) in humidity because of the sweat produced. This study has also begun the development of a reference data set for optimal socket/liner-stump construction. PMID:24618782

  13. Rapid Fabrication of Flat Plate Cavity Phosphor Thermography Test Models for Shuttle Return-to-Flight Aero-Heating

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M.; Powers, Michael A.; Nevins, Stephen C.; Griffith, Mark S.; Wainwright, Gary A.

    2006-01-01

    Methods, materials and equipment are documented for fabricating flat plate test models at NASA Langley Research Center for Shuttle return-to-flight aeroheating experiments simulating open and closed cavity interactions in Langley s hypersonic 20-Inch Mach 6 air wind tunnel. Approximately 96 silica ceramic flat plate cavity phosphor thermography test models have been fabricated using these methods. On one model, an additional slot is machined through the back of the plate and into the cavity and vented into an evacuated plenum chamber to simulate a further opening in the cavity. After sintering ceramic to 2150 F, and mounting support hardware, a ceramic-based two-color thermographic phosphor coating is applied for global temperature and heat transfer measurements, with fiducial markings for image registration.

  14. Tracking dynamic team activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tambe, M.

    1996-12-31

    AI researchers are striving to build complex multi-agent worlds with intended applications ranging from the RoboCup robotic soccer tournaments, to interactive virtual theatre, to large-scale real-world battlefield simulations. Agent tracking - monitoring other agent`s actions and inferring their higher-level goals and intentions - is a central requirement in such worlds. While previous work has mostly focused on tracking individual agents, this paper goes beyond by focusing on agent teams. Team tracking poses the challenge of tracking a team`s joint goals and plans. Dynamic, real-time environments add to the challenge, as ambiguities have to be resolved in real-time. The central hypothesismore » underlying the present work is that an explicit team-oriented perspective enables effective team tracking. This hypothesis is instantiated using the model tracing technology employed in tracking individual agents. Thus, to track team activities, team models are put to service. Team models are a concrete application of the joint intentions framework and enable an agent to track team activities, regardless of the agent`s being a collaborative participant or a non-participant in the team. To facilitate real-time ambiguity resolution with team models: (i) aspects of tracking are cast as constraint satisfaction problems to exploit constraint propagation techniques; and (ii) a cost minimality criterion is applied to constrain tracking search. Empirical results from two separate tasks in real-world, dynamic environments one collaborative and one competitive - are provided.« less

  15. Framework for 2D-3D image fusion of infrared thermography with preoperative MRI.

    PubMed

    Hoffmann, Nico; Weidner, Florian; Urban, Peter; Meyer, Tobias; Schnabel, Christian; Radev, Yordan; Schackert, Gabriele; Petersohn, Uwe; Koch, Edmund; Gumhold, Stefan; Steiner, Gerald; Kirsch, Matthias

    2017-11-27

    Multimodal medical image fusion combines information of one or more images in order to improve the diagnostic value. While previous applications mainly focus on merging images from computed tomography, magnetic resonance imaging (MRI), ultrasonic and single-photon emission computed tomography, we propose a novel approach for the registration and fusion of preoperative 3D MRI with intraoperative 2D infrared thermography. Image-guided neurosurgeries are based on neuronavigation systems, which further allow us track the position and orientation of arbitrary cameras. Hereby, we are able to relate the 2D coordinate system of the infrared camera with the 3D MRI coordinate system. The registered image data are now combined by calibration-based image fusion in order to map our intraoperative 2D thermographic images onto the respective brain surface recovered from preoperative MRI. In extensive accuracy measurements, we found that the proposed framework achieves a mean accuracy of 2.46 mm.

  16. Role of Dynamics in the Autoinhibition and Activation of the Exchange Protein Directly Activated by Cyclic AMP (EPAC)*

    PubMed Central

    VanSchouwen, Bryan; Selvaratnam, Rajeevan; Fogolari, Federico; Melacini, Giuseppe

    2011-01-01

    The exchange protein directly activated by cAMP (EPAC) is a key receptor of cAMP in eukaryotes and controls critical signaling pathways. Currently, no residue resolution information is available on the full-length EPAC dynamics, which are known to be pivotal determinants of allostery. In addition, no information is presently available on the intermediates for the classical induced fit and conformational selection activation pathways. Here these questions are addressed through molecular dynamics simulations on five key states along the thermodynamic cycle for the cAMP-dependent activation of a fully functional construct of EPAC2, which includes the cAMP-binding domain and the integral catalytic region. The simulations are not only validated by the agreement with the experimental trends in cAMP-binding domain dynamics determined by NMR, but they also reveal unanticipated dynamic attributes, rationalizing previously unexplained aspects of EPAC activation and autoinhibition. Specifically, the simulations show that cAMP binding causes an extensive perturbation of dynamics in the distal catalytic region, assisting the recognition of the Rap1b substrate. In addition, analysis of the activation intermediates points to a possible hybrid mechanism of EPAC allostery incorporating elements of both the induced fit and conformational selection models. In this mechanism an entropy compensation strategy results in a low free-energy pathway of activation. Furthermore, the simulations indicate that the autoinhibitory interactions of EPAC are more dynamic than previously anticipated, leading to a revised model of autoinhibition in which dynamics fine tune the stability of the autoinhibited state, optimally sensitizing it to cAMP while avoiding constitutive activation. PMID:21873431

  17. Dynamically generated patterns in dense suspensions of active filaments

    NASA Astrophysics Data System (ADS)

    Prathyusha, K. R.; Henkes, Silke; Sknepnek, Rastko

    2018-02-01

    We use Langevin dynamics simulations to study dynamical behavior of a dense planar layer of active semiflexible filaments. Using the strength of active force and the thermal persistence length as parameters, we map a detailed phase diagram and identify several nonequilibrium phases in this system. In addition to a slowly flowing melt phase, we observe that, for sufficiently high activity, collective flow accompanied by signatures of local polar and nematic order appears in the system. This state is also characterized by strong density fluctuations. Furthermore, we identify an activity-driven crossover from this state of coherently flowing bundles of filaments to a phase with no global flow, formed by individual filaments coiled into rotating spirals. This suggests a mechanism where the system responds to activity by changing the shape of active agents, an effect with no analog in systems of active particles without internal degrees of freedom.

  18. Infrared Thermography Sensor for Temperature and Speed Measurement of Moving Material.

    PubMed

    Usamentiaga, Rubén; García, Daniel Fernando

    2017-05-18

    Infrared thermography offers significant advantages in monitoring the temperature of objects over time, but crucial aspects need to be addressed. Movements between the infrared camera and the inspected material seriously affect the accuracy of the calculated temperature. These movements can be the consequence of solid objects that are moved, molten metal poured, material on a conveyor belt, or just vibrations. This work proposes a solution for monitoring the temperature of material in these scenarios. In this work both real movements and vibrations are treated equally, proposing a unified solution for both problems. The three key steps of the proposed procedure are image rectification, motion estimation and motion compensation. Image rectification calculates a front-parallel projection of the image that simplifies the estimation and compensation of the movement. Motion estimation describes the movement using a mathematical model, and estimates the coefficients using robust methods adapted to infrared images. Motion is finally compensated for in order to produce the correct temperature time history of the monitored material regardless of the movement. The result is a robust sensor for temperature of moving material that can also be used to measure the speed of the material. Different experiments are carried out to validate the proposed method in laboratory and real environments. Results show excellent performance.

  19. Infrared Thermography Sensor for Temperature and Speed Measurement of Moving Material

    PubMed Central

    Usamentiaga, Rubén; García, Daniel Fernando

    2017-01-01

    Infrared thermography offers significant advantages in monitoring the temperature of objects over time, but crucial aspects need to be addressed. Movements between the infrared camera and the inspected material seriously affect the accuracy of the calculated temperature. These movements can be the consequence of solid objects that are moved, molten metal poured, material on a conveyor belt, or just vibrations. This work proposes a solution for monitoring the temperature of material in these scenarios. In this work both real movements and vibrations are treated equally, proposing a unified solution for both problems. The three key steps of the proposed procedure are image rectification, motion estimation and motion compensation. Image rectification calculates a front-parallel projection of the image that simplifies the estimation and compensation of the movement. Motion estimation describes the movement using a mathematical model, and estimates the coefficients using robust methods adapted to infrared images. Motion is finally compensated for in order to produce the correct temperature time history of the monitored material regardless of the movement. The result is a robust sensor for temperature of moving material that can also be used to measure the speed of the material. Different experiments are carried out to validate the proposed method in laboratory and real environments. Results show excellent performance. PMID:28524110

  20. Soft, thin skin-mounted power management systems and their use in wireless thermography

    NASA Astrophysics Data System (ADS)

    Lee, Jung Woo; Xu, Renxiao; Lee, Seungmin; Jang, Kyung-In; Yang, Yichen; Banks, Anthony; Yu, Ki Jun; Kim, Jeonghyun; Xu, Sheng; Ma, Siyi; Jang, Sung Woo; Won, Phillip; Li, Yuhang; Kim, Bong Hoon; Choe, Jo Young; Huh, Soojeong; Kwon, Yong Ho; Huang, Yonggang; Paik, Ungyu; Rogers, John A.

    2016-05-01

    Power supply represents a critical challenge in the development of body-integrated electronic technologies. Although recent research establishes an impressive variety of options in energy storage (batteries and supercapacitors) and generation (triboelectric, piezoelectric, thermoelectric, and photovoltaic devices), the modest electrical performance and/or the absence of soft, biocompatible mechanical properties limit their practical use. The results presented here form the basis of soft, skin-compatible means for efficient photovoltaic generation and high-capacity storage of electrical power using dual-junction, compound semiconductor solar cells and chip-scale, rechargeable lithium-ion batteries, respectively. Miniaturized components, deformable interconnects, optimized array layouts, and dual-composition elastomer substrates, superstrates, and encapsulation layers represent key features. Systematic studies of the materials and mechanics identify optimized designs, including unusual configurations that exploit a folded, multilayer construct to improve the functional density without adversely affecting the soft, stretchable characteristics. System-level examples exploit such technologies in fully wireless sensors for precision skin thermography, with capabilities in continuous data logging and local processing, validated through demonstrations on volunteer subjects in various realistic scenarios.

  1. Soft, thin skin-mounted power management systems and their use in wireless thermography.

    PubMed

    Lee, Jung Woo; Xu, Renxiao; Lee, Seungmin; Jang, Kyung-In; Yang, Yichen; Banks, Anthony; Yu, Ki Jun; Kim, Jeonghyun; Xu, Sheng; Ma, Siyi; Jang, Sung Woo; Won, Phillip; Li, Yuhang; Kim, Bong Hoon; Choe, Jo Young; Huh, Soojeong; Kwon, Yong Ho; Huang, Yonggang; Paik, Ungyu; Rogers, John A

    2016-05-31

    Power supply represents a critical challenge in the development of body-integrated electronic technologies. Although recent research establishes an impressive variety of options in energy storage (batteries and supercapacitors) and generation (triboelectric, piezoelectric, thermoelectric, and photovoltaic devices), the modest electrical performance and/or the absence of soft, biocompatible mechanical properties limit their practical use. The results presented here form the basis of soft, skin-compatible means for efficient photovoltaic generation and high-capacity storage of electrical power using dual-junction, compound semiconductor solar cells and chip-scale, rechargeable lithium-ion batteries, respectively. Miniaturized components, deformable interconnects, optimized array layouts, and dual-composition elastomer substrates, superstrates, and encapsulation layers represent key features. Systematic studies of the materials and mechanics identify optimized designs, including unusual configurations that exploit a folded, multilayer construct to improve the functional density without adversely affecting the soft, stretchable characteristics. System-level examples exploit such technologies in fully wireless sensors for precision skin thermography, with capabilities in continuous data logging and local processing, validated through demonstrations on volunteer subjects in various realistic scenarios.

  2. Soft, thin skin-mounted power management systems and their use in wireless thermography

    PubMed Central

    Lee, Jung Woo; Xu, Renxiao; Lee, Seungmin; Jang, Kyung-In; Yang, Yichen; Banks, Anthony; Yu, Ki Jun; Kim, Jeonghyun; Xu, Sheng; Ma, Siyi; Jang, Sung Woo; Won, Phillip; Li, Yuhang; Kim, Bong Hoon; Choe, Jo Young; Huh, Soojeong; Kwon, Yong Ho; Huang, Yonggang; Paik, Ungyu; Rogers, John A.

    2016-01-01

    Power supply represents a critical challenge in the development of body-integrated electronic technologies. Although recent research establishes an impressive variety of options in energy storage (batteries and supercapacitors) and generation (triboelectric, piezoelectric, thermoelectric, and photovoltaic devices), the modest electrical performance and/or the absence of soft, biocompatible mechanical properties limit their practical use. The results presented here form the basis of soft, skin-compatible means for efficient photovoltaic generation and high-capacity storage of electrical power using dual-junction, compound semiconductor solar cells and chip-scale, rechargeable lithium-ion batteries, respectively. Miniaturized components, deformable interconnects, optimized array layouts, and dual-composition elastomer substrates, superstrates, and encapsulation layers represent key features. Systematic studies of the materials and mechanics identify optimized designs, including unusual configurations that exploit a folded, multilayer construct to improve the functional density without adversely affecting the soft, stretchable characteristics. System-level examples exploit such technologies in fully wireless sensors for precision skin thermography, with capabilities in continuous data logging and local processing, validated through demonstrations on volunteer subjects in various realistic scenarios. PMID:27185907

  3. Applications of infrared thermography for nondestructive testing of fatigue cracks in steel bridges

    NASA Astrophysics Data System (ADS)

    Sakagami, Takahide; Izumi, Yui; Kobayashi, Yoshihiro; Mizokami, Yoshiaki; Kawabata, Sunao

    2014-05-01

    In recent years, fatigue crack propagations in aged steel bridge which may lead to catastrophic structural failures have become a serious problem. For large-scale steel structures such as orthotropic steel decks in highway bridges, nondestructive inspection of deteriorations and fatigue damages are indispensable for securing their safety and for estimating their remaining strength. As conventional NDT techniques for steel bridges, visual testing, magnetic particle testing and ultrasonic testing have been commonly employed. However, these techniques are time- and labor- consuming techniques, because special equipment is required for inspection, such as scaffolding or a truck mount aerial work platform. In this paper, a new thermography NDT technique, which is based on temperature gap appeared on the surface of structural members due to thermal insulation effect of the crack, is developed for detection of fatigue cracks. The practicability of the developed technique is demonstrated by the field experiments for highway steel bridges in service. Detectable crack size and factors such as measurement time, season or spatial resolution which influence crack detectability are investigated.

  4. Automating data analysis during the inspection of boiler tubes using line scanning thermography

    NASA Astrophysics Data System (ADS)

    Ley, Obdulia; Momeni, Sepand; Ostroff, Jason; Godinez, Valery

    2012-05-01

    Failures in boiler waterwalls can occur when a relatively small amount of corrosion and loss of metal have been experienced. This study presents our efforts towards the application of Line Scanning Thermography (LST) for the analysis of thinning in boiler waterwall tubing. LST utilizes a line heat source to thermally excite the surface to be inspected and an infrared detector to record the transient surface temperature increase observed due to the presence of voids, thinning or other defects. In waterwall boiler tubes the defects that can be detected using LST correspond to corrosion pitting, hydrogen damage and wall thinning produced by inadequate burner heating or problems with the water chemistry. In this paper we discuss how the LST technique is implemented to determine thickness from the surface temperature data, and we describe our efforts towards developing a semiautomatic analysis tool to speed up the time between scanning, reporting and implementing repairs. We compare the density of data produced by the common techniques used to assess wall thickness and the data produced by LST.

  5. A dynamic mechanism for allosteric activation of Aurora kinase A by activation loop phosphorylation.

    PubMed

    Ruff, Emily F; Muretta, Joseph M; Thompson, Andrew R; Lake, Eric W; Cyphers, Soreen; Albanese, Steven K; Hanson, Sonya M; Behr, Julie M; Thomas, David D; Chodera, John D; Levinson, Nicholas M

    2018-02-21

    Many eukaryotic protein kinases are activated by phosphorylation on a specific conserved residue in the regulatory activation loop, a post-translational modification thought to stabilize the active DFG-In state of the catalytic domain. Here we use a battery of spectroscopic methods that track different catalytic elements of the kinase domain to show that the ~100 fold activation of the mitotic kinase Aurora A (AurA) by phosphorylation occurs without a population shift from the DFG-Out to the DFG-In state, and that the activation loop of the activated kinase remains highly dynamic. Instead, molecular dynamics simulations and electron paramagnetic resonance experiments show that phosphorylation triggers a switch within the DFG-In subpopulation from an autoinhibited DFG-In substate to an active DFG-In substate, leading to catalytic activation. This mechanism raises new questions about the functional role of the DFG-Out state in protein kinases. © 2018, Ruff et al.

  6. Ultrasound excited thermography: an efficient tool for the characterization of vertical cracks

    NASA Astrophysics Data System (ADS)

    Mendioroz, A.; Celorrio, R.; Salazar, A.

    2017-11-01

    Ultrasound excited thermography has gained a renewed interest in the last two decades as a nondestructive testing technique aimed at detecting and characterizing surface breaking and shallow subsurface discontinuities. It is based on measurement of the IR radiation emitted by the specimen surface to detect temperature rises produced by the heating of defects under high amplitude ultrasound excitation and is primarily addressed to flaws with contacting faces, such as kissing cracks or tight delaminations. The simplicity of application and the ability to detect small cracks in challenging media makes it an attractive emerging technology, which is still in a development stage. However, it has proven to provide an opportunity for the quantitative characterization of defects, mainly of vertical cracks. In this review, we present the principles of the technique and the different experimental implementations, we put it in context with other nondestructive tests and we summarize the work done in order to improve defect detectability and test reliability, with the final goal of determining the probability of detection. Then we review the contributions aimed at characterizing vertical cracks, i.e. retrieving the geometry and location of the crack from surface temperature data, generated by ultrasonic excitation.

  7. Baby sleeping bag and conventional bedding conditions--comparative investigations by infrared thermography.

    PubMed

    Sauseng, W; Kerbl, R; Thaller, S; Hanzer, M; Zotter, H

    2011-09-01

    Thermal stress is a risk factor for sudden infant death syndrome (SIDS). Recently, baby sleeping bags have been recommended as a preventive measure against SIDS. The aim of this study was to describe in which way the use of baby sleeping bags might influence thermoregulation of sleeping infants and maybe the incidence of SIDS. Body surface temperature was recorded by use of infrared thermography in 15 infants (median age 49 days). Recordings were done twice: after sleeping for 60 min under a blanket and after sleeping for 60 min in a baby sleeping bag. Temperature was recorded and compared for defined sites of body surface. Infants' mean body surface temperature as well as core temperature after sleeping in a baby sleeping bag did not show significant differences when compared to infants sleeping under a conventional blanket. Under controlled conditions, core temperature and mean body surface temperature are comparable, equally if using a baby sleeping bag or conventional bedding. However, under the more uncontrolled conditions of baby care at home, sleeping bags might provide a more constant temperature profile, while other bedding conditions may lead to significant variations of temperature pattern. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Automatic detection of diabetic foot complications with infrared thermography by asymmetric analysis

    NASA Astrophysics Data System (ADS)

    Liu, Chanjuan; van Netten, Jaap J.; van Baal, Jeff G.; Bus, Sicco A.; van der Heijden, Ferdi

    2015-02-01

    Early identification of diabetic foot complications and their precursors is essential in preventing their devastating consequences, such as foot infection and amputation. Frequent, automatic risk assessment by an intelligent telemedicine system might be feasible and cost effective. Infrared thermography is a promising modality for such a system. The temperature differences between corresponding areas on contralateral feet are the clinically significant parameters. This asymmetric analysis is hindered by (1) foot segmentation errors, especially when the foot temperature and the ambient temperature are comparable, and by (2) different shapes and sizes between contralateral feet due to deformities or minor amputations. To circumvent the first problem, we used a color image and a thermal image acquired synchronously. Foot regions, detected in the color image, were rigidly registered to the thermal image. This resulted in 97.8%±1.1% sensitivity and 98.4%±0.5% specificity over 76 high-risk diabetic patients with manual annotation as a reference. Nonrigid landmark-based registration with B-splines solved the second problem. Corresponding points in the two feet could be found regardless of the shapes and sizes of the feet. With that, the temperature difference of the left and right feet could be obtained.

  9. Comparison of intra-articular methotrexate with intra-articular triamcinolone hexacetonide by thermography.

    PubMed

    Bird, H A; Ring, E F; Daniel, R; Bacon, P A

    1977-01-01

    A comparison of intra-articular methotrexate and intra-articular triamcinolone hexacetonide was made in 42 arthritic patients with persistent bilateral knee effusions. One knee was injected with either 5 mg methotrexate (two injections of 2.5 mg a week apart) or a single injection of 20 mg triamcinolone. An objective assessment of both knees was made by quantitative thermography at 0,3,7,14 and 21 days. Joints injected with triamcinolone showed a greater fall in thermographic index (T.I) than the joints injected with methotrexate, which showed similar change to the non-injected knee joints in both groups. Four patients received larger doses of methotrexate, up to 20 mg, though the fall in T.I. was still less than the mean fall for triamcinolone injected joints. Peak venous blood levels of methotrexate were reached 1 hour after intra-articular injection, and a sphygmomanometer cuff inflated around the leg above the injected knee for periods of up to 1 hour did not appreciably delay this. Methotrexate had no immediate anti-inflammatory effect, even in psoriatic arthropathy, and did not give the relief of intra-articular steroid.

  10. Pulsed thermography detection of water and hydraulic oil intrusion in the honeycomb sandwich structure composite

    NASA Astrophysics Data System (ADS)

    Zhao, Shi-bin; Zhang, Cun-lin; Wu, Nai-ming

    2011-08-01

    Water and hydraulic oil intrusion inside honeycomb sandwich Structure Composite during service has been linked to in-flight failure in some aircraft. There is an ongoing effort to develop nondestructive testing methods to detect the presence of water and hydraulic oil within the sandwich panels. Pulsed thermography(PT) represents an attractive approach in that it is sensitive to the change of thermal properties. Using a flash lamp PT, testing can be applied directly to the surface of the panel. The viability of PT is demonstrated through laboratory imaging of both water and hydraulic oil within sandwich panels. The detection of water and hydraulic oil intrusion using a one-sided flash lamp PT is presented. It is shown that simple detection, as well as spatial localization of water and hydraulic oil within sandwich panels, and assign the quantity of water and hydraulic oil is possible.

  11. Infrared thermography based on artificial intelligence as a screening method for carpal tunnel syndrome diagnosis.

    PubMed

    Jesensek Papez, B; Palfy, M; Mertik, M; Turk, Z

    2009-01-01

    This study further evaluated a computer-based infrared thermography (IRT) system, which employs artificial neural networks for the diagnosis of carpal tunnel syndrome (CTS) using a large database of 502 thermal images of the dorsal and palmar side of 132 healthy and 119 pathological hands. It confirmed the hypothesis that the dorsal side of the hand is of greater importance than the palmar side when diagnosing CTS thermographically. Using this method it was possible correctly to classify 72.2% of all hands (healthy and pathological) based on dorsal images and > 80% of hands when only severely affected and healthy hands were considered. Compared with the gold standard electromyographic diagnosis of CTS, IRT cannot be recommended as an adequate diagnostic tool when exact severity level diagnosis is required, however we conclude that IRT could be used as a screening tool for severe cases in populations with high ergonomic risk factors of CTS.

  12. A Prospective, Observational Study to Assess the Use of Thermography to Predict Progression of Discolored Intact Skin to Necrosis Among Patients in Skilled Nursing Facilities.

    PubMed

    Cox, Jill; Kaes, Loretta; Martinez, Miguel; Moles, Daniel

    2016-10-01

    Skin temperature may help prospectively determine whether an area of skin discoloration will evolve into necrosis. A prospective, observational study was conducted in 7 skilled nursing facilities to determine if skin temperature measured using infrared thermography could predict the progression of discolored intact skin (blanchable erythema, Stage 1 pressure ulcer, or sus- pected deep tissue injury [sDTI]) to necrosis and to evaluate if nurses could effectively integrate thermography into the clinical setting. Patients residing in or presenting to the facility between October 2014 and August 2015 with a pressure-related area of discolored skin determined to be blanchable erythema, a Stage 1 pressure ulcer, or sDTI and anticipated length of stay >6 days were assessed at initial presentation of the discolored area and after 7 and 14 days by facility nurses trained on camera operation and study protocol. Variables included patient demographic and clinical data, data related to the discolored area (eg, size, date of initial discovery), and temperature and appearance differences between discolored and adjacent intact skin. Skin temperatures at the discolored and adjacent areas were measured during the initial assessment. All facility pressure ulcer prevention and treatment protocols derived from evidence-based clinical practice guidelines remained in use during the study time period. Participating nurses completed a 2-part, pencil/paper survey to examine the feasibility of incorporating thermography for skin assessment into practice. Data analyses were performed using descriptive statistics (frequency analyses) and bivariate analysis (t-tests and chi-squared tests); logistic regression was used to assess associations among patient and pressure ulcer variables. Of the 67 patients studied, the overall mean age was 85 years (SD 10); 52 were women; 63 were Caucasian; and the top 3 diagnoses, accounting for 60% of the study sample, included neurologic (ie, cardiovascular

  13. Dynamic restructuring drives catalytic activity on nanoporous gold–silver alloy catalysts

    DOE PAGES

    Zugic, Branko; Wang, Lucun; Heine, Christian; ...

    2016-12-19

    Bimetallic, nanostructured materials hold promise for improving catalyst activity and selectivity, yet little is known about the dynamic compositional and structural changes that these systems undergo during pretreatment that leads to efficient catalyst function. Here we use ozone-activated silver–gold alloys in the form of nanoporous gold as a case study to demonstrate the dynamic behaviour of bimetallic systems during activation to produce a functioning catalyst. We show that it is these dynamic changes that give rise to the observed catalytic activity. Advanced in situ electron microscopy and X-ray photoelectron spectroscopy are used to demonstrate that major restructuring and compositional changesmore » occur along the path to catalytic function for selective alcohol oxidation. Transient kinetic measurements correlate the restructuring to three types of oxygen on the surface. The direct influence of changes in surface silver concentration and restructuring at the nanoscale on oxidation activity is demonstrated. Finally, our results demonstrate that characterization of these dynamic changes is necessary to unlock the full potential of bimetallic catalytic materials.« less

  14. Dynamic restructuring drives catalytic activity on nanoporous gold–silver alloy catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zugic, Branko; Wang, Lucun; Heine, Christian

    Bimetallic, nanostructured materials hold promise for improving catalyst activity and selectivity, yet little is known about the dynamic compositional and structural changes that these systems undergo during pretreatment that leads to efficient catalyst function. Here we use ozone-activated silver–gold alloys in the form of nanoporous gold as a case study to demonstrate the dynamic behaviour of bimetallic systems during activation to produce a functioning catalyst. We show that it is these dynamic changes that give rise to the observed catalytic activity. Advanced in situ electron microscopy and X-ray photoelectron spectroscopy are used to demonstrate that major restructuring and compositional changesmore » occur along the path to catalytic function for selective alcohol oxidation. Transient kinetic measurements correlate the restructuring to three types of oxygen on the surface. The direct influence of changes in surface silver concentration and restructuring at the nanoscale on oxidation activity is demonstrated. Finally, our results demonstrate that characterization of these dynamic changes is necessary to unlock the full potential of bimetallic catalytic materials.« less

  15. Contact dynamic phenomena in rotating machines: Active/passive considerations

    NASA Astrophysics Data System (ADS)

    Keogh, Patrick S.

    2012-05-01

    There are machine operating regimes in which rotor/stator interactions may lead to problematic rotor dynamic behavior. For example, dynamic heat sources arising from seals, bearings and other rubbing stator components may cause rotor thermal bend instability. In active magnetic bearing (AMB) systems, the rotor may experience forward and backward whirl rubs with touchdown bearings (TDBs). In abnormal cases, rotor transient and bounce interactions with such bearings may involve highly localized and short duration contacts. This paper discusses certain contact phenomena that may occur in passive and active systems. For example, the rub induced spiral behavior arises from a combination of unbalance and a thermal input that moves slowly around the rotor, typically in passive rotor-bearing systems. However, the instability can be regarded as if arising from a closed-loop feedback system. Hence it is possible to analyze the phenomenon using techniques that have been developed for active control systems. Rotors levitated by AMBs are truly active, but there are fundamental issues that may arise when contact with TDBs occurs. AMB control and contact interactions are discussed together with the benefits for making the TDB an active element. The reason for this lies in the potential ability to control the contact dynamics and associated mechanical and thermal stresses. A prototype system is described.

  16. The Use of High-resolution Infrared Thermography (HRIT) for the Study of Ice Nucleation and Ice Propagation in Plants

    PubMed Central

    Wisniewski, Michael; Neuner, Gilbert; Gusta, Lawrence V.

    2015-01-01

    Freezing events that occur when plants are actively growing can be a lethal event, particularly if the plant has no freezing tolerance. Such frost events often have devastating effects on agricultural production and can also play an important role in shaping community structure in natural populations of plants, especially in alpine, sub-arctic, and arctic ecosystems. Therefore, a better understanding of the freezing process in plants can play an important role in the development of methods of frost protection and understanding mechanisms of freeze avoidance. Here, we describe a protocol to visualize the freezing process in plants using high-resolution infrared thermography (HRIT). The use of this technology allows one to determine the primary sites of ice formation in plants, how ice propagates, and the presence of ice barriers. Furthermore, it allows one to examine the role of extrinsic and intrinsic nucleators in determining the temperature at which plants freeze and evaluate the ability of various compounds to either affect the freezing process or increase freezing tolerance. The use of HRIT allows one to visualize the many adaptations that have evolved in plants, which directly or indirectly impact the freezing process and ultimately enables plants to survive frost events. PMID:25992743

  17. Infrared thermography based diagnosis of inter-turn fault and cooling system failure in three phase induction motor

    NASA Astrophysics Data System (ADS)

    Singh, Gurmeet; Naikan, V. N. A.

    2017-12-01

    Thermography has been widely used as a technique for anomaly detection in induction motors. International Electrical Testing Association (NETA) proposed guidelines for thermographic inspection of electrical systems and rotating equipment. These guidelines help in anomaly detection and estimating its severity. However, it focus only on location of hotspot rather than diagnosing the fault. This paper addresses two such faults i.e. inter-turn fault and failure of cooling system, where both results in increase of stator temperature. Present paper proposes two thermal profile indicators using thermal analysis of IRT images. These indicators are in compliance with NETA standard. These indicators help in correctly diagnosing inter-turn fault and failure of cooling system. The work has been experimentally validated for healthy and with seeded faults scenarios of induction motors.

  18. Characterizing active cytoskeletal dynamics with magnetic microposts

    NASA Astrophysics Data System (ADS)

    Shi, Yu; Henry, Steven; Crocker, John; Reich, Daniel

    Characterization of an active matter system such as the cellular cytoskeleton requires knowledge of three frequency dependent quantities: the dynamic shear modulus, G*(ω) describing its viscoelasticity, the Fourier power spectrum of forces in the material due to internal force generators f (ω) , and the spectrum of the material's active strain fluctuations x(ω) . Via use of PDMS micropost arrays with magnetic nanowires embedded in selected posts, we measure the local complex modulus of cells through mechanical actuation of the magnetic microposts. The micrometer scale microposts are also used as passive probes to measure simultaneously the frequency dependent strain fluctuations. We present data on 3T3 fibroblasts, where we find power law behavior for both the frequency dependence of cells' modulus | G (ω) | ω 0 . 27 and the power spectrum of strain fluctuations |x(ω) | ω-2 . Results for the power spectrum of active cytoskeletal stresses determined from these two measurements, and implications of this mesoscale characterization of cytoskeletal dynamics for cellular biophysics will also be discussed. Supported in part by NIH Grant 1R01HL127087.

  19. Viscoelastic and elastomeric active matter: linear instability and nonlinear dynamics

    NASA Astrophysics Data System (ADS)

    Hemingway, Ewan J.; Cates, M. E.; Marchetti, M. C.; Fielding, S. M.

    We consider a continuum model of active viscoelastic matter, whereby a model of an active nematic liquid-crystal is coupled to a minimal model of polymer dynamics with a viscoelastic relaxation time τc. To explore the resulting interplay between active and polymeric dynamics, we first generalise a linear stability analysis (from earlier studies without polymer) to derive criteria for the onset of spontaneous flow. Perhaps surprisingly, our results show that the spontaneous flow instability persists even for divergent polymer relaxation times. We explore the novel dynamical states to which these instabilities lead by means of nonlinear numerical simulations. This reveals oscillatory shear-banded states in 1D, and activity-driven turbulence in 2D, even in the limit τc --> ∞ . Adding polymer can also have calming effects, increasing the net throughput of spontaneous flow along a channel in a new type of ''drag-reduction'', an effect that may have implications for cytoplasmic streaming processes within the cell.

  20. Trunk muscle activation during dynamic weight-training exercises and isometric instability activities.

    PubMed

    Hamlyn, Nicolle; Behm, David G; Young, Warren B

    2007-11-01

    The purpose of this study was to examine the extent of activation in various trunk muscles during dynamic weight-training and isometric instability exercises. Sixteen subjects performed squats and deadlifts with 80% 1 repetition maximum (1RM), as well as with body weight as resistance and 2 unstable calisthenic-type exercises (superman and sidebridge). Electromyographic (EMG) activity was measured from the lower abdominals (LA), external obliques (EO), upper lumbar erector spinae (ULES), and lumbar-sacral erector spinae (LSES) muscle groups. Results indicated that the LSES EMG activity during the 80% 1RM squat significantly exceeded 80% 1RM deadlift LSES EMG activity by 34.5%. The LSES EMG activity of the 80% 1RM squat also exceeded the body weight squat, deadlift, superman, and sidebridge by 56, 56.6, 65.5, and 53.1%, respectively. The 80% 1RM deadlift ULES EMG activity significantly exceeded the 80% 1RM squat exercise by 12.9%. In addition, the 80% 1RM deadlift ULES EMG activity also exceeded the body weight squat, deadlift, superman, and sidebridge exercises by 66.7, 65.5, 69.3, and 68.6%, respectively. There were no significant changes in EO or LA activity. Therefore, the augmented activity of the LSES and ULES during 80% 1RM squat and deadlift resistance exercises exceeded the activation levels achieved with the same exercises performed with body weight and selected instability exercises. Individuals performing upright, resisted, dynamic exercises can achieve high trunk muscle activation and thus may not need to add instability device exercises to augment core stability training.

  1. Complex collective dynamics of active torque-driven colloids at interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snezhko, Alexey

    Modern self-assembly techniques aiming to produce complex structural order or functional diversity often rely on non-equilibrium conditions in the system. Light, electric, or magnetic fields are predominantly used to modify interaction profiles of colloidal particles during self-assembly or induce complex out-of-equilibrium dynamic ordering. The energy injection rate, properties of the environment are important control parameters that influence the outcome of active (dynamic) self-assembly. The current review is focused on a case of collective dynamics and self-assembly of particles with externally driven torques coupled to a liquid or solid interface. The complexity of interactions in such systems is further enriched bymore » strong hydrodynamic coupling between particles. Unconventionally ordered dynamic self-assembled patterns, spontaneous symmetry breaking phenomena, self-propulsion, and collective transport have been reported in torque-driven colloids. Some of the features of the complex collective behavior and dynamic pattern formation in those active systems have been successfully captured in simulations.« less

  2. Dynamic cerebral autoregulation during brain activation paradigms.

    PubMed

    Panerai, Ronney B; Moody, Michelle; Eames, Penelope J; Potter, John F

    2005-09-01

    Dynamic cerebral autoregulation (CA) describes the transient response of cerebral blood flow (CBF) to rapid changes in arterial blood pressure (ABP). We tested the hypothesis that the efficiency of dynamic CA is increased by brain activation paradigms designed to induce hemispheric lateralization. CBF velocity [CBFV; bilateral, middle cerebral artery (MCA)], ABP, ECG, and end-tidal Pco(2) were continuously recorded in 14 right-handed healthy subjects (21-43 yr of age), in the seated position, at rest and during 10 repeated presentations (30 s on-off) of a word generation test and a constructional puzzle. Nonstationarities were not found during rest or activation. Transfer function analysis of the ABP-CBFV (i.e., input-output) relation was performed for the 10 separate 51.2-s segments of data during activation and compared with baseline data. During activation, the coherence function below 0.05 Hz was significantly increased for the right MCA recordings for the puzzle tasks compared with baseline values (0.36 +/- 0.16 vs. 0.26 +/- 0.13, P < 0.05) and for the left MCA recordings for the word paradigm (0.48 +/- 0.23 vs. 0.29 +/- 0.16, P < 0.05). In the same frequency range, significant increases in gain were observed during the puzzle paradigm for the right (0.69 +/- 0.37 vs. 0.46 +/- 0.32 cm.s(-1).mmHg(-1), P < 0.05) and left (0.61 +/- 0.29 vs. 0.45 +/- 0.24 cm.s(-1).mmHg(-1), P < 0.05) hemispheres and during the word tasks for the left hemisphere (0.66 +/- 0.31 vs. 0.39 +/- 0.15 cm.s(-1).mmHg(-1), P < 0.01). Significant reductions in phase were observed during activation with the puzzle task for the right (-0.04 +/- 1.01 vs. 0.80 +/- 0.86 rad, P < 0.01) and left (0.11 +/- 0.81 vs. 0.57 +/- 0.51 rad, P < 0.05) hemispheres and with the word paradigm for the right hemisphere (0.05 +/- 0.87 vs. 0.64 +/- 0.59 rad, P < 0.05). Brain activation also led to changes in the temporal pattern of the CBFV step response. We conclude that transfer function analysis suggests

  3. KENNEDY SPACE CENTER, FLA. - In the Vehicle Assembly Building, Jim Landy, NDE specialist, performs flash thermography on flight crew lockers. He is screening the lockers for hidden damage underneath dings and dents that might occur during handling.

    NASA Image and Video Library

    2003-09-04

    KENNEDY SPACE CENTER, FLA. - In the Vehicle Assembly Building, Jim Landy, NDE specialist, performs flash thermography on flight crew lockers. He is screening the lockers for hidden damage underneath dings and dents that might occur during handling.

  4. KENNEDY SPACE CENTER, FLA. - In the Vehicle Assembly Building, Jim Landy, NDE specialist, examines flight crew lockers using flash thermography. He is screening the lockers for hidden damage underneath dings and dents that might occur during handling.

    NASA Image and Video Library

    2003-09-04

    KENNEDY SPACE CENTER, FLA. - In the Vehicle Assembly Building, Jim Landy, NDE specialist, examines flight crew lockers using flash thermography. He is screening the lockers for hidden damage underneath dings and dents that might occur during handling.

  5. Infraslow Electroencephalographic and Dynamic Resting State Network Activity.

    PubMed

    Grooms, Joshua K; Thompson, Garth J; Pan, Wen-Ju; Billings, Jacob; Schumacher, Eric H; Epstein, Charles M; Keilholz, Shella D

    2017-06-01

    A number of studies have linked the blood oxygenation level dependent (BOLD) signal to electroencephalographic (EEG) signals in traditional frequency bands (δ, θ, α, β, and γ), but the relationship between BOLD and its direct frequency correlates in the infraslow band (<1 Hz) has been little studied. Previously, work in rodents showed that infraslow local field potentials play a role in functional connectivity, particularly in the dynamic organization of large-scale networks. To examine the relationship between infraslow activity and network dynamics in humans, direct current (DC) EEG and resting state magnetic resonance imaging data were acquired simultaneously. The DC EEG signals were correlated with the BOLD signal in patterns that resembled resting state networks. Subsequent dynamic analysis showed that the correlation between DC EEG and the BOLD signal varied substantially over time, even within individual subjects. The variation in DC EEG appears to reflect the time-varying contribution of different resting state networks. Furthermore, some of the patterns of DC EEG and BOLD correlation are consistent with previous work demonstrating quasiperiodic spatiotemporal patterns of large-scale network activity in resting state. These findings demonstrate that infraslow electrical activity is linked to BOLD fluctuations in humans and that it may provide a basis for large-scale organization comparable to that observed in animal studies.

  6. Dynamics of Fractal Cluster Gels with Embedded Active Colloids

    NASA Astrophysics Data System (ADS)

    Szakasits, Megan E.; Zhang, Wenxuan; Solomon, Michael J.

    2017-08-01

    We find that embedded active colloids increase the ensemble-averaged mean squared displacement of particles in otherwise passively fluctuating fractal cluster gels. The enhancement in dynamics occurs by a mechanism in which the active colloids contribute to the average dynamics both directly through their own active motion and indirectly through their excitation of neighboring passive colloids in the fractal network. Fractal cluster gels are synthesized by addition of magnesium chloride to an initially stable suspension of 1.0 μ m polystyrene colloids in which a dilute concentration of platinum coated Janus colloids has been dispersed. The Janus colloids are thereby incorporated into the fractal network. We measure the ensemble-averaged mean squared displacement of all colloids in the gel before and after the addition of hydrogen peroxide, a fuel that drives diffusiophoretic motion of the Janus particles. The gel mean squared displacement increases by up to a factor of 3 for an active to passive particle ratio of 1 ∶20 and inputted active energy—defined based on the hydrogen peroxide's effect on colloid swim speed and run length—that is up to 9.5 times thermal energy, on a per particle basis. We model the enhancement in gel particle dynamics as the sum of a direct contribution from the displacement of the Janus particles themselves and an indirect contribution from the strain field that the active colloids induce in the surrounding passive particles.

  7. Thermography as an early predictive measurement for evaluating epidural and femoral-sciatic block success in dogs.

    PubMed

    Küls, Nina; Blissitt, Karen J; Shaw, Darren J; Schöffmann, Gudrun; Clutton, Richard E

    2017-09-01

    To evaluate skin temperature increase as an early predictive measure for evaluating epidural and femoral-sciatic block success in dogs. Prospective clinical trial. A total of 29 dogs undergoing orthopaedic surgery on one hindlimb. Dogs were anaesthetized and placed into lateral recumbency with the affected limb uppermost and the coat was clipped. Baseline infrared thermographic images (T0) of the affected limb, of the paw pad of the affected leg and of the ipsilateral paw pad were taken. Subsequently, dogs were administered either an epidural (EPI; n=11) or a femoral-sciatic block (FS; n=18) using bupivacaine 1 mg kg -1 . Then, 2 minutes after placement of the block, thermographic images were obtained every 3 minutes for a total of four measurements (T1-T4) and surgery was commenced. Rescue analgesia consisting of fentanyl 1 μg kg -1 was administered if needed. A regional block was considered successful if the dose of fentanyl administered was less than the lower 95% confidence interval of the geometric mean of the total fentanyl used in each group. A ≥ 1 °C increase of skin temperature was considered as the minimum increase required for detection of a successful block. A total of 12 out of 18 blocks in the FS and eight of 11 in the EPI group were considered successful based on fentanyl consumption. Out of these, only four of 12 in the FS and one of eight in the EPI group developed an increase in temperature of ≥ 1 °C. Contrarily, four of six of the nonsuccessful cases in the FS and three of three in the EPI group developed an increase in temperature of ≥ 1 °C. Contrary to reports in humans, thermography did not indicate regional block success prior to surgery in dogs. However further studies under more controlled conditions are needed to determine whether thermography can be used to indicate failure of regional blockade. Copyright © 2017 Association of Veterinary Anaesthetists and American College of Veterinary Anesthesia and Analgesia. Published

  8. Evaluation of infrared thermography as a diagnostic tool in CVD applications

    NASA Astrophysics Data System (ADS)

    Johnson, E. J.; Hyer, P. V.; Culotta, P. W.; Clark, I. O.

    1998-05-01

    This research is focused on the feasibility of using infrared temperature measurements on the exterior of a chemical vapor deposition (CVD) reactor to ascertain both real-time information on the operating characteristics of a CVD system and provide data which could be post-processed to provide quantitative information for research and development on CVD processes. Infrared thermography techniques were used to measure temperatures on a horizontal CVD reactor of rectangular cross section which were correlated with the internal gas flow field, as measured with the laser velocimetry (LV) techniques. For the reactor tested, thermal profiles were well correlated with the gas flow field inside the reactor. Correlations are presented for nitrogen and hydrogen carrier gas flows. The infrared data were available to the operators in real time with sufficient sensitivity to the internal flow field so that small variations such as misalignment of the reactor inlet could be observed. The same data were post-processed to yield temperature measurements at known locations on the reactor surface. For the experiments described herein, temperatures associated with approximately 3.3 mm 2 areas on the reactor surface were obtained with a precision of ±2°C. These temperature measurements were well suited for monitoring a CVD production reactor, development of improved thermal boundary conditions for use in CFD models of reactors, and for verification of expected thermal conditions.

  9. Dynamic phenomena and human activity in an artificial society

    NASA Astrophysics Data System (ADS)

    Grabowski, A.; Kruszewska, N.; Kosiński, R. A.

    2008-12-01

    We study dynamic phenomena in a large social network of nearly 3×104 individuals who interact in the large virtual world of a massive multiplayer online role playing game. On the basis of a database received from the online game server, we examine the structure of the friendship network and human dynamics. To investigate the relation between networks of acquaintances in virtual and real worlds, we carried out a survey among the players. We show that, even though the virtual network did not develop as a growing graph of an underlying network of social acquaintances in the real world, it influences it. Furthermore we find very interesting scaling laws concerning human dynamics. Our research shows how long people are interested in a single task and how much time they devote to it. Surprisingly, exponent values in both cases are close to -1 . We calculate the activity of individuals, i.e., the relative time daily devoted to interactions with others in the artificial society. Our research shows that the distribution of activity is not uniform and is highly correlated with the degree of the node, and that such human activity has a significant influence on dynamic phenomena, e.g., epidemic spreading and rumor propagation, in complex networks. We find that spreading is accelerated (an epidemic) or decelerated (a rumor) as a result of superspreaders’ various behavior.

  10. Infrared thermography: A potential noninvasive tool to monitor udder health status in dairy cows

    PubMed Central

    Sathiyabarathi, M.; Jeyakumar, S.; Manimaran, A.; Jayaprakash, G.; Pushpadass, Heartwin A.; Sivaram, M.; Ramesha, K. P.; Das, D. N.; Kataktalware, Mukund A.; Prakash, M. Arul; Kumar, R. Dhinesh

    2016-01-01

    The animal husbandry and livestock sectors play a major role in the rural economy, especially for the small and marginal farmers. India has the largest livestock population in the world and ranks first in the milk production. Mastitis is the most common and expensive infectious disease in dairy cattle. The global economic losses per year due to mastitis amounts to USD 35 billion and for Indian dairy industry ₹6000 crores per year. Early detection of mastitis is very important to reduce the economic loss to the dairy farmers and dairy industry. Automated methods for early and reliable detection of mastitis are currently in focus under precision dairying. Skin surface temperature is an important indicator for the diagnosis of cow’s illnesses and for the estimation of their physiological status. Infrared thermography (IRT) is a simple, effective, on-site, and noninvasive method that detects surface heat, which is emitted as infrared radiation and generates pictorial images without causing radiation exposure. In human and bovine medicine, IRT is used as a diagnostic tool for assessment of normal and physiological status. PMID:27847416

  11. Unraveling dynamics of human physical activity patterns in chronic pain conditions

    NASA Astrophysics Data System (ADS)

    Paraschiv-Ionescu, Anisoara; Buchser, Eric; Aminian, Kamiar

    2013-06-01

    Chronic pain is a complex disabling experience that negatively affects the cognitive, affective and physical functions as well as behavior. Although the interaction between chronic pain and physical functioning is a well-accepted paradigm in clinical research, the understanding of how pain affects individuals' daily life behavior remains a challenging task. Here we develop a methodological framework allowing to objectively document disruptive pain related interferences on real-life physical activity. The results reveal that meaningful information is contained in the temporal dynamics of activity patterns and an analytical model based on the theory of bivariate point processes can be used to describe physical activity behavior. The model parameters capture the dynamic interdependence between periods and events and determine a `signature' of activity pattern. The study is likely to contribute to the clinical understanding of complex pain/disease-related behaviors and establish a unified mathematical framework to quantify the complex dynamics of various human activities.

  12. Nondestructive corrosion detection in concrete through integrated heat induction and IR thermography

    NASA Astrophysics Data System (ADS)

    Kwon, Seung-Jun; Xue, Henry; Feng, Maria Q.; Baek, Seunghoon

    2011-04-01

    Steel corrosion in concrete is a main cause of deterioration and early failure of concrete structures. A novel integration of electromagnetic heat induction and infrared (IR) thermography is proposed for nondestructive detection of steel corrosion in concrete, by taking advantage of the difference in thermal characteristics of corroded and non-corroded steel. This paper focuses on experimental investigation of the concept. An inductive heater is developed to remotely heat the steel rebar from concrete surface, which is integrated with an IR camera. Bare rebar and concrete samples with different cover depths are prepared. Each concrete sample is embedded with a single steel rebar in the middle, resulting an identical cover depth from the front and the back surfaces, which enables heat induction from one surface and IR thermogrphay from the other simultaneously. The impressed current method is adopted to induce accelerated corrosion on the rebar. IR video images are recorded during both heating and cooling periods. The test results demonstrate a clear difference in thermal characteristics between corroded and non-corroded samples. The corroded samples show higher rates of heating and cooling as well as a higher peak IR intensity than those of the non-corroded samples. This study demonstrates a potential for nondestructive detection of rebar corrosion in concrete.

  13. Automatic detection of diabetic foot complications with infrared thermography by asymmetric analysis.

    PubMed

    Liu, Chanjuan; van Netten, Jaap J; van Baal, Jeff G; Bus, Sicco A; van der Heijden, Ferdi

    2015-02-01

    Early identification of diabetic foot complications and their precursors is essential in preventing their devastating consequences, such as foot infection and amputation. Frequent, automatic risk assessment by an intelligent telemedicine system might be feasible and cost effective. Infrared thermography is a promising modality for such a system. The temperature differences between corresponding areas on contralateral feet are the clinically significant parameters. This asymmetric analysis is hindered by (1) foot segmentation errors, especially when the foot temperature and the ambient temperature are comparable, and by (2) different shapes and sizes between contralateral feet due to deformities or minor amputations. To circumvent the first problem, we used a color image and a thermal image acquired synchronously. Foot regions, detected in the color image, were rigidly registered to the thermal image. This resulted in 97.8% ± 1.1% sensitivity and 98.4% ± 0.5% specificity over 76 high-risk diabetic patients with manual annotation as a reference. Nonrigid landmark-based registration with B-splines solved the second problem. Corresponding points in the two feet could be found regardless of the shapes and sizes of the feet. With that, the temperature difference of the left and right feet could be obtained. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)

  14. Comparative Sensitivity Analysis of Muscle Activation Dynamics

    PubMed Central

    Günther, Michael; Götz, Thomas

    2015-01-01

    We mathematically compared two models of mammalian striated muscle activation dynamics proposed by Hatze and Zajac. Both models are representative for a broad variety of biomechanical models formulated as ordinary differential equations (ODEs). These models incorporate parameters that directly represent known physiological properties. Other parameters have been introduced to reproduce empirical observations. We used sensitivity analysis to investigate the influence of model parameters on the ODE solutions. In addition, we expanded an existing approach to treating initial conditions as parameters and to calculating second-order sensitivities. Furthermore, we used a global sensitivity analysis approach to include finite ranges of parameter values. Hence, a theoretician striving for model reduction could use the method for identifying particularly low sensitivities to detect superfluous parameters. An experimenter could use it for identifying particularly high sensitivities to improve parameter estimation. Hatze's nonlinear model incorporates some parameters to which activation dynamics is clearly more sensitive than to any parameter in Zajac's linear model. Other than Zajac's model, Hatze's model can, however, reproduce measured shifts in optimal muscle length with varied muscle activity. Accordingly we extracted a specific parameter set for Hatze's model that combines best with a particular muscle force-length relation. PMID:26417379

  15. Overview of recent Japanese activities in thermographic NDT

    NASA Astrophysics Data System (ADS)

    Sakagami, Takahide; Ogura, Keiji

    1997-04-01

    In the past decade, nondestructive testing techniques using infrared thermography, i.e., thermographic NDT techniques, received a lot of attention in many engineering fields in Japan. The first national symposium that specialized in thermographic NDT techniques was held in Tokyo, Japan on November 28-29, 1995, organized by the Research and Technical Committee on Surface Method of the Japanese Society for Nondestructive Inspection (JSNDI). At this symposium, twenty eight presentations including two keynote addresses were given. Over three hundred thermography researchers and engineers (thermographers) attended the symposium. Further, an exhibition of newly developed equipment for infrared thermography featuring the equipment of eleven companies took place concurrently. This symposium played an important role as the first national symposium dedicated to sharing information, ideas and experiences about thermographic NDT among thermographers from both the user and supplier sides. Sessions within the symposium were as follows: Advances in Infrared Imaging Systems; Applications for Composite Materials and Coated Materials; Diagnosis of Equipment/Monitoring, Applications for Structural Materials; Backup Techniques for Thermographic NDT; Infrared Stress Measurement and Contact Problems. This paper briefly describes presentations given in the symposium.

  16. Simulations and measurements of artificial cracks and pits in flat stainless steel plates using tone burst eddy-current thermography (TBET)

    NASA Astrophysics Data System (ADS)

    Libin, M. N.; Balasubramaniam, Krishnan; Maxfield, B. W.; Krishnamurthy, C. V.

    2013-01-01

    Tone Burst Eddy current Thermography (TBET) is a new hybrid, non-contacting, Non-Destructive Evaluation (NDE) method which employs a combination of Pulsed Eddy current Thermography (PEC) and Thermographic Non-Destructive Evaluation (TNDE). For understanding the influence of cracking and pitting on heat generation and flow within a metallic body, a fundamental knowledge of the detailed induced current density distribution in the component under test is required. This information enables us to calculate the amount of heat produced by the defects and how that heat diffuses to the surface where it is imaged. This paper describes simulation work done for artificial pits and cracks within pits on the far surface of poorly conducting metals like stainless steel. The first phase of this investigation simulates the transient thermal distribution for artificial 2D pit and crack-like defects using the finite element package COMSOL multi-physics with the AC/DC module and general heat transfer. Considering the reflection measurement geometry where thermal excitation and temperature monitoring are on the same surface, pitting reduces the material volume thereby contributing to a larger temperature rise for the same thermal energy input. A crack within a pit gives a further increase in temperature above the pure pit baseline. The tone burst frequency can be changed to obtain approximately uniform heating (low frequency) or heating of a thin region at the observation surface. Although front surface temperature changes due to 10% deep far-side pits in a 6 mm thick plate can be measured, it is not yet clear whether a 20% deep crack within this pit can be discriminated against the background. Both simulations and measurements will be presented. The objective of this work is to determine whether the TBET method is suitable for the detection and characterization of far side pitting, cracking and cracks within those pits.

  17. Multimodal Imaging in Klippel-Trénaunay-Weber Syndrome: Clinical Photography, Computed Tomoangiography, Infrared Thermography, and 99mTc-Phytate Lymphoscintigraphy.

    PubMed

    Kim, Su Wan; Song, Heesung

    2017-12-01

    We report the case of a 19-year-old man who presented with a 12-year history of progressive fatigue, feeling hot, excessive sweating, and numbness in the left arm. He had undergone multimodal imaging and was diagnosed as having Klippel-Trénaunay-Weber syndrome (KTWS). This is a rare congenital disease, defined by combinations of nevus flammeus, venous and lymphatic malformation, and hypertrophy of the affected limbs. Lower extremities are affected mostly. Conventional modalities for evaluating KTWS are ultrasonography, CT, MRI, lymphoscintigraphy, and angiography. There are few reports on multimodal imaging of upper extremities of KTWS patients, and this is the first report of an infrared thermography in KTWS.

  18. Infraslow Electroencephalographic and Dynamic Resting State Network Activity

    PubMed Central

    Grooms, Joshua K.; Thompson, Garth J.; Pan, Wen-Ju; Billings, Jacob; Schumacher, Eric H.; Epstein, Charles M.

    2017-01-01

    Abstract A number of studies have linked the blood oxygenation level dependent (BOLD) signal to electroencephalographic (EEG) signals in traditional frequency bands (δ, θ, α, β, and γ), but the relationship between BOLD and its direct frequency correlates in the infraslow band (<1 Hz) has been little studied. Previously, work in rodents showed that infraslow local field potentials play a role in functional connectivity, particularly in the dynamic organization of large-scale networks. To examine the relationship between infraslow activity and network dynamics in humans, direct current (DC) EEG and resting state magnetic resonance imaging data were acquired simultaneously. The DC EEG signals were correlated with the BOLD signal in patterns that resembled resting state networks. Subsequent dynamic analysis showed that the correlation between DC EEG and the BOLD signal varied substantially over time, even within individual subjects. The variation in DC EEG appears to reflect the time-varying contribution of different resting state networks. Furthermore, some of the patterns of DC EEG and BOLD correlation are consistent with previous work demonstrating quasiperiodic spatiotemporal patterns of large-scale network activity in resting state. These findings demonstrate that infraslow electrical activity is linked to BOLD fluctuations in humans and that it may provide a basis for large-scale organization comparable to that observed in animal studies. PMID:28462586

  19. Dynamic-Active Flow Control - Phase I

    DTIC Science & Technology

    2006-10-18

    effective in controlling the flow. In altering the orifice shape to one with a lower aspect ratio , for example a circular hole, the effect of the...DYNAMIC-ACTIVE FLOW CONTROL - PHASE I By ASHLEY TUCK AND JULIO SORIA 1 Laboratory for Turbulence Research...comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington

  20. Multi-day activity scheduling reactions to planned activities and future events in a dynamic model of activity-travel behavior

    NASA Astrophysics Data System (ADS)

    Nijland, Linda; Arentze, Theo; Timmermans, Harry

    2014-01-01

    Modeling multi-day planning has received scarce attention in activity-based transport demand modeling so far. However, new dynamic activity-based approaches are being developed at the current moment. The frequency and inflexibility of planned activities and events in activity schedules of individuals indicate the importance of incorporating those pre-planned activities in the new generation of dynamic travel demand models. Elaborating and combining previous work on event-driven activity generation, the aim of this paper is to develop and illustrate an extension of a need-based model of activity generation that takes into account possible influences of pre-planned activities and events. This paper describes the theory and shows the results of simulations of the extension. The simulation was conducted for six different activities, and the parameter values used were consistent with an earlier estimation study. The results show that the model works well and that the influences of the parameters are consistent, logical, and have clear interpretations. These findings offer further evidence of face and construct validity to the suggested modeling approach.

  1. Temperature Mapping of Air Film-Cooled Thermal Barrier Coated Surfaces Using Cr-Doped GdAlO3 Phosphor Thermography

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Shyam, Vikram; Wroblewski, Adam C.; Zhu, Dongming; Cuy, Michael D.; Wolfe, Douglas E.

    2016-01-01

    It has been recently shown that the high luminescence intensity from a Cr-doped GdAlO3 (Cr:GdAlO3) thermographic phosphor enables non-rastered full-field temperature mapping of thermal barrier coating (TBC) surfaces to temperatures above 1000C. In this presentation, temperature mapping by Cr:GdAlO3 based phosphor thermometry of air film-cooled TBC-coated surfaces is demonstrated for both scaled-up cooling hole geometries as well as for actual components in a burner rig test environment. The effects of thermal background radiation and flame chemiluminescence on the measurements are investigated, and advantages of this method over infrared thermography as well as the limitations of this method for studying air film cooling are discussed.

  2. Satellite Dynamic Damping via Active Force Control Augmentation

    NASA Astrophysics Data System (ADS)

    Varatharajoo, Renuganth

    2012-07-01

    An approach that incorporates the Active Force Control (AFC) technique into a conventional Proportional-Derivative (PD) controller is proposed for a satellite active dynamic damping towards a full attitude control. The AFC method has been established to facilitate a robust motion control of dynamical systems in the presence of disturbances, parametric uncertainties and changes that are commonly prevalent in the real-world environment. The usefulness of the method can be extended by introducing intelligent mechanisms to approximate the mass or inertia matrix of the dynamic system to trigger the compensation effect of the controller. AFC is a technique that relies on the appropriate estimation of the inertial or mass parameters of the dynamic system and the measurements of the acceleration and force signals induced by the system if practical implementation is ever considered. In AFC, it is shown that the system subjected to a number of disturbances remains stable and robust via the compensating action of the control strategy. We demonstrate that it is possible to design a spacecraft attitude feedback controller that will ensure the system dynamics set point remains unchanged even in the presence of the disturbances provided that the actual disturbances can be modeled effectively. In order to further facilitate this analysis, a combined energy and attitude control system (CEACS) is proposed as a model satellite attitude control actuator. All the governing equations are established and the proposed satellite attitude control architecture is made amenable to numerical treatments. The results show that the PD-AFC attitude damping performances are superiorly better than that of the solely PD type. It is also shown that the tunings of the AFC system gains are crucial to ensure a better attitude damping performance and this process is mandatory for AFC systems. Finally, the results demonstrate an important satellite dynamic damping enhancement capability using the AFC

  3. Economy, Movement Dynamics, and Muscle Activity of Human Walking at Different Speeds.

    PubMed

    Raffalt, P C; Guul, M K; Nielsen, A N; Puthusserypady, S; Alkjær, T

    2017-03-08

    The complex behaviour of human walking with respect to movement variability, economy and muscle activity is speed dependent. It is well known that a U-shaped relationship between walking speed and economy exists. However, it is an open question if the movement dynamics of joint angles and centre of mass and muscle activation strategy also exhibit a U-shaped relationship with walking speed. We investigated the dynamics of joint angle trajectories and the centre of mass accelerations at five different speeds ranging from 20 to 180% of the predicted preferred speed (based on Froude speed) in twelve healthy males. The muscle activation strategy and walking economy were also assessed. The movement dynamics was investigated using a combination of the largest Lyapunov exponent and correlation dimension. We observed an intermediate stage of the movement dynamics of the knee joint angle and the anterior-posterior and mediolateral centre of mass accelerations which coincided with the most energy-efficient walking speed. Furthermore, the dynamics of the joint angle trajectories and the muscle activation strategy was closely linked to the functional role and biomechanical constraints of the joints.

  4. Influence of the ventilatory mode on acute adverse effects and facial thermography after noninvasive ventilation.

    PubMed

    Pontes, Suzy Maria Montenegro; Melo, Luiz Henrique de Paula; Maia, Nathalia Parente de Sousa; Nogueira, Andrea da Nóbrega Cirino; Vasconcelos, Thiago Brasileiro; Pereira, Eanes Delgado Barros; Bastos, Vasco Pinheiro Diógenes; Holanda, Marcelo Alcantara

    2017-01-01

    To compare the incidence and intensity of acute adverse effects and the variation in the temperature of facial skin by thermography after the use of noninvasive ventilation (NIV). We included 20 healthy volunteers receiving NIV via oronasal mask for 1 h. The volunteers were randomly divided into two groups according to the ventilatory mode: bilevel positive airway pressure (BiPAP) or continuous positive airway pressure (CPAP). Facial thermography was performed in order to determine the temperature of the face where it was in contact with the mask and of the nasal dorsum at various time points. After removal of the mask, the volunteers completed a questionnaire about adverse effects of NIV. The incidence and intensity of acute adverse effects were higher in the individuals receiving BiPAP than in those receiving CPAP (16.1% vs. 5.6%). Thermographic analysis showed a significant cooling of the facial skin in the two regions of interest immediately after removal of the mask. The more intense acute adverse effects occurred predominantly among the participants in whom the decrease in the mean temperature of the nasal dorsum was lower (14.4% vs. 7.2%). The thermographic visual analysis of the zones of cooling and heating on the face identified areas of hypoperfusion or reactive hyperemia. The use of BiPAP mode was associated with a higher incidence and intensity of NIV-related acute adverse effects. There was an association between acute adverse effects and less cooling of the nasal dorsum immediately after removal of the mask. Cutaneous thermography can be an additional tool to detect adverse effects that the use of NIV has on facial skin. Comparar a incidência e a intensidade de efeitos adversos agudos e a variação da temperatura da pele da face através da termografia após a aplicação de ventilação não invasiva (VNI). Foram incluídos 20 voluntários sadios, de ambos os gêneros, submetidos à VNI com máscara oronasal por 1 h e divididos aleatoriamente em

  5. Activity-silent’ working memory in prefrontal cortex: a dynamic coding framework

    PubMed Central

    Stokes, Mark G.

    2015-01-01

    Working memory (WM) provides the functional backbone to high-level cognition. Maintenance in WM is often assumed to depend on the stationary persistence of neural activity patterns that represent memory content. However, accumulating evidence suggests that persistent delay activity does not always accompany WM maintenance but instead seems to wax and wane as a function of the current task relevance of memoranda. Furthermore, new methods for measuring and analysing population-level patterns show that activity states are highly dynamic. At first glance, these dynamics seem at odds with the very nature of WM. How can we keep a stable thought in mind while brain activity is constantly changing? This review considers how neural dynamics might be functionally important for WM maintenance. PMID:26051384

  6. Dynamical analysis of uterine cell electrical activity model.

    PubMed

    Rihana, S; Santos, J; Mondie, S; Marque, C

    2006-01-01

    The uterus is a physiological system consisting of a large number of interacting smooth muscle cells. The uterine excitability changes remarkably with time, generally quiescent during pregnancy, the uterus exhibits forceful synchronized contractions at term leading to fetus expulsion. These changes characterize thus a dynamical system susceptible of being studied through formal mathematical tools. Multiple physiological factors are involved in the regulation process of this complex system. Our aim is to relate the physiological factors to the uterine cell dynamic behaviors. Taking into account a previous work presented, in which the electrical activity of a uterine cell is described by a set of ordinary differential equations, we analyze the impact of physiological parameters on the response of the model, and identify the main subsystems generating the complex uterine electrical activity, with respect to physiological data.

  7. Molecular dynamics simulations of thermally activated edge dislocation unpinning from voids in α -Fe

    NASA Astrophysics Data System (ADS)

    Byggmästar, J.; Granberg, F.; Nordlund, K.

    2017-10-01

    In this study, thermal unpinning of edge dislocations from voids in α -Fe is investigated by means of molecular dynamics simulations. The activation energy as a function of shear stress and temperature is systematically determined. Simulations with a constant applied stress are compared with dynamic simulations with a constant strain rate. We found that a constant applied stress results in a temperature-dependent activation energy. The temperature dependence is attributed to the elastic softening of iron. If the stress is normalized with the softening of the specific shear modulus, the activation energy is shown to be temperature-independent. From the dynamic simulations, the activation energy as a function of critical shear stress was determined using previously developed methods. The results from the dynamic simulations are in good agreement with the constant stress simulations, after the normalization. This indicates that the computationally more efficient dynamic method can be used to obtain the activation energy as a function of stress and temperature. The obtained relation between stress, temperature, and activation energy can be used to introduce a stochastic unpinning event in larger-scale simulation methods, such as discrete dislocation dynamics.

  8. Dynamics of active layer in wooded palsas of northern Quebec

    NASA Astrophysics Data System (ADS)

    Jean, Mélanie; Payette, Serge

    2014-02-01

    Palsas are organic or mineral soil mounds having a permafrost core. Palsas are widespread in the circumpolar discontinuous permafrost zone. The annual dynamics and evolution of the active layer, which is the uppermost layer over the permafrost table and subjected to the annual freeze-thaw cycle, are influenced by organic layer thickness, snow depth, vegetation type, topography and exposure. This study examines the influence of vegetation types, with an emphasis on forest cover, on active layer dynamics of palsas in the Boniface River watershed (57°45‧ N, 76°00‧ W). In this area, palsas are often colonized by black spruce trees (Picea mariana (Mill.) B.S.P.). Thaw depth and active layer thickness were monitored on 11 wooded or non-wooded mineral and organic palsas in 2009, 2010 and 2011. Snow depth, organic layer thickness, and vegetation types were assessed. The mapping of a palsa covered by various vegetation types and a large range of organic layer thickness were used to identify the factors influencing the spatial patterns of thaw depth and active layer. The active layer was thinner and the thaw rate slower in wooded palsas, whereas it was the opposite in more exposed sites such as forest openings, shrubs and bare ground. Thicker organic layers were associated with thinner active layers and slower thaw rates. Snow depth was not an important factor influencing active layer dynamics. The topography of the mapped palsa was uneven, and the environmental factors such as organic layer, snow depth, and vegetation types were heterogeneously distributed. These factors explain a part of the spatial variation of the active layer. Over the 3-year long study, the area of one studied palsa decreased by 70%. In a context of widespread permafrost decay, increasing our understanding of factors that influence the dynamics of wooded and non-wooded palsas and understanding of the role of vegetation cover will help to define the response of discontinuous permafrost landforms

  9. Influence of the piezoelectric parameters on the dynamics of an active rotor

    NASA Astrophysics Data System (ADS)

    Gawryluk, Jarosław; Mitura, Andrzej; Teter, Andrzej

    2018-01-01

    The main aim of this paper is an experimental and numerical analysis of the dynamic behavior of an active rotor with three composite blades. The study focuses on developing an effective FE modeling technique of a macro fiber composite element (denoted as MFC or active element) for the dynamic tests of active structures. The active rotor under consideration consists of a hub with a drive shaft, three grips and three glass-epoxy laminate blades with embedded active elements. A simplified FE model of the macro fiber composite element exhibiting the d33 piezoelectric effect is developed using the Abaqus software package. The discussed transducer is modeled as quasi-homogeneous piezoelectric material, and voltage is applied to the opposite faces of the element. In this case, the effective (equivalent) piezoelectric constant d33* is specified. Both static and dynamic tests are performed to verify the proposed model. First, static deflections of the active blade caused by the voltage signal are determined by numerical and experimental analyses. Next, a numerical modal analysis of the active rotor is performed. The eigenmodes and corresponding eigenfrequencies are determined by the Lanczos method. The influence of the model parameters (i.e., the effective piezoelectric constant d33 *, voltage signal, angular velocity) on the dynamics of the active rotor is examined. Finally, selected numerical results are validated in experimental tests. The experimental findings demonstrate that the structural stiffening effect caused by the active element strongly depends on the value of the effective piezoelectric constant.

  10. Thermal conductivity of ultrathin nano-crystalline diamond films determined by Raman thermography assisted by silicon nanowires

    NASA Astrophysics Data System (ADS)

    Anaya, Julian; Rossi, Stefano; Alomari, Mohammed; Kohn, Erhard; Tóth, Lajos; Pécz, Béla; Kuball, Martin

    2015-06-01

    The thermal transport in polycrystalline diamond films near its nucleation region is still not well understood. Here, a steady-state technique to determine the thermal transport within the nano-crystalline diamond present at their nucleation site has been demonstrated. Taking advantage of silicon nanowires as surface temperature nano-sensors, and using Raman Thermography, the in-plane and cross-plane components of the thermal conductivity of ultra-thin diamond layers and their thermal barrier to the Si substrate were determined. Both components of the thermal conductivity of the nano-crystalline diamond were found to be well below the values of polycrystalline bulk diamond, with a cross-plane thermal conductivity larger than the in-plane thermal conductivity. Also a depth dependence of the lateral thermal conductivity through the diamond layer was determined. The results impact the design and integration of diamond for thermal management of AlGaN/GaN high power transistors and also show the usefulness of the nanowires as accurate nano-thermometers.

  11. KENNEDY SPACE CENTER, FLA. - In the Vehicle Assembly Building, Jim Landy, NDE specialist, sets up a flight crew lockers for flash thermography. He is screening the lockers for hidden damage underneath dings and dents that might occur during handling.

    NASA Image and Video Library

    2003-09-04

    KENNEDY SPACE CENTER, FLA. - In the Vehicle Assembly Building, Jim Landy, NDE specialist, sets up a flight crew lockers for flash thermography. He is screening the lockers for hidden damage underneath dings and dents that might occur during handling.

  12. Overview of Fluid Dynamics Activities at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto; Griffin, Lisa W.; Wang, Ten-See

    1999-01-01

    Since its inception 40 years ago, Marshall Space Flight Center (MSFC) has had the need to maintain and advance state-of-the-art flow analysis and cold-flow testing capability to support its roles and missions. This overview discusses the recent organizational changes that have occurred at MSFC with emphasis on the resulting three groups that form the core of fluid dynamics expertise at MSFC: the Fluid Physics and Dynamics Group, the Applied Fluid Dynamics Analysis Group, and the Experimental Fluid Dynamics Group. Recently completed activities discussed include the analysis and flow testing in support of the Fastrac engine design, the X-33 vehicle design, and the X34 propulsion system design. Ongoing activities include support of the RLV vehicle design, Liquid Fly Back Booster aerodynamic configuration definition, and RLV focused technologies development. Other ongoing activities discussed are efforts sponsored by the Center Director's Discretionary Fund (CDDF) to develop an advanced incompressible flow code and to develop optimization techniques. Recently initiated programs and their anticipated required fluid dynamics support are discussed. Based on recent experiences and on the anticipated program needs, required analytical and experimental technique improvements are presented. Due to anticipated budgetary constraints, there is a strong need to leverage activities and to pursue teaming arrangements in order to advance the state-of-the-art and to adequately support concept development. Throughout this overview there is discussion of the lessons learned and of the capabilities demonstrated and established in support of the hardware development programs.

  13. Application of infrared thermography for online monitoring of wall temperatures in inductively coupled plasma torches with conventional and low-flow gas consumption

    NASA Astrophysics Data System (ADS)

    Engelhard, Carsten; Scheffer, Andy; Maue, Thomas; Hieftje, Gary M.; Buscher, Wolfgang

    2007-10-01

    Inductively coupled plasma (ICP) sources typically used for trace elemental determination and speciation were investigated with infrared (IR) thermography to obtain spatially resolved torch temperature distributions. Infrared thermographic imaging is an excellent tool for the monitoring of temperatures in a fast and non-destructive way. This paper presents the first application of IR thermography to inductively coupled plasma torches and the possibility to investigate temperatures and thermal patterns while the ICP is operating and despite background emission from the plasma itself. A fast and easy method is presented for the determination of temperature distributions and stress features within ICP torches. Two different ICP operating torches were studied: a commercially available Fassel-type ICP unit with 14 L min - 1 total Ar consumption and a SHIP torch with the unusually low Ar flow of 0.6 L min - 1 . Spatially resolved infrared images of both torches were obtained and laterally resolved temperature profiles were extracted. After temperature-resolved calibration of the emissivity (between 0.5 and 0.35 at 873-1323 K) and transmission (20% between 3.75 and 4.02 μm) of the fused quartz used in the torch construction, an image correction was applied. Inhomogeneous temperature distributions with locally defined stress areas in the conventional Fassel-type torch were revealed. As a general trend, it was found that the SHIP torch exhibited higher temperatures ( Tmax = 1580 K) than the conventional torch ( Tmax = 730 K). In the former case, torch sites with efficient and inefficient cooling were discovered and the external flow of cooling air (24-48 m s - 1 ) was identified as the limiting factor.

  14. Infrared thermography non-destructive evaluation of lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Wang, Zi-jun; Li, Zhi-qiang; Liu, Qiang

    2011-08-01

    The power lithium-ion battery with its high specific energy, high theoretical capacity and good cycle-life is a prime candidate as a power source for electric vehicles (EVs) and hybrid electric vehicles (HEVs). Safety is especially important for large-scale lithium-ion batteries, especially the thermal analysis is essential for their development and design. Thermal modeling is an effective way to understand the thermal behavior of the lithium-ion battery during charging and discharging. With the charging and discharging, the internal heat generation of the lithium-ion battery becomes large, and the temperature rises leading to an uneven temperature distribution induces partial degradation. Infrared (IR) Non-destructive Evaluation (NDE) has been well developed for decades years in materials, structures, and aircraft. Most thermographic methods need thermal excitation to the measurement structures. In NDE of battery, the thermal excitation is the heat generated from carbon and cobalt electrodes in electrolyte. A technique named "power function" has been developed to determine the heat by chemical reactions. In this paper, the simulations of the transient response of the temperature distribution in the lithium-ion battery are developed. The key to resolving the security problem lies in the thermal controlling, including the heat generation and the internal and external heat transfer. Therefore, three-dimensional modelling for capturing geometrical thermal effects on battery thermal abuse behaviour is required. The simulation model contains the heat generation during electrolyte decomposition and electrical resistance component. Oven tests are simulated by three-dimensional model and the discharge test preformed by test system. Infrared thermography of discharge is recorded in order to analyze the security of the lithium-ion power battery. Nondestructive detection is performed for thermal abuse analysis and discharge analysis.

  15. A synchronized particle image velocimetry and infrared thermography technique applied to convective mass transfer in champagne glasses

    NASA Astrophysics Data System (ADS)

    Beaumont, Fabien; Liger-Belair, Gérard; Bailly, Yannick; Polidori, Guillaume

    2016-05-01

    In champagne glasses, it was recently suggested that ascending bubble-driven flow patterns should be involved in the release of gaseous carbon dioxide (CO2) and volatile organic compounds. A key assumption was that the higher the velocity of the upward bubble-driven flow patterns in the liquid phase, the higher the volume fluxes of gaseous CO2 desorbing from the supersaturated liquid phase. In the present work, simultaneous monitoring of bubble-driven flow patterns within champagne glasses and gaseous CO2 escaping above the champagne surface was performed, through particle image velocimetry and infrared thermography techniques. Two quite emblematic types of champagne drinking vessels were investigated, namely a long-stemmed flute and a wide coupe. The synchronized use of both techniques proved that the cloud of gaseous CO2 escaping above champagne glasses strongly depends on the mixing flow patterns found in the liquid phase below.

  16. Characterizing and modeling the dynamics of activity and popularity.

    PubMed

    Zhang, Peng; Li, Menghui; Gao, Liang; Fan, Ying; Di, Zengru

    2014-01-01

    Social media, regarded as two-layer networks consisting of users and items, turn out to be the most important channels for access to massive information in the era of Web 2.0. The dynamics of human activity and item popularity is a crucial issue in social media networks. In this paper, by analyzing the growth of user activity and item popularity in four empirical social media networks, i.e., Amazon, Flickr, Delicious and Wikipedia, it is found that cross links between users and items are more likely to be created by active users and to be acquired by popular items, where user activity and item popularity are measured by the number of cross links associated with users and items. This indicates that users generally trace popular items, overall. However, it is found that the inactive users more severely trace popular items than the active users. Inspired by empirical analysis, we propose an evolving model for such networks, in which the evolution is driven only by two-step random walk. Numerical experiments verified that the model can qualitatively reproduce the distributions of user activity and item popularity observed in empirical networks. These results might shed light on the understandings of micro dynamics of activity and popularity in social media networks.

  17. Characterizing and Modeling the Dynamics of Activity and Popularity

    PubMed Central

    Zhang, Peng; Li, Menghui; Gao, Liang; Fan, Ying; Di, Zengru

    2014-01-01

    Social media, regarded as two-layer networks consisting of users and items, turn out to be the most important channels for access to massive information in the era of Web 2.0. The dynamics of human activity and item popularity is a crucial issue in social media networks. In this paper, by analyzing the growth of user activity and item popularity in four empirical social media networks, i.e., Amazon, Flickr, Delicious and Wikipedia, it is found that cross links between users and items are more likely to be created by active users and to be acquired by popular items, where user activity and item popularity are measured by the number of cross links associated with users and items. This indicates that users generally trace popular items, overall. However, it is found that the inactive users more severely trace popular items than the active users. Inspired by empirical analysis, we propose an evolving model for such networks, in which the evolution is driven only by two-step random walk. Numerical experiments verified that the model can qualitatively reproduce the distributions of user activity and item popularity observed in empirical networks. These results might shed light on the understandings of micro dynamics of activity and popularity in social media networks. PMID:24586586

  18. Cardio-Surgical Thermography

    NASA Astrophysics Data System (ADS)

    Fiorini, A. R.; Fumero, R.; Marchesi, R.

    1983-03-01

    Extracorporeal circulation allows direct access inside the chest: it may be used to carry out physiological research. The thermo-chemical protection of myocardium during heart surgery, called cardioplegy, is one of the latest outstanding techniques in patient safety. Thermocardiography monitoring during the infusion of the cardioplegic solution allows continuous assessment of rapid temperature distribution changes and shows exactly the extent of myocardium involved. Using a peculiar pseudocolor digital image enhancement, it is possible to emphasize involved areas coronary flow and to model the thermo-fluid-dynamical actions of inspected heart.

  19. Dynamics of two interacting active Janus particles.

    PubMed

    Bayati, Parvin; Najafi, Ali

    2016-04-07

    Starting from a microscopic model for a spherically symmetric active Janus particle, we study the interactions between two such active motors. The ambient fluid mediates a long range hydrodynamic interaction between two motors. This interaction has both direct and indirect hydrodynamic contributions. The direct contribution is due to the propagation of fluid flow that originated from a moving motor and affects the motion of the other motor. The indirect contribution emerges from the re-distribution of the ionic concentrations in the presence of both motors. Electric force exerted on the fluid from this ionic solution enhances the flow pattern and subsequently changes the motion of both motors. By formulating a perturbation method for very far separated motors, we derive analytic results for the translation and rotational dynamics of the motors. We show that the overall interaction at the leading order modifies the translational and rotational speeds of motors which scale as O[1/D](3) and O[1/D](4) with their separation, respectively. Our findings open up the way for studying the collective dynamics of synthetic micro-motors.

  20. Coarsening dynamics of binary liquids with active rotation.

    PubMed

    Sabrina, Syeda; Spellings, Matthew; Glotzer, Sharon C; Bishop, Kyle J M

    2015-11-21

    Active matter comprised of many self-driven units can exhibit emergent collective behaviors such as pattern formation and phase separation in both biological (e.g., mussel beds) and synthetic (e.g., colloidal swimmers) systems. While these behaviors are increasingly well understood for ensembles of linearly self-propelled "particles", less is known about the collective behaviors of active rotating particles where energy input at the particle level gives rise to rotational particle motion. A recent simulation study revealed that active rotation can induce phase separation in mixtures of counter-rotating particles in 2D. In contrast to that of linearly self-propelled particles, the phase separation of counter-rotating fluids is accompanied by steady convective flows that originate at the fluid-fluid interface. Here, we investigate the influence of these flows on the coarsening dynamics of actively rotating binary liquids using a phenomenological, hydrodynamic model that combines a Cahn-Hilliard equation for the fluid composition with a Navier-Stokes equation for the fluid velocity. The effect of active rotation is introduced though an additional force within the Navier-Stokes equations that arises due to gradients in the concentrations of clockwise and counter-clockwise rotating particles. Depending on the strength of active rotation and that of frictional interactions with the stationary surroundings, we observe and explain new dynamical behaviors such as "active coarsening" via self-generated flows as well as the emergence of self-propelled "vortex doublets". We confirm that many of the qualitative behaviors identified by the continuum model can also be found in discrete, particle-based simulations of actively rotating liquids. Our results highlight further opportunities for achieving complex dissipative structures in active materials subject to distributed actuation.

  1. First results of infrared thermography applied to the evaluation of hydraulic conductivity in rock masses

    NASA Astrophysics Data System (ADS)

    Pappalardo, Giovanna

    2018-03-01

    An innovative methodological approach using infrared thermography (IRT) provides a potential contribution to the indirect assessment of hydraulic conductivity of jointed rock masses. This technique proved a suitable tool to evaluate the degree of fracturing of rock masses along with their discontinuity systems, which expedite water flow within the rock mass itself. First, based on the latest scientific outcomes on the application of IRT to the geomechanics of rock systems, rock mass surveys were carried out at different outcrops (dolostone, limestone and porphyroid) and hydraulic conductivity was empirically assessed through approaches well known in the international literature. Then, IRT campaigns were performed at each surveyed rock mass, with the purpose of evaluating the corresponding Cooling Rate Index, strictly linked to the cooling attitude of the rock. Such index was correlated with the assessed hydraulic conductivity and satisfactory regression equations were achieved. The interesting results show that hydraulic conductivity values are likely to be linked with the cooling behavior of rock masses, which, in turn, is affected by spacing, aperture and persistence of discontinuities.

  2. Thermal analysis of fused deposition modeling process using infrared thermography imaging and finite element modeling

    NASA Astrophysics Data System (ADS)

    Zhou, Xunfei; Hsieh, Sheng-Jen

    2017-05-01

    After years of development, Fused Deposition Modeling (FDM) has become the most popular technique in commercial 3D printing due to its cost effectiveness and easy-to-operate fabrication process. Mechanical strength and dimensional accuracy are two of the most important factors for reliability of FDM products. However, the solid-liquid-solid state changes of material in the FDM process make it difficult to monitor and model. In this paper, an experimental model was developed to apply cost-effective infrared thermography imaging method to acquire temperature history of filaments at the interface and their corresponding cooling mechanism. A three-dimensional finite element model was constructed to simulate the same process using element "birth and death" feature and validated with the thermal response from the experimental model. In 6 of 9 experimental conditions, a maximum of 13% difference existed between the experimental and numerical models. This work suggests that numerical modeling of FDM process is reliable and can facilitate better understanding of bead spreading and road-to-road bonding mechanics during fabrication.

  3. Tracking molecular dynamics without tracking: image correlation of photo-activation microscopy.

    PubMed

    Pandžić, Elvis; Rossy, Jérémie; Gaus, Katharina

    2015-03-09

    Measuring protein dynamics in the plasma membrane can provide insights into the mechanisms of receptor signaling and other cellular functions. To quantify protein dynamics on the single molecule level over the entire cell surface, sophisticated approaches such as single particle tracking (SPT), photo-activation localization microscopy (PALM) and fluctuation-based analysis have been developed. However, analyzing molecular dynamics of fluorescent particles with intermittent excitation and low signal-to-noise ratio present at high densities has remained a challenge. We overcame this problem by applying spatio-temporal image correlation spectroscopy (STICS) analysis to photo-activated (PA) microscopy time series. In order to determine under which imaging conditions this approach is valid, we simulated PA images of diffusing particles in a homogeneous environment and varied photo-activation, reversible blinking and irreversible photo-bleaching rates. Further, we simulated data with high particle densities that populated mobile objects (such as adhesions and vesicles) that often interfere with STICS and fluctuation-based analysis. We demonstrated in experimental measurements that the diffusion coefficient of the epidermal growth factor receptor (EGFR) fused to PAGFP in live COS-7 cells can be determined in the plasma membrane and revealed differences in the time-dependent diffusion maps between wild-type and mutant Lck in activated T cells. In summary, we have developed a new analysis approach for live cell photo-activation microscopy data based on image correlation spectroscopy to quantify the spatio-temporal dynamics of single proteins.

  4. Tracking molecular dynamics without tracking: image correlation of photo-activation microscopy

    NASA Astrophysics Data System (ADS)

    Pandžić, Elvis; Rossy, Jérémie; Gaus, Katharina

    2015-03-01

    Measuring protein dynamics in the plasma membrane can provide insights into the mechanisms of receptor signaling and other cellular functions. To quantify protein dynamics on the single molecule level over the entire cell surface, sophisticated approaches such as single particle tracking (SPT), photo-activation localization microscopy (PALM) and fluctuation-based analysis have been developed. However, analyzing molecular dynamics of fluorescent particles with intermittent excitation and low signal-to-noise ratio present at high densities has remained a challenge. We overcame this problem by applying spatio-temporal image correlation spectroscopy (STICS) analysis to photo-activated (PA) microscopy time series. In order to determine under which imaging conditions this approach is valid, we simulated PA images of diffusing particles in a homogeneous environment and varied photo-activation, reversible blinking and irreversible photo-bleaching rates. Further, we simulated data with high particle densities that populated mobile objects (such as adhesions and vesicles) that often interfere with STICS and fluctuation-based analysis. We demonstrated in experimental measurements that the diffusion coefficient of the epidermal growth factor receptor (EGFR) fused to PAGFP in live COS-7 cells can be determined in the plasma membrane and revealed differences in the time-dependent diffusion maps between wild-type and mutant Lck in activated T cells. In summary, we have developed a new analysis approach for live cell photo-activation microscopy data based on image correlation spectroscopy to quantify the spatio-temporal dynamics of single proteins.

  5. Detecting structural heat losses with mobile infrared thermography. Part IV. Estimating quantitative heat loss at Dartmouth College, Hanover, New Hampshire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munis, R.H.; Marshall, S.J.; Bush, M.A.

    1976-09-01

    During the winter of 1973-74 a mobile infrared thermography system was used to survey campus buildings at Dartmouth College, Hanover, New Hampshire. Both qualitative and quantitative data are presented regarding heat flow through a small area of a wall of one brick dormitory building before and after installation of aluminum reflectors between radiators and the wall. These data were used to estimate annual cost savings for 22 buildings of similar construction having aluminum reflectors installed behind 1100 radiators. The data were then compared with the actual savings which were calculated from condensate meter data. The discrepancy between estimated and actualmore » annual cost savings is explained in detail along with all assumptions required for these calculations.« less

  6. Correlation of BAT activity with thyroid metabolic activity in patients with fibromyalgia

    NASA Astrophysics Data System (ADS)

    Costa, A. P. C.; Maia, J. M.; Brioschi, M. L.; Machado, J. E. M. M.

    2017-03-01

    The objective of this research is to correlate the brown fat activity (BAT) with the metabolic activity of thyroid in patients with fibromyalgia syndrome (FS). For the development of the research, it was select a database containing 132 patients of a thermography clinic, male and female, with age over 18 years old; where the images selected were anteroposterior orthostasis top and anteroposterior in cervical extension. In the program Flir Report, it was possible to demarcate the region of the left and right interscapular and thyroid of each patient by getting the respective temperatures, in addition to view the hyper-radiation ("signal of mantle") in the interscapular. Temperature was organized in table format, and statistical analysis was performed in the program Microcal Origin 6.0. As conclusion, it was found that the greater the metabolic activity of thyroid in patients with fibromyalgia, the greater will be the metabolic rate of brown fat (BAT).

  7. Solar Activity Across the Scales: From Small-Scale Quiet-Sun Dynamics to Magnetic Activity Cycles

    NASA Technical Reports Server (NTRS)

    Kitiashvili, Irina N.; Collins, Nancy N.; Kosovichev, Alexander G.; Mansour, Nagi N.; Wray, Alan A.

    2017-01-01

    Observations as well as numerical and theoretical models show that solar dynamics is characterized by complicated interactions and energy exchanges among different temporal and spatial scales. It reveals magnetic self-organization processes from the smallest scale magnetized vortex tubes to the global activity variation known as the solar cycle. To understand these multiscale processes and their relationships, we use a two-fold approach: 1) realistic 3D radiative MHD simulations of local dynamics together with high resolution observations by IRIS, Hinode, and SDO; and 2) modeling of solar activity cycles by using simplified MHD dynamo models and mathematical data assimilation techniques. We present recent results of this approach, including the interpretation of observational results from NASA heliophysics missions and predictive capabilities. In particular, we discuss the links between small-scale dynamo processes in the convection zone and atmospheric dynamics, as well as an early prediction of Solar Cycle 25.

  8. Solar activity across the scales: from small-scale quiet-Sun dynamics to magnetic activity cycles

    NASA Astrophysics Data System (ADS)

    Kitiashvili, I.; Collins, N.; Kosovichev, A. G.; Mansour, N. N.; Wray, A. A.

    2017-12-01

    Observations as well as numerical and theoretical models show that solar dynamics is characterized by complicated interactions and energy exchanges among different temporal and spatial scales. It reveals magnetic self-organization processes from the smallest scale magnetized vortex tubes to the global activity variation known as the solar cycle. To understand these multiscale processes and their relationships, we use a two-fold approach: 1) realistic 3D radiative MHD simulations of local dynamics together with high-resolution observations by IRIS, Hinode, and SDO; and 2) modeling of solar activity cycles by using simplified MHD dynamo models and mathematical data assimilation techniques. We present recent results of this approach, including the interpretation of observational results from NASA heliophysics missions and predictive capabilities. In particular, we discuss the links between small-scale dynamo processes in the convection zone and atmospheric dynamics, as well as an early prediction of Solar Cycle 25.

  9. Lock-in thermography as a rapid and reproducible thermal characterization method for magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Lemal, Philipp; Geers, Christoph; Monnier, Christophe A.; Crippa, Federica; Daum, Leopold; Urban, Dominic A.; Rothen-Rutishauser, Barbara; Bonmarin, Mathias; Petri-Fink, Alke; Moore, Thomas L.

    2017-04-01

    Lock-in thermography (LIT) is a sensitive imaging technique generally used in engineering and materials science (e.g. detecting defects in composite materials). However, it has recently been expanded for investigating the heating power of nanomaterials, such as superparamagnetic iron oxide nanoparticles (SPIONs). Here we implement LIT as a rapid and reproducible method that can evaluate the heating potential of various sizes of SPIONs under an alternating magnetic field (AMF), as well as the limits of detection for each particle size. SPIONs were synthesized via thermal decomposition and stabilized in water via a ligand transfer process. Thermographic measurements of SPIONs were made by stimulating particles of varying sizes and increasing concentrations under an AMF. Furthermore, a commercially available SPION sample was included as an external reference. While the size dependent heating efficiency of SPIONs has been previously described, our objective was to probe the sensitivity limits of LIT. For certain size regimes it was possible to detect signals at concentrations as low as 0.1 mg Fe/mL. Measuring at different concentrations enabled a linear regression analysis and extrapolation of the limit of detection for different size nanoparticles.

  10. Dynamic changes during acid-induced activation of influenza hemagglutinin

    DOE PAGES

    Garcia, Natalie K.; Guttman, Miklos; Ebner, Jamie L.; ...

    2015-03-12

    Influenza hemagglutinin (HA) mediates virus attachment to host cells and fusion of the viral and endosomal membranes during entry. While high-resolution structures are available for the pre-fusion HA ectodomain and the post-fusion HA2 subunit, the sequence of conformational changes during HA activation has eluded structural characterization. In this paper, we apply hydrogen-deuterium exchange with mass spectrometry to examine changes in structural dynamics of the HA ectodomain at various stages of activation, and compare the soluble ectodomain with intact HA on virions. At pH conditions approaching activation (pH 6.0–5.5) HA exhibits increased dynamics at the fusion peptide and neighboring regions, whilemore » the interface between receptor binding subunits (HA1) becomes stabilized. In contrast to many activation models, these data suggest that HA responds to endosomal acidification by releasing the fusion peptide prior to HA1 uncaging and the spring-loaded refolding of HA2. Finally, this staged process may facilitate efficient HA-mediated fusion.« less

  11. Precise Temperature Mapping of GaN-Based LEDs by Quantitative Infrared Micro-Thermography

    PubMed Central

    Chang, Ki Soo; Yang, Sun Choel; Kim, Jae-Young; Kook, Myung Ho; Ryu, Seon Young; Choi, Hae Young; Kim, Geon Hee

    2012-01-01

    A method of measuring the precise temperature distribution of GaN-based light-emitting diodes (LEDs) by quantitative infrared micro-thermography is reported. To reduce the calibration error, the same measuring conditions were used for both calibration and thermal imaging; calibration was conducted on a highly emissive black-painted area on a dummy sapphire wafer loaded near the LED wafer on a thermoelectric cooler mount. We used infrared thermal radiation images of the black-painted area on the dummy wafer and an unbiased LED wafer at two different temperatures to determine the factors that degrade the accuracy of temperature measurement, i.e., the non-uniform response of the instrument, superimposed offset radiation, reflected radiation, and emissivity map of the LED surface. By correcting these factors from the measured infrared thermal radiation images of biased LEDs, we determined a precise absolute temperature image. Consequently, we could observe from where the local self-heat emerges and how it distributes on the emitting area of the LEDs. The experimental results demonstrated that highly localized self-heating and a remarkable temperature gradient, which are detrimental to LED performance and reliability, arise near the p-contact edge of the LED surface at high injection levels owing to the current crowding effect. PMID:22666050

  12. Infrared Thermography as a Non-destructive Testing Solution for Thermal Spray Metal Coatings

    NASA Astrophysics Data System (ADS)

    Santangelo, Paolo E.; Allesina, Giulio; Bolelli, Giovanni; Lusvarghi, Luca; Matikainen, Ville; Vuoristo, Petri

    2017-12-01

    In this work, an infrared (IR) thermographic procedure was evaluated as a non-destructive testing tool to detect damage in thermal spray metallic coatings. As model systems, polished HVOF- and HVAF-sprayed Fe-based layers deposited onto steel plates were employed. Damage by external-object impingement was simulated through a cyclic impact-test apparatus, which induced circumferential and radial cracks across all model systems, and interface cracks of different sizes in distinct samples. Damaged and undamaged plates were bulk-heated to above 100 °C using an IR lamp; their free-convection cooling was then recorded by an IR thermocamera. The intentionally induced defects were hardly detectable in IR thermograms, due to IR reflection and artificial "hot" spots induced by residuals of transfer material from the impacting counterbody. As a micrometer-thin layer of black paint was applied, surface emissivity got homogenized and any artifacts were effectively suppressed, so that failed coating areas clearly showed up as "cold spots." This effect was more apparent when large interface cracks occurred. Finite-element modeling proved the physical significance of the IR-thermography approach, showing that failed coating areas are cooled by surrounding air faster than they are heated by conduction from the hot substrate, which is due to the insulating effect of cracks.

  13. Distal gap junctions and active dendrites can tune network dynamics.

    PubMed

    Saraga, Fernanda; Ng, Leo; Skinner, Frances K

    2006-03-01

    Gap junctions allow direct electrical communication between CNS neurons. From theoretical and modeling studies, it is well known that although gap junctions can act to synchronize network output, they can also give rise to many other dynamic patterns including antiphase and other phase-locked states. The particular network pattern that arises depends on cellular, intrinsic properties that affect firing frequencies as well as the strength and location of the gap junctions. Interneurons or GABAergic neurons in hippocampus are diverse in their cellular characteristics and have been shown to have active dendrites. Furthermore, parvalbumin-positive GABAergic neurons, also known as basket cells, can contact one another via gap junctions on their distal dendrites. Using two-cell network models, we explore how distal electrical connections affect network output. We build multi-compartment models of hippocampal basket cells using NEURON and endow them with varying amounts of active dendrites. Two-cell networks of these model cells as well as reduced versions are explored. The relationship between intrinsic frequency and the level of active dendrites allows us to define three regions based on what sort of network dynamics occur with distal gap junction coupling. Weak coupling theory is used to predict the delineation of these regions as well as examination of phase response curves and distal dendritic polarization levels. We find that a nonmonotonic dependence of network dynamic characteristics (phase lags) on gap junction conductance occurs. This suggests that distal electrical coupling and active dendrite levels can control how sensitive network dynamics are to gap junction modulation. With the extended geometry, gap junctions located at more distal locations must have larger conductances for pure synchrony to occur. Furthermore, based on simulations with heterogeneous networks, it may be that one requires active dendrites if phase-locking is to occur in networks formed

  14. Composite regulation of ERK activity dynamics underlying tumour-specific traits in the intestine.

    PubMed

    Muta, Yu; Fujita, Yoshihisa; Sumiyama, Kenta; Sakurai, Atsuro; Taketo, M Mark; Chiba, Tsutomu; Seno, Hiroshi; Aoki, Kazuhiro; Matsuda, Michiyuki; Imajo, Masamichi

    2018-06-05

    Acting downstream of many growth factors, extracellular signal-regulated kinase (ERK) plays a pivotal role in regulating cell proliferation and tumorigenesis, where its spatiotemporal dynamics, as well as its strength, determine cellular responses. Here, we uncover the ERK activity dynamics in intestinal epithelial cells (IECs) and their association with tumour characteristics. Intravital imaging identifies two distinct modes of ERK activity, sustained and pulse-like activity, in IECs. The sustained and pulse-like activities depend on ErbB2 and EGFR, respectively. Notably, activation of Wnt signalling, the earliest event in intestinal tumorigenesis, augments EGFR signalling and increases the frequency of ERK activity pulses through controlling the expression of EGFR and its regulators, rendering IECs sensitive to EGFR inhibition. Furthermore, the increased pulse frequency is correlated with increased cell proliferation. Thus, ERK activity dynamics are defined by composite inputs from EGFR and ErbB2 signalling in IECs and their alterations might underlie tumour-specific sensitivity to pharmacological EGFR inhibition.

  15. Comparison of four specific dynamic office chairs with a conventional office chair: impact upon muscle activation, physical activity and posture.

    PubMed

    Ellegast, Rolf P; Kraft, Kathrin; Groenesteijn, Liesbeth; Krause, Frank; Berger, Helmut; Vink, Peter

    2012-03-01

    Prolonged and static sitting postures provoke physical inactivity at VDU workplaces and are therefore discussed as risk factors for the musculoskeletal system. Manufacturers have designed specific dynamic office chairs featuring structural elements which promote dynamic sitting and therefore physical activity. The aim of the present study was to evaluate the effects of four specific dynamic chairs on erector spinae and trapezius EMG, postures/joint angles and physical activity intensity (PAI) compared to those of a conventional standard office chair. All chairs were fitted with sensors for measurement of the chair parameters (backrest inclination, forward and sideward seat pan inclination), and tested in the laboratory by 10 subjects performing 7 standardized office tasks and by another 12 subjects in the field during their normal office work. Muscle activation revealed no significant differences between the specific dynamic chairs and the reference chair. Analysis of postures/joint angles and PAI revealed only a few differences between the chairs, whereas the tasks performed strongly affected the measured muscle activation, postures and kinematics. The characteristic dynamic elements of each specific chair yielded significant differences in the measured chair parameters, but these characteristics did not appear to affect the sitting dynamics of the subjects performing their office tasks. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  16. Using aerial infrared thermography to detect utility theft of service

    NASA Astrophysics Data System (ADS)

    Stockton, Gregory R.; Lucas, R. Gillem

    2012-06-01

    Natural gas and electric utility companies, public utility commissions, consumer advocacy groups, city governments, state governments and the federal government United States continue to turn a blind eye towards utility energy theft of service which we conservatively estimate is in excess of 10 billion a year. Why? Many in the United States have exhausted their unemployment benefits. The amounts for federal funding for low income heating assistance programs (LIHEAP) funds were cut by nearly 40% for 2012 to 3.02 billion. "At peak funding ($5.1 billion in 2009), the program was national in scale but still only had enough resources to support roughly 1/4 of the eligible households.i" Contributions to charities are down and the number of families below the poverty line who are unable to pay to heat their houses continues to rise. Many of the less fortunate in our society now consider theft and fraud to be an attractive option for their supply of natural gas and/or electricity. A record high mild winter in 2011-2012 coupled with 10-year low natural gas prices temporarily obscured the need for low income heating assistance programs (LIHEAPs) from the news and federal budgets, but cold winters will return. The proliferation of smart meters and automated meter infrastructures across our nation can do little to detect energy theft because the thieves can simply by-pass the meters, jumper around the meters and/or steal meters from abandoned houses and use them. Many utility systems were never set-up to stop these types of theft. Even with low-cost per identified thief method using aerial infrared thermography, utilities continue to ignore theft detection.

  17. Validation of a "Kane's Dynamics" Model for the Active Rack Isolation System

    NASA Technical Reports Server (NTRS)

    Beech, Geoffrey S.; Hampton, R. David

    2000-01-01

    Many microgravity space-science experiments require vibratory acceleration levels unachievable without active isolation. The Boeing Corporation's Active Rack Isolation System (ARIS) employs a novel combination of magnetic actuation and mechanical linkages, to address these isolation requirements on the International Space Station (ISS). ARIS provides isolation at the rack (international Standard Payload Rack, or ISPR) level. Effective model-based vibration isolation requires (1) an isolation device, (2) an adequate dynamic (i.e., mathematical) model of that isolator, and (3) a suitable, corresponding controller, ARIS provides the ISS response to the first requirement. In November 1999, the authors presented a response to the second ("A 'Kane's Dynamics' model for the Active Rack Isolation System", Hampton and Beech) intended to facilitate an optimal-controls approach to the third. This paper documents the validation of that high-fidelity dynamic model of ARIS. As before, this model contains the full actuator dynamics, however, the umbilical models are not included in this presentation. The validation of this dynamics model was achieved by utilizing two Commercial Off the Shelf (COTS) software tools: Deneb's ENVISION, and Online Dynamics' AUTOLEV. ENVISION is a robotics software package developed for the automotive industry that employs 3-dimensional (3-D) Computer Aided Design (CAD) models to facilitate both forward and inverse kinematics analyses. AUTOLEV is a DOS based interpreter that is designed in general to solve vector based mathematical problems and specifically to solve Dynamics problems using Kane's method.

  18. Overview of MSFC's Applied Fluid Dynamics Analysis Group Activities

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto; Wang, Tee-See; Griffin, Lisa; Turner, James E. (Technical Monitor)

    2001-01-01

    This document is a presentation graphic which reviews the activities of the Applied Fluid Dynamics Analysis Group at Marshall Space Flight Center (i.e., Code TD64). The work of this group focused on supporting the space transportation programs. The work of the group is in Computational Fluid Dynamic tool development. This development is driven by hardware design needs. The major applications for the design and analysis tools are: turbines, pumps, propulsion-to-airframe integration, and combustion devices.

  19. Active Site Gate Dynamics Modulate the Catalytic Activity of the Ubiquitination Enzyme E2-25K.

    PubMed

    Rout, Manoj K; Lee, Brian L; Lin, Aiyang; Xiao, Wei; Spyracopoulos, Leo

    2018-05-03

    The ubiquitin proteasome system (UPS) signals for degradation of proteins through attachment of K48-linked polyubiquitin chains, or alterations in protein-protein recognition through attachment of K63-linked chains. Target proteins are ubiquitinated in three sequential chemical steps by a three-component enzyme system. Ubiquitination, or E2 enzymes, catalyze the central step by facilitating reaction of a target protein lysine with the C-terminus of Ub that is attached to the active site cysteine of the E2 through a thioester bond. E2 reactivity is modulated by dynamics of an active site gate, whose central residue packs against the active site cysteine in a closed conformation. Interestingly, for the E2 Ubc13, which specifically catalyzes K63-linked ubiquitination, the central gate residue adopts an open conformation. We set out to determine if active site gate dynamics play a role in catalysis for E2-25K, which adopts the canonical, closed gate conformation, and which selectively synthesizes K48-linked ubiquitin chains. Gate dynamics were characterized using mutagenesis of key residues, combined with enzyme kinetics measurements, and main chain NMR relaxation. The experimental data were interpreted with all atom MD simulations. The data indicate that active site gate opening and closing rates for E2-25K are precisely balanced.

  20. In situ assessment of structural timber elements of a historic building by infrared thermography and ultrasonic velocity

    NASA Astrophysics Data System (ADS)

    Kandemir-Yucel, A.; Tavukcuoglu, A.; Caner-Saltik, E. N.

    2007-01-01

    The infrared thermography (IRT) and the ultrasonic velocity measurements (UVM) promise to be particularly important to assess the state of deterioration and the adequacy of the boundary and microclimatic conditions for timber elements. These non-destructive methods supported by laboratory analyses of timber samples were conducted on a 13th century monument, Aslanhane Mosque in Ankara, Turkey. The combined interpretation of the results was done to assess the condition of structural timber elements in terms of their state of preservation, the dampness problems and the recent incompatible repairs affecting them. Results indicated that moist areas in the structure were associated with roof drainage problems and the repairs undertaken with cement-based mortars and plasters and oil-based paints. Juxtaposition of the IRT and UVM together with laboratory analyses was found to be useful to assess the soundness of timber, enhanced the accuracy and effectiveness of the survey and facilitated to build up the urgent and long-term conservation programs.

  1. A pediatric correlational study of stride interval dynamics, energy expenditure and activity level.

    PubMed

    Ellis, Denine; Sejdic, Ervin; Zabjek, Karl; Chau, Tom

    2014-08-01

    The strength of time-dependent correlations known as stride interval (SI) dynamics has been proposed as an indicator of neurologically healthy gait. Most recently, it has been hypothesized that these dynamics may be necessary for gait efficiency although the supporting evidence to date is scant. The current study examines over-ground SI dynamics, and their relationship with the cost of walking and physical activity levels in neurologically healthy children aged nine to 15 years. Twenty participants completed a single experimental session consisting of three phases: 10 min resting, 15 min walking and 10 min recovery. The scaling exponent (α) was used to characterize SI dynamics while net energy cost was measured using a portable metabolic cart, and physical activity levels were determined based on a 7-day recall questionnaire. No significant linear relationships were found between a and the net energy cost measures (r < .07; p > .25) or between α and physical activity levels (r = .01, p = .62). However, there was a marked reduction in the variance of α as activity levels increased. Over-ground stride dynamics do not appear to directly reflect energy conservation of gait in neurologically healthy youth. However, the reduction in the variance of α with increasing physical activity suggests a potential exercise-moderated convergence toward a level of stride interval persistence for able-bodied youth reported in the literature. This latter finding warrants further investigation.

  2. Overview of MSFC's Applied Fluid Dynamics Analysis Group Activities

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto; Griffin, Lisa; Williams, Robert

    2003-01-01

    TD64, the Applied Fluid Dynamics Analysis Group, is one of several groups with high-fidelity fluids design and analysis expertise in the Space Transportation Directorate at Marshall Space Flight Center (MSFC). TD64 assists personnel working on other programs. The group participates in projects in the following areas: turbomachinery activities, nozzle activities, combustion devices, and the Columbia accident investigation.

  3. Viscoelastic and elastomeric active matter: Linear instability and nonlinear dynamics.

    PubMed

    Hemingway, E J; Cates, M E; Fielding, S M

    2016-03-01

    We consider a continuum model of active viscoelastic matter, whereby an active nematic liquid crystal is coupled to a minimal model of polymer dynamics with a viscoelastic relaxation time τ(C). To explore the resulting interplay between active and polymeric dynamics, we first generalize a linear stability analysis (from earlier studies without polymer) to derive criteria for the onset of spontaneous heterogeneous flows (strain rate) and/or deformations (strain). We find two modes of instability. The first is a viscous mode, associated with strain rate perturbations. It dominates for relatively small values of τ(C) and is a simple generalization of the instability known previously without polymer. The second is an elastomeric mode, associated with strain perturbations, which dominates at large τ(C) and persists even as τ(C)→∞. We explore the dynamical states to which these instabilities lead by means of direct numerical simulations. These reveal oscillatory shear-banded states in one dimension and activity-driven turbulence in two dimensions even in the elastomeric limit τ(C)→∞. Adding polymer can also have calming effects, increasing the net throughput of spontaneous flow along a channel in a type of drag reduction. The effect of including strong antagonistic coupling between the nematic and polymer is examined numerically, revealing a rich array of spontaneously flowing states.

  4. Viscoelastic and elastomeric active matter: Linear instability and nonlinear dynamics

    NASA Astrophysics Data System (ADS)

    Hemingway, E. J.; Cates, M. E.; Fielding, S. M.

    2016-03-01

    We consider a continuum model of active viscoelastic matter, whereby an active nematic liquid crystal is coupled to a minimal model of polymer dynamics with a viscoelastic relaxation time τC. To explore the resulting interplay between active and polymeric dynamics, we first generalize a linear stability analysis (from earlier studies without polymer) to derive criteria for the onset of spontaneous heterogeneous flows (strain rate) and/or deformations (strain). We find two modes of instability. The first is a viscous mode, associated with strain rate perturbations. It dominates for relatively small values of τC and is a simple generalization of the instability known previously without polymer. The second is an elastomeric mode, associated with strain perturbations, which dominates at large τC and persists even as τC→∞ . We explore the dynamical states to which these instabilities lead by means of direct numerical simulations. These reveal oscillatory shear-banded states in one dimension and activity-driven turbulence in two dimensions even in the elastomeric limit τC→∞ . Adding polymer can also have calming effects, increasing the net throughput of spontaneous flow along a channel in a type of drag reduction. The effect of including strong antagonistic coupling between the nematic and polymer is examined numerically, revealing a rich array of spontaneously flowing states.

  5. Enhanced oxidation resistance of active nanostructures via dynamic size effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yun; Yang, Fan; Zhang, Yi

    A major challenge limiting the practical applications of nanomaterials is that the activities of nanostructures (NSs) increase with reduced size, often sacrificing their stability in the chemical environment. Under oxidative conditions, NSs with smaller sizes and higher defect densities are commonly expected to oxidize more easily, since high-concentration defects can facilitate oxidation by enhancing the reactivity with O 2 and providing a fast channel for oxygen incorporation. Here, using FeO NSs as an example, we show to the contrary, that reducing the size of active NSs can drastically increase their oxidation resistance. A maximum oxidation resistance is found for FeOmore » NSs with dimensions below 3.2 nm. Rather than being determined by the structure or electronic properties of active sites, the enhanced oxidation resistance originates from the size-dependent structural dynamics of FeO NSs in O 2. We find this dynamic size effect to govern the chemical properties of active NSs.« less

  6. Enhanced oxidation resistance of active nanostructures via dynamic size effect

    DOE PAGES

    Liu, Yun; Yang, Fan; Zhang, Yi; ...

    2017-02-22

    A major challenge limiting the practical applications of nanomaterials is that the activities of nanostructures (NSs) increase with reduced size, often sacrificing their stability in the chemical environment. Under oxidative conditions, NSs with smaller sizes and higher defect densities are commonly expected to oxidize more easily, since high-concentration defects can facilitate oxidation by enhancing the reactivity with O 2 and providing a fast channel for oxygen incorporation. Here, using FeO NSs as an example, we show to the contrary, that reducing the size of active NSs can drastically increase their oxidation resistance. A maximum oxidation resistance is found for FeOmore » NSs with dimensions below 3.2 nm. Rather than being determined by the structure or electronic properties of active sites, the enhanced oxidation resistance originates from the size-dependent structural dynamics of FeO NSs in O 2. We find this dynamic size effect to govern the chemical properties of active NSs.« less

  7. A model of metastable dynamics during ongoing and evoked cortical activity

    NASA Astrophysics Data System (ADS)

    La Camera, Giancarlo

    The dynamics of simultaneously recorded spike trains in alert animals often evolve through temporal sequences of metastable states. Little is known about the network mechanisms responsible for the genesis of such sequences, or their potential role in neural coding. In the gustatory cortex of alert rates, state sequences can be observed also in the absence of overt sensory stimulation, and thus form the basis of the so-called `ongoing activity'. This activity is characterized by a partial degree of coordination among neurons, sharp transitions among states, and multi-stability of single neurons' firing rates. A recurrent spiking network model with clustered topology can account for both the spontaneous generation of state sequences and the (network-generated) multi-stability. In the model, each network state results from the activation of specific neural clusters with potentiated intra-cluster connections. A mean field solution of the model shows a large number of stable states, each characterized by a subset of simultaneously active clusters. The firing rate in each cluster during ongoing activity depends on the number of active clusters, so that the same neuron can have different firing rates depending on the state of the network. Because of dense intra-cluster connectivity and recurrent inhibition, in finite networks the stable states lose stability due to finite size effects. Simulations of the dynamics show that the model ensemble activity continuously hops among the different states, reproducing the ongoing dynamics observed in the data. Moreover, when probed with external stimuli, the model correctly predicts the quenching of single neuron multi-stability into bi-stability, the reduction of dimensionality of the population activity, the reduction of trial-to-trial variability, and a potential role for metastable states in the anticipation of expected events. Altogether, these results provide a unified mechanistic model of ongoing and evoked cortical dynamics

  8. Control of CFRP strengthening applied to civil structures by IR thermography

    NASA Astrophysics Data System (ADS)

    Grinzato, E.; Trentin, R.; Bison, P. G.; Marinetti, S.

    2007-04-01

    NdT methods are highly promoted by an increasing demand of checking the effectiveness of strengthening and repair intervention on structural components, both in buildings and bridges. IR thermography exhibits excellent performances, particularly when innovative materials as CFRP (Carbon Fiber Reinforced Polymer) are used. Non destructive control by the use of thermographic analysis is used to detect adhesion defects or imperfections, which can lead the component to become brittle and collapsing unexpectedly. This paper shows as the geometrical evaluation of delaminated areas is carried out. Laboratory tests both on reduced or full scale are illustrated in order to set up and validate the proposed procedure. An experimental study on samples bonded with FRP and containing defects appropriately applied at the interface, will be presented. A series of beams (10 m long) have been tested under bending loads and strengthened conditions, by placing a pre-impregnated thin carbon (CFRP) laminate at the intrados. Different reinforcement configurations have been adopted in the beams (ordinary steel reinforcement and with addition of pre-stressed strands), using mechanical devices for the anchorage of the supplementary pre-tension of the strips. At local level, the simulation of possible lack of bonding during loading or intrinsic defects and imperfections has been contextually analysed on specifically dimensioned specimens. Different algorithms have been applied at the evaluation stage in order to estimate the defect size and location. Particularly, the extension of the delamination is estimate with a simple and robust algorithm. In facts, standards set the limit for acceptable defects, both in terms of number and size.

  9. Theoretical framework for quantitatively estimating ultrasound beam intensities using infrared thermography.

    PubMed

    Myers, Matthew R; Giridhar, Dushyanth

    2011-06-01

    In the characterization of high-intensity focused ultrasound (HIFU) systems, it is desirable to know the intensity field within a tissue phantom. Infrared (IR) thermography is a potentially useful method for inferring this intensity field from the heating pattern within the phantom. However, IR measurements require an air layer between the phantom and the camera, making inferences about the thermal field in the absence of the air complicated. For example, convection currents can arise in the air layer and distort the measurements relative to the phantom-only situation. Quantitative predictions of intensity fields based upon IR temperature data are also complicated by axial and radial diffusion of heat. In this paper, mathematical expressions are derived for use with IR temperature data acquired at times long enough that noise is a relatively small fraction of the temperature trace, but small enough that convection currents have not yet developed. The relations were applied to simulated IR data sets derived from computed pressure and temperature fields. The simulation was performed in a finite-element geometry involving a HIFU transducer sonicating upward in a phantom toward an air interface, with an IR camera mounted atop an air layer, looking down at the heated interface. It was found that, when compared to the intensity field determined directly from acoustic propagation simulations, intensity profiles could be obtained from the simulated IR temperature data with an accuracy of better than 10%, at pre-focal, focal, and post-focal locations. © 2011 Acoustical Society of America

  10. Active load control during rolling maneuvers. [performed in the Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Woods-Vedeler, Jessica A.; Pototzky, Anthony S.; Hoadley, Sherwood T.

    1994-01-01

    A rolling maneuver load alleviation (RMLA) system has been demonstrated on the active flexible wing (AFW) wind tunnel model in the Langley Transonic Dynamics Tunnel (TDT). The objective was to develop a systematic approach for designing active control laws to alleviate wing loads during rolling maneuvers. Two RMLA control laws were developed that utilized outboard control-surface pairs (leading and trailing edge) to counteract the loads and that used inboard trailing-edge control-surface pairs to maintain roll performance. Rolling maneuver load tests were performed in the TDT at several dynamic pressures that included two below and one 11 percent above open-loop flutter dynamic pressure. The RMLA system was operated simultaneously with an active flutter suppression system above open-loop flutter dynamic pressure. At all dynamic pressures for which baseline results were obtained, torsion-moment loads were reduced for both RMLA control laws. Results for bending-moment load reductions were mixed; however, design equations developed in this study provided conservative estimates of load reduction in all cases.

  11. Active and Dynamic Nanomaterials Based on Active Biomolecules

    NASA Astrophysics Data System (ADS)

    Koch, Steven J.; Rivera, Susan B.; Boal, Andrew K.; Edwards, J. Matthew; Bauer, Joseph M.; Manginell, Ronald P.; Liu, Jun; Bunker, Bruce C.; Bachand, George D.

    2004-03-01

    Living organisms have evolved dynamic and adaptable materials that fundamentally differ from synthetic materials. These biomaterials use chemical energy to drive non-equilibrium assembly processes, and to reconfigure in response to external stimuli or life cycle changes. Two striking examples are the diatom's active assembly of silica into a patterned cytoskeleton, and the chameleon's active transport of pigment particles to rapidly change skin color. Advances in molecular biology and nanoscale materials synthesis now present the opportunity for integrating biomolecules with synthetic components to produce new types of materials with novel assembly and adaptation capabilities. Our group has begun utilizing kinesin motor proteins and microtubules (MTs) to explore the construction of biomimetic materials. Initial work has focused on characterizing and engineering the properties of the biomolecules for robust performance in artificial systems. We have characterized the biochemical and biophysical properties of a kinesin motor protein from a thermostable fungus, and have evaluated strategies for stabilizing and functionalizing the MTs. We also have developed strategies for directed transport of MT shuttles, and for controlling the loading and unloading of nanoscale cargo.

  12. Feasible Muscle Activation Ranges Based on Inverse Dynamics Analyses of Human Walking

    PubMed Central

    Simpson, Cole S.; Sohn, M. Hongchul; Allen, Jessica L.; Ting, Lena H.

    2015-01-01

    Although it is possible to produce the same movement using an infinite number of different muscle activation patterns owing to musculoskeletal redundancy, the degree to which observed variations in muscle activity can deviate from optimal solutions computed from biomechanical models is not known. Here, we examined the range of biomechanically permitted activation levels in individual muscles during human walking using a detailed musculoskeletal model and experimentally-measured kinetics and kinematics. Feasible muscle activation ranges define the minimum and maximum possible level of each muscle’s activation that satisfy inverse dynamics joint torques assuming that all other muscles can vary their activation as needed. During walking, 73% of the muscles had feasible muscle activation ranges that were greater than 95% of the total muscle activation range over more than 95% of the gait cycle, indicating that, individually, most muscles could be fully active or fully inactive while still satisfying inverse dynamics joint torques. Moreover, the shapes of the feasible muscle activation ranges did not resemble previously-reported muscle activation patterns nor optimal solutions, i.e. static optimization and computed muscle control, that are based on the same biomechanical constraints. Our results demonstrate that joint torque requirements from standard inverse dynamics calculations are insufficient to define the activation of individual muscles during walking in healthy individuals. Identifying feasible muscle activation ranges may be an effective way to evaluate the impact of additional biomechanical and/or neural constraints on possible versus actual muscle activity in both normal and impaired movements. PMID:26300401

  13. Connectome-harmonic decomposition of human brain activity reveals dynamical repertoire re-organization under LSD.

    PubMed

    Atasoy, Selen; Roseman, Leor; Kaelen, Mendel; Kringelbach, Morten L; Deco, Gustavo; Carhart-Harris, Robin L

    2017-12-15

    Recent studies have started to elucidate the effects of lysergic acid diethylamide (LSD) on the human brain but the underlying dynamics are not yet fully understood. Here we used 'connectome-harmonic decomposition', a novel method to investigate the dynamical changes in brain states. We found that LSD alters the energy and the power of individual harmonic brain states in a frequency-selective manner. Remarkably, this leads to an expansion of the repertoire of active brain states, suggestive of a general re-organization of brain dynamics given the non-random increase in co-activation across frequencies. Interestingly, the frequency distribution of the active repertoire of brain states under LSD closely follows power-laws indicating a re-organization of the dynamics at the edge of criticality. Beyond the present findings, these methods open up for a better understanding of the complex brain dynamics in health and disease.

  14. Combination of interferometry and thermography data for cultural heritage structural diagnostic research

    NASA Astrophysics Data System (ADS)

    Tornari, Vivi; Andrianakis, Michalis; Hatzigiannakis, Kostas; Kosma, Kiki; Detalle, Vincent; Giovanacci, David

    2017-07-01

    The demand for non destructive and non invasive structural diagnostic techniques able to perform on field remote structural evaluation of historical structures and works of art it faces an increased demand. The techniques must have some basic important characteristics The non destructivity, accuracy, repeatability, non physical contact, portability, resolution, broad range of applicability depending on the type of artwork and the question at hand, are all among the important requirements underlying the requirement for on-field structural diagnostics. In this respect there are two known techniques that have been developed at full to provide a suited structural diagnostic application in artwork conservation. The systems presented here but discussed in detail elsewhere are stimulated infrared thermography (SIRT) and digital holographic speckle pattern interferometry (DHSPI) the prior can be found n market at commercial devise level while the latter is at laboratory prototype level. The two systems are being exploited for their complimentary advantages and in this paper are used in combined testing on art related targets according to the above criteria to confirm the enhanced diagnostic information that their complimentary use provides. Results confirm the effectiveness of each technique alone and the combination of data of both techniques in the conservation field. Each system is first briefly described and examples are given with the aim to present the suitability and appropriateness for use in structural documentation analysis and reports. The experimental work is in laboratory work-in-progress focusing on the hybriding of data synthesis.

  15. Molecular dynamics explorations of active site structure in designed and evolved enzymes.

    PubMed

    Osuna, Sílvia; Jiménez-Osés, Gonzalo; Noey, Elizabeth L; Houk, K N

    2015-04-21

    This Account describes the use of molecular dynamics (MD) simulations to reveal how mutations alter the structure and organization of enzyme active sites. As proposed by Pauling about 70 years ago and elaborated by many others since then, biocatalysis is efficient when functional groups in the active site of an enzyme are in optimal positions for transition state stabilization. Changes in mechanism and covalent interactions are often critical parts of enzyme catalysis. We describe our explorations of the dynamical preorganization of active sites using MD, studying the fluctuations between active and inactive conformations normally concealed to static crystallography. MD shows how the various arrangements of active site residues influence the free energy of the transition state and relates the populations of the catalytic conformational ensemble to the enzyme activity. This Account is organized around three case studies from our laboratory. We first describe the importance of dynamics in evaluating a series of computationally designed and experimentally evolved enzymes for the Kemp elimination, a popular subject in the enzyme design field. We find that the dynamics of the active site is influenced not only by the original sequence design and subsequent mutations but also by the nature of the ligand present in the active site. In the second example, we show how microsecond MD has been used to uncover the role of remote mutations in the active site dynamics and catalysis of a transesterase, LovD. This enzyme was evolved by Tang at UCLA and Codexis, Inc., and is a useful commercial catalyst for the production of the drug simvastatin. X-ray analysis of inactive and active mutants did not reveal differences in the active sites, but relatively long time scale MD in solution showed that the active site of the wild-type enzyme preorganizes only upon binding of the acyl carrier protein (ACP) that delivers the natural acyl group to the active site. In the absence of bound ACP

  16. Combining spectral material properties in the infrared and the visible spectral range for qualification and nondestructive evaluation of components

    NASA Astrophysics Data System (ADS)

    Eisler, K.; Goldammer, M.; Rothenfusser, M.; Arnold, W.; Homma, C.

    2012-05-01

    The spectral selective thermography with infrared filters can be used to determine or to distinguish materials such as contaminations on a metallic component. With additional visual information, the indications by the IR signal can be selectively accentuated or suppressed for easier evaluation of passive and active thermography measurements. For flash thermography the detected IR signal between 3.4 and 5.1 μm is analyzed with regard to the spectral material information. The presented hybrid camera uses beam overlapping to obtain combined images of both in the infrared and the visual range.

  17. Non-destructive Measurement of Total Carotenoid Content in Processed Tomato Products: Infrared Lock-In Thermography, Near-Infrared Spectroscopy/Chemometrics, and Condensed Phase Laser-Based Photoacoustics—Pilot Study

    NASA Astrophysics Data System (ADS)

    Bicanic, D.; Streza, M.; Dóka, O.; Valinger, D.; Luterotti, S.; Ajtony, Zs.; Kurtanjek, Z.; Dadarlat, D.

    2015-09-01

    Carotenes found in a diversity of fruits and vegetables are among important natural antioxidants. In a study described in this paper, the total carotenoid content (TCC) in seven different products derived from thermally processed tomatoes was determined using laser photoacoustic spectroscopy (LPAS), infrared lock-in thermography (IRLIT), and near-infrared spectroscopy (NIRS) combined with chemometrics. Results were verified versus data obtained by traditional VIS spectrophotometry (SP) that served as a reference technique. Unlike SP, the IRLIT, NIRS, and LPAS require a minimum of sample preparation which enables practically direct quantification of the TCC.

  18. Precise determination of the heat delivery during in vivo magnetic nanoparticle hyperthermia with infrared thermography.

    PubMed

    Rodrigues, Harley F; Capistrano, Gustavo; Mello, Francyelli M; Zufelato, Nicholas; Silveira-Lacerda, Elisângela; Bakuzis, Andris F

    2017-05-21

    Non-invasive and real-time monitoring of the heat delivery during magnetic nanoparticle hyperthermia (MNH) is of fundamental importance to predict clinical outcomes for cancer treatment. Infrared thermography (IRT) can determine the surface temperature due to three-dimensional heat delivery inside a subcutaneous tumor, an argument that is supported by numerical simulations. However, for precise temperature determination, it is of crucial relevance to use a correct experimental configuration. This work reports an MNH study using a sarcoma 180 murine tumor containing 3.9 mg of intratumorally injected manganese-ferrite nanoparticles. MNH was performed at low field amplitude and non-uniform field configuration. Five 30 min in vivo magnetic hyperthermia experiments were performed, monitoring the surface temperature with a fiber optical sensor and thermal camera at distinct angles with respect to the animal's surface. The results indicate that temperature errors as large as [Formula: see text]C can occur if the experiment is not properly designed. A new IRT error model is found to explain the data. More importantly, we show how to precisely monitor temperature with IRT during hyperthermia, which could positively impact heat dosimetry and clinical planning.

  19. Precise determination of the heat delivery during in vivo magnetic nanoparticle hyperthermia with infrared thermography

    NASA Astrophysics Data System (ADS)

    Rodrigues, Harley F.; Capistrano, Gustavo; Mello, Francyelli M.; Zufelato, Nicholas; Silveira-Lacerda, Elisângela; Bakuzis, Andris F.

    2017-05-01

    Non-invasive and real-time monitoring of the heat delivery during magnetic nanoparticle hyperthermia (MNH) is of fundamental importance to predict clinical outcomes for cancer treatment. Infrared thermography (IRT) can determine the surface temperature due to three-dimensional heat delivery inside a subcutaneous tumor, an argument that is supported by numerical simulations. However, for precise temperature determination, it is of crucial relevance to use a correct experimental configuration. This work reports an MNH study using a sarcoma 180 murine tumor containing 3.9 mg of intratumorally injected manganese-ferrite nanoparticles. MNH was performed at low field amplitude and non-uniform field configuration. Five 30 min in vivo magnetic hyperthermia experiments were performed, monitoring the surface temperature with a fiber optical sensor and thermal camera at distinct angles with respect to the animal’s surface. The results indicate that temperature errors as large as 7~\\circ C can occur if the experiment is not properly designed. A new IRT error model is found to explain the data. More importantly, we show how to precisely monitor temperature with IRT during hyperthermia, which could positively impact heat dosimetry and clinical planning.

  20. Applicability of a 1D Analytical Model for Pulse Thermography of Laterally Heterogeneous Semitransparent Materials

    NASA Astrophysics Data System (ADS)

    Bernegger, R.; Altenburg, S. J.; Röllig, M.; Maierhofer, C.

    2018-03-01

    Pulse thermography (PT) has proven to be a valuable non-destructive testing method to identify and quantify defects in fiber-reinforced polymers. To perform a quantitative defect characterization, the heat diffusion within the material as well as the material parameters must be known. The heterogeneous material structure of glass fiber-reinforced polymers (GFRP) as well as the semitransparency of the material for optical excitation sources of PT is still challenging. For homogeneous semitransparent materials, 1D analytical models describing the temperature distribution are available. Here, we present an analytical approach to model PT for laterally inhomogeneous semitransparent materials. We show the validity of the model by considering different configurations of the optical heating source, the IR camera, and the differently coated GFRP sample. The model considers the lateral inhomogeneity of the semitransparency by an additional absorption coefficient. It includes additional effects such as thermal losses at the samples surfaces, multilayer systems with thermal contact resistance, and a finite duration of the heating pulse. By using a sufficient complexity of the analytical model, similar values of the material parameters were found for all six investigated configurations by numerical fitting.

  1. Activity in early visual areas predicts interindividual differences in binocular rivalry dynamics

    PubMed Central

    Yamashiro, Hiroyuki; Mano, Hiroaki; Umeda, Masahiro; Higuchi, Toshihiro; Saiki, Jun

    2013-01-01

    When dissimilar images are presented to the two eyes, binocular rivalry (BR) occurs, and perception alternates spontaneously between the images. Although neural correlates of the oscillating perception during BR have been found in multiple sites along the visual pathway, the source of BR dynamics is unclear. Psychophysical and modeling studies suggest that both low- and high-level cortical processes underlie BR dynamics. Previous neuroimaging studies have demonstrated the involvement of high-level regions by showing that frontal and parietal cortices responded time locked to spontaneous perceptual alternation in BR. However, a potential contribution of early visual areas to BR dynamics has been overlooked, because these areas also responded to the physical stimulus alternation mimicking BR. In the present study, instead of focusing on activity during perceptual switches, we highlighted brain activity during suppression periods to investigate a potential link between activity in human early visual areas and BR dynamics. We used a strong interocular suppression paradigm called continuous flash suppression to suppress and fluctuate the visibility of a probe stimulus and measured retinotopic responses to the onset of the invisible probe using functional MRI. There were ∼130-fold differences in the median suppression durations across 12 subjects. The individual differences in suppression durations could be predicted by the amplitudes of the retinotopic activity in extrastriate visual areas (V3 and V4v) evoked by the invisible probe. Weaker responses were associated with longer suppression durations. These results demonstrate that retinotopic representations in early visual areas play a role in the dynamics of perceptual alternations during BR. PMID:24353304

  2. Accurate measurements of the thermal diffusivity of thin filaments by lock-in thermography

    NASA Astrophysics Data System (ADS)

    Salazar, Agustín; Mendioroz, Arantza; Fuente, Raquel; Celorrio, Ricardo

    2010-02-01

    In lock-in (modulated) thermography the lateral thermal diffusivity can be obtained from the slope of the linear relation between the phase of the surface temperature and the distance to the heating spot. However, this slope is greatly affected by heat losses, leading to an overestimation of the thermal diffusivity, especially for thin samples of poor thermal conducting materials. In this paper, we present a complete theoretical model to calculate the surface temperature of filaments heated by a focused and modulated laser beam. All heat losses have been included: conduction to the gas, convection, and radiation. Monofilaments and coated wires have been studied. Conduction to the gas has been identified as the most disturbing effect preventing from the direct use of the slope method to measure the thermal diffusivity. As a result, by keeping the sample in vacuum a slope method combining amplitude and phase can be used to obtain the accurate diffusivity value. Measurements performed in a wide variety of filaments confirm the validity of the conclusion. On the other hand, in the case of coated wires, the slope method gives an effective thermal diffusivity, which verifies the in-parallel thermal resistor model. As an application, the slope method has been used to retrieve the thermal conductivity of thin tubes by filling them with a liquid of known thermal properties.

  3. T Cell Dynamic Activation and Functional Analysis in Nanoliter Droplet Microarray.

    PubMed

    Sarkar, Saheli; Motwani, Vinny; Sabhachandani, Pooja; Cohen, Noa; Konry, Tania

    2015-06-01

    Characterization of the heterogeneity in immune reactions requires assessing dynamic single cell responses as well as interactions between the various immune cell subsets. Maturation and activation of effector cells is regulated by cell contact-dependent and soluble factor-mediated paracrine signalling. Currently there are few methods available that allow dynamic investigation of both processes simultaneously without physically constraining non-adherent cells and eliminating crosstalk from neighboring cell pairs. We describe here a microfluidic droplet microarray platform that permits rapid functional analysis of single cell responses and co-encapsulation of heterotypic cell pairs, thereby allowing us to evaluate the dynamic activation state of primary T cells. The microfluidic droplet platform enables generation and docking of monodisperse nanoliter volume (0.523 nl) droplets, with the capacity of monitoring a thousand droplets per experiment. Single human T cells were encapsulated in droplets and stimulated on-chip with the calcium ionophore ionomycin. T cells were also co-encapsulated with dendritic cells activated by ovalbumin peptide, followed by dynamic calcium signal monitoring. Ionomycin-stimulated cells depicted fluctuation in calcium signalling compared to control. Both cell populations demonstrated marked heterogeneity in responses. Calcium signalling was observed in T cells immediately following contact with DCs, suggesting an early activation signal. T cells further showed non-contact mediated increase in calcium level, although this response was delayed compared to contact-mediated signals. Our results suggest that this nanoliter droplet array-based microfluidic platform is a promising technique for assessment of heterogeneity in various types of cellular responses, detection of early/delayed signalling events and live cell phenotyping of immune cells.

  4. Effect of active arm swing to local dynamic stability during walking.

    PubMed

    Wu, Yu; Li, Yue; Liu, An-Min; Xiao, Fei; Wang, Yin-Zhi; Hu, Fei; Chen, Jin-Ling; Dai, Ke-Rong; Gu, Dong-Yun

    2016-02-01

    Arm swing is an essential component in regulating dynamic stability of the whole body during walking, while the contribution of active arm swing to local dynamic stability of different motion segments remains unclear. This study investigated the effects of arm swing under natural arm swing condition and active arm swing condition on local dynamic stability and gait variability of the trunk segments (C7 and T10 joint) and lower extremity joints (hip, knee and ankle joint). The local divergence exponents (λs) and mean standard deviation over strides (MeanSD) of 24 young healthy adults were calculated while they were walking on treadmill with two arm swing conditions at their preferred walking speed (PWS). We found that in medial-lateral direction, both λs and MeanSD values of the trunk segments (C7 and T10 joint) in active arm swing condition were significantly lower than those in natural arm swing condition (p<0.05), while no significant difference of λs or MeanSD in lower extremity joints (hip, knee and ankle joint) was found between two arm swing conditions (p>0.05, respectively). In anterior-posterior and vertical direction, neither λs nor MeanSD values of all body segments showed significant difference between two arm swing conditions (p>0.05, respectively). These findings indicate that active arm swing may help to improve the local dynamic stability of the trunk segments in medial-lateral direction. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Structural Dynamics Control Allosteric Activation of Cytohesin Family Arf GTPase Exchange Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malaby, Andrew W.; Das, Sanchaita; Chakravarthy, Srinivas

    Membrane dynamic processes including vesicle biogenesis depend on Arf guanosine triphosphatase (GTPase) activation by guanine nucleotide exchange factors (GEFs) containing a catalytic Sec7 domain and a membrane-targeting module such as a pleckstrin homology (PH) domain. The catalytic output of cytohesin family Arf GEFs is controlled by autoinhibitory interactions that impede accessibility of the exchange site in the Sec7 domain. These restraints can be relieved through activator Arf-GTP binding to an allosteric site comprising the PH domain and proximal autoinhibitory elements (Sec7-PH linker and C-terminal helix). Small-angle X-ray scattering and negative-stain electron microscopy were used to investigate the structural organization andmore » conformational dynamics of cytohesin-3 (Grp1) in autoinhibited and active states. The results support a model in which hinge dynamics in the autoinhibited state expose the activator site for Arf-GTP binding, while subsequent C-terminal helix unlatching and repositioning unleash conformational entropy in the Sec7-PH linker to drive exposure of the exchange site.« less

  6. Hybrid analysis for indicating patients with breast cancer using temperature time series.

    PubMed

    Silva, Lincoln F; Santos, Alair Augusto S M D; Bravo, Renato S; Silva, Aristófanes C; Muchaluat-Saade, Débora C; Conci, Aura

    2016-07-01

    Breast cancer is the most common cancer among women worldwide. Diagnosis and treatment in early stages increase cure chances. The temperature of cancerous tissue is generally higher than that of healthy surrounding tissues, making thermography an option to be considered in screening strategies of this cancer type. This paper proposes a hybrid methodology for analyzing dynamic infrared thermography in order to indicate patients with risk of breast cancer, using unsupervised and supervised machine learning techniques, which characterizes the methodology as hybrid. The dynamic infrared thermography monitors or quantitatively measures temperature changes on the examined surface, after a thermal stress. In the dynamic infrared thermography execution, a sequence of breast thermograms is generated. In the proposed methodology, this sequence is processed and analyzed by several techniques. First, the region of the breasts is segmented and the thermograms of the sequence are registered. Then, temperature time series are built and the k-means algorithm is applied on these series using various values of k. Clustering formed by k-means algorithm, for each k value, is evaluated using clustering validation indices, generating values treated as features in the classification model construction step. A data mining tool was used to solve the combined algorithm selection and hyperparameter optimization (CASH) problem in classification tasks. Besides the classification algorithm recommended by the data mining tool, classifiers based on Bayesian networks, neural networks, decision rules and decision tree were executed on the data set used for evaluation. Test results support that the proposed analysis methodology is able to indicate patients with breast cancer. Among 39 tested classification algorithms, K-Star and Bayes Net presented 100% classification accuracy. Furthermore, among the Bayes Net, multi-layer perceptron, decision table and random forest classification algorithms, an

  7. Determination of thermal wave reflection coefficient to better estimate defect depth using pulsed thermography

    NASA Astrophysics Data System (ADS)

    Sirikham, Adisorn; Zhao, Yifan; Mehnen, Jörn

    2017-11-01

    Thermography is a promising method for detecting subsurface defects, but accurate measurement of defect depth is still a big challenge because thermographic signals are typically corrupted by imaging noise and affected by 3D heat conduction. Existing methods based on numerical models are susceptible to signal noise and methods based on analytical models require rigorous assumptions that usually cannot be satisfied in practical applications. This paper presents a new method to improve the measurement accuracy of subsurface defect depth through determining the thermal wave reflection coefficient directly from observed data that is usually assumed to be pre-known. This target is achieved through introducing a new heat transfer model that includes multiple physical parameters to better describe the observed thermal behaviour in pulsed thermographic inspection. Numerical simulations are used to evaluate the performance of the proposed method against four selected state-of-the-art methods. Results show that the accuracy of depth measurement has been improved up to 10% when noise level is high and thermal wave reflection coefficients is low. The feasibility of the proposed method in real data is also validated through a case study on characterising flat-bottom holes in carbon fibre reinforced polymer (CFRP) laminates which has a wide application in various sectors of industry.

  8. On the dynamic activity in sheared corridors of large delta spots

    NASA Technical Reports Server (NTRS)

    Tang, F.; Wang, H.

    1993-01-01

    A study of registered, highly time-compressed, white-light movies, made from digital data obtained at Big Bear, revealed dynamic and complex photospheric activity for the first time inside the large delta spot of the March 1989 region. Similar activity in two other regions of large delta spots with sheared penumbral structure was found. They are NOAA Nos. 5629 and 5747 in August and October of 1989, respectively. Both are extraordinarily flare-prolific regions as well. The unusual dynamic activity consists of two parts: the motion of the penumbra and the emergence of new spots in the midst of the penumbral motion. The manner and place of emergence are different from those in ordinary emerging flux regions, and often the spots are without observable opposite polarity flux.

  9. Molecular Dynamics of "Fuzzy" Transcriptional Activator-Coactivator Interactions

    PubMed Central

    Scholes, Natalie S.; Weinzierl, Robert O. J.

    2016-01-01

    Transcriptional activation domains (ADs) are generally thought to be intrinsically unstructured, but capable of adopting limited secondary structure upon interaction with a coactivator surface. The indeterminate nature of this interface made it hitherto difficult to study structure/function relationships of such contacts. Here we used atomistic accelerated molecular dynamics (aMD) simulations to study the conformational changes of the GCN4 AD and variants thereof, either free in solution, or bound to the GAL11 coactivator surface. We show that the AD-coactivator interactions are highly dynamic while obeying distinct rules. The data provide insights into the constant and variable aspects of orientation of ADs relative to the coactivator, changes in secondary structure and energetic contributions stabilizing the various conformers at different time points. We also demonstrate that a prediction of α-helical propensity correlates directly with the experimentally measured transactivation potential of a large set of mutagenized ADs. The link between α-helical propensity and the stimulatory activity of ADs has fundamental practical and theoretical implications concerning the recruitment of ADs to coactivators. PMID:27175900

  10. [Dynamics of complement hemolytic activity in experimental Ebola infection].

    PubMed

    Zabavichene, N M; Chepurnov, A A

    2004-01-01

    The dynamic hemolytic activity of complements (HAC) was investigated in blood of guinea pigs in lethal and non-lethal Ebola infection. The increasing HAC dynamic activity in the animal blood was found to correlate with the infection lethal course. HAC as observed in animals with lethal infection was sweepingly increasing after they, were infected with Ebola virus, and yet after 15 hours from the infection time the complement activity parameters topped 2-fold the basic values in 100% of guinea pigs. They began to be dropping by the end of day 1, their decrease reached, when the incubation time was over (days 3-4 after infection) the basic value, after which they continued to go down to the zero value in 2-3 days before the lethal outcome. The described phenomenon, like the phenomenon of accelerated death, was even more pronounced, when the animals were infected after a single immunization by activated Ebola virus. In case, guinea pigs were infected by a non-lethal Ebola virus strain, the compliment synthesis was observed to be activated only at the end of the incubation period; the process was accompanied with a gradual raise and with a plateau-type or wave-type increase of the complement during the treatment time--it was equally accompanied with normalizing activity parameters during recovery. The detected specificity could be important in prognosticating a disease outcome. A reliable correlation was demonstrated between the complement hemolytic activity and the level of circulating immune complexes in blood of experimental animals, which can be traced both in lethal and non-lethal infection.

  11. Effects of subclinical footpad dermatitis and emotional arousal on surface foot temperature recorded with infrared thermography in turkey toms (Meleagris gallopavo).

    PubMed

    Moe, R O; Bohlin, J; Flø, A; Vasdal, G; Erlandsen, H; Guneriussen, E; Sjökvist, E C; Stubsjøen, S M

    2018-04-17

    Footpad dermatitis is a condition that causes lesions on the plantar surface of the footpads in growing turkeys. Potential inflammatory processes and pain associated with increasing severity of footpad dermatitis raise animal welfare concerns. This study investigated whether the temperature of the plantar surface of the foot (the footpads and the entire plantar foot including interdigital membranes) assessed with infrared thermography reflects severity of mild footpad dermatitis as assessed with a Visual Analogue Scale in 80 turkey toms at 10 weeks of age. In order to study effects of a potential emotional arousal due to the testing procedures, effects of sequential testing order and duration of handling of the turkeys was included in the model. Footpad temperatures were significantly lower than foot temperatures (P < 0.001, R2 = 0.57, -3.36°C ± 0.28°C), and higher visual analogue scale scores were anti-correlated with footpad (-0.06°C ± 0.037°C) and foot temperatures (-0.07°C ± 0.066°C). Furthermore, a negative association between footpad temperature and handling time (-0.02 ± 0.0227, P = 0.048), and a non-linear association between foot and footpad temperatures and sequential testing order, were found (P<0.001). The results indicate that severity of mild footpad dermatitis as scored visually was associated with the temperatures of the plantar surface of the foot and footpads, and that thermal imaging therefore represents a novel tool for the reliable and non-invasive early detection of subclinical foot pathologies in turkeys. The association was negative, and the findings therefore indicate that potential inflammatory processes in the epidermis at this early stage of footpad dermatitis are negligible, and/or that the hyperkeratosis of the surface keratin shielded heat emission from the footpads. The associations between surface temperatures, handling time, and sequential testing order suggest an emotional arousal in response to the experimental

  12. Integration of infrared thermography and high-frequency electromagnetic methods in archaeological surveys

    NASA Astrophysics Data System (ADS)

    di Maio, Rosa; Meola, Carosena; Fedi, Maurizio; Carlomagno, Giovanni Maria

    2010-05-01

    An integration of high-resolution non-destructive techniques is presented for the inspection and evaluation of ancient architectonic structures. Infrared thermography (IRT) represents a valuable tool for nondestructive evaluation of architectonic structures and artworks because it is capable of giving indications about most of the degradation sources of artworks and buildings of both historical interest and civil use. In particular, it is possible to detect cracks, disbondings, alteration of material consistency, etc. Indeed, by choosing the most adequate thermographic technique, it is possible to monitor the conservation state of artworks in time and to detect the presence of many types of defects (e.g., voids, cracks, disbondings, etc.) in different types of materials (e.g., concrete, masonry structures, bronze, etc.). The main advantages of infrared thermography when dealing with precious artworks may be summarized with three words: non-contact, non-invasive, and two-dimensionality. It is possible to inspect either a large surface such as the facade of a palace, or a very small surface of only few square millimetres. Conversely, the inspection depth is quite small; generally, of the order of centimetres. However, as demonstrated in previous work, IRT well matches with electric-and electromagnetic-type geophysical methods to characterize the overlapping zone from low-to-high depth in masonry structures. In particular, the use of high-frequency electromagnetic techniques, such as the ground penetrating radar (GPR), permits to reach investigation depths of some ten of centimetres by choosing appropriate frequencies of the transmitted electromagnetic signal. In the last decade a large utilisation of the GPR methodology to non-destructive analysis of engineering and architectural materials and structures has been experienced. This includes diverse features, such as definition of layer thickness, characterisation of different constructive materials, identification of

  13. Active synchronization between two different chaotic dynamical system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maheri, M.; Arifin, N. Md; Ismail, F.

    2015-05-15

    In this paper we investigate on the synchronization problem between two different chaotic dynamical system based on the Lyapunov stability theorem by using nonlinear control functions. Active control schemes are used for synchronization Liu system as drive and Rossler system as response. Numerical simulation by using Maple software are used to show effectiveness of the proposed schemes.

  14. Solar loading thermography: Time-lapsed thermographic survey and advanced thermographic signal processing for the inspection of civil engineering and cultural heritage structures

    NASA Astrophysics Data System (ADS)

    Ibarra-Castanedo, Clemente; Sfarra, Stefano; Klein, Matthieu; Maldague, Xavier

    2017-05-01

    The experimental results from infrared thermography surveys over two buildings externally exposed walls are presented. Data acquisition was performed on a static configuration by recording direct and indirect solar loading during several days and was processed using advanced signal processing techniques in order to increase signal-to-noise ratio and signature contrast of the elements of interest. It is demonstrated that it is possible to detect the thermal signature of large internal structures as well as surface features under such thermographic scenarios. Results from a long-wave microbolometer compared favorably to those from a mid-wave cooled infrared camera for the detection of large subsurface features from unprocessed images. In both cases, however, advanced signal processing greatly improved contrast of the internal features.

  15. From homeostasis to behavior: Balanced activity in an exploration of embodied dynamic environmental-neural interaction.

    PubMed

    Hellyer, Peter John; Clopath, Claudia; Kehagia, Angie A; Turkheimer, Federico E; Leech, Robert

    2017-08-01

    In recent years, there have been many computational simulations of spontaneous neural dynamics. Here, we describe a simple model of spontaneous neural dynamics that controls an agent moving in a simple virtual environment. These dynamics generate interesting brain-environment feedback interactions that rapidly destabilize neural and behavioral dynamics demonstrating the need for homeostatic mechanisms. We investigate roles for homeostatic plasticity both locally (local inhibition adjusting to balance excitatory input) as well as more globally (regional "task negative" activity that compensates for "task positive", sensory input in another region) balancing neural activity and leading to more stable behavior (trajectories through the environment). Our results suggest complementary functional roles for both local and macroscale mechanisms in maintaining neural and behavioral dynamics and a novel functional role for macroscopic "task-negative" patterns of activity (e.g., the default mode network).

  16. In-situ coupling between kinase activities and protein dynamics within single focal adhesions

    NASA Astrophysics Data System (ADS)

    Wu, Yiqian; Zhang, Kaiwen; Seong, Jihye; Fan, Jason; Chien, Shu; Wang, Yingxiao; Lu, Shaoying

    2016-07-01

    The dynamic activation of oncogenic kinases and regulation of focal adhesions (FAs) are crucial molecular events modulating cell adhesion in cancer metastasis. However, it remains unclear how these events are temporally coordinated at single FA sites. Therefore, we targeted fluorescence resonance energy transfer (FRET)-based biosensors toward subcellular FAs to report local molecular events during cancer cell adhesion. Employing single FA tracking and cross-correlation analysis, we quantified the dynamic coupling characteristics between biochemical kinase activities and structural FA within single FAs. We show that kinase activations and FA assembly are strongly and sequentially correlated, with the concurrent FA assembly and Src activation leading focal adhesion kinase (FAK) activation by 42.6 ± 12.6 sec. Strikingly, the temporal coupling between kinase activation and individual FA assembly reflects the fate of FAs at later stages. The FAs with a tight coupling tend to grow and mature, while the less coupled FAs likely disassemble. During FA disassembly, however, kinase activations lead the disassembly, with FAK being activated earlier than Src. Therefore, by integrating subcellularly targeted FRET biosensors and computational analysis, our study reveals intricate interplays between Src and FAK in regulating the dynamic life of single FAs in cancer cells.

  17. Effects of Ambient Temperature and Relative Humidity on Subsurface Defect Detection in Concrete Structures by Active Thermal Imaging.

    PubMed

    Tran, Quang Huy; Han, Dongyeob; Kang, Choonghyun; Haldar, Achintya; Huh, Jungwon

    2017-07-26

    Active thermal imaging is an effective nondestructive technique in the structural health monitoring field, especially for concrete structures not exposed directly to the sun. However, the impact of meteorological factors on the testing results is considerable and should be studied in detail. In this study, the impulse thermography technique with halogen lamps heat sources is used to detect defects in concrete structural components that are not exposed directly to sunlight and not significantly affected by the wind, such as interior bridge box-girders and buildings. To consider the effect of environment, ambient temperature and relative humidity, these factors are investigated in twelve cases of testing on a concrete slab in the laboratory, to minimize the influence of wind. The results showed that the absolute contrast between the defective and sound areas becomes more apparent with an increase of ambient temperature, and it increases at a faster rate with large and shallow delaminations than small and deep delaminations. In addition, the absolute contrast of delamination near the surface might be greater under a highly humid atmosphere. This study indicated that the results obtained from the active thermography technique will be more apparent if the inspection is conducted on a day with high ambient temperature and humidity.

  18. Activity statistics in a colloidal glass former: Experimental evidence for a dynamical transition

    NASA Astrophysics Data System (ADS)

    Abou, Bérengère; Colin, Rémy; Lecomte, Vivien; Pitard, Estelle; van Wijland, Frédéric

    2018-04-01

    In a dense colloidal suspension at a volume fraction below the glass transition, we follow the trajectories of an assembly of tracers over a large time window. We define a local activity, which quantifies the local tendency of the system to rearrange. We determine the statistics of the time integrated activity, and we argue that it develops a low activity tail that comes together with the onset of glassy-like behavior and heterogeneous dynamics. These rare events may be interpreted as the reflection of an underlying dynamic phase transition.

  19. An undergraduate laboratory activity on molecular dynamics simulations.

    PubMed

    Spitznagel, Benjamin; Pritchett, Paige R; Messina, Troy C; Goadrich, Mark; Rodriguez, Juan

    2016-01-01

    Vision and Change [AAAS, 2011] outlines a blueprint for modernizing biology education by addressing conceptual understanding of key concepts, such as the relationship between structure and function. The document also highlights skills necessary for student success in 21st century Biology, such as the use of modeling and simulation. Here we describe a laboratory activity that allows students to investigate the dynamic nature of protein structure and function through the use of a modeling technique known as molecular dynamics (MD). The activity takes place over two lab periods that are 3 hr each. The first lab period unpacks the basic approach behind MD simulations, beginning with the kinematic equations that all bioscience students learn in an introductory physics course. During this period students are taught rudimentary programming skills in Python while guided through simple modeling exercises that lead up to the simulation of the motion of a single atom. In the second lab period students extend concepts learned in the first period to develop skills in the use of expert MD software. Here students simulate and analyze changes in protein conformation resulting from temperature change, solvation, and phosphorylation. The article will describe how these activities can be carried out using free software packages, including Abalone and VMD/NAMD. © 2016 The International Union of Biochemistry and Molecular Biology.

  20. Dynamics of Active Microfilaments

    NASA Astrophysics Data System (ADS)

    Ling, Feng; Guo, Hanliang; Kanso, Eva

    2017-11-01

    Soft elastic filaments are ubiquitous in natural and artificial systems at various length scales, and their interactions within and between filaments and their environments provide a persistent source of curiosity due to both the complexity of their behaviors and the relative mathematical simplicity of their structures. Specifically, a deeper understanding of the dynamic characteristics of microscopic filaments in viscous fluids is relevant to many biophysical and physiological processes. Here we start with the Cosserat model that allows all six possible modes of deformation for an elastic rod, and focus on the case of inextensible filaments submerged in viscous fluids by ignoring inertial effects and using local resistive force theory for fluid-filament interactions. We verify our simulations against special analytic solutions and present some results on the active internal control of cilia and flagella motion. We conclude by commenting on the utility of this general framework for studying other cellular and sub-cellular physical processes such as systems involving protein filaments.