Science.gov

Sample records for active dynamic thermography

  1. Dynamic thermography in diagnostics of onychomycosis

    NASA Astrophysics Data System (ADS)

    Fryca, Jaroslaw; Nowakowski, Antoni; Urbanowski, Slawomir

    2004-07-01

    The paper shows the results of the research on the active dynamic thermography used for diagnostics of onychomycosis and progress of the healing process. It seems that the most essential factor affecting the development of mycosis in nails is the microcirculation in the tissue close to the nail. Active dynamic thermography may prove to be a new diagnostic method and a sufficient tool for measurements of this parameter.

  2. Evaluation of the variable depth resolution of active dynamic thermography on human skin

    NASA Astrophysics Data System (ADS)

    Prindeze, Nicholas J.; Hoffman, Hilary A.; Carney, Bonnie C.; Moffatt, Lauren T.; Loew, Murray H.; Shupp, Jeffrey W.

    2015-06-01

    Active dynamic thermography (ADT) is an imaging technique capable of characterizing the non-homogenous thermal conductance of damaged tissues. The purpose of this study was to determine optimal stimulation parameters and quantify the optical resolution of ADT through various depths of human skin. Excised tissue from plastic surgery operations was collected immediately following excision. A total of 12 thin to thick split-thickness grafts were harvested from 3 patients. Grafts were placed on top of a 3D printed resolution chart and thermal stimulation was applied from a 300W halogen lamp array for between 0.5-10 seconds to determine optimal parameters. Video was captured with a thermal camera, and analysis was performed by reconstructing an image from thermal gradients. In this study ADT resolved 0.445+/-0 lp/mm at a depth of 0.010", 0.356+/-0.048 lp/mm at a depth of 0.015", 0.334+/-0.027 lp/mm at a depth of 0.020" and 0.265+/-0.022 lp/mm at a depth of 0.025". The stimulus energy required for maximum resolution at each depth was 3- 4s, 8s, 12s and 12s respectively. ADT is a sensitive technique for imaging dermal structure, capable of resolving detail as fine as 1124 μm, 1427 μm, 1502 μm and 1893 μm in thin to thick split-thickness skin grafts respectively. This study has characterized a correlation between stimulus input and maximal resolution at differing depths of skin. It has also defined the functional imaging depth of ADT to below the sub-cutis, well below conventional spectrophotometric techniques.

  3. Thermography.

    ERIC Educational Resources Information Center

    Cage, Bob N.

    1984-01-01

    Thermography, a diagnostic tool that combines photography and infrared sensing, permits direct measurement of apparent surface temperatures. Building energy losses can be detected and correction measures planned. Criteria for the use of thermography are provided. (MLF)

  4. Examination of the Early Diagnostic Applicability of Active Dynamic Thermography for Burn Wound Depth Assessment and Concept Analysis.

    PubMed

    Prindeze, Nicholas J; Fathi, Payam; Mino, Matthew J; Mauskar, Neil A; Travis, Taryn E; Paul, Dereck W; Moffatt, Lauren T; Shupp, Jeffrey W

    2015-01-01

    Despite advances in perfusion imaging, burn wound imaging technology continues to lag behind that of other fields. Quantification of blood flow is able to predict time for healing, but clear assessment of burn depth is still questionable. Active dynamic thermography (ADT) is a noncontact imaging modality capable of distinguishing tissue of different thermal conductivities. Utilizing the abnormal heat transfer properties of the burn zones, we examined whether ADT was useful in the determination of burn depth in a model of early burn wound evaluation. Duroc pigs (castrated male; n = 3) were anesthetized, and two burns were created with an aluminum billet at 3 and 12 seconds. These contact times resulted in superficial partial and deep partial thickness burn wounds, respectively. ADT and laser Doppler imaging (LDI) imaging were performed every 30 minutes postburn for a total of five imaging sessions ending 150 minutes postburn. For ADT, imaging excitation was performed for 42-120 seconds with dual quartz-infrared lamps, and subsequent infrared image capture was performed for 300 seconds. MATLAB-assisted image analysis was performed to determine burn zone region of interest thermal relaxation and characteristic patterns. LDI was performed with a moorLDI system, and biopsies were captured for histology following the 150-minute imaging session. Both ADT and LDI imaging modalities are able to detect different physical properties at 30, 60, 90 120, and 150 minutes postburn with statistical significance (P < 0.05). Resultant ADT cooling curves characterize greater differences with greater stimulation and a potentially more identifiable differential cooling characteristic. Histological analysis confirmed burn depth. This preliminary work confirms that ADT can measure burn depth and is deserving of further research either as a stand-alone imaging technology or in combination with a device to assess perfusion.

  5. Medical applications of model-based dynamic thermography

    NASA Astrophysics Data System (ADS)

    Nowakowski, Antoni; Kaczmarek, Mariusz; Ruminski, Jacek; Hryciuk, Marcin; Renkielska, Alicja; Grudzinski, Jacek; Siebert, Janusz; Jagielak, Dariusz; Rogowski, Jan; Roszak, Krzysztof; Stojek, Wojciech

    2001-03-01

    The proposal to use active thermography in medical diagnostics is promising in some applications concerning investigation of directly accessible parts of the human body. The combination of dynamic thermograms with thermal models of investigated structures gives attractive possibility to make internal structure reconstruction basing on different thermal properties of biological tissues. Measurements of temperature distribution synchronized with external light excitation allow registration of dynamic changes of local temperature dependent on heat exchange conditions. Preliminary results of active thermography applications in medicine are discussed. For skin and under- skin tissues an equivalent thermal model may be determined. For the assumed model its effective parameters may be reconstructed basing on the results of transient thermal processes. For known thermal diffusivity and conductivity of specific tissues the local thickness of a two or three layer structure may be calculated. Results of some medical cases as well as reference data of in vivo study on animals are presented. The method was also applied to evaluate the state of the human heart during the open chest cardio-surgical interventions. Reference studies of evoked heart infarct in pigs are referred, too. We see the proposed new in medical applications technique as a promising diagnostic tool. It is a fully non-invasive, clean, handy, fast and affordable method giving not only qualitative view of investigated surfaces but also an objective quantitative measurement result, accurate enough for many applications including fast screening of affected tissues.

  6. Inspection of reinforcement concrete structures with active infrared thermography

    NASA Astrophysics Data System (ADS)

    Szymanik, Barbara; Chady, Tomasz; Frankowski, Paweł

    2017-02-01

    In this article the reinforced concrete non-destructive evaluation using active thermography is discussed. There are several aspects of possible non-destructive testing of mentioned structures. One of them is the detection and assessment of the reinforcement itself. In case of active thermography, the external energy source has to be used to induce the thermal response of the inspected specimen. Here, authors propose two different techniques: microwave heating and induction heating. In this article authors will present several experimental results which will allow to compare mentioned two techniques of heating. suitability of each one to assess the reinforced concrete by using the active thermography will be discussed.

  7. Active thermography in qualitative evaluation of protective materials.

    PubMed

    Gralewicz, Grzegorz; Wiecek, Bogusław

    2009-01-01

    This is a study of the possibilities of a qualitative evaluation of protective materials with active thermography. It presents a simulation of a periodic excitation of a multilayer composite material. Tests were conducted with lock-in thermography on Kevlar composite consisting of 16 layers of Kevlar fabric reinforced with formaldehyde resin with implanted delamination defects. Lock-in thermography is a versatile tool for nondestructive evaluation. It is a fast, remote and nondestructive procedure. Hence, it was used to detect delaminations in the composite structure of materials used in the production of components designed for personal protection. This method directly contributes to an improvement in safety.

  8. Evaluation of allergic response using dynamic thermography

    NASA Astrophysics Data System (ADS)

    Rokita, E.; Rok, T.; Tatoń, G.

    2015-03-01

    Skin dynamic termography supplemented by a mathematical model is presented as an objective and sensitive indicator of the skin prick test result. Termographic measurements were performed simultaneously with routine skin prick tests. The IR images were acquired every 70 s up to 910 s after skin prick. In the model histamine is treated as the principal mediator of the allergic reaction. Histamine produces vasolidation and the engorged vessels are responsible for an increase in skin temperature. The model parameters were determined by fitting the analytical solutions to the spatio-temporal distributions of the differences between measured and baseline temperatures. The model reproduces experimental data very well (coefficient of determination = 0.805÷0.995). The method offers a set of parameters to describe separately skin allergic reaction and skin reactivity. The release of histamine after allergen injection is the best indicator of allergic response. The diagnostic parameter better correlates with the standard evaluation of a skin prick test (correlation coefficient = 0.98) than the result of the thermographic planimetric method based on temperature and heated area determination (0.81). The high sensitivity of the method allows for determination of the allergic response in patients with the reduced skin reactivity.

  9. Moisture evaluation by dynamic thermography data modeling

    NASA Astrophysics Data System (ADS)

    Bison, Paolo G.; Grinzato, Ermanno G.; Marinetti, Sergio

    1994-03-01

    This paper discusses the design of a nondestructive method for in situ detection of moistened areas in buildings and the evaluation of the water content in porous materials by thermographic analysis. The use of heat transfer model to interpret data allows to improve the measurement accuracy taking into account the actual boundary conditions. The relative increase of computation time is balanced by the additional advantage to optimize the testing procedure of different objects simulating the heat transfer. Experimental results on bricks used in building for restoration activities, are discussed. The water content measured in different hygrometric conditions is compared with known values. A correction on the absorptivity coefficient dependent on water content is introduced.

  10. Laser active thermography for non-destructive testing

    NASA Astrophysics Data System (ADS)

    Semerok, A.; Grisolia, C.; Fomichev, S. V.; Thro, P.-Y.

    2013-11-01

    Thermography methods have found their applications in different fields of human activity. The non-destructive feature of these methods along with the additional advantage by automated remote control and tests of nuclear installations without personnel attendance in the contaminated zone are of particular interest. Laser active pyrometry and laser lock-in thermography for in situ non-destructive characterization of micrometric layers on graphite substrates from European tokamaks were under extensive experimental and theoretical studies in CEA (France). The studies were aimed to obtain layer characterization with cross-checking the layer thermal contact coefficients determined by active laser pyrometry and lock-in thermography. The experimental installation comprised a Nd-YAG pulsed repetition rate laser (1 Hz - 10 kHz repetition rate frequency, homogeneous spot) and a home-made pyrometer system based on two pyrometers for the temperature measurements in 500 - 2600 K range. For both methods, the layer characterization was provided by the best fit of the experimental results and simulations. The layer thermal contact coefficients determined by both methods were quite comparable. Though there was no gain in the measurements accuracy, lock-in measurements have proved their advantage as being much more rapid. The obtained experimental and theoretical results are presented. Some practical applications and possible improvements of the methods are discussed.

  11. IR thermography for dynamic detection of laminar-turbulent transition

    NASA Astrophysics Data System (ADS)

    Simon, Bernhard; Filius, Adrian; Tropea, Cameron; Grundmann, Sven

    2016-05-01

    This work investigates the potential of infrared (IR) thermography for the dynamic detection of laminar-turbulent transition. The experiments are conducted on a flat plate at velocities of 8-14 m/s, and the transition of the laminar boundary layer to turbulence is forced by a disturbance source which is turned on and off with frequencies up to 10 Hz. Three different heating techniques are used to apply the required difference between fluid and structure temperature: a heated aluminum structure is used as an internal structure heating technique, a conductive paint acts as a surface bounded heater, while an IR heater serves as an example for an external heating technique. For comparison of all heating techniques, a normalization is introduced and the frequency response of the measured IR camera signal is analyzed. Finally, the different heating techniques are compared and consequences for the design of experiments on laminar-turbulent transition are discussed.

  12. Infrared micro-thermography of an actively heated preconcentrator device

    NASA Astrophysics Data System (ADS)

    Furstenberg, Robert; Kendziora, C. A.; Stepnowski, Stanley V.; Mott, David R.; McGill, R. Andrew

    2008-03-01

    We report infrared micro-thermography measurements and analysis of static and transient temperature maps of an actively heated micro-fabricated preconcentrator device that incorporates a dual serpentine platinum heater trace deposited on a perforated polyimide membrane and suspended over a silicon frame. The sorbent coated perforated membrane is used to collect vapors and gases that flow through the preconcentrator. After heating, a concentrated pulse of analyte is released into the detector. Due to its small thermal mass, precise thermal management of the preconcentrator is critical to its performance. The sizes of features, the semi-transparent membrane, the need to flow air through the device, and changes in surface emissivity on a micron scale present many challenges for traditional infrared micro-thermography. We report an improved experimental test-bed. The hardware incorporates a custom-designed miniature calibration oven which, in conjunction with spatial filtering and a simple calibration algorithm, allows accurate temperature maps to be obtained. The test-bed incorporates a micro-bolometer array as the infrared imager. Instrumentation design, calibration and image processing algorithms are discussed and analyzed. The procedure does not require prior knowledge of the emissivity. We show that relatively inexpensive uncooled bolometers arrays can be used in certain radiometric applications. Heating profiles were examined with both uniform and non-uniform air flow through the device. The conclusions from this study provide critical information for optimal integration of the preconcentrator within a detection system, and in the design of the heater trace layout to achieve a more even temperature distribution across the device.

  13. Integration of active thermography into the assessment of cultural heritage buildings

    NASA Astrophysics Data System (ADS)

    Maierhofer, Christiane; Röllig, Mathias; Krankenhagen, Rainer

    2010-10-01

    Applications of infrared thermography in civil engineering are not limited to the identification of heat losses in building envelopes. Active infrared thermography methods enable structural investigations of building elements with one-sided access up to a depth of about 10 cm. Masonry and especially historical masonry has a very heterogeneous structure containing several different materials (brick, stone, mortar, plaster, wood, metal, etc.) with various thermal properties. As many classes of damage originate from defects that are close to the surface, active thermography is in general very well suited to assessing different test problems in cultural heritage buildings. In this paper, the physical background, equipment, environmental influences and material properties are discussed. Several application results are presented. It is shown how active thermography can be integrated into a holistic approach for the assessment of historical structures.

  14. Carbon fiber composites inspection and defect characterization using active infrared thermography: numerical simulations and experimental results.

    PubMed

    Fernandes, Henrique; Zhang, Hai; Figueiredo, Alisson; Ibarra-Castanedo, Clemente; Guimarares, Gilmar; Maldague, Xavier

    2016-12-01

    Composite materials are widely used in the aeronautic industry. One of the reasons is because they have strength and stiffness comparable to metals, with the added advantage of significant weight reduction. Infrared thermography (IT) is a safe nondestructive testing technique that has a fast inspection rate. In active IT, an external heat source is used to stimulate the material being inspected in order to generate a thermal contrast between the feature of interest and the background. In this paper, carbon-fiber-reinforced polymers are inspected using IT. More specifically, carbon/PEEK (polyether ether ketone) laminates with square Kapton inserts of different sizes and at different depths are tested with three different IT techniques: pulsed thermography, vibrothermography, and line scan thermography. The finite element method is used to simulate the pulsed thermography experiment. Numerical results displayed a very good agreement with experimental results.

  15. Dynamic deep temperature recovery by acoustic thermography using neural networks

    NASA Astrophysics Data System (ADS)

    Anosov, A. A.; Belyaev, R. V.; Vilkov, V. A.; Kazanskii, A. S.; Mansfel'd, A. D.; Subochev, P. V.

    2013-11-01

    In an experiment, the deep temperature, which changed with time, was recovered for a model object, bovine liver. The liver was heated for 6 min by laser radiation (810 nm), transmitted via a light guide to a depth of 1 cm. During heating and subsequent cooling, the deep temperature was measured by acoustic thermography. For independent control, we used three electronic telemeters, the indications of which were also subsequently recovered. Deep temperature was recovered using a neural network with a time delay. During the last 2 min of heating, the mean square error of recovery for an averaging time of 50 s did not exceed 0.5°C. Such a result makes it possible to use this method for solving a number of medical problems.

  16. Non-destructive Testing of Forged Metallic Materials by Active Infrared Thermography

    NASA Astrophysics Data System (ADS)

    Maillard, S.; Cadith, J.; Bouteille, P.; Legros, G.; Bodnar, J. L.; Detalle, V.

    2012-11-01

    Nowadays, infrared thermography is considered as the reference method in many applications such as safety, the inspection of electric installations, or the inspection of buildings' heat insulation. In recent years, the evolution of both material and data-processing tools also allows the development of thermography as a real non-destructive testing method. Thus, by subjecting the element to be inspected to an external excitation and by analyzing the propagation of heat in the examined zone, it is possible to highlight surface or subsurface defects such as cracks, delaminations, or corrosion. One speaks then about active infrared thermography. In this study, some results obtained during the collective studies carried out by CETIM and the University of Reims for the forging industry are presented. Various experimental possibilities offered by active thermography are presented and the interest in this method in comparison with the traditional non-destructive testing methods (penetrant testing and magnetic particle inspection) is discussed. For example, comparative results on a forged cracked hub, a steering joint, and a threaded rod are presented. They highlight the interest of infrared thermography stimulated by induction for forged parts.

  17. Nondestructive test of brazed cooling tubes of prototype bolometer camera housing using active infrared thermography.

    PubMed

    Tahiliani, Kumudni; Pandya, Santosh P; Pandya, Shwetang; Jha, Ratneshwar; Govindarajan, J

    2011-01-01

    The active infrared thermography technique is used for assessing the brazing quality of an actively cooled bolometer camera housing developed for steady state superconducting tokamak. The housing is a circular pipe, which has circular tubes vacuum brazed on the periphery. A unique method was adopted to monitor the temperature distribution on the internal surface of the pipe. A stainless steel mirror was placed inside the pipe and the reflected IR radiations were viewed using an IR camera. The heat stimulus was given by passing hot water through the tubes and the temperature distribution was monitored during the transient phase. The thermographs showed a significant nonuniformity in the brazing with a contact area of around 51%. The thermography results were compared with the x-ray radiographs and a good match between the two was observed. Benefits of thermography over x-ray radiography testing are emphasized.

  18. Nondestructive testing of plastered mosaics with the use of active thermography approaches

    NASA Astrophysics Data System (ADS)

    Cheilakou, Eleni; Avdelidis, Nico P.; Ibarra-Castanedo, Clemente; Koui, Maria; Bendada, Abdel Hakim; Maldague, Xavier P.

    2010-05-01

    In this work, different mosaics covered with various plasters (of thickness and compositions) were evaluated in lab by means of active long wave and mid wave thermography approaches, with the intention of detecting the tesserae beneath the plastered surface. Thermal images as well as thermal contrast curves between plastered surfaces and plastered mosaics were recorded. Special considerations concerning the applicability and accuracy of the used approaches for this specific application are presented. Results from the assessment are presented and discussed, indicating that images seeing through the mortar-plaster on plastered mosaic surfaces can be obtained using active thermography approaches.

  19. Remote monitoring of breathing dynamics using infrared thermography

    PubMed Central

    Pereira, Carina Barbosa; Yu, Xinchi; Czaplik, Michael; Rossaint, Rolf; Blazek, Vladimir; Leonhardt, Steffen

    2015-01-01

    An atypical or irregular respiratory frequency is considered to be one of the earliest markers of physiological distress. In addition, monitoring of this vital parameter plays a major role in diagnosis of respiratory disorders, as well as in early detection of sudden infant death syndrome. Nevertheless, the current measurement modalities require attachment of sensors to the patient’s body, leading to discomfort and stress. The current paper presents a new robust algorithm to remotely monitor breathing rate (BR) by using thermal imaging. This approach permits to detect and to track the region of interest (nose) as well as to estimate BR. In order to study the performance of the algorithm, and its robustness against motion and breathing disorders, three different thermal recordings of 11 healthy volunteers were acquired (sequence 1: normal breathing; sequence 2: normal breathing plus arbitrary head movements; and sequence 3: sequence of specific breathing patterns). Thoracic effort (piezoplethysmography) served as “gold standard” for validation of our results. An excellent agreement between estimated BR and ground truth was achieved. Whereas the mean correlation for sequence 1–3 were 0.968, 0.940 and 0.974, the mean absolute BR errors reached 0.33, 0.55 and 0.96 bpm (breaths per minute), respectively. In brief, this work demonstrates that infrared thermography is a promising, clinically relevant alternative for the currently available measuring modalities due to its performance and diverse remarkable advantages. PMID:26601003

  20. The use of infrared thermography to detect the skin temperature response to physical activity

    NASA Astrophysics Data System (ADS)

    Tanda, G.

    2015-11-01

    Physical activity has a noticeable effect on skin blood flow and temperature. The thermal regulatory and hemodynamic processes during physical activity are controlled by two conflicting mechanisms: the skin vasoconstriction induced by the blood flow demand to active muscles and the skin vasodilation required by thermoregulation to increase warm blood flow and heat conduction to the skin. The time-evolution of skin temperature during exercise can give useful information about the adaptation of the subject as a function of specific type, intensity and duration of exercise. In this paper, infrared thermography is used to investigate the thermal response of skin temperature during running exercise on treadmill for a group of seven healthy and trained runners. Two different treadmill exercises are considered: a graded load exercise and a constant load exercise; for both exercises the duration was 30 minutes. Within the limits due to the relatively small size of the sample group, results typically indicate a fall in skin temperature during the initial stage of running exercise. As the exercise progresses, the dynamics of the skin temperature response depends on the type of exercise (graded versus constant load) and probably on the level of training of the subject.

  1. Active thermography inspection of protective glass contamination on laser scanning heads.

    PubMed

    Skala, J; Svantner, M; Tesar, J; Franc, A

    2016-12-01

    Industrial lasers are an expanding technology of welding and other materials processing. Lasers with optical scanning heads are often used, as these provide more versatility, accuracy, and speed. The output part of the scanning head is covered by a protective glass, which might get contaminated by various particles from the laser processing. This decreases the transmissivity of the glass, and it can affect the production quality. The contamination needs to be checked regularly, but a visual inspection might not always be effective. This paper proposes two alternative methods of inspecting the protective glass: flash-pulse active thermography, and laser active thermography. They are based on the thermal excitation of the glass and measuring the response with an infrared camera. The experimental setup and practical results are described and the advantages and disadvantages are discussed. The presented methods are proven to be effective in detecting the contamination of the glass.

  2. High dynamic range infrared thermography by pixelwise radiometric self calibration

    NASA Astrophysics Data System (ADS)

    Ochs, M.; Schulz, A.; Bauer, H.-J.

    2010-03-01

    A procedure is described where the response function of each pixel of an InSb detector is determined by radiometric self-calibration. With the present approach no knowledge of the spectral characteristics of the IR system is required to recover a quantity which is linear with the incident irradiance of the object. The inherent detector non-uniformity is corrected on the basis of self-calibrated scaled irradiance. Compared to the standard two-point non-uniformity correction procedure - performed with the detector signal - only two NUC-tables are required for arbitrary integration times. Images obtained at various exposures are fused to a single high dynamic range image. The procedure is validated with synthetic data and its performance is demonstrated by measurements performed with a high resolution InSb FPA.

  3. Clinical applications of dynamic infrared thermography in plastic surgery: a systematic review

    PubMed Central

    John, Hannah Eliza; Niumsawatt, Vachara; Whitaker, Iain S.

    2016-01-01

    Background Infrared thermography (IRT) has become an increasingly utilized adjunct to more expensive and/or invasive investigations in a range of surgical fields, no more so than in plastic surgery. The combination of functional assessment, flow characteristics and anatomical localization has led to increasing applications of this technology. This article aims to perform a systematic review of the clinical applications of IRT in plastic surgery. Methods A systematic literature search using the keywords ‘IRT’ and ‘dynamic infrared thermography (DIRT)’ has been accomplished. A total of 147 papers were extracted from various medical databases, of which 34 articles were subjected to a full read by two independent reviewers, to ensure the papers satisfied the inclusion and exclusion criteria. Studies focusing on the use of IRT in breast cancer diagnosis were excluded. Results A systematic review of 29 publications demonstrated the clinical applications of IRT in plastic surgery today. They include preoperative planning of perforators for free flaps, post operative monitoring of free flaps, use of IRT as an adjunct in burns depth analysis, in assessment of response to treatment in hemangioma and as a diagnostic test for cutaneous melanoma and carpal tunnel syndrome (CTS). Conclusions Modern infrared imaging technology with improved standardization protocols is now a credible, useful non-invasive tool in clinical practice. PMID:27047781

  4. Dynamic Infrared Thermography Study of Blood Flow Relative to Lower Limp Position

    NASA Astrophysics Data System (ADS)

    Stathopoulos, I.; Skouroliakou, K.; Michail, C.; Valais, I.

    2015-09-01

    Thermography is an established method for studying skin temperature distribution. Temperature distribution on body surface is influenced by a variety of physiological mechanisms and has been proven a reliable indicator of various physiological disorders. Blood flow is an important factor that influences body heat diffusion and skin temperature. In an attempt to validate and further elucidate thermal models characterizing the human skin, dynamic thermography of the lower limp in horizontal and vertical position was performed, using a FLIR T460 thermographic camera. Temporal variation of temperature was recorded on five distinct points of the limp. Specific points were initially cooled by the means of an ice cube and measurements of the skin temperature were obtained every 30 seconds as the skin temperature was locally reduced and afterwards restored at its initial value. The return to thermal balance followed roughly the same pattern for all points of measurement, although the heating rate was faster when the foot was in horizontal position. Thermal balance was achieved faster at the spots that were positioned on a vein passage. Our results confirm the influence of blood flow on the thermal regulation of the skin. Spots located over veins exhibit different thermal behaviour due to thermal convection through blood flow. Changing the position of the foot from vertical to horizontal, effectively affects blood perfusion as in the vertical position blood circulation is opposed by gravity.

  5. Modelling and predicting hidden solder joint shape using active thermography and parametric numerical analysis

    NASA Astrophysics Data System (ADS)

    Giron Palomares, Jose Benjamin; Hsieh, Sheng-Jen

    2014-05-01

    A methodology based on active infrared thermography to study and characterize hidden solder joint shapes on a multi cover PCB assembly was investigated. A numerical model was developed to simulate the active thermography methodology and was proven to determine the grand average cooling rates with maximum errors of 8.85% (one cover) and 13.36% (two covers). A parametric analysis was performed by varying the number of covers, heat flux provided, and the amount of heating time. Grand average cooling rate distances among contiguous solder joint shapes, as well as solder joints discriminability, were determined to be directly proportional to heat flux, and inversely proportional to the number of covers and heating time. Finally, a mathematical model was developed to determine the appropriate total amount of energy needed to discriminate among hidden solder joints with a "good" discriminability for one and two covers, and a "regular" discriminability for up to five covers. The mathematical model was proven to predict the total amount of energy to achieve a "good" discriminability for one cover within a 10% of error with respect to the experimental active thermography model.

  6. Clinical applications of computerized thermography

    NASA Technical Reports Server (NTRS)

    Anbar, Michael

    1988-01-01

    Computerized or digital, thermography is a rapidly growing diagnostic imaging modality. It has superseded contact thermography and analog imaging thermography which do not allow effective quantization. Medical applications of digital thermography can be classified in two groups: static and dynamic imaging. They can also be classified into macro thermography (resolution greater than 1 mm) and micro thermography (resolution less than 100 microns). Both modalities allow a thermal resolution of 0.1 C. The diagnostic power of images produced by any of these modalities can be augmented by the use of digital image enhancement and image recognition procedures. Computerized thermography has been applied in neurology, cardiovascular and plastic surgery, rehabilitation and sports medicine, psychiatry, dermatology and ophthalmology. Examples of these applications are shown and their scope and limitations are discussed.

  7. Detection of seal contamination in heat-sealed food packaging based on active infrared thermography

    NASA Astrophysics Data System (ADS)

    D'huys, Karlien; Saeys, Wouter; De Ketelaere, Bart

    2015-05-01

    In the food industry packaging is often applied to protect the product from the environment, assuring quality and safety throughout shelf life if properly performed. Packaging quality depends on the material used and the closure (seal). The material is selected based on the specific needs of the food product to be wrapped. However, proper closure of the package is often harder to achieve. One problem possibly jeopardizing seal quality is the presence of food particles between the seal. Seal contamination can cause a decreased seal strength and thus an increased packaging failure risk. It can also trigger the formation of microchannels through which air and microorganisms can enter and spoil the enclosed food. Therefore, early detection and removal of seal-contaminated packages from the production chain is essential. In this work, a pulsed-type active thermography method using the heat of the sealing bars as an excitation source was studied for detecting seal contamination. The cooling profile of contaminated seals was recorded. The detection performance of four processing methods (based on a single frame, a fit of the cooling profile, pulsed phase thermography and a matched filter) was compared. High resolution digital images served as a reference to quantify contamination. The lowest detection limit (equivalent diameter of 0.63 mm) and the lowest processing time (0.42 s per sample) were obtained for the method based on a single frame. Presumably, practical limitations in the recording stage prevented the added value of active thermography to be fully reflected in this application.

  8. Modeling static and dynamic thermography of the human breast under elastic deformation.

    PubMed

    Jiang, Li; Zhan, Wang; Loew, Murray H

    2011-01-07

    An abnormal thermogram has been shown to be a reliable indicator of increased risk of breast cancer. Numerical modeling techniques for thermography are proposed to quantify the complex relationships between the breast thermal behaviors and the underlying physiological/pathological conditions. Previous thermal modeling techniques did not account for gravity-induced elastic deformation arising from various body postures, nor did they suggest that a dynamic thermal procedure may be used to enhance clinical diagnosis. In this paper, 3D finite element method (FEM)-based thermal and elastic modeling techniques are developed to characterize comprehensively both the thermal and elastic properties of normal and tumorous breast tissues during static and dynamic thermography. In the steady state, gravity-induced breast deformation is found to cause an upper-lower asymmetric surface temperature contrast for sitting/standing up body posture, even though all the thermal and elastic properties are assumed uniform. Additionally, the tumor-induced surface temperature alterations are found to be caused primarily by shallow tumors and to be less sensitive to tumor size than to tumor depth. In the dynamic state, the breast exhibits distinctive temporal patterns that are associated with distinct thermal events: cold stress and thermal recovery induced by changes in the ambient temperature. Specifically, the tumor-induced thermal contrast shows an opposite initial change and delayed peak as compared with the deformation-induced thermal contrast. These findings are expected to provide a stronger foundation for, and greater specificity and precision in, thermographic diagnosis, and treatment of breast cancer.

  9. Passive and active thermography for in situ damage monitoring in woven composites during mechanical testing

    NASA Astrophysics Data System (ADS)

    Roche, J.-M.; Balageas, D.; Lamboul, B.; Bai, G.; Passilly, F.; Mavel, A.; Grail, G.

    2013-01-01

    The aim of the present paper is to highlight the contribution of both passive and active infrared thermography for in situ damage detection and monitoring in a 2D woven composite, during a mechanical testing constituted of multiple sequences of loadings and intermediate pauses. During the monotonic tensile loadings, damages such as matrix cracking and fiber-matrix debondings are monitored by passive thermography. Their thermal signatures are analyzed and the released heat, which is assumed to be a relevant index of their severity, is evaluated and correlated to the associated acoustic energies, simultaneously recorded. Finally, the contribution of the TSR (Thermographic Signal Reconstruction) advanced processing technique to provide a qualitative overview of the detected damages is underlined. As for the constant stress plateau levels, a nondestructive damage inspection of the tested specimen is carried out by pulsed thermography. The difficulties, due to the woven structure of the composite, in detecting any damage are put into relief. Once more, it is shown that the TSR technique can be useful.

  10. Non Destructive Testing by active infrared thermography coupled with shearography under same optical heat excitation

    NASA Astrophysics Data System (ADS)

    Theroux, Louis-Daniel; Dumoulin, Jean; Maldague, Xavier

    2014-05-01

    As infrastructures are aging, the evaluation of their health is becoming crucial. To do so, numerous Non Destructive Testing (NDT) methods are available. Among them, thermal shearography and active infrared thermography represent two full field and contactless methods for surface inspection. The synchronized use of both methods presents multiples advantages. Most importantly, both NDT are based on different material properties. Thermography depend on the thermal properties and shearography on the mechanical properties. The cross-correlation of both methods result in a more accurate and exact detection of the defects. For real site application, the simultaneous use of both methods is simplified due to the fact that the excitation method (thermal) is the same. Active infrared thermography is the measure of the temperature by an infrared camera of a surface subjected to heat flux. Observation of the variation of temperature in function of time reveal the presence of defects. On the other hand, shearography is a measure of out-of-plane surface displacement. This displacement is caused by the application of a strain on the surface which (in our case) take the form of a temperature gradient inducing a thermal stress To measure the resulting out-of-plane displacement, shearography exploit the relation between the phase difference and the optical path length. The phase difference is measured by the observation of the interference between two coherent light beam projected on the surface. This interference is due to change in optical path length as the surface is deformed [1]. A series of experimentation have been conducted in laboratory with various sample of concrete reinforced with CFRP materials. Results obtained reveal that with both methods it was possible to detect defects in the gluing. An infrared lamp radiating was used as the active heat source. This is necessary if measurements with shearography are to be made during the heating process. A heating lamp in the

  11. Active and passive infrared thermography applied to the detection and characterization of hidden defects in structure

    NASA Astrophysics Data System (ADS)

    Dumoulin, Jean

    2013-04-01

    Infrared thermography for Non Destructive Testing (NDT) has encountered a wide spreading this last 2 decades, in particular thanks to emergence on the market of low cost uncooled infrared camera. So, infrared thermography is not anymore a measurement technique limited to laboratory application. It has been more and more involved in civil engineering and cultural heritage applications, but also in many other domains, as indicated by numerous papers in the literature. Nevertheless, laboratory, measurements are done as much as possible in quite ideal conditions (good atmosphere conditions, known properties of materials, etc.), while measurement on real site requires to consider the influence of not controlled environmental parameters and additional unknown thermal properties. So, dedicated protocol and additional sensors are required for measurement data correction. Furthermore, thermal excitation is required to enhance the signature of defects in materials. Post-processing of data requires to take into account the protocol used for the thermal excitation and sometimes its nature to avoid false detection. This analysis step is based on signal and image processing tool and allows to carry out the detection. Characterization of anomalies detected at the previous step can be done by additional signal processing in particular for manufactured objects. The use of thermal modelling and inverse method allows to determine properties of the defective area. The present paper will first address a review of some protocols currently in use for field measurement with passive and/or active infrared measurements. Illustrations in various experiments carried out on civil engineering structure will be shown and discussed. In a second part, different post-processing approaches will be presented and discussed. In particular, a review of the most standard processing methods like Fast Fourier Analysis, Principal Components Analysis, Polynomial Decomposition, defect characterization using

  12. Effects of peripheral dynamic movements on the lower-limb circulation assessed by thermography: three one-group studies

    NASA Astrophysics Data System (ADS)

    Kaerki, Anne; Laehdeniemi, Matti

    2002-03-01

    Peripheral dynamic movements are used as part of postoperative protocols and for preventing vascular complications during bed rest. The effects of peripheral movements have not been studied. The purposes of these studies were to explain the effects of peripheral dynamic movements on lower limb circulation. The aim was also to explain how other factors like sex, age, BMI, medication, smoking, sports activity etc. affect the circulation. Healthy young subjects (N=19), healthy elderly subjects (N=19) and diabetic subjects (N=21) participated in the studies between 1997 and 1999. The study design was the same in each study. Infrared technology and image processing belong to our focus fields of applied research and IR is widely used in our real time industrial applications including also ongoing research of new possibilities. This paper presents the results of our newest application of IR thermography, where it was used to measure the skin temperature over the soleus muscle during and after dynamic ankle movements. The results showed that the skin temperature increased further during the recovery period after movements, and temperature was highest after 3- 5 minutes. Diabetic male subjects were the only subgroup that had immediate decrease during recovery period. The studies showed that smoking had a negative effect on circulation. BMI had also negative correlation (-0,356), showing that subjects with higher BMI had less increase. The results proved that peripheral movements were effective for increasing circulation in the soleus muscle and the effect was still seen after 15 minutes.

  13. Characterization of pores in high pressure die cast aluminum using active thermography and computed tomography

    NASA Astrophysics Data System (ADS)

    Maierhofer, Christiane; Myrach, Philipp; Röllig, Mathias; Jonietz, Florian; Illerhaus, Bernhard; Meinel, Dietmar; Richter, Uwe; Miksche, Ronald

    2016-02-01

    Larger high pressure die castings (HPDC) and decreasing wall thicknesses are raising the issue of casting defects like pores in aluminum structures. Properties of components are often strongly influenced by inner porosity. As these products are being established more and more in lightweight construction (e.g. automotive and other transport areas), non-destructive testing methods, which can be applied fast and on-site, are required for quality assurance. In this contribution, the application of active thermography for the direct detection of larger pores is demonstrated. The analysis of limits and accuracy of the method are completed by numerical simulation and the method is validated using computed tomography.

  14. An active thermography approach for thermal and electrical characterization of thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Streza, M.; Longuemart, S.; Guilmeau, E.; Strzalkowski, K.; Touati, K.; Depriester, M.; Maignan, A.; Sahraoui, A. Hadj

    2016-07-01

    The enhancement of figure of merit (ZT) of thermoelectrics is becoming extremely important for an efficient conversion of thermal energy into electrical energy. In this respect, reliable measurements of thermal and electrical parameters are of paramount importance in order to characterize thermoelectric materials in terms of their efficiency. In this work, a combined theoretical-experimental active thermography approach is presented. The method consists of selecting the right sequential interdependence between the excitation frequency and the sampling rate of the infrared camera, by computing a temporal Fourier analysis of each pixel of the recorded IR image. The method is validated by using a reference sample which is then applied to a recent synthesized titanium trisulphide thermoelectric material (TiS3). By combining AC and steady-state experiments, one can obtain information on both thermal and electrical parameters of TE materials (namely thermal diffusivity, Seebeck coefficient). The thermal diffusivity and thermal conductivity of TiS3 are also measured using photothermal radiometry technique (PTR) and the resulting values of these parameters are α  =  9.7*10-7 m2 s-1 and k  =  2.2 W m-1 K, respectively. The results obtained with the two techniques are in good agreement. In the case of TE materials, the main benefit of the proposed method is related to its non-contact nature and the possibility of obtaining the electric potential and temperature at the same probes. The Seebeck coefficient obtained by active IR thermography (S  =  -554 μV K-1) is consistent with the one obtained using an ULVAC-ZEM3 system (S  =  -570 μV K-1). For a large number of users of thermographic cameras, which are not equipped with a lock-in thermography module, the present approach provides an affordable and cheaper solution.

  15. Infrared thermography of evaporative fluxes and dynamics of salt deposition on heterogeneous porous surfaces

    NASA Astrophysics Data System (ADS)

    Nachshon, Uri; Shahraeeni, Ebrahim; Or, Dani; Dragila, Maria; Weisbrod, Noam

    2011-12-01

    Evaporation of saline solutions from porous media, common in arid areas, involves complex interactions between mass transport, energy exchange and phase transitions. We quantified evaporation of saline solutions from heterogeneous sand columns under constant hydraulic boundary conditions to focus on effects of salt precipitation on evaporation dynamics. Mass loss measurements and infrared thermography were used to quantify evaporation rates. The latter method enables quantification of spatial and temporal variability of salt precipitation to identify its dynamic effects on evaporation. Evaporation from columns filled with texturally-contrasting sand using different salt solutions revealed preferential salt precipitation within the fine textured domains. Salt precipitation reduced evaporation rates from the fine textured regions by nearly an order of magnitude. In contrast, low evaporation rates from coarse-textured regions (due to low capillary drive) exhibited less salt precipitation and consequently less evaporation rate suppression. Experiments provided insights into two new phenomena: (1) a distinct increase in evaporation rate at the onset of evaporation; and (2) a vapor pumping mechanism related to the presence of a salt crust over semidry media. Both phenomena are related to local vapor pressure gradients established between pore water and the surface salt crust. Comparison of two salts: NaCl and NaI, which tend to precipitate above the matrix surface and within matrix pores, respectively, shows a much stronger influence of NaCl on evaporation rate suppression. This disparity reflects the limited effect of NaI precipitation on matrix resistivity for solution and vapor flows.

  16. Detection and characterisation of delamination in PV modules by active infrared thermography

    NASA Astrophysics Data System (ADS)

    Sinha, A.; Sastry, O. S.; Gupta, R.

    2016-01-01

    The paper presents a fast and efficient method for the detection and characterisation of delamination in photovoltaic (PV) modules by using active infrared thermography approach. A discrete part of PV module was irradiated by step heating and its thermal image sequence was used to detect and analyse delamination. Different types of heating source for thermal excitation for this application have been studied. An electro-thermal model was developed to simulate the active thermography approach for the characterisation of delamination in PV module by equivalent resistance-capacitance (RC) network using a circuit simulator. This simulation approach was used to estimate the extent of delamination in the module and to determine the optimum parameters for the characterisation of delamination. Different applications based on front and backsides of heating the module were also proposed in this paper. The proposed method has the potential to be employed for the quality check of PV modules during inline production as well as for the predictive maintenance of outdoor PV plants.

  17. Active Thermography for the Detection of Defects in Powder Metallurgy Compacts

    SciTech Connect

    Benzerrouk, Souheil; Ludwig, Reinhold; Apelian, Diran

    2007-03-21

    Active thermography is an established NDE technique that has become the method of choice in many industrial applications which require non-contact access to the parts under test. Unfortunately, when conducting on-line infrared (IR) inspection of powder metallic compacts, complications can arise due the generally low emissivity of metals and the thermally noisy environment typically encountered in manufacturing plants. In this paper we present results of an investigation that explores the suitability of active IR imaging of powder metallurgy compacts for the detection of surface and sub-surface defects in the pre-sinter state and in an on-line manufacturing setting to ensure complete quality assurance. Additional off-line tests can be carried out for statistical quality analyses. In this research, the IR imaging of sub-surface defects is based on a transient instrumentation approach that relies on an electric control system which synchronizes and monitors the thermal response due to an electrically generated heat source. Preliminary testing reveals that this newly developed pulsed thermography system can be employed for the detection of subsurface defects in green-state parts. Practical measurements agree well with theoretical predictions. The inspection approach being developed can be used for the testing of green-state compacts as they exit the compaction press at speeds of up to 1,000 parts per hour.

  18. Quantification of defects in composites and rubber materials using active thermography

    NASA Astrophysics Data System (ADS)

    Lahiri, B. B.; Bagavathiappan, S.; Reshmi, P. R.; Philip, John; Jayakumar, T.; Raj, B.

    2012-03-01

    Active (lock-in and pulsed) thermography technique is used to quantify defect features in specimens of glass fiber reinforced polymer, high density rubber, low density rubber and aluminum bonded low density rubber with artificially produced defects. The relationship between phase contrast and thermal contrast with defect features are examined. Using lock-in approach, the optimal frequencies for different specimens are determined experimentally. It is observed that with increasing defect depth, the phase contrast increases while the thermal contrast decreases. Defects with radius to depth ratio greater than 1.0 are found to be discernible. The phase difference between sound and defective region as a function of square root of excitation frequency for glass fiber reinforced polymer specimen is found to be in good agreement with the predictions of Bennet and Patty model [1]. Further, using pulsed thermography, the defects depth could be measured accurately for glass fiber reinforced polymer specimen from the thermal contrast using the analytical approach of Balageas et al. [2].

  19. Is It Possible to Detect Activated Brown Adipose Tissue in Humans Using Single-Time-Point Infrared Thermography under Thermoneutral Conditions? Impact of BMI and Subcutaneous Adipose Tissue Thickness

    PubMed Central

    Gatidis, Sergios; Schmidt, Holger; Pfannenberg, Christina A.; Nikolaou, Konstantin; Schick, Fritz; Schwenzer, Nina F.

    2016-01-01

    Purpose To evaluate the feasibility to detect activated brown adipose tissue (BAT) using single-time-point infrared thermography of the supraclavicular skin region under thermoneutral conditions. To this end, infrared thermography was compared with 18-F-FDG PET, the current reference standard for the detection of activated BAT. Methods 120 patients were enrolled in this study. After exclusion of 18 patients, 102 patients (44 female, 58 male, mean age 58±17 years) were included for final analysis. All patients underwent a clinically indicated 18F-FDG-PET/CT examination. Immediately prior to tracer injection skin temperatures of the supraclavicular, presternal and jugular regions were measured using spatially resolved infrared thermography at room temperature. The presence of activated BAT was determined in PET by typical FDG uptake within the supraclavicular adipose tissue compartments. Local thickness of supraclavicular subcutaneous adipose tissue (SCAT) was measured on CT. Measured skin temperatures were statistically correlated with the presence of activated BAT and anthropometric data. Results Activated BAT was detected in 9 of 102 patients (8.8%). Local skin temperature of the supraclavicular region was significantly higher in individuals with active BAT compared to individuals without active BAT. However, after statistical correction for the influence of BMI, no predictive value of activated BAT on skin temperature of the supraclavicular region could be observed. Supraclavicular skin temperature was significantly negatively correlated with supraclavicular SCAT thickness. Conclusion We conclude that supraclavicular SCAT thickness influences supraclavicular skin temperature and thus makes a specific detection of activated BAT using single-time-point thermography difficult. Further studies are necessary to evaluate the possibility of BAT detection using alternative thermographic methods, e.g. dynamic thermography or MR-based thermometry taking into account BMI

  20. Involuntary motion tracking for medical dynamic infrared thermography using a template-based algorithm

    PubMed Central

    Herman, Cila

    2013-01-01

    In medical applications, Dynamic Infrared (IR) Thermography is used to detect the temporal variation of the skin temperature. Dynamic Infrared Imaging first introduces a thermal challenge such as cooling on the human skin, and then a sequence of hundreds of consecutive frames is acquired after the removal of the thermal challenge. As a result, by analyzing the temporal variation of the skin temperature over the image sequence, the thermal signature of skin abnormality can be examined. However, during the acquisition of dynamic IR imaging, the involuntary movements of patients are unavoidable, and such movements will undermine the accuracy of diagnosis. In this study, based on the template-based algorithm, a tracking approach is proposed to compensate the motion artifact. The affine warping model is adopted to estimate the motion parameter of the image template, and then the Lucas-Kanade algorithm is applied to search for the optimized parameters of the warping function. In addition, the weighting mask is also incorporated in the computation to ensure the robustness of the algorithm. To evaluate the performance of the approach, two sets of IR image sequences of a subject’s hand are analyzed: the steady-state image sequence, in which the skin temperature is in equilibrium with the environment, and the thermal recovery image sequence, which is acquired after cooling is applied on the skin for 60 seconds. By selecting the target region in the first frame as the template, satisfactory tracking results were obtained in both experimental trials, and the robustness of the approach can be effectively ensured in the recovery trial. PMID:24392205

  1. Recognition of wall materials through active thermography coupled with numerical simulations.

    PubMed

    Pietrarca, Francesca; Mameli, Mauro; Filippeschi, Sauro; Fantozzi, Fabio

    2016-09-01

    In the framework of historical buildings, wall thickness as well as wall constituents are not often known a priori, and active IR thermography can be exploited as a nonintrusive method for detecting what kind of material lies beneath the external plaster layer. In the present work, the wall of a historical building is subjected to a heating stimulus, and the surface temperature temporal trend is recorded by an IR camera. A hybrid numerical model is developed in order to simulate the transient thermal response of a wall made of different known materials underneath the plaster layer. When the numerical thermal contrast and the appearance time match with the experimental thermal images, the material underneath the plaster can be qualitatively identified.

  2. Two-stage neural algorithm for defect detection and characterization uses an active thermography

    NASA Astrophysics Data System (ADS)

    Dudzik, Sebastian

    2015-07-01

    In the paper a two-stage neural algorithm for defect detection and characterization is presented. In order to estimate the defect depth two neural networks trained on data obtained using an active thermography were employed. The first stage of the algorithm is developed to detect the defect by a classification neural network. Then the defects depth is estimated using a regressive neural network. In this work the results of experimental investigations and simulations are shown. Further, the sensitivity analysis of the presented algorithm was conducted and the impacts of emissivity error and the ambient temperature error on the depth estimation errors were studied. The results were obtained using a test sample made of material with a low thermal diffusivity.

  3. Breast reconstruction with absorbable mesh sling: dynamic infrared thermography of skin envelope

    PubMed Central

    Hashimoto, Yoko; Yuasa, Takeshi; Suzuki, Yoshinori; Saisho, Hiroshi

    2017-01-01

    Background To immediate reconstruct ptosis breasts, we used polyglactin (Vicryl; Ethicon Inc., Somerville, NJ, USA) mesh as an inferolateral sling. However, Vicryl mesh is absorbable and losing function as a supporting structure. We doubt about the stability of the blood supply to the inferior part of the flap when it is in direct contact with inner implant. In this study, we examine the complications and the safety of the skin flap of this absorbable mesh sling (AMS) procedure. Methods The outcomes of 80 cases were examined, and the 1-year safety record of 40 cases was assessed. Complications were divided into minor complications, major complications requiring surgical intervention, and major complications requiring the reconstructive surgery to be halted. In addition, we examined the blood perfusion of the skin flap by dynamic infrared thermography (DIRT). Results Among 80 patients with AMS procedure, 73 breasts were reconstructed immediately and in one-stage. Complication outcomes are presented; there were 4 cases of minor flap necrosis (5%) and 4 of major complications resulting in surgical correction (5%). One patient required additional surgery, and the implant was moved into the musculocutaneous flap (1.3%). In 40 patients 1 year after surgery, DIRT showed significant decreased of blood perfusion in the ipsilateral inferior sites in comparison with the superior sites. Conclusions Blood perfusion was comparably insufficient in the inferior area of the reconstructed breast mound with AMS, where the pectoralis muscle could not be used to line the inside of the envelope. However, there were no severe flap complications due to ischemia. PMID:28210555

  4. Detection and Characterization of Package Defects and Integrity Failure using Dynamic Scanning Infrared Thermography (DSIRT).

    PubMed

    Morris, Scott A

    2016-02-01

    A dynamic scanning infrared thermography (DSIRT) system developed at the Univ. of Illinois Urbana-Champaign (UIUC) Packaging Lab relies on variation in transient thermal artifacts to indicate defects, and offers the possibility of characterization of many types of materials and structures. These include newer polymer and laminate-based structures for shelf-stable foods that lack a reliable, nondestructive method for inspection, which is a continuing safety issue. Preliminary trials were conducted on a polyester/aluminum foil/polypropylene retort pouch laminate containing artificially-induced failed seal and insulating inclusion defects ranging from 1 to 10 mm wide in the plane of the seal. The samples were placed in relative motion to a laterally positioned infrared laser, inducing heating through the plane of the seal. The emergent thermal artifact on the obverse side was sensed using either a bolometer camera or a thermopile sensor, with thermal anomalies indicating potential defects and the results of each sensors were compared. The bolometer camera detected defects to the limit of its measured optical resolution-approximately 1 mm at 20 cm-although the lower-resolution thermopile sensors were only capable of detecting 5 mm defects even at closer distances of approximately 5 mm. In addition, a supplementary magnification system was fitted to the bolometer camera which increased resolution but reduced field of view and would require a much higher frame rate to be useful. Automatic processing of the image data rapidly detected the model defects and can lead to development of an automated inspection system.  Much higher material throughput speeds are feasible using faster instruments, and the system is scalable.

  5. Influence of Surface Properties on the Detection and Quantification of Voids in Concrete Structures Using Active Thermography

    NASA Astrophysics Data System (ADS)

    Maierhofer, Ch.; Röllig, M.; Arndt, R.; Kreutzbruck, M.

    2009-03-01

    Impulse thermography is an active method for quantitative investigations of the near surface region of various structures. It has recently been applied and optimized to applications in civil engineering. For quantitative analysis of data recorded on the building site, the problems are manifold. Here, the influence of the different surface properties on the detection and characterization of voids and honeycombing simulated by polystyrene cubes and cubes prepared of porous concrete are demonstrated.

  6. Real view thermography

    NASA Astrophysics Data System (ADS)

    Bienkowski, L.; Homma, C.

    2013-01-01

    In this paper we present a novel approach for enhancing active thermography for nondestructive testing. In order to make the evaluation of the data more intuitive a Real View setup is presented that uses a projection technique to let the inspector view and interact with the measurement results directly on the part in a very intuitive way. Moreover we present an analysis approach using a Sobel filter of the pulse-phase result data in order to investigate the detectability of flaws by induction thermography. By projecting this information we give a visual feedback to the operator for optimizing the probability of detection.

  7. Active thermography and post-processing image enhancement for recovering of abraded and paint-covered alphanumeric identification marks

    NASA Astrophysics Data System (ADS)

    Montanini, R.; Quattrocchi, A.; Piccolo, S. A.

    2016-09-01

    Alphanumeric marking is a common technique employed in industrial applications for identification of products. However, the realised mark can undergo deterioration, either by extensive use or voluntary deletion (e.g. removal of identification numbers of weapons or vehicles). For recovery of the lost data many destructive or non-destructive techniques have been endeavoured so far, which however present several restrictions. In this paper, active infrared thermography has been exploited for the first time in order to assess its effectiveness in restoring paint covered and abraded labels made by means of different manufacturing processes (laser, dot peen, impact, cold press and scribe). Optical excitation of the target surface has been achieved using pulse (PT), lock-in (LT) and step heating (SHT) thermography. Raw infrared images were analysed with a dedicated image processing software originally developed in Matlab™, exploiting several methods, which include thermographic signal reconstruction (TSR), guided filtering (GF), block guided filtering (BGF) and logarithmic transformation (LN). Proper image processing of the raw infrared images resulted in superior contrast and enhanced readability. In particular, for deeply abraded marks, good outcomes have been obtained by application of logarithmic transformation to raw PT images and block guided filtering to raw phase LT images. With PT and LT it was relatively easy to recover labels covered by paint, with the latter one providing better thermal contrast for all the examined targets. Step heating thermography never led to adequate label identification instead.

  8. Non-destructive inspection of drilled holes in reinforced honeycomb sandwich panels using active thermography

    NASA Astrophysics Data System (ADS)

    Usamentiaga, R.; Venegas, P.; Guerediaga, J.; Vega, L.; López, I.

    2012-11-01

    The aerospace industry is in constant need of ever-more efficient inspection methods for quality control. Product inspection is also essential to maintain the safe operation of aircraft components designed to perform for decades. This paper proposes a method for non-destructive inspection of drilled holes in reinforced honeycomb sandwich panels. Honeycomb sandwich panels are extensively employed in the aerospace industry due to their high strength and stiffness to weight ratios. In order to attach additional structures to them, panels are reinforced by filling honeycomb cells and drilling holes into the reinforced areas. The proposed procedure is designed to detect the position of the holes within the reinforced area and to provide a robust measurement of the distance between each hole and the boundary of the reinforced area. The result is a fast, safe and clean inspection method for drilled holes in reinforced honeycomb sandwich panels that can be used to robustly assess a possible displacement of the hole from the center of the reinforced area, which could have serious consequences. The proposed method is based on active infrared thermography, and uses state of the art methods for infrared image processing, including signal-to-nose ratio enhancement, hole detection and segmentation. Tests and comparison with X-ray inspections indicate that the proposed system meets production needs.

  9. Using active thermography and modified SVM for intelligent diagnosis of solder bumps

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Wei, Li; Nie, Lei; Su, Lei; Lu, Xiangning

    2015-09-01

    Solder bump technology has been used extensively in microelectronic packaging. But defect inspection becomes increasingly difficult due to the decrease of solder bumps in dimension and pitch. To overcome the shortages of traditional methods, we have developed an intelligent system using the active thermography for defects inspection of the solder bumps. A modified support vector machine (M-SVM) was investigated to solve the problem of small sample size in solder bumps classification. The chip SFA1 and SFA2 were chosen as the test vehicles. Captured thermal images were preprocessed using the improved wiener filter and moving average technique to remove the peak noise. The principal component analysis (PCA) algorithm was then adopted to reconstruct the thermal image, in which the hot spots were segmented. The statistical features corresponding to every solder bump were extracted and input into the M-SVM for solder bumps classification. The defective bumps w distinguished from the good bumps, which proves that the intelligent system using the modified SVM is effective for defects inspection in microelectronic packages.

  10. Detection of micro solder balls using active thermography and probabilistic neural network

    NASA Astrophysics Data System (ADS)

    He, Zhenzhi; Wei, Li; Shao, Minghui; Lu, Xingning

    2017-03-01

    Micro solder ball/bump has been widely used in electronic packaging. It has been challenging to inspect these structures as the solder balls/bumps are often embedded between the component and substrates, especially in flip-chip packaging. In this paper, a detection method for micro solder ball/bump based on the active thermography and the probabilistic neural network is investigated. A VH680 infrared imager is used to capture the thermal image of the test vehicle, SFA10 packages. The temperature curves are processed using moving average technique to remove the peak noise. And the principal component analysis (PCA) is adopted to reconstruct the thermal images. The missed solder balls can be recognized explicitly in the second principal component image. Probabilistic neural network (PNN) is then established to identify the defective bump intelligently. The hot spots corresponding to the solder balls are segmented from the PCA reconstructed image, and statistic parameters are calculated. To characterize the thermal properties of solder bump quantitatively, three representative features are selected and used as the input vector in PNN clustering. The results show that the actual outputs and the expected outputs are consistent in identification of the missed solder balls, and all the bumps were recognized accurately, which demonstrates the viability of the PNN in effective defect inspection in high-density microelectronic packaging.

  11. Crawling spot thermal nondestructive testing (NDT) for plaster inspection and comparison with dynamic thermography with extended heating

    NASA Astrophysics Data System (ADS)

    Bison, Paolo G.; Braggiotti, Alberto; Bressan, Chiara; Grinzato, Ermanno G.; Marinetti, Sergio; Mazzoldi, Andrea; Vavilov, Vladimir P.

    1995-03-01

    Defects in building materials located parallel to the front surface, like plaster detachment, or perpendicularly, such as cracks, are detected creating a space-varying heat flux. A variant of the `flying spot' technique called `crawling spot' was developed in order to fit requirements of these materials. This nondestructive method is performed with a localized radiant heating of the surface and synchronized local temperature measurement in the IR band. The identification of delaminations and cracks was theoretically and experimentally studied using two different procedures. Results obtained for plaster detachments were compared with dynamic thermography, applied with an extended excitation of the surface and analysis of the normalized thermal contrast both in amplitude and time. Another technique requires a continuously moving spot to heat the surface while a sequence of thermograms is recorded. The temperature profile of each pixel has to be reconstructed according to the spot speed and trajectory. This procedure was applied to stone crack detection. The experimental apparatus is thoroughly described.

  12. Thermography to Inspect Insulation of Large Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Arens, Ellen; Youngquist, Robert

    2011-01-01

    Thermography has been used in the past to monitor active, large, cryogenic storage tanks. This approach proposes to use thermography to monitor new or refurbished tanks, prior to filling with cryogenic liquid, to look for insulation voids. Thermography may provide significant cost and schedule savings if voids can be detected early before a tank is returned to service.

  13. Thermography Inspection for Detection and Tracking of Composite Cylinder Damage During Load Testing

    NASA Technical Reports Server (NTRS)

    Zalameda, J. N.; Winfree, W. P.; Seebo, J. P.; Johnston, P. H.

    2010-01-01

    Two thermography techniques, passive and active, are used to detect damage initiation and progression in a cyclically loaded composite cylinder. The passive thermography tracks damage progression in real time during cyclic loading. Active flash thermography, using a flash tube enclosed within the cylinder, images delaminations in a cylinder under different loads. A differential thermography processing technique eliminates normal material variations and improves sensitivity to and sizing of delaminations. The thermography results were compared to nonimmersion ultrasonic results.

  14. Thermography inspection for detection and tracking of composite cylinder damage during load testing

    SciTech Connect

    Zalameda, J. N.; Winfree, W. P.; Johnston, P. H.; Seebo, J. P.

    2011-06-23

    Two thermography techniques, passive and active, are used to detect damage initiation and progression in a cyclically loaded composite cylinder. The passive thermography tracks damage progression in real time during cyclic loading. Active flash thermography, using a flash tube enclosed within the cylinder, images delaminations. A differential thermography processing technique eliminates normal material variations and improves sensitivity to and sizing of delaminations. The thermography results were compared to non-immersion ultrasonic results.

  15. Infrared thermography for CFRP inspection: computational model and experimental results

    NASA Astrophysics Data System (ADS)

    Fernandes, Henrique C.; Zhang, Hai; Morioka, Karen; Ibarra-Castanedo, Clemente; López, Fernando; Maldague, Xavier P. V.; Tarpani, José R.

    2016-05-01

    Infrared Thermography (IRT) is a well-known Non-destructive Testing (NDT) technique. In the last decades, it has been widely applied in several fields including inspection of composite materials (CM), specially the fiber-reinforced polymer matrix ones. Consequently, it is important to develop and improve efficient NDT techniques to inspect and assess the quality of CM parts in order to warranty airworthiness and, at the same time, reduce costs of airline companies. In this paper, active IRT is used to inspect carbon fiber-reinforced polymer (CFRP) at laminate with artificial inserts (built-in sample) placed on different layers prior to the manufacture. Two optical active IRT are used. The first is pulsed thermography (PT) which is the most widely utilized IRT technique. The second is a line-scan thermography (LST) technique: a dynamic technique, which can be employed for the inspection of materials by heating a component, line-by-line, while acquiring a series of thermograms with an infrared camera. It is especially suitable for inspection of large parts as well as complex shaped parts. A computational model developed using COMSOL Multiphysics® was used in order to simulate the inspections. Sequences obtained from PT and LST were processed using principal component thermography (PCT) for comparison. Results showed that it is possible to detect insertions of different sizes at different depths using both PT and LST IRT techniques.

  16. Detection and Inspection of Steel Bars in Reinforced Concrete Structures Using Active Infrared Thermography with Microwave Excitation and Eddy Current Sensors

    PubMed Central

    Szymanik, Barbara; Frankowski, Paweł Karol; Chady, Tomasz; John Chelliah, Cyril Robinson Azariah

    2016-01-01

    The purpose of this paper is to present a multi-sensor approach to the detection and inspection of steel bars in reinforced concrete structures. In connection with our past experience related to non-destructive testing of different materials, we propose using two potentially effective methods: active infrared thermography with microwave excitation and the eddy current technique. In this article active infrared thermography with microwave excitation is analyzed both by numerical modeling and experiments. This method, based on thermal imaging, due to its characteriatics should be considered as a preliminary method for the assessment of relatively shallowly located steel bar reinforcements. The eddy current technique, on the other hand, allows for more detailed evaluation and detection of deeply located rebars. In this paper a series of measurement results, together with the initial identification of certain features of steel reinforcement bars will be presented. PMID:26891305

  17. Detection and Inspection of Steel Bars in Reinforced Concrete Structures Using Active Infrared Thermography with Microwave Excitation and Eddy Current Sensors.

    PubMed

    Szymanik, Barbara; Frankowski, Paweł Karol; Chady, Tomasz; John Chelliah, Cyril Robinson Azariah

    2016-02-16

    The purpose of this paper is to present a multi-sensor approach to the detection and inspection of steel bars in reinforced concrete structures. In connection with our past experience related to non-destructive testing of different materials, we propose using two potentially effective methods: active infrared thermography with microwave excitation and the eddy current technique. In this article active infrared thermography with microwave excitation is analyzed both by numerical modeling and experiments. This method, based on thermal imaging, due to its characteriatics should be considered as a preliminary method for the assessment of relatively shallowly located steel bar reinforcements. The eddy current technique, on the other hand, allows for more detailed evaluation and detection of deeply located rebars. In this paper a series of measurement results, together with the initial identification of certain features of steel reinforcement bars will be presented.

  18. Infrared thermography for indirect assessment of activation of brown adipose tissue in lean and obese male subjects.

    PubMed

    El Hadi, Hamza; Frascati, Andrea; Granzotto, Marnie; Silvestrin, Valentina; Ferlini, Elisabetta; Vettor, Roberto; Rossato, Marco

    2016-12-01

    Brown adipose tissue (BAT) plays a key role in adaptive thermogenesis in mammals, and it has recently been considered as an attractive therapeutic target for tackling human obesity by increasing energy expenditure. Thermal imaging using infrared thermography (IRT) has emerged as a potential safe, rapid and inexpensive technique for detecting BAT in humans. However, little attention has been given to the reliability of this method in obese subjects. To this end, we evaluated the capacity of IRT to detect activated supraclavicular (SCV) BAT in 14 lean and 16 mildly obese young adults after acute cold exposure. Using IRT we measured the temperature of the skin overlying the SCV and sternal areas at baseline and after acute cold stimulation. Additionally, energy expenditure was measured by indirect calorimetry and body composition was estimated using bioelectrical impedance analysis. Energy expenditure and SCV skin temperature significantly increased in lean subjects upon cold exposure, while no significant changes were detected in the obese group. Furthermore, cold-induced variations in SCV skin temperature of obese subjects showed a negative correlation with body mass index. This study suggests that in lean individuals BAT is a rapidly activated thermogenic tissue possibly involved in the regulation of energy balance, and can be indirectly assessed using IRT. In obese subjects, BAT seems less prone to be activated by cold exposure, with the degree of adiposity representing a limiting factor for the indirect detection of BAT activation by measuring the skin temperature overlying BAT.

  19. A new method of infrared thermography for quantification of brown adipose tissue activation in healthy adults (TACTICAL): a randomized trial.

    PubMed

    Ang, Qi Yan; Goh, Hui Jen; Cao, Yanpeng; Li, Yiqun; Chan, Siew-Pang; Swain, Judith L; Henry, Christiani Jeyakumar; Leow, Melvin Khee-Shing

    2017-05-01

    The ability to alter the amount and activity of brown adipose tissue (BAT) in human adults is a potential strategy to manage obesity and related metabolic disorders associated with food, drug, and environmental stimuli with BAT activating/recruiting capacity. Infrared thermography (IRT) provides a non-invasive and inexpensive alternative to the current methods (e.g. (18)F-FDG PET) used to assess BAT. We have quantified BAT activation in the cervical-supraclavicular (C-SCV) region using IRT video imaging and a novel image computational algorithm by studying C-SCV heat production in healthy young men after cold stimulation and the ingestion of capsinoids in a prospective double-blind placebo-controlled randomized trial. Subjects were divided into low-BAT and high-BAT groups based on changes in IR emissions in the C-SCV region induced by cold. The high-BAT group showed significant increases in energy expenditure, fat oxidation, and heat output in the C-SCV region post-capsinoid ingestion compared to post-placebo ingestion, but the low-BAT group did not. Based on these results, we conclude that IRT is a promising tool for quantifying BAT activity.

  20. IR Thermography NDE of ISS Radiator Panels

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay; Winfree, William; Morton, Richard; Wilson, Walter; Reynolds, Gary

    2010-01-01

    The presentation covers an active and a passive infrared (IR) thermography for detection of delaminations in the radiator panels used for the International Space Station (ISS) program. The passive radiator IR data was taken by a NASA astronaut in an extravehicular activity (EVA) using a modified FLIR EVA hand-held camera. The IR data could be successfully analyzed to detect gross facesheet disbonds. The technique used the internal hot fluid tube as the heat source in analyzing the IR data. Some non-flight ISS radiators were inspected using an active technique of IR flash thermography to detect disbond of face sheet with honeycomb core, and debonds in facesheet overlap areas. The surface temperature and radiated heat emission from flight radiators is stable during acquisition of the IR video data. This data was analyzed to detect locations of unexpected surface temperature gradients. The flash thermography data was analyzed using derivative analysis and contrast evolutions. Results of the inspection are provided.

  1. Subsurface defect detection in first layer of pavement structure and reinforced civil engineering structure by FRP bonding using active infrared thermography

    NASA Astrophysics Data System (ADS)

    Dumoulin, Jean; Ibos, Laurent

    2010-05-01

    In many countries road network ages while road traffic and maintenance costs increase. Nowadays, thousand and thousand kilometers of roads are each year submitted to surface distress survey. They generally lean on pavement surface imaging measurement techniques, mainly in the visible spectrum, coupled with visual inspection or image processing detection of emergent distresses. Nevertheless, optimisation of maintenance works and costs requires an early detection of defects within the pavement structure when they still are hidden from surface. Accordingly, alternative measurement techniques for pavement monitoring are currently under investigation (seismic methods, step frequency radar). On the other hand, strengthening or retrofitting of reinforced concrete structures by externally bonded Fiber Reinforced Polymer (FRP) systems is now a commonly accepted and widespread technique. However, the use of bonding techniques always implies following rigorous installing procedures. To ensure the durability and long-term performance of the FRP reinforcements, conformance checking through an in situ auscultation of the bonded FRP systems is then highly suitable. The quality-control program should involve a set of adequate inspections and tests. Visual inspection and acoustic sounding (hammer tap) are commonly used to detect delaminations (disbonds) but are unable to provide sufficient information about the depth (in case of multilayered composite) and width of debonded areas. Consequently, rapid and efficient inspection methods are also required. Among the non destructive methods under study, active infrared thermography was investigated both for pavement and civil engineering structures through experiments in laboratory and numerical simulations, because of its ability to be also used on field. Pulse Thermography (PT), Pulse Phase Thermography (PPT) and Principal Component Thermography (PCT) approaches have been tested onto pavement samples and CFRP bonding on concrete

  2. Thermal signature analysis of human face during jogging activity using infrared thermography technique

    NASA Astrophysics Data System (ADS)

    Budiarti, Putria W.; Kusumawardhani, Apriani; Setijono, Heru

    2016-11-01

    Thermal imaging has been widely used for many applications. Thermal camera is used to measure object's temperature above absolute temperature of 0 Kelvin using infrared radiation emitted by the object. Thermal imaging is color mapping taken using false color that represents temperature. Human body is one of the objects that emits infrared radiation. Human infrared radiations vary according to the activity that is being done. Physical activities such as jogging is among ones that is commonly done. Therefore this experiment will investigate the thermal signature profile of jogging activity in human body, especially in the face parts. The results show that the significant increase is found in periorbital area that is near eyes and forehand by the number of 7.5%. Graphical temperature distributions show that all region, eyes, nose, cheeks, and chin at the temperature of 28.5 - 30.2°C the pixel area tends to be constant since it is the surrounding temperature. At the temperature of 30.2 - 34.7°C the pixel area tends to increase, while at the temperature of 34.7 - 37.1°C the pixel area tends to decrease because pixels at temperature of 34.7 - 37.1°C after jogging activity change into temperature of 30.2 - 34.7°C so that the pixel area increases. The trendline of jogging activity during 10 minutes period also shows the increasing of temperature. The results of each person also show variations due to physiological nature of each person, such as sweat production during physical activities.

  3. Nondestructive testing with thermography

    NASA Astrophysics Data System (ADS)

    Ibarra-Castanedo, Clemente; Tarpani, José Ricardo; Maldague, Xavier P. V.

    2013-11-01

    Thermography is a nondestructive testing (NDT) technique based on the principle that two dissimilar materials, i.e., possessing different thermo-physical properties, would produce two distinctive thermal signatures that can be revealed by an infrared sensor, such as a thermal camera. The fields of NDT applications are expanding from classical building or electronic components monitoring to more recent ones such as inspection of artworks or composite materials. Furthermore, thermography can be conveniently used as a didactic tool for physics education in universities given that it provides the possibility of visualizing fundamental principles, such as thermal physics and mechanics among others.

  4. Applying Active Thermography in the Non-Destructive Investigation of Historical Objects/ Zastosowanie Termowizji Aktywnej Do Badań Nieniszczących Obiektów Zabytkowych

    NASA Astrophysics Data System (ADS)

    Nowak, Henryk; Noszczyk, Paweł

    2015-06-01

    The paper pertains to the problem of historic building envelope investigation with the use of active thermography. Mainly emphasized is its application in the detection of different material inclusions in historic walls. Examples of active thermography in the reflective mode application and a description of the experimental investigation has been shown on a wall model with the inclusion of materials with significantly different thermal conductivity and heat capacity, i.e. styrofoam, steel and granite. Thermograms received for every kind of envelope are compared and analyzed. Finally, the summary and conclusion is shown along with the prospects of development and practical application of this kind of investigation in historic construction. Artykuł porusza zagadnienie wykorzystania termografii aktywnej w nieniszczących badaniach przegród budowlanych w obiektach zabytkowych. Opisane zostały potencjalne możliwości stosowania badań, takie jak: lokalizacja rodzaju zbrojenia w elementach żelbetowych, detekcja pustek powietrznych i przemurowań w przegrodach, określanie rodzaju struktury materiałowej zabytkowej przegrody lub identyfikacja ukrytych pod wartwą tynku lub farby malowideł ściennych. W pracy opisano przebieg doświadczenia z wykorzystaniem termografii aktywnej w trybie odbiciowym. W badanych modelach przegród, wewnętrzne wtrącenia materiałowe zostały wykonane ze styropianu XPS, stali oraz granitu. Otrzymane wyniki opisano za pomocą kontrastów temperaturowych (absolutny i standardowy) oraz zinterptretowano otrzymane termogramy. W podsumowaniu przedstawiono wnioski z przeprowadzonego doświadczenia. W artykule potwierdzono przydatność nieniszczących badań za pomocą termowizji aktywnej do detekcji przypowierzchniowych wtrąceń materiałowych.

  5. Thermography in Neurologic Practice

    PubMed Central

    Neves, Eduardo Borba; Vilaça-Alves, José; Rosa, Claudio; Reis, Victor Machado

    2015-01-01

    One kind of medical images that has been developed in the last decades is thermal images. These images are assessed by infrared cameras and have shown an exponential development in recent years. In this sense, the aim of this study was to describe possibilities of thermography usage in the neurologic practice. It was performed a systematic review in Web of Knowledge (Thompson Reuters), set in all databases which used two combination of keywords as “topic”: “thermography” and “neurology”; and “thermography” and “neurologic”. The chronological period was defined from 2000 to 2014 (the least 15 years). Among the studies included in this review, only seven were with experimental design. It is few to bring thermography as a daily tool in clinical practice. However, these studies have suggested good results. The studies of review and an analyzed patent showed that the authors consider the thermography as a diagnostic tool and they recommend its usage. It can be concluded that thermography is already used as a diagnostic and monitoring tool of patients with neuropathies, particularly in complex regional pain syndrome, and stroke. And yet, this tool has great potential for future research about its application in diagnosis of other diseases of neurological origin. PMID:26191090

  6. [The instrument for thermography].

    PubMed

    Hamaguchi, Shinsuke

    2014-07-01

    Thermography is an imaging method using the instrument to detect infrared rays emitted from the body surface, and to plot them as a distribution diagram of the temperature information. Therefore, a thermographic instrument can be assumed to measure the skin temperature of the diseased region. Such an instrument is a useful device for noninvasive and objective assessment of various diseases. Examination using a thermographic instrument can assess the autonomic dysfunction by measuring the skin blood flow involved with the sympathetic innervation. Thermography is useful in assisting the determination of the therapeutic effect. However, autonomic dysfunction should be confirmed correctly with the assessment of thermatome that shows abnormal thermal distribution in the region of the disease. Thermography should make noticeable the difference between the body temperature of abnormal and normal sites, and show the alteration of temperature. Monitoring using thermography is useful to determine the effect of sympathetic nerve block. If a thermographic instrument is used, it is important that examiners should understand the function of the instrument, as well as its advantages and disadvantages.

  7. Thermography for skin temperature evaluation during dynamic exercise: a case study on an incremental maximal test in elite male cyclists.

    PubMed

    Ludwig, Nicola; Trecroci, Athos; Gargano, Marco; Formenti, Damiano; Bosio, Andrea; Rampinini, Ermanno; Alberti, Giampietro

    2016-12-01

    The use of thermal imaging in monitoring the dynamic of skin temperature during prolonged physical exercise is central to assess athletes' ability to dissipate heat from the skin surface to the environment. In this study, seven elite cyclists completed an incremental maximal cycling test to evaluate their skin temperature response under controlled-environment conditions. Thermal images have been analyzed using a method based on maxima detection (Tmax). Data confirmed a reduction in skin temperature due to vasoconstriction during the exercise, followed by a temperature increment after exhaustion. A characteristic hot-spotted thermal pattern was found over the skin surface in all subjects. This research confirmed also the notable ability by highly trained cyclists to modify skin temperature during an incremental muscular effort. This study gives additional contributions for understanding the capability of the Tmax method applied to the thermoregulatory physiological processes.

  8. Investigations of single and multilayer structures using lock-in thermography--possible applications.

    PubMed

    Gralewicz, Grzegorz; Owczarek, Grzegorz; Wiecek, Bogusław

    2005-01-01

    This paper presents a study of the possibilities of evaluating thermal parameters of single and multilayer structures using dynamic thermography. It also discusses potential uses of lock-in thermography. It presents a simulation of a periodic excitation of a multilayer composite material. In practice, the described methods can be employed in various applications, for example, in multilayer nonwoven microelectronic components manufactured from hemp fibers, chemical fibers, with an addition of electrically conducting fibers, and in medicine and biology. This paper describes tests conducted with lock-in thermography on carbon fibre reinforced composites with implanted delamination defects. Lock-in thermography is a versatile tool for non-destructive evaluation (NDE). Lock-in thermography is a fast, remote and non-destructive procedure. Hence, it has been used to detect delaminations in the composite structure of aircraft. This method directly contributes to an improvement in safety.

  9. Aerial thermography for energy conservation

    NASA Technical Reports Server (NTRS)

    Jack, J. R.

    1978-01-01

    Thermal infrared scanning from an aircraft is a convenient and commercially available means for determining relative rates of energy loss from building roofs. The need to conserve energy as fuel costs makes the mass survey capability of aerial thermography an attractive adjunct to community energy awareness programs. Background information on principles of aerial thermography is presented. Thermal infrared scanning systems, flight and environmental requirements for data acquisition, preparation of thermographs for display, major users and suppliers of thermography, and suggested specifications for obtaining aerial scanning services were reviewed.

  10. Thermography instruments for predictive maintenance

    SciTech Connect

    Palko, E.

    1993-08-12

    Thermography (infrared imaging, or IR scanning) is not only the most versatile predictive maintenance technology available today; it is, in general, the most cost-effective. Plant engineering can apply a virtually unlimited variety of predictive maintenance instruments, but all are restricted regarding the types of existing and incipient problems they can detect. Inplant applications of thermography, however, are truly limited only by the extent of the plant engineer's imagination. Here are ways that thermography can be used to fight downtime in plants, and factors to consider when selecting the best instrument for particular circumstances.

  11. Tracking dynamic team activity

    SciTech Connect

    Tambe, M.

    1996-12-31

    AI researchers are striving to build complex multi-agent worlds with intended applications ranging from the RoboCup robotic soccer tournaments, to interactive virtual theatre, to large-scale real-world battlefield simulations. Agent tracking - monitoring other agent`s actions and inferring their higher-level goals and intentions - is a central requirement in such worlds. While previous work has mostly focused on tracking individual agents, this paper goes beyond by focusing on agent teams. Team tracking poses the challenge of tracking a team`s joint goals and plans. Dynamic, real-time environments add to the challenge, as ambiguities have to be resolved in real-time. The central hypothesis underlying the present work is that an explicit team-oriented perspective enables effective team tracking. This hypothesis is instantiated using the model tracing technology employed in tracking individual agents. Thus, to track team activities, team models are put to service. Team models are a concrete application of the joint intentions framework and enable an agent to track team activities, regardless of the agent`s being a collaborative participant or a non-participant in the team. To facilitate real-time ambiguity resolution with team models: (i) aspects of tracking are cast as constraint satisfaction problems to exploit constraint propagation techniques; and (ii) a cost minimality criterion is applied to constrain tracking search. Empirical results from two separate tasks in real-world, dynamic environments one collaborative and one competitive - are provided.

  12. Heat flux sensors for infrared thermography in convective heat transfer.

    PubMed

    Carlomagno, Giovanni Maria; de Luca, Luigi; Cardone, Gennaro; Astarita, Tommaso

    2014-11-07

    This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR) thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors' research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described.

  13. Heat Flux Sensors for Infrared Thermography in Convective Heat Transfer

    PubMed Central

    Carlomagno, Giovanni Maria; de Luca, Luigi; Cardone, Gennaro; Astarita, Tommaso

    2014-01-01

    This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR) thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors' research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described. PMID:25386758

  14. Department of National Defence's use of thermography for facilities maintenance

    NASA Astrophysics Data System (ADS)

    Kittson, John E.

    1990-03-01

    Since the late seventies DND through the Director General Works has been actively encouraging the use of thermography as an efficient and effective technique for supporting preventive maintenance quality assurance and energy conservation programs at Canadian Forces Bases (CFBs). This paper will provide an overview of DND''s experiences in the utilization of thermography for facilities maintenance applications. 1. HISTORICAL MILESTONES The following are milestones of DND''s use of thermography: a. Purchase of Infrared Equipment In 1976/77 DND purchased five AGA 750 Infrared Thermovision Systems which were distributed to commands. In 1980/81/82 six AGA liOs five AGA TPT8Os two AGA 782s and one AGA 720 were acquired. Finally DND also purchased seven AGEMA 870 systems during 1987/88. b. First and Second Interdepartaental Building Thermography Courses In 1978 and 1980 DND hosted two building thermography courses that were conducted by Public Works Canada. c. CE Thermographer Specialist Training Courses DND developed a training standard in 1983 for Construction Engineering (CE) Thermographer qualification which included all CE applications of thermography. The first annual inhouse training course was conducted at CFB Borden Ontario in 1984. These are now being conducted at the CFB Chilliwack Detachment in Vernon British Columbia. 2 . MARKETING FACILITIES MAINTENANCE IR Of paramount importance for successfully developing DND appreciation for thermography was providing familiarization training to CE staff at commands and bases. These threeday presentations emphasized motivational factors conducting thermographic surveys and utilizing infrared data of roofs electrical/mechanical systems heating plants steam distribution and building enclosures. These factors consisted mainly of the following objectives: a. preventive maintenance by locating deficiencies to be repaired b. quality assurance by verification of workmanship materials and design c. energy conservation by locating

  15. 3D thermography in non-destructive testing of composite structures

    NASA Astrophysics Data System (ADS)

    Hellstein, Piotr; Szwedo, Mariusz

    2016-12-01

    The combination of 3D scanners and infrared cameras has lead to the introduction of 3D thermography. Such analysis produces results in the form of three-dimensional thermograms, where the temperatures are mapped on a 3D model reconstruction of the inspected object. All work in the field of 3D thermography focused on its utility in passive thermography inspections. The authors propose a new real-time 3D temperature mapping method, which for the first time can be applied to active thermography analyses. All steps required to utilise 3D thermography are discussed, starting from acquisition of three-dimensional and infrared data, going through image processing and scene reconstruction, finishing with thermal projection and ray-tracing visualisation techniques. The application of the developed method was tested during diagnosis of several industrial composite structures—boats, planes and wind turbine blades.

  16. Airborne thermography or infrared remote sensing.

    PubMed

    Goillot, C C

    1975-01-01

    Airborne thermography is part of the more general remote sensing activity. The instruments suitable for image display are infrared line scanners. A great deal of interest has developed during the past 10 years in airborne thermal remote sensing and many applications are in progress. Infrared scanners on board a satellite are used for observation of cloud cover; airborne infrared scanners are used for forest fire detection, heat budget of soils, detecting insect attack, diseases, air pollution damage, water stress, salinity stress on vegetation, only to cite some main applications relevant to agronomy. Using this system it has become possible to get a 'picture' of our thermal environment.

  17. Thermography in ocular inflammation

    PubMed Central

    Kawali, Ankush A

    2013-01-01

    Background and Objectives: The purpose of this study was to evaluate ocular inflammatory and non-inflammatory conditions using commercially available thermal camera. Materials and Methods: A non-contact thermographic camera (FLIR P 620) was used to take thermal pictures of seven cases of ocular inflammation, two cases of non-inflammatory ocular pathology, and one healthy subject with mild refractive error only. Ocular inflammatory cases included five cases of scleritis, one case of postoperative anterior uveitis, and a case of meibomian gland dysfunction with keratitis (MGD-keratitis). Non-inflammatory conditions included a case of conjunctival benign reactive lymphoid hyperplasia (BRLH) and a case of central serous chorio-retinopathy. Thermal and non-thermal photographs were taken, and using analyzing software, the ocular surface temperature was calculated. Results: Patient with fresh episode of scleritis revealed high temperature. Eyes with MGD-keratitis depicted lower temperature in clinically more affected eye. Conjunctival BRLH showed a cold lesion on thermography at the site of involvement, in contrast to cases of scleritis with similar clinical presentation. Conclusion: Ocular thermal imaging is an underutilized diagnostic tool which can be used to distinguish inflammatory ocular conditions from non-inflammatory conditions. It can also be utilized in the evaluation of tear film in dry eye syndrome. Its applications should be further explored in uveitis and other ocular disorders. Dedicated “ocular thermographic” camera is today's need of the hour. PMID:24347863

  18. Veterinary applications of infrared thermography.

    PubMed

    Rekant, Steven I; Lyons, Mark A; Pacheco, Juan M; Arzt, Jonathan; Rodriguez, Luis L

    2016-01-01

    Abnormal body temperature is a major indicator of disease; infrared thermography (IRT) can assess changes in body surface temperature quickly and remotely. This technology can be applied to a myriad of diseases of various etiologies across a wide range of host species in veterinary medicine. It is used to monitor the physiologic status of individual animals, such as measuring feed efficiency or diagnosing pregnancy. Infrared thermography has applications in the assessment of animal welfare, and has been used to detect soring in horses and monitor stress responses. This review addresses the variety of uses for IRT in veterinary medicine, including disease detection, physiologic monitoring, welfare assessment, and potential future applications.

  19. Review of industrial and research applications of thermography

    NASA Astrophysics Data System (ADS)

    Ahlstrom, John

    1990-10-01

    The background and advantages of commercial thermography are reviewed, and applications of thermography in basic research, product development, and medicine are discussed. Industrial applications of thermography to preventive maintenance and production monitoring are also covered.

  20. Veterinary applications of infrared thermography

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abnormal temperature is a major indicator of disease; infrared thermography (IRT) can assess changes in surface temperature quickly and remotely. This technology can be applied to myriad diseases in veterinary medicine, ranging across host species and disease etiologies. It can also be used to deter...

  1. Dynamic Patterns in Active Fluids

    NASA Astrophysics Data System (ADS)

    Jülicher, Frank

    2012-02-01

    Biological matter is inherently dynamic and exhibits active properties. A key example is the force generation by molecular motors in the cell cytoskeleton. Such active processes give rise to the generation of active mechanical stresses and spontaneous flows in gel-like cytoskeletal networks. Active material behaviors play a key role for the dynamics of cellular processes such as cell locomotion and cell division. We will discuss intracellular flow patterns that are created by active processes in the cell cortex. By combining theory with quantitative experiments we show that observed flow patterns result from profiles of active stress generation in the system. We will also consider the situation where active stress is regulated by a diffusing molecular species. In this case, spatial concentration patterns are generated by the interplay of stress regulation and self-generated flow fields.

  2. ANALYSIS OF IMPACT DAMAGE USING LINE SCANNING THERMOGRAPHY

    SciTech Connect

    Ley, O.; Valatka, T.; Godinez, V.; Chung, S.; Schutte, J.; Dunne, K.; Caiazzo, A.; Bandos, B.

    2010-02-22

    Impact damage in a composite shaft was studied using Line Scanning Thermography (LST), a novel dynamic thermography technique capable of inspecting large areas in short times. It is expected that projectile impact in a laminate composite will generate a discontinuity that affects heat propagation. Therefore, as heat is deposited over the impacted region, a hot spot will be observed. In this study several impact points were evaluated using UT and LST. Experiments show that assessing impact damage using LST is a dynamic process, which should be accounted for when using dynamic thermography to quantify impact damage extension and severity. The LST images provided information about the region affected by impact damage, which was consistent with the damage region determined using UT. It is seen that the damage areas obtained at early observation time after heat application show small areas with severe damage; and for further times after heat application, the temperature of the hot spots drops and the size of the region affected increases with time following a linear relationship with the observation time.

  3. Seismic risk evaluation aided by IR thermography

    NASA Astrophysics Data System (ADS)

    Grinzato, E.; Cadelano, G.; Bison, P.; Petracca, A.

    2009-05-01

    Conservation of buildings in areas at seismic risk must take prevention into account. The safeguard architectonic heritage is an ambitious objective, but a priority for planning programmes at varying levels of decision making. Preservation and restoration activities must be optimized to cover a vast and widespread historical and architectonic heritage present in many countries. Masonry buildings requires an adequate level of knowledge based on the importance of structural geometry, which may include the damage, details of construction and properties of materials. For identification and classification of masonry is necessary to find shape, type and size of the elements, texture, size of mortar joints, assemblage. The recognition can be done through a visual inspection of the surface of walls, which can be examined, where is not visible, removing a layer of plaster. Thermography is an excellent tool for a fast survey and collection of vital information for this purpose, but it is extremely important define a precise procedure in the development of more efficient monitoring tools. Thermography is a non-destructive method that allows recognizing the structural damage below plaster, detecting the presence of discontinuity in masonry, for added storeys, cavity, filled openings, and repairs. Furthermore, the fast identification of subsurface state allows to select areas where other methods either more penetrating or partially destructive have to be applied. The paper reports experimental results achieved in the mainframe of the European project RECES Modiquus. The main aim of the project is to improve methods, techniques and instruments for facing antiseismic options. Both passive and active thermographic techniques have been applied in different weather conditions and time schemes. A dedicated algorithm has been developed to enhance the visibility of wall bonding.

  4. Inspection of composite structures using line scanning thermography

    NASA Astrophysics Data System (ADS)

    Ley, Obdulia; Butera, Manny; Godinez, Valery

    2012-06-01

    This work deals with the non destructive analysis of different composite parts and structures using Line Scanning Thermography (LST), a non-contact inspection method based in dynamic thermography. The LST technique provides a quick and efficient methodology to scan wide areas rapidly; the technique has been used on the inspection of composite propellers, sandwich panels, motor case tubes and wind turbine blades, among others. In LST a line heat source is used to thermally excite the surface under study while an infrared detector records the transient surface temperature variation of the heated region. Line Scanning Thermography (LST), has successfully been applied to determine the thickness of metallic plates and to assess boiler tube thinning. In this paper the LST protocols developed for the detection of sub-surface defects in different composite materials commonly used in aerospace applications, plates will be presented. In most cases the thermal images acquired using LST will be compared with ultrasonic c-scans. The fundamentals of LST will be discussed, as well as the limitations of this technique for NDT inspection.

  5. Efficiency of thermography in the study of hydrological connectivity

    NASA Astrophysics Data System (ADS)

    Cantreul, Vincent; Burgeon, Victor; Triquet, Johan; Tuerlinck, Manon; Vaelen, Guillaume; Leemans, Vincent; Degré, Aurore

    2016-04-01

    Hydrologic connectivity is an emerging concept which permits deeper understanding of catchments behavior. However, the measurements of functional connectivity is complex and still needs new developments in order to approach the « dynamic » part of the story. This study aims at assessing the efficiency of thermography to analyze hydrologic connectivity in an agricultural catchment in Belgium (loamy soils). Tests have been performed on experimental tubs at first and on field at second. Under controlled conditions, hot milk was spread on an experimental tub with bare soil and grass. The hot milk permits to compare color tracer with thermic one. The results are quite good. The binarization of pictures from usual camera and from thermic one gives similar percentage of runoff coverage at same locations. The mean difference is about 8% for bare soils and 10% for planted grass. There is a slight overestimation with thermic camera because of time delay of soil cooling after milk passing. In the same time in the planted grass, there are some runoff pixels which are hidden by vegetation. On field, blue colored water was used to simulate a rainfall on a field covered with mustard and on the same field without any coverage. Where runoff flows, the soil appears warmer because of heat extracted by water in the soil. The results comparing visual and thermic pictures are more nuanced. The mean difference reaches 30% on bare soil. Indeed, (i) the rainfall drops seem to hide the runoff during the rain; (ii) the vegetation density (mustard) is quite a problem for runoff detection. However, the difference between successive time pictures permits to distinguish flow paths easily. In conclusion, thermography stands as a good alternative for connectivity study. It's obviously a preliminary study which gives some indications of the possible use of thermography. At present, we are testing real rainfalls (different types) with different camera's positions and different land use (different

  6. Moisture map by IR thermography

    NASA Astrophysics Data System (ADS)

    Grinzato, E.; Cadelano, G.; Bison, P.

    2010-10-01

    A new approach to moisture detection in buildings by an optical method is presented. Limits of classical and new methods are discussed. The state of the art about the use of IR thermography is illustrated as well. The new technique exploits characteristics of the materials and takes into account explicitly the heat and mass exchange between surface and environment. A set of experiments in controlled laboratory conditions on different materials is used to better understand the physical problem. The testing procedure and the data reduction are illustrated. A case study on a heritage building points up the features of this technique.

  7. Microwave thermography: principles, methods and clinical applications.

    PubMed

    Myers, P C; Sadowsky, N L; Barrett, A H

    1979-06-01

    We review the physical principles, method of operation, measurement limitations, and potential medical applications of microwave thermography. We present detailed results of a study of breast cancer detection at 1.3 and 3.3 GHz, including the dependence of detection rates on microwave frequency, time, tumor depth, and tumor size. At 1.3 GHz, microwave thermography detects breast cancer as well as infrared thermography (true-positive rate = 0.76 when true-negative rate = 0.63). When the two methods are combined, the true-positive rate increases by about 0.1 over that of either method alone.

  8. Cardio-Surgical Thermography

    NASA Astrophysics Data System (ADS)

    Fiorini, A. R.; Fumero, R.; Marchesi, R.

    1983-03-01

    Extracorporeal circulation allows direct access inside the chest: it may be used to carry out physiological research. The thermo-chemical protection of myocardium during heart surgery, called cardioplegy, is one of the latest outstanding techniques in patient safety. Thermocardiography monitoring during the infusion of the cardioplegic solution allows continuous assessment of rapid temperature distribution changes and shows exactly the extent of myocardium involved. Using a peculiar pseudocolor digital image enhancement, it is possible to emphasize involved areas coronary flow and to model the thermo-fluid-dynamical actions of inspected heart.

  9. Criteria For Medical Thermography

    NASA Astrophysics Data System (ADS)

    Ring, E. F. J.

    1983-11-01

    A thermal image of the human body is not a simple concept. The human body is a complex homeotherm, producing heat that must be lost into the environment. Human skin is the dynamic organ which serves as an interface between the body core and environment. Its temperature is therefore influenced by both internal and external conditions. Man is constantly changing his physical and physiological demands throughout his conscious hours. Local skin temperature is therefore influenced by air temperature, humidity, the presence of clothing, and a host of internal influences. Heat flow by conduction from underlying organs and blood convection in particular, warm the skin by the transfer of heat from the core. Changes in blood flow frequently occur, and contribute to the constant demand for thermal equilibrium.

  10. Use of infra-red thermography for automotive climate control analysis

    SciTech Connect

    Burch, S.D.; Hassani, V.; Penney, T.R.

    1994-03-01

    In this paper, several automotive climate control applications for IR thermography are described. Some of these applications can be performed using conventional IR techniques. Others, such as visualizing the air temperature distribution within the cabin, at duct exits, and at heater and evaporator faces, require new experimental methods. In order to capture the temperature distribution within an airstream, a 0.25-mm-thick (0.01 inch) fiberglass screen is used. This screen can be positioned perpendicular or parallel to the flow to obtain three-dimensional spatial measurements. In many cases, the air flow pattern can be inferred from the resulting temperature distribution, allowing improved air distribution designs. In all cases, significant improvement in the speed, ease, and quantity of temperature distribution information can be realized with thermography as compared to conventional thermocouple array techniques. Comparisons are presented between IR thermography images and both thermocouple measurements and computational fluid dynamics (CFD) predictions.

  11. Reliable aerial thermography for energy conservation

    NASA Technical Reports Server (NTRS)

    Jack, J. R.; Bowman, R. L.

    1981-01-01

    A method for energy conservation, the aerial thermography survey, is discussed. It locates sources of energy losses and wasteful energy management practices. An operational map is presented for clear sky conditions. The map outlines the key environmental conditions conductive to obtaining reliable aerial thermography. The map is developed from defined visual and heat loss discrimination criteria which are quantized based on flat roof heat transfer calculations.

  12. Potential applications of ocular thermography.

    PubMed

    Morgan, P B; Soh, M P; Efron, N; Tullo, A B

    1993-07-01

    Thermography is an investigative technique which allows rapid color-coded display of the temperature across a wide surface by means of infrared detection. We describe an ocular thermographic study of a normal population and present case studies describing the application of this technique for patients with ocular disease. We found that 95% of the normal population have an interocular temperature difference (temperature of center of right cornea minus temperature of center of left cornea) of 0.60 degrees or less. There appears to be a greater difference in temperature between the limbus and the center of the cornea in patients with dry eyes. This technique has potential for evaluating tear film disorders and inflammatory conditions, for monitoring the progress of such conditions, and for evaluating the efficacy of various treatments.

  13. Effect of perspiration on skin temperature measurements by infrared thermography and contact thermometry during aerobic cycling

    NASA Astrophysics Data System (ADS)

    Priego Quesada, Jose Ignacio; Martínez Guillamón, Natividad; Cibrián Ortiz de Anda, Rosa M.a.; Psikuta, Agnes; Annaheim, Simon; Rossi, René Michel; Corberán Salvador, José Miguel; Pérez-Soriano, Pedro; Salvador Palmer, Rosario

    2015-09-01

    The aim of the present study was to compare infrared thermography and thermal contact sensors for measuring skin temperature during cycling in a moderate environment. Fourteen cyclists performed a 45-min cycling test at 50% of peak power output. Skin temperatures were simultaneously recorded by infrared thermography and thermal contact sensors before and immediately after cycling activity as well as after 10 min cooling-down, representing different skin wetness and blood perfusion states. Additionally, surface temperature during well controlled dry and wet heat exchange (avoiding thermoregulatory responses) using a hot plate system was assessed by infrared thermography and thermal contact sensors. In human trials, the inter-method correlation coefficient was high when measured before cycling (r = 0.92) whereas it was reduced immediately after the cycling (r = 0.82) and after the cooling-down phase (r = 0.59). Immediately after cycling, infrared thermography provided lower temperature values than thermal contact sensors whereas it presented higher temperatures after the cooling-down phase. Comparable results as in human trials were observed for hot plate tests in dry and wet states. Results support the application of infrared thermography for measuring skin temperature in exercise scenarios where perspiration does not form a water film.

  14. Thermography applied acupuncture and qi-gong

    NASA Astrophysics Data System (ADS)

    Qin, Yuwen; Ji, Hong-Wei; Chen, Jin-Long; Li, Hong-Qi

    1997-04-01

    Thermographic technique can be used to measure temperature distribution of body surface in real-time, non-contact and full-field, which has been successfully used in medical diagnosis, remote sensing, and NDT, etc. The authors have developed a thermographic experiment that can be applied to inspect the effect of action of acupuncture and qi-gong (a system of deep breathing exercises) by measuring the temperature of hand and arm. The observation is performed respectively by thermography for the dynamic changes of temperature of the arm and hand after acupuncture therapy and qi-gong therapy. Thermographic results show that the temperature on the collateral channels increases markedly. In the meantime, it can be seen that the above therapies of Chinese medicine can stimulate the channel collateral system. This also contributes a new basis to the effect of action of the therapies of Chinese medicine. The work shows that thermographic technique is a powerful tool for research in Chinese medicine. In this paper, some thermal images are obtained from the persons treated with acupuncture and qi- gong.

  15. [Use of distant thermography in uveitis in children].

    PubMed

    Khvatova, A V; Katargina, L A; Lokhmanov, V P; Zibarov, I N

    1991-01-01

    Forty-four children aged 6 months to 14 years, suffering from endogenous uveitis of various sites were examined at different phases of the diseases by a scanning type apparatus, AGA-780M-thermographer (Sweden). The results permit a conclusion that long-distance thermography may be effectively used to assess the ocular status even in small restless children. Uveitis active phase was found associated with a hyperthermal reaction in all the examined sites. Hyperthermia was found related to uveitis localization. The authors suggest that thermoasymmetry parameters and the corneolimbic gradient be used as additional objective criteria for the assessment of uveitis activity and dissemination in children.

  16. Monitoring the fracture behavior in ceramic matrix composites by infrared thermography and acoustic emission

    NASA Astrophysics Data System (ADS)

    Dassios, Konstantinos G.; Kordatos, Evangelos Z.; Aggelis, Dimitris G.; Exarchos, Dimitris A.; Matikas, Theodore E.

    2014-04-01

    In this work an innovative methodology was employed for monitoring the fracture behavior in silicon carbide fiberreinforced ceramic matrix composites. This new methodology was based on the combined use of IR thermography and acoustic emission. Compact tension SiC/BMAS specimens were tested with unloading/reloading loops and the thermal dissipation due to crack propagation and other damage mechanisms was monitored by IR thermography. The accuracy of this technique was benchmarked by optical measurements of crack length. In addition, using acoustic emission descriptors, such as activity during the unloading part of the cycles, provided the critical level of damage accumulation in the material. Acoustic emission allowed to closely follow the actual crack growth monitored by IR thermography, enabling quantitative measurements.

  17. Bridge concrete deteriorating diagnosis by infrared thermography

    NASA Astrophysics Data System (ADS)

    Shibata, Hiroki; Fukuyama, Nobuhiro; Sakuma, Joji; Mochizuki, Jun; Kimura, Yukinori

    2006-04-01

    Bridge is indispensable as social overhead capital. In the past, concrete construction was believed to be semi-permanent. Actually, however, concrete is deteriorated by various factors including seawater damage, annual temperature change, etc. Therefore, it is now obvious that maintenance and management are essential to keep performance of the bridge. In Japan, we had many reports of using infrared thermography for diagnosis of building, mainly for delamination of tile and mortar used for surface of the building for more than 10 years. In recent years, infrared thermogrephy is more actively used for delamination of surface of the bridge. Passive method is usually used for open-air concrete structure diagnosis, which utilizes intraday environmental temperature change and/or radiation energy emitted from the sun which create delta-T of delamination portion of the concrete structure. It is very important to take thermal image at right conditions. Otherwise, you may easily fall onto false diagnosis. In our presentation, many case examples and study of thermal data will be shown, which are taken at the right condition.

  18. Narrative review: Diabetic foot and infrared thermography

    NASA Astrophysics Data System (ADS)

    Hernandez-Contreras, D.; Peregrina-Barreto, H.; Rangel-Magdaleno, J.; Gonzalez-Bernal, J.

    2016-09-01

    Diabetic foot is one of the major complications experienced by diabetic patients. An early identification and appropriate treatment of diabetic foot problems can prevent devastating consequences such as limb amputation. Several studies have demonstrated that temperature variations in the plantar region can be related to diabetic foot problems. Infrared thermography has been successfully used to detect complication related to diabetic foot, mainly because it is presented as a rapid, non-contact and non-invasive technique to visualize the temperature distribution of the feet. In this review, an overview of studies that relate foot temperature with diabetic foot problems through infrared thermography is presented. Through this research, it can be appreciated the potential of infrared thermography and the benefits that this technique present in this application. This paper also presents the different methods for thermogram analysis and the advantages and disadvantages of each one, being the asymmetric analysis the method most used so far.

  19. Fabrication of 0.0075-Scale Orbiter Phosphor Thermography Test Models for Shuttle RTF Aeroheating Studies

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M.; Powers, Michael A.; Griffith, Mark S.; Hopins, John W.; Veneris, Pete H.; Kuykendoll, Kathryn

    2006-01-01

    This report details the techniques and fidelity associated with aeroheating models constructed in support of the return-to-flight boundary layer transition (BLT) activity for STS-114. This report provides technical descriptions of the methods, materials, and equipment used, as well as the surface quality results obtained with the cast ceramic phosphor thermography models.

  20. Active Dendrites Enhance Neuronal Dynamic Range

    PubMed Central

    Gollo, Leonardo L.; Kinouchi, Osame; Copelli, Mauro

    2009-01-01

    Since the first experimental evidences of active conductances in dendrites, most neurons have been shown to exhibit dendritic excitability through the expression of a variety of voltage-gated ion channels. However, despite experimental and theoretical efforts undertaken in the past decades, the role of this excitability for some kind of dendritic computation has remained elusive. Here we show that, owing to very general properties of excitable media, the average output of a model of an active dendritic tree is a highly non-linear function of its afferent rate, attaining extremely large dynamic ranges (above 50 dB). Moreover, the model yields double-sigmoid response functions as experimentally observed in retinal ganglion cells. We claim that enhancement of dynamic range is the primary functional role of active dendritic conductances. We predict that neurons with larger dendritic trees should have larger dynamic range and that blocking of active conductances should lead to a decrease in dynamic range. PMID:19521531

  1. The use of thermography to design tissue flaps – experimental studies on animals

    PubMed Central

    Łokaj, Marek; Falkowski, Aleksander; Prowans, Piotr

    2014-01-01

    Introduction Methods allowing one to locate the position of a cutaneous perforator do not allow one to determine the boundaries of the vascularized skin. In clinical practice this causes complications in the form of marginal necrosis of the flap. Aim To examine the usefulness of thermography to assess the extent of vascularization of the skin and subcutaneous tissue by a single perforator. Material and methods Thirty-one male rats were used. Using dynamic thermography the perforators on the abdominal skin were located. Afterwards the flap was prepared on a randomly chosen perforator. After 24 h the extent of vascularization of the skin by a single perforator was examined. Results In 22.5% of cases the number of perforators marked in the thermography was equal to the number of perforators marked intraoperatively, in 64.5% it was lower and in 13% higher. The use of thermography has shown that basing the flap vascularization on the perforator with low efficiency resulted in statistically more frequent occurrence of ischemia and partial necrosis of the flap (p = 0.024). Partial necrosis of the flap occurred in 12 of 31 cases, always in the area in which during the preoperative thermography no perforators were found. The areas of necrosis occurred irrespectively of the distance from the supplying vessel. Conclusions When designing the shape of the flap, the distribution of all perforators must be considered. The perforators need to be included in the area of prepared tissues because their location indicates the area with a more efficient network of vessels. PMID:25337153

  2. Development Of Economic Techniques For Residential Thermography

    NASA Astrophysics Data System (ADS)

    Allen, Lee R.; Allen, Sharon

    1983-03-01

    Infrared thermography has proven to be a valuable tool in the detection of heat loss in both commercial and residential buildings. The field of residential thermography has needed a simple method with which to report the deficiencies found during an infrared scan. Two major obstacles hindering the cost effectiveness of residential thermography have been 1) the ability to quickly transport some high resolution imaging system equipment from job site to job site without having to totally dismount the instruments at each area, and 2) the lack of a standard form with which to report the findings of the survey to the customer. Since the industry has yet to provide us with either, we believed it necessary to develop our own. Through trial and error, we have come up with a system that makes interior residential thermography a profitable venture at a price the homeowner can afford. Insulation voids, or defects can be instantly spotted with the use of a thermal imaging system under the proper conditions. A special hand-held device was developed that enables the thermographer to carry the equipment from house to house without the need to dismantle and set up at each stop. All the necessary components are attached for a total weight of about 40 pounds. The findings are then conveyed to a form we have developed. The form is simple enough that the client without special training in thermography can understand. The client is then able to locate the problems and take corrective measures or give it to a con-tractor to do the work.

  3. Dynamics of Minor Solar Activity \

    NASA Astrophysics Data System (ADS)

    Cauzzi, G.; Vial, J. C.; Falciani, R.; Falchi, A.; Smaldone, L. A.

    We present a program for coordinated observations between ground based observatories, mainly NSO/Sacramento Peak, and several instruments onboard SOHO (primarily SUMER). The scientific goal is the study of small activity phenomena, at high spatial and temporal resolution.

  4. Dynamic Models of Insurgent Activity

    DTIC Science & Technology

    2014-05-19

    for repeat activity in security applications. The research team has made great strides in applying such ideas to urban domestic crime applications...developed new basic research to extend many of these ideas beyond domestic crime applications to problems abroad involving insurgents and also to other...for repeat activity in security applications. The research team has made great strides in applying such ideas to urban domestic crime applications

  5. [Digital noninvasive microwave thermography in the diagnosis of breast disease].

    PubMed

    Fan, K H; Fan, J H; Yao, D D; Jin, W D; Yang, B G; Meng, C X; Qu, D B

    1988-05-01

    Thermography is a noninvasive technic of examination. Liquid-Crystal Thermography and Infrared Thermography have provided great help in the general survey of breast diseases during the past twenty years but not without some limitations. Recently, by applying the microwave technic clinically, progress has been made to measure minute temperature changes in the deeper tissues. Differential diagnosis of breast disease is possible by statistical calculating the temperature difference of the two breasts. A prospective study was done in 96 women who had both X ray mammography and digital noninvasive microwave thermography. 70/96 were proved by pathology. In this group of patients, the accuracy rate was 70.00% for digital microwave thermography, 81.82% for X ray mammography and 95.50% for the two combined. The false positive rates and false negative rates, advantages, disadvantages and the for general survey of breast disease of the digital microwave thermography discussed.

  6. The Effect of Penetration Depth on Thermal Contrast of NDT by Thermography

    NASA Technical Reports Server (NTRS)

    Chu, Tsuchin Philip; DiGregorio, Anthony; Russell, Samuel S.

    1999-01-01

    Nondestructive evaluation by Thermography (TNDE) is generally classified into two categories, the passive approach and the active approach. The passive approach is usually performed by measuring the natural temperature difference between the ambient and the material or structure to be tested. The active approach, on the other hand, requires the application of an external energy source to stimulate the material for inspection. A laser, a heater, a hot air blower, a high power thermal pulse, mechanical, or electromagnetic energy may provide the energy sources. For the external heating method to inspect materials for defects and imperfection at ambient temperature, a very short burst of heat can be introduced to one of the surfaces or slow heating of the side opposite to the side being observed. Due to the interruption of the heat flow through the defects, the thermal images will reveal the defective area by contrasting against the surrounding good materials. This technique is called transient Thermography, pulse video Thermography, or thermal wave imaging. As an empirical rule, the radius of the smallest defect should be at least one to two times larger than its depth under the surface. Thermography is being used to inspect void, debond, impact damage, and porosity in composite materials. It has been shown that most of the defects and imperfection can be detected. However, the current method of inspection using thermographic technique is more of an art than a practical scientific and engineering approach. The success rate of determining the defect location and defect type is largely depend on the experience of the person who operates thermography system and performs the inspection. The operator has to try different type of heat source, different duration of its application time, as well as experimenting with the thermal image acquisition time and interval during the inspection process. Further-more, the complexity of the lay-up and structure of composites makes it

  7. 3D thermography imaging standardization technique for inflammation diagnosis

    NASA Astrophysics Data System (ADS)

    Ju, Xiangyang; Nebel, Jean-Christophe; Siebert, J. Paul

    2005-01-01

    We develop a 3D thermography imaging standardization technique to allow quantitative data analysis. Medical Digital Infrared Thermal Imaging is very sensitive and reliable mean of graphically mapping and display skin surface temperature. It allows doctors to visualise in colour and quantify temperature changes in skin surface. The spectrum of colours indicates both hot and cold responses which may co-exist if the pain associate with an inflammatory focus excites an increase in sympathetic activity. However, due to thermograph provides only qualitative diagnosis information, it has not gained acceptance in the medical and veterinary communities as a necessary or effective tool in inflammation and tumor detection. Here, our technique is based on the combination of visual 3D imaging technique and thermal imaging technique, which maps the 2D thermography images on to 3D anatomical model. Then we rectify the 3D thermogram into a view independent thermogram and conform it a standard shape template. The combination of these imaging facilities allows the generation of combined 3D and thermal data from which thermal signatures can be quantified.

  8. Exit Presentation: Infrared Thermography on Graphite/Epoxy

    NASA Technical Reports Server (NTRS)

    Comeaux, Kayla

    2010-01-01

    This slide presentation reports on the internship project that was accomplished during the summer of 2010. The objectives of the project were to: (1) Simulate Flash Thermography on Graphite/Epoxy Flat Bottom hole Specimen and thin void specimens, (2) Obtain Flash Thermography data on Graphite/Epoxy flat bottom hole specimens, (3) Compare experimental results with simulation results, Compare Flat Bottom Hole Simulation with Thin Void Simulation to create a graph to determine size of IR Thermography detected defects

  9. Research on lock-in thermography for aerospace materials of nondestructive test based on image sequence processing

    NASA Astrophysics Data System (ADS)

    Liu, Junyan; Dai, Jingmin; Wang, Yang

    2008-11-01

    IR Lock in thermography is an active thermography technology based on thermal wave signal processing, especially, it has many advantages for nondestructive test of composite materials and compound structure application and has been applied on aerospace, automotive, mechanics and electric fields. In lock in thermography, given sufficient time for periodic heating, the surface temperature will evolve periodically in a sinusoidal pattern form the transient state to the steady state. In this paper, the principle of lock in thermography is introduced and the heat transferring process is analyzed by the sinusoidal variation heating flow transferred in materials by means of FEM method. In experiment, the modulating optical stimulation is applied to sample, and image sequences are collected by Jade MWIR 550 FPA IR camera. The digital filter algorithm which is Savitzky-Golay digital smoothness filters is used to remove the effects of high frequency noise. A phase image at the frequency of periodic heating can be calculated using a Fourier transform of the periodic heating frequency in transient state for defect detection. The IR lock in thermography processing software is developed by using of visual C++ programmed based image sequence collected. The experimental results show that the developed system reached up to high level of conventional steady state Lock in method.

  10. Visco-elastic Dynamics of an Active Polar Dynamic System

    NASA Astrophysics Data System (ADS)

    Pleiner, Harald; Svensek, Daniel; Brand, Helmut R.

    2015-03-01

    We study the dynamics of systems with a polar dynamic preferred direction that are embedded in visco-elastic media. Examples include the pattern-forming growth of bacteria and molecular motors. Because the ordered state only exists dynamically, but not statically, the macroscopic variable of choice is the velocity of the active units. The passive visco-elastic medium is described by a relaxing strain tensor. We derive the macroscopic equations for such a system and discuss novel static, reversible and irreversible cross-couplings connected to this two-fluid (two-velocity) system. The dynamics is rather different compared to the case of passive, static polar order. In particular, we find a complicated normal mode structure that reflects the broken time-reversal symmetry due to the non-equilibrium situation, anisotropy of first sound and a possible second sound excitation due to the active velocity, and various manifestations of the visco-elastic relaxation. We discuss critically the role of the so-called active term in the stress tensor as well as the thermodynamically correct description of the hydrodynamic transport velocities.

  11. Monitoring of microvascular free flaps following oropharyngeal reconstruction using infrared thermography: first clinical experiences.

    PubMed

    Just, Maren; Chalopin, Claire; Unger, Michael; Halama, Dirk; Neumuth, Thomas; Dietz, Andreas; Fischer, Miloš

    2016-09-01

    The aim of this study is to investigate static and dynamic infrared (IR) thermography for intra- and postoperative free-flap monitoring following oropharyngeal reconstruction. Sixteen patients with oropharyngeal reconstruction by free radial forearm flap were included in this prospective, clinical study (05/2013-08/2014). Prior ("intraop_pre") and following ("intraop_post") completion of the microvascular anastomoses, IR thermography was performed for intraoperative flap monitoring. Further IR images were acquired one day ("postop_1") and 10 days ("postop_10") after surgery for postoperative flap monitoring. Of the 16, 15 transferred free radial forearm flaps did not show any perfusion failure. A significant decreasing mean temperature difference (∆T: temperature difference between the flap surface and the surrounding tissue in Kelvin) was measured at all investigation points in comparison with the temperature difference at "intraop_pre" (mean values on all patients: ∆T intraop_pre = -2.64 K; ∆T intraop_post = -1.22 K, p < 0.0015; ∆T postop_1 = -0.54 K, p < 0.0001; ∆T postop_10 = -0.58 K, p < 0.0001). Intraoperative dynamic IR thermography showed typical pattern of non-pathological rewarming due to re-established flap perfusion after completion of the microvascular anastomoses. Static and dynamic IR thermography is a promising, objective method for intraoperative and postoperative monitoring of free-flap reconstructions in head and neck surgery and to detect perfusion failure, before macroscopic changes in the tissue surface are obvious. A lack of significant decrease of the temperature difference compared to surrounding tissue following completion of microvascular anastomoses and an atypical rewarming following a thermal challenge are suggestive of flap perfusion failure.

  12. Quantitative Evaluation of Pulsed Thermography, Lock-in Thermography and Vibrothermography on Foreign Object Defect (FOD) in CFRP.

    PubMed

    Liu, Bin; Zhang, Hai; Fernandes, Henrique; Maldague, Xavier

    2016-05-21

    In this article, optical excitation thermographic techniques, including pulsed thermography and lock-in thermography, were used to detect foreign object defect (FOD) and delamination in CFRP. Then, vibrothermography as an ultrasonic excitation technique was used to detect these defects for the comparative purposes. Different image processing methods, including cold image subtraction (CIS), principal component thermography (PCT), thermographic signal reconstruction (TSR) and Fourier transform (FT), were performed. Finally, a comparison of optical excitation thermography and vibrothermography was conducted, and a thermographic probability of detection was given.

  13. Quantitative Evaluation of Pulsed Thermography, Lock-in Thermography and Vibrothermography on Foreign Object Defect (FOD) in CFRP

    PubMed Central

    Liu, Bin; Zhang, Hai; Fernandes, Henrique; Maldague, Xavier

    2016-01-01

    In this article, optical excitation thermographic techniques, including pulsed thermography and lock-in thermography, were used to detect foreign object defect (FOD) and delamination in CFRP. Then, vibrothermography as an ultrasonic excitation technique was used to detect these defects for the comparative purposes. Different image processing methods, including cold image subtraction (CIS), principal component thermography (PCT), thermographic signal reconstruction (TSR) and Fourier transform (FT), were performed. Finally, a comparison of optical excitation thermography and vibrothermography was conducted, and a thermographic probability of detection was given. PMID:27213403

  14. Infrared thermography in the architectural field.

    PubMed

    Meola, Carosena

    2013-01-01

    Infrared thermography is becoming ever more popular in civil engineering/architecture mainly due to its noncontact character which includes two great advantages. On one side, it prevents the object, under inspection, from any alteration and this is worthwhile especially in the presence of precious works of art. On the other side, the personnel operate in a remote manner far away from any hazard and this complies well with safety at work regulations. What is more, it offers the possibility to quickly inspect large surfaces such as the entire facade of a building. This paper would be an overview of the use of infrared thermography in the architectural and civil engineering field. First, some basic testing procedures are described, and then some key examples are presented owing to both laboratory tests and applications in situ spanning from civil habitations to works of art and archaeological sites.

  15. Urban Heat Islands and Urban Thermography

    NASA Astrophysics Data System (ADS)

    Manunta, Paolo; Ceriola, Giulio; Daglis, Ioannis A.; de Ridder, Koen; Giannaros, Theodoros; Keramitsoglou, Iphigenia; Maiheu, Bino; Melas, Dimitrios; Montero Herrero, Enrique; Paganini, Marc; Palacios, Marino; Radius, Andrea; Sapage, Tania; Tamame, Maria; Tambuyzer, Han; Viel, Monique

    2010-12-01

    The Urban Heat Island (UHI) and Urban Thermography project is a project funded by ESA under the DUE program. The project started on 1st November 2008 and will last 2.5 years. The UHI project is relying on all satellite missions that embark TIR sensors to analyse the spatial variability of the Urban Heat Islands in the metropolitan areas of 10 European cities over the last 10 years. Moreover, thermography mapping using airborne data have been or will be performed for Athens, Madrid and Brussels. The project is contributing to the 'Reorientation of the Fuegosat Consolidation Phase', through the collection and synthesis of user requirements for a frequent and routine observation of surface and air temperatures in the core of the major European cities and in the surrounding peri-urban areas.

  16. Infrared Thermography in the Architectural Field

    PubMed Central

    2013-01-01

    Infrared thermography is becoming ever more popular in civil engineering/architecture mainly due to its noncontact character which includes two great advantages. On one side, it prevents the object, under inspection, from any alteration and this is worthwhile especially in the presence of precious works of art. On the other side, the personnel operate in a remote manner far away from any hazard and this complies well with safety at work regulations. What is more, it offers the possibility to quickly inspect large surfaces such as the entire facade of a building. This paper would be an overview of the use of infrared thermography in the architectural and civil engineering field. First, some basic testing procedures are described, and then some key examples are presented owing to both laboratory tests and applications in situ spanning from civil habitations to works of art and archaeological sites. PMID:24319358

  17. Infrared Thermography of Thermomechanical Couplings in Solids

    NASA Astrophysics Data System (ADS)

    Luong, M. P.; Parganin, D.; Loizeau, J.

    The present paper aims to illustrate three advantages of infrared thermography as a non destructive, real-time and non-contact technique to mechanically characterise solid materials. It permits observation of the macrostructural aspects of. thermoplasticity describing damage and failure processes in diverse and various engineering materials and their components subjected to monotonous, cyclic or vibratory loading. It usefully suggests the definition of a threshold of acceptable damage TAD for materials related to sport equipment such as leather shoe, leather-like composites or sail synthetics. Particularly in case of metallic products or automotive components subjected to fatigue loading, this newly proposed method could evaluate in a non-destructive manner the fatigue limit FL in a very short time compared to traditional fatigue testing techniques that are much more time-consuming and excessively expensive. In addition owing to the thermomechanical coupling, infrared thermography readily describes the damage location, the dissipative regime and the evolution of structural failure.

  18. Active Polar Two-Fluid Macroscopic Dynamics

    NASA Astrophysics Data System (ADS)

    Pleiner, Harald; Svensek, Daniel; Brand, Helmut R.

    2014-03-01

    We study the dynamics of systems with a polar dynamic preferred direction. Examples include the pattern-forming growth of bacteria (in a solvent, shoals of fish (moving in water currents), flocks of birds and migrating insects (flying in windy air). Because the preferred direction only exists dynamically, but not statically, the macroscopic variable of choice is the macroscopic velocity associated with the motion of the active units. We derive the macroscopic equations for such a system and discuss novel static, reversible and irreversible cross-couplings connected to this second velocity. We find a normal mode structure quite different compared to the static descriptions, as well as linear couplings between (active) flow and e.g. densities and concentrations due to the genuine two-fluid transport derivatives. On the other hand, we get, quite similar to the static case, a direct linear relation between the stress tensor and the structure tensor. This prominent ``active'' term is responsible for many active effects, meaning that our approach can describe those effects as well. In addition, we also deal with explicitly chiral systems, which are important for many active systems. In particular, we find an active flow-induced heat current specific for the dynamic chiral polar order.

  19. Activated Dynamics in Dense Model Nanocomposites

    NASA Astrophysics Data System (ADS)

    Xie, Shijie; Schweizer, Kenneth

    The nonlinear Langevin equation approach is applied to investigate the ensemble-averaged activated dynamics of small molecule liquids (or disconnected segments in a polymer melt) in dense nanocomposites under model isobaric conditions where the spherical nanoparticles are dynamically fixed. Fully thermalized and quenched-replica integral equation theory methods are employed to investigate the influence on matrix dynamics of the equilibrium and nonequilibrium nanocomposite structure, respectively. In equilibrium, the miscibility window can be narrow due to depletion and bridging attraction induced phase separation which limits the study of activated dynamics to regimes where the barriers are relatively low. In contrast, by using replica integral equation theory, macroscopic demixing is suppressed, and the addition of nanoparticles can induce much slower activated matrix dynamics which can be studied over a wide range of pure liquid alpha relaxation times, interfacial attraction strengths and ranges, particle sizes and loadings, and mixture microstructures. Numerical results for the mean activated relaxation time, transient localization length, matrix elasticity and kinetic vitrification in the nanocomposite will be presented.

  20. NDT of railway components using induction thermography

    NASA Astrophysics Data System (ADS)

    Netzelmann, U.; Walle, G.; Ehlen, A.; Lugin, S.; Finckbohner, M.; Bessert, S.

    2016-02-01

    Induction or eddy current thermography is used to detect surface cracks in ferritic steel. The technique is applied to detect surface cracks in rails from a moving test car. Cracks were detected at a train speed between 2 and 15 km/h. An automated demonstrator system for testing railway wheels after production is described. While the wheel is rotated, a robot guides the detection unit consisting of inductor and infrared camera over the surface.

  1. Detection of pathogenic gram negative bacteria using infrared thermography

    NASA Astrophysics Data System (ADS)

    Lahiri, B. B.; Divya, M. P.; Bagavathiappan, S.; Thomas, Sabu; Philip, John

    2012-11-01

    Detection of viable bacteria is of prime importance in all fields of microbiology and biotechnology. Conventional methods of enumerating bacteria are often time consuming and labor-intensive. All living organisms generate heat due to metabolic activities and hence, measurement of heat energy is a viable tool for detection and quantification of bacteria. In this article, we employ a non-contact and real time method - infrared thermography (IRT) for measurement of temperature variations in four clinically significant gram negative pathogenic bacteria, viz. Vibrio cholerae, Vibrio mimicus, Proteus mirabilis and Pseudomonas aeruginosa. We observe that, the energy content, defined as the ratio of heat generated by bacterial metabolic activities to the heat lost from the liquid medium to the surrounding, vary linearly with the bacterial concentration in all the four pathogenic bacteria. The amount of energy content observed in different species is attributed to their metabolisms and morphologies that affect the convection velocity and hence heat transport in the medium.

  2. Corrosion detection on pipelines by IR thermography

    NASA Astrophysics Data System (ADS)

    Bison, P.; Marinetti, S.; Cuogo, G.; Molinas, B.; Zonta, P.; Grinzato, E.

    2011-05-01

    IR thermography is applied to detect hidden corrosion on carbon steel pipelines for oil transportation. The research is oriented to set up a robust technique to carry out in situ the early detection of corroded zones that may evolve either towards leakage or failure. The use of thermography associated with a transient thermal technique is investigated on 12.2 mm thick samples, machined to artificially create a reduction of wall thickness that simulates the effect of real corrosion in pipes. The extension and depth of the artificial defects is controlled by ultrasounds which represents the reference for the results obtained by thermography. Two approaches are proposed: the first is based on the processing of a single thermogram taken at the optimum time after a finite pulse heating of a large area of the external surface; the second technique is carried out by scanning the pipeline by means of a device composed of a linear lamp and a thermographic camera which move jointly over the surface to test. A suitable reconstruction provides a map of the tested surface with possible hot spots in correspondence with the corroded areas. The analysis of the thermal problem by Finite Element Method is used to optimize the experimental parameters. The experimental results demonstrate a detection capability starting from 15 % of wall thickness reduction.

  3. Infrared Thermography User Group (IRUG) 2003 Meeting Proceedings

    SciTech Connect

    2003-10-01

    Infrared thermography is a key component of predictive maintenance programs for fossil and nuclear utilities. EPRI's Technology for Equipment Assessment and Maintenance (TEAM) group and their Maintenance Management & Technology (MM&T) program supported the 13th Infrared Thermography Users' Group (IRUG) meeting, which was hosted and also supported by Progress Energy.

  4. Spreading dynamics following bursty human activity patterns

    NASA Astrophysics Data System (ADS)

    Min, Byungjoon; Goh, K.-I.; Vazquez, Alexei

    2011-03-01

    We study the susceptible-infected model with power-law waiting time distributions P(τ)~τ-α, as a model of spreading dynamics under heterogeneous human activity patterns. We found that the average number of new infections n(t) at time t decays as a power law in the long-time limit, n(t)~t-β, leading to extremely slow prevalence decay. We also found that the exponent in the spreading dynamics β is related to that in the waiting time distribution α in a way depending on the interactions between agents but insensitive to the network topology. These observations are well supported by both the theoretical predictions and the long prevalence decay time in real social spreading phenomena. Our results unify individual activity patterns with macroscopic collective dynamics at the network level.

  5. Dual-band infrared thermography for quantitative nondestructive evaluation

    SciTech Connect

    Durbin, P.F.; Del Grande, N.K.; Dolan, K.W.; Perkins, D.E.; Shapiro, A.B.

    1993-04-01

    The authors have developed dual-band infrared (DBIR) thermography that is being applied to quantitative nondestructive evaluation (NDE) of aging aircraft. The DBIR technique resolves 0.2 degrees C surface temperature differences for inspecting interior flaws in heated aircraft structures. It locates cracks, corrosion sites, disbonds or delaminations in metallic laps and composite patches. By removing clutter from surface roughness effects, the authors clarify interpretation of subsurface flaws. To accomplish this, the authors ratio images recorded at two infrared bands, centered near 5 microns and 10 microns. These image ratios are used to decouple temperature patterns associated with interior flaw sites from spatially varying surface emissivity noise. They also discuss three-dimensional (3D) dynamic thermal imaging of structural flaws using dual-band infrared (DBIR) computed tomography. Conventional thermography provides single-band infrared images which are difficult to interpret. Standard procedures yield imprecise (or qualitative) information about subsurface flaw sites which are typically masked by surface clutter. They use a DBIR imaging technique pioneered at LLNL to capture the time history of surface temperature difference patterns for flash-heated targets. They relate these patterns to the location, size, shape and depth of subsurface flaws. They have demonstrated temperature accuracies of 0.2{degree}C, timing synchronization of 3 ms (after onset of heat flash) and intervals of 42 ms, between images, during an 8 s cooling (and heating) interval characterizing the front (and back) surface temperature-time history of an epoxy-glue disbond site in a flash-heated aluminum lap joint.

  6. Shuttle Entry Imaging Using Infrared Thermography

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas; Berry, Scott; Alter, Stephen; Blanchard, Robert; Schwartz, Richard; Ross, Martin; Tack, Steve

    2007-01-01

    During the Columbia Accident Investigation, imaging teams supporting debris shedding analysis were hampered by poor entry image quality and the general lack of information on optical signatures associated with a nominal Shuttle entry. After the accident, recommendations were made to NASA management to develop and maintain a state-of-the-art imagery database for Shuttle engineering performance assessments and to improve entry imaging capability to support anomaly and contingency analysis during a mission. As a result, the Space Shuttle Program sponsored an observation campaign to qualitatively characterize a nominal Shuttle entry over the widest possible Mach number range. The initial objectives focused on an assessment of capability to identify/resolve debris liberated from the Shuttle during entry, characterization of potential anomalous events associated with RCS jet firings and unusual phenomenon associated with the plasma trail. The aeroheating technical community viewed the Space Shuttle Program sponsored activity as an opportunity to influence the observation objectives and incrementally demonstrate key elements of a quantitative spatially resolved temperature measurement capability over a series of flights. One long-term desire of the Shuttle engineering community is to calibrate boundary layer transition prediction methodologies that are presently part of the Shuttle damage assessment process using flight data provided by a controlled Shuttle flight experiment. Quantitative global imaging may offer a complementary method of data collection to more traditional methods such as surface thermocouples. This paper reviews the process used by the engineering community to influence data collection methods and analysis of global infrared images of the Shuttle obtained during hypersonic entry. Emphasis is placed upon airborne imaging assets sponsored by the Shuttle program during Return to Flight. Visual and IR entry imagery were obtained with available airborne

  7. Infra-red thermography in the assessment of sacro-iliac inflammation.

    PubMed

    Grennan, D M; Caygill, L

    1982-05-01

    In a cross-sectional study designed to investigate the sensitivity of infra-red thermography in the detection of sacro-iliac regions were examined by thermography in a group of patients with ankylosing spondylitis and compared with normal volunteers and patients with other causes of low back pain. Thermograms were recorded both quantitatively via profile measurements across the sacro-iliac regions and sacrum and qualitatively via the pattern recorded by photography. Sacro-iliac disease activity was recorded clinically on the same day and was low overall in the patients examined. Thirteen of the 30 ankylosing spondylitis patients were abnormal thermographically either by profile or pattern measurements. None of the 13 patients with other causes of low back pain had increased sacro-iliac activity on thermography. None of four patients without X-ray evidence of sacro-iliitis was abnormal thermographically but there was a trend for increasing thermographic activity to be associated with increasing clinical activity. It was concluded that the thermographic technique examined was of little help in the diagnosis of early sacro-iliitis but might be more helpful in the objective serial assessment of sacro-iliitis in individual patients with active disease.

  8. Deuterium reveals the dynamics of notch activation.

    PubMed

    Raphael, Kopan

    2011-04-13

    Notch activation requires unfolding of a juxtamembrane negative regulatory domain (NRR). Tiyanont et al. (2011) analyzed the dynamics of NRR unfolding in the presence of EGTA. As predicted from the crystal structure and deletion analyses, the lin-Notch repeats unfold first, facilitating access by ADAM proteases. Surprisingly, the heterodimerization domain remains stable.

  9. Particle dynamics in an active medium

    SciTech Connect

    Schaechter, L.

    1997-03-01

    When a point-charge moves in an active medium it can gain energy at the expense of that stored in the medium. The maximum gradient is evaluated and its relation to the energy stored in the medium is established. The dynamics of a distribution of electrons was also examined and it is reported here. {copyright} {ital 1997 American Institute of Physics.}

  10. Understanding human dynamics in microblog posting activities

    NASA Astrophysics Data System (ADS)

    Jiang, Zhihong; Zhang, Yubao; Wang, Hui; Li, Pei

    2013-02-01

    Human activity patterns are an important issue in behavior dynamics research. Empirical evidence indicates that human activity patterns can be characterized by a heavy-tailed inter-event time distribution. However, most researchers give an understanding by only modeling the power-law feature of the inter-event time distribution, and those overlooked non-power-law features are likely to be nontrivial. In this work, we propose a behavior dynamics model, called the finite memory model, in which humans adaptively change their activity rates based on a finite memory of recent activities, which is driven by inherent individual interest. Theoretical analysis shows a finite memory model can properly explain various heavy-tailed inter-event time distributions, including a regular power law and some non-power-law deviations. To validate the model, we carry out an empirical study based on microblogging activity from thousands of microbloggers in the Celebrity Hall of the Sina microblog. The results show further that the model is reasonably effective. We conclude that finite memory is an effective dynamics element to describe the heavy-tailed human activity pattern.

  11. Air-coupled acoustic thermography for in-situ evaluation

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N. (Inventor); Winfree, William P. (Inventor); Yost, William T. (Inventor)

    2010-01-01

    Acoustic thermography uses a housing configured for thermal, acoustic and infrared radiation shielding. For in-situ applications, the housing has an open side adapted to be sealingly coupled to a surface region of a structure such that an enclosed chamber filled with air is defined. One or more acoustic sources are positioned to direct acoustic waves through the air in the enclosed chamber and towards the surface region. To activate and control each acoustic source, a pulsed signal is applied thereto. An infrared imager focused on the surface region detects a thermal image of the surface region. A data capture device records the thermal image in synchronicity with each pulse of the pulsed signal such that a time series of thermal images is generated. For enhanced sensitivity and/or repeatability, sound and/or vibrations at the surface region can be used in feedback control of the pulsed signal applied to the acoustic sources.

  12. Random bursts determine dynamics of active filaments.

    PubMed

    Weber, Christoph A; Suzuki, Ryo; Schaller, Volker; Aranson, Igor S; Bausch, Andreas R; Frey, Erwin

    2015-08-25

    Constituents of living or synthetic active matter have access to a local energy supply that serves to keep the system out of thermal equilibrium. The statistical properties of such fluctuating active systems differ from those of their equilibrium counterparts. Using the actin filament gliding assay as a model, we studied how nonthermal distributions emerge in active matter. We found that the basic mechanism involves the interplay between local and random injection of energy, acting as an analog of a thermal heat bath, and nonequilibrium energy dissipation processes associated with sudden jump-like changes in the system's dynamic variables. We show here how such a mechanism leads to a nonthermal distribution of filament curvatures with a non-Gaussian shape. The experimental curvature statistics and filament relaxation dynamics are reproduced quantitatively by stochastic computer simulations and a simple kinetic model.

  13. Random bursts determine dynamics of active filaments

    PubMed Central

    Weber, Christoph A.; Suzuki, Ryo; Schaller, Volker; Aranson, Igor S.; Bausch, Andreas R.; Frey, Erwin

    2015-01-01

    Constituents of living or synthetic active matter have access to a local energy supply that serves to keep the system out of thermal equilibrium. The statistical properties of such fluctuating active systems differ from those of their equilibrium counterparts. Using the actin filament gliding assay as a model, we studied how nonthermal distributions emerge in active matter. We found that the basic mechanism involves the interplay between local and random injection of energy, acting as an analog of a thermal heat bath, and nonequilibrium energy dissipation processes associated with sudden jump-like changes in the system’s dynamic variables. We show here how such a mechanism leads to a nonthermal distribution of filament curvatures with a non-Gaussian shape. The experimental curvature statistics and filament relaxation dynamics are reproduced quantitatively by stochastic computer simulations and a simple kinetic model. PMID:26261319

  14. On the Dynamics of Active Aging

    PubMed Central

    Schroots, Johannes J. F.

    2012-01-01

    The conceptual basis of active aging is extended with a dynamic systems model, called Janus. The Janus model accounts for the life-course dynamics of simple and more complex growth and decline functions, on the strength of three principles. The first principle of transition states that the unitary lifespan trajectory of development and aging is the product of two complementary forces, growth and senescence, which are effective from conception until death. The first principle solves the traditional problem of the age at which development ends and the process of aging starts. The second and third principles of peak capacity and peak time refer, respectively, to the impact of growth rate (peak capacity) and rate of senescence (peak time) on the life-course of dynamic systems. The validity of the Janus model is demonstrated by simulating the empirical lifespan trajectories of functional capacity, intelligence, and mortality. The Janus model contributes to the concept of active aging by underlining the dynamic limits of human nature, by stimulating effective policies for promoting active aging in the first half of life, and by emphasizing the growth potential of older people in the second half. PMID:22973306

  15. Implementing Recommendations of the Columbia Accident Investigation Board: Development of On-Orbit IR Thermography

    NASA Technical Reports Server (NTRS)

    Ottens, Brian P.; Parker, Bradford; Stephan, Ryan

    2005-01-01

    One of NASA's Space Shuttle Return-to-Flight (RTF) efforts has been to develop thermography for the on-orbit inspection of the Reinforced Carbon Carbon (RCC) portion of the Orbiter Wing Leading Edge (WLE). This paper addresses the capability of thermography to detect cracks in RCC by using in-plane thermal gradients that naturally occur on-orbit. Crack damage, which can result from launch debris impact, is a detection challenge for other on-orbit sensors under consideration for RTF, such as the Intensified Television Camera and Laser Dynamic Range Imager. We studied various cracks in RCC, both natural and simulated, along with material characteristics, such as emissivity uniformity, in steady-state thermography. Severity of crack, such as those likely and unlikely to cause burn through were tested, both in-air and in-vacuum, and the goal of this procedure was to assure crew and vehicle safety during reentry by identification and quantification of a damage condition while on-orbit. Expected thermal conditions are presented in typical shuttle orbits, and the expected damage signatures for each scenario are presented. Finally, through statistical signal detection, our results show that even at very low in-plane thermal gradients, we are able to detect damage at or below the threshold for fatality in the most critical sections of the WLE, with a confidence exceeding 1 in 10,000 probability of false negative.

  16. Implementing Recommendations of the Columbia Accident Investigation Board - Development of on-Orbit RCC Thermography

    NASA Technical Reports Server (NTRS)

    Ottens, Brian; Parker, Brad; Stephen, Ryan

    2005-01-01

    One of NASA s Space Shuttle Return-to-Flight (RTF) efforts has been to develop thermography for the on-orbit inspection of the Reinforced Carbon Carbon (RCC) portion of the Orbiter Wing Leading Edge (WLE). This paper addresses the capability of thermography to detect cracks in RCC by using in-plane thermal gradients that naturally occur on-orbit. Crack damage, which can result from launch debris impact, is a detection challenge for other on-orbit sensors under consideration for RTF, such as the Intensified Television Camera and Laser Dynamic Range Imager. We studied various cracks in RCC, both natural and simulated, along with material characteristics, such as emissivity uniformity, in steady-state thermography. Severity of crack, such as those likely and unlikely to cause burn through were tested, both in-air and in-vacuum, and the goal of this procedure was to assure crew and vehicle safety during re-entry by identification and quantification of a damage condition while on-orbit. Expected thermal conditions are presented in typical shuttle orbits, and the expected damage signatures for each scenario are presented. Finally, through statistical signal detection, our results show that even at very low in-plane thermal gradients, we are able to detect damage at or below the threshold for fatality in the most critical sections of the WLE, with a confidence exceeding 1 in 10,000 probability of false negative.

  17. Line scanning thermography for rapid nondestructive inspection of large scale composites

    SciTech Connect

    Chung, S.; Ley, O.; Godinez, V.; Bandos, B.

    2011-06-23

    As next generation structures are utilizing larger amounts of composite materials, a rigorous and reliable method is needed to inspect these structures in order to prevent catastrophic failure and extend service life. Current inspection methods, such as ultrasonic, generally require extended down time and man hours as they are typically carried out via point-by-point measurements. A novel Line Scanning Thermography (LST) System has been developed for the non-contact, large-scale field inspection of composite structures with faster scanning times than conventional thermography systems. LST is a patented dynamic thermography technique where the heat source and thermal camera move in tandem, which allows the continuous scan of long surfaces without the loss of resolution. The current system can inspect an area of 10 in{sup 2} per 1 second, and has a resolution of 0.05x0.03 in{sup 2}. Advanced data gathering protocols have been implemented for near-real time damage visualization and post-analysis algorithms for damage interpretation. The system has been used to successfully detect defects (delamination, dry areas) in fiber-reinforced composite sandwich panels for Navy applications, as well as impact damage in composite missile cases and armor ceramic panels.

  18. Line Scanning Thermography for Rapid Nondestructive Inspection of Large Scale Composites

    NASA Astrophysics Data System (ADS)

    Chung, S.; Ley, O.; Godinez, V.; Bandos, B.

    2011-06-01

    As next generation structures are utilizing larger amounts of composite materials, a rigorous and reliable method is needed to inspect these structures in order to prevent catastrophic failure and extend service life. Current inspection methods, such as ultrasonic, generally require extended down time and man hours as they are typically carried out via point-by-point measurements. A novel Line Scanning Thermography (LST) System has been developed for the non-contact, large-scale field inspection of composite structures with faster scanning times than conventional thermography systems. LST is a patented dynamic thermography technique where the heat source and thermal camera move in tandem, which allows the continuous scan of long surfaces without the loss of resolution. The current system can inspect an area of 10 in2 per 1 second, and has a resolution of 0.05×0.03 in2. Advanced data gathering protocols have been implemented for near-real time damage visualization and post-analysis algorithms for damage interpretation. The system has been used to successfully detect defects (delamination, dry areas) in fiber-reinforced composite sandwich panels for Navy applications, as well as impact damage in composite missile cases and armor ceramic panels.

  19. Reconstruction of a nonlinear heat transfer law from uncomplete boundary data by means of infrared thermography

    NASA Astrophysics Data System (ADS)

    Clarelli, Fabrizio; Inglese, Gabriele

    2016-11-01

    Heat exchange between a conducting plate and the environment is described here by means of an unknown nonlinear function F of the temperature u. In this paper we construct a method for recovering F by means of polynomial expansion, perturbation theory and the toolbox of thermal inverse problems. We test our method on two examples: In the first one, we heat the plate (initially at 20 ^\\circ {{C}}) from one side, read the temperature on the same side and identify the heat exchange law on the opposite side (active thermography); in the second example we measure the temperature of one side of the plate (initially at 1500 ^\\circ {{C}}) and study the heat exchange while cooling (passive thermography).

  20. Lasers and infrared thermography: advantageous cooperation.

    PubMed

    Vainer, Boris G

    2016-12-01

    In a brief review, the beneficial outcomes that have arisen from simultaneous use of laser- and infrared thermography (IRT)-based techniques are demonstrated. The most recent literary and original experimental results collected from different research and practical areas are presented. It is shown that modern IRT acts as an indispensable laser partner in various biomedical and many other applications and technologies. And vice versa, the laser-based methods and techniques often serve as an appropriate research instrument enriching IRT measurement data with independently obtained information.

  1. Infrared thermography in the restoration of cultural properties

    NASA Astrophysics Data System (ADS)

    Carlomagno, Giovanni M.; Carosena, Meola

    2001-03-01

    Some of the work carried out at DETEC on the use of infrared thermography in the architectural restoration field is examined. Three different techniques, pulse thermography (PT), modulated thermography (MT) and pulse phase thermography (PPT) are analyzed through the control of some art treasures such as mosaics and frescoes. In particular, the following artifacts are considered: mosaics covering some external walls of the building of the Faculty of Engineering of Naples, frescoes in the Duomo of Sarno, frescoes in the Cripta SS. Stefani in Vaste (Le), mosaics and frescoes in the Archeological Museum of Naples coming from Pompeii and Ruvo. It is found that the choice of the technique depends on the specific surface to be tested: if only qualitative information about detachments and cracks are needed the pulse thermography is sufficient; if the surface is not very sensitive to temperature rising, the pulse phase thermography can be applied which gives information about the location of the defected zone. If instead, the analysis regards rare art treasures, lockin thermography is the only response.

  2. Dynamic patterns of academic forum activities

    NASA Astrophysics Data System (ADS)

    Zhao, Zhi-Dan; Gao, Ya-Chun; Cai, Shi-Min; Zhou, Tao

    2016-11-01

    A mass of traces of human activities show rich dynamic patterns. In this article, we comprehensively investigate the dynamic patterns of 50 thousands of researchers' activities in Sciencenet, the largest multi-disciplinary academic community in China. Through statistical analyses, we found that (i) there exists a power-law scaling between the frequency of visits to an academic forum and the number of corresponding visitors, with the exponent being about 1.33; (ii) the expansion process of academic forums obeys the Heaps' law, namely the number of distinct visited forums to the number of visits grows in a power-law form with exponent being about 0.54; (iii) the probability distributions of time intervals and the number of visits taken to revisit the same academic forum both follow power-laws, indicating the existence of memory effect in academic forum activities. On the basis of these empirical results, we propose a dynamic model that incorporates the exploration, preferential return with memory effect, which can well reproduce the observed scaling laws.

  3. [Infrared thermography and electroneuromyography in occupational polyneuropathy diagnosis].

    PubMed

    Loginova, N N; Voitenkov, V B

    2013-01-01

    We have evaluated diagnostic value of the combination of infrared thermography and electromyography in professional polyneuropathy diagnosis. 20 patients with working-hand syndrome and 5 controls were enrolled. In 18 cases (90%) both methods were sensitive: on EMG CNV slowing and amplitudes drop were seen, as well as M-response shape changes, and thermography have detected focal hypothermia in hands in some cases and appearance of obscure hypothermia in others. Thus, both methods demonstrated good sensitivity. We recommend using thermography as a screening test and EMG as a following investigation.

  4. Flash Infrared Thermography Contrast Data Analysis Technique

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay

    2014-01-01

    This paper provides information on an IR Contrast technique that involves extracting normalized contrast versus time evolutions from the flash thermography inspection infrared video data. The analysis calculates thermal measurement features from the contrast evolution. In addition, simulation of the contrast evolution is achieved through calibration on measured contrast evolutions from many flat-bottom holes in the subject material. The measurement features and the contrast simulation are used to evaluate flash thermography data in order to characterize delamination-like anomalies. The thermal measurement features relate to the anomaly characteristics. The contrast evolution simulation is matched to the measured contrast evolution over an anomaly to provide an assessment of the anomaly depth and width which correspond to the depth and diameter of the equivalent flat-bottom hole (EFBH) similar to that used as input to the simulation. A similar analysis, in terms of diameter and depth of an equivalent uniform gap (EUG) providing a best match with the measured contrast evolution, is also provided. An edge detection technique called the half-max is used to measure width and length of the anomaly. Results of the half-max width and the EFBH/EUG diameter are compared to evaluate the anomaly. The information provided here is geared towards explaining the IR Contrast technique. Results from a limited amount of validation data on reinforced carbon-carbon (RCC) hardware are included in this paper.

  5. Dynamics and Emergent Structures in Active Fluids

    NASA Astrophysics Data System (ADS)

    Baskaran, Aparna

    2014-03-01

    In this talk, we consider an active fluid of colloidal sized particles, with the primary manifestation of activity being a self-replenishing velocity along one body axis of the particle. This is a minimal model for varied systems such as bacterial colonies, cytoskeletal filament motility assays vibrated granular particles and self propelled diffusophoretic colloids, depending on the nature of interaction among the particles. Using microscopic Brownian dynamics simulations, coarse-graining using the tools of non-equilibrium statistical mechanics and analysis of macroscopic hydrodynamic theories, we characterize emergent structures seen in these systems, which are determined by the symmetry of the interactions among the active units, such as propagating density waves, dense stationary bands, asters and phase separated isotropic clusters. We identify a universal mechanism, termed ``self-regulation,'' as the underlying physics that leads to these structures in diverse systems. Support from NSF through DMR-1149266 and DMR-0820492.

  6. Dynamic structure of active nematic shells

    PubMed Central

    Zhang, Rui; Zhou, Ye; Rahimi, Mohammad; de Pablo, Juan J.

    2016-01-01

    When a thin film of active, nematic microtubules and kinesin motor clusters is confined on the surface of a vesicle, four +1/2 topological defects oscillate in a periodic manner between tetrahedral and planar arrangements. Here a theoretical description of nematics, coupled to the relevant hydrodynamic equations, is presented here to explain the dynamics of active nematic shells. In extensile microtubule systems, the defects repel each other due to elasticity, and their collective motion leads to closed trajectories along the edges of a cube. That motion is accompanied by oscillations of their velocities, and the emergence and annihilation of vortices. When the activity increases, the system enters a chaotic regime. In contrast, for contractile systems, which are representative of some bacterial suspensions, a hitherto unknown static structure is predicted, where pairs of defects attract each other and flows arise spontaneously. PMID:27869130

  7. Dynamic structure of active nematic shells

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Zhou, Ye; Rahimi, Mohammad; de Pablo, Juan J.

    2016-11-01

    When a thin film of active, nematic microtubules and kinesin motor clusters is confined on the surface of a vesicle, four +1/2 topological defects oscillate in a periodic manner between tetrahedral and planar arrangements. Here a theoretical description of nematics, coupled to the relevant hydrodynamic equations, is presented here to explain the dynamics of active nematic shells. In extensile microtubule systems, the defects repel each other due to elasticity, and their collective motion leads to closed trajectories along the edges of a cube. That motion is accompanied by oscillations of their velocities, and the emergence and annihilation of vortices. When the activity increases, the system enters a chaotic regime. In contrast, for contractile systems, which are representative of some bacterial suspensions, a hitherto unknown static structure is predicted, where pairs of defects attract each other and flows arise spontaneously.

  8. Development of nondestructive crack inspection technique for conveyance roll using vibro-thermography

    NASA Astrophysics Data System (ADS)

    Imanishi, Daisuke; Nishina, Yoshiaki; Yoshinaga, Youichi

    2012-06-01

    In recent study, active thermography has reached a high status as an easy and speedy defects inspection method in a NDT field. This paper newly proposes a non-disassembly and non-contact NDT method using the Vibro-Thermography for detecting and evaluating of fatigue cracks at neck parts of the conveyance roll in the steel making plant. In this method, fatigue cracks are detected as localized high temperature areas caused by friction and impact at crack surfaces with an infrared thermography, applying a high-amplitude ultrasonic vibration. In the case of the roll surface is covered with lubricating grease or dust, the crack detectability is shown. Self reference lock-in data processing technique is applied for improvement of signal noise ratio in the crack detection process. This technique makes it possible to perform correlating process without an external reference signal. Time and cost saving inspection method in the neck part of conveyance roll is carried out using this NDT technique.

  9. Comparative Sensitivity Analysis of Muscle Activation Dynamics

    PubMed Central

    Rockenfeller, Robert; Günther, Michael; Schmitt, Syn; Götz, Thomas

    2015-01-01

    We mathematically compared two models of mammalian striated muscle activation dynamics proposed by Hatze and Zajac. Both models are representative for a broad variety of biomechanical models formulated as ordinary differential equations (ODEs). These models incorporate parameters that directly represent known physiological properties. Other parameters have been introduced to reproduce empirical observations. We used sensitivity analysis to investigate the influence of model parameters on the ODE solutions. In addition, we expanded an existing approach to treating initial conditions as parameters and to calculating second-order sensitivities. Furthermore, we used a global sensitivity analysis approach to include finite ranges of parameter values. Hence, a theoretician striving for model reduction could use the method for identifying particularly low sensitivities to detect superfluous parameters. An experimenter could use it for identifying particularly high sensitivities to improve parameter estimation. Hatze's nonlinear model incorporates some parameters to which activation dynamics is clearly more sensitive than to any parameter in Zajac's linear model. Other than Zajac's model, Hatze's model can, however, reproduce measured shifts in optimal muscle length with varied muscle activity. Accordingly we extracted a specific parameter set for Hatze's model that combines best with a particular muscle force-length relation. PMID:26417379

  10. Electromagnetic imaging of dynamic brain activity

    SciTech Connect

    Mosher, J.; Leahy, R. . Dept. of Electrical Engineering); Lewis, P.; Lewine, J.; George, J. ); Singh, M. . Dept. of Radiology)

    1991-01-01

    Neural activity in the brain produces weak dynamic electromagnetic fields that can be measured by an array of sensors. Using a spatio-temporal modeling framework, we have developed a new approach to localization of multiple neural sources. This approach is based on the MUSIC algorithm originally developed for estimating the direction of arrival of signals impinging on a sensor array. We present applications of this technique to magnetic field measurements of a phantom and of a human evoked somatosensory response. The results of the somatosensory localization are mapped onto the brain anatomy obtained from magnetic resonance images.

  11. Electromagnetic imaging of dynamic brain activity

    SciTech Connect

    Mosher, J.; Leahy, R.; Lewis, P.; Lewine, J.; George, J.; Singh, M.

    1991-12-31

    Neural activity in the brain produces weak dynamic electromagnetic fields that can be measured by an array of sensors. Using a spatio-temporal modeling framework, we have developed a new approach to localization of multiple neural sources. This approach is based on the MUSIC algorithm originally developed for estimating the direction of arrival of signals impinging on a sensor array. We present applications of this technique to magnetic field measurements of a phantom and of a human evoked somatosensory response. The results of the somatosensory localization are mapped onto the brain anatomy obtained from magnetic resonance images.

  12. Infrared Thermography for Temperature Measurement and Non-Destructive Testing

    PubMed Central

    Usamentiaga, Rubèn; Venegas, Pablo; Guerediaga, Jon; Vega, Laura; Molleda, Julio; Bulnes, Francisco G.

    2014-01-01

    The intensity of the infrared radiation emitted by objects is mainly a function of their temperature. In infrared thermography, this feature is used for multiple purposes: as a health indicator in medical applications, as a sign of malfunction in mechanical and electrical maintenance or as an indicator of heat loss in buildings. This paper presents a review of infrared thermography especially focused on two applications: temperature measurement and non-destructive testing, two of the main fields where infrared thermography-based sensors are used. A general introduction to infrared thermography and the common procedures for temperature measurement and non-destructive testing are presented. Furthermore, developments in these fields and recent advances are reviewed. PMID:25014096

  13. Infrared thermography for temperature measurement and non-destructive testing.

    PubMed

    Usamentiaga, Rubén; Venegas, Pablo; Guerediaga, Jon; Vega, Laura; Molleda, Julio; Bulnes, Francisco G

    2014-07-10

    The intensity of the infrared radiation emitted by objects is mainly a function of their temperature. In infrared thermography, this feature is used for multiple purposes: as a health indicator in medical applications, as a sign of malfunction in mechanical and electrical maintenance or as an indicator of heat loss in buildings. This paper presents a review of infrared thermography especially focused on two applications: temperature measurement and non-destructive testing, two of the main fields where infrared thermography-based sensors are used. A general introduction to infrared thermography and the common procedures for temperature measurement and non-destructive testing are presented. Furthermore, developments in these fields and recent advances are reviewed.

  14. Airborne thermography of temperature patterns in sugar beet piles

    NASA Technical Reports Server (NTRS)

    Moore, D. G.; Bichsel, S.

    1975-01-01

    An investigation was conducted to evaluate the use of thermography for locating spoilage areas (chimneys) within storage piles and to subsequently use the information for the scheduling of their processing. Thermal-infrared quantitative scanner data were acquired initially on January 16, 1975, over the storage piles at Moorhead, Minnesota, both during the day and predawn. Photographic data were acquired during the day mission to evaluate the effect of uneven snow cover on the thermal emittance, and the predawn thermography was used to locate potential chimneys. The piles were examined the day prior for indications of spoilage areas, and the ground crew indicated that no spoilage areas were located using their existing methods. Nine spoilage areas were interpreted from the thermography. The piles were rechecked by ground methods three days following the flights. Six of the nine areas delineated by thermography were actual spoilage areas.

  15. Thermography in mass screening investigations of industrial workers

    NASA Astrophysics Data System (ADS)

    Chehter, A. I.; Ginsburg, L. I.; Traktinsky, A. G.

    1993-11-01

    The role of thermography in screening, directed to diagnose breast diseases, chronic tonsillitis, neurocirculatory dystonia, gall bladder dyskinesia, sinusitis, and to detect the character of influence of harmful factors on workers organisms is studied. The investigations demonstrate a possibility of a successful utilization of thermography in mass prophylactive examinations in order to diagnose these diseases, but the problem of breast tumors diagnostics demands the following investigations.

  16. Optically and non-optically excited thermography for composites: A review

    NASA Astrophysics Data System (ADS)

    Yang, Ruizhen; He, Yunze

    2016-03-01

    Composites, such as glass fiber reinforced polymer (GFRP) and carbon fiber reinforced polymer (CFRP), and adhesive bonding are being increasingly used in fields of aerospace, renewable energy, civil and architecture, and other industries. Flaws and damages are inevitable during either fabrication or lifetime of composites structures or components. Thus, nondestructive testing (NDT) are extremely required to prevent failures and to increase reliability of composite structures or components in both manufacture and in-service inspection. Infrared thermography techniques including pulsed thermography, pulsed phase thermography, and lock-in thermography have shown the great potential and advantages. Besides conventional optical thermography, other sources such as laser, eddy current, microwave, and ultrasound excited thermography are drawing increasingly attentions for composites. In this work, a fully, in-depth and comprehensive review of thermography NDT techniques for composites inspection was conducted based on an orderly and concise literature survey and detailed analysis. Firstly, basic concepts for thermography NDT were defined and introduced, such as volume heating thermography. Next, the developments of conventional optic, laser, eddy current, microwave, and ultrasound thermography for composite inspection were reviewed. Then, some case studies for scanning thermography were also reviewed. After that, the strengths and limitations of thermography techniques were concluded through comparison studies. At last, some research trends were predicted. This work containing critical overview, detailed comparison and extensive list of references will disseminates knowledge between users, manufacturers, designers and researchers involved in composite structures or components inspection by means of thermography NDT techniques.

  17. Bonding quality evaluation of wind turbine blades by pulsed thermography

    NASA Astrophysics Data System (ADS)

    He, Rui-gang; Kong, De-juan; Zeng, Zhi; Tao, Ning; Zhang, Cun-lin; Feng, Li-chun

    2011-08-01

    The glue defects of the wind turbine blades which are composed of the glass fiber reinforced plastic (GFRP) composite plates make its strength greatly reduced, so security issues could be caused. To improve the safety of wind turbine blades, nondestructive testing technique using pulsed thermography is being investigated in this study. The results of ultrasonic C scan test were compared with the results of thermography. The current results indicated that both methods can successfully detect two gluing situations. However, the inspect specimens need to be putted in the water in the detection process by ultrasonic C scan, and the detection time lasts much longer than pulsed thermography. And in situ applications, the measured wind turbine blades are normally in the size of several tens meter, and also only one side is available for the inspection especially at the tip of blades. Thus, ultrasonic C scan of current experimental setup is not suitable for the applications in the field. Pulsed thermography is not necessary to contact with inspected specimens. The infrared results by pulsed thermography indicate that the shape and size of deficiency glue defects in the specimens show good agreement with the real situation, so it is more suitable for the inspection in the field. The preliminary results in this study indicate that pulse thermography can be used to detect glue faults of GFRP which are not too thick.

  18. Dynamics of two interacting active Janus particles

    NASA Astrophysics Data System (ADS)

    Bayati, Parvin; Najafi, Ali

    2016-04-01

    Starting from a microscopic model for a spherically symmetric active Janus particle, we study the interactions between two such active motors. The ambient fluid mediates a long range hydrodynamic interaction between two motors. This interaction has both direct and indirect hydrodynamic contributions. The direct contribution is due to the propagation of fluid flow that originated from a moving motor and affects the motion of the other motor. The indirect contribution emerges from the re-distribution of the ionic concentrations in the presence of both motors. Electric force exerted on the fluid from this ionic solution enhances the flow pattern and subsequently changes the motion of both motors. By formulating a perturbation method for very far separated motors, we derive analytic results for the translation and rotational dynamics of the motors. We show that the overall interaction at the leading order modifies the translational and rotational speeds of motors which scale as O (" separators=" [ 1 / D ] 3 ) and O (" separators=" [ 1 / D ] 4 ) with their separation, respectively. Our findings open up the way for studying the collective dynamics of synthetic micro-motors.

  19. On-orbit Passive Thermography

    NASA Technical Reports Server (NTRS)

    Howell, Patricia A.; Winfree, William P.; Cramer, K. Elliott

    2008-01-01

    On July 12, 2006, British-born astronaut Piers Sellers became the first person to conduct thermal nondestructive evaluation experiments in space, demonstrating the feasibility of a new tool for detecting damage to the reinforced carbon-carbon (RCC) structures of the Shuttle. This new tool was an EVA (Extravehicular Activity, or spacewalk) compatible infrared camera developed by NASA engineers. Data was collected both on the wing leading edge of the Orbiter and on pre-damaged samples mounted in the Shuttle s cargo bay. A total of 10 infrared movies were collected during the EVA totaling over 250 megabytes of data. Images were downloaded from the orbiting Shuttle to Johnson Space Center for analysis and processing. Results are shown to be comparable to ground-based thermal inspections performed in the laboratory with the same type of camera and simulated solar heating. The EVA camera system detected flat-bottom holes as small as 2.54cm in diameter with 50% material loss from the back (hidden) surface in RCC during this first test of the EVA IR Camera. Data for the time history of the specimen temperature and the capability of the inspection system for imaging impact damage are presented.

  20. Convective heat transfer and infrared thermography.

    PubMed

    Carlomagno, Giovanni M; Astarita, Tommaso; Cardone, Gennaro

    2002-10-01

    Infrared (IR) thermography, because of its two-dimensional and non-intrusive nature, can be exploited in industrial applications as well as in research. This paper deals with measurement of convective heat transfer coefficients (h) in three complex fluid flow configurations that concern the main aspects of both internal and external cooling of turbine engine components: (1) flow in ribbed, or smooth, channels connected by a 180 degrees sharp turn, (2) a jet in cross-flow, and (3) a jet impinging on a wall. The aim of this study was to acquire detailed measurements of h distribution in complex flow configurations related to both internal and external cooling of turbine components. The heated thin foil technique, which involves the detection of surface temperature by means of an IR scanning radiometer, was exploited to measure h. Particle image velocimetry was also used in one of the configurations to precisely determine the velocity field.

  1. Angular effects on thermochromic liquid crystal thermography

    NASA Astrophysics Data System (ADS)

    Kodzwa, Paul M.; Eaton, John K.

    2007-12-01

    This paper directly discusses the effects of lighting and viewing angles on liquid crystal thermography. This is because although thermochromic liquid crystals (TLCs) are a widely-used and accepted tool in heat transfer research, little effort has been directed to analytically describing these effects. Such insight is invaluable for the development of effective mitigation strategies. Using analytical relationships that describe the perceived color shift, a systematic manner of improving the performance of a TLC system is presented. This is particularly relevant for applications where significant variations in lighting and/or viewing angles are expected (such as a highly curved surface). This discussion includes an examination of the importance of the definition of the hue angle used to calibrate the color of a TLC-painted surface. The theoretical basis of the validated high-accuracy calibration approach reported by Kodzwa et al. (Exp Fluids s00348-007-0310-6, 2007) is presented.

  2. Automated Spot Weld Inspection using Infrared Thermography

    SciTech Connect

    Chen, Jian; Zhang, Wei; Yu, Zhenzhen; Feng, Zhili

    2012-01-01

    An automated non-contact and non-destructive resistance spot weld inspection system based on infrared (IR) thermography was developed for post-weld applications. During inspection, a weld coupon was heated up by an auxiliary induction heating device from one side of the weld, while the resulting thermal waves on the other side were observed by an IR camera. The IR images were analyzed to extract a thermal signature based on normalized heating time, which was then quantitatively correlated to the spot weld nugget size. The use of normalized instead of absolute IR intensity was found to be useful in minimizing the sensitivity to the unknown surface conditions and environment interference. Application of the IR-based inspection system to different advanced high strength steels, thickness gauges and coatings were discussed.

  3. INFRARED THERMOGRAPHY OF CUTANEOUS MELANOMA METASTASES

    PubMed Central

    Shada, Amber L.; Dengel, Lynn T.; Petroni, Gina R.; Smolkin, Mark E.; Acton, Scott; Slingluff, Craig L.

    2014-01-01

    Background Differentiating melanoma metastasis from benign cutaneous lesions currently requires biopsy or costly imaging, such as positron emission tomography scans. Melanoma metastases have been observed to be subjectively warmer than similarly appearing benign lesions. We hypothesized that infrared (IR) thermography would be sensitive and specific in differentiating palpable melanoma metastases from benign lesions. Materials and methods Seventy-four patients (36 females and 38 males) had 251 palpable lesions imaged for this pilot study. Diagnosis was determined using pathologic confirmation or clinical diagnosis. Lesions were divided into size strata for analysis: 0–5, >5–15, >15–30, and >30 mm. Images were scored on a scale from −1 (colder than the surrounding tissue) to +3 (significantly hotter than the surrounding tissue). Sensitivity and specificity were calculated for each stratum. Logistical challenges were scored. Results IR imaging was able to determine the malignancy of small (0–5 mm) lesions with a sensitivity of 39% and specificity of 100%. For lesions >5–15 mm, sensitivity was 58% and specificity 98%. For lesions >15–30 mm, sensitivity was 95% and specificity 100%, and for lesions >30 mm, sensitivity was 78% and specificity 89%. The positive predictive value was 88%–100% across all strata, and the negative predictive value was 95% for >15–30 mm lesions and 80% for >30 mm lesions. Conclusions Malignant lesions >15 mm were differentiated from benign lesions with excellent sensitivity and specificity. IR imaging was well tolerated and feasible in a clinic setting. This pilot study shows promise in the use of thermography for the diagnosis of malignant melanoma with further potential as a noninvasive tool to follow tumor responses to systemic therapies. PMID:23043862

  4. Aerial thermography in archaeological prospection: Applications & processing

    NASA Astrophysics Data System (ADS)

    Cool, Autumn Chrysantha

    Aerial thermography is one of the least utilized archaeological prospection methods, yet it has great potential for detecting anthropogenic anomalies. Thermal infrared radiation is absorbed and reemitted at varying rates by all objects on and within the ground depending upon their density, composition, and moisture content. If an area containing archaeological features is recorded at the moment when their thermal signatures most strongly contrast with that of the surrounding matrix, they can be visually identified in thermal images. Research conducted in the 1960s and 1970s established a few basic rules for conducting thermal survey, but the expense associated with the method deterred most archaeologists from using this technology. Subsequent research was infrequent and almost exclusively appeared in the form of case studies. However, as the current proliferation of unmanned aerial vehicles (UAVs) and compact thermal cameras draws renewed attention to aerial thermography as an attractive and exciting form of survey, it is appropriate and necessary to reevaluate our approach. In this thesis I have taken a two-pronged approach. First, I built upon the groundwork of earlier researchers and created an experiment to explore the impact that different environmental and climatic conditions have on the success or failure of thermal imaging. I constructed a test site designed to mimic a range of archaeological features and imaged it under a variety of conditions to compare and contrast the results. Second, I explored a new method for processing thermal data that I hope will lead to a means of reducing noise and increasing the clarity of thermal images. This step was done as part of a case study so that the effectiveness of the processing method could be evaluated by comparison with the results of other geophysical surveys.

  5. Detecting defects in marine structures by using eddy current infrared thermography.

    PubMed

    Swiderski, W

    2016-12-01

    Eddy current infrared (IR) thermography is a new nondestructive testing (NDT) technique used for the detection of cracks in electroconductive materials. By combining the well-established inspection methods of eddy current NDT and IR thermography, this technique uses induced eddy currents to heat test samples. In this way, IR thermography allows the visualization of eddy current distribution that is distorted in defect sites. This paper discusses the results of numerical modeling of eddy current IR thermography procedures in application to marine structures.

  6. Dynamics of Active Nematic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    DeCamp, Stephen J.

    Active matter systems exist in a state far from equilibrium due to the motion of their constituent particles. They exhibit complex phenomena such as collective motion, internally driven flows, and spontaneous pattern formation. Understanding the basic rules which govern these materials is an extraordinarily difficult task due to the wide variety of phenomenology they exhibit and a lack of tunable and tractable experimental systems in the field. In this thesis, we use reconstituted biological components to build a model active matter system from the ground-up and explore two different classes of active matter systems; active gels and active nematics. First we examine a bulk, 3D active gel composed of extensile bundles of microtubules and kinesin motor clusters. Upon the addition of ATP, we find that the gel undergoes percolation dynamics through cycles of bundle extension, bending, buckling and merging. The motion of microtubule bundles generates large-scale flows which we characterize by embedding passive micron-sized tracer particles into the fluid. We demonstrate that the activity of the gel can be continuously tuned by varying the ATP concentration in the system. Mean squared displacements (MSDs) show that the tracer particles are ballistically transported through the sample at high ATP concentration and become diffusive at low ATP concentration. By measuring two-point spatial velocity-velocity correlations, a characteristic length scale representative of vorticity in the fluid and therefore buckling of the microtubule bundles is found to be independent of the ATP concentration. The active gel is composed of numerous components which affect the gel dynamics. We vary each component in turn and measure the resulting characteristic length and speed of the active gel. The length scale can be tuned between 100 mum to 200 mum and the speed from 0 to 4 mu/s by varying the concentration of PEG, kinesin motors, and microtubules. We then characterize an active nematic

  7. Infrared thermography at EDF: common technique for high-voltage lines but new in monitoring and diagnosis of PWR plant components

    NASA Astrophysics Data System (ADS)

    Provost, Daniel

    1996-03-01

    Infrared thermography is a remarkable aid in maintenance, and has been used for a number of years in testing high-voltage lines and transformer substations. Electricite de France (EDF) has developed a special infrared thermography system for this type of application. Until recently, use of IRT in both fossil and nuclear power plants was only sporadic and depended on the interest shown in the technique by individual maintenance managers. In power stations, it was primarily used for tests on switchyards, electrical control cabinets and insulation. The General Engineering Department of the EDF Generation and Transmission Division was responsible for assessing new equipment and studying special development requirements as they arose. Routine infrared thermography tests were performed by two teams from the Division, one handling northern France and the other southern France. Today, infrared thermography has become a fully-fledged monitoring and diagnosis tool in its own right, and related activities are being reorganized accordingly. Its recent success can be attributed to a number of factors: more high-powered IRT techniques, valuable feedback from American utility companies, and technical and economic assessments conducted by EDF over the last two years on equipment such as electrical and mechanical components, valves and insulation. EDF's reorganization of infrared thermography activities will begin with an overview of the resources now existing within the company. This inventory will be carried out by the General Engineering Department. At the same time, a report will be drawn up bearing on IRT testing over the last decade in conventional and nuclear power plants in France and the United States. Lastly, EDF will draw up a list of components to be monitored in this way, essentially on the basis of RCM studies. These measures will provide power plants with a catalogue of infrared thermography applications for specific component/failure combinations.

  8. Breast cancer detection in rotational thermography images using texture features

    NASA Astrophysics Data System (ADS)

    Francis, Sheeja V.; Sasikala, M.; Bhavani Bharathi, G.; Jaipurkar, Sandeep D.

    2014-11-01

    Breast cancer is a major cause of mortality in young women in the developing countries. Early diagnosis is the key to improve survival rate in cancer patients. Breast thermography is a diagnostic procedure that non-invasively images the infrared emissions from breast surface to aid in the early detection of breast cancer. Due to limitations in imaging protocol, abnormality detection by conventional breast thermography, is often a challenging task. Rotational thermography is a novel technique developed in order to overcome the limitations of conventional breast thermography. This paper evaluates this technique's potential for automatic detection of breast abnormality, from the perspective of cold challenge. Texture features are extracted in the spatial domain, from rotational thermogram series, prior to and post the application of cold challenge. These features are fed to a support vector machine for automatic classification of normal and malignant breasts, resulting in a classification accuracy of 83.3%. Feature reduction has been performed by principal component analysis. As a novel attempt, the ability of this technique to locate the abnormality has been studied. The results of the study indicate that rotational thermography holds great potential as a screening tool for breast cancer detection.

  9. Thermography--a feasible method for screening breast cancer?

    PubMed

    Kolarić, Darko; Herceg, Zeljko; Nola, Iskra Alexandra; Ramljak, Vesna; Kulis, Tomislav; Holjevac, Jadranka Katancić; Deutsch, Judith A; Antonini, Svetlana

    2013-06-01

    Potential use of thermography for more effective detection of breast carcinoma was evaluated on 26 patients scheduled for breast carcinoma surgery. Ultrasonographic scan, mammography and thermography were performed at the University Hospital for Tumors. Thermographic imaging was performed using a new generation of digital thermal cameras with high sensitivity and resolution (ThermoTracer TH7102WL, NEC). Five images for each patient were recorded: front, right semi-oblique, right oblique, left- semi oblique and left oblique. While mammography detected 31 changes in 26 patients, thermography was more sensitive and detected 6 more changes in the same patients. All 37 changes were subjected to the cytological analysis and it was found that 16 of samples were malignant, 8 were suspected malignant and 11 were benign with atypia or proliferation while only 2 samples had benign findings. The pathohistological method (PHD) recorded 75.75% malignant changes within the total number of samples. Statistical analysis of the data has shown a probability of a correct mammographic finding in 85% of the cases (sensitivity of 85%, specificity of 84%) and a probability of a correct thermographic finding in 92% of the cases (sensitivity of 100%, specificity of 79%). As breast cancer remains the most prevalent cancer in women and thermography exhibited superior sensitivity, we believe that thermography should immediately find its place in the screening programs for early detection of breast carcinoma, in order to reduce the sufferings from this devastating disease.

  10. Thermography is not a feasible method for breast cancer screening.

    PubMed

    Brkljacić, Boris; Miletić, Damir; Sardanelli, Francesco

    2013-06-01

    Breast cancer is a common malignancy causing high mortality in women especially in developed countries. Due to the contribution of mammographic screening and improvements in therapy, the mortality rate from breast cancer has decreased considerably. An imaging-based early detection of breast cancer improves the treatment outcome. Mammography is generally established not only as diagnostic but also as screening tool, while breast ultrasound plays a major role in the diagnostic setting in distinguishing solid lesions from cysts and in guiding tissue sampling. Several indications are established for contrast-enhanced magnetic resonance imaging. Thermography was not validated as a screening tool and the only study performed long ago for evaluating this technology in the screening setting demonstrated very poor results. The conclusion that thermography might be feasible for screening cannot be derived from studies with small sample size, unclear selection of patients, and in which mammography and thermography were not blindly compared as screening modalities. Thermography can not be used to aspirate, biopsy or localize lesions preoperatively since no method so far was described to accurately transpose the thermographic location of the lesion to the mammogram or ultrasound and to surgical specimen. Thermography cannot be proclaimed as a screening method, without any evidence whatsoever.

  11. Infrared thermography of solid surfaces in a fire

    NASA Astrophysics Data System (ADS)

    Meléndez, J.; Foronda, A.; Aranda, J. M.; López, F.; López del Cerro, F. J.

    2010-10-01

    Fire resistance tests are commonplace in industry. The aerospace sector is particularly active in this area, since the behaviour of advanced materials, such as composites, when in a fire is not fully understood yet. Two of the main obstacles are the inherent difficulty of direct surface measurements in such a harsh environment (especially on the exposed side of the specimens) and the lack of spatial resolution of the usual measuring devices, namely thermocouples (TCs). This paper presents a way to overcome these problems by using an infrared (IR) camera to study the exposed side of composite plates exposed to fire. A method for minimizing the effect of the flame (thus making it as 'transparent' as possible) was developed, resulting in 2D temperature maps of the plate surface. The assumptions that the method relies on were verified by data analysis and ad hoc emission-transmission experiments. The errors associated with two slightly different versions of the method were studied, and comparisons with TC measurements were performed. It was found that the IR method provides better results than TCs, not only due to its spatial resolution capability but also because of the non-intrusive nature of IR thermography, as opposed to the local effects caused by TCs, which became evident during the experiments.

  12. Glued structures inspection based on lock-in thermography

    NASA Astrophysics Data System (ADS)

    Perez, Laetitia; Autrique, Laurent

    2015-04-01

    Active thermography is a widely employed technique for parametric identification and non-destructive inspection. This attractive method is based on the observation of thermal waves propagation induced by a periodic heating. For nondestructive testing usual approaches are based on a global heating (a large surface of the inspected material is submitted to thermal excitation). In the following a local approach is investigated: the heated area is small (order of magnitude is one square centimeter) and lateral propagation is studied in order to reveal the defect in the sample. In fact, both modulus (heat wave amplitude) and phase lag (delay) of the measured periodic signal are modified by the defect neighborhood and the search for the most effective area leads to the defect localization. Several results are highlighted in this communication in order to investigate an automated procedure. Temperatures are measured by an infrared camera and analyses of modulus cartography are performed in order to estimate the defect location. In such an aim, the downhill simplex method is implemented in order to converge toward defect location. Illustrations are dedicated to glued structures (two plates separated by a thin glue interface) for which unknown defect is a lack of glue which can be considered as a bubble (air trapped between the lower and the upper plane surface). Automated method attractiveness is established in several configurations.

  13. Dynamical quorum sensing and clustering dynamics in a population of spatially distributed active rotators

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Hidetsugu; Maeyama, Satomi

    2013-02-01

    A model of clustering dynamics is proposed for a population of spatially distributed active rotators. A transition from excitable to oscillatory dynamics is induced by the increase of the local density of active rotators. It is interpreted as dynamical quorum sensing. In the oscillation regime, phase waves propagate without decay, which generates an effectively long-range interaction in the clustering dynamics. The clustering process becomes facilitated and only one dominant cluster appears rapidly as a result of the dynamical quorum sensing. An exact localized solution is found to a simplified model equation, and the competitive dynamics between two localized states is studied numerically.

  14. Electromagnetic pulsed thermography for natural cracks inspection.

    PubMed

    Gao, Yunlai; Tian, Gui Yun; Wang, Ping; Wang, Haitao; Gao, Bin; Woo, Wai Lok; Li, Kongjing

    2017-02-07

    Emerging integrated sensing and monitoring of material degradation and cracks are increasingly required for characterizing the structural integrity and safety of infrastructure. However, most conventional nondestructive evaluation (NDE) methods are based on single modality sensing which is not adequate to evaluate structural integrity and natural cracks. This paper proposed electromagnetic pulsed thermography for fast and comprehensive defect characterization. It hybrids multiple physical phenomena i.e. magnetic flux leakage, induced eddy current and induction heating linking to physics as well as signal processing algorithms to provide abundant information of material properties and defects. New features are proposed using 1st derivation that reflects multiphysics spatial and temporal behaviors to enhance the detection of cracks with different orientations. Promising results that robust to lift-off changes and invariant features for artificial and natural cracks detection have been demonstrated that the proposed method significantly improves defect detectability. It opens up multiphysics sensing and integrated NDE with potential impact for natural understanding and better quantitative evaluation of natural cracks including stress corrosion crack (SCC) and rolling contact fatigue (RCF).

  15. Electromagnetic pulsed thermography for natural cracks inspection

    PubMed Central

    Gao, Yunlai; Tian, Gui Yun; Wang, Ping; Wang, Haitao; Gao, Bin; Woo, Wai Lok; Li, Kongjing

    2017-01-01

    Emerging integrated sensing and monitoring of material degradation and cracks are increasingly required for characterizing the structural integrity and safety of infrastructure. However, most conventional nondestructive evaluation (NDE) methods are based on single modality sensing which is not adequate to evaluate structural integrity and natural cracks. This paper proposed electromagnetic pulsed thermography for fast and comprehensive defect characterization. It hybrids multiple physical phenomena i.e. magnetic flux leakage, induced eddy current and induction heating linking to physics as well as signal processing algorithms to provide abundant information of material properties and defects. New features are proposed using 1st derivation that reflects multiphysics spatial and temporal behaviors to enhance the detection of cracks with different orientations. Promising results that robust to lift-off changes and invariant features for artificial and natural cracks detection have been demonstrated that the proposed method significantly improves defect detectability. It opens up multiphysics sensing and integrated NDE with potential impact for natural understanding and better quantitative evaluation of natural cracks including stress corrosion crack (SCC) and rolling contact fatigue (RCF). PMID:28169361

  16. Medical applications of infrared thermography: A review

    NASA Astrophysics Data System (ADS)

    Lahiri, B. B.; Bagavathiappan, S.; Jayakumar, T.; Philip, John

    2012-07-01

    Abnormal body temperature is a natural indicator of illness. Infrared thermography (IRT) is a fast, passive, non-contact and non-invasive alternative to conventional clinical thermometers for monitoring body temperature. Besides, IRT can also map body surface temperature remotely. Last five decades witnessed a steady increase in the utility of thermal imaging cameras to obtain correlations between the thermal physiology and skin temperature. IRT has been successfully used in diagnosis of breast cancer, diabetes neuropathy and peripheral vascular disorders. It has also been used to detect problems associated with gynecology, kidney transplantation, dermatology, heart, neonatal physiology, fever screening and brain imaging. With the advent of modern infrared cameras, data acquisition and processing techniques, it is now possible to have real time high resolution thermographic images, which is likely to surge further research in this field. The present efforts are focused on automatic analysis of temperature distribution of regions of interest and their statistical analysis for detection of abnormalities. This critical review focuses on advances in the area of medical IRT. The basics of IRT, essential theoretical background, the procedures adopted for various measurements and applications of IRT in various medical fields are discussed in this review. Besides background information is provided for beginners for better understanding of the subject.

  17. Electromagnetic pulsed thermography for natural cracks inspection

    NASA Astrophysics Data System (ADS)

    Gao, Yunlai; Tian, Gui Yun; Wang, Ping; Wang, Haitao; Gao, Bin; Woo, Wai Lok; Li, Kongjing

    2017-02-01

    Emerging integrated sensing and monitoring of material degradation and cracks are increasingly required for characterizing the structural integrity and safety of infrastructure. However, most conventional nondestructive evaluation (NDE) methods are based on single modality sensing which is not adequate to evaluate structural integrity and natural cracks. This paper proposed electromagnetic pulsed thermography for fast and comprehensive defect characterization. It hybrids multiple physical phenomena i.e. magnetic flux leakage, induced eddy current and induction heating linking to physics as well as signal processing algorithms to provide abundant information of material properties and defects. New features are proposed using 1st derivation that reflects multiphysics spatial and temporal behaviors to enhance the detection of cracks with different orientations. Promising results that robust to lift-off changes and invariant features for artificial and natural cracks detection have been demonstrated that the proposed method significantly improves defect detectability. It opens up multiphysics sensing and integrated NDE with potential impact for natural understanding and better quantitative evaluation of natural cracks including stress corrosion crack (SCC) and rolling contact fatigue (RCF).

  18. Infrared thermography and overloaded neutral conductors

    NASA Astrophysics Data System (ADS)

    McComb, John; Niebla, Hector E.

    1999-03-01

    Present findings of two recent case studies. One involves transformer failures on three computer-stores within eight hours of their grand opening. The second discusses the findings during an infrared thermography-training course for electric utility engineers of a transformer vault serving an industrial customer. Both of these deal with overloaded neutral conductors. Historically, the average neutral conductor carried only the imbalance of the current between the phases of a three-phase system. This current was typically small in relation to the load being served. In fact, for economic reasons many neutrals were installed smaller than their associated phase conductors. Today however, certain types of loads (non-linear loads such as computers) and certain transformer connections (4 bushing single phase with a collector bus) cause the neutral to have up to three times as much amperage as the phase conductors. This paper will discuss the conditions under which such loading occurs and further investigate steps that can be taken/recommended should an infrared test indicate an overloaded neutral conductor.

  19. Infrared Thermography in High Level Waste

    SciTech Connect

    GLEATON, DAVIDT.

    2004-08-24

    The Savannah River Site is a Department of Energy, government-owned, company-operated industrial complex built in the 1950s to produce materials used in nuclear weapons. Five reactors were built to support the production of nuclear weapons material. Irradiated materials were moved from the reactors to one of the two chemical separation plants. In these facilities, known as ''canyons,'' the irradiated fuel and target assemblies were chemically processed to separate useful products from waste. Unfortunately, the by-product waste of nuclear material production was a highly radioactive liquid that had to be stored and maintained. In 1993 a strategy was developed to implement predictive maintenance technologies in the Liquid Waste Disposition Project Division responsible for processing the liquid waste. Responsibilities include the processing and treatment of 51 underground tanks designed to hold 750,000 to1,300,000 gallons of liquid waste and operation of a facility that vitrifies highly radioactive liquid waste into glass logs. Electrical and mechanical equipment monitored at these facilities is very similar to that found in non-nuclear industrial plants. Annual inspections are performed on electrical components, roof systems, and mechanical equipment. Troubleshooting and post installation and post-maintenance infrared inspections are performed as needed. In conclusion, regardless of the industry, the use of infrared thermography has proven to be an efficient and effective method of inspection to help improve plant safety and reliability through early detection of equipment problems.

  20. Membrane fouling characterization by infrared thermography

    NASA Astrophysics Data System (ADS)

    Ndukaife, Kennethrex O.; Ndukaife, Justus C.; Agwu Nnanna, A. G.

    2015-01-01

    An infrared thermography (IRT) technique for characterization of fouling on flat sheet membrane surface has been developed. In this work, an IR camera was used to measure surface temperature and emissivity of foulant on a membrane surface. Different fouling experiments were performed using different feed concentrations of aluminum oxide nanoparticle mixed with deionized water so as to investigate the effect of feed concentration on the degree of fouling and on the emissivity values measured on the membrane surfaces. Our findings revealed that the emissivity of the fouled membrane surface is contingent on the surface roughness as well as the material composition of the foulant. The technique was utilized to distinguish between foulants made of metallic materials from those that are non-metallic. This approach, which is simple to use and nondestructive represents an important addition to the toolset of fouling analysis techniques and would benefit a wide range of applications from observation of foulant structure to qualitative assessment of composition of foulant material.

  1. Parameterisation of non-homogeneities in buried object detection by means of thermography

    NASA Astrophysics Data System (ADS)

    Stepanić, Josip; Malinovec, Marina; Švaić, Srećko; Krstelj, Vjera

    2004-05-01

    Landmines and their natural environment form a system of complex dynamics with variable characteristics. A manifestation of that complexity within the context of thermography-based landmines detection is excessive noise in thermograms. That has severely suppressed application of thermography in landmines detection for the purposes of humanitarian demining. (To be differentiated from military demining and demining for military operations other than war [Land Mine Detection DOD's Research Program Needs a Comprehensive Evaluation Strategy, US GAO Report, GAO-01 239, 2001; International Mine Action Standards, Chapter 4.--Glossary. Available at: < http://www.mineactionstandards.org/IMAS_archive/Final/04.10.pdf>].) The discrepancy between the existing role and the actual potential of thermography in humanitarian demining motivated systematic approach to sources of noise in thermograms of buried objects. These sources are variations in mine orientation relative to soil normal, which modify the shape of mine signature on thermograms, as well as non-homogeneities in soil and vegetation layer above the mine, which modify the overall quality of thermograms. This paper analyses the influence of variable mines, and more generally the influence of axially symmetric buried object orientation on the quality of its signature on thermograms. The following two angles have been extracted to serve as parameters describing variation in orientation: (i) θ--angle between the local vertical axis and mine symmetry axis and (ii) ψ--angle between local vertical axis and soil surface normal. Their influence is compared to the influence of (iii) d--the object depth change, which serves as control parameter. The influences are quantified and ranked within a statistically planned experiment. The analysis has proved that among the parameters listed, the most influential one is statistical interaction dψ, followed with the statistical interaction dθ. According to statistical tests, these two

  2. Calibration and Evaluation of Ultrasound Thermography using Infrared Imaging

    PubMed Central

    Hsiao, Yi-Sing; Deng, Cheri X.

    2015-01-01

    Real-time monitoring of the spatiotemporal evolution of tissue temperature is important to ensure safe and effective treatment in thermal therapies including hyperthermia and thermal ablation. Ultrasound thermography has been proposed as a non-invasive technique for temperature measurement, and accurate calibration of the temperature-dependent ultrasound signal changes against temperature is required. Here we report a method that uses infrared (IR) thermography for calibration and validation of ultrasound thermography. Using phantoms and cardiac tissue specimens subjected to high-intensity focused ultrasound (HIFU) heating, we simultaneously acquired ultrasound and IR imaging data from the same surface plane of a sample. The commonly used echo time shift-based method was chosen to compute ultrasound thermometry. We first correlated the ultrasound echo time shifts with IR-measured temperatures for material-dependent calibration and found that the calibration coefficient was positive for fat-mimicking phantom (1.49 ± 0.27) but negative for tissue-mimicking phantom (− 0.59 ± 0.08) and cardiac tissue (− 0.69 ± 0.18 °C-mm/ns). We then obtained the estimation error of the ultrasound thermometry by comparing against the IR measured temperature and revealed that the error increased with decreased size of the heated region. Consistent with previous findings, the echo time shifts were no longer linearly dependent on temperature beyond 45 – 50 °C in cardiac tissues. Unlike previous studies where thermocouples or water-bath techniques were used to evaluate the performance of ultrasound thermography, our results show that high resolution IR thermography provides a useful tool that can be applied to evaluate and understand the limitations of ultrasound thermography methods. PMID:26547634

  3. Infrared thermography as a diagnostic tool to indicate sick-house-syndrome: a case-study

    NASA Astrophysics Data System (ADS)

    Ljungberg, Sven-Ake

    1996-03-01

    Every third child and many adults in Sweden have allergic reactions caused by indoor environmental problems. A lot of buildings constructed during the building-boom period of 1950 - 1990 expose the sick-house-syndrome, due to built-in moisture problems and poor ventilation performance of the building. Leaky building construction, transport of humid air condensing on thermal bridges within the construction gives rise to a humid environment, and forms a base for a microbial deterioration process of organic materials, with emissions hazardous for human health. So far there are no universal and cost efficient techniques or methods developed which could be used to reveal the sick-house-syndrome. In this paper we present the results of a case-study of the sick-house-syndrome, and an investigation concept with a combination of different techniques and methods to detect and to map underlying factors that form the base for microbial activities. The concept includes mobile and indoor thermography, functional control of ventilation systems, tracer gas techniques for measurement of air flow exchange rate in different rooms, microbial investigation of emissions, field inspections within the building construction and the building envelope, and medical investigation of the health status of the people working in the building. Mobile thermography of the exterior facades has been performed with a longwave AGEMA THV 900, respectively THV 1000 infrared system, during the period December 1994 - June 1995, at different and similar weather and radiation conditions, and with the building pressurized at one accession. Indoor thermography has been performed with a shortwave AGEMA THV 470 system, for a selection of objects/surfaces with thermal deviations, indicated in thermograms from the different mobile thermographic surveys. Functional control was performed for the ventilation systems, and air flow rates were measured using tracer gas technique for a selection of rooms with different

  4. Infrared thermography on ocular surface temperature: A review

    NASA Astrophysics Data System (ADS)

    Tan, Jen-Hong; Ng, E. Y. K.; Rajendra Acharya, U.; Chee, C.

    2009-07-01

    Body temperature is a good indicator of human health. Thermal imaging system (thermography) is a non-invasive imaging procedure used to record the thermal patterns using Infrared (IR) camera. It provides visual and qualitative documentation of temperature changes in the vascular tissues, and is beginning to play an important role in the field of ophthalmology. This paper deals with the working principle, use and advantages of IR thermography in the field of ophthalmology. Different algorithms to acquire the ocular surface temperature (OST), that can be used for the diagnosis of ocular diseases are discussed.

  5. Subsurface Defect Detection in FRP Composites Using Infrared Thermography

    NASA Astrophysics Data System (ADS)

    Halabe, U. B.; Vasudevan, A.; GangaRao, H. V. S.; Klinkhachorn, P.; Lonkar, G.

    2005-04-01

    This paper demonstrates the use of digital infrared thermography to detect subsurface defects such as debonds and delaminations in Fiber Reinforced Polymer (FRP) bridge decks. Simulated sub-surface debonds and delaminations were inserted between the wearing surface and the underlying FRP deck specimens. The infrared thermography technique was used to detect these embedded subsurface defects. The use of various cooling and heating methods, including solar radiation, was explored. Surface temperature-time curves were established for different types and sizes of subsurface defects.

  6. Using thermography for an obstruction of the lower lacrimal system.

    PubMed

    Machado, Marco Antonio de Campos; Silva, João Amaro Ferrari; Brioschi, Marcos Leal; Allemann, Norma

    2016-02-01

    Obstructions in the lacrimal pathways quite often require accurate and reliable image scanning for confirmation and documentation. Infrared thermal imaging, known as thermography, is a resource that complements diagnosis; it does not require touching the patient or applying contrast materials and has been used in various medical procedures for decades. However, there have been few studies in the literature about its use in ophthalmology. In this paper, the authors have presented a case of dacryocystitis where the obstruction of the lacrimal punctum was so acute that conventional dacryocystography could not be used. The authors have successfully reported the use of thermography as a complementary propaedeutic and will discuss the method they used.

  7. IR Thermography of International Space Station Radiator Panels

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay; Winfree, WIlliam; Morton, Richard; Howell, Patricia

    2010-01-01

    Several non-flight qualification test radiators were inspected using flash thermography. Flash thermography data analysis used raw and second derivative images to detect anomalies (Echotherm and Mosaic). Simple contrast evolutions were plotted for the detected anomalies to help in anomaly characterization. Many out-of-family indications were noted. Some out-of-family indications were classified as cold spot indications and are due to additional adhesive or adhesive layer behind the facesheet. Some out-of-family indications were classified as hot spot indications and are due to void, unbond or lack of adhesive behind the facesheet. The IR inspection helped in assessing expected manufacturing quality of the radiators.

  8. Nondestructive evaluation technique using infrared thermography and terahertz imaging

    NASA Astrophysics Data System (ADS)

    Sakagami, Takahide; Shiozawa, Daiki; Tamaki, Yoshitaka; Iwama, Tatsuya

    2016-05-01

    Nondestructive testing (NDT) techniques using pulse heating infrared thermography and terahertz (THz) imaging were developed for detecting deterioration of oil tank floor, such as blister and delamination of corrosion protection coating, or corrosion of the bottom steel plate under coating. Experimental studies were conducted to demonstrate the practicability of developed techniques. It was found that the pulse heating infrared thermography was utilized for effective screening inspection and THz-TDS imaging technique performed well for the detailed inspection of coating deterioration and steel corrosion.

  9. Computer Assisted Thermography And Its Application In Ovulation Detection

    NASA Astrophysics Data System (ADS)

    Rao, K. H.; Shah, A. V.

    1984-08-01

    Hardware and software of a computer-assisted image analyzing system used for infrared images in medical applications are discussed. The application of computer-assisted thermography (CAT) as a complementary diagnostic tool in centralized diagnostic management is proposed. The authors adopted 'Computer Assisted Thermography' to study physiological changes in the breasts related to the hormones characterizing the menstrual cycle of a woman. Based on clinical experi-ments followed by thermal image analysis, they suggest that 'differential skin temperature (DST)1 be measured to detect the fertility interval in the menstrual cycle of a woman.

  10. Overview af MSFC's Applied Fluid Dynamics Analysis Group Activities

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto; Griffin, Lisa; Williams, Robert

    2004-01-01

    This paper presents viewgraphs on NASA Marshall Space Flight Center's Applied Fluid Dynamics Analysis Group Activities. The topics include: 1) Status of programs at MSFC; 2) Fluid Mechanics at MSFC; 3) Relevant Fluid Dynamics Activities at MSFC; and 4) Shuttle Return to Flight.

  11. Evaluation of Microbolometer-Based Thermography for Gossamer Space Structures

    NASA Technical Reports Server (NTRS)

    Miles, Jonathan J.; Blandino, Joseph R.; Jenkins, Christopher H.; Pappa, Richard S.; Banik, Jeremy; Brown, Hunter; McEvoy, Kiley

    2005-01-01

    In August 2003, NASA's In-Space Propulsion Program contracted with our team to develop a prototype on-board Optical Diagnostics System (ODS) for solar sail flight tests. The ODS is intended to monitor sail deployment as well as structural and thermal behavior, and to validate computational models for use in designing future solar sail missions. This paper focuses on the thermography aspects of the ODS. A thermal model was developed to predict local sail temperature variations as a function of sail tilt to the sun, billow depth, and spectral optical properties of front and back sail surfaces. Temperature variations as small as 0.5 C can induce significant thermal strains that compare in magnitude to mechanical strains. These thermally induced strains may result in changes in shape and dynamics. The model also gave insight into the range and sensitivity required for in-flight thermal measurements and supported the development of an ABAQUS-coupled thermo-structural model. The paper also discusses three kinds of tests conducted to 1) determine the optical properties of candidate materials; 2) evaluate uncooled microbolometer-type infrared imagers; and 3) operate a prototype imager with the ODS baseline configuration. (Uncooled bolometers are less sensitive than cooled ones, but may be necessary because of restrictive ODS mass and power limits.) The team measured the spectral properties of several coated polymer samples at various angles of incidence. Two commercially available uncooled microbolometer imagers were compared, and it was found that reliable temperature measurements are feasible for both coated and uncoated sides of typical sail membrane materials.

  12. The quantitative inspection of iron aluminide green sheet using transient thermography

    NASA Astrophysics Data System (ADS)

    Watkins, Michael L.; Hinders, Mark K.; Scorey, Clive; Winfree, William

    1999-12-01

    The recent development of manufacturing techniques for the fabrication of thin iron aluminide, FeAl, sheet requires advanced quantitative methods for on-line inspection. An understanding of the mechanisms responsible for flaws and the development of appropriate flaw detection methods are key elements in an effective quality management system. The first step in the fabrication of thin FeAl alloy sheet is the formation of a green sheet, either by cold rolling or tape casting FeAl powder mixed with organic binding agents. The finished sheet is obtained using a series of process steps involving binder elimination, densification, sintering, and annealing. Non-uniformities within the green sheet are the major contributor to material failure in subsequent sheet processing and the production of non-conforming finished sheet. Previous work has demonstrated the advantages of using active thermography to detect the flaws and heterogeneity within green powder composites (1)(2)(3). The production environment and physical characteristics of these composites provide for unique challenges in developing a rapid nondestructive inspection capability. Thermography is non-contact and minimizes the potential damage to the fragile green sheet. Limited access to the material also demands a one-sided inspection technique. In this paper, we will describe the application of thermography for 100% on-line inspection within an industrial process. This approach is cost competitive with alternative technologies, such as x-ray imaging systems, and provides the required sensitivity to the variations in material composition. The formation of green sheet flaws and their transformation into defects within intermediate and finished sheet products will be described. A green sheet conformance criterion will be presented which would significantly reduce the probability of processing poor quality green sheet which contributes to higher waste and inferior bulk alloy sheet.

  13. The quantitative inspection of iron aluminide green sheet using transient thermography

    SciTech Connect

    Watkins, Michael L.; Hinders, Mark K.; Scorey, Clive; Winfree, William

    1999-12-02

    The recent development of manufacturing techniques for the fabrication of thin iron aluminide, FeAl, sheet requires advanced quantitative methods for on-line inspection. An understanding of the mechanisms responsible for flaws and the development of appropriate flaw detection methods are key elements in an effective quality management system. The first step in the fabrication of thin FeAl alloy sheet is the formation of a green sheet, either by cold rolling or tape casting FeAl powder mixed with organic binding agents. The finished sheet is obtained using a series of process steps involving binder elimination, densification, sintering, and annealing. Non-uniformities within the green sheet are the major contributor to material failure in subsequent sheet processing and the production of non-conforming finished sheet. Previous work has demonstrated the advantages of using active thermography to detect the flaws and heterogeneity within green powder composites (1)(2)(3). The production environment and physical characteristics of these composites provide for unique challenges in developing a rapid nondestructive inspection capability. Thermography is non-contact and minimizes the potential damage to the fragile green sheet. Limited access to the material also demands a one-sided inspection technique. In this paper, we will describe the application of thermography for 100% on-line inspection within an industrial process. This approach is cost competitive with alternative technologies, such as x-ray imaging systems, and provides the required sensitivity to the variations in material composition. The formation of green sheet flaws and their transformation into defects within intermediate and finished sheet products will be described. A green sheet conformance criterion will be presented which would significantly reduce the probability of processing poor quality green sheet which contributes to higher waste and inferior bulk alloy sheet.

  14. Thermography investigations and numerical analysis of turbulent and laminar flow at light weight structures

    NASA Astrophysics Data System (ADS)

    Arndt, Ralf; Gaulke, Alexander

    2008-03-01

    Thermography (IR) allows global visualization of temperature distribution on surfaces with high accuracy. This potential can be used for visualization of fluid mechanics effects at the intersection of laminar and turbulent flows, where temperature jumps appear due to convection and friction i.e. for the optimization in the design of airplane geometries. In civil engineering too it is the aspiration of the modern engineer of light weight structures to meet singular loads like wind peaks rather by intelligent structures and materials than by massive structures. Therefore the "Institute of Conceptual and Structural Design" of the Technical University of Berlin (TUB) is working on the development of adaptive structures, optimized geometry and intelligent microstructures on surfaces of structural elements. The paper shows the potential of modern computational fluid dynamics (CFD) in combination with thermography (IR) to optimize structures by visualization of laminar-tumultuous border layer currents. Therefore CFD simulations and IR wind tunnel experiments will be presented and discussed. For simulations and experiments - artificial and structural elements of the cable-stayed Strelasund Bridge, Germany, are used.

  15. Individual and group dynamics in purchasing activity

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Guo, Jin-Li; Fan, Chao; Liu, Xue-Jiao

    2013-01-01

    As a major part of the daily operation in an enterprise, purchasing frequency is in constant change. Recent approaches on the human dynamics can provide some new insights into the economic behavior of companies in the supply chain. This paper captures the attributes of creation times of purchase orders to an individual vendor, as well as to all vendors, and further investigates whether they have some kind of dynamics by applying logarithmic binning to the construction of distribution plots. It’s found that the former displays a power-law distribution with approximate exponent 2.0, while the latter is fitted by a mixture distribution with both power-law and exponential characteristics. Obviously, two distinctive characteristics are presented for the interval time distribution from the perspective of individual dynamics and group dynamics. Actually, this mixing feature can be attributed to the fitting deviations as they are negligible for individual dynamics, but those of different vendors are cumulated and then lead to an exponential factor for group dynamics. To better describe the mechanism generating the heterogeneity of the purchase order assignment process from the objective company to all its vendors, a model driven by product life cycle is introduced, and then the analytical distribution and the simulation result are obtained, which are in good agreement with the empirical data.

  16. Inspecting thermal barrier coatings by IR thermography

    NASA Astrophysics Data System (ADS)

    Bison, Paolo G.; Marinetti, Sergio; Grinzato, Ermanno G.; Vavilov, Vladimir P.; Cernuschi, Federico; Robba, Daniele

    2003-04-01

    As far as power generation is concerned, coating technologies find the main and more advanced applications. Nowadays, superalloys available for manufacturing hot path components in gas turbine like combustion liners, blades and vanes can not sustain temperatures up to 1100°C. In order to guarantee a significative temperature drop ceramic thermal barrier coatings are deposited onto the metallic core. The thickness of thermal barrier coatings (TBC) ranges from a few hundreds microns up to 1 millimetre or more, depending on component and deposition technique (mainly Air Plasma Spray or Electron Beam Physical Vapour Deposition). The structural integrity of both the substrate and the coating and their mutual adhesion is a key point because any loss of the protective layer exposes the bulk material to an extremely aggressive environment in terms of oxidation and temperature. Therefore, TBC must be tested for detecting of defects during both quality control and periodic in-service inspections. Because of the key role played by thickness and low thermal diffusivity of TBC in the decreasing of the substrate material temperature, both delaminations and thickness variation must be detected and classified. Pulsed Thermography has been successfully applied to this application field. Nevertheless, the procedure gives ambiguous results when thickness or thermal properties change in a continuous way within the thermal barrier. In this paper, a specific study on the detection performances of NDE techniques is presented, even when a non-uniform TBC thickness is superimposed to the disbonding defect. Tests performed at workshop on real and specifically manufactured components are reported. Dedicated processing algorithms improving the test reliability and effectiveness are presented as well. Tests on real components on the field are also reported.

  17. Overview of MSFC's Applied Fluid Dynamics Analysis Group Activities

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto; Griffin, Lisa; Williams, Robert

    2002-01-01

    This viewgraph report presents an overview of activities and accomplishments of NASA's Marshall Space Flight Center's Applied Fluid Dynamics Analysis Group. Expertise in this group focuses on high-fidelity fluids design and analysis with application to space shuttle propulsion and next generation launch technologies. Topics covered include: computational fluid dynamics research and goals, turbomachinery research and activities, nozzle research and activities, combustion devices, engine systems, MDA development and CFD process improvements.

  18. Using infrared thermography to study freezing in plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Factors that determine when and to what extent a plant will freeze are complex. While thermocouples have served as the main method of monitoring the freezing process in plants, infrared thermography offers distinct advantages, and the use of this latter technology has provided new insights on the p...

  19. Infrared thermography to evaluate lameness in pregnant sows

    PubMed Central

    Amezcua, Rocio; Walsh, Shannon; Luimes, Paul H.; Friendship, Robert M.

    2014-01-01

    Early detection of lameness in sows is important to reduce losses and improve animal welfare. Mild-to-moderate lameness is difficult to diagnose in sows. Infrared thermography (IRT) was evaluated as a method of detecting signs of inflammation in the lower limbs as an aid in lameness detection. PMID:24587511

  20. NASA MUST Paper: Infrared Thermography of Graphite/Epoxy

    NASA Technical Reports Server (NTRS)

    Comeaux, Kayla; Koshti, Ajay

    2010-01-01

    The focus of this project is to use Infrared Thermography, a non-destructive test, to detect detrimental cracks and voids beneath the surface of materials used in the space program. This project will consist of developing a simulation model of the Infrared Thermography inspection of the Graphite/Epoxy specimen. The simulation entails finding the correct physical properties for this specimen as well as programming the model for thick voids or flat bottom holes. After the simulation is completed, an Infrared Thermography inspection of the actual specimen will be made. Upon acquiring the experimental test data, an analysis of the data for the actual experiment will occur, which includes analyzing images, graphical analysis, and analyzing numerical data received from the infrared camera. The simulation will then be corrected for any discrepancies between it and the actual experiment. The optimized simulation material property inputs can then be used for new simulation for thin voids. The comparison of the two simulations, the simulation for the thick void and the simulation for the thin void, provides a correlation between the peak contrast ratio and peak time ratio. This correlation is used in the evaluation of flash thermography data during the evaluation of delaminations.

  1. Feasibility of determining flat roof heat losses using aerial thermography

    NASA Technical Reports Server (NTRS)

    Bowman, R. L.; Jack, J. R.

    1979-01-01

    The utility of aerial thermography for determining rooftop heat losses was investigated experimentally using several completely instrumented test roofs with known thermal resistances. Actual rooftop heat losses were obtained both from in-situ instrumentation and aerial thermography obtained from overflights at an altitude of 305 m. In general, the remotely determined roof surface temperatures agreed very well with those obtained from ground measurements. The roof heat losses calculated using the remotely determined roof temperature agreed to within 17% of those calculated from 1/R delta T using ground measurements. However, this agreement may be fortuitous since the convective component of the heat loss is sensitive to small changes in roof temperature and to the average heat transfer coefficient used, whereas the radiative component is less sensitive. This, at this time, it is felt that an acceptable quantitative determination of roof heat losses using aerial thermography is only feasible when the convective term is accurately known or minimized. The sensitivity of the heat loss determination to environmental conditions was also evaluated. The analysis showed that the most reliable quantitative heat loss determinations can probably be obtained from aerial thermography taken under conditions of total cloud cover with low wind speeds and at low ambient temperatures.

  2. Use of aerial thermography in Canadian energy conservation programs

    NASA Technical Reports Server (NTRS)

    Cihlar, J.; Brown, R. J.; Lawrence, G.; Barry, J. N.; James, R. B.

    1977-01-01

    Recent developments in the use of aerial thermography in energy conservation programs within Canada were summarized. Following a brief review of studies conducted during the last three years, methodologies of data acquisition, processing, analysis and interpretation was discussed. Examples of results from an industrial oriented project were presented and recommendations for future basic work were outlined.

  3. Normalized Temperature Contrast Processing in Flash Infrared Thermography

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2016-01-01

    The paper presents further development in normalized contrast processing of flash infrared thermography method by the author given in US 8,577,120 B1. The method of computing normalized image or pixel intensity contrast, and normalized temperature contrast are provided, including converting one from the other. Methods of assessing emissivity of the object, afterglow heat flux, reflection temperature change and temperature video imaging during flash thermography are provided. Temperature imaging and normalized temperature contrast imaging provide certain advantages over pixel intensity normalized contrast processing by reducing effect of reflected energy in images and measurements, providing better quantitative data. The subject matter for this paper mostly comes from US 9,066,028 B1 by the author. Examples of normalized image processing video images and normalized temperature processing video images are provided. Examples of surface temperature video images, surface temperature rise video images and simple contrast video images area also provided. Temperature video imaging in flash infrared thermography allows better comparison with flash thermography simulation using commercial software which provides temperature video as the output. Temperature imaging also allows easy comparison of surface temperature change to camera temperature sensitivity or noise equivalent temperature difference (NETD) to assess probability of detecting (POD) anomalies.

  4. Infrared thermography to detect residual ceramic in gas turbine blades

    NASA Astrophysics Data System (ADS)

    Meola, C.; Carlomagno, G. M.; di Foggia, M.; Natale, O.

    2008-06-01

    A serious problem in the production of gas turbine blades is the detection of residual ceramic cores inside the cooling passages; in fact, the presence of even small ceramic pieces affects turbine performance and may cause difficulties in successive manufacturing. Therefore, it is important to have a non-destructive technique that must be capable of detecting tiny ceramic fragments in a fast and easy way. In this perspective, the suitability of infrared thermography was investigated within cooperation between the University of Naples and the Europea Microfusioni Aerospaziali S.p.A. (EMA). Several blades of three different types were inspected revealing that in many cases infrared thermography can discover small ceramic fragments which were missed by X-ray inspection. In addition, infrared thermography allows gaining of information about other types of anomalies (e.g., surface defects) during the same testing step (by eventually changing the test parameters) and then saving time and money. The obtained results look promising in view of introducing infrared thermography among industrial instrumentation as an alternative to, or integrated with, the most currently utilized non-destructive techniques.

  5. Investigation on choosing technical parameters for pulse thermography

    NASA Astrophysics Data System (ADS)

    Li, Huijuan

    2015-04-01

    Composite material connected by glue has gained popularity as a replacement for conventional materials and structures to reduce weight and improve strength in the aerospace industry, with the development of material science and structural mechanics. However, the adhesive bonding process is more susceptible to quality variations during manufacturing than traditional joining methods. The integrality, strength and rigidity of product would be broken by disbonding. Infrared thermography is one of several non-destructive testing techniques which can be used for defect detection in aircraft materials. Pulsed infrared thermography has been widely used in aerospace and mechanical manufacture industry because it can offer noncontact, quickly and visual examinations of disbonding defects. However the parameter choosing method is difficult to decide. Investigate the choosing technical parameters for pulse thermograpghy is more important to ensure the product quality and testing efficiency. In this paper, two kinds of defects which are of various size, shape and location below the test surface are planted in the honeycomb structure, they are all tested by pulsed thermography. This paper presents a study of single factor experimental research on damage sample in simulation was carried out. The impact of the power of light source, detection distance, and the wave band of thermography camera on detecting effect is studied. The select principle of technique is made, the principle supplied basis for selection of detecting parameters in real part testing.

  6. Concept And Development Of Instruments For ITER Thermography

    SciTech Connect

    Reichle, R.; Balorin, C.; Carpentier, S.; Corre, Y.; Davi, M.; Delchambre, E.; Desgrange, C.; Escourbiac, F.; Fougerolle, S.; Gardarein, J. L.; Gauthier, E.; Guilhem, D.; Jouve, M.; Loarer, Th.; Martins, J. P.; Patterlini, J. C.; Pocheau, C.; Roche, H.; Salasca, S.; Travere, J. M.

    2008-03-12

    We give here a short overview of the status of the development for ITER thermography as performed by the CEA-Cadarache and some of its collaboration partners. The topics that have been included in this synthesis are the status of the optical design, the role of multi-wavelength mesurements, multicolour pyroreflectometry, photothermal methods, and reflection simulations and measurements.

  7. Infrared thermography to evaluate lameness in pregnant sows.

    PubMed

    Amezcua, Rocio; Walsh, Shannon; Luimes, Paul H; Friendship, Robert M

    2014-03-01

    Early detection of lameness in sows is important to reduce losses and improve animal welfare. Mild-to-moderate lameness is difficult to diagnose in sows. Infrared thermography (IRT) was evaluated as a method of detecting signs of inflammation in the lower limbs as an aid in lameness detection.

  8. Defect Detection in Composite Coatings by Computational Simulation Aided Thermography

    NASA Astrophysics Data System (ADS)

    Almeida, R. M.; Souza, M. P. V.; Rebello, J. M. A.

    2010-02-01

    Thermography is based on the measurement of superficial temperature distribution of an object inspected subjected to tension, normally thermal heat. This measurement is performed with a thermographic camera that detects the infrared radiation emitted by every object. In this work thermograph was simulated by COMSOL software for optimize experimental parameters in composite material coatings inspection.

  9. Competing dynamic phases of active polymer networks

    NASA Astrophysics Data System (ADS)

    Freedman, Simon; Banerjee, Shiladitya; Dinner, Aaron R.

    Recent experiments on in-vitro reconstituted assemblies of F-actin, myosin-II motors, and cross-linking proteins show that tuning local network properties can changes the fundamental biomechanical behavior of the system. For example, by varying cross-linker density and actin bundle rigidity, one can switch between contractile networks useful for reshaping cells, polarity sorted networks ideal for directed molecular transport, and frustrated networks with robust structural properties. To efficiently investigate the dynamic phases of actomyosin networks, we developed a coarse grained non-equilibrium molecular dynamics simulation of model semiflexible filaments, molecular motors, and cross-linkers with phenomenologically defined interactions. The simulation's accuracy was verified by benchmarking the mechanical properties of its individual components and collective behavior against experimental results at the molecular and network scales. By adjusting the model's parameters, we can reproduce the qualitative phases observed in experiment and predict the protein characteristics where phase crossovers could occur in collective network dynamics. Our model provides a framework for understanding cells' multiple uses of actomyosin networks and their applicability in materials research. Supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  10. Principal Components of Thermography analyses of the Silk Tomb, Petra (Jordan)

    NASA Astrophysics Data System (ADS)

    Gomez-Heras, Miguel; Alvarez de Buergo, Monica; Fort, Rafael

    2015-04-01

    This communication presents the results of an active thermography survey of the Silk Tomb, which belongs to the Royal Tombs compound in the archaeological city of Petra in Jordan. The Silk Tomb is carved in the variegated Palaeozoic Umm Ishrin sandstone and it is heavily backweathered due to surface runoff from the top of the cliff where it is carved. Moreover, the name "Silk Tomb" was given because of the colourful display of the variegated sandstone due to backweathering. A series of infrared images were taken as the façade was heated by sunlight to perform a Principal Component of Thermography analyses with IR view 1.7.5 software. This was related to indirect moisture measurements (percentage of Wood Moisture Equivalent) taken across the façade, by means of a Protimeter portable moisture meter. Results show how moisture retention is deeply controlled by lithological differences across the façade. Research funded by Geomateriales 2 S2013/MIT-2914 and CEI Moncloa (UPM, UCM, CSIC) through a PICATA contract and the equipment from RedLAbPAt Network

  11. Using infrared thermography to evaluate the injuries of cold-stored guava.

    PubMed

    Gonçalves, Bárbara Jordana; Giarola, Tales Márcio de Oliveira; Pereira, Daniele Fernanda; Vilas Boas, Eduardo Valério de Barros; de Resende, Jaime Vilela

    2016-02-01

    This study aimed to identify using the infrared (IR) thermography data the injuries of guavas during cooling and storage at different temperatures. Three experiments were performed at three different temperatures with one storage time. The first experiment was done with static air in a refrigerator at 5 °C, the second experiment was conducted in a tunnel with forced air at 10 °C, and the third experiment was conducted in an air conditioned environment at 20 °C. Mechanical injuries caused by the impact of a pendulum were induced on guava surfaces. The surface temperatures were obtained for bruised and sound tissues during cooling and storage using an Infrared (IR) camera. With thermography, it was possible to distinguish the injured tissues of the fruits that were unaffected at temperatures of 5, 10 and 20 °C in first hours of cooling. The results suggest that the storage of guava fruits at 5 °C in static air resulted in cold-induced injury, while storage at 20 °C resulted in an altered activity pattern. The stored guava fruits were analyzed for mass loss, firmness, color, total sugars, total pectin and solubility. The parameters values were lower during the forced-air cooling and storage at 5 and 10 °C. When stored at 20 °C, there was fruit maturation that caused tissue softening, which makes the fruits more susceptible to deterioration and thermographic readings showed opposite trends.

  12. IR thermography for the assessment of the thermal conductivity of thermoelectric modules at intermediate temperature

    NASA Astrophysics Data System (ADS)

    Boldrini, S.; Ferrario, A.; Bison, P.; Miozzo, A.; Montagner, F.; Fabrizio, M.

    2016-05-01

    The correct measurement of the performances of thermoelectric (TE) modules for energy conversion is a mandatory task both for laboratory research and for industries engaged in TE modules development or in their integration into thermoelectric generators. A testing device oriented to the maximum flexibility, based on the heat flow meter method at the cold side of the module has been developed. The system is conceived to test TE modules (single or in cascade) with a footprint up to 60x60 mm2, from room temperature up to intermediate temperature. Modules can be tested under vacuum or inert atmosphere. Specifically, the flow meter is made of a block of material, with known thermal conductivity, in contact with the cold side of the thermoelectric module. The heat flow is finally determined by measuring the temperature profile along the heat flow path and that is obtained by IR thermography. IR thermography is also utilized to evaluate the contact resistance between the active thermoelectric elements made of ceramic materials and the ceramic layer working as heat diffuser and mechanical support. Some finite element thermal analyses of the system performed for its design are presented.

  13. Neural network with formed dynamics of activity

    SciTech Connect

    Dunin-Barkovskii, V.L.; Osovets, N.B.

    1995-03-01

    The problem of developing a neural network with a given pattern of the state sequence is considered. A neural network structure and an algorithm, of forming its bond matrix which lead to an approximate but robust solution of the problem are proposed and discussed. Limiting characteristics of the serviceability of the proposed structure are studied. Various methods of visualizing dynamic processes in a neural network are compared. Possible applications of the results obtained for interpretation of neurophysiological data and in neuroinformatics systems are discussed.

  14. Active dynamics of tissue shear flow

    NASA Astrophysics Data System (ADS)

    Popović, Marko; Nandi, Amitabha; Merkel, Matthias; Etournay, Raphaël; Eaton, Suzanne; Jülicher, Frank; Salbreux, Guillaume

    2017-03-01

    We present a hydrodynamic theory to describe shear flows in developing epithelial tissues. We introduce hydrodynamic fields corresponding to state properties of constituent cells as well as a contribution to overall tissue shear flow due to rearrangements in cell network topology. We then construct a generic linear constitutive equation for the shear rate due to topological rearrangements and we investigate a novel rheological behaviour resulting from memory effects in the tissue. We identify two distinct active cellular processes: generation of active stress in the tissue, and actively driven topological rearrangements. We find that these two active processes can produce distinct cellular and tissue shape changes, depending on boundary conditions applied on the tissue. Our findings have consequences for the understanding of tissue morphogenesis during development.

  15. Activity of a social dynamics model

    NASA Astrophysics Data System (ADS)

    Reia, Sandro M.; Neves, Ubiraci P. C.

    2015-10-01

    Axelrod's model was proposed to study interactions between agents and the formation of cultural domains. It presents a transition from a monocultural to a multicultural steady state which has been studied in the literature by evaluation of the relative size of the largest cluster. In this article, we propose new measurements based on the concept of activity per agent to study the Axelrod's model on the square lattice. We show that the variance of system activity can be used to indicate the critical points of the transition. Furthermore the frequency distribution of the system activity is able to show a coexistence of phases typical of a first order phase transition. Finally, we verify a power law dependence between cluster activity and cluster size for multicultural steady state configurations at the critical point.

  16. Emergence of collective dynamical chirality for achiral active particles.

    PubMed

    Jiang, Huijun; Ding, Huai; Pu, Mingfeng; Hou, Zhonghuai

    2017-01-25

    Emergence of collective dynamical chirality (CDC) at mesoscopic scales plays a key role in many formation processes of chiral structures in nature, which may also provide possible routines for people to fabricate complex chiral architectures. So far, most of the reported CDCs have been found in systems of active objects with individual structure chirality or/and dynamical chirality, and whether CDC can arise from simple and achiral units is still an attractive mystery. Here, we report a spontaneous formation of CDC in a system of both dynamically and structurally achiral particles motivated by active motion of cells adhered onto a substrate. Active motion, confinement and hydrodynamic interaction are found to be the three key factors. Detailed analysis shows that the system can support abundant collective dynamical behaviors, including rotating droplets, rotating bubbles, CDC oscillations, arrays of collective rotations, and interesting transitions such as chirality transition, structure transition and state reentrance.

  17. Reflex sympathetic dystrophy of upper extremity: a new diagnostic approach using Flexi-Therm liquid crystal thermography

    PubMed Central

    Kobrossi, T.; Steiman, I.

    1986-01-01

    A case of reflex sympathetic dystrophy syndrome (RSDA), diagnosed by liquid crystal contact thermography (LCT) is presented. The pathogenesis, diagnosis and treatment of the syndrome are reviewed having regard to liquid crystal thermography. ImagesFigure 1

  18. Overview of MSFC's Applied Fluid Dynamics Analysis Group Activities

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto; Griffin, Lisa; Williams, Robert

    2003-01-01

    TD64, the Applied Fluid Dynamics Analysis Group, is one of several groups with high-fidelity fluids design and analysis expertise in the Space Transportation Directorate at Marshall Space Flight Center (MSFC). TD64 assists personnel working on other programs. The group participates in projects in the following areas: turbomachinery activities, nozzle activities, combustion devices, and the Columbia accident investigation.

  19. International standards pertaining to thermography practices, training and certification

    NASA Astrophysics Data System (ADS)

    West Åkerblom, Lisa

    2008-03-01

    American, European and International societies establish standards for individuals and companies within the field of infrared thermography. Historically addressing non-destructive testing (NDT) applications and personnel, standards exist and are being developed within the fields of condition monitoring (CM) and building diagnostics. Incorrect reference to or application of standards and guidelines create widespread market confusion. What type of claim can be made against which standards? Does the standard apply to a company or an individual? To what or whom is the standard intended? Does reference to a standard guarantee compliance or imply quality? How does one become educated or involved in standards? An overview of international standards within the field of thermography (with brief reference to recognizable guidelines and standards such as ASNT SNT-TC-1A and CEN 473), their status and application will be presented.

  20. Investigation on a new inducer of pulsed eddy current thermography

    NASA Astrophysics Data System (ADS)

    He, Min; Zhang, Laibin; Zheng, Wenpei; Feng, Yijing

    2016-09-01

    In this paper, a new inducer of pulsed eddy current thermography (PECT) is presented. The use of the inducer can help avoid the problem of blocking the infrared (IR) camera's view in eddy current thermography technique. The inducer can also provide even heating of the test specimen. This paper is concerned with the temperature distribution law around the crack on a specimen when utilizing the new inducer. Firstly, relative mathematical models are provided. In the following section, eddy current distribution and temperature distribution around the crack are studied using the numerical simulation method. The best separation distance between the inducer and the specimen is also determined. Then, results of temperature distribution around the crack stimulated by the inducer are gained by experiments. Effect of current value on temperature rise is studied as well in the experiments. Based on temperature data, temperature features of the crack are discussed.

  1. Detection of foreign substances in food using thermography

    NASA Astrophysics Data System (ADS)

    Meinlschmidt, Peter; Maergner, Volker

    2002-03-01

    This paper gives a short introduction into the possibility of detecting foreign bodies in food by using IR thermography. The first results shown for combinations of cherries and chocolate and berries contaminated with leaves, stalks, pedicel and thorns could be easily evaluated manually. Therefore the differing emissivity coefficients or the different heat conductivities and/or capacities are used for differentiation. Applying pulse thermography, first heat conductivity measurements of different food materials are performed. Calculating the contrast of possible food / contaminant combinations shows the difficulty of differentiating certain materials. A possible automatic evaluation for raisins contaminated with wooden sticks and almonds blended with stones could be shown. The power of special adapted algorithms using statistical or morphological analysis is shown to distinguish the foreign bodies from the foodstuff.

  2. Thermography Applied to Interfacial Phenomena, Potentials and Pitfalls

    NASA Astrophysics Data System (ADS)

    Antoni, M.; Sefiane, K.

    Infrared (IR) thermography is a non-intrusive method for temperature measurement. Its ability to produce two-dimensional temperature images makes it a powerful tool for investigating systems exhibiting spatial variation of temperature. IR temperature measurements are almost always surface measurements; the technique has therefore found use in obtaining interfacial temperatures, primarily in heat and mass transfer investigations. The reasons for the technique's limited uptake likely stems from the requirement of accurate material emissivity data and the large number of potential sources of error. This chapter provides an overview of the underlying theory of radiative heat transfer. Key considerations and problems in the application of IR thermography are discussed with reference to some examples of recent successful applications.

  3. Liquid ingress recognition in honeycomb structure by pulsed thermography

    NASA Astrophysics Data System (ADS)

    Chen, Dapeng; Zeng, Zhi; Tao, Ning; Zhang, Cunlin; Zhang, Zheng

    2013-05-01

    Pulsed thermography has been proven to be a fast and effective method to detect fluid ingress in aircraft honeycomb structure; however, water and hydraulic oil may have similar appearance in the thermal image sequence. It is meaningful to identify what kind of liquid ingress it is for aircraft maintenance. In this study, honeycomb specimens with glass fiber and aluminum skin are injected different kinds of liquids: water and oil. Pulsed thermography is adopted; a recognition method is proposed to first get the reference curve by linear fitting the beginning of the logarithmic curve, and then an algorithm based on the thermal contrast between liquid and reference is used to recognize what kind of fluid it is by calculating their thermal properties. It is verified with the results of theory and the finite element simulation.

  4. Roles For Thermography In Utility Company Residential Energy Audits

    NASA Astrophysics Data System (ADS)

    Schott, William A.

    1981-01-01

    Basin Electric Power Cooperative, Bismarck, North Dakota, provides wholesale electricity to more than 100 rural electric cooperatives of the Missouri Pasin Region. The Cooperative, in cooperation with Aadland*Hoffmann*Pieri Energy Associates, Inc., Minneapolis, MN has developed a three-fold program which involves the analytical approach, the instructional approach and the motivational approach (A'IsM) to an energy audit. This three-fold program utilizes infrared thermography to pinpoint where heat loss is occurring in the home. The auditor can motivate the homeowner to initiate energy conserving improvements and practices by showing where money can be saved. Infrared thermography is a most valuable tool in helping the rural electrics conserve energy and the nation's natural resources. Over 180 energy auditors have been trained through this program in this area and 5,000 trained in the nation.

  5. Divertor IR thermography on Alcator C-Moda)

    NASA Astrophysics Data System (ADS)

    Terry, J. L.; LaBombard, B.; Brunner, D.; Payne, J.; Wurden, G. A.

    2010-10-01

    Alcator C-Mod is a particularly challenging environment for thermography. It presents issues that will similarly face ITER, including low-emissivity metal targets, low-Z surface films, and closed divertor geometry. In order to make measurements of the incident divertor heat flux using IR thermography, the C-Mod divertor has been modified and instrumented. A 6° toroidal sector has been given a 2° toroidal ramp in order to eliminate magnetic field-line shadowing by imperfectly aligned divertor tiles. This sector is viewed from above by a toroidally displaced IR camera and is instrumented with thermocouples and calorimeters. The camera provides time histories of surface temperatures that are used to compute incident heat-flux profiles. The camera sensitivity is calibrated in situ using the embedded thermocouples, thus correcting for changes and nonuniformities in surface emissivity due to surface coatings.

  6. Multiplexing thermography for International Thermonuclear Experimental Reactor divertor targets

    SciTech Connect

    Itami, K.; Sugie, T.; Vayakis, G.; Walker, C.

    2004-10-01

    The concept of multiplexing thermography is applied to the design of the divertor thermography system for International Thermonuclear Experimental Reactor (ITER). The combination of the front mirror with multiellipticity and a Czerney-Turner spectrometer with a 0.2 mm pitched multichannel detector enables a spatial resolution of 3 mm and a time resolution of 20 {mu}s above a target temperature of 300 deg. C to be achieved. This should be sufficient to measure ELM heat fluxes to the targets in ITER. To satisfy the measurement requirement, it is very important to keep an accurate alignment around the optical axis against movement of the vessel during the plasma discharges. Several key engineering problems, such as the survivability of components against mirror coating by redeposited divertor material, remain to be solved. Potential solutions have been identified.

  7. Developing written inspection procedures for thermal/infrared thermography

    SciTech Connect

    Snell, J.

    1996-12-31

    Written inspection procedures are essential to acquiring valid data on a repeatable basis. They are also vital to the safety of the thermographer, and may, for that reason alone, be required by a company. Many thermographers are working with no written procedures. To date only a few of the necessary procedures have been developed by recognized standards organizations. The lack of procedures is limiting the use of thermography. Where thermography is being used without them, results are often less than optimum. This paper will (1) survey existing procedures and standards; (2) discuss current efforts by standards organizations to develop standards and procedures; and (3) present a general methodology from which written inspection procedures can be developed for many thermographic inspections.

  8. Divertor IR thermography on Alcator C-Mod

    SciTech Connect

    Terry, J. L.; LaBombard, B.; Brunner, D.; Payne, J.; Wurden, G. A.

    2010-10-15

    Alcator C-Mod is a particularly challenging environment for thermography. It presents issues that will similarly face ITER, including low-emissivity metal targets, low-Z surface films, and closed divertor geometry. In order to make measurements of the incident divertor heat flux using IR thermography, the C-Mod divertor has been modified and instrumented. A 6 deg. toroidal sector has been given a 2 deg. toroidal ramp in order to eliminate magnetic field-line shadowing by imperfectly aligned divertor tiles. This sector is viewed from above by a toroidally displaced IR camera and is instrumented with thermocouples and calorimeters. The camera provides time histories of surface temperatures that are used to compute incident heat-flux profiles. The camera sensitivity is calibrated in situ using the embedded thermocouples, thus correcting for changes and nonuniformities in surface emissivity due to surface coatings.

  9. Hysteretic dynamics of active particles in a periodic orienting field

    PubMed Central

    Romensky, Maksym; Scholz, Dimitri; Lobaskin, Vladimir

    2015-01-01

    Active motion of living organisms and artificial self-propelling particles has been an area of intense research at the interface of biology, chemistry and physics. Significant progress in understanding these phenomena has been related to the observation that dynamic self-organization in active systems has much in common with ordering in equilibrium condensed matter such as spontaneous magnetization in ferromagnets. The velocities of active particles may behave similar to magnetic dipoles and develop global alignment, although interactions between the individuals might be completely different. In this work, we show that the dynamics of active particles in external fields can also be described in a way that resembles equilibrium condensed matter. It follows simple general laws, which are independent of the microscopic details of the system. The dynamics is revealed through hysteresis of the mean velocity of active particles subjected to a periodic orienting field. The hysteresis is measured in computer simulations and experiments on unicellular organisms. We find that the ability of the particles to follow the field scales with the ratio of the field variation period to the particles' orientational relaxation time, which, in turn, is related to the particle self-propulsion power and the energy dissipation rate. The collective behaviour of the particles due to aligning interactions manifests itself at low frequencies via increased persistence of the swarm motion when compared with motion of an individual. By contrast, at high field frequencies, the active group fails to develop the alignment and tends to behave like a set of independent individuals even in the presence of interactions. We also report on asymptotic laws for the hysteretic dynamics of active particles, which resemble those in magnetic systems. The generality of the assumptions in the underlying model suggests that the observed laws might apply to a variety of dynamic phenomena from the motion of

  10. The Effectiveness of Infrared Thermography in Patients with Whiplash Injury

    PubMed Central

    Lee, Young Seo; Farhadi, Hooman F.; Lee, Won Hee; Kim, Sung Tae; Lee, Kun Su

    2015-01-01

    Objective This study aims to visualize the subjective symptoms before and after the treatment of whiplash injury using infrared (IR) thermography. Methods IR thermography was performed for 42 patients who were diagnosed with whiplash injury. There were 19 male and 23 female patients. The mean age was 43.12 years. Thermal differences (ΔT) in the neck and shoulder and changes in the thermal differences (ΔdT) before and after treatment were analyzed. Pain after injury was evaluated using visual analogue scale (VAS) before and after treatment (ΔVAS). The correlations between ΔdT and ΔVAS results before and after the treatment were examined. We used Digital Infrared Thermal Imaging equipment of Dorex company for IR thermography. Results The skin temperature of the neck and shoulder immediately after injury showed 1-2℃ hyperthermia than normal. After two weeks, the skin temperature was normal range. ΔT after immediately injuy was higher than normal value, but it was gradually near the normal value after two weeks. ΔdT before and after treatment were statistically significant (p<0.05). VAS of the neck and shoulder significantly reduced after 2 week (p=0.001). Also, there was significant correlation between ΔdT and reduced ΔVAS (the neck; r=0.412, p<0.007) (the shoulder; r=0.648, p<0.000). Conclusion The skin temperature of sites with whiplash injury is immediately hyperthermia and gradually decreased after two weeks, finally it got close to normal temperature. These were highly correlated with reduced VAS. IR thermography can be a reliable tool to visualize the symptoms of whiplash injury and the effectiveness of treatment in clinical settings. PMID:25932296

  11. Use of infrared thermography for the diagnosis and grading of sprained ankle injuries

    NASA Astrophysics Data System (ADS)

    Oliveira, João; Vardasca, Ricardo; Pimenta, Madalena; Gabriel, Joaquim; Torres, João

    2016-05-01

    -Wallis tests for non-parametric samples, however, did not confer statistical significance to the differences encountered in the graphics analysis (p > 0.05). The major conclusions were that thermographic analysis of ankle sprain injuries might have some potential to be used clinically, especially in acute settings such as those that occur in hospital emergency areas and in sports practice. There is currently no practical technology to be used for grading ankle sprain lesions, with the gold standard being magnetic resonance imaging. Thermography provides results rapidly and without the need for extensive equipment operating expertise. Based on scientific data present in the literature, this is the first description of the use of this technology with such an objective regarding ankle sprain lesions. Further work is needed, nonetheless, to amplify the sample number with the herein chosen parameters and possibly use dynamic thermography.

  12. Dynamics of the solar active region finestructure

    NASA Astrophysics Data System (ADS)

    Bovelet, B.; Wiehr, E.

    2003-12-01

    We investigate the dynamical behavior of the finestructure in a sunspot's surroundings and its penumbra from a speckle-reconstructed 60 min time series taken at the 45 cm Dutch Open Telescope (DOT) on La Palma. In the 1 nm spectral window containing the G-band, we determine the area of each feature and its time evolution by means of pattern recognition, particularly adapted to separate bright granular edges from inter-granular G-band bright points (BP). The evolution of each individual BP shows a stronger variation of the area than of the intensity. We analyze the horizontal motions of BP as a function of their distance from the sunspot center. Within a 6 Mm ring around the outer sunspot border, most BP (4/5) move radially outwards; they are faster than the minority (1/5) of inward moving BP. The difference of both velocities indicates a radial outward drift which decreases from about 0.3 km s-1 at the outer penumbral border to zero at about 20 Mm distance (28\\arcsec) from the sunspot center; a spatial range that we interpret as the extension of the sunpot ``moat''. This finding supports the idea of giant rolls in deep layers measured by helio-seismic tomography and predicted by theory. Inside the penumbra, we find a 4/5 majority of penumbral bright structures (PBS) to move inwards with a mean velocity of 0.8 km s-1. The 1/5 minority of outward moving PBS is almost entirely located in the outer penumbra; their mean velocity of 0.8 km s-1 is equally found for penumbral dark structures (PDS) in the outer penumbra, in agreement with penumbral MHD models.

  13. Infrared thermography: A non-invasive window into thermal physiology.

    PubMed

    Tattersall, Glenn J

    2016-12-01

    Infrared thermography is a non-invasive technique that measures mid to long-wave infrared radiation emanating from all objects and converts this to temperature. As an imaging technique, the value of modern infrared thermography is its ability to produce a digitized image or high speed video rendering a thermal map of the scene in false colour. Since temperature is an important environmental parameter influencing animal physiology and metabolic heat production an energetically expensive process, measuring temperature and energy exchange in animals is critical to understanding physiology, especially under field conditions. As a non-contact approach, infrared thermography provides a non-invasive complement to physiological data gathering. One caveat, however, is that only surface temperatures are measured, which guides much research to those thermal events occurring at the skin and insulating regions of the body. As an imaging technique, infrared thermal imaging is also subject to certain uncertainties that require physical modelling, which is typically done via built-in software approaches. Infrared thermal imaging has enabled different insights into the comparative physiology of phenomena ranging from thermogenesis, peripheral blood flow adjustments, evaporative cooling, and to respiratory physiology. In this review, I provide background and guidelines for the use of thermal imaging, primarily aimed at field physiologists and biologists interested in thermal biology. I also discuss some of the better known approaches and discoveries revealed from using thermal imaging with the objective of encouraging more quantitative assessment.

  14. Applications of the thermography in the animal production

    NASA Astrophysics Data System (ADS)

    Piñeiro, Carlos; Vizcaino, Elena; Morales, Joaquín.; Manso, Alberto; Díaz, Immaculada; Montalvo, Gema

    2015-04-01

    Infrared thermography is a working technology for over decades, which have been applied mainly in the buildings. We want to move this use to the animal production in order to help us to detect problems of energy efficiency in the facilities preventing, for example, the animal's welfare. In animal production it is necessary to provide a suitable microclimate according to age and production stage of the animals. This microclimate is achieved in the facilities through the environment modification artificially, providing an appropriate comfort for the animals. Many of the problems detected in farms are related to a poor environmental management and control. This is where infrared thermography becomes an essential diagnostic tool to detect failures in the facilities that will be related with health and performance of the animals. The use of this technology in energy audits for buildings, facilities, etc. is becoming more frequent, enabling the technician to easily detect and assess the temperature and energy losses, and it can be used as a support to draft reports and to transmit the situation to the owner in a visual format. In this way, both will be able to decide what improvements are required. Until now, there was not an appropriate technology with affordable prices and easy to manage enough in order to allow the use of the thermography like a routine tool for the diagnostic of these problems, but currently there are some solutions which are starting to appear on the market to meet the requirements needed by the industry.

  15. Infrared Contrast Analysis Technique for Flash Thermography Nondestructive Evaluation

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay

    2014-01-01

    The paper deals with the infrared flash thermography inspection to detect and analyze delamination-like anomalies in nonmetallic materials. It provides information on an IR Contrast technique that involves extracting normalized contrast verses time evolutions from the flash thermography infrared video data. The paper provides the analytical model used in the simulation of infrared image contrast. The contrast evolution simulation is achieved through calibration on measured contrast evolutions from many flat bottom holes in the subject material. The paper also provides formulas to calculate values of the thermal measurement features from the measured contrast evolution curve. Many thermal measurement features of the contrast evolution that relate to the anomaly characteristics are calculated. The measurement features and the contrast simulation are used to evaluate flash thermography inspection data in order to characterize the delamination-like anomalies. In addition, the contrast evolution prediction is matched to the measured anomaly contrast evolution to provide an assessment of the anomaly depth and width in terms of depth and diameter of the corresponding equivalent flat-bottom hole (EFBH) or equivalent uniform gap (EUG). The paper provides anomaly edge detection technique called the half-max technique which is also used to estimate width of an indication. The EFBH/EUG and half-max width estimations are used to assess anomaly size. The paper also provides some information on the "IR Contrast" software application, half-max technique and IR Contrast feature imaging application, which are based on models provided in this paper.

  16. Overview of MSFC's Applied Fluid Dynamics Analysis Group Activities

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto; Wang, Tee-See; Griffin, Lisa; Turner, James E. (Technical Monitor)

    2001-01-01

    This document is a presentation graphic which reviews the activities of the Applied Fluid Dynamics Analysis Group at Marshall Space Flight Center (i.e., Code TD64). The work of this group focused on supporting the space transportation programs. The work of the group is in Computational Fluid Dynamic tool development. This development is driven by hardware design needs. The major applications for the design and analysis tools are: turbines, pumps, propulsion-to-airframe integration, and combustion devices.

  17. Collective dynamics of soft active particles

    NASA Astrophysics Data System (ADS)

    van Drongelen, Ruben; Pal, Anshuman; Goodrich, Carl P.; Idema, Timon

    2015-03-01

    We present a model of soft active particles that leads to a rich array of collective behavior found also in dense biological swarms of bacteria and other unicellular organisms. Our model uses only local interactions, such as Vicsek-type nearest-neighbor alignment, short-range repulsion, and a local boundary term. Changing the relative strength of these interactions leads to migrating swarms, rotating swarms, and jammed swarms, as well as swarms that exhibit run-and-tumble motion, alternating between migration and either rotating or jammed states. Interestingly, although a migrating swarm moves slower than an individual particle, the diffusion constant can be up to three orders of magnitude larger, suggesting that collective motion can be highly advantageous, for example, when searching for food.

  18. Dynamics and evolution of emerging active regions .

    NASA Astrophysics Data System (ADS)

    Battiato, V.; Billotta, S.; Contarino, L.; Romano, P.; Spadaro, D.; Zuccarello, F.

    In the framework of the study on active region emergence, we report the results obtained from the analysis of two ARs (NOAA 10050 and NOAA 10407), characterized by different lifetimes: recurrent the former and short-lived (7 days) the latter. The data used were acquired during two observational campaigns carried out at THEMIS telescope in IPM mode, coordinated with other instruments (IOACT, DOT, BBSO, MDI/SOHO, EIT/SOHO, TRACE). The results obtained have provided indications on the atmospheric layers where the first manifestations of the emerging AR are evidenced, on the rate of emergence of magnetic flux, on the upward velocity of AFS, on asymmetries in downward motions in the AFS legs.

  19. EUV Observations of Active Region Dynamics

    NASA Astrophysics Data System (ADS)

    Deluca, E. E.; Cirtain, J. W.; del Zanna, G.; Mason, H. E.; Martens, P. C.; Schmelz, J.; Golub, L.

    2005-05-01

    Data collected during SoHO JOP 146, in collaboration with TRACE, is used to investigate the physical characteristics of coronal active region loops as a function of time and position along and across loop structures. These data include TRACE images in all three EUV passbands, and simultaneous CDS spectroscopic observations. Preliminary measurements of the loop temperature both along the loop half-length and loop cross-section are presented as a function of time. We will show the temperature and density profiles of several structures as a function of position, show changes in temperature and density with time and characterize the coronal background emission. Questions raised by these results will be greatly advanced with the high resolution spectra available from the EIS on Solar-B.

  20. Protein-water dynamics in antifreeze protein III activity

    NASA Astrophysics Data System (ADS)

    Xu, Yao; Bäumer, Alexander; Meister, Konrad; Bischak, Connor G.; DeVries, Arthur L.; Leitner, David M.; Havenith, Martina

    2016-03-01

    We combine Terahertz absorption spectroscopy (THz) and molecular dynamics (MD) simulations to investigate the underlying molecular mechanism for the antifreeze activity of one class of antifreeze protein, antifreeze protein type III (AFP-III) with a focus on the collective water hydrogen bond dynamics near the protein. After summarizing our previous work on AFPs, we present a new investigation of the effects of cosolutes on protein antifreeze activity by adding sodium citrate to the protein solution of AFP-III. Our results reveal that for AFP-III, unlike some other AFPs, the addition of the osmolyte sodium citrate does not affect the hydrogen bond dynamics at the protein surface significantly, as indicated by concentration dependent THz measurements. The present data, in combination with our previous THz measurements and molecular simulations, confirm that while long-range solvent perturbation is a necessary condition for the antifreeze activity of AFP-III, the local binding affinity determines the size of the hysteresis.

  1. Infrared thermography for examination of skin temperature in the dorsal hand of office workers.

    PubMed

    Gold, Judith E; Cherniack, Martin; Buchholz, Bryan

    2004-10-01

    Reduced blood flow may contribute to the pathophysiology of upper extremity musculoskeletal disorders (UEMSD), such as tendinitis and carpal tunnel syndrome. The study objective was to characterize potential differences in cutaneous temperature, among three groups of office workers assessed by dynamic thermography following a 9-min typing challenge: those with UEMSD, with ( n=6) or without ( n=10) cold hands exacerbated by keyboard use, and control subjects ( n=12). Temperature images of the metacarpal region of the dorsal hand were obtained 1 min before typing, and during three 2-min sample periods [0-2 min (early), 3-5 min (middle), and 8-10 min (late)] after typing. Mean temperature increased from baseline levels immediately after typing by a similar magnitude, 0.7 (0.3) degrees C in controls and 0.6 (0.2) degrees C in UEMSD cases without cold hands, but only by 0.1 (0.3) degrees C in those with cold hands. Using paired t-tests for within group comparisons of mean dorsal temperature between successive imaging periods, three patterns of temperature change were apparent during 10 min following typing. Controls further increased mean temperature by 0.1 degrees C ( t-test, P=0.001) at 3-5 min post-typing before a late temperature decline of -0.3 degrees C ( t-test, P=0.04), while cases without cold hands showed no change from initial post-typing mean temperature rise during middle or late periods. In contrast, subjects with keyboard-induced cold hands had no change from initial post-typing temperature until a decrease at the late period of -0.3 degrees C ( t-test, P=0.06). Infrared thermography appears to distinguish between the three groups of subjects, with keyboard-induced cold hand symptoms presumably due, at least partially, to reduced blood flow.

  2. Infrared thermography based studies on the effect of age on localized cold stress induced thermoregulation in human

    NASA Astrophysics Data System (ADS)

    Lahiri, B. B.; Bagavathiappan, S.; Nishanthi, K.; Mohanalakshmi, K.; Veni, L.; Saumya; Yacin, S. M.; Philip, John

    2016-05-01

    Thermoregulatory control of blood flow plays an important role in maintaining the human body temperature and it provides physiological resistance against extreme environmental thermal stresses. To understand the role of age on thermal signals from veins and the thermoregulatory mechanism, the dynamic variation of the vein temperature on the hands of 17 human subjects, under a localized cold stress, was studied using infrared thermography. It was observed that the vein temperature of the stimulated hand initially decreased with time up to a time interval (called 'inversion time'), which was attributed to the localized cutaneous vasoconstriction. Beyond inversion time, a rise in the vein temperature of the stimulated hand was observed. A shift in the inversion time to higher values was observed for the older subjects, which was attributed to the reduced efficiency and responsiveness of the cutaneous vasoconstriction mechanism in these subjects. Our studies indicated that the inversion time increased linearly with subject age with strong positive Pearson's correlation coefficient of 0.94. It was also observed that the contralateral symmetry in vasoconstriction was much lower in older subjects than the younger subjects. The absolute difference between the left and right inversion time varied between 11-118 s and 5-28 s for the older and younger subjects, respectively. Our study clearly demonstrated that infrared thermography is one of the most effective experimental tool for studying dynamic variation in vein pixel temperature under localized thermal stresses.

  3. Thermography-based blood flow imaging in human skin of the hands and feet: a spectral filtering approach.

    PubMed

    Sagaidachnyi, A A; Fomin, A V; Usanov, D A; Skripal, A V

    2017-02-01

    The determination of the relationship between skin blood flow and skin temperature dynamics is the main problem in thermography-based blood flow imaging. Oscillations in skin blood flow are the source of thermal waves propagating from micro-vessels toward the skin's surface, as assumed in this study. This hypothesis allows us to use equations for the attenuation and dispersion of thermal waves for converting the temperature signal into the blood flow signal, and vice versa. We developed a spectral filtering approach (SFA), which is a new technique for thermography-based blood flow imaging. In contrast to other processing techniques, the SFA implies calculations in the spectral domain rather than in the time domain. Therefore, it eliminates the need to solve differential equations. The developed technique was verified within 0.005-0.1 Hz, including the endothelial, neurogenic and myogenic frequency bands of blood flow oscillations. The algorithm for an inverse conversion of the blood flow signal into the skin temperature signal is addressed. The examples of blood flow imaging of hands during cuff occlusion and feet during heating of the back are illustrated. The processing of infrared (IR) thermograms using the SFA allowed us to restore the blood flow signals and achieve correlations of about 0.8 with a waveform of a photoplethysmographic signal. The prospective applications of the thermography-based blood flow imaging technique include non-contact monitoring of the blood supply during engraftment of skin flaps and burns healing, as well the use of contact temperature sensors to monitor low-frequency oscillations of peripheral blood flow.

  4. Thermography and k-means clustering methods for anti-reflective coating film inspection: scratch and bubble defects

    NASA Astrophysics Data System (ADS)

    Zhou, Xunfei; Wang, Hongjin; Hsieh, Sheng-Jen (Tony)

    2016-05-01

    Anti-reflective coating is widely used on telescopes, eyeglasses and screens to effectively enhance the transmission of light. However, the presence of defects such as bubbles or scratches lowers the usability and functionality of optical film. Optical cameras are often used for coating inspection, but their accuracy relies heavily on the illumination source, camera viewing angles and defect location. This paper describes an active thermography approach that can potentially overcome this issue. Eighteen scratch and bubble defects were located on AR film with dimensions ranging from 0.03mm to 4.4 mm. An infrared camera was used to capture thermal images of those defects over 65 seconds of heating. After the thermal images were acquired, time-domain analysis and space-domain analysis were conducted and k-means clustering methodology was used to highlight the defective area. Results suggest active thermography can be used to detect scratch defects with widths of 0.03mm to 4.40 mm and bubble defects with diameters ranging from 0.08 to 4 mm. For defects with dimensions larger than 0.4 mm, our algorithm can estimate the dimension with less than 15% bias. However, for defects with dimensions less than 0.4mm, the algorithm estimation error ranged from 68% to 900% due to camera resolution limitations. It should be noted that our algorithm can still distinguish a scratch defect with a width of less than one pixel. This study also suggests active thermography can detect scratch and bubble defects regardless of the location of the illumination source.

  5. Clinical application of infrared thermography in diagnosis and therapeutic assessment of vascular ischemic pain.

    PubMed

    Hsieh, J C; Chan, K H; Lui, P W; Lee, T Y

    1990-12-01

    Temperature is a very important and useful manifestation of various disease entities. The importance of body temperature as an indicator of disease has been known for centuries but in recent years attention has also been paid to how to conveniently and effectively make use of skin temperature as a diagnostic tool. Skin temperature can be measured with thermocouples, electronic thermistor-thermometers, electronic integrators, liquid crystal thermography, and infrared thermography. The temperature of extremities is largely dependent on the blood flow through peripheral vessels, and in the study of vascular diseases thermography has been, therefore, found to be useful. Blood flow can be assessed by many methods including washout techniques or laser Doppler flowmetry. Of these, infrared thermography has the advantages of being noninvasive, remote from the patient when in use, and capable of producing multiple recordings at short time intervals. Here we present a case of vascular ischemic pain which was diagnosed and therapeutically assessed by thermography.

  6. Photothermal and infrared thermography characterizations of thermal diffusion in hydroxyapatite materials

    NASA Astrophysics Data System (ADS)

    Bante-Guerra, J.; Conde-Contreras, M.; Trujillo, S.; Martinez-Torres, P.; Cruz-Jimenez, B.; Quintana, P.; Alvarado-Gil, J. J.

    2009-02-01

    Non destructive analysis of hydroxyapatite materials is an active research area mainly in the study of dental pieces and bones due to the importance these pieces have in medicine, archeology, dentistry, forensics and anthropology. Infrared thermography and photothermal techniques constitute highly valuable tools in those cases. In this work the quantitative analysis of thermal diffusion in bones is presented. The results obtained using thermographic images are compared with the ones obtained from the photothermal radiometry. Special emphasis is done in the analysis of samples with previous thermal damage. Our results show that the treatments induce changes in the physical properties of the samples. These results could be useful in the identification of the agents that induced modifications of unknown origin in hydroxyapatite structures.

  7. Inversion of tone burst eddy current thermography data for defect sizing - A simulation study

    NASA Astrophysics Data System (ADS)

    Biju, N.; Ganesan, N.; Krishnamurthy, C. V.; Balasubramaniam, Krishnan

    2013-01-01

    In this paper, the results of the simulation study to reconstruct the size of the defects from the data obtained using the active thermography technique based on transient induction heating, will be presented. The forward problem of electro-magnetic induction was solved with an axi-symmetric model using finite element method and from the temperature history profiles, an inverse analysis was performed using Genetic Algorithm (GA) to size the defect. Simulations were performed using the finite element model to obtain the temperature data which are then used to reconstruct the radius (rd) and depth (dd) of the wall thinning defects in aluminum plate using inversion method. Two cases, coil inner radius less than the defect radius (rcrd), were considered. The analysis of the sensitivity of coil dimensions to the calculated peak temperature at the observation point was carried out.

  8. Comparison of quantitative defect characterization using pulse-phase and lock-in thermography.

    PubMed

    Maierhofer, Christiane; Röllig, Mathias; Krankenhagen, Rainer; Myrach, Philipp

    2016-12-01

    Using optical excitation sources for active thermography enables a contactless, remote, and non-destructive testing of materials and structures. Currently, two kinds of temporal excitation techniques have been established: pulse or flash excitation, using mostly flash lamps; and periodic or lock-in excitation, using halogen lamps, LED, or laser arrays. From the experimental point of view, both techniques have their advantages and disadvantages. Concerning the comparison of the testing results of both techniques, only very few studies have been performed in the past. In this contribution, the phase values obtained at flat bottom holes in steel and CFRP and the spatial resolution measured at crossed notches in steel using flash and lock-in excitation are compared quantitatively.

  9. [The importance of thermography in the diagnosis of lumbar radicular pain syndromes].

    PubMed

    Hildebrandt, J; Horst-Schaper, G; Kaiser, G

    1987-03-01

    This study proved the existence of lateral differences in thermographic recordings of the legs of 83 out of a total of 84 patients with the clinical diagnosis "lumbar disk herniation". In 68.5 per cent only of 71 patients with unilateral symptoms, however, the hypothermic areas occurred in the symptomatic leg. These areas could not be matched with corresponding dermatomas. As regards determination of the level of the herniation, thermography is an unreliable method for differentiation between the different segments, because the site of the dermatoma cannot be identified in relation to the site of the herniation. The mechanism of difference in temperature distribution probably depends on sympathetic reflexes with increased activity in the vasoconstrictor system due to pain. These reflexes are not limited to one dermatoma. This has been confirmed by means of diagnostic nerve blocks of the appropriate root.

  10. Monitoring of fatigue damage in metal plates by acoustic emission and thermography

    NASA Astrophysics Data System (ADS)

    Kordatos, E. Z.; Aggelis, D. G.; Matikas, T. E.

    2011-04-01

    Acoustic Emission (AE) supplies information on the fracturing behavior of different materials. In this study, AE activity was recorded during fatigue experiments in metal CT specimens with a V-shape notch which were loaded in fatigue until final failure. AE parameters exhibit a sharp increase approximately 1000 cycles before than final failure. Therefore, the use of acoustic emission parameters is discussed both in terms of characterization of the damage mechanisms, as well as a tool for the prediction of ultimate life of the material under fatigue. Additionally, an innovative nondestructive methodology based on lock-in thermography is developed to determine the crack growth rate using thermographic mapping of the material undergoing fatigue. The thermographic results on the crack growth rate of aluminium alloys were then correlated with measurements obtained by the conventional compliance method, and found to be in agreement.

  11. Structure and dynamics of a constitutively active neurotensin receptor

    PubMed Central

    Krumm, Brian E.; Lee, Sangbae; Bhattacharya, Supriyo; Botos, Istvan; White, Courtney F.; Du, Haijuan; Vaidehi, Nagarajan; Grisshammer, Reinhard

    2016-01-01

    Many G protein-coupled receptors show constitutive activity, resulting in the production of a second messenger in the absence of an agonist; and naturally occurring constitutively active mutations in receptors have been implicated in diseases. To gain insight into mechanistic aspects of constitutive activity, we report here the 3.3 Å crystal structure of a constitutively active, agonist-bound neurotensin receptor (NTSR1) and molecular dynamics simulations of agonist-occupied and ligand-free receptor. Comparison with the structure of a NTSR1 variant that has little constitutive activity reveals uncoupling of the ligand-binding domain from conserved connector residues, that effect conformational changes during GPCR activation. Furthermore, molecular dynamics simulations show strong contacts between connector residue side chains and increased flexibility at the intracellular receptor face as features that coincide with robust signalling in cells. The loss of correlation between the binding pocket and conserved connector residues, combined with altered receptor dynamics, possibly explains the reduced neurotensin efficacy in the constitutively active NTSR1 and a facilitated initial engagement with G protein in the absence of agonist. PMID:27924846

  12. Structure and dynamics of a constitutively active neurotensin receptor

    SciTech Connect

    Krumm, Brian E.; Lee, Sangbae; Bhattacharya, Supriyo; Botos, Istvan; White, Courtney F.; Du, Haijuan; Vaidehi, Nagarajan; Grisshammer, Reinhard

    2016-12-07

    Many G protein-coupled receptors show constitutive activity, resulting in the production of a second messenger in the absence of an agonist; and naturally occurring constitutively active mutations in receptors have been implicated in diseases. To gain insight into mechanistic aspects of constitutive activity, we report here the 3.3 Å crystal structure of a constitutively active, agonist-bound neurotensin receptor (NTSR1) and molecular dynamics simulations of agonist-occupied and ligand-free receptor. Comparison with the structure of a NTSR1 variant that has little constitutive activity reveals uncoupling of the ligand-binding domain from conserved connector residues, that effect conformational changes during GPCR activation. Furthermore, molecular dynamics simulations show strong contacts between connector residue side chains and increased flexibility at the intracellular receptor face as features that coincide with robust signalling in cells. The loss of correlation between the binding pocket and conserved connector residues, combined with altered receptor dynamics, possibly explains the reduced neurotensin efficacy in the constitutively active NTSR1 and a facilitated initial engagement with G protein in the absence of agonist.

  13. Extraction of dynamic speckle activity information from digital holograms

    NASA Astrophysics Data System (ADS)

    Budini, Nicolas; Balducci, Nicolas; Mulone, Cecilia; Monaldi, Andrea C.

    2016-12-01

    In this work we show how dynamic speckle information can be extracted directly from digital holograms. This allows improving the analysis and characterization of dynamic phenomena by combining dynamic speckle with digital holographic interferometry measurements. We have studied the drying process of paint coatings, which is a typical study case in the field of dynamic speckle characterization, since the speckle activity (SA) of drying coatings is known to decay smoothly as a function of time. We recorded both holograms and speckle images during the process. In this way, we could compare the evolution of global SA calculated from speckle images by a standard method with the evolution of speckle correlation extracted directly from the holograms. The results obtained from both methods have shown to be in good agreement.

  14. Controlled Activation of Protein Rotational Dynamics Using Smart Hydrogel Tethering

    SciTech Connect

    Beech, Brenda M.; Xiong, Yijia; Boschek, Curt B.; Baird, Cheryl L.; Bigelow, Diana J.; Mcateer, Kathleen; Squier, Thomas C.

    2014-09-05

    Stimulus-responsive hydrogel materials that stabilize and control protein dynamics have the potential to enable a range of applications to take advantage of the inherent specificity and catalytic efficiencies of proteins. Here we describe the modular construction of a hydrogel using an engineered calmodulin (CaM) within a polyethylene glycol (PEG) matrix that involves the reversible tethering of proteins through an engineered CaM-binding sequence. For these measurements, maltose binding protein (MBP) was isotopically labeled with [13C] and [15N], permitting dynamic structural measurements using TROSY-HSQC NMR spectroscopy. Upon initial formation of hydrogels protein dynamics are suppressed, with concomitant increases in protein stability. Relaxation of the hydrogel matrix following transient heating results in the activation of protein dynamics and restoration of substrate-induced large-amplitude domain motions necessary for substrate binding.

  15. Dynamic Modeling of EMIC Wave Activity in a Realistic Magnetosphere

    NASA Astrophysics Data System (ADS)

    McCollough, J. P., II; Elkington, S. R.; Usanova, M.; Bortnik, J.

    2015-12-01

    On 14-16 December 2006, A geomagnetic storm was observed accompanied by electromagnetic ion-cyclotron (EMIC) wave activity. We use a 3D test particle simulation in a realistic magnetosphere from the global Lyon-Fedder-Mobarry (LFM) MHD code to compute the phase space density dynamics of warm electrons responsible for chorus wave growth. We use these results to compute the temperature anisotropy and density for input into a linear convective wave growth rate for EMIC waves. We then follow Bortnik et al. [2010] to compute EMIC saturation amplitudes to provide a global dynamical picture of EMIC wave activity for this event. We will perform a data-model comparison of the modeled wave amplitudes with the observed wave activity, aiding in understanding the spatio-temporal and spectral response of EMIC wave activity to geomagnetic disturbances.

  16. Enhanced oxidation resistance of active nanostructures via dynamic size effect

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Yang, Fan; Zhang, Yi; Xiao, Jianping; Yu, Liang; Liu, Qingfei; Ning, Yanxiao; Zhou, Zhiwen; Chen, Hao; Huang, Wugen; Liu, Ping; Bao, Xinhe

    2017-02-01

    A major challenge limiting the practical applications of nanomaterials is that the activities of nanostructures (NSs) increase with reduced size, often sacrificing their stability in the chemical environment. Under oxidative conditions, NSs with smaller sizes and higher defect densities are commonly expected to oxidize more easily, since high-concentration defects can facilitate oxidation by enhancing the reactivity with O2 and providing a fast channel for oxygen incorporation. Here, using FeO NSs as an example, we show to the contrary, that reducing the size of active NSs can drastically increase their oxidation resistance. A maximum oxidation resistance is found for FeO NSs with dimensions below 3.2 nm. Rather than being determined by the structure or electronic properties of active sites, the enhanced oxidation resistance originates from the size-dependent structural dynamics of FeO NSs in O2. We find this dynamic size effect to govern the chemical properties of active NSs.

  17. Group Dynamics and Initiative Activities with Outdoor Programs.

    ERIC Educational Resources Information Center

    Zwaagstra, Lynn

    This paper focuses on group dynamics and introduces the use of initiative activities as a means of facilitating a more cohesive group experience in outdoor programs. Specific topics addressed and defined include: (1) curative factors of groups (universality, didactic learning, altruism, socialization, peer learning, group cohesiveness); (2) stages…

  18. Active synchronization between two different chaotic dynamical system

    NASA Astrophysics Data System (ADS)

    Maheri, M.; Arifin, N. Md; Ismail, F.

    2015-05-01

    In this paper we investigate on the synchronization problem between two different chaotic dynamical system based on the Lyapunov stability theorem by using nonlinear control functions. Active control schemes are used for synchronization Liu system as drive and Rossler system as response. Numerical simulation by using Maple software are used to show effectiveness of the proposed schemes.

  19. Active synchronization between two different chaotic dynamical system

    SciTech Connect

    Maheri, M.; Arifin, N. Md; Ismail, F.

    2015-05-15

    In this paper we investigate on the synchronization problem between two different chaotic dynamical system based on the Lyapunov stability theorem by using nonlinear control functions. Active control schemes are used for synchronization Liu system as drive and Rossler system as response. Numerical simulation by using Maple software are used to show effectiveness of the proposed schemes.

  20. Cold-active enzymes studied by comparative molecular dynamics simulation.

    PubMed

    Spiwok, Vojtech; Lipovová, Petra; Skálová, Tereza; Dusková, Jarmila; Dohnálek, Jan; Hasek, Jindrich; Russell, Nicholas J; Králová, Blanka

    2007-04-01

    Enzymes from cold-adapted species are significantly more active at low temperatures, even those close to zero Celsius, but the rationale of this adaptation is complex and relatively poorly understood. It is commonly stated that there is a relationship between the flexibility of an enzyme and its catalytic activity at low temperature. This paper gives the results of a study using molecular dynamics simulations performed for five pairs of enzymes, each pair comprising a cold-active enzyme plus its mesophilic or thermophilic counterpart. The enzyme pairs included alpha-amylase, citrate synthase, malate dehydrogenase, alkaline protease and xylanase. Numerous sites with elevated flexibility were observed in all enzymes; however, differences in flexibilities were not striking. Nevertheless, amino acid residues common in both enzymes of a pair (not present in insertions of a structure alignment) are generally more flexible in the cold-active enzymes. The further application of principle component analysis to the protein dynamics revealed that there are differences in the rate and/or extent of opening and closing of the active sites. The results indicate that protein dynamics play an important role in catalytic processes where structural rearrangements, such as those required for active site access by substrate, are involved. They also support the notion that cold adaptation may have evolved by selective changes in regions of enzyme structure rather than in global change to the whole protein.

  1. Self-assembly of active colloidal molecules with dynamic function

    NASA Astrophysics Data System (ADS)

    Soto, Rodrigo; Golestanian, Ramin

    Catalytically active colloids maintain non-equilibrium conditions in which they produce and deplete chemicals at their surface. While individual colloids that are symmetrically coated do not exhibit dynamical activity, the concentration fields resulting from their chemical activity decay as 1/r and produce gradients that attract or repel other colloids depending on their surface chemistry and ambient variables. This results in a non-equilibrium analogue of ionic systems, but with the remarkable novel feature of action-reaction symmetry breaking. In dilute conditions these active colloids join up to form molecules via generalized ionic bonds. Colloids are found to join up to form self-assembled molecules that could be inert or have spontaneous activity in the form of net translational velocity and spin depending on their symmetry properties and their constituents. As the interactions do not satisfy detailed-balance, it is possible to achieve structures with time dependent functionality. We study a molecule that adopts spontaneous oscillations and another that exhibits a run-and-tumble dynamics similar to bacteria. Our study shows that catalytically active colloids could be used for designing self-assembled structures that posses dynamical functionalities.

  2. Dynamic neural activity during stress signals resilient coping

    PubMed Central

    Sinha, Rajita; Lacadie, Cheryl M.; Constable, R. Todd; Seo, Dongju

    2016-01-01

    Active coping underlies a healthy stress response, but neural processes supporting such resilient coping are not well-known. Using a brief, sustained exposure paradigm contrasting highly stressful, threatening, and violent stimuli versus nonaversive neutral visual stimuli in a functional magnetic resonance imaging (fMRI) study, we show significant subjective, physiologic, and endocrine increases and temporally related dynamically distinct patterns of neural activation in brain circuits underlying the stress response. First, stress-specific sustained increases in the amygdala, striatum, hypothalamus, midbrain, right insula, and right dorsolateral prefrontal cortex (DLPFC) regions supported the stress processing and reactivity circuit. Second, dynamic neural activation during stress versus neutral runs, showing early increases followed by later reduced activation in the ventrolateral prefrontal cortex (VLPFC), dorsal anterior cingulate cortex (dACC), left DLPFC, hippocampus, and left insula, suggested a stress adaptation response network. Finally, dynamic stress-specific mobilization of the ventromedial prefrontal cortex (VmPFC), marked by initial hypoactivity followed by increased VmPFC activation, pointed to the VmPFC as a key locus of the emotional and behavioral control network. Consistent with this finding, greater neural flexibility signals in the VmPFC during stress correlated with active coping ratings whereas lower dynamic activity in the VmPFC also predicted a higher level of maladaptive coping behaviors in real life, including binge alcohol intake, emotional eating, and frequency of arguments and fights. These findings demonstrate acute functional neuroplasticity during stress, with distinct and separable brain networks that underlie critical components of the stress response, and a specific role for VmPFC neuroflexibility in stress-resilient coping. PMID:27432990

  3. Framework for coordination of activities in dynamic situations

    NASA Astrophysics Data System (ADS)

    Franke, Jörn; Charoy, François; El Khoury, Paul

    2013-02-01

    Recent disasters, such as Hurricane Katrina in 2005, have shown several issues for the coordination of human activities in these dynamic situations. Contemporary tools for the coordination used in the disaster response, such as e-mail, Whiteboards or phones, only allow for unstructured coordination, which can cause coordination problems. Hence, we discuss about the current information systems for coordinating the activities in a structured manner and identify their weaknesses in the context of a process modelling effort conducted together with experienced disaster managers. Afterwards, we propose a framework for coordination of activities in dynamic situations. The framework presented in this paper has been implemented as an extension to an open collaboration service. This shows how it can be used in the context of other tools required for disaster response management, such as maps, pictures or videos of the situation. The work described here is the foundation for enabling inter-organisational coordination of activities relevant in other domains, e.g. enterprise support processes, production processes or distributed software development projects. Furthermore, comments by disaster managers show that the concepts are relevant for their work. The expected impact is a more effective and efficient coordination of human activities in dynamic situations by structuring what needs to be coordinated.

  4. Self-assembly of active colloidal molecules with dynamic function

    NASA Astrophysics Data System (ADS)

    Soto, Rodrigo; Golestanian, Ramin

    2015-05-01

    Catalytically active colloids maintain nonequilibrium conditions in which they produce and deplete chemicals and hence effectively act as sources and sinks of molecules. While individual colloids that are symmetrically coated do not exhibit any form of dynamical activity, the concentration fields resulting from their chemical activity decay as 1 /r and produce gradients that attract or repel other colloids depending on their surface chemistry and ambient variables. This results in a nonequilibrium analog of ionic systems, but with the remarkable novel feature of action-reaction symmetry breaking. We study solutions of such chemically active colloids in dilute conditions when they join up to form molecules via generalized ionic bonds and discuss how we can achieve structures with time-dependent functionality. In particular, we study a molecule that adopts a spontaneous oscillatory pattern of conformations and another that exhibits a run-and-tumble dynamics similar to bacteria. Our study shows that catalytically active colloids could be used for designing self-assembled structures that possess dynamical functionalities that are determined by their prescribed three-dimensional structures, a strategy that follows the design principle of proteins.

  5. Defect dynamics and ordering in compressible active nematics

    NASA Astrophysics Data System (ADS)

    Mishra, Prashant; Srivastava, Pragya; Marchetti, M. Cristina

    Active nematics, such as suspensions of biopolymers activated by molecular motors or bacteria swimming in passive liquid crystals, exhibit complex self-sustained flow, excitability and defect generation. Activity renders the defect themselves self-propelled particles, capable of organizing in emergent ordered structures. We have developed a minimal model of compressible active nematics on a substrate. We eliminate the flow velocity in favor of the nematic order parameter via the balance of frictional dissipation and active driving to obtain a dynamical description entirely in terms of the nematic alignment order parameter. Activity renormalizes the bend and splay elastic constants rendering them anisotropic and driving them to zero or even negative, resulting in the appearance of modulated states and defective structures. Using linear stability analysis and numerics we organize the various regimes into a phase diagram and discuss the relation to experiments. This work was supported by NSF-DMR-1305184.

  6. Thermography as a quantitative imaging method for assessing postoperative inflammation

    PubMed Central

    Christensen, J; Matzen, LH; Vaeth, M; Schou, S; Wenzel, A

    2012-01-01

    Objective To assess differences in skin temperature between the operated and control side of the face after mandibular third molar surgery using thermography. Methods 127 patients had 1 mandibular third molar removed. Before the surgery, standardized thermograms were taken of both sides of the patient's face using a Flir ThermaCam™ E320 (Precisions Teknik AB, Halmstad, Sweden). The imaging procedure was repeated 2 days and 7 days after surgery. A region of interest including the third molar region was marked on each image. The mean temperature within each region of interest was calculated. The difference between sides and over time were assessed using paired t-tests. Results No significant difference was found between the operated side and the control side either before or 7 days after surgery (p > 0.3). The temperature of the operated side (mean: 32.39 °C, range: 28.9–35.3 °C) was higher than that of the control side (mean: 32.06 °C, range: 28.5–35.0 °C) 2 days after surgery [0.33 °C, 95% confidence interval (CI): 0.22–0.44 °C, p < 0.001]. No significant difference was found between the pre-operative and the 7-day post-operative temperature (p > 0.1). After 2 days, the operated side was not significantly different from the temperature pre-operatively (p = 0.12), whereas the control side had a lower temperature (0.57 °C, 95% CI: 0.29–0.86 °C, p < 0.001). Conclusions Thermography seems useful for quantitative assessment of inflammation between the intervention side and the control side after surgical removal of mandibular third molars. However, thermography cannot be used to assess absolute temperature changes due to normal variations in skin temperature over time. PMID:22752326

  7. In-Flight Flow Visualization Using Infrared Thermography

    NASA Technical Reports Server (NTRS)

    vanDam, C. P.; Shiu, H. J.; Banks D. W.

    1997-01-01

    The feasibility of remote infrared thermography of aircraft surfaces during flight to visualize the extent of laminar flow on a target aircraft has been examined. In general, it was determined that such thermograms can be taken successfully using an existing airplane/thermography system (NASA Dryden's F-18 with infrared imaging pod) and that the transition pattern and, thus, the extent of laminar flow can be extracted from these thermograms. Depending on the in-flight distance between the F-18 and the target aircraft, the thermograms can have a spatial resolution of as little as 0.1 inches. The field of view provided by the present remote system is superior to that of prior stationary infrared thermography systems mounted in the fuselage or vertical tail of a subject aircraft. An additional advantage of the present experimental technique is that the target aircraft requires no or minimal modifications. An image processing procedure was developed which improves the signal-to-noise ratio of the thermograms. Problems encountered during the analog recording of the thermograms (banding of video images) made it impossible to evaluate the adequacy of the present imaging system and image processing procedure to detect transition on untreated metal surfaces. The high reflectance, high thermal difussivity, and low emittance of metal surfaces tend to degrade the images to an extent that it is very difficult to extract transition information from them. The application of a thin (0.005 inches) self-adhesive insulating film to the surface is shown to solve this problem satisfactorily. In addition to the problem of infrared based transition detection on untreated metal surfaces, future flight tests will also concentrate on the visualization of other flow phenomena such as flow separation and reattachment.

  8. Nonequilibrium dynamics of active matter with correlated noise: A dynamical renormalization group study

    NASA Astrophysics Data System (ADS)

    Kachan, Devin; Levine, Alex; Bruinsma, Robijn

    2014-03-01

    Biology is rife with examples of active materials - soft matter systems driven into nonequilibrium steady states by energy input at the micro scale. For example, solutions of active micron scale swimmers produce active fluids showing phenomena reminiscent of turbulent convection at low Reynolds number; cytoskeletal networks driven by endogenous molecular motors produce active solids whose mechanics and low frequency strain fluctuations depend sensitively on motor activity. One hallmark of these systems is that they are driven at the micro scale by temporally correlated forces. In this talk, we study how correlated noise at the micro scale leads to novel long wavelength and long time scale dynamics at the macro scale in a simple model system. Specifically, we study the fluctuations of a ϕ4 scalar field obeying model A dynamics and driven by noise with a finite correlation time τ. We show that the effective dynamical system at long length and time scales is driven by white noise with a renormalized amplitude and renormalized transport coefficients. We discuss the implications of this result for a broad class of active matter systems driven at the micro scale by colored noise.

  9. Characterizing and Modeling the Dynamics of Activity and Popularity

    PubMed Central

    Zhang, Peng; Li, Menghui; Gao, Liang; Fan, Ying; Di, Zengru

    2014-01-01

    Social media, regarded as two-layer networks consisting of users and items, turn out to be the most important channels for access to massive information in the era of Web 2.0. The dynamics of human activity and item popularity is a crucial issue in social media networks. In this paper, by analyzing the growth of user activity and item popularity in four empirical social media networks, i.e., Amazon, Flickr, Delicious and Wikipedia, it is found that cross links between users and items are more likely to be created by active users and to be acquired by popular items, where user activity and item popularity are measured by the number of cross links associated with users and items. This indicates that users generally trace popular items, overall. However, it is found that the inactive users more severely trace popular items than the active users. Inspired by empirical analysis, we propose an evolving model for such networks, in which the evolution is driven only by two-step random walk. Numerical experiments verified that the model can qualitatively reproduce the distributions of user activity and item popularity observed in empirical networks. These results might shed light on the understandings of micro dynamics of activity and popularity in social media networks. PMID:24586586

  10. Crack detection using pulsed eddy current stimulated thermography

    SciTech Connect

    Kostson, E.; Weekes, B.; Almond, D. P.; Wilson, J.; Tian, G. Y.

    2011-06-23

    This contribution presents results from studies investigating factors that influence the detection of surface breaking cracks using pulsed eddy current thermography. The influences of the current strength and crack orientation in both ferromagnetic and non-ferromagnetic metals have been investigated. It has been found that crack detection is far more sensitive to crack orientation in non-ferromagnetic metals than in ferromagnetic metals. The effects of crack size on detectability are presented for a large number of steel, nickel alloy and titanium samples. Results of studies comparing crack images obtained prior and after coating a nickel alloy sample with a thermal barrier coating are presented.

  11. Mammography, thermography, and ultrasound in breast cancer detection

    SciTech Connect

    Basset, L.W.; Gold, R.H.

    1982-01-01

    The book begins with a brief discussion of the history of mammography and a good review and discussion of the mammorgraphy controversy. The section on diagnosis is excellent with very good anatomic-pathologic correlation of the mammography signs. The preoperative localization is well described. Section 3 on performing the examination is an excellent discussion of the various modes of mammography and their techniques. Magnification mammography, computed tomographic mammography, thermography, sonomammography, and ductography are very well covered. In Section 4, the benefits and risk of mammography are well discussed enabling the reader to understand the controversy surrounding breast cancer detection techniques.

  12. Use of thermography to screen for subclinical bumblefoot in poultry.

    PubMed

    Wilcox, C S; Patterson, J; Cheng, H W

    2009-06-01

    Thermographic imaging is a noninvasive diagnostic tool used to document the inflammatory process in many species and may be useful in the detection of subclinical bumblefoot and other inflammatory diseases. Bumblefoot is a chronic inflammation of the plantar metatarsal or digital pads of the foot (pododermatitis), or both. It is one of the major health problems in birds including chickens and is responsible for significant economic losses in commercial poultry operations. Early diagnosis of bumblefoot is essential for the prevention of economical loss and the improvement of animal well-being. The object of this study was to determine the suitability of thermography for the identification of subclinical bumblefoot in chickens. Experiment 1 was designed to validate thermography as a tool for screening avian populations for bumblefoot. The plantar surface of the feet of 150 randomly selected hens was imaged using a thermal camera. The thermal images were identified as suspect, positive, or negative for bumblefoot based on thermal patterns of the plantar surface. Visual inspection of the feet identified as suspect followed 14 d later. A visual score of clinical, mildly clinical, or negative for bumblefoot was assigned, based on gross pathological changes in the plantar surface. A correlation between initial thermal images identified as suspect for bumblefoot and a visual score of positive 14 d later was 83% (P < 0.01). In experiment 2, hens whose feet were free of lesions were inoculated in the metatarsal foot pad with Staphylococcus aureus. Thermal images and visual clinical scores were taken, prechallenge and 1, 2, 3, 4, and 7 d postchallenge. The correlation between thermal images classified as clinical and a visual score of clinical for bumblefoot was 86.7% (P < 0.001). However, the correlation between the thermal images classified as mild (subclinical) and a visual score of mild was only 26.7%, suggesting that thermography is a more sensitive indicator of

  13. Defect depth measurement of carbon fiber reinforced polymers by thermography

    NASA Astrophysics Data System (ADS)

    Chen, Terry Y.; Chen, Jian-Lun

    2016-01-01

    Carbon fiber reinforced polymers has been widely used in all kind of the industries. However the internal defects can result in the change of material or mechanical properties, and cause safety problem. In this study, step-heating thermography is employed to measure the time series temperature distribution of composite plate. The principle of heat conduction in a flat plate with defect inside is introduced. A temperature separation criterion to determine the depth of defect inside the specimen is obtained experimentally. Applying this criterion to CFRP specimens with embedded defects, the depth of embedded defect in CFRP can be determined quite well from the time series thermograms obtained experimentally.

  14. Visualization of In-Flight Flow Phenomena Using Infrared Thermography

    NASA Technical Reports Server (NTRS)

    Banks, D. W.; vanDam, C. P.; Shiu, H. J.; Miller, G. M.

    2000-01-01

    Infrared thermography was used to obtain data on the state of the boundary layer of a natural laminar flow airfoil in supersonic flight. In addition to the laminar-to-turbulent transition boundary, the infrared camera was able to detect shock waves and present a time dependent view of the flow field. A time dependent heat transfer code was developed to predict temperature distributions on the test subject and any necessary surface treatment. A commercially available infrared camera was adapted for airborne use in this application. Readily available infrared technology has the capability to provide detailed visualization of various flow phenomena in subsonic to hypersonic flight regimes.

  15. Finite Element Modeling of Transient Thermography Inspection of Composite Materials

    NASA Technical Reports Server (NTRS)

    Chu, Tsuchin Philip

    1998-01-01

    Several finite element models of defects such as debond and void have been developed for composite panels subjected to transient thermography inspection. Since the exact nature of the heat generated from the flash lamps is unknown, direct comparison between FEA and experimental results is not possible. However, some similarity of the results has been observed. The shape of the time curve that simulates the heat flux from the flash lamps has minimal effect on the temperature profiles. Double the number of flash lamps could increase the contrast of thermal image and define the shape of defect better.

  16. Efficient reconstruction of corrosion profiles by infrared thermography

    NASA Astrophysics Data System (ADS)

    Marcuzzi, F.; Marinetti, S.

    2008-07-01

    In this paper, we propose a novel algorithm to solve the hidden corrosion estimation problem from experimental data produced by infrared thermography. This is therefore a thermal inverse problem. The algorithm is put in a predictor-corrector form and uses an Adaptive Finite Element model as the reference model. The adaptation is done in the (linear) predictor step, while the parameter estimation is done in the (nonlinear) corrector step. An ad-hoc regularization strategy has been developed. Experiments with real data have confirmed the effectiveness of the method. Considerable computational savings have been achieved compared to a standard algorithm formulation.

  17. Dynamics and Control of a Quadrotor with Active Geometric Morphing

    NASA Astrophysics Data System (ADS)

    Wallace, Dustin A.

    Quadrotors are manufactured in a wide variety of shapes, sizes, and performance levels to fulfill a multitude of roles. Robodub Inc. has patented a morphing quadrotor which will allow active reconfiguration between various shapes for performance optimization across a wider spectrum of roles. The dynamics of the system are studied and modeled using Newtonian Mechanics. Controls are developed and simulated using both Linear Quadratic and Numerical Nonlinear Optimal control for a symmetric simplificiation of the system dynamics. Various unique vehicle capabilities are investigated, including novel single-throttle flight control using symmetric geometric morphing, as well as recovery from motor loss by reconfiguring into a trirotor configuration. The system dynamics were found to be complex and highly nonlinear. All attempted control strategies resulted in controllability, suggesting further research into each may lead to multiple viable control strategies for a physical prototype.

  18. Dynamics of self-propelled nanomotors in chemically active media

    NASA Astrophysics Data System (ADS)

    Thakur, Snigdha; Kapral, Raymond

    2011-07-01

    Synthetic chemically powered nanomotors often rely on the environment for their fuel supply. The propulsion properties of such motors can be altered if the environment in which they move is chemically active. The dynamical properties of sphere dimer motors, composed of linked catalytic and noncatalytic monomers, are investigated in active media. Chemical reactions occur at the catalytic monomer and the reactant or product of this reaction is involved in cubic autocatalytic or linear reactions that take place in the bulk phase environment. For these reactions, as the bulk phase reaction rates increase, the motor propulsion velocity decreases. For the cubic autocatalytic reaction, this net effect arises from a competition between a reduction of the nonequilibrium concentration gradient that leads to smaller velocity and the generation of fuel in the environment that tends to increase the motor propulsion. The role played by detailed balance in determining the form of the concentration gradient in the motor vicinity in the active medium is studied. Simulations are carried out using reactive multiparticle collision dynamics and compared with theoretical models to obtain further insight into sphere dimer dynamics in active media.

  19. Distal gap junctions and active dendrites can tune network dynamics.

    PubMed

    Saraga, Fernanda; Ng, Leo; Skinner, Frances K

    2006-03-01

    Gap junctions allow direct electrical communication between CNS neurons. From theoretical and modeling studies, it is well known that although gap junctions can act to synchronize network output, they can also give rise to many other dynamic patterns including antiphase and other phase-locked states. The particular network pattern that arises depends on cellular, intrinsic properties that affect firing frequencies as well as the strength and location of the gap junctions. Interneurons or GABAergic neurons in hippocampus are diverse in their cellular characteristics and have been shown to have active dendrites. Furthermore, parvalbumin-positive GABAergic neurons, also known as basket cells, can contact one another via gap junctions on their distal dendrites. Using two-cell network models, we explore how distal electrical connections affect network output. We build multi-compartment models of hippocampal basket cells using NEURON and endow them with varying amounts of active dendrites. Two-cell networks of these model cells as well as reduced versions are explored. The relationship between intrinsic frequency and the level of active dendrites allows us to define three regions based on what sort of network dynamics occur with distal gap junction coupling. Weak coupling theory is used to predict the delineation of these regions as well as examination of phase response curves and distal dendritic polarization levels. We find that a nonmonotonic dependence of network dynamic characteristics (phase lags) on gap junction conductance occurs. This suggests that distal electrical coupling and active dendrite levels can control how sensitive network dynamics are to gap junction modulation. With the extended geometry, gap junctions located at more distal locations must have larger conductances for pure synchrony to occur. Furthermore, based on simulations with heterogeneous networks, it may be that one requires active dendrites if phase-locking is to occur in networks formed

  20. The influence of natural scene dynamics on auditory cortical activity.

    PubMed

    Chandrasekaran, Chandramouli; Turesson, Hjalmar K; Brown, Charles H; Ghazanfar, Asif A

    2010-10-20

    The efficient cortical encoding of natural scenes is essential for guiding adaptive behavior. Because natural scenes and network activity in cortical circuits share similar temporal scales, it is necessary to understand how the temporal structure of natural scenes influences network dynamics in cortical circuits and spiking output. We examined the relationship between the structure of natural acoustic scenes and its impact on network activity [as indexed by local field potentials (LFPs)] and spiking responses in macaque primary auditory cortex. Natural auditory scenes led to a change in the power of the LFP in the 2-9 and 16-30 Hz frequency ranges relative to the ongoing activity. In contrast, ongoing rhythmic activity in the 9-16 Hz range was essentially unaffected by the natural scene. Phase coherence analysis showed that scene-related changes in LFP power were at least partially attributable to the locking of the LFP and spiking activity to the temporal structure in the scene, with locking extending up to 25 Hz for some scenes and cortical sites. Consistent with distributed place and temporal coding schemes, a key predictor of phase locking and power changes was the overlap between the spectral selectivity of a cortical site and the spectral structure of the scene. Finally, during the processing of natural acoustic scenes, spikes were locked to LFP phase at frequencies up to 30 Hz. These results are consistent with an idea that the cortical representation of natural scenes emerges from an interaction between network activity and stimulus dynamics.

  1. Empirical Dynamic Model Identification for Blood-Glucose Dynamics in Response to Physical Activity

    PubMed Central

    Dasanayake, Isuru S.; Seborg, Dale E.; Pinsker, Jordan E.; Doyle, Francis J.

    2016-01-01

    In this paper, the dynamic response of blood glucose concentration in response to physical activity of people with Type 1 Diabetes Mellitus (T1DM) is captured by subspace identification methods. Activity (input) and subcutaneous blood glucose measurements (output) are employed to construct a personalized prediction model through semi-definite programming. The model is calibrated and subsequently validated with non-overlapping data sets from 15 T1DM subjects. This preliminary clinical evaluation reveals the underlying linear dynamics between blood glucose concentration and physical activity. These types of models can enhance our capabilities of achieving tighter blood glucose control and early detection of hypoglycemia for people with T1DM. PMID:26997750

  2. Active IR-applications in civil engineering

    NASA Astrophysics Data System (ADS)

    Wiggenhauser, H.

    2002-06-01

    Applications of IR-thermography in civil engineering are not limited to the identification of heat losses in building envelopes. As it is well known from other areas of non-destructive testing, active IR-thermographic methods such as cooling down or lock-in thermography improves the results in many investigations. In civil engineering these techniques have not been used widely. Mostly thermography is used in a quasi-static manner. The interpretation of moisture measurements with thermography on surfaces can be very difficult due to several overlapping effects: emissivity changes due to composition, heat transfer through wet sections of the specimen, cooling through air flow or reflected spurious radiation sources. These effects can be reduced by selectively measuring the reflection in two wavelength windows, one on an absorption band of water and another in a reference band and then combining the results in a moisture index image. Cooling down thermography can be used to identify subsurface structural deficiencies. For building materials like concrete these measurements are performed on a much longer time scale than in flash lamp experiments. A quantitative analysis of the full cooling down process over several minutes can reliably identify defects at different depths. Experiments at BAM have shown, that active thermography is capabale of identifying structural deficiencies or moist areas in building materials much more reliable than quasi-static thermography.

  3. Computed Tomography and Thermography Increases CMC Material and Process Development Efficiency and Testing Effectiveness

    NASA Technical Reports Server (NTRS)

    Effinger, Michael; Beshears, Ron; Hufnagle, David; Walker, James; Russell, Sam; Stowell, Bob; Myers, David

    2002-01-01

    Nondestructive characterization techniques have been used to steer development and testing of CMCs. Computed tomography is used to determine the volumetric integrity of the CMC plates and components. Thermography is used to determine the near surface integrity of the CMC plates and components. For process and material development, information such as density uniformity, part delamination, and dimensional tolerance conformity is generated. The information from the thermography and computed tomography is correlated and then specimen cutting maps are superimposed on the thermography images. This enables for tighter data and potential explanation of off nominal test data. Examples of nondestructive characterization utilization to make decisions in process and material development and testing are presented.

  4. A "Kane's Dynamics" Model for the Active Rack Isolation System

    NASA Technical Reports Server (NTRS)

    Hampton, R. D.; Beech, G. S.; Rao, N. N. S.; Rupert, J. K.; Kim, Y. K.

    2001-01-01

    Many microgravity space science experiments require vibratory acceleration levels unachievable without active isolation. The Boeing Corporation's Active Rack Isolation System (ARIS) employs a novel combination of magnetic actuation and mechanical linkages to address these isolation requirements on the International Space Station (ISS). ARIS provides isolation at the rack (International Standard Payload Rack (ISPR)) level. Effective model-based vibration isolation requires: (1) an appropriate isolation device, (2) an adequate dynamic (i.e., mathematical) model of that isolator, and (3) a suitable, corresponding controller. ARIS provides the ISS response to the first requirement. This paper presents one response to the second, in a state space framework intended to facilitate an optimal-controls approach to the third. The authors use "Kane's Dynamics" to develop a state-space, analytical (algebraic) set of linearized equations of motion for ARIS.

  5. A "Kanes's Dynamics" Model for the Active Rack Isolation System

    NASA Technical Reports Server (NTRS)

    Hampton, R. David; Beech, Geoffrey

    1999-01-01

    Many microgravity space-science experiments require vibratory acceleration levels unachievable without active isolation. The Boeing Corporation's Active Rack Isolation System (ARIS) employs a novel combination of magnetic actuation and mechanical linkages, to address these isolation requirements on the International Space Station (ISS). ARIS provides isolation at the rack (international Standard Payload Rack, or ISPR) level. Effective model-based vibration isolation requires (1) an appropriate isolation device, (2) an adequate dynamic (i.e., mathematical) model of that isolator, and (3) a suitable, corresponding controller. ARIS provides the ISS response to the first requirement. This paper presents one response to the second, in a state-space framework intended to facilitate an optimal-controls approach to the third. The authors use "Kane's Dynamics" to develop an state-space, analytical (algebraic) set of linearized equations of motion for ARIS.

  6. The role of dynamic surface tension in cloud droplet activation

    NASA Astrophysics Data System (ADS)

    Petters, Markus D.; Suda, Sarah R.; Christensen, Sara I.

    2013-05-01

    We present new data on the cloud droplet forming abilities of two-component particles that contain the surfactant sodium dodecyl sulfate and sodium chloride or ammonium sulfate. The experiments were designed to test specific predictions made by Kohler theory that accounts for the reduction of surface tension and the partitioning of the surfactant between the interior and the surface of the droplet. We also introduced a pre-humidification step followed by a six minute time delay to test whether dynamic surface tension may lead to kinetic limitations on the partitioning process. Our results confirm previous studies that show that surfactants do not enhance cloud droplet activation relative to what would be predicted from water activity alone. The data obtained with and without time delay were indistinguishable within measurement uncertainty, suggesting that dynamic surface tension does not need to be considered in Kohler theory.

  7. Dynamic active constraints for hyper-redundant flexible robots.

    PubMed

    Kwok, Ka-Wai; Mylonas, George P; Sun, Loi Wah; Lerotic, Mirna; Clark, James; Athanasiou, Thanos; Darzi, Ara; Yang, Guang-Zhong

    2009-01-01

    In robot-assisted procedures, the surgeon's ability can be enhanced by navigation guidance through the use of virtual fixtures or active constraints. This paper presents a real-time modeling scheme for dynamic active constraints with fast and simple mesh adaptation under cardiac deformation and changes in anatomic structure. A smooth tubular pathway is constructed which provides assistance for a flexible hyper-redundant robot to circumnavigate the heart with the aim of undertaking bilateral pulmonary vein isolation as part of a modified maze procedure for the treatment of debilitating arrhythmia and atrial fibrillation. In contrast to existing approaches, the method incorporates detailed geometrical constraints with explicit manipulation margins of the forbidden region for an entire articulated surgical instrument, rather than just the end-effector itself. Detailed experimental validation is conducted to demonstrate the speed and accuracy of the instrument navigation with and without the use of the proposed dynamic constraints.

  8. Coarsening dynamics of binary liquids with active rotation.

    PubMed

    Sabrina, Syeda; Spellings, Matthew; Glotzer, Sharon C; Bishop, Kyle J M

    2015-11-21

    Active matter comprised of many self-driven units can exhibit emergent collective behaviors such as pattern formation and phase separation in both biological (e.g., mussel beds) and synthetic (e.g., colloidal swimmers) systems. While these behaviors are increasingly well understood for ensembles of linearly self-propelled "particles", less is known about the collective behaviors of active rotating particles where energy input at the particle level gives rise to rotational particle motion. A recent simulation study revealed that active rotation can induce phase separation in mixtures of counter-rotating particles in 2D. In contrast to that of linearly self-propelled particles, the phase separation of counter-rotating fluids is accompanied by steady convective flows that originate at the fluid-fluid interface. Here, we investigate the influence of these flows on the coarsening dynamics of actively rotating binary liquids using a phenomenological, hydrodynamic model that combines a Cahn-Hilliard equation for the fluid composition with a Navier-Stokes equation for the fluid velocity. The effect of active rotation is introduced though an additional force within the Navier-Stokes equations that arises due to gradients in the concentrations of clockwise and counter-clockwise rotating particles. Depending on the strength of active rotation and that of frictional interactions with the stationary surroundings, we observe and explain new dynamical behaviors such as "active coarsening" via self-generated flows as well as the emergence of self-propelled "vortex doublets". We confirm that many of the qualitative behaviors identified by the continuum model can also be found in discrete, particle-based simulations of actively rotating liquids. Our results highlight further opportunities for achieving complex dissipative structures in active materials subject to distributed actuation.

  9. Finite Element Modeling for Infrared Thermography of Gfrp Bridge Decks

    NASA Astrophysics Data System (ADS)

    Hing, Cheng L.; Halabe, Udaya B.

    2008-02-01

    Glass Fiber Reinforced Polymer (GFRP) composite bridge decks are increasingly being used as replacements for old concrete decks and for new construction. The service performance of the GFRP bridge decks can be adversely affected by the formation of debonds between the wearing surface and the underlying bridge deck. Past experimental studies by the authors have shown the usefulness of the infrared thermography technique in detecting the subsurface debonds prior to maintenance and rehabilitation work. This paper investigates the use of finite element (FE) heat transfer modeling to predict infrared thermography images from GFRP bridge decks with subsurface debonds. The paper includes measurement of thermal properties of the GFRP bridge deck and the wearing surface, and heat transfer FE modeling of decks with debonds of different thicknesses. The results show that FE modeling can be a useful tool for predicting surface temperature profile under different heating conditions and debond sizes. Such predictions can help determine the required heat intensity and detectable debond sizes prior to experimental data acquisition in the field using an infrared camera.

  10. Nde of Frp Wrapped Columns Using Infrared Thermography

    NASA Astrophysics Data System (ADS)

    Halabe, Udaya B.; Dutta, Shasanka Shekhar; GangaRao, Hota V. S.

    2008-02-01

    This paper investigates the feasibility of using Infrared Thermography (IRT) for detecting debonds in Fiber Reinforced Polymer (FRP) wrapped columns. Laboratory tests were conducted on FRP wrapped concrete cylinders of size 6″×12″ (152.4 mm×304.8 mm) in which air-filled and water-filled debonds of various sizes were placed underneath the FRP wraps. Air-filled debonds were made by cutting plastic sheets into the desired sizes whereas water-filled debonds were made by filling water in custom made polyethylene pouches. Both carbon and glass fiber reinforced wraps were considered in this study. Infrared tests were conducted using a fully radiometric digital infrared camera which was successful in detecting air-filled as well as water-filled subsurface debonds. In addition to the laboratory testing, two field trips were made to Moorefield, West Virginia for detecting subsurface debonds in FRP wrapped timber piles of a railroad bridge using infrared testing. The results revealed that infrared thermography can be used as an effective nondestructive evaluation tool for detecting subsurface debonds in structural components wrapped with carbon or glass reinforced composite fabrics.

  11. A relative-intensity two-color phosphor thermography system

    NASA Technical Reports Server (NTRS)

    Merski, N. Ronald

    1991-01-01

    The NASA LaRC has developed a relative-intensity two-color phosphor thermography system. This system has become a standard technique for acquiring aerothermodynamic data in LaRC Hypersonic Facilities Complex (HFC). The relative intensity theory and its application to the LaRC phosphor thermography system is discussed along with the investment casting technique which is critical to the utilization of the phosphor method for aerothermodynamic studies. Various approaches to obtaining quantitative heat transfer data using thermographic phosphors are addressed and comparisons between thin-film data and thermographic phosphor data on an orbiter-like configuration are presented. In general, data from these two techniques are in good agreement. A discussion is given on the application of phosphors to integration heat transfer data reduction techniques (the thin film method) and preliminary heat transfer data obtained on a calibration sphere using thin-film equations are presented. Finally, plans for a new phosphor system which uses target recognition software are discussed.

  12. Automatic Detection of Subsurface Defects Using Infrared Thermography

    NASA Astrophysics Data System (ADS)

    Lonkar, G. M.; Klinkhachorn, P.; Halabe, Udaya B.; GangaRao, H. V. S.

    2005-04-01

    The popularity of FRP bridge decks has increased in recent times because of their high strength to weight ratio, fatigue resistance etc. Defects due to degradation of the bridge deck malign their properties and adversely affect the structural integrity. These defects need to be detected and continuously monitored using field techniques such as infrared thermography. The process of manually analyzing the infrared images is tedious and ambiguous. Instead, using software algorithms on the infrared images of FRP decks can increase the defect detection speed and accuracy. This paper proposes a software automated defect detection technique to detect subsurface anomalies in fiber reinforced polymer (FRP) bridge decks. Thermal images of the FRP decks were captured using a radiometric infrared camera. Software algorithms using morphological image processing and fuzzy clustering techniques were developed to analyze the images for detecting the defects automatically. They were tested on infrared images of FRP bridge decks prepared in the laboratory. In the tests conducted, simulated subsurface defects of varying size, thickness and wearing surfaces were fabricated in the laboratory. The tests include a performance analysis of detecting delaminations and debonds, and the effect of distance on the detecting ability of the algorithm. The algorithms were also tested with FRP deck specimens under solar radiation, to test the response under a passive heat source. The study showed that Infrared Thermography can be effectively used to detect subsurface defects and the process can be automated with substantial accuracy.

  13. Distance makes the difference in thermography for ecological studies.

    PubMed

    Faye, E; Dangles, O; Pincebourde, S

    2016-02-01

    Surface temperature drives many ecological processes and infrared thermography is widely used by ecologists to measure the thermal heterogeneity of different species' habitats. However, the potential bias in temperature readings caused by distance between the surface to be measured and the camera is still poorly acknowledged. We examined the effect of distance from 0.3 to 80m on a variety of thermal metrics (mean temperature, standard deviation, patch richness and aggregation) under various weather conditions and for different structural complexity of the studied surface types (various surfaces with vegetation). We found that distance is a key modifier of the temperature measured by a thermal infrared camera. A non-linear relationship between distance and mean temperature, standard deviation and patch richness led to a rapid under-estimation of the thermal metrics within the first 20m and then only a slight decrease between 20 and 80m from the object. Solar radiation also enhanced the bias with increasing distance. Therefore, surface temperatures were under-estimated as distance increased and thermal mosaics were homogenized at long distances with a much stronger bias in the warmer than the colder parts of the distributions. The under-estimation of thermal metrics due to distance was explained by atmospheric composition and the pixel size effect. The structural complexity of the surface had little effect on the surface temperature bias. Finally, we provide general guidelines for ecologists to minimize inaccuracies caused by distance from the studied surface in thermography.

  14. Investigation of Various Essential Factors for Optimum Infrared Thermography

    PubMed Central

    OKADA, Keiji; TAKEMURA, Kei; SATO, Shigeru

    2013-01-01

    ABSTRACT We investigated various essential factors for optimum infrared thermography for cattle clinics. The effect of various factors on the detection of surface temperature was investigated in an experimental room with a fixed ambient temperature using a square positioned on a wall. Various factors of animal objects were examined using cattle to determine the relationships among presence of hair, body surface temperature, surface temperature of the eyeball, the highest temperature of the eye circle, rectum temperature and ambient temperature. Also, the surface temperature of the flank at different time points after eating was examined. The best conditions of thermography for cattle clinics were determined and were as follows: (1) The distance between a thermal camera and an object should be fixed, and the camera should be set within a 45-degree angle with respect to the objects using the optimum focal length. (2) Factors that affect the camera temperature, such as extreme cold or heat, direct sunshine, high humidity and wind, should be avoided. (3) For the comparison of thermographs, imaging should be performed under identical conditions. If this is not achievable, hairless parts should be used. PMID:23759714

  15. Noninvasive diagnosis of seed viability using infrared thermography

    PubMed Central

    Kranner, Ilse; Kastberger, Gerald; Hartbauer, Manfred; Pritchard, Hugh W.

    2010-01-01

    Recent advances in the noninvasive analyses of plant metabolism include stress imaging techniques, mainly developed for vegetative tissues. We explored if infrared thermography can be used to predict whether a quiescent seed will germinate or die upon water uptake. Thermal profiles of viable, aged, and dead Pisum sativum seeds were recorded, and image analysis of 22,000 images per individual seed showed that infrared thermography can detect imbibition- and germination-associated biophysical and biochemical changes. These “thermal fingerprints” vary with viability in this species and in Triticum aestivum and Brassica napus seeds. Thermogenesis of the small individual B. napus seeds was at the limit of the technology. We developed a computer model of “virtual pea seeds,” that uses Monte Carlo simulation, based on the heat production of major seed storage compounds to unravel physico-chemical processes of thermogenesis. The simulation suggests that the cooling that dominates the early thermal profiles results from the dissolution of low molecular-weight carbohydrates. Moreover, the kinetics of the production of such “cooling” compounds over the following 100 h is dependent on seed viability. We also developed a deterministic tool that predicts in the first 3 hours of water uptake, when seeds can be redried and stored again, whether or not a pea seed will germinate. We believe that the early separation of individual, ungerminated seeds (live, aged, or dead) before destructive germination assessment creates unique opportunities for integrative studies on cell death, differentiation, and development. PMID:20133712

  16. Gapped smoothing algorithm applied to defect identification using pulsed thermography

    NASA Astrophysics Data System (ADS)

    Li, Bing; Ye, Lin; Li, Eric; Shou, Dahua; Li, Zheng; Chang, Li

    2015-04-01

    On the basis of pulsed thermography, this article presents the development of a quantitative detection method for sub-surface defects. A two dimensional gapped smoothing algorithm (GSA) applied in this method to process the surface thermal distribution and no reference information is needed. A new thermal contrast is defined and a damage index based on the thermal contrast is proposed to estimate the probability of location of a defect, and differential curves of thermal contrast are applied for further quantification of defect size. One aluminium plate and one glass fibre reinforced composite laminate containing different depths of flat-bottom holes, delaminations and impurities are introduced to assess the performance of proposed method. Numerical and experimental results indicate that the influence of non-uniform heating is clearly suppressed. Compared with the differentiated absolute contrast approach, distinct enhancement of thermal contrast is achieved, and the location and size of sub-surface instances of damage can be quantitatively determined using the proposed method. The relation of damage index and flaw depth is investigated and a general expression is presented for the evaluation of flaw depth. The influence of the distribution density of the gapped grid on detection accuracy is further discussed. The proposed method, which is less dependent on the capture time, can be used for automatic detection and characterisation of defects. The reliability and applicability of the GSA applied to pulsed thermography are verified.

  17. Robust remote monitoring of breathing function by using infrared thermography.

    PubMed

    Pereira, Carina B; Yu, Xinchi; Blazek, Vladimir; Leonhardt, Steffen

    2015-01-01

    An abnormal breathing rate (BR) is one of the strongest markers of physiological distress. Moreover, it plays an important role in early detection of sudden infant death syndrome, as well as in the diagnosis of respiratory disorders. However, the current measuring modalities can cause discomfort to the patient, since attachment to the patient's body is required. This paper proposes a new approach based on infrared thermography to remotely monitor BR. This method allows to (1) detect automatically the nose, (2) track the associate region of interest (ROI), and (3) extract BR. To evaluate the performance of this method, thermal recording of 5 healthy subjects were acquired. Results were compared with BR obtained by capnography. The introduced approach demonstrated an excellent performance. ROIs were precisely segmented and tracked. Furthermore, a Bland-Altman diagram showed a good agreement between estimated BR and gold standard. The mean correlation and mean absolute BR error are 0.92 ± 0.07 and 0.53 bpm, respectively. In summary, infrared thermography seems to be a great, clinically relevant alternative to attached sensors, due to its outstanding characteristics and performance.

  18. Digital thermography of the fingers and toes in Raynaud's phenomenon.

    PubMed

    Lim, Mie Jin; Kwon, Seong Ryul; Jung, Kyong-Hee; Joo, Kowoon; Park, Shin-Goo; Park, Won

    2014-04-01

    The aim of this study was to determine whether skin temperature measurement by digital thermography on hands and feet is useful for diagnosis of Raynaud's phenomenon (RP). Fifty-seven patients with RP (primary RP, n = 33; secondary RP, n = 24) and 146 healthy volunteers were recruited. After acclimation to room temperature for 30 min, thermal imaging of palmar aspect of hands and dorsal aspect of feet were taken. Temperature differences between palm (center) and the coolest finger and temperature differences between foot dorsum (center) and first toe significantly differed between patients and controls. The area under curve analysis showed that temperature difference of the coolest finger (cutoff value: 2.2℃) differentiated RP patients from controls (sensitivity/specificity: 67/60%, respectively). Temperature differences of first toe (cutoff value: 3.11℃) also discriminated RP patients (sensitivity/specificity: about 73/66%, respectively). A combination of thermographic assessment of the coolest finger and first toe was highly effective in men (sensitivity/specificity : about 88/60%, respectively) while thermographic assessment of first toe was solely sufficient for women (sensitivity/specificity: about 74/68%, respectively). Thermographic assessment of the coolest finger and first toe is useful for diagnosing RP. In women, thermography of first toe is highly recommended.

  19. Investigation of various essential factors for optimum infrared thermography.

    PubMed

    Okada, Keiji; Takemura, Kei; Sato, Shigeru

    2013-10-01

    We investigated various essential factors for optimum infrared thermography for cattle clinics. The effect of various factors on the detection of surface temperature was investigated in an experimental room with a fixed ambient temperature using a square positioned on a wall. Various factors of animal objects were examined using cattle to determine the relationships among presence of hair, body surface temperature, surface temperature of the eyeball, the highest temperature of the eye circle, rectum temperature and ambient temperature. Also, the surface temperature of the flank at different time points after eating was examined. The best conditions of thermography for cattle clinics were determined and were as follows: (1) The distance between a thermal camera and an object should be fixed, and the camera should be set within a 45-degree angle with respect to the objects using the optimum focal length. (2) Factors that affect the camera temperature, such as extreme cold or heat, direct sunshine, high humidity and wind, should be avoided. (3) For the comparison of thermographs, imaging should be performed under identical conditions. If this is not achievable, hairless parts should be used.

  20. Karst Groundwater Hydrologic Analyses Based on Aerial Thermography

    NASA Technical Reports Server (NTRS)

    Campbell, C. Warren; Keith, A. G.

    2000-01-01

    On February 23, 1999, thermal imagery of Marshall Space Flight Center, Alabama was collected using an airborne thermal camera. Ground resolution was I in. Approximately 40 km 2 of thermal imagery in and around Marshall Space Flight Center (MSFC) was analyzed to determine the location of springs for groundwater monitoring. Subsequently, forty-five springs were located ranging in flow from a few ml/sec to approximately 280 liter/sec. Groundwater temperatures are usually near the mean annual surface air temperature. On thermography collected during the winter, springs show up as very warm spots. Many of the new springs were submerged in lakes, streams, or swamps; consequently, flow measurements were difficult. Without estimates of discharge, the impacts of contaminated discharge on surface streams would be difficult to evaluate. An approach to obtaining an estimate was developed using the Environmental Protection Agency (EPA) Cornell Mixing Zone Expert System (CORMIX). The thermography was queried to obtain a temperature profile down the center of the surface plume. The spring discharge was modeled with CORMIX, and the flow adjusted until the surface temperature profile was matched. The presence of volatile compounds in some of the new springs also allowed MSFC to unravel the natural system of solution cavities of the karst aquifer. Sampling results also showed that two springs on either side of a large creek had the same water source so that groundwater was able to pass beneath the creek.

  1. Active gels: dynamics of patterning and self-organization

    NASA Astrophysics Data System (ADS)

    Backouche, F.; Haviv, L.; Groswasser, D.; Bernheim-Groswasser, A.

    2006-12-01

    The actin cytoskeleton is an active gel which constantly remodels during cellular processes such as motility and division. Myosin II molecular motors are involved in this active remodeling process and therefore control the dynamic self-organization of cytoskeletal structures. Due to the complexity of in vivo systems, it is hard to investigate the role of myosin II in the reorganization process which determines the resulting cytoskeletal structures. Here we use an in vitro model system to show that myosin II actively reorganizes actin into a variety of mesoscopic patterns, but only in the presence of bundling proteins. We find that the nature of the reorganization process is complex, exhibiting patterns and dynamical phenomena not predicted by current theoretical models and not observed in corresponding passive systems (excluding motors). This system generates active networks, asters and even rings depending on motor and bundling protein concentrations. Furthermore, the motors generate the formation of the patterns, but above a critical concentration they can also disassemble them and even totally prevent the polymerization and bundling of actin filaments. These results may suggest that tuning the assembly and disassembly of cytoskeletal structures can be obtained by tuning the local myosin II concentration/activity.

  2. Real-time quantification of viable bacteria in liquid medium using infrared thermography

    NASA Astrophysics Data System (ADS)

    Salaimeh, Ahmad A.; Campion, Jeffrey J.; Gharaibeh, Belal Y.; Evans, Martin E.; Saito, Kozo

    2011-11-01

    Quantifying viable bacteria in liquids is important in environmental, food processing, manufacturing, and medical applications. Since vegetative bacteria generate heat as a result of biochemical reactions associated with cellular functions, thermal sensing techniques, including infrared thermography (IRT), have been used to detect viable cells in biologic samples. We developed a novel method that extends the dynamic range and improves the sensitivity of bacterial quantification by IRT. The approach uses IRT video, thermodynamics laws, and heat transfer mechanisms to directly measure, in real-time, the amount of energy lost as heat from the surface of a liquid sample containing bacteria when the specimen cools to a lower temperature over 2 min. We show that the Energy Content ( EC) of liquid media containing as few as 120 colony-forming units (CFU) of Escherichia coli per ml was significantly higher than that of sterile media ( P < 0.0001), and that EC and viable counts were strongly positively correlated ( r = 0.986) over a range of 120 to approximately 5 × 10 8 CFU/ml. Our IRT approach is a unique non-contact method that provides real-time bacterial enumeration over a wide dynamic range without the need for sample concentration, modification, or destruction. The approach could be adapted to quantify other living cells in a liquid milieu and has the potential for automation and high throughput.

  3. Universal features in the growth dynamics of religious activities

    NASA Astrophysics Data System (ADS)

    Picoli, S., Jr.; Mendes, R. S.

    2008-03-01

    We quantify and analyze the growth dynamics of a religious group in 140 countries for a 47-year period (1959-2005). We find that (i) the distribution of annual logarithmic growth rates exhibits the same functional form for distinct size scales and (ii) the standard deviation of growth rates scales with size as a power law. Both findings hold for distinct measures of religious activity. These results are in surprising agreement with those found in the study of economic activities and scientific research, suggesting that religious activities are governed by universal growth mechanisms. We also compare the empirical findings on religious activities with the predictions of general models recently proposed in the context of complex organizations. Our findings should provide useful information for a better understanding of the mechanisms governing the growth of religion.

  4. Dynamics of active regions observed with Hinode XRT

    NASA Astrophysics Data System (ADS)

    Sakao, Taro

    We present dynamics of active regions observed with the X-Ray Telescope (XRT) aboard Hinode. XRT is a grazing-incidence imager with a Walter Type-I-like mirror of 34 cm diameter with a back-illuminated CCD device. The XRT can image the X-ray corona of the Sun with angular resolution consistent with 1 arcsec CCD pixel size. In addition to this unprecedentedly-high angular resolution ever achieved as a solar X-ray telescope, enhanced sensitivity of the CCD towards longer X-ray wavelengths (particularly beyond 50 Angstroms) enables XRT to image, and perform temperature diagnostics on, a wide range of coronal plasmas from those as low as 1 MK to high-temperature plasmas even exceeding 10 MK. This adds a notable advantage to the XRT such that it can observe most, if not all, active phenomena taking place in and around active regions. Since the beginning of observations with XRT on 23 October 2006, the XRT has so far made various interesting observations regarding active regions. These include (1) continuous outflow of plasmas from the edge of a solar active region that is likely to be a source of (slow) solar wind, (2) clear signature of eruptions for activities even down to GOES B-level, (3) detailed structure and evolution of flaring loops, (4) formation of large-scale hot loops around active regions, and so on. Dynamic phenomena in and around active regions observed with Hinode XRT will be presented and their possible implications to the Sun-Earth connection investigation will be discussed.

  5. UV Observations of Prominence Activation and Cool Loop Dynamics

    NASA Technical Reports Server (NTRS)

    Kucera, Therese A.; Landi, Enrico

    2006-01-01

    In this paper we investigate the thermal and dynamic properties of dynamic structures in and around a prominence channel observed on the limb on 17 April 2003. Observations were taken with the Solar and Heliospheric Observatory's Solar Ultraviolet Measurements of Emitted Radiation (SOHO/SUMER) in lines formed at temperatures from 80,000 to 1.6 MK. The instrument was pointed to a single location and took a series of 90 s exposures. Two-dimensional context was provided by the Transition Region and Coronal Explorer (TRACE) in the UV and EUV and the Kanzelhohe Solar Observatory in H-alpha. Two dynamic features were studied in depth: an activated prominence and repeated motions in a loop near the prominence. We calculated three-dimensional geometries and trajectories, differential emission measure, and limits on the mass, pressure, average density, and kinetic and thermal energies. These observations provide important tests for models of dynamics in prominences and cool (approx. 10(exp 5) K)loops, which will ultimately lead to a better understanding the mechanism(s) leading to energy and mass flow in these solar features.

  6. Enhanced oxidation resistance of active nanostructures via dynamic size effect

    PubMed Central

    Liu, Yun; Yang, Fan; Zhang, Yi; Xiao, Jianping; Yu, Liang; Liu, Qingfei; Ning, Yanxiao; Zhou, Zhiwen; Chen, Hao; Huang, Wugen; Liu, Ping; Bao, Xinhe

    2017-01-01

    A major challenge limiting the practical applications of nanomaterials is that the activities of nanostructures (NSs) increase with reduced size, often sacrificing their stability in the chemical environment. Under oxidative conditions, NSs with smaller sizes and higher defect densities are commonly expected to oxidize more easily, since high-concentration defects can facilitate oxidation by enhancing the reactivity with O2 and providing a fast channel for oxygen incorporation. Here, using FeO NSs as an example, we show to the contrary, that reducing the size of active NSs can drastically increase their oxidation resistance. A maximum oxidation resistance is found for FeO NSs with dimensions below 3.2 nm. Rather than being determined by the structure or electronic properties of active sites, the enhanced oxidation resistance originates from the size-dependent structural dynamics of FeO NSs in O2. We find this dynamic size effect to govern the chemical properties of active NSs. PMID:28223687

  7. Multi-Dimensional Dynamics of Human Electromagnetic Brain Activity

    PubMed Central

    Kida, Tetsuo; Tanaka, Emi; Kakigi, Ryusuke

    2016-01-01

    Magnetoencephalography (MEG) and electroencephalography (EEG) are invaluable neuroscientific tools for unveiling human neural dynamics in three dimensions (space, time, and frequency), which are associated with a wide variety of perceptions, cognition, and actions. MEG/EEG also provides different categories of neuronal indices including activity magnitude, connectivity, and network properties along the three dimensions. In the last 20 years, interest has increased in inter-regional connectivity and complex network properties assessed by various sophisticated scientific analyses. We herein review the definition, computation, short history, and pros and cons of connectivity and complex network (graph-theory) analyses applied to MEG/EEG signals. We briefly describe recent developments in source reconstruction algorithms essential for source-space connectivity and network analyses. Furthermore, we discuss a relatively novel approach used in MEG/EEG studies to examine the complex dynamics represented by human brain activity. The correct and effective use of these neuronal metrics provides a new insight into the multi-dimensional dynamics of the neural representations of various functions in the complex human brain. PMID:26834608

  8. Multi-Dimensional Dynamics of Human Electromagnetic Brain Activity.

    PubMed

    Kida, Tetsuo; Tanaka, Emi; Kakigi, Ryusuke

    2015-01-01

    Magnetoencephalography (MEG) and electroencephalography (EEG) are invaluable neuroscientific tools for unveiling human neural dynamics in three dimensions (space, time, and frequency), which are associated with a wide variety of perceptions, cognition, and actions. MEG/EEG also provides different categories of neuronal indices including activity magnitude, connectivity, and network properties along the three dimensions. In the last 20 years, interest has increased in inter-regional connectivity and complex network properties assessed by various sophisticated scientific analyses. We herein review the definition, computation, short history, and pros and cons of connectivity and complex network (graph-theory) analyses applied to MEG/EEG signals. We briefly describe recent developments in source reconstruction algorithms essential for source-space connectivity and network analyses. Furthermore, we discuss a relatively novel approach used in MEG/EEG studies to examine the complex dynamics represented by human brain activity. The correct and effective use of these neuronal metrics provides a new insight into the multi-dimensional dynamics of the neural representations of various functions in the complex human brain.

  9. Dynamic Control of Synchronous Activity in Networks of Spiking Neurons

    PubMed Central

    Hutt, Axel; Mierau, Andreas; Lefebvre, Jérémie

    2016-01-01

    Oscillatory brain activity is believed to play a central role in neural coding. Accumulating evidence shows that features of these oscillations are highly dynamic: power, frequency and phase fluctuate alongside changes in behavior and task demands. The role and mechanism supporting this variability is however poorly understood. We here analyze a network of recurrently connected spiking neurons with time delay displaying stable synchronous dynamics. Using mean-field and stability analyses, we investigate the influence of dynamic inputs on the frequency of firing rate oscillations. We show that afferent noise, mimicking inputs to the neurons, causes smoothing of the system’s response function, displacing equilibria and altering the stability of oscillatory states. Our analysis further shows that these noise-induced changes cause a shift of the peak frequency of synchronous oscillations that scales with input intensity, leading the network towards critical states. We lastly discuss the extension of these principles to periodic stimulation, in which externally applied driving signals can trigger analogous phenomena. Our results reveal one possible mechanism involved in shaping oscillatory activity in the brain and associated control principles. PMID:27669018

  10. Infrared thermography for laser-based powder bed fusion additive manufacturing processes

    NASA Astrophysics Data System (ADS)

    Moylan, Shawn; Whitenton, Eric; Lane, Brandon; Slotwinski, John

    2014-02-01

    Additive manufacturing (AM) has the potential to revolutionize discrete part manufacturing, but improvements in processing of metallic materials are necessary before AM will see widespread adoption. A better understanding of AM processes, resulting from physics-based modeling as well as direct process metrology, will form the basis for these improvements. Infrared (IR) thermography of AM processes can provide direct process metrology, as well as data necessary for the verification of physics-based models. We review selected works examining how IR thermography was implemented and used in various powder-bed AM processes. This previous work, as well as significant experience at the National Institute of Standards and Technology in temperature measurement and IR thermography for machining processes, shapes our own research in AM process metrology with IR thermography. We discuss our experimental design, as well as plans for future IR measurements of a laser-based powder bed fusion AM process.

  11. Infrared thermography for laser-based powder bed fusion additive manufacturing processes

    SciTech Connect

    Moylan, Shawn; Whitenton, Eric; Lane, Brandon; Slotwinski, John

    2014-02-18

    Additive manufacturing (AM) has the potential to revolutionize discrete part manufacturing, but improvements in processing of metallic materials are necessary before AM will see widespread adoption. A better understanding of AM processes, resulting from physics-based modeling as well as direct process metrology, will form the basis for these improvements. Infrared (IR) thermography of AM processes can provide direct process metrology, as well as data necessary for the verification of physics-based models. We review selected works examining how IR thermography was implemented and used in various powder-bed AM processes. This previous work, as well as significant experience at the National Institute of Standards and Technology in temperature measurement and IR thermography for machining processes, shapes our own research in AM process metrology with IR thermography. We discuss our experimental design, as well as plans for future IR measurements of a laser-based powder bed fusion AM process.

  12. Clinical use of thermography in the diagnosis of soft tissue lesions

    PubMed Central

    Kobrossi, Toffy

    1984-01-01

    Thermography is a non-invasive method of recording and interpreting the distribution of surface temperature. First used clinically in the diagnosis of breast disease, thermography has been spreading steadily in a variety of diagnostic applications. Various investigators claim that thermography: 1) can document soft tissue injury, infection and inflammation, 2) has a place in pre-employment screening for back disorders and high risk backs, 3) is more sensitive than electromyography in the diagnosis of disc disease and radiculopathy, 4) is exceedingly more accurate than myelography in judging a patient’s disc problem, and 5) may be a useful supplement to present clinical methods for objectively documenting soft tissue trauma in the patient with low back pain. This review attempts to evaluate the state of thermography today and assess its value in the diagnosis of musculoskeletal pain. ImagesFigure 1

  13. Dynamical criticality in the collective activity of a neural population

    NASA Astrophysics Data System (ADS)

    Mora, Thierry

    The past decade has seen a wealth of physiological data suggesting that neural networks may behave like critical branching processes. Concurrently, the collective activity of neurons has been studied using explicit mappings to classic statistical mechanics models such as disordered Ising models, allowing for the study of their thermodynamics, but these efforts have ignored the dynamical nature of neural activity. I will show how to reconcile these two approaches by learning effective statistical mechanics models of the full history of the collective activity of a neuron population directly from physiological data, treating time as an additional dimension. Applying this technique to multi-electrode recordings from retinal ganglion cells, and studying the thermodynamics of the inferred model, reveals a peak in specific heat reminiscent of a second-order phase transition.

  14. Integration of ground-penetrating radar, ultrasonic tests and infrared thermography for the analysis of a precious medieval rose window

    NASA Astrophysics Data System (ADS)

    Nuzzo, L.; Calia, A.; Liberatore, D.; Masini, N.; Rizzo, E.

    2010-04-01

    The integration of high-resolution, non-invasive geophysical techniques (such as ground-penetrating radar or GPR) with emerging sensing techniques (acoustics, thermography) can complement limited destructive tests to provide a suitable methodology for a multi-scale assessment of the state of preservation, material and construction components of monuments. This paper presents the results of the application of GPR, infrared thermography (IRT) and ultrasonic tests to the 13th century rose window of Troia Cathedral (Apulia, Italy), affected by widespread decay and instability problems caused by the 1731 earthquake and reactivated by recent seismic activity. This integrated approach provided a wide amount of complementary information at different scales, ranging from the sub-centimetre size of the metallic joints between the various architectural elements, narrow fractures and thin mortar fillings, up to the sub-metre scale of the internal masonry structure of the circular ashlar curb linking the rose window to the façade, which was essential to understand the original building technique and to design an effective restoration strategy.

  15. Evaluation of low-speed impact damage in CFRP with pulsed and lock-in thermography

    NASA Astrophysics Data System (ADS)

    Lichun, Feng; Wei, He; Ning, Tao

    2008-08-01

    Low speed impact subjected to carbon-fiber reinforced plastics could lead to delamination, matrix crack and other damages which would degrade the performance of composite structure. Fast and reliable evaluation methods are important for in-service inspections. In the paper, six CFRP plates with different impact energy was inspected with pulsed and lock-in thermography, respectively. The results showed thermography method was suitable for fast and large scale inspection of low-speed impact damage.

  16. Endoscopic Shearography and Thermography Methods for Nondestructive Evaluation of Lined Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Lansing, Matthew D.; Bullock, Michael W.

    1996-01-01

    The goal of this research effort was the development of methods for shearography and thermography inspection of coatings, bonds, or laminates inside rocket fuel or oxidizer tanks, fuel lines, and other closed structures. The endoscopic methods allow imaging and inspection inside cavities which are traditionally inaccessible with shearography or thermography cameras. The techniques are demonstrated and suggestions for practical application are made in this report. Drawings of the experimental setups, detailed procedures, and experimental data are included.

  17. Noninvasive Assessment of Tissue Heating During Cardiac Radiofrequency Ablation Using MRI Thermography

    PubMed Central

    Kolandaivelu, Aravindan; Zviman, Menekhem M.; Castro, Valeria; Lardo, Albert C.; Berger, Ronald D.; Halperin, Henry R.

    2010-01-01

    Background Failure to achieve properly localized, permanent tissue destruction is a common cause of arrhythmia recurrence after cardiac ablation. Current methods of assessing lesion size and location during cardiac radiofrequency ablation are unreliable or not suited for repeated assessment during the procedure. MRI thermography could be used to delineate permanent ablation lesions because tissue heating above 50°C is the cause of permanent tissue destruction during radiofrequency ablation. However, image artifacts caused by cardiac motion, the ablation electrode, and radiofrequency ablation currently pose a challenge to MRI thermography in the heart. In the current study, we sought to demonstrate the feasibility of MRI thermography during cardiac ablation. Methods and Results An MRI-compatible electrophysiology catheter and filtered radiofrequency ablation system was used to perform ablation in the left ventricle of 6 mongrel dogs in a 1.5-T MRI system. Fast gradient-echo imaging was performed before and during radiofrequency ablation, and thermography images were derived from the preheating and postheating images. Lesion extent by thermography was within 20% of the gross pathology lesion. Conclusions MR thermography appears to be a promising technique for monitoring lesion formation and may allow for more accurate placement and titration of ablation, possibly reducing arrhythmia recurrences. PMID:20657028

  18. Potentialities of steady-state and transient thermography in breast tumour depth detection: A numerical study.

    PubMed

    Amri, Amina; Pulko, Susan Helen; Wilkinson, Anthony James

    2016-01-01

    Breast thermography still has inherent limitations that prevent it from being fully accepted as a breast screening modality in medicine. The main challenges of breast thermography are to reduce false positive results and to increase the sensitivity of a thermogram. Further, it is still difficult to obtain information about tumour parameters such as metabolic heat, tumour depth and diameter from a thermogram. However, infrared technology and image processing have advanced significantly and recent clinical studies have shown increased sensitivity of thermography in cancer diagnosis. The aim of this paper is to study numerically the possibilities of extracting information about the tumour depth from steady state thermography and transient thermography after cold stress with no need to use any specific inversion technique. Both methods are based on the numerical solution of Pennes bioheat equation for a simple three-dimensional breast model. The effectiveness of two approaches used for depth detection from steady state thermography is assessed. The effect of breast density on the steady state thermal contrast has also been studied. The use of a cold stress test and the recording of transient contrasts during rewarming were found to be potentially suitable for tumour depth detection during the rewarming process. Sensitivity to parameters such as cold stress temperature and cooling time is investigated using the numerical model and simulation results reveal two prominent depth-related characteristic times which do not strongly depend on the temperature of the cold stress or on the cooling period.

  19. Infrared ocular thermography in dogs with and without keratoconjunctivitis sicca.

    PubMed

    Biondi, Flávia; Dornbusch, Peterson T; Sampaio, Manuella; Montiani-Ferreira, Fabiano

    2015-01-01

    Infrared thermography was used to measure temperature differences of the corneal surface between nasal and temporal limbus regions and central cornea of normal dogs and dogs with keratoconjunctivitis sicca (KCS), in order to establish temperature values in normal canine eyes and in patients with decreased Schirmer tear tests (STT) values. Dogs investigated were all either patients seen at the Veterinary Teaching Hospital of Federal University of Paraná or normal dogs that belonged to the same institution. STT were performed in all eyes. A total of 40 control eyes (STT ≥15 mm/min) and 20 eyes with low STT values (STT ≤14 mm/min) were examined. The mean STT value for eyes with normal STT values was 22.9 ± 3.9 mm/min (mean ± standard deviation), and the mean STT value for eyes with low STT value was 7.2 ± 4.8 mm/min. The mean corneal temperature was significantly lower in eyes with low STT values than in control eyes (P < 0.0001). The following significant correlations were found: (i) Schirmer and breakup time (BUT) (P = 0.0001, r = 0.5); (ii) STT values and corneal surface temperature (P = 0.001, r = 0.256); (iii) STT values and age (P = 0.0001, r = -0.448); (iv) age and corneal surface temperature (P = 0.0001, r = -0.281); and (v) BUT and corneal surface temperature (P = 0.0001, r = 0.36). Thermography is a method that can differentiate between eyes with normal and abnormal STT values. In the future, thermography might be incorporated as part of the ophthalmic examination and perhaps become a popular ancillary test for the diagnoses of ocular surface disorders.

  20. Static and Dynamic Modeling of a Solar Active Region

    NASA Astrophysics Data System (ADS)

    Warren, Harry P.; Winebarger, Amy R.

    2007-09-01

    Recent hydrostatic simulations of solar active regions have shown that it is possible to reproduce both the total intensity and the general morphology of the high-temperature emission observed at soft X-ray wavelengths using static heating models. These static models, however, cannot account for the lower temperature emission. In addition, there is ample observational evidence that the solar corona is highly variable, indicating a significant role for dynamical processes in coronal heating. Because they are computationally demanding, full hydrodynamic simulations of solar active regions have not been considered previously. In this paper we make first application of an impulsive heating model to the simulation of an entire active region, AR 8156 observed on 1998 February 16. We model this region by coupling potential field extrapolations to full solutions of the time-dependent hydrodynamic loop equations. To make the problem more tractable we begin with a static heating model that reproduces the emission observed in four different Yohkoh Soft X-Ray Telescope (SXT) filters and consider impulsive heating scenarios that yield time-averaged SXT intensities that are consistent with the static case. We find that it is possible to reproduce the total observed soft X-ray emission in all of the SXT filters with a dynamical heating model, indicating that nanoflare heating is consistent with the observational properties of the high-temperature solar corona. At EUV wavelengths the simulated emission shows more coronal loops, but the agreement between the simulation and the observation is still not acceptable.

  1. An undergraduate laboratory activity on molecular dynamics simulations.

    PubMed

    Spitznagel, Benjamin; Pritchett, Paige R; Messina, Troy C; Goadrich, Mark; Rodriguez, Juan

    2016-01-01

    Vision and Change [AAAS, 2011] outlines a blueprint for modernizing biology education by addressing conceptual understanding of key concepts, such as the relationship between structure and function. The document also highlights skills necessary for student success in 21st century Biology, such as the use of modeling and simulation. Here we describe a laboratory activity that allows students to investigate the dynamic nature of protein structure and function through the use of a modeling technique known as molecular dynamics (MD). The activity takes place over two lab periods that are 3 hr each. The first lab period unpacks the basic approach behind MD simulations, beginning with the kinematic equations that all bioscience students learn in an introductory physics course. During this period students are taught rudimentary programming skills in Python while guided through simple modeling exercises that lead up to the simulation of the motion of a single atom. In the second lab period students extend concepts learned in the first period to develop skills in the use of expert MD software. Here students simulate and analyze changes in protein conformation resulting from temperature change, solvation, and phosphorylation. The article will describe how these activities can be carried out using free software packages, including Abalone and VMD/NAMD.

  2. Dynamical activities of primary somatosensory cortices studied by magnetoencephalography

    NASA Astrophysics Data System (ADS)

    Kishida, Kuniharu

    2009-11-01

    A blind identification method of transfer functions in feedback systems is introduced for examination of dynamical activities of cortices by magnetoencephalography study. Somatosensory activities are examined in 5 Hz periodical median nerve stimulus. In the present paper, we will try two careful preprocessing procedures for the identification method to obtain impulse responses between primary somatosensory cortices. Time series data of the somatosensory evoked field are obtained by using a blind source separation of the T/k type (fractional) decorrelation method. Time series data of current dipoles of primary somatosensory cortices are transformed from the time series data of the somatosensory evoked field by the inverse problem. Fluctuations of current dipoles of them are obtained after elimination of deterministic periodical evoked waveforms. An identification method based on feedback system theory is used for estimation of transfer functions in a feedback model from obtained fluctuations of currents dipoles of primary somatosensory cortices. Dynamical activities between them are presented by Bode diagrams of transfer functions and their impulse responses: the time delay of about 30 ms via corpus callosum is found in the impulse response of identified transfer function.

  3. AN EVALUATION OF INFRARED THERMOGRAPHY FOR DETECTION OF BUMBLEFOOT (PODODERMATITIS) IN PENGUINS.

    PubMed

    Duncan, Ann E; Torgerson-White, Lauri L; Allard, Stephanie M; Schneider, Tom

    2016-06-01

    The objective of this study was to evaluate infrared thermography as a noninvasive screening tool for detection of pododermatitis during the developing and active stages of disease in three species of penguins: king penguin (Aptenodytes patagonicus) , macaroni penguin (Eudyptes chrysolophus), and rockhopper penguin (Eudyptes chrysocome). In total, 67 penguins were examined every 3 mo over a 15-mo period. At each exam, bumblefoot lesions were characterized and measured, and a timed series of thermal images were collected over a 4-min period. Three different methods were compared for analysis of thermograms. Feet with active lesions that compromise the surface of the foot were compared to feet with inactive lesions and no lesions. The hypothesis was that feet with active lesions would have warmer surface temperatures than the other conditions. Analysis of the data showed that although feet with active bumblefoot lesions are warmer than feet with inactive or no lesions, the variability seen in each individual penguin from one exam day to the next and the overlap seen between temperatures from each condition made thermal imaging an unreliable tool for detection of bumblefoot in the species studied.

  4. Multivariable Dynamic Ankle Mechanical Impedance With Active Muscles

    PubMed Central

    Lee, Hyunglae; Krebs, Hermano Igo; Hogan, Neville

    2015-01-01

    Multivariable dynamic ankle mechanical impedance in two coupled degrees-of-freedom (DOFs) was quantified when muscles were active. Measurements were performed at five different target activation levels of tibialis anterior and soleus, from 10% to 30% of maximum voluntary contraction (MVC) with increments of 5% MVC. Interestingly, several ankle behaviors characterized in our previous study of the relaxed ankle were observed with muscles active: ankle mechanical impedance in joint coordinates showed responses largely consistent with a second-order system consisting of inertia, viscosity, and stiffness; stiffness was greater in the sagittal plane than in the frontal plane at all activation conditions for all subjects; and the coupling between dorsiflexion–plantarflexion and inversion–eversion was small—the two DOF measurements were well explained by a strictly diagonal impedance matrix. In general, ankle stiffness increased linearly with muscle activation in all directions in the 2-D space formed by the sagittal and frontal planes, but more in the sagittal than in the frontal plane, resulting in an accentuated “peanut shape.” This characterization of young healthy subjects’ ankle mechanical impedance with active muscles will serve as a baseline to investigate pathophysiological ankle behaviors of biomechanically and/or neurologically impaired patients. PMID:25203497

  5. On the Dynamics of the Spontaneous Activity in Neuronal Networks

    PubMed Central

    Bonifazi, Paolo; Ruaro, Maria Elisabetta; Torre, Vincent

    2007-01-01

    Most neuronal networks, even in the absence of external stimuli, produce spontaneous bursts of spikes separated by periods of reduced activity. The origin and functional role of these neuronal events are still unclear. The present work shows that the spontaneous activity of two very different networks, intact leech ganglia and dissociated cultures of rat hippocampal neurons, share several features. Indeed, in both networks: i) the inter-spike intervals distribution of the spontaneous firing of single neurons is either regular or periodic or bursting, with the fraction of bursting neurons depending on the network activity; ii) bursts of spontaneous spikes have the same broad distributions of size and duration; iii) the degree of correlated activity increases with the bin width, and the power spectrum of the network firing rate has a 1/f behavior at low frequencies, indicating the existence of long-range temporal correlations; iv) the activity of excitatory synaptic pathways mediated by NMDA receptors is necessary for the onset of the long-range correlations and for the presence of large bursts; v) blockage of inhibitory synaptic pathways mediated by GABAA receptors causes instead an increase in the correlation among neurons and leads to a burst distribution composed only of very small and very large bursts. These results suggest that the spontaneous electrical activity in neuronal networks with different architectures and functions can have very similar properties and common dynamics. PMID:17502919

  6. Dynamic regulation of Polycomb group activity during plant development.

    PubMed

    Bemer, Marian; Grossniklaus, Ueli

    2012-11-01

    Polycomb group (PcG) complexes play important roles in phase transitions and cell fate determination in plants and animals, by epigenetically repressing sets of genes that promote either proliferation or differentiation. The continuous differentiation of new organs in plants, such as leaves or flowers, requires a highly dynamic PcG function, which can be induced, modulated, or repressed when necessary. In this review, we discuss the recent advance in understanding PcG function in plants and focus on the diverse molecular mechanisms that have been described to regulate and counteract PcG activity in Arabidopsis.

  7. Biomechanical fatigue analysis of an advanced new carbon fiber/flax/epoxy plate for bone fracture repair using conventional fatigue tests and thermography.

    PubMed

    Bagheri, Zahra S; El Sawi, Ihab; Bougherara, Habiba; Zdero, Radovan

    2014-07-01

    The current study is part of an ongoing research program to develop an advanced new carbon fiber/flax/epoxy (CF/flax/epoxy) hybrid composite with a “sandwich structure” as a substitute for metallic materials for orthopedic long bone fracture plate applications. The purpose of this study was to assess the fatigue properties of this composite, since cyclic loading is one of the main types of loads carried by a femur fracture plate during normal daily activities. Conventional fatigue testing, thermographic analysis, and scanning electron microscopy (SEM) were used to analyze the damage progress that occurred during fatigue loading. Fatigue strength obtained using thermography analysis (51% of ultimate tensile strength) was confirmed using the conventional fatigue test (50–55% of ultimate tensile strength). The dynamic modulus (E⁎) was found to stay almost constant at 47 GPa versus the number of cycles, which can be related to the contribution of both flax/epoxy and CF/epoxy laminae to the stiffness of the composite. SEM images showed solid bonding at the CF/epoxy and flax/epoxy laminae, with a crack density of only 0.48% for the plate loaded for 2 million cycles. The current composite plate showed much higher fatigue strength than the main loads experienced by a typical patient during cyclic activities; thus, it may be a potential candidate for bone fracture plate applications. Moreover, the fatigue strength from thermographic analysis was the same as that obtained by the conventional fatigue tests, thus demonstrating its potential use as an alternate tool to rapidly evaluate fatigue strength of composite biomaterials.

  8. Biomechanical fatigue analysis of an advanced new carbon fiber/flax/epoxy plate for bone fracture repair using conventional fatigue tests and thermography.

    PubMed

    Bagheri, Zahra S; El Sawi, Ihab; Bougherara, Habiba; Zdero, Radovan

    2014-07-01

    The current study is part of an ongoing research program to develop an advanced new carbon fiber/flax/epoxy (CF/flax/epoxy) hybrid composite with a "sandwich structure" as a substitute for metallic materials for orthopedic long bone fracture plate applications. The purpose of this study was to assess the fatigue properties of this composite, since cyclic loading is one of the main types of loads carried by a femur fracture plate during normal daily activities. Conventional fatigue testing, thermographic analysis, and scanning electron microscopy (SEM) were used to analyze the damage progress that occurred during fatigue loading. Fatigue strength obtained using thermography analysis (51% of ultimate tensile strength) was confirmed using the conventional fatigue test (50-55% of ultimate tensile strength). The dynamic modulus (E(⁎)) was found to stay almost constant at 47GPa versus the number of cycles, which can be related to the contribution of both flax/epoxy and CF/epoxy laminae to the stiffness of the composite. SEM images showed solid bonding at the CF/epoxy and flax/epoxy laminae, with a crack density of only 0.48% for the plate loaded for 2 million cycles. The current composite plate showed much higher fatigue strength than the main loads experienced by a typical patient during cyclic activities; thus, it may be a potential candidate for bone fracture plate applications. Moreover, the fatigue strength from thermographic analysis was the same as that obtained by the conventional fatigue tests, thus demonstrating its potential use as an alternate tool to rapidly evaluate fatigue strength of composite biomaterials.

  9. Technical design note: differential infrared thermography of methane jets

    NASA Astrophysics Data System (ADS)

    Golzke, Hendrik; Leick, Philippe; Dreizler, Andreas

    2016-10-01

    In this note a novel approach for temperature measurements of methane jets is presented. Differential infrared thermography (DIT) is a contactless, tracer-free temperature determination method for semi-transparent objects, based on an infrared camera. DIT does not rely on a specific a priori value for the emissivity, but typically assumes constant emissivity within the relevant wavelength band. This is reasonable for complex hydrocarbons (i.e. as in liquid fuel sprays) but no longer justified for the discrete absorption spectrum of simple molecules such as methane. An alternative approximation is suggested and discussed, and the feasibility of DIT for the study of supercritical methane jets in a pressure chamber at conditions relevant for internal combustion engines is demonstrated. As DIT also determines the gas emissivity, a combined two-dimensional temperature and projected density visualisation becomes possible and is shown to highlight supersonic structurues such as Mach disks.

  10. Real time capable infrared thermography for ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Sieglin, B.; Faitsch, M.; Herrmann, A.; Brucker, B.; Eich, T.; Kammerloher, L.; Martinov, S.

    2015-11-01

    Infrared (IR) thermography is widely used in fusion research to study power exhaust and incident heat load onto the plasma facing components. Due to the short pulse duration of today's fusion experiments, IR systems have mostly been designed for off-line data analysis. For future long pulse devices (e.g., Wendelstein 7-X, ITER), a real time evaluation of the target temperature and heat flux is mandatory. This paper shows the development of a real time capable IR system for ASDEX Upgrade. A compact IR camera has been designed incorporating the necessary magnetic and electric shielding for the detector, cooler assembly. The camera communication is based on the Camera Link industry standard. The data acquisition hardware is based on National Instruments hardware, consisting of a PXIe chassis inside and a fibre optical connected industry computer outside the torus hall. Image processing and data evaluation are performed using real time LabVIEW.

  11. Modeling of the Multiparameter Inverse Task of Transient Thermography

    NASA Technical Reports Server (NTRS)

    Plotnikov, Y. A.

    1998-01-01

    Transient thermography employs preheated surface temperature variations caused by delaminations, cracks, voids, corroded regions, etc. Often, it is enough to detect these changes to declare a defect in a workpiece. It is also desirable to obtain additional information about the defect from the thermal response. The planar size, depth, and thermal resistance of the detected defects are the parameters of interest. In this paper a digital image processing technique is applied to simulated thermal responses in order to obtain the geometry of the inclusion-type defects in a flat panel. A three-dimensional finite difference model in Cartesian coordinates is used for the numerical simulations. Typical physical properties of polymer graphite composites are assumed. Using different informative parameters of the thermal response for depth estimation is discussed.

  12. Porosity Measurement in Laminated Composites by Thermography and FEA

    NASA Technical Reports Server (NTRS)

    Chu, Tsuchin Philip; Russell, Samuel S.; Walker, James L.; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    This paper presents the correlation between the through-thickness thermal diffusivity and the porosity of composites. Finite element analysis (FEA) was used to determine the transient thermal response of composites that were subjected to laser heating. A series of finite element models were built and thermal responses for isotropic and orthographic materials with various thermal diffusivities subjected to different heating conditions were investigated. Experiments were conducted to verify the models and to estimate the unknown parameters such as the amount of heat flux. The analysis and experimental results show good correlation between thermal diffusivity and porosity in the composite materials. They also show that both laser and flash heating can be used effectively to obtain thermal diffusivity. The current infrared thermography system is developed for use with flash heating. The laser heating models and the FEA results can provide useful tools to develop practical thermal diffusivity measurement scheme using laser heat.

  13. IR thermography as a tool for the pest management professional

    NASA Astrophysics Data System (ADS)

    Grossman, Jon L.

    2005-03-01

    For years the pest Management Professional has relied on visual and manual inspections to locate insect pest infestations. As building materials have improved, the ability to locate pest problems has become more difficult since building materials are often able to mask the existence of pest infestation. Additionally, these improved building materials have contributed to the pest problem by providing a convenient food and nesting source. Within the past five years, the Pest Management Industry has become aware that IR thermography can aid in the detection of pest infestation by detecting evidence of latent moisture within structures. This paper discusses the use of thermal imaging to detect thermal patterns associated with insect infestation, verification of data and special challenges associated with the inspection process.

  14. Advanced Image Processing for Defect Visualization in Infrared Thermography

    NASA Technical Reports Server (NTRS)

    Plotnikov, Yuri A.; Winfree, William P.

    1997-01-01

    Results of a defect visualization process based on pulse infrared thermography are presented. Algorithms have been developed to reduce the amount of operator participation required in the process of interpreting thermographic images. The algorithms determine the defect's depth and size from the temporal and spatial thermal distributions that exist on the surface of the investigated object following thermal excitation. A comparison of the results from thermal contrast, time derivative, and phase analysis methods for defect visualization are presented. These comparisons are based on three dimensional simulations of a test case representing a plate with multiple delaminations. Comparisons are also based on experimental data obtained from a specimen with flat bottom holes and a composite panel with delaminations.

  15. High speed heterodyne infrared thermography applied to thermal diffusivity identification.

    PubMed

    Pradere, C; Clerjaud, L; Batsale, J C; Dilhaire, S

    2011-05-01

    We have combined InfraRed thermography and thermal wave techniques to perform microscale, ultrafast (microsecond) temperature field measurements. The method is based on an IR camera coupled to a microscope and synchronized to the heat source by means of phase locked function generators. The principle is based on electronic stroboscopic sampling where the low IR camera acquisition frequency f(acq) (25 Hz) undersamples a high frequency thermal wave. This technique permits the measurement of the emissive thermal response at a (microsecond) short time scale (microsecond) with the full frame mode of the IR camera with a spatial thermal resolution of 7 μm. Then it becomes possible to study 3D transient heat transfer in heterogeneous and high thermal conductive thin layers. Thus it is possible for the first time in our knowledge to achieve temperature field measurements in heterogeneous media within a wide range of time domains. The IR camera is now a suitable instrument for multiscale thermal analysis.

  16. Characterization of Periodic Cylindrical Subsurface Defects by Pulsed Flash Thermography

    NASA Astrophysics Data System (ADS)

    Dikić, Goran; Tomić, Ljubiša; Damnjanović, Vesna; Milanović, Bojan

    2015-03-01

    A characterization of cylindrical periodic subsurface defects of different sizes by means of pulsed thermography is presented in the paper. To ensure a uniform thermal flux distribution, the test samples were heated in lab conditions using two photographic flashes. Surface temperature was intentionally recorded at an angle to the normal of the sample surface. Recorded temperatures were compared with simulated temperatures and the differences in temperature peak values and temperature peak positions were noted. The thermal image was transformed based on known positions of four noncollinear points, in order to cancel out errors resulting from image recording at an angle. The uniformity of surface heating and the effect of the positions of the defects on the results were tested by means of a simulation model. The positions did not affect defect characterization. It was also found that in spite of nonuniform heating, if the reference points were selected properly, the difference in temperature contrast was negligible.

  17. The Study of Hypersonic Heat Transfer by Liquid Crystals Thermography

    NASA Astrophysics Data System (ADS)

    Kovrizhina, V. N.; Kharitonov, A. M.; Petrov, A. P.; Schpack, S. I.; Zharkova, G. M.; Zvegintsev, V. I.

    2009-01-01

    The results of experimental application of the Liquid Crystal Thermography in short-duration facility AT-303 of ITAM Novosibirsk (Russia) are presented. Experiments were carried out at free stream Mach number M∞ ≍ 10.9, unit Reynolds number Re1≍2.9*106M-1, run duration 350 MC and temperature factor Tw/To ≍ 0.2 on a semi-spherically blunted cone. Polymer dispersed liquid crystals (PDLC), developed at ITAM, have been used as thermosensitive coating. Transient technique and color pattern video acquisition was realized at different framing rates. It was obtained that high temperature sensitivity of PDLC allows visualize the fine features of the temperature field on the model surface. The heat flux in comparison with semi- empirical estimation are presented and discussed too.

  18. Aerial thermography studies of power plant heated lakes

    SciTech Connect

    Villa-Aleman, E.

    2000-01-26

    Remote sensing temperature measurements of water bodies is complicated by the temperature differences between the true surface or skin water and the bulk water below. Weather conditions control the reduction of the skin temperature relative to the bulk water temperature. Typical skin temperature depressions range from a few tenths of a degree Celsius to more than one degree. In this research project, the Savannah River Technology Center (SRTC) used aerial thermography and surface-based meteorological and water temperature measurements to study a power plant cooling lake in South Carolina. Skin and bulk water temperatures were measured simultaneously for imagery calibration and to produce a database for modeling of skin temperature depressions as a function of weather and bulk water temperatures. This paper will present imagery that illustrates how the skin temperature depression was affected by different conditions in several locations on the lake and will present skin temperature modeling results.

  19. The mental and subjective skin: Emotion, empathy, feelings and thermography.

    PubMed

    Salazar-López, E; Domínguez, E; Juárez Ramos, V; de la Fuente, J; Meins, A; Iborra, O; Gálvez, G; Rodríguez-Artacho, M A; Gómez-Milán, E

    2015-07-01

    We applied thermography to investigate the cognitive neuropsychology of emotions, using it as a somatic marker of subjective experience during emotional tasks. We obtained results that showed significant correlations between changes in facial temperature and mental set. The main result was the change in the temperature of the nose, which tended to decrease with negative valence stimuli but to increase with positive emotions and arousal patterns. However, temperature change was identified not only in the nose, but also in the forehead, the oro-facial area, the cheeks and in the face taken as a whole. Nevertheless, thermic facial changes, mostly nasal temperature changes, correlated positively with participants' empathy scores and their performance. We found that temperature changes in the face may reveal maps of bodily sensations associated with different emotions and feelings like love.

  20. Real time capable infrared thermography for ASDEX Upgrade

    SciTech Connect

    Sieglin, B. Faitsch, M.; Herrmann, A.; Brucker, B.; Eich, T.; Kammerloher, L.; Martinov, S.

    2015-11-15

    Infrared (IR) thermography is widely used in fusion research to study power exhaust and incident heat load onto the plasma facing components. Due to the short pulse duration of today’s fusion experiments, IR systems have mostly been designed for off-line data analysis. For future long pulse devices (e.g., Wendelstein 7-X, ITER), a real time evaluation of the target temperature and heat flux is mandatory. This paper shows the development of a real time capable IR system for ASDEX Upgrade. A compact IR camera has been designed incorporating the necessary magnetic and electric shielding for the detector, cooler assembly. The camera communication is based on the Camera Link industry standard. The data acquisition hardware is based on National Instruments hardware, consisting of a PXIe chassis inside and a fibre optical connected industry computer outside the torus hall. Image processing and data evaluation are performed using real time LabVIEW.

  1. Heat losses and 3D diffusion phenomena for defect sizing procedures in video pulse thermography

    NASA Astrophysics Data System (ADS)

    Ludwig, N.; Teruzzi, P.

    2002-06-01

    Dynamical thermographic techniques like video pulse thermography are very useful for the non-destructive testing of structural components. In literature different models were proposed, which allow to describe the time evolution of the thermal contrast for materials with sub-superficial defects. In the case of circular defect the time evolution of the full width half maximum (FWHM) of the thermal contrast was studied both theoretically and experimentally. Nevertheless a mismatch in defect sizing between experimental results and theoretical simulations was found. Possible explanations of this disagreement was analysed. A factor widely neglected is the heat loss (radiation and convection). In this paper a theoretical analysis of the influence of these contributions is reported. Furthermore in order to explain the experimental evidence of FWHM time evolution we introduced a correction due to lateral heat diffusion around the defect. In this way a possible explanation for the experimental results was obtained. Brick samples with a circular flat bottom hole as defect was tested both for the interest in defect sizing in building material through NDT and for the low thermal diffusivity of this material which allows the study of the phenomenon in a slow motion.

  2. Infrared Thermography-based Biophotonics: Integrated Diagnostic Technique for Systemic Reaction Monitoring

    NASA Astrophysics Data System (ADS)

    Vainer, Boris G.; Morozov, Vitaly V.

    A peculiar branch of biophotonics is a measurement, visualisation and quantitative analysis of infrared (IR) radiation emitted from living object surfaces. Focal plane array (FPA)-based IR cameras make it possible to realize in medicine the so called interventional infrared thermal diagnostics. An integrated technique aimed at the advancement of this new approach in biomedical science and practice is described in the paper. The assembled system includes a high-performance short-wave (2.45-3.05 μm) or long-wave (8-14 μm) IR camera, two laser Doppler flowmeters (LDF) and additional equipment and complementary facilities implementing the monitoring of human cardiovascular status. All these means operate synchronously. It is first ascertained the relationship between infrared thermography (IRT) and LDF data in humans in regard to their systemic cardiovascular reactivity. Blood supply real-time dynamics in a narcotized patient is first visualized and quantitatively represented during surgery in order to observe how the general hyperoxia influences thermoregulatory mechanisms; an abrupt increase in temperature of the upper limb is observed using IRT. It is outlined that the IRT-based integrated technique may act as a take-off runway leading to elaboration of informative new methods directly applicable to medicine and biomedical sciences.

  3. Active DNA unwinding dynamics during processive DNA replication.

    PubMed

    Morin, José A; Cao, Francisco J; Lázaro, José M; Arias-Gonzalez, J Ricardo; Valpuesta, José M; Carrascosa, José L; Salas, Margarita; Ibarra, Borja

    2012-05-22

    Duplication of double-stranded DNA (dsDNA) requires a fine-tuned coordination between the DNA replication and unwinding reactions. Using optical tweezers, we probed the coupling dynamics between these two activities when they are simultaneously carried out by individual Phi29 DNA polymerase molecules replicating a dsDNA hairpin. We used the wild-type and an unwinding deficient polymerase variant and found that mechanical tension applied on the DNA and the DNA sequence modulate in different ways the replication, unwinding rates, and pause kinetics of each polymerase. However, incorporation of pause kinetics in a model to quantify the unwinding reaction reveals that both polymerases destabilize the fork with the same active mechanism and offers insights into the topological strategies that could be used by the Phi29 DNA polymerase and other DNA replication systems to couple unwinding and replication reactions.

  4. Broken Detailed Balance of Filament Dynamics in Active Networks

    NASA Astrophysics Data System (ADS)

    Gladrow, J.; Fakhri, N.; MacKintosh, F. C.; Schmidt, C. F.; Broedersz, C. P.

    2016-06-01

    Myosin motor proteins drive vigorous steady-state fluctuations in the actin cytoskeleton of cells. Endogenous embedded semiflexible filaments such as microtubules, or added filaments such as single-walled carbon nanotubes are used as novel tools to noninvasively track equilibrium and nonequilibrium fluctuations in such biopolymer networks. Here, we analytically calculate shape fluctuations of semiflexible probe filaments in a viscoelastic environment, driven out of equilibrium by motor activity. Transverse bending fluctuations of the probe filaments can be decomposed into dynamic normal modes. We find that these modes no longer evolve independently under nonequilibrium driving. This effective mode coupling results in nonzero circulatory currents in a conformational phase space, reflecting a violation of detailed balance. We present predictions for the characteristic frequencies associated with these currents and investigate how the temporal signatures of motor activity determine mode correlations, which we find to be consistent with recent experiments on microtubules embedded in cytoskeletal networks.

  5. HeatWave: the next generation of thermography devices

    NASA Astrophysics Data System (ADS)

    Moghadam, Peyman; Vidas, Stephen

    2014-05-01

    Energy sustainability is a major challenge of the 21st century. To reduce environmental impact, changes are required not only on the supply side of the energy chain by introducing renewable energy sources, but also on the demand side by reducing energy usage and improving energy efficiency. Currently, 2D thermal imaging is used for energy auditing, which measures the thermal radiation from the surfaces of objects and represents it as a set of color-mapped images that can be analysed for the purpose of energy efficiency monitoring. A limitation of such a method for energy auditing is that it lacks information on the geometry and location of objects with reference to each other, particularly across separate images. Such a limitation prevents any quantitative analysis to be done, for example, detecting any energy performance changes before and after retrofitting. To address these limitations, we have developed a next generation thermography device called Heat Wave. Heat Wave is a hand-held 3D thermography device that consists of a thermal camera, a range sensor and color camera, and can be used to generate precise 3D model of objects with augmented temperature and visible information. As an operator holding the device smoothly waves it around the objects of interest, Heat Wave can continuously track its own pose in space and integrate new information from the range and thermal and color cameras into a single, and precise 3D multi-modal model. Information from multiple viewpoints can be incorporated together to improve the accuracy, reliability and robustness of the global model. The approach also makes it possible to reduce any systematic errors associated with the estimation of surface temperature from the thermal images.

  6. Thermography and machine learning techniques for tomato freshness prediction.

    PubMed

    Xie, Jing; Hsieh, Sheng-Jen; Wang, Hong-Jin; Tan, Zuojun

    2016-12-01

    The United States and China are the world's leading tomato producers. Tomatoes account for over $2 billion annually in farm sales in the U.S. Tomatoes also rank as the world's 8th most valuable agricultural product, valued at $58 billion dollars annually, and quality is highly prized. Nondestructive technologies, such as optical inspection and near-infrared spectrum analysis, have been developed to estimate tomato freshness (also known as grades in USDA parlance). However, determining the freshness of tomatoes is still an open problem. This research (1) illustrates the principle of theory on why thermography might be able to reveal the internal state of the tomatoes and (2) investigates the application of machine learning techniques-artificial neural networks (ANNs) and support vector machines (SVMs)-in combination with transient step heating, and thermography for freshness prediction, which refers to how soon the tomatoes will decay. Infrared images were captured at a sampling frequency of 1 Hz during 40 s of heating followed by 160 s of cooling. The temperatures of the acquired images were plotted. Regions with higher temperature differences between fresh and less fresh (rotten within three days) tomatoes of approximately uniform size and shape were used as the input nodes for ANN and SVM models. The ANN model built using heating and cooling data was relatively optimal. The overall regression coefficient was 0.99. These results suggest that a combination of infrared thermal imaging and ANN modeling methods can be used to predict tomato freshness with higher accuracy than SVM models.

  7. Application of infrared thermography in computer aided diagnosis

    NASA Astrophysics Data System (ADS)

    Faust, Oliver; Rajendra Acharya, U.; Ng, E. Y. K.; Hong, Tan Jen; Yu, Wenwei

    2014-09-01

    The invention of thermography, in the 1950s, posed a formidable problem to the research community: What is the relationship between disease and heat radiation captured with Infrared (IR) cameras? The research community responded with a continuous effort to find this crucial relationship. This effort was aided by advances in processing techniques, improved sensitivity and spatial resolution of thermal sensors. However, despite this progress fundamental issues with this imaging modality still remain. The main problem is that the link between disease and heat radiation is complex and in many cases even non-linear. Furthermore, the change in heat radiation as well as the change in radiation pattern, which indicate disease, is minute. On a technical level, this poses high requirements on image capturing and processing. On a more abstract level, these problems lead to inter-observer variability and on an even more abstract level they lead to a lack of trust in this imaging modality. In this review, we adopt the position that these problems can only be solved through a strict application of scientific principles and objective performance assessment. Computing machinery is inherently objective; this helps us to apply scientific principles in a transparent way and to assess the performance results. As a consequence, we aim to promote thermography based Computer-Aided Diagnosis (CAD) systems. Another benefit of CAD systems comes from the fact that the diagnostic accuracy is linked to the capability of the computing machinery and, in general, computers become ever more potent. We predict that a pervasive application of computers and networking technology in medicine will help us to overcome the shortcomings of any single imaging modality and this will pave the way for integrated health care systems which maximize the quality of patient care.

  8. Dynamics of Active Separation Control at High Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Pack, LaTunia G.; Seifert, Avi

    2000-01-01

    A series of active flow control experiments were recently conducted at high Reynolds numbers on a generic separated configuration. The model simulates the upper surface of a 20% thick Glauert-Goldschmied type airfoil at zero angle of attack. The flow is fully turbulent since the tunnel sidewall boundary layer flows over the model. The main motivation for the experiments is to generate a comprehensive data base for validation of unsteady numerical simulation as a first step in the development of a CFD design tool, without which it would not be possible to effectively utilize the great potential of unsteady flow control. This paper focuses on the dynamics of several key features of the baseline as well as the controlled flow. It was found that the thickness of the upstream boundary layer has a negligible effect on the flow dynamics. It is speculated that separation is caused mainly by the highly convex surface while viscous effects are less important. The two-dimensional separated flow contains unsteady waves centered on a reduced frequency of 0.8, while in the three dimensional separated flow, frequencies around a reduced frequency of 0.3 and 1 are active. Several scenarios of resonant wave interaction take place at the separated shear-layer and in the pressure recovery region. The unstable reduced frequency bands for periodic excitation are centered on 1.5 and 5, but these reduced frequencies are based on the length of the baseline bubble that shortens due to the excitation. The conventional swept wing-scaling works well for the coherent wave features. Reproduction of these dynamic effects by a numerical simulation would provide benchmark validation.

  9. Dynamic positioning system based on active disturbance rejection technology

    NASA Astrophysics Data System (ADS)

    Lei, Zhengling; Guo, Chen; Fan, Yunsheng

    2015-08-01

    A dynamically positioned vessel, by the International Maritime Organization (IMO) and the certifying class societies (DNV, ABS, LR, etc.), is defined as a vessel that maintains its position and heading (fixed location or pre-determined track) exclusively by means of active thrusters. The development of control technology promotes the upgrading of dynamic positioning (DP) systems. Today there are two different DP systems solutions available on the market: DP system based on PID regulator and that based on model-based control. Both systems have limited disturbance rejection capability due to their design principle. In this paper, a new DP system solution is proposed based on Active Disturbance Rejection Control (ADRC) technology. This technology is composed of Tracking-Differentiator (TD), Extended State Observer (ESO) and Nonlinear Feedback Combination. On one hand, both TD and ESO can act as filters and can be used in place of conventional filters; on the other hand, the total disturbance of the system can be estimated and compensated by ESO, which therefore enhances the system's disturbance rejection capability. This technology's advantages over other methods lie in two aspects: 1) This method itself can not only achieve control objectives but also filter noisy measurements without other specialized filters; 2) This method offers a new useful approach to suppress the ocean disturbance. The simulation results demonstrate the effectiveness of the proposed method.

  10. Dynamic Stimuli And Active Processing In Human Visual Perception

    NASA Astrophysics Data System (ADS)

    Haber, Ralph N.

    1990-03-01

    Theories of visual perception traditionally have considered a static retinal image to be the starting point for processing; and has considered processing both to be passive and a literal translation of that frozen, two dimensional, pictorial image. This paper considers five problem areas in the analysis of human visually guided locomotion, in which the traditional approach is contrasted to newer ones that utilize dynamic definitions of stimulation, and an active perceiver: (1) differentiation between object motion and self motion, and among the various kinds of self motion (e.g., eyes only, head only, whole body, and their combinations); (2) the sources and contents of visual information that guide movement; (3) the acquisition and performance of perceptual motor skills; (4) the nature of spatial representations, percepts, and the perceived layout of space; and (5) and why the retinal image is a poor starting point for perceptual processing. These newer approaches argue that stimuli must be considered as dynamic: humans process the systematic changes in patterned light when objects move and when they themselves move. Furthermore, the processing of visual stimuli must be active and interactive, so that perceivers can construct panoramic and stable percepts from an interaction of stimulus information and expectancies of what is contained in the visual environment. These developments all suggest a very different approach to the computational analyses of object location and identification, and of the visual guidance of locomotion.

  11. Mechanics of post-cam engagement during simulated dynamic activity.

    PubMed

    Fitzpatrick, Clare K; Clary, Chadd W; Cyr, Adam J; Maletsky, Lorin P; Rullkoetter, Paul J

    2013-09-01

    Posterior-stabilized (PS) total knee arthroplasty (TKA) components employ a tibial post and femoral cam mechanism to guide anteroposterior knee motion in lieu of the posterior cruciate ligament. Some PS TKA patients report a clicking sensation when the post and cam engage, while severe wear and fracture of the post; we hypothesize that these complications are associated with excessive impact velocity at engagement. We evaluated the effect of implant design on engagement dynamics of the post-cam mechanism and resulting polyethylene stresses during dynamic activity. In vitro simulation of a knee bend activity was performed for four cadaveric specimens implanted with PS TKA components. Post-cam engagement velocity and flexion angle at initial contact were determined. The experimental data were used to validate computational predictions of PS mechanics using the same loading conditions. A lower limb model was subsequently utilized to compare engagement mechanics of eight TKA designs, relating differences between implants to geometric design features. Flexion angle and post-cam velocity at engagement demonstrated considerable ranges among designs (23°-89°, and 0.05-0.22 mm/°, respectively). Post-cam velocity was correlated (r = 0.89) with tibiofemoral condylar design features. Condylar geometry, in addition to post-cam geometry, played a significant role in minimizing engagement velocity and forces and stresses in the post. This analysis guides selection and design of PS implants that facilitate smooth post-cam engagement and reduce edge loading of the post.

  12. a Dynamical Model of Muscle Activation, Fatigue and Recovery

    NASA Astrophysics Data System (ADS)

    Liu, Jing Z.; Yue, Guang H.; Brown, Robert W.

    2001-04-01

    A dynamical model on muscle activation, fatigue, and recovery was developed to provide a theoretical framework for explaining the force produced by muscle(s) during the process of getting activated and fatigued. By simplifying the fatigue effect and the recovery effect as two phenomenological parameters (F, R), we developed a set of dynamical equations to describe the behavior of muscle(s) as a group of motor units under an external drive, e.g., voluntary brain effort. This model provides a macroscopic view for understanding the biophysical mechanisms of voluntary drive, fatigue effect, and recovery in stimulating, limiting and modulating the force output from muscle(s). Agreement between the experimental data and the predicted forces is excellent. This model may also generate new possibilities in clinical and engineering applications. The parameters introduced by this model can serve as good indicators of physical conditions, and may be useful for quantitative diagnosis of certain diseases related to muscles, especially symptoms of fatigue. Inference from the model can clarify a long-debating question regarding the maximal possibility of muscle force production. It can also be used as guideline for simulating real muscle in muscle engineering or design of human-mimic robot.

  13. Molecular Dynamics of "Fuzzy" Transcriptional Activator-Coactivator Interactions

    PubMed Central

    Scholes, Natalie S.; Weinzierl, Robert O. J.

    2016-01-01

    Transcriptional activation domains (ADs) are generally thought to be intrinsically unstructured, but capable of adopting limited secondary structure upon interaction with a coactivator surface. The indeterminate nature of this interface made it hitherto difficult to study structure/function relationships of such contacts. Here we used atomistic accelerated molecular dynamics (aMD) simulations to study the conformational changes of the GCN4 AD and variants thereof, either free in solution, or bound to the GAL11 coactivator surface. We show that the AD-coactivator interactions are highly dynamic while obeying distinct rules. The data provide insights into the constant and variable aspects of orientation of ADs relative to the coactivator, changes in secondary structure and energetic contributions stabilizing the various conformers at different time points. We also demonstrate that a prediction of α-helical propensity correlates directly with the experimentally measured transactivation potential of a large set of mutagenized ADs. The link between α-helical propensity and the stimulatory activity of ADs has fundamental practical and theoretical implications concerning the recruitment of ADs to coactivators. PMID:27175900

  14. Dynamic phases of active matter systems with quenched disorder

    NASA Astrophysics Data System (ADS)

    Sándor, Cs.; Libál, A.; Reichhardt, C.; Olson Reichhardt, C. J.

    2017-03-01

    Depinning and nonequilibrium transitions within sliding states in systems driven over quenched disorder arise across a wide spectrum of size scales ranging from atomic friction at the nanoscale, flux motion in type II superconductors at the mesoscale, colloidal motion in disordered media at the microscale, and plate tectonics at geological length scales. Here we show that active matter or self-propelled particles interacting with quenched disorder under an external drive represents a class of system that can also exhibit pinning-depinning phenomena, plastic flow phases, and nonequilibrium sliding transitions that are correlated with distinct morphologies and velocity-force curve signatures. When interactions with the substrate are strong, a homogeneous pinned liquid phase forms that depins plastically into a uniform disordered phase and then dynamically transitions first into a moving stripe coexisting with a pinned liquid and then into a moving phase-separated state at higher drives. We numerically map the resulting dynamical phase diagrams as a function of external drive, substrate interaction strength, and self-propulsion correlation length. These phases can be observed for active matter moving through random disorder. Our results indicate that intrinsically nonequilibrium systems can exhibit additional nonequilibrium transitions when subjected to an external drive.

  15. A dynamical model of muscle activation, fatigue, and recovery.

    PubMed Central

    Liu, Jing Z; Brown, Robert W; Yue, Guang H

    2002-01-01

    A dynamical model is presented as a framework for muscle activation, fatigue, and recovery. By describing the effects of muscle fatigue and recovery in terms of two phenomenological parameters (F, R), we develop a set of dynamical equations to describe the behavior of muscles as a group of motor units activated by voluntary effort. This model provides a macroscopic view for understanding biophysical mechanisms of voluntary drive, fatigue effect, and recovery in stimulating, limiting, and modulating the force output from muscles. The model is investigated under the condition in which brain effort is assumed to be constant. Experimental validation of the model is performed by fitting force data measured from healthy human subjects during a 3-min sustained maximal voluntary handgrip contraction. The experimental results confirm a theoretical inference from the model regarding the possibility of maximal muscle force production, and suggest that only 97% of the true maximal force can be reached under maximal voluntary effort, assuming that all motor units can be recruited voluntarily. The effects of different motor unit types, time-dependent brain effort, sources of artifacts, and other factors that could affect the model are discussed. The applications of the model are also discussed. PMID:11964225

  16. Quantifying unsteadiness and dynamics of pulsatory volcanic activity

    NASA Astrophysics Data System (ADS)

    Dominguez, L.; Pioli, L.; Bonadonna, C.; Connor, C. B.; Andronico, D.; Harris, A. J. L.; Ripepe, M.

    2016-06-01

    Pulsatory eruptions are marked by a sequence of explosions which can be separated by time intervals ranging from a few seconds to several hours. The quantification of the periodicities associated with these eruptions is essential not only for the comprehension of the mechanisms controlling explosivity, but also for classification purposes. We focus on the dynamics of pulsatory activity and quantify unsteadiness based on the distribution of the repose time intervals between single explosive events in relation to magma properties and eruptive styles. A broad range of pulsatory eruption styles are considered, including Strombolian, violent Strombolian and Vulcanian explosions. We find a general relationship between the median of the observed repose times in eruptive sequences and the viscosity of magma given by η ≈ 100 ṡtmedian. This relationship applies to the complete range of magma viscosities considered in our study (102 to 109 Pa s) regardless of the eruption length, eruptive style and associated plume heights, suggesting that viscosity is the main magma property controlling eruption periodicity. Furthermore, the analysis of the explosive sequences in terms of failure time through statistical survival analysis provides further information: dynamics of pulsatory activity can be successfully described in terms of frequency and regularity of the explosions, quantified based on the log-logistic distribution. A linear relationship is identified between the log-logistic parameters, μ and s. This relationship is useful for quantifying differences among eruptive styles from very frequent and regular mafic events (Strombolian activity) to more sporadic and irregular Vulcanian explosions in silicic systems. The time scale controlled by the parameter μ, as a function of the median of the distribution, can be therefore correlated with the viscosity of magmas; while the complexity of the erupting system, including magma rise rate, degassing and fragmentation efficiency

  17. Spectral dynamics of electroencephalographic activity during auditory information processing.

    PubMed

    Cacace, Anthony T; McFarland, Dennis J

    2003-02-01

    Dynamics of electroencephalographic (EEG) activity during auditory information processing were evaluated in response to changes in stimulus complexity, stimulus discriminability and attention using the oddball paradigm. In comparison to pre-stimulus baseline conditions, auditory stimulation synchronized EEG activity in delta, theta and alpha frequency bands. Event-related synchronization (ERS) effects were greatest at approximately 3 Hz (theta frequency band), and their magnitude depended on stimulus and task demands. Event-related desynchronization (ERD) of EEG activity was observed in the beta frequency band. This effect was greatest at approximately 21 Hz but occurred only for easily discriminable stimuli in attention-related target conditions. Because active discrimination tasks also required a button-press response with the right hand, ERDs involved more complex responses that may be related to a combination of perceptual, motor and cognitive processes. These results demonstrate that oddball and attention-related EEG responses to auditory stimulation could be characterized in the frequency domain. The specific design and analysis features described herein may prove useful since they provide a simple index of the brain's response to stimulation while at the same time provide powerful information not contained in typical time domain analysis.

  18. The roles of vibration analysis and infrared thermography in monitoring air-handling equipment

    NASA Astrophysics Data System (ADS)

    Wurzbach, Richard N.

    2003-04-01

    Industrial and commercial building equipment maintenance has not historically been targeted for implementation of PdM programs. The focus instead has been on manufacturing, aerospace and energy industries where production interruption has significant cost implications. As cost-effectiveness becomes more pervasive in corporate culture, even office space and labor activities housed in large facilities are being scrutinized for cost-cutting measures. When the maintenance costs for these facilities are reviewed, PdM can be considered for improving the reliability of the building temperature regulation, and reduction of maintenance repair costs. An optimized program to direct maintenance resources toward a cost effective and pro-active management of the facility can result in reduced operating budgets, and greater occupant satisfaction. A large majority of the significant rotating machinery in a large building environment are belt-driven air handling units. These machines are often poorly designed or utilized within the facility. As a result, the maintenance staff typically find themselves scrambling to replace belts and bearings, going from one failure to another. Instead of the reactive-mode maintenance, some progressive and critical institutions are adopting predictive and proactive technologies of infrared thermography and vibration analysis. Together, these technologies can be used to identify design and installation problems, that when corrected, significantly reduce maintenance and increase reliability. For critical building use, such as laboratories, research facilities, and other high value non-industrial settings, the cost-benefits of more reliable machinery can contribute significantly to the operational success.

  19. Comparisons of Three Indicators for Frey's Syndrome: Subjective Symptoms, Minor's Starch Iodine Test, and Infrared Thermography

    PubMed Central

    Choi, Hyo Geun; Kwon, Sae Young; Won, Jung Youn; Yoo, Seung Woo; Lee, Min Gu; Kim, Si Whan

    2013-01-01

    Objectives To correlate Frey's syndrome with subjective symptoms, Minor's starch iodine test results, and infrared thermography measurements, and to discuss the utility of thermography as a quantitative diagnostic method. Methods This study included 59 patients who underwent unilateral parotidectomy. A subjective clinical questionnaire and an objective Minor's starch iodine test were performed to evaluate the incidence of Frey's syndrome. Infrared thermography was performed, and the subjects were divided into seven groups according to the temperature differences between operated and unoperated sites. The thermal differences were correlated with the results from Minor's starch iodine test and the subjective symptoms questionnaire. Results Of the 59 patients, 20 patients (33.9%) reported subjective symptoms after eating; 30 patients (50.8%) tested positive for Minor's starch iodine test, 19 patients (63.3%) of which reported subjective symptoms. Of the 29 patients who were negative for the iodine test, 2 patients (6.9%) reported subjective symptoms. Thus, subjective symptoms were well correlated with Minor's starch iodine test (r=0.589, P<0.001). As the thermal differences with infrared thermography increased, the number of patients with subjective symptoms increased (χ2=22.5, P<0.001). Using infrared thermography, the mean temperature difference in the positive group for the iodine test was 0.82℃±0.26℃, and that in the negative group was 0.10℃±0.47℃. With increased thermal differences, more patients showed positivity in the iodine test (χ2=29.9, P<0.001). Conclusion Subjective symptoms, Minor's starch iodine test, and infrared thermography are well correlated with one another. Quantitative thermography provides clues for the wide variation in the incidence of Frey's syndrome, and could be a useful method for diagnosing and studying Frey's syndrome. PMID:24353866

  20. Effects of FGFR2 kinase activation loop dynamics on catalytic activity.

    PubMed

    Karp, Jerome M; Sparks, Samuel; Cowburn, David

    2017-02-01

    The structural mechanisms by which receptor tyrosine kinases (RTKs) regulate catalytic activity are diverse and often based on subtle changes in conformational dynamics. The regulatory mechanism of one such RTK, fibroblast growth factor receptor 2 (FGFR2) kinase, is still unknown, as the numerous crystal structures of the unphosphorylated and phosphorylated forms of the kinase domains show no apparent structural change that could explain how phosphorylation could enable catalytic activity. In this study, we use several enhanced sampling molecular dynamics (MD) methods to elucidate the structural changes to the kinase's activation loop that occur upon phosphorylation. We show that phosphorylation favors inward motion of Arg664, while simultaneously favoring outward motion of Leu665 and Pro666. The latter structural change enables the substrate to bind leading to its resultant phosphorylation. Inward motion of Arg664 allows it to interact with the γ-phosphate of ATP as well as the substrate tyrosine. We show that this stabilizes the tyrosine and primes it for the catalytic phosphotransfer, and it may lower the activation barrier of the phosphotransfer reaction. Our work demonstrates the value of including dynamic information gleaned from computer simulation in deciphering RTK regulatory function.

  1. Effects of FGFR2 kinase activation loop dynamics on catalytic activity

    PubMed Central

    2017-01-01

    The structural mechanisms by which receptor tyrosine kinases (RTKs) regulate catalytic activity are diverse and often based on subtle changes in conformational dynamics. The regulatory mechanism of one such RTK, fibroblast growth factor receptor 2 (FGFR2) kinase, is still unknown, as the numerous crystal structures of the unphosphorylated and phosphorylated forms of the kinase domains show no apparent structural change that could explain how phosphorylation could enable catalytic activity. In this study, we use several enhanced sampling molecular dynamics (MD) methods to elucidate the structural changes to the kinase’s activation loop that occur upon phosphorylation. We show that phosphorylation favors inward motion of Arg664, while simultaneously favoring outward motion of Leu665 and Pro666. The latter structural change enables the substrate to bind leading to its resultant phosphorylation. Inward motion of Arg664 allows it to interact with the γ-phosphate of ATP as well as the substrate tyrosine. We show that this stabilizes the tyrosine and primes it for the catalytic phosphotransfer, and it may lower the activation barrier of the phosphotransfer reaction. Our work demonstrates the value of including dynamic information gleaned from computer simulation in deciphering RTK regulatory function. PMID:28151998

  2. Pallidal spiking activity reflects learning dynamics and predicts performance

    PubMed Central

    Noblejas, Maria Imelda; Mizrahi, Aviv D.; Dauber, Omer; Bergman, Hagai

    2016-01-01

    The basal ganglia (BG) network has been divided into interacting actor and critic components, modulating the probabilities of different state–action combinations through learning. Most models of learning and decision making in the BG focus on the roles of the striatum and its dopaminergic inputs, commonly overlooking the complexities and interactions of BG downstream nuclei. In this study, we aimed to reveal the learning-related activity of the external segment of the globus pallidus (GPe), a downstream structure whose computational role has remained relatively unexplored. Recording from monkeys engaged in a deterministic three-choice reversal learning task, we found that changes in GPe discharge rates predicted subsequent behavioral shifts on a trial-by-trial basis. Furthermore, the activity following the shift encoded whether it resulted in reward or not. The frequent changes in stimulus–outcome contingencies (i.e., reversals) allowed us to examine the learning-related neural activity and show that GPe discharge rates closely matched across-trial learning dynamics. Additionally, firing rates exhibited a linear decrease in sequences of correct responses, possibly reflecting a gradual shift from goal-directed execution to automaticity. Thus, modulations in GPe spiking activity are highest for attention-demanding aspects of behavior (i.e., switching choices) and decrease as attentional demands decline (i.e., as performance becomes automatic). These findings are contrasted with results from striatal tonically active neurons, which show none of these task-related modulations. Our results demonstrate that GPe, commonly studied in motor contexts, takes part in cognitive functions, in which movement plays a marginal role. PMID:27671661

  3. A nonlinear dynamical analogue model of geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Klimas, A. J.; Baker, D. N.; Roberts, D. A.; Fairfield, D. H.; Buechner, J.

    1992-01-01

    Consideration is given to the solar wind-magnetosphere interaction within the framework of deterministic nonlinear dynamics. An earlier dripping faucet analog model of the low-dimensional solar wind-magnetosphere system is reviewed, and a plasma physical counterpart to that model is constructed. A Faraday loop in the magnetotail is considered, and the relationship of electric potentials on the loop to changes in the magnetic flux threading the loop is developed. This approach leads to a model of geomagnetic activity which is similar to the earlier mechanical model but described in terms of the geometry and plasma contents of the magnetotail. The model is characterized as an elementary time-dependent global convection model. The convection evolves within a magnetotail shape that varies in a prescribed manner in response to the dynamical evolution of the convection. The result is a nonlinear model capable of exhibiting a transition from regular to chaotic loading and unloading. The model's behavior under steady loading and also some elementary forms of time-dependent loading is discussed.

  4. Dynamic activity dependence of in vivo normal knee kinematics.

    PubMed

    Moro-oka, Taka-aki; Hamai, Satoshi; Miura, Hiromasa; Shimoto, Takeshi; Higaki, Hidehiko; Fregly, Benjamin J; Iwamoto, Yukihide; Banks, Scott A

    2008-04-01

    Dynamic knee kinematics were analyzed for normal knees in three activities, including two different types of maximum knee flexion. Continuous X-ray images of kneel, squat, and stair climb motions were taken using a large flat panel detector. CT-derived bone models were used for model registration-based 3D kinematic measurement. Three-dimensional joint kinematics and contact locations were determined using three methods: bone-fixed coordinate systems, interrogation of CT-based bone model surfaces, and interrogation of MR-based articular cartilage model surfaces. The femur exhibited gradual external rotation throughout the flexion range. Tibiofemoral contact exhibited external rotation, with contact locations translating posterior while maintaining 15 degrees to 20 degrees external rotation from 20 degrees to 80 degrees of flexion. From 80 degrees to maximum flexion, contact locations showed a medial pivot pattern. Kinematics based on bone-fixed coordinate systems differed from kinematics based on interrogation of CT and MR surfaces. Knee kinematics varied significantly by activity, especially in deep flexion. No posterior subluxation occurred for either femoral condyle in maximum knee flexion. Normal knees accommodate a range of motions during various activities while maintaining geometric joint congruency.

  5. Restricted dynamics of molecular hydrogen confined in activated carbon nanopores

    SciTech Connect

    Contescu, Cristian I; Saha, Dipendu; Gallego, Nidia C; Mamontov, Eugene; Kolesnikov, Alexander I; Bhat, Vinay V

    2012-01-01

    Quasi-elastic neutron scattering was used for characterization of dynamics of molecular hydrogen confined in narrow nanopores of two activated carbon materials: PFAC (derived from polyfurfuryl alcohol) and UMC (ultramicroporous carbon). Fast, but incomplete ortho-para conversion was observed at 10 K, suggesting that scattering originates from the fraction of unconverted ortho isomer which is rotation-hindered because of confinement in nanopores. Hydrogen molecules entrapped in narrow nanopores (<7 ) were immobile below 22-25 K. Mobility increased rapidly with temperature above this threshold, which is 8 K higher than the melting point of bulk hydrogen. Diffusion obeyed fixed-jump length mechanism, indistinguishable between 2D and 3D processes. Thermal activation of diffusion was characterized between ~22 and 37 K, and structure-dependent differences were found between the two carbons. Activation energy of diffusion was higher than that of bulk solid hydrogen. Classical notions of liquid and solid do not longer apply for H2 confined in narrow nanopores.

  6. Dynamic recruitment of active proteasomes into polyglutamine initiated inclusion bodies.

    PubMed

    Schipper-Krom, Sabine; Juenemann, Katrin; Jansen, Anne H; Wiemhoefer, Anne; van den Nieuwendijk, Rianne; Smith, Donna L; Hink, Mark A; Bates, Gillian P; Overkleeft, Hermen; Ovaa, Huib; Reits, Eric

    2014-01-03

    Neurodegenerative disorders such as Huntington's disease are hallmarked by neuronal intracellular inclusion body formation. Whether proteasomes are irreversibly recruited into inclusion bodies in these protein misfolding disorders is a controversial subject. In addition, it has been proposed that the proteasomes may become clogged by the aggregated protein fragments, leading to impairment of the ubiquitin-proteasome system. Here, we show by fluorescence pulse-chase experiments in living cells that proteasomes are dynamically and reversibly recruited into inclusion bodies. As these recruited proteasomes remain catalytically active and accessible to substrates, our results challenge the concept of proteasome sequestration and impairment in Huntington's disease, and support the reported absence of proteasome impairment in mouse models of Huntington's disease.

  7. Modelling of piezoelectric actuator dynamics for active structural control

    NASA Technical Reports Server (NTRS)

    Hagood, Nesbitt W.; Chung, Walter H.; Von Flotow, Andreas

    1990-01-01

    The paper models the effects of dynamic coupling between a structure and an electrical network through the piezoelectric effect. The coupled equations of motion of an arbitrary elastic structure with piezoelectric elements and passive electronics are derived. State space models are developed for three important cases: direct voltage driven electrodes, direct charge driven electrodes, and an indirect drive case where the piezoelectric electrodes are connected to an arbitrary electrical circuit with embedded voltage and current sources. The equations are applied to the case of a cantilevered beam with surface mounted piezoceramics and indirect voltage and current drive. The theoretical derivations are validated experimentally on an actively controlled cantilevered beam test article with indirect voltage drive.

  8. Brain activity correlates with emotional perception induced by dynamic avatars.

    PubMed

    Goldberg, Hagar; Christensen, Andrea; Flash, Tamar; Giese, Martin A; Malach, Rafael

    2015-11-15

    An accurate judgment of the emotional state of others is a prerequisite for successful social interaction and hence survival. Thus, it is not surprising that we are highly skilled at recognizing the emotions of others. Here we aimed to examine the neuronal correlates of emotion recognition from gait. To this end we created highly controlled dynamic body-movement stimuli based on real human motion-capture data (Roether et al., 2009). These animated avatars displayed gait in four emotional (happy, angry, fearful, and sad) and speed-matched neutral styles. For each emotional gait and its equivalent neutral gait, avatars were displayed at five morphing levels between the two. Subjects underwent fMRI scanning while classifying the emotions and the emotional intensity levels expressed by the avatars. Our results revealed robust brain selectivity to emotional compared to neutral gait stimuli in brain regions which are involved in emotion and biological motion processing, such as the extrastriate body area (EBA), fusiform body area (FBA), superior temporal sulcus (STS), and the amygdala (AMG). Brain activity in the amygdala reflected emotional awareness: for visually identical stimuli it showed amplified stronger response when the stimulus was perceived as emotional. Notably, in avatars gradually morphed along an emotional expression axis there was a parametric correlation between amygdala activity and emotional intensity. This study extends the mapping of emotional decoding in the human brain to the domain of highly controlled dynamic biological motion. Our results highlight an extensive level of brain processing of emotional information related to body language, which relies mostly on body kinematics.

  9. Tracking composite material damage evolution using Bayesian filtering and flash thermography data

    NASA Astrophysics Data System (ADS)

    Gregory, Elizabeth D.; Holland, Steve D.

    2016-05-01

    We propose a method for tracking the condition of a composite part using Bayesian filtering of ash thermography data over the lifetime of the part. In this demonstration, composite panels were fabricated; impacted to induce subsurface delaminations; and loaded in compression over multiple time steps, causing the delaminations to grow in size. Flash thermography data was collected between each damage event to serve as a time history of the part. The ash thermography indicated some areas of damage but provided little additional information as to the exact nature or depth of the damage. Computed tomography (CT) data was also collected after each damage event and provided a high resolution volume model of damage that acted as truth. After each cycle, the condition estimate, from the ash thermography data and the Bayesian filter, was compared to 'ground truth'. The Bayesian process builds on the lifetime history of ash thermography scans and can give better estimates of material condition as compared to the most recent scan alone, which is common practice in the aerospace industry. Bayesian inference provides probabilistic estimates of damage condition that are updated as each new set of data becomes available. The method was tested on simulated data and then on an experimental data set.

  10. ACTIVE MEDIA: Dynamics of growth of inhomogeneities in the active medium of a liquid laser

    NASA Astrophysics Data System (ADS)

    Barikhin, B. A.; Ivanov, A. Yu; Kudryavkin, E. V.; Nedolugov, V. I.

    1991-07-01

    Fast cinematography of holograms and of shadow and interference patterns was combined with an acoustic method in a study of the dynamics of growth of inhomogeneities in the active medium of a coaxially pumped dye laser. The main mechanism of the formation of these inhomogeneities was related to acoustic waves created by the deformation of the walls of a dye cell created by electrical pulses applied to the pump flashlamp. Multipulse operation of this laser could be achieved and the off-duty factor could be reduced if the active medium was excited by the strongest possible pump pulses.

  11. Calibrations and the measurement uncertainty of wide-band liquid crystal thermography

    NASA Astrophysics Data System (ADS)

    Rao, Yu; Zang, Shusheng

    2010-01-01

    Wide-band liquid crystal thermography is a high-resolution, non-intrusive optical technique for full-field temperature measurement. The paper presents comprehensive experimental results on the calibration and the measurement uncertainty for a thermochromic liquid crystal (TLC) with a bandwidth of 20 °C, examining the effects of the use of an image noise reduction technique, the lighting angle, the TLC coating thickness and the coating quality on the hue-temperature curve and the measurement uncertainty. It is found that combined with the image noise reduction technique of a 5 × 5 median filter, the measurement accuracy of the TLC can be significantly improved, and the high-accuracy usable bandwidth of the TLC can be considerably enlarged. The lighting angle has distinctive effects on the hue curve and the measurement uncertainty of the TLC, and a smaller lighting angle provides a smaller measurement uncertainty. The coating thickness has an appreciable effect on the TLC hue-temperature curve, but has a non-distinctive effect on the measurement uncertainty providing the coating thickness is over 20 µm. It is also found that the TLC coating quality has distinctive effects on the TLC hue curve and the measurement uncertainty. A finely prepared TLC coating produces a wider range of hue over the active temperature range, a considerably smaller measurement uncertainty and a larger high-accuracy usable bandwidth than the roughly prepared coating.

  12. Assessment of anxiety in open field and elevated plus maze using infrared thermography.

    PubMed

    Lecorps, Benjamin; Rödel, Heiko G; Féron, Christophe

    2016-04-01

    Due to their direct inaccessibility, affective states are classically assessed by gathering concomitant physiological and behavioral measures. Although such a dual approach to assess emotional states is frequently used in different species including humans, the invasiveness of procedures for physiological recordings particularly in smaller-sized animals strongly restricts their application. We used infrared thermography, a non-invasive method, to assess physiological arousal during open field and elevated plus maze tests in mice. By measuring changes in surface temperature indicative of the animals' emotional response, we aimed to improve the inherently limited and still controversial information provided by behavioral parameters commonly used in these tests. Our results showed significant and consistent thermal responses during both tests, in accordance with classical physiological responses occurring in stressful situations. Besides, we found correlations between these thermal responses and the occurrence of anxiety-related behaviors. Furthermore, initial temperatures measured at the start of each procedure (open field, elevated plus maze), which can be interpreted as a measure of the animals' initial physiological arousal, predicted the levels of activity and of anxiety-related behaviors displayed during the tests. Our results stress the strong link between physiological correlates of emotions and behaviors expressed during unconditioned fear tests.

  13. Achieving thermography with a thermal security camera using uncooled amorphous silicon microbolometer image sensors

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Wei; Tesdahl, Curtis; Owens, Jim; Dorn, David

    2012-06-01

    Advancements in uncooled microbolometer technology over the last several years have opened up many commercial applications which had been previously cost prohibitive. Thermal technology is no longer limited to the military and government market segments. One type of thermal sensor with low NETD which is available in the commercial market segment is the uncooled amorphous silicon (α-Si) microbolometer image sensor. Typical thermal security cameras focus on providing the best image quality by auto tonemaping (contrast enhancing) the image, which provides the best contrast depending on the temperature range of the scene. While this may provide enough information to detect objects and activities, there are further benefits of being able to estimate the actual object temperatures in a scene. This thermographic ability can provide functionality beyond typical security cameras by being able to monitor processes. Example applications of thermography[2] with thermal camera include: monitoring electrical circuits, industrial machinery, building thermal leaks, oil/gas pipelines, power substations, etc...[3][5] This paper discusses the methodology of estimating object temperatures by characterizing/calibrating different components inside a thermal camera utilizing an uncooled amorphous silicon microbolometer image sensor. Plots of system performance across camera operating temperatures will be shown.

  14. Multi-Wavelength Study of Active Region Loop Dynamics

    NASA Astrophysics Data System (ADS)

    Banerjee, D.

    2006-11-01

    Observations have revealed the existence of weak transient disturbances in extended coronal loop systems. These propagating disturbances (PDs) originate from small scale brightenings at the footpoints of the loops and propagate upward along the loops. In all cases observed, the projected propagation speed is close to, but below the expected sound speed in the loops. This suggests that the PDs could be interpreted as slow mode MHD waves. Interpreting the oscillation in terms of different wave modes and/or plasma motions always depend on the line of sight as we observe in the limb or on the center of the disk. The JOP 165 campaign will address some of these questions. MDI and TRACE photospheric and UV imaging of TRACE and SPIRIT have been acquired simultaneously with high temporal and spatial coverage along with the spectroscopic data from CDS. EIT was operated in the shutter-less mode to achieve high Cadence. Some of the off- limb active region dynamics and oscillations observed during this JOP campaign will be focused in this presentation. Plasma condensations and temporal variations in active region loops will be also addressed.

  15. Spatiotemporal dynamics of large-scale brain activity

    NASA Astrophysics Data System (ADS)

    Neuman, Jeremy

    Understanding the dynamics of large-scale brain activity is a tough challenge. One reason for this is the presence of an incredible amount of complexity arising from having roughly 100 billion neurons connected via 100 trillion synapses. Because of the extremely high number of degrees of freedom in the nervous system, the question of how the brain manages to properly function and remain stable, yet also be adaptable, must be posed. Neuroscientists have identified many ways the nervous system makes this possible, of which synaptic plasticity is possibly the most notable one. On the other hand, it is vital to understand how the nervous system also loses stability, resulting in neuropathological diseases such as epilepsy, a disease which affects 1% of the population. In the following work, we seek to answer some of these questions from two different perspectives. The first uses mean-field theory applied to neuronal populations, where the variables of interest are the percentages of active excitatory and inhibitory neurons in a network, to consider how the nervous system responds to external stimuli, self-organizes and generates epileptiform activity. The second method uses statistical field theory, in the framework of single neurons on a lattice, to study the concept of criticality, an idea borrowed from physics which posits that in some regime the brain operates in a collectively stable or marginally stable manner. This will be examined in two different neuronal networks with self-organized criticality serving as the overarching theme for the union of both perspectives. One of the biggest problems in neuroscience is the question of to what extent certain details are significant to the functioning of the brain. These details give rise to various spatiotemporal properties that at the smallest of scales explain the interaction of single neurons and synapses and at the largest of scales describe, for example, behaviors and sensations. In what follows, we will shed some

  16. The early stage wheel fatigue crack detection using eddy current pulsed thermography

    NASA Astrophysics Data System (ADS)

    Peng, Jianping; Zhang, Kang; Yang, Kai; He, Zhu; Zhang, Yu; Peng, Chaoyong; Gao, Xiaorong

    2017-02-01

    The in-service wheel-set quality is one of critical challenges for railway safety, especially for the high-speed train. The defect in wheel tread, initiated by rolling contact fatigue (RCF) damage, is one of the most significant phenomena and has serious influence on rail industry. Eddy current pulsed thermography is studied to compensate the UT method for detection these early stage of fatigue cracks in wheel tread surface. This paper proposes approximately uniform magnetic field, excited by Helmholtz coils, based pulsed eddy current thermography to achieve open-view image and meet the irregular surface in wheel tread through numerical way. Some features are extracted and studied also to quantify the fatigue crack in term of eddy current pulsed thermography. The proposed method enhances the capability for cracks detection and quantitative evaluation compared with previous NDT method in railway.

  17. Non-destructive testing of composite materials used in military applications by eddy current thermography method

    NASA Astrophysics Data System (ADS)

    Swiderski, Waldemar

    2016-10-01

    Eddy current thermography is a new NDT-technique for the detection of cracks in electro conductive materials. It combines the well-established inspection techniques of eddy current testing and thermography. The technique uses induced eddy currents to heat the sample being tested and defect detection is based on the changes of induced eddy currents flows revealed by thermal visualization captured by an infrared camera. The advantage of this method is to use the high performance of eddy current testing that eliminates the known problem of the edge effect. Especially for components of complex geometry this is an important factor which may overcome the increased expense for inspection set-up. The paper presents the possibility of applying eddy current thermography method for detecting defects in ballistic covers made of carbon fiber reinforced composites used in the construction of military vehicles.

  18. Damage Detection in Rotorcraft Composite Structures Using Thermography and Laser-Based Ultrasound

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Zalameda, Joseph N.; Madaras, Eric I.

    2004-01-01

    New rotorcraft structural composite designs incorporate lower structural weight, reduced manufacturing complexity, and improved threat protection. These new structural concepts require nondestructive evaluation inspection technologies that can potentially be field-portable and able to inspect complex geometries for damage or structural defects. Two candidate technologies were considered: Thermography and Laser-Based Ultrasound (Laser UT). Thermography and Laser UT have the advantage of being non-contact inspection methods, with Thermography being a full-field imaging method and Laser UT a point scanning technique. These techniques were used to inspect composite samples that contained both embedded flaws and impact damage of various size and shape. Results showed that the inspection techniques were able to detect both embedded and impact damage with varying degrees of success.

  19. Thermophysical analysis of II-VI semiconductors by PPE calorimetry and lock-in thermography

    SciTech Connect

    Streza, M.; Dadarlat, D.; Strzałkowski, K.

    2013-11-13

    An accurate determination of thermophysical properties such as thermal diffusivity, thermal effusivity and thermal conductivity is extremely important for characterization and quality assurance of semiconductors. Thermal diffusivity and effusivity of some binary semiconductors have been investigated. Two experimental techniques were used: a contact technique (PPE calorimetry) and a non contact technique (lock-in thermography). When working with PPE, in the back (BPPE) configuration and in the thermally thick regim of the pyroelectric sensor, we can get the thermal diffusivity of the sample by performing a scanning of the excitation frequency of radiation. Thermal effusivity is obtained in front configuration (sensor directly irradiated and sample in back position) by performing a thickness scan of a coupling fluid. By using the lock-in thermography technique, the thermal diffusivity of the sample is obtained from the phase image. The results obtained by the two techniques are in good agreement. Nevertheless, for the determination of thermal diffusivity, lock-in thermography is preferred.

  20. Low-velocity impact damage characterization of carbon fiber reinforced polymer (CFRP) using infrared thermography

    NASA Astrophysics Data System (ADS)

    Li, Yin; Zhang, Wei; Yang, Zheng-wei; Zhang, Jin-yu; Tao, Sheng-jie

    2016-05-01

    Carbon fiber reinforced polymer (CFRP) after low-velocity impact is detected using infrared thermography, and different damages in the impacted composites are analyzed in the thermal maps. The thermal conductivity under pulse stimulation, frictional heating and thermal conductivity under ultrasonic stimulation of CFRP containing low-velocity impact damage are simulated using numerical simulation method. Then, the specimens successively exposed to the low-velocity impact are respectively detected using the pulse infrared thermography and ultrasonic infrared thermography. Through the numerical simulation and experimental investigation, the results obtained show that the combination of the above two detection methods can greatly improve the capability for detecting and evaluating the impact damage in CFRP. Different damages correspond to different infrared thermal images. The delamination damage, matrix cracking and fiber breakage are characterized as the block-shape hot spot, line-shape hot spot, and

  1. Infrared thermography based studies on mobile phone induced heating

    NASA Astrophysics Data System (ADS)

    Lahiri, B. B.; Bagavathiappan, S.; Soumya, C.; Jayakumar, T.; Philip, John

    2015-07-01

    Here, we report the skin temperature rise due to the absorption of radio frequency (RF) energy from three handheld mobile phones using infrared thermography technique. Experiments are performed under two different conditions, viz. when the mobile phones are placed in soft touch with the skin surface and away from the skin surface. Additionally, the temperature rise of mobile phones during charging, operation and simultaneous charging and talking are monitored under different exposure conditions. It is observed that the temperature of the cheek and ear regions monotonically increased with time during the usage of mobile phones and the magnitude of the temperature rise is higher for the mobile phone with higher specific absorption rate. The increase in skin temperature is higher when the mobile phones are in contact with the skin surface due to the combined effect of absorption of RF electromagnetic power and conductive heat transfer. The increase in the skin temperature in non-contact mode is found to be within the safety limit of 1 °C. The measured temperature rise is in good agreement with theoretical predictions. The empirical equation obtained from the temperature rise on the cheek region of the subjects correlates well with the specific absorption rate of the mobile phones. Our study suggests that the use of mobile phones in non-contact mode can significantly lower the skin temperature rise during its use and hence, is safer compared to the contact mode.

  2. Assessment of Lower Limb Prosthesis through Wearable Sensors and Thermography

    PubMed Central

    Cutti, Andrea Giovanni; Perego, Paolo; Fusca, Marcello C.; Sacchetti, Rinaldo; Andreoni, Giuseppe

    2014-01-01

    This study aimed to explore the application of infrared thermography in combination with ambulatory wearable monitoring of temperature and relative humidity, to assess the residual limb-to-liner interface in lower-limb prosthesis users. Five male traumatic transtibial amputees were involved, who reported no problems or discomfort while wearing the prosthesis. A thermal imaging camera was used to measure superficial thermal distribution maps of the stump. A wearable system for recording the temperature and relative humidity in up to four anatomical points was developed, tested in vitro and integrated with the measurement set. The parallel application of an infrared camera and wearable sensors provided complementary information. Four main Regions of Interest were identified on the stump (inferior patella, lateral/medial epicondyles, tibial tuberosity), with good inter-subject repeatability. An average increase of 20% in hot areas (P < 0.05) is shown after walking compared to resting conditions. The sensors inside the cuff did not provoke any discomfort during recordings and provide an inside of the thermal exchanges while walking and recording the temperature increase (a regime value is ∼+1.1 ± 0.7 °C) and a more significant one (∼+4.1 ± 2.3%) in humidity because of the sweat produced. This study has also begun the development of a reference data set for optimal socket/liner-stump construction. PMID:24618782

  3. Study Methods to Characterize and Implement Thermography Nondestructive Evaluation (NDE)

    NASA Technical Reports Server (NTRS)

    Walker, James L.

    1998-01-01

    The limits and conditions under which an infrared thermographic nondestructive evaluation can be utilized to assess the quality of aerospace hardware is demonstrated in this research effort. The primary focus of this work is on applying thermography to the inspection of advanced composite structures such as would be found in the International Space Station Instrumentation Racks, Space Shuttle Cargo Bay Doors, Bantam RP-1 tank or RSRM Nose Cone. Here, the detection of delamination, disbond, inclusion and porosity type defects are of primary interest. In addition to composites, an extensive research effort has been initiated to determine how well a thermographic evaluation can detect leaks and disbonds in pressurized metallic systems "i.e. the Space Shuttle Main Engine Nozzles". In either case, research into developing practical inspection procedures was conducted and thermographic inspections were performed on a myriad of test samples, subscale demonstration articles and "simulated" flight hardware. All test samples were fabricated as close to their respective structural counterparts as possible except with intentional defects for NDE qualification. As an added benefit of this effort to create simulated defects, methods were devised for defect fabrication that may be useful in future NDE qualification ventures.

  4. Pulse Phase Thermography for Defect Detection and Visualization

    NASA Technical Reports Server (NTRS)

    Marinetti, Sergio; Plotnikov, Yuri A.; Winfree, William P.; Braggiotti, Alberto

    1999-01-01

    Pulse Phase Thermography (PPT) has been reported as a novel powerful technique of the thermal NDE. It employs application of the Discrete Fourier Transform (DFT) to thermal images obtained following flash heating of the front surface of a specimen. The computed phasegrams are excellent for defect visualization in a wide range of materials. This is in part due to their low sensitivity to uneven heating. This work is an attempt to analyze advantages and limitations of PPT. Results of application of the DFT to simulated temperature decays are presented. The temperature evolution on a surface has been simulated based on an analytical solution of the one-dimensional heat diffusion problem. A more sophisticated study has been done for different sizes of defects using numerical solution of the three-dimensional mathematical model. Capabilities of PPT for in-depth scanning and for monitoring of the material loss are discussed. The recommendations for the practical application of the PPT are presented. Experimental results obtained following these recommendations are reported.

  5. Measuring and Estimating Normalized Contrast in Infrared Flash Thermography

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2013-01-01

    Infrared flash thermography (IRFT) is used to detect void-like flaws in a test object. The IRFT technique involves heating up the part surface using a flash of flash lamps. The post-flash evolution of the part surface temperature is sensed by an IR camera in terms of pixel intensity of image pixels. The IR technique involves recording of the IR video image data and analysis of the data using the normalized pixel intensity and temperature contrast analysis method for characterization of void-like flaws for depth and width. This work introduces a new definition of the normalized IR pixel intensity contrast and normalized surface temperature contrast. A procedure is provided to compute the pixel intensity contrast from the camera pixel intensity evolution data. The pixel intensity contrast and the corresponding surface temperature contrast differ but are related. This work provides a method to estimate the temperature evolution and the normalized temperature contrast from the measured pixel intensity evolution data and some additional measurements during data acquisition.

  6. Layerwise Monitoring of the Selective Laser Melting Process by Thermography

    NASA Astrophysics Data System (ADS)

    Krauss, Harald; Zeugner, Thomas; Zaeh, Michael F.

    Selective Laser Melting is utilized to build parts directly from CAD data. In this study layerwise monitoring of the temperature distribution is used to gather information about the process stability and the resulting part quality. The heat distribution varies with different kinds of parameters including scan vector length, laser power, layer thickness and inter-part distance in the job layout. By integration of an off-axis mounted uncooled thermal detector, the solidification as well as the layer deposition are monitored and evaluated. This enables the identification of hot spots in an early stage during the solidification process and helps to avoid process interrupts. Potential quality indicators are derived from spatially resolved measurement data and are correlated to the resulting part properties. A model of heat dissipation is presented based on the measurement of the material response for varying heat input. Current results show the feasibility of process surveillance by thermography for a limited section of the building platform in a commercial system.

  7. Monitoring Sintering Burn-Through Point Using Infrared Thermography

    PubMed Central

    Usamentiaga, Rubén; Molleda, Julio; Garcia, Daniel F.; Bulnes, Francisco G.

    2013-01-01

    Sintering is a complex industrial process that applies heat to fine particles of iron ore and other materials to produce sinter, a solidified porous material used in blast furnaces. The sintering process needs to be carefully adjusted, so that the combustion zone reaches the bottom of the material just before the discharge end. This is known as the burn-through point. Many different parameters need to be finely tuned, including the speed and the quantities of the materials mixed. However, in order to achieve good results, sintering control requires precise feedback to adjust these parameters. This work presents a sensor to monitor the sintering burn-through point based on infrared thermography. The proposed procedure is based on the acquisition of infrared images at the end of the sintering process. At this position, infrared images contain the cross-section temperatures of the mixture. The objective of this work is to process this information to extract relevant features about the sintering process. The proposed procedure is based on four steps: key frame detection, region of interest detection, segmentation and feature extraction. The results indicate that the proposed procedure is very robust and reliable, providing features that can be used effectively to control the sintering process. PMID:23939585

  8. Detection of localized fatigue damage in steel by thermography

    NASA Astrophysics Data System (ADS)

    Medgenberg, Justus; Ummenhofer, Thomas

    2007-04-01

    Fatigue damage of unalloyed steels in the high cycle regime is governed by localized cyclic plastic deformations and subsequent crack initiation. The extent of early microplastic deformations depends on the applied stress level, stress concentration at macroscopic notches, surface treatment, residual stresses etc. The onset of a nonlinear material response can be regarded as an early indicator of fatigue damage. During fatigue loading thermoelastic coupling and thermoplastic dissipation cause characteristic temperature variations in tested specimens which have been assessed by a highly sensitive infrared camera. A specialized data processing method in the time domain has been developed which allows to separate the different contributions to the measured temperature signal. In contrast to other methods - as e.g. measuring the rise of mean temperature during fatigue loading - the proposed methodology is based on measurements during the stabilized temperature regimen and offers very high spatial resolution of localized phenomena. Investigations have been made on mildly notched cylindrical and also on welded specimens. The results confirm the close relation between the local temperature signal and typical fatigue phenomena. The new methodology allows for a much better localization and quantification of effects as cyclic plasticity, crack initiation, crack growth etc. The following paper presents considerations and experimental results of an application of thermography to the local assessment of fatigue damage.

  9. Use of modern infrared thermography for wildlife population surveys

    NASA Astrophysics Data System (ADS)

    Garner, Dale L.; Underwood, H. Brian; Porter, William F.

    1995-03-01

    A commercially available thermal-infrared scanning system was used to survey populations of several wildlife species. The system's ability to detect species of different sizes in varying habitats relative to conventional survey methods, to differentiate between species in the same habitat, and the influence of environtmental factors on operational aspects of employing this technology in the field were evaluated. Total costs for the surveys were approximately 0.36/ha. There were marked discrepancies in the counts of untrained observers and those from trained analysis. Computer-assisted analysis of infrared imagery recorded 52% fewer deer than were estimated from drive counts, and densities of moose were five times those estimated from conventional aerial methods. By flying concentric circles and using telephoto, detailed counts of turkeys and deer were possible. With the aid of computer-assisted analysis, infrared thermography may become a useful wildlife population survey tool. More research is needed to verify the actual efficiency of detection by combining aerial scans with ground truthing for a variely of species and habitals.

  10. International standards for pandemic screening using infrared thermography

    NASA Astrophysics Data System (ADS)

    Pascoe, D. D.; Ring, E. F.; Mercer, J. B.; Snell, J.; Osborn, D.; Hedley-Whyte, J.

    2010-03-01

    The threat of a virulent strain of influenza, severe acute respiratory syndrome (SARS), tuberculosis, H1N1/A virus (swine flu) and possible mutations are a constant threat to global health. Implementation of pandemic infrared thermographic screening is based on the detection of febrile temperatures (inner canthus of the eyes) that are correlated with an infectious disease. Previous attempts at pandemic thermal screening have experienced problems (e.g. SARS outbreak, Singapore 2003) associated with the deployment plan, implementation and operation of the screening thermograph. Since this outbreak, the International Electrotechnical Commission has developed international standards that set minimum requirements for thermographic system fever screening and procedures that insure reliable and reproducible measurements. These requirements are published in IEC 80601-2-59:2008, Medical electrical equipment - Part 2-59: Particular requirements for the basic safety and essential performance of screening thermographs for human febrile temperature screening. The International Organization for Standardization has developed ISO/TR 13154:2009, Medical Electrical Equipment - which provides deployment, implementation and operational guidelines for identifying febrile humans using a screening thermograph. These new standards includes recommendations for camera calibrations, use of black body radiators, view field, focus, pixels within measurement site, image positioning, and deployment locations. Many current uses of thermographic screening at airports do not take into account critical issues addressed in the new standard, and are operating below the necessary effectiveness and efficiency. These documents, related thermal research, implications for epidemiology screening, and the future impact on medical thermography are discussed.

  11. Monitoring sintering burn-through point using infrared thermography.

    PubMed

    Usamentiaga, Rubén; Molleda, Julio; Garcia, Daniel F; Bulnes, Francisco G

    2013-08-09

    Sintering is a complex industrial process that applies heat to fine particles of iron ore and other materials to produce sinter, a solidified porous material used in blast furnaces. The sintering process needs to be carefully adjusted, so that the combustion zone reaches the bottom of the material just before the discharge end. This is known as the burn-through point. Many different parameters need to be finely tuned, including the speed and the quantities of the materials mixed. However, in order to achieve good results, sintering control requires precise feedback to adjust these parameters. This work presents a sensor to monitor the sintering burn-through point based on infrared thermography. The proposed procedure is based on the acquisition of infrared images at the end of the sintering process. At this position, infrared images contain the cross-section temperatures of the mixture. The objective of this work is to process this information to extract relevant features about the sintering process. The proposed procedure is based on four steps: key frame detection, region of interest detection, segmentation and feature extraction. The results indicate that the proposed procedure is very robust and reliable, providing features that can be used effectively to control the sintering process.

  12. Infrared thermography of the tear film in dry eye.

    PubMed

    Morgan, P B; Tullo, A B; Efron, N

    1995-01-01

    Infrared ocular thermograms were recorded for a group of 36 dry eye patients and for 27 age- and sex-matched controls. Mean ocular surface temperature was greater in the dry eye group (32.38 +/- 0.69 degrees C) compared with the control group (31.94 +/- 0.54 degrees C; p < 0.01). In addition, there was a greater variation of temperatures across the ocular surface in the dry eye group, illustrated by the difference in temperature between the limbus and the centre of the cornea (0.64 +/- 0.20 degrees C in dry eye patients compared with 0.41 +/- 0.20 degrees C in the control group; p < 0.001). This parameter was also shown to be greater in dry eye patients who displayed either a fast tear break-up time or a poor Schirmer's test result. Infrared thermography is a non-invasive and objective technique that may prove a useful research tool for study of the tear film, its deficiencies and its various treatment modalities.

  13. Automated diagnosis of dry eye using infrared thermography images

    NASA Astrophysics Data System (ADS)

    Acharya, U. Rajendra; Tan, Jen Hong; Koh, Joel E. W.; Sudarshan, Vidya K.; Yeo, Sharon; Too, Cheah Loon; Chua, Chua Kuang; Ng, E. Y. K.; Tong, Louis

    2015-07-01

    Dry Eye (DE) is a condition of either decreased tear production or increased tear film evaporation. Prolonged DE damages the cornea causing the corneal scarring, thinning and perforation. There is no single uniform diagnosis test available to date; combinations of diagnostic tests are to be performed to diagnose DE. The current diagnostic methods available are subjective, uncomfortable and invasive. Hence in this paper, we have developed an efficient, fast and non-invasive technique for the automated identification of normal and DE classes using infrared thermography images. The features are extracted from nonlinear method called Higher Order Spectra (HOS). Features are ranked using t-test ranking strategy. These ranked features are fed to various classifiers namely, K-Nearest Neighbor (KNN), Nave Bayesian Classifier (NBC), Decision Tree (DT), Probabilistic Neural Network (PNN), and Support Vector Machine (SVM) to select the best classifier using minimum number of features. Our proposed system is able to identify the DE and normal classes automatically with classification accuracy of 99.8%, sensitivity of 99.8%, and specificity if 99.8% for left eye using PNN and KNN classifiers. And we have reported classification accuracy of 99.8%, sensitivity of 99.9%, and specificity if 99.4% for right eye using SVM classifier with polynomial order 2 kernel.

  14. Calibration and Evaluation of Ultrasound Thermography Using Infrared Imaging.

    PubMed

    Hsiao, Yi-Sing; Deng, Cheri X

    2016-02-01

    Real-time monitoring of the spatiotemporal evolution of tissue temperature is important to ensure safe and effective treatment in thermal therapies including hyperthermia and thermal ablation. Ultrasound thermography has been proposed as a non-invasive technique for temperature measurement, and accurate calibration of the temperature-dependent ultrasound signal changes against temperature is required. Here we report a method that uses infrared thermography for calibration and validation of ultrasound thermography. Using phantoms and cardiac tissue specimens subjected to high-intensity focused ultrasound heating, we simultaneously acquired ultrasound and infrared imaging data from the same surface plane of a sample. The commonly used echo time shift-based method was chosen to compute ultrasound thermometry. We first correlated the ultrasound echo time shifts with infrared-measured temperatures for material-dependent calibration and found that the calibration coefficient was positive for fat-mimicking phantom (1.49 ± 0.27) but negative for tissue-mimicking phantom (-0.59 ± 0.08) and cardiac tissue (-0.69 ± 0.18°C-mm/ns). We then obtained the estimation error of the ultrasound thermometry by comparing against the infrared-measured temperature and revealed that the error increased with decreased size of the heated region. Consistent with previous findings, the echo time shifts were no longer linearly dependent on temperature beyond 45°C-50°C in cardiac tissues. Unlike previous studies in which thermocouples or water bath techniques were used to evaluate the performance of ultrasound thermography, our results indicate that high-resolution infrared thermography is a useful tool that can be applied to evaluate and understand the limitations of ultrasound thermography methods.

  15. Thermography and colour duplex ultrasound assessments of arterio-venous fistula function in renal patients.

    PubMed

    Allen, John; Oates, Crispian P; Chishti, Ahmed D; Ahmed, Ihab A M; Talbot, David; Murray, Alan

    2006-01-01

    Vascular and clinical assessments of arterio-venous fistula (AVF) function and access are important in patients undergoing or preparing to undergo renal dialysis. Objective assessment techniques include colour duplex ultrasound and more recently medical infrared thermography. Ideally, these should help assess problems relating to fistula failure or to vascular steal from the hand which can result from excessive fistula blood flow. The clinical value of thermography, as yet, has not been assessed for this patient group. The aims of this study were therefore to investigate the relationships between thermography skin temperature measurement and (a) quantitative ultrasound measurement of AVF blood flow, and (b) qualitative clinical assessment of vascular steal from the hands. Fifteen adult patients underwent thermal imaging of the upper limbs, colour duplex ultrasound to derive AVF blood flow from brachial artery blood flow measurements, and a clinical evaluation for vascular steal. Temperature measurements were extracted from the thermograms, including bilateral arm and hand (Fistula -- Non-Fistula) differences, for comparison with derived AVF blood flow and steal grading. Derived AVF blood flow ranged from 30 to 1,950 ml min(-1), with a mean rate close to one litre per minute. Thermography detected the warmer superficial veins in proximity to the patent fistulas, with bilateral differences in fistula region skin temperature correlated with derived AVF blood flow (using maximum temperature measurements the correlation was +0.71 [p < 0.01]; and using mean temperature measurements the correlation was +0.56 [p < 0.05]). When thermography measurements were compared with the clinical assessment of steal the mean hand temperature differences separated steal from non-steal patients with an accuracy of greater than 90%. In summary, we have now demonstrated the potential clinical value of medical infrared thermography for assessing AVF function in renal patients.

  16. Application of air-coupled acoustic thermography (ACAT) for inspection of honeycomb sandwich structures

    NASA Astrophysics Data System (ADS)

    Zalameda, Joseph N.; Winfree, William P.; Pergantis, Charles G.; DeSchepper, Daniel; Flanagan, David

    2009-05-01

    The application of a noncontact air coupled acoustic heating technique is investigated for the inspection of advanced honeycomb composite structures. A weakness in the out of plane stiffness of the structure, caused by a delamination or core damage, allows for the coupling of acoustic energy and thus this area will have a higher temperature than the surrounding area. Air coupled acoustic thermography (ACAT) measurements were made on composite sandwich structures with damage and were compared to conventional flash thermography. A vibrating plate model is presented to predict the optimal acoustic source frequency. Improvements to the measurement technique are also discussed.

  17. Application of Air Coupled Acoustic Thermography (ACAT) for Inspection of Honeycomb Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Zalameda, Joseph N.; Pergantis, Charles; Flanagan, David; Deschepper, Daniel

    2009-01-01

    The application of a noncontact air coupled acoustic heating technique is investigated for the inspection of advanced honeycomb composite structures. A weakness in the out of plane stiffness of the structure, caused by a delamination or core damage, allows for the coupling of acoustic energy and thus this area will have a higher temperature than the surrounding area. Air coupled acoustic thermography (ACAT) measurements were made on composite sandwich structures with damage and were compared to conventional flash thermography. A vibrating plate model is presented to predict the optimal acoustic source frequency. Improvements to the measurement technique are also discussed.

  18. Building material characterization by using IR thermography for efficient heating systems

    NASA Astrophysics Data System (ADS)

    Bison, Paolo; Grinzato, Ermanno

    2008-03-01

    Thermography is excellent for a fast characterisation of building materials, both at laboratory or in situ. A great advantage is the possibility to analyse many samples at the same conditions and time. A technique has been applied for new materials, oriented to radiating floor systems, evaluating different approaches. Samples are submitted to a stepwise, uniform heating. Surface excess temperature is recorded by thermography evaluating thermal inertia. At first, thermal diffusivity has been measured using a modified version of the Flash Method, then applied on a single face, for in situ application. Heat capacity and thermal conductivity have been inferred for each samples by definitions and the independent measure of the volumic mass.

  19. Interference filters as an enhancement tool for infrared thermography in humidity studies of building elements

    NASA Astrophysics Data System (ADS)

    Gayo, E.; de Frutos, J.

    1997-06-01

    In the present work, the utility of infrared thermography applied to the study of moisture in builiding materials or in buildings (including those cases in which the water content is very high) is shown. Moreover, an increase in the information content of the thermal image by the use of suitable interference filters is demonstrated. The use of such filters allows us to determine the kind of hydric process. In the present work, different examples are given illustrating the use of infrared thermography (with and without interference filters) when moisture movement is studied.

  20. Non-destructive Testing by Infrared Thermography Under Random Excitation and ARMA Analysis

    NASA Astrophysics Data System (ADS)

    Bodnar, J. L.; Nicolas, J. L.; Candoré, J. C.; Detalle, V.

    2012-11-01

    Photothermal thermography is a non-destructive testing (NDT) method, which has many applications in the field of control and characterization of thin materials. This technique is usually implemented under CW or flash excitation. Such excitations are not adapted for control of fragile materials or for multi-frequency analysis. To allow these analyses, in this article, the use of a new control mode is proposed: infrared thermography under random excitation and auto regressive moving average analysis. First, the principle of this NDT method is presented. Then, the method is shown to permit detection, with low energy constraints, of detachments situated in mural paintings.

  1. Emissivity-corrected power loss calibration for lock-in thermography measurements on silicon solar cells

    SciTech Connect

    Kasemann, Martin; Walter, Benjamin; Meinhardt, Christoph; Ebser, Jan; Kwapil, Wolfram; Warta, Wilhelm

    2008-06-01

    This paper describes power loss calibration procedures with implemented emissivity correction. The determination of our emissivity correction matrix does neither rely on blackbody reference measurements nor on the knowledge of any sample temperatures. To describe the emissivity-corrected power calibration procedures in detail, we review the theory behind lock-in thermography and show experimentally that the lock-in signal is proportional to the power dissipation in the solar cell. Experiments show the successful application of our emissivity correction procedure, which significantly improves the informative value of lock-in thermography images and the reliability of the conclusions drawn from these images.

  2. Role of medical thermography in treatment of Frey's syndrome with botulinum toxin A.

    PubMed

    Green, Richard James; Endersby, Simon; Allen, John; Adams, James

    2014-01-01

    Frey syndrome classically causes gustatory sweating and facial flushing. We describe 2 cases in which medical thermography was used to investigate the symptoms. Images were taken after patients chewed a sialagogue and 2 weeks later they were given injections of botulinum toxin A. Images taken 4 weeks after treatment showed a considerable reduction in sweating and facial flushing, which was supported by the results of quality of life questionnaires completed before and after treatment. Medical thermography is much cleaner than the Minor's starch iodine test. It identifies areas of gustatory sweating, changes in temperature, and vascular changes, which potentially enable treatment to be targeted accurately.

  3. Dynamics of Permanent-Magnet Biased Active Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Fukata, Satoru; Yutani, Kazuyuki

    1996-01-01

    Active magnetic radial bearings are constructed with a combination of permanent magnets to provide bias forces and electromagnets to generate control forces for the reduction of cost and the operating energy consumption. Ring-shaped permanent magnets with axial magnetization are attached to a shaft and share their magnet stators with the electromagnets. The magnet cores are made of solid iron for simplicity. A simplified magnetic circuit of the combined magnet system is analyzed with linear circuit theory by approximating the characteristics of permanent magnets with a linear relation. A linearized dynamical model of the control force is presented with the first-order approximation of the effects of eddy currents. Frequency responses of the rotor motion to disturbance inputs and the motion for impulsive forces are tested in the non-rotating state. The frequency responses are compared with numerical results. The decay of rotor speed due to magnetic braking is examined. The experimental results and the presented linearized model are similar to those of the all-electromagnetic design.

  4. Social decisions affect neural activity to perceived dynamic gaze

    PubMed Central

    Latinus, Marianne; Love, Scott A.; Rossi, Alejandra; Parada, Francisco J.; Huang, Lisa; Conty, Laurence; George, Nathalie; James, Karin

    2015-01-01

    Gaze direction, a cue of both social and spatial attention, is known to modulate early neural responses to faces e.g. N170. However, findings in the literature have been inconsistent, likely reflecting differences in stimulus characteristics and task requirements. Here, we investigated the effect of task on neural responses to dynamic gaze changes: away and toward transitions (resulting or not in eye contact). Subjects performed, in random order, social (away/toward them) and non-social (left/right) judgment tasks on these stimuli. Overall, in the non-social task, results showed a larger N170 to gaze aversion than gaze motion toward the observer. In the social task, however, this difference was no longer present in the right hemisphere, likely reflecting an enhanced N170 to gaze motion toward the observer. Our behavioral and event-related potential data indicate that performing social judgments enhances saliency of gaze motion toward the observer, even those that did not result in gaze contact. These data and that of previous studies suggest two modes of processing visual information: a ‘default mode’ that may focus on spatial information; a ‘socially aware mode’ that might be activated when subjects are required to make social judgments. The exact mechanism that allows switching from one mode to the other remains to be clarified. PMID:25925272

  5. Social decisions affect neural activity to perceived dynamic gaze.

    PubMed

    Latinus, Marianne; Love, Scott A; Rossi, Alejandra; Parada, Francisco J; Huang, Lisa; Conty, Laurence; George, Nathalie; James, Karin; Puce, Aina

    2015-11-01

    Gaze direction, a cue of both social and spatial attention, is known to modulate early neural responses to faces e.g. N170. However, findings in the literature have been inconsistent, likely reflecting differences in stimulus characteristics and task requirements. Here, we investigated the effect of task on neural responses to dynamic gaze changes: away and toward transitions (resulting or not in eye contact). Subjects performed, in random order, social (away/toward them) and non-social (left/right) judgment tasks on these stimuli. Overall, in the non-social task, results showed a larger N170 to gaze aversion than gaze motion toward the observer. In the social task, however, this difference was no longer present in the right hemisphere, likely reflecting an enhanced N170 to gaze motion toward the observer. Our behavioral and event-related potential data indicate that performing social judgments enhances saliency of gaze motion toward the observer, even those that did not result in gaze contact. These data and that of previous studies suggest two modes of processing visual information: a 'default mode' that may focus on spatial information; a 'socially aware mode' that might be activated when subjects are required to make social judgments. The exact mechanism that allows switching from one mode to the other remains to be clarified.

  6. Long Hole Film Cooling Dataset for CFD Development . Part 1; Infrared Thermography and Thermocouple Surveys

    NASA Technical Reports Server (NTRS)

    Shyam, Vikram; Thurman, Douglas; Poinsatte, Phillip; Ameri, Ali; Eichele, Peter; Knight, James

    2013-01-01

    An experiment investigating flow and heat transfer of long (length to diameter ratio of 18) cylindrical film cooling holes has been completed. In this paper, the thermal field in the flow and on the surface of the film cooled flat plate is presented for nominal freestream turbulence intensities of 1.5 and 8 percent. The holes are inclined at 30deg above the downstream direction, injecting chilled air of density ratio 1.0 onto the surface of a flat plate. The diameter of the hole is 0.75 in. (0.01905 m) with center to center spacing (pitch) of 3 hole diameters. Coolant was injected into the mainstream flow at nominal blowing ratios of 0.5, 1.0, 1.5, and 2.0. The Reynolds number of the freestream was approximately 11,000 based on hole diameter. Thermocouple surveys were used to characterize the thermal field. Infrared thermography was used to determine the adiabatic film effectiveness on the plate. Hotwire anemometry was used to provide flowfield physics and turbulence measurements. The results are compared to existing data in the literature. The aim of this work is to produce a benchmark dataset for Computational Fluid Dynamics (CFD) development to eliminate the effects of hole length to diameter ratio and to improve resolution in the near-hole region. In this report, a Time-Filtered Navier Stokes (TFNS), also known as Partially Resolved Navier Stokes (PRNS), method that was implemented in the Glenn-HT code is used to model coolant-mainstream interaction. This method is a high fidelity unsteady method that aims to represent large scale flow features and mixing more accurately.

  7. Dynamic properties of biologically active synthetic heparin-like hexasaccharides.

    PubMed

    Angulo, Jesús; Hricovíni, Milos; Gairi, Margarida; Guerrini, Marco; de Paz, José Luis; Ojeda, Rafael; Martín-Lomas, Manuel; Nieto, Pedro M

    2005-10-01

    A complete study of the dynamics of two synthetic heparin-like hexasaccharides, D-GlcNHSO3-6-SO4-alpha-(1-->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHSO3-6-SO4-alpha-(1-->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHSO3-6-SO4-alpha-(1-->4)-L-IdoA-2-SO4-alpha-1-->iPr (1) and -->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHAc-6-SO4-alpha-(1-->4)-L-IdoA-alpha-(1-->4)-D-GlcNHSO3-alpha-(1-->4)-L-IdoA-2-SO4-alpha-1-->iPr (2), has been performed using 13C-nuclear magnetic resonance (NMR) relaxation parameters, T1, T2, and heteronuclear nuclear Overhauser effect (NOEs). Compound 1 is constituted from sequences corresponding to the major polysaccharide heparin region, while compound 2 contains a sequence never found in natural heparin. They differ from each other only in sulphation patterns, and are capable of stimulating fibroblast growth factors (FGFs)-1 induced mitogenesis. Both oligosaccharides exhibit a remarkable anisotropic overall motion in solution as revealed by their anisotropic ratios (tau /tau||), 4.0 and 3.0 respectively. This is a characteristic behaviour of natural glycosaminoglycans (GAG) which has also been observed for the antithrombin (AT) binding pentasaccharide D-GlcNHSO3-6-SO4-alpha-(1-->4)-D-GlcA-beta-(1-->4)-D-GlcNHSO3-(3,6-SO4)-alpha-(1-->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHSO3-6-SO4-alpha-1-->Me (3) (Hricovíni, M., Guerrini, M., Torri, G., Piani, S., and Ungarelli, F. (1995) Conformational analysis of heparin epoxide in aqueous solution. An NMR relaxation study. Carbohydr. Res., 277, 11-23). The motional properties observed for 1 and 2 provide additional support to the suitability of these compounds as heparin models in agreement with previous structural (de Paz, J.L., Angulo, J., Lassaletta, J.M., Nieto, P.M., Redondo-Horcajo, M., Lozano, R.M., Jiménez-Gallego, G., and Martín-Lomas, M. (2001) The activation of fibroblast growth factors by heparin: synthesis, structure and biological activity of heparin-like oligosaccharides. Chembiochem, 2, 673-685; Ojeda, R

  8. Regional Skin Temperature Response to Moderate Aerobic Exercise Measured by Infrared Thermography

    PubMed Central

    Fernandes, Alex de Andrade; Amorim, Paulo Roberto dos Santos; Brito, Ciro José; Sillero-Quintana, Manuel; Bouzas Marins, João Carlos

    2016-01-01

    Background: Infrared thermography (IRT) does not require contact with the skin, and it is a convenient, reliable and non-invasive technique that can be used for monitoring the skin temperature (TSK). Objectives: The aim of this study was to monitor the variations in the regional TSK during exercise on 28 regions of interest (ROIs) (forehead, face, chest, abdomen, back, lumbar, anterior and posterior neck, and posterior and anterior views of the right and left hands, forearms, upper arms, thighs, and legs) with IRT. Patients and Methods: 12 physically active young males were monitored with IRT during the following three phases: a) 30 minutes before exercise b) while performing one hour of moderate intensity exercise on a treadmill at 60% of the VO2max, and c) 60 minutes after exercise. Results: During pre-exercise, all TSK reached a steady-state (P ≤ 0.05), which ensured adequate thermal stabilisation. At the beginning of exercise, there was a significant reduction in the TSK in most ROIs after 10 minutes of activity, except for the lower limbs (legs and thighs). After one hour of recovery, in the anterior view of the hands and thighs and in the posterior view of the legs, there were significant increases in the TSK compared to pre-exercise. Conclusions: There were significant distinctions in the skin temperature distribution during exercise according to the activity of the area under consideration during exercise, which may be important in the development of physiological models and heat flux analyses for different purposes. PMID:27217931

  9. Noninvasive thermography of laser-induced hyperthermia using magnetic resonance

    NASA Astrophysics Data System (ADS)

    Maswadi, Saher M.; Glickman, Randolph D.; Dodd, Stephen J.; Gao, Jia Hong

    2004-07-01

    The possibility to induce selective hyperthermia in a target tissue or organ is of great interest for the treatment of cancer and other diseases. An emerging application of thermotherapy is for choroidal neovascularization, a complication of age-related macular degeneration. The therapy is currently limited because the temperature required for optimal tissue response is unknown. We report here an investigation of near infrared laser-induced heating in an ocular phantom. Magnetic resonance thermography (MRT) was used as a non-invasive method to determine the temperature distribution inside the phantom during exposure to a continuous wave diode laser at 806 nm wavelength with 1 watt maximum output. The laser beam had a quasi-gaussian profile, with a radius of 0.8-2.4 mm at target. High quality temperature images were obtained from temperature-dependent phase shifts in the proton resonance frequency with a resolution of 1deg C or better, using a 2T magnet. A phantom with a layer of bovine RPE melanin of 1.5 mm thickness was used to determine the spatial resolution of the MRT measurements. Three dimensional temperature maps were also constructed showing a spatial resolution of 0.25 mm in all direction. The heat distribution depended on the laser parameters, as well as the orientation of the melanin layer with respect to the incident laser beam. The temperature profiles determined by MRT closely followed predictions of a heat diffusion model, based on the optical properties of infrared light in melanin. These results support the use of MRT to optimize laser-induced hyperthermia in a small organ such as the eye.

  10. Mapping the body surface temperature of cattle by infrared thermography.

    PubMed

    Salles, Marcia Saladini Vieira; da Silva, Suelen Corrêa; Salles, Fernando André; Roma, Luiz Carlos; El Faro, Lenira; Bustos Mac Lean, Priscilla Ayleen; Lins de Oliveira, Celso Eduardo; Martello, Luciane Silva

    2016-12-01

    Infrared thermography (IRT) is an alternative non-invasive method that has been studied as a tool for identifying many physiological and pathological processes related to changes in body temperature. The objective of the present study was to evaluate the body surface temperature of Jersey dairy cattle in a thermoneutral environment in order to contribute to the determination of a body surface temperature pattern for animals of this breed in a situation of thermal comfort. Twenty-four Jersey heifers were used over a period of 35 days at APTA Brazil. Measurements were performed on all animals, starting with the physiological parameters. Body surface temperature was measured by IRT collecting images in different body regions: left and right eye area, right and left eye, caudal left foreleg, cranial left foreleg, right and left flank, and forehead. High correlations were observed between temperature and humidity index (THI) and right flank, left flank and forehead temperatures (0.85, 0.81, and 0.81, respectively). The IRT variables that exhibited the five highest correlation coefficients in principal component 1 were, in decreasing order: forehead (0.90), right flank (0.87), left flank (0.84), marker 1 caudal left foreleg (0.83), marker 2 caudal left foreleg (0.74). The THI showed a high correlation coefficient (0.88) and moderate to low correlations were observed for the physiological variables rectal temperature (0.43), and respiratory frequency (0.42). The thermal profile obtained indicates a surface temperature pattern for each region studied in a situation of thermal comfort and may contribute to studies investigating body surface temperature. Among the body regions studied, IRT forehead temperature showed the highest association with rectal temperature, and forehead and right and left flank temperatures are strongly associated with THI and may be adopted in future studies on thermoregulation and body heat production.

  11. Evaluation of mean skin temperature formulas by infrared thermography

    NASA Astrophysics Data System (ADS)

    Choi, J. K.; Miki, K.; Sagawa, S.; Shiraki, K.

    To study the reliabiliity of formulas for calculating mean skin temperature (Tsk), values were computed by 18 different techniques and were compared with the mean of 10,841 skin temperatures measured by infrared thermography. One hundred whole-body infrared thermograms were scanned in ten resting males while changing the air temperature from 40° C to 4° C. Local, regional average and mean skin temperatures were obtained using an image processing system. The agreement frequency, defined as the percentage of the calculated Tsk values which agreed with the corresponding infrared thermographic Tsk within +/-0.2° C, ranged for with the various formulas from 7% to 80%. In many sites, the local skin temperature did not coincide with the regional average skin temperature. When the local skin temperatures which showed the highest percentage similarity to the regional average skin temperature within +/-0.4° C were applied to the formula, the agreement frequency was markedly improved for all formulas. However, the agreement frequency was not affected by changing the weighting factors from specific constants to individually measured values of regional surface area. By applying the physiologically reliable accuracy range of +/-0.2° C in the moderate and +/-0.4° C in the cool condition, agreement frequencies of at least 95% were observed in formulas involving seven or more skin temperature measurement sites, including the hand and foot. We conclude that calculation of a reliable mean skin temperature must involve more than seven skin temperature measurement sites regardless of ambient temperature. Optimal sites for skin temperature measurement are proposed for various formulas.

  12. Using aerial infrared thermography to detect utility theft of service

    NASA Astrophysics Data System (ADS)

    Stockton, Gregory R.; Lucas, R. Gillem

    2012-06-01

    Natural gas and electric utility companies, public utility commissions, consumer advocacy groups, city governments, state governments and the federal government United States continue to turn a blind eye towards utility energy theft of service which we conservatively estimate is in excess of 10 billion a year. Why? Many in the United States have exhausted their unemployment benefits. The amounts for federal funding for low income heating assistance programs (LIHEAP) funds were cut by nearly 40% for 2012 to 3.02 billion. "At peak funding ($5.1 billion in 2009), the program was national in scale but still only had enough resources to support roughly 1/4 of the eligible households.i" Contributions to charities are down and the number of families below the poverty line who are unable to pay to heat their houses continues to rise. Many of the less fortunate in our society now consider theft and fraud to be an attractive option for their supply of natural gas and/or electricity. A record high mild winter in 2011-2012 coupled with 10-year low natural gas prices temporarily obscured the need for low income heating assistance programs (LIHEAPs) from the news and federal budgets, but cold winters will return. The proliferation of smart meters and automated meter infrastructures across our nation can do little to detect energy theft because the thieves can simply by-pass the meters, jumper around the meters and/or steal meters from abandoned houses and use them. Many utility systems were never set-up to stop these types of theft. Even with low-cost per identified thief method using aerial infrared thermography, utilities continue to ignore theft detection.

  13. Thermography Improves Clinical Assessment in Patients with Systemic Sclerosis Treated with Ozone Therapy

    PubMed Central

    2017-01-01

    Objective. Treatment of scleroderma is challenging and limited. The aim of our study was to evaluate the usefulness of thermography in assessment of the clinical condition (joints movability and skin thickness) in clinically advanced patients with systemic sclerosis before and after ozone therapy. Method. The study included 42 patients aged 32 to 73 years with advanced systemic sclerosis hospitalized in the university clinic between 2003 and 2006. Thermography and clinical examinations were conducted at baseline and after two series of bath in water with ozone. Results. The comparison of results showed significant increase in skin temperature by 2.5°C, significant increase in interphalangeal joints movability by 18 degrees, and significant decrease in skin score by 14.7 points. The skin temperature was correlated with skin score (r = −0.59) and joints movability (r = +0.8). Conclusions. Ozone therapy shows positive effect on clinical parameters and skin temperature as measured with thermography. The study indicated possibility of introducing ozonotherapy as an independent therapy in cases with low level of progression or during remission periods and as additional treatment in patients with advanced disease requiring immunosuppressive treatment. Thermography is useful in assessment of skin condition showing strong correlation between skin temperature and clinical parameters. PMID:28349063

  14. A new measurement method of coatings thickness based on lock-in thermography

    NASA Astrophysics Data System (ADS)

    Zhang, Jin-Yu; Meng, Xiang-bin; Ma, Yong-chao

    2016-05-01

    Coatings have been widely used in modern industry and it plays an important role. Coatings thickness is directly related to the performance of the functional coatings, therefore, rapid and accurate coatings thickness inspection has great significance. Existing coatings thickness measurement method is difficult to achieve fast and accurate on-site non-destructive coatings inspection due to cost, accuracy, destruction during inspection and other reasons. This paper starts from the introduction of the principle of lock-in thermography, and then performs an in-depth study on the application of lock-in thermography in coatings inspection through numerical modeling and analysis. The numerical analysis helps explore the relationship between coatings thickness and phase, and the relationship lays the foundation for accurate calculation of coatings thickness. The author sets up a lock-in thermography inspection system and uses thermal barrier coatings specimens to conduct an experiment. The specimen coatings thickness is measured and calibrated to verify the quantitative inspection. Experiment results show that the lock-in thermography method can perform fast coatings inspection and the inspection accuracy is about 95%. Therefore, the method can meet the field testing requirements for engineering projects.

  15. Using radiation thermography and thermometry to evaluate crop water stress in soybean and cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of digital infrared thermography and thermometry to investigate unapparent but important field conditions (poor drainage, non-uniform irrigation, soil variability, or biotic infestations) offers a producer improved management tools to avoid yield declines or to deal with variability in crop ...

  16. Thermography Improves Clinical Assessment in Patients with Systemic Sclerosis Treated with Ozone Therapy.

    PubMed

    Nowicka, Danuta

    2017-01-01

    Objective. Treatment of scleroderma is challenging and limited. The aim of our study was to evaluate the usefulness of thermography in assessment of the clinical condition (joints movability and skin thickness) in clinically advanced patients with systemic sclerosis before and after ozone therapy. Method. The study included 42 patients aged 32 to 73 years with advanced systemic sclerosis hospitalized in the university clinic between 2003 and 2006. Thermography and clinical examinations were conducted at baseline and after two series of bath in water with ozone. Results. The comparison of results showed significant increase in skin temperature by 2.5°C, significant increase in interphalangeal joints movability by 18 degrees, and significant decrease in skin score by 14.7 points. The skin temperature was correlated with skin score (r = -0.59) and joints movability (r = +0.8). Conclusions. Ozone therapy shows positive effect on clinical parameters and skin temperature as measured with thermography. The study indicated possibility of introducing ozonotherapy as an independent therapy in cases with low level of progression or during remission periods and as additional treatment in patients with advanced disease requiring immunosuppressive treatment. Thermography is useful in assessment of skin condition showing strong correlation between skin temperature and clinical parameters.

  17. Micro-thermography in millimeter-scale animals by using orally-dosed fluorescent nanoparticle thermosensors.

    PubMed

    Arai, Satoshi; Ferdinandus; Takeoka, Shinji; Ishiwata, Shin'ichi; Sato, Hirotaka; Suzuki, Madoka

    2015-11-21

    We propose an instant micro-thermography method using a fluorescent-nanoparticle thermosensor capable of reporting temperature as the fluorescence intensity ratio of the temperature-sensitive dye to the reference. We demonstrate "temperature mapping" inside a fruit fly larva that was orally dosed with nanoparticle thermosensors.

  18. Scrotal infrared digital thermography in assessment of varicocele--pilot study to assess diagnostic criteria.

    PubMed

    Kulis, T; Kolaric, D; Karlovic, K; Knezevic, M; Antonini, S; Kastelan, Z

    2012-05-01

    The aim of this study was to assess scrotal thermography in diagnostics of varicocele and suggest potential diagnostic criteria. Twelve patients with clinically diagnosed varicocele were examined with scrotal infrared digital thermography, physical examination and ultrasound/doppler. The main outcome measure was evaluation of thermography diagnostic criteria for varicocele. Mean temperature at left pampiniform plexus was ≥ 34 °C in 83%, and at right pampiniform plexus in all cases was ≤ 34 °C. In 92% of patients, temperature at the left testicle was ≥ 32 °C, whereas at the right testicle it was >32 °C in 50% patients. Temperatures between left and right pampiniform plexus and between left and right testicle were significantly different with P < 0.0001 and P < 0.006 respectively. In all patients, temperature difference between pampiniform plexuses was ≥ 0.6 °C. In 92% of patients, temperature at left pampiniform plexus was equal or higher to thigh temperature with the mean temperature difference of 1.1 ± 1.1 °C. Temperature at right pampiniform plexus was colder than the thigh in 92% of patients. This study suggests diagnostic criteria of five thermographic signs to easily diagnose varicocele. Scrotal thermography presents feasible, short and low cost diagnostic method for varicocele. Further study on a larger number of patients and healthy participants is needed to evaluate sensitivity and specificity of this method.

  19. Risks of online advertisement of direct-to-consumer thermography for breast cancer screening.

    PubMed

    Lovett, Kimberly M; Liang, Bryan A

    2011-12-01

    Direct-to-consumer online advertising for thermography as a sole agent with which to diagnose breast cancer is misleading and exploits women who are seeking preventive health care for breast cancer. Regulatory action should be taken against companies who continue to mislead the public to ensure patient safety and evidence-based public health information.

  20. Controlled activation of protein rotational dynamics using smart hydrogel tethering.

    PubMed

    Beech, Brenda M; Xiong, Yijia; Boschek, Curt B; Baird, Cheryl L; Bigelow, Diana J; McAteer, Kathleen; Squier, Thomas C

    2014-09-24

    Stimulus-responsive hydrogel materials that stabilize and control protein dynamics have the potential to enable a range of applications that take advantage of the inherent specificity and catalytic efficiencies of proteins. Here we describe the modular construction of a hydrogel using an engineered calmodulin (CaM) within a poly(ethylene glycol) (PEG) matrix that involves the reversible tethering of proteins through an engineered CaM-binding sequence. For these measurements, maltose binding protein (MBP) was isotopically labeled with (13)C and (15)N, permitting dynamic structural measurements using TROSY-HSQC NMR spectroscopy. The protein dynamics is suppressed upon initial formation of hydrogels, with a concomitant increase in protein stability. Relaxation of the hydrogel matrix following transient heating results in enhanced protein dynamics and resolution of substrate-induced large-amplitude domain rearrangements.

  1. Assessment of the effect of housing on feather damage in laying hens using IR thermography.

    PubMed

    Pichová, K; Bilčík, B; Košt'ál, L'

    2017-04-01

    Plumage damage represents one of the animal-based measures of laying hens welfare. Damage occurs predominantly due to age, environment and damaging pecking. IR thermography, due to its non-invasiveness, objectivity and repeatability is a promising alternative to feather damage scoring systems such as the system included in the Welfare Quality ® assessment protocol for poultry. The aim of this study was to apply IR thermography for the assessment of feather damage in laying hens kept in two housing systems and to compare the results with feather scoring. At the start of the experiment, 16-week-old laying hens (n=30) were divided into two treatments such as deep litter pen and enriched cage. During 4 months, feather damage was assessed regularly in 2-week intervals. One more single assessment was done nine and a half months after the start of the experiment. The feather damage on four body regions was assessed by scoring and IR thermography: head and neck, back and rump, belly, and underneck and breast. Two variables obtained by IR thermography were used: the difference between the body surface temperature and ambient temperature (ΔTB) and the proportion of featherless areas, which were defined as areas with a temperature >33.5°C. Data were analyzed using a GLM model. The effects of housing, time, region and their interactions on feather damage, measured by the feather scoring and by both IR thermography measures, were all significant (P<0.001). The ΔTB in all assessed regions correlated positively with the feather score. Feather scoring revealed higher damage in enriched cages compared with deep litter pens starting from week 6 of the experiment on the belly and back and rump regions, whereas ΔTB from week 6 in the belly and from week 8 on the back and rump region. The proportion of featherless areas in the belly region differed significantly between the housings from week 8 of the experiment and on the back and rump region from week 12. The IR thermography

  2. Assessment of the Sensitivity, Specificity, and Accuracy of Thermography in Identifying Patients with TMD

    PubMed Central

    Woźniak, Krzysztof; Szyszka-Sommerfeld, Liliana; Trybek, Grzegorz; Piątkowska, Dagmara

    2015-01-01

    Background The purpose of the present study was to evaluate the sensitivity, specificity, and accuracy of thermography in identifying patients with temporomandibular dysfunction (TMD). Material/Methods The study sample consisted of 50 patients (27 women and 23 men) ages 19.2 to 24.5 years (mean age 22.43±1.04) with subjective symptoms of TMD (Ai II–III) and 50 patients (25 women and 25 men) ages 19.3 to 25.1 years (mean age 22.21±1.18) with no subjective symptoms of TMD (Ai I). The anamnestic interviews were conducted according to the three-point anamnestic index of temporomandibular dysfunction (Ai). The thermography was performed using a ThermaCAM TMSC500 (FLIR Systems AB, Sweden) independent thermal vision system. Thermography was closely combined with a 10-min chewing test. Results The results of our study indicated that the absolute difference in temperature between the right and left side (ΔT) has the highest diagnostic value. The diagnostic effectiveness of this parameter increased after the chewing test. The cut-off points for values of temperature differences between the right and left side and identifying 95.5% of subjects with no functional disorders according to the temporomandibular dysfunction index Di (specificity 95.5%) were 0.26°C (AUC=0.7422, sensitivity 44.3%, accuracy 52.4%) before the chewing test and 0.52°C (AUC=0.7920, sensitivity 46.4%, accuracy 56.3%) after it. Conclusions The evaluation of thermography demonstrated its diagnostic usefulness in identifying patients with TMD with limited effectiveness. The chewing test helped in increasing the diagnostic efficiency of thermography in identifying patients with TMD. PMID:26002613

  3. Dynamics of thermographic skin temperature response during squat exercise at two different speeds.

    PubMed

    Formenti, Damiano; Ludwig, Nicola; Trecroci, Athos; Gargano, Marco; Michielon, Giovanni; Caumo, Andrea; Alberti, Giampietro

    2016-07-01

    Low intensity resistance training with slow movement and tonic force generation has been shown to create blood flow restriction within muscles that may affect thermoregulation through the skin. We aimed to investigate the influence of two speeds of exercise execution on skin temperature dynamics using infrared thermography. Thirteen active males performed randomly two sessions of squat exercise (normal speed, 1s eccentric/1s concentric phase, 1s; slow speed, 5s eccentric/5s concentric phase, 5s), using ~50% of 1 maximal repetition. Thermal images of ST above muscles quadriceps were recorded at a rate of 0.05Hz before the exercise (to determine basal ST) and for 480s following the initiation of the exercise (to determine the nonsteady-state time course of ST). Results showed that ST changed more slowly during the 5s exercise (p=0.002), whereas the delta (with respect to basal) excursions were similar for the two exercises (p>0.05). In summary, our data provided a detailed nonsteady-state portrait of ST changes following squat exercises executed at two different speeds. These results lay the basis for further investigations entailing the joint use of infrared thermography and Doppler flowmetry to study the events taking place both at the skin and the muscle level during exercises executed at slow speed.

  4. Dynamic and Active Proteins: Biomolecular Motors in Engineered Nanostructures.

    PubMed

    Vélez, Marisela

    In Nature, proteins perform functions that go well beyond controlled self-assembly at the nano scale. They are the principal components of diverse "biological machines" that can self-assemble into dynamic aggregates that achieve the cold conversion of chemical energy into motion to realize complex functions involved in cell division, cellular transport and cell motility. Nowadays, we have identified many of the proteins involved in these "molecular machines" and know much about their biochemistry, structure and biophysical behavior. Additionally, we have a rich toolbox of resources to engineer the basic dynamic working units into nanostructures to provide them with motion and the capacity to manipulate, transport, separate or sense single molecules to develop in vitro sensors and bioassays. This chapter summarizes some of the progress made in incorporating bio-molecular motors and dynamic self-organizing proteins into protein based functional nanostructures.

  5. Collective Stop-and-Go Dynamics of Active Bacteria Swarms

    NASA Astrophysics Data System (ADS)

    Svenšek, Daniel; Pleiner, Harald; Brand, Helmut R.

    2013-11-01

    We set up a macroscopic model of bacterial growth and transport based on a dynamic preferred direction—the collective velocity of the bacteria. This collective velocity is subject to the isotropic-nematic transition modeling the density-controlled transformation between immotile and motile bacterial states. The choice of the dynamic preferred direction introduces a distinctive coupling of orientational ordering and transport not encountered otherwise. The approach can also be applied to other systems spontaneously switching between individual (disordered) and collective (ordered) behavior and/or collectively responding to density variations, e.g., bird flocks, fish schools, etc. We observe a characteristic and robust stop-and-go behavior. The inclusion of chirality results in a complex pulsating dynamics.

  6. Skin vasomotor hemiparesis followed by overactivity: characteristic thermography findings in a patient with Horner syndrome due to spinal cord infarction.

    PubMed

    Kobayashi, Makoto

    2016-04-01

    We present a 21-year-old female with Horner syndrome due to spinal cord infarction. In this patient, infrared thermography revealed a hemibody skin temperature increase followed by excessive focal decreases, indicating skin vasomotor hemiparesis and overactivity.

  7. Thermography in the follow up of the diabetic foot: best to weigh the enemy more mighty than he seems.

    PubMed

    Pafili, Kalliopi; Papanas, Nikolaos

    2015-03-01

    Thermography is being increasingly appreciated as a further modality contributing to the early detection of incipient tissue damage predisposing to diabetic foot ulceration in selected high-risk patients. Among currently available modalities, liquid crystal thermography and infrared thermography have been most widely used. The former is effective, but its main limitation is low sensitivity. The latter permits non-contact measurements at different angles of the foot, independent of the quality of the camera used. It has been suggested that 5-year use of such techniques for daily self-examination among high-risk patients may contribute to the significant reduction of diabetic foot complications. Clearly, further experience with thermography in the real-life setting is now very welcome.

  8. Spatially resolved determination of the short-circuit current density of silicon solar cells via lock-in thermography

    SciTech Connect

    Fertig, Fabian Greulich, Johannes; Rein, Stefan

    2014-05-19

    We present a spatially resolved method to determine the short-circuit current density of crystalline silicon solar cells by means of lock-in thermography. The method utilizes the property of crystalline silicon solar cells that the short-circuit current does not differ significantly from the illuminated current under moderate reverse bias. Since lock-in thermography images locally dissipated power density, this information is exploited to extract values of spatially resolved current density under short-circuit conditions. In order to obtain an accurate result, one or two illuminated lock-in thermography images and one dark lock-in thermography image need to be recorded. The method can be simplified in a way that only one image is required to generate a meaningful short-circuit current density map. The proposed method is theoretically motivated, and experimentally validated for monochromatic illumination in comparison to the reference method of light-beam induced current.

  9. Finite element modeling of haptic thermography: A novel approach for brain tumor detection during minimally invasive neurosurgery.

    PubMed

    Sadeghi-Goughari, Moslem; Mojra, Afsaneh

    2015-10-01

    Intraoperative Thermal Imaging (ITI) is a novel neuroimaging method that can potentially locate tissue abnormalities and hence improves surgeon's diagnostic ability. In the present study, thermography technique coupled with artificial tactile sensing method called "haptic thermography" is utilized to investigate the presence of an abnormal object as a tumor with an elevated temperature relative to the normal tissue in the brain. The brain tissue is characterized as a hyper-viscoelastic material to be descriptive of mechanical behavior of the brain tissue during tactile palpation. Based on a finite element approach, Magnetic Resonance Imaging (MRI) data of a patient diagnosed to have a brain tumor is utilized to simulate and analyze the capability of haptic thermography in detection and localization of brain tumor. Steady-state thermal results prove that temperature distribution is an appropriate outcome of haptic thermography for the superficial tumors while heat flux distribution can be used as an extra thermal result for deeply located tumors.

  10. Current Results and Proposed Activities in Microgravity Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Polezhaev, V. I.

    1996-01-01

    The Institute for Problems in Mechanics' Laboratory work in mathematical and physical modelling of fluid mechanics develops models, methods, and software for analysis of fluid flow, instability analysis, direct numerical modelling and semi-empirical models of turbulence, as well as experimental research and verification of these models and their applications in technological fluid dynamics, microgravity fluid mechanics, geophysics, and a number of engineering problems. This paper presents an overview of the results in microgravity fluid dynamics research during the last two years. Nonlinear problems of weakly compressible and compressible fluid flows are discussed.

  11. Destination state screening of active spaces in spin dynamics simulations

    NASA Astrophysics Data System (ADS)

    Krzystyniak, M.; Edwards, Luke J.; Kuprov, Ilya

    2011-06-01

    We propose a novel avenue for state space reduction in time domain Liouville space spin dynamics simulations, using detectability as a selection criterion - only those states that evolve into or affect other detectable states are kept in the simulation. This basis reduction procedure (referred to as destination state screening) is formally exact and can be applied on top of the existing state space restriction techniques. As demonstrated below, in many cases this results in further reduction of matrix dimension, leading to considerable acceleration of many spin dynamics simulation types. Destination state screening is implemented in the latest version of the Spinach library (http://spindynamics.org).

  12. Active Control of Solar Array Dynamics During Spacecraft Maneuvers

    NASA Technical Reports Server (NTRS)

    Ross, Brant A.; Woo, Nelson; Kraft, Thomas G.; Blandino, Joseph R.

    2016-01-01

    Recent NASA mission plans require spacecraft to undergo potentially significant maneuvers (or dynamic loading events) with large solar arrays deployed. Therefore there is an increased need to understand and possibly control the nonlinear dynamics in the spacecraft system during such maneuvers. The development of a nonlinear controller is described. The utility of using a nonlinear controller to reduce forces and motion in a solar array wing during a loading event is demonstrated. The result is dramatic reductions in system forces and motion during a 10 second loading event. A motion curve derived from the simulation with the closed loop controller is used to obtain similar benefits with a simpler motion control approach.

  13. Energetic costs of mange in wolves estimated from infrared thermography

    USGS Publications Warehouse

    Cross, Paul C.; Almberg, Emily S.; Haase, Catherine G; Hudson, Peter J.; Maloney, Shane K; Metz, Matthew C; Munn, Adam J; Nugent, Paul; Putzeys, Olivier; Stahler, Daniel R.; Stewart, Anya C; Smith, Doug W.

    2016-01-01

    Parasites, by definition, extract energy from their hosts and thus affect trophic and food web dynamics even when the parasite may have limited effects on host population size. We studied the energetic costs of mange (Sarcoptes scabiei) in wolves (Canis lupus) using thermal cameras to estimate heat losses associated with compromised insulation during the winter. We combined the field data of known, naturally infected wolves with data set on captive wolves with shaved patches of fur as a positive control to simulate mange-induced hair loss. We predict that during the winter in Montana, more severe mange infection increases heat loss by around 5.2 to 12 MJ per night (1240 to 2850 kcal, or a 65% to 78% increase) for small and large wolves, respectively accounting for wind effects. To maintain body temperature would require a significant proportion of a healthy wolf's total daily energy demands (18-22 MJ/day). We also predict how these thermal costs may increase in colder climates by comparing our predictions in Bozeman, Montana to those from a place with lower ambient temperatures (Fairbanks, Alaska). Contrary to our expectations, the 14°C differential between these regions was not as important as the potential differences in wind speed. These large increases in energetic demands can be mitigated by either increasing consumption rates or decreasing other energy demands. Data from GPS-collared wolves indicated that healthy wolves move, on average, 17 km per day, which was reduced by 1.5, 1.8 and 6.5 km for light, medium, and severe hair loss. In addition, the wolf with the most hair loss was less active at night and more active during the day, which is the converse of the movement patterns of healthy wolves. At the individual level mange infections create significant energy demands and altered behavioral patterns, this may have cascading effects on prey consumption rates, food web dynamics, predator-prey interactions, and scavenger communities.

  14. CURVATURE EFFECT QUANTIFICATION FOR IN-VIVO IR THERMOGRAPHY

    PubMed Central

    Cheng, Tze-Yuan; Deng, Daxiang; Herman, Cila

    2013-01-01

    Medical Infrared (IR) Imaging has become an important diagnostic tool over recent years. However, one underlying problem in medical diagnostics is associated with accurate quantification of body surface temperatures. This problem is caused by the artifacts induced by the curvature of objects, which leads to inaccurate temperature mapping and biased diagnostic results. Therefore, in our study, an experiment-based analysis is conducted to address the curvature effects toward the 3D temperature reconstruction of the IR thermography image. For quantification purposes, an isothermal copper plate with flat surface, and a cylindrical metal container filled with water are imaged. For the flat surface, the tilting angle measured from camera axis was varied incrementally from 0° to 60 °, such that the effects of surface viewing angle and travel distance on the measured temperature can be explored. On the cylindrical curved surface, the points viewed from 0° to 90° with respect to the camera axis are simultaneously imaged at different temperature levels. The experimental data obtained for the flat surface indicate that both viewing angle and distance effects become noticeable for angles over 40 °. The travel distance contributes a minor change when compared with viewing angle. The experimental results from the curved surface indicate that the curvature effect becomes pronounced when the viewing angle is larger than 60 °. The measurement error on the curved surface is compared with the simulation using the non-dielectric model, and the normalized temperature difference relative to 0° viewing angle was analyzed at six temperature levels. These results indicate that the linear formula associated with directional emissivity is a reasonable approximation for the measurement error, and the normalized error curves change consistently with viewing angle at various temperatures. Therefore, the analysis in this study implies that the directional emissivity based on the non

  15. Dynamic computer simulations of electrophoresis: three decades of active research.

    PubMed

    Thormann, Wolfgang; Caslavska, Jitka; Breadmore, Michael C; Mosher, Richard A

    2009-06-01

    Dynamic models for electrophoresis are based upon model equations derived from the transport concepts in solution together with user-inputted conditions. They are able to predict theoretically the movement of ions and are as such the most versatile tool to explore the fundamentals of electrokinetic separations. Since its inception three decades ago, the state of dynamic computer simulation software and its use has progressed significantly and Electrophoresis played a pivotal role in that endeavor as a large proportion of the fundamental and application papers were published in this periodical. Software is available that simulates all basic electrophoretic systems, including moving boundary electrophoresis, zone electrophoresis, ITP, IEF and EKC, and their combinations under almost exactly the same conditions used in the laboratory. This has been employed to show the detailed mechanisms of many of the fundamental phenomena that occur in electrophoretic separations. Dynamic electrophoretic simulations are relevant for separations on any scale and instrumental format, including free-fluid preparative, gel, capillary and chip electrophoresis. This review includes a historical overview, a survey of current simulators, simulation examples and a discussion of the applications and achievements of dynamic simulation.

  16. The Role of Infrared Thermography as a Non-Invasive Tool for the Detection of Lameness in Cattle

    PubMed Central

    Alsaaod, Maher; Schaefer, Allan L.; Büscher, Wolfgang; Steiner, Adrian

    2015-01-01

    The use of infrared thermography for the identification of lameness in cattle has increased in recent years largely because of its non-invasive properties, ease of automation and continued cost reductions. Thermography can be used to identify and determine thermal abnormalities in animals by characterizing an increase or decrease in the surface temperature of their skin. The variation in superficial thermal patterns resulting from changes in blood flow in particular can be used to detect inflammation or injury associated with conditions such as foot lesions. Thermography has been used not only as a diagnostic tool, but also to evaluate routine farm management. Since 2000, 14 peer reviewed papers which discuss the assessment of thermography to identify and manage lameness in cattle have been published. There was a large difference in thermography performance in these reported studies. However, thermography was demonstrated to have utility for the detection of contralateral temperature difference and maximum foot temperature on areas of interest. Also apparent in these publications was that a controlled environment is an important issue that should be considered before image scanning. PMID:26094632

  17. The Role of Infrared Thermography as a Non-Invasive Tool for the Detection of Lameness in Cattle.

    PubMed

    Alsaaod, Maher; Schaefer, Allan L; Büscher, Wolfgang; Steiner, Adrian

    2015-06-18

    The use of infrared thermography for the identification of lameness in cattle has increased in recent years largely because of its non-invasive properties, ease of automation and continued cost reductions. Thermography can be used to identify and determine thermal abnormalities in animals by characterizing an increase or decrease in the surface temperature of their skin. The variation in superficial thermal patterns resulting from changes in blood flow in particular can be used to detect inflammation or injury associated with conditions such as foot lesions. Thermography has been used not only as a diagnostic tool, but also to evaluate routine farm management. Since 2000, 14 peer reviewed papers which discuss the assessment of thermography to identify and manage lameness in cattle have been published. There was a large difference in thermography performance in these reported studies. However, thermography was demonstrated to have utility for the detection of contralateral temperature difference and maximum foot temperature on areas of interest. Also apparent in these publications was that a controlled environment is an important issue that should be considered before image scanning.

  18. Comparison of four specific dynamic office chairs with a conventional office chair: impact upon muscle activation, physical activity and posture.

    PubMed

    Ellegast, Rolf P; Kraft, Kathrin; Groenesteijn, Liesbeth; Krause, Frank; Berger, Helmut; Vink, Peter

    2012-03-01

    Prolonged and static sitting postures provoke physical inactivity at VDU workplaces and are therefore discussed as risk factors for the musculoskeletal system. Manufacturers have designed specific dynamic office chairs featuring structural elements which promote dynamic sitting and therefore physical activity. The aim of the present study was to evaluate the effects of four specific dynamic chairs on erector spinae and trapezius EMG, postures/joint angles and physical activity intensity (PAI) compared to those of a conventional standard office chair. All chairs were fitted with sensors for measurement of the chair parameters (backrest inclination, forward and sideward seat pan inclination), and tested in the laboratory by 10 subjects performing 7 standardized office tasks and by another 12 subjects in the field during their normal office work. Muscle activation revealed no significant differences between the specific dynamic chairs and the reference chair. Analysis of postures/joint angles and PAI revealed only a few differences between the chairs, whereas the tasks performed strongly affected the measured muscle activation, postures and kinematics. The characteristic dynamic elements of each specific chair yielded significant differences in the measured chair parameters, but these characteristics did not appear to affect the sitting dynamics of the subjects performing their office tasks.

  19. Integration of reflectances and thermography imagery for transport infrastructures diagnostics

    NASA Astrophysics Data System (ADS)

    Pignatti, S.; Palombo, A.; Pascucci, S.; Santini, F.

    2012-04-01

    The integrated use of reflectances and thermography to study and diagnostic of transport infrastructures has been applied on the Musumeci Bridge (Potenza, Italy) test site as a fast and non-destructive tool in the framework of the Integrated System for Transport Infrastructures surveillance and Monitoring by Electromagnetic Sensing (ISTIMES) project, funded by the European Commission in the frame of a joint Call "ICT and Security" of the Seventh Framework Programme, in order to extract appropriate information and make useful decisions [1]. The applied hyperspectral imagery is primarily suited for the detection and characterization of alterations and defects in the structures' surface, whereas by means of thermography it is possible to attain near real-time information about the internal structure such as a bridge. Hyperspectral data is able to discriminate materials on the basis of their different patterns of wavelength-specific absorption; in fact, they are successfully used for identifying minerals and rocks, as well as detecting surface materials properties [2]. For this study we used the HySpex VNIR-1600 and the SWIR-320 hyperspectral scanners (see details in Table 1) located beneath the Musmeci Bridge thus being able to acquire the structure. The hyperspectral data processing has allowed to derive indication/parameters related to the status of the structure surface, i.e. by means of the detection of the surface weathering status of the iron (i.e. iron oxides such as limonite/goethite) used to reinforce the cement structure and the occurring detachments of the cement covering the iron. This assessment can be used to foresee more severe damages of the armed concrete. Concerning the rationale for using a high sensitivity Infrared camera in the MWIR range (3.5-5 micron; see Table 1) for the Musumeci test site is based on the fact that the high radiometric resolution of the thermal images time series allows analyzing the structure homogeneity and the cohesion of

  20. Exploring Group Dynamics of Primary 6 Students Engaged in Mathematical Modelling Activities

    ERIC Educational Resources Information Center

    Eric, Chan Chun Ming

    2014-01-01

    This paper explores the group dynamics among three groups of students involved in collaborative learning in mathematical modelling activities. It reports how group dynamics were established and their influence on the students' mathematical problem-solving endeavours. Through video analyses, discourse structures were identified to suggest the…

  1. Dynamic Docking Test System (DDTS) active table frequency response test results. [Apollo Soyuz Test Project

    NASA Technical Reports Server (NTRS)

    Gates, R. M.

    1974-01-01

    Results are presented of the frequency response test performed on the dynamic docking test system (DDTS) active table. Sinusoidal displacement commands were applied to the table and the dynamic response determined from measured actuator responses and accelerometers mounted to the table and one actuator.

  2. Dynamic Structure of Joint-Action Stimulus-Response Activity

    PubMed Central

    Malone, MaryLauren; Castillo, Ramon D.; Kloos, Heidi; Holden, John G.; Richardson, Michael J.

    2014-01-01

    The mere presence of a co-actor can influence an individual’s response behavior. For instance, a social Simon effect has been observed when two individuals perform a Go/No-Go response to one of two stimuli in the presence of each other, but not when they perform the same task alone. Such effects are argued to provide evidence that individuals co-represent the task goals and the to-be-performed actions of a co-actor. Motivated by the complex-systems approach, the present study was designed to investigate an alternative hypothesis — that such joint-action effects are due to a dynamical (time-evolving) interpersonal coupling that operates to perturb the behavior of socially situated actors. To investigate this possibility, participants performed a standard Go/No-Go Simon task in joint and individual conditions. The dynamic structure of recorded reaction times was examined using fractal statistics and instantaneous cross-correlation. Consistent with our hypothesis that participants responding in a shared space would become behaviorally coupled, the analyses revealed that reaction times in the joint condition displayed decreased fractal structure (indicative of interpersonal perturbation processes modulating ongoing participant behavior) compared to the individual condition, and were more correlated across a range of time-scales compared to the reaction times of pseudo-pair controls. Collectively, the findings imply that dynamic processes might underlie social stimulus-response compatibility effects and shape joint cognitive processes in general. PMID:24558467

  3. Dynamics and Instabilities of an overdamped active nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Putzig, Elias; Baskaran, Aparna

    Active nematics have been studied extensively in the context of suspensions of active particles, with a Stokes equation describing the flow of the surrounding fluid. Here we will present a continuum model of an overdamped (often termed 'dry') active nematic, where activity enters through self-induced flows. These flows represent the ability of the internal forces to convect, shear, or rotate the nematic order. The self-induced shear gives rise to an instability in the homogeneous ordered state which is analogous to that seen in active suspensions. The self-induced rotation gives rise to a new instability. A phase diagram from this model will be presented, and the phenomenology will be compared with what is seen in experimental and simulated active systems. We would like to acknowledge Grant support through NSF (NSF-DMR-1149266), (DMR-0820492), (NIH-5T32EB009419) and IGERT (DGE-1068620).

  4. The Dynamic Association between Motor Skill Development and Physical Activity

    ERIC Educational Resources Information Center

    Stodden, David F.; Goodway, Jacqueline D.

    2007-01-01

    Although significant attention has been given to promoting physical activity among children, little attention has been given to the developmental process of how children learn to move or to the changing role that motor skill development plays in children's physical activity levels as they grow. In order to successfully address the obesity…

  5. Monitoring changes in skin temperature associated with exercise in horses on a water treadmill by use of infrared thermography.

    PubMed

    Yarnell, Kelly; Fleming, Jennifer; Stratton, Tim D; Brassington, Rebecca

    2014-10-01

    Infrared thermography (IRT) was used to assess surface temperature change as an indirect measure of muscle activity and exercise associated changes in blood flow in the working hind limb muscles of horses (n=7) undergoing water treadmill exercise. Three treatments were investigated including the treadmill ran dry (TD), water at the height of the proximal interphalangeal joint (PIP) and water at the height of the carpus (CP). Maximum skin surface temperature was recorded from the region of the semitendinosus muscle during exercise at each water height. There was a significant difference in surface hind limb temperature between exercise on the water treadmill ran dry and with water at the height of the PIP and CP (P<0.0001) with hotter temperatures recorded during the TD treatment. There was a greater increase in surface temperature of the hind limbs from pre exercise to maximum temperature during the PIP and CP treatments when compared to the TD treatment, however, this was not significant (P=0.58). There was no significant difference in surface hind limb temperature found between exercise in water at the height of the PIP and water at the height of the CP. The findings from this study suggest that IRT is able to non-invasively detect muscle activity and associated changes in blood flow whilst horses are exercised on a water treadmill. IRT could potentially be used as an alternative method to assess muscle activity and temperature change in an aquatic environment where existing methods present methodological challenges.

  6. Communication: Smoothing out excited-state dynamics: Analytical gradients for dynamically weighted complete active space self-consistent field

    SciTech Connect

    Glover, W. J.

    2014-11-07

    State averaged complete active space self-consistent field (SA-CASSCF) is a workhorse for determining the excited-state electronic structure of molecules, particularly for states with multireference character; however, the method suffers from known issues that have prevented its wider adoption. One issue is the presence of discontinuities in potential energy surfaces when a state that is not included in the state averaging crosses with one that is. In this communication I introduce a new dynamical weight with spline (DWS) scheme that mimics SA-CASSCF while removing energy discontinuities due to unweighted state crossings. In addition, analytical gradients for DWS-CASSCF (and other dynamically weighted schemes) are derived for the first time, enabling energy-conserving excited-state ab initio molecular dynamics in instances where SA-CASSCF fails.

  7. Energetic costs of mange in wolves estimated from infrared thermography.

    PubMed

    Cross, P C; Almberg, E S; Haase, C G; Hudson, P J; Maloney, S K; Metz, M C; Munn, A J; Nugent, P; Putzeys, O; Stahler, D R; Stewart, A C; Smith, D W

    2016-08-01

    Parasites, by definition, extract energy from their hosts and thus affect trophic and food web dynamics even when the parasite may have limited effects on host population size. We studied the energetic costs of mange (Sarcoptes scabiei) in wolves (Canis lupus) using thermal cameras to estimate heat losses associated with compromised insulation during the winter. We combined the field data of known, naturally infected wolves with a data set on captive wolves with shaved patches of fur as a positive control to simulate mange-induced hair loss. We predict that during the winter in Montana, more severe mange infection increases heat loss by around 5.2-12 MJ per night (1,240-2,850 kcal, or a 65-78% increase) for small and large wolves, respectively, accounting for wind effects. To maintain body temperature would require a significant proportion of a healthy wolf's total daily energy demands (18-22 MJ/day). We also predict how these thermal costs may increase in colder climates by comparing our predictions in Bozeman, Montana to those from a place with lower ambient temperatures (Fairbanks, Alaska). Contrary to our expectations, the 14°C differential between these regions was not as important as the potential differences in wind speed. These large increases in energetic demands can be mitigated by either increasing consumption rates or decreasing other energy demands. Data from GPS-collared wolves indicated that healthy wolves move, on average, 17 km per day, which was reduced by 1.5, 1.8, and 6.5 km for light, medium, and severe hair loss. In addition, the wolf with the most hair loss was less active at night and more active during the day, which is the converse of the movement patterns of healthy wolves. At the individual level, mange infections create significant energy demands and altered behavioral patterns, this may have cascading effects on prey consumption rates, food web dynamics, predator-prey interactions, and scavenger communities.

  8. Dielectric barrier plasma dynamics for active control of separated flows

    SciTech Connect

    Roy, Subrata; Singh, K.P.; Gaitonde, Datta V.

    2006-03-20

    The dynamics of separation mitigation with asymmetric dielectric barrier discharges is explored by considering the gas flow past a flat plate at an angle of attack. A self-consistent model utilizing motion of electrons, ions, and neutrals is employed to couple the electric force field to the momentum of the fluid. The charge separation and concomitant electric field yield a time-averaged body force which is oriented predominantly downstream, with a smaller transverse component towards the wall. This induces a wall-jet-like feature that effectively eliminates the separation bubble. The impact of several geometric and electrical operating parameters is elucidated.

  9. Reduction and Analysis of Phosphor Thermography Data With the IHEAT Software Package

    NASA Technical Reports Server (NTRS)

    Merski, N. Ronald

    1998-01-01

    Detailed aeroheating information is critical to the successful design of a thermal protection system (TPS) for an aerospace vehicle. This report describes NASA Langley Research Center's (LaRC) two-color relative-intensity phosphor thermography method and the IHEAT software package which is used for the efficient data reduction and analysis of the phosphor image data. Development of theory is provided for a new weighted two-color relative-intensity fluorescence theory for quantitatively determining surface temperatures on hypersonic wind tunnel models; an improved application of the one-dimensional conduction theory for use in determining global heating mappings; and extrapolation of wind tunnel data to flight surface temperatures. The phosphor methodology at LaRC is presented including descriptions of phosphor model fabrication, test facilities and phosphor video acquisition systems. A discussion of the calibration procedures, data reduction and data analysis is given. Estimates of the total uncertainties (with a 95% confidence level) associated with the phosphor technique are shown to be approximately 8 to 10 percent in the Langley's 31-Inch Mach 10 Tunnel and 7 to 10 percent in the 20-Inch Mach 6 Tunnel. A comparison with thin-film measurements using two-inch radius hemispheres shows the phosphor data to be within 7 percent of thin-film measurements and to agree even better with predictions via a LATCH computational fluid dynamics solution (CFD). Good agreement between phosphor data and LAURA CFD computations on the forebody of a vertical takeoff/vertical lander configuration at four angles of attack is also shown. In addition, a comparison is given between Mach 6 phosphor data and laminar and turbulent solutions generated using the LAURA, GASP and LATCH CFD codes. Finally, the extrapolation method developed in this report is applied to the X-34 configuration with good agreement between the phosphor extrapolation and LAURA flight surface temperature predictions

  10. Low-Altitude and Land-Based Infrared Thermography to Identify Types of Groundwater Discharge in NWT Streams

    NASA Astrophysics Data System (ADS)

    Conant, B.; Mochnacz, N. J.

    2009-05-01

    In tributaries of the Mackenzie River in the Northwest Territories (NWT), Canada, groundwater discharge provides critical fish habitat for Dolly Varden and bull trout populations by maintaining base flows, creating thermal refugia in winter, and providing stable riverbed temperatures for spawning. Where temperature contrasts exist between surface water and groundwater, infrared thermography can use heat as a tracer to locate groundwater discharge areas. Thermal images acquired from satellites and high altitude airplanes tend to be expensive, lack the resolution necessary to identify small discharge locations, and do not allow real time decisions to investigate and ground truth identified temperature anomalies. Therefore, a system was developed using a handheld FLIR ThermaCam P25 infrared camera, visual video camera, infrared video capture system, and GPS in a low flying helicopter and on the ground. The advantage of the system was its ability to inexpensively and efficiently characterize several kilometer long reaches of river and identify springs and seeps on a sub-meter scale and in real time. The different types of groundwater discharge that can occur in these streams include: deep geothermally heated groundwater; shallow groundwater; and active zone water, but differentiating them can be difficult because observed thermal anomalies can be non-unique functions of the initial groundwater temperature, magnitude of discharge, air and surface water temperatures, and temporal variations. Work performed in March and September easily detected spring and seeps of deep groundwater (8 to 13 ° C) at Smith Creek, Gibson Creek, Gayna River, and Little Fish Creek. Shallow groundwater discharge was detected (1 to 3 ° C) at White Sand Creek, Canyon Creek, and Fish Creek, but was more difficult to identify. Subtle variations from surrounding temperatures (<1 ° C) at some sites suggested seeps from the hyporheic zone or possibly the active zone. The limitations of infrared

  11. Steady states and global dynamics of electrical activity in the cerebral cortex

    NASA Astrophysics Data System (ADS)

    Robinson, P. A.; Rennie, C. J.; Wright, J. J.; Bourke, P. D.

    1998-09-01

    Steady states and global dynamics of electrical activity in the cerebral cortex are investigated within the framework of a recent continuum model. It is shown that for a particular physiologically realistic class of models, at most three steady states can occur, two of which are stable. The global dynamics of spatially uniform activity states is studied and it is shown that in a physiologically realistic class of models, the adiabatic dynamics is governed by a second-order differential equation equivalent to that for the motion of a Newtonian particle in a potential in the presence of friction. This result is used to derive a simplified dynamical equation in the friction-dominated limit. Solutions of these equations are compared with those of the full global dynamics equations and it is found that they are adequate for time scales longer than approximately 100 ms provided dendritic integration times are less than approximately 10 ms.

  12. Non-equilibrium dynamics of an active colloidal ``chucker''

    NASA Astrophysics Data System (ADS)

    Valeriani, C.; Allen, R. J.; Marenduzzo, D.

    2010-05-01

    We report Monte Carlo simulations of the dynamics of a "chucker," a colloidal particle that emits smaller solute particles from its surface, isotropically and at a constant rate kc. We find that the diffusion constant of the chucker increases for small kc, as recently predicted theoretically. At large kc, the chucker diffuses more slowly due to crowding effects. We compare our simulation results to those of a "point particle" Langevin dynamics scheme in which the solute concentration field is calculated analytically, and in which hydrodynamic effects arising from colloid-solvent surface interactions can be accounted for in a coarse-grained way. By simulating the dragging of a chucker, we obtain an estimate of its apparent mobility coefficient which violates the fluctuation-dissipation theorem. We also characterize the probability density profile for a chucker which sediments onto a surface which either repels or absorbs the solute particles, and find that the steady state distributions are very different in the two cases. Our simulations are inspired by the biological example of exopolysaccharide-producing bacteria, as well as by recent experimental, simulation and theoretical work on phoretic colloidal "swimmers."

  13. Thermally activated repolarization of antiferromagnetic particles: Monte Carlo dynamics

    NASA Astrophysics Data System (ADS)

    Soloviev, S. V.; Popkov, A. F.; Knizhnik, A. A.; Iskandarova, I. M.

    2017-02-01

    Based on the equation of motion of an antiferromagnetic moment, taking into account a random field of thermal fluctuations, we propose a Monte Carlo (MC) scheme for the numerical simulation of the evolutionary dynamics of an antiferromagnetic particle, corresponding to the Langevin dynamics in the Kramers theory for the two-well potential. Conditions for the selection of the sphere of fluctuations of random deviations of the antiferromagnetic vector at an MC time step are found. A good agreement with the theory of Kramers thermal relaxation is demonstrated for varying temperatures and heights of energy barrier over a wide range of integration time steps in an overdamped regime. Based on the developed scheme, we performed illustrative calculations of the temperature drift of the exchange bias under the fast annealing of a ferromagnet-antiferromagnet structure, taking into account the random variation of anisotropy directions in antiferromagnetic grains and their sizes. The proposed approach offers promise for modeling magnetic sensors and spintronic memory devices containing heterostructures with antiferromagnetic layers.

  14. Recurrent circuitry dynamically shapes the activation of piriform cortex.

    PubMed

    Franks, Kevin M; Russo, Marco J; Sosulski, Dara L; Mulligan, Abigail A; Siegelbaum, Steven A; Axel, Richard

    2011-10-06

    In the piriform cortex, individual odorants activate a unique ensemble of neurons that are distributed without discernable spatial order. Piriform neurons receive convergent excitatory inputs from random collections of olfactory bulb glomeruli. Pyramidal cells also make extensive recurrent connections with other excitatory and inhibitory neurons. We introduced channelrhodopsin into the piriform cortex to characterize these intrinsic circuits and to examine their contribution to activity driven by afferent bulbar inputs. We demonstrated that individual pyramidal cells are sparsely interconnected by thousands of excitatory synaptic connections that extend, largely undiminished, across the piriform cortex, forming a large excitatory network that can dominate the bulbar input. Pyramidal cells also activate inhibitory interneurons that mediate strong, local feedback inhibition that scales with excitation. This recurrent network can enhance or suppress bulbar input, depending on whether the input arrives before or after the cortex is activated. This circuitry may shape the ensembles of piriform cells that encode odorant identity.

  15. Representation of Dormant and Active Microbial Dynamics for Ecosystem Modeling

    SciTech Connect

    Wang, Gangsheng; Mayes, Melanie; Gu, Lianhong; Schadt, Christopher Warren

    2014-01-01

    Dormancy is an essential strategy for microorganisms to cope with environmental stress. However, global ecosystem models typically ignore microbial dormancy, resulting in notable model uncertainties. To facilitate the consideration of dormancy in these large-scale models, we propose a new microbial physiology component that works for a wide range of substrate availabilities. This new model is based on microbial physiological states and the major parameters are the maximum specific growth and maintenance rates of active microbes and the ratio of dormant to active maintenance rates. A major improvement of our model over extant models is that it can explain the low active microbial fractions commonly observed in undisturbed soils. Our new model shows that the exponentially-increasing respiration from substrate-induced respiration experiments can only be used to determine the maximum specific growth rate and initial active microbial biomass, while the respiration data representing both exponentially-increasing and non-exponentially-increasing phases can robustly determine a range of key parameters including the initial total live biomass, initial active fraction, the maximum specific growth and maintenance rates, and the half-saturation constant. Our new model can be incorporated into existing ecosystem models to account for dormancy in microbially-driven processes and to provide improved estimates of microbial activities.

  16. Depth-Penetrating Luminescence Thermography of Thermal- Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey

    2005-01-01

    A thermographic method has been developed for measuring temperatures at predetermined depths within dielectric material layers . especially thermal-barrier coatings. This method will help satisfy a need for noncontact measurement of through-the-thickness temperature gradients for evaluating the effectiveness of thermal- barrier coatings designed to prevent overheating of turbine blades, combustor liners, and other engine parts. Heretofore, thermography has been limited to measurement of surface and near-surface temperatures. In the thermographic method that is the immediate predecessor of the present method, a thermographic phosphor is applied to the outer surface of a thermal barrier coating, luminescence in the phosphor is excited by illuminating the phosphor at a suitable wavelength, and either the time dependence of the intensity of luminescence or the intensities of luminescence spectral lines is measured. Then an emissivity-independent surface-temperature value is computed by use of either the known temperature dependence of the luminescence decay time or the known temperature dependence of ratios between intensities of selected luminescence spectral lines. Until now, depth-penetrating measurements have not been possible because light of the wavelengths needed to excite phosphors could not penetrate thermal-barrier coating materials to useful depths. In the present method as in the method described above, one exploits the temperature dependence of luminescence decay time. In this case, the phosphor is incorporated into the thermal-barrier coat at the depth at which temperature is to be measured. To be suitable for use in this method, a phosphor must (1) exhibit a temperature dependence of luminescence decay time in the desired range, (2) be thermochemically compatible with the thermal-barrier coating, and (3) exhibit at least a minor excitation spectral peak and an emission spectral peak, both peaks being at wavelengths at which the thermal-barrier coating is

  17. Infrared thermography and ultrasonics to evaluate composite materials for aeronautical applications

    NASA Astrophysics Data System (ADS)

    Boccardi, S.; Boffa, N. D.; Carlomagno, G. M.; Maio, L.; Meola, C.; Ricci, F.

    2015-11-01

    The attention of this paper is focused on the suitability of two techniques: infrared thermography and ultrasonics to evaluate impact damaged carbon/epoxy specimens. The obtained results are compared by highlighting advantages and disadvantages of each technique, as well their limits in view of an integrated use. In this context, a crucial task may be to assess the extension of delamination caused by an impact event, which may ask one to guess between sound and damaged materials at the edge of the instrument background noise. To help fixing this problem, results obtained with either lock-in thermography, or an ultrasonic phased array system, are analysed with the aid of thermographic data collected during impact tests.

  18. Electromagnetic Thermography Nondestructive Evaluation: Physics-based Modeling and Pattern Mining

    NASA Astrophysics Data System (ADS)

    Gao, Bin; Woo, Wai Lok; Tian, Gui Yun

    2016-05-01

    Electromagnetic mechanism of Joule heating and thermal conduction on conductive material characterization broadens their scope for implementation in real thermography based Nondestructive testing and evaluation (NDT&E) systems by imparting sensitivity, conformability and allowing fast and imaging detection, which is necessary for efficiency. The issue of automatic material evaluation has not been fully addressed by researchers and it marks a crucial first step to analyzing the structural health of the material, which in turn sheds light on understanding the production of the defects mechanisms. In this study, we bridge the gap between the physics world and mathematical modeling world. We generate physics-mathematical modeling and mining route in the spatial-, time-, frequency-, and sparse-pattern domains. This is a significant step towards realizing the deeper insight in electromagnetic thermography (EMT) and automatic defect identification. This renders the EMT a promising candidate for the highly efficient and yet flexible NDT&E.

  19. Modeling of the ITER-like wide-angle infrared thermography view of JET

    SciTech Connect

    Aumeunier, M.-H.; Firdaouss, M.; Travere, J.-M.; Loarer, T.; Gauthier, E.; Martin, V.; Chabaud, D.; Humbert, E.; Collaboration: JET-EFDA Contributors

    2012-10-15

    Infrared (IR) thermography systems are mandatory to ensure safe plasma operation in fusion devices. However, IR measurements are made much more complicated in metallic environment because of the spurious contributions of the reflected fluxes. This paper presents a full predictive photonic simulation able to assess accurately the surface temperature measurement with classical IR thermography from a given plasma scenario and by taking into account the optical properties of PFCs materials. This simulation has been carried out the ITER-like wide angle infrared camera view of JET in comparing with experimental data. The consequences and the effects of the low emissivity and the bidirectional reflectivity distribution function used in the model for the metallic PFCs on the contribution of the reflected flux in the analysis are discussed.

  20. Intra-Examiner and Inter-Examiner Reproducibility of Paraspinal Thermography

    PubMed Central

    McCoy, Matthew; Campbell, Ismay; Stone, Pamela; Fedorchuk, Curtis; Wijayawardana, Sameera; Easley, Kirk

    2011-01-01

    Objective The objective of this study was to evaluate the intra-examiner and inter-examiner reproducibility of paraspinal thermography using an infrared scanner. Materials and Methods The thermal functions of a commercially available infrared scanner (Insight Subluxation Station®) were evaluated for clinical reliability. Two practicing clinicians conducted the measures on 100 subjects. Intra class correlation coefficients (ICCs) and concordance correlation coefficients (CCCs) were calculated from the collected data. Results Mean bilateral paraspinal skin temperature was 89.78° F and ranged from 88.77° F to 91.43° F. Intra class correlation coefficients (ICCs) for agreement and consistency ranged from 0.959 to 0.976. Concordance correlation coefficients (CCCs) ranged from 0.783 to 0.859 with tight confidence intervals indicating robust estimates of these quantities. Conclusion This study revealed excellent intra-examiner and inter-examiner reproducibility of paraspinal thermography using a commercially available unit. PMID:21347290

  1. Thickness determination of polymeric multilayer surface protection systems for concrete by means of pulse thermography

    NASA Astrophysics Data System (ADS)

    Altenburg, S. J.; Krankenhagen, R.; Bavendiek, F.

    2017-02-01

    For thickness determination of polymer based surface protection systems for concrete surfaces, so far only destructive measurement techniques are available. Pulse thermography appears to be well suited for non-destructive thickness evaluation in these systems. Here, we present first results of the development of a respective measurement and analysis procedure. Since surface protection systems consist of a number of layers, a model for the calculation of the surface temperature of a multi-layer structure on a semi-infinite (concrete) substrate in pulse thermography setup was developed. It considers semitransparency of the upmost layer and thermal losses at the surface. It also supports the use of an arbitrary temporal shape of the heating pulse to properly describe the measurement conditions for different heat sources. Simulations for one and three layers on the substrate are presented and first results from fitting the model to experimental data for thickness determination and verification of the model are presented.

  2. Electromagnetic Thermography Nondestructive Evaluation: Physics-based Modeling and Pattern Mining

    PubMed Central

    Gao, Bin; Woo, Wai Lok; Tian, Gui Yun

    2016-01-01

    Electromagnetic mechanism of Joule heating and thermal conduction on conductive material characterization broadens their scope for implementation in real thermography based Nondestructive testing and evaluation (NDT&E) systems by imparting sensitivity, conformability and allowing fast and imaging detection, which is necessary for efficiency. The issue of automatic material evaluation has not been fully addressed by researchers and it marks a crucial first step to analyzing the structural health of the material, which in turn sheds light on understanding the production of the defects mechanisms. In this study, we bridge the gap between the physics world and mathematical modeling world. We generate physics-mathematical modeling and mining route in the spatial-, time-, frequency-, and sparse-pattern domains. This is a significant step towards realizing the deeper insight in electromagnetic thermography (EMT) and automatic defect identification. This renders the EMT a promising candidate for the highly efficient and yet flexible NDT&E. PMID:27158061

  3. A Novel Method for Extracting Respiration Rate and Relative Tidal Volume from Infrared Thermography

    PubMed Central

    Lewis, Gregory F.; Gatto, Rodolfo G.; Porges, Stephen W.

    2010-01-01

    In psychophysiological research, measurement of respiration has been dependent on transducers having direct contact with the participant. The current study provides empirical data demonstrating that a noncontact technology, infrared video thermography, can accurately estimate breathing rate and relative tidal volume across a range of breathing patterns. Video tracking algorithms were applied to frame-by-frame thermal images of the face to extract time series of nostril temperature and to generate breath-by-breath measures of respiration rate and relative tidal volume. The thermal indices of respiration were contrasted with criterion measures collected with inductance plethysmography. The strong correlations observed between the technologies demonstrate the potential use of facial video thermography as a noncontact technology to monitor respiration. PMID:21214587

  4. Evaluation of the Diagnostic Power of Thermography in Breast Cancer Using Bayesian Network Classifiers

    PubMed Central

    Nicandro, Cruz-Ramírez; Efrén, Mezura-Montes; María Yaneli, Ameca-Alducin; Enrique, Martín-Del-Campo-Mena; Héctor Gabriel, Acosta-Mesa; Nancy, Pérez-Castro; Alejandro, Guerra-Hernández; Guillermo de Jesús, Hoyos-Rivera; Rocío Erandi, Barrientos-Martínez

    2013-01-01

    Breast cancer is one of the leading causes of death among women worldwide. There are a number of techniques used for diagnosing this disease: mammography, ultrasound, and biopsy, among others. Each of these has well-known advantages and disadvantages. A relatively new method, based on the temperature a tumor may produce, has recently been explored: thermography. In this paper, we will evaluate the diagnostic power of thermography in breast cancer using Bayesian network classifiers. We will show how the information provided by the thermal image can be used in order to characterize patients suspected of having cancer. Our main contribution is the proposal of a score, based on the aforementioned information, that could help distinguish sick patients from healthy ones. Our main results suggest the potential of this technique in such a goal but also show its main limitations that have to be overcome to consider it as an effective diagnosis complementary tool. PMID:23762182

  5. Electromagnetic Thermography Nondestructive Evaluation: Physics-based Modeling and Pattern Mining.

    PubMed

    Gao, Bin; Woo, Wai Lok; Tian, Gui Yun

    2016-05-09

    Electromagnetic mechanism of Joule heating and thermal conduction on conductive material characterization broadens their scope for implementation in real thermography based Nondestructive testing and evaluation (NDT&E) systems by imparting sensitivity, conformability and allowing fast and imaging detection, which is necessary for efficiency. The issue of automatic material evaluation has not been fully addressed by researchers and it marks a crucial first step to analyzing the structural health of the material, which in turn sheds light on understanding the production of the defects mechanisms. In this study, we bridge the gap between the physics world and mathematical modeling world. We generate physics-mathematical modeling and mining route in the spatial-, time-, frequency-, and sparse-pattern domains. This is a significant step towards realizing the deeper insight in electromagnetic thermography (EMT) and automatic defect identification. This renders the EMT a promising candidate for the highly efficient and yet flexible NDT&E.

  6. Quantitative detection of defects based on Markov-PCA-BP algorithm using pulsed infrared thermography technology

    NASA Astrophysics Data System (ADS)

    Tang, Qingju; Dai, Jingmin; Liu, Junyan; Liu, Chunsheng; Liu, Yuanlin; Ren, Chunping

    2016-07-01

    Quantitative detection of debonding defects' diameter and depth in TBCs has been carried out using pulsed infrared thermography technology. By combining principal component analysis with neural network theory, the Markov-PCA-BP algorithm was proposed. The principle and realization process of the proposed algorithm was described. In the prediction model, the principal components which can reflect most characteristics of the thermal wave signal were set as the input, and the defect depth and diameter was set as the output. The experimental data from pulsed infrared thermography tests of TBCs with flat bottom hole defects was selected as the training and testing sample. Markov-PCA-BP predictive system was arrived, based on which both the defect depth and diameter were identified accurately, which proved the effectiveness of the proposed method for quantitative detection of debonding defects in TBCs.

  7. Quantitative analysis of pulse thermography data for degradation assessment of historical buildings

    NASA Astrophysics Data System (ADS)

    Di Maio, Rosa; Piegari, Ester; Mancini, Cecilia; Chiapparino, Antonella

    2015-06-01

    In the last decades, infrared thermography has been successfully applied to various materials and structures for the assessment of their state of conservation and planning suitable restoration works. To this aim, mathematical models are required to characterize thermal anomaly sources, such as detachments, water infiltration and material decomposition processes. In this paper, an algorithm based on the conservative finite difference method is used to analyse pulse thermography data acquired on an ancient building in the Pompeii archaeological site (Naples, Italy). The numerical study is applied to both broad and narrow elongated thermal anomalies. In particular, from the comparison between simulated and experimental thermal decays, the plaster thickness was characterized in terms of thermal properties and areas of possible future detachments, and moisture infiltration depths were identified.

  8. Intraoperative imaging of cortical cerebral perfusion by time-resolved thermography and multivariate data analysis.

    PubMed

    Steiner, Gerald; Sobottka, Stephan B; Koch, Edmund; Schackert, Gabriele; Kirsch, Matthias

    2011-01-01

    A new approach to cortical perfusion imaging is demonstrated using high-sensitivity thermography in conjunction with multivariate statistical data analysis. Local temperature changes caused by a cold bolus are imaged and transferred to a false color image. A cold bolus of 10 ml saline at ice temperature is injected systemically via a central venous access. During the injection, a sequence of 735 thermographic images are recorded within 2 min. The recorded data cube is subjected to a principal component analysis (PCA) to select slight changes of the cortical temperature caused by the cold bolus. PCA reveals that 11 s after injection the temperature of blood vessels is shortly decreased followed by an increase to the temperature before the cold bolus is injected. We demonstrate the potential of intraoperative thermography in combination with multivariate data analysis to image cortical cerebral perfusion without any markers. We provide the first in vivo application of multivariate thermographic imaging.

  9. Visualizing and measuring the temperature field produced by medical diagnostic ultrasound using thermography

    NASA Astrophysics Data System (ADS)

    Vachutka, J.; Grec, P.; Mornstein, V.; Caruana, C. J.

    2008-11-01

    The heating of tissues by diagnostic ultrasound can pose a significant hazard particularly in the imaging of the unborn child. The demonstration of the temperature field in tissue is therefore an important objective in the teaching of biomedical physics to healthcare professionals. The temperature field in a soft tissue model was made visible and measured using thermography. Temperature data from the images were used to investigate the dependence of temperature increase within the model on ultrasound exposure time and distance from the transducer. The experiment will be used within a multi-professional biomedical physics teaching laboratory for enhancing learning regarding the principles of thermography and the thermal effects of ultrasound to medical and healthcare students and also for demonstrating the quantitative use of thermographic imaging to students of biophysics, medical physics and medical technology.

  10. Thermography-Applications To The Manufacture And Nondestructive Characterization Of Composites

    NASA Astrophysics Data System (ADS)

    Henneke, E. G.; Reifsnider, K. L.; Shuford, R. J.; Hinton, Y. L.; Markert, B. R.

    1983-03-01

    The increasing use of composite materials in military and commercial aircraft requires the development of improved quality control and nondestructive inspection techniques to assure their structural integrity and reliability. Infrared thermography is particularly useful for rapid scanning and detection of manufacturing inhomogeneities and inservice damage states in composites. The relationship between the surface thermal patterns and the interior damage is governed by the type of damage, thermal conductivity of the material and the distance between the surface and the damaged region. Applications of real-time thermography as a quality control technique for processing fiber reinforced composites, and as a nondestructive technique for monitoring growth and development of defects in composite laminates and rotor blades during low-frequency, high amplitude fatigue tests will be discussed. Applications of high frequency vibrothermography for characterizing composite structures will also be presented. This latter technique involves the use of high-frequency, low amplitude ultrasonic excitation of a sample.

  11. Assessment of techniques of massage and pumping in the treatment of breast engorgement by thermography

    PubMed Central

    Heberle, Anita Batista dos Santos; de Moura, Marcos Antônio Muniz; de Souza, Mauren Abreu; Nohama, Percy

    2014-01-01

    Objective to evaluate techniques of massage and pumping in the treatment of postpartum breast engorgement through thermography. Method the study was conducted in the Human Milk Bank of a hospital in Curitiba, Brazil. We randomly selected 16 lactating women with engorgement with the classification lobar, ampullary and glandular, moderate and intense. We compared the differential patterns of temperature, before and after the treatment by means of massage and pumping. Results we found a negative gradient of 0.3°C of temperature between the pre- and post-treatment in the experimental group. Breasts with intense engorgement were 0.7°C warmer when compared with moderate engorgement. Conclusion massage and electromechanical pumping were superior to manual methods when evaluated by thermography. REBEC: U1111-1136-9027. PMID:26107836

  12. Evaluation of the diagnostic power of thermography in breast cancer using Bayesian network classifiers.

    PubMed

    Nicandro, Cruz-Ramírez; Efrén, Mezura-Montes; María Yaneli, Ameca-Alducin; Enrique, Martín-Del-Campo-Mena; Héctor Gabriel, Acosta-Mesa; Nancy, Pérez-Castro; Alejandro, Guerra-Hernández; Guillermo de Jesús, Hoyos-Rivera; Rocío Erandi, Barrientos-Martínez

    2013-01-01

    Breast cancer is one of the leading causes of death among women worldwide. There are a number of techniques used for diagnosing this disease: mammography, ultrasound, and biopsy, among others. Each of these has well-known advantages and disadvantages. A relatively new method, based on the temperature a tumor may produce, has recently been explored: thermography. In this paper, we will evaluate the diagnostic power of thermography in breast cancer using Bayesian network classifiers. We will show how the information provided by the thermal image can be used in order to characterize patients suspected of having cancer. Our main contribution is the proposal of a score, based on the aforementioned information, that could help distinguish sick patients from healthy ones. Our main results suggest the potential of this technique in such a goal but also show its main limitations that have to be overcome to consider it as an effective diagnosis complementary tool.

  13. Is it possible to revive the flagging interest in thermography for neurology?

    NASA Astrophysics Data System (ADS)

    Stulin, Igor D.

    1993-11-01

    The paper describes the results of twenty-years of experience in applying thermography (thermal imaging) in routine and urgent neurology, based on the study of more than ten thousand patients. Stress is laid on the fact that thermography is of great significance for diagnosing dextrocerebral hemorrhagic insult with a manifestation of pronounced hemihypothermia in the paralyzed limbs, identifying paraorbital hyperthermia on the side of rhinogenous cerebral abscess, for instrumental registration of transitory heat-up of the nasolabial region in the case of patients suffering from hypertensive nasal bleeding. Much attention is given to diagnosis of intra- and extracerebral phlebopathy in urgent neurology -- early diagnosis of iatrogenic catheterization phlebitis, interference with the venous return in the paralyzed lower limb. The novelty here is the employment of telethermography for complex diagnosis of cerebral death.

  14. Unraveling dynamics of human physical activity patterns in chronic pain conditions

    NASA Astrophysics Data System (ADS)

    Paraschiv-Ionescu, Anisoara; Buchser, Eric; Aminian, Kamiar

    2013-06-01

    Chronic pain is a complex disabling experience that negatively affects the cognitive, affective and physical functions as well as behavior. Although the interaction between chronic pain and physical functioning is a well-accepted paradigm in clinical research, the understanding of how pain affects individuals' daily life behavior remains a challenging task. Here we develop a methodological framework allowing to objectively document disruptive pain related interferences on real-life physical activity. The results reveal that meaningful information is contained in the temporal dynamics of activity patterns and an analytical model based on the theory of bivariate point processes can be used to describe physical activity behavior. The model parameters capture the dynamic interdependence between periods and events and determine a `signature' of activity pattern. The study is likely to contribute to the clinical understanding of complex pain/disease-related behaviors and establish a unified mathematical framework to quantify the complex dynamics of various human activities.

  15. AFS dynamics in a short-lived active region

    NASA Astrophysics Data System (ADS)

    Zuccarello, F.; Battiato, V.; Contarino, L.; Romano, P.; Spadaro, D.; Vlahos, L.

    2005-11-01

    In the framework of the study on active region emergence, we report the results obtained from the analysis of the short-lived (7 days) active region NOAA 10407. The data used were acquired during an observational campaign carried out with the THEMIS telescope in IPM mode in July 2003, coordinated with other ground- and space-based instruments (INAF-OACT, DOT, BBSO, MDI/SOHO, EIT/SOHO, TRACE). We determined the morphological and magnetic evolution of NOAA 10407, as well as the velocity fields associated with its magnetic structures. Within the limits imposed by the spatial and temporal resolution of the images analyzed, the first evidence of the active region formation is initially observed in the transition region and lower corona, and later on (i.e. after about 7 h) in the inner layers, as found in a previous analysis concerning a long-lived, recurrent active region. The results also indicate that the AFS formed in the active region shows typical upward motion at the AFS's tops and downward motion at the footpoints. The velocity values relevant to the upward motions decrease over the evolution of the region, similarly to the case of the recurrent active region, while we notice an increasing trend in the downflow velocity during the early phases of the time interval analyzed by THEMIS. On the other hand, the AFS preceding legs show a higher downflow than the following ones, a result in contrast with that found in the long-lived active region. The chromospheric area overhanging the sunspot umbra shows an upward motion of ˜ 2 km s-1, while that above the pores shows a downward motion of ~4 km s-1.

  16. Contributions to the dynamics of helicopters with active rotor controls

    NASA Astrophysics Data System (ADS)

    Malpica, Carlos A.

    This dissertation presents an aeromechanical closed loop stability and response analysis of a hingeless rotor helicopter with a Higher Harmonic Control (HHC) system for vibration reduction. The analysis includes the rigid body dynamics of the helicopter and blade flexibility. The gain matrix is assumed to be fixed and computed off-line. The discrete elements of the HHC control loop are rigorously modeled, including the presence of two different time scales in the loop. By also formulating the coupled rotor-fuselage dynamics in discrete form, the entire coupled helicopter-HHC system could be rigorously modeled as a discrete system. The effect of the periodicity of the equations of motion is rigorously taken into account by converting the system into an equivalent system with constant coefficients and identical stability properties using a time lifting technique. The most important conclusion of the present study is that the discrete elements in the HHC loop must be modeled in any HHC analysis. Not doing so is unconservative. For the helicopter configuration and HHC structure used in this study, an approximate continuous modeling of the HHC system indicates that the closed loop, coupled helicopter-HHC system remains stable for optimal feedback control configurations which the more rigorous discrete analysis shows can result in closed loop instabilities. The HHC gains must be reduced to account for the loss of gain margin brought about by the discrete elements. Other conclusions of the study are: (i) the HHC is effective in quickly reducing vibrations, at least at its design condition, although the time constants associated with the closed loop transient response indicate closed loop bandwidth to be 1 rad/sec on average, thus overlapping with FCS or pilot bandwidths, and raising the issue of potential interactions; (ii) a linearized model of helicopter dynamics is adequate for HHC design, as long as the periodicity of the system is correctly taken into account, i

  17. Usefulness of high-resolution thermography in fault diagnosis of fluid power components and systems

    NASA Astrophysics Data System (ADS)

    Pietola, Matti; Varrio, Jukka P.

    1996-03-01

    Infrared thermography has been used routinely in industrial applications for quite a long time. For example, the condition of electric power lines, district heating networks, electric circuits and components, heat exchangers, pipes and its insulations, cooling towers, and various machines and motors is monitored using infrared imaging techniques. Also the usage of this technology in predictive maintenance has proved successful, mainly because of effective computers and tailored softwares available. However, the usage of thermal sensing technique in fluid power systems and components (or other automation systems in fact) is not as common. One apparent reason is that a fluid power circuit is not (and nor is a hydraulic component) an easy object of making thermal image analyses. Especially the high flow speed, fast pressure changes and fast movements make the diagnosis complex and difficult. Also the number of people whose knowledge is good both in thermography and fluid power systems is not significant. In this paper a preliminary study of how thermography could be used in the condition monitoring, fault diagnosis and predictive maintenance of fluid power components and systems is presented. The shortages and limitations of thermal imaging in the condition monitoring of fluid power are also discussed. Among many other cases the following is discussed: (1) pressure valves (leakage, wrong settings), (2) check valves (leakage); (3) cylinders (leakage and other damages); (4) directional valves and valve assemblies; (5) pumps and motors (leakage in piston or control plate, bearings). The biggest advantage of using thermography in the predictive maintenance and fault diagnosis of fluid power components and systems could be achieved in the process industry and perhaps in the commissioning of fluid power systems in the industry. In the industry the predictive maintenance of fluid power with the aid of an infrared camera could be done as part of a condition monitoring of

  18. Neonatal infrared thermography imaging: Analysis of heat flux during different clinical scenarios

    NASA Astrophysics Data System (ADS)

    Abbas, Abbas K.; Heimann, Konrad; Blazek, Vladimir; Orlikowsky, Thorsten; Leonhardt, Steffen

    2012-11-01

    IntroductionAn accurate skin temperature measurement of Neonatal Infrared Thermography (NIRT) imaging requires an appropriate calibration process for compensation of external effects (e.g. variation of environmental temperature, variable air velocity or humidity). Although modern infrared cameras can perform such calibration, an additional compensation is required for highly accurate thermography. This compensation which corrects any temperature drift should occur during the NIRT imaging process. We introduce a compensation technique which is based on modeling the physical interactions within the measurement scene and derived the detected temperature signal of the object. Materials and methodsIn this work such compensation was performed for different NIRT imaging application in neonatology (e.g. convective incubators, kangaroo mother care (KMC), and an open radiant warmer). The spatially distributed temperatures of 12 preterm infants (average gestation age 31 weeks) were measured under these different infant care arrangements (i.e. closed care system like a convective incubator, and open care system like kangaroo mother care, and open radiant warmer). ResultsAs errors in measurement of temperature were anticipated, a novel compensation method derived from infrared thermography of the neonate's skin was developed. Moreover, the differences in temperature recording for the 12 preterm infants varied from subject to subject. This variation could be arising from individual experimental setting applied to the same region of interest over the neonate's body. The experimental results for the model-based corrections is verified over the selected patient group. ConclusionThe proposed technique relies on applying model-based correction to the measured temperature and reducing extraneous errors during NIRT. This application specific method is based on different heat flux compartments present in neonatal thermography scene. Furthermore, these results are considered to be

  19. Coupling IR Thermography and BIA to analyse body reaction after one acupuncture session

    NASA Astrophysics Data System (ADS)

    Piquemal, M.

    2013-04-01

    Coupling both thermography and bio-Impedance, some biophysical acupuncture mechanisms are statically studied on a small population of 18 subjects. Results show that a possible way of understanding acupuncture, in an electrical way, should be to consider ionic flux redistribution between vascular and extra cell compartments. This is a two steps mechanism. The first one is starting with needles insertion and the second one is lasting with more intensity after removing them from skin.

  20. Advances in the Use of Thermography to Inspect Composite Tanks for Liquid Fuel Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Lansing, Matthew D.; Russell, Samuel S.; Walker, James L.; Jones, Clyde S. (Technical Monitor)

    2001-01-01

    This viewgraph presentation gives an overview of advances in the use of thermography to inspect composite tanks for liquid fuel propulsion systems. Details are given on the thermographic inspection system, thermographic analysis method (includes scan and defect map, method of inspection, and inclusions, ply wrinkle, and delamination defects), graphite composite cryogenic feedline (including method, image map, and deep/shallow inclusions and resin rich area defects), and material degradation nondestructive evaluation.

  1. Detection and Characterization of Boundary-Layer Transition in Flight at Supersonic Conditions Using Infrared Thermography

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.

    2008-01-01

    Infrared thermography is a powerful tool for investigating fluid mechanics on flight vehicles. (Can be used to visualize and characterize transition, shock impingement, separation etc.). Updated onboard F-15 based system was used to visualize supersonic boundary layer transition test article. (Tollmien-Schlichting and cross-flow dominant flow fields). Digital Recording improves image quality and analysis capability. (Allows accurate quantitative (temperature) measurements, Greater enhancement through image processing allows analysis of smaller scale phenomena).

  2. Infrared dermal thermography on diabetic feet soles to predict ulcerations: a case study

    NASA Astrophysics Data System (ADS)

    Liu, Chanjuan; van der Heijden, Ferdi; Klein, Marvin E.; van Baal, Jeff G.; Bus, Sicco A.; van Netten, Jaap J.

    2013-03-01

    Diabetic foot ulceration is a major complication for patients with diabetes mellitus. If not adequately treated, these ulcers may lead to foot infection, and ultimately to lower extremity amputation, which imposes a major burden to society and great loss in health-related quality of life for patients. Early identification and subsequent preventive treatment have proven useful to limit the incidence of foot ulcers and lower extremity amputation. Thus, the development of new diagnosis tools has become an attractive option. The ultimate objective of our project is to develop an intelligent telemedicine monitoring system for frequent examination on patients' feet, to timely detect pre-signs of ulceration. Inflammation in diabetic feet can be an early and predictive warning sign for ulceration, and temperature has been proven to be a vicarious marker for inflammation. Studies have indicated that infrared dermal thermography of foot soles can be one of the important parameters for assessing the risk of diabetic foot ulceration. This paper covers the feasibility study of using an infrared camera, FLIR SC305, in our setup, to acquire the spatial thermal distribution on the feet soles. With the obtained thermal images, automated detection through image analysis was performed to identify the abnormal increased/decreased temperature and assess the risk for ulceration. The thermography for feet soles of patients with diagnosed diabetic foot complications were acquired before the ordinary foot examinations. Assessment from clinicians and thermography were compared and follow-up measurements were performed to investigate the prediction. A preliminary case study will be presented, indicating that dermal thermography in our proposed setup can be a screening modality to timely detect pre-signs of ulceration.

  3. Endoscopic Shearography and Thermography Methods for Nondestructive Evaluation of Lined Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Russell, S. S.; Lansing, M. D.

    1997-01-01

    The goal of this research effort was the development of methods for shearographic and thermographic inspection of coatings, bonds, or laminates inside rocket fuel or oxidizer tanks, fuel lines, and other closed structures. The endoscopic methods allow imaging and inspection inside cavities that are traditionally inaccessible with shearography or thermography cameras. The techniques are demonstrated and suggestions for practical application are made in this report. Drawings of the experimental setups, detailed procedures, and experimental data are included.

  4. Early events in plant hypersensitive response leaves revealed by IR thermography

    NASA Astrophysics Data System (ADS)

    Boccara, Martine; Boue, Christine; De Paepe, Rosine; Boccara, Albert C.

    2001-10-01

    Infrared thermography is used to reveal the establishment of Erwinia amylovora harpin-induced hypersensitive response (HR) in Nicotiana sylvestris leaves. We observed a decrease in temperature (1-2 degree(s)C) in the harpin infiltrated zone, correlated with an increase in stomatal opening, strongly suggesting that the temperature decrease is due to higher transpiration rate. IRT experiments were conducted in a laboratory environment and could be widely applied for genotype screening and monitoring drug effects.

  5. A combined approach for using thermography for the detection of diabetes mellitus

    NASA Astrophysics Data System (ADS)

    Berry, Bob

    2014-05-01

    This paper presents work done to develop an early diagnosis and monitoring method-encompassing thermography for the detection of Diabetes Mellitus. The early detection method involves fusion of images from infrared cameras, ultrasound devices, a 3D camera and a dermatascope. The project is to develop a novel system that could be easily used by physicians to allow for early intervention, and the paper highlights the approach taken by the Skindetector project.

  6. Evaluation of the limit of acceptable damage for leather products using infrared thermography

    NASA Astrophysics Data System (ADS)

    Luong, Phong M.

    1999-02-01

    The paper aims to illustrate three advantages of IR thermography as a nondestructive, noncontact and real time technique, (a) to observe the progressive damage processes and mechanisms of leather failure, and (b) to detect the occurrence of intrinsic dissipation localization. The parameter, investigated in this paper, is the heat generation due to intrinsic dissipation caused by inelasticity and/or inelasticity of leather. It readily describes the damage location and the failure evolution of leather for sport foot-wear.

  7. [Application possibilities of modern thermography--first experience with the new Tomey TG 1000].

    PubMed

    Klamann, M K J; Klein, J P; Maier, A-K B; Gonnermann, J; Pleyer, U

    2011-06-01

    Temperature is one of the fundamental characteristics of tissue metabolism and is certainly of major interest to investigate ocular physiology. Current instrumentation offers the potential to measure the ocular surface temperature (OST) with high accuracy and resolution. Potential applications of OST measurement may include any condition of the ocular surface. The present study gives a survey of the possible applications of thermography and describes our first experience with the new Tomey TG 1000.

  8. Application of Pyrometry and IR-Thermography to High Surface Temperature Measurements

    DTIC Science & Technology

    2000-04-01

    Division in Cologne Porz-Wahnheide, Linder H6he D-51147 Cologne, Germany Summary d distance E energy In this document the non- intrusive temperature...interaction with the supersonic Some main parameters of the thermal radiation are flow, non- intrusive temperature measurement tech- defined below [1...ing a time duration dt into a hemisphere: well. S= dW / dt [W /m2]. (1) IR-thermography and pyrometry are two well de- veloped non- intrusive techniques

  9. Microbial Community Dynamics and Activity Link to Indigo Production from Indole in Bioaugmented Activated Sludge Systems

    PubMed Central

    Deng, Jie; Deng, Ye; Van Nostrand, Joy D.; Wu, Liyou; He, Zhili; Qin, Yujia; Zhou, Jiti; Zhou, Jizhong

    2015-01-01

    Biosynthesis of the popular dyestuff indigo from indole has been comprehensively studied using pure cultures, but less has been done to characterize the indigo production by microbial communities. In our previous studies, a wild strain Comamonas sp. MQ was isolated from activated sludge and the recombinant Escherichia coli nagAc carrying the naphthalene dioxygenase gene (nag) from strain MQ was constructed, both of which were capable of producing indigo from indole. Herein, three activated sludge systems, G1 (non-augmented control), G2 (augmented with Comamonas sp. MQ), and G3 (augmented with recombinant E. coli nagAc), were constructed to investigate indigo production. After 132-day operation, G3 produced the highest yields of indigo (99.5 ± 3.0 mg/l), followed by G2 (27.3 ± 1.3 mg/l) and G1 (19.2 ± 1.2 mg/l). The microbial community dynamics and activities associated with indigo production were analyzed by Illumina Miseq sequencing of 16S rRNA gene amplicons. The inoculated strain MQ survived for at least 30 days, whereas E. coli nagAc was undetectable shortly after inoculation. Quantitative real-time PCR analysis suggested the abundance of naphthalene dioxygenase gene (nagAc) from both inoculated strains was strongly correlated with indigo yields in early stages (0–30 days) (P < 0.001) but not in later stages (30–132 days) (P > 0.10) of operation. Based on detrended correspondence analysis (DCA) and dissimilarity test results, the communities underwent a noticeable shift during the operation. Among the four major genera (> 1% on average), the commonly reported indigo-producing populations Comamonas and Pseudomonas showed no positive relationship with indigo yields (P > 0.05) based on Pearson correlation test, while Alcaligenes and Aquamicrobium, rarely reported for indigo production, were positively correlated with indigo yields (P < 0.05). This study should provide new insights into our understanding of indigo bio-production by microbial communities

  10. Dynamic Stabilization of Simple Fractures With Active Plates Delivers Stronger Healing Than Conventional Compression Plating

    PubMed Central

    Tsai, Stanley; Bliven, Emily K.; von Rechenberg, Brigitte; Kindt, Philipp; Augat, Peter; Henschel, Julia; Fitzpatrick, Daniel C.; Madey, Steven M.

    2017-01-01

    Objectives: Active plates dynamize a fracture by elastic suspension of screw holes within the plate. We hypothesized that dynamic stabilization with active plates delivers stronger healing relative to standard compression plating. Methods: Twelve sheep were randomized to receive either a standard compression plate (CP) or an active plate (ACTIVE) for stabilization of an anatomically reduced tibial osteotomy. In the CP group, absolute stabilization was pursued by interfragmentary compression with 6 cortical screws. In the ACTIVE group, dynamic stabilization after bony apposition was achieved with 6 elastically suspended locking screws. Fracture healing was analyzed weekly on radiographs. After sacrifice 9 weeks postsurgery, the torsional strength of healed tibiae and contralateral tibiae was measured. Finally, computed tomography was used to assess fracture patterns and healing modes. Results: Healing in both groups included periosteal callus formation. ACTIVE specimens had almost 6 times more callus area by week 9 (P < 0.001) than CP specimens. ACTIVE specimens recovered on average 64% of their native strength by week 9, and were over twice as strong as CP specimens, which recovered 24% of their native strength (P = 0.008). Microcomputed tomography demonstrated that compression plating induced a combination of primary bone healing and gap healing. Active plating consistently stimulated biological bone healing by periosteal callus formation. Conclusions: Compared with compression plating, dynamic stabilization of simple fractures with active plates delivers significantly stronger healing. PMID:27861456

  11. Biomechanical stress maps of an artificial femur obtained using a new infrared thermography technique validated by strain gages.

    PubMed

    Shah, Suraj; Bougherara, Habiba; Schemitsch, Emil H; Zdero, Rad

    2012-12-01

    Femurs are the heaviest, longest, and strongest long bones in the human body and are routinely subjected to cyclic forces. Strain gages are commonly employed to experimentally validate finite element models of the femur in order to generate 3D stresses, yet there is little information on a relatively new infrared (IR) thermography technique now available for biomechanics applications. In this study, IR thermography validated with strain gages was used to measure the principal stresses in the artificial femur model from Sawbones (Vashon, WA, USA) increasingly being used for biomechanical research. The femur was instrumented with rosette strain gages and mechanically tested using average axial cyclic forces of 1500 N, 1800 N, and 2100 N, representing 3 times body weight for a 50 kg, 60 kg, and 70 kg person. The femur was oriented at 7° of adduction to simulate the single-legged stance phase of walking. Stress maps were also obtained using an IR thermography camera. Results showed good agreement of IR thermography vs. strain gage data with a correlation of R(2)=0.99 and a slope=1.08 for the straight line of best fit. IR thermography detected the highest principal stresses on the superior-posterior side of the neck, which yielded compressive values of -91.2 MPa (at 1500 N), -96.0 MPa (at 1800 N), and -103.5 MPa (at 2100 N). There was excellent correlation between IR thermography principal stress vs. axial cyclic force at 6 locations on the femur on the lateral (R(2)=0.89-0.99), anterior (R(2)=0.87-0.99), and posterior (R(2)=0.81-0.99) sides. This study shows IR thermography's potential for future biomechanical applications.

  12. Communication: Effective temperature and glassy dynamics of active matter.

    PubMed

    Wang, Shenshen; Wolynes, Peter G

    2011-08-07

    A systematic expansion of the many-body master equation for active matter, in which motors power configurational changes as in the cytoskeleton, is shown to yield a description of the steady state and responses in terms of an effective temperature. The effective temperature depends on the susceptibility of the motors and a Peclet number which measures their strength relative to thermal Brownian diffusion. The analytic prediction is shown to agree with previous numerical simulations and experiments. The mapping also establishes a description of aging in active matter that is also kinetically jammed.

  13. Infrared Thermography to Evaluate Heat Tolerance in Different Genetic Groups of Lambs

    PubMed Central

    McManus, Concepta; Bianchini, Eliandra; Paim, Tiago do Prado; de Lima, Flavia Gontijo; Braccini Neto, José; Castanheira, Marlos; Esteves, Geisa Isilda Ferreira; Cardoso, Caio Cesar; Dalcin, Vanessa Calderaro

    2015-01-01

    Heat stress is considered a limiting factor for sheep production. We used information from physiological characteristics linked to heat tolerance to determine whether infrared thermography temperatures were able to separate groups of animals and determine the most important variables in this differentiation. Forty-eight four-month-old male lambs from eight genetic groups were used. Physiological (rectal temperature–RT, heart rate–HR, respiratory rate–RR) and blood traits, infrared thermography temperatures, heat tolerance indices, body measurements, weight and carcass traits were measured. Statistical analyses included variance, correlations, factor, discrimination and regression. Observing the correlations between physiological characteristics (RT, RR and HR) with temperatures measured by infrared thermography, regions for further studies should include the mean temperature of flank, nose and rump. Results show that there are strong relationships between thermograph measurements and RR, RT and HR in lambs, which are suggested to be directly correlated with heat tolerance capacity of the different genetic groups evaluated in this study. The assessment of body surface temperature measured by the thermograph could be used as a noninvasive tool to assess heat tolerance of the animals. PMID:26193274

  14. Infrared thermography based on artificial intelligence for carpal tunnel syndrome diagnosis.

    PubMed

    Jesensek Papez, B; Palfy, M; Turk, Z

    2008-01-01

    Thermography for the measurement of surface temperatures is well known in industry, although is not established in medicine despite its safety, lack of pain and invasiveness, easy reproducibility, and low running costs. Promising results have been achieved in nerve entrapment syndromes, although thermography has never represented a real alternative to electromyography. Here an attempt is described to improve the diagnosis of carpal tunnel syndrome with thermography using a computer-based system employing artificial neural networks to analyse the images. Method reliability was tested on 112 images (depicting the dorsal and palmar sides of 26 healthy and 30 pathological hands), with the hand divided into 12 segments and compared relative to a reference. Palmar segments appeared to have no beneficial influence on classification outcome, whereas dorsal segments gave improved outcome with classification success rates near to or over 80%, and finger segments influenced by the median nerve appeared to be of greatest importance. These are preliminary results from a limited number of images and further research will be undertaken as our image database grows.

  15. Infrared Thermography to Evaluate Heat Tolerance in Different Genetic Groups of Lambs.

    PubMed

    McManus, Concepta; Bianchini, Eliandra; Paim, Tiago do Prado; de Lima, Flavia Gontijo; Neto, José Braccini; Castanheira, Marlos; Esteves, Geisa Isilda Ferreira; Cardoso, Caio Cesar; Dalcin, Vanessa Calderaro

    2015-07-16

    Heat stress is considered a limiting factor for sheep production. We used information from physiological characteristics linked to heat tolerance to determine whether infrared thermography temperatures were able to separate groups of animals and determine the most important variables in this differentiation. Forty-eight four-month-old male lambs from eight genetic groups were used. Physiological (rectal temperature-RT, heart rate-HR, respiratory rate-RR) and blood traits, infrared thermography temperatures, heat tolerance indices, body measurements, weight and carcass traits were measured. Statistical analyses included variance, correlations, factor, discrimination and regression. Observing the correlations between physiological characteristics (RT, RR and HR) with temperatures measured by infrared thermography, regions for further studies should include the mean temperature of flank, nose and rump. Results show that there are strong relationships between thermograph measurements and RR, RT and HR in lambs, which are suggested to be directly correlated with heat tolerance capacity of the different genetic groups evaluated in this study. The assessment of body surface temperature measured by the thermograph could be used as a noninvasive tool to assess heat tolerance of the animals.

  16. Scanning induction thermography (SIT) for imaging damages in carbon-fibre reinforced plastics (CFRP) components

    NASA Astrophysics Data System (ADS)

    Thomas, K. Renil; Balasubramaniam, Krishnan

    2015-03-01

    Scanning Induction Thermography (SIT) combines both Eddy Current Technique (ECT) and Thermographic Non-Destructive Techniques (TNDT) [1],[2]. This NDT technique has been earlier demonstrated for metallic components for the detection of cracks, corrosion, etc.[3]-[9] Even though Carbon-Fiber Reinforced Plastics (CFRP) has a relatively less electrical conductivity compared to metals, it was observed that sufficient heat could be generated using induction heating that can be used for nondestructive evaluation using the Induction Thermography technique. Also, measurable temperatures could be achieved using relatively less currents, when compared to metals. In Scanning Induction Thermography (SIT) technique, the induction coil moves over the sample at optimal speeds and the temperature developed in the sample due to Joule heating effects is captured as a function of time and distance using an IR camera in the form of video images. A new algorithm is also presented for the analysis of the video images for improved analysis of the data obtained. Several CFRP components were evaluated for detection of impact damage and delaminations using the SIT technique.

  17. Detection of tightness of mechanical joints using lock-in thermography

    NASA Astrophysics Data System (ADS)

    Zweschper, Thomas; Wu, Datong; Busse, Gerhard

    1999-09-01

    Lockin thermography is currently being used for the rapid and remote identification of subsurface structures and defects such as impact damages, delaminations, and hidden corrosion. The purpose of this paper is to show that lockin thermography is also a reliable tool to inspect in a remote way the tightness of mechanical joints in safety relevant structures (e.g. aerospace equipment and vehicles). For example, the rapid identification of loose rivets is a major concern for airlines and manufacturers in order to monitor the structural integrity of their aircraft. Our measurements aimed at the early detection of loose rivets. We analyzed the phase image signature obtained on two metal plates pressed together by screws fastened at various torque levels. A clear relationship was established between phase angle and torque level at which the screws had been fastened. Based on these results our investigations were extended to riveted samples where two aluminum plates were pressed together by an array of ten blind rivets. Also in this case the level of tightness of rivet joints can be detected. In addition to these feasibility studies on model samples, we performed investigations on airplane components which confirmed the applicability of lockin thermography for remote maintenance inspection within a few minutes.

  18. Assessing the reliability of thermography to infer internal body temperatures of lizards.

    PubMed

    Barroso, Frederico M; Carretero, Miguel A; Silva, Francisco; Sannolo, Marco

    2016-12-01

    For many years lizard thermal ecology studies have relied on the use of contact thermometry to obtain internal body temperature (Tb) of the animals. However, with progressing technology, an interest grew in using new, less invasive methods, such as InfraRed (IR) pyrometry and thermography, to infer Tb of reptiles. Nonetheless few studies have tested the reliability of these new tools. The present study tested the use of IR cameras as a non-invasive tool to infer Tb of lizards, using three differently body-sized lacertid species (Podarcis virescens, Lacerta schreiberi and Timon lepidus). Given the occurrence of regional heterothermy, we pairwise compared thermography readings of six body parts (snout, eye, head, dorsal, hind limb, tail base) to cloacal temperature (measured by a thermometer-associated thermocouple probe) commonly employed to measure Tb in field and lab studies. The results showed moderate to strong correlations (R(2)=0.84-0.99) between all body parts and cloacal temperature. However, despite the readings on the tail base showed the strongest correlation in all three species, it was the eye where the absolute values and pattern of temperature change most consistently followed the cloacal measurements. Hence, we concluded that the eye would be the body location whose IR camera readings more closely approximate that of the animal's internal environment. Alternatively, other body parts can be used, provided that a careful calibration is carried out. We provide guidelines for future research using thermography to infer Tb of lizards.

  19. A novel and simple method for identifying the lung intersegmental plane using thermography.

    PubMed

    Sakamoto, Kei; Kanzaki, Masato; Mitsuboshi, Shota; Maeda, Hideyuki; Kikkawa, Takuma; Isaka, Tamami; Murasugi, Masahide; Onuki, Takamasa

    2016-07-01

    Identifying the intersegmental plane is very important for successful lung segmentectomy. Although several methods are available, they require specialized skills and pose a potential risk of losing sight of the correct intersegmental planes. Therefore, easier and more reliable methods are required. In this study, we hypothesized that surface temperatures of resecting segments or lobes decrease because of blood flow suppression after the ligation of target arteries and veins, and intersegmental planes can be visualized using a thermography. To test this hypothesis, we performed six lung resections (two lobectomies and four segmentectomies) on three pigs and, using a handheld thermography, we monitored the lung surface temperatures to identify intersegmental planes. We demonstrated that thermal imaging sharply demarcated intersegmental planes soon after the ligation of vessels in all procedures. Compared with other methods, thermography requires no special technical skills, drug injection and lung inflation. Therefore, we believe that the thermographic method described in this study will be a powerful option to identify intersegmental planes during anatomical lung segmentectomy.

  20. Detection and assessment of electrocution in endangered raptors by infrared thermography

    PubMed Central

    2013-01-01

    Background Most European birds of prey find themselves in a poor state of conservation, with electrocution as one of the most frequent causes of unnatural death. Since early detection of electrocution is difficult, treatment is usually implemented late, which reduces its effectiveness. By considering that electrocution reduces tissue temperature, it may be detectable by thermography, which would allow a more rapid identification. Three individuals from three endangered raptor species [Spanish imperial eagle (Aquila adalberti), Lammergeier (Gypaetus barbatus) and Osprey (Pandion haliaetus)] were studied thermographically from the time they were admitted to a rehabilitation centre to the time their clinical cases were resolved. Cases presentation The three raptors presented lesions lacking thermal bilateral symmetry and were consistent with electrocution of feet, wings and eyes, visible by thermography before than clinically; lesions were well-defined and showed a lower temperature than the surrounding tissue. Some lesions evolved thermally and clinically until the appearance of normal tissue recovered, while others evolved and became necrotic. A histopathological analysis of a damaged finger amputated off a Lammergeier, and the necropsy and histopathology examination of an osprey, confirmed the electrocution diagnosis. Conclusions These results suggest that thermography is effective and useful for the objective and early detection and monitoring of electrocuted birds, and that it may prove especially useful for examining live animals that require no amputation or cannot be subjected to invasive histopathology. PMID:23880357