Science.gov

Sample records for active electrode area

  1. Lactose electroisomerization into lactulose: effect of the electrode material, active membrane surface area-to-electrode surface area ratio, and interelectrode-membrane distance.

    PubMed

    Aït-Aissa, Amara; Aïder, Mohammed

    2014-01-01

    The aim of the present work was to study and develop an innovative, clean, and environmentally friendly process for lactulose synthesis by electroactivation of lactose. In this work, the electrode material (type 304 stainless steel, titanium, and copper), dimensionless interelectrode-membrane distance at the cathodic compartment (0.36, 0.68, and 1), and the membrane:electrode surface area ratio (0.23, 0.06, and 0.015) were considered to be the factors that could affect the kinetic conversion of lactose into lactulose. The reactions were conducted under an initial lactose concentration of 0.15mol/L at 10°C, Froude number (mixing speed) of 2.05×10(-2), and electric current intensity of 300mA for 30min. The highest lactulose formation yield of 32.50% (0.05mol/L) was obtained by using a copper electrode, interelectrode-membrane distance of 0.36, and membrane:electrode surface area ratio of 0.23. The 2-parameter Langmuir, Freundlich, and Temkin isotherm models were used for the prediction of the lactose isomerization kinetics as well as the 3-parameter Langmuir-Freundlich isotherm model. It was shown that the lactose isomerization kinetics into lactulose followed the Temkin and Langmuir-Freundlich models with coefficients of determination of 0.99 and 0.90 and a relative error of 1.42 to 1.56% and 4.27 to 4.37%, respectively. PMID:24931526

  2. Activated transport in AMTEC electrodes

    NASA Astrophysics Data System (ADS)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; Oconnor, D.; Kikkert, S.

    1992-08-01

    Transport of alkali metal atoms through porous cathodes of alkali metal thermal-to-electric converter (AMTEC) cells is responsible for significant, reducible losses in the electrical performance of these cells. Experimental evidence for activated transport of metal atoms at grain surfaces and boundaries within some AMTEC electrodes has been derived from temperature dependent studies as well as from analysis of the detailed frequency dependence of ac impedance results for other electrodes, including thin, mature molybdenum electrodes which exhibit transport dominated by free molecular flow of sodium gas at low frequencies or dc conditions. Activated surface transport will almost always exist in parallel with free molecular flow transport, and the process of alkali atom adsorption/desorption from the electrode surface will invariably be part of the transport process, and possibly a dominant part in some cases. Little can be learned about the detailed mass transport process from the ac impedance or current voltage curves of an electrode at one set of operating parameters, because the transport process includes a number of important physical parameters that are not all uniquely determined by one experiment. The temperature dependence of the diffusion coefficient of the alkali metal through the electrode in several cases provides an activation energy and pre-exponential, but at least two activated processes may be operative, and the activation parameters should be expected to depend on the alkali metal activity gradient that the electrode experiences. In the case of Pt/W/Mn electrodes operated for 2500 hours, limiting currents varied with electrode thickness, and the activation parameters could be assigned primarily to the surface/grain boundary diffusion process.

  3. Porous carbon with a large surface area and an ultrahigh carbon purity via templating carbonization coupling with KOH activation as excellent supercapacitor electrode materials

    NASA Astrophysics Data System (ADS)

    Sun, Fei; Gao, Jihui; Liu, Xin; Pi, Xinxin; Yang, Yuqi; Wu, Shaohua

    2016-11-01

    Large surface area and good structural stability, for porous carbons, are two crucial requirements to enable the constructed supercapacitors with high capacitance and long cycling lifespan. Herein, we successfully prepare porous carbon with a large surface area (3175 m2 g-1) and an ultrahigh carbon purity (carbon atom ratio of 98.25%) via templating carbonization coupling with KOH activation. As-synthesized MTC-KOH exhibits excellent performances as supercapacitor electrode materials in terms of high specific capacitance and ultrahigh cycling stability. In a three electrode system, MTC-KOH delivers a high capacitance of 275 F g-1 at 0.5 A g-1 and still 120 F g-1 at a high rate of 30 A g-1. There is almost no capacitance decay even after 10,000 cycles, demonstrating outstanding cycling stability. In comparison, pre-activated MTC with a hierarchical pore structure shows a better rate capability than microporous MTC-KOH. Moreover, the constructed symmetric supercapacitor using MTC-KOH can achieve high energy densities of 8.68 Wh kg-1 and 4.03 Wh kg-1 with the corresponding power densities of 108 W kg-1 and 6.49 kW kg-1, respectively. Our work provides a simple design strategy to prepare highly porous carbons with high carbon purity for supercapacitors application.

  4. High surface area, low weight composite nickel fiber electrodes

    NASA Technical Reports Server (NTRS)

    Johnson, Bradley A.; Ferro, Richard E.; Swain, Greg M.; Tatarchuk, Bruce J.

    1993-01-01

    The energy density and power density of light weight aerospace batteries utilizing the nickel oxide electrode are often limited by the microstructures of both the collector and the resulting active deposit in/on the collector. Heretofore, these two microstructures were intimately linked to one another by the materials used to prepare the collector grid as well as the methods and conditions used to deposit the active material. Significant weight and performance advantages were demonstrated by Britton and Reid at NASA-LeRC using FIBREX nickel mats of ca. 28-32 microns diameter. Work in our laboratory investigated the potential performance advantages offered by nickel fiber composite electrodes containing a mixture of fibers as small as 2 microns diameter (Available from Memtec America Corporation). These electrode collectors possess in excess of an order of magnitude more surface area per gram of collector than FIBREX nickel. The increase in surface area of the collector roughly translates into an order of magnitude thinner layer of active material. Performance data and advantages of these thin layer structures are presented. Attributes and limitations of their electrode microstructure to independently control void volume, pore structure of the Ni(OH)2 deposition, and resulting electrical properties are discussed.

  5. Supercapacitor Electrodes from Activated Carbon Monoliths and Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Dolah, B. N. M.; Othman, M. A. R.; Deraman, M.; Basri, N. H.; Farma, R.; Talib, I. A.; Ishak, M. M.

    2013-04-01

    Binderless monoliths of supercapacitor electrodes were prepared by the carbonization (N2) and activation (CO2) of green monoliths (GMs). GMs were made from mixtures of self-adhesive carbon grains (SACG) of fibers from oil palm empty fruit bunches and a combination of 5 & 6% KOH and 0, 5 & 6% carbon nanotubes (CNTs) by weight. The electrodes from GMs containing CNTs were found to have lower specific BET surface area (SBET). The electrochemical behavior of the supercapacitor fabricated using the prepared electrodes were investigated by electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge (GCD). In general an addition of CNTs into the GMs reduces the equivalent series resistance (ESR) value of the cells. A cell fabricated using electrodes from GM with 5% CNT and 5% KOH was found to have the largest reduction of ESR value than that from the others GMs containing CNT. The cell has steeper Warburg's slope than that from its respective non-CNT GM, which reflect the smaller resistance for electrolyte ions to move into pores of electrodes despite these electrodes having largest reduction in specific BET surface area. The cell also has the smallest reduction of specific capacitance (Csp) and maintains the specific power range despite a reduction in the specific energy range due to the CNT addition.

  6. A highly permeable and enhanced surface area carbon-cloth electrode for vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Zhou, X. L.; Zhao, T. S.; Zeng, Y. K.; An, L.; Wei, L.

    2016-10-01

    In this work, a high-performance porous electrode, made of KOH-activated carbon-cloth, is developed for vanadium redox flow batteries (VRFBs). The macro-scale porous structure in the carbon cloth formed by weaving the carbon fibers in an ordered manner offers a low tortuosity (∼1.1) and a broad pore distribution from 5 μm to 100 μm, rendering the electrode a high hydraulic permeability and high effective ionic conductivity, which are beneficial for the electrolyte flow and ion transport through the porous electrode. The use of KOH activation method to create nano-scale pores on the carbon-fiber surfaces leads to a significant increase in the surface area for redox reactions from 2.39 m2 g-1 to 15.4 m2 g-1. The battery assembled with the present electrode delivers an energy efficiency of 80.1% and an electrolyte utilization of 74.6% at a current density of 400 mA cm-2, as opposed to an electrolyte utilization of 61.1% achieved by using a conventional carbon-paper electrode. Such a high performance is mainly attributed to the combination of the excellent mass/ion transport properties and the high surface area rendered by the present electrode. It is suggested that the KOH-activated carbon-cloth electrode is a promising candidate in redox flow batteries.

  7. Diaphragmatic activity induced by cortical stimulation: surface versus esophageal electrodes.

    PubMed

    Gea, J; Espadaler, J M; Guiu, R; Aran, X; Seoane, L; Broquetas, J M

    1993-02-01

    Evoked responses of the diaphragm can be induced by magnetic cortical stimulation and recorded by either surface or esophageal electrodes. The former recording system is tolerated better by the patient but has potential problems with the specificity of the diaphragmatic signal. This study compares the responses of the diaphragm to cortical stimulation that were recorded simultaneously with surface and esophageal electrodes on seven patients (61 +/- 4 yr) with chronic obstructive pulmonary diseases. Stimuli were delivered in three ventilatory conditions: at baseline, during deep breathing, and during voluntary panting. No differences were observed between results recorded by surface and esophageal electrodes [amplitude of the compound motor of the action potential (CMAP), 0.8 +/- 0.1 vs. 0.8 +/- 0.1 mV, NS; latency, 13.1 +/- 0.4 vs. 12.6 +/- 0.5 ms, NS]. In addition, significant correlations were found (CMAP, r = 0.77, P < 0.001; latency, r = 0.71, P = 0.002). The concordance analysis, however, indicated some dissimilarity between the recordings of the electrodes (CMAP, R1 = 0.31; latency, R1 = 0.26). These differences may be due to the area of the muscle mainly recorded by each electrode and/or to the additional activity from other muscles recorded by surface electrodes. On the other hand, the diaphragmatic responses observed in these patients with chronic obstructive pulmonary diseases were similar to those previously reported in healthy subjects. PMID:8458780

  8. Technique eliminates high voltage arcing at electrode-insulator contact area

    NASA Technical Reports Server (NTRS)

    Mealy, G.

    1967-01-01

    Coating the electrode-insulator contact area with silver epoxy conductive paint and forcing the electrode and insulator tightly together into a permanent connection, eliminates electrical arcing in high-voltage electrodes supplying electrical power to vacuum facilities.

  9. Potentiometric Acid-Base Titrations with Activated Graphite Electrodes

    NASA Astrophysics Data System (ADS)

    Riyazuddin, P.; Devika, D.

    1997-10-01

    Dry cell graphite (DCG) electrodes activated with potassium permanganate are employed as potentiometric indicator electrodes for acid-base titrations. Special attention is given to an indicator probe comprising activated DCG-non-activiated DCG electrode couple. This combination also proves suitable for the titration of strong or weak acids.

  10. Potential applications of a small high-surface-area platinum electrode as an implanted impedance biosensor or recording electrode

    NASA Astrophysics Data System (ADS)

    Duan, Yvonne Y.; Millard, Rodney E.; Tykocinski, Michael; Lui, Xuguang; Clark, Graeme M.; Cowan, Robert S. C.

    2001-03-01

    A small Platinum (Pt) electrode (geometric area: ~0.43 mm2) was treated in an electrochemical etching process, to produce a highly porous columnar thin layer (~600 nm) on the surface of the electrode. The modified Pt electrode (Pt-p) showed similar electrical properties to a platinum-black electrode but with high mechanical integrity. Previous studies of chronic stimulation had also shown good biocompatibility and surface stability over several months implantation. This paper discusses the potential applications of the modified electrode as an implanted bio-sensor: (1) as a recording electrode compared to an untreated Pt electrode. (2) as a probe in detecting electrical characteristics of living biological material adjacent to the electrode in vivo, which may correlate to inflammation or trauma repair. Results of electrochemical impedance spectroscopy (EIS) revealed much lower electrode interface polarisation impedance, reduced overall electrode impedance, and a largely constant impedance above 100 Hz for the Pt-p electrode compared with untreated Pt electrodes. This provides a platform for recording biological events with low noise interference. Results of A.C. impedance spectroscopy of the high surface area electrode only reflect changes in the surrounding biological environment in the frequency range (1 k Hz to 100 k Hz), interference from electrode polarisation impedance can be neglected. The results imply that the surface-modified electrode is a good candidate for application to implantable biosensors for detecting bio-electric events. The modification procedure and its high surface area concept could have application to a smart MEMS device or microelectrode.

  11. Correlation of the impedance and effective electrode area of doped PEDOT modified electrodes for brain-machine interfaces.

    PubMed

    Harris, Alexander R; Molino, Paul J; Kapsa, Robert M I; Clark, Graeme M; Paolini, Antonio G; Wallace, Gordon G

    2015-05-01

    Electrode impedance is used to assess the thermal noise and signal-to-noise ratio for brain-machine interfaces. An intermediate frequency of 1 kHz is typically measured, although other frequencies may be better predictors of device performance. PEDOT-PSS, PEDOT-DBSA and PEDOT-pTs conducting polymer modified electrodes have reduced impedance at 1 kHz compared to bare metal electrodes, but have no correlation with the effective electrode area. Analytical solutions to impedance indicate that all low-intermediate frequencies can be used to compare the electrode area at a series RC circuit, typical of an ideal metal electrode in a conductive solution. More complex equivalent circuits can be used for the modified electrodes, with a simplified Randles circuit applied to PEDOT-PSS and PEDOT-pTs and a Randles circuit including a Warburg impedance element for PEDOT-DBSA at 0 V. The impedance and phase angle at low frequencies using both equivalent circuit models is dependent on the electrode area. Low frequencies may therefore provide better predictions of the thermal noise and signal-to-noise ratio at modified electrodes. The coefficient of variation of the PEDOT-pTs impedance at low frequencies was lower than the other conducting polymers, consistent with linear and steady-state electroactive area measurements. There are poor correlations between the impedance and the charge density as they are not ideal metal electrodes. PMID:25773879

  12. Correlation of the impedance and effective electrode area of doped PEDOT modified electrodes for brain-machine interfaces.

    PubMed

    Harris, Alexander R; Molino, Paul J; Kapsa, Robert M I; Clark, Graeme M; Paolini, Antonio G; Wallace, Gordon G

    2015-05-01

    Electrode impedance is used to assess the thermal noise and signal-to-noise ratio for brain-machine interfaces. An intermediate frequency of 1 kHz is typically measured, although other frequencies may be better predictors of device performance. PEDOT-PSS, PEDOT-DBSA and PEDOT-pTs conducting polymer modified electrodes have reduced impedance at 1 kHz compared to bare metal electrodes, but have no correlation with the effective electrode area. Analytical solutions to impedance indicate that all low-intermediate frequencies can be used to compare the electrode area at a series RC circuit, typical of an ideal metal electrode in a conductive solution. More complex equivalent circuits can be used for the modified electrodes, with a simplified Randles circuit applied to PEDOT-PSS and PEDOT-pTs and a Randles circuit including a Warburg impedance element for PEDOT-DBSA at 0 V. The impedance and phase angle at low frequencies using both equivalent circuit models is dependent on the electrode area. Low frequencies may therefore provide better predictions of the thermal noise and signal-to-noise ratio at modified electrodes. The coefficient of variation of the PEDOT-pTs impedance at low frequencies was lower than the other conducting polymers, consistent with linear and steady-state electroactive area measurements. There are poor correlations between the impedance and the charge density as they are not ideal metal electrodes.

  13. Orthogonal electrode catheter array for mapping of endocardial focal site of ventricular activation

    SciTech Connect

    Desai, J.M.; Nyo, H.; Vera, Z.; Seibert, J.A.; Vogelsang, P.J. )

    1991-04-01

    Precise location of the endocardial site of origin of ventricular tachycardia may facilitate surgical and catheter ablation of this arrhythmia. The endocardial catheter mapping technique can locate the site of ventricular tachycardia within 4-8 cm2 of the earliest site recorded by the catheter. This report describes an orthogonal electrode catheter array (OECA) for mapping and radiofrequency ablation (RFA) of endocardial focal site of origin of a plunge electrode paced model of ventricular activation in dogs. The OECA is an 8 F five pole catheter with four peripheral electrodes and one central electrode (total surface area 0.8 cm{sup 2}). In eight mongrel dogs, mapping was performed by arbitrarily dividing the left ventricle (LV) into four segments. Each segment was mapped with OECA to find the earliest segment. Bipolar and unipolar electrograms were obtained. The plunge electrode (not visible on fluoroscopy) site was identified by the earliest wave front arrival times of -30 msec or earlier at two or more electrodes (unipolar electrograms) with reference to the earliest recorded surface ECG (I, AVF, and V1). Validation of the proximity of the five electrodes of the OECA to the plunge electrode was performed by digital radiography and RFA. Pathological examination was performed to document the proximity of the OECA to the plunge electrode and also for the width, depth, and microscopic changes of the ablation. To find the segment with the earliest LV activation a total of 10 {plus minus} 3 (mean {plus minus} SD) positions were mapped. Mean arrival times at the two earlier electrodes were -39 {plus minus} 4 msec and -35 {plus minus} 3 msec. Digital radiography showed the plunge electrode to be within the area covered by all five electrodes in all eight dogs. The plunge electrode was within 1 cm2 area of the region of RFA in all eight dogs.

  14. Electrode porosity and effective electrocatalyst activity in electrode-membrane-assemblies (MEAs) of PEMFCs

    SciTech Connect

    Fischer, A.; Wendt, H.

    1996-12-31

    New production technologies of membrane-electrode-assemblies for PEWCs which ensure almost complete catalyst utilization by {open_quotes}wetting{close_quotes} the internal catalyst surface with the ionomeric electrolyte, allow for a reduction of Pt-loadings from prior 4 mg cm{sup -2} to now less than 0.5 mg cm{sup -2}. Such electrodes are not thicker than from 5 to 10 {mu}m. Little has been published hitherto about the detailed micromorphology of such electrodes and the role of electrode porosity on electrode performance. It is well known, that the porosity of thicker fuel cell electrodes, e.g. of PAFC or AFC electrodes is decisive for their performance. Therefore the issue of this investigation is to measure and to modify the porosity of electrodes prepared by typical MEA production procedures and to investigate the influence of this porosity on the effective catalyst activity for cathodic reduction of oxygen from air in membrane cells. It may be anticipated that any mass transfer hindrance of gaseous reactants into porous electrodes would manifest itself rather in the conversion of dilute gases than in the conversion of pure gases (e.g. neat oxygen). Therefore in this investigation the performance of membrane cell cathodes with non pressurized air had been compared to that with neat oxygen at cathodes which had a relatively low Pt-loading of 0.15 mg cm{sup -2}.

  15. The performance of supercapacitor electrodes developed from chemically activated carbon produced from waste tea

    NASA Astrophysics Data System (ADS)

    Inal, I. Isil Gurten; Holmes, Stuart M.; Banford, Anthony; Aktas, Zeki

    2015-12-01

    Highly microporous and mesoporous activated carbons were produced from waste tea for application as supercapacitor electrodes, utilising a chemical activation method involving treatment with either K2CO3 or H3PO4. The area, pore structure characteristics and surface functionality of the activated carbons were evaluated to investigate the influence on electrochemical performance. The performance of the activated carbons as supercapacitor electrodes was tested by cyclic voltammetry (CV), impedance spectroscopy (EIS) and galvanostatic charge-discharge (GCD) measurements, in an aqueous electrolyte. The results showed that the pore structure and type of the activated carbon have significant impact on the supercapacitor performance. Both waste tea-based activated carbon electrodes showed good cyclic stability. However, despite its lower specific surface area the highly microporous activated carbon produced with K2CO3, exhibited much better capacitive performance than that of the mesoporous activated carbon produced with H3PO4.

  16. Electrochemical studies on nanometal oxide-activated carbon composite electrodes for aqueous supercapacitors

    NASA Astrophysics Data System (ADS)

    Ho, Mui Yen; Khiew, Poi Sim; Isa, Dino; Chiu, Wee Siong

    2014-11-01

    In present study, the electrochemical performance of eco-friendly and cost-effective titanium oxide (TiO2)-based and zinc oxide-based nanocomposite electrodes were studied in neutral aqueous Na2SO3 electrolyte, respectively. The electrochemical properties of these composite electrodes were studied using cyclic voltammetry (CV), galvanostatic charge-discharge (CD) and electrochemical impedance spectroscopy (EIS). The experimental results reveal that these two nanocomposite electrodes achieve the highest specific capacitance at fairly low oxide loading onto activated carbon (AC) electrodes, respectively. Considerable enhancement of the electrochemical properties of TiO2/AC and ZnO/AC nanocomposite electrodes is achieved via synergistic effects contributed from the nanostructured metal oxides and the high surface area mesoporous AC. Cations and anions from metal oxides and aqueous electrolyte such as Ti4+, Zn2+, Na+ and SO32- can occupy some pores within the high-surface-area AC electrodes, forming the electric double layer at the electrode-electrolyte interface. Additionally, both TiO2 and ZnO nanoparticles can provide favourable surface adsorption sites for SO32- anions which subsequently facilitate the faradaic processes for pseudocapacitive effect. These two systems provide the low cost material electrodes and the low environmental impact electrolyte which offer the increased charge storage without compromising charge storage kinetics.

  17. An electrochemical double layer capacitor using an activated carbon electrode with gel electrolyte binder

    SciTech Connect

    Osaka, Tetsuya, Liu, X.; Nojima, Masashi; Momma, Toshiyuki

    1999-05-01

    An electric double layer capacitor (EDLC) was prepared with an activated carbon powder electrode with poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) based gel electrolyte. Ethylene carbonate (EC) and propylene carbonate (PC) were used as plasticizer and tetraethylammonium tetrafluoroborate (TEABF{sub 4}) was used as the supporting electrolyte. An optimized gel electrolyte of PVdF-HFP/PC/EC/TEABF{sub 4} - 23/31/35/11 mass ratio exhibited high ionic conductivity of 5 {times} 10{sup {minus}3} S/cm, high electrode capacitance, and good mechanical strength. An electrode consisting of activated carbon (AC) with the gel electrolyte as the binder (AC/PVdF-HFP based gel, 7/3 mass ratio) showed a higher specific capacitance and a lower ion diffusion resistance within the electrode than a carbon electrode, prepared with PVdF-HFP binder without plasticizer. This suggests that an electrode mixed with the gel electrolyte has a lower ion diffusion resistance inside the electrode. The highest specific capacitance of 123 F/g was achieved with an electrode containing AC with a specific surface area of 2500 m{sup 2}/g. A coin-type EDLC cell with optimized components showed excellent cycleability exceeding 10{sup 4} cycles with ca. 100% coulombic efficiency achieved when charging and discharging was repeated between 1.0 and 2.5 V at 1.66 mA/cm{sup 2}.

  18. Thin, Large-Area Positive Electrodes in Na/NiCl(2) Cells

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar; Attia, Alan; Halpert, Gerald

    1996-01-01

    Thin, larger-area, noncylindrical positive electrodes investigated for use in place of smaller-area, cylindrical positive electrodes now used in Na/NiCl(2) high-temperature rechargeable electrochemical cells and batteries. Greater power densities achievable, without compromising on energy densities.

  19. Holistic method for evaluating large area transparent conducting electrodes.

    PubMed

    Gupta, Ritu; Kulkarni, Giridhar U

    2013-02-01

    Nowadays, specifying the quality of a transparent conducting electrode (TCE) using a figure of merit (FoM) is considered nearly mandatory. However, not much attention is paid to the local variations in the FoM itself across the large area of the TCE. This calls for the definition of a local FoM (LFoM), particularly relevant with regard to several new generation TCEs which have been and are being proposed recently. A LFoM based on local measurements of transmission and sheet resistance, pixel by pixel, would be a Herculean task. The present article addresses this central issue by defining a LFoM based on the diffraction efficiency (DE) of a calibrated high-resolution transmission grating overlaid with a given TCE. The DE value, which critically depends on the periodic nature of the grating material, is shown to be highly sensitive to the various nonuniformities in the TCE overlaid on the grating, with length scales comparable to the grating period. The effectiveness of the so-defined LFoM was demonstrated using a pointer laser and a photodiode in combination with a transmission grating with ∼μm periodicity by taking ITO/glass and ITO/PET as case examples. A metal grating pattern of Cu deposited on seed Pd grating lines was fabricated as an example of new generation TCE and examined for FoM and LFoM, however, without the aid of the external grating. The LFoM based on DE presented here should serve as an excellent screening method for both conventional and emerging TCEs.

  20. Role of electrode design on the volume of tissue activated during deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Butson, Christopher R.; McIntyre, Cameron C.

    2006-03-01

    Deep brain stimulation (DBS) is an established clinical treatment for a range of neurological disorders. Depending on the disease state of the patient, different anatomical structures such as the ventral intermediate nucleus of the thalamus (VIM), the subthalamic nucleus or the globus pallidus are targeted for stimulation. However, the same electrode design is currently used in nearly all DBS applications, even though substantial morphological and anatomical differences exist between the various target nuclei. The fundamental goal of this study was to develop a theoretical understanding of the impact of changes in the DBS electrode contact geometry on the volume of tissue activated (VTA) during stimulation. Finite element models of the electrodes and surrounding medium were coupled to cable models of myelinated axons to predict the VTA as a function of stimulation parameter settings and electrode design. Clinical DBS electrodes have cylindrical contacts 1.27 mm in diameter (d) and 1.5 mm in height (h). Our results show that changes in contact height and diameter can substantially modulate the size and shape of the VTA, even when contact surface area is preserved. Electrode designs with a low aspect ratio (d/h) maximize the VTA by providing greater spread of the stimulation parallel to the electrode shaft without sacrificing lateral spread. The results of this study provide the foundation necessary to customize electrode design and VTA shape for specific anatomical targets, and an example is presented for the VIM. A range of opportunities exist to engineer DBS systems to maximize stimulation of the target area while minimizing stimulation of non-target areas. Therefore, it may be possible to improve therapeutic benefit and minimize side effects from DBS with the design of target-specific electrodes.

  1. Hybrid capacitor with activated carbon electrode, Ni(OH) 2 electrode and polymer hydrogel electrolyte

    NASA Astrophysics Data System (ADS)

    Nohara, Shinji; Asahina, Toshihide; Wada, Hajime; Furukawa, Naoji; Inoue, Hiroshi; Sugoh, Nozomu; Iwasaki, Hideharu; Iwakura, Chiaki

    A new hybrid capacitor (HC) cell was assembled using an activated carbon (AC) negative electrode, an Ni(OH) 2 positive electrode and a polymer hydrogel electrolyte prepared from crosslinked potassium poly(acrylate) (PAAK) and KOH aqueous solution. The HC cell was characterized compared with an electric double layer capacitor (EDLC) using two AC electrodes and the polymer hydrogel electrolyte. It was found that the HC cell successfully worked in the larger voltage range and exhibited ca. 2.4 times higher capacitance than the EDLC cell. High-rate dischargeability of the HC cell was also superior to that of the EDLC cell. These improved characteristics strongly suggest that the HC cell can be a promising system of capacitors with high energy and power densities.

  2. Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes.

    PubMed

    Elmouwahidi, Abdelhakim; Zapata-Benabithe, Zulamita; Carrasco-Marín, Francisco; Moreno-Castilla, Carlos

    2012-05-01

    Activated carbons were prepared by KOH-activation of argan seed shells (ASS). The activated carbon with the largest surface area and most developed porosity was superficially treated to introduce oxygen and nitrogen functionalities. Activated carbons with a surface area of around 2100 m(2)/g were obtained. Electrochemical measurements were carried out with a three-electrode cell using 1M H(2)SO(4) as electrolyte and Ag/AgCl as reference electrode. The O-rich activated carbon showed the lowest capacitance (259 F/g at 125 mA/g) and the lowest capacity retention (52% at 1A/g), due to surface carboxyl groups hindering electrolyte diffusion into the pores. Conversely, the N-rich activated carbon showed the highest capacitance (355 F/g at 125 mA/g) with the highest retention (93% at 1A/g), due to its well-developed micro-mesoporosity and the pseudocapacitance effects of N functionalities. This capacitance performance was among the highest reported for other activated carbons from a large variety of biomass precursors. PMID:22370231

  3. Electrocatalytically Active Nickel-Based Electrode Coatings Formed by Atmospheric and Suspension Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Aghasibeig, M.; Mousavi, M.; Ben Ettouill, F.; Moreau, C.; Wuthrich, R.; Dolatabadi, A.

    2014-01-01

    Ni-based electrode coatings with enhanced surface areas, for hydrogen production, were developed using atmospheric plasma spray (APS) and suspension plasma spray (SPS) processes. The results revealed a larger electrochemical active surface area for the coatings produced by SPS compared to those produced by APS process. SEM micrographs showed that the surface microstructure of the sample with the largest surface area was composed of a large number of small cauliflower-like aggregates with an average diameter of 10 μm.

  4. Iron active electrode and method of making same

    DOEpatents

    Jackovitz, John F.; Seidel, Joseph; Pantier, Earl A.

    1982-10-26

    An iron active electrode and method of preparing same in which iron sulfate is calcined in an oxidizing atmosphere at a temperature in the range of from about 600.degree. C. to about 850.degree. C. for a time sufficient to produce an iron oxide with a trace amount of sulfate. The calcined material is loaded into an electrically conductive support and then heated in a reducing atmosphere at an elevated temperature to produce activated iron having a trace amount of sulfide which is formed into an electrode plate.

  5. Active C4 Electrodes for Local Field Potential Recording Applications

    PubMed Central

    Wang, Lu; Freedman, David; Sahin, Mesut; Ünlü, M. Selim; Knepper, Ronald

    2016-01-01

    Extracellular neural recording, with multi-electrode arrays (MEAs), is a powerful method used to study neural function at the network level. However, in a high density array, it can be costly and time consuming to integrate the active circuit with the expensive electrodes. In this paper, we present a 4 mm × 4 mm neural recording integrated circuit (IC) chip, utilizing IBM C4 bumps as recording electrodes, which enable a seamless active chip and electrode integration. The IC chip was designed and fabricated in a 0.13 μm BiCMOS process for both in vitro and in vivo applications. It has an input-referred noise of 4.6 μVrms for the bandwidth of 10 Hz to 10 kHz and a power dissipation of 11.25 mW at 2.5 V, or 43.9 μW per input channel. This prototype is scalable for implementing larger number and higher density electrode arrays. To validate the functionality of the chip, electrical testing results and acute in vivo recordings from a rat barrel cortex are presented. PMID:26861324

  6. Active C4 Electrodes for Local Field Potential Recording Applications.

    PubMed

    Wang, Lu; Freedman, David; Sahin, Mesut; Ünlü, M Selim; Knepper, Ronald

    2016-02-04

    Extracellular neural recording, with multi-electrode arrays (MEAs), is a powerful method used to study neural function at the network level. However, in a high density array, it can be costly and time consuming to integrate the active circuit with the expensive electrodes. In this paper, we present a 4 mm × 4 mm neural recording integrated circuit (IC) chip, utilizing IBM C4 bumps as recording electrodes, which enable a seamless active chip and electrode integration. The IC chip was designed and fabricated in a 0.13 μm BiCMOS process for both in vitro and in vivo applications. It has an input-referred noise of 4.6 μV rms for the bandwidth of 10 Hz to 10 kHz and a power dissipation of 11.25 mW at 2.5 V, or 43.9 μW per input channel. This prototype is scalable for implementing larger number and higher density electrode arrays. To validate the functionality of the chip, electrical testing results and acute in vivo recordings from a rat barrel cortex are presented.

  7. Method of forming macro-structured high surface area transparent conductive oxide electrodes

    DOEpatents

    Forman, Arnold J.; Chen, Zhebo; Jaramillo, Thomas F.

    2016-01-05

    A method of forming a high surface area transparent conducting electrode is provided that includes depositing a transparent conducting thin film on a conductive substrate, where the transparent conducting thin film includes transparent conductive particles and a solution-based transparent conducting adhesive layer which serves to coat and bind together the transparent conducting particles, and heat treating the transparent conducting adhesion layer on the conductive substrate, where an increased surface area transparent conducting electrode is formed.

  8. Intracardiac electrogram parameters, electrode surface area and pacer input impedance: their correlations.

    PubMed

    Antonioli, E G; Baggioni, F G; Grassi, G

    1980-01-01

    Small surface area electrodes are accused of sensing defects which were related to alterations that they induce in the endocardiac electrograms. Since several factors affect the cardiac signal coming from electrode to sensing circuit, i.e. electrode surface area, electrode-tissue interface, pacemaker input impedance and sensing amplifier pass-band, Authors present their studies performed on 252 implanted electrodes of various type. Study was carried out by connecting in parallel to the recorder a variable resistor in order to simulate different pacer input impedances. The results showed a significant reduction in RS amplitude when recorder was paralleled with resistor values lower than 40 K. Slew rates showed a similar behaviours since RS steep tract did not change his duration with load, while total QRS duration is reduced. High speed analysis has shown that the RS segment is not linear in about 40% of cases: the main tract is used for calculations. The most significant attenuations and distortions of endocardial electrogram were observed with smallest electrodes and lowest resistances parallel connected: in these cases the sensing impedance at the electrode-tissue interface appears to be between 3 to 5 K ohms. The results suggest that the most of the alledged sensing faults experienced in the past were probably due to small tip electrodes connected to low input impedance generators or to impending failure situations. The AA. conclude that the main question does not concerne a true electrode inefficiency but a wrongly chosen pacemaker-electrode combination, i.e. small tip electrode connected with old generator models. To avoid the evaluation error, it would be instrumental that the pacemaker manufacturers would specify input characteristics of their generators. So, the implanting clinician becomes able to exactly evaluate the true signal arriving to the sensing circuit by connecting in parallel with the recorder input a resistor whose value approximates the input

  9. Surface modification of active material structures in battery electrodes

    DOEpatents

    Erickson, Michael; Tikhonov, Konstantin

    2016-02-02

    Provided herein are methods of processing electrode active material structures for use in electrochemical cells or, more specifically, methods of forming surface layers on these structures. The structures are combined with a liquid to form a mixture. The mixture includes a surface reagent that chemically reacts and forms a surface layer covalently bound to the structures. The surface reagent may be a part of the initial liquid or added to the mixture after the liquid is combined with the structures. In some embodiments, the mixture may be processed to form a powder containing the structures with the surface layer thereon. Alternatively, the mixture may be deposited onto a current collecting substrate and dried to form an electrode layer. Furthermore, the liquid may be an electrolyte containing the surface reagent and a salt. The liquid soaks the previously arranged electrodes in order to contact the structures with the surface reagent.

  10. Explosively activated egress area

    NASA Technical Reports Server (NTRS)

    Bement, L. J.; Bailey, J. W. (Inventor)

    1983-01-01

    A lightweight, add on structure which employs linear shaped pyrotechnic charges to smoothly cut an airframe along an egress area periphery is provided. It compromises reaction surfaces attached to the exterior surface of the airframe's skin and is designed to restrict the skin deflection. That portion of the airframe within the egress area periphery is jettisoned. Retention surfaces and sealing walls are attached to the interior surface of the airframe's skin and are designed to shield the interior of the aircraft during detonation of the pyrotechnic charges.

  11. Highly porous activated carbons from resource-recovered Leucaena leucocephala wood as capacitive deionization electrodes.

    PubMed

    Hou, Chia-Hung; Liu, Nei-Ling; Hsi, Hsing-Cheng

    2015-12-01

    Highly porous activated carbons were resource-recovered from Leucaena leucocephala (Lam.) de Wit. wood through combined chemical and physical activation (i.e., KOH etching followed by CO2 activation). This invasive species, which has severely damaged the ecological economics of Taiwan, was used as the precursor for producing high-quality carbonaceous electrodes for capacitive deionization (CDI). Carbonization and activation conditions strongly influenced the structure of chars and activated carbons. The total surface area and pore volume of activated carbons increased with increasing KOH/char ratio and activation time. Overgasification induced a substantial amount of mesopores in the activated carbons. In addition, the electrochemical properties and CDI electrosorptive performance of the activated carbons were evaluated; cyclic voltammetry and galvanostatic charge/discharge measurements revealed a typical capacitive behavior and electrical double layer formation, confirming ion electrosorption in the porous structure. The activated-carbon electrode, which possessed high surface area and both mesopores and micropores, exhibited improved capacitor characteristics and high electrosorptive performance. Highly porous activated carbons derived from waste L. leucocephala were demonstrated to be suitable CDI electrode materials. PMID:26135977

  12. A Active Micromachined Scalp Electrode Array for Eeg Signal Recording.

    NASA Astrophysics Data System (ADS)

    Alizadeh-Taheri, Babak

    This thesis describes the design, microfabrication, and testing of an active scalp EEG (electroencephalograph) electrode that has several distinct advantages over existing technologies. These advantages are: (1) no electrolyte used, (2) no skin preparation, (3) significantly reduced sensor size, and (4) compatibility with EEG monitoring systems. The active electrode array is an integrated system made of an array of capacitive sensors with local integrated circuitry housed in a package with batteries to power the circuitry. This level of integration was required to achieve the functional performance obtained by the electrode. The electrode consists of a silicon sensor substrate fabricated at UCD and a custom circuit substrate fabricated at Orbit Semiconductors, using a 2 μm analog CMOS technology. The circuitry was designed for low 1/f noise. One side of the sensor substrate holds four capacitive sensors with rm Si_3N _4 as the dielectric material. The opposite side holds aluminum pads for bonding to the circuit substrate. A via hole technology was developed to make electrical contact to both sides of the sensor substrate. The via holes are 200 μm square openings etched through the silicon by a reactive ion etching (RIE) process using an rm SF_6/O_2 gas mixture, oxidized, and then filled with sputtered aluminum for contacts through the substrate. The via holes have an aspect ratio of 2:1 (length of opening to depth of hole). Silicon RIE etch rates of up to 18 mu/hr were obtained under optimum conditions, using a 0.8 μm aluminum mask. The circuit and sensor substrates were bonded with silver adhesive, and wire bonding was used to make electrical contacts between the substrates. The two substrates were then integrated in a custom package for testing. The electrode was tested on an electrical test bench and on human subjects in four modalities of EEG activity, namely: (1) spontaneous EEG, (2) sensory event-related potentials, (3) brain stem potentials, and (4

  13. Nomex-derived activated carbon fibers as electrode materials in carbon based supercapacitors

    NASA Astrophysics Data System (ADS)

    Leitner, K.; Lerf, A.; Winter, M.; Besenhard, J. O.; Villar-Rodil, S.; Suárez-García, F.; Martínez-Alonso, A.; Tascón, J. M. D.

    Electrochemical characterization has been carried out for electrodes prepared of several activated carbon fiber samples derived from poly (m-phenylene isophthalamide) (Nomex) in an aqueous solution. Depending on the burn-off due to activation the BET surface area of the carbons was in the order of 1300-2800 m 2 g -1, providing an extensive network of micropores. Their capability as active material for supercapacitors was evaluated by using cyclic voltammetry and impedance spectroscopy. Values for the capacitance of 175 F g -1 in sulfuric acid were obtained. Further on, it was observed that the specific capacitance and the performance of the electrode increase significantly with increasing burn-off degree. We believe that this fact can be attributed to the increase of surface area and porosity with increasing burn-off.

  14. Transferred metal electrode films for large-area electronic devices

    SciTech Connect

    Yang, Jin-Guo; Kam, Fong-Yu; Chua, Lay-Lay

    2014-11-10

    The evaporation of metal-film gate electrodes for top-gate organic field-effect transistors (OFETs) limits the minimum thickness of the polymer gate dielectric to typically more than 300 nm due to deep hot metal atom penetration and damage of the dielectric. We show here that the self-release layer transfer method recently developed for high-quality graphene transfer is also capable of giving high-quality metal thin-film transfers to produce high-performance capacitors and OFETs with superior dielectric breakdown strength even for ultrathin polymer dielectric films. Dielectric breakdown strengths up to 5–6 MV cm{sup −1} have been obtained for 50-nm thin films of polystyrene and a cyclic olefin copolymer TOPAS{sup ®} (Zeon). High-quality OFETs with sub-10 V operational voltages have been obtained this way using conventional polymer dielectrics and a high-mobility polymer semiconductor poly[2,5-bis(3-tetradecylthiophene-2-yl)thieno[3,2-b]thiophene-2,5-diyl]. The transferred metal films can make reliable contacts without damaging ultrathin polymer films, self-assembled monolayers and graphene, which is not otherwise possible from evaporated or sputtered metal films.

  15. CO2 Activated Carbon Aerogel with Enhanced Electrochemical Performance as a Supercapacitor Electrode Material.

    PubMed

    Lee, Eo Jin; Lee, Yoon Jae; Kim, Jeong Kwon; Hong, Ung Gi; Yi, Jongheop; Yoon, Jung Rag; Song, In Kyu

    2015-11-01

    Carbon aerogel (CA) was prepared by a sol-gel polymerization of resorcinol and formaldehyde in ambient conditions. A series of activated carbon aerogels (ACA-X, X = 1, 2, 3, 4, 5, and 6 h) were then prepared by CO2 activation of CA with a variation of activation time (X) for use as an electrode material for supercapacitor. Specific capacitances of CA and ACA-X electrodes were measured by cyclic voltammetry and galvanostatic charge/discharge methods in 6 M KOH electrolyte. Among the samples, ACA-5 h showed the highest BET surface area (2574 m2/g) and the highest specific capacitance (100 F/g). It was found that CO2 activation was a very efficient method for enhancing physicochemical property and supercapacitive electrochemical performance of activated carbon aerogel.

  16. CO2 Activated Carbon Aerogel with Enhanced Electrochemical Performance as a Supercapacitor Electrode Material.

    PubMed

    Lee, Eo Jin; Lee, Yoon Jae; Kim, Jeong Kwon; Hong, Ung Gi; Yi, Jongheop; Yoon, Jung Rag; Song, In Kyu

    2015-11-01

    Carbon aerogel (CA) was prepared by a sol-gel polymerization of resorcinol and formaldehyde in ambient conditions. A series of activated carbon aerogels (ACA-X, X = 1, 2, 3, 4, 5, and 6 h) were then prepared by CO2 activation of CA with a variation of activation time (X) for use as an electrode material for supercapacitor. Specific capacitances of CA and ACA-X electrodes were measured by cyclic voltammetry and galvanostatic charge/discharge methods in 6 M KOH electrolyte. Among the samples, ACA-5 h showed the highest BET surface area (2574 m2/g) and the highest specific capacitance (100 F/g). It was found that CO2 activation was a very efficient method for enhancing physicochemical property and supercapacitive electrochemical performance of activated carbon aerogel. PMID:26726618

  17. Surface Plasma Source Electrode Activation by Surface Impurities

    SciTech Connect

    Dudnikov, Vadim; Johnson, Rolland P.; Han, B.; Murray, S. N.; Pennisi, T. R.; Santana, M.; Stockli, Martin P.; Welton, R. F.

    2011-09-26

    In experiments with RF saddle antenna surface plasma sources (SPS), the efficiency of H{sup -} ion generation was increased by up to a factor of 5 by plasma electrode 'activation', without supplying additional Cs, by heating the collar to high temperature for several hours using hot air flow and plasma discharge. Without cracking or heating the cesium ampoule, but likely with Cs recovery from impurities, the achieved energy efficiency was comparable to that of conventionally cesiated SNS RF sources with an external or internal Cs supply. In the experiments, optimum cesiation was produced (without additional Cs) by the collection and trapping of traces of remnant cesium compounds from SPS surfaces. Such activation by accumulation of impurities on electrode surfaces can be a reason for H{sup -} emission enhancement in other so-called 'volume' negative ion sources.

  18. Composite electrodes of activated carbon derived from cassava peel and carbon nanotubes for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Taer, E.; Iwantono, Yulita, M.; Taslim, R.; Subagio, A.; Salomo, Deraman, M.

    2013-09-01

    In this paper, a composite electrode was prepared from a mixture of activated carbon derived from precarbonization of cassava peel (CP) and carbon nanotubes (CNTs). The activated carbon was produced by pyrolysis process using ZnCl2 as an activation agent. A N2 adsorption-desorption analysis for the sample indicated that the BET surface area of the activated carbon was 1336 m2 g-1. Difference percentage of CNTs of 0, 5, 10, 15 and 20% with 5% of PVDF binder were added into CP based activated carbon in order to fabricate the composite electrodes. The morphology and structure of the composite electrodes were investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The SEM image observed that the distribution of CNTs was homogeneous between carbon particles and the XRD pattern shown the amorphous structure of the sample. The electrodes were fabricated for supercapacitor cells with 316L stainless steel as current collector and 1 M sulfuric acid as electrolyte. An electrochemical characterization was performed by using an electrochemical impedance spectroscopy (EIS) method using a Solatron 1286 instrument and the addition of CNTs revealed to improve the resistant and capacitive properties of supercapacitor cell.

  19. Positive Active Material For Alkaline Electrolyte Storage Battert Nickel Electrodes

    DOEpatents

    Bernard, Patrick; Baudry, Michelle

    2000-12-05

    A method of manufacturing a positive active material for nickel electrodes of alkaline storage batteries which consists of particles of hydroxide containing mainly nickel and covered with a layer of a hydroxide phase based on nickel and yttrium is disclosed. The proportion of the hydroxide phase is in the range 0.15% to 3% by weight of yttrium expressed as yttrium hydroxide relative to the total weight of particles.

  20. Zinc oxide/activated carbon nanofiber composites for high-performance supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Kim, Chang Hyo; Kim, Bo-Hye

    2015-01-01

    ZnO-containing porous activated carbon nanofibers (ZnO/ACNFs) are prepared through one-step electrospinning using zinc acetate and polyacrylonitrile (PAN), followed by thermal treatment. The electrochemical performance of the ZnO/ACNF composite electrodes is compared to that of pure ACNF electrodes in aqueous KOH as the electrolyte. Electrochemical measurements of ZnO/ACNFs reveal a maximum specific capacitance of 178.2 Fg-1, and high energy densities of 22.71-17.77 Whkg-1 in the power density range of 400 to 4000 W kg-1. Furthermore, this supercapacitor electrode exhibits excellent cycle life with a specific capacitance ∼75% of the initial value after 1000 cycles. The combination of ACNF's high surface area with ZnO's large specific capacity facilitates a synergistic effect between ZnO's faradaic capacitance and ACNF's double layer capacitance, which afforded good capacitive behavior.

  1. Controlled porosity in electrodes

    SciTech Connect

    Chiang, Yet-Ming; Bae, Chang-Jun; Halloran, John William; Fu, Qiang; Tomsia, Antoni P.; Erdonmez, Can K.

    2015-06-23

    Porous electrodes in which the porosity has a low tortuosity are generally provided. In some embodiments, the porous electrodes can be designed to be filled with electrolyte and used in batteries, and can include low tortuosity in the primary direction of ion transport during charge and discharge of the battery. In some embodiments, the electrodes can have a high volume fraction of electrode active material (i.e., low porosity). The attributes outlined above can allow the electrodes to be fabricated with a higher energy density, higher capacity per unit area of electrode (mAh/cm.sup.2), and greater thickness than comparable electrodes while still providing high utilization of the active material in the battery during use. Accordingly, the electrodes can be used to produce batteries with high energy densities, high power, or both compared to batteries using electrodes of conventional design with relatively highly tortuous pores.

  2. Surface Plasma Source Electrode Activation by Surface Impurities

    SciTech Connect

    Dudnikov, Vadim; Han, Baoxi; Johnson, Rolland P.; Murray Jr, S N; Pennisi, Terry R; Santana, Manuel; Stockli, Martin P; Welton, Robert F

    2011-01-01

    In experiments with RF saddle antenna surface plasma sources (SPS), the efficiency of H- ion generation was increased by up to a factor of 5 by long time plasma electrode activation, without adding Cs from Cs supply, by heating the collar to high temperature using hot air flow and plasma discharge. Without cracking or heating the cesium ampoule, but likely with Cs recovery from impurities, the achieved energy efficiency was comparable to that of conventionally cesiated SNS RF sources with an external or internal Cs supply. In the experiments, perfect cesiation was produced (without additional Cs supply) by the collection and trapping of traces of remnant cesium compounds from SPS surfaces.

  3. High performance electrodes in vanadium redox flow batteries through oxygen-enriched thermal activation

    NASA Astrophysics Data System (ADS)

    Pezeshki, Alan M.; Clement, Jason T.; Veith, Gabriel M.; Zawodzinski, Thomas A.; Mench, Matthew M.

    2015-10-01

    The roundtrip electrochemical energy efficiency is improved from 63% to 76% at a current density of 200 mA cm-2 in an all-vanadium redox flow battery (VRFB) by utilizing modified carbon paper electrodes in the high-performance no-gap design. Heat treatment of the carbon paper electrodes in a 42% oxygen/58% nitrogen atmosphere increases the electrochemically wetted surface area from 0.24 to 51.22 m2 g-1, resulting in a 100-140 mV decrease in activation overpotential at operationally relevant current densities. An enriched oxygen environment decreases the amount of treatment time required to achieve high surface area. The increased efficiency and greater depth of discharge doubles the total usable energy stored in a fixed amount of electrolyte during operation at 200 mA cm-2.

  4. Comparison between the treatment area of electrode used for radiofrequency ablation of liver cancer focusing on 15G cooled-tip and CWT electrode

    PubMed Central

    Kim, Hyun-Jin; Lee, Hae-Kag; Cho, Jae-Hwan

    2016-01-01

    Objectives: To analyze the comparison between the treatment area of 15Gage internally cooled electrodes and 17 Gage Cool Wet-tip(CWT) electrodes. They are manufactured to broaden treatment area of the tumor in the radiofrequency ablation of hepatocellular carcinoma(HCC). Methods: The study was designed for 62 patients with a mean age of 61, ranging from 44 to 87 years. The sample comprised of patients who used 15 G internally cooled electrodes and 17 G CWT electrodes respectively. Computed tomography (CT) images obtained after the procedure were observed, however, for the ablation lesion, the volume was determined by measuring complete necrotic tissue that did not contrast enhancement in the image. Results: The treatment area of the tumor after radiofrequency ablation was 17.26±6.02 in the CWT, which was bigger than 15G. The treatment area ratio of the treatment before or after was significant at 581.85±339.56 in the CWT. After radiofrequency ablation, the treatment area got bigger, as 15G electrodes went toward CWT electrodes. Treatment area per electrode was 1.34 times higher in CWT than in 15G while the treatment area ratio of the treatment before or after was 1.001 times higher in the CWT than 15G. Conclusions: Ablation is more common for the safety margin in stable tumor and CWT type electrodes that can make larger ablation to reduce the number of times ablation is required for residual tumor and it decreases recurrence, ablation time and reoperation. Therefore it is considered t useful to reduce patients’ pain. PMID:27375688

  5. High Surface Area Electrodes Derived from Polymer Wrapped Carbon Nanotubes for Enhanced Energy Storage Devices.

    PubMed

    Bakhtiary Davijani, Amir A; Liu, H Clive; Gupta, Kishor; Kumar, Satish

    2016-09-21

    Electrical double layer capacitors store energy on two adjacent layers, resulting in fast charging and discharging, but their energy density is limited by the available surface area. In this study, using poly(methyl methacrylate) assisted sonication, carbon nanotube buckypapers with specific surface area as high as 950 m(2)/g have been processed. Performance of these high surface area buckypapers have been evaluated as supercapacitor electrodes. The energy density of these high surface area electrodes at low power density of 0.68 kW/kg was 22.3 Wh/kg, and at high power density of 84 kW/kg was 3.13 Wh/kg using the ionic liquid electrolyte. PMID:27556746

  6. High Surface Area Electrodes Derived from Polymer Wrapped Carbon Nanotubes for Enhanced Energy Storage Devices.

    PubMed

    Bakhtiary Davijani, Amir A; Liu, H Clive; Gupta, Kishor; Kumar, Satish

    2016-09-21

    Electrical double layer capacitors store energy on two adjacent layers, resulting in fast charging and discharging, but their energy density is limited by the available surface area. In this study, using poly(methyl methacrylate) assisted sonication, carbon nanotube buckypapers with specific surface area as high as 950 m(2)/g have been processed. Performance of these high surface area buckypapers have been evaluated as supercapacitor electrodes. The energy density of these high surface area electrodes at low power density of 0.68 kW/kg was 22.3 Wh/kg, and at high power density of 84 kW/kg was 3.13 Wh/kg using the ionic liquid electrolyte.

  7. Dielectrophoresis-assisted electroconductive polymer-based fabrication of high surface area electrodes

    NASA Astrophysics Data System (ADS)

    Perez-Gonzalez, Victor H.; Ho, Vinh; Kulinsky, Lawrence; Martinez-Chapa, Sergio O.

    2014-03-01

    In this work we present a novel microfabrication process that is based on combined use of dielectrophoresis (DEP) to attract particles or cells to electrodes and to follow this step by an electrodeposition of polypyrrole (PPy) to entrap the particles or cells on electrode surface. This process can be used for mass-production of high surface area structures as well as to the creation of functionally graded materials. DEP was employed to pull the microparticles toward the surface of the electrodes and hold them in place while PPy was electrodeposited. Polystyrene microbeads with diameters ranging from 1 to 10 microns were employed in this study. Experimental results demonstrated that PPy can entrap the particles attracted to the electrode surface by the positive DEP. It was also demonstrated that hierarchical structures can be created where smaller microbeads are attached to, caught and secured on the surface of larger microbeads entrapped on the electrode surface. Furthermore, as DEP can be employed for manipulating of wide variety of polarizable materials, this process can also entrap inorganic and biological microparticles in the fabricated structure. Applications of this work include, but are not limited to, the development of biomedical, electrokinetic, and energy storage devices, electrochemical sensors, and scaffolds.

  8. Impedance spectroscopy study of a catechol-modified activated carbon electrode as active material in electrochemical capacitor

    NASA Astrophysics Data System (ADS)

    Cougnon, C.; Lebègue, E.; Pognon, G.

    2015-01-01

    Modified activated carbon (Norit S-50) electrodes with electrochemical double layer (EDL) capacitance and redox capacitance contributions to the electric charge storage were tested in 1 M H2SO4 to quantify the benefit and the limitation of the surface redox reactions on the electrochemical performances of the resulting pseudo-capacitive materials. The electrochemical performances of an electrochemically anodized carbon electrode and a catechol-modified carbon electrode, which make use both EDL capacitance of the porous structure of the carbon and redox capacitance, were compared to the performances obtained for the pristine carbon. Nitrogen gas adsorption measurements have been used for studying the impact of the grafting on the BET surface area, pore size distribution, pore volume and average pore diameter. The electrochemical behavior of carbon materials was studied by cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The EIS data were discussed by using a complex capacitance model that allows defining the characteristic time constant, the global capacitance and the frequency at which the maximum charge stored is reached. The EIS measurements were achieved at different dc potential values where a redox activity occurs and the evolution of the capacitance and the capacitive relaxation time with the electrode potential are presented. Realistic galvanostatic charge/discharge measurements performed at different current rates corroborate the results obtained by impedance.

  9. Nonwoven fabric active electrodes for biopotential measurement during normal daily activity.

    PubMed

    Kang, Tae-Ho; Merritt, Carey R; Grant, Edward; Pourdeyhimi, Behnam; Nagle, H Troy

    2008-01-01

    Body movement is responsible for most of the interference during physiological data acquisition during normal daily activities. In this paper, we introduce nonwoven fabric active electrodes that provide the comfort required for clothing while robustly recording physiological data in the presence of body movement. The nonwoven fabric active electrodes were designed and fabricated using both hand- and screen-printing thick-film techniques. Nonstretchable nonwoven (Evolon 100) was chosen as the flexible fabric substrate and a silver filled polymer ink (Creative Materials CMI 112-15) was used to form a transducer layer and conductive lines on the nonwoven fabrics. These nonwoven fabric active electrodes can be easily integrated into clothing for wearable health monitoring applications. Test results indicate that nonwoven textile-based sensors show considerable promise for physiological data acquisition in wearable healthcare monitoring applications.

  10. Fabric-based active electrode design and fabrication for health monitoring clothing.

    PubMed

    Merritt, Carey R; Nagle, H Troy; Grant, Edward

    2009-03-01

    In this paper, two versions of fabric-based active electrodes are presented to provide a wearable solution for ECG monitoring clothing. The first version of active electrode involved direct attachment of surface-mountable components to a textile screen-printed circuit using polymer thick film techniques. The second version involved attaching a much smaller, thinner, and less obtrusive interposer containing the active electrode circuitry to a simplified textile circuit. These designs explored techniques for electronic textile interconnection, chip attachment to textiles, and packaging of circuits on textiles for durability. The results from ECG tests indicate that the performance of each active electrode is comparable to commercial Ag/AgCl electrodes. The interposer-based active electrodes survived a five-cycle washing test while maintaining good signal integrity.

  11. Fabric-based active electrode design and fabrication for health monitoring clothing.

    PubMed

    Merritt, Carey R; Nagle, H Troy; Grant, Edward

    2009-03-01

    In this paper, two versions of fabric-based active electrodes are presented to provide a wearable solution for ECG monitoring clothing. The first version of active electrode involved direct attachment of surface-mountable components to a textile screen-printed circuit using polymer thick film techniques. The second version involved attaching a much smaller, thinner, and less obtrusive interposer containing the active electrode circuitry to a simplified textile circuit. These designs explored techniques for electronic textile interconnection, chip attachment to textiles, and packaging of circuits on textiles for durability. The results from ECG tests indicate that the performance of each active electrode is comparable to commercial Ag/AgCl electrodes. The interposer-based active electrodes survived a five-cycle washing test while maintaining good signal integrity. PMID:19174357

  12. Synthesis of molecular imprinted polymer modified TiO{sub 2} nanotube array electrode and their photoelectrocatalytic activity

    SciTech Connect

    Lu Na; Chen Shuo; Wang Hongtao; Quan Xie Zhao Huimin

    2008-10-15

    A tetracycline hydrochloride (TC) molecularly imprinted polymer (MIP) modified TiO{sub 2} nanotube array electrode was prepared via surface molecular imprinting. Its surface was structured with surface voids and the nanotubes were open at top end with an average diameter of approximately 50 nm. The MIP-modified TiO{sub 2} nanotube array with anatase phase was identified by XRD and a distinguishable red shift in the absorption spectrum was observed. The MIP-modified electrode also exhibited a high adsorption capacity for TC due to its high surface area providing imprinted sites. Photocurrent was generated on the MIP-modified photoanode using the simulated solar spectrum and increased with the increase of positive bias potential. Under simulated solar light irradiation, the MIP-modified TiO{sub 2} nanotube array electrode exhibited enhanced photoelectrocatalytic (PEC) activity with the apparent first-order rate constant being 1.2-fold of that with TiO{sub 2} nanotube array electrode. The effect of the thickness of the MIP layer on the PEC activity was also evaluated. - Graphical abstract: A tetracycline hydrochloride molecularly imprinted polymer modified TiO{sub 2} nanotube array electrode was prepared via surface molecular imprinting. It showed improved response to simulated solar light and higher adsorption capability for tetracycline hydrochloride, thereby exhibiting increased PEC activity under simulated solar light irradiation. The apparent first-order rate constant was 1.2-fold of that on TiO{sub 2} nanotube array electrode.

  13. Electroanalytical study of nifedipine using activated glassy carbon electrode.

    PubMed

    Sentürk, Z; Ozkan, S A; Ozkan, Y

    1998-01-01

    The electrochemical properties of nifedipine have been investigated in aqueous solution by linear sweep and cyclic voltammetry. The method is based both on the reduction and on the oxidation of the drug at a glassy carbon electrode activated by applying a new pre-treatment. The voltammograms of nifedipine on pH, concentration and scan rate have been carefully examined. Both the electroreduction and electrooxidation of nifedipine allow its determination at pH 1.5 in the concentration range of 2 x 10(-5)-6 x 10(-4) M and 8 x 10(-5)-1 x 10(-3) M, respectively. The method has been applied to commercial samples (tablets and capsules).

  14. Activated carbon made from cow dung as electrode material for electrochemical double layer capacitor

    NASA Astrophysics Data System (ADS)

    Bhattacharjya, Dhrubajyoti; Yu, Jong-Sung

    2014-09-01

    Cow dung is one of the most abundant wastes generated on earth and has been traditionally used as fertilizer and fuel in most of the developing countries. In this study activated carbon is synthesized from cow dung by a modified chemical activation method, where partially carbonized cow dung is treated with KOH in different ratio. The synthesized activated carbon possesses irregular surface morphology with high surface area in the range of 1500-2000 m2 g-1 with proper amount of micropore and mesopore volume. In particular, we demonstrate that the surface morphology and porosity parameters change with increase in KOH ratio. These activated carbons are tested as electrode material in two-electrode symmetric supercapacitor system in non-aqueous electrolyte and found to exhibit high specific capacitance with excellent retention of it at high current density and for long term operation. In particular, the activated carbon synthesized at 2:1 ratio of KOH and the pre-carbonized char shows the best performance with specific capacitance of 124 F g-1 at 0.1 A g-1 and retains up to 117 F g-1 at 1.0 A g-1 current density. The performance is attributed to high surface area along with optimum amount of micropore and mesopore volume.

  15. Active Laplacian electrode for the data-acquisition system of EHG

    NASA Astrophysics Data System (ADS)

    Li, G.; Wang, Y.; Lin, L.; Jiang, W.; Wang, L. L.; C-Y Lu, Stephen; Besio, Walter G.

    2005-01-01

    EHG (electrohysterogram) is the recording of uterine electromyogram with external electrodes located on the abdomen of pregnant woman. Derived from the electrical activity generated at the muscle fiber lever, it provides complementary information from the muscle, and appears to be a very promising technique for clinical or physiologic investigation of uterine activity, compared with current monitoring which can't give us complementary phase information of uterine activity. In this article we have shown the disadvantages of the conventional electrodes for EHG data-acquisition system and put forward a new type of electrode that is called active Laplacian electrode. It integrates concentric rings electrode with a bioelectricity preamplifier and is capable of acquiring localized information. We can localise the EHG signals source more easily by using this new electrode.

  16. Organic electrodes based on grafted oligothiophene units in ultrathin, large-area molecular junctions.

    PubMed

    Martin, Pascal; Della Rocca, Maria Luisa; Anthore, Anne; Lafarge, Philippe; Lacroix, Jean-Christophe

    2012-01-11

    Molecular junctions were fabricated with the combined use of electrochemistry and conventional CMOS tools. They consist of a 5-10 nm thick layer of oligo(1-(2-bisthienyl)benzene) between two gold electrodes. The layer was grafted onto the bottom electrode using diazonium electroreduction, which yields a stable and robust gold-oligomer interface. The top contact was obtained by direct electron-beam evaporation on the molecular layers through masks defined by electron-beam lithography. Transport mechanisms across such easily p-dopable layers were investigated by analysis of current density-voltage (J-V) curves. Application of a tunneling model led to a transport parameter (thickness of ~2.4 nm) that was not consistent with the molecular thickness measured using AFM (~7 nm). Furthermore, for these layers with thicknesses of 5-10 nm, asymmetric J-V curves were observed, with current flowing more easily when the grafted electrode was positively polarized. In addition, J-V experiments at two temperatures (4 and 300 K) showed that thermal activation occurs for such polarization but is not observed when the bias is reversed. These results indicate that simple tunneling cannot describe the charge transport in these junctions. Finally, analysis of the experimental results in term of "organic electrode" and redox chemistry in the material is discussed.

  17. Effects of electrode size and spacing on sensory modalities in the phantom thumb perception area for the forearm amputees.

    PubMed

    Li, P; Chai, G H; Zhu, K H; Lan, N; Sui, X H

    2015-01-01

    Tactile sensory feedback plays a key role in accomplishing the dexterous manipulation of prosthetic hands for the amputees, and the non-invasive transcutaneous electrical nerve stimulation (TENS) of the phantom finger perception (PFP) area would be an effective way to realize sensory feedback clinically. In order to realize the high-spatial-resolution tactile sensory feedback in the PFP region, we investigated the effects of electrode size and spacing on the tactile sensations for potentially optimizing the surface electrode array configuration. Six forearm-amputated subjects were recruited in the psychophysical studies. With the diameter of the circular electrode increasing from 3 mm to 12 mm, the threshold current intensity was enhanced correspondingly under different sensory modalities. The smaller electrode could potentially lead to high sensation spatial resolution. Whereas, the smaller the electrode, the less the number of sensory modalities. For an Φ-3 mm electrode, it is even hard for the subject to perceive any perception modalities under normal stimulating current. In addition, the two-electrode discrimination distance (TEDD) in the phantom thumb perception area decreased with electrode size decreasing in two directions of parallel or perpendicular to the forearm. No significant difference of TEDD existed along the two directions. Studies in this paper would guide the configuration optimization of the TENS electrode array for potential high spatial-resolution sensory feedback.

  18. Repeatability of phasic muscle activity: performance of surface and intramuscular wire electrodes in gait analysis.

    PubMed

    Kadaba, M P; Wootten, M E; Gainey, J; Cochran, G V

    1985-01-01

    Repeatability is an important consideration for gait analysis data that are being used as an adjunct to clinical decision making. An index of repeatability may be based on a statistical criterion (variance ratio) that reflects similarity of wave forms over a number of identical cycles. The purpose of this study was to use the variance ratio to assess the repeatability of phasic muscle activity recorded with surface and bipolar intramuscular wire electrodes during gait on 10 normal subjects. Variance ratios were calculated using rectified and smoothed electromyographic data recorded simultaneously from the two types of electrodes. Three measures of repeatability (reproducibility, reliability, and constancy--defined as the cycle-to-cycle, run-to-run, and day-to-day repeatability of phasic muscle activity) were used to compare the performance of the two electrode techniques. Results show that the reproducibility and reliability were better for surface electrodes than for intramuscular wire electrodes, and constancy was good for surface electrodes and poor for intramuscular wire electrodes. Repeatability improved with increasing smoothing window lengths but was better for surface electrodes than wire electrodes, irrespective of the smoothing window. This study indicates that surface electrode data represent a more consistent measure of activity of superficial muscles, if comparisons are to be made between gait data from different test days.

  19. Enhanced Oxygen Reduction Activity on Pt/C for Nafion-free, Thin, Uniform Films in Rotating Disk Electrode Studies

    SciTech Connect

    Shinozaki, Kazuma; Pivovar, Bryan S.; Kocha, Shyam S.

    2013-01-01

    Commercially available nanoparticle platinum on high surface area carbon black (Pt/HSC) electrocatalysts were characterized in rotating disk electrode (RDE) setups using varying ink formulations and film drying techniques in an attempt to obtain thin, uniform films and reproducible activity. Electrodes prepared from Nafion-free inks that were dried under an isopropyl alcohol (IPA) atmosphere produced uniform, thin films at low electrocatalyst loadings of ~4.5 mg/cm2 Pt. These Nafion-free/IPA-dried electrodes were found to exhibit oxygen reduction reaction (ORR) activities higher than conventional Nafion-based/Air-dried electrodes by a factor of ~2.8. The magnitude of mass and specific activities were determined to be im ~771 ±56 mA/mgPt and is~812 ±59 mA/cm2Pt respectively and appear to be the highest values reported for RDE measurements on Pt/HSC in 0.1M HClO4 at 20 mV/s and 25°C. Electrochemical diagnostics including ORR I-V profiles, cyclic voltammograms and electrochemical impedance spectroscopy (EIS) studies were conducted to investigate the thin film Pt/HSC electrodes and correlate results to film morphology and electrochemical activity.

  20. Studies on Supercapacitor Electrode Material from Activated Lignin-Derived Mesoporous Carbon

    SciTech Connect

    Saha, Dipendu; Li, Yunchao; Bi, Zhonghe; Chen, Jihua; Keum, Jong Kahk; Hensley, Dale K; Grappe, Hippolyte A.; Meyer III, Harry M; Dai, Sheng; Paranthaman, Mariappan Parans; Naskar, Amit K

    2014-01-01

    We synthesized mesoporous carbon from pre-cross-linked lignin gel impregnated with a surfactant as the pore-forming agent, and then activated the carbon through physical and chemical methods to obtain activated mesoporous carbon. The activated mesoporous carbons exhibited 1.5- to 6-fold increases in porosity with a maximum BET specific surface area of 1148 m2/g and a pore volume of 1.0 cm3/g. Slow physical activation helped retain dominant mesoporosity; however, aggressive chemical activation caused some loss of the mesopore volume fraction. Plots of cyclic voltammetric data with the capacitor electrode made from these carbons showed an almost rectangular curve depicting the behavior of ideal double-layer capacitance. Although the pristine mesoporous carbon exhibited the same range of surface-area-based capacitance as that of other known carbon-based supercapacitors, activation decreased the surface-area-based specific capacitance and increased the gravimetric-specific capacitance of the mesoporous carbons. Surface activation lowered bulk density and electrical conductivity. Warburg impedance as a vertical tail in the lower frequency domain of Nyquist plots supported good supercapacitor behavior for the activated mesoporous carbons. Our work demonstrated that biomass-derived mesoporous carbon materials continue to show potential for use in specific electrochemical applications.

  1. Electrode-active material for electrochemical batteries and method of preparation

    DOEpatents

    Varma, Ravi

    1987-01-01

    A battery electrode material comprising a non-stoichiometric electrode-active material which forms a redox pair with the battery electrolyte, an electrically conductive polymer present in the range of from about 2% by weight to about 5% by weight of the electrode-active material, and a binder. The conductive polymer provides improved proton or ion conductivity and is a ligand resulting in metal ion or negative ion vacancies of less than about 0.1 atom percent. Specific electrodes of nickel and lead are disclosed.

  2. Electrode-active material for electrochemical batteries and method of preparation

    DOEpatents

    Varma, R.

    1983-11-07

    A battery electrode material comprises a non-stoichiometric electrode-active material which forms a redox pair with the battery electrolyte, an electrically conductive polymer present in the range of from about 2% by weight to about 5% by weight of the electrode-active material, and a binder. The conductive polymer provides improved proton or ion conductivity and is a ligand resulting in metal ion or negative ion vacancies of less than about 0.1 atom percent. Specific electrodes of nickel and lead are disclosed.

  3. Advanced Research on the Electrode Area of a Low Pressure Hg-Ar Discharge Lamp

    NASA Astrophysics Data System (ADS)

    Shi, Jianou

    The phenomenon of electrical discharge in low pressure Hg-Ar vapor has been under continuous investigation since it was first discovered. Because much work has been done in the positive column, it is, therefore, that the electrode area of the lamp is the main focus of this thesis. To simulate the interface phenomena on a electrode surface, samples, with optically smooth tungsten-barium interfaces were fired in a high vacuum furnace at different temperatures. Measurements were made using surface characterization techniques. It is found that no Ba_3WO _6 is formed on the surface as previously reported in the powder mixing experiments, and the interface consists mainly of BaWO_4. It was discovered in the early 1950's that vaporization of the barium from the cathode in a fluorescent lamp could be reduced tremendously with the addition of 5% of ZrO _2 to the coating mix. However, the reason for this is poorly understood. A possible explanation has been found, and number of tests have been completed to simulate the formation of BaZO_3 under different lamp operating conditions. The measurements and simulation of barium atom and ion number densities are presented. Barium emitted from the electrode surface has a strong interaction with the local plasma. The number density distributions depend mainly on the discharge conditions. A Monte Carlo computer simulation for the barium ion number density is described and the results from the simulation compared to the experimental results obtained by absorption method. It is clear that the ion distribution and phosphor contamination in the electrode area are two closely related issues. XPS is used to measure the chemical composition on the phosphor surface of the lamp. A discussion of calibration methods and the possible compounds forming on the phosphors is then presented. A number of questions have been raised concerning the safety of the lamp and its affects on health related to radiation generated in the electrode area. Typically

  4. The Impact of Enzyme Orientation and Electrode Topology on the Catalytic Activity of Adsorbed Redox Enzymes

    PubMed Central

    McMillan, Duncan G. G.; Marritt, Sophie J.; Kemp, Gemma L.; Gordon-Brown, Piers; Butt, Julea N.; Jeuken, Lars J. C.

    2014-01-01

    It is well established that the structural details of electrodes and their interaction with adsorbed enzyme influences the interfacial electron transfer rate. However, for nanostructured electrodes, it is likely that the structure also impacts on substrate flux near the adsorbed enzymes and thus catalytic activity. Furthermore, for enzymes converting macro-molecular substrates it is possible that the enzyme orientation determines the nature of interactions between the adsorbed enzyme and substrate and therefore catalytic rates. In essence the electrode may impede substrate access to the active site of the enzyme. We have tested these possibilities through studies of the catalytic performance of two enzymes adsorbed on topologically distinct electrode materials. Escherichia coli NrfA, a nitrite reductase, was adsorbed on mesoporous, nanocrystalline SnO2 electrodes. CymA from Shewanella oneidensis MR-1 reduces menaquinone-7 within 200 nm sized liposomes and this reaction was studied with the enzyme adsorbed on SAM modified ultra-flat gold electrodes. PMID:24634538

  5. The Impact of Enzyme Orientation and Electrode Topology on the Catalytic Activity of Adsorbed Redox Enzymes.

    PubMed

    McMillan, Duncan G G; Marritt, Sophie J; Kemp, Gemma L; Gordon-Brown, Piers; Butt, Julea N; Jeuken, Lars J C

    2013-11-01

    It is well established that the structural details of electrodes and their interaction with adsorbed enzyme influences the interfacial electron transfer rate. However, for nanostructured electrodes, it is likely that the structure also impacts on substrate flux near the adsorbed enzymes and thus catalytic activity. Furthermore, for enzymes converting macro-molecular substrates it is possible that the enzyme orientation determines the nature of interactions between the adsorbed enzyme and substrate and therefore catalytic rates. In essence the electrode may impede substrate access to the active site of the enzyme. We have tested these possibilities through studies of the catalytic performance of two enzymes adsorbed on topologically distinct electrode materials. Escherichia coli NrfA, a nitrite reductase, was adsorbed on mesoporous, nanocrystalline SnO2 electrodes. CymA from Shewanella oneidensis MR-1 reduces menaquinone-7 within 200 nm sized liposomes and this reaction was studied with the enzyme adsorbed on SAM modified ultra-flat gold electrodes.

  6. Long life electrodes for large-area x-ray generators

    NASA Technical Reports Server (NTRS)

    Rothe, Dietmar E. (Inventor)

    1991-01-01

    This invention is directed to rugged, reliable, and long-life electrodes for use in large-area, high-current-density electron gun and x-ray generators which are employed as contamination-free preionizers for high-energy pulsed gas lasers. The electron source at the cathode is a corona plasma formed at the interface between a conductor, or semiconductor, and a high-permittivity dielectric. Detailed descriptions are provided of a reliable cold plasma cathode, as well as an efficient liquid-cooled electron beam target (anode) and x-ray generator which concentrates the x-ray flux in the direction of an x-ray window.

  7. Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon.

    PubMed

    Saha, Dipendu; Li, Yunchao; Bi, Zhonghe; Chen, Jihua; Keum, Jong K; Hensley, Dale K; Grappe, Hippolyte A; Meyer, Harry M; Dai, Sheng; Paranthaman, M Parans; Naskar, A K

    2014-01-28

    We synthesized mesoporous carbon from pre-cross-linked lignin gel impregnated with a surfactant as the pore-forming agent and then activated the carbon through physical and chemical methods to obtain activated mesoporous carbon. The activated mesoporous carbons exhibited 1.5- to 6-fold increases in porosity with a maximum Brunauer-Emmett-Teller (BET) specific surface area of 1148 m(2)/g and a pore volume of 1.0 cm(3)/g. Both physical and chemical activation enhanced the mesoporosity along with significant microporosity. Plots of cyclic voltammetric data with the capacitor electrode made from these carbons showed an almost rectangular curve depicting the behavior of ideal double-layer capacitance. Although the pristine mesoporous carbon exhibited a range of surface-area-based capacitance similar to that of other known carbon-based supercapacitors, activation decreased the surface-area-based specific capacitance and enhanced the gravimetric specific capacitance of the mesoporous carbons. A vertical tail in the lower-frequency domain of the Nyquist plot provided additional evidence of good supercapacitor behavior for the activated mesoporous carbons. We have modeled the equivalent circuit of the Nyquist plot with the help of two constant phase elements (CPE). Our work demonstrated that biomass-derived mesoporous carbon materials continue to show potential for use in specific electrochemical applications.

  8. An Electrode-based approach for monitoring in situ microbial activity during subsurface bioremediation

    SciTech Connect

    Williams, K.H.; Nevin, K.P.; Franks, A.; Englert, A.; Long, P.E.; Lovley, D.R.

    2009-11-15

    Current production by microorganisms colonizing subsurface electrodes and its relationship to substrate availability and microbial activity was evaluated in an aquifer undergoing bioremediation. Borehole graphite anodes were installed downgradient from a region of acetate injection designed to stimulate bioreduction of U(VI); cathodes consisted of graphite electrodes embedded at the ground surface. Significant increases in current density ({<=}50 mA/m{sup 2}) tracked delivery of acetate to the electrodes, dropping rapidly when acetate inputs were discontinued. An upgradient control electrode not exposed to acetate produced low, steady currents ({<=}0.2 mA/m{sup 2}). Elevated current was strongly correlated with uranium removal but minimal correlation existed with elevated Fe(II). Confocal laser scanning microscopy of electrodes revealed firmly attached biofilms, and analysis of 16S rRNA gene sequences indicated the electrode surfaces were dominated (67-80%) by Geobacter species. This is the first demonstration that electrodes can produce readily detectable currents despite long-range (6 m) separation of anode and cathode, and these results suggest that oxidation of acetate coupled to electron transfer to electrodes by Geobacter species was the primary source of current. Thus it is expected that current production may serve as an effective proxy for monitoring in situ microbial activity in a variety of subsurface anoxic environments.

  9. Electrode-based approach for monitoring in situ microbial activity during subsurface bioremediation.

    PubMed

    Williams, Kenneth H; Nevin, Kelly P; Franks, Ashley; Englert, Andreas; Long, Philip E; Lovley, Derek R

    2010-01-01

    Current production by microorganisms colonizing subsurface electrodes and its relationship to substrate availability and microbial activity was evaluated in an aquifer undergoing bioremediation. Borehole graphite anodes were installed downgradient from a region of acetate injection designed to stimulate bioreduction of U(VI); cathodes consisted of graphite electrodes embedded at the ground surface. Significant increases in current density (< or =50 mA/m2) tracked delivery of acetate to the electrodes, dropping rapidly when acetate inputs were discontinued. An upgradient control electrode not exposed to acetate produced low, steady currents (< or =0.2 mA/m2). Elevated current was strongly correlated with uranium removal but minimal correlation existed with elevated Fe(II). Confocal laser scanning microscopy of electrodes revealed firmly attached biofilms, and analysis of 16S rRNA gene sequences indicated the electrode surfaces were dominated (67-80%) by Geobacter species. This is the first demonstration that electrodes can produce readily detectable currents despite long-range (6 m) separation of anode and cathode, and these results suggest that oxidation of acetate coupled to electron transfer to electrodes by Geobacter species was the primary source of current. Thus it is expected that current production may serve as an effective proxy for monitoring in situ microbial activity in a variety of subsurface anoxic environments.

  10. Synthesis and Applications of Large Area Graphene-Based Electrode Systems

    NASA Astrophysics Data System (ADS)

    Paul, Rajat Kanti

    Graphene is a single sheet of carbon atoms with outstanding electrical and physical properties and being exploited for applications in electronics, sensors, fuel cells, photovoltaics and energy storage. However, practical designs of graphene-based electrode systems and related experimental implementations are required to realize their widespread applications in nano- to bioelectronics. In this dissertation, different graphene-based electrode systems having metallic and semiconducting properties are synthesized optimizing process conditions. Also realized is the potential of the fabricated electrode systems by applying them in practical applications such as sensor devices and fuel cells. The zero bandgap of semimetal graphene still limits its application as an effective field-effect transistor device or a chemiresistor sensor operating at room temperature. It has been shown theoretically and experimentally that graphene nanoribbons (GNRs) or nanomeshes (GNMs) can attain a bandgap that is large enough for a transistor device, and hence would show high sensitivity to various gaseous species or biomolecules. Large-area mono- and bilayer graphene films are synthesized by a simple chemical vapor deposition (CVD) technique depending on the carbon precursors such as methane, acetylene and ethanol, and the results are compared using optical microscopy (OM), Raman spectroscopy, high-resolution transmission electron microscopy (HRTEM) and x-ray photoelectron spectroscopy (XPS). A simple reactive ion etching (RIE) combined with well-established nanosphere lithography is performed on the synthesized CVD-grown monolayer graphene platform to fabricate large area GNMs with specific dimension and periodicity. The fabricated GNMs chemiresistor sensor devices show excellent sensitivity towards NO2 and NH 3, significantly higher than their film counterparts. The GNM sensor devices exhibit sensitivities of about 4.32%/ppm (parts-per-million) in NO 2 and 0.71%/ppm in NH3 with estimated

  11. Conformable actively multiplexed high-density surface electrode array for brain interfacing

    DOEpatents

    Rogers, John; Kim, Dae-Hyeong; Litt, Brian; Viventi, Jonathan

    2015-01-13

    Provided are methods and devices for interfacing with brain tissue, specifically for monitoring and/or actuation of spatio-temporal electrical waveforms. The device is conformable having a high electrode density and high spatial and temporal resolution. A conformable substrate supports a conformable electronic circuit and a barrier layer. Electrodes are positioned to provide electrical contact with a brain tissue. A controller monitors or actuates the electrodes, thereby interfacing with the brain tissue. In an aspect, methods are provided to monitor or actuate spatio-temporal electrical waveform over large brain surface areas by any of the devices disclosed herein.

  12. Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors.

    PubMed

    Farma, R; Deraman, M; Awitdrus, A; Talib, I A; Taer, E; Basri, N H; Manjunatha, J G; Ishak, M M; Dollah, B N M; Hashmi, S A

    2013-03-01

    Fibres from oil palm empty fruit bunches, generated in large quantities by palm oil mills, were processed into self-adhesive carbon grains (SACG). Untreated and KOH-treated SACG were converted without binder into green monolith prior to N2-carbonisation and CO2-activation to produce highly porous binderless carbon monolith electrodes for supercapacitor applications. Characterisation of the pore structure of the electrodes revealed a significant advantage from combining the chemical and physical activation processes. The electrochemical measurements of the supercapacitor cells fabricated using these electrodes, using cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge-discharge techniques consistently found that approximately 3h of activation time, achieved via a multi-step heating profile, produced electrodes with a high surface area of 1704m(2)g(-1) and a total pore volume of 0.889cm(3)g(-1), corresponding to high values for the specific capacitance, specific energy and specific power of 150Fg(-1), 4.297Whkg(-1) and 173Wkg(-1), respectively.

  13. Novel active comb-shaped dry electrode for EEG measurement in hairy site.

    PubMed

    Huang, Yan-Jun; Wu, Chung-Yu; Wong, Alice May-Kuen; Lin, Bor-Shyh

    2015-01-01

    Electroencephalography (EEG) is an important biopotential, and has been widely applied in clinical applications. The conventional EEG electrode with conductive gels is usually used for measuring EEG. However, the use of conductive gel also encounters with the issue of drying and hardening. Recently, many dry EEG electrodes based on different conductive materials and techniques were proposed to solve the previous issue. However, measuring EEG in the hairy site is still a difficult challenge. In this study, a novel active comb-shaped dry electrode was proposed to measure EEG in hairy site. Different form other comb-shaped or spike-shaped dry electrodes, it can provide more excellent performance of avoiding the signal attenuation, phase distortion, and the reduction of common mode rejection ratio. Even under walking motion, it can effectively acquire EEG in hairy site. Finally, the experiments for alpha rhythm and steady-state visually evoked potential were also tested to validate the proposed electrode.

  14. Reproducible, stable and fast electrochemical activity from easy to make graphene on copper electrodes.

    PubMed

    Bosch-Navarro, Concha; Laker, Zachary P L; Rourke, Jonathan P; Wilson, Neil R

    2015-11-28

    The electrochemical activity of graphene is of fundamental importance to applications from energy storage to sensing, but has proved difficult to unambiguously determine due to the challenges innate to fabricating well defined graphene electrodes free from contamination. Here, we report the electrochemical activity of chemical vapour deposition (CVD) graphene grown on copper foil without further treatment, through appropriate choice of electrolyte. Fast electron transfer kinetics are observed for both inner and outer sphere redox couples with fully covered graphene on copper electrodes (k° = 0.014 ± 0.001 cm s(-1) or k° = 0.012 ± 0.001 cm s(-1) for potassium ferrocyanide(II) and hexaamineruthenium(III) chloride, respectively). Unlike highly oriented pyrolytic graphite electrodes, the electrochemical response of the graphene on copper electrodes is stable, with no apparent electrode fouling even with inner sphere redox couples, and reproducible independent of the time between growth and measurement. Comparison between fully covered electrodes, and partial coverage of graphene with varying graphene grain sizes (from roughly 50 μm to <10 μm) shows that in this instance the basal plane of graphene is electrochemically active. These CVD grown graphene on copper electrodes are quick, cheap and reproducible to make and hence provide a convenient platform for further investigation of graphene electrochemistry and the effect of covalent and non-covalent modification. PMID:26477748

  15. High surface area electrodes in ionic polymer transducers: Numerical and experimental investigations of the electro-chemical behavior

    NASA Astrophysics Data System (ADS)

    Akle, Barbar J.; Habchi, Wassim; Wallmersperger, Thomas; Akle, Etienne J.; Leo, Donald J.

    2011-04-01

    Ionomeric polymer transducer (IPT) is an electroactive polymer that has received considerable attention due to its ability to generate large bending strain (>5%) and moderate stress at low applied voltages (±2 V). Ionic polymer transducers consist of an ionomer, usually Nafion, sandwiched between two electrically conductive electrodes. A novel fabrication technique denoted as the direct assembly process (DAP) enabled controlled electrode architecture in ionic polymer transducers. A DAP built transducer consists of two high surface area electrodes made of electrically conducting particles uniformly distributed in an ionomer matrix sandwiching an ionomer membrane. The purpose of this paper is to investigate and simulate the effect of these high surface area particles on the electro-chemical response of an IPT. Theoretical investigations as well as experimental verifications are performed. The model used consists of a convection-diffusion equation describing the chemical field as well as a Poisson equation describing the electrical field. The two-dimensional model incorporates highly conductive particles randomly distributed in the electrode area. Traditionally, these kinds of electrodes were simulated with boundary conditions representing flat electrodes with a large dielectric permittivity at the polymer boundary. This model enables the design of electrodes with complicated geometrical patterns. In the experimental section, several transducers are fabricated using the DAP process on Nafion 117 membranes. The architecture of the high surface area electrodes in these samples is varied. The concentration of the high surface area RuO2 particles is varied from 30 vol% up to 60 vol% at a fixed thickness of 30 μm, while the overall thickness of the electrode is varied from 10 μm up to 40 μm at a fixed concentration of 45%. The flux and charge accumulation in the materials are measured experimentally and compared to the results of the numerical simulations. Trends of

  16. Rapid bench-top fabrication of poly(dimethylsiloxane)/polystyrene microfluidic devices incorporating high-surface-area sensing electrodes

    PubMed Central

    Sonney, Sanjay; Shek, Norman; Moran-Mirabal, Jose M.

    2015-01-01

    The development of widely applicable point-of-care sensing and diagnostic devices can benefit from simple and inexpensive fabrication techniques that expedite the design, testing, and implementation of lab-on-a-chip devices. In particular, electrodes integrated within microfluidic devices enable the use of electrochemical techniques for the label-free detection of relevant analytes. This work presents a novel, simple, and cost-effective bench-top approach for the integration of high surface area three-dimensional structured electrodes fabricated on polystyrene (PS) within poly(dimethylsiloxane) (PDMS)-based microfluidics. Optimization of PS-PDMS bonding results in integrated devices that perform well under pressure and fluidic flow stress. Furthermore, the fabrication and bonding processes are shown to have no effect on sensing electrode performance. Finally, the on-chip sensing capabilities of a three-electrode electrochemical cell are demonstrated with a model redox compound, where the high surface area structured electrodes exhibit ultra-high sensitivity. We propose that the developed approach can significantly expedite and reduce the cost of fabrication of sensing devices where arrays of functionalized electrodes can be used for point-of-care analysis and diagnostics. PMID:25945145

  17. Induction of Electrode-Cellular Interfaces with ˜ 0.05 μm^2 Contact Areas

    NASA Astrophysics Data System (ADS)

    Flanders, Bret; Thapa, Prem

    2009-10-01

    Individual cells of the slime mold Dictyostelium discoideum attach themselves to negatively biased nanoelectrodes that are separated by 30 μm from grounded electrodes. There is a -43 mV voltage-threshold for cell-to-electrode attachment, with negligible probability across the 0 to -38 mV range but probability that approaches 0.7 across the -46 to -100 mV range. A cell initiates contact by extending a pseudopod to the electrode and maintains contact until the voltage is turned off. Scanning electron micrographs of these interfaces show the contact areas to be of the order of 0.05 μm^2. Insight into this straight-forward, reproducible process may lead to new electrode-cellular attachment strategies that complement established approaches, such as blind sampling and patch clamp.

  18. Surface modification and electrochemical properties of activated carbons for supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Yang, Dan; Qiu, Wenmei; Xu, Jingcai; Han, Yanbing; Jin, Hongxiao; Jin, Dingfeng; Peng, Xiaoling; Hong, Bo; Li, Ji; Ge, Hongliang; Wang, Xinqing

    2015-12-01

    Modifications with different acids (HNO3, H2SO4, HCl and HF, respectively) were introduced to treat the activated carbons (ACs) surface. The microstructures and surface chemical properties were discussed by X-ray diffraction (XRD), thermogravimetric analysis (TGA), ASAP, Raman spectra and Fourier transform infrared (FTIR) spectra. The ACs electrode-based supercapacitors were assembled with 6 mol ṡ L-1 KOH electrolyte. The electrochemical properties were studied by galvanostatic charge-discharge and cyclic voltammetry. The results indicated that although the BET surface area of modified ACs decreased, the functional groups were introduced and the ash contents were reduced on the surface of ACs, receiving larger specific capacitance to initial AC. The specific capacitance of ACs modified with HCl, H2SO4, HF and HNO3 increased by 31.4%, 23%, 21% and 11.6%, respectively.

  19. [Research on treatment of high salt wastewater by the graphite and activated carbon fiber composite electrodes].

    PubMed

    Zhou, Gui-Zhong; Wang, Zhao-Feng; Wang, Xuan; Li, Wen-Qian; Li, Shao-Xiang

    2014-05-01

    High salinity wastewater is one of the difficulties in the field of wastewater treatment. As a new desalination technology, electrosorption technology has many advantages. This paper studied a new type of carbon-based electrodes, the graphite and activated carbon fiber composite electrodes. And the influencing factors of electrosorption and its desalination effect were investigated. The electrosorption device had optimal desalination effect when the voltage was 1. 6 V, the retention time was 60 min and the plate spacing was 1 cm. The graphite and activated carbon fiber composite electrodes were used to treat the black liquor of refined cotton and sodium copper chlorophyll wastewater to investigate its desalination effect. When the electrodes were used to treat the black liquor of refined cotton after acid treatment, the removal rate of conductivity and COD reached 58. 8% and 75. 6% respectively when 8 pairs of electrodes were used. And when the electrode was used to treat the sodium copper chlorophyll wastewater, the removal rate of conductivity and COD reached higher than 50. 0% and 13. 5% respectively when 6-8 pairs of electrodes were used.

  20. Simulation of Nerve Bundle Activation by Simultaneous Multipoint Extracellular Stimulation with Surface Electrodes

    NASA Astrophysics Data System (ADS)

    Takahashi, Hirokazu; Nakao, Masayuki; Kaga, Kimitaka

    Neural prostheses for restoring lost functions can benefit from selective activation of nerves. We had previously proposed a multiple gating stimulation, which can selectively activate a desired portion of nerve bundle, irrespective of a density of the electrode. In this paper, we discuss the design of electrode array and effective strategies to determine the stimulus parameters. A large electrode was less affected by the relative location of electrodes and the node of Ranvier, suggesting that a rectangular electrode, whose long side along a nerve bundle is longer than the internodal distance, i.e., on the order of 1 mm, would be more effective rather than a disk electrode. We could estimate an appropriate current at each electrode was a blocking threshold. For the lateral gating stimulation, the gate current should be set above the threshold, while, for depth-wise gating stimulation, the gate current should be set below the threshold. The spatial resolution of lateral gating stimulation is theoretically estimated at least at 50 μm when the grid of array was 1.2 mm, and that of depth-wise gating stimulation at 50 μm.

  1. Analysis and Simple Circuit Design of Double Differential EMG Active Electrode.

    PubMed

    Guerrero, Federico Nicolás; Spinelli, Enrique Mario; Haberman, Marcelo Alejandro

    2016-06-01

    In this paper we present an analysis of the voltage amplifier needed for double differential (DD) sEMG measurements and a novel, very simple circuit for implementing DD active electrodes. The three-input amplifier that standalone DD active electrodes require is inherently different from a differential amplifier, and general knowledge about its design is scarce in the literature. First, the figures of merit of the amplifier are defined through a decomposition of its input signal into three orthogonal modes. This analysis reveals a mode containing EMG crosstalk components that the DD electrode should reject. Then, the effect of finite input impedance is analyzed. Because there are three terminals, minimum bounds for interference rejection ratios due to electrode and input impedance unbalances with two degrees of freedom are obtained. Finally, a novel circuit design is presented, including only a quadruple operational amplifier and a few passive components. This design is nearly as simple as the branched electrode and much simpler than the three instrumentation amplifier design, while providing robust EMG crosstalk rejection and better input impedance using unity gain buffers for each electrode input. The interference rejection limits of this input stage are analyzed. An easily replicable implementation of the proposed circuit is described, together with a parameter design guideline to adjust it to specific needs. The electrode is compared with the established alternatives, and sample sEMG signals are obtained, acquired on different body locations with dry contacts, successfully rejecting interference sources. PMID:26841414

  2. Analysis and Simple Circuit Design of Double Differential EMG Active Electrode.

    PubMed

    Guerrero, Federico Nicolás; Spinelli, Enrique Mario; Haberman, Marcelo Alejandro

    2016-06-01

    In this paper we present an analysis of the voltage amplifier needed for double differential (DD) sEMG measurements and a novel, very simple circuit for implementing DD active electrodes. The three-input amplifier that standalone DD active electrodes require is inherently different from a differential amplifier, and general knowledge about its design is scarce in the literature. First, the figures of merit of the amplifier are defined through a decomposition of its input signal into three orthogonal modes. This analysis reveals a mode containing EMG crosstalk components that the DD electrode should reject. Then, the effect of finite input impedance is analyzed. Because there are three terminals, minimum bounds for interference rejection ratios due to electrode and input impedance unbalances with two degrees of freedom are obtained. Finally, a novel circuit design is presented, including only a quadruple operational amplifier and a few passive components. This design is nearly as simple as the branched electrode and much simpler than the three instrumentation amplifier design, while providing robust EMG crosstalk rejection and better input impedance using unity gain buffers for each electrode input. The interference rejection limits of this input stage are analyzed. An easily replicable implementation of the proposed circuit is described, together with a parameter design guideline to adjust it to specific needs. The electrode is compared with the established alternatives, and sample sEMG signals are obtained, acquired on different body locations with dry contacts, successfully rejecting interference sources.

  3. Electrodeposition of gold nanoparticle arrays on ITO glass as electrode with high electrocatalytic activity

    SciTech Connect

    Zhang, Kui; Wei, Juan; Zhu, Houjuan; Ma, Fang; Wang, Suhua

    2013-03-15

    Highlights: ► Electrodeposition of gold nanoparticle arrays on ITO glass as catalytic-electrodes. ► The sizes and densities of the gold nanoparticles can be easily controlled. ► Such arrays on ITO glass shows high electrocatalytic activity and good stability. - Abstract: Herein, we reported a templateless, surfactantless, and simple electrochemical method to directly fabricate gold nanoparticle (AuNP) arrays on indium tin oxide (ITO) glass substrates as effective electrocatalytic electrodes. The as-prepared AuNP arrays have been characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), etc. AuNPs with small sizes (<20 nm) were uniformly deposited on the ITO glass under constant current densities, and particle densities can be adjusted by varying the applied charges. The resultant AuNP array electrode showed higher catalytic activity and good stability toward electro-oxidation of ascorbic acid compared with other electrodes, such as bare ITO electrode, bare glassy carbon electrode and bulk gold film electrode.

  4. Electrode-based approach for monitoring in situ microbial activity during subsurface bioremediation

    SciTech Connect

    Williams, Kenneth H.; Nevin, Kelly P.; Franks, Ashley; Englert, Andreas L.; Long, Philip E.; Lovley, Derek R.

    2010-01-01

    Current production by microorganisms colonizing subsurface electrodes and its relationship to substrate availability and microbial activity was evaluated in an aquifer undergoing bioremediation. Borehole graphite anodes were installed downgradient from a region of acetate injection designed to stimulate bioreduction of U(VI); cathodes consisted of graphite electrodes embedded at the ground surface. Significant increases in current density (≤50 mA/m2) tracked delivery of acetate to the electrodes, dropping rapidly when acetate inputs were discontinued. An upgradient control produced low, steady currents (≤0.2 mA/m2). Elevated current was strongly correlated with uranium removal but minimal correlation existed with elevated Fe(II). Confocal laser scanning microscopy of electrodes revealed firmly attached biofilms, and analysis of 16S rRNA gene sequences indicated the electrode surfaces were dominated (67-80%) by Geobacter species. These results suggest that oxidation of acetate coupled to electron transfer to electrodes by Geobacter species was the primary source of current. This is the first demonstration that electrodes can produce readily detectable currents despite long-range (6 m) separation of anode and cathode and that current levels are likely related to rates of subsurface metabolism. It is expected that current production may serve as an effective proxy for monitoring in situ microbial activity in a variety of subsurface anoxic environments.

  5. Facility Focus: Student Activity Areas.

    ERIC Educational Resources Information Center

    College Planning & Management, 2001

    2001-01-01

    Discusses the design of student activity facilities that are showpieces containing both business and entertainment elements. Four examples are highlighted including a performing arts center, a college gym, a student services facility, and a student union. (GR)

  6. Active books: the design of an implantable stimulator that minimizes cable count using integrated circuits very close to electrodes.

    PubMed

    Liu, Xiao; Demosthenous, Andreas; Vanhoestenberghe, Anne; Jiang, Dai; Donaldson, Nick

    2012-06-01

    This paper presents an integrated stimulator that can be embedded in implantable electrode books for interfacing with nerve roots at the cauda equina. The Active Book overcomes the limitation of conventional nerve root stimulators which can only support a small number of stimulating electrodes due to cable count restriction through the dura. Instead, a distributed stimulation system with many tripole electrodes can be configured using several Active Books which are addressed sequentially. The stimulator was fabricated in a 0.6-μm high-voltage CMOS process and occupies a silicon area of 4.2 × 6.5 mm(2). The circuit was designed to deliver up to 8 mA stimulus current to tripole electrodes from an 18 V power supply. Input pad count is limited to five (two power and three control lines) hence requiring a specific procedure for downloading stimulation commands to the chip and extracting information from it. Supported commands include adjusting the amplitude of stimulus current, varying the current ratio at the two anodes in each channel, and measuring relative humidity inside the chip package. In addition to stimulation mode, the chip supports quiescent mode, dissipating less than 100 nA current from the power supply. The performance of the stimulator chip was verified with bench tests including measurements using tripoles in saline. PMID:23853144

  7. Tank Focus Area pretreatment activities

    SciTech Connect

    McGinnis, C.P.; Welch, T.D.; Manke, K.L.

    1997-03-01

    Plans call for the high-level wastes to be retrieved from the tanks and immobilized in a stable waste form suitable for long-term isolation. Chemistry and chemical engineering operations are required to retrieve the wastes, to condition the wastes for subsequent steps, and to reduce the costs of the waste management enterprise. Pretreatment includes those processes between retrieval and immobilization, and includes preparation of suitable feed material for immobilization and separations to partition the waste into streams that yield lower life-cycle costs. Some of the technologies being developed by the Tank Focus Area (TFA) to process these wastes are described. These technologies fall roughly into three areas: (1) solid/liquid separation (SLS), (2) sludge pretreatment, and (3) supernate pretreatment.

  8. The impedance response of LaY2Ni9 negative electrode materials after activation

    NASA Astrophysics Data System (ADS)

    Boussami, S.; Khaldi, C.; Lamloumi, J.; Mathlouthi, H.; Takenouti, H.; Vivier, V.

    2013-10-01

    The electrochemical impedance responses of the LaY2Ni9 alloy electrode after activation at different states of charge (SOC), immersion time in 7 M KOH and room temperature was studied. Electrochemical impedance spectrum of the metal hydride electrode obtained was interpreted by an equivalent circuit modeling including the different electrochemical processes taking place on the interface between the MH electrode and the electrolyte. The results indicate that the electrochemical reaction activity of hydride electrode was markedly enhanced with increasing state of charge. The hydrogen diffuses in the bulk of the alloy and this process is not the limiting step for the hydrogen absorption. During a long immersion time a continuous nanocrystalline corrosion scale appears and the modification of passive film toward more organized structure is concluded.

  9. Electrode compositions

    DOEpatents

    Block, Jacob; Fan, Xiyun

    1998-01-01

    An electrode composition for use as an electrode in a non-aqueous battery system. The electrode composition contains an electrically active powder in a solid polymer and, as a dispersant, a C.sub.8 -C.sub.15 alkyl capped oligomer of a hexanoic acid that is electrochemically inert at 2.5-4.5 volts.

  10. Electrode compositions

    DOEpatents

    Block, J.; Fan, X.

    1998-10-27

    An electrode composition is described for use as an electrode in a non-aqueous battery system. The electrode composition contains an electrically active powder in a solid polymer and, as a dispersant, a C{sub 8}-C{sub 15} alkyl capped oligomer of a hexanoic acid that is electrochemically inert at 2.5--4.5 volts.

  11. Enhancement in ion adsorption rate and desalination efficiency in a capacitive deionization cell through improved electric field distribution using electrodes composed of activated carbon cloth coated with zinc oxide nanorods.

    PubMed

    Laxman, Karthik; Myint, Myo Tay Zar; Bourdoucen, Hadj; Dutta, Joydeep

    2014-07-01

    Electrodes composed of activated carbon cloth (ACC) coated with zinc oxide (ZnO) nanorods are compared with plain ACC electrodes, with respect to their desalination efficiency of a 17 mM NaCl solution at different applied potentials. Polarization of the ZnO nanorods increased the penetration depth and strength of the electric field between the electrodes, leading to an increase in the capacitance and charge efficiency at reduced input charge ratios. Uniform distribution of the electric field lines between two electrodes coated with ZnO nanorods led to faster ion adsorption rates, reduced the electrode saturation time, and increased the average desalination efficiency by ∼45% for all applied potentials. The electrodes were characterized for active surface area, capacitance from cyclic voltammetry, theoretical assessment of surface area utilization, and the magnitude of electric field force acting on an ion of unit charge for each potential.

  12. Improved capacitive deionization performance of mixed hydrophobic/hydrophilic activated carbon electrodes

    NASA Astrophysics Data System (ADS)

    Aslan, M.; Zeiger, M.; Jäckel, N.; Grobelsek, I.; Weingarth, D.; Presser, V.

    2016-03-01

    Capacitive deionization (CDI) is a promising salt removal technology with high energy efficiency when applied to low molar concentration aqueous electrolytes. As an interfacial process, ion electrosorption during CDI operation is sensitive to the pore structure and the total pore volume of carbon electrodes limits the maximum salt adsorption capacity (SAC). Thus, activation of carbons as a widely used method to enhance the porosity of a material should also be highly attractive for improving SAC values. In our study, we use easy-to-scale and facile-to-apply CO2-activation at temperatures between 950 °C and 1020 °C to increase the porosity of commercially available activated carbon. While the pore volume and surface area can be significantly increased up to 1.51 cm3 g-1 and 2113 m2 g-1, this comes at the expense of making the carbon more hydrophobic. We present a novel strategy to capitalize on the improved pore structure by admixing as received (more hydrophilic) carbon with CO2-treated (more hydrophobic) carbon for CDI electrodes without using membranes. This translates into an enhanced charge storage ability in high and low molar concentrations (1 M and 5 mM NaCl) and significantly improved CDI performance (at 5 mM NaCl). In particular, we obtain stable CDI performance at 0.86 charge efficiency with 13.1 mg g-1 SAC for an optimized 2:1 mixture (by mass).

  13. High-Resolution, Large-Area Fabrication of Compliant Electrodes via Laser Ablation for Robust, Stretchable Dielectric Elastomer Actuators and Sensors.

    PubMed

    Araromi, Oluwaseun A; Rosset, Samuel; Shea, Herbert R

    2015-08-19

    A key element in stretchable actuators, sensors, and systems based on elastomer materials are compliant electrodes. While there exist many methodologies for fabricating electrodes on dielectric elastomers, very few succeed in achieving high-resolution patterning over large areas. We present a novel approach for the production of mechanically robust, high-resolution compliant electrodes for stretchable silicone elastomer actuators and sensors. Cast, 2-50 μm thick poly(dimethylsiloxane) (PDMS)-carbon composite layers are patterned by laser ablation and subsequently bonded to a PDMS membrane by oxygen plasma activation. The technique affords great design flexibility and high resolution and readily scales to large-area arrays of devices. We validate our methodology by producing arrays of actuators and sensors on up to A4-size substrates, reporting on microscale dielectric elastomer actuators (DEA) generating area strains of over 25%, and interdigitated capacitive touch sensors with high sensitivity yet insensitivity to substrate stretching. We demonstrate the ability to cofabricate highly integrated multifunctional transducers using the same process flow, showing the methodology's promise in realizing sophisticated and reliable complex stretchable devices with fine features over large areas.

  14. Impact of electrode preparation on the bending of asymmetric planar electro-active polymer microstructures

    NASA Astrophysics Data System (ADS)

    Weiss, Florian M.; Töpper, Tino; Osmani, Bekim; Winterhalter, Carla; Müller, Bert

    2014-03-01

    Compliant electrodes of microstructures have been a research topic for many years because of the increasing interest in consumer electronics, robotics, and medical applications. This interest includes electrically activated polymers (EAP), mainly applied in robotics, lens systems, haptics and foreseen in a variety of medical devices. Here, the electrodes consist of metals such as gold, graphite, conductive polymers or certain composites. The common metal electrodes have been magnetron sputtered, thermally evaporated or prepared using ion implantation. In order to compare the functionality of planar metal electrodes in EAP microstructures, we have investigated the mechanical properties of magnetron sputtered and thermally evaporated electrodes taking advantage of cantilever bending of the asymmetric, rectangular microstructures. We demonstrate that the deflection of the sputtered electrodes is up to 39 % larger than that of thermally evaporated nanometer-thin film on a single silicone film. This difference has even more impact on nanometer-thin, multi-stack, low-voltage EAP actuators. The stiffening effect of many metallic electrode layers is expected to be one of the greatest drawbacks in the multi-stack approaches, which will be even more pronounced if the elastomer layer thickness will be in the sub-micrometer range. Additionally, an improvement in voltage and strain resolution is presented, which is as low as 2 V or 5 × 10-5 above 10 V applied.

  15. Electrodic voltages in the presence of dissolved sulfide: Implications for monitoring natural microbial activity

    SciTech Connect

    Slater, L.; Ntarlagiannis, D.; Yee, N.; O'Brien, M.; Zhang, C.; Williams, K. H.

    2008-10-01

    There is growing interest in the development of new monitoring strategies for obtaining spatially extensive data diagnostic of microbial processes occurring in the earth. Open-circuit potentials arising from variable redox conditions in the fluid local-to-electrode surfaces (electrodic potentials) were recorded for a pair of silver-silver chloride electrodes in a column experiment, whereby a natural wetland soil containing a known community of sulfate reducers was continuously fed with a sulfate-rich nutrient medium. Measurements were made between five electrodes equally spaced along the column and a reference electrode placed on the column inflow. The presence of a sulfate reducing microbial population, coupled with observations of decreasing sulfate levels, formation of black precipitate (likely iron sulfide),elevated solid phase sulfide, and a characteristic sulfurous smell, suggest microbial-driven sulfate reduction (sulfide generation) in our column. Based on the known sensitivity of a silver electrode to dissolved sulfide concentration, we interpret the electrodic potentials approaching 700 mV recorded in this experiment as an indicator of the bisulfide (HS-) concentration gradients in the column. The measurement of the spatial and temporal variation in these electrodic potentials provides a simple and rapid method for monitoring patterns of relative HS- concentration that are indicative of the activity of sulfate-reducing bacteria. Our measurements have implications both for the autonomous monitoring of anaerobic microbial processes in the subsurface and the performance of self-potential electrodes, where it is critical to isolate, and perhaps quantify, electrochemical interfaces contributing to observed potentials.

  16. Electrochemical decolorization of dye wastewater by surface-activated boron-doped nanocrystalline diamond electrode.

    PubMed

    Chen, Chienhung; Nurhayati, Ervin; Juang, Yaju; Huang, Chihpin

    2016-07-01

    Complex organics contained in dye wastewater are difficult to degrade and often require electrochemical advanced oxidation processes (EAOPs) to treat it. Surface activation of the electrode used in such treatment is an important factor determining the success of the process. The performance of boron-doped nanocrystalline diamond (BD-NCD) film electrode for decolorization of Acid Yellow (AY-36) azo dye with respect to the surface activation by electrochemical polarization was studied. Anodic polarization found to be more suitable as electrode pretreatment compared to cathodic one. After anodic polarization, the originally H-terminated surface of BD-NCD was changed into O-terminated, making it more hydrophilic. Due to the oxidation of surface functional groups and some portion of sp(2) carbon in the BD-NCD film during anodic polarization, the electrode was successfully being activated showing lower background current, wider potential window and considerably less surface activity compared to the non-polarized one. Consequently, electrooxidation (EO) capability of the anodically-polarized BD-NCD to degrade AY-36 dye was significantly enhanced, capable of nearly total decolorization and chemical oxygen demand (COD) removal even after several times of re-using. The BD-NCD film electrode favored acidic condition for the dye degradation; and the presence of chloride ion in the solution was found to be more advantageous than sulfate active species.

  17. Enrichment of electrochemically active bacteria using a three-electrode electrochemical cell.

    PubMed

    Yoon, Seok-Min; Choi, Chang-Ho; Kim, Mia; Hyun, Moon-Sik; Shin, Sung-Hye; Yi, Dong-Heui; Kim, Hyung Joo

    2007-01-01

    Electrochemically active bacteria were successfully enriched in an electrochemical cell using a positively poised working electrode. The positively poised working electrode (+0.7 V vs. Ag/AgCl) was used as an electron acceptor for enrichment and growth of electrochemically active bacteria. When activated sludge and synthetic wastewater were fed to the electrochemical cell, a gradual increase in amperometric current was observed. After a period of time in which the amperometric current was stabilized (generally 8 days), linear correlations between the amperometric signals from the electrochemical cell and added BOD (biochemical oxygen demand) concentrations were established. Cyclic voltammetry of the enriched electrode also showed prominent electrochemical activity. When the enriched electrodes were examined with electron microscopy and confocal scanning laser microscopy, a biofilm on the enriched electrode surface and bacterium-like particles were observed. These experimental results indicate that the electrochemical system in this study is a useful tool for the enrichment of an electrochemically active bacterial consortium and could be used as a novel microbial biosensor.

  18. ZnO:H indium-free transparent conductive electrodes for active-matrix display applications

    NASA Astrophysics Data System (ADS)

    Chen, Shuming; Wang, Sisi

    2014-12-01

    Transparent conductive electrodes based on hydrogen (H)-doped zinc oxide (ZnO) have been proposed for active-matrix (AM) display applications. When fabricated with optimal H plasma power and optimal plasma treatment time, the resulting ZnO:H films exhibit low sheet resistance of 200 Ω/◻ and high average transmission of 85% at a film thickness of 150 nm. The demonstrated transparent conductive ZnO:H films can potentially replace indium-tin-oxide and serve as pixel electrodes for organic light-emitting diodes as well as source/drain electrodes for ZnO-based thin-film transistors. Use of the proposed ZnO:H electrodes means that two photomask stages can be removed from the fabrication process flow for ZnO-based AM backplanes.

  19. ZnO:H indium-free transparent conductive electrodes for active-matrix display applications

    SciTech Connect

    Chen, Shuming Wang, Sisi

    2014-12-01

    Transparent conductive electrodes based on hydrogen (H)-doped zinc oxide (ZnO) have been proposed for active-matrix (AM) display applications. When fabricated with optimal H plasma power and optimal plasma treatment time, the resulting ZnO:H films exhibit low sheet resistance of 200 Ω/◻ and high average transmission of 85% at a film thickness of 150 nm. The demonstrated transparent conductive ZnO:H films can potentially replace indium-tin-oxide and serve as pixel electrodes for organic light-emitting diodes as well as source/drain electrodes for ZnO-based thin-film transistors. Use of the proposed ZnO:H electrodes means that two photomask stages can be removed from the fabrication process flow for ZnO-based AM backplanes.

  20. Slowing of Hippocampal Activity Correlates with Cognitive Decline in Early Onset Alzheimer's Disease. An MEG Study with Virtual Electrodes.

    PubMed

    Engels, Marjolein M A; Hillebrand, Arjan; van der Flier, Wiesje M; Stam, Cornelis J; Scheltens, Philip; van Straaten, Elisabeth C W

    2016-01-01

    Pathology in Alzheimer's disease (AD) starts in the entorhinal cortex and hippocampus. Because of their deep location, activity from these areas is difficult to record with conventional electro- or magnetoencephalography (EEG/MEG). The purpose of this study was to explore hippocampal activity in AD patients and healthy controls using "virtual MEG electrodes". We used resting-state MEG recordings from 27 early onset AD patients [age 60.6 ± 5.4, 12 females, mini-mental state examination (MMSE) range: 19-28] and 26 cognitively healthy age- and gender-matched controls (age 61.8 ± 5.5, 14 females). Activity was reconstructed using beamformer-based virtual electrodes for 78 cortical regions and 6 hippocampal regions. Group differences in peak frequency and relative power in six frequency bands were identified using permutation testing. For the patients, spearman correlations between the MMSE scores and peak frequency or relative power were calculated. Moreover, receiver operator characteristic curves were plotted to estimate the diagnostic accuracy. We found a lower hippocampal peak frequency in AD compared to controls, which, in the patients, correlated positively with MMSE [r(25) = 0.61; p < 0.01] whereas hippocampal relative theta power correlated negatively with MMSE [r(25) = -0.54; p < 0.01]. Cortical peak frequency was also lower in AD in association areas. Furthermore, cortical peak frequency correlated positively with MMSE [r(25) = 0.43; p < 0.05]. In line with this finding, relative theta power was higher in AD across the cortex, and relative alpha and beta power was lower in more circumscribed areas. The average cortical relative theta power was the best discriminator between AD and controls (sensitivity 82%; specificity 81%). Using beamformer-based virtual electrodes, we were able to detect hippocampal activity in AD. In AD, this hippocampal activity is slowed, and correlates better with cognition than the (slowed) activity in cortical areas. On the other

  1. Slowing of Hippocampal Activity Correlates with Cognitive Decline in Early Onset Alzheimer's Disease. An MEG Study with Virtual Electrodes.

    PubMed

    Engels, Marjolein M A; Hillebrand, Arjan; van der Flier, Wiesje M; Stam, Cornelis J; Scheltens, Philip; van Straaten, Elisabeth C W

    2016-01-01

    Pathology in Alzheimer's disease (AD) starts in the entorhinal cortex and hippocampus. Because of their deep location, activity from these areas is difficult to record with conventional electro- or magnetoencephalography (EEG/MEG). The purpose of this study was to explore hippocampal activity in AD patients and healthy controls using "virtual MEG electrodes". We used resting-state MEG recordings from 27 early onset AD patients [age 60.6 ± 5.4, 12 females, mini-mental state examination (MMSE) range: 19-28] and 26 cognitively healthy age- and gender-matched controls (age 61.8 ± 5.5, 14 females). Activity was reconstructed using beamformer-based virtual electrodes for 78 cortical regions and 6 hippocampal regions. Group differences in peak frequency and relative power in six frequency bands were identified using permutation testing. For the patients, spearman correlations between the MMSE scores and peak frequency or relative power were calculated. Moreover, receiver operator characteristic curves were plotted to estimate the diagnostic accuracy. We found a lower hippocampal peak frequency in AD compared to controls, which, in the patients, correlated positively with MMSE [r(25) = 0.61; p < 0.01] whereas hippocampal relative theta power correlated negatively with MMSE [r(25) = -0.54; p < 0.01]. Cortical peak frequency was also lower in AD in association areas. Furthermore, cortical peak frequency correlated positively with MMSE [r(25) = 0.43; p < 0.05]. In line with this finding, relative theta power was higher in AD across the cortex, and relative alpha and beta power was lower in more circumscribed areas. The average cortical relative theta power was the best discriminator between AD and controls (sensitivity 82%; specificity 81%). Using beamformer-based virtual electrodes, we were able to detect hippocampal activity in AD. In AD, this hippocampal activity is slowed, and correlates better with cognition than the (slowed) activity in cortical areas. On the other

  2. High-capacity electric double-layer capacitor with high-density-activated carbon fiber electrodes

    SciTech Connect

    Nakagawa, Hiroyuki; Shudo, Atsushi; Miura, Kouichi

    2000-01-01

    Recently the authors have presented a method to prepare activated carbon fiber with high bulk density (HD-ACF) without using any binders. The possibility of using the HD-ACF as an electrode for electric double-layer capacitors (EDLCs) was examined in this paper. The capacitance of the EDLC with the HD-ACF electrode increased with the increase of bulk density of the HD-ACF, indicating that individual fibers are highly packed without losing their capacitance. The capacitance also increased in proportion to the size of the HD-ACF electrode. The initial discharge current of the EDLC showed little dependency on either the bulk density or the size of the HD-ACF electrode. These results clarified that the HD-ACF electrode is suitable for constructing a high-power EDLC. The initial discharge current was directly proportional to the conductivity of aqueous KCI used as the electrolyte, indicating that the resistance of the electrolyte is much higher than that of the HD-ACF electrode. This result showed that the efficiency of the HD-ACF was well above the efficiency of the electrolyte used in this study and that the improvement of the ionic conductivity of electrolyte is also necessary for developing a high-power EDLC.

  3. Effect of nano-scale characteristics of graphene on electrochemical performance of activated carbon supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Jasni, M. R. M.; Deraman, M.; Suleman, M.; Hamdan, E.; Sazali, N. E. S.; Nor, N. S. M.; Shamsudin, S. A.

    2016-02-01

    Graphene with its typical nano-scale characteristic properties has been widely used as an additive in activated carbon electrodes in order to enhance the performance of the electrodes for their use in high performance supercapacitors. Activated carbon monoliths (ACMs) electrodes have been prepared by carbonization and activation of green monoliths (GMs) of pre-carbonized fibers of oil palm empty fruit bunches or self-adhesive carbon grains (SACGs) and SACGs added with 6 wt% of KOH-treated multi-layer graphene. ACMs electrodes have been assembled in symmetrical supercapacitor cells that employed aqueous KOH electrolyte (6 M). The cells have been tested with cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge discharge methods to investigate the effect of graphene addition on the specific capacitance (Csp), specific energy (E), specific power (P), equivalent series resistance (ESR) and response time (τo) of the supercapacitor cells. The results show that the addition of graphene in the GMs change the values of Csp, Emax, Pmax, ESR and τo from (61-96) F/g, 2 Wh/kg, 104 W/kg, 2.6 Ω and 38 s, to the respective values of (110-124) F/g, 3 Wh/kg, 156 W/kg, 3.4 Ω and 63 s. This study demonstrates that the graphene addition in the GMs has a significant effect on the electrochemical behavior of the electrodes.

  4. Self-assembly of virus-structured high surface area nanomaterials and their application as battery electrodes.

    PubMed

    Royston, Elizabeth; Ghosh, Ayan; Kofinas, Peter; Harris, Michael T; Culver, James N

    2008-02-01

    High area nickel and cobalt surfaces were assembled using modified Tobacco mosaic virus (TMV) templates. Rod-shaped TMV templates (300 x 18 nm) engineered to encode unique cysteine residues were self-assembled onto gold patterned surfaces in a vertically oriented fashion, producing a >10-fold increase in surface area. Electroless deposition of ionic metals onto surface-assembled virus templates produced uniform metal coatings up to 40 nm in thickness. Within a nickel-zinc battery system, the incorporation of virus-assembled electrode surfaces more than doubled the total electrode capacity. When combined, these findings demonstrate that surface-assembled virus templates provide a robust platform for the fabrication of oriented high surface area materials.

  5. Sensitivity- and effort-gain analysis: multilead ECG electrode array selection for activation time imaging.

    PubMed

    Hintermüller, Christoph; Seger, Michael; Pfeifer, Bernhard; Fischer, Gerald; Modre, Robert; Tilg, Bernhard

    2006-10-01

    Methods for noninvasive imaging of electric function of the heart might become clinical standard procedure the next years. Thus, the overall procedure has to meet clinical requirements as an easy and fast application. In this paper, we propose a new electrode array which improves the resolution of methods for activation time imaging considering clinical constraints such as easy to apply and compatibility with routine leads. For identifying the body-surface regions where the body surface potential (BSP) is most sensitive to changes in transmembrane potential (TMP), a virtual array method was used to compute local linear dependency (LLD) maps. The virtual array method computes a measure for the LLD in every point on the body surface. The most suitable number and position of the electrodes within the sensitive body surface regions was selected by constructing effort gain (EG) plots. Such a plot depicts the relative attainable rank of the leadfield matrix in relation to the increase in number of electrodes required to build the electrode array. The attainable rank itself was computed by a detector criterion. Such a criterion estimates the maximum number of source space eigenvectors not covered by noise when being mapped to the electrode space by the leadfield matrix and recorded by a detector. From the sensitivity maps, we found that the BSP is most sensitive to changes in TMP on the upper left frontal and dorsal body surface. These sensitive regions are covered best by an electrode array consisting of two L-shaped parts of approximately 30 cm x 30 cm and approximately 20 cm x 20 cm. The EG analysis revealed that the array meeting clinical requirements best and improving the resolution of activation time imaging consists of 125 electrodes with a regular horizontal and vertical spacing of 2-3 cm.

  6. Detection of high tritium activity on the central titanium electrode of a plasma focus device

    SciTech Connect

    Rout, R.K.; Spinivasan, M.; Shyam, A.; Chitra, V. )

    1991-03-01

    In this paper a 2-kJ Mather plasma focus device is used to deuterate the top end surface (or tip) of its central titanium electrode to investigate the occurrence of anomalous nuclear reactions in the context of the cold fusion phenomenon. The tip of the central titanium electrode is found to develop at least a few tens of microcuries of tritium after several plasma focus discharges. Neither the tritium impurity level in the deuterium gas used in the experiment nor the tritium branch of the d-d reactions that are known to occur in plasma focus devices can account for such activity in the electrode. Anomalous nuclear reactions in the deuterated titanium lattice appear to be the most probable source of this high activity.

  7. Liquid electrode

    DOEpatents

    Ekechukwu, Amy A.

    1994-01-01

    A dropping electrolyte electrode for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions.

  8. Transportation and Accumulation of Redox Active Species at the Buried Interfaces of Plasticized Membrane Electrodes.

    PubMed

    Sohail, Manzar; De Marco, Roland; Jarolímová, Zdeňka; Pawlak, Marcin; Bakker, Eric; He, Ning; Latonen, Rose-Marie; Lindfors, Tom; Bobacka, Johan

    2015-09-29

    The transportation and accumulation of redox active species at the buried interface between glassy carbon electrodes and plasticized polymeric membranes have been studied using synchrotron radiation X-ray photoelectron spectroscopy (SR-XPS), near edge X-ray absorption fine structure (NEXAFS), in situ electrochemical Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy, cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). Ferrocene tagged poly(vinyl chloride) [FcPVC], ferrocene (Fc), and its derivatives together with tetracyanoquinodimethane (TCNQ) doped plasticized polymeric membrane electrodes have been investigated, so as to extend the study of the mechanism of this reaction chemistry to different time scales (both small and large molecules with variable diffusion coefficients) using a range of complementary electrochemical and surface analysis techniques. This study also provides direct spectroscopic evidence for the transportation and electrochemical reactivity of redox active species, regardless of the size of the electrochemically reactive molecule, at the buried interface of the substrate electrode. With all redox dopants, when CA electrolysis was performed, redox active species were undetectable (<1 wt % of signature elements or below the detection limit of SR-XPS and NEXAFS) in the outermost surface layers of the membrane, while a high concentration of redox species was located at the electrode substrate as a consequence of the deposition of the reaction product (Fc(+)-anion complex) at the buried interface between the electrode and the membrane. This reaction chemistry for redox active species within plasticized polymeric membranes may be useful in the fashioning of multilayered polymeric devices (e.g., chemical sensors, organic electronic devices, protective laminates, etc.) based on an electrochemical tunable deposition of redox molecules at the buried substrate electrode beneath

  9. Evidence for surface Ag + complexes as the SERS-active sites on Ag electrodes

    NASA Astrophysics Data System (ADS)

    Watanabe, T.; Kawanami, O.; Honda, K.; Pettinger, B.

    1983-12-01

    Evidence is given that SERS-active sites at Ag electrodes are associated with Ag + ions, forming sparingly soluble surface complexes with ligands such as pyridine molecules and halide ions. Such surface Ag + complexes contribute a factor of >800 to the overall (10 7-fold) enhancement, possibly via a resonance Raman effect.

  10. Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production.

    PubMed

    Ghangrekar, M M; Shinde, V B

    2007-11-01

    Performance of mediator-less and membrane-less microbial fuel cell (ML-MFC) was evaluated to treat synthetic wastewater and actual sewage. The ML-MFC gave COD and BOD removal efficiencies of 88% and 87%, respectively, and TKN removal was around 45-50%. Biomass granulation was observed in the anode compartment of ML-MFC. Effect of distance between the electrodes and total surface area of anode on electricity production was evaluated under variable external resistance. Maximum power density of 10.9 and 10.13 mW/m2 was observed at lower spacing between the electrodes (20 cm) and for lesser surface area of the anode, respectively. With variation in the carbon source in the feed, variation in power production was observed.

  11. Spatially restricted electrical activation of retinal ganglion cells in the rabbit retina by hexapolar electrode return configuration

    NASA Astrophysics Data System (ADS)

    Habib, Amgad G.; Cameron, Morven A.; Suaning, Gregg J.; Lovell, Nigel H.; Morley, John W.

    2013-06-01

    Objective. Visual prostheses currently in development aim to restore some form of vision to patients suffering from diseases such as age-related macular degeneration and retinitis pigmentosa. Most rely on electrically stimulating inner retinal cells via electrodes implanted on or near the retina, resulting in percepts of light termed ‘phosphenes’. Activation of spatially distinct populations of cells in the retina is key for pattern vision to be produced. To achieve this, the electrical stimulation must be localized, activating cells only in the direct vicinity of the stimulating electrode(s). With this goal in mind, a hexagonal return (hexapolar) configuration has been proposed as an alternative to the traditional monopolar or bipolar return configurations for electrically stimulating the retina. This study investigated the efficacy of the hexapolar configuration in localizing the activation of retinal ganglion cells (RGCs), compared to a monopolar configuration. Approach. Patch-clamp electrophysiology was used to measure the activation thresholds of RGCs in whole-mount rabbit retina to monopolar and hexapolar electrical stimulation, applied subretinally. Main results. Hexapolar activation thresholds for RGCs located outside the hex guard were found to be significantly (>2 fold) higher than those located inside the area of tissue bounded by the hex guard. The hexapolar configuration localized the activation of RGCs more effectively than its monopolar counterpart. Furthermore, no difference in hexapolar thresholds or localization was observed when using cathodic-first versus anodic-first stimulation. Significance. The hexapolar configuration may provide an improved method for electrically stimulating spatially distinct populations of cells in retinal tissue.

  12. Application of active electrode compensation to perform continuous voltage-clamp recordings with sharp microelectrodes

    NASA Astrophysics Data System (ADS)

    Gómez-González, J. F.; Destexhe, A.; Bal, T.

    2014-10-01

    Objective. Electrophysiological recordings of single neurons in brain tissues are very common in neuroscience. Glass microelectrodes filled with an electrolyte are used to impale the cell membrane in order to record the membrane potential or to inject current. Their high resistance induces a high voltage drop when passing current and it is essential to correct the voltage measurements. In particular, for voltage clamping, the traditional alternatives are two-electrode voltage-clamp technique or discontinuous single electrode voltage-clamp (dSEVC). Nevertheless, it is generally difficult to impale two electrodes in a same neuron and the switching frequency is limited to low frequencies in the case of dSEVC. We present a novel fully computer-implemented alternative to perform continuous voltage-clamp recordings with a single sharp-electrode. Approach. To reach such voltage-clamp recordings, we combine an active electrode compensation algorithm (AEC) with a digital controller (AECVC). Main results. We applied two types of control-systems: a linear controller (proportional plus integrative controller) and a model-based controller (optimal control). We compared the performance of the two methods to dSEVC using a dynamic model cell and experiments in brain slices. Significance. The AECVC method provides an entirely digital method to perform continuous recording and smooth switching between voltage-clamp, current clamp or dynamic-clamp configurations without introducing artifacts.

  13. Liquid-permeable electrode

    DOEpatents

    Folser, George R.

    1980-01-01

    Electrodes for use in an electrolytic cell, which are liquid-permeable and have low electrical resistance and high internal surface area are provided of a rigid, porous, carbonaceous matrix having activated carbon uniformly embedded throughout. The activated carbon may be catalyzed with platinum for improved electron transfer between electrode and electrolyte. Activated carbon is mixed with a powdered thermosetting phenolic resin and compacted to the desired shape in a heated mold to melt the resin and form the green electrode. The compact is then heated to a pyrolyzing temperature to carbonize and volatilize the resin, forming a rigid, porous structure. The permeable structure and high internal surface area are useful in electrolytic cells where it is necessary to continuously remove the products of the electrochemical reaction.

  14. Characterization of activated titanium solid reference electrodes for corrosion testing of steel in concrete

    SciTech Connect

    Castro, P.; Maldonado, L.; Saguees, A.A.; Moreno, E.I.; Genesca, J.

    1996-08-01

    Small bars of Ti activated with mixed-metal oxide (commercially produced for permanent impressed-current anodes in cathodic protection) were used as embedded reference electrodes (RE) in concrete. Their electrochemical behavior was evaluated through measurements and analyses of potential, electrochemical impedance spectroscopy (EIS), cyclic polarization (CP), and galvanostatic tests in buffer solutions of pH 4, 7, and 10, saturated calcium hydroxide, simulated concrete pore solution (SPS) with pH = 13.5, and various concrete mixes with and without pozzolanic additions as cement replacement. Effects of deaeration and sodium chloride additions were evaluated. The potential of the activated Ti rod (ATR) electrodes resembled the expected dependence for the system Ir{sub 2}O{sub 3} + H{sub 2}O = 2IrO{sub 2} + 2H{sup +} + 2e{sup {minus}} in aqueous solutions. The ATR electrode presented generally good stability with time in concrete for up to 900 days. Anomalous behavior was found in two concrete mixes with the highest pozzolanic content. Results from EIS tests revealed a constant phase element (CPE) behavior, which agreed with results of CP tests that showed a very large apparent interfacial capacitance. The apparent capacitance was on the order of 10{sup {minus}2} F/cm{sup 2}, resulting in very low impedance, which is advantageous when using ATR electrodes to conduct EIS or polarization resistance tests. Galvanostatic application of 0.075 {mu}A/cm{sup 2} caused little variation of potential with time, indicating the presence of a finite polarization resistance. Little short-term susceptibility of the ATR electrode potential to NaCl additions was found. The ATR electrode potential also showed little short-term sensitivity to variations in oxygen partial pressure.

  15. Electroanalysis of NADH Using Conducting and Redox Active Polymer/Carbon Nanotubes Modified Electrodes-A Review

    PubMed Central

    Kumar, S. Ashok; Chen, Shen-Ming

    2008-01-01

    Past few decades, conducting and redox active polymers play a critical role in the development of transducers for biosensing. It has been evidenced by increasing numerous reports on conducting and redox active polymers incorporated electrodes for assay of biomolcules. This review highlights the potential uses of electrogenerated polymer modified electrodes and polymer/carbon nanotubes composite modified electrodes for electroanalysis of reduced form of nicotinamide adenine dinuceltoide (NADH). In addition, carbon electrodes modified with organic and inorganic materials as modifier have been discussed in detail for the quantification of NADH based on mediator or mediator-less methods.

  16. Tapping polyrhythms in music activates language areas.

    PubMed

    Vuust, Peter; Wallentin, Mikkel; Mouridsen, Kim; Ostergaard, Leif; Roepstorff, Andreas

    2011-05-01

    Music is experienced and understood on the basis of foreground/background relationships and tension created between actual music and the underlying meter. Polyrhythms create tension between a counter meter and the main meter. Previously, we have shown that Brodmann area 47 (BA47), a brain area associated with processing of language, is activated bilaterally when musicians tap the main meter in a polymetric context emphasizing a counter meter, suggesting that processing of metric elements in music relies on brain areas also involved in language processing. In that study, the tension was created entirely by changes in the stimulus while participants were tapping the main meter. Here we find left-hemispheric BA47 activation in response to a self-produced counter meter on top of a main meter provided by an ecological music excerpt. This data indicates that the activation is linked to polyrhythmic tension, regardless of whether it arises from the stimulus or the task.

  17. A miniature glass-membrane reference electrode/sensor for Na-activity measurements in molten salts

    SciTech Connect

    Bloom, I.; Heiberger, J.J.; Redey, L.; Internoscia, M.A.; Rea, K.

    1988-12-01

    The construction and performance of miniature reference electrode/sensor systems are described. The reference electrode/sensor is made from small-diameter alumina tubing and a sodium-ion-conductive glass membrane. The reference electrode/sensor has been used to measure thermodynamically defined sodium activity for the temperature range of 100/sup 0/-600/sup 0/C in many different electrochemical systems.

  18. Influence of the active mass particle suspension in electrolyte upon corrosion of negative electrode of a lead-acid battery

    NASA Astrophysics Data System (ADS)

    Kamenev, Yu.; Shtompel, G.; Ostapenko, E.; Leonov, V.

    2014-07-01

    The influence of the suspension of positive active mass particles in the electrolyte on the performance of the negative electrode in a lead-acid battery is studied. A significant increase in the rate of corrosion of the lead electrode is shown when slime particles get in contact with its surface, which may result in the rise of macro-defects on the lugs of the negative electrodes.

  19. Development of a new contactless dielectrophoresis system for active particle manipulation using movable liquid electrodes.

    PubMed

    Gwon, Hyuk Rok; Chang, Suk Tai; Choi, Chang Kyoung; Jung, Jung-Yeul; Kim, Jong-Min; Lee, Seong Hyuk

    2014-07-01

    This study presents a new DEP manipulation technique using a movable liquid electrode, which allows manipulation of particles by actively controlling the locations of electrodes and applying on-off electric input signals. This DEP system consists of mercury as a movable liquid electrode, indium tin oxide (ITO)-coated glass, SU-8-based microchannels for electrode passages, and a PDMS medium chamber. A simple squeezing method was introduced to build a thin PDMS layer at the bottom of the medium chamber to create a contactless DEP system. To determine the operating conditions, the DEP force and the friction force were analytically compared for a single cell. In addition, an appropriate frequency range for effective DEP manipulation was chosen based on an estimation of the Clausius-Mossotti factor and the effective complex permittivity of the yeast cell using the concentric shell model. With this system, we demonstrated the active manipulation of yeast cells, and measured the collection efficiency and the dielectrophoretic velocity of cells for different AC electric field strengths and applied frequencies. The experimental results showed that the maximum collection efficiency reached was approximately 90%, and the dielectrophoretic velocity increased with increasing frequency and attained the maximum value of 10.85 ± 0.95 μm/s at 100 kHz, above which it decreased.

  20. High-performance Supercapacitor cells with Activated Carbon/MWNT nanocomposite electrodes

    NASA Astrophysics Data System (ADS)

    Markoulidis, F.; Lei, C.; Lekakou, C.; Figgemeier, E.; Duff, D.; Khalil, S.; Martorana, B.; Cannavaro, I.

    2012-09-01

    The purpose of this work was to investigate and improve the performance of supercapacitor cells with carbon-based nanocomposite electrodes. The electrode structure comprised activated carbon (AC), four types of multi-wall nanotubes (MWNTs) and two alternative polymer binders, Polyvinyl alcohol (PVA) or Polyvinylidene fluoride (PVDF). Electrode fabrication involved various stages of mixing and dispersion of the AC powder and carbon nanotubes, rolling and coating of the AC/MWNT/binder paste on an aluminium substrate which also served as current collector. The organic electrolyte utilised was 1M tetraethylammonium tetrafluoroborate (TEABF4) fully dissolved in propylene carbonate (PC). All devices were of the electrochemical double layer capacitor (EDLC) type, incorporating four layers of tissue paper as separator material. The surface topography of the so fabricated electrodes was investigated with scanning electrode microscopy (SEM). Overall cell performance was evaluated with a multi-channel potentiostat/galvanostat/impedance analyser. Each supercapacitor cell was subjected to Cyclic Voltammetry (CV) at various scan rates from 0.01 V/s to 1 V/s, Charge-Discharge at a fixed current steps (2 mA) and Electrochemical Impedance Spectroscopy (EIS) with frequency range from 10 mHz to 1 MHz. It was established that an AC-based supercapacitor with 0.15%w/w MWNT content and 30 μm roll-coated, nanocomposite electrodes provided superior energy and power and energy densities while the cells was immersed in the electrolyte; well above those generated by the AC-based EDLC cells.

  1. Catalytic activity for nitrate electroreduction of nano-structured polypyrrole films electrochemically synthesized onto a copper electrode

    NASA Astrophysics Data System (ADS)

    Phuong Thoa Nguyen, Thi; Thinh Nguyen, Viet; Hai Le, Viet

    2010-03-01

    Polypyrrole film was synthesized electrochemically onto a copper electrode in oxalate, oxalic acid and salicylic acid solutions. The electrochemical oxidation of pyrrole to form polypyrrole film and the electroreduction of nitrate and nitrite ions at synthesized Ppy modified copper electrodes (Ppy/Cu) in potassium chloride aqueous solutions were studied by cyclic voltammetry. Polypyrrole nano-porous film formation and the activity of the modified Ppy/Cu electrode for nitrate reduction were found to be dependent on the synthesis medium and conditions: pH; content and concentrations of the electrolytes; pyrrole concentration; electrode potential; electrolysis duration; drying time and temperature for finishing the Ppy/Cu electrode and immersion time in water for storing the Ppy/Cu electrode before use. High catalytic activity for nitrate reduction was found for composite electrodes with nano-porous structured Ppy films. The Ppy/Cu electrodes prepared in oxalate buffer and salicylic acid solutions perform more stable catalytic activity for nitrate reduction; their service life is about ten times longer than for an electrode prepared in oxalic acid solution.

  2. Loading and utilization of active material in nickel composite electrodes: optimization

    SciTech Connect

    Lee, W.W.; Ferrando, W.A.; Sutula, R.A.

    1984-12-01

    As an attempt to reduce nickel battery weight, the nickel composite electrode, has been under development. Investigations were undertaken to determine the optimum conditions for loading and utilizing nickel hydroxide active material in nickel composite electrodes. The main emphasis was placed on the improvement of both loading efficiency by electrochemical impregnation and utilization efficiency of the Ni(OH)2 active material. The efficiencies were examined as functions of such electrochemical conditions as current density, nickel concentration, pH, temperature of the impregnating bath, the continuity of current flow and manner of adding Co(OH)S additive. Also studied was the loading efficiency of chemical impregnation (polarization method) and the suspension method which enables a direct loading of externally prepared active material into the composite body. The most important factor for a quick utilization of the active material was found to be the additive distribution. A model of the additive distribution in the active material is proposed to account for different patterns of utilization exhibited by the electrodes.

  3. The formation and activity of platinum adlayers on diamond electrodes for electrocatalysis

    NASA Astrophysics Data System (ADS)

    Bennett, Jason Alan

    . This is possibly due to surface pitting or heterogeneous conductivity in the film resulting in "hot spots." Electrodeposition of Pt adlayers as a function of both diamond morphology and diamond surface chemistry was also investigated using a pulsed galvanostatic deposition approach. Our goal was to minimize the particle size and size dispersion (ca. 5-15 nm) while maximizing the particle density ( ca. 1010 CM-2) and catalytic activity towards the oxygen reduction reaction. Depositing Pt on clean H-terminated diamond surfaces using 10 pulses of 1-s (50% duty cycle) at a pulse current of 1.25 mA/cm2 produced the most ideal particles in terms of size (ca. 30 nm), density (ca. 2 x 10 10 cm-2), and catalytic activity. Additionally the nucleation and growth mechanism of Pt on microcrystalline and nanocrystalline diamond thin film studied using chronoamperometry indicated that the nucleation moves from instantaneous to progressive with increasing deposition overpotential. Finally, an introductory study of catalyst loss from the diamond surface indicated that the loss of Pt surface area is likely due to Ostwald ripening.

  4. Self-sensing ionic electromechanically active actuator with patterned carbon electrodes

    NASA Astrophysics Data System (ADS)

    Kruusamäe, Karl; Kaasik, Friedrich; Punning, Andres; Aabloo, Alvo

    2013-04-01

    In comparison to other ionic electromechanically active polymers (ionic EAP), carbon-polymer composite (CPC) actuators are considered especially attractive due to possibility of producing completely metal-free devices. However, mechanical response of ionic EAP-s is, in addition to voltage and frequency, dependent on environmental variables such as humidity and temperature. Therefore, similarly to other EAPs, one of the major challenges lies in achieving controlled actuation of the CPC sample. Due to their size and added complexity, external feedback devices (e.g. laser displacement sensors and video cameras) tend to inhibit the application of micro-scale actuators. Hence, self-sensing EAP actuators - capable for simultaneous actuation and sensing - are often desired. A thin polyvinylidene fluoride-cohexafluoropropylene film with ionic liquid (EMIMBF4) was prepared and masked coincidently on opposite surfaces prior to spray painting carbide-derived carbon electrodes. The purpose of masking was to create different electrically insulated electrodes on the same surface of polymer in order to achieve separate sections for actuator and sensor on one piece of CPC material. Solution of electrode paint consisting of carbide-derived carbon, EMIMBF4 and dimethylacetamide was applied to the polymer film. After removing the masking tape, a completely metal-free CPC actuator with sophisticated electrode geometry was achieved to foster simultaneous sensing and actuation, i.e. self-sensing carbon-polymer actuator was created.

  5. Electrodes and electrochemical storage cells utilizing tin-modified active materials

    DOEpatents

    Anani, Anaba; Johnson, John; Lim, Hong S.; Reilly, James; Schwarz, Ricardo; Srinivasan, Supramaniam

    1995-01-01

    An electrode has a substrate and a finely divided active material on the substrate. The active material is ANi.sub.x-y-z Co.sub.y Sn.sub.z, wherein A is a mischmetal or La.sub.1-w M.sub.w, M is Ce, Nd, or Zr, w is from about 0.05 to about 1.0, x is from about 4.5 to about 5.5, y is from 0 to about 3.0, and z is from about 0.05 to about 0.5. An electrochemical storage cell utilizes such an electrode as the anode. The storage cell further has a cathode, a separator between the cathode and the anode, and an electrolyte.

  6. Electrocatalytic activity of NiO on silicon nanowires with a carbon shell and its application in dye-sensitized solar cell counter electrodes

    NASA Astrophysics Data System (ADS)

    Kim, Junhee; Jung, Cho-Long; Kim, Minsoo; Kim, Soomin; Kang, Yoonmook; Lee, Hae-Seok; Park, Jeounghee; Jun, Yongseok; Kim, Donghwan

    2016-03-01

    To improve the catalytic activity of a material, it is critical to maximize the effective surface area by directly contacting the electrolyte. Nanowires are a promising building block for catalysts in electrochemical applications because of their large surface area. Nickel oxide (NiO) decoration was achieved by drop-casting a nickel-dissolved solution onto vertically aligned silicon nanowire arrays with a carbon shell (SiNW/C). Based on the hybridization of the NiO and silicon nanowire arrays with a carbon shell this study aimed to achieve a synergic effect for the catalytic activity performance. This study demonstrated that the resulting nanomaterial exhibits excellent electrocatalytic activity and performs well as a counter electrode for dye-sensitized solar cells (DSSCs). The compositions of the materials were examined using X-ray diffraction, X-ray photoelectron spectroscopy, and energy dispersive spectroscopy. Their micro- and nano-structures were investigated using scanning electron microscopy and transmission electron microscopy. The electrochemical activity toward I-/I3- was examined using cyclic voltammetry and electrochemical impedance spectroscopy. The obtained peak power conversion efficiency of the DSSC based on the NiO@SiNW/C counter electrode was 9.49%, which was greater than that of the DSSC based on the Pt counter electrode.To improve the catalytic activity of a material, it is critical to maximize the effective surface area by directly contacting the electrolyte. Nanowires are a promising building block for catalysts in electrochemical applications because of their large surface area. Nickel oxide (NiO) decoration was achieved by drop-casting a nickel-dissolved solution onto vertically aligned silicon nanowire arrays with a carbon shell (SiNW/C). Based on the hybridization of the NiO and silicon nanowire arrays with a carbon shell this study aimed to achieve a synergic effect for the catalytic activity performance. This study demonstrated that the

  7. Interactions between organic additives and active powders in water-based lithium iron phosphate electrode slurries

    NASA Astrophysics Data System (ADS)

    Li, Chia-Chen; Lin, Yu-Sheng

    2012-12-01

    The interactions of organic additives with active powders are investigated and are found to have great influence on the determination of the mixing process for preparing electrode slurries with good dispersion and electrochemical properties of lithium iron phosphate (LiFePO4) electrodes. Based on the analyses of zeta potential, sedimentation, and rheology, it is shown that LiFePO4 prefers to interact with styrene-butadiene rubber (SBR) relative to other organic additives such as sodium carboxymethyl cellulose (SCMC), and thus shows preferential adsorption by SBR, whereas SBR has much lower efficiency than SCMC in dispersing LiFePO4. Therefore, for SCMC to interact with and disperse LiFePO4 before the interaction of LiFePO4 with SBR, it is suggested to mix SCMC with LiFePO4 prior to the addition of SBR during the slurry preparation process. For the electrode prepared via the suggested process, i.e., the sequenced adding process in which SCMC is mixed with active powders prior to the addition of SBR, a much better electrochemical performance is obtained than that of the one prepared via the process referred as the simultaneous adding process, in which mixing of SCMC and SBR with active powders in simultaneous.

  8. Carbon inverse opal entrapped with electrode active nanoparticles as high-performance anode for lithium-ion batteries.

    PubMed

    Huang, Xin; Chen, Jing; Lu, Ziyang; Yu, Hong; Yan, Qingyu; Hng, Huey Hoon

    2013-01-01

    Enhancing ion and electron transport kinetics together with improving cycle life are important issues to be considered when developing high-performance Li ion batteries. Here we demonstrate a three dimensional ordered macroporous conductive electrode concept by entrapping electrode active nanoparticles in an interpenetrating macroporous carbon inverse opal. The electrodes are featured with simultaneously enhanced ion and electron transport kinetics as well as geometrically constrained active nanoparticles. The electrode can deliver up to 94.17% of theoretical capacity over 1000 discharge/charge cycles at a current density of 2.0 A g(-1), and exhibits good rate capability in the high current density range of 1.0-10.0 A g(-1). We hope that our findings will help pave the way for tailored design of many other sophisticated electrode materials in electrochemistry. PMID:23897089

  9. Carbon inverse opal entrapped with electrode active nanoparticles as high-performance anode for lithium-ion batteries

    PubMed Central

    Huang, Xin; Chen, Jing; Lu, Ziyang; Yu, Hong; Yan, Qingyu; Hng, Huey Hoon

    2013-01-01

    Enhancing ion and electron transport kinetics together with improving cycle life are important issues to be considered when developing high-performance Li ion batteries. Here we demonstrate a three dimensional ordered macroporous conductive electrode concept by entrapping electrode active nanoparticles in an interpenetrating macroporous carbon inverse opal. The electrodes are featured with simultaneously enhanced ion and electron transport kinetics as well as geometrically constrained active nanoparticles. The electrode can deliver up to 94.17% of theoretical capacity over 1000 discharge/charge cycles at a current density of 2.0 A g−1, and exhibits good rate capability in the high current density range of 1.0–10.0 A g−1. We hope that our findings will help pave the way for tailored design of many other sophisticated electrode materials in electrochemistry. PMID:23897089

  10. Activated carbon electrodes: electrochemical oxidation coupled with desalination for wastewater treatment.

    PubMed

    Duan, Feng; Li, Yuping; Cao, Hongbin; Wang, Yi; Crittenden, John C; Zhang, Yi

    2015-04-01

    The wastewater usually contains low-concentration organic pollutants and some inorganic salts after biological treatment. In the present work, the possibility of simultaneous removal of them by combining electrochemical oxidation and electrosorption was investigated. Phenol and sodium chloride were chosen as representative of organic pollutants and inorganic salts and a pair of activated carbon plate electrodes were used as anode and cathode. Some important working conditions such as oxygen concentration, applied potential and temperature were evaluated to reach both efficient phenol removal and desalination. Under optimized 2.0 V of applied potential, 38°C of temperature, and 500 mL min(-1) of oxygen flow, over 90% of phenol, 60% of TOC and 20% of salinity were removed during 300 min of electrolysis time. Phenol was removed by both adsorption and electrochemical oxidation, which may proceed directly or indirectly by chlorine and hypochlorite oxidation. Chlorophenols were detected as degradation intermediates, but they were finally transformed to carboxylic acids. Desalination was possibly attributed to electrosorption of ions in the pores of activated carbon electrodes. The charging/regeneration cycling experiment showed good stability of the electrodes. This provides a new strategy for wastewater treatment and recycling.

  11. Liquid electrode

    DOEpatents

    Ekechukwu, A.A.

    1994-07-05

    A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.

  12. 3D mapping of lithium in battery electrodes using neutron activation

    NASA Astrophysics Data System (ADS)

    He, Yuping; Downing, R. Gregory; Wang, Howard

    2015-08-01

    The neutron depth profiling technique based on the neutron activation reaction, 6Li (n, α) 3H, was applied with two dimensional (2D) pinhole aperture scans to spatially map lithium in 3D. The technique was used to study model LiFePO4 electrodes of rechargeable batteries for spatial heterogeneities of lithium in two cathode films that had undergone different electrochemical cycling histories. The method is useful for better understanding the functioning and failure of batteries using lithium as the active element.

  13. Spray-Deposited Large-Area Copper Nanowire Transparent Conductive Electrodes and Their Uses for Touch Screen Applications.

    PubMed

    Chu, Hsun-Chen; Chang, Yen-Chen; Lin, Yow; Chang, Shu-Hao; Chang, Wei-Chung; Li, Guo-An; Tuan, Hsing-Yu

    2016-05-25

    Large-area conducting transparent conducting electrodes (TCEs) were prepared by a fast, scalable, and low-cost spray deposition of copper nanowire (CuNW) dispersions. Thin, long, and pure copper nanowires were obtained via the seed-mediated growth in an organic solvent-based synthesis. The mean length and diameter of nanowires are, respectively, 37.7 μm and 46 nm, corresponding to a high-mean-aspect ratio of 790. These wires were spray-deposited onto a glass substrate to form a nanowire conducting network which function as a TCE. CuNW TCEs exhibit high-transparency and high-conductivity since their relatively long lengths are advantageous in lowering in the sheet resistance. For example, a 2 × 2 cm(2) transparent nanowire electrode exhibits transmittance of T = 90% with a sheet resistance as low as 52.7 Ω sq(-1). Large-area sizes (>50 cm(2)) of CuNW TCEs were also prepared by the spray coating method and assembled as resistive touch screens that can be integrated with a variety of devices, including LED lighting array, a computer, electric motors, and audio electronic devices, showing the capability to make diverse sizes and functionalities of CuNW TCEs by the reported method. PMID:27144911

  14. Spray-Deposited Large-Area Copper Nanowire Transparent Conductive Electrodes and Their Uses for Touch Screen Applications.

    PubMed

    Chu, Hsun-Chen; Chang, Yen-Chen; Lin, Yow; Chang, Shu-Hao; Chang, Wei-Chung; Li, Guo-An; Tuan, Hsing-Yu

    2016-05-25

    Large-area conducting transparent conducting electrodes (TCEs) were prepared by a fast, scalable, and low-cost spray deposition of copper nanowire (CuNW) dispersions. Thin, long, and pure copper nanowires were obtained via the seed-mediated growth in an organic solvent-based synthesis. The mean length and diameter of nanowires are, respectively, 37.7 μm and 46 nm, corresponding to a high-mean-aspect ratio of 790. These wires were spray-deposited onto a glass substrate to form a nanowire conducting network which function as a TCE. CuNW TCEs exhibit high-transparency and high-conductivity since their relatively long lengths are advantageous in lowering in the sheet resistance. For example, a 2 × 2 cm(2) transparent nanowire electrode exhibits transmittance of T = 90% with a sheet resistance as low as 52.7 Ω sq(-1). Large-area sizes (>50 cm(2)) of CuNW TCEs were also prepared by the spray coating method and assembled as resistive touch screens that can be integrated with a variety of devices, including LED lighting array, a computer, electric motors, and audio electronic devices, showing the capability to make diverse sizes and functionalities of CuNW TCEs by the reported method.

  15. A novel bioelectrochemical interface based on in situ synthesis of gold nanostructures on electrode surfaces and surface activation by Meerwein's salt. A bioelectrochemical sensor for glucose determination.

    PubMed

    Nikolaev, Konstantin; Ermakov, Sergey; Ermolenko, Yuri; Averyaskina, Elena; Offenhäusser, Andreas; Mourzina, Yulia

    2015-10-01

    A novel effective bioelectrochemical sensor interface for enzyme biosensors is proposed. The method is based on in situ synthesis of gold nanostructures (5-15 nm) on the thin-film electrode surface using the oleylamine (OA) method, which provides a high-density, stable, electrode interface nanoarchitecture. New method to activate the surface of the OA-stabilized nanostructured electrochemical interface for further functionalization with biomolecules (glucose oxidase enzyme) using Meerwein's salt is proposed. Using this approach a new biosensor for glucose determination with improved analytical characteristics: wide working range of 0.06-18.5mM with a sensitivity of 22.6 ± 0.5 μAmM(-1)cm(-2), limit of detection 0.02 mM, high reproducibility, and long lifetime (60 d, 93%) was developed. The surface morphology of the electrodes was characterized by scanning electron microscopy (SEM). The electrochemical properties of the interface were studied by cyclic voltammetry and electrochemical impedance spectroscopy using a Fe(II/III) redox couple. The studies revealed an increase in the electroactive surface area and a decrease in the charge transfer resistance following surface activation with Meerwein's reagent. A remarkably enhanced stability and reproducibility of the sensor was achieved using in situ synthesis of gold nanostructures on the electrode surface, while surface activation with Meerwein's salt proved indispensable in achieving an efficient bioelectrochemical interface. PMID:25983284

  16. Mechanism of electrochemical activation of carbon electrodes: Role of graphite lattice defects

    SciTech Connect

    Bowling, R.J.; Packard, R.T.; McCreery, R.L.

    1989-01-01

    By use of Raman spectroscopy as a probe, the relationship between carbon microstructure and increases in the heterogeneous electron-transfer rate for carbon electrodes was examined. A distinctive Raman band at 1360/cm is proportional to the density of graphitic edge planes and may be used to monitor changes in edge plane density induced by carbon pretreatment procedures. It was shown that electrochemical oxidation of highly ordered pyrolytic graphite (HOPG) caused fracturing of the graphite lattice, thus increasing edge plane density. This result is consistent with other reports from laser activation of HOPG, which correlate increased edge plane density with increased electron-transfer rate. Creation of edge plane is a phenomenon common to both oxidative and nonoxidative activation procedures and is responsible for HOPG activation. Arguments about the involvement of graphitic oxide or oxygen containing functional groups in electron-transfer activation are presented. After the present results are combined with those from the literature, it appears unlikely the oxygen functional groups are involved in electron-transfer activation of several benchmark redox systems on carbon electrodes.

  17. Active concentric ring electrode for non-invasive detection of intestinal myoelectric signals.

    PubMed

    Prats-Boluda, Gema; Garcia-Casado, Javier; Martinez-de-Juan, Jose L; Ye-Lin, Yiyao

    2011-05-01

    Although the surface electroenterogram (EEnG) is a weak signal contaminated by strong physiological interference, such as ECG and respiration, abdominal surface recordings of the EEnG could provide a non-invasive method of studying intestinal activity. The goal of this work was to develop a modular, active, low-cost and easy-to-use sensor to obtain a direct estimation of the Laplacian of the EEnG on the abdominal surface in order to enhance the quality of bipolar surface monitoring of intestinal activity. The sensor is made up of a set of 3 concentric dry Ag/AgCl ring electrodes and a battery-powered signal-conditioning circuit. Each section is etched on a different printed circuit board (PCB) and the sections are joined to each other by surface mount technology connectors. This means the sensing electrodes can be treated independently for purposes of maintenance and replacement and the signal conditioning circuit can be re-used. A total of ten recording sessions were carried out on humans. The results show that the surface recordings of the EEnG obtained by the active sensor present significantly less ECG and respiration interference than those obtained by bipolar recordings. In addition, bioelectrical sources whose frequency fitted with the slow wave component of the EEnG (SW) were identified by parametric spectral analysis in the surface signals picked up by the active sensors.

  18. Feasibility and analysis of bipolar concentric recording of electrohysterogram with flexible active electrode.

    PubMed

    Ye-Lin, Y; Alberola-Rubio, J; Prats-Boluda, G; Perales, A; Desantes, D; Garcia-Casado, Javier

    2015-04-01

    The conduction velocity and propagation patterns of the electrohysterogram (EHG) provide fundamental information on the electrophysiological condition of the uterus. However, the accuracy of these measurements can be impaired by both the poor spatial selectivity and sensitivity to the relative direction of the contraction propagation associated with conventional disc electrodes. Concentric ring electrodes could overcome these limitations. The aim of this study was to examine the feasibility of picking up surface EHG signals using a new flexible tripolar concentric ring electrode (TCRE), and to compare these signals with conventional bipolar recordings. Simultaneous recording of conventional bipolar signals and bipolar concentric EHG (BC-EHG) were carried out on 22 pregnant women. Signal bursts were characterized and compared. No significant differences were found between the channels in either duration or dominant frequency in the Fast Wave High frequency range. Nonetheless, the high pass filtering effect of the BC-EHG recordings gave lower frequency content between 0.1 and 0.2 Hz. Although the BC-EHG signal amplitude was about 5-7 times smaller than that of bipolar recordings, a similar signal-to-noise ratio was obtained. These results suggest that the flexible TCRE is able to pick up uterine electrical activity and could provide additional information for deducing the uterine electrophysiological condition.

  19. Feasibility and analysis of bipolar concentric recording of electrohysterogram with flexible active electrode.

    PubMed

    Ye-Lin, Y; Alberola-Rubio, J; Prats-Boluda, G; Perales, A; Desantes, D; Garcia-Casado, Javier

    2015-04-01

    The conduction velocity and propagation patterns of the electrohysterogram (EHG) provide fundamental information on the electrophysiological condition of the uterus. However, the accuracy of these measurements can be impaired by both the poor spatial selectivity and sensitivity to the relative direction of the contraction propagation associated with conventional disc electrodes. Concentric ring electrodes could overcome these limitations. The aim of this study was to examine the feasibility of picking up surface EHG signals using a new flexible tripolar concentric ring electrode (TCRE), and to compare these signals with conventional bipolar recordings. Simultaneous recording of conventional bipolar signals and bipolar concentric EHG (BC-EHG) were carried out on 22 pregnant women. Signal bursts were characterized and compared. No significant differences were found between the channels in either duration or dominant frequency in the Fast Wave High frequency range. Nonetheless, the high pass filtering effect of the BC-EHG recordings gave lower frequency content between 0.1 and 0.2 Hz. Although the BC-EHG signal amplitude was about 5-7 times smaller than that of bipolar recordings, a similar signal-to-noise ratio was obtained. These results suggest that the flexible TCRE is able to pick up uterine electrical activity and could provide additional information for deducing the uterine electrophysiological condition. PMID:25274161

  20. 3D active edge silicon sensors with different electrode configurations: Radiation hardness and noise performance

    NASA Astrophysics Data System (ADS)

    Da Viá, C.; Bolle, E.; Einsweiler, K.; Garcia-Sciveres, M.; Hasi, J.; Kenney, C.; Linhart, V.; Parker, Sherwood; Pospisil, S.; Rohne, O.; Slavicek, T.; Watts, S.; Wermes, N.

    2009-06-01

    3D detectors, with electrodes penetrating the entire silicon wafer and active edges, were fabricated at the Stanford Nano Fabrication Facility (SNF), California, USA, with different electrode configurations. After irradiation with neutrons up to a fluence of 8.8×10 15 n eq cm -2, they were characterised using an infrared laser tuned to inject ˜2 minimum ionising particles showing signal efficiencies as high as 66% for the configuration with the shortest (56 μm) inter-electrode spacing. Sensors from the same wafer were also bump-bonded to the ATLAS FE-I3 pixel readout chip and their noise characterised. Most probable signal-to-noise ratios were calculated before and after irradiation to be as good as 38:1 after the highest irradiation level with a substrate thickness of 210 μm. These devices are promising candidates for application at the LHC such as the very forward detectors at ATLAS and CMS, the ATLAS B-Layer replacement and the general pixel upgrade. Moreover, 3D sensors could play a role in applications where high speed, high-resolution detectors are required, such as the vertex locators at the proposed Compact Linear Collider (CLIC) at CERN.

  1. A generalized activating function for predicting virtual electrodes in cardiac tissue.

    PubMed Central

    Sobie, E A; Susil, R C; Tung, L

    1997-01-01

    To fully understand the mechanisms of defibrillation, it is critical to know how a given electrical stimulus causes membrane polarizations in cardiac tissue. We have extended the concept of the activating function, originally used to describe neuronal stimulation, to derive a new expression that identifies the sources that drive changes in transmembrane potential. Source terms, or virtual electrodes, consist of either second derivatives of extracellular potential weighted by intracellular conductivity or extracellular potential gradients weighted by derivatives of intracellular conductivity. The full response of passive tissue can be considered, in simple cases, to be a convolution of this "generalized activating function" with the impulse response of the tissue. Computer simulations of a two-dimensional sheet of passive myocardium under steady-state conditions demonstrate that this source term is useful for estimating the effects of applied electrical stimuli. The generalized activating function predicts oppositely polarized regions of tissue when unequally anisotropic tissue is point stimulated and a monopolar response when a point stimulus is applied to isotropic tissue. In the bulk of the myocardium, this new expression is helpful for understanding mechanisms by which virtual electrodes can be produced, such as the hypothetical "sawtooth" pattern of polarization, as well as polarization owing to regions of depressed conductivity, missing cells or clefts, changes in fiber diameter, or fiber curvature. In comparing solutions obtained with an assumed extracellular potential distribution to those with fully coupled intra- and extracellular domains, we find that the former provides a reliable estimate of the total solution. Thus the generalized activating function that we have derived provides a useful way of understanding virtual electrode effects in cardiac tissue. Images FIGURE 2 FIGURE 4 FIGURE 5 FIGURE 6 PMID:9284308

  2. Electrocatalytic activity of NiO on silicon nanowires with a carbon shell and its application in dye-sensitized solar cell counter electrodes.

    PubMed

    Kim, Junhee; Jung, Cho-long; Kim, Minsoo; Kim, Soomin; Kang, Yoonmook; Lee, Hae-seok; Park, Jeounghee; Jun, Yongseok; Kim, Donghwan

    2016-04-14

    To improve the catalytic activity of a material, it is critical to maximize the effective surface area by directly contacting the electrolyte. Nanowires are a promising building block for catalysts in electrochemical applications because of their large surface area. Nickel oxide (NiO) decoration was achieved by drop-casting a nickel-dissolved solution onto vertically aligned silicon nanowire arrays with a carbon shell (SiNW/C). Based on the hybridization of the NiO and silicon nanowire arrays with a carbon shell this study aimed to achieve a synergic effect for the catalytic activity performance. This study demonstrated that the resulting nanomaterial exhibits excellent electrocatalytic activity and performs well as a counter electrode for dye-sensitized solar cells (DSSCs). The compositions of the materials were examined using X-ray diffraction, X-ray photoelectron spectroscopy, and energy dispersive spectroscopy. Their micro- and nano-structures were investigated using scanning electron microscopy and transmission electron microscopy. The electrochemical activity toward I(-)/I3(-) was examined using cyclic voltammetry and electrochemical impedance spectroscopy. The obtained peak power conversion efficiency of the DSSC based on the NiO@SiNW/C counter electrode was 9.49%, which was greater than that of the DSSC based on the Pt counter electrode. PMID:27001286

  3. Conductive porous sponge-like ionic liquid-graphene assembly decorated with nanosized polyaniline as active electrode material for supercapacitor

    NASA Astrophysics Data System (ADS)

    Halab Shaeli Iessa, K.; Zhang, Yan; Zhang, Guoan; Xiao, Fei; Wang, Shuai

    2016-01-01

    We report the development of three-dimensional (3D) porous sponge-like ionic liquid (IL)-graphene hybrid material by integrating IL molecules and graphene nanosheets via self-assembly process. The as-obtained IL-graphene architecture possesses high surface area, efficient electron transport network and fast charge transfer kinetics owing to its highly porous structure, and unique hydrophilic properties derived from the IL anion on its surface, which endows it with high desire for supercapacitor application. Redox-active polyaniline (PANI) nanorods are further decorated on IL-graphene scaffold by electropolymerization. When utilized as freestanding 3D electrode for supercapacitor, the resultant PANI modified IL-graphene (PANI-IL-graphene) electrode exhibits a specific capacitance up to 662 F g-1 at the current density of 1.0 A g-1, with a high capacitance retention of 73.7% as current densities increase from 1.0 to 20 A g-1, and the capacitance degradation is less than 7.0% after 5000 charge-discharge cycles at 10 A g-1.

  4. Atomic layer deposition encapsulated activated carbon electrodes for high voltage stable supercapacitors.

    PubMed

    Hong, Kijoo; Cho, Moonkyu; Kim, Sang Ouk

    2015-01-28

    Operating voltage enhancement is an effective route for high energy density supercapacitors. Unfortunately, widely used activated carbon electrode generally suffers from poor electrochemical stability over 2.5 V. Here we present atomic layer deposition (ALD) encapsulation of activated carbons for high voltage stable supercapacitors. Two-nanometer-thick Al2O3 dielectric layers are conformally coated at activated carbon surface by ALD, well-maintaining microporous morphology. Resultant electrodes exhibit excellent stability at 3 V operation with 39% energy density enhancement from 2.5 V operation. Because of the protection of surface functional groups and reduction of electrolyte degradation, 74% of initial voltage was maintained 50 h after full charge, and 88% of capacitance was retained after 5000 cycles at 70 °C accelerated test, which correspond to 31 and 17% improvements from bare activated carbon, respectively. This ALD-based surface modification offers a general method to enhance electrochemical stability of carbon materials for diverse energy and environmental applications.

  5. System-in-package solution for a low-power active electrode module.

    PubMed

    Gaio, Nikolas; Gao, Linping; Cai, Jinhe; Zhang, Jinyong; Wang, Lei

    2014-01-01

    This paper presents the design of system in package for a low-power active electrode module. The main aim of this research is to provide a low-cost, high-density, and high-quality module, exploiting the features of a System-in-Package (SiP) solution. To the best knowledge of the authors, this is the first time that SiP technology has been used in the development of a modular active electrode. Two SiPs have been designed and one of them has been fabricated and tested. The dimensions of the latter are 7×7×1 mm and it was designed taking in account the necessity of soldering it by hand. On the contrary, the other package dimensions are 4.5×4.5×1 mm and it was designed for fully exploiting the latest technologies available to authors. The SiPs have been designed to be reused in different electrocardiogram (ECG) systems and are easy to solder using ball grids arrays (BGA) and land grids arrays (LGA) as second level interconnection; both these features allow to reduce the time to market of the supra-system including the module. The active electrode presents a bandwidth which ranges from 7.9 mHz to 300 Hz and it has a mid-band gain which can be set to a maximum value of 40 dB. The fabricated SiP has been tested on a printed circuit board (PCB), with an input signal generated by a Dimetek iBUSS-P biomedical signal simulator showing a satisfying functioning of the SiP.

  6. System-in-package solution for a low-power active electrode module.

    PubMed

    Gaio, Nikolas; Gao, Linping; Cai, Jinhe; Zhang, Jinyong; Wang, Lei

    2014-01-01

    This paper presents the design of system in package for a low-power active electrode module. The main aim of this research is to provide a low-cost, high-density, and high-quality module, exploiting the features of a System-in-Package (SiP) solution. To the best knowledge of the authors, this is the first time that SiP technology has been used in the development of a modular active electrode. Two SiPs have been designed and one of them has been fabricated and tested. The dimensions of the latter are 7×7×1 mm and it was designed taking in account the necessity of soldering it by hand. On the contrary, the other package dimensions are 4.5×4.5×1 mm and it was designed for fully exploiting the latest technologies available to authors. The SiPs have been designed to be reused in different electrocardiogram (ECG) systems and are easy to solder using ball grids arrays (BGA) and land grids arrays (LGA) as second level interconnection; both these features allow to reduce the time to market of the supra-system including the module. The active electrode presents a bandwidth which ranges from 7.9 mHz to 300 Hz and it has a mid-band gain which can be set to a maximum value of 40 dB. The fabricated SiP has been tested on a printed circuit board (PCB), with an input signal generated by a Dimetek iBUSS-P biomedical signal simulator showing a satisfying functioning of the SiP. PMID:25571119

  7. Electro-active Polymer Actuator Based on Sulfonated Polyimide with Highly Conductive Silver Electrodes Via Self-metallization.

    PubMed

    Song, Jiangxuan; Jeon, Jin-Han; Oh, Il-Kwon; Park, K C

    2011-10-01

    We report here a facile synthesis of high performance electro-active polymer actuator based on a sulfonated polyimide with well-defined silver electrodes via self-metallization. The proposed method greatly reduces fabrication time and cost, and obviates a cation exchange process required in the fabrication of ionic polymer-metal composite actuators. Also, the self-metallized silver electrodes exhibit outstanding metal-polymer adhesion with high conductivity, resulting in substantially larger tip displacements compared with Nafion-based actuators.

  8. Asymmetric supercapacitor based on nanostructured graphene foam/polyvinyl alcohol/formaldehyde and activated carbon electrodes

    NASA Astrophysics Data System (ADS)

    Bello, Abdulhakeem; Barzegar, Farshad; Momodu, Damilola; Dangbegnon, Julien; Taghizadeh, Fatemeh; Fabiane, Mopeli; Manyala, Ncholu

    2015-01-01

    We present the electrochemical results of highly porous and interconnected carbon material by activation of graphene foam/polyvinyl alcohol-formaldehyde composite material designated as GF/PVA-F. Asymmetric supercapacitor devices were fabricated using the activated material (GF/PVA-F) and activated carbon (AC) as the positive and negative electrodes respectively. The device exhibited a maximum energy density of 42 mWh cm-2, a power density of 0.5 W cm-2 and 98% retention of its initial capacitance after 2000 cycles in an extended cell potential window of 1.8 V in 1 M Na2SO4 aqueous electrolyte. This work shows the great potential of this material for high performance energy storage application.

  9. Electrode including porous particles with embedded active material for use in a secondary electrochemical cell

    DOEpatents

    Vissers, Donald R.; Nelson, Paul A.; Kaun, Thomas D.; Tomczuk, Zygmunt

    1978-04-25

    Particles of carbonaceous matrices containing embedded electrode active material are prepared for vibratory loading within a porous electrically conductive substrate. In preparing the particles, active materials such as metal chalcogenides, solid alloys of alkali or alkaline earth metals along with other metals and their oxides in powdered or particulate form are blended with a thermosetting resin and particles of a volatile to form a paste mixture. The paste is heated to a temperature at which the volatile transforms into vapor to impart porosity at about the same time as the resin begins to cure into a rigid, solid structure. The solid structure is then comminuted into porous, carbonaceous particles with the embedded active material.

  10. Method of preparing porous, active material for use in electrodes of secondary electrochemical cells

    DOEpatents

    Vissers, Donald R.; Nelson, Paul A.; Kaun, Thomas D.; Tomczuk, Zygmunt

    1977-01-01

    Particles of carbonaceous matrices containing embedded electrode active material are prepared for vibratory loading within a porous electrically conductive substrate. In preparing the particles, active materials such as metal chalcogenides, solid alloys of alkali or alkaline earth metals along with other metals and their oxides in powdered or particulate form are blended with a thermosetting resin and particles of a volatile to form a paste mixture. The paste is heated to a temperature at which the volatile transforms into vapor to impart porosity at about the same time as the resin begins to cure into a rigid, solid structure.The solid structure is then comminuted into porous, carbonaceous particles with the embedded active material.

  11. Can the mechanical activation (polishing) of screen-printed electrodes enhance their electroanalytical response?

    PubMed

    Cumba, Loanda R; Foster, Christopher W; Brownson, Dale A C; Smith, Jamie P; Iniesta, Jesus; Thakur, Bhawana; do Carmo, Devaney R; Banks, Craig E

    2016-04-25

    The mechanical activation (polishing) of screen-printed electrodes (SPEs) is explored and shown to exhibit an improved voltammetric response (in specific cases) when polished with either commonly available alumina slurry or diamond spray. Proof-of-concept is demonstrated for the electrochemical sensing of nitrite where an increase in the voltammetric current is found using both polishing protocols, exhibiting an improved limit of detection (3σ) and a two-fold increase in the electroanalytical sensitivity compared to the respective un-polished counterpart. It is found that mechanical activation/polishing increases the C/O ratio which significantly affects inner-sphere electrochemical probes only (whereas outer-sphere systems remain unaffected). Mechanical activation/polishing has the potential to be a simple pre-treatment technique that can be extended and routinely applied towards other analytes for an observable improvement in the electroanalytical response.

  12. Effective electrode length enhances electrical activation of nanowire networks: experiment and simulation.

    PubMed

    Fairfield, Jessamyn A; Ritter, Carlos; Bellew, Allen T; McCarthy, Eoin K; Ferreira, Mauro S; Boland, John J

    2014-09-23

    Networks comprised of randomly oriented overlapping nanowires offer the possibility of simple fabrication on a variety of substrates, in contrast with the precise placement required for devices with single or aligned nanowires. Metal nanowires typically have a coating of surfactant or oxide that prevents aggregation, but also prevents electrical connection. Prohibitively high voltages can be required to electrically activate nanowire networks, and even after activation many nanowire junctions remain nonconducting. Nonelectrical activation methods can enhance conductivity but destroy the memristive behavior of the junctions that comprise the network. We show through both simulation and experiment that electrical stimulation, microstructured electrode geometry, and feature scaling can all be used to manipulate the connectivity and thus electrical conductivity of networks of silver nanowires with a nonconducting polymer coating. More generally, these results describe a strategy to integrate nanomaterials into controllable, adaptive macroscale materials.

  13. Electrochemical characterisation of activated carbon particles used in redox flow battery electrodes

    NASA Astrophysics Data System (ADS)

    Radford, G. J. W.; Cox, J.; Wills, R. G. A.; Walsh, F. C.

    The Faradaic and non-Faradaic characteristics of a series of activated carbon particles (used to produce composite carbon-polymer electrodes for redox flow cells) have been determined using aqueous electrolytes (sulfuric acid and sodium polysulfide) at 295 K. The particles were mounted as a circular section (ca. 0.80 cm 2) shallow packed bed of 2.5 mm thickness in the direction of electrolyte flow (mean linear flow velocity ≈ 6 mm s -1). Cyclic voltammetry in deaerated, 1 mol dm -3 H 2SO 4 at 295 K indicated a specific capacitance in the range of 50-140 F g -1. Linear sweep voltammetry and galvanostatic step studies in an alkaline sodium polysulfide electrolyte (1.8 mol dm -3 Na 2S 2.11) have demonstrated marked differences amongst various types of activated carbon. Such differences are highlighted during galvanostatic charge-discharge cycling of half-cell electrodes in the polysulfide electrolyte. The electrochemical characteristics are compared to those based on (N 2 adsorption) gas porosimetry measurements.

  14. Carbon-Rich Active Materials with Macrocyclic Nanochannels for High-Capacity Negative Electrodes in All-Solid-State Lithium Rechargeable Batteries.

    PubMed

    Sato, Sota; Unemoto, Atsushi; Ikeda, Takuji; Orimo, Shin-Ichi; Isobe, Hiroyuki

    2016-07-01

    A high-capacity electrode active material with macrocyclic nanochannels is developed for a negative electrode of lithium batteries. With appropriate design of the molecular and crystal structures, a ubiquitous chemical commonly available in reagent stocks of any chemistry laboratories, naphthalene, was transformed into a high-performance electrode material for all-solid-state lithium batteries.

  15. A dry electrode for EEG recording.

    PubMed

    Taheri, B A; Knight, R T; Smith, R L

    1994-05-01

    This paper describes the design, fabrication and testing of a prototype dry surface electrode for EEG signal recording. The new dry electrode has the advantages of no need for skin preparation or conductive paste, potential for reduced sensitivity to motion artifacts and an enhanced signal-to-noise ratio. The electrode's sensing element is a 3 mm stainless steel disk which has a 2000 A (200 nm) thick nitride coating deposited onto one side. The back side of the disk is attached to an impedance converting amplifier. The prototype electrode was mounted on a copper plate attached to the scalp by a Velcro strap. The performance of this prototype dry electrode was compared to commercially available wet electrodes in 3 areas of electroencephalogram (EEG) recording: (1) spontaneous EEG, (2) sensory evoked potentials, and (3) cognitive evoked potentials. In addition to the raw EEG, the power spectra of the signals from both types of electrodes were also recorded. The results suggest that the dry electrode performs comparably to conventional electrodes for all types of EEG signal analysis. This new electrode may be useful for the production of high resolution surface maps of brain activity where a large number of electrodes or prolonged recording times are required.

  16. cVEMP morphology changes with recording electrode position, but single motor unit activity remains constant.

    PubMed

    Rosengren, Sally M; Colebatch, James G; Borire, Adeniyi; Straumann, Dominik; Weber, Konrad P

    2016-04-15

    Cervical vestibular evoked myogenic potentials (cVEMPs) recorded over the lower quarter of the sternocleidomastoid (SCM) muscle in normal subjects may have opposite polarity to those recorded over the midpoint. It has thus been suggested that vestibular projections to the lower part of SCM might be excitatory rather than inhibitory. We tested the hypothesis that the SCM muscle receives both inhibitory and excitatory vestibular inputs. We recorded cVEMPs in 10 normal subjects with surface electrodes placed at multiple sites along the anterior (sternal) component of the SCM muscle. We compared several reference sites: sternum, ipsilateral and contralateral earlobes, and contralateral wrist. In five subjects, single motor unit responses were recorded at the upper, middle, and lower parts of the SCM muscle using concentric needle electrodes. The surface cVEMP had the typical positive-negative polarity at the midpoint of the SCM muscle. In all subjects, as the recording electrode was moved toward each insertion point, p13 amplitude became smaller and p13 latency increased, then the polarity inverted to a negative-positive waveform (n1-p1). Changing the reference site did not affect reflex polarity. There was a significant short-latency change in activity in 61/63 single motor units, and in each case this was a decrease or gap in firing, indicating an inhibitory reflex. Single motor unit recordings showed that the reflex was inhibitory along the entire SCM muscle. The cVEMP surface waveform inversion near the mastoid and sternal insertion points likely reflects volume conduction of the potential occurring with increasing distance from the motor point. PMID:26796756

  17. Mesoporous activated carbon fiber as electrode material for high-performance electrochemical double layer capacitors with ionic liquid electrolyte

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Wu, Feng; Chen, Renjie; Cao, Gaoping; Chen, Shi; Yang, Yusheng

    Activated carbon fibers (ACFs) with super high surface area and well-developed small mesopores have been prepared by pyrolyzing polyacrylonitrile fibers and NaOH activation. Their capacitive performances at room and elevated temperatures are evaluated in electrochemical double layer capacitors (EDLCs) using ionic liquid (IL) electrolyte composed of lithium bis(trifluoromethane sulfone)imide (LiN(SO 2CF 3) 2) and 2-oxazolidinone (C 3H 5NO 2). The surface area of the ACF is as high as 3291 m 2 g -1. The pore volume of the carbon reaches 2.162 cm 3 g -1, of which 66.7% is the contribution of the small mesopores of 2-5 nm. The unique microstructures enable the ACFs to have good compatibility with the IL electrolyte. The specific capacitance reaches 187 F g -1 at room temperature with good cycling and self-discharge performances. As the temperature increases to 60 °C, the capacitance increases to 196 F g -1, and the rate capability is dramatically improved. Therefore, the ACF can be a promising electrode material for high-performance EDLCs.

  18. Brain activity mapping at multiple scales with silicon microprobes containing 1,024 electrodes

    PubMed Central

    Shobe, Justin L.; Claar, Leslie D.; Parhami, Sepideh; Bakhurin, Konstantin I.

    2015-01-01

    The coordinated activity of neural ensembles across multiple interconnected regions has been challenging to study in the mammalian brain with cellular resolution using conventional recording tools. For instance, neural systems regulating learned behaviors often encompass multiple distinct structures that span the brain. To address this challenge we developed a three-dimensional (3D) silicon microprobe capable of simultaneously measuring extracellular spike and local field potential activity from 1,024 electrodes. The microprobe geometry can be precisely configured during assembly to target virtually any combination of four spatially distinct neuroanatomical planes. Here we report on the operation of such a device built for high-throughput monitoring of neural signals in the orbitofrontal cortex and several nuclei in the basal ganglia. We perform analysis on systems-level dynamics and correlations during periods of conditioned behavioral responding and rest, demonstrating the technology's ability to reveal functional organization at multiple scales in parallel in the mouse brain. PMID:26133801

  19. Contact and Support Considerations in the Hydrogen Evolution Reaction Activity of Petaled MoS2 Electrodes.

    PubMed

    Finn, Shane T; Macdonald, Janet E

    2016-09-28

    Petaled MoS2 electrodes grown hydrothermally from Mo foils are found to have an 800 nm, intermediate, MoSxOy layer. Similar petaled MoS2 films without this intermediate layer are grown on Au. X-ray photoelectron and Raman spectroscopies and transmission electron microscopy indicate the resulting petaled multilayer MoS2 films are frayed and exhibit single-layer, 1T-MoS2 behavior at the edges. We compare the electrocatalytic hydrogen evolution reaction activity via linear sweep voltammetry with Tafel analysis as well as the impedance properties of the electrodes. We find that petaled MoS2/Au and petaled MoS2/Mo exhibit comparable overpotential to 10 mA cm(-2) at -279 vs -242 mV, respectively, and similar Tafel slopes of ∼68 mV/decade indicating a similar rate-determining step. The exchange current normalized to the geometric area of petaled MoS2/Au (0.000921 mA cm(-2)) is 3 times smaller than that of petaled MoS2/Mo (0.00290 mA cm(-2)), and is attributed to the lower petal density on the Au support. However, Au supports increase the turnover frequency per active site of petaled MoS2 to 0.48 H2 Mo(-1) s(-1) from 0.25 H2 Mo(-1) s(-1) on Mo supports. Both petaled MoS2 films have nearly ohmic contacts to their supports with uncompensated resistivity Ru of <2.5 Ω·cm(2).

  20. Nanoporous separators for supercapacitor using activated carbon monolith electrode from oil palm empty fruit bunches

    SciTech Connect

    Nor, N. S. M. Deraman, M. Omar, R. Basri, N. H.; Dolah, B. N. M.; Taer, E.; Awitdrus,; Farma, R.

    2014-02-24

    Activated porous carbon electrode prepared from fibres of oil palm empty fruit bunches was used for preparing the carbon based supercapacitor cells. The symmetrical supercapacitor cells were fabricated using carbon electrodes, stainless steel current collector, H{sub 2}SO{sub 4} electrolyte, and three types of nanoporous separators. Cells A, B and C were fabricated using polypropylene, eggshell membrane, and filter paper, respectively. Electrochemical characterizations data from Electrochemical Impedance Spectroscopy, Cyclic Voltammetry, and Galvanic Charge Discharge techniques showed that specific capacitance, specific power and specific energy for cell A were 122 F g{sup −1}, 177 W kg{sup −1}, 3.42 Wh kg{sup −1}, cell B; 125 F g{sup −1}, 179 W kg{sup −1}, and 3.64 Wh kg{sup −1}, and cell C; 180 F g{sup −1}, 178 W kg{sup −1}, 4.27 Wh kg{sup −1}. All the micrographs from Field Emission Scanning Electron Microscope showed that the different in nanoporous structure of the separators lead to a significant different in influencing the values of specific capacitance, power and energy of supercapacitors, which is associated with the mobility of ion into the pore network. These results indicated that the filter paper was superior than the eggshell membrane and polypropylene nanoporous separators. However, we found that in terms of acidic resistance, polypropylene was the best nanoporous separator for acidic medium.

  1. Potentiostatic activation of as-made graphene electrodes for high-rate performance in supercapacitors

    NASA Astrophysics Data System (ADS)

    Senthilkumar, Krishnan; Jeong, Seok; Lah, Myoung Soo; Sohn, Kee-Sun; Pyo, Myoungho

    2016-10-01

    A thermally expanded graphene oxide (EGO) electrode is electrochemically activated to simultaneously introduce electrolyte-accessible mesopores and oxygen functional groups. The former is produced via O2 evolution and the latter is incorporated by the intermediate hydroxyl radicals generated during the potentiostatic oxidation of H2O in 1 M H2SO4 at 1.2 V (vs. Ag/AgCl). When applied as a supercapacitor, the potentiostatically treated EGO (EGO-PS) shows significant enhancement in an electric-double layer (EDL) process with a noticeable Faradaic reaction and delivers high capacitance at fast charge/discharge (C/D) rates (334 F g-1 at 0.1 A g-1 and 230 F g-1 at 50 A g-1). In contrast to EGO-PS, EGO that is oxidized potentiodynamically (EGO-PD) shows negligible enhancement in EDL currents. EGO that is subjected to successive potential pulses also shows behaviors similar to EGO-PD, which indicates the importance of hydroxyl radical accumulation via a potentiostatic method for simultaneous functionalization and microstructural control of graphenes. The potentiostatic post-treatment presented here is a convenient post-treatment strategy that could be used to readily increase capacitance and simultaneously improve the high-rate performance of carbon-based electrodes.

  2. Carbon nanofibers grafted on activated carbon as an electrode in high-power supercapacitors.

    PubMed

    Gryglewicz, Grażyna; Śliwak, Agata; Béguin, François

    2013-08-01

    A hybrid electrode material for high-power supercapacitors was fabricated by grafting carbon nanofibers (CNFs) onto the surface of powdered activated carbon (AC) through catalytic chemical vapor deposition (CCVD). A uniform thin layer of disentangled CNFs with a herringbone structure was deposited on the carbon surface through the decomposition of propane at 450 °C over an AC-supported nickel catalyst. CNF coating was controlled by the reaction time and the nickel content. The superior CNF/AC composite displays excellent electrochemical performance in a 0.5 mol L(-1) solution of K2 SO4 due to its unique structure. At a high scan rate (100 mV s(-1) ) and current loading (20 A g(-1) ), the capacitance values were three- and fourfold higher than those for classical AC/carbon black composites. Owing to this feature, a high energy of 10 Wh kg(-1) was obtained over a wide power range in neutral medium at a voltage of 0.8 V. The significant enhancement of charge propagation is attributed to the presence of herringbone CNFs, which facilitate the diffusion of ions in the electrode and play the role of electronic bridges between AC particles. An in situ coating of AC with short CNFs (below 200 nm) is a very attractive method for producing the next generation of carbon composite materials with a high power performance in supercapacitors working in neutral medium. PMID:23794416

  3. An ionic electro-active actuator made with graphene film electrode, chitosan and ionic liquid

    NASA Astrophysics Data System (ADS)

    He, Qingsong; Yu, Min; Yang, Xu; Kim, Kwang Jin; Dai, Zhendong

    2015-06-01

    A newly developed ionic electro-active actuator composed of an ionic electrolyte layer sandwiched between two graphene film layers was investigated. Scanning electronic microscopy observation and x-ray diffraction analysis showed that the graphene sheets in the film stacked in a nearly face-to-face fashion but did not restack back to graphite, and the resulting graphene film with low sheet resistance (10 Ω sq-1) adheres well to the electrolyte membrane. Contact angle measurement showed the surface energy (37.98 mJ m-2) of the ionic electrolyte polymer is 2.67 times higher than that (14.2 mJ m-2) of the Nafion membrane, contributing to the good adhesion between the graphene film electrode and the electrolyte membrane. An electric double-layer is formed at the interface between the graphene film electrode and the ionic electrolyte membrane under the input potential, resulting in a higher capacitance of 27.6 mF cm-2. We report that this ionic actuator exhibits adequate bending strain, ranging from 0.032 to 0.1% (305 to 945 μm) as functions of voltage.

  4. Electrodes for sealed secondary batteries

    NASA Technical Reports Server (NTRS)

    Boies, D. B.; Child, F. T.

    1972-01-01

    Self-supporting membrane electrode structures, in which active ingredients and graphite are incorporated in a polymeric matrix, improve performance of electrodes in miniature, sealed, alkaline storage batteries.

  5. A large-area diffuse air discharge plasma excited by nanosecond pulse under a double hexagon needle-array electrode.

    PubMed

    Liu, Zhi-Jie; Wang, Wen-Chun; Yang, De-Zheng; Wang, Sen; Zhang, Shuai; Tang, Kai; Jiang, Peng-Chao

    2014-01-01

    A large-area diffuse air discharge plasma excited by bipolar nanosecond pulse is generated under a double hexagon needle-array electrode at atmospheric pressure. The images of the diffuse discharge, electric characteristics, and the optical emission spectra emitted from the diffuse air discharge plasma are obtained. Based on the waveforms of pulse voltage and current, the power consumption, and the power density of the diffuse air discharge plasma are investigated under different pulse peak voltages. The electron density and the electron temperature of the diffuse plasma are estimated to be approximately 1.42×10(11) cm(-3) and 4.4 eV, respectively. The optical emission spectra are arranged to determine the rotational and vibrational temperatures by comparing experimental with simulated spectra. Meanwhile, the rotational and vibrational temperatures of the diffuse discharge plasma are also discussed under different pulse peak voltages and pulse repetition rates, respectively. In addition, the diffuse air discharge plasma can form an area of about 70×50 mm(2) on the surface of dielectric layer and can be scaled up to the required size.

  6. Large-area functionalized CVD graphene for work function matched transparent electrodes

    PubMed Central

    Bointon, Thomas H.; Jones, Gareth F.; De Sanctis, Adolfo; Hill-Pearce, Ruth; Craciun, Monica F.; Russo, Saverio

    2015-01-01

    The efficiency of flexible photovoltaic and organic light emitting devices is heavily dependent on the availability of flexible and transparent conductors with at least a similar workfunction to that of Indium Tin Oxide. Here we present the first study of the work function of large area (up to 9 cm2) FeCl3 intercalated graphene grown by chemical vapour deposition on Nickel, and demonstrate values as large as 5.1 eV. Upon intercalation, a charge density per graphene layer of 5 ⋅ 1013 ± 5 ⋅ 1012 cm−2 is attained, making this material an attractive platform for the study of plasmonic excitations in the infrared wavelength spectrum of interest to the telecommunication industry. Finally, we demonstrate the potential of this material for flexible electronics in a transparent circuit on a polyethylene naphthalate substrate. PMID:26548711

  7. Direct electrochemistry and electrocatalytic activity of cytochrome c covalently immobilized on a boron-doped nanocrystalline diamond electrode.

    PubMed

    Zhou, Yanli; Zhi, Jinfang; Zou, Yousheng; Zhang, Wenjun; Lee, Shuit-Tong

    2008-06-01

    Cytochrome c (Cyt c) was covalently immobilized on a boron-doped nanocrystalline diamond (BDND) electrode via surface functionalization with undecylenic acid methyl ester and subsequent removal of the protecting ester groups to produce a carboxyl-terminated surface. Cyt c-modified BDND electrode exhibited a pair of quasi-reversible and well-defined redox peaks with a formal potential (E(0)) of 0.061 V (vs Ag/AgCl) in 0.1 M phosphate buffer solution (pH 7.0) and a surface-controlled process with a high electron transfer constant (ks) of 5.2 +/- 0.6 s(-1). The electrochemical properties of as-deposited and Cyt c-modified boron-doped microcrystalline diamond (BDMD) electrodes were also studied for comparison. Investigation of the electrocatalytic activity of the Cyt c-modified BDND electrode toward hydrogen peroxide (H2O2) revealed a rapid amperometric response (5 s). The linear range of response to H2O2 concentration was from 1 to 450 microM, and the detection limit was 0.7 microM at a signal-to-noise ratio of 3. The stability of the Cyt c-modified BDND electrode, in comparison with that of the BDMD and glassy carbon counterpart electrodes, was also evaluated. PMID:18447324

  8. Impedance spectroscopic analysis of composite electrode from activated carbon/conductive materials/ruthenium oxide for supercapacitor applications

    SciTech Connect

    Taer, E.; Awitdrus,; Farma, R.; Deraman, M. Talib, I. A.; Ishak, M. M.; Omar, R.; Dolah, B. N. M.; Basri, N. H.; Othman, M. A. R.; Kanwal, S.

    2015-04-16

    Activated carbon powders (ACP) were produced from the KOH treated pre-carbonized rubber wood sawdust. Different conductive materials (graphite, carbon black and carbon nanotubes (CNTs)) were added with a binder (polivinylidene fluoride (PVDF)) into ACP to improve the supercapacitive performance of the activated carbon (AC) electrodes. Symmetric supercapacitor cells, fabricated using these AC electrodes and 1 molar H{sub 2}SO{sub 4} electrolyte, were analyzed using a standard electrochemical impedance spectroscopy technique. The addition of graphite, carbon black and CNTs was found effective in reducing the cell resistance from 165 to 68, 23 and 49 Ohm respectively, and increasing the specific capacitance of the AC electrodes from 3 to 7, 17, 32 F g{sup −1} respectively. Since the addition of CNTs can produce the highest specific capacitance, CNTs were chosen as a conductive material to produce AC composite electrodes that were added with 2.5 %, 5 % and 10 % (by weight) electro-active material namely ruthenium oxide; PVDF binder and CNTs contents were kept at 5 % by weight in each AC composite produced. The highest specific capacitance of the cells obtained in this study was 86 F g{sup −1}, i.e. for the cell with the resistance of 15 Ohm and composite electrode consists of 5 % ruthenium oxide.

  9. Impedance spectroscopic analysis of composite electrode from activated carbon/conductive materials/ruthenium oxide for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Taer, E.; Deraman, M.; Talib, I. A.; Awitdrus, Farma, R.; Ishak, M. M.; Omar, R.; Dolah, B. N. M.; Basri, N. H.; Othman, M. A. R.; Kanwal, S.

    2015-04-01

    Activated carbon powders (ACP) were produced from the KOH treated pre-carbonized rubber wood sawdust. Different conductive materials (graphite, carbon black and carbon nanotubes (CNTs)) were added with a binder (polivinylidene fluoride (PVDF)) into ACP to improve the supercapacitive performance of the activated carbon (AC) electrodes. Symmetric supercapacitor cells, fabricated using these AC electrodes and 1 molar H2SO4 electrolyte, were analyzed using a standard electrochemical impedance spectroscopy technique. The addition of graphite, carbon black and CNTs was found effective in reducing the cell resistance from 165 to 68, 23 and 49 Ohm respectively, and increasing the specific capacitance of the AC electrodes from 3 to 7, 17, 32 F g-1 respectively. Since the addition of CNTs can produce the highest specific capacitance, CNTs were chosen as a conductive material to produce AC composite electrodes that were added with 2.5 %, 5 % and 10 % (by weight) electro-active material namely ruthenium oxide; PVDF binder and CNTs contents were kept at 5 % by weight in each AC composite produced. The highest specific capacitance of the cells obtained in this study was 86 F g-1, i.e. for the cell with the resistance of 15 Ohm and composite electrode consists of 5 % ruthenium oxide.

  10. A portable device for real time drowsiness detection using novel active dry electrode system.

    PubMed

    Tsai, Pai-Yuan; Hu, Weichih; Kuo, Terry B J; Shyu, Liang-Yu

    2009-01-01

    Electroencephalogram (EEG) signals give important information about the vigilance states of a subject. Therefore, this study constructs a real-time EEG-based system for detecting a drowsy driver. The proposed system uses a novel six channels active dry electrode system to acquire EEG non-invasively. In addition, it uses a TMS320VC5510 DSP chip as the algorithm processor, and a MSP430F149 chip as a controller to achieve a real-time portable system. This study implements stationary wavelet transform to extract two features of EEG signal: integral of EEG and zero crossings as the input to a back propagation neural network for vigilance states classification. This system can discriminate alertness and drowsiness in real-time. The accuracy of the system is 79.1% for alertness and 90.91% for drowsiness states. When the system detects drowsiness, it will warn drivers by using a vibrator and a beeper.

  11. The Electrode as Organolithium Reagent: Catalyst-Free Covalent Attachment of Electrochemically Active Species to an Azide-Terminated Glassy Carbon Electrode Surface

    SciTech Connect

    Das, Atanu K.; Engelhard, Mark H.; Liu, Fei; Bullock, R. Morris; Roberts, John A.

    2013-12-02

    Glassy carbon electrodes have been activated for modification with azide groups and subsequent coupling with ferrocenyl reagents by a catalyst-free route using lithium acetylide-ethylenediamine complex, and also by the more common Cu(I)-catalyzed alkyne-azide coupling (CuAAC) route, both affording high surface coverages. Electrodes were preconditioned at ambient temperature under nitrogen, and ferrocenyl surface coverages obtained by CuAAC were comparable to those reported with preconditioning at 1000 °C under hydrogen/nitrogen. The reaction of lithium acetylide-ethylenediamine with the azide-terminated electrode affords a 1,2,3-triazolyllithium-terminated surface that is active toward covalent C-C coupling reactions including displacement at an aliphatic halide and nucleophilic addition at an aldehyde. For example, surface ferrocenyl groups were introduced by reaction with (6-iodohexyl)ferrocene; the voltammetry shows narrow, symmetric peaks indicating uniform attachment. Coverages are competitive with those obtained by the CuAAC route. X-ray photoelectron spectroscopic data, presented for each synthetic step, are consistent with the proposed reactions. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

  12. Study of FBAR response with variation in active area of membrane

    NASA Astrophysics Data System (ADS)

    Gill, Gurpreet Singh; Singh, Tarandip; Prasad, Mahanth

    2016-04-01

    In most of the communication devices such as filter, duplexer and oscillator, the need of acoustic resonator is the key part because of their small size and high performances. The design of a resonator based on three layers: (1) Bottom metal electrode such as Pt, Mo, Al and Au etc. (2) Piezoelectric layer such as ZnO, AlN and PZT etc. and (3) Top metal electrode. In this paper, the effects of active area on resonance frequency and impedance response of FBAR device have been studied. The FBAR devices having different membrane sizes, 150×150 µm2, 300×300 µm2, 450×450 µm2 and 600×600 µm2 were designed and simulated using COMSOL software Tool. The variation in resonance frequencies are found to be 2.62-2.65 GHz. Based on simulation results, one of the membrane having size, 300×300 µm2 has been fabricated for FBAR device.

  13. Design of an integrated thermoelectric generator power converter for ultra-low power and low voltage body energy harvesters aimed at ExG active electrodes

    NASA Astrophysics Data System (ADS)

    Ataei, Milad; Robert, Christian; Boegli, Alexis; Farine, Pierre-André

    2015-10-01

    This paper describes a detailed design procedure for an efficient thermal body energy harvesting integrated power converter. The procedure is based on the examination of power loss and power transfer in a converter for a self-powered medical device. The efficiency limit for the system is derived and the converter is optimized for the worst case scenario. All optimum system parameters are calculated respecting the transducer constraints and the application form factor. Circuit blocks including pulse generators are implemented based on the system specifications and optimized converter working frequency. At this working condition, it has been demonstrated that the wide area capacitor of the voltage doubler, which provides high voltage switch gating, can be eliminated at the expense of wider switches. With this method, measurements show that 54% efficiency is achieved for just a 20 mV transducer output voltage and 30% of the chip area is saved. The entire electronic board can fit in one EEG or ECG electrode, and the electronic system can convert the electrode to an active electrode.

  14. Synthesis and characterization of high surface area molybdenum nitride electrodes for high energy density electrochemical storage devices

    NASA Astrophysics Data System (ADS)

    Roberson, Scott Lee

    1998-12-01

    Polycrystalline high surface area (>20 msp2/g) Mosb{x}N (x = 1 and 2) films have been synthesized by the conversion of MoOsb3 films in controlled temperature reactions with NHsb3 and by chemical vapor deposition (CVD) of either MoClsb5 or Mo(CO)sb6 and NHsb3. The formation of larger surface areas was achieved in films that were converted form MoOsb3; however, control of the composition of the Mosb{x}N films was achieved only by CVD. The increase in surface areas in the converted samples was credited to both the increase in specific density of the film during the conversion to Mosb{x}N and the topotactic nature of the conversion. Compositional control of the CVD Mosb{x}N films was accomplished by varying the deposition rate, the precursor employed, the deposition temperature and the NHsb3 flow rate. The electrochemical stability of the converted and CVD Mosb{x}N films occurred between ≈0.5 and ≈0.70 V vs. a standard hydrogen electrode (SHE). Control of the composition of the CVD Mosb{x}N films allowed the determination of the electrochemical stabilities of each phase (gamma-Mosb2N and delta-MoN). The CVD Mosb{x}N films were subsequently used as cathodes for the fabrication of hybrid capacitor devices. These devices were operational between 0-50 V and had a total capacitance of 5.0 mF at 1 V. Both the operating voltage and the capacitance of these devices are higher than devices currently used in government and medical applications.

  15. Embedding metal electrodes in thick active layers for ITO-free plasmonic organic solar cells with improved performance.

    PubMed

    Lee, Sangjun; Mason, Daniel R; In, Sungjun; Park, Namkyoo

    2014-06-30

    We propose and numerically investigate the optical performance of a novel plasmonic organic solar cell with metallic nanowire electrodes embedded within the active layer. A significant improvement (~15%) in optical absorption over both a conventional ITO organic solar cell and a conventional plasmonic organic solar cell with top-loaded metallic grating is predicted in the proposed structure. Optimal positioning of the embedded metal electrodes (EME) is shown to preserve the condition for their strong plasmonic coupling with the metallic back-plane, meanwhile halving the hole path length to the anode which allows for a thicker active layer that increases the optical path length of propagating modes. With a smaller sheet resistance than a typical 100 nm thick ITO film transparent electrode, and an increased optical absorption and hole collection efficiency, our EME scheme could be an excellent alternative to ITO organic solar cells.

  16. High frequency reference electrode

    DOEpatents

    Kronberg, James W.

    1994-01-01

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or "halo" at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes.

  17. High frequency reference electrode

    DOEpatents

    Kronberg, J.W.

    1994-05-31

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or halo' at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes. 4 figs.

  18. Selective activation of the human tibial and common peroneal nerves with a flat interface nerve electrode

    NASA Astrophysics Data System (ADS)

    Schiefer, M. A.; Freeberg, M.; Pinault, G. J. C.; Anderson, J.; Hoyen, H.; Tyler, D. J.; Triolo, R. J.

    2013-10-01

    Objective. Electrical stimulation has been shown effective in restoring basic lower extremity motor function in individuals with paralysis. We tested the hypothesis that a flat interface nerve electrode (FINE) placed around the human tibial or common peroneal nerve above the knee can selectively activate each of the most important muscles these nerves innervate for use in a neuroprosthesis to control ankle motion. Approach. During intraoperative trials involving three subjects, an eight-contact FINE was placed around the tibial and/or common peroneal nerve, proximal to the popliteal fossa. The FINE's ability to selectively recruit muscles innervated by these nerves was assessed. Data were used to estimate the potential to restore active plantarflexion or dorsiflexion while balancing inversion and eversion using a biomechanical simulation. Main results. With minimal spillover to non-targets, at least three of the four targets in the tibial nerve, including two of the three muscles constituting the triceps surae, were independently and selectively recruited in all subjects. As acceptable levels of spillover increased, recruitment of the target muscles increased. Selective activation of muscles innervated by the peroneal nerve was more challenging. Significance. Estimated joint moments suggest that plantarflexion sufficient for propulsion during stance phase of gait and dorsiflexion sufficient to prevent foot drop during swing can be achieved, accompanied by a small but tolerable inversion or eversion moment.

  19. An amperometric bienzymatic cholesterol biosensor based on functionalized graphene modified electrode and its electrocatalytic activity towards total cholesterol determination.

    PubMed

    Manjunatha, Revanasiddappa; Shivappa Suresh, Gurukar; Melo, Jose Savio; D'Souza, Stanislaus F; Venkatesha, Thimmappa Venkatarangaiah

    2012-09-15

    Cholesterol oxidase (ChOx) and cholesterol esterase (ChEt) have been covalently immobilized onto functionalized graphene (FG) modified graphite electrode. Enzymes modified electrodes were characterized using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). FG accelerates the electron transfer from electrode surface to the immobilized ChOx, achieving the direct electrochemistry of ChOx. A well defined redox peak was observed, corresponding to the direct electron transfer of the FAD/FADH(2) of ChOx. The electron transfer coefficient (α) and electron transfer rate constant (K(s)) were calculated and their values are found to be 0.31 and 0.78 s(-1), respectively. For the free cholesterol determination, ChOx-FG/Gr electrode exhibits a sensitive response from 50 to 350 μM (R=-0.9972) with a detection limit of 5 μM. For total cholesterol determination, co-immobilization of ChEt and ChOx on modified electrode, i.e. (ChEt/ChOx)-FG/Gr electrode showed linear range from 50 to 300 μM (R=-0.9982) with a detection limit of 15 μM. Some common interferents like glucose, ascorbic acid and uric acid did not cause any interference, due to the use of a low operating potential. The FG/Gr electrode exhibits good electrocatalytic activity towards hydrogen peroxide (H(2)O(2)). A wide linear response to H(2)O(2) ranging from 0.5 to 7 mM (R=-0.9967) with a sensitivity of 443.25 μA mM(-1) cm(-2) has been obtained. PMID:22967556

  20. High sensitivity recording of afferent nerve activity using ultra-compliant microchannel electrodes: an acute in vivo validation

    NASA Astrophysics Data System (ADS)

    Minev, Ivan R.; Chew, Daniel J.; Delivopoulos, Evangelos; Fawcett, James W.; Lacour, Stéphanie P.

    2012-04-01

    Neuroprostheses interfaced with transected peripheral nerves are technological routes to control robotic limbs as well as convey sensory feedback to patients suffering from traumatic neural injuries or degenerative diseases. To maximize the wealth of data obtained in recordings, interfacing devices are required to have intrafascicular resolution and provide high signal-to-noise ratio (SNR) recordings. In this paper, we focus on a possible building block of a three-dimensional regenerative implant: a polydimethylsiloxane (PDMS) microchannel electrode capable of highly sensitive recordings in vivo. The PDMS 'micro-cuff' consists of a 3.5 mm long (100 µm × 70 µm cross section) microfluidic channel equipped with five evaporated Ti/Au/Ti electrodes of sub-100 nm thickness. Individual electrodes have average impedance of 640 ± 30 kΩ with a phase angle of -58 ± 1 degrees at 1 kHz and survive demanding mechanical handling such as twisting and bending. In proof-of-principle acute implantation experiments in rats, surgically teased afferent nerve strands from the L5 dorsal root were threaded through the microchannel. Tactile stimulation of the skin was reliably monitored with the three inner electrodes in the device, simultaneously recording signal amplitudes of up to 50 µV under saline immersion. The overall SNR was approximately 4. A small but consistent time lag between the signals arriving at the three electrodes was observed and yields a fibre conduction velocity of 30 m s-1. The fidelity of the recordings was verified by placing the same nerve strand in oil and recording activity with hook electrodes. Our results show that PDMS microchannel electrodes open a promising technological path to 3D regenerative interfaces.

  1. Activity coefficients of aqueous sodium chloride from 15° to 50°C measured with a glass electrode

    USGS Publications Warehouse

    Truesdell, A.H.

    1968-01-01

    Values of the mean activity coefficient of sodium chloride at 15°, 25°, 38° and 50°C were determined for aqueous NaCl solutions of 0.01 to 1.0 molal from electromotive force measurements on the cell: (sodium-sensitive glass electrode, aqueous sodium chloride, silver chloride-silver).

  2. Use of an ion-selective membrane electrode for the determination of the active components in intestopan.

    PubMed

    Ionescu, M S; Lazarescu, M; Ionescu, A; Baiulescu, G E

    1987-10-01

    The conditions for the determination of broxyquinoline and brobenzoxaldine, the active components of "Intestopan", by use of ion-selective membrane electrodes are described. Broxyquinoline is determined directly through precipitation with CuSO(4), and brobenzoxaldine is first hydrolysed in alkaline solution and the product precipitated with CuSO(4). In both cases the CuSO(4) in excess is determined by potentiometric titration at pH 5.6 with EDTA, a Cu(2+)-selective electrode being used for end-point detection.

  3. Spray-on electrodes enable EKG monitoring of physically active subjects

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Easily applied EKG electrodes monitor the heart signals of human subjects engaged in various physical exercises. The electrodes are formed from an air drying, electrically conductive cement mixture that can be applied to the skin by means of a modified commercially available spray gun.

  4. NOVEL EMBEDDED CERAMIC ELECTRODE SYSTEM TO ACTIVATE NANOSTRUCTURED TITANIUM DIOXIDE FOR DEGRADATION OF MTBE

    EPA Science Inventory

    A novel reactor combining a flame-deposited nanostructured titanium dioxide film and a set of embedded ceramic electrodes was designed, developed and tested for degradation of methyl tert-butyl ether (MTBE) in water. On applying a voltage to the ceramic electrodes, a surface coro...

  5. Making Fuel-Cell Electrodes By Electrodeposition

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R.; Surampudi, Subbarao; Halpert, Gerald

    1994-01-01

    Electrodes for direct oxidation of methanol in fuel cells fabricated in process involving room-temperature electro-chemical deposition of platinum-alloy catalysts on commercially available high-surface-area carbon support structures containing polytetrafluoroethylene (PTFE). Process takes 30 to 50 minutes and results in electrodes catalytically active as prepared; no need for additional activation step. Composition of catalytic platinum alloy and sizes of particles in catalytic layers on electrodes varied by changing operating conditions during electrodeposition; process affords additional flexibility in design of electrocatalysts.

  6. Self-assembly of electro-active protein architectures on electrodes for the construction of biomimetic signal chains.

    PubMed

    Lisdat, Fred; Dronov, Roman; Möhwald, Helmuth; Scheller, Frieder W; Kurth, Dirk G

    2009-01-21

    The layer-by-layer adsorption technique based on the consecutive deposition of oppositely charged species is suitable for the preparation of protein multilayers with fully electro-active protein molecules. The methodology was established with cytochrome c and the polyelectrolyte sulfonated polyaniline (PASA). The technique is also useful for the construction of bi-protein architectures confining protein-protein communication to an electrode. Following natural examples of protein complexes with defined signal transfer, cytochrome c was arranged with enzymes such as xanthine oxidase, bilirubin oxidase, laccase, and sulfite oxidase in self-assembled multilayer architectures. Thus, biomimetic signal chains from the enzyme substrate via the enzyme and cytochrome c towards the electrode can be established. Communication between proteins immobilised in multiple layers on the electrode can be achieved by in situ generation of small shuttle molecules or more advantageously by direct interprotein electron transfer. This allows the construction of new sensing electrodes, the properties of which can be tuned by the number of deposited protein layers. The mechanism of electron transfer within such protein assemblies on gold electrodes will be discussed.

  7. Micropower non-contact EEG electrode with active common-mode noise suppression and input capacitance cancellation.

    PubMed

    Chi, Yu M; Cauwenberghs, Gert

    2009-01-01

    A non-contact EEG electrode with input capacitance neutralization and common-mode noise suppression circuits is presented. The coin sized sensor capacitively couples to the scalp without direct contact to the skin. To minimize the effect of signal attenuation and channel gain mismatch, the input capacitance of each sensor is actively neutralized using positive feedback and bootstrapping. Common-mode suppression is achieved through a single conductive sheet to establish a common mode reference. Each sensor electrode provides a differential gain of 60 dB. Signals are transmitted in a digital serial daisy-chain directly from a local 16-bit ADC, minimizing the number of wires required to establish a high density EEG sensor network. The micropower electrode consumes only 600 microW from a single 3.3 V supply.

  8. Slowing of Hippocampal Activity Correlates with Cognitive Decline in Early Onset Alzheimer’s Disease. An MEG Study with Virtual Electrodes

    PubMed Central

    Engels, Marjolein M. A.; Hillebrand, Arjan; van der Flier, Wiesje M.; Stam, Cornelis J.; Scheltens, Philip; van Straaten, Elisabeth C. W.

    2016-01-01

    Pathology in Alzheimer’s disease (AD) starts in the entorhinal cortex and hippocampus. Because of their deep location, activity from these areas is difficult to record with conventional electro- or magnetoencephalography (EEG/MEG). The purpose of this study was to explore hippocampal activity in AD patients and healthy controls using “virtual MEG electrodes”. We used resting-state MEG recordings from 27 early onset AD patients [age 60.6 ± 5.4, 12 females, mini-mental state examination (MMSE) range: 19–28] and 26 cognitively healthy age- and gender-matched controls (age 61.8 ± 5.5, 14 females). Activity was reconstructed using beamformer-based virtual electrodes for 78 cortical regions and 6 hippocampal regions. Group differences in peak frequency and relative power in six frequency bands were identified using permutation testing. For the patients, spearman correlations between the MMSE scores and peak frequency or relative power were calculated. Moreover, receiver operator characteristic curves were plotted to estimate the diagnostic accuracy. We found a lower hippocampal peak frequency in AD compared to controls, which, in the patients, correlated positively with MMSE [r(25) = 0.61; p < 0.01] whereas hippocampal relative theta power correlated negatively with MMSE [r(25) = -0.54; p < 0.01]. Cortical peak frequency was also lower in AD in association areas. Furthermore, cortical peak frequency correlated positively with MMSE [r(25) = 0.43; p < 0.05]. In line with this finding, relative theta power was higher in AD across the cortex, and relative alpha and beta power was lower in more circumscribed areas. The average cortical relative theta power was the best discriminator between AD and controls (sensitivity 82%; specificity 81%). Using beamformer-based virtual electrodes, we were able to detect hippocampal activity in AD. In AD, this hippocampal activity is slowed, and correlates better with cognition than the (slowed) activity in cortical areas. On the

  9. Multichannel 5 × 5-Site 3-Dimensional Si Microprobe Electrode Array for Neural Activity Recording System

    NASA Astrophysics Data System (ADS)

    Kawano, Takeshi; Takao, Hidekuni; Sawada, Kazuaki; Ishida, Makoto

    2003-04-01

    Multichannel 5 × 5-site Si microprobe electrode array has been developed for neural activity recording. Si microprobes were fabricated successfully at predetermined sites on a chip using Au dots and Si2H6 gas source molecular beam epitaxy (GS-MBE), a method based on vapor-liquid-solid (VLS) growth. Selective VLS Si growth allowed the design of three-dimensional (3D) microprobes with 40 μm spacing in a 5 × 5 array. The diameter and the length of the Si probe can be widely changed by changing the Au dot size and the Si growth time, respectively. In addition, the circular-cone-shaped Si probe has a shape suitable for penetration into neural tissues, and can be realized by increasing growth pressure. The mechanical strength of the Si probe was evaluated with observation of its bending and penetration into a gelatin membrane, which indicated that the Si probes are strong enough to withstand the application. Signal recording with the same amplitude as neural activity was also performed using the fabricated Si probe array chip. These results confirm that high-density neural signals from neural tissues can be obtained with the multichannel 3D VLS Si microprobe array chip.

  10. Printed and flexible biosensor for antioxidants using interdigitated ink-jetted electrodes and gravure-deposited active layer.

    PubMed

    Pavinatto, Felippe J; Paschoal, Carlos W A; Arias, Ana C

    2015-05-15

    Printing techniques have been extensively used in the fabrication of organic electronic devices, such as light-emitting diodes and display backplanes. These techniques, in particular inkjet printing, are being employed for the localized dispensing of solutions containing biological molecules and cells, leading to the fabrication of bio-functional microarrays and biosensors. Here, we report the fabrication of an all-printed and flexible biosensor for antioxidants. Gold (Au) interdigitated electrodes (IDEs) with sub-100 µm features were directly inkjet-printed on plastic substrates using a nanoparticle-based ink. Conductivities as high as 5×10(6) S/m (12% of bulk Au) were attained after sintering was conducted at plastic-compatible 200 °C for 6 h. The enzyme Tyrosinase (Tyr) was used in the active layer of the biosensors, being innovatively deposited by large-area rotogravure printing. A tailor-made ink was studied, and the residual activity of the enzyme was 85% after additives incorporation, and 15.5% after gravure printing. Au IDEs were coated with gravure films of the Tyr-containing ink, and the biosensor was encapsulated with a cellulose acetate dip-coating film to avoid dissolution. The biosensor impedance magnitude increases linearly with the concentration of a model antioxidant, allowing for the construction of a calibration curve. Control experiments demonstrated the molecular recognition characteristic inferred by the enzyme. We found that the biosensor sensitivity and the limit of detection were, respectively, 5.68 Ω/µm and 200 µM. In conclusion, a disposable, light-weight, all-printed and flexible biosensor for antioxidants was successfully fabricated using fast and large-area printing techniques. This opens the door for the fabrication of technological products using roll-to-roll processes.

  11. Production of graphitic carbon-based nanocomposites from K2CO3-activated coconut shells as counter electrodes for dye-sensitized solar-cell applications

    NASA Astrophysics Data System (ADS)

    Loryuenyong, Vorrada; Buasri, Achanai; Lerdvilainarit, Parichat; Manachevakulm, Konnatee; Sompong, Siripond

    2016-01-01

    In this study, graphitic carbon-activated carbon nanocomposites fabricated from K2CO3 chemically-activated coconut shells by using Fe-catalytic chemical vapor deposition are reported. The present method was simple, environmentally-friendly, low cost, but successfully offered graphitic carbon-based materials that demonstrated promise for use as counter electrodes in dye-sensitized solar cells. The results showed that the coconut shell:catalyst ratio (1:0, 1:4, 1:1, and 4:1) significantly affected the structural, physical and electrochemical properties of the samples. Graphitic carbon and activated carbon nanocomposites with a high specific surface area of 1230 m2/g and high electrochemical activity in iodide reduction are obtained for samples with a coconut shells/iron precursor (Fe(NO3)3) ratio of 4:1.

  12. NASA's Spaceliner 100 Investment Area Technology Activities

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; Lyles, Garry M. (Technical Monitor)

    2001-01-01

    NASA's has established long term goals for access-to-space. The third generation launch systems are to be fully reusable and operational around 2025. The goals for the third generation launch system are to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current conditions. The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop space transportation technologies. Within ASTP, under the Spaceliner100 Investment Area, third generation technologies are being pursued in the areas of propulsion, airframes, integrated vehicle health management (IVHM), launch systems, and operations and range. The ASTP program will mature these technologies through ground system testing. Flight testing where required, will be advocated on a case by case basis.

  13. NASA's Spaceliner Investment Area Technology Activities

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; Lyles, Garry M. (Technical Monitor)

    2001-01-01

    NASA's has established long term goals for access-to-space. The third generation launch systems are to be fully reusable and operational around 2025. The goals for the third generation launch system are to significantly reduce cost and improve safety over current conditions. The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop space transportation technologies. Within ASTP, under the Spaceliner Investment Area, third generation technologies are being pursued in the areas of propulsion, airframes, integrated vehicle health management (IVHM), avionics, power, operations, and range. The ASTP program will mature these technologies through both ground and flight system testing. The Spaceliner Investment Area plans to mature vehicle technologies to reduce the implementation risks for future commercially developed reusable launch vehicles (RLV). The plan is to substantially increase the design and operating margins of the third generation RLV (the Space Shuttle is the first generation) by incorporating advanced technologies in propulsion, materials, structures, thermal protection systems, avionics, and power. Advancements in design tools and better characterization of the operational environment will allow improvements in design margins. Improvements in operational efficiencies will be provided through use of advanced integrated health management, operations, and range technologies. The increase in margins will allow components to operate well below their design points resulting in improved component operating life, reliability, and safety which in turn reduces both maintenance and refurbishment costs. These technologies have the potential of enabling horizontal takeoff by reducing the takeoff weight and achieving the goal of airline-like operation. These factors in conjunction with increased flight rates from an expanding market will result in significant improvements in safety

  14. Electric double-layer capacitors with tea waste derived activated carbon electrodes and plastic crystal based flexible gel polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Suleman, M.; Deraman, M.; Othman, M. A. R.; Omar, R.; Hashim, M. A.; Basri, N. H.; Nor, N. S. M.; Dolah, B. N. M.; Hanappi, M. F. Y. M.; Hamdan, E.; Sazali, N. E. S.; Tajuddin, N. S. M.; Jasni, M. R. M.

    2016-08-01

    We report a novel configuration of symmetrical electric double-layer capacitors (EDLCs) comprising a plastic crystalline succinonitrile (SN) based flexible polymer gel electrolyte, incorporated with sodium trifluoromethane sulfonate (NaTf) immobilised in a host polymer poly (vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP). The cost-effective activated carbon powder possessing a specific surface area (SSA) of ~ 1700 m2g-1 containing a large proportion of meso-porosity has been derived from tea waste to use as supercapacitor electrodes. The high ionic conductivity (~3.6×10-3 S cm-1 at room temperature) and good electrochemical stability render the gel polymer electrolyte film a suitable candidate for the fabrication of EDLCs. The performance of the EDLCs has been tested by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and galvanostatic charge-discharge studies. The performance of the EDLC cell is found to be promising in terms of high values of specific capacitance (~270 F g-1), specific energy (~ 36 Wh kg-1), and power density (~ 33 kW kg-1).

  15. Modeling of a Segmented Electrode for Desynchronizing Deep Brain Stimulation

    PubMed Central

    Buhlmann, J.; Hofmann, L.; Tass, P. A.; Hauptmann, C.

    2011-01-01

    Deep brain stimulation (DBS) is an effective therapy for medically refractory movement disorders like Parkinson’s disease. The electrodes, implanted in the target area within the human brain, generate an electric field which activates nerve fibers and cell bodies in the vicinity. Even though the different target nuclei display considerable differences in their anatomical structure, only few types of electrodes are currently commercially available. It is desirable to adjust the electric field and in particular the volume of tissue activated around the electrode with respect to the corresponding target nucleus in a such way that side effects can be reduced. Furthermore, a more selective and partial activation of the target structure is desirable for an optimal application of novel stimulation strategies, e.g., coordinated reset neuromodulation. Hence we designed a DBS electrode with a segmented design allowing a more selective activation of the target structure. We created a finite element model (FEM) of the electrode and analyzed the volume of tissue activated for this electrode design. The segmented electrode activated an area in a targeted manner, of which the dimension and position relative to the electrode could be controlled by adjusting the stimulation parameters for each electrode contact. According to our computational analysis, this directed stimulation might be superior with respect to the occurrence of side effects and it enables the application of coordinated reset neuromodulation under optimal conditions. PMID:22163220

  16. Spark gap electrode erosion

    NASA Astrophysics Data System (ADS)

    Krompholz, H.; Kristiansen, M.

    1984-12-01

    The results of a one-year contract on electrode erosion phenomena are summarized. The arc voltage drop in a spark gap was measured for various electrode, gas, and pressure combinations. A previously developed model of self breakdown voltage distribution was extended. A jet model for electrode erosion was proposed and an experimental arrangement for testing the model was constructed. The effects of inhomogeneities and impurities in the electrodes were investigated. Some of the work described here is scheduled for completion in 1985 under a current grant (AFOSR 84-0032). The areas of investigation described here include: (1) Self breakdown voltage distributions; (2) Electrode erosion; (3) Spark gap voltage recovery.

  17. 50 CFR 218.120 - Specified activity and geographical area.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Activities Area (GoA TMAA) § 218.120 Specified activity and geographical area. (a) Regulations in this... Alaska Temporary Maritime Activities Area (GoA TMAA) (as depicted in Figure 1-1 in the Navy's application for GoA TMAA), which is bounded by a hexagon with the following six corners: 57°30′ N. lat., 141°30′...

  18. Guide to good practices for control area activities

    SciTech Connect

    1998-12-01

    This Guide to Good Practices is written to enhance understanding of, and provide direction for, Control Area Activities, Chapter III of Department of Energy (DOE) Order 5480.19, Conduct of Operations Requirements for DOE Facilities. The practices in this guide should be considered for controlling the activities in control areas. Contractors are advised to adopt procedures that meet the intent of DOE Order 5480.19. Control Area Activities is an element of an effective Conduct of Operations program. The complexity and array of activities performed in DOE facilities dictate the necessity for maintaining a formal environment in operational control areas to promote safe and efficient operations.

  19. Individual finger classification from surface EMG: Influence of electrode set.

    PubMed

    Celadon, Nicolo; Dosen, Strahinja; Paleari, Marco; Farina, Dario; Ariano, Paolo

    2015-01-01

    The aim of this work was to minimize the number of channels, determining acceptable electrode locations and optimizing electrode-recording configurations to decode isometric flexion and extension of individual fingers. Nine healthy subjects performed cyclical isometric contractions activating individual fingers. During the experiment they tracked a moving visual marker indicating the contraction type (flexion/extension), desired activation level and the finger that should be employed. Surface electromyography (sEMG) signals were detected from the forearm muscles using a matrix of 192 channels (24 longitudinal columns and 8 transversal rows, 10 mm inter-electrode distance). The classification was evaluated in the context of a linear discriminant analysis (LDA) with different sets of EMG electrodes: A) one linear array of 8 electrodes, B) two arrays of 8 electrodes each, C) a set with one electrode on the barycenter of each sEMG activity area, D) all the recorded channels. The results showed that the classification accuracy depended on the electrode set (F=14.67, p<;0.001). The best reduction approaches were the barycenter calculation and the use of two linear arrays of electrodes, which performed similarly to each other (both > 82% of average success rate). Considering the computation time and electrode positioning, it is concluded that two arrays of 8 electrodes provide an optimal configuration to classify the isometric flexion and extension of individual fingers.

  20. Matrix-addressable, active electrode arrays for neural stimulation using organic semiconductors—cytotoxicity and pilot experiments in vivo

    NASA Astrophysics Data System (ADS)

    Feili, Dara; Schuettler, Martin; Stieglitz, Thomas

    2008-03-01

    Organic field effect transistors can be integrated into micromachined polyimide-based neural stimulation electrode arrays in order to build active switching matrices. With this approach, a matrix of N × M electrode contacts requires only N + M interconnects to a stimulator when active switching elements are used instead of N × M interconnects. In this paper, we demonstrated that pentacene-based organic field effect transistors (OFETs) can be used to drive stimulation currents through neural electrodes in a physiological-like environment. In order to prove the general applicability as an implant material, the cytotoxicity of pentacene was evaluated with respect to potential effects on cell viability. The results of these tests indicate that extracts from pentacene inhibit neither proliferation nor metabolism of the tested mouse fibroblasts. However, some effect on cell spreading was observed when cells were in direct contact to pentacene for 48 h. In pilot experiments it was demonstrated for the very first time that pentacene transistors can be used as switching elements, acting as voltage-controlled current sources, capable of driving currents suitable for electrical stimulation of a peripheral nerve via a tripolar cuff electrode.

  1. Flow injection catalase activity measurement based on gold nanoparticles/carbon nanotubes modified glassy carbon electrode.

    PubMed

    El Nashar, Rasha Mohamed

    2012-07-15

    Amperometric flow injection method of hydrogen peroxide analysis was developed based on catalase enzyme (CAT) immobilization on a glassy carbon electrode (GC) modified with electrochemically deposited gold nanoparticles on a multiwalled carbon nanotubes/chitosan film. The resulting biosensor was applied to detect hydrogen peroxide with a linear response range 1.0×10(-7)-2.5×10(-3)M with a correlation coefficient 0.998 and response time less than 10s. The optimum conditions of film deposition such as potential applied, deposition time and pH were tested and the flow injection conditions were optimized to be: flow rate of 3ml/min, sample volume 75μl and saline phosphate buffer of pH 6.89. Catalase enzyme activity was successfully determined in liver homogenate samples of rats, raised under controlled dietary plan, using a flow injection analysis system involving the developed biosensor simultaneously with spectrophotometric detection, which is the common method of enzymatic assay.

  2. Sensitive and simple flow injection analysis of formaldehyde using an activated barrel plating nickel electrode.

    PubMed

    Chen, Pei-Yen; Yangi, Hsueh-Hui; Zen, Jyh-Myng; Shih, Ying

    2011-01-01

    A flow injection analysis coupled with electrochemical detection at an activated barrel plating nickel electrode (Ni-BPE) was developed as a sensitive, simple, and low-cost formaldehyde sensor. The mechanism of Ni-BPE toward the electrocatalytic oxidation of formaldehyde in alkaline medium at ambient temperature was proposed to be based on the electrocatalytic oxidation of formaldehyde by Ni(III)O(OH) species. Under the optimized conditions (flow rate = 1.2 mL/min; detection potential = +0.5 V versus Ag/AgCl), a good linearity in the window of 0.037 to 10 microg/mL formaldehyde was observed, and the LOD of 0.23 microg/L was calculated. The RSDs of intraday (n = 10) and interday (n = 6) replicate measurements of 0.185-5 microg/mL formaldehyde ranged from 1.45 to 3.60%, indicating good reproducibility of the proposed method. The proposed method was successfully applied to the determination of formaldehyde in commercial nail polish samples and a drinking water sample. PMID:22165025

  3. Flow injection catalase activity measurement based on gold nanoparticles/carbon nanotubes modified glassy carbon electrode.

    PubMed

    El Nashar, Rasha Mohamed

    2012-07-15

    Amperometric flow injection method of hydrogen peroxide analysis was developed based on catalase enzyme (CAT) immobilization on a glassy carbon electrode (GC) modified with electrochemically deposited gold nanoparticles on a multiwalled carbon nanotubes/chitosan film. The resulting biosensor was applied to detect hydrogen peroxide with a linear response range 1.0×10(-7)-2.5×10(-3)M with a correlation coefficient 0.998 and response time less than 10s. The optimum conditions of film deposition such as potential applied, deposition time and pH were tested and the flow injection conditions were optimized to be: flow rate of 3ml/min, sample volume 75μl and saline phosphate buffer of pH 6.89. Catalase enzyme activity was successfully determined in liver homogenate samples of rats, raised under controlled dietary plan, using a flow injection analysis system involving the developed biosensor simultaneously with spectrophotometric detection, which is the common method of enzymatic assay. PMID:22817944

  4. Strain-dependent characterization of electrode and polymer network of electrically activated polymer actuators

    NASA Astrophysics Data System (ADS)

    Töpper, Tino; Osmani, Bekim; Weiss, Florian M.; Winterhalter, Carla; Wohlfender, Fabian; Leung, Vanessa; Müller, Bert

    2015-04-01

    Fecal incontinence describes the involuntary loss of bowel content and affects about 45 % of retirement home residents and overall more than 12 % of the adult population. Artificial sphincter implants for treating incontinence are currently based on mechanical systems with failure rates resulting in revision after three to five years. To overcome this drawback, artificial muscle sphincters based on bio-mimetic electro-active polymer (EAP) actuators are under development. Such implants require polymer films that are nanometer-thin, allowing actuation below 24 V, and electrodes that are stretchable, remaining conductive at strains of about 10 %. Strain-dependent resistivity measurements reveal an enhanced conductivity of 10 nm compared to 30 nm sputtered Au on silicone for strains higher than 5 %. Thus, strain-dependent morphology characterization with optical microscopy and atomic force microscopy could demonstrate these phenomena. Cantilever bending measurements are utilized to determine elastic/viscoelastic properties of the EAP films as well as their long-term actuation behavior. Controlling these properties enables the adjustment of growth parameters of nanometer-thin EAP actuators.

  5. Sensitive and simple flow injection analysis of formaldehyde using an activated barrel plating nickel electrode.

    PubMed

    Chen, Pei-Yen; Yangi, Hsueh-Hui; Zen, Jyh-Myng; Shih, Ying

    2011-01-01

    A flow injection analysis coupled with electrochemical detection at an activated barrel plating nickel electrode (Ni-BPE) was developed as a sensitive, simple, and low-cost formaldehyde sensor. The mechanism of Ni-BPE toward the electrocatalytic oxidation of formaldehyde in alkaline medium at ambient temperature was proposed to be based on the electrocatalytic oxidation of formaldehyde by Ni(III)O(OH) species. Under the optimized conditions (flow rate = 1.2 mL/min; detection potential = +0.5 V versus Ag/AgCl), a good linearity in the window of 0.037 to 10 microg/mL formaldehyde was observed, and the LOD of 0.23 microg/L was calculated. The RSDs of intraday (n = 10) and interday (n = 6) replicate measurements of 0.185-5 microg/mL formaldehyde ranged from 1.45 to 3.60%, indicating good reproducibility of the proposed method. The proposed method was successfully applied to the determination of formaldehyde in commercial nail polish samples and a drinking water sample.

  6. Fabricating solid carbon porous electrodes from powders

    DOEpatents

    Kaschmitter, James L.; Tran, Tri D.; Feikert, John H.; Mayer, Steven T.

    1997-01-01

    Fabrication of conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive dionization, and waste treatment. Electrodes fabricated from low surface area (<50 m.sup.2 /gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon compositives with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to be high surface area carbons, fuel cell electrodes can be produced.

  7. Fabricating solid carbon porous electrodes from powders

    DOEpatents

    Kaschmitter, J.L.; Tran, T.D.; Feikert, J.H.; Mayer, S.T.

    1997-06-10

    Fabrication is described for conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive deionization, and waste treatment. Electrodes fabricated from low surface area (<50 m{sup 2}/gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon composites with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to high surface area carbons, fuel cell electrodes can be produced. 1 fig.

  8. Preparation of Nano-Porous Activated Carbon Aerogel Using a Single-Step Activation Method for Use as High-Power EDLC Electrode in Organic Electrolyte.

    PubMed

    Kwon, Soon Hyung; Kim, Bum-Soo; Kim, Sang-Gil; Lee, Byung-Jun; Kim, Myung-Soo; Jung, Ji Chul

    2016-05-01

    Carbon aerogel was chemically activated with KOH using two different activation methods (conventional activation method and single-step activation method) to yield the nano-porous activated carbon aerogel. Both nano-porous activated carbon aerogels exhibited a better capacitive behavior than carbon aerogel in organic electrolyte. However, a drastic decrease in the specific capacitance with increasing current density was observed in the ACA_C (activated carbon aerogel prepared by a conventional activation method), which is a general tendency of carbon electrode for EDLC in organic electrolyte. Interestingly, the specific capacitance of ACA_S electrode (activated carbon aerogel prepared by a single-step activation method) decreased slowly with increasing current density and its CV curve maintained a rectangular shape well even at a high scan rate of 500 mV/s. The enhanced electrochemical performance of ACA_S at a high current density was attributed to its low ionic resistance caused by the well-developed pore structure with appropriate pore size for easy moving of organic electrolyte ion. Therefore, it can be concluded that single-step activation method could be one of the efficient methods for preparation of nano-porous activated carbon aerogel electrode for high-power EDLC in organic electrolyte. PMID:27483797

  9. Preparation of Nano-Porous Activated Carbon Aerogel Using a Single-Step Activation Method for Use as High-Power EDLC Electrode in Organic Electrolyte.

    PubMed

    Kwon, Soon Hyung; Kim, Bum-Soo; Kim, Sang-Gil; Lee, Byung-Jun; Kim, Myung-Soo; Jung, Ji Chul

    2016-05-01

    Carbon aerogel was chemically activated with KOH using two different activation methods (conventional activation method and single-step activation method) to yield the nano-porous activated carbon aerogel. Both nano-porous activated carbon aerogels exhibited a better capacitive behavior than carbon aerogel in organic electrolyte. However, a drastic decrease in the specific capacitance with increasing current density was observed in the ACA_C (activated carbon aerogel prepared by a conventional activation method), which is a general tendency of carbon electrode for EDLC in organic electrolyte. Interestingly, the specific capacitance of ACA_S electrode (activated carbon aerogel prepared by a single-step activation method) decreased slowly with increasing current density and its CV curve maintained a rectangular shape well even at a high scan rate of 500 mV/s. The enhanced electrochemical performance of ACA_S at a high current density was attributed to its low ionic resistance caused by the well-developed pore structure with appropriate pore size for easy moving of organic electrolyte ion. Therefore, it can be concluded that single-step activation method could be one of the efficient methods for preparation of nano-porous activated carbon aerogel electrode for high-power EDLC in organic electrolyte.

  10. A Novel Activated-Charcoal-Doped Multiwalled Carbon Nanotube Hybrid for Quasi-Solid-State Dye-Sensitized Solar Cell Outperforming Pt Electrode.

    PubMed

    Arbab, Alvira Ayoub; Sun, Kyung Chul; Sahito, Iftikhar Ali; Qadir, Muhammad Bilal; Choi, Yun Seon; Jeong, Sung Hoon

    2016-03-23

    Highly conductive mesoporous carbon structures based on multiwalled carbon nanotubes (MWCNTs) and activated charcoal (AC) were synthesized by an enzymatic dispersion method. The synthesized carbon configuration consists of synchronized structures of highly conductive MWCNT and porous activated charcoal morphology. The proposed carbon structure was used as counter electrode (CE) for quasi-solid-state dye-sensitized solar cells (DSSCs). The AC-doped MWCNT hybrid showed much enhanced electrocatalytic activity (ECA) toward polymer gel electrolyte and revealed a charge transfer resistance (RCT) of 0.60 Ω, demonstrating a fast electron transport mechanism. The exceptional electrocatalytic activity and high conductivity of the AC-doped MWCNT hybrid CE are associated with its synchronized features of high surface area and electronic conductivity, which produces higher interfacial reaction with the quasi-solid electrolyte. Morphological studies confirm the forms of amorphous and conductive 3D carbon structure with high density of CNT colloid. The excessive oxygen surface groups and defect-rich structure can entrap an excessive volume of quasi-solid electrolyte and locate multiple sites for iodide/triiodide catalytic reaction. The resultant D719 DSSC composed of this novel hybrid CE fabricated with polymer gel electrolyte demonstrated an efficiency of 10.05% with a high fill factor (83%), outperforming the Pt electrode. Such facile synthesis of CE together with low cost and sustainability supports the proposed DSSCs' structure to stand out as an efficient next-generation photovoltaic device. PMID:26911208

  11. The Effect of Electrode Designs Based on the Anatomical Heart Location for the Non-Contact Heart Activity Measurement.

    PubMed

    Gi, Sun Ok; Lee, Young-Jae; Koo, Hye Ran; Lee, Seung Pyo; Lee, Kang-Hwi; Kim, Kyeng-Nam; Kang, Seung-Jin; Lee, Joo Hyeon; Lee, Jeong-Whan

    2015-12-01

    This research is an extension of a previous research [1] on the different effects of sensor location that is relatively suitable for heart rate sensing. This research aimed to elucidate the causes of wide variations in heart rate measurements from the same sensor position among subjects, as observed in previous research [1], and to enhance designs of the inductive textile electrode to overcome these variations. To achieve this, this study comprised two parts: In part 1, X-ray examinations were performed to determine the cause of the wide variations noted in the findings from previous research [1], and we found that at the same sensor position, the heart activity signal differed with slight differences in the positions of the heart of each subject owing to individual differences in the anatomical heart location. In part 2, three types of dual-loop-type textile electrodes were devised to overcome variations in heart location that were confirmed in part 1 of the study. The variations with three types of sensor designs were compared with that with a single-round type of electrode design, by using computer simulation and by performing a t-test on the data obtained from the experiments. We found that the oval-oval shaped, dual-loop-type textile electrode was more suitable than the single round type for determining morphological characteristics as well as for measuring appropriate heart activity signals. Based on these results, the oval-oval, dual-loop-type was a better inductive textile electrode that more effectively overcomes individual differences in heart location during heart activity sensing based on the magnetic-induced conductivity principle.

  12. Remedial activities effectiveness verification in tailing areas.

    PubMed

    Kluson, J; Thinova, L; Neznal, M; Svoboda, T

    2015-06-01

    The complex radiological study of the basin of sludge from the uranium ore mining and preprocessing was done. Air kerma rates (including its spectral analysis) at the reference height of 1 m above ground over the whole area were measured and radiation fields mapped during two measuring campaigns (years 2009 and 2014). K, U and Th concentrations in sludge and concentrations in depth profiles (including radon concentration and radon exhalation rates) in selected points were determined using gamma spectrometry for in situ as well as laboratory samples measurement. Results were used for the analysis, design evaluation and verification of the efficiency of the remediation measures. Efficiency of the sludge basin covering by the inert material was modelled using MicroShield code.

  13. Analysis of High-Perimeter Planar Electrodes for Efficient Neural Stimulation

    PubMed Central

    Wei, Xuefeng F.; Grill, Warren M.

    2009-01-01

    Planar electrodes are used in epidural spinal cord stimulation and epidural cortical stimulation. Electrode geometry is one approach to increase the efficiency of neural stimulation and reduce the power required to produce the level of activation required for clinical efficacy. Our hypothesis was that electrode geometries that increased the variation of current density on the electrode surface would increase stimulation efficiency. High-perimeter planar disk electrodes were designed with sinuous (serpentine) variation in the perimeter. Prototypes were fabricated that had equal surface areas but perimeters equal to two, three or four times the perimeter of a circular disk electrode. The interface impedance of high-perimeter prototype electrodes measured in vitro did not differ significantly from that of the circular electrode over a wide range of frequencies. Finite element models indicated that the variation of current density was significantly higher on the surface of the high-perimeter electrodes. We quantified activation of 100 model axons randomly positioned around the electrodes. Input–output curves of the percentage of axons activated as a function of stimulation intensity indicated that the stimulation efficiency was dependent on the distance of the axons from the electrode. The high-perimeter planar electrodes were more efficient at activating axons a certain distance away from the electrode surface. These results demonstrate the feasibility of increasing stimulation efficiency through the design of novel electrode geometries. PMID:19936312

  14. Microphonics in biopotential measurements with capacitive electrodes.

    PubMed

    Luna-Lozano, Pablo S; Pallas-Areny, Ramon

    2010-01-01

    Biopotential measurements with capacitive electrodes do not need any direct contact between electrode and skin, which saves the time devoted to expose and prepare the contact area when measuring with conductive electrodes. However, mechanical vibrations resulting from physiological functions such as respiration and cardiac contraction can change the capacitance of the electrode and affect the recordings. This transformation of mechanical vibrations into undesired electric signals is termed microphonics. We have evaluated microphonics in capacitive ECG recordings obtained from a dressed subject seated on a common chair with electrodes placed on the front side of the backrest of the chair. Depending on the softness of the backrest, the recordings may be clearly affected by the displacement of the thorax back wall due to the respiration and to the heart's mechanical activity.

  15. Reductive dehalogenation of disinfection byproducts by an activated carbon-based electrode system.

    PubMed

    Li, Yuanqing; Kemper, Jerome M; Datuin, Gwen; Akey, Ann; Mitch, William A; Luthy, Richard G

    2016-07-01

    Low molecular weight, uncharged, halogenated disinfection byproducts (DBPs) are poorly removed by the reverse osmosis and advanced oxidation process treatment units often applied for further treatment of municipal wastewater for potable reuse. Granular activated carbon (GAC) treatment effectively sorbed 22 halogenated DBPs. Conversion of the GAC to a cathode within an electrolysis cell resulted in significant degradation of the 22 halogenated DBPs by reductive electrolysis at -1 V vs. Standard Hydrogen Electrode (SHE). The lowest removal efficiency over 6 h electrolysis was for trichloromethane (chloroform; 47%) but removal efficiencies were >90% for 13 of the 22 DBPs. In all cases, DBP degradation was higher than in electrolysis-free controls, and degradation was verified by the production of halides as reduction products. Activated carbons and charcoal were more effective than graphite for electrolysis, with graphite featuring poor sorption for the DBPs. A subset of halogenated DBPs (e.g., haloacetonitriles, chloropicrin) were degraded upon sorption to the GAC, even without electrolysis. Using chloropicrin as a model, experiments indicated that this loss was attributable to the partial reduction of sorbed chloropicrin from reducing equivalents in the GAC. Reducing equivalents depleted by these reactions could be restored when the GAC was treated by reductive electrolysis. GAC treatment of an advanced treatment train effluent for potable reuse effectively reduced the concentrations of chloroform, bromodichloromethane and dichloroacetonitrile measured in the column influent to below the method detection limits. Treatment of the GAC by reductive electrolysis at -1 V vs. SHE over 12 h resulted in significant degradation of the chloroform (63%), bromodichloromethane (96%) and dichloroacetonitrile (99%) accumulated on the GAC. The results suggest that DBPs in advanced treatment train effluents could be captured and degraded continuously by reductive electrolysis

  16. Carbon additives for electrical double layer capacitor electrodes

    NASA Astrophysics Data System (ADS)

    Weingarth, D.; Cericola, D.; Mornaghini, F. C. F.; Hucke, T.; Kötz, R.

    2014-11-01

    Electrochemical double layer capacitors (EDLCs) are inherently high power devices when compared to rechargeable batteries. While capacitance and energy storage ability are mainly increased by optimizing the electrode active material or the electrolyte, the power capability could be improved by including conductive additives in the electrode formulations. This publication deals with the use of four different carbon additives - two carbon blacks and two graphites - in standard activated carbon based EDLC electrodes. The investigations include: (i) physical characterization of carbon powder mixtures such as surface area, press density, and electrical resistivity measurements, and (ii), electrochemical characterization via impedance spectroscopy and cyclic voltammetry of full cells made with electrodes containing 5 wt.% of carbon additive and compared to cells made with pure activated carbon electrodes in organic electrolyte. Improved cell performance was observed in both impedance and cyclic voltammetry responses. The results are discussed considering the main characteristics of the different carbon additives, and important considerations about electrode structure and processability are drawn.

  17. Compilation of historical information of 300 Area facilities and activities

    SciTech Connect

    Gerber, M.S.

    1992-12-01

    This document is a compilation of historical information of the 300 Area activities and facilities since the beginning. The 300 Area is shown as it looked in 1945, and also a more recent (1985) look at the 300 Area is provided.

  18. High power density supercapacitors based on the carbon dioxide activated D-glucose derived carbon electrodes and 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid

    NASA Astrophysics Data System (ADS)

    Tooming, T.; Thomberg, T.; Kurig, H.; Jänes, A.; Lust, E.

    2015-04-01

    The electrochemical impedance spectroscopy, cyclic voltammetry, constant current charge/discharge and the constant power discharge methods have been applied to establish the electrochemical characteristics of the electrical double-layer capacitor (EDLC) consisting of the 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4) ionic liquid and microporous carbon electrodes. Microporous carbon material used for preparation of electrodes (GDAC - glucose derived activated carbon), has been synthesised from D-(+)-glucose by the hydrothermal carbonization method, including subsequent pyrolysis, carbon dioxide activation and surface cleaning step with hydrogen. The Brunauer-Emmett-Teller specific surface area (SBET = 1540 m2 g-1), specific surface area calculated using the non-local density functional theory in conjunction with stable adsorption integral equation using splines (SAIEUS) model SSAIEUS = 1820 m2 g-1, micropore surface area (Smicro = 1535 m2 g-1), total pore volume (Vtot = 0.695 cm3 g-1) and the pore size distribution were obtained from the N2 sorption data. The SBET, Smicro and Vtot values have been correlated with the electrochemical characteristics strongly dependent on the carbon activation conditions applied for EDLCs. Wide region of ideal polarizability (ΔV ≤ 3.2 V), very short charging/discharging time constant (2.7 s), and high specific series capacitance (158 F g-1) have been calculated for the optimized carbon material GDAC-10h (activation of GDAC with CO2 during 10 h) in EMImBF4 demonstrating that this system can be used for completing the EDLC with high energy- and power densities.

  19. Excimer laser deinsulation of Parylene-C on iridium for use in an activated iridium oxide film-coated Utah electrode array

    PubMed Central

    Yoo, Je-Min; Negi, Sandeep; Tathireddy, Prashant; Solzbacher, Florian; Song, Jong-In; Rieth, Loren W.

    2013-01-01

    Implantable microelectrodes provide a measure to electrically stimulate neurons in the brain and spinal cord and record their electrophysiological activity. A material with a high charge capacity such as activated or sputter-deposited iridium oxide film (AIROF or SIROF) is used as an interface. The Utah electrode array (UEA) uses SIROF for its interface material with neural tissue and oxygen plasma etching (OPE) with an aluminium foil mask to expose the active area, where the interface between the electrode and neural tissue is formed. However, deinsulation of Parylene-C using OPE has limitations, including the lack of uniformity in the exposed area and reproducibility. While the deinsulation of Parylene-C using an excimer laser is proven to be an alternative for overcoming the limitations, the iridium oxide (IrOx) suffers from fracture when high laser fluence (>1000 mJ/cm2) is used. Iridium (Ir), which has a much higher fracture resistance than IrOx, can be deposited before excimer laser deinsulation and then the exposed Ir film area can be activated by electrochemical treatment to acquire the AIROF. Characterisation of the laser-ablated Ir film and AIROF by surface analysis (X-ray photoelectron spectroscopy, scanning electron microscope, and atomic force microscope) and electrochemical analysis (electrochemical impedance spectroscopy, and cyclic voltammetry) shows that the damage on the Ir film induced by laser irradiation is significantly less than that on SIROF, and the AIROF has a high charge storage capacity. The results show the potential of the laser deinsulation technique for use in high performance AIROF-coated UEA fabrication. PMID:23458659

  20. Geometrical modulation transfer function for different pixel active area shapes

    NASA Astrophysics Data System (ADS)

    Yadid-Pecht, Orly

    2000-04-01

    In this work we consider the effect of the pixel active area geometrical shape on the modulation transfer function (MTF) of an image sensor. When designing a CMOS Active Pixel Sensor, or a CCD or CID sensor for this matter, the active area of the pixel would have a certain geometrical shape which might not cover the whole pixel area. To improve the device performance, it is important to understand the effect this has on the pixel sensitivity and on the resulting MTF. We perform a theoretical analysis of the MTF for the active area shape and derive explicit formulas for the transfer function for pixel arrays with a square, a rectangular and an L shaped active area (most commonly used), and generalize for any connected active area shape. Preliminary experimental results of subpixel scanning sensitivity maps and the corresponding MTFs have also bee obtained, which confirm the theoretical derivations. Both the simulation results and the MTF calculated from the point spread function measurements of the actual pixel arrays show that the active area shape contributes significantly to the behavior of the overall MTF. The results also indicate that for any potential pixel active area shape, the effect of its diversion from the square pixel could be calculated, so that tradeoff between the conflicting requirements, such as SNR and MTF, could be compared per each pixel design for better overall sensor performance.

  1. A Graphene Composite Material with Single Cobalt Active Sites: A Highly Efficient Counter Electrode for Dye-Sensitized Solar Cells.

    PubMed

    Cui, Xiaoju; Xiao, Jianping; Wu, Yihui; Du, Peipei; Si, Rui; Yang, Huaixin; Tian, Huanfang; Li, Jianqi; Zhang, Wen-Hua; Deng, Dehui; Bao, Xinhe

    2016-06-01

    The design of catalysts that are both highly active and stable is always challenging. Herein, we report that the incorporation of single metal active sites attached to the nitrogen atoms in the basal plane of graphene leads to composite materials with superior activity and stability when used as counter electrodes in dye-sensitized solar cells (DSSCs). A series of composite materials based on different metals (Mn, Fe, Co, Ni, and Cu) were synthesized and characterized. Electrochemical measurements revealed that CoN4 /GN is a highly active and stable counter electrode for the interconversion of the redox couple I(-) /I3 (-) . DFT calculations revealed that the superior properties of CoN4 /GN are due to the appropriate adsorption energy of iodine on the confined Co sites, leading to a good balance between adsorption and desorption processes. Its superior electrochemical performance was further confirmed by fabricating DSSCs with CoN4  /GN electrodes, which displayed a better power conversion efficiency than the Pt counterpart. PMID:27089044

  2. A Graphene Composite Material with Single Cobalt Active Sites: A Highly Efficient Counter Electrode for Dye-Sensitized Solar Cells.

    PubMed

    Cui, Xiaoju; Xiao, Jianping; Wu, Yihui; Du, Peipei; Si, Rui; Yang, Huaixin; Tian, Huanfang; Li, Jianqi; Zhang, Wen-Hua; Deng, Dehui; Bao, Xinhe

    2016-06-01

    The design of catalysts that are both highly active and stable is always challenging. Herein, we report that the incorporation of single metal active sites attached to the nitrogen atoms in the basal plane of graphene leads to composite materials with superior activity and stability when used as counter electrodes in dye-sensitized solar cells (DSSCs). A series of composite materials based on different metals (Mn, Fe, Co, Ni, and Cu) were synthesized and characterized. Electrochemical measurements revealed that CoN4 /GN is a highly active and stable counter electrode for the interconversion of the redox couple I(-) /I3 (-) . DFT calculations revealed that the superior properties of CoN4 /GN are due to the appropriate adsorption energy of iodine on the confined Co sites, leading to a good balance between adsorption and desorption processes. Its superior electrochemical performance was further confirmed by fabricating DSSCs with CoN4  /GN electrodes, which displayed a better power conversion efficiency than the Pt counterpart.

  3. EEG acquisition system based on active electrodes with common-mode interference suppression by Driving Right Leg circuit.

    PubMed

    Guermandi, Marco; Bigucci, Alessandro; Franchi Scarselli, Eleonora; Guerrieri, Roberto

    2015-01-01

    We present a system for the acquisition of EEG signals based on active electrodes and implementing a Driving Right Leg circuit (DgRL). DgRL allows for single-ended amplification and analog-to-digital conversion, still guaranteeing a common mode rejection in excess of 110 dB. This allows the system to acquire high-quality EEG signals essentially removing network interference for both wet and dry-contact electrodes. The front-end amplification stage is integrated on the electrode, minimizing the system's sensitivity to electrode contact quality, cable movement and common mode interference. The A/D conversion stage can be either integrated in the remote back-end or placed on the head as well, allowing for an all-digital communication to the back-end. Noise integrated in the band from 0.5 to 100 Hz is comprised between 0.62 and 1.3 μV, depending on the configuration. Current consumption for the amplification and A/D conversion of one channel is 390 μA. Thanks to its low noise, the high level of interference suppression and its quick setup capabilities, the system is particularly suitable for use outside clinical environments, such as in home care, brain-computer interfaces or consumer-oriented applications.

  4. Minimally invasive endovascular stent-electrode array for high-fidelity, chronic recordings of cortical neural activity.

    PubMed

    Oxley, Thomas J; Opie, Nicholas L; John, Sam E; Rind, Gil S; Ronayne, Stephen M; Wheeler, Tracey L; Judy, Jack W; McDonald, Alan J; Dornom, Anthony; Lovell, Timothy J H; Steward, Christopher; Garrett, David J; Moffat, Bradford A; Lui, Elaine H; Yassi, Nawaf; Campbell, Bruce C V; Wong, Yan T; Fox, Kate E; Nurse, Ewan S; Bennett, Iwan E; Bauquier, Sébastien H; Liyanage, Kishan A; van der Nagel, Nicole R; Perucca, Piero; Ahnood, Arman; Gill, Katherine P; Yan, Bernard; Churilov, Leonid; French, Christopher R; Desmond, Patricia M; Horne, Malcolm K; Kiers, Lynette; Prawer, Steven; Davis, Stephen M; Burkitt, Anthony N; Mitchell, Peter J; Grayden, David B; May, Clive N; O'Brien, Terence J

    2016-03-01

    High-fidelity intracranial electrode arrays for recording and stimulating brain activity have facilitated major advances in the treatment of neurological conditions over the past decade. Traditional arrays require direct implantation into the brain via open craniotomy, which can lead to inflammatory tissue responses, necessitating development of minimally invasive approaches that avoid brain trauma. Here we demonstrate the feasibility of chronically recording brain activity from within a vein using a passive stent-electrode recording array (stentrode). We achieved implantation into a superficial cortical vein overlying the motor cortex via catheter angiography and demonstrate neural recordings in freely moving sheep for up to 190 d. Spectral content and bandwidth of vascular electrocorticography were comparable to those of recordings from epidural surface arrays. Venous internal lumen patency was maintained for the duration of implantation. Stentrodes may have wide ranging applications as a neural interface for treatment of a range of neurological conditions. PMID:26854476

  5. Activation of premotor vocal areas during musical discrimination.

    PubMed

    Brown, Steven; Martinez, Michael J

    2007-02-01

    Two same/different discrimination tasks were performed by amateur-musician subjects in this functional magnetic resonance imaging study: Melody Discrimination and Harmony Discrimination. Both tasks led to activations not only in classic working memory areas--such as the cingulate gyrus and dorsolateral prefrontal cortex--but in a series of premotor areas involved in vocal-motor planning and production, namely the somatotopic mouth region of the primary and lateral premotor cortices, Broca's area, the supplementary motor area, and the anterior insula. A perceptual control task involving passive listening alone to monophonic melodies led to activations exclusively in temporal-lobe auditory areas. These results show that, compared to passive listening tasks, discrimination tasks elicit activation in vocal-motor planning areas. PMID:17027134

  6. Negative electrode composition

    DOEpatents

    Kaun, Thomas D.; Chilenskas, Albert A.

    1982-01-01

    A secondary electrochemical cell and a negative electrode composition for use therewith comprising a positive electrode containing an active material of a chalcogen or a transiton metal chalcogenide, a negative electrode containing a lithium-aluminum alloy and an amount of a ternary alloy sufficient to provide at least about 5 percent overcharge capacity relative to a negative electrode solely of the lithium-aluminum alloy, the ternary alloy comprising lithium, aluminum, and iron or cobalt, and an electrolyte containing lithium ions in contact with both of the positive and the negative electrodes. The ternary alloy is present in the electrode in the range of from about 5 percent to about 50 percent by weight of the electrode composition and may include lithium-aluminum-nickel alloy in combination with either the ternary iron or cobalt alloys. A plurality of series connected cells having overcharge capacity can be equalized on the discharge side without expensive electrical equipment.

  7. Raman spectroscopy for in-situ monitoring of electrode processes

    SciTech Connect

    Varma, R; Cook, G M; Yao, N P

    1982-04-01

    The theoretical and experimental applications of Raman spectroscopic techniques to the study of battery electrode processes are described. In particular, the potential of Raman spectroscopy as an in-situ analytical tool for the characterization of the structure and composition of electrode surface layers at electrode-electrolyte interfaces during electrolysis is examined. It is anticipated that this understanding of the battery electrode processes will be helpful in designing battery active material with improved performance. The applications of Raman spectroscopy to the in-situ study of electrode processes has been demonstrated in a few selected areas, including: (1) the anodic corrosion of lead in sulfuric acid and (2) the anodization and sulfation of tetrabasicleadsulfate in sulfuric acid. Preliminary results on the anodization of iron and on the electrochemical behavior of nickel positive-electrode active material in potassium hydroxide electrolytes are presented in the Appendix.

  8. Study of Influence of Electrode Geometry on Impedance Spectroscopy

    SciTech Connect

    Ahmed, Riaz; Reifsnider, Kenneth L

    2011-01-01

    Electrochemical Impedance Spectroscopy (EIS) is a powerful and proven tool for analyzing AC impedance response. A conventional three electrode EIS method was used to perform the investigation in the present study. Saturated potassium chloride solution was used as the electrolyte and three different material rods were used as working electrodes. Different configurations of electrode area were exposed to the electrolyte as an active area to investigate electrode geometry effects. Counter to working electrode distance was also altered while keeping the working electrode effective area constant to explore the AC response dependence on the variation of ion travel distance. Some controlled experiments were done to validate the experimental setup and to provide a control condition for comparison with experimental results. A frequency range of 100 mHz to 1 MHz was used for all experiments. In our analysis, we have found a noteworthy influence of electrode geometry on AC impedance response. For all electrodes, impedance decreases with the increase of effective area of the electrolyte. High frequency impedance is not as dependent on geometry as low frequency response. The observed phase shift angle drops in the high frequency region with increased working electrode area, whereas at low frequency the reverse is true. Resistance and capacitive reactance both decrease with an increase of area, but resistance response is more pronounce than reactance. For lower frequencies, small changes in working area produce very distinctive EIS variations. Electrode material as well as geometry was systematically varied in the present study. From these and other studies, we hope to develop a fundamental foundation for understanding specific changes in local geometry in fuel cell (and other) electrodes as a method of designing local morphology for specific performance.

  9. Evolution of Surface Motor Activation Zones in Hemiplegic Patients During 20 Sessions of FES Therapy with Multi-pad Electrodes

    PubMed Central

    Malešević, Jovana; Štrbac, Matija; Isaković, Milica; Kojić, Vladimir; Konstantinović, Ljubica; Vidaković, Aleksandra; Dedijer, Suzana; Kostić, Miloš; Keller, Thierry

    2016-01-01

    The purpose of this study was to examine surface motor activation zones for wrist, fingers and thumb extension movements and their temporal change during 20 therapy sessions using advanced multi-pad functional electrical stimulation system. Results from four hemiplegic patients indicate that certain zones have higher probability of eliciting each of the target movements. However, mutual overlap and variations of the zones are present not just between the subjects, but also on the intrasubject level, reflected through these session to session transformations of the selected virtual electrodes. The obtained results could be used as a priori knowledge for semi-automated optimization algorithm and could shorten the time required for calibration of the multi-pad electrode. PMID:27478575

  10. In Situ Activating Ubiquitous Rust towards Low-Cost, Efficient, Free-Standing, and Recoverable Oxygen Evolution Electrodes.

    PubMed

    Zhong, Haixia; Wang, Jun; Meng, Fanlu; Zhang, Xinbo

    2016-08-16

    Developing effective ways to recycle rusted stainless steel and to promote the sluggish oxygen evolution reaction (OER), associated with water splitting and metal-air batteries, is important for a resource-sustainable and environment-friendly society. Herein, we propose a strategy to enable rusted stainless steel plate to be used as an abundant and low-cost OER catalyst, wherein a hydrothermal combined in situ electrochemical oxidation-reduction cycle (EORC) method is developed to mimic and expedite the corrosion process, and thus activate stainless steel into free-standing OER electrodes. Benefiting from the plentiful electrolyte-accessible Fe/(Ni) oxyhydroxides, high conductivity and mechanical stability, this electrode exhibits remarkable OER performances including low overpotential, fast kinetics, and long-term durability. The slight degradation in current after long-term use can be repaired immediately in situ by an EORC. PMID:27436171

  11. In Situ Activating Ubiquitous Rust towards Low-Cost, Efficient, Free-Standing, and Recoverable Oxygen Evolution Electrodes.

    PubMed

    Zhong, Haixia; Wang, Jun; Meng, Fanlu; Zhang, Xinbo

    2016-08-16

    Developing effective ways to recycle rusted stainless steel and to promote the sluggish oxygen evolution reaction (OER), associated with water splitting and metal-air batteries, is important for a resource-sustainable and environment-friendly society. Herein, we propose a strategy to enable rusted stainless steel plate to be used as an abundant and low-cost OER catalyst, wherein a hydrothermal combined in situ electrochemical oxidation-reduction cycle (EORC) method is developed to mimic and expedite the corrosion process, and thus activate stainless steel into free-standing OER electrodes. Benefiting from the plentiful electrolyte-accessible Fe/(Ni) oxyhydroxides, high conductivity and mechanical stability, this electrode exhibits remarkable OER performances including low overpotential, fast kinetics, and long-term durability. The slight degradation in current after long-term use can be repaired immediately in situ by an EORC.

  12. Binderless Composite Electrode Monolith from Carbon Nanotube and Biomass Carbon Activated by KOH and CO2 Gas for Supercapacitor

    NASA Astrophysics Data System (ADS)

    Farma, R.; Deraman, M.; Omar, R.; Awitdrus, Ishak, M. M.; Taer, E.; Talib, I. A.

    2011-12-01

    This paper presents a method to improve the performance of supercapacitors fabricated using binderless composite electrode monolith (BCMs) from self-adhesive carbon grains (SACG) of fibers from oil palm empty fruit bunches. The BCMs were prepared from green monoliths (GMs) contain SACG, SACG treated with KOH (5 % by weight) and SACG mixed with carbon nanotubes (CNTs) (5% by weight) and KOH (5 % by weight), respectively. These GMs were carbonized at 800 ° C under N2 environment and activated by CO2 gas at 800 ° C for 1 hour. It was found that addition of KOH and CNTs produced BCMs with higher specific capacitance and smaller internal resistance, respectively. It was also found that supercapacitor cells using these BCMs as electrodes exhibited a better specific energy and specific power. The physical properties of BCMs (density, electrical conductivity, porosity, interlayer spacing, crystallite dimension and microstructure) were affected by the addition of KOH and CNTs.

  13. Activity coefficients of aqueous potassium chloride measured with a potassium-sensitive glass electrode

    USGS Publications Warehouse

    Hostetler, P.B.; Truesdell, A.H.; Christ, C.L.

    1967-01-01

    Values of ????KCI temperature and molality ranges of 10?? to 50??C and 0.01 to 1.0 molal were determined with an electromotive-force cell: potasslum-sensitive glass electrode, KCl (molality), Ag-AgCl. A more satisfactory method than is commonly employed was devised for treating the experimental measurements of potential.

  14. Solid-state supercapacitors with rationally designed heterogeneous electrodes fabricated by large area spray processing for wearable energy storage applications

    PubMed Central

    Huang, Chun; Zhang, Jin; Young, Neil P.; Snaith, Henry J.; Grant, Patrick S.

    2016-01-01

    Supercapacitors are in demand for short-term electrical charge and discharge applications. Unlike conventional supercapacitors, solid-state versions have no liquid electrolyte and do not require robust, rigid packaging for containment. Consequently they can be thinner, lighter and more flexible. However, solid-state supercapacitors suffer from lower power density and where new materials have been developed to improve performance, there remains a gap between promising laboratory results that usually require nano-structured materials and fine-scale processing approaches, and current manufacturing technology that operates at large scale. We demonstrate a new, scalable capability to produce discrete, multi-layered electrodes with a different material and/or morphology in each layer, and where each layer plays a different, critical role in enhancing the dynamics of charge/discharge. This layered structure allows efficient utilisation of each material and enables conservative use of hard-to-obtain materials. The layered electrode shows amongst the highest combinations of energy and power densities for solid-state supercapacitors. Our functional design and spray manufacturing approach to heterogeneous electrodes provide a new way forward for improved energy storage devices. PMID:27161379

  15. Solid-state supercapacitors with rationally designed heterogeneous electrodes fabricated by large area spray processing for wearable energy storage applications

    NASA Astrophysics Data System (ADS)

    Huang, Chun; Zhang, Jin; Young, Neil P.; Snaith, Henry J.; Grant, Patrick S.

    2016-05-01

    Supercapacitors are in demand for short-term electrical charge and discharge applications. Unlike conventional supercapacitors, solid-state versions have no liquid electrolyte and do not require robust, rigid packaging for containment. Consequently they can be thinner, lighter and more flexible. However, solid-state supercapacitors suffer from lower power density and where new materials have been developed to improve performance, there remains a gap between promising laboratory results that usually require nano-structured materials and fine-scale processing approaches, and current manufacturing technology that operates at large scale. We demonstrate a new, scalable capability to produce discrete, multi-layered electrodes with a different material and/or morphology in each layer, and where each layer plays a different, critical role in enhancing the dynamics of charge/discharge. This layered structure allows efficient utilisation of each material and enables conservative use of hard-to-obtain materials. The layered electrode shows amongst the highest combinations of energy and power densities for solid-state supercapacitors. Our functional design and spray manufacturing approach to heterogeneous electrodes provide a new way forward for improved energy storage devices.

  16. Solid-state supercapacitors with rationally designed heterogeneous electrodes fabricated by large area spray processing for wearable energy storage applications.

    PubMed

    Huang, Chun; Zhang, Jin; Young, Neil P; Snaith, Henry J; Grant, Patrick S

    2016-01-01

    Supercapacitors are in demand for short-term electrical charge and discharge applications. Unlike conventional supercapacitors, solid-state versions have no liquid electrolyte and do not require robust, rigid packaging for containment. Consequently they can be thinner, lighter and more flexible. However, solid-state supercapacitors suffer from lower power density and where new materials have been developed to improve performance, there remains a gap between promising laboratory results that usually require nano-structured materials and fine-scale processing approaches, and current manufacturing technology that operates at large scale. We demonstrate a new, scalable capability to produce discrete, multi-layered electrodes with a different material and/or morphology in each layer, and where each layer plays a different, critical role in enhancing the dynamics of charge/discharge. This layered structure allows efficient utilisation of each material and enables conservative use of hard-to-obtain materials. The layered electrode shows amongst the highest combinations of energy and power densities for solid-state supercapacitors. Our functional design and spray manufacturing approach to heterogeneous electrodes provide a new way forward for improved energy storage devices. PMID:27161379

  17. Highly Enhanced Electromechanical Stability of Large-Area Graphene with Increased Interfacial Adhesion Energy by Electrothermal-Direct Transfer for Transparent Electrodes.

    PubMed

    Kim, Jangheon; Kim, Gi Gyu; Kim, Soohyun; Jung, Wonsuk

    2016-09-01

    Graphene, a two-dimensional sheet of carbon atoms in a hexagonal lattice structure, has been extensively investigated for research and industrial applications as a promising material with outstanding electrical, mechanical, and chemical properties. To fabricate graphene-based devices, graphene transfer to the target substrate with a clean and minimally defective surface is the first step. However, graphene transfer technologies require improvement in terms of uniform transfer with a clean, nonfolded and nontorn area, amount of defects, and electromechanical reliability of the transferred graphene. More specifically, uniform transfer of a large area is a key challenge when graphene is repetitively transferred onto pretransferred layers because the adhesion energy between graphene layers is too low to ensure uniform transfer, although uniform multilayers of graphene have exhibited enhanced electrical and optical properties. In this work, we developed a newly suggested electrothermal-direct (ETD) transfer method for large-area high quality monolayer graphene with less defects and an absence of folding or tearing of the area at the surface. This method delivers uniform multilayer transfer of graphene by repetitive monolayer transfer steps based on high adhesion energy between graphene layers and the target substrate. To investigate the highly enhanced electromechanical stability, we conducted mechanical elastic bending experiments and reliability tests in a highly humid environment. This ETD-transferred graphene is expected to replace commercial transparent electrodes with ETD graphene-based transparent electrodes and devices such as a touch panels with outstanding electromechanical stability. PMID:27564120

  18. Optimization of return electrodes in neurostimulating arrays

    NASA Astrophysics Data System (ADS)

    Flores, Thomas; Goetz, Georges; Lei, Xin; Palanker, Daniel

    2016-06-01

    Objective. High resolution visual prostheses require dense stimulating arrays with localized inputs of individual electrodes. We study the electric field produced by multielectrode arrays in electrolyte to determine an optimal configuration of return electrodes and activation sequence. Approach. To determine the boundary conditions for computation of the electric field in electrolyte, we assessed current dynamics using an equivalent circuit of a multielectrode array with interleaved return electrodes. The electric field modeled with two different boundary conditions derived from the equivalent circuit was then compared to measurements of electric potential in electrolyte. To assess the effect of return electrode configuration on retinal stimulation, we transformed the computed electric fields into retinal response using a model of neural network-mediated stimulation. Main results. Electric currents at the capacitive electrode-electrolyte interface redistribute over time, so that boundary conditions transition from equipotential surfaces at the beginning of the pulse to uniform current density in steady state. Experimental measurements confirmed that, in steady state, the boundary condition corresponds to a uniform current density on electrode surfaces. Arrays with local return electrodes exhibit improved field confinement and can elicit stronger network-mediated retinal response compared to those with a common remote return. Connecting local return electrodes enhances the field penetration depth and allows reducing the return electrode area. Sequential activation of the pixels in large monopolar arrays reduces electrical cross-talk and improves the contrast in pattern stimulation. Significance. Accurate modeling of multielectrode arrays helps optimize the electrode configuration to maximize the spatial resolution, contrast and dynamic range of retinal prostheses.

  19. Probing the Role of Medication, DBS Electrode Position, and Antidromic Activation on Impulsivity Using a Computational Model of Basal Ganglia.

    PubMed

    Mandali, Alekhya; Chakravarthy, V Srinivasa

    2016-01-01

    Everyday, we encounter situations where available choices are nearly equally rewarding (high conflict) calling for some tough decision making. Experimental recordings showed that the activity of Sub Thalamic Nucleus (STN) increases during such situations providing the extra time needed to make the right decision, teasing apart the most rewarding choice from the runner up closely trailing behind. This prolonged deliberation necessary for decision making under high conflict was absent in Parkinson's disease (PD) patients who underwent Deep Brain Stimulation (DBS) surgery of STN. In an attempt to understand the underlying cause of such adverse response, we built a 2D spiking network model (50 × 50 lattice) of Basal ganglia incorporating the key nuclei. Using the model we studied the Probabilistic learning task (PLT) in untreated, treated (L-Dopa and Dopamine Agonist) and STN-DBS PD conditions. Based on the experimental observation that dopaminergic activity is analogous to temporal difference (TD) and induces cortico-striatal plasticity, we introduced learning in the cortico-striatal weights. The results show that healthy and untreated conditions of PD model were able to more or less equally select (avoid) the rewarding (punitive) choice, a behavior that was absent in treated PD condition. The time taken to select a choice in high conflict trials was high in normal condition, which is in agreement with experimental results. The treated PD (Dopamine Agonist) patients made impulsive decisions (small reaction time) which in turn led to poor performance. The underlying cause of the observed impulsivity in DBS patients was studied in the model by (1) varying the electrode position within STN, (2) causing antidromic activation of GPe neurons. The effect of electrode position on reaction time was analyzed by studying the activity of STN neurons where, a decrease in STN neural activity was observed for certain electrode positions. We also observed that a higher antidromic

  20. Probing the Role of Medication, DBS Electrode Position, and Antidromic Activation on Impulsivity Using a Computational Model of Basal Ganglia

    PubMed Central

    Mandali, Alekhya; Chakravarthy, V. Srinivasa

    2016-01-01

    Everyday, we encounter situations where available choices are nearly equally rewarding (high conflict) calling for some tough decision making. Experimental recordings showed that the activity of Sub Thalamic Nucleus (STN) increases during such situations providing the extra time needed to make the right decision, teasing apart the most rewarding choice from the runner up closely trailing behind. This prolonged deliberation necessary for decision making under high conflict was absent in Parkinson's disease (PD) patients who underwent Deep Brain Stimulation (DBS) surgery of STN. In an attempt to understand the underlying cause of such adverse response, we built a 2D spiking network model (50 × 50 lattice) of Basal ganglia incorporating the key nuclei. Using the model we studied the Probabilistic learning task (PLT) in untreated, treated (L-Dopa and Dopamine Agonist) and STN-DBS PD conditions. Based on the experimental observation that dopaminergic activity is analogous to temporal difference (TD) and induces cortico-striatal plasticity, we introduced learning in the cortico-striatal weights. The results show that healthy and untreated conditions of PD model were able to more or less equally select (avoid) the rewarding (punitive) choice, a behavior that was absent in treated PD condition. The time taken to select a choice in high conflict trials was high in normal condition, which is in agreement with experimental results. The treated PD (Dopamine Agonist) patients made impulsive decisions (small reaction time) which in turn led to poor performance. The underlying cause of the observed impulsivity in DBS patients was studied in the model by (1) varying the electrode position within STN, (2) causing antidromic activation of GPe neurons. The effect of electrode position on reaction time was analyzed by studying the activity of STN neurons where, a decrease in STN neural activity was observed for certain electrode positions. We also observed that a higher antidromic

  1. Probing the Role of Medication, DBS Electrode Position, and Antidromic Activation on Impulsivity Using a Computational Model of Basal Ganglia.

    PubMed

    Mandali, Alekhya; Chakravarthy, V Srinivasa

    2016-01-01

    Everyday, we encounter situations where available choices are nearly equally rewarding (high conflict) calling for some tough decision making. Experimental recordings showed that the activity of Sub Thalamic Nucleus (STN) increases during such situations providing the extra time needed to make the right decision, teasing apart the most rewarding choice from the runner up closely trailing behind. This prolonged deliberation necessary for decision making under high conflict was absent in Parkinson's disease (PD) patients who underwent Deep Brain Stimulation (DBS) surgery of STN. In an attempt to understand the underlying cause of such adverse response, we built a 2D spiking network model (50 × 50 lattice) of Basal ganglia incorporating the key nuclei. Using the model we studied the Probabilistic learning task (PLT) in untreated, treated (L-Dopa and Dopamine Agonist) and STN-DBS PD conditions. Based on the experimental observation that dopaminergic activity is analogous to temporal difference (TD) and induces cortico-striatal plasticity, we introduced learning in the cortico-striatal weights. The results show that healthy and untreated conditions of PD model were able to more or less equally select (avoid) the rewarding (punitive) choice, a behavior that was absent in treated PD condition. The time taken to select a choice in high conflict trials was high in normal condition, which is in agreement with experimental results. The treated PD (Dopamine Agonist) patients made impulsive decisions (small reaction time) which in turn led to poor performance. The underlying cause of the observed impulsivity in DBS patients was studied in the model by (1) varying the electrode position within STN, (2) causing antidromic activation of GPe neurons. The effect of electrode position on reaction time was analyzed by studying the activity of STN neurons where, a decrease in STN neural activity was observed for certain electrode positions. We also observed that a higher antidromic

  2. Probing the Role of Medication, DBS Electrode Position, and Antidromic Activation on Impulsivity Using a Computational Model of Basal Ganglia

    PubMed Central

    Mandali, Alekhya; Chakravarthy, V. Srinivasa

    2016-01-01

    Everyday, we encounter situations where available choices are nearly equally rewarding (high conflict) calling for some tough decision making. Experimental recordings showed that the activity of Sub Thalamic Nucleus (STN) increases during such situations providing the extra time needed to make the right decision, teasing apart the most rewarding choice from the runner up closely trailing behind. This prolonged deliberation necessary for decision making under high conflict was absent in Parkinson's disease (PD) patients who underwent Deep Brain Stimulation (DBS) surgery of STN. In an attempt to understand the underlying cause of such adverse response, we built a 2D spiking network model (50 × 50 lattice) of Basal ganglia incorporating the key nuclei. Using the model we studied the Probabilistic learning task (PLT) in untreated, treated (L-Dopa and Dopamine Agonist) and STN-DBS PD conditions. Based on the experimental observation that dopaminergic activity is analogous to temporal difference (TD) and induces cortico-striatal plasticity, we introduced learning in the cortico-striatal weights. The results show that healthy and untreated conditions of PD model were able to more or less equally select (avoid) the rewarding (punitive) choice, a behavior that was absent in treated PD condition. The time taken to select a choice in high conflict trials was high in normal condition, which is in agreement with experimental results. The treated PD (Dopamine Agonist) patients made impulsive decisions (small reaction time) which in turn led to poor performance. The underlying cause of the observed impulsivity in DBS patients was studied in the model by (1) varying the electrode position within STN, (2) causing antidromic activation of GPe neurons. The effect of electrode position on reaction time was analyzed by studying the activity of STN neurons where, a decrease in STN neural activity was observed for certain electrode positions. We also observed that a higher antidromic

  3. The performance of Inconel 693 electrodes for processing an iron phosphate glass melt containing 26 wt.% of a simulated low activity waste

    NASA Astrophysics Data System (ADS)

    Hsu, Jen-Hsien; Newkirk, Joseph W.; Kim, Cheol-Woon; Brow, Richard K.; Schlesinger, Mark E.; Ray, Chandra S.; Day, Delbert E.

    2014-01-01

    Iron phosphate glass is a candidate fixation medium for storing radioactive waste. The Department of Energy supported a program to assess the viability of using Fe-phosphate glass for vitrifying low activity waste in a Joule Heated Melter (JHM). In this study, Inconel 693 electrodes were tested in a research-scale joule-heated melter (RSM) at Pacific Northwest National Laboratory. After a 10-day test at 1030 °C that yielded 124 kg of glass, the electrodes exhibited a dimensional loss rate of ∼1.6 mm/year, which is comparable to that of Inconel 690 electrodes used in a JHM for processing borosilicate melts. Microstructural changes occurred within the outermost 700 μm of the electrodes and are consistent with an earlier study of Inconel coupons in Fe-phosphate melts. The results indicate that Inconel 693 should have an acceptable corrosion resistance as the electrode for JHM processing of iron phosphate melts.

  4. Surface Activation of Electrocatalysis at Oxide Electrodes. Concerted Electron-Proton Transfer

    SciTech Connect

    Gagliardi, Christopher J.; Jurss, Jonah W.; Thorp, H. Holden; Meyer, Thomas J.

    2011-03-21

    Dramatic rate enhancements are observed for the oxidation of phenols, including tyrosine, at indium-tin oxide electrodes modified by the addition of the electron-transfer relays [MII(bpy)2(4,4'-(HO)2P(O)CH2)2bpy)]2+ (M = Ru, Os) with clear evidence for the importance of proton-coupled electron transfer and concerted electron-proton transfer.

  5. Unique battery with a multi-functional, physicochemically active membrane separator/electrolyte-electrode monolith and a method making the same

    DOEpatents

    Gerald, II, Rex E; Ruscic, Katarina J; Sears, Devin N; Smith, Luis J; Klinger, Robert J; Rathke, Jerome W

    2013-11-26

    The invention relates to a unique battery having a physicochemically active membrane separator/electrolyte-electrode monolith and method of making the same. The Applicant's invented battery employs a physicochemically active membrane separator/electrolyte-electrode that acts as a separator, electrolyte, and electrode, within the same monolithic structure. The chemical composition, physical arrangement of molecules, and physical geometry of the pores play a role in the sequestration and conduction of ions. In one preferred embodiment, ions are transported via the ion-hoping mechanism where the oxygens of the Al.sub.2O.sub.3 wall are available for positive ion coordination (i.e. Li.sup.+). This active membrane-electrode composite can be adjusted to a desired level of ion conductivity by manipulating the chemical composition and structure of the pore wall to either increase or decrease ion conduction.

  6. Unique battery with a multi-functional, physicochemically active membrane separator/electrolyte-electrode monolith and a method making the same

    DOEpatents

    Gerald II, Rex E.; Ruscic, Katarina J.; Sears, Devin N.; Smith, Luis J.; Klingler, Robert J.; Rathke, Jerome W.

    2012-07-24

    The invention relates to a unique battery having a physicochemically active membrane separator/electrolyte-electrode monolith and method of making the same. The Applicant's invented battery employs a physicochemically active membrane separator/electrolyte-electrode that acts as a separator, electrolyte, and electrode, within the same monolithic structure. The chemical composition, physical arrangement of molecules, and physical geometry of the pores play a role in the sequestration and conduction of ions. In one preferred embodiment, ions are transported via the ion-hoping mechanism where the oxygens of the Al2O3 wall are available for positive ion coordination (i.e. Li+). This active membrane-electrode composite can be adjusted to a desired level of ion conductivity by manipulating the chemical composition and structure of the pore wall to either increase or decrease ion conduction.

  7. Electrochemical and DFT study of an anticancer and active anthelmintic drug at carbon nanostructured modified electrode.

    PubMed

    Ghalkhani, Masoumeh; Beheshtian, Javad; Salehi, Maryam

    2016-12-01

    The electrochemical response of mebendazole (Meb), an anticancer and effective anthelmintic drug, was investigated using two different carbon nanostructured modified glassy carbon electrodes (GCE). Although, compared to unmodified GCE, both prepared modified electrodes improved the voltammetric response of Meb, the carbon nanotubes (CNTs) modified GCE showed higher sensitivity and stability. Therefore, the CNTs-GCE was chosen as a promising candidate for the further studies. At first, the electrochemical behavior of Meb was studied by cyclic voltammetry and differential pulse and square wave voltammetry. A one step reversible, pH-dependent and adsorption-controlled process was revealed for electro-oxidation of Meb. A possible mechanism for the electrochemical oxidation of Meb was proposed. In addition, electronic structure, adsorption energy, band gap, type of interaction and stable configuration of Meb on the surface of functionalized carbon nanotubes were studied by using density functional theory (DFT). Obtained results revealed that Meb is weakly physisorbed on the CNTs and that the electronic properties of the CNTs are not significantly changed. Notably, CNTs could be considered as a suitable modifier for preparation of the modified electrode for Meb analysis. Then, the experimental parameters affecting the electrochemical response of Meb were optimized. Under optimal conditions, high sensitivity (b(Meb)=dIp,a(Meb)/d[Meb]=19.65μAμM(-1)), a low detection limit (LOD (Meb)=19nM) and a wide linear dynamic range (0.06-3μM) was resulted for the voltammetric quantification of Meb. PMID:27612835

  8. Metal fiber - carbon electrodes for oxygen reduction

    NASA Astrophysics Data System (ADS)

    Smith, Robert Fendlay

    An investigation was carried out to determine activities for oxygen reduction and current efficiencies to hydrogen peroxide of commercially available nickel fibers, carbon fibers, and carbon powders. The activities and current efficiencies were determined by conducting Rotating Ring Disk Electrode Experiments (RRDE) on porous electrodes that utilize an interlocking network of metal fibers with carbon fibers and/or powders. Experimentation was also done using PTFE - carbon powder and PTFE - nickel fiber paste electrodes to remove any porosity and symbiotic effects of the nickel - carbon electrodes. Results of the traditional flat plate PTFE electrodes were compared to the porous electrodes to verify the proposed mathematical viability of porous electrode RRDE. RRDE experiments showed that the most active carbons for oxygen reduction have a surface area to volume ratio of 1000 m2/g, and current rent efficiency to hydrogen peroxide was increased as the average pore size increased. A mathematical model and half-cell polarization experiments were used to characterize and optimize oxygen reduction in gas diffusion electrodes consisting of carbon fibers and/or powders entrapped in a sinter-locked network of nickel microfibers. Important electrode physical parameters, such as nickel fiber loading (0.005 to 0.01 g/cm2) , nickel fiber diameter (2 to 12 mum), void volume (73 to 96%), distance of the active layer from the gas supply (0 to 0.005 cm), and addition of a peroxide decomposition catalyst (0 to 0.004 g/cm2) were systematically varied to determine their effects on electrode performance. Experimentally determined total currents and current efficiencies to hydrogen peroxide were compared to calculated values for model verification. Other important parameters, including intra-electrode oxygen and hydrogen peroxide concentrations, overpotentials, and reaction rates, were simulated to help optimize the electrode. Fabricated metal fiber-carbon electrodes were compared to a

  9. Optimized electrode arrangement and activation of bioelectrodes activity by carbon nanoparticles for efficient ethanol microfluidic biofuel cells

    NASA Astrophysics Data System (ADS)

    Selloum, D.; Tingry, S.; Techer, V.; Renaud, L.; Innocent, C.; Zouaoui, A.

    2014-12-01

    This work presents the construction of an ethanol microfluidic biofuel cell based on a biocathode and a bioanode, and operating in a Y-shaped microfluidic channel. At the anode, ethanol was oxidized by alcohol dehydrogenase, whereas at the cathode, the oxygen was reduced by laccase. Fuel and oxidant streams moved in parallel laminar flow without turbulent mixing into a microchannel fabricated using soft lithography methods. The enzymes were immobilized in the presence of reactive species at gold electrode surfaces. Bioelectrocatalytic processes were enhanced by combination of enzymes and carbon nanoparticles, attributed to appropriate electron transport and high amount enzyme loading. The benefit of the nanoparticles with higher surface porosity was explained by the high porous structure that offered a closer proximity to the reactive species and improved diffusion of the substrates within the enzyme films. The microfluidic BFC was optimized as function of electrode patterns, showing that higher current and power densities were achieved for shorter and wider electrodes that allow for thinner boundary layer depletion at the electrodes surface resulting in efficient catalytic consumption of fuel and oxidant. This miniaturized device generated maximum power density of 90 μW cm-2 at 0.6 V for a flow rate 16 μL min-1.

  10. Facile Synthesis of Pt-/Pd-MODIFIED NiTi Electrode with Superior Electro-Catalytic Activities Toward Methanol, Ethanol and Ethylene Glycol Oxidation

    NASA Astrophysics Data System (ADS)

    He, Yongwei; Wang, Mei; Ma, Zizai; Li, Ruixue; Kundu, Manab; Ma, Guanshui; Lin, Naiming; Tang, Bin; Wang, Xiaoguang

    2016-11-01

    Surface functional modification of NiTi electrode with noble Pt and Pd metal has been successfully carried out by simple and cost effective electro-spark deposition technique (ESD). Thin-film X-ray diffraction (TF-XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and cyclic voltammetry (CV) have been carried out in order to investigate the structure, morphology, chemical composition and electrochemical behavior of the modified electrode surface. The modified Pt/NiTi and Pd/NiTi electrode surface exhibit a circular splash pattern with a tiny amount of Pt (˜5.30 at.% Pt) and Pd (˜5.71 at.% Pd) existence. The electrochemical results demonstrate that the Pt/NiTi and Pd/NiTi electrode possess an improved electro-catalytic activities toward methanol (MeOH), ethanol (EtOH) and ethylene glycol (EG) oxidation in alkaline media in comparison with the bare NiTi electrode. In acidic environments, the Pt/NiTi electrode exhibits even much better catalytic activities than the pure Pt sheet electrode due to the bi-functional mechanism. In the same way, the electro-catalytic activity of the modified Pd/NiTi electrode is also slightly larger than that of the pure Pd sheet electrode in alkaline environment. The electro-spark surface modification approach is rapid and environmentally-benign, being attractive to widen the application of traditional surface modification technique in the field of material surface/interface design and functionalization.

  11. Virtual electrodes for high-density electrode arrays

    SciTech Connect

    Cela, Carlos J.; Lazzi, Gianluca

    2015-10-13

    The present embodiments are directed to implantable electrode arrays having virtual electrodes. The virtual electrodes may improve the resolution of the implantable electrode array without the burden of corresponding complexity of electronic circuitry and wiring. In a particular embodiment, a virtual electrode may include one or more passive elements to help steer current to a specific location between the active electrodes. For example, a passive element may be a metalized layer on a substrate that is adjacent to, but not directly connected to an active electrode. In certain embodiments, an active electrode may be directly coupled to a power source via a conductive connection. Beneficially, the passive elements may help to increase the overall resolution of the implantable array by providing additional stimulation points without requiring additional wiring or driver circuitry for the passive elements.

  12. Effect of oxidation of carbon material on suspension electrodes for flow electrode capacitive deionization.

    PubMed

    Hatzell, Kelsey B; Hatzell, Marta C; Cook, Kevin M; Boota, Muhammad; Housel, Gabrielle M; McBride, Alexander; Kumbur, E Caglan; Gogotsi, Yury

    2015-03-01

    Flow electrode deionization (FCDI) is an emerging area for continuous and scalable deionization, but the electrochemical and flow properties of the flow electrode need to be improved to minimize energy consumption. Chemical oxidation of granular activated carbon (AC) was examined here to study the role of surface heteroatoms on rheology and electrochemical performance of a flow electrode (carbon slurry) for deionization processes. Moreover, it was demonstrated that higher mass densities could be used without increasing energy for pumping when using oxidized active material. High mass-loaded flow electrodes (28% carbon content) based on oxidized AC displayed similar viscosities (∼21 Pa s) to lower mass-loaded flow electrodes (20% carbon content) based on nonoxidized AC. The 40% increased mass loading (from 20% to 28%) resulted in a 25% increase in flow electrode gravimetric capacitance (from 65 to 83 F g(-1)) without sacrificing flowability (viscosity). The electrical energy required to remove ∼18% of the ions (desalt) from of the feed solution was observed to be significantly dependent on the mass loading and decreased (∼60%) from 92 ± 7 to 28 ± 2.7 J with increased mass densities from 5 to 23 wt %. It is shown that the surface chemistry of the active material in a flow electrode effects the electrical and pumping energy requirements of a FCDI system.

  13. Semantic Wavelet-Induced Frequency-Tagging (SWIFT) Periodically Activates Category Selective Areas While Steadily Activating Early Visual Areas

    PubMed Central

    Koenig-Robert, Roger; VanRullen, Rufin; Tsuchiya, Naotsugu

    2015-01-01

    Primate visual systems process natural images in a hierarchical manner: at the early stage, neurons are tuned to local image features, while neurons in high-level areas are tuned to abstract object categories. Standard models of visual processing assume that the transition of tuning from image features to object categories emerges gradually along the visual hierarchy. Direct tests of such models remain difficult due to confounding alteration in low-level image properties when contrasting distinct object categories. When such contrast is performed in a classic functional localizer method, the desired activation in high-level visual areas is typically accompanied with activation in early visual areas. Here we used a novel image-modulation method called SWIFT (semantic wavelet-induced frequency-tagging), a variant of frequency-tagging techniques. Natural images modulated by SWIFT reveal object semantics periodically while keeping low-level properties constant. Using functional magnetic resonance imaging (fMRI), we indeed found that faces and scenes modulated with SWIFT periodically activated the prototypical category-selective areas while they elicited sustained and constant responses in early visual areas. SWIFT and the localizer were selective and specific to a similar extent in activating category-selective areas. Only SWIFT progressively activated the visual pathway from low- to high-level areas, consistent with predictions from standard hierarchical models. We confirmed these results with criterion-free methods, generalizing the validity of our approach and show that it is possible to dissociate neural activation in early and category-selective areas. Our results provide direct evidence for the hierarchical nature of the representation of visual objects along the visual stream and open up future applications of frequency-tagging methods in fMRI. PMID:26691722

  14. Semantic Wavelet-Induced Frequency-Tagging (SWIFT) Periodically Activates Category Selective Areas While Steadily Activating Early Visual Areas.

    PubMed

    Koenig-Robert, Roger; VanRullen, Rufin; Tsuchiya, Naotsugu

    2015-01-01

    Primate visual systems process natural images in a hierarchical manner: at the early stage, neurons are tuned to local image features, while neurons in high-level areas are tuned to abstract object categories. Standard models of visual processing assume that the transition of tuning from image features to object categories emerges gradually along the visual hierarchy. Direct tests of such models remain difficult due to confounding alteration in low-level image properties when contrasting distinct object categories. When such contrast is performed in a classic functional localizer method, the desired activation in high-level visual areas is typically accompanied with activation in early visual areas. Here we used a novel image-modulation method called SWIFT (semantic wavelet-induced frequency-tagging), a variant of frequency-tagging techniques. Natural images modulated by SWIFT reveal object semantics periodically while keeping low-level properties constant. Using functional magnetic resonance imaging (fMRI), we indeed found that faces and scenes modulated with SWIFT periodically activated the prototypical category-selective areas while they elicited sustained and constant responses in early visual areas. SWIFT and the localizer were selective and specific to a similar extent in activating category-selective areas. Only SWIFT progressively activated the visual pathway from low- to high-level areas, consistent with predictions from standard hierarchical models. We confirmed these results with criterion-free methods, generalizing the validity of our approach and show that it is possible to dissociate neural activation in early and category-selective areas. Our results provide direct evidence for the hierarchical nature of the representation of visual objects along the visual stream and open up future applications of frequency-tagging methods in fMRI. PMID:26691722

  15. Phosphorus-doped and undoped glassy carbon indicator electrodes in controlled-current potentiometric titrations of bromide- or chloride-containing active ingredients in some pharmaceutical preparations.

    PubMed

    Abramović, Biljana F; Guzsvány, Valéria J; Gaál, Ferenc F

    2005-02-23

    Phosphorus-doped glassy carbon (as a novel material) and glassy carbon (Sigri commercial sample) were applied as potentiometric indicator electrodes in the titrimetric determination of active components with bromide or chloride in their molecules in different pharmaceutical preparations (Buscopan, Prostigmine, Isoptin, Bedoxin, Akineton and Trodon). After the necessary pre-treatment of the electrode surfaces and sample dissolution, the halide was titrated with a standard solution of silver nitrate (indirect determination). Amounts of 10-20 micromol of the investigated active ingredients per titration were determined with a relative standard deviation that, depending on the nature of indicator electrode, determined molecules and filler components, was in the range of 0.3-2.7%. The results obtained were compared with those of the official methods and with those obtained by potentiometric titrations using silver electrode. The titrimetric procedures developed are relatively fast, easy, economical and can be used to analyse of a large number of pharmaceutical products.

  16. Specific Surface versus Electrochemically Active Area of the Carbon/Polypyrrole Capacitor: Correlation of Ion Dynamics Studied by an Electrochemical Quartz Crystal Microbalance with BET Surface.

    PubMed

    Mosch, Heike L K S; Akintola, Oluseun; Plass, Winfried; Höppener, Stephanie; Schubert, Ulrich S; Ignaszak, Anna

    2016-05-10

    Carbon/polypyrrole (PPy) composites are promising electrode materials for energy storage applications such as lightweight capacitors. Although these materials are composed of relatively inexpensive components, there is a gap of knowledge regarding the correlation between surface, porosity, ion exchange dynamics, and the interplay of the double layer capacitance and pseudocapacitance. In this work we evaluate the specific surface area analyzed by the BET method and the area accessible for ions using electrochemical quartz-crystal microbalance (EQCM) for SWCNT/PPy and carbon black Vulcan XC72-R/PPy composites. The study revealed that the polymer has significant influence on the pore size of the composites. Although the BET surface is low for the polypyrrole, the electrode mass change and thus the electrochemical area are large for the polymer-containing electrodes. This indicates that multiple redox active centers in the charged polymer chain are good ion scavengers. Also, for the composite electrodes, the effective charge storage occurs at the polypyrrole-carbon junctions, which are easy to design/multiply by a proper carbon-to-polymer weight ratio. The specific BET surface and electrochemically accessible surface area are both important parameters in calculation of the electrode capacitance. SWCNTs/PPy showed the highest capacitances normalized to the BET and electrochemical surface as compared to the polymer-carbon black. TEM imaging revealed very homogeneous distribution of the nanosized polymer particles onto the CNTs, which facilitates the synergistic effect of the double layer capacitance (CNTs) and pseudocapacitance (polymer). The trend in the electrode mass change in correlation with the capacitance suggest additional effects such as a solvent co-insertion into the polymer and the contribution of the charge associated with the redox activity of oxygen-containing functional groups on the carbon surface. PMID:27082127

  17. Specific Surface versus Electrochemically Active Area of the Carbon/Polypyrrole Capacitor: Correlation of Ion Dynamics Studied by an Electrochemical Quartz Crystal Microbalance with BET Surface.

    PubMed

    Mosch, Heike L K S; Akintola, Oluseun; Plass, Winfried; Höppener, Stephanie; Schubert, Ulrich S; Ignaszak, Anna

    2016-05-10

    Carbon/polypyrrole (PPy) composites are promising electrode materials for energy storage applications such as lightweight capacitors. Although these materials are composed of relatively inexpensive components, there is a gap of knowledge regarding the correlation between surface, porosity, ion exchange dynamics, and the interplay of the double layer capacitance and pseudocapacitance. In this work we evaluate the specific surface area analyzed by the BET method and the area accessible for ions using electrochemical quartz-crystal microbalance (EQCM) for SWCNT/PPy and carbon black Vulcan XC72-R/PPy composites. The study revealed that the polymer has significant influence on the pore size of the composites. Although the BET surface is low for the polypyrrole, the electrode mass change and thus the electrochemical area are large for the polymer-containing electrodes. This indicates that multiple redox active centers in the charged polymer chain are good ion scavengers. Also, for the composite electrodes, the effective charge storage occurs at the polypyrrole-carbon junctions, which are easy to design/multiply by a proper carbon-to-polymer weight ratio. The specific BET surface and electrochemically accessible surface area are both important parameters in calculation of the electrode capacitance. SWCNTs/PPy showed the highest capacitances normalized to the BET and electrochemical surface as compared to the polymer-carbon black. TEM imaging revealed very homogeneous distribution of the nanosized polymer particles onto the CNTs, which facilitates the synergistic effect of the double layer capacitance (CNTs) and pseudocapacitance (polymer). The trend in the electrode mass change in correlation with the capacitance suggest additional effects such as a solvent co-insertion into the polymer and the contribution of the charge associated with the redox activity of oxygen-containing functional groups on the carbon surface.

  18. Electrical Resistivity Monitoring of an Active Hydrothermal Degassing Area at Solfatara, Phlegrean Fields.

    NASA Astrophysics Data System (ADS)

    Vandemeulebrouck, J.; Byrdina, S.; Grangeon, J.; Lebourg, T.; Bascou, P.; Mangiacapra, A.

    2015-12-01

    Campi Flegrei caldera (CFc) is an active volcanic complex covering a ~100 km² densely populated area in the western part of Naples (Italy) that is presently showing clear signs of unrest. Solfatara volcano, a tuff cone crater formed ~4000 yrs B.P. ago by phreato-magmatic eruptions represents the main degassing outflow of CFc. Magmatic gases which are exsolved from a ~8 km deep magmatic reservoir mix at 4 km depth with meteoric hydrothermal fluids then reach the surface in the Solfatara area. These hydrothermal and magmatic gases, mainly H2O and CO2, are released through both diffuse degassing structures and fumaroles. In the frame of the MedSuv (Mediterranean Supervolcanoes) FP7 european project , we are performing a time-lapse electrical resistivity monitoring of an active degassing area of Solfatara. Using a 500-m-long cable and 48 electrodes, an electrical resistivity tomography (ERT) is performed on a two-day basis since May 2013. The time-lapse inversion of the ERT gives an image of the temporal variations of resistivity up to 100 m depth that can be compared with the variations of ground deformation, CO2 flux, soil temperature and seismic ambient noise. Resistivity variations can originate from fluid composition, gas ratio and temperature. For example, the abrupt change of resistivity that was observed mid-2014 during a period of uplift and gas flux increase, could be associated with the rise of hydrothermal fluids.

  19. Impedance changes recorded with scalp electrodes during visual evoked responses: implications for Electrical Impedance Tomography of fast neural activity.

    PubMed

    Gilad, O; Holder, D S

    2009-08-15

    Electrical Impedance Tomography (EIT) is a recently developed medical imaging method which could enable fast neural imaging in the brain by recording the resistance changes which occur as ion channels open during neuronal depolarization. In published studies in animal models with intracranial electrodes, changes of 0.005 to 3% have been reported but the amplitude of changes in the human is not known. The purpose of this work was to determine if resistance changes could be recorded non-invasively in humans during evoked activity which could form the basis for EIT of fast neural activity. Resistance was recorded with scalp electrodes during 2 Hz pattern visual evoked responses over 10 min using an insensible 1 Hz square wave constant current of 0.1-1 mA. Significant resistance decreases of 0.0010+/-0.0005% (0.30+/-0.15 microV, signal-to-noise ratio (SNR) of 2:1, n=16 recordings over 6 subjects) (mean+/-SE) were recorded. These are in broad agreement with modelling which estimated changes of 0.0039+/-0.0034% (1.03+/-0.75 microV) using an anatomically realistic finite element model. This is the first demonstration of such changes in humans and so encourages the belief that EIT could be used for neural imaging. Unfortunately, the signal-to-noise ratio was not sufficient to permit imaging at present because recording over multiple injection sites needed for imaging would require impractically long recording times. However, in the future, invasive imaging with intracranial electrodes in animal models or humans and improved signal processing or recording may still enable imaging; this would constitute a significant advance in neuroscience technology.

  20. Wrinkled substrate and Indium Tin Oxide-free transparent electrode making organic solar cells thinner in active layer

    NASA Astrophysics Data System (ADS)

    Liu, Kong; Lu, Shudi; Yue, Shizhong; Ren, Kuankuan; Azam, Muhammad; Tan, Furui; Wang, Zhijie; Qu, Shengchun; Wang, Zhanguo

    2016-11-01

    To enable organic solar cells with a competent charge transport efficiency, reducing the thickness of active layer without sacrificing light absorption efficiency turns out to be of high feasibility. Herein, organic solar cells on wrinkled metal surface are designed. The purposely wrinkled Al/Au film with a smooth surface provides a unique scaffold for constructing thin organic photovoltaic devices by avoiding pinholes and defects around sharp edges in conventional nanostructures. The corresponding surface light trapping effect enables the thin active layer (PTB7-Th:PC71BM) with a high absorption efficiency. With the innovative MoO3/Ag/ZnS film as the top transparent electrode, the resulting Indium Tin Oxide-free wrinkled devices show a power conversion efficiency as 7.57% (50 nm active layer), higher than the planner counterparts. Thus, this paper provides a new methodology to improve the performance of organic solar cells by balancing the mutual restraint factors to a high level.

  1. Network activity evoked by neocortical stimulation in area 36 of the guinea pig perirhinal cortex.

    PubMed

    Biella, G; Uva, L; de Curtis, M

    2001-07-01

    The perirhinal cortex is a key structure involved in memory consolidation and retrieval. In spite of the extensive anatomical studies that describe the intrinsic and extrinsic associative connections of the perirhinal cortex, the activity generated within such a network has been poorly investigated. We describe here the pattern of synaptic interactions that subtend the responses evoked in area 36 of the perirhinal cortex by neocortical and local stimulation. The experiments were carried out in the in vitro isolated guinea pig brain. The synaptic perirhinal circuit was reconstructed by integrating results obtained during intracellular recordings from layer II-III neurons with simultaneous current source density analysis of laminar profiles performed with 16-channel silicon probes. Both neocortical and local stimulation of area 36 determined a brief monosynaptic excitatory potential in layer II-III neurons, followed by a biphasic synaptic inhibitory potential possibly mediated by a feed-forward inhibitory circuit at sites close to the stimulation electrode and a late excitatory postsynaptic potential (EPSP) that propagated at distance within area 36 along the rhinal sulcus. During a paired-pulse stimulation test, the inhibitory postsynaptic potential (IPSP) and the late EPSP were abolished in the second conditioned response, suggesting that they are generated by poli-synaptic circuits. Current source density analysis of the field responses demonstrated that 1) the monosynaptic activity was generated in layers II-III and 2) the sink associated to the disynaptic responses was localized within the superficial layer of area 36. We conclude that the neocortical input induces a brief monosynaptic excitation in area 36 of the perirhinal cortex, that is curtailed by a prominent inhibition and generates a recurrent excitatory associative response that travels at distance within area 36 itself. The results suggest that the perirhinal cortex network has the potentials to

  2. Vanadium nanobelts coated nickel foam 3D bifunctional electrode with excellent catalytic activity and stability for water electrolysis

    NASA Astrophysics Data System (ADS)

    Yu, Yu; Li, Pei; Wang, Xiaofang; Gao, Wenyu; Shen, Zongxu; Zhu, Yanan; Yang, Shuliang; Song, Weiguo; Ding, Kejian

    2016-05-01

    Pursuit of highly active, stable and low-cost electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is the key point for large-scale water splitting. A vanadium nanobelts coating on a nickel foam (V/NF) is proposed as an excellent 3D bifunctional electrode for water electrolysis here, which exhibits high activities with overpotentials of 292 and 176 mV at 10 mA cm-2 for OER and HER, respectively. When employed as a bifunctional electrocatalyst in an alkaline water electrolyzer, a cell voltage of 1.80 V was required to achieve 20 mA cm-2 with a slight increase during a 24 h durability test. The existence of the appropriate amount of nitrogen and oxygen elements in the surface region of vanadium nanobelts is regarded to be responsible for the electrocatalytic activity.Pursuit of highly active, stable and low-cost electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is the key point for large-scale water splitting. A vanadium nanobelts coating on a nickel foam (V/NF) is proposed as an excellent 3D bifunctional electrode for water electrolysis here, which exhibits high activities with overpotentials of 292 and 176 mV at 10 mA cm-2 for OER and HER, respectively. When employed as a bifunctional electrocatalyst in an alkaline water electrolyzer, a cell voltage of 1.80 V was required to achieve 20 mA cm-2 with a slight increase during a 24 h durability test. The existence of the appropriate amount of nitrogen and oxygen elements in the surface region of vanadium nanobelts is regarded to be responsible for the electrocatalytic activity. Electronic supplementary information (ESI) available: More SEM, TEM images, XRD patterns, LSV curves, XPS spectra. See DOI: 10.1039/c6nr02395a

  3. A novel system of electrodes transparent to ultrasound for simultaneous detection of myoelectric activity and B-mode ultrasound images of skeletal muscles.

    PubMed

    Botter, A; Vieira, T M M; Loram, I D; Merletti, R; Hodson-Tole, E F

    2013-10-15

    Application of two-dimensional surface electrode arrays can provide a means of mapping motor unit action potentials on the skin surface above a muscle. The resulting muscle tissue displacement can be quantified, in a single plane, using ultrasound (US) imaging. Currently, however, it is not possible to simultaneously map spatio-temporal propagation of activation and resulting tissue strain. In this paper, we developed and tested a material that will enable concurrent measurement of two-dimensional surface electromyograms (EMGs) with US images. Specific protocols were designed to test the compatibility of this new electrode material, both with EMG recording and with US analysis. Key results indicate that, for this new electrode material, 1) the electrode-skin impedance is similar to that of arrays of electrodes reported in literature; 2) the reflection of US at the electrode-skin interface is negligible; 3) the likelihood of observing missing contacts, short-circuits, and artifacts in EMGs is not affected by the US probe; 4) movement of tissues sampled by US can be tracked accurately. We, therefore, conclude this approach will facilitate multimodal imaging of muscle to provide new spatio-temporal information regarding electromechanical function of muscle. This is relevant to basic physiology-biomechanics of active and passive force transmission through and between muscles, of motor unit spatio-temporal activity patterns, of their variation with architecture and task-related function, and of their adaptation with aging, training-exercise-disuse, neurological disease, and injury.

  4. Direct Observation of Active Material Concentration Gradients and Crystallinity Breakdown in LiFePO4 Electrodes During Charge/Discharge Cycling of Lithium Batteries

    PubMed Central

    2014-01-01

    The phase changes that occur during discharge of an electrode comprised of LiFePO4, carbon, and PTFE binder have been studied in lithium half cells by using X-ray diffraction measurements in reflection geometry. Differences in the state of charge between the front and the back of LiFePO4 electrodes have been visualized. By modifying the X-ray incident angle the depth of penetration of the X-ray beam into the electrode was altered, allowing for the examination of any concentration gradients that were present within the electrode. At high rates of discharge the electrode side facing the current collector underwent limited lithium insertion while the electrode as a whole underwent greater than 50% of discharge. This behavior is consistent with depletion at high rate of the lithium content of the electrolyte contained in the electrode pores. Increases in the diffraction peak widths indicated a breakdown of crystallinity within the active material during cycling even during the relatively short duration of these experiments, which can also be linked to cycling at high rate. PMID:24790684

  5. Defence force activities in marine protected areas: environmental management of Shoalwater Bay Training Area, Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Wu, Wen; Wang, Xiaohua; Paull, David; Kesby, Julie

    2010-05-01

    Environmental management of military activities is of growing global concern by defence forces. As one of the largest landholders in Australia, the Australian Defence Force (ADF) is increasingly concerned with sustainable environmental management. This paper focuses on how the ADF is maintaining effective environmental management, especially in environmentally sensitive marine protected areas. It uses Shoalwater Bay Training Area (SWBTA) as a research example to examine environmental management strategies conducted by the ADF. SWBTA is one of the most significant Defence training areas in Australia, with a large number of single, joint and combined military exercises conducted in the area. With its maritime component contained in the Great Barrier Reef Marine Park (GBRMP), the Great Barrier Reef World Heritage Area (GBRWHA), and abutting Queensland’s State Marine Parks, it has high protection values. It is therefore vital for the ADF to adopt environmentally responsible management while they are conducting military activities. As to various tools employed to manage environmental performance, the ISO 14001 Environmental Management System (EMS) is widely used by the ADF. This paper examines military activities and marine environmental management within SWBTA, using the Talisman Saber (TS) exercise series as an example. These are extensive joint exercises conducted by the ADF and the United States defence forces. The paper outlines relevant legislative framework and environmental policies, analyses how the EMS operates in environmental management of military activities, and how military activities comply with these regulations. It discusses the implementation of the ADF EMS, including risk reduction measures, environmental awareness training, consultation and communication with stakeholders. A number of environmental management actions used in the TS exercises are presented to demonstrate the EMS application. Our investigations to this point indicate that the ADF is

  6. Bifunctional catalytic electrode

    NASA Technical Reports Server (NTRS)

    Cisar, Alan (Inventor); Murphy, Oliver J. (Inventor); Clarke, Eric (Inventor)

    2005-01-01

    The present invention relates to an oxygen electrode for a unitized regenerative hydrogen-oxygen fuel cell and the unitized regenerative fuel cell having the oxygen electrode. The oxygen electrode contains components electrocatalytically active for the evolution of oxygen from water and the reduction of oxygen to water, and has a structure that supports the flow of both water and gases between the catalytically active surface and a flow field or electrode chamber for bulk flow of the fluids. The electrode has an electrocatalyst layer and a diffusion backing layer interspersed with hydrophilic and hydrophobic regions. The diffusion backing layer consists of a metal core having gas diffusion structures bonded to the metal core.

  7. Cognitive Neurostimulation: Learning to Volitionally Sustain Ventral Tegmental Area Activation.

    PubMed

    MacInnes, Jeff J; Dickerson, Kathryn C; Chen, Nan-kuei; Adcock, R Alison

    2016-03-16

    Activation of the ventral tegmental area (VTA) and mesolimbic networks is essential to motivation, performance, and learning. Humans routinely attempt to motivate themselves, with unclear efficacy or impact on VTA networks. Using fMRI, we found untrained participants' motivational strategies failed to consistently activate VTA. After real-time VTA neurofeedback training, however, participants volitionally induced VTA activation without external aids, relative to baseline, Pre-test, and control groups. VTA self-activation was accompanied by increased mesolimbic network connectivity. Among two comparison groups (no neurofeedback, false neurofeedback) and an alternate neurofeedback group (nucleus accumbens), none sustained activation in target regions of interest nor increased VTA functional connectivity. The results comprise two novel demonstrations: learning and generalization after VTA neurofeedback training and the ability to sustain VTA activation without external reward or reward cues. These findings suggest theoretical alignment of ideas about motivation and midbrain physiology and the potential for generalizable interventions to improve performance and learning. PMID:26948894

  8. Cognitive Neurostimulation: Learning to Volitionally Sustain Ventral Tegmental Area Activation.

    PubMed

    MacInnes, Jeff J; Dickerson, Kathryn C; Chen, Nan-kuei; Adcock, R Alison

    2016-03-16

    Activation of the ventral tegmental area (VTA) and mesolimbic networks is essential to motivation, performance, and learning. Humans routinely attempt to motivate themselves, with unclear efficacy or impact on VTA networks. Using fMRI, we found untrained participants' motivational strategies failed to consistently activate VTA. After real-time VTA neurofeedback training, however, participants volitionally induced VTA activation without external aids, relative to baseline, Pre-test, and control groups. VTA self-activation was accompanied by increased mesolimbic network connectivity. Among two comparison groups (no neurofeedback, false neurofeedback) and an alternate neurofeedback group (nucleus accumbens), none sustained activation in target regions of interest nor increased VTA functional connectivity. The results comprise two novel demonstrations: learning and generalization after VTA neurofeedback training and the ability to sustain VTA activation without external reward or reward cues. These findings suggest theoretical alignment of ideas about motivation and midbrain physiology and the potential for generalizable interventions to improve performance and learning.

  9. A Combined “Electrochemical–Frustrated Lewis Pair” Approach to Hydrogen Activation: Surface Catalytic Effects at Platinum Electrodes

    PubMed Central

    Lawrence, Elliot J; Blagg, Robin J; Hughes, David L; Ashley, Andrew E; Wildgoose, Gregory G

    2015-01-01

    Herein, we extend our “combined electrochemical–frustrated Lewis pair” approach to include Pt electrode surfaces for the first time. We found that the voltammetric response of an electrochemical–frustrated Lewis pair (FLP) system involving the B(C6F5)3/[HB(C6F5)3]− redox couple exhibits a strong surface electrocatalytic effect at Pt electrodes. Using a combination of kinetic competition studies in the presence of a H atom scavenger, 6-bromohexene, and by changing the steric bulk of the Lewis acid borane catalyst from B(C6F5)3 to B(C6Cl5)3, the mechanism of electrochemical–FLP reactions on Pt surfaces was shown to be dominated by hydrogen-atom transfer (HAT) between Pt, [Pt–H] adatoms and transient [HB(C6F5)3]⋅ electrooxidation intermediates. These findings provide further insight into this new area of combining electrochemical and FLP reactions, and proffers additional avenues for exploration beyond energy generation, such as in electrosynthesis. PMID:25382457

  10. Activation of Premotor Vocal Areas during Musical Discrimination

    ERIC Educational Resources Information Center

    Brown, Steven; Martinez, Michael J.

    2007-01-01

    Two same/different discrimination tasks were performed by amateur-musician subjects in this functional magnetic resonance imaging study: Melody Discrimination and Harmony Discrimination. Both tasks led to activations not only in classic working memory areas--such as the cingulate gyrus and dorsolateral prefrontal cortex--but in a series of…

  11. Magnetohydrodynamic electrode

    DOEpatents

    Boquist, Carl W.; Marchant, David D.

    1978-01-01

    A ceramic-metal composite suitable for use in a high-temperature environment consists of a refractory ceramic matrix containing 10 to 50 volume percent of a continuous high-temperature metal reinforcement. In a specific application of the composite, as an electrode in a magnetohydrodynamic generator, the one surface of the electrode which contacts the MHD fluid may have a layer of varying thickness of nonreinforced refractory ceramic for electrode temperature control. The side walls of the electrode may be coated with a refractory ceramic insulator. Also described is an electrode-insulator system for a MHD channel.

  12. Working Electrodes

    NASA Astrophysics Data System (ADS)

    Komorsky-Lovrić, Šebojka

    In electrochemistry an electrode is an electronic conductor in contact with an ionic conductor. The electronic conductor can be a metal, or a semiconductor, or a mixed electronic and ionic conductor. The ionic conductor is usually an electrolyte solution; however, solid electrolytes and ionic melts can be used as well. The term "electrode" is also used in a technical sense, meaning the electronic conductor only. If not specified otherwise, this meaning of the term "electrode" is the subject of the present chapter. In the simplest case the electrode is a metallic conductor immersed in an electrolyte solution. At the surface of the electrode, dissolved electroactive ions change their charges by exchanging one or more electrons with the conductor. In this electrochemical reaction both the reduced and oxidized ions remain in solution, while the conductor is chemically inert and serves only as a source and sink of electrons. The technical term "electrode" usually also includes all mechanical parts supporting the conductor (e.g., a rotating disk electrode or a static mercury drop electrode). Furthermore, it includes all chemical and physical modifications of the conductor, or its surface (e.g., a mercury film electrode, an enzyme electrode, and a carbon paste electrode). However, this term does not cover the electrolyte solution and the ionic part of a double layer at the electrode/solution interface. Ion-selective electrodes, which are used in potentiometry, will not be considered in this chapter. Theoretical and practical aspects of electrodes are covered in various books and reviews [1-9].

  13. Electrode for electrochemical cell

    DOEpatents

    Kaun, T.D.; Nelson, P.A.; Miller, W.E.

    1980-05-09

    An electrode structure for a secondary electrochemical cell includes an outer enclosure defining a compartment containing electrochemical active material. The enclosure includes a rigid electrically conductive metal sheet with perforated openings over major side surfaces. The enclosure can be assembled as first and second trays each with a rigid sheet of perforated electrically conductive metal at major side surfaces and normally extending flanges at parametric margins. The trays can be pressed together with moldable active material between the two to form an expandable electrode. A plurality of positive and negative electrodes thus formed are arranged in an alternating array with porous frangible interelectrode separators within the housing of the secondary electrochemical cell.

  14. Electrode for electrochemical cell

    DOEpatents

    Kaun, Thomas D.; Nelson, Paul A.; Miller, William E.

    1981-01-01

    An electrode structure for a secondary electrochemical cell includes an outer enclosure defining a compartment containing electrochemical active material. The enclosure includes a rigid electrically conductive metal sheet with perforated openings over major side surfaces. The enclosure can be assembled as first and second trays each with a rigid sheet of perforated electrically conductive metal at major side surfaces and normally extending flanges at parametric margins. The trays can be pressed together with moldable active material between the two to form an expandable electrode. A plurality of positive and negative electrodes thus formed are arranged in an alternating array with porous frangible interelectrode separators within the housing of the secondary electrochemical cell.

  15. In-situ electrochemically active surface area evaluation of an open-cathode polymer electrolyte membrane fuel cell stack

    NASA Astrophysics Data System (ADS)

    Torija, Sergio; Prieto-Sanchez, Laura; Ashton, Sean J.

    2016-09-01

    The ability to evaluate the electrochemically active surface area (ECSA) of fuel cell electrodes is crucial toward characterising designs and component suites in-situ, particularly when evaluating component durability in endurance testing, since it is a measure of the electrode area available to take part in the fuel cell reactions. Conventional methods to obtain the ECSA using cyclic voltammetry, however, rely on potentiostats that cannot be easily scaled to simultaneously evaluate all cells in a fuel cell stack of practical size, which is desirable in fuel cell development. In-situ diagnostics of an open-cathode fuel cell stack are furthermore challenging because the cells do not each possess an enclosed cathode compartment; instead, the cathodes are rather open to the environment. Here we report on a diagnostic setup that allows the electrochemically active surface area of each cell anode or cathode in an open-cathode fuel cell stack to be evaluated in-situ and simultaneously, with high resolution and reproducibility, using an easily scalable chronopotentiometry methodology and a gas-tight stack enclosure.

  16. Investigation of the electrochemically active surface area and lithium diffusion in graphite anodes by a novel OsO4 staining method

    NASA Astrophysics Data System (ADS)

    Pfaffmann, Lukas; Birkenmaier, Claudia; Müller, Marcus; Bauer, Werner; Mitsch, Tim; Feinauer, Julian; Krämer, Yvonne; Scheiba, Frieder; Hintennach, Andreas; Schleid, Thomas; Schmidt, Volker; Ehrenberg, Helmut

    2016-03-01

    Negative electrodes of lithium-ion batteries generally consist of graphite-based active materials. In order to realize batteries with a high current density and therefore accelerated charging processes, the intercalation of lithium and the diffusion processes of these carbonaceous materials must be understood. In this paper, we visualized the electrochemical active surface area for three different anode materials using a novel OsO4 staining method in combination with scanning electron microscopy techniques. The diffusion behavior of these three anode materials is investigated by potentiostatic intermittent titration technique measurements. From those we determine the diffusion coefficient with and without consideration of the electrochemical active surface area.

  17. First OSIRIS observations of active areas on comet 67P

    NASA Astrophysics Data System (ADS)

    Vincent, J.-B.; Sierks, H.; Oklay, N.; Agarwal, J.; Güttler, C.; Bodewits, D.; Osiris Team

    2014-04-01

    After a successful exit from hibernation, Rosetta started observing its final target comet 67P in March 2014 with the two OSIRIS cameras WAC and NAC (Wide Angle and Narrow Angle Camera) [1]. By the time of this conference, the spacecraft will have flown from 5 million to 50 km from the nucleus surface, reaching a resolution of 1 meter/pixel in the NAC images. During that period, the comet heliocentric distance varies from 4.3 to 3.2 AU and we will observe how the early activity develops. We know that cometary surfaces are not fully active; only a small fraction of the surface emits gas and dust. However we do not yet understand why it happens in that way, and what to expect on 67P. Recent publications using data from ground-based telescopes have proposed different interpretations for the distribution of active sources, from one to three at various latitudes [2, 3]. There is some evidence for different levels of activity in the northern and southern hemispheres, but these variations can only be constrained with close range data. In August 2014, OSIRIS will map the surface of the comet at high resolution, and perform weekly monitoring of the activity, especially the faintest jets. With these images and the inversion code COSSIM [4], we will be able to link observed features in the coma or on the limb to physical spots on the surface. On other comets visited by spacecrafts the activity has sometimes been associated with smooth areas, rough terrains, or specific morphologic features (cliff, crater, rim, . . . ). We will present a first look at how activity and terrain are linked on 67P, and look at variations of composition, morphology, or both. We will compare this identification of active areas to previous publications.

  18. Nanosilver on nanostructured silica: Antibacterial activity and Ag surface area.

    PubMed

    Sotiriou, Georgios A; Teleki, Alexandra; Camenzind, Adrian; Krumeich, Frank; Meyer, Andreas; Panke, Sven; Pratsinis, Sotiris E

    2011-06-01

    Nanosilver is one of the first nanomaterials to be closely monitored by regulatory agencies worldwide motivating research to better understand the relationship between Ag characteristics and antibacterial activity. Nanosilver immobilized on nanostructured silica facilitates such investigations as the SiO2 support hinders the growth of nanosilver during its synthesis and, most importantly, its flocculation in bacterial suspensions. Here, such composite Ag/silica nanoparticles were made by flame spray pyrolysis of appropriate solutions of Ag-acetate or Ag-nitrate and hexamethyldisiloxane or tetraethylorthosilicate in ethanol, propanol, diethylene glucolmonobutyl ether, acetonitrile or ethylhexanoic acid. The effect of solution composition on nanosilver characteristics and antibacterial activity against the Gram negative Escherichia coli was investigated by monitoring their recombinantly synthesized green fluorescent protein. Suspensions with identical Ag mass concentration exhibited drastically different antibacterial activity pointing out that the nanosilver surface area concentration rather than its mass or molar or number concentration determine best its antibacterial activity. Nanosilver made from Ag-acetate showed a unimodal size distribution, while that made from inexpensive Ag-nitrate exhibited a bimodal one. Regardless of precursor composition or nanosilver size distribution, the antibacterial activity of nanosilver was correlated best with its surface area concentration in solution. PMID:23730198

  19. Nanosilver on nanostructured silica: Antibacterial activity and Ag surface area.

    PubMed

    Sotiriou, Georgios A; Teleki, Alexandra; Camenzind, Adrian; Krumeich, Frank; Meyer, Andreas; Panke, Sven; Pratsinis, Sotiris E

    2011-06-01

    Nanosilver is one of the first nanomaterials to be closely monitored by regulatory agencies worldwide motivating research to better understand the relationship between Ag characteristics and antibacterial activity. Nanosilver immobilized on nanostructured silica facilitates such investigations as the SiO2 support hinders the growth of nanosilver during its synthesis and, most importantly, its flocculation in bacterial suspensions. Here, such composite Ag/silica nanoparticles were made by flame spray pyrolysis of appropriate solutions of Ag-acetate or Ag-nitrate and hexamethyldisiloxane or tetraethylorthosilicate in ethanol, propanol, diethylene glucolmonobutyl ether, acetonitrile or ethylhexanoic acid. The effect of solution composition on nanosilver characteristics and antibacterial activity against the Gram negative Escherichia coli was investigated by monitoring their recombinantly synthesized green fluorescent protein. Suspensions with identical Ag mass concentration exhibited drastically different antibacterial activity pointing out that the nanosilver surface area concentration rather than its mass or molar or number concentration determine best its antibacterial activity. Nanosilver made from Ag-acetate showed a unimodal size distribution, while that made from inexpensive Ag-nitrate exhibited a bimodal one. Regardless of precursor composition or nanosilver size distribution, the antibacterial activity of nanosilver was correlated best with its surface area concentration in solution.

  20. Electroretinography recordings using a light emitting diode active corneal electrode in healthy beagle dogs

    PubMed Central

    Itoh, Yoshiki; Maehara, Seiya; Yamashita, Kazuto; Izumisawa, Yasuharu

    2013-01-01

    Electroretinography (ERG) is a well-established diagnostic procedure for objectively evaluating retinal function. In this study, ERG in beagle dogs, which are a popular experimental animal, was performed to determine the normal range of ERG variables and assess differences between the left and right eyes. ERG findings including rod, combined rod-cone, single-flash cone, and 30-Hz flicker responses were recorded with an LED-electrode in 43 sedated beagle dogs. The subjects were divided into young (< 1 year old), adult (1~5 years old), and senile animals (≥ 6 years old). Normal ERG ranges were obtained. Significant differences in b-wave amplitude along with b/a ratio of the combined rod-cone response were found between the young and adult animals as well as young and senile dogs. No significant differences were observed between the left and right eyes. ERG variables in beagle dogs differed by age due to age-related retinal changes. Thus, we propose that normal ERG ranges should be determined according to age in each clinic and laboratory using its own equipment because each institution usually has different systems or protocols for ERG testing. PMID:23388429

  1. Flexible electrode belt for EIT using nanofiber web dry electrodes.

    PubMed

    Oh, Tong In; Kim, Tae Eui; Yoon, Sun; Kim, Kap Jin; Woo, Eung Je; Sadleir, Rosalind J

    2012-10-01

    Efficient connection of multiple electrodes to the body for impedance measurement and voltage monitoring applications is of critical importance to measurement quality and practicality. Electrical impedance tomography (EIT) experiments have generally required a cumbersome procedure to attach the multiple electrodes needed in EIT. Once placed, these electrodes must then maintain good contact with the skin during measurements that may last several hours. There is usually also the need to manage the wires that run between the electrodes and the EIT system. These problems become more severe as the number of electrodes increases, and may limit the practicality and portability of this imaging method. There have been several trials describing human-electrode interfaces using configurations such as electrode belts, helmets or rings. In this paper, we describe an electrode belt we developed for long-term EIT monitoring of human lung ventilation. The belt included 16 embossed electrodes that were designed to make good contact with the skin. The electrodes were fabricated using an Ag-plated PVDF nanofiber web and metallic threads. A large contact area and padding were used behind each electrode to improve subject comfort and reduce contact impedances. The electrodes were incorporated, equally spaced, into an elasticated fabric belt. We tested the electrode belt in conjunction with the KHU Mark1 multi-frequency EIT system, and demonstrate time-difference images of phantoms and human subjects during normal breathing and running. We found that the Ag-plated PVDF nanofiber web electrodes were suitable for long-term measurement because of their flexibility and durability. Moreover, the contact impedance and stability of the Ag-plated PVDF nanofiber web electrodes were found to be comparable to similarly tested Ag/AgCl electrodes.

  2. Flexible electrode belt for EIT using nanofiber web dry electrodes.

    PubMed

    Oh, Tong In; Kim, Tae Eui; Yoon, Sun; Kim, Kap Jin; Woo, Eung Je; Sadleir, Rosalind J

    2012-10-01

    Efficient connection of multiple electrodes to the body for impedance measurement and voltage monitoring applications is of critical importance to measurement quality and practicality. Electrical impedance tomography (EIT) experiments have generally required a cumbersome procedure to attach the multiple electrodes needed in EIT. Once placed, these electrodes must then maintain good contact with the skin during measurements that may last several hours. There is usually also the need to manage the wires that run between the electrodes and the EIT system. These problems become more severe as the number of electrodes increases, and may limit the practicality and portability of this imaging method. There have been several trials describing human-electrode interfaces using configurations such as electrode belts, helmets or rings. In this paper, we describe an electrode belt we developed for long-term EIT monitoring of human lung ventilation. The belt included 16 embossed electrodes that were designed to make good contact with the skin. The electrodes were fabricated using an Ag-plated PVDF nanofiber web and metallic threads. A large contact area and padding were used behind each electrode to improve subject comfort and reduce contact impedances. The electrodes were incorporated, equally spaced, into an elasticated fabric belt. We tested the electrode belt in conjunction with the KHU Mark1 multi-frequency EIT system, and demonstrate time-difference images of phantoms and human subjects during normal breathing and running. We found that the Ag-plated PVDF nanofiber web electrodes were suitable for long-term measurement because of their flexibility and durability. Moreover, the contact impedance and stability of the Ag-plated PVDF nanofiber web electrodes were found to be comparable to similarly tested Ag/AgCl electrodes. PMID:22945587

  3. Advances in Studies of Electrode Kinetics and Mass Transport in AMTEC Cells (abstract)

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; Kisor, A.; O'Connor, D.; Kikkert, S.

    1993-01-01

    Previous work reported from JPL has included characterization of electrode kinetics and alkali atom transport from electrodes including Mo, W, WRh(sub x), WPt(sub x)(Mn), in sodium AMTEC cells and vapor exposure cells, and Mo in potassium vapor exposure cells. These studies were generally performed in cells with small area electrodes (about 1 to 5 cm(sup 2)), and device geometry had little effect on transport. Alkali diffusion coefficients through these electrodes have been characterized, and approximate surface diffusion coefficients derived in cases of activated transport. A basic model of electrode kinetic at the alkali metal vapor/porous metal electrode/alkali beta'-alumina solid electrolyte three phase boundary has been proposed which accounts for electrochemical reaction rates with a collision frequency near the three phase boundary and tunneling from the porous electrode partially covered with adsorbed alkali metal atoms. The small electrode effect in AMTEC cells has been discussed in several papers, but quantitative investigations have described only the overall effect and the important contribution of electrolyte resistance. The quantitative characterization of transport losses in cells with large area electrodes has been limited to simulations of large area electrode effects, or characterization of transport losses from large area electrodes with significant longitudinal temperature gradients. This paper describes new investigations of electrochemical kinetics and transport, particularily with WPt(sub 3.5) electrodes, including the influence of electrode size on the mass transport loss in the AMTEC cell. These electrodes possess excellent sodium transport properties making verification of device limitations on transport much more readily attained.

  4. Foraging Activities of Coptotermes formosanus in Subtropical Areas in China.

    PubMed

    Ruan, Guanhua; Song, Xiaogang; Hu, Yin; Han, Na; Zhang, Dayu

    2015-04-01

    The foraging activities, including foraging range and seasonal fluctuation of the Formosan subterranean termite, Coptotermes formosanus Shiraki, were investigated in subtropical areas in China. Six mature C. formosanus colonies were selected for this study. Foraging distance and area were conducted in Anqing1, Hengyang, and Wuxi1 colonies, while the seasonal fluctuation was conducted in Wuxi2, Wuwei, and Anqing2 colonies. Mark-release-recapture method analysis showed that the Formosan termites foraged at least 11.5, 28.7, and 56.8 m away from the main nest and covered 98.1, 543.7, and 671.9 m2 of foraging area at Anqing1, Hengyang, and Wuxi1 site, respectively. The seasonal fluctuation in termite colony activity showed an "M shape" pattern according to the wood damages caused by termites at monitoring stations. Peak colony activity at Wuxi2, Wuwei, and Anqing2 occurred in July and October, June and September, July and October, respectively. This study provides critical information for the integrated management of C. formosanus, including baiting application in the subtropical regions of China, where it constitutes the most destructive pest for household structures. PMID:26470181

  5. Subcutaneous electrode structure

    NASA Technical Reports Server (NTRS)

    Lund, G. F. (Inventor)

    1980-01-01

    A subcutaneous electrode structure suitable for a chronic implant and for taking a low noise electrocardiogram of an active animal, comprises a thin inflexible, smooth disc of stainless steel having a diameter as of 5 to 30 mm, which is sutured in place to the animal being monitored. The disc electrode includes a radially directed slot extending in from the periphery of the disc for approximately 1/3 of the diameter. Electrical connection is made to the disc by means of a flexible lead wire that extends longitudinally of the slot and is woven through apertures in the disc and held at the terminal end by means of a spot welded tab. Within the slot, an electrically insulative sleeve, such as silicone rubber, is placed over the wire. The wire with the sleeve mounted thereon is captured in the plane of the disc and within the slot by means of crimping tabs extending laterally of the slot and over the insulative wire. The marginal lip of the slot area is apertured and an electrically insulative potting material such as silicone rubber, is potted in place overlaying the wire slot region and through the apertures.

  6. ECoG Gamma Activity during a Language Task: Differentiating Expressive and Receptive Speech Areas

    ERIC Educational Resources Information Center

    Towle, Vernon L.; Yoon, Hyun-Ah; Castelle, Michael; Edgar, J. Christopher; Biassou, Nadia M.; Frim, David M.; Spire, Jean-Paul; Kohrman, Michael H.

    2008-01-01

    Electrocorticographic (ECoG) spectral patterns obtained during language tasks from 12 epilepsy patients (age: 12-44 years) were analyzed in order to identify and characterize cortical language areas. ECoG from 63 subdural electrodes (500 Hz/channel) chronically implanted over frontal, parietal and temporal lobes were examined. Two language tasks…

  7. Determining water content in activated carbon for double-layer capacitor electrodes

    NASA Astrophysics Data System (ADS)

    Egashira, Minato; Izumi, Takuma; Yoshimoto, Nobuko; Morita, Masayuki

    2016-09-01

    Karl-Fisher titration is used to estimate water contents in activated carbon and the distribution of impurity-level water in an activated carbon-solvent system. Normalization of the water content of activated carbon is attempted using vacuum drying after immersion in water was controlled. Although vacuum drying at 473 K and 24 h can remove large amounts of water, a substantial amount of water remains in the activated carbon. The water release to propylene carbonate is less than that to acetonitrile. The degradation of capacitor cell capacitance for activated carbon with some amount of water differs according to the electrolyte solvent type: acetonitrile promotes greater degradation than propylene carbonate does.

  8. Coupling ion-exchangers with inexpensive activated carbon fiber electrodes to enhance the performance of capacitive deionization cells for domestic wastewater desalination.

    PubMed

    Liang, Peng; Yuan, Lulu; Yang, Xufei; Zhou, Shaoji; Huang, Xia

    2013-05-01

    A capacitive deionization (CDI) cell was built with electrodes made of an inexpensive commercial activated carbon fiber (ACF), and then modified by incorporating ion-exchangers into the cell compartment. Three modified CDI designs were tested: MCDI - a CDI with electrodes covered by ion-exchange membranes (IEMs) of the same polarity, FCDI - a CDI with electrodes covered by ion-exchange felts (IEFs), and R-MCDI - an MCDI with cell chamber packed with ion-exchange resin (IER) granules. The cell was operated in the batch reactor mode with an initial salt concentration of 1000 mg/L NaCl, a typical level of domestic wastewater. The desalination tests involved investigations of two consecutive operation stages of CDIs: electrical adsorption (at an applied voltage of 1.2 V) and desorption [including short circuit (SC) desorption and discharge (DC) desorption]. The R-MCDI showed the highest electric adsorption as measured in the present study by desalination rate [670 ± 20 mg/(L h)] and salt removal efficiency (90 ± 1%) at 60 min, followed by the MCDI [440 ± 15 mg/(L h) and 60 ± 2%, respectively]. The superior desalination performance of the R-MCDI over other designs was also affirmed by its highest charge efficiency (110 ± 7%) and fastest desorption rates at both the SC [1960 ± 15 mg/(L·h)] and DC [3000 ± 20 mg/(L·h)] modes. The desalination rate and salt removal efficiency of the R-MCDI increased from ∼270 mg/(L h) and 83% to ∼650 mg/(L h) and 98% respectively when the applied voltage increased from 0.6 V to 1.4 V, while decreased slightly when lowering the salt water flow rate that fed into the cell. The packing of IER granules in the R-MCDI provided additional surface area for ions transfer; meanwhile, according to the results of electrochemical impedance spectroscopy (EIS) analysis, it substantially lower down the R-MCDI's ohmic resistance, resulting in improved desalination performance.

  9. Active system area networks for data intensive computations. Final report

    SciTech Connect

    2002-04-01

    The goal of the Active System Area Networks (ASAN) project is to develop hardware and software technologies for the implementation of active system area networks (ASANs). The use of the term ''active'' refers to the ability of the network interfaces to perform application-specific as well as system level computations in addition to their traditional role of data transfer. This project adopts the view that the network infrastructure should be an active computational entity capable of supporting certain classes of computations that would otherwise be performed on the host CPUs. The result is a unique network-wide programming model where computations are dynamically placed within the host CPUs or the NIs depending upon the quality of service demands and network/CPU resource availability. The projects seeks to demonstrate that such an approach is a better match for data intensive network-based applications and that the advent of low-cost powerful embedded processors and configurable hardware makes such an approach economically viable and desirable.

  10. Recording extracellular neural activity in the behaving monkey using a semichronic and high-density electrode system.

    PubMed

    Mendoza, Germán; Peyrache, Adrien; Gámez, Jorge; Prado, Luis; Buzsáki, György; Merchant, Hugo

    2016-08-01

    We describe a technique to semichronically record the cortical extracellular neural activity in the behaving monkey employing commercial high-density electrodes. After the design and construction of low cost microdrives that allow varying the depth of the recording locations after the implantation surgery, we recorded the extracellular unit activity from pools of neurons at different depths in the presupplementary motor cortex (pre-SMA) of a rhesus monkey trained in a tapping task. The collected data were processed to classify cells as putative pyramidal cells or interneurons on the basis of their waveform features. We also demonstrate that short time cross-correlogram occasionally yields unit pairs with high short latency (<5 ms), narrow bin (<3 ms) peaks, indicative of monosynaptic spike transmission from pre- to postsynaptic neurons. These methods have been verified extensively in rodents. Finally, we observed that the pattern of population activity was repetitive over distinct trials of the tapping task. These results show that the semichronic technique is a viable option for the large-scale parallel recording of local circuit activity at different depths in the cortex of the macaque monkey and other large species. PMID:27169505

  11. Direct-current Stimulation and Multi-electrode Array Recording of Seizure-like Activity in Mice Brain Slice Preparation.

    PubMed

    Lu, Hsiang-Chin; Chang, Wei-Jen; Chang, Wei-Pang; Shyu, Bai-Chuang

    2016-01-01

    Cathodal transcranial direct-current stimulation (tDCS) induces suppressive effects on drug-resistant seizures. To perform effective actions, the stimulation parameters (e.g., orientation, field strength, and stimulation duration) need to be examined in mice brain slice preparations. Testing and arranging the orientation of the electrode relative to the position of the mice brain slice are feasible. The present method preserves the thalamocingulate pathway to evaluate the effect of DCS on anterior cingulate cortex seizure-like activities. The results of the multichannel array recordings indicated that cathodal DCS significantly decreased the amplitude of the stimulation-evoked responses and duration of 4-aminopyridine and bicuculline-induced seizure-like activity. This study also found that cathodal DCS applications at 15 min caused long-term depression in the thalamocingulate pathway. The present study investigates the effects of DCS on thalamocingulate synaptic plasticity and acute seizure-like activities. The current procedure can test the optimal stimulation parameters including orientation, field strength, and stimulation duration in an in vitro mouse model. Also, the method can evaluate the effects of DCS on cortical seizure-like activities at both the cellular and network levels. PMID:27341682

  12. Structural and Electrochemical Impacts of Oxygen Doped and Surfactant Coated Activated Carbon Electrodes in Li-ion Batteries

    NASA Astrophysics Data System (ADS)

    Collins, John; Gourdin, Gerald; Qu, Deyang; Foster, Michelle

    2013-03-01

    Passive charge and discharge dynamics are necessary for advancing Li-ion batteries. Surfactant adsorption on activated carbon has been shown to promote advancements in the discharge capacity, time and cycle-ability of electrochemical systems--specifically by enhancing diffusion pathways for ion insertion/de-insertion and suppressing pore blockage from precipitates known to form during charge/discharge states. Enhancement of surfactant chemisorption on activated carbon is achieved through oxygen doping of the carbon surface. In addition, doping alters the degree of Faradaic processes occurring in solution, resulting in prolonged reduction at the carbon surface. The work presented describes how surface oxygen groups on a granulated activated carbon have been manipulated using nitric acid in a controlled, stepwise fashion. A nonionic surfactant was applied to oxidized and non-oxidized samples at various concentrations. The composition and structure of the activated carbon surface was characterized using DRIFTS, Raman Spectroscopy, SEM and Porosimetry. The charge/discharge Li insertion capacities along with correlating surface microstructure changes were analyzed for all treated electrodes at progressive oxidation stages.

  13. Electrochemical Preparation and Characterization of a Gold Nanoparticles Graphite Electrode: Application to Myricetin Antioxidant Analysis.

    PubMed

    Ng, Khan Loon; Lee, See Mun; Khor, Sook Mei; Tan, Guan Huat

    2015-01-01

    Graphite material is abundantly available from recyclable sources. It possesses a good electrical conductance property, which makes it an attractive material as a working electrode. However, due to a high activation overpotential it has limited applications as compared to other solid metal electrodes. In this present work, we obtained a graphite rod from a used battery, and carried out electrochemical improvements by electro-deposition with gold nanoparticles (AuNPs). The heterogeneous electron transfer rate and electron transfer resistance of the fabricated electrode were improved. The electrode overpotential has shown improvement by 50 mV, and the effective surface area has increased by 2 fold. To determine the practicability of the AuNPs/graphite electrode, we used the electrode in the analysis of myricetin. A square-wave voltammetry was used in the analysis, and the detection response increased by 2.5 fold, which suggested an improvement in the electrode sensitivity.

  14. Graphene-doped electrospun nanofiber membrane electrodes and proton exchange membrane fuel cell performance

    NASA Astrophysics Data System (ADS)

    Wei, Meng; Jiang, Min; Liu, Xiaobo; Wang, Min; Mu, Shichun

    2016-09-01

    A rational electrode structure can allow proton exchange membrane (PEM) fuel cells own high performance with a low noble metal loading and an optimal transport pathway for reaction species. In this study, we develop a graphene doped polyacrylonitile (PAN)/polyvinylident fluoride (PVDF) (GPP) electrospun nanofiber electrode with improved electrical conductivity and high porosity, which could enhance the triple reaction boundary and promote gas and water transport throughout the porous electrode. Thus the increased electrochemical active surface area (ECSA) of Pt catalysts and fuel cell performance can be expected. As results, the ECSA of hot-pressed electrospun electrodes with 2 wt% graphene oxide (GO) is up to 84.3 m2/g, which is greatly larger than that of the conventional electrode (59.5 m2/g). Significantly, the GPP nanofiber electrospun electrode with Pt loading of 0.2 mg/cm2 exhibits higher fuel cell voltage output and stability than the conventional electrode.

  15. Electric crosstalk impairs spatial resolution of multi-electrode arrays in retinal implants

    NASA Astrophysics Data System (ADS)

    Wilke, R. G. H.; Khalili Moghadam, G.; Lovell, N. H.; Suaning, G. J.; Dokos, S.

    2011-08-01

    Active multi-electrode arrays are used in vision prostheses, including optic nerve cuffs and cortical and retinal implants for stimulation of neural tissue. For retinal implants, arrays with up to 1500 electrodes are used in clinical trials. The ability to convey information with high spatial resolution is critical for these applications. To assess the extent to which spatial resolution is impaired by electric crosstalk, finite-element simulation of electric field distribution in a simplified passive tissue model of the retina is performed. The effects of electrode size, electrode spacing, distance to target cells, and electrode return configuration (monopolar, tripolar, hexagonal) on spatial resolution is investigated in the form of a mathematical model of electric field distribution. Results show that spatial resolution is impaired with increased distance from the electrode array to the target cells. This effect can be partly compensated by non-monopolar electrode configurations and larger electrode diameters, albeit at the expense of lower pixel densities due to larger covering areas by each stimulation electrode. In applications where multi-electrode arrays can be brought into close proximity to target cells, as presumably with epiretinal implants, smaller electrodes in monopolar configuration can provide the highest spatial resolution. However, if the implantation site is further from the target cells, as is the case in suprachoroidal approaches, hexagonally guarded electrode return configurations can convey higher spatial resolution. This paper was originally submitted for the special issue containing contributions from the Sixth Biennial Research Congress of The Eye and the Chip.

  16. Electric crosstalk impairs spatial resolution of multi-electrode arrays in retinal implants.

    PubMed

    Wilke, R G H; Moghadam, G Khalili; Lovell, N H; Suaning, G J; Dokos, S

    2011-08-01

    Active multi-electrode arrays are used in vision prostheses, including optic nerve cuffs and cortical and retinal implants for stimulation of neural tissue. For retinal implants, arrays with up to 1500 electrodes are used in clinical trials. The ability to convey information with high spatial resolution is critical for these applications. To assess the extent to which spatial resolution is impaired by electric crosstalk, finite-element simulation of electric field distribution in a simplified passive tissue model of the retina is performed. The effects of electrode size, electrode spacing, distance to target cells, and electrode return configuration (monopolar, tripolar, hexagonal) on spatial resolution is investigated in the form of a mathematical model of electric field distribution. Results show that spatial resolution is impaired with increased distance from the electrode array to the target cells. This effect can be partly compensated by non-monopolar electrode configurations and larger electrode diameters, albeit at the expense of lower pixel densities due to larger covering areas by each stimulation electrode. In applications where multi-electrode arrays can be brought into close proximity to target cells, as presumably with epiretinal implants, smaller electrodes in monopolar configuration can provide the highest spatial resolution. However, if the implantation site is further from the target cells, as is the case in suprachoroidal approaches, hexagonally guarded electrode return configurations can convey higher spatial resolution. PMID:21673395

  17. Multifunctional reference electrode

    DOEpatents

    Redey, Laszlo; Vissers, Donald R.

    1983-01-01

    A multifunctional, low mass reference electrode of a nickel tube, thermocouple means inside the nickel tube electrically insulated therefrom for measuring the temperature thereof, a housing surrounding the nickel tube, an electrolyte having a fixed sulfide ion activity between the housing and the outer surface of the nickel tube forming the nickel/nickel sulfide/sulfide half-cell. An ion diffusion barrier is associated with the housing in contact with the electrolyte. Also disclosed is a cell using the reference electrode to measure characteristics of a working electrode.

  18. Multifunctional reference electrode

    DOEpatents

    Redey, L.; Vissers, D.R.

    1981-12-30

    A multifunctional, low mass reference electrode of a nickel tube, thermocouple means inside the nickel tube electrically insulated therefrom for measuring the temperature thereof, a housing surrounding the nickel tube, an electrolyte having a fixed sulfide ion activity between the housing and the outer surface of the nickel tube forming the nickel/nickel sulfide/sulfide half-cell are described. An ion diffusion barrier is associated with the housing in contact with the electrolyte. Also disclosed is a cell using the reference electrode to measure characteristics of a working electrode.

  19. Protected Areas in Tropical Africa: Assessing Threats and Conservation Activities

    PubMed Central

    Tranquilli, Sandra; Abedi-Lartey, Michael; Abernethy, Katharine; Amsini, Fidèle; Asamoah, Augustus; Balangtaa, Cletus; Blake, Stephen; Bouanga, Estelle; Breuer, Thomas; Brncic, Terry M.; Campbell, Geneviève; Chancellor, Rebecca; Chapman, Colin A.; Davenport, Tim R. B.; Dunn, Andrew; Dupain, Jef; Ekobo, Atanga; Eno-Nku, Manasseh; Etoga, Gilles; Furuichi, Takeshi; Gatti, Sylvain; Ghiurghi, Andrea; Hashimoto, Chie; Hart, John A.; Head, Josephine; Hega, Martin; Herbinger, Ilka; Hicks, Thurston C.; Holbech, Lars H.; Huijbregts, Bas; Kühl, Hjalmar S.; Imong, Inaoyom; Yeno, Stephane Le-Duc; Linder, Joshua; Marshall, Phil; Lero, Peter Minasoma; Morgan, David; Mubalama, Leonard; N'Goran, Paul K.; Nicholas, Aaron; Nixon, Stuart; Normand, Emmanuelle; Nziguyimpa, Leonidas; Nzooh-Dongmo, Zacharie; Ofori-Amanfo, Richard; Ogunjemite, Babafemi G.; Petre, Charles-Albert; Rainey, Hugo J.; Regnaut, Sebastien; Robinson, Orume; Rundus, Aaron; Sanz, Crickette M.; Okon, David Tiku; Todd, Angelique; Warren, Ymke; Sommer, Volker

    2014-01-01

    Numerous protected areas (PAs) have been created in Africa to safeguard wildlife and other natural resources. However, significant threats from anthropogenic activities and decline of wildlife populations persist, while conservation efforts in most PAs are still minimal. We assessed the impact level of the most common threats to wildlife within PAs in tropical Africa and the relationship of conservation activities with threat impact level. We collated data on 98 PAs with tropical forest cover from 15 countries across West, Central and East Africa. For this, we assembled information about local threats as well as conservation activities from published and unpublished literature, and questionnaires sent to long-term field workers. We constructed general linear models to test the significance of specific conservation activities in relation to the threat impact level. Subsistence and commercial hunting were identified as the most common direct threats to wildlife and found to be most prevalent in West and Central Africa. Agriculture and logging represented the most common indirect threats, and were most prevalent in West Africa. We found that the long-term presence of conservation activities (such as law enforcement, research and tourism) was associated with lower threat impact levels. Our results highlight deficiencies in the management effectiveness of several PAs across tropical Africa, and conclude that PA management should invest more into conservation activities with long-term duration. PMID:25469888

  20. Protected areas in tropical Africa: assessing threats and conservation activities.

    PubMed

    Tranquilli, Sandra; Abedi-Lartey, Michael; Abernethy, Katharine; Amsini, Fidèle; Asamoah, Augustus; Balangtaa, Cletus; Blake, Stephen; Bouanga, Estelle; Breuer, Thomas; Brncic, Terry M; Campbell, Geneviève; Chancellor, Rebecca; Chapman, Colin A; Davenport, Tim R B; Dunn, Andrew; Dupain, Jef; Ekobo, Atanga; Eno-Nku, Manasseh; Etoga, Gilles; Furuichi, Takeshi; Gatti, Sylvain; Ghiurghi, Andrea; Hashimoto, Chie; Hart, John A; Head, Josephine; Hega, Martin; Herbinger, Ilka; Hicks, Thurston C; Holbech, Lars H; Huijbregts, Bas; Kühl, Hjalmar S; Imong, Inaoyom; Yeno, Stephane Le-Duc; Linder, Joshua; Marshall, Phil; Lero, Peter Minasoma; Morgan, David; Mubalama, Leonard; N'Goran, Paul K; Nicholas, Aaron; Nixon, Stuart; Normand, Emmanuelle; Nziguyimpa, Leonidas; Nzooh-Dongmo, Zacharie; Ofori-Amanfo, Richard; Ogunjemite, Babafemi G; Petre, Charles-Albert; Rainey, Hugo J; Regnaut, Sebastien; Robinson, Orume; Rundus, Aaron; Sanz, Crickette M; Okon, David Tiku; Todd, Angelique; Warren, Ymke; Sommer, Volker

    2014-01-01

    Numerous protected areas (PAs) have been created in Africa to safeguard wildlife and other natural resources. However, significant threats from anthropogenic activities and decline of wildlife populations persist, while conservation efforts in most PAs are still minimal. We assessed the impact level of the most common threats to wildlife within PAs in tropical Africa and the relationship of conservation activities with threat impact level. We collated data on 98 PAs with tropical forest cover from 15 countries across West, Central and East Africa. For this, we assembled information about local threats as well as conservation activities from published and unpublished literature, and questionnaires sent to long-term field workers. We constructed general linear models to test the significance of specific conservation activities in relation to the threat impact level. Subsistence and commercial hunting were identified as the most common direct threats to wildlife and found to be most prevalent in West and Central Africa. Agriculture and logging represented the most common indirect threats, and were most prevalent in West Africa. We found that the long-term presence of conservation activities (such as law enforcement, research and tourism) was associated with lower threat impact levels. Our results highlight deficiencies in the management effectiveness of several PAs across tropical Africa, and conclude that PA management should invest more into conservation activities with long-term duration.

  1. Protected areas in tropical Africa: assessing threats and conservation activities.

    PubMed

    Tranquilli, Sandra; Abedi-Lartey, Michael; Abernethy, Katharine; Amsini, Fidèle; Asamoah, Augustus; Balangtaa, Cletus; Blake, Stephen; Bouanga, Estelle; Breuer, Thomas; Brncic, Terry M; Campbell, Geneviève; Chancellor, Rebecca; Chapman, Colin A; Davenport, Tim R B; Dunn, Andrew; Dupain, Jef; Ekobo, Atanga; Eno-Nku, Manasseh; Etoga, Gilles; Furuichi, Takeshi; Gatti, Sylvain; Ghiurghi, Andrea; Hashimoto, Chie; Hart, John A; Head, Josephine; Hega, Martin; Herbinger, Ilka; Hicks, Thurston C; Holbech, Lars H; Huijbregts, Bas; Kühl, Hjalmar S; Imong, Inaoyom; Yeno, Stephane Le-Duc; Linder, Joshua; Marshall, Phil; Lero, Peter Minasoma; Morgan, David; Mubalama, Leonard; N'Goran, Paul K; Nicholas, Aaron; Nixon, Stuart; Normand, Emmanuelle; Nziguyimpa, Leonidas; Nzooh-Dongmo, Zacharie; Ofori-Amanfo, Richard; Ogunjemite, Babafemi G; Petre, Charles-Albert; Rainey, Hugo J; Regnaut, Sebastien; Robinson, Orume; Rundus, Aaron; Sanz, Crickette M; Okon, David Tiku; Todd, Angelique; Warren, Ymke; Sommer, Volker

    2014-01-01

    Numerous protected areas (PAs) have been created in Africa to safeguard wildlife and other natural resources. However, significant threats from anthropogenic activities and decline of wildlife populations persist, while conservation efforts in most PAs are still minimal. We assessed the impact level of the most common threats to wildlife within PAs in tropical Africa and the relationship of conservation activities with threat impact level. We collated data on 98 PAs with tropical forest cover from 15 countries across West, Central and East Africa. For this, we assembled information about local threats as well as conservation activities from published and unpublished literature, and questionnaires sent to long-term field workers. We constructed general linear models to test the significance of specific conservation activities in relation to the threat impact level. Subsistence and commercial hunting were identified as the most common direct threats to wildlife and found to be most prevalent in West and Central Africa. Agriculture and logging represented the most common indirect threats, and were most prevalent in West Africa. We found that the long-term presence of conservation activities (such as law enforcement, research and tourism) was associated with lower threat impact levels. Our results highlight deficiencies in the management effectiveness of several PAs across tropical Africa, and conclude that PA management should invest more into conservation activities with long-term duration. PMID:25469888

  2. Ultrahigh surface area carbon from carbonated beverages. Combining self-templaing process and in situ activation

    SciTech Connect

    Zhang, Pengfei; Zhang, Zhiyong; Chen, Jihua; Dai, Sheng

    2015-05-11

    Ultrahigh surface area carbons (USACs, e.g., >2000 m2/g) are attracting tremendous attention due to their outstanding performance in energy-related applications. The state-of-art approaches to USACs involve templating or activation methods and all these techniques show certain drawbacks. In this work, a series of USACs with specific surface areas up to 3633 m2/g were prepared in two steps: hydrothermal carbonization (200 °C) of carbonated beverages (CBs) and further thermal treatment in nitrogen (600–1000 °C). The rich inner porosity is formed by a self-templated process during which acids and polyelectrolyte sodium salts in the beverage formulas make some contribution. This strategy covers various CBs such as Coca Cola®, Pepsi Cola®, Dr. Pepper®, andFanta® and it enables an acceptable product yield (based on sugars), for example: 21 wt% for carbon (2940 m2/g) from Coca Cola®. Being potential electrode materials for supercapacitors, those carbon materials possessed a good specific capacitance (57.2–185.7 F g-1) even at a scan rate of 1000 mV s-1. Thus, a simple and efficient strategy to USACs has been presented.

  3. Ultrahigh surface area carbon from carbonated beverages. Combining self-templaing process and in situ activation

    DOE PAGES

    Zhang, Pengfei; Zhang, Zhiyong; Chen, Jihua; Dai, Sheng

    2015-05-11

    Ultrahigh surface area carbons (USACs, e.g., >2000 m2/g) are attracting tremendous attention due to their outstanding performance in energy-related applications. The state-of-art approaches to USACs involve templating or activation methods and all these techniques show certain drawbacks. In this work, a series of USACs with specific surface areas up to 3633 m2/g were prepared in two steps: hydrothermal carbonization (200 °C) of carbonated beverages (CBs) and further thermal treatment in nitrogen (600–1000 °C). The rich inner porosity is formed by a self-templated process during which acids and polyelectrolyte sodium salts in the beverage formulas make some contribution. This strategy coversmore » various CBs such as Coca Cola®, Pepsi Cola®, Dr. Pepper®, andFanta® and it enables an acceptable product yield (based on sugars), for example: 21 wt% for carbon (2940 m2/g) from Coca Cola®. Being potential electrode materials for supercapacitors, those carbon materials possessed a good specific capacitance (57.2–185.7 F g-1) even at a scan rate of 1000 mV s-1. Thus, a simple and efficient strategy to USACs has been presented.« less

  4. ILO activities in the area of chemical safety.

    PubMed

    Obadia, Isaac

    2003-08-21

    The ILO has been active in the area of safety in the use of chemicals at work since the year of its creation in 1919, including the development of international treaties and other technical instruments, the provision of technical assistance to its member States, and the development of chemical safety information systems. The two key ILO standards in this area are the Conventions on safety in the use of chemicals at work (No. 170, 1990), and the Prevention of Major Industrial Accidents (No. 174, 1993). The ILO Programme on occupational safety, health and environment (Safe Work) is currently responsible for ILO chemical safety activities. In the past two decades, most of ILO work in this area has been carried out within the context of inter-agency collaboration frameworks linking the ILO, WHO, UNEP, FAO, UNIDO, UNITAR, and the OECD, including the International Programme on Chemical Safety (IPCS), the Inter-Organisation Programme for the Sound Management of Chemicals (IOMC), and the Intergovernmental Forum on Chemical Safety (IFCS). Apart from the regular development, updating and dissemination of chemical safety information data bases such as the IPCS International Chemical Cards, the elaboration of a Globally harmonized system for the classification and labelling of Chemicals (GHS) has been the most outstanding achievement of this international collaboration on chemical safety.

  5. ILO activities in the area of chemical safety.

    PubMed

    Obadia, Isaac

    2003-08-21

    The ILO has been active in the area of safety in the use of chemicals at work since the year of its creation in 1919, including the development of international treaties and other technical instruments, the provision of technical assistance to its member States, and the development of chemical safety information systems. The two key ILO standards in this area are the Conventions on safety in the use of chemicals at work (No. 170, 1990), and the Prevention of Major Industrial Accidents (No. 174, 1993). The ILO Programme on occupational safety, health and environment (Safe Work) is currently responsible for ILO chemical safety activities. In the past two decades, most of ILO work in this area has been carried out within the context of inter-agency collaboration frameworks linking the ILO, WHO, UNEP, FAO, UNIDO, UNITAR, and the OECD, including the International Programme on Chemical Safety (IPCS), the Inter-Organisation Programme for the Sound Management of Chemicals (IOMC), and the Intergovernmental Forum on Chemical Safety (IFCS). Apart from the regular development, updating and dissemination of chemical safety information data bases such as the IPCS International Chemical Cards, the elaboration of a Globally harmonized system for the classification and labelling of Chemicals (GHS) has been the most outstanding achievement of this international collaboration on chemical safety. PMID:12909402

  6. Total cyanide mass measurement with micro-ion selective electrode for determination of specific activity of carbon-11 cyanide.

    PubMed

    Shea, Colleen; Alexoff, David L; Kim, Dohyun; Hoque, Ruma; Schueller, Michael J; Fowler, Joanna S; Qu, Wenchao

    2015-08-01

    In this research, we aim to directly measure the specific activity (SA) of the carbon-11 cyanide ([(11)C]CN¯) produced by our in-house built automated [(11)C]HCN production system and to identify the major sources of (12)C-cyanide ((12)CN¯). The [(11)C]CN¯ is produced from [(11)C]CO2, which is generated by the (14)N(p,α)(11)C nuclear reaction using a cyclotron. Direct measurement of cyanide concentrations was accomplished using a relatively inexpensive, and easy to use ion selective electrode (ISE) which offered an appropriate range of sensitivity for detecting mass. Multiple components of the [(11)C]HCN production system were isolated in order to determine their relative contributions to (12)CN¯ mass. It was determined that the system gases were responsible for approximately 30% of the mass, and that the molecular sieve/nickel furnace unit contributed approximately 70% of the mass. Beam on target (33µA for 1 and 10min) did not contribute significantly to the mass. Additionally, we compared the SA of our [(11)C]HCN precursor determined using the ISE to the SA of our current [(11)C]CN¯ derived radiotracers determined by HPLC to assure there was no significant difference between the two methods. These results are the first reported use of an ion selective electrode to determine the SA of no-carrier-added cyanide ion, and clearly show that it is a valuable, inexpensive and readily available tool suitable for this purpose.

  7. Total cyanide mass measurement with micro-ion selective electrode for determination of specific activity of carbon-11 cyanide

    DOE PAGES

    Shea, Colleen; Alexoff, David L.; Kim, Dohyun; Hoque, Ruma; Schueller, Michael J.; Fowler, Joanna S.; Qu, Wenchao

    2015-04-25

    In this study, we aim to directly measure the specific activity (SA) of the carbon-11 cyanide ([11C]CN¯) produced by our in-house built automated [11C]HCN production system and to identify the major sources of 12C-cyanide (12CN¯). The [11C]CN¯ is produced from [11C]CO2, which is generated by the 14N(p,α)11C nuclear reaction using a cyclotron. Direct measurement of cyanide concentrations was accomplished using a relatively inexpensive, and easy to use ion selective electrode (ISE) which offered an appropriate range of sensitivity for detecting mass. Multiple components of the [11C]HCN production system were isolated in order to determine their relative contributions to 12CN¯ mass.more » It was determined that the system gases were responsible for approximately 30% of the mass, and that the molecular sieve/nickel furnace unit contributed approximately 70% of the mass. Beam on target (33 µA for 1 and 10 min) did not contribute significantly to the mass. Additionally, we compared the SA of our [11C]HCN precursor determined using the ISE to the SA of our current [11C]CN¯ derived radiotracers determined by HPLC to assure there was no significant difference between the two methods. These results are the first reported use of an ion selective electrode to determine the SA of no-carrier-added cyanide ion, and clearly show that it is a valuable, inexpensive and readily available tool suitable for this purpose.« less

  8. Total cyanide mass measurement with micro-ion selective electrode for determination of specific activity of carbon-11 cyanide

    SciTech Connect

    Shea, Colleen; Alexoff, David L.; Kim, Dohyun; Hoque, Ruma; Schueller, Michael J.; Fowler, Joanna S.; Qu, Wenchao

    2015-04-25

    In this study, we aim to directly measure the specific activity (SA) of the carbon-11 cyanide ([11C]CN¯) produced by our in-house built automated [11C]HCN production system and to identify the major sources of 12C-cyanide (12CN¯). The [11C]CN¯ is produced from [11C]CO2, which is generated by the 14N(p,α)11C nuclear reaction using a cyclotron. Direct measurement of cyanide concentrations was accomplished using a relatively inexpensive, and easy to use ion selective electrode (ISE) which offered an appropriate range of sensitivity for detecting mass. Multiple components of the [11C]HCN production system were isolated in order to determine their relative contributions to 12CN¯ mass. It was determined that the system gases were responsible for approximately 30% of the mass, and that the molecular sieve/nickel furnace unit contributed approximately 70% of the mass. Beam on target (33 µA for 1 and 10 min) did not contribute significantly to the mass. Additionally, we compared the SA of our [11C]HCN precursor determined using the ISE to the SA of our current [11C]CN¯ derived radiotracers determined by HPLC to assure there was no significant difference between the two methods. These results are the first reported use of an ion selective electrode to determine the SA of no-carrier-added cyanide ion, and clearly show that it is a valuable, inexpensive and readily available tool suitable for this purpose.

  9. Well completion practices in active U. S. areas

    SciTech Connect

    Not Available

    1980-05-01

    This work presents results of field visits and meetings with oil companies and independent operators to determine the latest in drilling and well completion practices in active US areas. Those areas and practices include S. Texas (operations to control annular gas flow during cementing); offshore Texas (rapidly changing pressure gradients require numerous casing strings); Cotton Valley (large sandstone frac jobs); Sonora Basin (smaller, low-rate fracturing); W. Texas (minor Permian basin infill drilling problems); Tuscaloosa trend (drilling operations planned around pressure transition zones); offshore Louisiana (geology and directional work complicate drilling); Overthrust Belt (abnormally low pressure zones and hydrogen sulfide problems); Williston basin (logistics problems); and California (well designs used for steam stimulated production).

  10. Development and testing of an active area neutron dosemeter.

    PubMed

    Brushwood, J M; Gow, J P D; Beeley, P A; Spyrou, N M

    2004-01-01

    This paper describes the design, development and testing of an active area neutron dosemeter (AAND). The classic moderator and central detector is retained but in AAND this arrangement is augmented by small thermal neutron detectors positioned within the moderating body. The outputs from these detectors are combined using an appropriately weighted linear superposition to fit both the ambient dose equivalent and the radiation weighting factor. Experimental verifications of both the modelled detector energy reponses and the overall AAND response are given. In the relatively soft D2O moderated 252Cf spectra, the AAND determined both the H*(10) and mean radiation weighting factor to better than +10%.

  11. H2 damage of ferroelectric Pb(Zr,Ti)O3 thin-film capacitors—The role of catalytic and adsorptive activity of the top electrode

    NASA Astrophysics Data System (ADS)

    Shimamoto, Y.; Kushida-Abdelghafar, K.; Miki, H.; Fujisaki, Y.

    1997-06-01

    Large-scale integrated fabrication in a H2 containing atmosphere, for example, during the passivation process, can cause serious damage in metal/Pb(Zr,Ti)O3/metal capacitors (i.e., Pt/PZT/Pt capacitors). To reveal the cause of the H2 damage, we investigated the behavior of hysteresis curves and the leakage current of capacitors with a top electrode of Pt, Pd, Au, or Ag. Capacitors with a top electrode of Au or Ag are more resistant to the H2 annealing damage than those of Pt or Pd. We found that the H2 damage was strongly affected by the catalytic activity and adsorptive properties of the top electrode when exposed to H2.

  12. The Timing of Noise-Sensitive Activities in Residential Areas

    NASA Technical Reports Server (NTRS)

    Fields, J. M.

    1985-01-01

    Data from a nationally representative survey of time use was analyzed to provide estimates of the percentage of the population which is engaged in noise sensitive activities during each hour of the day on weekdays, Fridays, Saturdays and Sundays. Estimates are provided of the percentage engaged in aural communication activities at home, sleeping at home, or simply at home. The day can be roughly divided into four noise sensitivity periods consisting of two relatively steady state periods, night and day and the early morning and evening transition periods. Weekends differ from weekdays in that the morning transition period is one hour later and the numbers of people engaged in aural communication during the day at home are approximately one-half to three-quarters greater. The extent and timing of noise sensitive activities was found to be similiar for all parts of the United States, for different sizes of urban areas, and for the three seasons surveyed (September through May). The timing of activity periods does not differ greatly by sex or age even though women and people over 65 are much more likely to be at home during the daytime.

  13. Brainstem areas activated by intermittent apnea in awake unrestrained rats.

    PubMed

    Ferreira, C B; Schoorlemmer, G H; Rossi, M V; Takakura, A C; Barna, B F; Moreira, T S; Cravo, S L

    2015-06-25

    We investigated the role of the autonomic nervous system to cardiovascular responses to obstructive apnea in awake, unrestrained rats, and measured expression of Fos induced by apnea in the brainstem. We implanted a tracheal balloon contained in a rigid tube to allow the induction of apnea without inducing pain in the trachea. During bouts of 15s of apnea, heart rate fell from 371±8 to 161±11bpm (mean±SEM, n=15, p<0.01) and arterial pressure increased from 115±2 to 131±4mmHg (p<0.01). Bradycardia was due to parasympathetic activity because it was blocked by the muscarinic antagonist, methylatropine. The pressor response was due to vasoconstriction caused by sympathetic activation because it was blocked by the α1 antagonist, prazosin. Apnea induced Fos expression in several brainstem areas involved in cardiorespiratory control such as the nucleus of the solitary tract (NTS), ventrolateral medulla (VLM), and pons. Ligation of the carotid body artery reduced apnea-induced bradycardia, blocked heart rate responses to i.v. injection of cyanide, reduced Fos expression in the caudal NTS, and increased Fos expression in the rostral VLM. In conclusion, apnea activates neurons in regions that process signals from baroreceptors, chemoreceptors, pulmonary receptors, and regions responsible for autonomic and respiratory activity both in the presence and absence of carotid chemoreceptors.

  14. The timing of noise-sensitive activities in residential areas

    NASA Astrophysics Data System (ADS)

    Fields, J. M.

    1985-07-01

    Data from a nationally representative survey of time use was analyzed to provide estimates of the percentage of the population which is engaged in noise sensitive activities during each hour of the day on weekdays, Fridays, Saturdays and Sundays. Estimates are provided of the percentage engaged in aural communication activities at home, sleeping at home, or simply at home. The day can be roughly divided into four noise sensitivity periods consisting of two relatively steady state periods, night and day and the early morning and evening transition periods. Weekends differ from weekdays in that the morning transition period is one hour later and the numbers of people engaged in aural communication during the day at home are approximately one-half to three-quarters greater. The extent and timing of noise sensitive activities was found to be similiar for all parts of the United States, for different sizes of urban areas, and for the three seasons surveyed (September through May). The timing of activity periods does not differ greatly by sex or age even though women and people over 65 are much more likely to be at home during the daytime.

  15. Metal/Diamond Composite Thin-Film Electrodes: New Carbon Supported Catalytic Electrodes

    SciTech Connect

    Greg M. Swain, PI

    2009-03-10

    The DOE-funded research conducted by the Swain group was focused on (i) understanding structure-function relationships at boron-doped diamond thin-film electrodes, (ii) understanding metal phase formation on diamond thin films and developing electrochemical approaches for producing highly dispersed electrocatalyst particles (e.g., Pt) of small nominal particle size, (iii) studying the electrochemical activity of the electrocatalytic electrodes for hydrogen oxidation and oxygen reduction and (iv) conducting the initial synthesis of high surface area diamond powders and evaluating their electrical and electrochemical properties when mixed with a Teflon binder. (Note: All potentials are reported versus Ag/AgCl (sat'd KCl) and cm{sup 2} refers to the electrode geometric area, unless otherwise stated).

  16. Large area flexible SERS active substrates using engineered nanostructures

    NASA Astrophysics Data System (ADS)

    Chung, Aram J.; Huh, Yun Suk; Erickson, David

    2011-07-01

    Surface enhanced Raman scattering (SERS) is an analytical sensing method that provides label-free detection, molecularly specific information, and extremely high sensitivity. The Raman enhancement that makes this method attractive is mainly attributed to the local amplification of the incident electromagnetic field that occurs when a surface plasmon mode is excited at a metallic nanostructure. Here, we present a simple, cost effective method for creating flexible, large area SERS-active substrates using a new technique we call shadow mask assisted evaporation (SMAE). The advantage of large, flexible SERS substrates such as these is they have more area for multiplexing and can be incorporated into irregular surfaces such as clothing. We demonstrate the formation of four different types of nanostructure arrays (pillar, nib, ellipsoidal cylinder, and triangular tip) by controlling the evaporation angle, substrate rotation, and deposition rate of metals onto anodized alumina nanoporous membranes as large as 27 mm. In addition, we present experimental results showing how a hybrid structure comprising of gold nanospheres embedded in a silver nano-pillar structure can be used to obtain a 50× SERS enhancement over the raw nanoparticles themselves.Surface enhanced Raman scattering (SERS) is an analytical sensing method that provides label-free detection, molecularly specific information, and extremely high sensitivity. The Raman enhancement that makes this method attractive is mainly attributed to the local amplification of the incident electromagnetic field that occurs when a surface plasmon mode is excited at a metallic nanostructure. Here, we present a simple, cost effective method for creating flexible, large area SERS-active substrates using a new technique we call shadow mask assisted evaporation (SMAE). The advantage of large, flexible SERS substrates such as these is they have more area for multiplexing and can be incorporated into irregular surfaces such as

  17. Integral skin electrode for electrocardiography is expendable

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Inexpensive, expendable skin electrode for use in electrocardiography combines an electrical contact, conductive paste, and a skin-attachment adhesive. Application of the electrode requires only degreasing of the skin area.

  18. Long-Lived Electrode For Arc Welding In Vacuum

    NASA Technical Reports Server (NTRS)

    Weeks, Jack L.; Poorman, Richard M.

    1992-01-01

    Improved electrode for gas/tungsten arc welding in vacuum essentially hollow cylinder along which inert gas flows. Interior of cylinder provides large surface area for emission of electrons to form welding arc. Flow of pressurized inert gas inhibits vaporization of hot electrode material. Both features combine to reduce erosion of electrode. Electrode lasts considerably longer in vacuum than conventional electrode.

  19. Direct electrochemistry with enhanced electrocatalytic activity of hemoglobin in hybrid modified electrodes composed of graphene and multi-walled carbon nanotubes.

    PubMed

    Sun, Wei; Cao, Lili; Deng, Ying; Gong, Shixing; Shi, Fan; Li, Gaonan; Sun, Zhenfan

    2013-06-01

    A graphene (GR) and multi-walled carbon nanotubes (MWCNT) hybrid was prepared and modified on a 1-hexylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE). Hemoglobin (Hb) was immobilized on GR-MWCNT/CILE surface with Nafion as the film forming material and the modified electrode was denoted as Nafion/Hb-GR-MWCNT/CILE. Spectroscopic results revealed that Hb molecules retained its native structure in the GR-MWCNT hybird. Electrochemical behaviors of Hb were carefully investigated by cyclic voltammetry with a pair of well-defined redox peaks obtained, which indicated that direct electron transfer of Hb was realized in the hybrid modified electrode. The result could be attributed to the synergistic effects of GR-MWCNT hybrid with enlarged surface area and improved conductivity through the formation of a three-dimensional network. Electrochemical parameters of the immobilized Hb on the electrode surface were further calculated with the results of the electron transfer number (n) as 1.03, the charge transfer coefficient (a) as 0.58 and the electron-transfer rate constant (ks) as 0.97 s(-1). The Hb modified electrode showed good electrocatalytic ability toward the reduction of different substrates such as trichloroacetic acid in the concentration range from 0.05 to 38.0 mmol L(-1) with a detection limit of 0.0153 mmol L(-1) (3σ), H2O2 in the concentration range from 0.1 to 516.0 mmol L(-1) with a detection limit of 34.9 nmol/L (3σ) and NaNO2 in the concentration range from 0.5 to 650.0 mmol L(-1) with a detection limit of 0.282 μmol L(-1) (3σ). So the proposed electrode had the potential application in the third-generation electrochemical biosensors without mediator.

  20. Exposures from thorium contained in thoriated tungsten welding electrodes.

    PubMed

    Jankovic, J T; Underwood, W S; Goodwin, G M

    1999-01-01

    Information provided in this article can be used for estimating the radiation dose associated with the use of thoriated tungsten electrodes in tungsten inert gas welding. Area and breathing zone concentrations of 232Th generated by welding and electrode sharpening along with particle size information; isotopic composition of electrodes from two domestic manufacturers and one European manufacturer; and process variables and estimates on the number of thoriated tungsten electrodes manufactured are presented. Past literature is reviewed and compared with the results of this study. Isotopic analysis of a nominal 2% thoriated electrode found 0.6 ppm +/- 0.4 ppm 230Th and less than 0.1 ppm 228Th. Analysis of a ceriated tungsten electrode and a lanthanated tungsten electrode for 232Th found 124 ppm and 177 ppm, respectively. Electrode consumption during welding was primarily the result of tip sharpening. Less than 3% of the weight loss was attributable to the welding process. The in-mask concentration of respirable thorium particulate in the welder's breathing zone was 0.002 x 10(-12) microCi 232Th/mL. The concentration of respirable thorium particulate from electrode sharpening was 1.3 x 10(-12) microCi 232Th/mL. The measured sharpening time was 20 sec per electrode. Estimates of the activity median aerodynamic diameters for the respirable fraction of the welding and electrode sharpening aerosols were 3.5 and 5 microns, respectively, when measured in the breathing zone at 0.3 m (12 inches) from the point of operation. The respirable fraction of the total welding and sharpening aerosols was 45 and 60%. PMID:10386359

  1. High-Performance Fully Nanostructured Photodetector with Single-Crystalline CdS Nanotubes as Active Layer and Very Long Ag Nanowires as Transparent Electrodes.

    PubMed

    An, Qinwei; Meng, Xianquan; Sun, Pan

    2015-10-21

    Long and single-crystalline CdS nanotubes (NTs) have been prepared via a physical evaporation process. A metal-semiconductor-metal full-nanostructured photodetector with CdS NTs as active layer and Ag nanowires (NWs) of low resistivity and high transmissivity as electrodes has been fabricated and characterized. The CdS NTs-based photodetectors exhibit high performance, such as lowest dark currents (0.19 nA) and high photoresponse ratio (Ilight/Idark ≈ 4016) (among CdS nanostructure network photodetectors and NTs netwok photodetectors reported so far) and very low operation voltages (0.5 V). The photoconduction mechanism, including the formation of a Schottky barrier at the interface of Ag NW and CdS NTs and the effect of oxygen adsorption process on the Schottky barrier has also been provided in detail based on the studies of CdS NTs photodetector in air and vacuum. Furthermore, CdS NTs photodetector exhibits an enhanced photosensitivity as compared with CdS NWs photodetector. The enhancement in performance is dependent on the larger surface area of NTs adsorbing more oxygen in air and the microcavity structure of NTs with higher light absorption efficiency and external quantum efficiency. It is believed that CdS NTs can potentially be useful in the designs of 1D CdS-based optoelectronic devices and solar cells.

  2. ECoG gamma activity during a language task: differentiating expressive and receptive speech areas

    PubMed Central

    Yoon, Hyun-Ah; Castelle, Michael; Edgar, J. Christopher; Biassou, Nadia M.; Frim, David M.; Spire, Jean-Paul; Kohrman, Michael H.

    2008-01-01

    Electrocorticographic (ECoG) spectral patterns obtained during language tasks from 12 epilepsy patients (age: 12–44 years) were analysed in order to identify and characterize cortical language areas. ECoG from 63 subdural electrodes (500 Hz/channel) chronically implanted over frontal, parietal and temporal lobes were examined. Two language tasks were performed. During the first language task, patients listened to a series of 50 words preceded by warning tones, and were asked to repeat each word. During a second memory task, subjects heard the 50 words from the first task randomly mixed with 50 new words and were asked to repeat the word only if it was a new word. Increases in ECoG gamma power (70–100 Hz) were observed in response to hearing tones (primary auditory cortex), hearing words (posterior temporal and parietal cortex) and repeating words (lateral frontal and anterior parietal cortex). These findings were compared to direct electrical stimulation and separate analysis of ECoG gamma changes during spontaneous inter-personal conversations. The results indicate that high-frequency ECoG reliably differentiates cortical areas associated with receptive and expressive speech processes for individual patients. Compared to listening to words, greater frontal lobe and decreased temporal lobe gamma activity was observed while speaking. The data support the concept of distributed functionally specific language modules interacting to serve receptive and expressive speech, with frontal lobe ‘corollary discharges’ suppressing low-level receptive cortical language areas in the temporal lobe during speaking. PMID:18669510

  3. Facile, substrate-scale growth of mono- and few-layer homogeneous MoS2 films on Mo foils with enhanced catalytic activity as counter electrodes in DSSCs

    NASA Astrophysics Data System (ADS)

    Antonelou, Aspasia; Syrrokostas, George; Sygellou, Lamprini; Leftheriotis, George; Dracopoulos, Vassileios; Yannopoulos, Spyros N.

    2016-01-01

    The growth of MoS2 films by sulfurization of Mo foils at atmospheric pressure is reported. The growth procedure provides, in a controlled way, mono- and few-layer thick MoS2 films with substrate-scale uniformity across square-centimeter area on commercial foils without any pre- or post-treatment. The prepared few-layer MoS2 films are investigated as counter electrodes for dye-sensitized solar cells (DSSCs) by assessing their ability to catalyse the reduction of I3- to I- in triiodide redox shuttles. The dependence of the MoS2 catalytic activity on the number of monolayers is explored down to the bilayer thickness, showing performance similar to that of, and stability against corrosion better than, Pt-based nanostructured film. The DSSC with the MoS2-Mo counter electrode yields a photovoltaic energy conversion efficiency of 8.4%, very close to that of the Pt-FTO-based DSSC, i.e. 8.7%. The current results disclose a facile, cost-effective and green method for the fabrication of mechanically robust and chemically stable, few-layer MoS2 on flexible Mo substrates and further demonstrate that efficient counter electrodes for DSSCs can be prepared at thicknesses down to the 1-2 nm scale.

  4. Nano-sized Mn-doped activated carbon aerogel as electrode material for electrochemical capacitor: effect of activation conditions.

    PubMed

    Lee, Yoon Jae; Park, Hai Woong; Park, Sunyoung; Song, In Kyu

    2012-07-01

    Carbon aerogel (CA) was prepared by a sol-gel polymerization of resorcinol and formaldehyde, and a series of activated carbon aerogels (ACA-KOH-X, X = 0, 0.3, 0.7, 1, and 2) were then prepared by a chemical activation using different amount of potassium hydroxide (X represented weight ratio of KOH with respect to CA). Specific capacitances of activated carbon aerogels were measured by cyclic voltammetry and galvanostatic charge/discharge methods in 6 M KOH electrolyte. Among the samples prepared, ACA-KOH-0.7 showed the highest specific capacitance (149 F/g). In order to combine excellent electrochemical performance of activated carbon aerogel with pseudocapacitive property of manganese oxide, 7 wt% Mn was doped on activated carbon aerogel (Mn/ACA-KOH-0.7) by an incipient wetness impregnation method. For comparison, 7 wt% Mn was also impregnated on carbon aerogel (Mn/ACA-KOH-0) by the same method. It was revealed that 7 wt% Mn-doped activated carbon aerogel (Mn/ACA-KOH-0.7) showed higher specific capacitance than 7 wt% Mn-doped carbon aerogel (Mn/ACA-KOH-0) (178 F/g vs. 98 F/g). The enhanced capacitance of Mn/ACA-KOH-0.7 was attributed to the outstanding electric properties of activated carbon aerogel as well as the faradaic redox reactions of manganese oxide. PMID:22966708

  5. An Investigation of the Hypoalgesic Effects of TENS Delivered by a Glove Electrode

    PubMed Central

    Cowan, Stephen; McKenna, Joanne; McCrum-Gardner, Evie; Johnson, Mark I.; Sluka, Kathleen A.; Walsh, Deirdre M.

    2009-01-01

    This randomized, placebo-controlled, blinded study investigated the hypoalgesic effects of high-frequency transcutaneous electrical nerve stimulation (TENS) delivered via a glove electrode compared with standard self-adhesive electrodes. Fifty-six TENS-naïve, healthy individuals (18 to 50 years old; 28 men, 28 women) were randomly allocated to 1 of 4 groups (n = 14 per group): glove electrode; placebo TENS using a glove electrode; standard electrode; and no treatment control. Active TENS (continuous stimulus, 100 Hz, strong but comfortable intensity) was applied to the dominant forearm/hand for 30 minutes. Placebo TENS was applied using a burst stimulus, 100-Hz frequency, 5-second cycle time for 42 seconds, after which the current amplitude was automatically reset to 0 mA. Pressure pain thresholds (PPTs) were recorded from 3 points on the dominant and nondominant upper limbs before and after TENS. Statistical analyses of dominant PPT data using between-within groups ANOVA showed significant differences between groups at all 3 recording points (P = .01). Post hoc Scheffe tests indicated no significant difference between the standard electrode and glove electrode groups. There was a significant hypoalgesic effect in the standard electrode group compared with the control group and between the glove electrode group and both the control and placebo TENS groups. There was no significant interactive effect between time and group at any of the recording points (P > .05). Perspective This study presents a comparison of the hypoalgesic effects of 2 different types of TENS electrode, a novel glove electrode and standard self-adhesive rectangular electrodes. The glove electrode provides a larger contact area with the skin, thereby stimulating a greater number of nerve fibers. The results show that both electrodes have similar hypoalgesic effects and therefore give the clinician another choice in electrode. PMID:19398378

  6. Non-activated high surface area expanded graphite oxide for supercapacitors

    NASA Astrophysics Data System (ADS)

    Vermisoglou, E. C.; Giannakopoulou, T.; Romanos, G. E.; Boukos, N.; Giannouri, M.; Lei, C.; Lekakou, C.; Trapalis, C.

    2015-12-01

    Microwave irradiation of graphite oxide constitutes a facile route toward production of reduced graphene oxide, since during this treatment both exfoliation and reduction of graphite oxide occurs. In this work, the effect of pristine graphite (type, size of flakes), pretreatment and oxidation cycles on the finally produced expanded material was examined. All the types of graphite that were tested afforded materials with high BET surface areas ranging from 940 m2/g to 2490 m2/g, without intervening an activation stage at elevated temperature. SEM and TEM images displayed exfoliated structures, where the flakes were significantly detached and curved. The quality of the reduced graphene oxide sheets was evidenced both by X-ray photoelectron spectroscopy and Raman spectroscopy. The electrode material capacitance was determined via electrochemical impedance spectroscopy and cyclic voltammetry. The materials with PEDOT binder had better performance (∼97 F/g) at low operation rates while those with PVDF binder performed better (∼20 F/g) at higher rates, opening up perspectives for their application in supercapacitors.

  7. Early Local Activity in Temporal Areas Reflects Graded Content of Visual Perception.

    PubMed

    Tagliabue, Chiara F; Mazzi, Chiara; Bagattini, Chiara; Savazzi, Silvia

    2016-01-01

    In visual cognitive neuroscience the debate on consciousness is focused on two major topics: the search for the neural correlates of the different properties of visual awareness and the controversy on the graded versus dichotomous nature of visual conscious experience. The aim of this study is to search for the possible neural correlates of different grades of visual awareness investigating the Event Related Potentials to reduced contrast visual stimuli whose perceptual clarity was rated on the four-point Perceptual Awareness Scale. Results revealed a left centro-parietal negative deflection (Visual Awareness Negativity; VAN) peaking at 280-320 ms from stimulus onset, related to the perceptual content of the stimulus, followed by a bilateral positive deflection (Late Positivity; LP) peaking at 510-550 ms over almost all electrodes, reflecting post-perceptual processes performed on such content. Interestingly, the amplitude of both deflections gradually increased as a function of visual awareness. Moreover, the intracranial generators of the phenomenal content (VAN) were found to be located in the left temporal lobe. The present data thus seem to suggest (1) that visual conscious experience is characterized by a gradual increase of perceived clarity at both behavioral and neural level and (2) that the actual content of perceptual experiences emerges from early local activation in temporal areas, without the need of later widespread frontal engagement. PMID:27199809

  8. Early Local Activity in Temporal Areas Reflects Graded Content of Visual Perception

    PubMed Central

    Tagliabue, Chiara F.; Mazzi, Chiara; Bagattini, Chiara; Savazzi, Silvia

    2016-01-01

    In visual cognitive neuroscience the debate on consciousness is focused on two major topics: the search for the neural correlates of the different properties of visual awareness and the controversy on the graded versus dichotomous nature of visual conscious experience. The aim of this study is to search for the possible neural correlates of different grades of visual awareness investigating the Event Related Potentials to reduced contrast visual stimuli whose perceptual clarity was rated on the four-point Perceptual Awareness Scale. Results revealed a left centro-parietal negative deflection (Visual Awareness Negativity; VAN) peaking at 280–320 ms from stimulus onset, related to the perceptual content of the stimulus, followed by a bilateral positive deflection (Late Positivity; LP) peaking at 510–550 ms over almost all electrodes, reflecting post-perceptual processes performed on such content. Interestingly, the amplitude of both deflections gradually increased as a function of visual awareness. Moreover, the intracranial generators of the phenomenal content (VAN) were found to be located in the left temporal lobe. The present data thus seem to suggest (1) that visual conscious experience is characterized by a gradual increase of perceived clarity at both behavioral and neural level and (2) that the actual content of perceptual experiences emerges from early local activation in temporal areas, without the need of later widespread frontal engagement. PMID:27199809

  9. Modification of the ultrasound induced activity by the presence of an electrode in a sonoreactor working at two low frequencies (20 and 40 kHz). Part I: Active zone visualization by laser tomography.

    PubMed

    Mandroyan, A; Viennet, R; Bailly, Y; Doche, M-L; Hihn, J-Y

    2009-01-01

    Sonoelectrochemical experiments differ from sonochemical ones by the introduction of electrodes in the sonicated reaction vessel. The aim of the study is to characterize the changes of the ultrasonic activity induced by the presence of an electrode located in front of the transducer. The scope of our investigations concerns two low frequencies vibration modes: 20 and 40 kHz. For this purpose, two laser visualization techniques have been used. The first part of the study, described in the present paper (part I), deals with the laser tomography technique which provides an accurate picture of the reactor actives zones, related to numerous cavitation events. For each frequency, two parameters were studied: the electrical power supplied to the transducer and the electrode transducer distance. At both frequencies, without electrode, we can observe distinct zones corresponding to cavitation production and stationary waves establishment. When increasing the input power, bubble clouds tend to form a unique cloud near the transducer. In presence of the electrode, bubble cavitation clouds are largely influenced by the obstacle. The second part of the paper (part II) will describe the Particle Image Velocimetry (P.I.V.) technique which allows to measure the velocity vector field in the fluid portion between the horn and the electrode.

  10. Endogenous cholinergic tone modulates spontaneous network level neuronal activity in primary cortical cultures grown on multi-electrode arrays

    PubMed Central

    2013-01-01

    Background Cortical cultures grown long-term on multi-electrode arrays (MEAs) are frequently and extensively used as models of cortical networks in studies of neuronal firing activity, neuropharmacology, toxicology and mechanisms underlying synaptic plasticity. However, in contrast to the predominantly asynchronous neuronal firing activity exhibited by intact cortex, electrophysiological activity of mature cortical cultures is dominated by spontaneous epileptiform-like global burst events which hinders their effective use in network-level studies, particularly for neurally-controlled animat (‘artificial animal’) applications. Thus, the identification of culture features that can be exploited to produce neuronal activity more representative of that seen in vivo could increase the utility and relevance of studies that employ these preparations. Acetylcholine has a recognised neuromodulatory role affecting excitability, rhythmicity, plasticity and information flow in vivo although its endogenous production by cortical cultures and subsequent functional influence upon neuronal excitability remains unknown. Results Consequently, using MEA electrophysiological recording supported by immunohistochemical and RT-qPCR methods, we demonstrate for the first time, the presence of intrinsic cholinergic neurons and significant, endogenous cholinergic tone in cortical cultures with a characterisation of the muscarinic and nicotinic components that underlie modulation of spontaneous neuronal activity. We found that tonic muscarinic ACh receptor (mAChR) activation affects global excitability and burst event regularity in a culture age-dependent manner whilst, in contrast, tonic nicotinic ACh receptor (nAChR) activation can modulate burst duration and the proportion of spikes occurring within bursts in a spatio-temporal fashion. Conclusions We suggest that the presence of significant endogenous cholinergic tone in cortical cultures and the comparability of its modulatory effects

  11. Active Fault Characterization in the Urban Area of Vienna

    NASA Astrophysics Data System (ADS)

    Decker, Kurt; Grupe, Sabine; Hintersberger, Esther

    2016-04-01

    The identification of active faults that lie beneath a city is of key importance for seismic hazard assessment. Fault mapping and characterization in built-up areas with strong anthropogenic overprint is, however, a challenging task. Our study of Quaternary faults in the city of Vienna starts from the re-assessment of a borehole database of the municipality containing several tens of thousands of shallow boreholes. Data provide tight constraints on the geometry of Quaternary deposits and highlight several locations with fault-delimited Middle to Late Pleistocene terrace sediments of the Danube River. Additional information is obtained from geological descriptions of historical outcrops which partly date back to about 1900. The latter were found to be particularly valuable by providing unprejudiced descriptions of Quaternary faults, sometimes with stunning detail. The along-strike continuations of some of the identified faults are further imaged by industrial 2D/3D seismic acquired outside the city limits. The interpretation and the assessment of faults identified within the city benefit from a very well constrained tectonic model of the active Vienna Basin fault system which derived from data obtained outside the city limits. This data suggests that the urban faults are part of a system of normal faults compensating fault-normal extension at a releasing bend of the sinistral Vienna Basin Transfer Fault. Slip rates estimated for the faults in the city are in the range of several hundredths of millimetres per year and match the slip rates of normal faults that were trenched outside the city. The lengths/areas of individual faults estimated from maps and seismic reach up to almost 700 km² suggesting that all of the identified faults are capable of producing earthquakes with magnitudes M>6, some with magnitudes up to M~6.7.

  12. Large area flexible SERS active substrates using engineered nanostructures.

    PubMed

    Chung, Aram J; Huh, Yun Suk; Erickson, David

    2011-07-01

    Surface enhanced Raman scattering (SERS) is an analytical sensing method that provides label-free detection, molecularly specific information, and extremely high sensitivity. The Raman enhancement that makes this method attractive is mainly attributed to the local amplification of the incident electromagnetic field that occurs when a surface plasmon mode is excited at a metallic nanostructure. Here, we present a simple, cost effective method for creating flexible, large area SERS-active substrates using a new technique we call shadow mask assisted evaporation (SMAE). The advantage of large, flexible SERS substrates such as these is they have more area for multiplexing and can be incorporated into irregular surfaces such as clothing. We demonstrate the formation of four different types of nanostructure arrays (pillar, nib, ellipsoidal cylinder, and triangular tip) by controlling the evaporation angle, substrate rotation, and deposition rate of metals onto anodized alumina nanoporous membranes as large as 27 mm. In addition, we present experimental results showing how a hybrid structure comprising of gold nanospheres embedded in a silver nano-pillar structure can be used to obtain a 50× SERS enhancement over the raw nanoparticles themselves.

  13. Electrochemically enhanced removal of polycyclic aromatic basic dyes from dilute aqueous solutions by activated carbon cloth electrodes.

    PubMed

    Bayram, Edip; Ayranci, Erol

    2010-08-15

    Open-circuit (OC) adsorption and electrosorption behaviors of three polycyclic aromatic dyes from dilute aqueous solutions onto activated carbon cloth (ACC) were investigated. The selected dyes were crystal violet (BB-3), basic blue7 (BB-7), and basic blue11 (BB-11). OC adsorption and electrosorption processes were monitored by in situ UV-visible spectrophotometry. Electrosorption was carried out by polarization of an ACC electrode, galvanostatically. Considerable enhancements in removal capacity and duration of the dyes were achieved upon polarization of ACC. Kinetic data for OC adsorption and electrosorption were successfully treated according to pseudo-first-order law, and rate constants were determined. Adsorption isotherms were derived, and the data were treated according to Langmuir and Freundlich equations. Both the rate and extent of adsorption and electrosorption of dyes were found to increase in the order of BB-7 < BB-11 < BB-3. This order was discussed in terms of correlation between sizes of dye species and of ACC pores. Electrodesorption experiments were carried out to explore possibilities of regeneration of ACC. PMID:20704233

  14. Visualization of oxygen reduction sites at Pt electrodes on YSZ by means of 18O tracer incorporation: the width of the electrochemically active zone.

    PubMed

    Opitz, Alexander Karl; Schintlmeister, Arno; Hutter, Herbert; Fleig, Jürgen

    2010-10-21

    In this study the electrochemically active region of oxygen incorporation into yttria stabilized zirconia (YSZ) was visualized by means of (18)O tracer incorporation experiments on dense Pt thin film microelectrodes combined with ToF-SIMS analysis. The localization and the shape of the incorporation zone were found to strongly depend on the polarization of the electrode. In case of lower overpotentials the active zone next to the three phase boundary (TPB) was frame-shaped and located beneath the Pt electrode. Increases in polarization led to an extension of the incorporation zone along the free YSZ surface. Owing to the low temperature of 300-330 °C a profile-broadening caused by diffusion in YSZ could be minimized and quantitatively separated from the measured profiles. The TPB-width (i.e. the decay length of electrochemical activity) was determined to be approximately 1.0-1.3 μm at these temperatures.

  15. Gold electrodes from recordable CDs

    PubMed

    Angnes; Richter; Augelli; Kume

    2000-11-01

    Gold electrodes are widely used in electrochemistry and electroanalytical chemistry. The notable performance when used in stripping analysis of many ionic species and the extraordinary affinity of thio compounds for its surface make these electrodes very suitable for many applications. This paper reports a simple and novel way to construct gold electrodes (CDtrodes) using recordable CDs as the gold source. The nanometer thickness of the gold layer of recordable disks (50-100 nm) favors the construction of band nanoelectrodes with areas as small as 10(-6) cm2. The plane surface can be easily used for the construction of conventional-sized gold electrodes for batch or flow injection analysis or even to obtain electrodes as large as 100 cm2. The low price of commercial recordable CDs allows a "one way use". The evaluation and applicability of these electrodes in the form of nanoelectrodes, in batch and associated with flow cells, are illustrated in this paper.

  16. Preparation and electrochemical characterization of polyaniline/activated carbon composites as an electrode material for supercapacitors.

    PubMed

    Oh, Misoon; Kim, Seok

    2012-01-01

    Polyaniline (PANI)/activated carbon (AC) composites were prepared by a chemical oxidation polymerization. To find an optimum ratio between PANI and AC which shows superior electrochemical properties, the preparation was carried out in changing the amount of added aniline monomers. The morphology of prepared composites was investigated by scanning electron microscopy (SEM) and transmission electron microscope (TEM). The structural and thermal properties were investigated by Fourier transform infrared spectra (FT-IR) and thermal gravimetric analysis (TGA), respectively. The electrochemical properties were characterized by cyclic voltammetry (CV). Composites showed a summation of capacitances that consisted of two origins. One is double-layer capacitance by ACs and the other is faradic capacitance by redox reaction of PANI. Fiber-like PANIs are coated on the surface of ACs and they contribute to the large surface for redox reaction. The vacancy among fibers provided the better diffusion and accessibility of ion. High capacitances of composites were originated from the network structure having vacancy made by PANI fibers. It was found that the composite prepared with 5 ml of aniline monomer and 0.25 g of AC showed the highest capacitance. Capacitance of 771 F/g was obtained at a scan rate of 5 mV/s.

  17. Electrode properties of Sr-doped LaMnO{sub 3} on yttria-stabilized zirconia. 1: Three-phase boundary area

    SciTech Connect

    Heuveln, F.H. van; Berkel, F.P.F. van; Bouwmeester, H.J.M.

    1997-01-01

    The interface microstructure of the state-of-the-art cathode material for solid oxide fuel cells, Sr{sub x}La{sub 1{minus}x}MnO{sub 3} (SLM), was investigated with respect to its electrochemical performance. The interface microstructure was characterized by grain size and coverage of SLM on the electrolyte surface. Variation of the grain size was obtained by using three different sintering temperatures, whereas variation of the coverage was obtained by using two powders with a different morphology. This resulted in a set of six cathode/electrolyte samples with different combinations of grain size and SLM coverage at the interface. The cathode overpotential, as a measure for the electrochemical performance, could not be related to the length of the three-phase boundary. Based on the constriction resistance occurring in the electrolyte a model was developed which provides an estimate for the width of the active three-phase boundary zone. This zone is most likely to extend outside the cathode particle across the zirconia surface. The width calculated in this way was found to vary in the range of 0.03 to 0.07 {micro}m for the different electrode microstructures. It is argued that the actual values may be smaller by one or two orders of magnitude.

  18. Performance of lightweight nickel electrodes

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1988-01-01

    The NASA Lewis Research Center is currently developing nickel electrodes for nickel-hydrogen (Ni-H2) batteries. These electrodes are lighter in weight and have higher energy densities than the heavier state-of-the-art (SOA) sintered nickel electrodes. In the present approach, lightweight materials or plaques are used as conductive supports for the nickel hydroxide active material. These plaques (fiber and felt, nickel plated plastic and graphite) are commercial products that are fabricated into nickel electrodes by electrochemically impregnating them with active material. Evaluation is performed in half cells structured in the bipolar configuration. Initial performance tests include capacity measurements at five discharge levels, C/2, 1.0C, 1.37C, 2.0C and 2.74C. The electrodes that pass the initial tests are life cycle tested in a low earth orbit regime at 80 percent depth of discharge. Different formulations of nickel fiber materials obtained from several manufacturers are currently being tested as possible candidates for nickel electrodes. One particular lightweight fiber mat electrode has accumulated over 3000 cycles to date, with stable capacity and voltage. Life and performance data of this electrode were investigated and presented. Good dimensional stability and active material adherence have been demonstrated in electrodes made from this lightweight plaque.

  19. Performance of lightweight nickel electrodes

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1988-01-01

    The NASA Lewis Research Center is currently developing nickel electrodes for nickel-hydrogen (Ni-H2) batteries. These electrodes are lighter in weight and have higher energy densities than the heavier state-of-the-art (SOA) sintered nickel electrodes. In the present approach, lightweight materials or plaques are used as conductive supports for the nickel hydroxide active material. These plaques (fiber and felt, nickel plated plastic and graphite) are commercial products that are fabricated into nickel electrodes by electrochemically impregnating them with active material. Evaluation is performed in half cells structured in the bipolar configuration. Initial performance tests include capacity measurements at five discharge levels, C/2, 1.0C 1.37C, 2.0C and 2.74C. The electrodes that pass the initial tests are life cycle tested in a low Earth orbit regime at 80 percent depth of discharge. Different formulations of nickel fiber materials obtained from several manufacturers are currently being tested as possible candidates for nickel electrodes. One particular lightweight fiber mat electrode has accumulated over 3000 cycles to date, with stable capacity and voltage. Life and performance data of this electrode were investigated and presented. Good dimensional stability and active material adherence have been demonstrated in electrodes made from this lightweight plaque.

  20. Three-dimensional activated graphene network-sulfonate-terminated polymer nanocomposite as a new electrode material for the sensitive determination of dopamine and heavy metal ions.

    PubMed

    Yuan, Xiaoyan; Zhang, Yijia; Yang, Lu; Deng, Wenfang; Tan, Yueming; Ma, Ming; Xie, Qingji

    2015-03-01

    We report here that three-dimensional activated graphene networks (3DAGNs) are a better matrix to prepare graphene-polymer nanocomposites for sensitive electroanalysis than two-dimensional graphene nanosheets (2DGNs). 3DAGNs were synthesized in advance by the direct carbonization and simultaneous chemical activation of a cobalt ion-impregnated D113-type ion exchange resin, which showed an interconnected network structure and a large specific surface area. Then, the 3DAGN-sulfonate-terminated polymer (STP) nanocomposite was prepared via the in situ chemical co-polymerization of m-aminobenzene sulfonic acid and aniline in the presence of 3DAGNs. The 3DAGN-STP nanocomposite can adsorb dopamine (DA) and heavy metal ions, which was confirmed by quartz crystal microbalance studies. The 3DAGN-STP modified glassy carbon electrode (GCE) was used for the electrochemical detection of DA in the presence of ascorbic acid and uric acid, with a linear response range of 0.1-32 μM and a limit of detection of 10 nM. In addition, differential pulse voltammetry was used for the simultaneous determination of Cd(2+) and Pb(2+) at the 3DAGN-STP/GCE further modified with a bismuth film, exhibiting linear response ranges of 1-70 μg L(-1) for Cd(2+) and 1-80 μg L(-1) for Pb(2+) with limits of detection of 0.1 μg L(-1) for Cd(2+) and 0.2 μg L(-1) for Pb(2+). Because the 3DAGN-STP can integrate the advantages of 3DAGNs with STPs, the 3DAGN-STP/GCE was more sensitive than the bare GCE, 3DAGN/GCE, and 2DGN-STP/GCE for the determination of DA and heavy metal ions. PMID:25611429

  1. Reversibly immobilized biological materials in monolayer films on electrodes

    SciTech Connect

    Weaver, P.F.; Frank, A.J.

    1991-04-08

    A method is provided for reversibly binding charged biological particles in a fluid medium to an electrode surface. The method comprises treating (e.g., derivatizing) the electrode surface with an electrochemically active material; connecting the electrode to an electrical potential; and exposing the fluid medium to the electrode surface in a manner such that the charged particles become adsorbed on the electrode surface.

  2. 21 CFR 882.1310 - Cortical electrode.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) Identification. A cortical electrode is an electrode which is temporarily placed on the surface of the brain for stimulating the brain or recording the brain's electrical activity. (b) Classification. Class II...

  3. 21 CFR 882.1310 - Cortical electrode.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Identification. A cortical electrode is an electrode which is temporarily placed on the surface of the brain for stimulating the brain or recording the brain's electrical activity. (b) Classification. Class II...

  4. 21 CFR 882.1310 - Cortical electrode.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) Identification. A cortical electrode is an electrode which is temporarily placed on the surface of the brain for stimulating the brain or recording the brain's electrical activity. (b) Classification. Class II...

  5. 21 CFR 882.1310 - Cortical electrode.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Identification. A cortical electrode is an electrode which is temporarily placed on the surface of the brain for stimulating the brain or recording the brain's electrical activity. (b) Classification. Class II...

  6. 21 CFR 882.1310 - Cortical electrode.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Identification. A cortical electrode is an electrode which is temporarily placed on the surface of the brain for stimulating the brain or recording the brain's electrical activity. (b) Classification. Class II...

  7. Magnetohydrodynamic electrode

    DOEpatents

    Marchant, David D.; Killpatrick, Don H.

    1978-01-01

    An electrode capable of withstanding high temperatures and suitable for use as a current collector in the channel of a magnetohydrodynamic (MHD) generator consists of a sintered powdered metal base portion, the upper surface of the base being coated with a first layer of nickel aluminide, an intermediate layer of a mixture of nickel aluminide - refractory ceramic on the first layer and a third or outer layer of a refractory ceramic material on the intermediate layer. The sintered powdered metal base resists spalling by the ceramic coatings and permits greater electrode compliance to thermal shock. The density of the powdered metal base can be varied to allow optimization of the thermal conductivity of the electrode and prevent excess heat loss from the channel.

  8. Cermet electrode

    DOEpatents

    Maskalick, Nicholas J.

    1988-08-30

    Disclosed is a cermet electrode consisting of metal particles of nickel, cobalt, iron, or alloys or mixtures thereof immobilized by zirconia stabilized in cubic form which contains discrete deposits of about 0.1 to about 5% by weight of praseodymium, dysprosium, terbium, or a mixture thereof. The solid oxide electrode can be made by covering a substrate with particles of nickel, cobalt, iron, or mixtures thereof, growing a stabilized zirconia solid oxide skeleton around the particles thereby immobilizing them, contacting the skeleton with a compound of praseodymium, dysprosium, terbium, or a mixture thereof, and heating the skeleton to a temperature of at least 500.degree. C. The electrode can also be made by preparing a slurry of nickel, cobalt, iron, or mixture and a compound of praseodymium, dysprosium, terbium, or a mixture thereof, depositing the slurry on a substrate, heating the slurry to dryness, and growing a stabilized zirconia skeleton around the metal particles.

  9. Biocatalytic electrodes based on single-walled carbon nanotube network thin films.

    PubMed

    Wang, Dan; Rack, Jeffrey J; Chen, Liwei

    2009-04-01

    Carbon nanotubes (CNTs) in CNT paste, multi-walled CNT bundles and vertically aligned single-walled CNT (SWNT) arrays have been used as electrode materials. Recently, it was reported that CNTs facilitate the direct or mediated electron transfer from redox enzymes to glassy carbon electrodes. In this paper, we demonstrate a new form of transparent and conducting SWNT thin film electrochemical electrodes and characterize their performance. The SWNT thin film electrodes exhibit a high surface area, high conductivity and tunable current density without the need for a conducting support. Furthermore, we functionalize the SWNT thin film electrodes with active enzymes. Facile immobilization of redox enzymes on these electrodes reveals great potential for future applications, such as biosensors and biofuel cells. PMID:19437969

  10. Organic electrode coatings for next-generation neural interfaces

    PubMed Central

    Aregueta-Robles, Ulises A.; Woolley, Andrew J.; Poole-Warren, Laura A.; Lovell, Nigel H.; Green, Rylie A.

    2014-01-01

    Traditional neuronal interfaces utilize metallic electrodes which in recent years have reached a plateau in terms of the ability to provide safe stimulation at high resolution or rather with high densities of microelectrodes with improved spatial selectivity. To achieve higher resolution it has become clear that reducing the size of electrodes is required to enable higher electrode counts from the implant device. The limitations of interfacing electrodes including low charge injection limits, mechanical mismatch and foreign body response can be addressed through the use of organic electrode coatings which typically provide a softer, more roughened surface to enable both improved charge transfer and lower mechanical mismatch with neural tissue. Coating electrodes with conductive polymers or carbon nanotubes offers a substantial increase in charge transfer area compared to conventional platinum electrodes. These organic conductors provide safe electrical stimulation of tissue while avoiding undesirable chemical reactions and cell damage. However, the mechanical properties of conductive polymers are not ideal, as they are quite brittle. Hydrogel polymers present a versatile coating option for electrodes as they can be chemically modified to provide a soft and conductive scaffold. However, the in vivo chronic inflammatory response of these conductive hydrogels remains unknown. A more recent approach proposes tissue engineering the electrode interface through the use of encapsulated neurons within hydrogel coatings. This approach may provide a method for activating tissue at the cellular scale, however, several technological challenges must be addressed to demonstrate feasibility of this innovative idea. The review focuses on the various organic coatings which have been investigated to improve neural interface electrodes. PMID:24904405

  11. Photoelectrochemical electrodes

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Rembaum, A. (Inventor)

    1983-01-01

    The surface of a moderate band gap semiconductor such as p-type molybdenum sulfide is modified to contain an adherent film of charge mediating ionene polymer containing an electroactive unit such as bipyridimium. Electron transport between the electrode and the mediator film is favorable and photocorrosion and recombination processes are suppressed. Incorporation of particles of catalyst such as platinum within the film provides a reduction in overvoltage. The polymer film is readily deposited on the electrode surface and can be rendered stable by ionic or addition crosslinking. Catalyst can be predispersed in the polymer film or a salt can be impregnated into the film and reduced therein.

  12. Flexible and mechanical strain resistant large area SERS active substrates

    NASA Astrophysics Data System (ADS)

    Singh, J. P.; Chu, Hsiaoyun; Abell, Justin; Tripp, Ralph A.; Zhao, Yiping

    2012-05-01

    We report a cost effective and facile way to synthesize flexible, uniform, and large area surface enhanced Raman scattering (SERS) substrates using an oblique angle deposition (OAD) technique. The flexible SERS substrates consist of 1 μm long, tilted silver nanocolumnar films deposited on flexible polydimethylsiloxane (PDMS) and polyethylene terephthalate (PET) sheets using OAD. The SERS enhancement activity of these flexible substrates was determined using 10-5 M trans-1,2-bis(4-pyridyl) ethylene (BPE) Raman probe molecules. The in situ SERS measurements on these flexible substrates under mechanical (tensile/bending) strain conditions were performed. Our results show that flexible SERS substrates can withstand a tensile strain (ε) value as high as 30% without losing SERS performance, whereas the similar bending strain decreases the SERS performance by about 13%. A cyclic tensile loading test on flexible PDMS SERS substrates at a pre-specified tensile strain (ε) value of 10% shows that the SERS intensity remains almost constant for more than 100 cycles. These disposable and flexible SERS substrates can be integrated with biological substances and offer a novel and practical method to facilitate biosensing applications.

  13. Bridge-bonded formate: active intermediate or spectator species in formic acid oxidation on a Pt film electrode?

    PubMed

    Chen, Y-X; Heinen, M; Jusys, Z; Behm, R J

    2006-12-01

    We present and discuss the results of an in situ IR study on the mechanism and kinetics of formic acid oxidation on a Pt film/Si electrode, performed in an attenuated total reflection (ATR) flow cell configuration under controlled mass transport conditions, which specifically aimed at elucidating the role of the adsorbed bridge-bonded formates in this reaction. Potentiodynamic measurements show a complex interplay between formation and desorption/oxidation of COad and formate species and the total Faradaic current. The notably faster increase of the Faradaic current compared to the coverage of bridge-bonded formate in transient measurements at constant potential, but with different formic acid concentrations, reveals that adsorbed formate decomposition is not rate-limiting in the dominant reaction pathway. If being reactive intermediate at all, the contribution of formate adsorption/decomposition to the reaction current decreases with increasing formic acid concentration, accounting for at most 15% for 0.2 M DCOOH at 0.7 VRHE. The rapid build-up/removal of the formate adlayer and its similarity with acetate or (bi-)sulfate adsorption/desorption indicate that the formate adlayer coverage is dominated by a fast dynamic adsorption-desorption equilibrium with the electrolyte, and that formate desorption is much faster than its decomposition. The results corroborate the proposal of a triple pathway reaction mechanism including an indirect pathway, a formate pathway, and a dominant direct pathway, as presented previously (Chen, Y. X.; et al. Angew. Chem. Int. Ed. 2006, 45, 981), in which adsorbed formates act as a site-blocking spectator in the dominant pathway rather than as an active intermediate.

  14. Highly efficient graphene-based Cu(In, Ga)Se₂ solar cells with large active area.

    PubMed

    Yin, Ling; Zhang, Kang; Luo, Hailin; Cheng, Guanming; Ma, Xuhang; Xiong, Zhiyu; Xiao, Xudong

    2014-09-21

    Two-dimensional graphene has tremendous potential to be used as a transparent conducting electrode (TCE), owing to its high transparency and conductivity. To date graphene films have been applied to several kinds of solar cells except the Cu(In, Ga)Se₂ (CIGS) solar cell. In this work, we present a novel TCE structure consisting of a doped graphene film and a thin layer of poly(methyl methacrylate) (PMMA) to replace the ZnO:Al (AZO) electrode for CIGS. By optimizing the contact between graphene and intrinsic ZnO (i-ZnO), a high power conversion efficiency (PCE) of 13.5% has been achieved, which is among the highest efficiencies of graphene-based solar cells ever reported and approaching those of AZO-based solar cells. Besides, the active area of our solar cells reaches 45 mm(2), much larger than other highly efficient graphene-based solar cells (>10%) reported so far. Moreover, compared with AZO-based CIGS solar cells, the total reflectance of the graphene-based CIGS solar cells is decreased and the quantum efficiency of the graphene-based CIGS is enhanced in the near infrared region (NIR), which strongly support graphene as a competitive candidate material for the TCE in the CIGS solar cell. Furthermore, the graphene/PMMA film can protect the solar cell from moisture, making the graphene-based solar cells much more stable than the AZO-based solar cells.

  15. Electrically conductive connection for an electrode

    DOEpatents

    Hornack, Thomas R.; Chilko, Robert J.

    1986-01-01

    An electrically conductive connection for an electrode assembly of an electrolyte cell in which aluminum is produced by electrolysis in a molten salt is described. The electrode assembly comprises an electrode flask and a conductor rod. The flask has a collar above an area of minimum flask diameter. The electrically conductive connection comprises the electrode flask, the conductor rod and a structure bearing against the collar and the conductor rod for pulling the conductor rod into compressive and electrical contact with the flask.

  16. Oxygen electrodes for rechargeable alkaline fuel cells

    NASA Technical Reports Server (NTRS)

    Swette, Larry; Giner, Jose

    1987-01-01

    Electrocatalysts and supports for the positive electrode of moderate temperature single unit rechargeable alkaline fuel cells were investigated and developed. The electrocatalysts are defined as the material with a higher activity for the oxygen electrode reaction than the support. Advanced development will require that the materials be prepared in high surface area forms, and may also entail integration of various candidate materials. Eight candidate support materials and seven electrocatalysts were investigated. Of the 8 support, 3 materials meet the preliminary requirements in terms of electrical conductivity and stability. Emphasis is now on preparing in high surface area form and testing under more severe corrosion stress conditions. Of the 7 electrocatalysts prepared and evaluated, at least 5 materials remain as potential candidates. The major emphasis remains on preparation, physical characterization and electrochemical performance testing.

  17. ENOBIO dry electrophysiology electrode; first human trial plus wireless electrode system.

    PubMed

    Ruffini, Giulio; Dunne, Stephen; Farres, Esteve; Cester, Ivan; Watts, Paul C P; Silva, S P; Grau, Carles; Fuentemilla, Lluis; Marco-Pallares, Josep; Vandecasteele, Bjorn

    2007-01-01

    This paper presents the results of the first human trials with the ENOBIO electrophysiology electrode prototype plus the initial results of a new wireless prototype with flexible electrodes based on the same platform. The results indicate that a dry active electrode that employs a CNT array as the electrode interface can perform on a par with traditional "wet" electrodes for the recording of EEG, ECG, EOG and EMG. We also demonstrate a new platform combining wireless technology plus flexible electrodes for improved comfort for applications that take advantage of the dry electrode concept.

  18. Multi-walled carbon nanotubes as electrode material for microbial fuel cells.

    PubMed

    Thepsuparungsikul, N; Phonthamachai, N; Ng, H Y

    2012-01-01

    The microbial fuel cell (MFC) is a novel and innovative technology that could allow direct harvesting of energy from wastewater through microbial activity with simultaneous oxidation of organic matter in wastewater. Among all MFC parts, electrode materials play a crucial role in electricity generation. A variety of electrode materials have been used, including plain graphite, carbon paper and carbon cloth. However, these electrode materials generated only limited electricity or power. Recently, many research studies have been conducted on carbon nanotubes (CNTs) because of their unique physical and chemical properties that include high conductivity, high surface area, corrosion resistance, and electrochemical stability. These properties make them extremely attractive for fabricating electrodes and catalyst supports. In this study, CNT-based electrodes had been developed to improve MFC performance in terms of electricity generation and treatment efficiency. Multi-walled carbon nanotubes (MWCNTs) with carboxyl groups have been employed to fabricate electrodes for single-chamber air-cathode MFCs. The quality of the prepared MWCNTs-based electrodes was evaluated by morphology, electrical conductivity and specific surface area using a field emission scanning electron microscope, four-probe method and Brunauer-Emmerr-Teller method, respectively. The performance of MFCs equipped with MWCNT-based electrodes was evaluated by chemical analysis and electrical monitoring and calculation. In addition, the performance of these MFCs, using MWCNTs as electrodes, was compared against that using commercial carbon cloth.

  19. Multi-walled carbon nanotubes as electrode material for microbial fuel cells.

    PubMed

    Thepsuparungsikul, N; Phonthamachai, N; Ng, H Y

    2012-01-01

    The microbial fuel cell (MFC) is a novel and innovative technology that could allow direct harvesting of energy from wastewater through microbial activity with simultaneous oxidation of organic matter in wastewater. Among all MFC parts, electrode materials play a crucial role in electricity generation. A variety of electrode materials have been used, including plain graphite, carbon paper and carbon cloth. However, these electrode materials generated only limited electricity or power. Recently, many research studies have been conducted on carbon nanotubes (CNTs) because of their unique physical and chemical properties that include high conductivity, high surface area, corrosion resistance, and electrochemical stability. These properties make them extremely attractive for fabricating electrodes and catalyst supports. In this study, CNT-based electrodes had been developed to improve MFC performance in terms of electricity generation and treatment efficiency. Multi-walled carbon nanotubes (MWCNTs) with carboxyl groups have been employed to fabricate electrodes for single-chamber air-cathode MFCs. The quality of the prepared MWCNTs-based electrodes was evaluated by morphology, electrical conductivity and specific surface area using a field emission scanning electron microscope, four-probe method and Brunauer-Emmerr-Teller method, respectively. The performance of MFCs equipped with MWCNT-based electrodes was evaluated by chemical analysis and electrical monitoring and calculation. In addition, the performance of these MFCs, using MWCNTs as electrodes, was compared against that using commercial carbon cloth. PMID:22437017

  20. 33 CFR 334.763 - Naval Support Activity Panama City; Gulf of Mexico; restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Naval Support Activity Panama City; Gulf of Mexico; restricted area. 334.763 Section 334.763 Navigation and Navigable Waters CORPS OF....763 Naval Support Activity Panama City; Gulf of Mexico; restricted area. (a) The area. The area...

  1. 33 CFR 334.763 - Naval Support Activity Panama City; Gulf of Mexico; restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Naval Support Activity Panama City; Gulf of Mexico; restricted area. 334.763 Section 334.763 Navigation and Navigable Waters CORPS OF....763 Naval Support Activity Panama City; Gulf of Mexico; restricted area. (a) The area. The area...

  2. Measurement of noise and impedance of dry and wet textile electrodes, and textile electrodes with hydrogel.

    PubMed

    Puurtinen, Merja M; Komulainen, Satu M; Kauppinen, Pasi K; Malmivuo, Jaakko A V; Hyttinen, Jari A K

    2006-01-01

    Textile sensors, when embedded into clothing, can provide new ways of monitoring physiological signals, and improve the usability and comfort of such monitoring systems in the areas of medical, occupational health and sports. However, good electrical and mechanical contact between the electrode and the skin is very important, as it often determines the quality of the signal. This paper introduces a study where the properties of dry textile electrodes, textile electrodes moistened with water, and textile electrodes covered with hydrogel were studied with five different electrode sizes. The aim was to study how the electrode size and preparation of the electrode (dry electrode/wet electrode/electrode covered with hydrogel membrane) affect the measurement noise, and the skin-electrode impedance. The measurement noise and skin-electrode impedance were determined from surface biopotential measurements. These preliminary results indicate that noise level increases as the electrode size decreases. The noise level is high in dry textile electrodes, as expected. Yet, the noise level of wet textile electrodes is quite low and similar to that of textile electrodes covered with hydrogel. Hydrogel does not seem to improve noise properties, however it may have effects on movement artifacts. Thus, it is feasible to use textile embedded sensors in physiological monitoring applications when moistening or hydrogel is applied.

  3. Method of producing nickel electrode

    NASA Technical Reports Server (NTRS)

    Ikeda, Y.; Ohira, T.; Kumano, Y.; Nakao, T.

    1982-01-01

    A large capacity nickel electrode is provided in which the charging efficiency and discharge utilization coefficient are improved in comparison to nickel electrodes which are produced by the conventional method. Nickel electrodes retaining nickel active material or nickel active material and cobalt compounds on a porous nickel substrate are immersed in a cobalt sulfate aqueous solution whose pH is adjusted in the range of 3.5 to 6.0, followed by crystallization of the hydroxide or oxide by pyrolysis or immersion in alkali, thereby coating the surface of the nickel active material with cobalt crystals and simultaneously promoting alloying of the nickel-cobalt.

  4. Effects of Temperature and Pore Structure on High Surface Area-Activated Carbon Obtained from Peanut Shells.

    PubMed

    Kalpana, D; Lee, Y S

    2016-03-01

    Activated carbon was synthesized from peanut shells by treating with H3PO4 with an intention to enhance the surface area and to find its electrochemical performance in EDLC as electrode material. The powdered peanut shells were pyrolyzed at three different temperatures namely 300 degrees C, 600 degrees C and 800 degrees C respectively. The structural and surface properties of the pyrolyzed carbon materials were studied using N2 adsorption/desorption, Raman, TEM and SEM analysis. There has been remarkable increase in the surface area of the carbon pyrolyzed at 600 degrees C due to the effect of pore generations. The surface area of the 600 degrees C pyrolyzed sample was found to be 1629 m2/g. The electrochemical properties of all the samples were evaluated by cyclic voltammetry, impedance spectroscopy, and galvanostatic charge-discharge tests. The system showed excellent cycleability and a maximum specific capacitance of 291 Fg(-1) was obtained in a 0.1 M H2SO4 electrolyte solution. The effects of the various properties of the activated carbon on the EDLC performance are discussed. PMID:27455740

  5. Effects of Temperature and Pore Structure on High Surface Area-Activated Carbon Obtained from Peanut Shells.

    PubMed

    Kalpana, D; Lee, Y S

    2016-03-01

    Activated carbon was synthesized from peanut shells by treating with H3PO4 with an intention to enhance the surface area and to find its electrochemical performance in EDLC as electrode material. The powdered peanut shells were pyrolyzed at three different temperatures namely 300 degrees C, 600 degrees C and 800 degrees C respectively. The structural and surface properties of the pyrolyzed carbon materials were studied using N2 adsorption/desorption, Raman, TEM and SEM analysis. There has been remarkable increase in the surface area of the carbon pyrolyzed at 600 degrees C due to the effect of pore generations. The surface area of the 600 degrees C pyrolyzed sample was found to be 1629 m2/g. The electrochemical properties of all the samples were evaluated by cyclic voltammetry, impedance spectroscopy, and galvanostatic charge-discharge tests. The system showed excellent cycleability and a maximum specific capacitance of 291 Fg(-1) was obtained in a 0.1 M H2SO4 electrolyte solution. The effects of the various properties of the activated carbon on the EDLC performance are discussed.

  6. Self-assembled monolayers of Aβ peptides on Au electrodes: an artificial platform for probing the reactivity of redox active metals and cofactors relevant to Alzheimer's disease.

    PubMed

    Pramanik, Debajyoti; Sengupta, Kushal; Mukherjee, Soumya; Dey, Somdatta Ghosh; Dey, Abhishek

    2012-07-25

    The water-soluble hydrophilic part of human Aβ peptide has been extended to include a C-terminal cysteine residue. Utilizing the thiol functionality of this cysteine residue, self-assembled monolayers (SAM) of these peptides are formed on Au electrodes. Atomic force microscopy imaging confirms formation of small Aβ aggregates on the surface of the electrode. These aggregates bind redox active metals like Cu and cofactors like heme, both of which are proposed to generate toxic partially reduced oxygen species (PROS) and play a vital role in Alzheimer's disease. The spectroscopic and electrochemical properties of these Cu and heme bound Aβ SAM are similar to those reported for the soluble Cu and heme bound Aβ peptide. Experiments performed on these Aβ-SAM electrodes clearly demonstrate that (1) heme bound Aβ is kinetically more competent in reducing O(2) than Cu bound Aβ, (2) under physiological conditions the reduced Cu site produces twice as much PROS (measured in situ) than the reduced heme site, and (3) chelators like clioquinol remove Cu from these aggregates, while drugs like methylene blue inhibit O(2) reactivity of the heme cofactor. This artificial construct provides a very easy platform for investigating potential drugs affecting aggregation of human Aβ peptides and PROS generation by its complexes with redox active metals and cofactors.

  7. Binderless Composite Electrode Monolith from Carbon Nanotube and Biomass Carbon Activated by H2 SO4 and CO2 Gas for Supercapacitor

    NASA Astrophysics Data System (ADS)

    Deraman, M.; Ishak, M. M.; Farma, R.; Awitdrus, Taer, E.; Talib, I. A.; Omar, R.

    2011-12-01

    Binderless composite electrodes in the monolithic form prepared from carbon nanotubes (CNTs) and self-adhesive carbon grains (SACG) from fibers of oil palm empty fruit bunch were studied as an electrode in a supercapacitor. The green monoliths (GMs) were prepared from three different types of precursors, SACG, SACG treated with 0.4 Molar H2 SO4 and mixture of SACG and 5% CNTs (by weight) treated with 0.4 Molar H2 SO4 , respectively. These GMs were carbonized at 600 ° C in N2 gas environment and activated by CO2 gas at 800 ° C for 1 hour to produce activated carbon monoliths (ACMs). The properties of the ACMs (density, porosity, microstructure, structure and electrical conductivity) were found affected by CNTs addition and acid treatment. The acid treatment did not improve the electrochemical behavior of the ACMs used as electrodes (specific capacitance, specific energy and specific power of the supercapacitor) in the supercapacitor cells but CNTs addition improves the equivalent series resistance of the cell.

  8. Lithium ion batteries made of electrodes with 99 wt% active materials and 1 wt% carbon nanotubes without binder or metal foils

    NASA Astrophysics Data System (ADS)

    Hasegawa, Kei; Noda, Suguru

    2016-07-01

    Herein, we propose lithium ion batteries (LIBs) without binder or metal foils, based on a three-dimensional carbon nanotube (CNT) current collector. Because metal foils occupy 20-30 wt% of conventional LIBs and the polymer binder has no electrical conductivity, replacing such non-capacitive materials is a valid approach for improving the energy and power density of LIBs. Adding only 1 wt% of few-wall CNTs to the active material enables flexible freestanding sheets to be fabricated by simple dispersion and filtration processes. Coin cell tests are conducted on full cells fabricated from a 99 wt% LiCoO2-1 wt% CNT cathode and 99 wt% graphite-1 wt% CNT anode. Discharge capacities of 353 and 306 mAh ggraphite-1 are obtained at charge-discharge rates of 37.2 and 372 mA ggraphite-1, respectively, with a capacity retention of 65% at the 500th cycle. The suitability of the 1 wt% CNT-based composite electrodes for practical scale devices is demonstrated with laminate cells containing 50 × 50 mm2 electrodes. Use of metal combs instead of metal foils enables charge-discharge operation of the laminate cell without considerable IR drop. Such electrodes will minimize the amount of metal and maximize the amount of active materials contained in LIBs.

  9. The use of a dynamic hydrogen electrode as an electrochemical tool to evaluate plasma activated carbon as electrocatalyst support for direct methanol fuel cell

    SciTech Connect

    Carmo, Marcelo Roepke, Thorsten; Scheiba, Frieder; Roth, Christina; Moeller, Stephan; Fuess, Hartmut; Poco, Joao G.R.; Linardi, Marcelo

    2009-01-08

    The objectives of this study were to functionalize the carbon black surface by chemically introducing oxygenated groups using plasma technology. This should enable a better interaction of the carbon support with the metallic catalyst nanoparticles, hindering posterior support particle agglomeration and preventing loss of active surface. PtRu/C nanoparticles were anchored on the carbon supports by the impregnation method and direct reduction with hydrazine. Physical characterization of the materials was carried out using energy dispersive X-ray analysis and transmission electron microscopy. The screen printing technique was used to produce membrane electrode assemblies for single cell tests in methanol/air (DMFC). Tests were carried out using the dynamic hydrogen electrode as an electrochemical tool to evaluate the anode and cathode behavior separately.

  10. 36 CFR 294.26 - Other activities in Idaho Roadless Areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGRICULTURE SPECIAL AREAS Idaho Roadless Area Management § 294.26 Other activities in Idaho Roadless Areas. (a... Roadless Areas. Decisions concerning the future management of existing roads or trails in Idaho Roadless... subpart shall be construed as affecting existing grazing permits in Idaho Roadless Areas. Future...

  11. 33 CFR 334.763 - Naval Support Activity Panama City; Gulf of Mexico; restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... City; Gulf of Mexico; restricted area. 334.763 Section 334.763 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.763 Naval Support Activity Panama City; Gulf of Mexico; restricted area. (a) The area. The area...

  12. 33 CFR 334.763 - Naval Support Activity Panama City; Gulf of Mexico; restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... City; Gulf of Mexico; restricted area. 334.763 Section 334.763 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.763 Naval Support Activity Panama City; Gulf of Mexico; restricted area. (a) The area. The area...

  13. 33 CFR 334.763 - Naval Support Activity Panama City; Gulf of Mexico; restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... City; Gulf of Mexico; restricted area. 334.763 Section 334.763 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.763 Naval Support Activity Panama City; Gulf of Mexico; restricted area. (a) The area. The area...

  14. Engineered Three-Dimensional Electrodes by HVOF Process for Hydrogen Production

    NASA Astrophysics Data System (ADS)

    Aghasibeig, Maniya; Moreau, Christian; Dolatabadi, Ali; Wuthrich, Rolf

    2016-09-01

    High velocity oxy-fuel process was used to prepare nickel electrode coatings for hydrogen production by alkaline water electrolysis. To further increase the active surface area of the electrodes, pyramidal fin arrays with two different sizes were deposited on the top surface of the electrodes using mesh screen masks. The surface microstructure, topology and roughness of the coatings were studied using scanning electron microscope, optical microscopy and confocal laser scanning microscopy. Steady-state polarization curves were used to evaluate the electrocatalytic activity of the electrodes. The performance of the electrodes coated using mesh outperformed the electrode deposited without using mesh. In addition, the electrode that was coated using the coarse mesh was characterized with the highest activity with the exchange current density and overpotential values of 9.3 × 10-3 A/cm2 and -306 mV, respectively. Formation of different roughness levels due to the combination of normal and off-normal impact of the coating particles on the surface of the fins was identified as the main factor for the increased activity of this electrode toward the hydrogen evolution reaction.

  15. Electromagnetic Initiation and Propagation of Bipolar Radiofrequency Tissue Reactions via Invasive Non-Insulated Microneedle Electrodes

    PubMed Central

    Na, Jongju; Zheng, Zhenlong; Dannaker, Christopher; Lee, Sang Eun; Kang, Jin-Soo; Cho, Sung Bin

    2015-01-01

    Radiofrequency (RF) energy can be emitted into the skin, either non- or invasively, via a monopolar mode that utilizes an active electrode and a grounded electrode or via a bipolar mode that employs two active electrodes. In this experimental study of RF tissue reactions, bipolar RF energy was emitted in vivo to micropig skin at varying microneedle penetration depths, signal amplitudes, and conduction times. Immediately after RF treatment, skin samples exhibited RF-induced coagulation columns of thermal injury, separately generated around each microneedle in the dermis. In ex vivo bovine liver tissue, the thermal coagulation columns were found to be concentrated maximally around the pointed tips of each electrode. After a RF conduction time of 2 seconds, the individual areas of thermal coagulation began to converge with neighboring RF-induced coagulation columns; the convergence of coagulation columns was found to start from the tips of neighboring electrodes. PMID:26563971

  16. Environmental Print Activities for Teaching Mathematics and Content Areas.

    ERIC Educational Resources Information Center

    Rule, Audrey C., Ed.; McIntyre, Sandra, Ed.; Ranous, Meg, Ed.

    Twenty-three mathematics activities that use environmental print materials are presented, along with two activities that focus on music education, one that highlights history concepts, and five science activities. The environmental print materials are words and images cut from food or other product packaging and mounted on mat board cards.…

  17. SCIENCE AND TECHNOLOGY ACTIVITIES FOR CHROMIUM IN THE 100 AREAS

    SciTech Connect

    PETERSEN SW

    2009-07-02

    {sm_bullet} Primary Objective: Protect the Columbia River - Focus is control and treatment of contamination at or near the shoreline, which is influenced by bank storage {sm_bullet} Secondary Objective: Reduce hexavalent chromium to <48 parts per billion (ppb) in aquifer (drinking water standard) - Large plumes with isolated areas of high chromium concentrations (> 40,000 ppb), - Unknown source location(s); probably originating in reactor operation areas

  18. Stress and Sucrose Intake Modulate Neuronal Activity in the Anterior Hypothalamic Area in Rats

    PubMed Central

    Mitra, Arojit; Guèvremont, Geneviève; Timofeeva, Elena

    2016-01-01

    The anterior hypothalamic area (AHA) is an important integrative relay structure for a variety of autonomic, endocrine, and behavioral responses including feeding behavior and response to stress. However, changes in the activity of the AHA neurons during stress and feeding in freely moving rats are not clear. The present study investigated the firing rate and burst activity of neurons in the central nucleus of the AHA (cAHA) during sucrose intake in non-stressful conditions and after acute stress in freely behaving rats. Rats were implanted with micro-electrodes into the cAHA, and extracellular multi-unit activity was recorded during 1-h access to 10% sucrose in non-stressful conditions or after acute foot shock stress. Acute stress significantly reduced sucrose intake, total sucrose lick number, and lick frequency in licking clusters, and increased inter-lick intervals. At the cluster start (CS) of sucrose licking, the cAHA neurons increased (CS-excited, 20% of the recorded neurons), decreased (CS-inhibited, 42% of the neurons) or did not change (CS-nonresponsive, 38% of the neurons) their firing rate. Stress resulted in a significant increase in the firing rate of the CS-inhibited neurons by decreasing inter-spike intervals within the burst firing of these neurons. This increase in the stress-induced firing rate of the CS-inhibited neurons was accompanied by a disruption of the correlation between the firing rate of CS-inhibited and CS-nonresponsive neurons that was observed in non-stressful conditions. Stress did not affect the firing rate of the CS-excited and CS-nonresponsive neurons. However, stress changed the pattern of burst firing of the CS-excited and CS-nonresponsive neurons by decreasing and increasing the burst number in the CS-excited and CS-nonresponsive neurons, respectively. These results suggest that the cAHA neurons integrate the signals related to stress and intake of palatable food and play a role in the stress- and eating-related circuitry

  19. Modeling diffusion-induced stress in nanowire electrode structures

    NASA Astrophysics Data System (ADS)

    Deshpande, Rutooj; Cheng, Yang-Tse; Verbrugge, Mark W.

    There is an intense, worldwide effort to develop durable lithium ion batteries with high energy and power densities for a wide range of applications, including electric and hybrid electric vehicles. One of the critical challenges in advancing lithium ion battery technologies is fracture and decrepitation of the electrodes as a result of lithium diffusion during charging and discharging operations. When lithium is inserted in either the positive or negative electrode, a large volume change on the order of a few to several hundred percent, can occur. Diffusion-induced stresses (DISs) can therefore cause the nucleation and growth of cracks, leading to mechanical degradation of the active electrode materials. Our work is aimed at developing a mathematical model relating surface energy with diffusion-induced stresses in nanowire electrodes. With decreasing size of the electrode, the ratio of surface area to volume increases. Thus, surface energy and surface stress can play an important role in mitigating DISs in nanostructured electrodes. In this work, we establish relationships between the surface energy, surface stress, and the magnitude of DISs in nanowires. We find that DISs, especially the tensile stresses, can decrease significantly due to the surface effects. Our model also establishes a relationship between stress and the nanowire radius. We show that, with decreasing size, the electrode material will be less prone to mechanical degradation, leading to an increase in the life of lithium ion batteries, provided other phenomena are unaffected by increased surface area (e.g., chemical degradation reactions). Also we show that, in the case of nanostructures, surface strain energy is significant in magnitude comparing with bulk strain energy. A mathematical tool to calculate total strain energy is developed that can be used to compare strain energy with the fracture energy of that material in electrode system.

  20. How silent is silent reading? Intracerebral evidence for top-down activation of temporal voice areas during reading.

    PubMed

    Perrone-Bertolotti, Marcela; Kujala, Jan; Vidal, Juan R; Hamame, Carlos M; Ossandon, Tomas; Bertrand, Olivier; Minotti, Lorella; Kahane, Philippe; Jerbi, Karim; Lachaux, Jean-Philippe

    2012-12-01

    As you might experience it while reading this sentence, silent reading often involves an imagery speech component: we can hear our own "inner voice" pronouncing words mentally. Recent functional magnetic resonance imaging studies have associated that component with increased metabolic activity in the auditory cortex, including voice-selective areas. It remains to be determined, however, whether this activation arises automatically from early bottom-up visual inputs or whether it depends on late top-down control processes modulated by task demands. To answer this question, we collaborated with four epileptic human patients recorded with intracranial electrodes in the auditory cortex for therapeutic purposes, and measured high-frequency (50-150 Hz) "gamma" activity as a proxy of population level spiking activity. Temporal voice-selective areas (TVAs) were identified with an auditory localizer task and monitored as participants viewed words flashed on screen. We compared neural responses depending on whether words were attended or ignored and found a significant increase of neural activity in response to words, strongly enhanced by attention. In one of the patients, we could record that response at 800 ms in TVAs, but also at 700 ms in the primary auditory cortex and at 300 ms in the ventral occipital temporal cortex. Furthermore, single-trial analysis revealed a considerable jitter between activation peaks in visual and auditory cortices. Altogether, our results demonstrate that the multimodal mental experience of reading is in fact a heterogeneous complex of asynchronous neural responses, and that auditory and visual modalities often process distinct temporal frames of our environment at the same time.

  1. Composite electrode/electrolyte structure

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2004-01-27

    Provided is an electrode fabricated from highly electronically conductive materials such as metals, metal alloys, or electronically conductive ceramics. The electronic conductivity of the electrode substrate is maximized. Onto this electrode in the green state, a green ionic (e.g., electrolyte) film is deposited and the assembly is co-fired at a temperature suitable to fully densify the film while the substrate retains porosity. Subsequently, a catalytic material is added to the electrode structure by infiltration of a metal salt and subsequent low temperature firing. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in ionic (electrochemical) devices such as fuel cells and electrolytic gas separation systems.

  2. Using optical dating to assess the recent activity of active faults in Hsinchu Area, northwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Watanuki, T.; Chen, Y.

    2003-12-01

    The aim of this study is to evaluate the recent activity of active fault systems mapped in Hsinchu area, northwestern Taiwan. Since it is the largest site of industrial park and highly populated, it is essential to assess potential of earthquake hazards. As a result of previous work, two active fault systems (Hsinchu and Hsincheng) were identified as active. However, they have not been included in dangerous active faults on published map because Holocene offset has not been confirmed yet. Relationship between five river terraces and faults were discussed by mapping on geomorphic features; both of these thrust faults contain active anticlines in their hanging walls based on folded terraces that are composed of young alluvial deposits. Neither long-term nor short-term slip rate has been reported due to lack of age control on development timing of the terraces mentioned above. We collected samples from these terraces and open-pit trench on the highest terrace, where intercalated sandy layers are found within cobbles. As literatures optically stimulated luminescence (OSL) dating method can directly measure the burial ages of sedimentary deposits that underwent a short period of sunlight bleaching. Therefore, OSL dating is applied via single aliquot regeneration method on sand size quartz extract from our study terraces. OSL ages about 46ka and 68-75ka are obtained from 4 fluvial deposits at trenching site. We tentatively suggest that the terrace was abandoned by the main channel after 68ka and then upper strata were subsequently deposited by local small creeks. The vertical displacements cross these Hsinchu and Hsincheng active faults are ca. 90m and 70m, respectively since 68ka. Consequently, the derived long-term rates of vertical slip are 1.3 and 1.0 m/ka respectively for both of them. The details of the other age results and discussion on recent structural behavior will be presented.

  3. 50 CFR 218.110 - Specified activity and specified geographical area.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... geographical area. 218.110 Section 218.110 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... Training Range Complex (NWTRC) § 218.110 Specified activity and specified geographical area. (a... area outlined in paragraph (b) of this section and that occur incidental to the activities described...

  4. Bureau of Indian Affairs, Juneau Area Activities Report, 1975-76.

    ERIC Educational Resources Information Center

    Fisher, Joan E.

    Reflecting the changing role of the Bureau of Indian Affairs (BIA), this 1975-76 annual report on the BIA's Juneau Area Office and its activities focuses upon the BIA resources, services, and technical assistance afforded Alaska Natives in the Juneau area. Highlights of Juneau Area Office Activities are presented in conjunction with the office's…

  5. 36 CFR 294.25 - Mineral activities in Idaho Roadless Areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Mineral activities in Idaho... AGRICULTURE SPECIAL AREAS Idaho Roadless Area Management § 294.25 Mineral activities in Idaho Roadless Areas. (a) Nothing in this subpart shall be construed as restricting mineral leases, contracts, permits,...

  6. 36 CFR 294.25 - Mineral activities in Idaho Roadless Areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Mineral activities in Idaho... AGRICULTURE SPECIAL AREAS Idaho Roadless Area Management § 294.25 Mineral activities in Idaho Roadless Areas. (a) Nothing in this subpart shall be construed as restricting mineral leases, contracts, permits,...

  7. 36 CFR 294.25 - Mineral activities in Idaho Roadless Areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Mineral activities in Idaho... AGRICULTURE SPECIAL AREAS Idaho Roadless Area Management § 294.25 Mineral activities in Idaho Roadless Areas. (a) Nothing in this subpart shall be construed as restricting mineral leases, contracts, permits,...

  8. 36 CFR 294.25 - Mineral activities in Idaho Roadless Areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Mineral activities in Idaho... AGRICULTURE SPECIAL AREAS Idaho Roadless Area Management § 294.25 Mineral activities in Idaho Roadless Areas. (a) Nothing in this subpart shall be construed as restricting mineral leases, contracts, permits,...

  9. 36 CFR 294.25 - Mineral activities in Idaho Roadless Areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Mineral activities in Idaho... AGRICULTURE SPECIAL AREAS Idaho Roadless Area Management § 294.25 Mineral activities in Idaho Roadless Areas. (a) Nothing in this subpart shall be construed as restricting mineral leases, contracts, permits,...

  10. Space Suit Electrocardiographic Electrode Selection: Are commercial electrodes better than the old Apollo technology?

    NASA Technical Reports Server (NTRS)

    Redmond, M.; Polk, J. D.; Hamilton, D.; Schuette, M.; Guttromson, J.; Guess, T.; Smith, B.

    2005-01-01

    The NASA Manned Space Program uses an electrocardiograph (ECG) system to monitor astronauts during extravehicular activity (EVA). This ECG system, called the Operational Bioinstrumentation System (OBS), was developed during the Apollo era. Throughout the Shuttle program these electrodes experienced failures during several EVAs performed from the Space Shuttle and International Space Station (ISS) airlocks. An attempt during Shuttle Flight STS-109 to replace the old electrodes with new commercial off-the-shelf (COTS) disposable electrodes proved unsuccessful. One assumption for failure of the STS-109 COTS electrodes was the expansion of trapped gases under the foam electrode pad, causing the electrode to be displaced from the skin. Given that our current electrodes provide insufficient reliability, a number of COTS ECG electrodes were tested at the NASA Altitude Manned Chamber Test Facility. Methods: OBS disposable electrodes were tested on human test subjects in an altitude chamber simulating an Extravehicular Mobility Unit (EMU) operating pressure of 4.3 psia with the following goals: (1) to confirm the root cause of the flight certified, disposable electrode failure during flight STS-109. (2) to identify an adequate COTS replacement electrode and determine if further modifications to the electrodes are required. (3) to evaluate the adhesion of each disposable electrode without preparation of the skin with isopropyl alcohol. Results: There were several electrodes that failed the pressure testing at 4.3psia, including the electrodes used during flight STS-109. Two electrodes functioned well throughout all testing and were selected for further testing in an EMU at altitude. A vent hole placed in all electrodes was also tested as a possible solution to prevent gas expansion from causing electrode failures. Conclusions: Two failure modes were identified: (1) foam-based porous electrodes entrapped air bubbles under the pad (2) poor adhesion caused some electrodes to

  11. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Preparation and Characterization of BPO Film as Electrode for Using of FeRAM

    NASA Astrophysics Data System (ADS)

    Wen, Xin-Yi; Yu, Jun; Wang, Yun-Bo; Zhou, Wen-Li; Gao, Jun-Xiong; Chu, Xiao-Hui

    2008-07-01

    Conductive perovskite BaPbO3 (BPO) films as a potential electrode material of PZT capacitors used in ferroelectric random access memory are prepared by rf magnetron sputtering. An x-ray diffractometer and standard four probe method are employed to investigate the dependence of growth conditions on crystal structure and conductivity of BPO films. It is found that BPO films with perovskite phase can be obtained at substrate temperatures above 425° C, and the sample with the lowest resistivity is obtained at 450° C under pure argon atmosphere. Using this BPO film as electrode, ferroelectric properties of BPO/PZT/BPO and Pt/PZT/BPO sandwiched structures are evaluated. Their remanent polarization and coercive field are 36.6μC/cm2 (81.3kV/cm) and 36.9μC/cm2 (89.1 kV/cm), respectively. The coercive field of the former structure is lower than that of the latter, but remanent polarizations are almost the same. In addition, the results imply that BPO electrode is helpful to improve the fatigue resistance of PZT. The reasons are discussed.

  12. Immobilization of enzyme to platinum electrode and its use as enzyme electrode

    SciTech Connect

    Kawakami, Mitsuyasu; Koya, Hidekazu; Gondo, Shinichiro

    1991-12-31

    This report describes a glucose electrode for use in biochemical analysis or perhaps for biochemical conversion technologies. A glucose electrode was fabricated by immobilizing glucose oxidase covalently onto a platinized platinum electrode. The sensor showed rapid response with response time of 2-4 s, and also the linear response to the glucose concentration, ranging from 2 x 10{sup -3} to 5 mM. The sensitivity was found to be correlated with the surface area of a base electrode used.

  13. Platinum electrode modification: Unique surface carbonization approach to improve performance and sensitivity.

    PubMed

    Lee, Hwi Yong; Barber, Cedrick; Minerick, Adrienne R

    2015-08-01

    Many microfluidic devices, also known as lab-on-a-chip devices, employ electrochemical detection methods using microelectrodes. Miniaturizing electrodes inevitably reduces electrode sensitivity and decreases the S/N, which limits applications within microfluidic devices. However, microelectrode surface modification can increase the surface area and sensitivity. In the present work, we report substantial improvement in platinum electrode performance and sensitivity by coating with carbon from red blood cells. The larger goal of this work was to measure DC electrical resistances of red blood cell suspensions in a microchannel for hematocrit determination. It was observed that as current responses of red blood cell suspensions were measured, the platinum electrode performance (reproducibility and S/N) improved with time. The platinum electrode electrocatalytic activity for red blood cell current measurements improved by 140%. Systematic experimentation revealed that red blood cells adsorb and carbonize the platinum electrode surfaces. The electrode surfaces before and after performance improvements were analyzed by field emission scanning electron microscopy, energy dispersive spectrometry, and Raman spectrometry. The formed carbon layers on the electrode surfaces were found to be proteomic and increased surface area with a porous three-dimensional structure, thus improving performance and stabilizing currents.

  14. 50 CFR 218.120 - Specified activity and geographical area.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-mounted active sonar)—up to 2,890 hours over the course of 5 years (an average of 578 hours per year); (ii) AN/SQS-56 (hull-mounted active sonar)—up to 260 hours over the course of 5 years (an average of 52.... long.; 59°36′ N. lat., 148°10′ W. long.; 58°57′ N. lat., 150°04′ W. long.; 58°20′ N. lat., 151°00′...

  15. 50 CFR 218.120 - Specified activity and geographical area.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-mounted active sonar)—up to 2,890 hours over the course of 5 years (an average of 578 hours per year); (ii) AN/SQS-56 (hull-mounted active sonar)—up to 260 hours over the course of 5 years (an average of 52.... long.; 59°36′ N. lat., 148°10′ W. long.; 58°57′ N. lat., 150°04′ W. long.; 58°20′ N. lat., 151°00′...

  16. 50 CFR 218.120 - Specified activity and geographical area.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-mounted active sonar)—up to 2,890 hours over the course of 5 years (an average of 578 hours per year); (ii) AN/SQS-56 (hull-mounted active sonar)—up to 260 hours over the course of 5 years (an average of 52.... long.; 59°36′ N. lat., 148°10′ W. long.; 58°57′ N. lat., 150°04′ W. long.; 58°20′ N. lat., 151°00′...

  17. Photoeletrocatalytic activity of an n-ZnO/p-Cu2O/n-TNA ternary heterojunction electrode for tetracycline degradation.

    PubMed

    Li, Jinhua; Lv, Shubin; Liu, Yanbiao; Bai, Jing; Zhou, Baoxue; Hu, Xiaofang

    2013-11-15

    In this study, a novel ternary heterojunction n-ZnO/p-Cu2O/n-TiO2 nanotube arrays (n-ZnO/p-Cu2O/n-TNA) nanophotocatalyst with a sandwich-like nanostructure was constructed and applied for the photoelectrocatalytic (PEC) degradation of typical PPCPs, tetracycline (TC). The ternary heterojunction n-ZnO/p-Cu2O/n-TNA was obtained by depositing Cu2O on the surface of TNA via sonoelectrochemical deposition (SED) and subsequently building a layer of ZnO onto the p-Cu2O/n-TNA surface through hydrothermal synthesis. After being deposited by the Cu2O, the absorption-band edge of the p-Cu2O/n-TNA was obviously red-shifted to the visible region (to 505 nm), and the band gap was reduced from its original 3.20 eV to 2.46 eV. The band gap absorption edge of the ternary n-ZnO/p-Cu2O/n-TNA is similar to that of p-Cu2O/n-TN and extends the visible spectrum absorption to 510 nm, corresponding to an Eg value of about 2.43 eV. Under illumination of visible light, the photocurrent density of the ternary heterojunction n-ZnO/p-Cu2O/n-TNA electrode at 0.5 V (vs. Ag/AgCl) was more than 106 times as high as that of the pure TNAs electrode, 3.6 times as high as that of the binary heterojunction p-Cu2O/n-TNA electrode. The degradation of TC indicated that the ternary heterojunction n-ZnO/p-Cu2O/n-TNA electrode maintained a very high photoelectrocatalytic activity and excellent stability and reliability. Such kind of ternary heterojunction electrode material has a broad application prospect not only in pollution control but also in many other fields. PMID:24076571

  18. Improved efficiency of photoconductive THz emitters by increasing the effective contact length of electrodes

    SciTech Connect

    Singh, Abhishek; Surdi, Harshad; Nikesh, V. V.; Prabhu, S. S.; Döhler, G. H.

    2013-12-15

    We study the effect of a surface modification at the interface between metallic electrodes and semiconducting substrate in Semi-Insulating GaAs (SI-GaAs) based photoconductive emitters (PCE) on the emission of Tera-Hertz (THz) radiation. We partially etch out a 500 nm thick layer of SI-GaAs in grating like pattern with various periods before the contact deposition. By depositing the electrodes on the patterned surface, the electrodes follow the contour of the grating period. This increases the effective contact length of the electrodes per unit area of the active regions on the PCE. The maxima of the electric field amplitude of the THz pulses emitted from the patterned surface are enhanced by up to more than a factor 2 as compared to an un-patterned surface. We attribute this increase to the increase of the effective contact length of the electrode due to surface patterning.

  19. Application of N-doped graphene modified carbon ionic liquid electrode for direct electrochemistry of hemoglobin.

    PubMed

    Sun, Wei; Dong, Lifeng; Deng, Ying; Yu, Jianhua; Wang, Wencheng; Zhu, Qianqian

    2014-06-01

    Nitrogen-doped graphene (NG) was synthesized and used for the investigation on direct electrochemistry of hemoglobin (Hb) with a carbon ionic liquid electrode as the substrate electrode. Due to specific characteristics of NG such as excellent electrocatalytic property and large surface area, direct electron transfer of Hb was realized with enhanced electrochemical responses appearing. Electrochemical behaviors of Hb on the NG modified electrode were carefully investigated with the electrochemical parameters calculated. The Hb modified electrode exhibited excellent electrocatalytic reduction activity toward different substrates, such as trichloroacetic acid and H2O2, with wider dynamic range and lower detection limit. These findings show that NG can be used for the preparation of chemically modified electrodes with improved performance and has potential applications in electrochemical sensing.

  20. Capacitance behavior of nanostructured ɛ-MnO2/C composite electrode using different carbons matrix

    NASA Astrophysics Data System (ADS)

    Tran, Van Man; Ha, An The; Loan Phung Le, My

    2014-06-01

    In this work nanostructured ɛ-MnO2/C composite electrode was synthesized via the reduction reaction of potassium permanganate. A wide range of carbons such as mesoporous carbon (MC), graphite (GC), super P carbon (super P) and Vulcan carbon (VC) were used in order to enhance the interfacial electrical conductivity and the electrochemical capacitance of the composite electrodes. Physical properties, structure and specific surface area of electrode materials were investigated by scanning electron microscopy (SEM), x-ray diffraction and nitrogen adsorption measurements. The capacitance behavior of MnO2/C materials was studied in aqueous and non-aqueous solution using cyclic voltammetry, galvanostatic charge/discharge and impedance spectroscopy measurements. The composite electrode exhibits the highest capacitance at 30 wt% activated carbon. Among different carbons used, the maximum capacitance of MnO2/super P electrode is as high as 205 F g-1 at 50 mV s-1 and retains 98% after 300 cycles.

  1. Areas of Unsolved Problems in Caribbean Active Tectonics

    NASA Astrophysics Data System (ADS)

    Mann, P.

    2015-12-01

    I review some unsolved problems in Caribbean active tectonics. At the regional and plate scale: 1) confirm the existence of intraplate deformation zones of the central Caribbean plate that are within the margin of error of ongoing GPS measurements; 2) carry out field studies to evaluate block models versus models for distributed fault shear on the densely populated islands of Jamaica, Hispaniola, Puerto Rico, and the Virgin Islands; 3) carry out paleoseismological research of key plate boundary faults that may have accumulated large strains but have not been previously studied in detail; 4) determine the age of onset and far-field effects of the Cocos ridge and the Central America forearc sliver; 4) investigate the origin and earthquake-potential of obliquely-sheared rift basins along the northern coast of Venezuela; 5) determine the age of onset and regional active, tectonic effects of the Panama-South America collision including the continued activation of the Maracaibo block; and 6) validate longterm rates on active subduction zones with improving, tomographic maps of subducted slabs. At the individual fault scale: 1) determine the mode of termination of large and active strike -slip faults and application of the STEP model (Septentrional, Polochic, El Pilar, Bocono, Santa Marta-Bucaramanaga); 2) improve the understanding of the earthquake potential on the Enriquillo-Plantain Garden fault zone given "off-fault" events such as the 2010 Haiti earthquake; how widespread is this behavior?; and 3) estimate size of future tsunamis from studies of historic or prehistoric slump scars and mass transport deposits; what potential runups can be predicted from this information?; and 4) devise ways to keep rapidly growing, circum-Caribbean urban populations better informed and safer in the face of inevitable and future, large earthquakes.

  2. Enhancement of AMTEC electrodes and current collectors

    NASA Astrophysics Data System (ADS)

    Svedberg, Robert C.; Pantolin, Jan E.; Sievers, Robert K.; Hunt, Thomas K.

    1995-01-01

    An improved electrode deposition technique has been developed for a Alkali Metal Thermal to Electric Converter (AMTEC). The innovative Sodium Modulated Electrode (SME) deposition technique has been developed which selectively deposits the electrode on inactive Na sites and adjacent to active Na sites on the electrolyte surface. This program has demonstrated SME processing feasibility and achieved electrode performance enhancement. Power density was improved by 51 to 56% at 973 K and 19 to 26% at 1073 K at the start of electrode testing. Na+ has been conducted through the beta''-alumina solid electrolyte (BASE) during the deposition process. Electrode deposition has been a random process, covering both active and inactive sites on the BASE. This random process did not optimize electrode placement or provide pore openings at the Na active sites to permit Na+ easy access to electrons and a low resistance path for Na atoms to move to the condenser. Both Mo and TiN electrodes were evaluated. It has been demonstrated that sputter deposition, with significant Na+ current being transported through the BASE at a controlled rate, is possible for both Mo and TiN. Two sputtering systems, for Mo and TiN, were modified with heater and voltage feedthroughs. The BASE temperture and the Na+ flow through the BASE was controlled. Patch electrodes were deposited using various Na+ currents and substrate temperatures. Four Mo and two TiN electrode sets were deposited and evaluated. Electrical testing was done in a Demountable Test Cell (DTC) where the current-voltage (IV) relationship was measured as a function of temperature. Electrodes were visually examined by scanning electron microscopy (SEM). The initial electrode performance has been improved by these processes. The IV data was used to evaluate electrode parameters by fitting an electrode/cell model output to the IV curves. Electrode enhancement can improve cell maximum power density performance by 87% and efficiency at optimum

  3. Lithographic Microfabrication of a 16-Electrode Array on a Probe Tip for High Spatial Resolution Electrochemical Localization of Exocytosis.

    PubMed

    Wigström, Joakim; Dunevall, Johan; Najafinobar, Neda; Lovrić, Jelena; Wang, Jun; Ewing, Andrew G; Cans, Ann-Sofie

    2016-02-16

    We report the lithographic microfabrication of a movable thin film microelectrode array (MEA) probe consisting of 16 platinum band electrodes placed on top of a supporting borosilicate glass substrate. These 1.2 μm wide electrodes were tightly packed and positioned parallel in two opposite rows within a 20 μm × 25 μm square area and with a distance less than 10 μm from the edge of the glass substrate. We demonstrate the ability to control and place the probe in close proximity to the surface of adherent bovine chromaffin cells and to amperometrically record single exocytosis release events with high spatiotemporal resolution. The two-dimensional position of single exocytotic events occurring in the center gap area separating the two rows of MEA band electrodes and that were codetected by electrodes in both rows was determined by analysis of the fractional detection of catecholamine released between electrodes and exploiting random walk simulations. Hence, two-dimensional electrochemical imaging recording of exocytosis release between the electrodes within this area was achieved. Similarly, by modeling the current spikes codetected by parallel adjacent band electrodes positioned in the same electrode row, a one-dimensional imaging of exocytosis with submicrometer resolution was accomplished within the area. The one- and two-dimensional electrochemical imaging using the MEA probe allowed for high spatial resolution of exocytosis activity and revealed heterogeneous release of catecholamine at the chromaffin cell surface.

  4. Integrated Carbon Nanotubes Electrodes in Microfluidic Chip via MWPCVD

    NASA Astrophysics Data System (ADS)

    Wang, Shenggao; Wang, Mingyang; Yu, Dongdong; Zhang, Wenbo; Deng, Xiaoqing; Du, Yu; Cheng, Lili; Wang, Jianhua

    2010-10-01

    An on-chip electrochemical detector for microfluidic chips was described, based on integrated carbon nanotube (CNT) electrodes directly onto the chip substrate through microwave plasma chemical vapor deposition (MWPCVD). The attractive performance of the integrated CNT electrodes was demonstrated for the amperometric detection of sucrose, glucose and D-fructose. The integrated CNT electrodes showed stronger electrocatalytic activity than gold electrodes.

  5. A fully microfabricated carbon nanotube three-electrode system on glass substrate for miniaturized electrochemical biosensors.

    PubMed

    Kim, Joon Hyub; Lee, Jun-Yong; Jin, Joon-Hyung; Park, Chan Won; Lee, Cheol Jin; Min, Nam Ki

    2012-06-01

    We present an integration process to fabricate single-walled carbon nanotube (SWCNT) three-electrode systems on glass substrate for electrochemical biosensors. Key issues involve optimization of the SWCNT working electrode to achieve high sensitivity, developing an optimal Ag/AgCl reference electrode with good stability, and process development to integrate these electrodes. Multiple spray coatings of the SWCNT film on glass substrate enabled easier integration of the SWCNT film into an electrochemical three-electrode system. O₂ plasma etching and subsequent activation of spray-coated SWCNT films were needed to pattern and functionalize the SWCNT working electrode films without serious damage to the SWCNTs, and to remove organic residues. The microfabricated three-electrode systems were characterized by microscopic and spectroscopic techniques, and the electrochemical properties were investigated using cyclic voltammetry and chrono-amperometry. The fully-integrated CNT three-electrode system showed an effective working electrode area about three times larger than its geometric surface area and an improved electrochemical activity for hydrogen peroxide decomposition. Finally, the effectiveness of miniaturized pf-SWCNT electrodes as biointerfaces was examined by applying them to immunosensors to detect Legionella(L) pneumophila, based on a direct sandwich enzyme-linked immunosorbent assay (ELISA) format with 3,3',5,5'-tetramethylbenzidine dihydrochloride/hydrogen peroxide(TMB/H₂O₂) as the substrate/mediator system. The lower detection limit of the pf-SWCNT-based immunosensors to L. pneumophila is about 1500 times lower than that of the standard ELISA assay. PMID:22391878

  6. The Influence of Electrode and Channel Configurations on Flow Battery Performance

    SciTech Connect

    Darling, RM; Perry, ML

    2014-05-21

    Flow batteries with flow-through porous electrodes are compared to cells with porous electrodes adjacent to either parallel or interdigitated channels. Resistances and pressure drops are measured for different configurations to augment the electrochemical data. Cell tests are done with an electrolyte containing VO2+ and VO2+ in sulfuric acid that is circulated through both anode and cathode from a single reservoir. Performance is found to depend sensitively on the combination of electrode and flow field. Theoretical explanations for this dependence are provided. Scale-up of flow through and interdigitated designs to large active areas is also discussed. (C) 2014 The Electrochemical Society. All rights reserved.

  7. Spot temperatures and area coverages on active dwarf stars

    NASA Technical Reports Server (NTRS)

    Sarr, Steven H.; Neff, James E.

    1990-01-01

    Two active K dwarfs are examined to determine the temperatures of the stars and to estimate the locations and sizes of cool spots on the stellar surfaces. Two wavelength regions with TiO absorption bands at different temperature sensitivities are modeled simultaneously using the method developed by Huenemoerder and Ramsey (1987). The spectrum of BD +26deg730 shows excess absorption in the TiO band, and the absence of the 8860 A band in HD 82558 indicates that its spots are warmer than those of BD +26deg730.

  8. Method of making biocompatible electrodes

    DOEpatents

    Wollam, John S.

    1992-01-01

    A process of improving the sensing function of biocompatible electrodes and the product so made are disclosed. The process is designed to alter the surfaces of the electrodes at their tips to provide increased surface area and therefore decreased contact resistance at the electrode-tissue interface for increased sensitivity and essentially includes rendering the tips atomically clean by exposing them to bombardment by ions of an inert gas, depositing an adhesion layer on the cleaned tips, forming a hillocked layer on the adhesion layer by increasing the temperature of the tips, and applying a biocompatible coating on the hillocked layer. The resultant biocompatible electrode is characterized by improved sensitivity, minimum voltage requirement for organ stimulation and a longer battery life for the device in which it is employed.

  9. Coordination of groundwater activities in the 100 N Area

    SciTech Connect

    Hartman, M.J.

    1995-09-01

    The initiation of the N Springs Expedited Response Action (ERA) in the 100 N Area will affect the groundwater monitoring networks of two Resource Conservation and Recovery Act of 1976 (RCRA) units. The 1301-N and 325-N facilities are treatment, storage, or disposal (TSD) units that have been monitored under RCRA since 1987. In September 1994, the Washington State Department of Ecology issued an action memorandum, instructing the US Department of Energy (DOE) to take the action. The planned pump-and-treat system will preclude meeting the specific objectives of interim-status RCRA groundwater monitoring representative samples and detect adverse impacts of the TSD units on. However, under RCRA final-status requirements, which will be implemented in 1999, corrective action for groundwater contamination will probably be required. The US Environmental Protection Agency (EPA) has declared parity between RCRA corrective action and Comprehensive Environmental Response, Compensation, and Liability Act of 1980 remedial action decisions. The 1301-N and 1325-N facilities are still in interim-status and therefore are not in the category of ``RCRA corrective action.`` However, DOE`s position is that parity exists between RCRA and the ERA because RCRA corrective action will almost certainly be required in the future.

  10. Agriculture in an area impacted by past uranium mining activities

    SciTech Connect

    Carvalho, F. P.; Oliveira, J. M.; Neves, O.; Vicente, E. M.; Abreu, M. M.

    2007-07-01

    The shallow aquifer near the old Cunha Baixa uranium mine (Viseu, Portugal) was contaminated by acid mine drainage. Concentration of radionuclides in water from irrigation wells and in the topsoil layer of the agriculture fields nearby display enhanced concentrations of uranium, radium and polonium. Two types of agriculture land in this area were selected, one with enhanced and another with low uranium concentrations, for controlled growth of lettuce and potatoes. Plants were grown in replicate portions of land (two plots) in each soil type and were periodically irrigated with water from wells. In each soil, one plot was irrigated with water containing low concentration of dissolved uranium and the other plot with water containing enhanced concentration of dissolved uranium. At the end of the growth season, plants were harvested and analysed, along with soil and irrigation water samples. Results show the accumulation of radionuclides in edible parts of plants, specially in the field plots with higher radionuclide concentrations in soil. Radionuclides in irrigation water contributed less to the radioactivity accumulated in plants than radionuclides from soils. (authors)

  11. Electrode assemblies, plasma apparatuses and systems including electrode assemblies, and methods for generating plasma

    DOEpatents

    Kong, Peter C; Grandy, Jon D; Detering, Brent A; Zuck, Larry D

    2013-09-17

    Electrode assemblies for plasma reactors include a structure or device for constraining an arc endpoint to a selected area or region on an electrode. In some embodiments, the structure or device may comprise one or more insulating members covering a portion of an electrode. In additional embodiments, the structure or device may provide a magnetic field configured to control a location of an arc endpoint on the electrode. Plasma generating modules, apparatus, and systems include such electrode assemblies. Methods for generating a plasma include covering at least a portion of a surface of an electrode with an electrically insulating member to constrain a location of an arc endpoint on the electrode. Additional methods for generating a plasma include generating a magnetic field to constrain a location of an arc endpoint on an electrode.

  12. Performing behavioral tasks in subjects with intracranial electrodes.

    PubMed

    Johnson, Matthew A; Thompson, Susan; Gonzalez-Martinez, Jorge; Park, Hyun-Joo; Bulacio, Juan; Najm, Imad; Kahn, Kevin; Kerr, Matthew; Sarma, Sridevi V; Gale, John T

    2014-01-01

    Patients having stereo-electroencephalography (SEEG) electrode, subdural grid or depth electrode implants have a multitude of electrodes implanted in different areas of their brain for the localization of their seizure focus and eloquent areas. After implantation, the patient must remain in the hospital until the pathological area of brain is found and possibly resected. During this time, these patients offer a unique opportunity to the research community because any number of behavioral paradigms can be performed to uncover the neural correlates that guide behavior. Here we present a method for recording brain activity from intracranial implants as subjects perform a behavioral task designed to assess decision-making and reward encoding. All electrophysiological data from the intracranial electrodes are recorded during the behavioral task, allowing for the examination of the many brain areas involved in a single function at time scales relevant to behavior. Moreover, and unlike animal studies, human patients can learn a wide variety of behavioral tasks quickly, allowing for the ability to perform more than one task in the same subject or for performing controls. Despite the many advantages of this technique for understanding human brain function, there are also methodological limitations that we discuss, including environmental factors, analgesic effects, time constraints and recordings from diseased tissue. This method may be easily implemented by any institution that performs intracranial assessments; providing the opportunity to directly examine human brain function during behavior. PMID:25349952

  13. Powder processing of hybrid titanium neural electrodes

    NASA Astrophysics Data System (ADS)

    Lopez, Jose Luis, Jr.

    A preliminary investigation into the powder production of a novel hybrid titanium neural electrode for EEG is presented. The rheological behavior of titanium powder suspensions using sodium alginate as a dispersant are examined for optimal slip casting conditions. Electrodes were slip cast and sintered at 950°C for 1 hr, 1000°C for 1, 3, and 6 hrs, and 1050°C for 1 hr. Residual porosities from sintering are characterized using Archimedes' technique and image analysis. The pore network is gel impregnated by submerging the electrodes in electrically conductive gel and placing them in a chamber under vacuum. Gel evaporation of the impregnated electrodes is examined. Electrodes are characterized in the dry and gelled states using impedance spectrometry and compared to a standard silver- silver chloride electrode. Power spectral densities for the sensors in the dry and gelled state are also compared. Residual porosities for the sintered specimens were between 50.59% and 44.81%. Gel evaporation tests show most of the impregnated gel evaporating within 20 min of exposure to atmospheric conditions with prolonged evaporation times for electrodes with higher impregnated gel mass. Impedance measurements of the produced electrodes indicate the low impedance of the hybrid electrodes are due to the increased contact area of the porous electrode. Power spectral densities of the titanium electrode behave similar to a standard silver-silver chloride electrode. Tests suggest the powder processed hybrid titanium electrode's performance is better than current dry contact electrodes and comparable to standard gelled silver-silver chloride electrodes.

  14. Activation of cortical areas in music execution and imagining: a high-resolution EEG study.

    PubMed

    Kristeva, Rumyana; Chakarov, Vihren; Schulte-Mönting, Jürgen; Spreer, Joachim

    2003-11-01

    Neuroimaging studies have shown that execution of a musical sequence on an instrument activates bilateral frontal opercular regions, in addition to bilateral sensorimotor and supplementary motor areas. During imagining activation of the same areas without primary sensorimotor areas was shown. We recorded EEG from 58 scalp positions to investigate the temporal sequence and the time course of activation of these areas while violin players prepared to execute, executed, prepared to imagine, or imagined a musical sequence on a violin. During the preparation for the sequence in three of seven musicians investigated the bilateral frontal opercular regions became active earlier than the motor areas and in one of them simultaneously with the motor areas. In two of the musicians a rather variable pattern of activation was observed. The frontal opercular regions were also strongly involved throughout the period of music execution or imagining. The supplementary motor area was involved in both preparation for the sequence and during execution and imagining of the sequence. The left primary sensorimotor area was involved in the preparation and termination of the musical sequence for both execution and imagining. The right sensorimotor area was strongly involved in the preparation for and during the execution of the sequence. We conclude that the bilateral frontal opercular regions are crucial in both preparation for and during music execution and imagining. They may have "mirror neurone" properties that underlie observation or imagining of one's own performance. The motor areas are differentially activated during the preparation and execution or imagining the sequence.

  15. Mountain-Plains Master Course List. Curriculum Areas: Job Titles: Learning Activity Packages: Courses: Units.

    ERIC Educational Resources Information Center

    Mountain-Plains Education and Economic Development Program, Inc., Glasgow AFB, MT.

    The document contains a master listing of all Mountain-Plains curriculum, compiled by job title, course, unit and LAP (Learning Activity Package), and arranged in numerical order by curriculum area. Preceding each curriculum area is a page of explanatory notes describing the curriculum area and including relevant job descriptions. Where a job…

  16. 33 CFR 334.761 - Naval Support Activity Panama City; St. Andrews Bay; restricted areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... City; St. Andrews Bay; restricted areas. 334.761 Section 334.761 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.761 Naval Support Activity Panama City; St. Andrews Bay; restricted areas. (a) The...

  17. resterilizable electrode for electrosurgery

    NASA Technical Reports Server (NTRS)

    Engstrom, E. R.; Houge, J. C.

    1979-01-01

    Required properties of flexibility, electrical conductivity, tensile strength, and tear resistance of electrosurgical electrodes is retained through utilization of flexible-polymer/conductive particle composites for electrodes.

  18. 32 CFR Appendix C to Part 552 - Authorized Activities for Fort Lewis Maneuver Area Access

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 3 2011-07-01 2009-07-01 true Authorized Activities for Fort Lewis Maneuver Area Access C Appendix C to Part 552 National Defense Department of Defense (Continued) DEPARTMENT OF.... 552, App. C Appendix C to Part 552—Authorized Activities for Fort Lewis Maneuver Area Access...

  19. Unitary plate electrode

    NASA Technical Reports Server (NTRS)

    Rowlette, John J. (Inventor); Clough, Thomas J. (Inventor); Josefowicz, Jack Y. (Inventor); Sibert, John W. (Inventor)

    1985-01-01

    The unitary electrode (10) comprises a porous sheet (12) of fiberglass the strands (14) of which contain a coating (16) of conductive tin oxide. The lower portion of the sheet contains a layer (18) of resin and the upper layer (20) contains lead dioxide forming a positive active electrode on an electrolyte-impervious layer. The strands (14) form a continuous conduction path through both layers (16, 18). Tin oxide is prevented from reduction by coating the surface of the plate facing the negative electrode with a conductive, impervious layer resistant to reduction such as a thin film (130) of lead or graphite filled resin adhered to the plate with a layer (31) of conductive adhesive. The plate (10) can be formed by casting a molten resin from kettle (60) onto a sheet of glass wool (56) overlying a sheet of lead foil and then applying positive active paste from hopper (64) into the upper layer (68). The plate can also be formed by passing an assembly of a sheet ( 80) of resin, a sheet (86) of sintered glass and a sheet (90) of lead between the nip (92) of heated rollers (93, 95) and then filling lead oxide into the pores (116) of the upper layer (118).

  20. Research activities in nuclear astrophysics and related areas

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA/GRO grant NAG 5-2081, at the University of Chicago, has provided support for a broad program of theoretical research in nuclear astrophysics and related areas, with regard to gamma-ray and hard X-ray emission from classical nova explosions. This research emphasized the possible detection of 22Na gamma-ray line emission from nearby novae involving ONeMg white dwarfs, the detailed examination of 26Al production in novae, and the possible detection of the predicted early gamma ray emission from novae that arises from the decay of the short lived, positron emitting isotopes of CNO elements. Studies of nova related problems have consumed an increasing fraction of the Principal Investigator's research efforts over the past decade. Current research addresses problems associated with the standard model for the outbursts of the classical novae: the occurrence of thermonuclear runaways (TNR) in the accreted hydrogen rich envelopes on white dwarfs in close binary systems (see, e.g., the reviews by Truran 1982; and Shara 1989). Research in progress and planned for the next three years has three main objectives: (1) to gain an improved understanding of the early evolution of the light curves of, particularly, the fastest novae; (2) to gain an improved understanding of the relative importance of the various possible mechanisms of envelope hydrogen depletion (e.g. winds, common envelope driven mass loss, and nuclear burning) to the long term evolution of novae in outburst; and (3) to seek to provide a somewhat more definitive statement of the role of classical novae in nucleosynthesis. Our proposed 2-D studies of convection during the early phases of the TNR and our systematic attempt to incorporate an improved treatment of radiation hydrodynamics into the hydrodynamic code utilized in our calculations, are particularly relevant to the first of these objectives. Further 2-D studies of the effects of common envelope evolution are intended to provide more realistic constraints

  1. Direct growth of single-crystal Pt nanowires on Sn@CNT Nanocable: 3D electrodes for highly active electrocatalysts.

    PubMed

    Sun, Shuhui; Zhang, Gaixia; Geng, Dongsheng; Chen, Yougui; Banis, Mohammad Norouzi; Li, Ruying; Cai, Mei; Sun, Xueliang

    2010-01-18

    A newly designed and fabricated novel three dimensional (3D) nanocomposite composed of single-crystal Pt nanowires (PtNW) and a coaxial nanocable support consisting of a tin nanowire and a carbon nanotube (Sn@CNT) is reported. This nanocomposite is fabricated by the synthesis of Sn@CNT nanocables by means of a thermal evaporation method, followed by the direct growth with PtNWs through a facile aqueous solution approach at room temperature. Electrochemical measurements demonstrate that the PtNW--Sn@CNT 3D electrode exhibits enhanced electrocatalytic performance in oxygen reduction reaction (ORR) for polymer electrolyte membrane fuel cells (PEMFCs), methanol oxidation (MOR) for direct methanol fuel cells (DMFCs), and CO tolerance compared with commercial ETEK Pt/C catalyst made of Pt nanoparticles. PMID:20024993

  2. Electrode modifications to lower electrode impedance and improve neural signal recording sensitivity

    NASA Astrophysics Data System (ADS)

    Chung, T.; Wang, J. Q.; Wang, J.; Cao, B.; Li, Y.; Pang, S. W.

    2015-10-01

    Objective. Although electrode size should be miniaturized to provide higher selectivity for neural signal recording and to avoid tissue damage, small sized electrodes induce high impedance, which decreases recording quality. In this work, the electrode surface was modified to increase the effective surface area to lower the electrode impedance and to improve the neural signal detection quality by optimizing plasma conditions. Approach. A tetrafluoromethane (CF4) plasma was used to increase the effective surface area of gold electrode sites of polyimide-based neural probes. In vitro electrode impedance and in vivo neural signal recording and stimulation were characterized. Main results. For 15 μm diameter (dia.) electrode size, the average surface roughness could be increased from 1.7 to 22 nm after plasma treatment, and the electrode impedance was decreased by 98%. Averaged background noise power in the range of 1 to 1000 Hz was decreased to -106 dB after the 30 μm dia. electrodes were plasma modified—lower than the noise level of -86 dB without plasma treatment. Neural probes with plasma-modified electrode sites of 15 and 30 μm dia. were implanted to the anterior cingulate cortex (ACC) region for acute recording of spontaneous and electrical evoked local field potential (LFP) of neural signals. Spontaneous LFP recorded in vivo by the plasma-modified electrodes of 30 μm dia. was two times higher compared to electrodes without treatment. For a stimulation current of 400 μA, electrically evoked LFP recorded by the plasma-modified electrodes was seven times higher than those without plasma exposure. Significance. A controllable technology was developed to increase the effective surface area of electrodes using a CF4 plasma. Plasma-modified electrodes improved the quality of the neural probe recording and more sensitive to record spontaneous and evoked LFP in the ACC region.

  3. A novel method for the activity measurement of large-area beta reference sources.

    PubMed

    Stanga, D; De Felice, P; Keightley, J; Capogni, M; Ioan, M R

    2016-03-01

    A novel method has been developed for the activity measurement of large-area beta reference sources. It makes use of two emission rate measurements and is based on the weak dependence between the source activity and the activity distribution for a given value of transmission coefficient. The method was checked experimentally by measuring the activity of two ((60)Co and (137)Cs) large-area reference sources constructed from anodized aluminum foils. Measurement results were compared with the activity values measured by gamma spectrometry. For each source, they agree within one standard uncertainty and also agree within the same limits with the certified values of the source activity. PMID:26701656

  4. Research on PEG modified Bi-doping lead dioxide electrode and mechanism

    NASA Astrophysics Data System (ADS)

    Yang, Weihua; Yang, Wutao; Lin, Xiaoyan

    2012-05-01

    Bi-doping PbO2 electrode, which is called Bi-PbO2 for short, modified with different concentrations of polyethylene glycol (PEG) was prepared by electrodeposition method in this paper. The microstructure and electrochemical properties of the different modified electrodes were investigated using scanning electron microscopy, X-ray diffraction, Mott-Schottky, electrochemical impedance spectroscopy and linear sweep voltammetry techniques. The results show that adulteration of PEG has a noticeable improvement in the morphology of Bi-PbO2 electrode which can greatly decrease its particle size and enlarge its active surface area. Phenol degradation experiments reveal that the modified electrodes have excellent electro-catalytic activity and stability, and the optimal adulterate concentration of PEG is 8 g L-1. Electrochemical performance tests show that the modified electrodes exhibit more negative flatband potential (Efb), larger adsorption pseudo capacitance, lower adsorption resistance and higher oxygen evolution potential, and these characteristics promote the electro-catalytic activity of the Bi-PbO2 electrode. Finally, accelerated lifetime tests demonstrate that PEG modification can highly lengthen the service life of Bi-PbO2 electrode in its practical application.

  5. 33 CFR 334.761 - Naval Support Activity Panama City; St. Andrews Bay; restricted areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... City; St. Andrews Bay; restricted areas. 334.761 Section 334.761 Navigation and Navigable Waters CORPS... REGULATIONS § 334.761 Naval Support Activity Panama City; St. Andrews Bay; restricted areas. (a) The areas—(1... waterline to 30°09′57.5″ N, 085°44′37″ W; then northerly to point of origin. (2) Area BA-1. The area...

  6. Layer by layer assembly of catalase and amine-terminated ionic liquid onto titanium nitride nanoparticles modified glassy carbon electrode: study of direct voltammetry and bioelectrocatalytic activity.

    PubMed

    Saadati, Shagayegh; Salimi, Abdollah; Hallaj, Rahman; Rostami, Amin

    2012-11-13

    A novel, simple and facile layer by layer (LBL) approach is used for modification of glassy carbon (GC) electrode with multilayer of catalase and nanocomposite containing 1-(3-Aminopropyl)-3-methylimidazolium bromide (amine terminated ionic liquid (NH(2)-IL)) and titanium nitride nanoparticles (TiNnp). First a thin layer of NH(2)-IL is covalently attached to GC/TiNnp electrode using electro-oxidation method. Then, with alternative self assemble positively charged NH(2)-IL and negatively charged catalase a sensitive H(2)O(2) biosensor is constructed, whose response is directly correlated to the number of bilayers. The surface coverage of active catalase per bilayer, heterogeneous electron transfer rate constant (k(s)) and Michaelis-Menten constant (K(M)) of immobilized catalase were 3.32×10(-12) mol cm(-2), 5.28s(-1) and 1.1 mM, respectively. The biosensor shows good stability, high reproducibility, long life-time, and fast amperometric response with the high sensitivity of 380 μA mM(-1)cm(-2) and low detection limit of 100 nM at concentration range up to 2.1 mM.

  7. Electrode system for electric-discharge generation of atomic iodine in a repetitively pulsed oxygen - iodine laser with a large active volume

    SciTech Connect

    Kazantsev, S Yu; Kononov, I G; Podlesnykh, S V; Firsov, K N

    2010-08-03

    Possibilities for increasing the active medium volume of a chemical oxygen - iodine laser (CCOIL) with a pulsed electric-discharge generation of atomic iodine are studied. The reasons are analysed of the low stability of the transverse self-sustained volume discharge in electrode systems with metal cathodes under the conditions of the electric energy input into gas-discharge plasma that are typical for CCOILs: low pressure of mixtures containing a strongly electronegative component, low voltage of discharge burning, low specific energy depositions, and long duration of the current pulse. An efficient electrode system is elaborated with the cathode based on an anisotropically-resistive material, which resulted in a stable discharge in the mixtures of iodide (CH{sub 3}I, n-C{sub 3}H{sub 7}I, C{sub 2}H{sub 5}I) with oxygen and nitrogen at the specific energy depositions of {approx}5 J L{sup -1}, pressures of 10 - 25 Torr, and mixture volume of 2.5 L. (lasers)

  8. Laser-perforated carbon paper electrodes for improved mass-transport in high power density vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Mayrhuber, I.; Dennison, C. R.; Kalra, V.; Kumbur, E. C.

    2014-08-01

    In this study, we demonstrate up to 30% increase in power density of carbon paper electrodes for vanadium redox flow batteries (VRFB) by introducing perforations into the structure of electrodes. A CO2 laser was used to generate holes ranging from 171 to 421 μm diameter, and hole densities from 96.8 to 649.8 holes cm-2. Perforation of the carbon paper electrodes was observed to improve cell performance in the activation region due to thermal treatment of the area around the perforations. Results also demonstrate improved mass transport, resulting in enhanced peak power and limiting current density. However, excessive perforation of the electrode yielded a decrease in performance due to reduced available surface area. A 30% increase in peak power density (478 mW cm-2) was observed for the laser perforated electrode with 234 μm diameter holes and 352.8 holes cm-2 (1764 holes per 5 cm2 electrode), despite a 15% decrease in total surface area compared to the raw un-perforated electrode. Additionally, the effect of perforation on VRFB performance was studied at different flow rates (up to 120 mL min-1) for the optimized electrode architecture. A maximum power density of 543 mW cm-2 was achieved at 120 mL min-1.

  9. Decreased Activation of Subcortical Brain Areas in the Motor Fatigue State: An fMRI Study.

    PubMed

    Hou, Li J; Song, Zheng; Pan, Zhu J; Cheng, Jia L; Yu, Yong; Wang, Jun

    2016-01-01

    One aspect of motor fatigue is the exercise-induced reduction of neural activity to voluntarily drive the muscle or muscle group. Functional magnetic resonance imaging provides access to investigate the neural activation on the whole brain level and studies observed changes of activation intensity after exercise-induced motor fatigue in the sensorimotor cortex. However, in human, little evidence exists to demonstrate the role of subcortical brain regions in motor fatigue, which is contradict to abundant researches in rodent indicating that during simple movement, the activity of the basal ganglia is modulated by the state of motor fatigue. Thus, in present study, we explored the effect of motor fatigue on subcortical areas in human. A series of fMRI data were collected from 11 healthy subjects while they were executing simple motor tasks in two conditions: before and under the motor fatigue state. The results showed that in both conditions, movements evoked activation volumes in the sensorimotor areas, SMA, cerebellum, thalamus, and basal ganglia. Of primary importance are the results that the intensity and size of activation volumes in the subcortical areas (i.e., thalamus and basal ganglia areas) are significantly decreased during the motor fatigue state, implying that motor fatigue disturbs the motor control processing in a way that both sensorimotor areas and subcortical brain areas are less active. Further study is needed to clarify how subcortical areas contribute to the overall decreased activity of CNS during motor fatigue state.

  10. Decreased Activation of Subcortical Brain Areas in the Motor Fatigue State: An fMRI Study

    PubMed Central

    Hou, Li J.; Song, Zheng; Pan, Zhu J.; Cheng, Jia L.; Yu, Yong; Wang, Jun

    2016-01-01

    One aspect of motor fatigue is the exercise-induced reduction of neural activity to voluntarily drive the muscle or muscle group. Functional magnetic resonance imaging provides access to investigate the neural activation on the whole brain level and studies observed changes of activation intensity after exercise-induced motor fatigue in the sensorimotor cortex. However, in human, little evidence exists to demonstrate the role of subcortical brain regions in motor fatigue, which is contradict to abundant researches in rodent indicating that during simple movement, the activity of the basal ganglia is modulated by the state of motor fatigue. Thus, in present study, we explored the effect of motor fatigue on subcortical areas in human. A series of fMRI data were collected from 11 healthy subjects while they were executing simple motor tasks in two conditions: before and under the motor fatigue state. The results showed that in both conditions, movements evoked activation volumes in the sensorimotor areas, SMA, cerebellum, thalamus, and basal ganglia. Of primary importance are the results that the intensity and size of activation volumes in the subcortical areas (i.e., thalamus and basal ganglia areas) are significantly decreased during the motor fatigue state, implying that motor fatigue disturbs the motor control processing in a way that both sensorimotor areas and subcortical brain areas are less active. Further study is needed to clarify how subcortical areas contribute to the overall decreased activity of CNS during motor fatigue state. PMID:27536264

  11. Decreased Activation of Subcortical Brain Areas in the Motor Fatigue State: An fMRI Study.

    PubMed

    Hou, Li J; Song, Zheng; Pan, Zhu J; Cheng, Jia L; Yu, Yong; Wang, Jun

    2016-01-01

    One aspect of motor fatigue is the exercise-induced reduction of neural activity to voluntarily drive the muscle or muscle group. Functional magnetic resonance imaging provides access to investigate the neural activation on the whole brain level and studies observed changes of activation intensity after exercise-induced motor fatigue in the sensorimotor cortex. However, in human, little evidence exists to demonstrate the role of subcortical brain regions in motor fatigue, which is contradict to abundant researches in rodent indicating that during simple movement, the activity of the basal ganglia is modulated by the state of motor fatigue. Thus, in present study, we explored the effect of motor fatigue on subcortical areas in human. A series of fMRI data were collected from 11 healthy subjects while they were executing simple motor tasks in two conditions: before and under the motor fatigue state. The results showed that in both conditions, movements evoked activation volumes in the sensorimotor areas, SMA, cerebellum, thalamus, and basal ganglia. Of primary importance are the results that the intensity and size of activation volumes in the subcortical areas (i.e., thalamus and basal ganglia areas) are significantly decreased during the motor fatigue state, implying that motor fatigue disturbs the motor control processing in a way that both sensorimotor areas and subcortical brain areas are less active. Further study is needed to clarify how subcortical areas contribute to the overall decreased activity of CNS during motor fatigue state. PMID:27536264

  12. Photocatalytic, antimicrobial activities of biogenic silver nanoparticles and electrochemical degradation of water soluble dyes at glassy carbon/silver modified past electrode using buffer solution.

    PubMed

    Khan, Zia Ul Haq; Khan, Amjad; Shah, Afzal; Chen, Yongmei; Wan, Pingyu; Khan, Arif Ullah; Tahir, Kamran; Muhamma, Nawshad; Khan, Faheem Ullah; Shah, Hidayat Ullah

    2016-03-01

    In the present research work a novel, nontoxic and ecofriendly procedure was developed for the green synthesis of silver nano particle (AgNPs) using Caruluma edulis (C. edulis) extract act as reductant as well as stabilizer agents. The formation of AgNPs was confirmed by UV/Vis spectroscopy. The small and spherical sizes of AgNPs were conformed from high resolution transmission electron microscopy (HRTEM) analysis and were found in the range of 2-10nm, which were highly dispersion without any aggregation. The crystalline structure of AgNPs was conformed from X-ray diffraction (XRD) analysis. For the elemental composition EDX was used and FTIR helped to determine the type of organic compounds in the extract. The potential electrochemical property of modified silver electrode was also studied. The AgNPs showed prominent antibacterial motion with MIC values of 125 μg/mL against Bacillus subtilis and Staphylococcus aureus while 250 μg/mL against Escherichia coli. High cell constituents' release was exhibited by B. subtilis with 2 × MIC value of silver nanoparticles. Silver nanoparticles also showed significant DPPH free radical scavenging activity. This research would have an important implication for the synthesis of more efficient antimicrobial and antioxidant agent. The AgNP modified electrode (GC/AgNPs) exhibited an excellent electro-catalytic activity toward the redox reaction of phenolic compounds. The AgNPs were evaluated for electrochemical degradation of bromothymol blue (BTB) dyes which showed a significant activity. From the strong reductive properties it is obvious that AgNPs can be used in water sanitization and converting some organic perilous in to non-hazardous materials. The AgNPs showed potential applications in the field of electro chemistry, sensor, catalyst, nano-devices and medical.

  13. Research on rechargeable oxygen electrodes.

    NASA Technical Reports Server (NTRS)

    Giner, J.; Holleck, G.; Malachesky, P. A.

    1970-01-01

    A research program is described which consisted of studying the effects of electrode cycling in very pure KOH solutions, with and without controlled additions of impurities, on oxide formation, oxygen evolution kinetics, oxygen reduction kinetics (including hydrogen peroxide formation), and changes in electrode structure. Bright platinum, platinized platinum, and Teflon-bonded platinum black electrodes were studied. Three main problem areas are identified: the buildup of a refractory anodic layer on prolonged cycling, which leads to a degradation of performance; the dissolution and subsequent deposition of dendritic platinum in the separator, leading to short-circuit ing and loss of electrocatalyst; and the disruptive effect of bubbling during gas evolution on charge. Each of these problem areas is analyzed, and remedial solutions are proposed.

  14. Functional Specificity of the Visual Word Form Area: General Activation for Words and Symbols but Specific Network Activation for Words

    ERIC Educational Resources Information Center

    Reinke, Karen; Fernandes, Myra; Schwindt, Graeme; O'Craven, Kathleen; Grady, Cheryl L.

    2008-01-01

    The functional specificity of the brain region known as the Visual Word Form Area (VWFA) was examined using fMRI. We explored whether this area serves a general role in processing symbolic stimuli, rather than being selective for the processing of words. Brain activity was measured during a visual 1-back task to English words, meaningful symbols…

  15. Individual Human Brain Areas Can Be Identified from Their Characteristic Spectral Activation Fingerprints

    PubMed Central

    Keitel, Anne; Gross, Joachim

    2016-01-01

    The human brain can be parcellated into diverse anatomical areas. We investigated whether rhythmic brain activity in these areas is characteristic and can be used for automatic classification. To this end, resting-state MEG data of 22 healthy adults was analysed. Power spectra of 1-s long data segments for atlas-defined brain areas were clustered into spectral profiles (“fingerprints”), using k-means and Gaussian mixture (GM) modelling. We demonstrate that individual areas can be identified from these spectral profiles with high accuracy. Our results suggest that each brain area engages in different spectral modes that are characteristic for individual areas. Clustering of brain areas according to similarity of spectral profiles reveals well-known brain networks. Furthermore, we demonstrate task-specific modulations of auditory spectral profiles during auditory processing. These findings have important implications for the classification of regional spectral activity and allow for novel approaches in neuroimaging and neurostimulation in health and disease. PMID:27355236

  16. Individual Human Brain Areas Can Be Identified from Their Characteristic Spectral Activation Fingerprints.

    PubMed

    Keitel, Anne; Gross, Joachim

    2016-06-01

    The human brain can be parcellated into diverse anatomical areas. We investigated whether rhythmic brain activity in these areas is characteristic and can be used for automatic classification. To this end, resting-state MEG data of 22 healthy adults was analysed. Power spectra of 1-s long data segments for atlas-defined brain areas were clustered into spectral profiles ("fingerprints"), using k-means and Gaussian mixture (GM) modelling. We demonstrate that individual areas can be identified from these spectral profiles with high accuracy. Our results suggest that each brain area engages in different spectral modes that are characteristic for individual areas. Clustering of brain areas according to similarity of spectral profiles reveals well-known brain networks. Furthermore, we demonstrate task-specific modulations of auditory spectral profiles during auditory processing. These findings have important implications for the classification of regional spectral activity and allow for novel approaches in neuroimaging and neurostimulation in health and disease. PMID:27355236

  17. Ion-Selective Electrodes.

    ERIC Educational Resources Information Center

    Arnold, Mark A.; Meyerhoff, Mark E.

    1984-01-01

    Literature on ion-selective electrodes (ISEs) is reviewed in seven sections: books, conferences, reviews; potentiometric membrane electrodes; glass and solid-state membrane electrodes; liquid and polymer membrane ISEs; coated wire electrodes, ion-selective field effect transistors, and microelectrodes; gas sensors and selective bioelectrode…

  18. Preparation of capacitor's electrode from sunflower seed shell.

    PubMed

    Li, Xiao; Xing, Wei; Zhuo, Shuping; Zhou, Jin; Li, Feng; Qiao, Shi-Zhang; Lu, Gao-Qing

    2011-01-01

    Series of nanoporous carbons are prepared from sunflower seed shell (SSS) by two different strategies and used as electrode material for electrochemical double-layer capacitor (EDLC). The surface area and pore-structure of the nanoporous carbons are characterized intensively using N2 adsorption technique. The results show that the pore-structure of the carbons is closely related to activation temperature and dosage of KOH. Electrochemical measurements show that the carbons made by impregnation-activation process have better capacitive behavior and higher capacitance retention ratio at high drain current than the carbons made by carbonization-activation process, which is due to that there are abundant macroscopic pores and less interior micropore surface in the texture of the former. More importantly, the capacitive performances of these carbons are much better than ordered mesoporous carbons and commercial wood-based active carbon, thus highlighting the success of preparing high performance electrode material for EDLC from SSS. PMID:20850968

  19. Preparation of capacitor's electrode from sunflower seed shell.

    PubMed

    Li, Xiao; Xing, Wei; Zhuo, Shuping; Zhou, Jin; Li, Feng; Qiao, Shi-Zhang; Lu, Gao-Qing

    2011-01-01

    Series of nanoporous carbons are prepared from sunflower seed shell (SSS) by two different strategies and used as electrode material for electrochemical double-layer capacitor (EDLC). The surface area and pore-structure of the nanoporous carbons are characterized intensively using N2 adsorption technique. The results show that the pore-structure of the carbons is closely related to activation temperature and dosage of KOH. Electrochemical measurements show that the carbons made by impregnation-activation process have better capacitive behavior and higher capacitance retention ratio at high drain current than the carbons made by carbonization-activation process, which is due to that there are abundant macroscopic pores and less interior micropore surface in the texture of the former. More importantly, the capacitive performances of these carbons are much better than ordered mesoporous carbons and commercial wood-based active carbon, thus highlighting the success of preparing high performance electrode material for EDLC from SSS.

  20. 33 CFR 334.761 - Naval Support Activity Panama City; St. Andrews Bay; restricted areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Naval Support Activity Panama... REGULATIONS § 334.761 Naval Support Activity Panama City; St. Andrews Bay; restricted areas. (a) The areas—(1... in this section shall be enforced by the Commanding Officer, Naval Support Activity, Panama...

  1. 33 CFR 334.761 - Naval Support Activity Panama City; St. Andrews Bay; restricted areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Naval Support Activity Panama... REGULATIONS § 334.761 Naval Support Activity Panama City; St. Andrews Bay; restricted areas. (a) The areas—(1... in this section shall be enforced by the Commanding Officer, Naval Support Activity, Panama...

  2. Previewing Pictures: A Means of Activating Prior Knowledge in Content Area Reading.

    ERIC Educational Resources Information Center

    Buchholz, Tom

    1990-01-01

    Discusses the importance prior knowledge plays in learning in the content areas. Discusses previewing pictures as a prereading activity and presents a picture analysis activity which can be used to activate prior knowledge to use as a foundation for good bridge building. (MG)

  3. Improving global fire carbon emissions estimates by combining moderate resolution burned area and active fire observations

    NASA Astrophysics Data System (ADS)

    Randerson, J. T.; Chen, Y.; Giglio, L.; Rogers, B. M.; van der Werf, G.

    2011-12-01

    In several important biomes, including croplands and tropical forests, many small fires exist that have sizes that are well below the detection limit for the current generation of burned area products derived from moderate resolution spectroradiometers. These fires likely have important effects on greenhouse gas and aerosol emissions and regional air quality. Here we developed an approach for combining 1km thermal anomalies (active fires; MOD14A2) and 500m burned area observations (MCD64A1) to estimate the prevalence of these fires and their likely contribution to burned area and carbon emissions. We first estimated active fires within and outside of 500m burn scars in 0.5 degree grid cells during 2001-2010 for which MCD64A1 burned area observations were available. For these two sets of active fires we then examined mean fire radiative power (FRP) and changes in enhanced vegetation index (EVI) derived from 16-day intervals immediately before and after each active fire observation. To estimate the burned area associated with sub-500m fires, we first applied burned area to active fire ratios derived solely from within burned area perimeters to active fires outside of burn perimeters. In a second step, we further modified our sub-500m burned area estimates using EVI changes from active fires outside and within of burned areas (after subtracting EVI changes derived from control regions). We found that in northern and southern Africa savanna regions and in Central and South America dry forest regions, the number of active fires outside of MCD64A1 burned areas increased considerably towards the end of the fire season. EVI changes for active fires outside of burn perimeters were, on average, considerably smaller than EVI changes associated with active fires inside burn scars, providing evidence for burn scars that were substantially smaller than the 25 ha area of a single 500m pixel. FRP estimates also were lower for active fires outside of burn perimeters. In our

  4. Intravascular Neural Interface with Nanowire Electrode

    PubMed Central

    Watanabe, Hirobumi; Takahashi, Hirokazu; Nakao, Masayuki; Walton, Kerry; Llinás, Rodolfo R.

    2010-01-01

    Summary A minimally invasive electrical recording and stimulating technique capable of simultaneously monitoring the activity of a significant number (e.g., 103 to 104) of neurons is an absolute prerequisite in developing an effective brain–machine interface. Although there are many excellent methodologies for recording single or multiple neurons, there has been no methodology for accessing large numbers of cells in a behaving experimental animal or human individual. Brain vascular parenchyma is a promising candidate for addressing this problem. It has been proposed [1, 2] that a multitude of nanowire electrodes introduced into the central nervous system through the vascular system to address any brain area may be a possible solution. In this study we implement a design for such microcatheter for ex vivo experiments. Using Wollaston platinum wire, we design a submicron-scale electrode and develop a fabrication method. We then evaluate the mechanical properties of the electrode in a flow when passing through the intricacies of the capillary bed in ex vivo Xenopus laevis experiments. Furthermore, we demonstrate the feasibility of intravascular recording in the spinal cord of Xenopus laevis. PMID:21572940

  5. Lithium-aluminum-magnesium electrode composition

    DOEpatents

    Melendres, Carlos A.; Siegel, Stanley

    1978-01-01

    A negative electrode composition is presented for use in a secondary, high-temperature electrochemical cell. The cell also includes a molten salt electrolyte of alkali metal halides or alkaline earth metal halides and a positive electrode including a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent and a magnesium-aluminum alloy as a structural matrix. Various binary and ternary intermetallic phases of lithium, magnesium, and aluminum are formed but the electrode composition in both its charged and discharged state remains substantially free of the alpha lithium-aluminum phase and exhibits good structural integrity.

  6. Stabilization of insertion electrodes for lithium batteries.

    SciTech Connect

    Thackeray, M. M.

    1998-09-03

    This paper discusses the techniques that are being employed to stabilize LiMn{sub 2}O{sub 4} spinel and composite Li{sub x}MnO{sub 2} positive electrodes. The critical role that spinel domains play in stabilizing these electrodes for operation at both 4 V and 3 V is highlighted. The concept of using an intermetallic electrode MM{prime} where M is an active alloying element and M{prime} is an inactive element (or elements) is proposed as an alternative negative electrode (to carbon) for lithium-ion cells. An analogy to metal oxide insertion electrodes, such as MnO{sub 2}, in which Mn is the electrochemically active ion and O is the inactive ion, is made. Performance data are given for the copper-tin electrode system, which includes the intermetallic phases eta-Cu{sub 6}Sn{sub 5} and Li{sub 2}CuSn.

  7. Carbon aerogel electrodes for direct energy conversion

    DOEpatents

    Mayer, Steven T.; Kaschmitter, James L.; Pekala, Richard W.

    1997-01-01

    A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome.

  8. Carbon aerogel electrodes for direct energy conversion

    DOEpatents

    Mayer, S.T.; Kaschmitter, J.L.; Pekala, R.W.

    1997-02-11

    A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes is described, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome. 1 fig.

  9. Electric filter with movable belt electrode

    DOEpatents

    Bergman, W.

    1983-09-20

    A method and apparatus for removing airborne contaminants entrained in a gas or airstream includes an electric filter characterized by a movable endless belt electrode, a grounded electrode, and a filter medium sandwiched there between. Inclusion of the movable, endless belt electrode provides the driving force for advancing the filter medium through the filter, and reduces frictional drag on the filter medium, thereby permitting a wide choice of filter medium materials. Additionally, the belt electrode includes a plurality of pleats in order to provide maximum surface area on which to collect airborne contaminants. 4 figs.

  10. Electrodes For Alkali-Metal Thermoelectric Converters

    NASA Technical Reports Server (NTRS)

    Williams, Roger M.; Wheeler, Bob L.; Jeffries-Nakamura, Barbara; Lamb, James L.; Bankston, C. Perry; Cole, Terry

    1989-01-01

    Combination of thin, porous electrode and overlying collector grid reduces internal resistance of alkali-metal thermoelectric converter cell. Low resistance of new electrode and grid boosts power density nearly to 1 W/cm2 of electrode area at typical operating temperatures of 1,000 to 1,300 K. Conductive grid encircles electrode film on alumina tube. Bus wire runs along tube to collect electrical current from grid. Such converters used to transform solar, nuclear, and waste heat into electric power.

  11. Electric filter with movable belt electrode

    DOEpatents

    Bergman, Werner

    1983-01-01

    A method and apparatus for removing airborne contaminants entrained in a gas or airstream includes an electric filter characterized by a movable endless belt electrode, a grounded electrode, and a filter medium sandwiched therebetween. Inclusion of the movable, endless belt electrode provides the driving force for advancing the filter medium through the filter, and reduces frictional drag on the filter medium, thereby permitting a wide choice of filter medium materials. Additionally, the belt electrode includes a plurality of pleats in order to provide maximum surface area on which to collect airborne contaminants.

  12. Electrically conductive connection for an electrode

    DOEpatents

    Hornack, T.R.; Chilko, R.J.

    1986-09-02

    An electrically conductive connection for an electrode assembly of an electrolyte cell in which aluminum is produced by electrolysis in a molten salt is described. The electrode assembly comprises an electrode flask and a conductor rod. The flask has a collar above an area of minimum flask diameter. The electrically conductive connection comprises the electrode flask, the conductor rod and a structure bearing against the collar and the conductor rod for pulling the conductor rod into compressive and electrical contact with the flask. 2 figs.

  13. Electrode structure and methods of making same

    DOEpatents

    Ruud, James Anthony; Browall, Kenneth Walter; Rehg, Timothy Joseph; Renou, Stephane; Striker, Todd-Michael

    2010-04-06

    A method of making an electrode structure is provided. The method includes disposing an electrocatalytic material on an electrode, applying heat to the electrocatalytic material to form a volatile oxide of the electrocatalytic material, and applying a voltage to the electrode to reduce the volatile oxide to provide a number of nano-sized electrocatalytic particles on or proximate to a triple phase boundary, where the number of nano-sized electrocatalytic particles is greater on or proximate to the triple phase boundary than in an area that is not on or proximate to the triple phase boundary, and where the triple phase boundary is disposed on the electrode.

  14. Moving through Life-Space Areas and Objectively Measured Physical Activity of Older People

    PubMed Central

    Portegijs, Erja; Tsai, Li-Tang; Rantanen, Taina; Rantakokko, Merja

    2015-01-01

    Objectives Physical activity–an important determinant of health and function in old age–may vary according to the life-space area reached. Our aim was to study how moving through greater life-space areas is associated with greater physical activity of community-dwelling older people. The association between objectively measured physical activity and life-space area reached on different days by the same individual was studied using one-week longitudinal data, to provide insight in causal relationships. Methods One-week surveillance of objectively assessed physical activity of community-dwelling 70–90-year-old people in central Finland from the “Life-space mobility in old age” cohort substudy (N = 174). In spring 2012, participants wore an accelerometer for 7 days and completed a daily diary including the largest life-space area reached (inside home, outside home, neighborhood, town, and beyond town). The daily step count, and the time in moderate (incl. walking) and low activity and sedentary behavior were assessed. Differences in physical activity between days on which different life-space areas were reached were tested using Generalized Estimation Equation models (within-group comparison). Results Participants’ mean age was 80.4±4.2 years and 63.5% were female. Participants had higher average step counts (p < .001) and greater moderate and low activity time (p < .001) on days when greater life-space areas were reached, from the home to the town area. Only low activity time continued to increase when moving beyond the town. Conclusion Community-dwelling older people were more physically active on days when they moved through greater life-space areas. While it is unknown whether physical activity was a motivator to leave the home, intervention studies are needed to determine whether facilitation of daily outdoor mobility, regardless of the purpose, may be beneficial in terms of promoting physical activity. PMID:26252537

  15. Effect of Activating Agent on the Preparation of Bamboo-Based High Surface Area Activated Carbon by Microwave Heating

    NASA Astrophysics Data System (ADS)

    Xia, Hongying; Wu, Jian; Srinivasakannan, Chandrasekar; Peng, Jinhui; Zhang, Libo

    2016-06-01

    The present work attempts to convert bamboo into a high surface area activated carbon via microwave heating. Different chemical activating agents such as KOH, NaOH, K2CO3 and Na2CO3 were utilized to identify a most suitable activating agent. Among the activating agents tested KOH was found to generate carbon with the highest porosity and surface area. The effect of KOH/C ratio on the porous nature of the activated carbon has been assessed. An optimal KOH/C ratio of 4 was identified, beyond which the surface area as well as the pore volume were found to decrease. At the optimized KOH/C ratio the surface area and the pore volume were estimated to be 3,441 m2/g and 2.093 ml/g, respectively, with the significant proportion of which being microporous (62.3%). Activated carbon prepared under the optimum conditions was further characterized using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). Activated carbons with so high surface area and pore volume are very rarely reported, which could be owed to the nature of the precursor and the optimal conditions of mixture ratio adopted in the present work.

  16. Amorphous In-Ga-Zn-O Thin Film Transistor Current-Scaling Pixel Electrode Circuit for Active-Matrix Organic Light-Emitting Displays

    NASA Astrophysics Data System (ADS)

    Chen, Charlene; Abe, Katsumi; Fung, Tze-Ching; Kumomi, Hideya; Kanicki, Jerzy

    2009-03-01

    In this paper, we analyze application of amorphous In-Ga-Zn-O thin film transistors (a-InGaZnO TFTs) to current-scaling pixel electrode circuit that could be used for 3-in. quarter video graphics array (QVGA) full color active-matrix organic light-emitting displays (AM-OLEDs). Simulation results, based on a-InGaZnO TFT and OLED experimental data, show that both device sizes and operational voltages can be reduced when compare to the same circuit using hydrogenated amorphous silicon (a-Si:H) TFTs. Moreover, the a-InGaZnO TFT pixel circuit can compensate for the drive TFT threshold voltage variation (ΔVT) within acceptable operating error range.

  17. Modified conducting polymer films having high catalytic activity for use as counter electrodes in rigid and flexible dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Ke, Chun-Ren; Chang, Chih-Ching; Ting, Jyh-Ming

    2015-06-01

    We report replacing platinum based counter electrode (CE) in dye-sensitized solar cell (DSSC) with conducting polymer based CE. Conducting polymers are prepared through mixing poly-(3,4-ethylenedioxythio phene):poly-(styrene sulfonic acid) (PEDOT:PSS) with Triton. The polymer mixture is spin-coated on indium tin oxide (ITO)-coated glass substrate and ITO-coated polyethylene naphthalate plastic substrate to form a CE for use in both rigid and flexible DSSCs, respectively. The PEDOT:PSS-Triton polymer not only is transparent (up to 93%) and highly conductive but also exhibits better catalytic activity than the expensive platinum. The DSSC fabricated using the PEDOT:PSS-Triton conducting polymer CE shows better performance or higher power conversion efficiency than that using Pt-based CE, either rigid or flexible.

  18. Electrode holder useful in a corrosion testing device

    DOEpatents

    Murphy, R.J. Jr.; Jamison, D.E.

    1986-08-19

    The present invention is directed to an apparatus and method for holding one or more test electrodes of precisely known exposed surface area. The present invention is particularly useful in a device for determining the corrosion properties of the materials from which the test electrodes have been formed. The present invention relates to a device and method for holding the described electrodes wherein the exposed surface area of the electrodes is only infinitesimally decreased. Further, in the present invention the exposed, electrically conductive surface area of the contact devices is small relative to the test electrode surface area. The holder of the present invention conveniently comprises a device for contacting and engaging each test electrode at two point contacts infinitesimally small in relation to the exposed surface area of the electrodes. 4 figs.

  19. Electrode holder useful in a corrosion testing device

    DOEpatents

    Murphy, Jr., Robert J.; Jamison, Dale E.

    1986-01-01

    The present invention is directed to an apparatus and method for holding one or more test electrodes of precisely known exposed surface area. The present invention is particularly useful in a device for determining the corrosion properties of the materials from which the test electrodes have been formed. The present invention relates to a device and method for holding the described electrodes wherein the exposed surface area of the electrodes is only infinitesimally decreased. Further, in the present invention the exposed, electrically conductive surface area of the contact devices is small relative to the test electrode surface area. The holder of the present invention conveniently comprises a device for contacting and engaging each test electrode at two point contacts infinitesimally small in relation to the exposed surface area of the electrodes.

  20. HSPES membrane electrode assembly

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew (Inventor); Yen, Shiao-Ping (Inventor)

    2000-01-01

    An improved fuel cell electrode, as well as fuel cells and membrane electrode assemblies that include such an electrode, in which the electrode includes a backing layer having a sintered layer thereon, and a non-sintered free-catalyst layer. The invention also features a method of forming the electrode by sintering a backing material with a catalyst material and then applying a free-catalyst layer.

  1. Photoelectrochemical and photocatalytic properties of nanocrystalline TiO II electrodes

    NASA Astrophysics Data System (ADS)

    Oliveira, Haroldo G.; Nery, Daiane C.; Paschoalino, Matheus P.; Jardim, Wilson F.; Longo, Claudia

    2007-09-01

    The electrochemical and photocatalytic properties of a TiO II film deposited on transparent electrodes were investigated. Its electrochemical behavior was typical of an n-type semiconductor electrode. Its photocatalytic activity, investigated for phenol degradation on an optical bench (area of 1 cm2, 5 mL of solution), revealed small currents (3 μA) and poor total organic carbon (TOC) removal (5 %) when the electrode was biased at + 1.1 V in the dark for 3 h. Under polychromatic irradiation, the electrode presented 25 μA of current and 12 % of phenol degradation. A better performance was achieved for photoelectrocatalytic configuration, when the electrode was irradiated and biased with + 0.6 V. Experiments done under irradiation with a metallic vapor lamp using 9 cm2 electrodes and 10 mL of solution revealed that heterogeneous photocatalysis configuration (HPC) resulted in 50 % of TOC removal, while 85 % was achieved by the electro-assisted process (EHPC). Both the configurations exhibited pseudo-first order kinetics for phenol degradation, but the rate constant was two times that of EHPC. The application of a potential bias to the TiO II porous electrode must enhance the photogenerated electron/hole separation, which minimize the charge recombination and increases its photocatalytic activity towards organic pollutant degradation.

  2. Characterization and optimization of liquid electrodes for lateral dielectrophoresis.

    PubMed

    Demierre, Nicolas; Braschler, Thomas; Linderholm, Pontus; Seger, Urban; van Lintel, Harald; Renaud, Philippe

    2007-03-01

    Using the concept of insulator-based "electrodeless" dielectrophoresis, we present a novel geometry for shaping electric fields to achieve lateral deviation of particles in liquid flows. The field is generated by lateral planar metal electrodes and is guided along access channels to the active area in the main channel. The equipotential surfaces at the apertures of the access channels behave as vertical "liquid" electrodes injecting the current into the main channel. The field between a pair of adjacent liquid electrodes generates the lateral dielectrophoretic force necessary for particle manipulation. We use this force for high-speed deviation of particles. By adding a second pair of liquid electrodes, we focus a particle stream. The position of the focused stream can be swept across the channel by adjusting the ratio of the voltages applied to the two pairs. Based on conformal mapping, we provide an analytical model for estimating the potential at the liquid electrodes and the field distribution in the main channel. We show that the simulated particle trajectories agree with observations. Finally, we show that the model can be used to optimize the device geometry in different applications. PMID:17330167

  3. Fabrication of Out-of-Plane Electrodes for ACEO Pumps

    NASA Astrophysics Data System (ADS)

    Senousy, Yehya; Harnett, Cindy

    2012-02-01

    This abstract reports the fabrication process of a novel AC Electrosmosis (ACEO) pump with out of plane asymmetric interdigitated electrodes. A self-folding technique is used to fabricate the electrodes, that depends on the strain mismatch between the tensile stressed film (metal layer) and the compressive stress film (oxidized silicon layer). The electrodes roll up with a well-defined radius of curvature in the range of 100-200 microns. Two different electrical signals are connected to alternating electrodes using an insulating silicon nitride barrier that allows circuits to cross over each other without shorting. Electroosmotic micropumps are essential for low-cost, power-efficient microfluidic lab-on-chip devices used in diverse application such as analytical probes, drug delivery systems and surgical tools. ACEO pumps have been developed to address the drawbacks of the DCEO pumps such as the faradic reaction and gas bubbles. The original ACEO microfluidic pump was created with planar arrays of asymmetric interdigitated electrodes at the bottom of the channel. This rolled-up tube design improves on the planar design by including the channel walls and ceiling in the active pumping surface area of the device.

  4. Amperometric noise at thin film band electrodes.

    PubMed

    Larsen, Simon T; Heien, Michael L; Taboryski, Rafael

    2012-09-18

    Background current noise is often a significant limitation when using constant-potential amperometry for biosensor application such as amperometric recordings of transmitter release from single cells through exocytosis. In this paper, we fabricated thin-film electrodes of gold and conductive polymers and measured the current noise in physiological buffer solution for a wide range of different electrode areas. The noise measurements could be modeled by an analytical expression, representing the electrochemical cell as a resistor and capacitor in series. The studies revealed three domains; for electrodes with low capacitance, the amplifier noise dominated, for electrodes with large capacitances, the noise from the resistance of the electrochemical cell was dominant, while in the intermediate region, the current noise scaled with electrode capacitance. The experimental results and the model presented here can be used for choosing an electrode material and dimensions and when designing chip-based devices for low-noise current measurements. PMID:22928986

  5. Secondary Ionization Coefficient of Dielectric Electrode

    NASA Astrophysics Data System (ADS)

    Kashiwagi, Yasuhide; Suzuki, Susumu; Itoh, Haruo

    Experiments for observations and stabilization of discharge paths in several electrode systems are carried out aiming at precise measurement of the secondary ionization coefficient γ of MgO film electrode. The discharge chamber is filled with Ar gas. The waveforms of the applied voltage between the electrodes and the discharge current are measured with visual observation of the discharge light. Two MgO coated electrodes are placed so that they are facing each other. For these MgO electrodes, the discharge paths take a detour, not the shortest distance. Smaller prebreakdown current pulses are observed before the breakdown. After breakdown, discontinuous discharge current is observed. Therefore, it is prepared a glass tube surrounding the discharge area. As the result, the discharge paths take a straight perpendicular for the electrode surface, and the discharge is stabilized.

  6. Fabrication and characterization of PbO2 electrode modified with [Fe(CN)6](3-) and its application on electrochemical degradation of alkali lignin.

    PubMed

    Hao, Xu; Quansheng, Yuan; Dan, Shao; Honghui, Yang; Jidong, Liang; Jiangtao, Feng; Wei, Yan

    2015-04-01

    PbO2 electrode modified by [Fe(CN)6](3-) (marked as FeCN-PbO2) was prepared by electro-deposition method and used for the electrochemical degradation of alkali lignin (AL). The surface morphology and the structure of the electrodes were characterized by scanning electronic microscopy (SEM) and X-ray diffraction (XRD), respectively. The stability and electrochemical activity of FeCN-PbO2 electrode were characterized by accelerated life test, linear sweep voltammetry, electrochemical impedance spectrum (EIS) and AL degradation. The results showed that [Fe(CN)6](3-) increased the average grain size of PbO2 and formed a compact surface coating. The service lifetime of FeCN-PbO2 electrode was 287.25 h, which was longer than that of the unmodified PbO2 electrode (100.5h). The FeCN-PbO2 electrode showed higher active surface area and higher oxygen evolution potential than that of the unmodified PbO2 electrode. In electrochemical degradation tests, the apparent kinetics coefficient of FeCN-PbO2 electrode was 0.00609 min(-1), which was higher than that of unmodified PbO2 electrode (0.00419 min(-1)). The effects of experimental parameters, such as applied current density, initial AL concentration, initial pH value and solution temperature, on electrochemical degradation of AL by FeCN-PbO2 electrode were evaluated.

  7. Evaluation of local electric fields generated by transcranial direct current stimulation with an extracephalic reference electrode based on realistic 3D body modeling

    NASA Astrophysics Data System (ADS)

    Im, Chang-Hwan; Park, Ji-Hye; Shim, Miseon; Chang, Won Hyuk; Kim, Yun-Hee

    2012-04-01

    In this study, local electric field distributions generated by transcranial direct current stimulation (tDCS) with an extracephalic reference electrode were evaluated to address extracephalic tDCS safety issues. To this aim, we generated a numerical model of an adult male human upper body and applied the 3D finite element method to electric current conduction analysis. In our simulations, the active electrode was placed over the left primary motor cortex (M1) and the reference electrode was placed at six different locations: over the right temporal lobe, on the right supraorbital region, on the right deltoid, on the left deltoid, under the chin, and on the right buccinator muscle. The maximum current density and electric field intensity values in the brainstem generated by the extracephalic reference electrodes were comparable to, or even less than, those generated by the cephalic reference electrodes. These results suggest that extracephalic reference electrodes do not lead to unwanted modulation of the brainstem cardio-respiratory and autonomic centers, as indicated by recent experimental studies. The volume energy density was concentrated at the neck area by the use of deltoid reference electrodes, but was still smaller than that around the active electrode locations. In addition, the distributions of elicited cortical electric fields demonstrated that the use of extracephalic reference electrodes might allow for the robust prediction of cortical modulations with little dependence on the reference electrode locations.

  8. Semiconductor electrode with improved photostability characteristics

    DOEpatents

    Frank, Arthur J.

    1987-01-01

    An electrode is disclosed for use in photoelectrochemical cells having an electrolyte which includes an aqueous constituent. The electrode includes a semiconductor and a hydrophobic film disposed between the semiconductor and the aqueous constituent. The hydrophobic film is adapted to permit charges to pass therethrough while substantially decreasing the activity of the aqueous constituent at the semiconductor surface thereby decreasing the photodegradation of the semiconductor electrode.

  9. Semiconductor electrode with improved photostability characteristics

    DOEpatents

    Frank, A.J.

    1985-02-19

    An electrode is described for use in photoelectrochemical cells having an electrolyte which includes an aqueous constituent. The electrode consists of a semiconductor and a hydrophobic film disposed between the semiconductor and the aqueous constituent. The hydrophobic film is adapted to permit charges to pass therethrough while substantially decreasing the activity of the aqueous constituent at the semiconductor surface thereby decreasing the photodegradation of the semiconductor electrode.

  10. Optimal area of retinal photocoagulation necessary for suppressing active iris neovascularisation associated with diabetic retinopathy.

    PubMed

    Shiraya, Tomoyasu; Kato, Satoshi; Shigeeda, Takashi

    2014-10-01

    To determine the optimal area of retinal photocoagulation required for suppressing active neovascularisation (NVI) associated with diabetic retinopathy. We studied 1 eye each of 4 patients in whom active NVI was ophthalmoscopically shown to have been suppressed by additional photocoagulation. These patients initially underwent pan-retinal photocoagulation for diabetic retinopathy at another hospital, but NVI developed subsequently. We compared the areas of photocoagulation before and after additional photocoagulation and compared the area of retinal photocoagulation. The photocoagulated areas before and after additional photocoagulation in the four eyes were 20.7 and 45.2, 36.6 and 56.3, 30.4 and 67.4, and 11.7 and 53.4 %, respectively. The area of retinal photocoagulation required to suppress active NVI is calculated to be ~50 %.

  11. Prediction of prognosis of ALS: Importance of active denervation findings of the cervical-upper limb area and trunk area.

    PubMed

    Sato, Yoko; Nakatani, Eiji; Watanabe, Yasuhiro; Fukushima, Masanori; Nakashima, Kenji; Kannagi, Mari; Kanatani, Yasuhiro; Mizushima, Hiroshi

    2015-11-01

    Amyotrophic lateral sclerosis (ALS) is a motor neuron disease characterized by serious muscle atrophy and weakness. The purpose of this study was to find prognostic factors in patients with mild ALS using application forms for the Specified Disease Treatment Research Program in Japan. We classified ALS as mild, moderate and severe. The subjects consisted of 363 patients with mild ALS who underwent needle electromyography at registration and were followed for more than one year. Time to progression to severe ALS and time to deterioration of activities of daily living such as speech dysfunction, upper limb dysfunction, and walking disability were used as outcomes. Cox proportional hazards model analysis was performed to identify prognostic factors. Of the patients with initially mild ALS, 38.3% (139/363) had progressed severe ALS at the last follow-up. In multivariate analysis of time to progression to severe ALS, bulbar onset (hazard ratio [95% confidence interval]: 1.68 [1.13-2.49], p = 0.010), tongue atrophy (1.69 [1.14-2.51], p = 0.009), dyspnea (1.57 [1.02-2.41], p = 0.042) and active denervation findings (ADFs) of the cervical-upper limb area (1.81 [1.25-2.63], p = 0.002) emerged as prognostic factors. Furthermore ADFs in the trunk area were prognostic factors for upper limb dysfunction and walking disability (1.72 [1.05-2.81], p = 0.031, and 1.97 [1.09-3.59], p = 0.026). In conclusion ADFs of the cervical-upper limb area and trunk area were prognostic factors in ALS patients.

  12. Shape-dependent electron transfer kinetics and catalytic activity of NiO nanoparticles immobilized onto DNA modified electrode: fabrication of highly sensitive enzymeless glucose sensor.

    PubMed

    Sharifi, Ensiyeh; Salimi, Abdollah; Shams, Esmaeil; Noorbakhsh, Abdollah; Amini, Mohammad K

    2014-06-15

    Herein we describe improved electron transfer properties and catalytic activity of nickel oxide nanoparticles (NiONPs) via the electrochemical deposition on DNA modified glassy carbon electrode (DNA/GCE) surface. NiONPs deposited on the bare and DNA-coated GCE showed different morphologies, electrochemical kinetics and catalytic activities. The atomic force microscopy (AFM) images revealed the formation of triangular NPs on the DNA/GCE that followed the shape produced by the DNA template, while the electrodeposition of NiONPs on the bare GCE surface led to the formation of spherical nanoparticles. Electrochemical impedance spectroscopy (EIS) measurements revealed lower charge-transfer resistance (Rct) of triangular NiONPs compared to spherical NPs. Furthermore, the electrocatalytic activity of triangular NiONPs compared to spherical NPs toward glucose oxidation in alkaline media was significantly improved. The amperometric oxidation of glucose at NiONP-DNA/GCE, yielded a very high sensitivity of 17.32 mA mM(-1)cm(-2) and an unprecedented detection limit of 17 nM. The enhanced electron transfer properties and electrocatalytic activity of NiONP-DNA/GCE can be attributed to the higher fraction of sharp corners and edges present in the triangular NiONPs compared to the spherical NPs. The developed sensor was successfully applied to the determination of glucose in serum samples. PMID:24525015

  13. Shape-dependent electron transfer kinetics and catalytic activity of NiO nanoparticles immobilized onto DNA modified electrode: fabrication of highly sensitive enzymeless glucose sensor.

    PubMed

    Sharifi, Ensiyeh; Salimi, Abdollah; Shams, Esmaeil; Noorbakhsh, Abdollah; Amini, Mohammad K

    2014-06-15

    Herein we describe improved electron transfer properties and catalytic activity of nickel oxide nanoparticles (NiONPs) via the electrochemical deposition on DNA modified glassy carbon electrode (DNA/GCE) surface. NiONPs deposited on the bare and DNA-coated GCE showed different morphologies, electrochemical kinetics and catalytic activities. The atomic force microscopy (AFM) images revealed the formation of triangular NPs on the DNA/GCE that followed the shape produced by the DNA template, while the electrodeposition of NiONPs on the bare GCE surface led to the formation of spherical nanoparticles. Electrochemical impedance spectroscopy (EIS) measurements revealed lower charge-transfer resistance (Rct) of triangular NiONPs compared to spherical NPs. Furthermore, the electrocatalytic activity of triangular NiONPs compared to spherical NPs toward glucose oxidation in alkaline media was significantly improved. The amperometric oxidation of glucose at NiONP-DNA/GCE, yielded a very high sensitivity of 17.32 mA mM(-1)cm(-2) and an unprecedented detection limit of 17 nM. The enhanced electron transfer properties and electrocatalytic activity of NiONP-DNA/GCE can be attributed to the higher fraction of sharp corners and edges present in the triangular NiONPs compared to the spherical NPs. The developed sensor was successfully applied to the determination of glucose in serum samples.

  14. 78 FR 35612 - Agency Information Collection Activities; Comment Request; Targeted Teacher Shortage Areas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-13

    ... collection of information from Chief State School Officers to support and document the request for teacher... Agency Information Collection Activities; Comment Request; Targeted Teacher Shortage Areas Nationwide... to this notice will be considered public records. Title of Collection: Targeted Teacher...

  15. 50 CFR 218.10 - Specified activity and specified geographical area and effective dates.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Training in the Jacksonville Range Complex (JAX Range Complex) § 218.10 Specified activity and specified... the Navy is only authorized if it occurs within the JAX Range Complex Operation Areas (OPAREAs),...

  16. Diagnostic significance of the pancreatic displacement with extrapancreatic oval-shaped low activity area on scintigram.

    PubMed

    Watanabe, K; Nakayama, C; Kamoi, I; Matsuura, K

    1977-01-01

    To aid in the differential diagnosis of upper abdominal tumors, pancreatic scintigraphy was performed in 62 cases. The findings were rather characteristic for pancreatic cysts; namely, pancreatic displacement and, adjacently, an oval-shaped activity area whose count was lower than background. Pancreatic displacement was observed with comparatively large retroperitoneal masses. Low activity areas were observed in cystic lesions. Both findings were noted in 7 (54%) of 13 pancreatic cyst cases. Among the 12 cases with these findings, 7 (58%) had pancreatic cysts.

  17. 32 CFR Appendix D to Part 552 - Unauthorized Activities in Fort Lewis Maneuver Areas

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Areas D Appendix D to Part 552 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY MILITARY RESERVATIONS AND NATIONAL CEMETERIES REGULATIONS AFFECTING MILITARY RESERVATIONS Pt. 552, App. D Appendix D to Part 552—Unauthorized Activities in Fort Lewis Maneuver Areas Civilian...

  18. 32 CFR Appendix D to Part 552 - Unauthorized Activities in Fort Lewis Maneuver Areas

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Areas D Appendix D to Part 552 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY MILITARY RESERVATIONS AND NATIONAL CEMETERIES REGULATIONS AFFECTING MILITARY RESERVATIONS Pt. 552, App. D Appendix D to Part 552—Unauthorized Activities in Fort Lewis Maneuver Areas Civilian...

  19. Multi-electrode stimulation in somatosensory cortex increases probability of detection

    NASA Astrophysics Data System (ADS)

    Zaaimi, Boubker; Ruiz-Torres, Ricardo; Solla, Sara A.; Miller, Lee E.

    2013-10-01

    Objective. Brain machine interfaces (BMIs) that decode control signals from motor cortex have developed tremendously in the past decade, but virtually all rely exclusively on vision to provide feedback. There is now increasing interest in developing an afferent interface to replace natural somatosensation, much as the cochlear implant has done for the sense of hearing. Preliminary experiments toward a somatosensory neuroprosthesis have mostly addressed the sense of touch, but proprioception, the sense of limb position and movement, is also critical for the control of movement. However, proprioceptive areas of cortex lack the precise somatotopy of tactile areas. We showed previously that there is only a weak tendency for neighboring neurons in area 2 to signal similar directions of hand movement. Consequently, stimulation with the relatively large currents used in many studies is likely to activate a rather heterogeneous set of neurons. Approach. Here, we have compared the effect of single-electrode stimulation at subthreshold levels to the effect of stimulating as many as seven electrodes in combination. Main results. We found a mean enhancement in the sensitivity to the stimulus (d‧) of 0.17 for pairs compared to individual electrodes (an increase of roughly 30%), and an increase of 2.5 for groups of seven electrodes (260%). Significance. We propose that a proprioceptive interface made up of several hundred electrodes may yield safer, more effective sensation than a BMI using fewer electrodes and larger currents.

  20. Micromachined electrode array

    DOEpatents

    Okandan, Murat; Wessendorf, Kurt O.

    2007-12-11

    An electrode array is disclosed which has applications for neural stimulation and sensing. The electrode array, in certain embodiments, can include a plurality of electrodes each of which is flexibly attached to a common substrate using a plurality of springs to allow the electrodes to move independently. In other embodiments of the electrode array, the electrodes can be fixed to the substrate. The electrode array can be formed from a combination of bulk and surface micromachining, and can include electrode tips having an electroplated metal (e.g. platinum, iridium, gold or titanium) or a metal oxide (e.g. iridium oxide) for biocompatibility. The electrode array can be used to form a part of a neural prosthesis, and is particularly well adapted for use in an implantable retinal prosthesis.

  1. Flexible retinal electrode array

    DOEpatents

    Okandan, Murat; Wessendorf, Kurt O.; Christenson, Todd R.

    2006-10-24

    An electrode array which has applications for neural stimulation and sensing. The electrode array can include a large number of electrodes each of which is flexibly attached to a common substrate using a plurality of springs to allow the electrodes to move independently. The electrode array can be formed from a combination of bulk and surface micromachining, with electrode tips that can include an electroplated metal (e.g. platinum, iridium, gold or titanium) or a metal oxide (e.g. iridium oxide) for biocompatibility. The electrode array can be used to form a part of a neural prosthesis, and is particularly well adapted for use in an implantable retinal prosthesis where the electrodes can be tailored to provide a uniform gentle contact pressure with optional sensing of this contact pressure at one or more of the electrodes.

  2. Improved zinc electrode and rechargeable zinc-air battery

    DOEpatents

    Ross, P.N. Jr.

    1988-06-21

    The invention comprises an improved rechargeable zinc-air cell/battery having recirculating alkaline electrolyte and a zinc electrode comprising a porous foam support material which carries the active zinc electrode material. 5 figs.

  3. Thermal aging stability of infiltrated solid oxide fuel cell electrode microstructures: A three-dimensional kinetic Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Yanxiang; Ni, Meng; Yan, Mufu; Chen, Fanglin

    2015-12-01

    Nanostructured electrodes are widely used for low temperature solid oxide fuel cells, due to their remarkably high activity. However, the industrial applications of the infiltrated electrodes are hindered by the durability issues, such as the microstructure stability against thermal aging. Few strategies are available to overcome this challenge due to the limited knowledge about the coarsening kinetics of the infiltrated electrodes and how the potentially important factors affect the stability. In this work, the generic thermal aging kinetics of the three-dimensional microstructures of the infiltrate electrodes is investigated by a kinetic Monte Carlo simulation model considering surface diffusion mechanism. Effects of temperature, infiltration loading, wettability, and electrode configuration are studied and the key geometric parameters are calculated such as the infiltrate particle size, the total and percolated quantities of three-phase boundary length and infiltrate surface area, and the tortuosity factor of infiltrate network. Through parametric study, several strategies to improve the thermal aging stability are proposed.

  4. Photoelectrocatalytic decomposition of ethylene using TiO2/activated carbon fiber electrode with applied pulsed direct current square-wave potential

    NASA Astrophysics Data System (ADS)

    Ye, Sheng-ying; Zheng, Sen-hong; Song, Xian-liang; Luo, Shu-can

    2015-06-01

    Removing ethylene (C2H4) from the atmosphere of storage facilities for fruits and vegetable is one of the main challenges in their postharvest handling for maximizing their freshness, quality, and shelf life. In this study, we investigated the photoelectrocatalytic (PEC) degradation of ethylene gas by applying a pulsed direct current DC square-wave (PDCSW) potential and by using a Nafion-based PEC cell. The cell utilized a titanium dioxide (TiO2) photocatalyst or γ-irradiated TiO2 (TiO2*) loaded on activated carbon fiber (ACF) as a photoelectrode. The apparent rate constant of a pseudo-first-order reaction (K) was used to describe the PEC degradation of ethylene. Parameters of the potential applied to the PEC cell in a reactor that affect the degradation efficiency in terms of the K value were studied. These parameters were frequency, duty cycle, and voltage. Ethylene degradation by application of a constant PDCSW potential to the PEC electrode of either TiO2/ACF cell or TiO2*/ACF cell enhanced the efficiency of photocatalytic degradation and PEC degradation. Gamma irradiation of TiO2 in the electrode and the applied PDCSW potential synergistically increased the K value. Independent variables (frequency, duty cycle, and voltage) of the PEC cell fabricated from TiO2 subjected 20 kGy γ radiation were optimized to maximize the K value by using response surface methodology with quadratic rotation-orthogonal composite experimental design. Optimized conditions were as follows: 358.36 Hz frequency, 55.79% duty cycle, and 64.65 V voltage. The maximum K value attained was 4.4 × 10-4 min-1.

  5. Removal of a mixture tetracycline-tylosin from water based on anodic oxidation on a glassy carbon electrode coupled to activated sludge.

    PubMed

    Yahiaoui, Idris; Aissani-Benissad, Farida; Fourcade, Florence; Amrane, Abdeltif

    2015-01-01

    The purpose of this study was first to examine the electrochemical oxidation of two antibiotics, tetracycline (TC) and tylosin (Tylo), considered separately or in mixture, on a glassy carbon electrode in aqueous solutions; and then to assess the relevance of such electrochemical process as a pre-treatment prior to a biological treatment (activated sludge) for the removal of these antibiotics. The influence of the working potential and the initial concentration of TC and Tylo on the electrochemical pre-treatment process was also investigated. It was noticed that antibiotics degradation was favoured at high potential (2.4 V/ saturated calomel electrode (SCE)), achieving total degradation after 50 min for TC and 40 min for Tylo for 50 mg L(-1) initial concentration, with a higher mineralization efficiency in the case of TC. The biological oxygen demand in 5 days (BOD5)/Chemical oxygen demand (COD) ratio increased substantially, from 0.033 to 0.39 and from 0.038 to 0.50 for TC and Tylo, respectively. Regarding the mixture (TC and Tylo), the mineralization yield increased from 10.6% to 30.0% within 60 min of reaction time when the potential increased from 1.5 to 2.4 V/SCE and the BOD5/COD ratio increased substantially from 0.010 initially to 0.29 after 6 h of electrochemical pre-treatment. A biological treatment was, therefore, performed aerobically during 30 days, leading to an overall decrease of 72% of the dissolved organic carbon by means of the combined process.

  6. Metal-organic frameworks derived carbon as a high-efficiency counter electrode for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Sun, Xun; Li, Yafeng; Dou, Jie; Shen, Deli; Wei, Mingdeng

    2016-08-01

    Metal-organic frameworks, ZIF-8, derived carbon materials are firstly applied as a counter electrode of dye-sensitized solar cells due to their easy fabrication, large specific surface area and high catalytic activities towards the reduction of I3- ions. An efficiency of 7.32% is achieved under the illumination of 1 sun (AM 1.5, 100 mW/cm2), which is comparable to that of the solar cell based on Pt electrode.

  7. Water desalination using capacitive deionization with microporous carbon electrodes.

    PubMed

    Porada, S; Weinstein, L; Dash, R; van der Wal, A; Bryjak, M; Gogotsi, Y; Biesheuvel, P M

    2012-03-01

    Capacitive deionization (CDI) is a water desalination technology in which salt ions are removed from brackish water by flowing through a spacer channel with porous electrodes on each side. Upon applying a voltage difference between the two electrodes, cations move to and are accumulated in electrostatic double layers inside the negatively charged cathode and the anions are removed by the positively charged anode. One of the key parameters for commercial realization of CDI is the salt adsorption capacity of the electrodes. State-of-the-art electrode materials are based on porous activated carbon particles or carbon aerogels. Here we report the use for CDI of carbide-derived carbon (CDC), a porous material with well-defined and tunable pore sizes in the sub-nanometer range. When comparing electrodes made with CDC with electrodes based on activated carbon, we find a significantly higher salt adsorption capacity in the relevant cell voltage window of 1.2-1.4 V. The measured adsorption capacity for four materials tested negatively correlates with known metrics for pore structure of the carbon powders such as total pore volume and BET-area, but is positively correlated with the volume of pores of sizes <1 nm, suggesting the relevance of these sub-nanometer pores for ion adsorption. The charge efficiency, being the ratio of equilibrium salt adsorption over charge, does not depend much on the type of material, indicating that materials that have been identified for high charge storage capacity can also be highly suitable for CDI. This work shows the potential of materials with well-defined sub-nanometer pore sizes for energy-efficient water desalination.

  8. High performance cermet electrodes

    DOEpatents

    Isenberg, Arnold O.; Zymboly, Gregory E.

    1986-01-01

    Disclosed is a method of increasing the operating cell voltage of a solid oxide electrochemical cell having metal electrode particles in contact with an oxygen-transporting ceramic electrolyte. The metal electrode is heated with the cell, and oxygen is passed through the oxygen-transporting ceramic electrolyte to the surface of the metal electrode particles so that the metal electrode particles are oxidized to form a metal oxide layer between the metal electrode particles and the electrolyte. The metal oxide layer is then reduced to form porous metal between the metal electrode particles and the ceramic electrolyte.

  9. Oxide modified air electrode surface for high temperature electrochemical cells

    DOEpatents

    Singh, Prabhakar; Ruka, Roswell J.

    1992-01-01

    An electrochemical cell is made having a porous cermet electrode (16) and a porous lanthanum manganite electrode (14), with solid oxide electrolyte (15) between them, where the lanthanum manganite surface next to the electrolyte contains a thin discontinuous layer of high surface area cerium oxide and/or praseodymium oxide, preferably as discrete particles (30) in contact with the air electrode and electrolyte.

  10. Effect of the reference electrode size on the ionization instability in the plasma sheath of a small positively biased electrode

    SciTech Connect

    Bliokh, Y. P.; Brodsky, Yu. L.; Chashka, Kh. B.; Felsteiner, J.; Slutsker, Ya. Z.

    2011-06-01

    It is well known that additional ionization in the vicinity of a positively biased electrode immersed into a weakly ionized plasma is responsible for a hysteresis in the electrode current-voltage characteristics and the current self-oscillations rise. Here we show both experimentally and theoretically that under certain conditions these phenomena cannot be correctly interpreted once considered separately from the reference electrode current-voltage characteristics. It is shown that small electrodes can be separated into three groups according to the relation between the electrode and the reference electrode areas. Each group is characterized by its own dependence of the collected current on the bias voltage.

  11. Flexible electrochromic films based on CVD-graphene electrodes.

    PubMed

    Soo Choi, Dong; Ho Han, Seung; Kim, Hyeongkeun; Hee Kang, So; Kim, Yena; Yang, Cheol-Min; Kim, Tae Young; Ho Yoon, Dae; Seok Yang, Woo

    2014-10-01

    Graphene synthesized via chemical vapor deposition is a notable candidate for flexible large-area transparent electrodes due to its great physical properties and its 2D activated surface area. Electrochromic devices in optical displays, smart windows, etc are suitable applications for graphene when used as a transparent conductive electrode. In this study, various-layer graphene was synthesized via chemical vapor deposition, and inorganic WO(x) was deposited on the layers, which have advantageous columnar structures and W(6+) and W(4+) oxidation states. The characteristics of graphene and WO(x) were verified using optical transmittance, Raman spectroscopy, x-ray photoelectron spectroscopy and scanning electron microscopy. The optimum transparent conductive electrode condition for controlling graphene layers was investigated based on the optical density and cyclic voltammetry. Electrochromic devices were fabricated using a three-layer graphene electrode, which had the best optical density. The graphene in the flexible electrochromic device demonstrated a potential for replacing ITO in flexible electronics. PMID:25201016

  12. Black-footed ferret areas of activity during late summer and fall at Meeteetse, Wyoming

    USGS Publications Warehouse

    Fagerstone, K.A.; Biggins, D.E.

    2011-01-01

    Radiotelemetry was used during 1983 and 1984 to collect information on short-term areas of activity for black-footed ferrets (Mustela nigripes) near Meeteetse, Wyoming. This population ultimately provided ferrets for the captive-breeding program that bred and released offspring into the wild since 1991. We fitted 5 adult ferrets and 13 juveniles with radiotransmitters and followed their movements during late summer and fall. Adult males had 7-day areas of activity that were >6 times as large as those of adult females. Activity areas of adult males varied little in coverage or location on a weekly basis, but females sequentially shifted their areas. Unlike juvenile females, juvenile males tended to leave their natal colonies. ?? 2011 American Society of Mammalogists.

  13. Natural Environments, Obesity, and Physical Activity in Nonmetropolitan Areas of the United States

    ERIC Educational Resources Information Center

    Michimi, Akihiko; Wimberly, Michael C.

    2012-01-01

    Purpose: To assess the associations of the natural environment with obesity and physical activity in nonmetropolitan areas of the United States among representative samples by using 2 indices of outdoor activity potential (OAP) at the county level. Methods: We used the data from 457,820 and 473,296 noninstitutionalized adults aged over 18 years…

  14. Lithium-aluminum-iron electrode composition

    DOEpatents

    Kaun, Thomas D.

    1979-01-01

    A negative electrode composition is presented for use in a secondary electrochemical cell. The cell also includes an electrolyte with lithium ions such as a molten salt of alkali metal halides or alkaline earth metal halides that can be used in high-temperature cells. The cell's positive electrode contains a a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent in an alloy of aluminum-iron. Various binary and ternary intermetallic phases of lithium, aluminum and iron are formed. The lithium within the intermetallic phase of Al.sub.5 Fe.sub.2 exhibits increased activity over that of lithium within a lithium-aluminum alloy to provide an increased cell potential of up to about 0.25 volt.

  15. Recent developments in nickel electrode analysis

    NASA Technical Reports Server (NTRS)

    Whiteley, Richard V.; Daman, M. E.; Kaiser, E. Q.

    1991-01-01

    Three aspects of nickel electrode analysis for Nickel-Hydrogen and Nickel-Cadmium battery cell applications are addressed: (1) the determination of active material; (2) charged state nickel (as NiOOH + CoOOH); and (3) potassium ion content in the electrode. Four deloading procedures are compared for completeness of active material removal, and deloading conditions for efficient active material analyses are established. Two methods for charged state nickel analysis are compared: the current NASA procedure and a new procedure based on the oxidation of sodium oxalate by the charged material. Finally, a method for determining potassium content in an electrode sample by flame photometry is presented along with analytical results illustrating differences in potassium levels from vendor to vendor and the effects of stress testing on potassium content in the electrode. The relevance of these analytical procedures to electrode performance is reviewed.

  16. Understanding the influence of the electrode material on microbial fuel cell performance

    NASA Astrophysics Data System (ADS)

    Sanchez, David V. P.

    In this thesis, I deploy sets of electrodes into microbial fuel cells (MFC), characterize their performance, and evaluate the influence of both platinum catalysts and carbon-based electrodes on current production. The platinum work centers on improving current production by optimizing the use of the catalyst using nano-fabrication techniques. The carbon-electrode work seeks to determine the influence of the bare electrode on biofilm-anode current production. The development of electrodes for MFCs has boomed over the past decade, however, experiments aimed at identifying how catalyst deposition methods and electrode properties influence current production have been limited. The research conducted here is an attempt to expand this knowledge base for platinum catalysts and carbon electrodes. In the initial chapters (4 and 5), I discuss our attempt to decrease catalyst loadings while increasing current production through the use of platinum nanoparticles. The results demonstrate that incorporating platinum nanoparticles throughout the anode and cathode is an efficient means of increasing MFC current production relative to surface deposition because it increases catalyst surface area. The later chapters (chapters 6 and 7) develop an understanding of the importance of electrode properties (i.e. surface area, activation resistance, conductivity, surface morphology) by electrochemically evaluating well-studied anode-respiring pure cultures on different carbon electrode architectures. Two different architectures are produced by using tubular and platelet shaped constituent materials (i.e. carbon fibers and graphene nanoplatelets) and the morphologies of the electrodes are varied by altering the size of the constituent material. The electrodes are characterized and evaluated in MFCs using either Shewanella oneidensis MR-1 or Geobacter sulfurreducens as the innoculant because their bioelectrochemical physiologies are the most documented in the literature. Using the

  17. Electrochemical study of uranium cations in LiCl-KCl melt using a rotating disk electrode

    SciTech Connect

    Bae, Sang-Eun; Kim, Dae-Hyun; Kim, Jong-Yoon; Park, Tae-Hong; Cho, Young Hwan; Yeon, Jei-Won; Song, Kyuseok

    2013-07-01

    A rotating disk electrode (RDE) measurement technique was employed to investigate the electrochemical REDOX reactions of actinide (An) and lanthanide (Ln) ions in LiCl-KCl molten salt. By using RDE, it is possible to access more exact values of the diffusion coefficient, Tafel slope, and exchange current density. In this work, we constructed RDE setup and electrodes for RDE measurements in high temperature molten salt and measured the electrochemical parameters of the An and Ln ions. The RDE setup is composed of a Pine model MSRX rotator equipped with a rod type of W electrode. The active electrode area was confined to the planar part of the W rod by making meniscus at the LiCl-KCl melt surface.

  18. Basal temporal subdural electrodes in the evaluation of patients with intractable epilepsy.

    PubMed

    Lüders, H; Hahn, J; Lesser, R P; Dinner, D S; Morris, H H; Wyllie, E; Friedman, L; Friedman, D; Skipper, G

    1989-01-01

    In evaluation of patients with complex partial seizures who are candidates for surgical treatment, exact definition of the epileptogenic focus is essential for a good surgical outcome. We report a new technique which permits detailed mapping of the epileptogenic activity in the basal temporal lobe and the convexity of the temporal lobe. The technique consists of placement of at least 16 basal temporal electrodes and an additional 64 electrodes covering the temporal convexity. This extensive coverage permits accurate definition of the limits of the epileptogenic focus and also of adjacent functional areas and therefore allows more significant determination than have previous techniques of the ideal extent of the surgical resection. This accuracy cannot be achieved with depth electrodes or the limited coverage provided by previously reported epidural or subdural electrode techniques.

  19. Decoding the timing and target locations of saccadic eye movements from neuronal activity in macaque oculomotor areas

    NASA Astrophysics Data System (ADS)

    Ohmae, Shogo; Takahashi, Toshimitsu; Lu, Xiaofeng; Nishimori, Yasunori; Kodaka, Yasushi; Takashima, Ichiro; Kitazawa, Shigeru

    2015-06-01

    Objective. The control of movement timing has been a significant challenge for brain-machine interfaces (BMIs). As a first step toward developing a timing-based BMI, we aimed to decode movement timing and target locations in a visually guided saccadic eye movement task using the activity of neurons in the primate frontal eye field (FEF) and supplementary eye field (SEF). Approach. For this purpose, we developed a template-matching method that could recruit a variety of neurons in these areas. Main results. As a result, we were able to achieve a favorable estimation of saccade onset: for example, data from 20 randomly sampled FEF neurons or 40 SEF neurons achieved a median estimation error of ˜10 ms with an interquartile range less than 50 ms (± ˜25 ms). In the best case, seven simultaneously recorded SEF neurons using a multi-electrode array achieved a comparable accuracy (10 ± 30 ms). The method was significantly better than a heuristic method that used only a group of movement cells with sharp discharges at the onset of saccades. The estimation of target location was less accurate but still favorable, especially when we estimated target location at a timing of 200 ms after the onset of saccade: the method was able to discriminate 16 targets with an accuracy of 90%, which differed not only in their directions (eight directions) but also in amplitude (10/20°) when we used data from 61 randomly sampled FEF neurons. Significance. The results show that the timing, amplitude and direction of saccades can be decoded from neuronal activity in the FEF and SEF and further suggest that timing-based BMIs can be developed by decoding timing information using the template-matching method.

  20. Activation of extrastriate and frontal cortical areas by visual words and word-like stimuli

    SciTech Connect

    Petersen, S.E.; Fox, P.T.; Snyder, A.Z.; Raichle, M.E. )

    1990-08-31

    Visual presentation of words activates extrastriate regions of the occipital lobes of the brain. When analyzed by positron emission tomography (PET), certain areas in the left, medial extrastriate visual cortex were activated by visually presented pseudowords that obey English spelling rules, as well as by actual words. These areas were not activated by nonsense strings of letters or letter-like forms. Thus visual word form computations are based on learned distinctions between words and nonwords. In addition, during passive presentation of words, but not pseudowords, activation occurred in a left frontal area that is related to semantic processing. These findings support distinctions made in cognitive psychology and computational modeling between high-level visual and semantic computations on single words and describe the anatomy that may underlie these distinctions.