Science.gov

Sample records for active electrode material

  1. A new electrode-active material for polymer batteries: Polyvinylferrocene

    SciTech Connect

    Iwakura, C.; Kawai, T.; Nojima, M.; Yoneyama, H.

    1987-04-01

    The electrochemical characteristics of polyvinylferrocene (PVF) was investigated for use as an electrode-active material rechargeable batteries. Charge-discharge curves of the PVF electrodes showed excellent potential flatness and very high coulombic efficiencies in both nonaqueous and aqueous solutions. The dispersion of graphite powder in PVF was very useful for increasing the discharge rate and PVF utilization. The self-discharge rates were found to be as low as 1% in the first day. It is concluded that PVF is a promising material as an electrode-active material in rechargeable batteries.

  2. Surface modification of active material structures in battery electrodes

    DOEpatents

    Erickson, Michael; Tikhonov, Konstantin

    2016-02-02

    Provided herein are methods of processing electrode active material structures for use in electrochemical cells or, more specifically, methods of forming surface layers on these structures. The structures are combined with a liquid to form a mixture. The mixture includes a surface reagent that chemically reacts and forms a surface layer covalently bound to the structures. The surface reagent may be a part of the initial liquid or added to the mixture after the liquid is combined with the structures. In some embodiments, the mixture may be processed to form a powder containing the structures with the surface layer thereon. Alternatively, the mixture may be deposited onto a current collecting substrate and dried to form an electrode layer. Furthermore, the liquid may be an electrolyte containing the surface reagent and a salt. The liquid soaks the previously arranged electrodes in order to contact the structures with the surface reagent.

  3. Positive Active Material For Alkaline Electrolyte Storage Battert Nickel Electrodes

    DOEpatents

    Bernard, Patrick; Baudry, Michelle

    2000-12-05

    A method of manufacturing a positive active material for nickel electrodes of alkaline storage batteries which consists of particles of hydroxide containing mainly nickel and covered with a layer of a hydroxide phase based on nickel and yttrium is disclosed. The proportion of the hydroxide phase is in the range 0.15% to 3% by weight of yttrium expressed as yttrium hydroxide relative to the total weight of particles.

  4. Electrode-active material for electrochemical batteries and method of preparation

    DOEpatents

    Varma, Ravi

    1987-01-01

    A battery electrode material comprising a non-stoichiometric electrode-active material which forms a redox pair with the battery electrolyte, an electrically conductive polymer present in the range of from about 2% by weight to about 5% by weight of the electrode-active material, and a binder. The conductive polymer provides improved proton or ion conductivity and is a ligand resulting in metal ion or negative ion vacancies of less than about 0.1 atom percent. Specific electrodes of nickel and lead are disclosed.

  5. The activity of nanocrystalline Fe-based alloys as electrode materials for the hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Müller, Christian Immanuel; Sellschopp, Kai; Tegel, Marcus; Rauscher, Thomas; Kieback, Bernd; Röntzsch, Lars

    2016-02-01

    In view of alkaline water electrolysis, the activities for the hydrogen evolution reaction of nanocrystalline Fe-based electrode materials were investigated and compared with the activities of polycrystalline Fe and Ni. Electrochemical methods were used to elucidate the overpotential value, the charge transfer resistance and the double layer capacity. Structural properties of the electrode surface were determined with SEM, XRD and XPS analyses. Thus, a correlation between electrochemical and structural parameters was found. In this context, we report on a cyclic voltammetric activation procedure which causes a significant increase of the surface area of Fe-based electrodes leading to a boost in effective activity of the activated electrodes. It was found that the intrinsic activity of activated Fe-based electrodes is very high due to the formation of a nanocrystalline surface layer. In contrast, the activation procedure influences only the intrinsic activity of the Ni electrodes without the formation of a porous surface layer.

  6. FUEL CELL ELECTRODE MATERIALS

    DTIC Science & Technology

    FUEL CELL ELECTRODE MATERIALS. RAW MATERIAL SELECTION INFLUENCES POLARIZATION BUT IS NOT A SINGLE CONTROLLING FACTOR. AVAILABLE...DATA INDICATES THAT AN INTERRELATIONSHIP OF POROSITY, AVERAGE PORE VOLUME, AND PERMEABILITY CONTRIBUTES TO ELECTRODE FUEL CELL BEHAVIOR.

  7. Engineering hybrid nanostructures of active materials: Applications as electrode materials in lithium ion rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Huang, Huan

    Aiming to significantly improve the electrochemical properties of electroactive materials for lithium ion batteries, three novel hybrid nanostructures were developed in this thesis. These include nanostructure A: V2O 5 coated on polymer electrolyte-grafted carbon black, nanostructure B: electrode materials incorporated into an electronically conductive carbon web, and nanostructure C: electrode materials dispersed in a conductive porous carbon matrix. Nanocomposites possessing nanostructure A are fast electronic and ionic transport materials. The improved kinetic properties are due to the incorporated carbon core and the grafted polymer electrolyte in the unique structure. The V2O5 xerogel coated polymer electrolyte-grafted carbon blacks, or V2O5/C-PEG, can reach a capacity as high as 320 mAh/g, and exhibit outstanding rate sustainability (e.g. 190 mAh/g at 14C). This class of nanostructured composites is promising for high power/current applications. Nanostructure B was extremely successful when applied to very poorly conductive active materials, such as LiFePO4 and Li3V 2(PO4)3. In this nanostructure, the web-like carbon framework not only supplies a facile electron transport path, but also provides excellent electronic contact between carbon and the insulating active materials. At room temperature, the LiFePO4/C nanocomposite successfully reaches almost full capacity, along with greatly improved rate sustainability and excellent cycling stability. At elevated temperatures (e.g. 40°C and 60°C), the full capacity is readily accessible over a wide rate range, even at a very fast rate of 2C or 5C. The Li3V2(PO4) 3/C nanocomposite can extract all three lithium in the formula at a rate of 1C, resulting in a high capacity of 200 mAh/g. Therefore, through designing hybrid nanostructures with nanostructure B, we can make insulating active materials into good cathode materials. Nanostructure C was employed for Sn-based anode materials, in order to improve their cycling

  8. Electrodes and electrochemical storage cells utilizing tin-modified active materials

    DOEpatents

    Anani, Anaba; Johnson, John; Lim, Hong S.; Reilly, James; Schwarz, Ricardo; Srinivasan, Supramaniam

    1995-01-01

    An electrode has a substrate and a finely divided active material on the substrate. The active material is ANi.sub.x-y-z Co.sub.y Sn.sub.z, wherein A is a mischmetal or La.sub.1-w M.sub.w, M is Ce, Nd, or Zr, w is from about 0.05 to about 1.0, x is from about 4.5 to about 5.5, y is from 0 to about 3.0, and z is from about 0.05 to about 0.5. An electrochemical storage cell utilizes such an electrode as the anode. The storage cell further has a cathode, a separator between the cathode and the anode, and an electrolyte.

  9. Electrode including porous particles with embedded active material for use in a secondary electrochemical cell

    DOEpatents

    Vissers, Donald R.; Nelson, Paul A.; Kaun, Thomas D.; Tomczuk, Zygmunt

    1978-04-25

    Particles of carbonaceous matrices containing embedded electrode active material are prepared for vibratory loading within a porous electrically conductive substrate. In preparing the particles, active materials such as metal chalcogenides, solid alloys of alkali or alkaline earth metals along with other metals and their oxides in powdered or particulate form are blended with a thermosetting resin and particles of a volatile to form a paste mixture. The paste is heated to a temperature at which the volatile transforms into vapor to impart porosity at about the same time as the resin begins to cure into a rigid, solid structure. The solid structure is then comminuted into porous, carbonaceous particles with the embedded active material.

  10. Method of preparing porous, active material for use in electrodes of secondary electrochemical cells

    DOEpatents

    Vissers, Donald R.; Nelson, Paul A.; Kaun, Thomas D.; Tomczuk, Zygmunt

    1977-01-01

    Particles of carbonaceous matrices containing embedded electrode active material are prepared for vibratory loading within a porous electrically conductive substrate. In preparing the particles, active materials such as metal chalcogenides, solid alloys of alkali or alkaline earth metals along with other metals and their oxides in powdered or particulate form are blended with a thermosetting resin and particles of a volatile to form a paste mixture. The paste is heated to a temperature at which the volatile transforms into vapor to impart porosity at about the same time as the resin begins to cure into a rigid, solid structure.The solid structure is then comminuted into porous, carbonaceous particles with the embedded active material.

  11. Catechol-modified activated carbon prepared by the diazonium chemistry for application as active electrode material in electrochemical capacitor.

    PubMed

    Pognon, Grégory; Cougnon, Charles; Mayilukila, Dilungane; Bélanger, Daniel

    2012-08-01

    Activated carbon (Black Pearls 2000) modified with electroactive catechol groups was evaluated for charge storage application as active composite electrode material in an aqueous electrochemical capacitor. High surface area Black Pearls 2000 carbon was functionalized by introduction of catechol groups by spontaneous reduction of catechol diazonium ions in situ prepared in aqueous solution from the corresponding amine. Change in the specific surface area and pore texture of the carbon following grafting was monitored by nitrogen gas adsorption measurements. The electrochemical properties and the chemical composition of the catechol-modified carbon electrodes were investigated by cyclic voltammetry. Such carbon-modified electrode combines well the faradaic capacitance, originating from the redox activity of the surface immobilized catechol groups, to the electrochemical double layer capacitance of the high surface area Black Pearls carbon. Due to the faradaic contribution, the catechol-modified electrode exhibits a higher specific capacitance (250 F/g) than pristine carbon (150 F/g) over a potential range of -0.4 to 0.75 V in 1 M H(2)SO(4). The stability of the modified electrode evaluated by long-time charge/discharge cycling revealed a low decrease of the capacitance of the catechol-modified carbon due to the loss of the catechol redox activity. Nonetheless, it was demonstrated that the benefit of redox groups persists for 10, 000 constant current charge/discharge cycles.

  12. Impedance spectroscopy study of a catechol-modified activated carbon electrode as active material in electrochemical capacitor

    NASA Astrophysics Data System (ADS)

    Cougnon, C.; Lebègue, E.; Pognon, G.

    2015-01-01

    Modified activated carbon (Norit S-50) electrodes with electrochemical double layer (EDL) capacitance and redox capacitance contributions to the electric charge storage were tested in 1 M H2SO4 to quantify the benefit and the limitation of the surface redox reactions on the electrochemical performances of the resulting pseudo-capacitive materials. The electrochemical performances of an electrochemically anodized carbon electrode and a catechol-modified carbon electrode, which make use both EDL capacitance of the porous structure of the carbon and redox capacitance, were compared to the performances obtained for the pristine carbon. Nitrogen gas adsorption measurements have been used for studying the impact of the grafting on the BET surface area, pore size distribution, pore volume and average pore diameter. The electrochemical behavior of carbon materials was studied by cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The EIS data were discussed by using a complex capacitance model that allows defining the characteristic time constant, the global capacitance and the frequency at which the maximum charge stored is reached. The EIS measurements were achieved at different dc potential values where a redox activity occurs and the evolution of the capacitance and the capacitive relaxation time with the electrode potential are presented. Realistic galvanostatic charge/discharge measurements performed at different current rates corroborate the results obtained by impedance.

  13. The catalytic role of tungsten electrode material in the plasmachemical activity of a pulsed corona discharge in water

    NASA Astrophysics Data System (ADS)

    Lukes, Petr; Clupek, Martin; Babicky, Vaclav; Sisrova, Irena; Janda, Vaclav

    2011-06-01

    The effects of tungsten material used as a high-voltage needle electrode on the production of hydrogen peroxide and the degradation of dimethylsulfoxide (DMSO) caused by a pulsed corona discharge in water were investigated. A reactor of needle-plate electrode geometry was used. The erosion of the tungsten electrodes by the discharge was evaluated. The yields of H2O2 production and the decomposition of DMSO by the discharge, which were obtained using the tungsten electrodes, were compared with those determined for titanium electrodes. The electrode erosion increased significantly with an increase in the solution conductivity. A large fraction (50-70%) of the eroded tungsten electrode material was released into the solution in dissolved form as tungstate WO_4^{2-} ions. A correlation between the amount of eroded tungsten material released into the solution and the chemical effects induced by the discharge was determined. Lower yields of H2O2 and a higher degradation of DMSO by the discharge were obtained using the tungsten electrodes than were determined using titanium electrodes. Tungstate ions were shown to play a dominant role in the decomposition of H2O2, which was produced by the discharge using a tungsten electrode. The higher degradation of DMSO that was determined for tungsten was attributed to the tungstate-catalyzed oxidation of DMSO by H2O2, in addition to the oxidation of DMSO by OH radicals. Such a mechanism was supported by the detection of degradation by-products of DMSO (methanesulfonate, sulfate and dimethyl sulfone). The catalytic role of tungstate ions in the plasmachemical activity of the discharge generated using a tungsten electrode was also demonstrated on a pH-dependent decomposition of H2O2 and DMSO.

  14. Studies on Supercapacitor Electrode Material from Activated Lignin-Derived Mesoporous Carbon

    SciTech Connect

    Saha, Dipendu; Li, Yunchao; Bi, Zhonghe; Chen, Jihua; Keum, Jong Kahk; Hensley, Dale K; Grappe, Hippolyte A.; Meyer III, Harry M; Dai, Sheng; Paranthaman, Mariappan Parans; Naskar, Amit K

    2014-01-01

    We synthesized mesoporous carbon from pre-cross-linked lignin gel impregnated with a surfactant as the pore-forming agent, and then activated the carbon through physical and chemical methods to obtain activated mesoporous carbon. The activated mesoporous carbons exhibited 1.5- to 6-fold increases in porosity with a maximum BET specific surface area of 1148 m2/g and a pore volume of 1.0 cm3/g. Slow physical activation helped retain dominant mesoporosity; however, aggressive chemical activation caused some loss of the mesopore volume fraction. Plots of cyclic voltammetric data with the capacitor electrode made from these carbons showed an almost rectangular curve depicting the behavior of ideal double-layer capacitance. Although the pristine mesoporous carbon exhibited the same range of surface-area-based capacitance as that of other known carbon-based supercapacitors, activation decreased the surface-area-based specific capacitance and increased the gravimetric-specific capacitance of the mesoporous carbons. Surface activation lowered bulk density and electrical conductivity. Warburg impedance as a vertical tail in the lower frequency domain of Nyquist plots supported good supercapacitor behavior for the activated mesoporous carbons. Our work demonstrated that biomass-derived mesoporous carbon materials continue to show potential for use in specific electrochemical applications.

  15. Redox electrode materials for supercapatteries

    NASA Astrophysics Data System (ADS)

    Yu, Linpo; Chen, George Z.

    2016-09-01

    Redox electrode materials, including transition metal oxides and electronically conducting polymers, are capable of faradaic charge transfer reactions, and play important roles in most electrochemical energy storage devices, such as supercapacitor, battery and supercapattery. Batteries are often based on redox materials with low power capability and safety concerns in some cases. Supercapacitors, particularly those based on redox inactive materials, e.g. activated carbon, can offer high power output, but have relatively low energy capacity. Combining the merits of supercapacitor and battery into a hybrid, the supercapattery can possess energy as much as the battery and output a power almost as high as the supercapacitor. Redox electrode materials are essential in the supercapattery design. However, it is hard to utilise these materials easily because of their intrinsic characteristics, such as the low conductivity of metal oxides and the poor mechanical strength of conducting polymers. This article offers a brief introduction of redox electrode materials, the basics of supercapattery and its relationship with pseudocapacitors, and reviews selectively some recent progresses in the relevant research and development.

  16. Impedance spectroscopic analysis of composite electrode from activated carbon/conductive materials/ruthenium oxide for supercapacitor applications

    SciTech Connect

    Taer, E.; Awitdrus,; Farma, R.; Deraman, M. Talib, I. A.; Ishak, M. M.; Omar, R.; Dolah, B. N. M.; Basri, N. H.; Othman, M. A. R.; Kanwal, S.

    2015-04-16

    Activated carbon powders (ACP) were produced from the KOH treated pre-carbonized rubber wood sawdust. Different conductive materials (graphite, carbon black and carbon nanotubes (CNTs)) were added with a binder (polivinylidene fluoride (PVDF)) into ACP to improve the supercapacitive performance of the activated carbon (AC) electrodes. Symmetric supercapacitor cells, fabricated using these AC electrodes and 1 molar H{sub 2}SO{sub 4} electrolyte, were analyzed using a standard electrochemical impedance spectroscopy technique. The addition of graphite, carbon black and CNTs was found effective in reducing the cell resistance from 165 to 68, 23 and 49 Ohm respectively, and increasing the specific capacitance of the AC electrodes from 3 to 7, 17, 32 F g{sup −1} respectively. Since the addition of CNTs can produce the highest specific capacitance, CNTs were chosen as a conductive material to produce AC composite electrodes that were added with 2.5 %, 5 % and 10 % (by weight) electro-active material namely ruthenium oxide; PVDF binder and CNTs contents were kept at 5 % by weight in each AC composite produced. The highest specific capacitance of the cells obtained in this study was 86 F g{sup −1}, i.e. for the cell with the resistance of 15 Ohm and composite electrode consists of 5 % ruthenium oxide.

  17. Electrode stabilizing materials

    DOEpatents

    Amine, Khalil; Abouimrane, Ali; Moore, Jeffrey S.; Odom, Susan A.

    2015-11-03

    An electrolyte includes a polar aprotic solvent; an alkali metal salt; and an electrode stabilizing compound that is a monomer, which when polymerized forms an electrically conductive polymer. The electrode stabilizing compound is a thiophene, a imidazole, a anilines, a benzene, a azulene, a carbazole, or a thiol. Electrochemical devices may incorporate such electrolytes.

  18. Electrode materials for rechargeable batteries

    DOEpatents

    Abouimrane, Ali; Amine, Khalil

    2015-04-14

    Selenium or selenium-containing compounds may be used as electroactive materials in electrodes or electrochemical devices. The selenium or selenium-containing compound is mixed with a carbon material.

  19. Reversibly immobilized biological materials in monolayer films on electrodes

    SciTech Connect

    Weaver, P.F.; Frank, A.J.

    1991-04-08

    A method is provided for reversibly binding charged biological particles in a fluid medium to an electrode surface. The method comprises treating (e.g., derivatizing) the electrode surface with an electrochemically active material; connecting the electrode to an electrical potential; and exposing the fluid medium to the electrode surface in a manner such that the charged particles become adsorbed on the electrode surface.

  20. Electrodes made with disordered active material and methods of making the same

    SciTech Connect

    Keem, J.E.; Bergeron, R.C.; Custer, R.C.; McCallum, R.W.

    1987-01-20

    This patent describes a hydrogen storage electrode for an alkaline hydrogen storage electrochemical cell comprising at least one solid, metallic, amorphous electrochemically active body, capable of being self-supporting and formed by rapid solidification from a melt thereby having a non-particulate, dimensionally anisotropic shape characterized by a continuous amorphous structure throughout. The body has a composition comprising at least three elements, the three elements comprising titanium, nickel and at least one element selected from the group consisting of aluminum, boron, chromium, cobalt, hafnium, indium, lead, magnesium, molybdenum, niobium, palladium, tin, zirconium and rare earth metals. Each of the elements is preset in an effective amount so that the electrode is capable of being electrochemically charged with hydrogen to store energy and capable of electrochemically discharging hydrogen and releasing energy, while maintaining its structural integrity during electrochemical charge and discharge cycles.

  1. Nanostructured TiO2-coated activated carbon composite as an electrode material for asymmetric hybrid capacitors.

    PubMed

    Kim, Sang-Ok; Lee, Joong Kee

    2012-02-01

    A nanostructured TiO2-coated activated carbon (TAC) composite was synthesized by a modified sol-gel reaction and employed it as a negative electrode active material for an asymmetric hybrid capacitor. The structural characterization showed that the TiO2 nano-layer was deposited on the surface of the activated carbon and the TAC composite has a highly mesoporous structure. The evaluation of electrochemical characteristics of the TAC electrode was carried out by galvanostatic charge/discharge cycling tests and electrochemical impedance spectroscopy. The obtained specific capacitance of the TAC composite was 42.87 F/g, which showed by 27.1% higher than that of the activated carbon (AC). The TAC composite also exhibited an excellent cycle performance and kept 95% of initial capacitance over 500 cycles.

  2. Electrode materials for rechargeable battery

    DOEpatents

    Johnson, Christopher; Kang, Sun-Ho

    2015-09-08

    A positive electrode is disclosed for a non-aqueous electrolyte lithium rechargeable cell or battery. The electrode comprises a lithium containing material of the formula Na.sub.yLi.sub.xNi.sub.zMn.sub.1-z-z'M.sub.z'O.sub.d, wherein M is a metal cation, x+y>1, 0material preferably has a spinel or spinel-like component in its structure. The value of y preferably is less than about 0.2, and M comprises one or more metal cations selected preferably from one or more monovalent, divalent, trivalent or tetravalent cations, such as Mg.sup.2+, Co.sup.2+, Co.sup.3+, B.sup.3+, Ga.sup.3+, Fe.sup.2+, Fe.sup.3+, Al.sup.3+, and Ti.sup.4+. The electrode material can be synthesized using an ion-exchange reaction with a lithium salt in an organic-based solvent to partially replace sodium ions of a precursor material with lithium ions.

  3. Quantifying protein adsorption and function at nanostructured materials: enzymatic activity of glucose oxidase at GLAD structured electrodes.

    PubMed

    Jensen, Uffe B; Ferapontova, Elena E; Sutherland, Duncan S

    2012-07-31

    Nanostructured materials strongly modulate the behavior of adsorbed proteins; however, the characterization of such interactions is challenging. Here we present a novel method combining protein adsorption studies at nanostructured quartz crystal microbalance sensor surfaces (QCM-D) with optical (surface plasmon resonance SPR) and electrochemical methods (cyclic voltammetry CV) allowing quantification of both bound protein amount and activity. The redox enzyme glucose oxidase is studied as a model system to explore alterations in protein functional behavior caused by adsorption onto flat and nanostructured surfaces. This enzyme and such materials interactions are relevant for biosensor applications. Novel nanostructured gold electrode surfaces with controlled curvature were fabricated using colloidal lithography and glancing angle deposition (GLAD). The adsorption of enzyme to nanostructured interfaces was found to be significantly larger compared to flat interfaces even after normalization for the increased surface area, and no substantial desorption was observed within 24 h. A decreased enzymatic activity was observed over the same period of time, which indicates a slow conformational change of the adsorbed enzyme induced by the materials interface. Additionally, we make use of inherent localized surface plasmon resonances in these nanostructured materials to directly quantify the protein binding. We hereby demonstrate a QCM-D-based methodology to quantify protein binding at complex nanostructured materials. Our approach allows label free quantification of protein binding at nanostructured interfaces.

  4. Effects of activated carbon characteristics on the electrosorption capacity of titanium dioxide/activated carbon composite electrode materials prepared by a microwave-assisted ionothermal synthesis method.

    PubMed

    Liu, Po-I; Chung, Li-Ching; Ho, Chia-Hua; Shao, Hsin; Liang, Teh-Ming; Horng, Ren-Yang; Chang, Min-Chao; Ma, Chen-Chi M

    2015-05-15

    Titanium dioxide (TiO2)/ activated carbon (AC) composite materials, as capacitive deionization electrodes, were prepared by a two-step microwave-assisted ionothermal synthesis method. The electrosorption capacity of the composite electrodes was studied and the effects of AC characteristics were explored. These effects were investigated by multiple analytical techniques, including X-ray photoelectron spectroscopy, thermogravimetry analysis and electrochemical impedance spectroscopy, etc. The experimental results indicated that the electrosorption capacity of the TiO2/AC composite electrode is dependent on the characteristics of AC including the pore structure and the surface property. An enhancement in electrosorption capacity was observed for the TiO2/AC composite electrode prepared from the AC with higher mesopore content and less hydrophilic surface. This enhancement is due to the deposition of anatase TiO2 with suitable amount of Ti-OH. On the other hand, a decline in electrosorption capacity was observed for the TiO2/AC composite electrode prepared from the AC with higher micropore content and highly hydrophilic surface. High content of hydrogen bond complex formed between the functional group on hydrophilic surface with H2O, which will slow down the TiO2 precursor-H2O reaction. In such situation, the effect of TiO2 becomes unfavorable as the loading amount of TiO2 is less and the micropore can also be blocked.

  5. Extrusion of electrode material by liquid injection into extruder barrel

    DOEpatents

    Keller, David Gerard; Giovannoni, Richard Thomas; MacFadden, Kenneth Orville

    1998-01-01

    An electrode sheet product is formed using an extruder having a feed throat and a downstream section by separately mixing an active electrode material and a solid polymer electrolyte composition that contains lithium salt. The active electrode material is fed into the feed throat of the extruder, while a portion of at least one fluid component of the solid polymer electrolyte composition is introduced to the downstream section. The active electrode material and the solid polymer electrolyte composition are compounded in a downstream end of the extruder. The extruded sheets, adhered to current collectors, can be formed into battery cells.

  6. Extrusion of electrode material by liquid injection into extruder barrel

    DOEpatents

    Keller, D.G.; Giovannoni, R.T.; MacFadden, K.O.

    1998-03-10

    An electrode sheet product is formed using an extruder having a feed throat and a downstream section by separately mixing an active electrode material and a solid polymer electrolyte composition that contains lithium salt. The active electrode material is fed into the feed throat of the extruder, while a portion of at least one fluid component of the solid polymer electrolyte composition is introduced to the downstream section. The active electrode material and the solid polymer electrolyte composition are compounded in a downstream end of the extruder. The extruded sheets, adhered to current collectors, can be formed into battery cells. 1 fig.

  7. Aqueous processing of composite lithium ion electrode material

    DOEpatents

    Li, Jianlin; Armstrong, Beth L; Daniel, Claus; Wood, III, David L

    2015-02-17

    A method of making a battery electrode includes the steps of dispersing an active electrode material and a conductive additive in water with at least one dispersant to create a mixed dispersion; treating a surface of a current collector to raise the surface energy of the surface to at least the surface tension of the mixed dispersion; depositing the dispersed active electrode material and conductive additive on a current collector; and heating the coated surface to remove water from the coating.

  8. Lactose electroisomerization into lactulose: effect of the electrode material, active membrane surface area-to-electrode surface area ratio, and interelectrode-membrane distance.

    PubMed

    Aït-Aissa, Amara; Aïder, Mohammed

    2014-01-01

    The aim of the present work was to study and develop an innovative, clean, and environmentally friendly process for lactulose synthesis by electroactivation of lactose. In this work, the electrode material (type 304 stainless steel, titanium, and copper), dimensionless interelectrode-membrane distance at the cathodic compartment (0.36, 0.68, and 1), and the membrane:electrode surface area ratio (0.23, 0.06, and 0.015) were considered to be the factors that could affect the kinetic conversion of lactose into lactulose. The reactions were conducted under an initial lactose concentration of 0.15mol/L at 10°C, Froude number (mixing speed) of 2.05×10(-2), and electric current intensity of 300mA for 30min. The highest lactulose formation yield of 32.50% (0.05mol/L) was obtained by using a copper electrode, interelectrode-membrane distance of 0.36, and membrane:electrode surface area ratio of 0.23. The 2-parameter Langmuir, Freundlich, and Temkin isotherm models were used for the prediction of the lactose isomerization kinetics as well as the 3-parameter Langmuir-Freundlich isotherm model. It was shown that the lactose isomerization kinetics into lactulose followed the Temkin and Langmuir-Freundlich models with coefficients of determination of 0.99 and 0.90 and a relative error of 1.42 to 1.56% and 4.27 to 4.37%, respectively.

  9. Vanadium based materials as electrode materials for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Yan, Yan; Li, Bing; Guo, Wei; Pang, Huan; Xue, Huaiguo

    2016-10-01

    As a kind of supercapacitors, pseudocapacitors have attracted wide attention in recent years. The capacitance of the electrochemical capacitors based on pseudocapacitance arises mainly from redox reactions between electrolytes and active materials. These materials usually have several oxidation states for oxidation and reduction. Many research teams have focused on the development of an alternative material for electrochemical capacitors. Many transition metal oxides have been shown to be suitable as electrode materials of electrochemical capacitors. Among them, vanadium based materials are being developed for this purpose. Vanadium based materials are known as one of the best active materials for high power/energy density electrochemical capacitors due to its outstanding specific capacitance and long cycle life, high conductivity and good electrochemical reversibility. There are different kinds of synthetic methods such as sol-gel hydrothermal/solvothermal method, template method, electrospinning method, atomic layer deposition, and electrodeposition method that have been successfully applied to prepare vanadium based electrode materials. In our review, we give an overall summary and evaluation of the recent progress in the research of vanadium based materials for electrochemical capacitors that include synthesis methods, the electrochemical performances of the electrode materials and the devices.

  10. Synthesis, characterization and application of electrode materials

    SciTech Connect

    He, Lin

    1995-07-07

    It has been known that significant advances in electrochemistry really depend on improvements in the sensitivity, selectivity, convenience, and/or economy of working electrodes, especially through the development of new working electrode materials. The advancement of solid state chemistry and materials science makes it possible to provide the materials which may be required as satisfactory electrode materials. The combination of solid state techniques with electrochemistry expands the applications of solid state materials and leads to the improvement of electrocatalysis. The study of Ru-Ti4O7 and Pt-Ti4O7 microelectrode arrays as introduced in paper 1 and paper 4, respectively, focuses on their synthesis and characterization. The synthesis is described by high temperature techniques for Ru or Pt microelectrode arrays within a conductive Ti4O7ceramic matrix. The characterization is based on the data obtained by x-ray diffractometry, scanning electron microscopy, voltammetry and amperometry. These microelectrode arrays show significant enhancement in current densities in comparison to solid Ru and Pt electrodes. Electrocatalysis at pyrochlore oxide Bi2Ru2O7.3 and Bi2Ir2O7 electrodes are described in paper 2 and paper 3, respectively. Details are reported for the synthesis and characterization of composite Bi2Ru2O7.3 electrodes. Voltammetric data are examined for evidence that oxidation can occur with transfer of oxygen to the oxidation products in the potential region corresponding to anodic discharge of H2O with simultaneous evolution of O2. Paper 3 includes electrocatalytic activities of composite Bi2Ir2O7 disk electrodes for the oxidation of I- and the reduction of IO3-.

  11. Direct Observation of Active Material Concentration Gradients and Crystallinity Breakdown in LiFePO4 Electrodes During Charge/Discharge Cycling of Lithium Batteries

    PubMed Central

    2014-01-01

    The phase changes that occur during discharge of an electrode comprised of LiFePO4, carbon, and PTFE binder have been studied in lithium half cells by using X-ray diffraction measurements in reflection geometry. Differences in the state of charge between the front and the back of LiFePO4 electrodes have been visualized. By modifying the X-ray incident angle the depth of penetration of the X-ray beam into the electrode was altered, allowing for the examination of any concentration gradients that were present within the electrode. At high rates of discharge the electrode side facing the current collector underwent limited lithium insertion while the electrode as a whole underwent greater than 50% of discharge. This behavior is consistent with depletion at high rate of the lithium content of the electrolyte contained in the electrode pores. Increases in the diffraction peak widths indicated a breakdown of crystallinity within the active material during cycling even during the relatively short duration of these experiments, which can also be linked to cycling at high rate. PMID:24790684

  12. Direct Observation of Active Material Concentration Gradients and Crystallinity Breakdown in LiFePO4 Electrodes During Charge/Discharge Cycling of Lithium Batteries.

    PubMed

    Roberts, Matthew R; Madsen, Alex; Nicklin, Chris; Rawle, Jonathan; Palmer, Michael G; Owen, John R; Hector, Andrew L

    2014-04-03

    The phase changes that occur during discharge of an electrode comprised of LiFePO4, carbon, and PTFE binder have been studied in lithium half cells by using X-ray diffraction measurements in reflection geometry. Differences in the state of charge between the front and the back of LiFePO4 electrodes have been visualized. By modifying the X-ray incident angle the depth of penetration of the X-ray beam into the electrode was altered, allowing for the examination of any concentration gradients that were present within the electrode. At high rates of discharge the electrode side facing the current collector underwent limited lithium insertion while the electrode as a whole underwent greater than 50% of discharge. This behavior is consistent with depletion at high rate of the lithium content of the electrolyte contained in the electrode pores. Increases in the diffraction peak widths indicated a breakdown of crystallinity within the active material during cycling even during the relatively short duration of these experiments, which can also be linked to cycling at high rate.

  13. Activated transport in AMTEC electrodes

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; O'Connor, D.; Kikkert, S.

    1992-01-01

    Transport of alkali, metal atoms through porous cathodes of alkali metal thermal-to-electric converter (AMTEC) cells is responsible for significant reducible losses in the electrical performance of these cells. Experimental evidence for activated transport of metal atoms at grain surfaces and boundaries within some AMTEC electrodes has been derived from temperature dependent studies as well as from analysis of the detailed frequency dependence of ac impedance results for other electrodes, including thin, mature molybdenum electrodes which exhibit transport dominated by free molecular flow of sodium gas at low frequencies or dc conditions. Activated surface transport will almost always exist in parallel with free molecular flow transport, and the process of alkali atom adsorption/desorption from the electrode surface will invariably be part of the transport process, and possibly a dominant part in some cases. The temperature dependence of the diffusion coefficient of the alkali metal through the electrode in several cases provides an activation energy and preexponential, but at least two activated processes may be operative, and the activation parameters should be expected to depend on the alkali metal activity gradient that the electrode experiences. In the case of Pt/W/Mn electrodes operated for 2500 hours, limiting currents varied with electrode thickness, and the activation parameters could be assigned primarily to the surface/grain boundary diffusion process.

  14. Preparation and electrochemical characterization of polyaniline/activated carbon composites as an electrode material for supercapacitors.

    PubMed

    Oh, Misoon; Kim, Seok

    2012-01-01

    Polyaniline (PANI)/activated carbon (AC) composites were prepared by a chemical oxidation polymerization. To find an optimum ratio between PANI and AC which shows superior electrochemical properties, the preparation was carried out in changing the amount of added aniline monomers. The morphology of prepared composites was investigated by scanning electron microscopy (SEM) and transmission electron microscope (TEM). The structural and thermal properties were investigated by Fourier transform infrared spectra (FT-IR) and thermal gravimetric analysis (TGA), respectively. The electrochemical properties were characterized by cyclic voltammetry (CV). Composites showed a summation of capacitances that consisted of two origins. One is double-layer capacitance by ACs and the other is faradic capacitance by redox reaction of PANI. Fiber-like PANIs are coated on the surface of ACs and they contribute to the large surface for redox reaction. The vacancy among fibers provided the better diffusion and accessibility of ion. High capacitances of composites were originated from the network structure having vacancy made by PANI fibers. It was found that the composite prepared with 5 ml of aniline monomer and 0.25 g of AC showed the highest capacitance. Capacitance of 771 F/g was obtained at a scan rate of 5 mV/s.

  15. Activated transport in AMTEC electrodes

    SciTech Connect

    Williams, R.M.; Jeffries-Nakamura, B.; Ryan, M.A.; Underwood, M.L.; O`Connor, D.; Kikkert, S.

    1992-07-01

    Transport of alkali metal atoms through porous cathodes of alkali metal thermal-to-electric converter (AMTEC) cells is responsible for significant, reducible losses in the electrical performance of these cells. Experimental evidence for activated transport of metal atoms at grain surfaces and boundaries within some AMTEC electrodes has been derived from temperature dependent studies as well as from analysis of the detailed frequency dependence of ac impedance results for other electrodes, including thin, mature molybdenum electrodes which exhibit transport dominated by free molecular flow of sodium gas at low frequencies or dc conditions. Activated surface transport will almost always exist in parallel with free molecular flow transport, and the process of alkali atom adsorption/desorption from the electrode surface will invariably be part of the transport process, and possibly a dominant part in some cases. Little can be learned about the detailed mass transport process from the ac impedance or current voltage curves of an electrode at one set of operating parameters, because the transport process includes a number of important physical parameters that are not all uniquely determined by one experiment. The temperature dependence of diffusion coefficient of the alkali metal through the electrode in several cases provides an activation energy and pre-exponential, but at least two activated processes may be operative, and the activation parameters should be expected to depend on the alkali metal activity gradient that the electrode experiences. In the case of Pt/W/Mn electrodes operated for 2500 hours, limiting currents varied with electrode thickness, and the activation parameters could be assigned primarily to the surface/grain boundary diffusion process. 17 refs.

  16. Activated transport in AMTEC electrodes

    SciTech Connect

    Williams, R.M.; Jeffries-Nakamura, B.; Ryan, M.A.; Underwood, M.L.; O'Connor, D.; Kikkert, S.

    1992-01-01

    Transport of alkali metal atoms through porous cathodes of alkali metal thermal-to-electric converter (AMTEC) cells is responsible for significant, reducible losses in the electrical performance of these cells. Experimental evidence for activated transport of metal atoms at grain surfaces and boundaries within some AMTEC electrodes has been derived from temperature dependent studies as well as from analysis of the detailed frequency dependence of ac impedance results for other electrodes, including thin, mature molybdenum electrodes which exhibit transport dominated by free molecular flow of sodium gas at low frequencies or dc conditions. Activated surface transport will almost always exist in parallel with free molecular flow transport, and the process of alkali atom adsorption/desorption from the electrode surface will invariably be part of the transport process, and possibly a dominant part in some cases. Little can be learned about the detailed mass transport process from the ac impedance or current voltage curves of an electrode at one set of operating parameters, because the transport process includes a number of important physical parameters that are not all uniquely determined by one experiment. The temperature dependence of diffusion coefficient of the alkali metal through the electrode in several cases provides an activation energy and pre-exponential, but at least two activated processes may be operative, and the activation parameters should be expected to depend on the alkali metal activity gradient that the electrode experiences. In the case of Pt/W/Mn electrodes operated for 2500 hours, limiting currents varied with electrode thickness, and the activation parameters could be assigned primarily to the surface/grain boundary diffusion process. 17 refs.

  17. Materials analyses and electrochemical impedance of implantable metal electrodes.

    PubMed

    Howlader, Matiar M R; Ul Alam, Arif; Sharma, Rahul P; Deen, M Jamal

    2015-04-21

    Implantable electrodes with high flexibility, high mechanical fixation and low electrochemical impedance are desirable for neuromuscular activation because they provide safe, effective and stable stimulation. In this paper, we report on detailed materials and electrical analyses of three metal implantable electrodes - gold (Au), platinum (Pt) and titanium (Ti) - using X-ray photoelectron spectroscopy (XPS), scanning acoustic microscopy, drop shape analysis and electrochemical impedance spectroscopy. We investigated the cause of changes in electrochemical impedance of long-term immersed Au, Pt and Ti electrodes on liquid crystal polymers (LCPs) in phosphate buffered saline (PBS). We analyzed the surface wettability, surface and interface defects and the elemental depth profile of the electrode-adhesion layers on the LCP. The impedance of the electrodes decreased at lower frequencies, but increased at higher frequencies compared with that of the short-term immersion. The increase of impedances was influenced by the oxidation of the electrode/adhesion-layers that affected the double layer capacitance behavior of the electrode/PBS. The oxidation of the adhesion layer for all the electrodes was confirmed by XPS. Alkali ions (sodium) were adsorbed on the Au and Pt surfaces, but diffused into the Ti electrode and LCPs. The Pt electrode showed a higher sensitivity to surface and interface defects than that of Ti and Au electrodes. These findings may be useful when designing electrodes for long-term implantable devices.

  18. LOWER TEMPERATURE ELECTROLYTE AND ELECTRODE MATERIALS

    SciTech Connect

    Keqin Huang

    2003-04-30

    A thorough literature survey on low-temperature electrolyte and electrode materials for SOFC is given in this report. Thermodynamic stability of selected electrolyte and its chemical compatibility with cathode substrate were evaluated. Preliminary electrochemical characterizations were conducted on symmetrical cells consisting of the selected electrolyte and various electrode materials. Feasibility of plasma spraying new electrolyte material thin-film on cathode substrate was explored.

  19. Architecture engineering of supercapacitor electrode materials

    NASA Astrophysics Data System (ADS)

    Chen, Kunfeng; Li, Gong; Xue, Dongfeng

    2016-02-01

    The biggest challenge for today’s supercapacitor systems readily possessing high power density is their low energy density. Their electrode materials with controllable structure, specific surface area, electronic conductivity, and oxidation state, have long been highlighted. Architecture engineering of functional electrode materials toward powerful supercapacitor systems is becoming a big fashion in the community. The construction of ion-accessible tunnel structures can microscopically increase the specific capacitance and materials utilization; stiff 3D structures with high specific surface area can macroscopically assure high specific capacitance. Many exciting findings in electrode materials mainly focus on the construction of ice-folded graphene paper, in situ functionalized graphene, in situ crystallizing colloidal ionic particles and polymorphic metal oxides. This feature paper highlights some recent architecture engineering strategies toward high-energy supercapacitor electrode systems, including electric double-layer capacitance (EDLC) and pseudocapacitance.

  20. Advanced Materials for Neural Surface Electrodes

    PubMed Central

    Schendel, Amelia A.; Eliceiri, Kevin W.; Williams, Justin C.

    2015-01-01

    Designing electrodes for neural interfacing applications requires deep consideration of a multitude of materials factors. These factors include, but are not limited to, the stiffness, biocompatibility, biostability, dielectric, and conductivity properties of the materials involved. The combination of materials properties chosen not only determines the ability of the device to perform its intended function, but also the extent to which the body reacts to the presence of the device after implantation. Advances in the field of materials science continue to yield new and improved materials with properties well-suited for neural applications. Although many of these materials have been well-established for non-biological applications, their use in medical devices is still relatively novel. The intention of this review is to outline new material advances for neural electrode arrays, in particular those that interface with the surface of the nervous tissue, as well as to propose future directions for neural surface electrode development. PMID:26392802

  1. Advanced Materials for Neural Surface Electrodes.

    PubMed

    Schendel, Amelia A; Eliceiri, Kevin W; Williams, Justin C

    2014-12-01

    Designing electrodes for neural interfacing applications requires deep consideration of a multitude of materials factors. These factors include, but are not limited to, the stiffness, biocompatibility, biostability, dielectric, and conductivity properties of the materials involved. The combination of materials properties chosen not only determines the ability of the device to perform its intended function, but also the extent to which the body reacts to the presence of the device after implantation. Advances in the field of materials science continue to yield new and improved materials with properties well-suited for neural applications. Although many of these materials have been well-established for non-biological applications, their use in medical devices is still relatively novel. The intention of this review is to outline new material advances for neural electrode arrays, in particular those that interface with the surface of the nervous tissue, as well as to propose future directions for neural surface electrode development.

  2. Thick electrodes including nanoparticles having electroactive materials and methods of making same

    DOEpatents

    Xiao, Jie; Lu, Dongping; Liu, Jun; Zhang, Jiguang; Graff, Gordon L.

    2017-02-21

    Electrodes having nanostructure and/or utilizing nanoparticles of active materials and having high mass loadings of the active materials can be made to be physically robust and free of cracks and pinholes. The electrodes include nanoparticles having electroactive material, which nanoparticles are aggregated with carbon into larger secondary particles. The secondary particles can be bound with a binder to form the electrode.

  3. Nano-sized Mn-doped activated carbon aerogel as electrode material for electrochemical capacitor: effect of activation conditions.

    PubMed

    Lee, Yoon Jae; Park, Hai Woong; Park, Sunyoung; Song, In Kyu

    2012-07-01

    Carbon aerogel (CA) was prepared by a sol-gel polymerization of resorcinol and formaldehyde, and a series of activated carbon aerogels (ACA-KOH-X, X = 0, 0.3, 0.7, 1, and 2) were then prepared by a chemical activation using different amount of potassium hydroxide (X represented weight ratio of KOH with respect to CA). Specific capacitances of activated carbon aerogels were measured by cyclic voltammetry and galvanostatic charge/discharge methods in 6 M KOH electrolyte. Among the samples prepared, ACA-KOH-0.7 showed the highest specific capacitance (149 F/g). In order to combine excellent electrochemical performance of activated carbon aerogel with pseudocapacitive property of manganese oxide, 7 wt% Mn was doped on activated carbon aerogel (Mn/ACA-KOH-0.7) by an incipient wetness impregnation method. For comparison, 7 wt% Mn was also impregnated on carbon aerogel (Mn/ACA-KOH-0) by the same method. It was revealed that 7 wt% Mn-doped activated carbon aerogel (Mn/ACA-KOH-0.7) showed higher specific capacitance than 7 wt% Mn-doped carbon aerogel (Mn/ACA-KOH-0) (178 F/g vs. 98 F/g). The enhanced capacitance of Mn/ACA-KOH-0.7 was attributed to the outstanding electric properties of activated carbon aerogel as well as the faradaic redox reactions of manganese oxide.

  4. Effect of oxidation of carbon material on suspension electrodes for flow electrode capacitive deionization.

    PubMed

    Hatzell, Kelsey B; Hatzell, Marta C; Cook, Kevin M; Boota, Muhammad; Housel, Gabrielle M; McBride, Alexander; Kumbur, E Caglan; Gogotsi, Yury

    2015-03-03

    Flow electrode deionization (FCDI) is an emerging area for continuous and scalable deionization, but the electrochemical and flow properties of the flow electrode need to be improved to minimize energy consumption. Chemical oxidation of granular activated carbon (AC) was examined here to study the role of surface heteroatoms on rheology and electrochemical performance of a flow electrode (carbon slurry) for deionization processes. Moreover, it was demonstrated that higher mass densities could be used without increasing energy for pumping when using oxidized active material. High mass-loaded flow electrodes (28% carbon content) based on oxidized AC displayed similar viscosities (∼21 Pa s) to lower mass-loaded flow electrodes (20% carbon content) based on nonoxidized AC. The 40% increased mass loading (from 20% to 28%) resulted in a 25% increase in flow electrode gravimetric capacitance (from 65 to 83 F g(-1)) without sacrificing flowability (viscosity). The electrical energy required to remove ∼18% of the ions (desalt) from of the feed solution was observed to be significantly dependent on the mass loading and decreased (∼60%) from 92 ± 7 to 28 ± 2.7 J with increased mass densities from 5 to 23 wt %. It is shown that the surface chemistry of the active material in a flow electrode effects the electrical and pumping energy requirements of a FCDI system.

  5. Effect of oxidation of carbon material on suspension electrodes for flow electrode capacitive deionization

    SciTech Connect

    Hatzell, Kelsey B.; Hatzell, Marta C.; Cook, Kevin M.; Boota, Muhammad; Housel, Gabrielle M.; Mcbride, Alexander; Kumbur, E. Caglan; Gogotsi, Yury

    2015-01-29

    Flow electrode deionization (FCDI) is an emerging area for continuous and scalable deionization, but the electrochemical and flow properties of the flow electrode need to be improved to minimize energy consumption. We examine chemical oxidation of granular activated carbon (AC) here to study the role of surface heteroatoms on rheology and electrochemical performance of a flow electrode (carbon slurry) for deionization processes. Moreover, it was demonstrated that higher mass densities could be used without increasing energy for pumping when using oxidized active material. High mass-loaded flow electrodes (28% carbon content) based on oxidized AC displayed similar viscosities (~21 Pa s) to lower mass-loaded flow electrodes (20% carbon content) based on nonoxidized AC. The 40% increased mass loading (from 20% to 28%) resulted in a 25% increase in flow electrode gravimetric capacitance (from 65 to 83 F g–1) without sacrificing flowability (viscosity). The electrical energy required to remove ~18% of the ions (desalt) from of the feed solution was observed to be significantly dependent on the mass loading and decreased (~60%) from 92 ± 7 to 28 ± 2.7 J with increased mass densities from 5 to 23 wt %. Finally, it is shown that the surface chemistry of the active material in a flow electrode effects the electrical and pumping energy requirements of a FCDI system.

  6. Effect of oxidation of carbon material on suspension electrodes for flow electrode capacitive deionization

    DOE PAGES

    Hatzell, Kelsey B.; Hatzell, Marta C.; Cook, Kevin M.; ...

    2015-01-29

    Flow electrode deionization (FCDI) is an emerging area for continuous and scalable deionization, but the electrochemical and flow properties of the flow electrode need to be improved to minimize energy consumption. We examine chemical oxidation of granular activated carbon (AC) here to study the role of surface heteroatoms on rheology and electrochemical performance of a flow electrode (carbon slurry) for deionization processes. Moreover, it was demonstrated that higher mass densities could be used without increasing energy for pumping when using oxidized active material. High mass-loaded flow electrodes (28% carbon content) based on oxidized AC displayed similar viscosities (~21 Pa s)more » to lower mass-loaded flow electrodes (20% carbon content) based on nonoxidized AC. The 40% increased mass loading (from 20% to 28%) resulted in a 25% increase in flow electrode gravimetric capacitance (from 65 to 83 F g–1) without sacrificing flowability (viscosity). The electrical energy required to remove ~18% of the ions (desalt) from of the feed solution was observed to be significantly dependent on the mass loading and decreased (~60%) from 92 ± 7 to 28 ± 2.7 J with increased mass densities from 5 to 23 wt %. Finally, it is shown that the surface chemistry of the active material in a flow electrode effects the electrical and pumping energy requirements of a FCDI system.« less

  7. Electrode material comprising graphene-composite materials in a graphite network

    DOEpatents

    Kung, Harold H.; Lee, Jung K.

    2014-07-15

    A durable electrode material suitable for use in Li ion batteries is provided. The material is comprised of a continuous network of graphite regions integrated with, and in good electrical contact with a composite comprising graphene sheets and an electrically active material, such as silicon, wherein the electrically active material is dispersed between, and supported by, the graphene sheets.

  8. Towards uniformly dispersed battery electrode composite materials: Characteristics and performance

    SciTech Connect

    Yo Han Kwon; Takeuchi, Esther S.; Huie, Matthew M.; Choi, Dalsu; Chang, Mincheol; Marschilok, Amy C.; Takeuchi, Kenneth J.; Reichmanis, Elsa

    2016-01-14

    Battery electrodes are complex mesoscale systems comprised of electroactive components, conductive additives, and binders. In this report, methods for processing electrodes with dispersion of the components are described. To investigate the degree of material dispersion, a spin-coating technique was adopted to provide a thin, uniform layer that enabled observation of the morphology. Distinct differences in the distribution profile of the electrode components arising from individual materials physical affinities were readily identified. Hansen solubility parameter (HSP) analysis revealed pertinent surface interactions associated with materials dispersivity. Further studies demonstrated that HSPs can provide an effective strategy to identify surface modification approaches for improved dispersions of battery electrode materials. Specifically, introduction of surfactantlike functionality such as oleic acid (OA) capping and P3HT-conjugated polymer wrapping on the surface of nanomaterials significantly enhanced material dispersity over the composite electrode. The approach to the surface treatment on the basis of HSP study can facilitate design of composite electrodes with uniformly dispersed morphology and may contribute to enhancing their electrical and electrochemical behaviors. The conductivity of the composites and their electrochemical performance was also characterized. In conclusion, the study illustrates the importance of considering electronic conductivity, electron transfer, and ion transport in the design of environments incorporating active nanomaterials.

  9. Towards uniformly dispersed battery electrode composite materials: Characteristics and performance

    DOE PAGES

    Yo Han Kwon; Takeuchi, Esther S.; Huie, Matthew M.; ...

    2016-01-14

    Battery electrodes are complex mesoscale systems comprised of electroactive components, conductive additives, and binders. In this report, methods for processing electrodes with dispersion of the components are described. To investigate the degree of material dispersion, a spin-coating technique was adopted to provide a thin, uniform layer that enabled observation of the morphology. Distinct differences in the distribution profile of the electrode components arising from individual materials physical affinities were readily identified. Hansen solubility parameter (HSP) analysis revealed pertinent surface interactions associated with materials dispersivity. Further studies demonstrated that HSPs can provide an effective strategy to identify surface modification approaches formore » improved dispersions of battery electrode materials. Specifically, introduction of surfactantlike functionality such as oleic acid (OA) capping and P3HT-conjugated polymer wrapping on the surface of nanomaterials significantly enhanced material dispersity over the composite electrode. The approach to the surface treatment on the basis of HSP study can facilitate design of composite electrodes with uniformly dispersed morphology and may contribute to enhancing their electrical and electrochemical behaviors. The conductivity of the composites and their electrochemical performance was also characterized. In conclusion, the study illustrates the importance of considering electronic conductivity, electron transfer, and ion transport in the design of environments incorporating active nanomaterials.« less

  10. Toward Uniformly Dispersed Battery Electrode Composite Materials: Characteristics and Performance.

    PubMed

    Kwon, Yo Han; Huie, Matthew M; Choi, Dalsu; Chang, Mincheol; Marschilok, Amy C; Takeuchi, Kenneth J; Takeuchi, Esther S; Reichmanis, Elsa

    2016-02-10

    Battery electrodes are complex mesoscale systems comprised of electroactive components, conductive additives, and binders. In this report, methods for processing electrodes with dispersion of the components are described. To investigate the degree of material dispersion, a spin-coating technique was adopted to provide a thin, uniform layer that enabled observation of the morphology. Distinct differences in the distribution profile of the electrode components arising from individual materials physical affinities were readily identified. Hansen solubility parameter (HSP) analysis revealed pertinent surface interactions associated with materials dispersivity. Further studies demonstrated that HSPs can provide an effective strategy to identify surface modification approaches for improved dispersions of battery electrode materials. Specifically, introduction of surfactantlike functionality such as oleic acid (OA) capping and P3HT-conjugated polymer wrapping on the surface of nanomaterials significantly enhanced material dispersity over the composite electrode. The approach to the surface treatment on the basis of HSP study can facilitate design of composite electrodes with uniformly dispersed morphology and may contribute to enhancing their electrical and electrochemical behaviors. The conductivity of the composites and their electrochemical performance was also characterized. The study illustrates the importance of considering electronic conductivity, electron transfer, and ion transport in the design of environments incorporating active nanomaterials.

  11. Enhanced electrochemical performance of porous activated carbon by forming composite with graphene as high-performance supercapacitor electrode material

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Hang; Yang, Jia-Ying; Wu, Xiong-Wei; Chen, Xiao-Qing; Yu, Jin-Gang; Wu, Yu-Ping

    2017-02-01

    In this work, a novel activated carbon containing graphene composite was developed using a fast, simple, and green ultrasonic-assisted method. Graphene is more likely a framework which provides support for activated carbon (AC) particles to form hierarchical microstructure of carbon composite. Scanning electron microscope (SEM), transmission electron microscope (TEM), Brunauer-Emmett-Teller (BET) surface area measurement, thermogravimetric analysis (TGA), Raman spectra analysis, XRD, and XPS were used to analyze the morphology and surface structure of the composite. The electrochemical properties of the supercapacitor electrode based on the as-prepared carbon composite were investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), charge/discharge, and cycling performance measurements. It exhibited better electrochemical performance including higher specific capacitance (284 F g-1 at a current density of 0.5 A g-1), better rate behavior (70.7% retention), and more stable cycling performance (no capacitance fading even after 2000 cycles). It is easier for us to find that the composite produced by our method was superior to pristine AC in terms of electrochemical performance due to the unique conductive network between graphene and AC.

  12. LOWER TEMPERATURE ELECTROLYTE AND ELECTRODE MATERIALS

    SciTech Connect

    Keqin Huang

    2001-04-30

    A thorough literature survey on low-temperature electrolyte and electrode materials for solid oxide fuel cells (SOFC) is presented. Preliminary results of co-sintering LaGaO{sub 3} (LSGM) film on the cathode substrate were also reported. The chemical stability of LSGM in various SOFC environments was thermodynamically assessed and verified by the molten-salt technique.

  13. Gallium Nitride Crystals: Novel Supercapacitor Electrode Materials.

    PubMed

    Wang, Shouzhi; Zhang, Lei; Sun, Changlong; Shao, Yongliang; Wu, Yongzhong; Lv, Jiaxin; Hao, Xiaopeng

    2016-05-01

    A type of single-crystal gallium nitride mesoporous membrane is fabricated and its supercapacitor properties are demonstrated for the first time. The supercapacitors exhibit high-rate capability, stable cycling life at high rates, and ultrahigh power density. This study may expand the range of crystals as high-performance electrode materials in the field of energy storage.

  14. Transparent organic bistable memory device with pure organic active material and Al/indium tin oxide electrode

    NASA Astrophysics Data System (ADS)

    Yook, Kyoung Soo; Lee, Jun Yeob; Kim, Sung Hyun; Jang, Jyongsik

    2008-06-01

    Transparent organic bistable memory devices (OBDs) were developed by employing indium tin oxide (ITO) as an anode and a cathode for OBD. A cathode structure of aluminum (Al)/ITO was used and bistability could be realized with pure polyphenylenevilylene based polymer active material without any metal nanoparticle. Transmittance of over 50% could be obtained in Al/ITO based OBD at an Al thickness of 10nm, and an average on/off ratio around 100 was observed.

  15. Electrostatic atomization: Effect of electrode materials on electrostatic atomizer performance

    NASA Astrophysics Data System (ADS)

    Sankaran, Abhilash; Staszel, Christopher; Kashir, Babak; Perri, Anthony; Mashayek, Farzad; Yarin, Alexander

    2016-11-01

    Electrostatic atomization was studied experimentally with a pointed electrode in a converging nozzle. Experiments were carried out on poorly conductive canola oil where it was observed that electrode material may affect charge transfer. This points at the possible faradaic reactions that can occur at the surfaces of the electrodes. The supply voltage is applied to the sharp electrode and the grounded nozzle body constitutes the counter-electrode. The charge transfer is controlled by the electrochemical reactions on both the electrodes. The electrical performance study of the atomizer issuing a charged oil jet was conducted using three different nozzle body materials - brass, copper and stainless steel. Also, two sharp electrode materials - brass and stainless steel - were tested. The experimental results revealed that both the nozzle body material, as well as the sharp electrode material affected the spray and leak currents. Moreover, the effect of the sharp electrode material is quite significant. This research is supported by NSF Grant 1505276.

  16. Screening of redox couples and electrode materials

    NASA Technical Reports Server (NTRS)

    Giner, J.; Swette, L.; Cahill, K.

    1976-01-01

    Electrochemical parameters of selected redox couples that might be potentially promising for application in bulk energy storage systems were investigated. This was carried out in two phases: a broad investigation of the basic characteristics and behavior of various redox couples, followed by a more limited investigation of their electrochemical performance in a redox flow reactor configuration. In the first phase of the program, eight redox couples were evaluated under a variety of conditions in terms of their exchange current densities as measured by the rotating disk electrode procedure. The second phase of the program involved the testing of four couples in a redox reactor under flow conditions with a varity of electrode materials and structures.

  17. Lithium Manganese Silicate Positive Electrode Material

    NASA Astrophysics Data System (ADS)

    Yang, Qiong

    As the fast development of the electronic portable devices and drastic fading of fossil energy sources. The need for portable secondary energy sources is increasingly urgent. As a result, lithium ion batteries are being investigated intensely to meet the performance requirements. Among various electrode materials, the most expensive and capacity limiting component is the positive materials. Based on this, researches have been mostly focused on the development of novel cathode materials with high capacity and energy density and the lithium transition metal orthosilicates have been identified as possible high performance cathodes. Here in, we report the synthesis of a kind of lithium transition metal orthosilicates electrode lithium manganese silicate. Lithium manganese silicate has the advantage of high theoretical capacity, low cost raw material and safety. In this thesis, lithium manganese silicate are prepared using different silicon sources. The structure of silicon sources preferred are examined. Nonionic block copolymers surfactant, P123, is tried as carbon source and mophology directing agent. Lithium manganese silicate's performances are improved by adding P123.

  18. Conducting polymer transistors making use of activated carbon gate electrodes.

    PubMed

    Tang, Hao; Kumar, Prajwal; Zhang, Shiming; Yi, Zhihui; Crescenzo, Gregory De; Santato, Clara; Soavi, Francesca; Cicoira, Fabio

    2015-01-14

    The characteristics of the gate electrode have significant effects on the behavior of organic electrochemical transistors (OECTs), which are intensively investigated for applications in the booming field of organic bioelectronics. In this work, high specific surface area activated carbon (AC) was used as gate electrode material in OECTs based on the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) doped with poly(styrenesulfonate) (PSS). We found that the high specific capacitance of the AC gate electrodes leads to high drain-source current modulation in OECTs, while their intrinsic quasi-reference characteristics make unnecessary the presence of an additional reference electrode to monitor the OECT channel potential.

  19. Improving Electrode Durability of PEF Chamber by selecting suitable material

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corrosion resistance of four materials - titanium, platinized titanium, stainless steel, and boron carbide - as electrodes in a Pulsed Electric Field (PEF) system was studied to reduce electrode material migration into the food by electrode corrosion. The PEF process conditions were 28 kV/cm field s...

  20. Nanostructured Electrode Materials for Electrochemical Capacitor Applications

    PubMed Central

    Choi, Hojin; Yoon, Hyeonseok

    2015-01-01

    The advent of novel organic and inorganic nanomaterials in recent years, particularly nanostructured carbons, conducting polymers, and metal oxides, has enabled the fabrication of various energy devices with enhanced performance. In this paper, we review in detail different nanomaterials used in the fabrication of electrochemical capacitor electrodes and also give a brief overview of electric double-layer capacitors, pseudocapacitors, and hybrid capacitors. From a materials point of view, the latest trends in electrochemical capacitor research are also discussed through extensive analysis of the literature and by highlighting notable research examples (published mostly since 2013). Finally, a perspective on next-generation capacitor technology is also given, including the challenges that lie ahead. PMID:28347044

  1. Reversibly immobilized biological materials in monolayer films on electrodes

    DOEpatents

    Weaver, Paul F.; Frank, Arthur J.

    1993-01-01

    Methods and techniques are described for reversibly binding charged biological particles in a fluid medium to an electrode surface. The methods are useful in a variety of applications. The biological materials may include microbes, proteins, and viruses. The electrode surface may consist of reversibly electroactive materials such as polyvinylferrocene, silicon-linked ferrocene or quinone.

  2. Reversibly immobilized biological materials in monolayer films on electrodes

    DOEpatents

    Weaver, P.F.; Frank, A.J.

    1993-05-04

    Methods and techniques are described for reversibly binding charged biological particles in a fluid medium to an electrode surface. The methods are useful in a variety of applications. The biological materials may include microbes, proteins, and viruses. The electrode surface may consist of reversibly electroactive materials such as polyvinylferrocene, silicon-linked ferrocene or quinone.

  3. High and dry? Comparing active dry EEG electrodes to active and passive wet electrodes.

    PubMed

    Mathewson, Kyle E; Harrison, Tyler J L; Kizuk, Sayeed A D

    2017-01-01

    Dry electrodes are becoming popular for both lab-based and consumer-level electrophysiological-recording technologies because they better afford the ability to move traditional lab-based research into the real world. It is unclear, however, how dry electrodes compare in data quality to traditional electrodes. The current study compared three EEG electrode types: (a) passive-wet electrodes with no onboard amplification, (b) actively amplified, wet electrodes with moderate impedance levels, and low impedance levels, and (c) active-dry electrodes with very high impedance. Participants completed a classic P3 auditory oddball task to elicit characteristic EEG signatures and event-related potentials (ERPs). Across the three electrode types, we compared single-trial noise, average ERPs, scalp topographies, ERP noise, and ERP statistical power as a function of number of trials. We extended past work showing active electrodes' insensitivity to moderate levels of interelectrode impedance when compared to passive electrodes in the same amplifier. Importantly, the new dry electrode system could reliably measure EEG spectra and ERP components comparable to traditional electrode types. As expected, however, dry active electrodes with very high interelectrode impedance exhibited marked increases in single-trial and average noise levels, which decreased statistical power, requiring more trials to detect significant effects. This power decrease must be considered as a trade-off with the ease of application and long-term use. The current results help set constraints on experimental design with novel dry electrodes, and provide important evidence needed to measure brain activity in novel settings and situations.

  4. Active floating micro electrode arrays (AFMA).

    PubMed

    Kim, T; Troyk, P R; Bak, M

    2006-01-01

    Neuroscientists have widely used metal microelectrodes inserted into the cortex to record neural signals from, and provide electrical stimulation to, neural tissue for many years. Recently, the demand for implanting electrode arrays within the cortex, for both stimulation and recording, has rapidly increased. We are developing Active-floating-micro-electrode-arrays (AFMA) that are intended for use as a multielectrode cortical interface while minimizing the number of wires leading from the array to extra-dural circuitry or connectors. When combined with a wireless module, these new microelectrode arrays should allow for simulation and recording within free-roaming animals. This paper mainly discusses the design, fabrication, and packing of the first generation AFMA. Our long-term vision is a wireless-transmission electrode system, for stimulation and recording in free-roaming animals, which uses a family of modular active implantable electrode arrays.

  5. Method for determining trace quantities of chloride in polymeric materials using ion selective electrodes: Final report

    SciTech Connect

    Salary, J.

    1987-02-01

    A method for determining trace quantities of chloride in polymeric materials has been developed. Ion-selective electrodes and the standard addition method were used in all the analyses. The ion-selective electrode method was compared with neutron activation, ion chromatography and chloridometer titration. The ion-selective electrode technique results for chloride were similar to those of neutron activation, which is the acknowledged referee method. This ion-selective electrode method showed the highest standard recovery when compared with the ion chromatography and chloridometer titration methods.

  6. Metallic sulfide additives for positive electrode material within a secondary electrochemical cell

    DOEpatents

    Walsh, William J.; McPheeters, Charles C.; Yao, Neng-ping; Koura, Kobuyuki

    1976-01-01

    An improved active material for use within the positive electrode of a secondary electrochemical cell includes a mixture of iron disulfide and a sulfide of a polyvalent metal. Various metal sulfides, particularly sulfides of cobalt, nickel, copper, cerium and manganese, are added in minor weight proportion in respect to iron disulfide for improving the electrode performance and reducing current collector requirements.

  7. Modified lithium vanadium oxide electrode materials products and methods

    DOEpatents

    Thackeray, Michael M.; Kahaian, Arthur J.; Visser, Donald R.; Dees, Dennis W.; Benedek, Roy

    1999-12-21

    A method of improving certain vanadium oxide formulations is presented. The method concerns fluorine doping formulations having a nominal formula of LiV.sub.3 O.sub.8. Preferred average formulations are provided wherein the average oxidation state of the vanadium is at least 4.6. Herein preferred fluorine doped vanadium oxide materials, electrodes using such materials, and batteries including at least one electrode therein comprising such materials are provided.

  8. In situ study of electrochemical activation and surface segregation of the SOFC electrode material La0.75Sr0.25Cr0.5Mn0.5O(3±δ).

    PubMed

    Huber, Anne-Katrin; Falk, Mareike; Rohnke, Marcus; Luerssen, Bjoern; Gregoratti, Luca; Amati, Matteo; Janek, Jürgen

    2012-01-14

    Mixed-conducting perovskite-type electrodes which are used as cathodes in solid oxide fuel cells (SOFCs) exhibit pronounced performance improvement after cathodic polarization. The current in situ study addresses the mechanism of this activation process which is still unknown. We chose the new perovskite-type material La(0.75)Sr(0.25)Cr(0.5)Mn(0.5)O(3±δ) which is a potential candidate for use in symmetrical solid oxide fuel cells (SFCs). We prepared La(0.75)Sr(0.25)Cr(0.5)Mn(0.5)O(3±δ) thin film model electrodes on YSZ (111) single crystals by pulsed laser deposition (PLD). Impedance spectroscopy (EIS) measurements show that the kinetics of these electrodes can be drastically improved by applying a cathodic potential. To understand the origin of the enhanced electrocatalytic activity the surfaces of operating LSCrM electrodes were studied in situ (at low pressure) with spatially resolving X-ray photoelectron spectroscopy (μ-ESCA, SPEM) and quasi static secondary ion mass spectrometry (ToF-SIMS) after applying different electrical potentials in the SIMS chamber. We observed that the electrode surfaces which were annealed at 600 °C are enriched significantly in strontium. Subsequent cathodic polarization decreases the strontium surface concentration while anodic polarization increases the strontium accumulation at the electrode surface. We propose a mechanism based on the reversible incorporation of a passivating SrO surface phase into the LSCrM lattice to explain the observed activation/deactivation process.

  9. Iron active electrode and method of making same

    DOEpatents

    Jackovitz, John F.; Seidel, Joseph; Pantier, Earl A.

    1982-10-26

    An iron active electrode and method of preparing same in which iron sulfate is calcined in an oxidizing atmosphere at a temperature in the range of from about 600.degree. C. to about 850.degree. C. for a time sufficient to produce an iron oxide with a trace amount of sulfate. The calcined material is loaded into an electrically conductive support and then heated in a reducing atmosphere at an elevated temperature to produce activated iron having a trace amount of sulfide which is formed into an electrode plate.

  10. Advances in materials and current collecting networks for AMTEC electrodes

    NASA Technical Reports Server (NTRS)

    Ryan, M. A.; Jeffries-Nakamura, B.; Williams, R. M.; Underwood, M. L.; O'Connor, D.; Kikkert, S.

    1992-01-01

    Electrode materials for the Alkali Metal Thermal to Electric Converter (AMTEC) play a significant role in the efficiency of the device. RhW and PtW alloys have been studied to determine the best performing material. While RhW electrodes typically have power densities somewhat lower than PtW electrodes, PtW performance is strongly influenced by the Pt/W ratio. The best performing Pt/W ratio is about 3.4. RhW electrodes sinter more slowly than PtW and are predicted to have operating lifetimes up to 40 years; PtW electrodes are predicted to have lifetimes up to 7 years. Interaction with the current collection network can significantly decrease lifetime by inducing metal migration and segregation and by accelerating the sintering rate.

  11. Amorphous LiCoO2sbnd Li2SO4 active materials: Potential positive electrodes for bulk-type all-oxide solid-state lithium batteries with high energy density

    NASA Astrophysics Data System (ADS)

    Nagao, Kenji; Hayashi, Akitoshi; Deguchi, Minako; Tsukasaki, Hirofumi; Mori, Shigeo; Tatsumisago, Masahiro

    2017-04-01

    Newly amorphous Li2-x/100Cox/100S1-x/100O4-x/50 (xLiCoO2·(100-x)Li2SO4 (mol%)) positive electrode active materials are synthesized using mechanochemical techniques. SEM observation indicates that average radii of the Li1.2Co0.8S0.2O2.4 (80LiCoO2·20Li2SO4 (mol%)) particles are about 3 μm. HR-TEM images indicate that the particles comprise nano-crystalline and amorphous phases. The crystalline phase is attributable to cubic LiCoO2 phase. These active materials exhibit a high electronic conductivity of around 10-5-10-1 S cm-1 and an ionic conductivity of around 10-7-10-6 S cm-1 at room temperature. Bulk-type all-oxide solid-state cells (Lisbnd In alloy/Li3BO3-based glass-ceramic electrolyte/amorphous Li2-x/100Cox/100S1-x/100O4-x/50) are fabricated by pressing at room temperature without high temperature sintering. Although the cell with the milled LiCoO2 shows no capacity, the cell using the Li1.2Co0.8S0.2O2.4 electrode with no conductive components (ca. 150 μm thickness) operates as a secondary battery at 100 °C, with an average discharge potential of 3.3 V (vs. Li+/Li) and discharge capacity of 163 mAh g-1. A positive electrode with large amounts of active materials is suitable for achieving high energy density in all-solid-state batteries. These newly synthesized amorphous Li2-x/100Cox/100S1-x/100O4-x/50 electrodes with ionic and electronic conductivities and good processability meet that demand.

  12. Fuel cell electrode interconnect contact material encapsulation and method

    DOEpatents

    Derose, Anthony J.; Haltiner, Jr., Karl J.; Gudyka, Russell A.; Bonadies, Joseph V.; Silvis, Thomas W.

    2016-05-31

    A fuel cell stack includes a plurality of fuel cell cassettes each including a fuel cell with an anode and a cathode. Each fuel cell cassette also includes an electrode interconnect adjacent to the anode or the cathode for providing electrical communication between an adjacent fuel cell cassette and the anode or the cathode. The interconnect includes a plurality of electrode interconnect protrusions defining a flow passage along the anode or the cathode for communicating oxidant or fuel to the anode or the cathode. An electrically conductive material is disposed between at least one of the electrode interconnect protrusions and the anode or the cathode in order to provide a stable electrical contact between the electrode interconnect and the anode or cathode. An encapsulating arrangement segregates the electrically conductive material from the flow passage thereby, preventing volatilization of the electrically conductive material in use of the fuel cell stack.

  13. Electrode materials for biphenyl-based rectification devices.

    PubMed

    Parashar, Sweta; Srivastava, Pankaj; Pattanaik, Manisha

    2013-10-01

    An ab initio approach was utilized to explore the electronic transport properties of 4'-thiolate-biphenyl-4-dithiocarboxylate (TBDT) sandwiched between two electrodes made of various materials X (X = Cu, Ag, and Au). Analysis of current-voltage (I-V) characteristics, rectification performance, transmission functions, and the projected density of states (PDOS) under various external voltage biases showed that the transport properties of these constructed systems are markedly impacted by the choice of electrode materials. Further, Cu electrodes yield the best rectifying behavior, followed by Ag and then Au electrodes. Interestingly, the rectification effects can be tuned by changing the torsion angle between the two phenyl rings, as well as by stretching the contact distances between the end group and the electrodes. For Cu, the maximum rectifying ratio increases by 37 % as the contact distance changes from 1.7 Å to 1.9 Å. This is due to an increase in coupling strength asymmetry between the molecule and the electrodes. Our findings are compared with the results reported for other systems. The present calculations are helpful not only for predicting the optimal electrode material for practical applications but also for achieving better control over rectifying performance in molecular devices.

  14. Electrode materials for coal-fired MHD generators

    NASA Astrophysics Data System (ADS)

    Perkins, R. A.

    1980-10-01

    Metallic materials are evaluated as electrodes for coal fired MHD generators. A laboratory test that simulates the electrochemical and corrosive environment was developed and used to characterize electrode behavior in a diffuse current flow (nonarcing) mode of operation. High current density requires that an electron transport mechanism of current flow be maintained. With inert, stable electrodes, anode polarization occurs and ionic conduction prevails, limiting current to low values. The nature of this behavior and approaches to overcoming anodic polarization are studied as a function of electrode material, slag composition, and temperature. By operating at high temperatures and with controlled slag chemistries to produce a very fluid slag, depolarization may be achieved by mechanical mixing. Interrupted current flow are required to aid in breaking down anodic polarization.

  15. Investigation of electrode materials for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Arcand, G. M.

    1971-01-01

    A number of amalgam electrode systems were investigated for possible use as high rate anodes and cathodes. The systems examined include: lithium, sodium, and potassium in Group 1, magnesium, calcium, and barium in Group 2, aluminum in Group 3, lead in Group 4, copper in Group 1b, and zinc and cadmium in Group 2b. The K(Hg) and Na(Hg) anodes in 10 VF and 15 VF (an unambiguous expression of concentration that indicates the number of formula weights of solute dissolved in a liter of solution) hydroxide solutions have proven satisfactory; some of these have produced current densities of more than 8 A/sq cm. None of the amalgam cathodes have approached this performance although the TI(Hg) has delivered 1 A/sq cm. Se(Hg) and Te(Hg) cathodes have given very stable discharges. Zn(Hg) and Cd(Hg) electrodes did not show good high rate characteristics, 200 to 300 mA/sq cm being about the maximum current densities obtainable. Both anodes are charged through a two-step process in which M(Hg) is first formed electrochemically and subsequently reduces Zn(II or Cd(II) to form the corresponding amalgam. The second step is extremely rapid for zinc and very slow for cadmium.

  16. Surface modifications of electrode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Fu, L. J.; Liu, H.; Li, C.; Wu, Y. P.; Rahm, E.; Holze, R.; Wu, H. Q.

    2006-02-01

    Since the birth of the lithium ion battery in the early 1990s, its development has been very rapid and it has been widely applied as power source for a lot of light and high value electronics due to its significant advantages over traditional rechargeable battery systems. Recent research demonstrates the importance of surface structural features of electrode materials for their electrochemical performance, and in this paper the latest progress on this aspect is reviewed. Electrode materials are either anodic or cathodic ones. The former mainly include graphitic carbons, whose surfaces can be modified by mild oxidation, deposition of metals and metal oxides, coating with polymers and other kinds of carbons. Through these modifications, the surface structures of the graphitic carbon anodes are improved, and these improvements include: (1) smoothing the active edge surfaces by removing some reactive sites and/or defects on the graphite surface, (2) forming a dense oxide layer on the graphite surface, and (3) covering active edge structures on the graphite surface. Meanwhile, other accompanying changes occur: (1) production of nanochannels/micropores, (2) an increase in the electronic conductivity, (3) an inhibition of structural changes during cycling, (4) a reduction of the thickness of the SEI (solid-electrolyte-interface) layer, and (5) an increase in the number of host sites for lithium storage. As a result, the direct contact of graphite with the electrolyte solution is prevented, its surface reactivity with electrolytes, the decomposition of electrolytes, the co-intercalation of the solvated lithium ions and the charge-transfer resistance are decreased, and the movement of graphene sheets is inhibited. When the surfaces of cathode materials, mainly including LiCoO 2, LiNiO 2 and LiMn 2O 4, are coated with oxides such as MgO, Al 2O 3, ZnO, SnO 2, ZrO 2, Li 2Oṡ2B 2O 3 glass and other electroactive oxides, the coating can prevent their direct contact with the

  17. Coaxial fiber supercapacitor using all-carbon material electrodes.

    PubMed

    Le, Viet Thong; Kim, Heetae; Ghosh, Arunabha; Kim, Jaesu; Chang, Jian; Vu, Quoc An; Pham, Duy Tho; Lee, Ju-Hyuck; Kim, Sang-Woo; Lee, Young Hee

    2013-07-23

    We report a coaxial fiber supercapacitor, which consists of carbon microfiber bundles coated with multiwalled carbon nanotubes as a core electrode and carbon nanofiber paper as an outer electrode. The ratio of electrode volumes was determined by a half-cell test of each electrode. The capacitance reached 6.3 mF cm(-1) (86.8 mF cm(-2)) at a core electrode diameter of 230 μm and the measured energy density was 0.7 μWh cm(-1) (9.8 μWh cm(-2)) at a power density of 13.7 μW cm(-1) (189.4 μW cm(-2)), which were much higher than the previous reports. The change in the cyclic voltammetry characteristics was negligible at 180° bending, with excellent cycling performance. The high capacitance, high energy density, and power density of the coaxial fiber supercapacitor are attributed to not only high effective surface area due to its coaxial structure and bundle of the core electrode, but also all-carbon materials electrodes which have high conductivity. Our coaxial fiber supercapacitor can promote the development of textile electronics in near future.

  18. Electrode materials and lithium battery systems

    DOEpatents

    Amine, Khalil; Belharouak, Ilias; Liu, Jun

    2011-06-28

    A material comprising a lithium titanate comprising a plurality of primary particles and secondary particles, wherein the average primary particle size is about 1 nm to about 500 nm and the average secondary particle size is about 1 .mu.m to about 4 .mu.m. In some embodiments the lithium titanate is carbon-coated. Also provided are methods of preparing lithium titanates, and devices using such materials.

  19. The rise of organic electrode materials for energy storage.

    PubMed

    Schon, Tyler B; McAllister, Bryony T; Li, Peng-Fei; Seferos, Dwight S

    2016-11-07

    Organic electrode materials are very attractive for electrochemical energy storage devices because they can be flexible, lightweight, low cost, benign to the environment, and used in a variety of device architectures. They are not mere alternatives to more traditional energy storage materials, rather, they have the potential to lead to disruptive technologies. Although organic electrode materials for energy storage have progressed in recent years, there are still significant challenges to overcome before reaching large-scale commercialization. This review provides an overview of energy storage systems as a whole, the metrics that are used to quantify the performance of electrodes, recent strategies that have been investigated to overcome the challenges associated with organic electrode materials, and the use of computational chemistry to design and study new materials and their properties. Design strategies are examined to overcome issues with capacity/capacitance, device voltage, rate capability, and cycling stability in order to guide future work in the area. The use of low cost materials is highlighted as a direction towards commercial realization.

  20. Polyanion‐Type Electrode Materials for Sodium‐Ion Batteries

    PubMed Central

    Ni, Qiao; Wu, Feng

    2017-01-01

    Sodium‐ion batteries, representative members of the post‐lithium‐battery club, are very attractive and promising for large‐scale energy storage applications. The increasing technological improvements in sodium‐ion batteries (Na‐ion batteries) are being driven by the demand for Na‐based electrode materials that are resource‐abundant, cost‐effective, and long lasting. Polyanion‐type compounds are among the most promising electrode materials for Na‐ion batteries due to their stability, safety, and suitable operating voltages. The most representative polyanion‐type electrode materials are Na3V2(PO4)3 and NaTi2(PO4)3 for Na‐based cathode and anode materials, respectively. Both show superior electrochemical properties and attractive prospects in terms of their development and application in Na‐ion batteries. Carbonophosphate Na3MnCO3PO4 and amorphous FePO4 have also recently emerged and are contributing to further developing the research scope of polyanion‐type Na‐ion batteries. However, the typical low conductivity and relatively low capacity performance of such materials still restrict their development. This paper presents a brief review of the research progress of polyanion‐type electrode materials for Na‐ion batteries, summarizing recent accomplishments, highlighting emerging strategies, and discussing the remaining challenges of such systems. PMID:28331782

  1. Polyanion-Type Electrode Materials for Sodium-Ion Batteries.

    PubMed

    Ni, Qiao; Bai, Ying; Wu, Feng; Wu, Chuan

    2017-03-01

    Sodium-ion batteries, representative members of the post-lithium-battery club, are very attractive and promising for large-scale energy storage applications. The increasing technological improvements in sodium-ion batteries (Na-ion batteries) are being driven by the demand for Na-based electrode materials that are resource-abundant, cost-effective, and long lasting. Polyanion-type compounds are among the most promising electrode materials for Na-ion batteries due to their stability, safety, and suitable operating voltages. The most representative polyanion-type electrode materials are Na3V2(PO4)3 and NaTi2(PO4)3 for Na-based cathode and anode materials, respectively. Both show superior electrochemical properties and attractive prospects in terms of their development and application in Na-ion batteries. Carbonophosphate Na3MnCO3PO4 and amorphous FePO4 have also recently emerged and are contributing to further developing the research scope of polyanion-type Na-ion batteries. However, the typical low conductivity and relatively low capacity performance of such materials still restrict their development. This paper presents a brief review of the research progress of polyanion-type electrode materials for Na-ion batteries, summarizing recent accomplishments, highlighting emerging strategies, and discussing the remaining challenges of such systems.

  2. Influence of the morphology on the platinum electrode surface activity

    NASA Astrophysics Data System (ADS)

    Reiner, Andreas; Steiger, Beat; Scherer, Günther G.; Wokaun, Alexander

    Polycrystalline Pt electrodes with different surface characteristics were investigated by cyclic voltammetry (CV) in 0.5 M H 2SO 4. Plane electrodes showed a decrease in electrochemically active surface area while cycling in the hydrogen underpotential region (H upd), in contrast, electrodes roughened by intensive pre-cycling exhibited a stable value for the electrochemically active surface.

  3. Three-dimensional activated graphene network-sulfonate-terminated polymer nanocomposite as a new electrode material for the sensitive determination of dopamine and heavy metal ions.

    PubMed

    Yuan, Xiaoyan; Zhang, Yijia; Yang, Lu; Deng, Wenfang; Tan, Yueming; Ma, Ming; Xie, Qingji

    2015-03-07

    We report here that three-dimensional activated graphene networks (3DAGNs) are a better matrix to prepare graphene-polymer nanocomposites for sensitive electroanalysis than two-dimensional graphene nanosheets (2DGNs). 3DAGNs were synthesized in advance by the direct carbonization and simultaneous chemical activation of a cobalt ion-impregnated D113-type ion exchange resin, which showed an interconnected network structure and a large specific surface area. Then, the 3DAGN-sulfonate-terminated polymer (STP) nanocomposite was prepared via the in situ chemical co-polymerization of m-aminobenzene sulfonic acid and aniline in the presence of 3DAGNs. The 3DAGN-STP nanocomposite can adsorb dopamine (DA) and heavy metal ions, which was confirmed by quartz crystal microbalance studies. The 3DAGN-STP modified glassy carbon electrode (GCE) was used for the electrochemical detection of DA in the presence of ascorbic acid and uric acid, with a linear response range of 0.1-32 μM and a limit of detection of 10 nM. In addition, differential pulse voltammetry was used for the simultaneous determination of Cd(2+) and Pb(2+) at the 3DAGN-STP/GCE further modified with a bismuth film, exhibiting linear response ranges of 1-70 μg L(-1) for Cd(2+) and 1-80 μg L(-1) for Pb(2+) with limits of detection of 0.1 μg L(-1) for Cd(2+) and 0.2 μg L(-1) for Pb(2+). Because the 3DAGN-STP can integrate the advantages of 3DAGNs with STPs, the 3DAGN-STP/GCE was more sensitive than the bare GCE, 3DAGN/GCE, and 2DGN-STP/GCE for the determination of DA and heavy metal ions.

  4. Study of the Electrocatalytic Activity of Cerium Oxide and Gold-Studded Cerium Oxide Nanoparticles Using a Sonogel-Carbon Material as Supporting Electrode: Electroanalytical Study in Apple Juice for Babies

    PubMed Central

    Abdelrahim, M. Yahia M.; Benjamin, Stephen R.; Cubillana-Aguilera, Laura Ma; Naranjo-Rodríguez, Ignacio; Hidalgo-Hidalgo de Cisneros, Josè L.; Delgado, Juan Josè; Palacios-Santander, Josè Ma

    2013-01-01

    The present work reports a study of the electrocatalytic activity of CeO2 nanoparticles and gold sononanoparticles (AuSNPs)/CeO2 nanocomposite, deposited on the surface of a Sonogel-Carbon (SNGC) matrix used as supporting electrode and the application of the sensing devices built with them to the determination of ascorbic acid (AA) used as a benchmark analyte. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to investigate the electrocatalytic behavior of CeO2- and AuSNPs/CeO2-modified SNGC electrodes, utilizing different concentrations of CeO2 nanoparticles and different AuSNPs:CeO2 w/w ratios. The best detection and quantification limits, obtained for CeO2 (10.0 mg·mL−1)- and AuSNPs/CeO2 (3.25% w/w)-modified SNGC electrodes, were 1.59 × 10−6 and 5.32 × 10−6 M, and 2.93 × 10−6 and 9.77 × 10−6 M, respectively, with reproducibility values of 5.78% and 6.24%, respectively, for a linear concentration range from 1.5 μM to 4.0 mM of AA. The electrochemical devices were tested for the determination of AA in commercial apple juice for babies. The results were compared with those obtained by applying high performance liquid chromatography (HPLC) as a reference method. Recovery errors below 5% were obtained in most cases, with standard deviations lower than 3% for all the modified SNGC electrodes. Bare, CeO2- and AuSNPs/CeO2-modified SNGC electrodes were structurally characterized using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). AuSNPs and AuSNPs/CeO2 nanocomposite were characterized by UV-vis spectroscopy and X-ray diffraction (XRD), and information about their size distribution and shape was obtained by transmission electron microscopy (TEM;. The advantages of employing CeO2 nanoparticles and AuSNPs/CeO2 nanocomposite in SNGC supporting material are also described. This research suggests that the modified electrode can be a very promising voltammetric sensor for the determination of

  5. Organic Materials as Electrodes for Li-ion Batteries

    DTIC Science & Technology

    2015-09-04

    technology and research towards finding new materials to improve the performance are underway. Conductive organic polymers have been proposed as...indigo carmine conjugated carbonyl organic dye can be used for storing reversibly, both lithium and sodium ions for rechargeable battery applications ...Final 3. DATES COVERED (From - To) 15 May 2013 – 14 May 2015 4. TITLE AND SUBTITLE Organic materials as Electrodes for Li-ion Batteries

  6. Studies on hydride-forming alloys as the active material of a metal hydride electrode for a nickel metal hydride cell

    SciTech Connect

    Lim, H.S.; Zelter, G.R.; Allison, D.U.; Reilly, J.J.; Srinivasan, S.; Stockel, J.F.

    1997-12-01

    Multi-component AB{sub 5} hydrides are attractive replacements for the cadmium electrode in nickel-cadmium batteries. The archetype compound of the AB{sub 5} alloy class is LaNi{sub 5}, but in a typical battery electrode mischmetal is substituted for La and Ni is substituted in part by variety of metals. This paper deals with the effect on cycle life upon the partial substitution of various lanthanides for La and Sn, In, Al, Co, and Mn for Ni. The presence of Ce was shown to enhance cycle life as did Sn in some cases. An electrode of La{sub 0.67}Ce{sub 0.33}B{sub 5} alloy gave over 3,500 cycles (to specific capacity of 200 mAh/g), indicating that it is a very attractive alloy for a practical Ni/MH{sub x} cell.

  7. Materials for suspension (semi-solid) electrodes for energy and water technologies.

    PubMed

    Hatzell, Kelsey B; Boota, Muhammad; Gogotsi, Yury

    2015-12-07

    Suspension or semi-solid electrodes have recently gained increased attention for large-scale applications such as grid energy storage, capacitive water deionization, and wastewater treatment. A suspension electrode is a multiphase material system comprised of an active (charge storing) material suspended in ionic solution (electrolyte). Gravimetrically, the electrolyte is the majority component and aids in physical transport of the active material. This principle enables, for the first time, scalability of electrochemical energy storage devices (supercapacitors and batteries) previously limited to small and medium scale applications. This critical review describes the ongoing material challenges encompassing suspension-based systems. The research described here combines classical aspects of electrochemistry, colloidal science, material science, fluid mechanics, and rheology to describe ion and charge percolation, adsorption of ions, and redox charge storage processes in suspension electrodes. This review summarizes the growing inventory of material systems, methods and practices used to characterize suspension electrodes, and describes universal material system properties (rheological, electrical, and electrochemical) that are pivotal in the design of high performing systems. A discussion of the primary challenges and future research directions is included.

  8. Materials for suspension (semi-solid) electrodes for energy and water technologies

    SciTech Connect

    Hatzell, Kelsey B.; Boota, Muhammad; Gogotsi, Yury

    2015-01-01

    Suspension or semi-solid electrodes have recently gained increased attention for large-scale applications such as grid energy storage, capacitive water deionization, and wastewater treatment. A suspension electrode is a multiphase material system comprised of an active (charge storing) material suspended in ionic solution (electrolyte). Gravimetrically, the electrolyte is the majority component and aids in physical transport of the active material. For the first time, this principle enables, scalability of electrochemical energy storage devices (supercapacitors and batteries) previously limited to small and medium scale applications. This critical review describes the ongoing material challenges encompassing suspension-based systems. The research described here combines classical aspects of electrochemistry, colloidal science, material science, fluid mechanics, and rheology to describe ion and charge percolation, adsorption of ions, and redox charge storage processes in suspension electrodes. Our review summarizes the growing inventory of material systems, methods and practices used to characterize suspension electrodes, and describes universal material system properties (rheological, electrical, and electrochemical) that are pivotal in the design of high performing systems. We include a discussion of the primary challenges and future research directions.

  9. Understanding the influence of the electrode material on microbial fuel cell performance

    NASA Astrophysics Data System (ADS)

    Sanchez, David V. P.

    In this thesis, I deploy sets of electrodes into microbial fuel cells (MFC), characterize their performance, and evaluate the influence of both platinum catalysts and carbon-based electrodes on current production. The platinum work centers on improving current production by optimizing the use of the catalyst using nano-fabrication techniques. The carbon-electrode work seeks to determine the influence of the bare electrode on biofilm-anode current production. The development of electrodes for MFCs has boomed over the past decade, however, experiments aimed at identifying how catalyst deposition methods and electrode properties influence current production have been limited. The research conducted here is an attempt to expand this knowledge base for platinum catalysts and carbon electrodes. In the initial chapters (4 and 5), I discuss our attempt to decrease catalyst loadings while increasing current production through the use of platinum nanoparticles. The results demonstrate that incorporating platinum nanoparticles throughout the anode and cathode is an efficient means of increasing MFC current production relative to surface deposition because it increases catalyst surface area. The later chapters (chapters 6 and 7) develop an understanding of the importance of electrode properties (i.e. surface area, activation resistance, conductivity, surface morphology) by electrochemically evaluating well-studied anode-respiring pure cultures on different carbon electrode architectures. Two different architectures are produced by using tubular and platelet shaped constituent materials (i.e. carbon fibers and graphene nanoplatelets) and the morphologies of the electrodes are varied by altering the size of the constituent material. The electrodes are characterized and evaluated in MFCs using either Shewanella oneidensis MR-1 or Geobacter sulfurreducens as the innoculant because their bioelectrochemical physiologies are the most documented in the literature. Using the

  10. Porous hollow carbon spheres for electrode material of supercapacitors and support material of dendritic Pt electrocatalyst

    NASA Astrophysics Data System (ADS)

    Fan, Yang; Liu, Pei-Fang; Huang, Zhong-Yuan; Jiang, Tong-Wu; Yao, Kai-Li; Han, Ran

    2015-04-01

    Porous hollow carbon spheres (PHCSs) are prepared through hydrothermal carbonization of alginic acid and subsequent chemical activation by KOH. The porosity of the alginic acid derived PHCSs can be finely modulated by varying activation temperature in the range of 600-900 °C. The PHCSs activated at 900 °C possess the largest specific surface area (2421 m2 g-1), well-balanced micro- and mesoporosity, as well as high content of oxygen-containing functional groups. As the electrode material for supercapacitors, the PHCSs exhibit superior capacitive performance with specific capacitance of 314 F g-1 at current density of 1 A g-1. Pt nanodendrites supported on the PHCSs are synthesized by polyol reduction method which exhibit high electrocatalytic activity towards methanol oxidation reaction (MOR). Moreover, CO-poisoning tolerance of the Pt nanodendrites is greatly enhanced owing to the surface chemical property of the PHCSs support.

  11. Method of maintaining activity of hydrogen-sensing platinum electrode

    NASA Technical Reports Server (NTRS)

    Harman, J. N., III

    1968-01-01

    Three-electrode hydrogen sensor containing a platinum electrode maintained in a highly catalytic state, operates with a minimal response time and maximal sensitivity to the hydrogen gas being sensed. Electronic control and readout circuitry reactivates the working electrode of the sensor to a state of maximal catalytic activity.

  12. Sol-gel derived electrode materials for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Lin, Chuan

    1998-12-01

    Electrochemical capacitors have been receiving increasing interest in recent years for use in energy storage systems because of their high energy and power density and long cycle lifes. Possible applications of electrochemical capacitors include high power pulsed lasers, hybrid power system for electric vehicles, etc. In this dissertation, the preparation of electrode materials for use as electrochemical capacitors has been studied using the sol-gel process. The high surface area electrode materials explored in this work include a synthetic carbon xerogel for use in a double-layer capacitor, a cobalt oxide xerogel for use in a pseudocapacitor, and a carbon-ruthenium xerogel composite, which utilizes both double-layer and faradaic capacitances. The preparation conditions of these materials were investigated in detail to maximize the surface area and optimize the pore size so that more energy could be stored while minimizing mass transfer limitations. The microstructures of the materials were also correlated with their performance as electrochemical capacitors to improve their energy and power densities. Finally, an idealistic mathematical model, including both double-layer and faradaic processes, was developed and solved numerically. This model can be used to perform the parametric studies of an electrochemical capacitor so as to gain a better understanding of how the capacitor works and also how to improve cell operations and electrode materials design.

  13. Nanostructured pseudocapacitive materials decorated 3D graphene foam electrodes for next generation supercapacitors

    NASA Astrophysics Data System (ADS)

    Patil, Umakant; Lee, Su Chan; Kulkarni, Sachin; Sohn, Ji Soo; Nam, Min Sik; Han, Suhyun; Jun, Seong Chan

    2015-04-01

    Nowadays, advancement in performance of proficient multifarious electrode materials lies conclusively at the core of research concerning energy storage devices. To accomplish superior capacitance performance the requirements of high capacity, better cyclic stability and good rate capability can be expected from integration of electrochemical double layer capacitor based carbonaceous materials (high power density) and pseudocapacitive based metal hydroxides/oxides or conducting polymers (high energy density). The envisioned three dimensional (3D) graphene foams are predominantly advantageous to extend potential applicability by offering a large active surface area and a highly conductive continuous porous network for fast charge transfer with decoration of nanosized pseudocapacitive materials. In this article, we review the latest methodologies and performance evaluation for several 3D graphene based metal oxides/hydroxides and conducting polymer electrodes with improved electrochemical properties for next-generation supercapacitors. The most recent research advancements of our and other groups in the field of 3D graphene based electrode materials for supercapacitors are discussed. To assess the studied materials fully, a careful interpretation and rigorous scrutiny of their electrochemical characteristics is essential. Auspiciously, both nano-structuration as well as confinement of metal hydroxides/oxides and conducting polymers onto a conducting porous 3D graphene matrix play a great role in improving the performance of electrodes mainly due to: (i) active material access over large surface area with fast charge transportation; (ii) synergetic effect of electric double layer and pseudocapacitive based charge storing.

  14. Enhanced control of electrochemical response in metallic materials in neural stimulation electrode applications

    SciTech Connect

    Watkins, K.G.; Steen, W.M.; Manna, I.

    1996-12-31

    New means have been investigated for the production of electrode devices (stimulation electrodes) which could be implanted in the human body in order to control pain, activate paralysed limbs or provide electrode arrays for cochlear implants for the deaf or for the relief of tinitus. To achieve this ion implantation and laser materials processing techniques were employed. Ir was ion implanted in Ti-6Al-4V alloy and the surface subsequently enriched in the noble metal by dissolution in sulphuric acid. For laser materials processing techniques, investigation has been carried out on the laser cladding and laser alloying of Ir in Ti wire. A particular aim has been the determination of conditions required for the formation of a two phase Ir, Ir-rich, and Ti-rich microstructure which would enable subsequent removal of the non-noble phase to leave a highly porous noble metal with large real surface area and hence improved charge carrying capacity compared with conventional non porous electrodes. Evaluation of the materials produced has been carried out using repetitive cyclic voltammetry, amongst other techniques. For laser alloyed Ir on Ti wire, it has been found that differences in the melting point and density of the materials makes control of the cladding or alloying process difficult. Investigation of laser process parameters for the control of alloying and cladding in this system was carried out and a set of conditions for the successful production of two phase Ir-rich and Ti-rich components in a coating layer with strong metallurgical bonding to the Ti alloy substrate was derived. The laser processed material displays excellent potential for further development in providing stimulation electrodes with the current carrying capacity of Ir but in a form which is malleable and hence capable of formation into smaller electrodes with improved spatial resolution compared with presently employed electrodes.

  15. A Redox-Active Binder for Electrochemical Capacitor Electrodes.

    PubMed

    Benoit, Corentin; Demeter, Dora; Bélanger, Daniel; Cougnon, Charles

    2016-04-18

    A promising strategy for increasing the performance of supercapacitors is proposed. Until now, a popular strategy for increasing the specific capacity of the electrode consists of grafting redox molecules onto a high surface area carbon structure to add a faradaic contribution to the charge storage. Unfortunately, the grafting of molecules to the carbon surface leads to a dramatic decrease of the electrochemical performances of the composite material. Herein, we used the organic binder as an active material in the charge/discharge process. Redox molecules were attached onto its polymeric skeleton to obtain a redox binder with the dual functionalities of both the binder and the active material. In this way, the electrochemical performance was improved without detrimentally affecting the properties of the porous carbon. Results showed that the use of a redox binder is promising for enhancing both energy and power densities.

  16. 2D Hybrid Nanostructured Dirac Materials for Broadband Transparent Electrodes.

    PubMed

    Guo, Yunfan; Lin, Li; Zhao, Shuli; Deng, Bing; Chen, Hongliang; Ma, Bangjun; Wu, Jinxiong; Yin, Jianbo; Liu, Zhongfan; Peng, Hailin

    2015-08-05

    Broadband transparent electrodes based on 2D hybrid nanostructured Dirac materials between Bi2 Se3 and graphene are synthesized using a chemical vapor deposition (CVD) method. Bi2 Se3 nanoplates are preferentially grown along graphene grain boundaries as "smart" conductive patches to bridge the graphene boundary. These hybrid films increase by one- to threefold in conductivity while remaining highly transparent over broadband wavelength. They also display outstanding chemical stability and mechanical flexibility.

  17. Methods for making lithium vanadium oxide electrode materials

    DOEpatents

    Schutts, Scott M.; Kinney, Robert J.

    2000-01-01

    A method of making vanadium oxide formulations is presented. In one method of preparing lithium vanadium oxide for use as an electrode material, the method involves: admixing a particulate form of a lithium compound and a particulate form of a vanadium compound; jet milling the particulate admixture of the lithium and vanadium compounds; and heating the jet milled particulate admixture at a temperature below the melting temperature of the admixture to form lithium vanadium oxide.

  18. Characterization of solid electrode materials using chronoamperometry: A study of the alkaline γ-MnO 2 electrode

    NASA Astrophysics Data System (ADS)

    Malloy, Aaron P.; Donne, Scott W.

    Large voltage step chronoamperometry is shown to be a time-efficient means to examine solid electrode materials compared with conventional electrochemical methods such as linear sweep voltammetry (LSV) and step potential electrochemical spectroscopy (SPECS), all the while providing comparable information concerning the rate capability of a material and its capacity. The applicability of the technique is demonstrated through a study of the alkaline γ-MnO 2 electrode. By sampling the current (and hence the charge) at various times after the chronoamperometric voltage step, the compatibility between chronoamperometry and LSV is disclosed. Furthermore, modelling of the chronoamperometric data using two curves based on a spherical diffusion model representing fast and slow discharge processes are found to be statistically suitable. From this modelling, values of A√ D (where A is the electrochemically active surface area and D is the diffusion coefficient) for the two processes are 3.89 × 10 -4 and 0.70 × 10 -4 cm 3 s -1/2 g -1, respectively, both of which are comparable with A√ D data extracted from a SPECS experiment on an identical electrode.

  19. Graphene incorporated, N doped activated carbon as catalytic electrode in redox active electrolyte mediated supercapacitor

    NASA Astrophysics Data System (ADS)

    Gao, Zhiyong; Liu, Xiao; Chang, Jiuli; Wu, Dapeng; Xu, Fang; Zhang, Lingcui; Du, Weimin; Jiang, Kai

    2017-01-01

    Graphene incorporated, N doped activated carbons (GNACs) are synthesized by alkali activation of graphene-polypyrrole composite (G-PPy) at different temperatures for application as electrode materials of supercapacitors. Under optimal activation temperature of 700 °C, the resultant samples, labeled as GNAC700, owns hierarchically porous texture with high specific surface area and efficient ions diffusion channels, N, O functionalized surface with apparent pseudocapacitance contribution and high wettability, thus can deliver a moderate capacitance, a high rate capability and a good cycleability when used as supercapacitor electrode. Additionally, the GNAC700 electrode demonstrates high catalytic activity for the redox reaction of pyrocatechol/o-quinone pair in H2SO4 electrolyte, thus enables a high pseudocapacitance from electrolyte. Under optimal pyrocatechol concentration in H2SO4 electrolyte, the electrode capacitance of GNAC700 increases by over 4 folds to 512 F g-1 at 1 A g-1, an excellent cycleability is also achieved simultaneously. Pyridinic- N is deemed to be responsible for the high catalytic activity. This work provides a promising strategy to ameliorate the capacitive performances of supercapacitors via the synergistic interaction between redox-active electrolyte and catalytic electrodes.

  20. Material for electrodes of low temperature plasma generators

    DOEpatents

    Caplan, Malcolm; Vinogradov, Sergel Evge'evich; Ribin, Valeri Vasil'evich; Shekalov, Valentin Ivanovich; Rutberg, Philip Grigor'evich; Safronov, Alexi Anatol'evich

    2008-12-09

    Material for electrodes of low temperature plasma generators. The material contains a porous metal matrix impregnated with a material emitting electrons. The material uses a mixture of copper and iron powders as a porous metal matrix and a Group IIIB metal component such as Y.sub.2O.sub.3 is used as a material emitting electrons at, for example, the proportion of the components, mass %: iron: 3-30; Y.sub.2O.sub.3:0.05-1; copper: the remainder. Copper provides a high level of heat conduction and electric conductance, iron decreases intensity of copper evaporation in the process of plasma creation providing increased strength and lifetime, Y.sub.2O.sub.3 provides decreasing of electronic work function and stability of arc burning. The material can be used for producing the electrodes of low temperature AC plasma generators used for destruction of liquid organic wastes, medical wastes, and municipal wastes as well as for decontamination of low level radioactive waste, the destruction of chemical weapons, warfare toxic agents, etc.

  1. Material for electrodes of low temperature plasma generators

    DOEpatents

    Caplan, Malcolm; Vinogradov, Sergel Evge'evich; Ribin, Valeri Vasil'evich; Shekalov, Valentin Ivanovich; Rutberg, Philip Grigor'evich; Safronov, Alexi Anatol'evich; Shiryaev, Vasili Nikolaevich

    2010-03-02

    Material for electrodes of low temperature plasma generators. The material contains a porous metal matrix impregnated with a material emitting electrons. The material uses a mixture of copper and iron powders as a porous metal matrix and a Group IIIB metal component such as Y.sub.2O.sub.3 is used as a material emitting electrons at, for example, the proportion of the components, mass %: iron:3-30; Y.sub.2O.sub.3:0.05-1; copper: the remainder. Copper provides a high level of heat conduction and electric conductance, iron decreases intensity of copper evaporation in the process of plasma creation providing increased strength and lifetime, Y.sub.2O.sub.3 provides decreasing of electronic work function and stability of arc burning. The material can be used for producing the electrodes of low temperature AC plasma generators used for destruction of liquid organic wastes, medical wastes, municipal wastes as well as for decontamination of low level radioactive waste, the destruction of chemical weapons, warfare toxic agents, etc.

  2. High performance lithium insertion negative electrode materials for electrochemical devices

    NASA Astrophysics Data System (ADS)

    Channu, V. S. Reddy; Rambabu, B.; Kumari, Kusum; Kalluru, Rajmohan R.; Holze, Rudolf

    2016-11-01

    Spinel LiCrTiO4 oxides to be used as electrode materials for a lithium ion battery and an asymmetric supercapacitor were synthesized using a soft-chemical method with and without chelating agents followed by calcination at 700 °C for 10 h. Structural and morphological properties were studied with powder X-ray diffraction, scanning electron and transmission electron microscopy. Particles of 50-10 nm in size are observed in the microscopic images. The presence of Cr and Ti is confirmed from the EDS spectrum. Electrochemical properties of LiCrTiO4 electrode were examined in a lithium ion battery. The electrode prepared with oxalic acid-assisted LiCrTiO4 shows higher specific capacity.This LiCrTiO4 is also used as anode material for an asymmetric hybrid supercapacitor. The cell exhibits a specific capacity of 65 mAh/g at 1 mA/cm2. The specific capacity decreases with increasing current densities.

  3. Electrode porosity and effective electrocatalyst activity in electrode-membrane-assemblies (MEAs) of PEMFCs

    SciTech Connect

    Fischer, A.; Wendt, H.

    1996-12-31

    New production technologies of membrane-electrode-assemblies for PEWCs which ensure almost complete catalyst utilization by {open_quotes}wetting{close_quotes} the internal catalyst surface with the ionomeric electrolyte, allow for a reduction of Pt-loadings from prior 4 mg cm{sup -2} to now less than 0.5 mg cm{sup -2}. Such electrodes are not thicker than from 5 to 10 {mu}m. Little has been published hitherto about the detailed micromorphology of such electrodes and the role of electrode porosity on electrode performance. It is well known, that the porosity of thicker fuel cell electrodes, e.g. of PAFC or AFC electrodes is decisive for their performance. Therefore the issue of this investigation is to measure and to modify the porosity of electrodes prepared by typical MEA production procedures and to investigate the influence of this porosity on the effective catalyst activity for cathodic reduction of oxygen from air in membrane cells. It may be anticipated that any mass transfer hindrance of gaseous reactants into porous electrodes would manifest itself rather in the conversion of dilute gases than in the conversion of pure gases (e.g. neat oxygen). Therefore in this investigation the performance of membrane cell cathodes with non pressurized air had been compared to that with neat oxygen at cathodes which had a relatively low Pt-loading of 0.15 mg cm{sup -2}.

  4. Electrochemical Techniques for Intercalation Electrode Materials in Rechargeable Batteries.

    PubMed

    Zhu, Yujie; Gao, Tao; Fan, Xiulin; Han, Fudong; Wang, Chunsheng

    2017-03-16

    Understanding of the thermodynamic and kinetic properties of electrode materials is of great importance to develop new materials for high performance rechargeable batteries. Compared with computational understanding of physical and chemical properties of electrode materials, experimental methods provide direct and convenient evaluation of these properties. Often, the information gained from experimental work can not only offer feedback for the computational methods but also provide useful insights for improving the performance of materials. However, accurate experimental quantification of some properties can still be challenging. Among them, chemical diffusion coefficient is one representative example. It is one of the most crucial parameters determining the kinetics of intercalation compounds, which are by far the dominant electrode type used in rechargeable batteries. Therefore, it is of significance to quantitatively evaluate this parameter. For this purpose, various electrochemical techniques have been invented, for example, galvanostatic intermittent titration technique (GITT), potentiostatic intermittent titration technique (PITT), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). One salient advantage of these electrochemical techniques over other characterization techniques is that some implicit thermodynamic and kinetic quantities can be linked with the readily measurable electrical signals, current, and voltage, with very high precision. Nevertheless, proper application of these techniques requires not just an understanding of the structure and chemistry of the studied materials but sufficient knowledge of the physical model for ion transport within solid host materials and the analysis method to solve for chemical diffusion coefficient. Our group has been focusing on using various electrochemical techniques to investigate battery materials, as well as developing models for studying some emerging materials. In this Account, the

  5. Polyaniline nanostructures expedient as working electrode materials in supercapacitors

    NASA Astrophysics Data System (ADS)

    Gedela, Venkata Ramana; Srikanth, Vadali Venkata Satya Siva

    2014-04-01

    Granular type polyaniline (PANi), PANi nanofibers (NFs), and PANi nanotubes (NTs) expedient as working electrode materials for supercapacitors are synthesized. The synthesis procedure used in this work facilitates not only the synthesis of solid powders of the PANi nanostructures, but also thin films constituted by the same PANi nanostructures in the same experiment. PANi NFs are found to exhibit faster electrode kinetics and better capacitance when compared to PANi NTs and granular PANi. Specific capacitance and energy storage per unit mass of PANi NFs are 239.47 Fg-1 (at 0.5 Ag-1) and 43.2 Wh kg-1, respectively. Electrical conductivity of PANi NFs is also better when compared to the other two nanostructures. Properties of the three PANi nanostructures are explicated in correlation with crystallinity, intrinsic oxidation state, doping degree, BET surface area, and ordered mesoporosity pertaining to the nanostructures.

  6. Recent Development of Advanced Electrode Materials by Atomic Layer Deposition for Electrochemical Energy Storage

    PubMed Central

    2016-01-01

    Electrode materials play a decisive role in almost all electrochemical energy storage devices, determining their overall performance. Proper selection, design and fabrication of electrode materials have thus been regarded as one of the most critical steps in achieving high electrochemical energy storage performance. As an advanced nanotechnology for thin films and surfaces with conformal interfacial features and well controllable deposition thickness, atomic layer deposition (ALD) has been successfully developed for deposition and surface modification of electrode materials, where there are considerable issues of interfacial and surface chemistry at atomic and nanometer scale. In addition, ALD has shown great potential in construction of novel nanostructured active materials that otherwise can be hardly obtained by other processing techniques, such as those solution‐based processing and chemical vapor deposition (CVD) techniques. This review focuses on the recent development of ALD for the design and delivery of advanced electrode materials in electrochemical energy storage devices, where typical examples will be highlighted and analyzed, and the merits and challenges of ALD for applications in energy storage will also be discussed. PMID:27840793

  7. Recent Development of Advanced Electrode Materials by Atomic Layer Deposition for Electrochemical Energy Storage.

    PubMed

    Guan, Cao; Wang, John

    2016-10-01

    Electrode materials play a decisive role in almost all electrochemical energy storage devices, determining their overall performance. Proper selection, design and fabrication of electrode materials have thus been regarded as one of the most critical steps in achieving high electrochemical energy storage performance. As an advanced nanotechnology for thin films and surfaces with conformal interfacial features and well controllable deposition thickness, atomic layer deposition (ALD) has been successfully developed for deposition and surface modification of electrode materials, where there are considerable issues of interfacial and surface chemistry at atomic and nanometer scale. In addition, ALD has shown great potential in construction of novel nanostructured active materials that otherwise can be hardly obtained by other processing techniques, such as those solution-based processing and chemical vapor deposition (CVD) techniques. This review focuses on the recent development of ALD for the design and delivery of advanced electrode materials in electrochemical energy storage devices, where typical examples will be highlighted and analyzed, and the merits and challenges of ALD for applications in energy storage will also be discussed.

  8. Spiral configuration of electrodes and dielectric material for sensing an environmental property

    NASA Technical Reports Server (NTRS)

    Laue, Eric G. (Inventor); Stephens, James B. (Inventor)

    1989-01-01

    A reliable moisture-indicating capactive sensor is provided with wire electrodes at least one of which includes a coating of moisture-absorbing dielectric material by spirally twisting the wire electrodes about each other, thereby establishing a pair of electrodes in contact with opposite surfaces of a layer of dielectric material, and assuring consistent contact of each electrode with the dielectric material despite changes in environmental conditions.

  9. Novel air electrode for metal-air battery with new carbon material and method of making same

    DOEpatents

    Ross, Jr., Philip N.

    1990-01-01

    A novel carbonaceous electrode support material is disclosed characterized by a corrosion rate of 0.03 wt. %/hour or less when measured a5 550 millivolts vs. a Hg/HgO electrode in a 30 wt. % KOH electrolyte a5 30.degree. C. The electrode support material comprises a preselected carbon black material which has been heat-treated by heating the material to a temperature of from about 2500.degree. to about 3000.degree. C. over a period of from about 1 to about 5 hours in an inert atmosphere and then maintaining the preselected carbon black material at this temperature for a period of at least about 1 hour, and preferably about 2 hours, in the inert atmosphere. A carbonaceous electrode suitable for use as an air electrode in a metal-air cell may be made from the electrode support material by shaping and forming it into a catalyst support and then impregnating it with a catalytically active material capable of catalyzing the reaction with oxygen at the air electrode of metal-air cell.

  10. Alternate electrode materials for the SP100 reactor. Final report

    SciTech Connect

    Randich, E.

    1992-05-01

    This work was performed in response to a request by the Astro-Space Division of the General Electric Co. to develop alternate electrodes materials for the electrodes of the PD2 modules to be used in the SP100 thermoelectric power conversion system. Initially, the project consisted of four tasks: (1) development of a ZrB{sub 2} (C) CVD coating on SiMo substrates, (2) development of a ZrB{sub 2} (C) CVD coating on SiGe substrates, (3) development of CVI W for porous graphite electrodes, and (4) technology transfer of pertinent developed processes. The project evolved initially into developing only ZrB{sub 2} coatings on SiGe and graphite substrates, and later into developing ZrB{sub 2} coatings only on graphite substrates. Several sizes of graphite and pyrolytic carbon-coated graphite substrates were coated with ZrB{sub 2} during the project. For budgetary reasons, the project was terminated after half the allotted time had passed. Apart from the production of coated specimens for evaluation, the major accomplishment of the project was the development of the CVD processing to produce the desired coatings.

  11. Layered double hydroxide materials coated carbon electrode: New challenge to future electrochemical power devices

    NASA Astrophysics Data System (ADS)

    Djebbi, Mohamed Amine; Braiek, Mohamed; Namour, Philippe; Ben Haj Amara, Abdesslem; Jaffrezic-Renault, Nicole

    2016-11-01

    Layered double hydroxides (LDHs) have been widely used in the past years due to their unique physicochemical properties and promising applications in electroanalytical chemistry. The present paper is going to focus exclusively on magnesium-aluminum and zinc-aluminum layered double hydroxides (MgAl & ZnAl LDHs) in order to investigate the property and structure of active cation sites located within the layer structure. The MgAl and ZnAl LDH nanosheets were prepared by the constant pH co-precipitation method and uniformly supported on carbon-based electrode materials to fabricate an LDH electrode. Characterization by powder x-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy revealed the LDH form and well-crystallized materials. Wetting surface properties (hydrophilicity and hydrophobicity) of both prepared LDHs were recorded by contact angle measurement show hydrophilic character and basic property. The electrochemical performance of these hybrid materials was investigated by mainly cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry techniques to identify the oxidation/reduction processes at the electrode/electrolyte interface and the effect of the divalent metal cations in total reactivity. The hierarchy of the modified electrode proves that the electronic conductivity of the bulk material is considerably dependent on the divalent cation and affects the limiting parameter of the overall redox process. However, MgAl LDH shows better performance than ZnAl LDH, due to the presence of magnesium cations in the layers. Following the structural, morphological and electrochemical behavior studies of both synthesized LDHs, the prepared LDH modified electrodes were tested through microbial fuel cell configuration, revealing a remarkable, potential new pathway for high-performance and cost-effective electrode use in electrochemical power devices.

  12. Molecular Engineering with Organic Carbonyl Electrode Materials for Advanced Stationary and Redox Flow Rechargeable Batteries.

    PubMed

    Zhao, Qing; Zhu, Zhiqiang; Chen, Jun

    2017-04-03

    Organic carbonyl electrode materials that have the advantages of high capacity, low cost and being environmentally friendly, are regarded as powerful candidates for next-generation stationary and redox flow rechargeable batteries (RFBs). However, low carbonyl utilization, poor electronic conductivity and undesired dissolution in electrolyte are urgent issues to be solved. Here, we summarize a molecular engineering approach for tuning the capacity, working potential, concentration of active species, kinetics, and stability of stationary and redox flow batteries, which well resolves the problems of organic carbonyl electrode materials. As an example, in stationary batteries, 9,10-anthraquinone (AQ) with two carbonyls delivers a capacity of 257 mAh g(-1) (2.27 V vs Li(+) /Li), while increasing the number of carbonyls to four with the formation of 5,7,12,14-pentacenetetrone results in a higher capacity of 317 mAh g(-1) (2.60 V vs Li(+) /Li). In RFBs, AQ, which is less soluble in aqueous electrolyte, reaches 1 M by grafting -SO3 H with the formation of 9,10-anthraquinone-2,7-disulphonic acid, resulting in a power density exceeding 0.6 W cm(-2) with long cycling life. Therefore, through regulating substituent groups, conjugated structures, Coulomb interactions, and the molecular weight, the electrochemical performance of carbonyl electrode materials can be rationally optimized. This review offers fundamental principles and insight into designing advanced carbonyl materials for the electrodes of next-generation rechargeable batteries.

  13. Method for making carbon super capacitor electrode materials

    DOEpatents

    Firsich, David W.; Ingersoll, David; Delnick, Frank M.

    1998-01-01

    A method for making near-net-shape, monolithic carbon electrodes for energy storage devices. The method includes the controlled pyrolysis and activation of a pressed shape of methyl cellulose powder with pyrolysis being carried out in two stages; pre-oxidation, preferably in air at a temperature between 200.degree.-250.degree. C., followed by carbonization under an inert atmosphere. An activation step to adjust the surface area of the carbon shape to a value desirable for the application being considered, including heating the carbon shape in an oxidizing atmosphere to a temperature of at least 300.degree. C., follows carbonization.

  14. Method for making carbon super capacitor electrode materials

    DOEpatents

    Firsich, D.W.; Ingersoll, D.; Delnick, F.M.

    1998-07-07

    A method is described for making near-net-shape, monolithic carbon electrodes for energy storage devices. The method includes the controlled pyrolysis and activation of a pressed shape of methyl cellulose powder with pyrolysis being carried out in two stages; pre-oxidation, preferably in air at a temperature between 200--250 C, followed by carbonization under an inert atmosphere. An activation step to adjust the surface area of the carbon shape to a value desirable for the application being considered, including heating the carbon shape in an oxidizing atmosphere to a temperature of at least 300 C, follows carbonization. 1 fig.

  15. MgO-templated carbon as a negative electrode material for Na-ion capacitors

    NASA Astrophysics Data System (ADS)

    Kado, Yuya; Soneda, Yasushi

    2016-12-01

    In this study, MgO-templated carbon with different pore structures was investigated as a negative electrode material for Na-ion capacitors. With increasing the Brunauer-Emmett-Teller surface area, the irreversible capacity increased, and the coulombic efficiency of the 1st cycle decreased because of the formation of solid electrolyte interface layers. MgO-templated carbon annealed at 1000 °C exhibited the highest capacity and best rate performance, suggesting that an appropriate balance between surface area and crystallinity is imperative for fast Na-ion storage, attributed to the storage mechanism: combination of non-faradaic electric double-layer capacitance and faradaic Na intercalation in the carbon layers. Finally, a Na-ion capacitor cell using MgO-templated carbon and activated carbon as the negative and positive electrodes, respectively, exhibited an energy density at high power density significantly greater than that exhibited by the cell using a commercial hard carbon negative electrode.

  16. Anodes - Materials for negative electrodes in electrochemical energy technology

    NASA Astrophysics Data System (ADS)

    Holze, Rudolf

    2014-06-01

    The basic concepts of electrodes and electrochemical cells (including both galvanic and electrolytic ones) are introduced and illustrated with practical examples. Particular attention is paid to negative electrodes in primary and secondary cells, fuel cell electrodes and electrodes in redox flow batteries. General features and arguments pertaining to selection, optimization and further development are highlighted.

  17. Dependence of property, crystal structure and electrode characteristics on Li content for Li xNi 0.8Co 0.2O 2 as a cathode active material for Li secondary battery

    NASA Astrophysics Data System (ADS)

    Idemoto, Yasushi; Takanashi, Yu; Kitamura, Naoto

    We investigated the dependence of the properties, crystal and electronic structures and electrode characteristics of Li xNi 0.8Co 0.2O 2 as a cathode active material for Li secondary batteries. Li xNi 0.8Co 0.2O 2 was prepared by a solid-state method and solution method. The crystal structure was determined by neutron and X-ray diffractions using the Rietveld analysis. All the samples were obtained as the α-NaFeO 2 type with the space group R-3 m. From the charge-discharge test, the cycle performance was improved with the decreasing Li content (x ≦ 1.066) although the discharge capacity decreased. Samples made by the solid-state method showed a better electrode performance than those made by the solution method. We measured the chemical diffusion coefficient of Li (DLi+ ˜) by the GITT method. The DLi+ ˜ in the stable cycle region was much improved in the sample prepared by the solid-state method than by the solution method. From the neutron powder diffraction, it was confirmed that Li 2CO 3 was formed by increasing the Li content (0.994 < x ≦ 1.066) as a secondary phase. Cation mixing was improved with the decreasing Li content. The bond length of the 3b site-6c site decreased with decreasing Li content. From the electron density images on the (1 1 0) plane for Li xNi 0.8Co 0.2O 2, the covalent bond of the 3b site-6c site increased with the decreasing Li content. This may be one of the reasons why the cycle performance improved with the decreasing Li content.

  18. Improved Positive Electrode Materials for Lithium-ion Batteries

    NASA Astrophysics Data System (ADS)

    Conry, Thomas Edward

    The introduction of the first commercially produced Li-ion battery by Sony in 1990 sparked a period of unprecedented growth in the consumer electronics industry. Now, with increasing efforts to move away from fossil-fuel-derived energy sources, a substantial amount of current research is focused on the development of an electrified transportation fleet. Unfortunately, existent battery technologies are unable to provide the necessary performance for electric vehicles (EV's) and plug-in hybrid electric vehicles (PHEV's) vehicles at a competitive cost. The cost and performance metrics of current Li-ion batteries are mainly determined by the positive electrode materials. The work here is concerned with understanding the structural and electrochemical consequences of cost-lowering mechanisms in two separate classes of Li-ion cathode materials; the LiMO2 (M = Ni, Mn, Co) layered oxides and the LiMPO4 olivine materials; with the goal of improving performance. Al-substitution for Co in LiNizMnzCo1-2zO 2 ("NMC") materials not only decreases the costly Co-content, but also improves the safety aspects and, notably, enhances the cycling stability of the layered oxide electrodes. The structural and electrochemical effects of Al-substitution are investigated here in a model NMC compound, LiNi0.45 Mn0.45Co0.1-yAlyO2. In addition to electrochemical measurements, various synchrotron-based characterization methods are utilized, including high-resolution X-ray diffraction (XRD), in situ X-ray diffraction, and X-ray absorption spectroscopy (XAS). Al-substitution causes a slight distortion of the as-synthesized hexagonal layered oxide lattice, lowering the inherent octahedral strain within the transition metal layer. The presence of Al also is observed to limit the structural variation of the NMC materials upon Li-deintercalation, as well as extended cycling of the electrodes. Various olivine materials, Li

  19. Novel active comb-shaped dry electrode for EEG measurement in hairy site.

    PubMed

    Huang, Yan-Jun; Wu, Chung-Yu; Wong, Alice May-Kuen; Lin, Bor-Shyh

    2015-01-01

    Electroencephalography (EEG) is an important biopotential, and has been widely applied in clinical applications. The conventional EEG electrode with conductive gels is usually used for measuring EEG. However, the use of conductive gel also encounters with the issue of drying and hardening. Recently, many dry EEG electrodes based on different conductive materials and techniques were proposed to solve the previous issue. However, measuring EEG in the hairy site is still a difficult challenge. In this study, a novel active comb-shaped dry electrode was proposed to measure EEG in hairy site. Different form other comb-shaped or spike-shaped dry electrodes, it can provide more excellent performance of avoiding the signal attenuation, phase distortion, and the reduction of common mode rejection ratio. Even under walking motion, it can effectively acquire EEG in hairy site. Finally, the experiments for alpha rhythm and steady-state visually evoked potential were also tested to validate the proposed electrode.

  20. Nanostructured Mo-based electrode materials for electrochemical energy storage.

    PubMed

    Hu, Xianluo; Zhang, Wei; Liu, Xiaoxiao; Mei, Yueni; Huang, Yunhui

    2015-04-21

    The development of advanced energy storage devices is at the forefront of research geared towards a sustainable future. Nanostructured materials are advantageous in offering huge surface to volume ratios, favorable transport features, and attractive physicochemical properties. They have been extensively explored in various fields of energy storage and conversion. This review is focused largely on the recent progress in nanostructured Mo-based electrode materials including molybdenum oxides (MoO(x), 2 ≤ x ≤ 3), dichalconides (MoX2, X = S, Se), and oxysalts for rechargeable lithium/sodium-ion batteries, Mg batteries, and supercapacitors. Mo-based compounds including MoO2, MoO3, MoO(3-y) (0 < y < 1), MMo(x)O(y) (M = Fe, Co, Ni, Ca, Mn, Zn, Mg, or Cd; x = 1, y = 4; x = 3, y = 8), MoS2, MoSe2, (MoO2)2P2O7, LiMoO2, Li2MoO3, etc. possess multiple valence states and exhibit rich chemistry. They are very attractive candidates for efficient electrochemical energy storage systems because of their unique physicochemical properties, such as conductivity, mechanical and thermal stability, and cyclability. In this review, we aim to provide a systematic summary of the synthesis, modification, and electrochemical performance of nanostructured Mo-based compounds, as well as their energy storage applications in lithium/sodium-ion batteries, Mg batteries, and pseudocapacitors. The relationship between nanoarchitectures and electrochemical performances as well as the related charge-storage mechanism is discussed. Moreover, remarks on the challenges and perspectives of Mo-containing compounds for further development in electrochemical energy storage applications are proposed. This review sheds light on the sustainable development of advanced rechargeable batteries and supercapacitors with nanostructured Mo-based electrode materials.

  1. The effect of electrode material on the electrogenerated chemiluminescence of luminol

    SciTech Connect

    Vitt, J.E.; Johnson, D.C. ); Engstrom, R.C. )

    1991-06-01

    This paper reports on the oxidation of luminol and its concomitant electrogenerated chemiluminescence (ECL) which were studied at several electrode materials by voltammetry and chronoamperometry. The ECL intensity (I{sub ECL}) was inversely related to the activity of the electrodes. The lowest I{sub ECL}) was measured when luminol was oxidized to 3-aminophthalate (n {approx equal}4 eq mol{sup {minus}1}) at a nearly mass-transport limited rate at glassy carbon. The ECL kinetics were studied and the order of the reaction with respect to luminol was 3/2 at concentrations to ca. 1 mM when O{sub 2} was the coreactant. In the presence of H{sub 2}O{sub 2}, the ECL reaction was first order with respect to luminol. A reaction mechanism is proposed that is consistent with the inetic data and the inverse relationship between electrode activity and I{sub ECL}. The implications of these results are discussed with respect to imaging the spatial distribution of current density at electrode surfaces, including that of PbO{sub 2} films activated by adsorbed Bi(V). A value of 6.6 {times} 10{sup {minus}6} cm{sup 2} s{sup {minus}1} was determined for the diffusion coefficient of luminol in 0.1M NaOH.

  2. Microbial fuel cells: the effects of configurations, electrolyte solutions, and electrode materials on power generation.

    PubMed

    Li, Fengxiang; Sharma, Yogesh; Lei, Yu; Li, Baikun; Zhou, Qixing

    2010-01-01

    This objective of this study is to conduct a systematic investigation of the effects of configurations, electrolyte solutions, and electrode materials on the performance of microbial fuel cells (MFC). A comparison of voltage generation, power density, and acclimation period of electrogenic bacteria was performed for a variety of MFCs. In terms of MFC configuration, membrane-less two-chamber MFCs (ML-2CMFC) had lower internal resistance, shorter acclimation period, and higher voltage generation than the conventional two-chamber MFCs (2CMFC). In terms of anode solutions (as electron donors), the two-chamber MFCs fed with anaerobic treated wastewater (AF-2CMFCs) had the power density 19 times as the two-chamber MFCs fed with acetate (NO(3)(-)2CMFCs). In terms of cathode solutions (as electron acceptors), AF-2CMFCs with ferricyanide had higher voltage generation than that of ML-2CMFCs with nitrate (NO(3)(-)ML-2CMFCs). In terms of electrode materials, ML-2CMFCs with granular-activated carbon as the electrode (GAC-ML-2CMFCs) had a power density 2.5 times as ML-2CMFCs with carbon cloth as the electrode. GAC-ML-2CMFCs had the highest columbic efficiency and power output among all the MFCs tested, indicating that the high surface area of GAC facilitate the biofilm formation, accelerate the degradation of organic substrates, and improve power generation.

  3. Niobium Nitride Nb4N5 as a New High‐Performance Electrode Material for Supercapacitors

    PubMed Central

    Cui, Houlei; Zhu, Guilian; Liu, Xiangye; Liu, Fengxin; Xie, Yian; Yang, Chongyin; Lin, Tianquan; Gu, Hui

    2015-01-01

    Supercapacitors suffer either from low capacitance for carbon or derivate electrodes or from poor electrical conductivity and electrochemical stability for metal oxide or conducting polymer electrodes. Transition metal nitrides possess fair electrical conductivity but superior chemical stability, which may be desirable candidates for supercapacitors. Herein, niobium nitride, Nb4N5, is explored to be an excellent capacitive material for the first time. An areal capacitance of 225.8 mF cm−2, with a reasonable rate capability (60.8% retention from 0.5 to 10 mA cm−2) and cycling stability (70.9% retention after 2000 cycles), is achieved in Nb4N5 nanochannels electrode with prominent electrical conductivity and electrochemical activity. Faradaic pseudocapacitance is confirmed by the mechanistic studies, deriving from the proton incorporation/chemisorption reaction owing to the copious +5 valence Nb ions in Nb4N5. Moreover, this Nb4N5 nanochannels electrode with an ultrathin carbon coating exhibits nearly 100% capacitance retention after 2000 CV cycles, which is an excellent cycling stability for metal nitride materials. Thus, the Nb4N5 nanochannels are qualified for a candidate for supercapacitors and other energy storage applications. PMID:27980920

  4. Work function determination of promising electrode materials for thermionic converters

    NASA Technical Reports Server (NTRS)

    Jacobson, D.

    1977-01-01

    Work performed on this contract was primarily for the evaluation of selected electrode materials for thermionic energy converters. The original objective was to characterize selected nickel based superalloys up to temperatures of 1400 K. It was found that an early selection, Inconel 800 produced a high vapor pressure which interfered with the vacuum emission measurements. The program then shifted to two other areas. The first area was to obtain emission from the superalloys in a cesiated atmosphere. The cesium plasma helps to suppress the vaporization interference. The second area involved characterization of the Lanthanum-Boron series as thermionic emitters. These final two areas resulted in three journal publications which are attached to this report.

  5. Method of making an air electrode material having controlled sinterability

    DOEpatents

    Vasilow, Theodore R.; Kuo, Lewis J. H.; Ruka, Roswell J.

    1994-01-01

    A tubular, porous ceramic electrode structure (3) is made from the sintered admixture of doped lanthanum manganite and an additive containing cerium where a solid electrolyte (4), substantially surrounds the air electrode, and a porous outer fuel electrode (7) substantially surrounds the electrolyte, to form a fuel cell (1).

  6. Method of making an air electrode material having controlled sinterability

    DOEpatents

    Vasilow, T.R.; Kuo, L.J.H.; Ruka, R.J.

    1994-08-30

    A tubular, porous ceramic electrode structure is made from the sintered admixture of doped lanthanum manganite and an additive containing cerium where a solid electrolyte, substantially surrounds the air electrode, and a porous outer fuel electrode substantially surrounds the electrolyte, to form a fuel cell. 2 figs.

  7. Drop detachment and motion on fuel cell electrode materials.

    PubMed

    Gauthier, Eric; Hellstern, Thomas; Kevrekidis, Ioannis G; Benziger, Jay

    2012-02-01

    Liquid water is pushed through flow channels of fuel cells, where one surface is a porous carbon electrode made up of carbon fibers. Water drops grow on the fibrous carbon surface in the gas flow channel. The drops adhere to the superficial fiber surfaces but exhibit little penetration into the voids between the fibers. The fibrous surfaces are hydrophobic, but there is a substantial threshold force necessary to initiate water drop motion. Once the water drops begin to move, however, the adhesive force decreases and drops move with minimal friction, similar to motion on superhydrophobic materials. We report here studies of water wetting and water drop motion on typical porous carbon materials (carbon paper and carbon cloth) employed in fuel cells. The static coefficient of friction on these textured surfaces is comparable to that for smooth Teflon. But the dynamic coefficient of friction is several orders of magnitude smaller on the textured surfaces than on smooth Teflon. Carbon cloth displays a much smaller static contact angle hysteresis than carbon paper due to its two-scale roughness. The dynamic contact angle hysteresis for carbon paper is greatly reduced compared to the static contact angle hysteresis. Enhanced dynamic hydrophobicity is suggested to result from the extent to which a dynamic contact line can track topological heterogeneities of the liquid/solid interface.

  8. Fabrication of a three-electrode battery using hydrogen-storage materials

    NASA Astrophysics Data System (ADS)

    Roh, Chi-Woo; Seo, Jung-Yong; Moon, Hyung-Seok; Park, Hyun-Young; Nam, Na-Yun; Cho, Sung Min; Yoo, Pil J.; Chung, Chan-Hwa

    2015-04-01

    In this study, an energy storage device using a three-electrode battery is fabricated. The charging process takes place during electrolysis of the alkaline electrolyte where hydrogen is stored at the palladium bifunctional electrode. Upon discharging, power is generated by operating the alkaline fuel cell using hydrogen which is accumulated in the palladium hydride bifunctional electrode during the charging process. The bifunctional palladium electrode is prepared by electrodeposition using a hydrogen bubble template followed by a galvanic displacement reaction of platinum in order to functionalize the electrode to work not only as a hydrogen storage material but also as an anode in a fuel cell. This bifunctional electrode has a sufficiently high surface area and the platinum catalyst populates at the surface of electrode to operate the fuel cell. The charging and discharging performance of the three-electrode battery are characterized. In addition, the cycle stability is investigated.

  9. Niobium doped lanthanum calcium ferrite perovskite as a novel electrode material for symmetrical solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Kong, Xiaowei; Zhou, Xiaoliang; Tian, Yu; Wu, Xiaoyan; Zhang, Jun; Zuo, Wei

    2016-09-01

    Development of cost-effective and efficient electrochemical catalysts for the fuel cells electrode is of prime importance to emerging renewable energy technologies. Here, we report for the first time the novel La0.9Ca0.1Fe0.9Nb0.1O3-δ (LCFNb) perovskite with good potentiality for the electrode material of the symmetrical solid oxide fuel cells (SSOFC). The Sc0.2Zr0.8O2-δ (SSZ) electrolyte supported symmetrical cells with impregnated LCFNb and LCFNb/SDC (Ce0.8Sm0.2O2-δ) electrodes achieve relatively high power outputs with maximum power densities (MPDs) reaching up to 392 and 528.6 mW cm-2 at 850 °C in dry H2, respectively, indicating the excellent electro-catalytic activity of LCFNb towards both hydrogen oxidation and oxygen reduction. Besides, the MPDs of the symmetrical cells with LCFNb/SDC composite electrodes in CO and syngas (CO: H2 = 1:1) are almost identical to those in H2, implying that LCFNb material has similar catalytic activities to carbon monoxide compared with hydrogen. High durability in both H2, CO and syngas during the short term stability tests for 50 h are also obtained, showing desirable structure stability, and carbon deposition resistance of LCFNb based electrodes. The present results indicate that the LCFNb perovskite with remarkable cell performance is a promising electrode material for symmetrical SOFCs.

  10. Comparison of carbon materials as electrodes for enzyme electrocatalysis: hydrogenase as a case study.

    PubMed

    Quinson, Jonathan; Hidalgo, Ricardo; Ash, Philip A; Dillon, Frank; Grobert, Nicole; Vincent, Kylie A

    2014-01-01

    We present a study of electrocatalysis by an enzyme adsorbed on a range of carbon materials, with different size, surface area, morphology and graphitic structure, which are either commercially available or prepared via simple, established protocols. We choose as our model enzyme the hydrogenase I from E. coli (Hyd-1), which is an active catalyst for H2 oxidation, is relatively robust and has been demonstrated in H2 fuel cells and H2-driven chemical synthesis. The carbon materials were characterised according to their surface area, surface morphology and graphitic character, and we use the electrocatalytic H2 oxidation current for Hyd-1 adsorbed on these materials to evaluate their effectiveness as enzyme electrodes. Here, we show that a variety of carbon materials are suitable for adsorbing hydrogenases in an electroactive configuration. This unified study provides insight into selection and design of carbon materials for study of redox enzymes and different applications of enzyme electrocatalysis.

  11. Calcium alloy as active material in secondary electrochemical cell

    DOEpatents

    Roche, Michael F.; Preto, Sandra K.; Martin, Allan E.

    1976-01-01

    Calcium alloys such as calcium-aluminum and calcium-silicon, are employed as active material within a rechargeable negative electrode of an electrochemical cell. Such cells can use a molten salt electrolyte including calcium ions and a positive electrode having sulfur, sulfides, or oxides as active material. The calcium alloy is selected to prevent formation of molten calcium alloys resulting from reaction with the selected molten electrolytic salt at the cell operating temperatures.

  12. Effects of Electrode Material on the Voltage of a Tree-Based Energy Generator

    PubMed Central

    2015-01-01

    The voltage between a standing tree and its surrounding soil is regarded as an innovative renewable energy source. This source is expected to provide a new power generation system for the low-power electrical equipment used in forestry. However, the voltage is weak, which has caused great difficulty in application. Consequently, the development of a method to increase the voltage is a key issue that must be addressed in this area of applied research. As the front-end component for energy harvesting, a metal electrode has a material effect on the level and stability of the voltage obtained. This study aimed to preliminarily ascertain the rules and mechanisms that underlie the effects of electrode material on voltage. Electrodes of different materials were used to measure the tree-source voltage, and the data were employed in a comparative analysis. The results indicate that the conductivity of the metal electrode significantly affects the contact resistance of the electrode-soil and electrode-trunk contact surfaces, thereby influencing the voltage level. The metal reactivity of the electrode has no significant effect on the voltage. However, passivation of the electrode materials markedly reduces the voltage. Suitable electrode materials are demonstrated and recommended. PMID:26302491

  13. Effects of Electrode Material on the Voltage of a Tree-Based Energy Generator.

    PubMed

    Hao, Zhibin; Wang, Guozhu; Li, Wenbin; Zhang, Junguo; Kan, Jiangming

    2015-01-01

    The voltage between a standing tree and its surrounding soil is regarded as an innovative renewable energy source. This source is expected to provide a new power generation system for the low-power electrical equipment used in forestry. However, the voltage is weak, which has caused great difficulty in application. Consequently, the development of a method to increase the voltage is a key issue that must be addressed in this area of applied research. As the front-end component for energy harvesting, a metal electrode has a material effect on the level and stability of the voltage obtained. This study aimed to preliminarily ascertain the rules and mechanisms that underlie the effects of electrode material on voltage. Electrodes of different materials were used to measure the tree-source voltage, and the data were employed in a comparative analysis. The results indicate that the conductivity of the metal electrode significantly affects the contact resistance of the electrode-soil and electrode-trunk contact surfaces, thereby influencing the voltage level. The metal reactivity of the electrode has no significant effect on the voltage. However, passivation of the electrode materials markedly reduces the voltage. Suitable electrode materials are demonstrated and recommended.

  14. Recent research progress on iron- and manganese-based positive electrode materials for rechargeable sodium batteries

    PubMed Central

    Yabuuchi, Naoaki; Komaba, Shinichi

    2014-01-01

    Large-scale high-energy batteries with electrode materials made from the Earth-abundant elements are needed to achieve sustainable energy development. On the basis of material abundance, rechargeable sodium batteries with iron- and manganese-based positive electrode materials are the ideal candidates for large-scale batteries. In this review, iron- and manganese-based electrode materials, oxides, phosphates, fluorides, etc, as positive electrodes for rechargeable sodium batteries are reviewed. Iron and manganese compounds with sodium ions provide high structural flexibility. Two layered polymorphs, O3- and P2-type layered structures, show different electrode performance in Na cells related to the different phase transition and sodium migration processes on sodium extraction/insertion. Similar to layered oxides, iron/manganese phosphates and pyrophosphates also provide the different framework structures, which are used as sodium insertion host materials. Electrode performance and reaction mechanisms of the iron- and manganese-based electrode materials in Na cells are described and the similarities and differences with lithium counterparts are also discussed. Together with these results, the possibility of the high-energy battery system with electrode materials made from only Earth-abundant elements is reviewed. PMID:27877694

  15. Recent research progress on iron- and manganese-based positive electrode materials for rechargeable sodium batteries.

    PubMed

    Yabuuchi, Naoaki; Komaba, Shinichi

    2014-08-01

    Large-scale high-energy batteries with electrode materials made from the Earth-abundant elements are needed to achieve sustainable energy development. On the basis of material abundance, rechargeable sodium batteries with iron- and manganese-based positive electrode materials are the ideal candidates for large-scale batteries. In this review, iron- and manganese-based electrode materials, oxides, phosphates, fluorides, etc, as positive electrodes for rechargeable sodium batteries are reviewed. Iron and manganese compounds with sodium ions provide high structural flexibility. Two layered polymorphs, O3- and P2-type layered structures, show different electrode performance in Na cells related to the different phase transition and sodium migration processes on sodium extraction/insertion. Similar to layered oxides, iron/manganese phosphates and pyrophosphates also provide the different framework structures, which are used as sodium insertion host materials. Electrode performance and reaction mechanisms of the iron- and manganese-based electrode materials in Na cells are described and the similarities and differences with lithium counterparts are also discussed. Together with these results, the possibility of the high-energy battery system with electrode materials made from only Earth-abundant elements is reviewed.

  16. Recent research progress on iron- and manganese-based positive electrode materials for rechargeable sodium batteries

    NASA Astrophysics Data System (ADS)

    Yabuuchi, Naoaki; Komaba, Shinichi

    2014-08-01

    Large-scale high-energy batteries with electrode materials made from the Earth-abundant elements are needed to achieve sustainable energy development. On the basis of material abundance, rechargeable sodium batteries with iron- and manganese-based positive electrode materials are the ideal candidates for large-scale batteries. In this review, iron- and manganese-based electrode materials, oxides, phosphates, fluorides, etc, as positive electrodes for rechargeable sodium batteries are reviewed. Iron and manganese compounds with sodium ions provide high structural flexibility. Two layered polymorphs, O3- and P2-type layered structures, show different electrode performance in Na cells related to the different phase transition and sodium migration processes on sodium extraction/insertion. Similar to layered oxides, iron/manganese phosphates and pyrophosphates also provide the different framework structures, which are used as sodium insertion host materials. Electrode performance and reaction mechanisms of the iron- and manganese-based electrode materials in Na cells are described and the similarities and differences with lithium counterparts are also discussed. Together with these results, the possibility of the high-energy battery system with electrode materials made from only Earth-abundant elements is reviewed.

  17. Pyrometallurgical Extraction of Valuable Elements in Ni-Metal Hydride Battery Electrode Materials

    NASA Astrophysics Data System (ADS)

    Jiang, Yin-ju; Deng, Yong-chun; Bu, Wen-gang

    2015-10-01

    Gas selective reduction-oxidation (redox) and melting separation were consecutively applied to electrode materials of AB5-type Ni-metal hydride batteries leading to the production of a Ni-Co alloy and slag enriched with rare earth oxides (REO). In the selective redox process, electrode materials were treated with H2/H2O at 1073 K and 1173 K (800 °C and 900 °C). Active elements such as REs, Al, and Mn were oxidized whereas relatively inert elements such as Ni and Co were transformed into their elemental states in the treated materials. SiO2 and Al2O3 powders were added into the treated materials as fluxes which were then melted at 1823 K (1550 °C) to yield a Ni-Co alloy and a REO-SiO2-Al2O3-MnO slag. The high-purity Ni-Co alloy produced can be used as a raw material for AB5-type hydrogen-storage alloy. The REO content in slag was very high, i.e., 48.51 pct, therefore it can be used to recycle rare earth oxides.

  18. Supercapacitor Electrodes from Activated Carbon Monoliths and Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Dolah, B. N. M.; Othman, M. A. R.; Deraman, M.; Basri, N. H.; Farma, R.; Talib, I. A.; Ishak, M. M.

    2013-04-01

    Binderless monoliths of supercapacitor electrodes were prepared by the carbonization (N2) and activation (CO2) of green monoliths (GMs). GMs were made from mixtures of self-adhesive carbon grains (SACG) of fibers from oil palm empty fruit bunches and a combination of 5 & 6% KOH and 0, 5 & 6% carbon nanotubes (CNTs) by weight. The electrodes from GMs containing CNTs were found to have lower specific BET surface area (SBET). The electrochemical behavior of the supercapacitor fabricated using the prepared electrodes were investigated by electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge (GCD). In general an addition of CNTs into the GMs reduces the equivalent series resistance (ESR) value of the cells. A cell fabricated using electrodes from GM with 5% CNT and 5% KOH was found to have the largest reduction of ESR value than that from the others GMs containing CNT. The cell has steeper Warburg's slope than that from its respective non-CNT GM, which reflect the smaller resistance for electrolyte ions to move into pores of electrodes despite these electrodes having largest reduction in specific BET surface area. The cell also has the smallest reduction of specific capacitance (Csp) and maintains the specific power range despite a reduction in the specific energy range due to the CNT addition.

  19. Monte Carlo modelling the dosimetric effects of electrode material on diamond detectors.

    PubMed

    Baluti, Florentina; Deloar, Hossain M; Lansley, Stuart P; Meyer, Juergen

    2015-03-01

    Diamond detectors for radiation dosimetry were modelled using the EGSnrc Monte Carlo code to investigate the influence of electrode material and detector orientation on the absorbed dose. The small dimensions of the electrode/diamond/electrode detector structure required very thin voxels and the use of non-standard DOSXYZnrc Monte Carlo model parameters. The interface phenomena was investigated by simulating a 6 MV beam and detectors with different electrode materials, namely Al, Ag, Cu and Au, with thickens of 0.1 µm for the electrodes and 0.1 mm for the diamond, in both perpendicular and parallel detector orientation with regards to the incident beam. The smallest perturbations were observed for the parallel detector orientation and Al electrodes (Z = 13). In summary, EGSnrc Monte Carlo code is well suited for modelling small detector geometries. The Monte Carlo model developed is a useful tool to investigate the dosimetric effects caused by different electrode materials. To minimise perturbations cause by the detector electrodes, it is recommended that the electrodes should be made from a low-atomic number material and placed parallel to the beam direction.

  20. Materials Science of Electrodes and Interfaces for High-Performance Organic Photovoltaics

    SciTech Connect

    Marks, Tobin

    2016-11-18

    The science of organic photovoltaic (OPV) cells has made dramatic advances over the past three years with power conversion efficiencies (PCEs) now reaching ~12%. The upper PCE limit of light-to-electrical power conversion for single-junction OPVs as predicted by theory is ~23%. With further basic research, the vision of such devices, composed of non-toxic, earth-abundant, readily easily processed materials replacing/supplementing current-generation inorganic solar cells may become a reality. Organic cells offer potentially low-cost, roll-to-roll manufacturable, and durable solar power for diverse in-door and out-door applications. Importantly, further gains in efficiency and durability, to that competitive with inorganic PVs, will require fundamental, understanding-based advances in transparent electrode and interfacial materials science and engineering. This team-science research effort brought together an experienced and highly collaborative interdisciplinary group with expertise in hard and soft matter materials chemistry, materials electronic structure theory, solar cell fabrication and characterization, microstructure characterization, and low temperature materials processing. We addressed in unconventional ways critical electrode-interfacial issues underlying OPV performance -- controlling band offsets between transparent electrodes and organic active-materials, addressing current loss/leakage phenomena at interfaces, and new techniques in cost-effective low temperature and large area cell fabrication. The research foci were: 1) Theory-guided design and synthesis of advanced crystalline and amorphous transparent conducting oxide (TCO) layers which test our basic understanding of TCO structure-transport property relationships, and have high conductivity, transparency, and tunable work functions but without (or minimizing) the dependence on indium. 2) Development of theory-based understanding of optimum configurations for the interfaces between oxide electrodes

  1. Nanostructured electrode materials for Li-ion battery

    NASA Astrophysics Data System (ADS)

    Balaya, Palani; Saravanan, Kuppan; Hariharan, Srirama

    2010-04-01

    Nanostructured materials have triggered a great excitement in recent times due to both fundamental interest as well as technological impact relevant for lithium ion batteries (LIBs). Size reduction in nanocrystals leads to a variety of unexpected exciting phenomena due to enhanced surface-to-volume ratio and reduced transport length. We will consider a few examples of nanostructured electrode materials in the context of lithium batteries for achieving high storage and high rate performances: 1) LiFePO4 nanoplates synthesized using solvothermal method could store Li-ions comparable to its theoretical capacity at C/10, while at 30C, they exhibit storage capacity up to 45 mAh/g. Size reduction (~30 nm) at the b-axis favors the fast Li-ion diffusion. In addition to this, uniform ~5 nm carbon coating throughout the plates provides excellent electronically conducting path for electrons. This nano architecture enables fast insertion/extraction of both Li-ions as well as electrons; 2) Mesporous-TiO2 with high surface area (135m2/g) synthesized using soft-template method exhibits high volumetric density compared to commercial nanopowder (P25), with excellent Li-storage behavior. C16 meso-TiO2 synthesized from CTAB exhibits reversible storage capacity of 288mAh/g at 0.2C and 109 mAh/g at 30C; 3) Zero strain Li4Ti5O12 anode material has been synthesized using several wet chemical routes. The best condition has been optimized to achieve storage capability close to theoretical limit of 175mAh/g at C/10. At 10C, we could retain lithium storage up to 88 mAh/g; 4) We report our recent results on α-Fe2O3 and γ-Fe2O3 using conversion reaction, providing insight for a better storage capability in γ-phase than the α-phase at 2C resulting solely from the nanocrystallinity.

  2. Controlled porosity in electrodes

    DOEpatents

    Chiang, Yet-Ming; Bae, Chang-Jun; Halloran, John William; Fu, Qiang; Tomsia, Antoni P.; Erdonmez, Can K.

    2015-06-23

    Porous electrodes in which the porosity has a low tortuosity are generally provided. In some embodiments, the porous electrodes can be designed to be filled with electrolyte and used in batteries, and can include low tortuosity in the primary direction of ion transport during charge and discharge of the battery. In some embodiments, the electrodes can have a high volume fraction of electrode active material (i.e., low porosity). The attributes outlined above can allow the electrodes to be fabricated with a higher energy density, higher capacity per unit area of electrode (mAh/cm.sup.2), and greater thickness than comparable electrodes while still providing high utilization of the active material in the battery during use. Accordingly, the electrodes can be used to produce batteries with high energy densities, high power, or both compared to batteries using electrodes of conventional design with relatively highly tortuous pores.

  3. Self-Assembled, Redox-Active Graphene Electrodes for High-Performance Energy Storage Devices.

    PubMed

    Liu, Tianyuan; Kavian, Reza; Kim, Inkyu; Lee, Seung Woo

    2014-12-18

    Graphene-based materials have been utilized as a promising approach in designing high-performance electrodes for energy storage devices. In line with this approach, functionalized graphene electrodes have been self-assembled from the dispersion of graphene oxide (GO) in water at a low temperature of 80 °C using tetrahydroxyl-1,4-benzoquinone (THQ) as both the reducing and redox-active functionalization agent. We correlated the electrochemical performance of the electrode with surface oxygen chemistry, confirming the role of THQ for the reduction and redox-active functionalization process. The assembled graphene electrodes have a 3D hierarchical porous structure, which can facilitate electronic and ionic transport to support fast charge storage reactions. Utilizing the surface redox reactions introduced by THQ, the functionalized graphene electrodes exhibit high gravimetric capacities of ∼165 mA h/g in Li cells and ∼120 mA h/g in Na cells with high redox potentials over ∼3 V versus Li or Na, proposing promising positive electrodes for both Li and Na ion batteries.

  4. Active C4 Electrodes for Local Field Potential Recording Applications

    PubMed Central

    Wang, Lu; Freedman, David; Sahin, Mesut; Ünlü, M. Selim; Knepper, Ronald

    2016-01-01

    Extracellular neural recording, with multi-electrode arrays (MEAs), is a powerful method used to study neural function at the network level. However, in a high density array, it can be costly and time consuming to integrate the active circuit with the expensive electrodes. In this paper, we present a 4 mm × 4 mm neural recording integrated circuit (IC) chip, utilizing IBM C4 bumps as recording electrodes, which enable a seamless active chip and electrode integration. The IC chip was designed and fabricated in a 0.13 μm BiCMOS process for both in vitro and in vivo applications. It has an input-referred noise of 4.6 μVrms for the bandwidth of 10 Hz to 10 kHz and a power dissipation of 11.25 mW at 2.5 V, or 43.9 μW per input channel. This prototype is scalable for implementing larger number and higher density electrode arrays. To validate the functionality of the chip, electrical testing results and acute in vivo recordings from a rat barrel cortex are presented. PMID:26861324

  5. Quantifying Bulk Electrode Strain and Material Displacement within Lithium Batteries via High‐Speed Operando Tomography and Digital Volume Correlation

    PubMed Central

    Finegan, Donal P.; Tudisco, Erika; Scheel, Mario; Robinson, James B.; Taiwo, Oluwadamilola O.; Eastwood, David S.; Lee, Peter D.; Di Michiel, Marco; Bay, Brian; Hall, Stephen A.; Hinds, Gareth; Brett, Dan J. L.

    2015-01-01

    Tracking the dynamic morphology of active materials during operation of lithium batteries is essential for identifying causes of performance loss. Digital volume correlation (DVC) is applied to high‐speed operando synchrotron X‐ray computed tomography of a commercial Li/MnO2 primary battery during discharge. Real‐time electrode material displacement is captured in 3D allowing degradation mechanisms such as delamination of the electrode from the current collector and electrode crack formation to be identified. Continuum DVC of consecutive images during discharge is used to quantify local displacements and strains in 3D throughout discharge, facilitating tracking of the progression of swelling due to lithiation within the electrode material in a commercial, spiral‐wound battery during normal operation. Displacement of the rigid current collector and cell materials contribute to severe electrode detachment and crack formation during discharge, which is monitored by a separate DVC approach. Use of time‐lapse X‐ray computed tomography coupled with DVC is thus demonstrated as an effective diagnostic technique to identify causes of performance loss within commercial lithium batteries; this novel approach is expected to guide the development of more effective commercial cell designs. PMID:27610334

  6. Carbon-Based Microbial-Fuel-Cell Electrodes: From Conductive Supports to Active Catalysts.

    PubMed

    Li, Shuang; Cheng, Chong; Thomas, Arne

    2017-02-01

    Microbial fuel cells (MFCs) have attracted considerable interest due to their potential in renewable electrical power generation using the broad diversity of biomass and organic substrates. However, the difficulties in achieving high power densities and commercially affordable electrode materials have limited their industrial applications to date. Carbon materials, which can exhibit a wide range of different morphologies and structures, usually possess physiological activity to interact with microorganisms and are therefore fast-emerging electrode materials. As the anode, carbon materials can significantly promote interfacial microbial colonization and accelerate the formation of extracellular biofilms, which eventually promotes the electrical power density by providing a conductive microenvironment for extracellular electron transfer. As the cathode, carbon-based materials can function as catalysts for the oxygen-reduction reaction, showing satisfying activities and efficiencies nowadays even reaching the performance of Pt catalysts. Here, first, recent advancements on the design of carbon materials for anodes in MFCs are summarized, and the influence of structure and surface functionalization of different types of carbon materials on microorganism immobilization and electrochemical performance is elucidated. Then, synthetic strategies and structures of typical carbon-based cathodes in MFCs are briefly presented. Furthermore, future applications of carbon-electrode-based MFC devices in the energy, environmental, and biological fields are discussed, and the emerging challenges in transferring them from laboratory to industrial scale are described.

  7. Activated carbon material

    DOEpatents

    Evans, A. Gary

    1978-01-01

    Activated carbon particles for use as iodine trapping material are impregnated with a mixture of selected iodine and potassium compounds to improve the iodine retention properties of the carbon. The I/K ratio is maintained at less than about 1 and the pH is maintained at above about 8.0. The iodine retention of activated carbon previously treated with or coimpregnated with triethylenediamine can also be improved by this technique. Suitable flame retardants can be added to raise the ignition temperature of the carbon to acceptable standards.

  8. Cosmogenic activation of materials

    NASA Astrophysics Data System (ADS)

    Amaré, J.; Beltrán, B.; Capelli, S.; Capozzi, F.; Carmona, J. M.; Cebrián, S.; Cremonesi, O.; García, E.; Irastorza, I. G.; Gómez, H.; Luzón, G.; Martínez, M.; Morales, J.; Ortiz de Solórzano, A.; Pavan, M.; Pobes, C.; Puimedón, J.; Rodríguez, A.; Ruz, J.; Sarsa, M. L.; Torres, L.; Villar, J. A.

    2005-09-01

    The problem of cosmogenic activation produced at sea level in materials typically used in underground experiments looking for rare events is being studied. Several nuclear data libraries have been screened looking for relevant isotope production cross-sections and different codes which can be applied to activation studies have been reviewed. The excitation functions for some problems of interest like production of 60Co and 68Ge in germanium and production of 60Co in tellurium have been obtained taking into account both measurements and calculations and a preliminary estimate of the corresponding rates of production at sea level has been performed.

  9. A comparison of retinal prosthesis electrode array substrate materials.

    PubMed

    Weiland, James D; Humayun, Mark S; Eckhardt, Helmut; Ufer, Stefan; Laude, Lucien; Basinger, Brooke; Tai, Yu-Chong

    2009-01-01

    Simulations of artificial vision suggest that 1000 electrodes may be required to restore vision to individuals with diseases of the outer retina. In order to achieve such an implant, new technology is needed, since the state-of-the-art implantable neural stimulator has at most 22 contacts with neural tissue. A critical component of this system is the multi-channel, stimulating electrode array. This array must meet very challenging, competing requirements for manufacturing, integration, surgical handling, and biocompatibility. Our lab has evaluated 3 polymers as retinal prosthesis substrates: polyimide, parylene, and silicone.

  10. Electrode

    SciTech Connect

    Clere, T.M.

    1983-08-30

    A 3-dimensional electrode is disclosed having substantially coplanar and substantially flat portions and ribbon-like curved portions, said curved portions being symmetrical and alternating in rows above and below said substantially coplanar, substantially flat portions, respectively, and a geometric configuration presenting in one sectional aspect the appearance of a series of ribbon-like oblate spheroids interrupted by said flat portions and in another sectional aspect, 90/sup 0/ from said one aspect, the appearance of a square wave pattern.

  11. Penternary chalcogenides nanocrystals as catalytic materials for efficient counter electrodes in dye-synthesized solar cells

    PubMed Central

    Özel, Faruk; Sarılmaz, Adem; İstanbullu, Bilal; Aljabour, Abdalaziz; Kuş, Mahmut; Sönmezoğlu, Savaş

    2016-01-01

    The penternary chalcogenides Cu2CoSn(SeS)4 and Cu2ZnSn(SeS)4 were successfully synthesized by hot-injection method, and employed as a catalytic materials for efficient counter electrodes in dye-synthesized solar cells (DSSCs). The structural, compositional, morphological and optical properties of these pentenary semiconductors were characterized by X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), energy-dispersive spectrometer (EDS) and ultraviolet-visible (UV–Vis) spectroscopy. The Cu2CoSn(SeS)4 and Cu2ZnSn(SeS)4 nanocrystals had a single crystalline, kesterite phase, adequate stoichiometric ratio, 18–25 nm particle sizes which are forming nanospheres, and band gap energy of 1.18 and 1.45 eV, respectively. Furthermore, the electrochemical impedance spectroscopy and cyclic voltammograms indicated that Cu2CoSn(SeS)4 nanocrystals as counter electrodes exhibited better electrocatalytic activity for the reduction of iodine/iodide electrolyte than that of Cu2ZnSn(SeS)4 nanocrystals and conventional platinum (Pt). The photovoltaic results demonstrated that DSSC with a Cu2CoSn(SeS)4 nanocrystals-based counter electrode achieved the best efficiency of 6.47%, which is higher than the same photoanode employing a Cu2ZnSn(SeS)4 nanocrystals (3.18%) and Pt (5.41%) counter electrodes. These promising results highlight the potential application of penternary chalcogen Cu2CoSn(SeS)4 nanocrystals in low-cost, high-efficiency, Pt-free DSSCs. PMID:27380957

  12. Penternary chalcogenides nanocrystals as catalytic materials for efficient counter electrodes in dye-synthesized solar cells

    NASA Astrophysics Data System (ADS)

    Özel, Faruk; Sarılmaz, Adem; Istanbullu, Bilal; Aljabour, Abdalaziz; Kuş, Mahmut; Sönmezoğlu, Savaş

    2016-07-01

    The penternary chalcogenides Cu2CoSn(SeS)4 and Cu2ZnSn(SeS)4 were successfully synthesized by hot-injection method, and employed as a catalytic materials for efficient counter electrodes in dye-synthesized solar cells (DSSCs). The structural, compositional, morphological and optical properties of these pentenary semiconductors were characterized by X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), energy-dispersive spectrometer (EDS) and ultraviolet-visible (UV–Vis) spectroscopy. The Cu2CoSn(SeS)4 and Cu2ZnSn(SeS)4 nanocrystals had a single crystalline, kesterite phase, adequate stoichiometric ratio, 18–25 nm particle sizes which are forming nanospheres, and band gap energy of 1.18 and 1.45 eV, respectively. Furthermore, the electrochemical impedance spectroscopy and cyclic voltammograms indicated that Cu2CoSn(SeS)4 nanocrystals as counter electrodes exhibited better electrocatalytic activity for the reduction of iodine/iodide electrolyte than that of Cu2ZnSn(SeS)4 nanocrystals and conventional platinum (Pt). The photovoltaic results demonstrated that DSSC with a Cu2CoSn(SeS)4 nanocrystals-based counter electrode achieved the best efficiency of 6.47%, which is higher than the same photoanode employing a Cu2ZnSn(SeS)4 nanocrystals (3.18%) and Pt (5.41%) counter electrodes. These promising results highlight the potential application of penternary chalcogen Cu2CoSn(SeS)4 nanocrystals in low-cost, high-efficiency, Pt-free DSSCs.

  13. High voltage, rechargeable lithium batteries using newly-developed carbon for negative electrode material

    NASA Astrophysics Data System (ADS)

    Yamaura, Junichi; Ozaki, Yoshiyuki; Morita, Akiyoshi; Ohta, Akira

    1993-03-01

    Carbon is a good candidate for negative electrodes because it can take the form of lithium intercalation compounds. We discussed the characteristics of typical carbon materials which have been studied as negative electrode materials. We have found that the mesophase pitch-based carbon microbead (MCMB) of high graphitization stage which have been graphitized at a high temperature such as 2800 C gives good characteristics as a negative electrode for rechargeable lithium batteries. The cylindrical 'AA-size' batteries of our trial products using LiCoO2 as the positive electrode and the M CMB graphitized at 2800 C as the negative electrode have been found to provide large capacities of 500 mA h and high voltages of 3.7 V with high energy densities of 240 W h/l, 100 W h/kg.

  14. Electrochemical degradation of trichloroacetic acid in aqueous media: influence of the electrode material.

    PubMed

    Esclapez, M D; Díez-García, M I; Sàez, V; Bonete, P; González-García, José

    2013-01-01

    The electrochemical degradation of trichloroacetic acid (TCAA) in water has been analysed through voltammetric studies with a rotating disc electrode and controlled-potential bulk electrolyses. The influence of the mass-transport conditions and initial concentration of TCAA for titanium, stainless steel and carbon electrodes has been studied. It is shown that the electrochemical reduction of TCAA takes place prior to the massive hydrogen evolution in the potential window for all electrode materials studied. The current efficiency is high (> 18%) compared with those normally reported in the literature, and the fractional conversion is above 50% for all the electrodes studied. Only dichloroacetic acid (DCAA) and chloride anions were routinely detected as reduction products for any of the electrodes, and reasonable values of mass balance error were obtained. Of the three materials studied, the titanium cathode gave the best results.

  15. Amorphous carbon nitride as an alternative electrode material in electroanalysis: simultaneous determination of dopamine and ascorbic acid.

    PubMed

    Medeiros, Roberta A; Matos, Roberto; Benchikh, Abdelkader; Saidani, Boualem; Debiemme-Chouvy, Catherine; Deslouis, Claude; Rocha-Filho, Romeu C; Fatibello-Filho, Orlando

    2013-10-03

    Boron-doped diamond (BDD) films are excellent electrode materials, whose electrochemical activity for some analytes can be tuned by controlling their surface termination, most commonly either to predominantly hydrogen or oxygen. This tuning can be accomplished by e.g. suitable cathodic or anodic electrochemical pretreatments. Recently, it has been shown that amorphous carbon nitride (a-CNx) films may present electrochemical characteristics similar to those of BDD, including the influence of surface termination on their electrochemical activity toward some analytes. In this work, we report for the first time a complete electroanalytical method using an a-CNx electrode. Thus, an a-CNx film deposited on a stainless steel foil by DC magnetron sputtering is proposed as an alternative electrode for the simultaneous determination of dopamine (DA) and ascorbic acid (AA) in synthetic biological samples by square-wave voltammetry. The obtained results are compared with those attained using a BDD electrode. For both electrodes, a same anodic pretreatment in 0.1 mol L(-1) KOH was necessary to attain an adequate and equivalent separation of the DA and AA oxidation potential peaks of about 330 mV. The detection limits obtained for the simultaneous determination of these analytes using the a-CNx electrode were 0.0656 μmol L(-1) for DA and 1.05 μmol L(-1) for AA, whereas with the BDD electrode these values were 0.283 μmol L(-1) and 0.968 μmol L(-1), respectively. Furthermore, the results obtained in the analysis of the analytes in synthetic biological samples were satisfactory, attesting the potential application of the a-CNx electrode in electroanalysis.

  16. Method for producing electrodes using microscale or nanoscale materials obtained from hydrogendriven metallurgical reactions

    DOEpatents

    Reilly, James J.; Adzic, Gordana D.; Johnson, John R.; Vogt, Thomas; McBreen, James

    2003-09-02

    A method is provided for producing electrodes using microscale and nanoscale metal materials formed from hydrogen driven metallurgical processes; such a the HD (hydriding, dehydriding) process, the HDDR (hydriding, dehydriding, disproportionation, and recombination) process, and variants thereof.

  17. Thin film lithium-based batteries and electrochromic devices fabricated with nanocomposite electrode materials

    DOEpatents

    Gillaspie, Dane T; Lee, Se-Hee; Tracy, C. Edwin; Pitts, John Roland

    2014-02-04

    Thin-film lithium-based batteries and electrochromic devices (10) are fabricated with positive electrodes (12) comprising a nanocomposite material composed of lithiated metal oxide nanoparticles (40) dispersed in a matrix composed of lithium tungsten oxide.

  18. Direct laser immobilization of photosynthetic material on screen printed electrodes for amperometric biosensor

    SciTech Connect

    Boutopoulos, Christos; Zergioti, Ioanna; Touloupakis, Eleftherios; Pezzotti, Ittalo; Giardi, Maria Teresa

    2011-02-28

    This letter demonstrates the direct laser printing of photosynthetic material onto low cost nonfunctionalized screen printed electrodes for the fabrication of photosynthesis-based amperometric biosensors. The high kinetic energy of the transferred material induces direct immobilization of the thylakoids onto the electrodes without the use of linkers. This type of immobilization is able to establish efficient electrochemical contact between proteins and electrode, stabilizing the photosynthetic biomolecule and transporting electrons to the solid state device with high efficiency. The functionality of the laser printed biosensors was evaluated by the detection of a common herbicide such as Linuron.

  19. Highly porous activated carbons from resource-recovered Leucaena leucocephala wood as capacitive deionization electrodes.

    PubMed

    Hou, Chia-Hung; Liu, Nei-Ling; Hsi, Hsing-Cheng

    2015-12-01

    Highly porous activated carbons were resource-recovered from Leucaena leucocephala (Lam.) de Wit. wood through combined chemical and physical activation (i.e., KOH etching followed by CO2 activation). This invasive species, which has severely damaged the ecological economics of Taiwan, was used as the precursor for producing high-quality carbonaceous electrodes for capacitive deionization (CDI). Carbonization and activation conditions strongly influenced the structure of chars and activated carbons. The total surface area and pore volume of activated carbons increased with increasing KOH/char ratio and activation time. Overgasification induced a substantial amount of mesopores in the activated carbons. In addition, the electrochemical properties and CDI electrosorptive performance of the activated carbons were evaluated; cyclic voltammetry and galvanostatic charge/discharge measurements revealed a typical capacitive behavior and electrical double layer formation, confirming ion electrosorption in the porous structure. The activated-carbon electrode, which possessed high surface area and both mesopores and micropores, exhibited improved capacitor characteristics and high electrosorptive performance. Highly porous activated carbons derived from waste L. leucocephala were demonstrated to be suitable CDI electrode materials.

  20. Optoelectric patterning: Effect of electrode material and thickness on laser-induced AC electrothermal flow.

    PubMed

    Mishra, Avanish; Khor, Jian-Wei; Clayton, Katherine N; Williams, Stuart J; Pan, Xudong; Kinzer-Ursem, Tamara; Wereley, Steve

    2016-02-01

    Rapid electrokinetic patterning (REP) is an emerging optoelectric technique that takes advantage of laser-induced AC electrothermal flow and particle-electrode interactions to trap and translate particles. The electrothermal flow in REP is driven by the temperature rise induced by the laser absorption in the thin electrode layer. In previous REP applications 350-700 nm indium tin oxide (ITO) layers have been used as electrodes. In this study, we show that ITO is an inefficient electrode choice as more than 92% of the irradiated laser on the ITO electrodes is transmitted without absorption. Using theoretical, computational, and experimental approaches, we demonstrate that for a given laser power the temperature rise is controlled by both the electrode material and its thickness. A 25-nm thick Ti electrode creates an electrothermal flow of the same speed as a 700-nm thick ITO electrode while requiring only 14% of the laser power used by ITO. These results represent an important step in the design of low-cost portable REP systems by lowering the material cost and power consumption of the system.

  1. Development of Novel Electrode Materials for the Electrocatalysis of Oxygen-Transfer and Hydrogen-Transfer Reactions

    SciTech Connect

    Simpson, Brett Kimball

    2002-01-01

    Throughout this thesis, the fundamental aspects involved in the electrocatalysis of anodic O-transfer reactions and cathodic H-transfer reactions have been studied. The investigation into anodic O-transfer reactions at undoped and Fe(III)[doped MnO2 films] revealed that MnO2 film electrodes prepared by a cycling voltammetry deposition show improved response for DMSO oxidation at the film electrodes vs. the Au substrate. Doping of the MnO2 films with Fe(III) further enhanced electrode activity. Reasons for this increase are believed to involve the adsorption of DMSO by the Fe(III) sites. The investigation into anodic O-transfer reactions at undoped and Fe(III)-doped RuO2 films showed that the Fe(III)-doped RuO2-film electrodes are applicable for anodic detection of sulfur compounds. The Fe(III) sites in the Fe-RuO2 films are speculated to act as adsorption sites for the sulfur species while the Ru(IV) sites function for anodic discharge of H2O to generate the adsorbed OH species. The investigation into cathodic H-transfer reactions, specifically nitrate reduction, at various pure metals and their alloys demonstrated that the incorporation of metals into alloy materials can create a material that exhibits bifunctional properties for the various steps involved in the overall nitrate reduction reaction. The Sb10Sn20Ti70, Cu63Ni37 and Cu25Ni75 alloy electrodes exhibited improved activity for nitrate reduction as compared to their pure component metals. The Cu63Ni37 alloy displayed the highest activity for nitrate reduction. The final investigation was a detailed study of the electrocatalytic activity of cathodic H-transfer reactions (nitrate reduction) at various compositions of Cu-Ni alloy electrodes. Voltammetric response for NO3- at the Cu-Ni alloy electrode is superior to

  2. Compliant Electrode and Composite Material for Piezoelectric Wind and Mechanical Energy Conversions

    NASA Technical Reports Server (NTRS)

    Chen, Bin (Inventor)

    2015-01-01

    A thin film device for harvesting energy from wind. The thin film device includes one or more layers of a compliant piezoelectric material formed from a composite of a polymer and an inorganic material, such as a ceramic. Electrodes are disposed on a first side and a second side of the piezoelectric material. The electrodes are formed from a compliant material, such as carbon nanotubes or graphene. The thin film device exhibits improved resistance to structural fatigue upon application of large strains and repeated cyclic loadings.

  3. Effect of Different Electrode Materials on the Electropolymerization Process of Aniline in Nitric Acid Media

    NASA Astrophysics Data System (ADS)

    Li, Yaozong; Yi, Yun; Yang, Weifang; Liu, Xiaoqing; Li, Yuanyuan; Wang, Wei

    2017-02-01

    The electropolymerization process of aniline on different electrode surfaces such as Pt, Au, RuTi and polyaniline film in nitric acid solution containing 1 M aniline was investigated by cyclic voltammetry and electrochemical impedance spectroscopy. Proposed electrical equivalent circuits were used to give a further analysis. Results show that the electrode materials accelerate the aniline electropolymerization remarkably as a catalyst, especially the electrochemical oxidation process of monomer aniline to its cation radical, which is the key step to incur the electropolymerization reaction of aniline on the electrode surface. The polymerization of aniline on RuTi electrode has the lowest reaction resistance for its adsorption sites, and the catalytic effects of these different electrodes decrease in the order: RuTi > polyaniline film > Pt > Au. The results also show that several states of polyaniline films are formed during the potential linear scan process in nitric acid solution and the corresponding oxidation and reduction reaction are reversible.

  4. Novel air electrode for metal-air battery with new carbon material and method of making same

    DOEpatents

    Ross, P.N. Jr.

    1988-06-21

    This invention relates to a rechargeable battery or fuel cell. More particularly, this invention relates to a novel air electrode comprising a new carbon electrode support material and a method of making same. 3 figs.

  5. Method of preparation of carbon materials for use as electrodes in rechargeable batteries

    DOEpatents

    Doddapaneni, Narayan; Wang, James C. F.; Crocker, Robert W.; Ingersoll, David; Firsich, David W.

    1999-01-01

    A method of producing carbon materials for use as electrodes in rechargeable batteries. Electrodes prepared from these carbon materials exhibit intercalation efficiencies of .apprxeq.80% for lithium, low irreversible loss of lithium, long cycle life, are capable of sustaining a high rates of discharge and are cheap and easy to manufacture. The method comprises a novel two-step stabilization process in which polymeric precursor materials are stabilized by first heating in an inert atmosphere and subsequently heating in air. During the stabilization process, the polymeric precursor material can be agitated to reduce particle fusion and promote mass transfer of oxygen and water vapor. The stabilized, polymeric precursor materials can then be converted to a synthetic carbon, suitable for fabricating electrodes for use in rechargeable batteries, by heating to a high temperature in a flowing inert atmosphere.

  6. Method of preparation of carbon materials for use as electrodes in rechargeable batteries

    DOEpatents

    Doddapaneni, N.; Wang, J.C.F.; Crocker, R.W.; Ingersoll, D.; Firsich, D.W.

    1999-03-16

    A method is described for producing carbon materials for use as electrodes in rechargeable batteries. Electrodes prepared from these carbon materials exhibit intercalation efficiencies of {approx_equal} 80% for lithium, low irreversible loss of lithium, long cycle life, are capable of sustaining a high rates of discharge and are cheap and easy to manufacture. The method comprises a novel two-step stabilization process in which polymeric precursor materials are stabilized by first heating in an inert atmosphere and subsequently heating in air. During the stabilization process, the polymeric precursor material can be agitated to reduce particle fusion and promote mass transfer of oxygen and water vapor. The stabilized, polymeric precursor materials can then be converted to a synthetic carbon, suitable for fabricating electrodes for use in rechargeable batteries, by heating to a high temperature in a flowing inert atmosphere. 4 figs.

  7. Polyoxometalate active charge-transfer material for mediated redox flow battery

    DOEpatents

    Anderson, Travis Mark; Hudak, Nicholas; Staiger, Chad; Pratt, Harry

    2017-01-17

    Redox flow batteries including a half-cell electrode chamber coupled to a current collecting electrode are disclosed herein. In a general embodiment, a separator is coupled to the half-cell electrode chamber. The half-cell electrode chamber comprises a first redox-active mediator and a second redox-active mediator. The first redox-active mediator and the second redox-active mediator are circulated through the half-cell electrode chamber into an external container. The container includes an active charge-transfer material. The active charge-transfer material has a redox potential between a redox potential of the first redox-active mediator and a redox potential of the second redox-active mediator. The active charge-transfer material is a polyoxometalate or derivative thereof. The redox flow battery may be particularly useful in energy storage solutions for renewable energy sources and for providing sustained power to an electrical grid.

  8. Effect of electrode material and design on sensitivity and selectivity for high temperature impedancemetric NOx sensors

    SciTech Connect

    Woo, L Y; Glass, R S; Novak, R F; Visser, J H

    2009-09-23

    Solid-state electrochemical sensors using two different sensing electrode compositions, gold and strontium-doped lanthanum manganite (LSM), were evaluated for gas phase sensing of NO{sub x} (NO and NO{sub 2}) using an impedance-metric technique. An asymmetric cell design utilizing porous YSZ electrolyte exposed both electrodes to the test gas (i.e., no reference gas). Sensitivity to less than 5 ppm NO and response/recovery times (10-90%) less than 10 s were demonstrated. Using an LSM sensing electrode, virtual identical sensitivity towards NO and NO{sub 2} was obtained, indicating that the equilibrium gas concentration was measured by the sensing electrode. In contrast, for cells employing a gold sensing electrode the NO{sub x} sensitivity varied depending on the cell design: increasing the amount of porous YSZ electrolyte on the sensor surface produced higher NO{sub 2} sensitivity compared to NO. In order to achieve comparable sensitivity for both NO and NO{sub 2}, the cell with the LSM sensing electrode required operation at a lower temperature (575 C) than the cell with the gold sensing electrode (650 C). The role of surface reactions are proposed to explain the differences in NO and NO{sub 2} selectivity using the two different electrode materials.

  9. Evaluation of electrode materials for all-copper hybrid flow batteries

    NASA Astrophysics Data System (ADS)

    Leung, Puiki; Palma, Jesus; Garcia-Quismondo, Enrique; Sanz, Laura; Mohamed, M. R.; Anderson, Marc

    2016-04-01

    This work evaluates a number of two- and three-dimensional electrodes for the reactions of an all-copper hybrid flow battery. Half- and full-cell experiments are conducted by minimizing the crossover effect of the copper(II) species. The battery incorporates a Nafion® cation exchange membrane and the negative electrolyte is maintained at the monovalent (colourless) state by the incorporating copper turnings in the electrolyte reservoir. Under such conditions, the half-cell coulombic efficiencies of the negative electrode reactions are all higher than 90% regardless of electrode materials and the state-of-charge (SOC). With charge-discharge cycling the half-cell from a 0% SOC, the coulombic efficiencies of the positive electrode reactions are lower than 76% with the planar carbon electrode, which further decrease in shorter charge-discharge cycles. Polarization and half-cell charge-discharge experiments suggest that the high-surface-area electrodes effectively reduce the overpotentials and improve the coulombic efficiencies of both electrode reactions. When copper fibres and carbon felt are used as the negative and positive electrodes, the average coulombic and voltage efficiencies of an all-copper flow battery are as high as c.a. 99% and c.a. 60% at 50 mA cm-2 for 35 cycles.

  10. High frequency reference electrode

    DOEpatents

    Kronberg, James W.

    1994-01-01

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or "halo" at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes.

  11. High frequency reference electrode

    DOEpatents

    Kronberg, J.W.

    1994-05-31

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or halo' at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes. 4 figs.

  12. Effect of the electrode material on the breakdown voltage and space charge distribution of propylene carbonate under impulse voltage

    NASA Astrophysics Data System (ADS)

    Yang, Qing; Jin, Yang; Sima, Wenxia; Liu, Mengna

    2016-04-01

    This paper reports three types of electrode materials (copper, aluminum, and stainless steel) that are used to measure the impulse breakdown voltage of propylene carbonate. The breakdown voltage of propylene carbonate with these electrode materials is different and is in decreasing order of stainless steel, copper, and aluminum. To explore how the electrode material affects the insulating properties of the liquid dielectric, the electric field distribution and space charge distribution of propylene carbonate under impulse voltage with the three electrode materials are measured on the basis of a Kerr electro-optic test. The space charge injection ability is highest for aluminum, followed by copper, and then the stainless steel electrodes. Furthermore, the electric field distortion rate decreased in the order of the aluminum, copper, and then the stainless steel electrode. This paper explains that the difference in the electric field distortion rate between the three electrode materials led to the difference in the impulse breakdown voltage of propylene carbonate.

  13. Mechanically Active Electrospun Materials

    NASA Astrophysics Data System (ADS)

    Robertson, Jaimee M.

    Electrospinning, a technique used to fabricate small diameter polymer fibers, has been employed to develop unique, active materials falling under two categories: (1) shape memory elastomeric composites (SMECs) and (2) water responsive fiber mats. (1) Previous work has characterized in detail the properties and behavior of traditional SMECs with isotropic fibers embedded in an elastomer matrix. The current work has two goals: (i) characterize laminated anisotropic SMECs and (ii) develop a fabrication process that is scalable for commercial SMEC manufacturing. The former ((i)) requires electrospinning aligned polymer fibers. The aligned fibers are similarly embedded in an elastomer matrix and stacked at various fiber orientations. The resulting laminated composite has a unique response to tensile deformation: after stretching and releasing, the composite curls. This curling response was characterized based on fiber orientation. The latter goal ((ii)) required use of a dual-electrospinning process to simultaneously electrospin two polymers. This fabrication approach incorporated only industrially relevant processing techniques, enabling the possibility of commercial application of a shape memory rubber. Furthermore, the approach had the added benefit of increased control over composition and material properties. (2) The strong elongational forces experienced by polymer chains during the electrospinning process induce molecular alignment along the length of electrospun fibers. Such orientation is maintained in the fibers as the polymer vitrifies. Consequently, residual stress is stored in electrospun fiber mats and can be recovered by heating through the polymer's glass transition temperature. Alternatively, the glass transition temperature can be depressed by introducing a plasticizing agent. Poly(vinyl acetate) (PVAc) is plasticized by water, and its glass transition temperature is lowered below room temperature. Therefore, the residual stress can be relaxed at room

  14. Studies on two classes of positive electrode materials for lithium-ion batteries

    SciTech Connect

    Wilcox, James Douglas

    2008-12-01

    The development of advanced lithium-ion batteries is key to the success of many technologies, and in particular, hybrid electric vehicles. In addition to finding materials with higher energy and power densities, improvements in other factors such as cost, toxicity, lifetime, and safety are also required. Lithium transition metal oxide and LiFePO4/C composite materials offer several distinct advantages in achieving many of these goals and are the focus of this report. Two series of layered lithium transition metal oxides, namely LiNi1/3Co1/3-yMyMn1/3O2 (M=Al, Co, Fe, Ti) and LiNi0.4Co0.2-yMyMn0.4O2 (M = Al, Co, Fe), have been synthesized. The effect of substitution on the crystal structure is related to shifts in transport properties and ultimately to the electrochemical performance. Partial aluminum substitution creates a high-rate positive electrode material capable of delivering twice the discharge capacity of unsubstituted materials. Iron substituted materials suffer from limited electrochemical performance and poor cycling stability due to the degradation of the layered structure. Titanium substitution creates a very high rate positive electrode material due to a decrease in the anti-site defect concentration. LiFePO4 is a very promising electrode material but suffers from poor electronic and ionic conductivity. To overcome this, two new techniques have been developed to synthesize high performance LiFePO4/C composite materials. The use of graphitization catalysts in conjunction with pyromellitic acid leads to a highly graphitic carbon coating on the surface of LiFePO4 particles. Under the proper conditions, the room temperature electronic conductivity can be improved by nearly five orders of magnitude over untreated materials. Using Raman spectroscopy, the improvement in conductivity and rate performance of

  15. Recent progress in nickel based materials for high performance pseudocapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Feng, Liangdong; Zhu, Yufu; Ding, Hongyan; Ni, Chaoying

    2014-12-01

    Nickel based materials have been intensively investigated and considered as good potential electrode materials for pseudocapacitors due to their high theoretical specific capacity values, high chemical and thermal stability, ready availability, environmentally benign nature and lower cost. This review firstly examines recent progress in nickel oxides or nickel hydroxides for high performance pseudocapacitor electrodes. The advances of hybrid electrodes are then assessed to include hybrid systems of nickel based materials with compounds such as carbonaceous materials, metal and transition metal oxides or hydroxides, in which various strategies have been adopted to improve the electrical conductivity of nickel oxides or hydroxides. Furthermore, the energy density and power density of some recently reported NiO, nickel based composites and NiCo2O4 are summarized and discussed. Finally, we provide some perspectives as to the future directions of this intriguing field.

  16. High-capacity electrode materials for electrochemical energy storage: Role of nanoscale effects

    DOE PAGES

    Nanda, Jagjit; Martha, Surendra K.; Kalyanaraman, Ramki

    2015-06-02

    In this review, we summarize the current state-of-the art electrode materials used for high-capacity lithium-ion-based batteries and their significant role towards revolutionizing the electrochemical energy storage landscape in the area of consumer electronics, transportation and grid storage application. We discuss the role of nanoscale effects on the electrochemical performance of high-capacity battery electrode materials. Decrease in the particle size of the primary electrode materials from micron to nanometre size improves the ionic and electronic diffusion rates significantly. Nanometre-thick solid electrolyte (such as lithium phosphorous oxynitride) and oxides (such as Al2O3, ZnO, TiO2 etc.) material coatings also improve the interfacial stabilitymore » and rate capability of a number of battery chemistries. Finally, we elucidate these effects in terms of different high-capacity battery chemistries based on intercalation and conversion mechanism.« less

  17. High-capacity electrode materials for electrochemical energy storage: Role of nanoscale effects

    SciTech Connect

    Nanda, Jagjit; Martha, Surendra K.; Kalyanaraman, Ramki

    2015-06-02

    In this review, we summarize the current state-of-the art electrode materials used for high-capacity lithium-ion-based batteries and their significant role towards revolutionizing the electrochemical energy storage landscape in the area of consumer electronics, transportation and grid storage application. We discuss the role of nanoscale effects on the electrochemical performance of high-capacity battery electrode materials. Decrease in the particle size of the primary electrode materials from micron to nanometre size improves the ionic and electronic diffusion rates significantly. Nanometre-thick solid electrolyte (such as lithium phosphorous oxynitride) and oxides (such as Al2O3, ZnO, TiO2 etc.) material coatings also improve the interfacial stability and rate capability of a number of battery chemistries. Finally, we elucidate these effects in terms of different high-capacity battery chemistries based on intercalation and conversion mechanism.

  18. PEDOT-based composites as electrode materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhao, Zhiheng; Richardson, Georgia F.; Meng, Qingshi; Zhu, Shenmin; Kuan, Hsu-Chiang; Ma, Jun

    2016-01-01

    Poly (3, 4-ethylenedioxythiophene) (denoted PEDOT) already has a brief history of being used as an active material in supercapacitors. It has many advantages such as low-cost, flexibility, and good electrical conductivity and pseudocapacitance. However, the major drawback is low stability, which means an obvious capacitance drop after a certain number of charge-discharge cycles. Another disadvantage is its limited capacitance and this becomes an issue for industrial applications. To solve these problems, there are several approaches including the addition of conducting nanofillers to increase conductivity, and mixing or depositing metal oxide to enhance capacitance. Furthermore, expanding the surface area of PEDOT is one of the main methods to improve its performance in energy storage applications through special processes; for example using a three-dimensional substrate or preparing PEDOT aerogel through freeze drying. This paper reviews recent techniques and outcomes of PEDOT based composites for supercapacitors, as well as detailed calculations about capacitances. Finally, this paper outlines the new direction and recent challenges of PEDOT based composites for supercapacitor applications.

  19. Wurtzite copper-zinc-tin sulfide as a superior counter electrode material for dye-sensitized solar cells

    PubMed Central

    2013-01-01

    Wurtzite and kesterite Cu2ZnSnS4 (CZTS) nanocrystals were employed as counter electrode (CE) materials for dye-sensitized solar cells (DSSCs). Compared to kesterite CZTS, the wurtzite CZTS exhibited higher electrocatalytic activity for catalyzing reduction of iodide electrolyte and better conductivity. Accordingly, the DSSC with wurtzite CZTS CE generated higher power conversion efficiency (6.89%) than that of Pt (6.23%) and kesterite CZTS (4.89%) CEs. PMID:24191954

  20. Biochar as a sustainable electrode material for electricity production in microbial fuel cells.

    PubMed

    Huggins, Tyler; Wang, Heming; Kearns, Joshua; Jenkins, Peter; Ren, Zhiyong Jason

    2014-04-01

    Wood-based biochars were used as microbial fuel cell electrodes to significantly reduce cost and carbon footprint. The biochar was made using forestry residue (BCc) and compressed milling residue (BCp). Side-by-side comparison show the specific area of BCp (469.9m(2)g(-1)) and BCc (428.6cm(2)g(-1)) is lower than granular activated carbon (GAC) (1247.8m(2)g(-1)) but higher than graphite granule (GG) (0.44m(2)g(-1)). Both biochars showed power outputs of 532±18mWm(-2) (BCp) and 457±20mWm(-2) (BCc), comparable with GAC (674±10mWm(-2)) and GG (566±5mWm(-2)). However, lower material expenses made their power output cost 17-35US$W(-1), 90% cheaper than GAC (402US$W(-1)) or GG (392US$W(-1)). Biochar from waste also reduced the energy and carbon footprint associated with electrode manufacturing and the disposal of which could have additional agronomic benefits.

  1. Interconnecting Carbon Fibers with the In-situ Electrochemically Exfoliated Graphene as Advanced Binder-free Electrode Materials for Flexible Supercapacitor.

    PubMed

    Zou, Yuqin; Wang, Shuangyin

    2015-07-07

    Flexible energy storage devices are highly demanded for various applications. Carbon cloth (CC) woven by carbon fibers (CFs) is typically used as electrode or current collector for flexible devices. The low surface area of CC and the presence of big gaps (ca. micro-size) between individual CFs lead to poor performance. Herein, we interconnect individual CFs through the in-situ exfoliated graphene with high surface area by the electrochemical intercalation method. The interconnected CFs are used as both current collector and electrode materials for flexible supercapacitors, in which the in-situ exfoliated graphene act as active materials and conductive "binders". The in-situ electrochemical intercalation technique ensures the low contact resistance between electrode (graphene) and current collector (carbon cloth) with enhanced conductivity. The as-prepared electrode materials show significantly improved performance for flexible supercapacitors.

  2. Li-Rich Li-Si Alloy As A Lithium-Containing Negative Electrode Material Towards High Energy Lithium-Ion Batteries

    PubMed Central

    Iwamura, Shinichiroh; Nishihara, Hirotomo; Ono, Yoshitaka; Morito, Haruhiko; Yamane, Hisanori; Nara, Hiroki; Osaka, Tetsuya; Kyotani, Takashi

    2015-01-01

    Lithium-ion batteries (LIBs) are generally constructed by lithium-including positive electrode materials, such as LiCoO2, and lithium-free negative electrode materials, such as graphite. Recently, lithium-free positive electrode materials, such as sulfur, are gathering great attention from their very high capacities, thereby significantly increasing the energy density of LIBs. Though the lithium-free materials need to be combined with lithium-containing negative electrode materials, the latter has not been well developed yet. In this work, the feasibility of Li-rich Li-Si alloy is examined as a lithium-containing negative electrode material. Li-rich Li-Si alloy is prepared by the melt-solidification of Li and Si metals with the composition of Li21Si5. By repeating delithiation/lithiation cycles, Li-Si particles turn into porous structure, whereas the original particle size remains unchanged. Since Li-Si is free from severe constriction/expansion upon delithiation/lithiation, it shows much better cyclability than Si. The feasibility of the Li-Si alloy is further examined by constructing a full-cell together with a lithium-free positive electrode. Though Li-Si alloy is too active to be mixed with binder polymers, the coating with carbon-black powder by physical mixing is found to prevent the undesirable reactions of Li-Si alloy with binder polymers, and thus enables the construction of a more practical electrochemical cell. PMID:25626879

  3. Li-rich Li-Si alloy as a lithium-containing negative electrode material towards high energy lithium-ion batteries.

    PubMed

    Iwamura, Shinichiroh; Nishihara, Hirotomo; Ono, Yoshitaka; Morito, Haruhiko; Yamane, Hisanori; Nara, Hiroki; Osaka, Tetsuya; Kyotani, Takashi

    2015-01-28

    Lithium-ion batteries (LIBs) are generally constructed by lithium-including positive electrode materials, such as LiCoO2, and lithium-free negative electrode materials, such as graphite. Recently, lithium-free positive electrode materials, such as sulfur, are gathering great attention from their very high capacities, thereby significantly increasing the energy density of LIBs. Though the lithium-free materials need to be combined with lithium-containing negative electrode materials, the latter has not been well developed yet. In this work, the feasibility of Li-rich Li-Si alloy is examined as a lithium-containing negative electrode material. Li-rich Li-Si alloy is prepared by the melt-solidification of Li and Si metals with the composition of Li21Si5. By repeating delithiation/lithiation cycles, Li-Si particles turn into porous structure, whereas the original particle size remains unchanged. Since Li-Si is free from severe constriction/expansion upon delithiation/lithiation, it shows much better cyclability than Si. The feasibility of the Li-Si alloy is further examined by constructing a full-cell together with a lithium-free positive electrode. Though Li-Si alloy is too active to be mixed with binder polymers, the coating with carbon-black powder by physical mixing is found to prevent the undesirable reactions of Li-Si alloy with binder polymers, and thus enables the construction of a more practical electrochemical cell.

  4. LDHs as electrode materials for electrochemical detection and energy storage: supercapacitor, battery and (bio)-sensor.

    PubMed

    Mousty, Christine; Leroux, Fabrice

    2012-11-01

    From an exhaustive overview based on applicative academic literature and patent domain, the relevance of Layered Double Hydroxide (LDHs) as electrode materials for electrochemical detection of organic molecules having environmental or health impact and energy storage is evaluated. Specifically the focus is driven on their application as supercapacitor, alkaline or lithium battery and (bio)-sensor. Inherent to the high versatility of their chemical composition, charge density, anion exchange capability, LDH-based materials are extensively studied and their performances for such applications are reported. Indeed the analytical characteristics (sensitivity and detection limit) of LDH-based electrodes are scrutinized, and their specific capacity or capacitance as electrode battery or supercapacitor materials, are detailed.

  5. Electrical characterization of conductive textile materials and its evaluation as electrodes for venous occlusion plethysmography.

    PubMed

    Goy, C B; Dominguez, J M; Gómez López, M A; Madrid, R E; Herrera, M C

    2013-08-01

    The ambulatory monitoring of biosignals involves the use of sensors, electrodes, actuators, processing tools and wireless communication modules. When a garment includes these elements with the purpose of recording vital signs and responding to specific situations it is call a 'Smart Wearable System'. Over the last years several authors have suggested that conductive textile material (e-textiles) could perform as electrode for these systems. This work aims at implementing an electrical characterization of e-textiles and an evaluation of their ability to act as textile electrodes for lower extremity venous occlusion plethysmography (LEVOP). The e-textile electrical characterization is carried out using two experimental set-ups (in vitro evaluation). Besides, LEVOP records are obtained from healthy volunteers (in vivo evaluation). Standard Ag/AgCl electrodes are used for comparison in all tests. Results shown that the proposed e-textiles are suitable for LEVOP recording and a good agreement between evaluations (in vivo and in vitro) is found.

  6. Combination of a novel electrode material and artificial mediators to enhance power generation in an MFC.

    PubMed

    Taskan, Ergin; Ozkaya, Bestamin; Hasar, Halil

    2015-01-01

    This study focuses on two main aspects: developing a novel cost-effective electrode material and power production from domestic wastewater using three different mediators. Methylene blue (MB), neutral red (NR) and 2-hydroxy-1,4-naphthoquinone (HNQ) were selected as electrode mediators with different concentrations. A tin-coated copper mesh electrode was tested as anode electrode. Maximum power density of the microbial fuel cell (MFC) with 300 μM MB was 636 mW/m². Optimal mediator concentrations with respect to the achieved maximum power output for MB, NR and HNQ were 300 μM, 200 μM and 50 μM, respectively. The results demonstrate that tin-coated copper mesh showed a higher biocompatibility and electrical conductivity.

  7. Laser printing and femtosecond laser structuring of electrode materials for the manufacturing of 3D lithium-ion micro-batteries

    NASA Astrophysics Data System (ADS)

    Smyrek, P.; Kim, H.; Zheng, Y.; Seifert, H. J.; Piqué, A.; Pfleging, W.

    2016-04-01

    Recently, three-dimensional (3D) electrode architectures have attracted great interest for the development of lithium-ion micro-batteries applicable for Micro-Electro-Mechanical Systems (MEMS), sensors, and hearing aids. Since commercial available micro-batteries are mainly limited in overall cell capacity by their electrode footprint, new processing strategies for increasing both capacity and electrochemical performance have to be developed. In case of such standard microbatteries, two-dimensional (2D) electrode arrangements are applied with thicknesses up to 200 μm. These electrode layers are composed of active material, conductive agent, graphite, and polymeric binder. Nevertheless, with respect to the type of active material, the active material to conductive agent ratio, and the film thickness, such thick-films suffer from low ionic and electronic conductivities, poor electrolyte accessibility, and finally, limited electrochemical performance under challenging conditions. In order to overcome these drawbacks, 3D electrode arrangements are under intense investigation since they allow the reduction of lithium-ion diffusion pathways in between inter-digitated electrodes, even for electrodes with enhanced mass loadings. In this paper, we present how to combine laser-printing and femtosecond laser-structuring for the development of advanced 3D electrodes composed of Li(Ni1/3Mn1/3Co1/3)O2 (NMC). In a first step, NMC thick-films were laser-printed and calendered to achieve film thicknesses in the range of 50 μm - 80 μm. In a second step, femtosecond laser-structuring was carried out in order to generate 3D architectures directly into thick-films. Finally, electrochemical cycling of laser-processed films was performed in order to evaluate the most promising 3D electrode designs suitable for application in long life-time 3D micro-batteries.

  8. Study of the contributions of the electrode materials to the plasma of a high-current vacuum spark

    SciTech Connect

    Bashutin, O. A.; Vovchenko, E. D.; Dodulad, E. I.; Savjolov, A. S.; Sarantsev, S. A.

    2012-03-15

    The contribution of the electrode material to the formation of the plasma of a low-inductive high-current vacuum spark and its influence on the process of discharge micropinching were studied using X-ray spectroscopy and laser diagnostics. Electrode system configurations are determined in which the contributions of the materials of both electrodes to the plasma emitting X-rays are comparable and in which the contribution of one electrode is dominating. It is found that discharge pinching occurs primarily in the vapor of the pointed electrode independently of its polarity. The experimental results indicate the formation of a suprathermal electron beam in the micropinch region.

  9. Transition-Metal Carbodiimides as Molecular Negative Electrode Materials for Lithium- and Sodium-Ion Batteries with Excellent Cycling Properties.

    PubMed

    Sougrati, Moulay T; Darwiche, Ali; Liu, Xiaohiu; Mahmoud, Abdelfattah; Hermann, Raphael P; Jouen, Samuel; Monconduit, Laure; Dronskowski, Richard; Stievano, Lorenzo

    2016-04-11

    We report evidence for the electrochemical activity of transition-metal carbodiimides versus lithium and sodium. In particular, iron carbodiimide, FeNCN, can be efficiently used as negative electrode material for alkali-metal-ion batteries, similar to its oxide analogue FeO. Based on (57)Fe Mössbauer and infrared spectroscopy (IR) data, the electrochemical reaction mechanism can be explained by the reversible transformation of the Fe-NCN into Li/Na-NCN bonds during discharge and charge. These new electrode materials exhibit higher capacity compared to well-established negative electrode references such as graphite or hard carbon. Contrary to its oxide analogue, iron carbodiimide does not require heavy treatments (such as nanoscale tailoring, sophisticated textures, or coating) to obtain long cycle life with current density as high as 9 A g(-1) for hundreds of charge-discharge cycles. Similar to the iron compound, several other transition-metal carbodiimides M(x)(NCN)y with M=Mn, Cr, Zn can cycle successfully versus lithium and sodium. Their electrochemical activity and performance open the way to the design of a novel family of anode materials.

  10. Transition-Metal Carbodiimides as Molecular Negative Electrode Materials for Lithium- and Sodium-Ion Batteries with Excellent Cycling Properties

    DOE PAGES

    Sougrati, Moulay T.; Darwiche, Ali; Liu, Xiaohiu; ...

    2016-03-16

    Here we report evidence for the electrochemical activity of transition-metal carbodiimides versus lithium and sodium. In particular, iron carbodiimide, FeNCN, can be efficiently used as a negative electrode material for alkali-metal-ion batteries, similar to its oxide analogue FeO. Based on 57Fe M ssbauer and infrared spectroscopy (IR) data, the electrochemical reaction mechanism can be explained by the reversible transformation of the Fe NCN into Li/Na NCN bonds during discharge and charge. These new electrode materials exhibit higher capacity compared to well-established negative electrode references such as graphite or hard carbon. Contrary to its oxide analogue, iron carbodiimide does not requiremore » heavy treatments (nanoscale tailoring, sophisticated textures, coating etc.) to obtain long cycle life with density current as high as 9 A/g-1 for hundreds of charge/discharge cycles. Similar to the iron compound, several other transition-metal carbodiimides Mx(NCN)y with M = Mn, Cr, Zn can cycle successfully versus lithium and sodium. Ultimately, their electrochemical activity and performances open the way to the design of a novel family of anode materials.« less

  11. Transition-Metal Carbodiimides as Molecular Negative Electrode Materials for Lithium- and Sodium-Ion Batteries with Excellent Cycling Properties

    SciTech Connect

    Sougrati, Moulay T.; Darwiche, Ali; Liu, Xiaohiu; Mahmoud, Abdelfattah; Hermann, Raphael P.; Jouen, Samuel; Monconduit, Laure; Dronskowski, Richard; Stievano, Lorenzo

    2016-03-16

    Here we report evidence for the electrochemical activity of transition-metal carbodiimides versus lithium and sodium. In particular, iron carbodiimide, FeNCN, can be efficiently used as a negative electrode material for alkali-metal-ion batteries, similar to its oxide analogue FeO. Based on 57Fe M ssbauer and infrared spectroscopy (IR) data, the electrochemical reaction mechanism can be explained by the reversible transformation of the Fe NCN into Li/Na NCN bonds during discharge and charge. These new electrode materials exhibit higher capacity compared to well-established negative electrode references such as graphite or hard carbon. Contrary to its oxide analogue, iron carbodiimide does not require heavy treatments (nanoscale tailoring, sophisticated textures, coating etc.) to obtain long cycle life with density current as high as 9 A/g-1 for hundreds of charge/discharge cycles. Similar to the iron compound, several other transition-metal carbodiimides Mx(NCN)y with M = Mn, Cr, Zn can cycle successfully versus lithium and sodium. Ultimately, their electrochemical activity and performances open the way to the design of a novel family of anode materials.

  12. Calcium manganite as oxygen electrode materials for reversible solid oxide fuel cell.

    PubMed

    Ni, Chengsheng; Irvine, John T S

    2015-01-01

    For an efficient high-temperature reversible solid oxide fuel cell (RSOFC), the oxygen electrode should be highly active for the conversion between oxygen anions and oxygen gas. CaMnO(3-δ) (CM) is a perovskite that can be readily reduced with the formation of Mn(3+) giving rise to oxygen defective phases. CM is examined here as the oxygen electrode for a RSOFC. CaMn(0.9)Nb(0.1)O(3-δ) (CMN) with Nb doping shows superior electric conductivity (125 S cm(-1) at 700 °C) compared with CM (1-5 S cm(-1) at 700 °C) in air which is also examined for comparison. X-ray diffraction (XRD) data show that CM and CMN are compatible with the widely used yttria-stabilized zirconia (YSZ) electrolyte up to 950 °C. Both materials show a thermal expansion coefficient (TEC) close to 10.8-10.9 ppm K(-1) in the temperature range between 100-750 °C, compatible with that of YSZ. Polarization curves and electrochemical impedance spectra for both fuel cell and steam electrolysis modes were investigated at 700 °C, showing that CM presented a polarization resistance of 0.059 Ω cm(2) under a cathodic bias of -0.4 V while CMN gave a polarization resistance of 0.081 Ω cm(2) under an anodic bias of 0.4 V. The phase stability up to 900 °C of these materials was investigated with thermogravimetric analysis (TGA) and variable temperature XRD.

  13. Hydrothermal synthesis of nanostructured graphene/polyaniline composites as high-capacitance electrode materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Wang, Ronghua; Han, Meng; Zhao, Qiannan; Ren, Zonglin; Guo, Xiaolong; Xu, Chaohe; Hu, Ning; Lu, Li

    2017-03-01

    As known to all, hydrothermal synthesis is a powerful technique for preparing inorganic and organic materials or composites with different architectures. In this reports, by controlling hydrothermal conditions, nanostructured polyaniline (PANi) in different morphologies were composited with graphene sheets (GNS) and used as electrode materials of supercapacitors. Specifically, ultrathin PANi layers with total thickness of 10–20 nm are uniformly composited with GNS by a two-step hydrothermal-assistant chemical oxidation polymerization process; while PANi nanofibers with diameter of 50~100 nm are obtained by a one-step direct hydrothermal process. Benefitting from the ultrathin layer and porous structure, the sheet-like GNS/PANi composites can deliver specific capacitances of 532.3 to 304.9 F/g at scan rates of 2 to 50 mV/s. And also, this active material showed very good stability with capacitance retention as high as ~99.6% at scan rate of 50 mV/s, indicating a great potential for using in supercapacitors. Furthermore, the effects of hydrothermal temperatures on the electrochemical performances were systematically studied and discussed.

  14. Hydrothermal synthesis of nanostructured graphene/polyaniline composites as high-capacitance electrode materials for supercapacitors.

    PubMed

    Wang, Ronghua; Han, Meng; Zhao, Qiannan; Ren, Zonglin; Guo, Xiaolong; Xu, Chaohe; Hu, Ning; Lu, Li

    2017-03-14

    As known to all, hydrothermal synthesis is a powerful technique for preparing inorganic and organic materials or composites with different architectures. In this reports, by controlling hydrothermal conditions, nanostructured polyaniline (PANi) in different morphologies were composited with graphene sheets (GNS) and used as electrode materials of supercapacitors. Specifically, ultrathin PANi layers with total thickness of 10-20 nm are uniformly composited with GNS by a two-step hydrothermal-assistant chemical oxidation polymerization process; while PANi nanofibers with diameter of 50~100 nm are obtained by a one-step direct hydrothermal process. Benefitting from the ultrathin layer and porous structure, the sheet-like GNS/PANi composites can deliver specific capacitances of 532.3 to 304.9 F/g at scan rates of 2 to 50 mV/s. And also, this active material showed very good stability with capacitance retention as high as ~99.6% at scan rate of 50 mV/s, indicating a great potential for using in supercapacitors. Furthermore, the effects of hydrothermal temperatures on the electrochemical performances were systematically studied and discussed.

  15. Nitrogen-doped reduced graphene oxide as electrode material for high rate supercapacitors

    NASA Astrophysics Data System (ADS)

    Śliwak, Agata; Grzyb, Bartosz; Díez, Noel; Gryglewicz, Grażyna

    2017-03-01

    Nitrogen-doped reduced graphene oxides (N-rGOs) have been synthesized at various temperatures by a facile hydrothermal route involving the doping of an aqueous graphene oxide dispersion with amitrole. The N-rGOs had a nitrogen content ranging from 10.9 to 13.4 at%, which is among the highest reported for this type of material. The predominant nitrogen species were pyridinic followed by amide/amine, pyrrolic, and quaternary nitrogen. Cyclic voltammetry and impedance spectroscopy measurements performed on the N-doped and nitrogen-free samples revealed that nitrogen fixation provided the material with pseudocapacitive behaviour and improved ion diffusion and charge propagation. A high specific capacitance of 244 F g-1 was obtained at a high scan rate of 100 mV s-1 for the N-rGO with the highest nitrogen content. An outstanding rate capability for the N-rGO, with increasing scan rates, of 98% was obtained, while only 70% was obtained for the non-doped rGO. 92% of the initial capacitance was maintained over 5000 charge/discharge cycles due to the high stability of the electrochemically active nitrogen moieties. Hydrothermal synthesis using amitrole as a nitrogen dopant represents a simple route for the synthesis of graphene with very high nitrogen content and exceptional behaviour for use as electrode material in high-power supercapacitors.

  16. Hydrothermal synthesis of nanostructured graphene/polyaniline composites as high-capacitance electrode materials for supercapacitors

    PubMed Central

    Wang, Ronghua; Han, Meng; Zhao, Qiannan; Ren, Zonglin; Guo, Xiaolong; Xu, Chaohe; Hu, Ning; Lu, Li

    2017-01-01

    As known to all, hydrothermal synthesis is a powerful technique for preparing inorganic and organic materials or composites with different architectures. In this reports, by controlling hydrothermal conditions, nanostructured polyaniline (PANi) in different morphologies were composited with graphene sheets (GNS) and used as electrode materials of supercapacitors. Specifically, ultrathin PANi layers with total thickness of 10–20 nm are uniformly composited with GNS by a two-step hydrothermal-assistant chemical oxidation polymerization process; while PANi nanofibers with diameter of 50~100 nm are obtained by a one-step direct hydrothermal process. Benefitting from the ultrathin layer and porous structure, the sheet-like GNS/PANi composites can deliver specific capacitances of 532.3 to 304.9 F/g at scan rates of 2 to 50 mV/s. And also, this active material showed very good stability with capacitance retention as high as ~99.6% at scan rate of 50 mV/s, indicating a great potential for using in supercapacitors. Furthermore, the effects of hydrothermal temperatures on the electrochemical performances were systematically studied and discussed. PMID:28291246

  17. Tungsten materials as durable catalyst supports for fuel cell electrodes

    NASA Astrophysics Data System (ADS)

    Perchthaler, M.; Ossiander, T.; Juhart, V.; Mitzel, J.; Heinzl, C.; Scheu, C.; Hacker, V.

    2013-12-01

    Durable platinum catalyst support materials, e.g. tungsten carbide (WC), tungsten oxide (WOx) and self-synthesized tungsten oxide (WOxs) were evaluated for the use in High-Temperature Proton Exchange Fuel Cells (HT-PEM) based on phosphoric acid doped polybenzimidazole as electrolyte. The support materials and the catalyst loaded support materials were characterized ex-situ by cyclic voltammetry in HClO4, potential cycling, CO-stripping, electron microscopy and X-ray diffraction measurements. The tungsten oxide and tungsten carbide based supported catalysts were compared to High Surface Area Carbon (HSAC), each coated with platinum via the same in-house manufacturing procedures. The in-house manufacturing procedures resulted in catalyst particle sizes on HSAC of 3-4 nm with a uniform distribution. The in-situ Potential Cycling experiments of WOx or WOxs supported catalysts showed much lower degradation rates compared to High Surface Area Carbons. The formation of WOx species on WC was proven by ex- and in-situ cyclic voltammetric studies and thermogravimetric analyses. X-ray diffraction, ex-situ cyclic voltammetry and in-situ cyclic voltammetry showed that WOx is formed from WC as starting material under oxidizing conditions. Finally a 1000 h durability test with WOx as catalyst support material on the anode was done in a HT-PEM fuel cell with reformed methanol on the anode.

  18. Investigation of materials for inert electrodes in aluminum electrodeposition cells

    SciTech Connect

    Haggerty, J. S.; Sadoway, D. R.

    1987-09-14

    Work was divided into major efforts. The first was the growth and characterization of specimens; the second was Hall cell performance testing. Cathode and anode materials were the subject of investigation. Preparation of specimens included growth of single crystals and synthesis of ultra high purity powders. Special attention was paid to ferrites as they were considered to be the most promising anode materials. Ferrite anode corrosion rates were studied and the electrical conductivities of a set of copper-manganese ferrites were measured. Float Zone, Pendant Drop Cryolite Experiments were undertaken because unsatisfactory choices of candidate materials were being made on the basis of a flawed set of selection criteria applied to an incomplete and sometimes inaccurate data base. This experiment was then constructed to determine whether the apparatus used for float zone crystal growth could be adapted to make a variety of important based melts and their interactions with candidate inert anode materials. The third major topic was Non Consumable Anode (Data Base, Candidate Compositions), driven by our perception that the basis for prior selection of candidate materials was inadequate. Results are presented. 162 refs., 39 figs., 18 tabs.

  19. Investigation of materials for inert electrodes in aluminum electrodeposition cells

    NASA Astrophysics Data System (ADS)

    Haggerty, J. S.; Sadoway, D. R.

    1987-09-01

    Work was divided into major efforts. The first was the growth and characterization of specimens; the second was Hall cell performance testing. Cathode and anode materials were the subject of investigation. Preparation of specimens included growth of single crystals and synthesis of ultra high purity powders. Special attention was paid to ferrites as they were considered to be the most promising anode materials. Ferrite anode corrosion rates were studied and the electrical conductivities of a set of copper-manganese ferrites were measured. Float Zone, Pendant Drop Cryolite Experiments were undertaken because unsatisfactory choices of candidate materials were being made on the basis of a flawed set of selection criteria applied to an incomplete and sometimes inaccurate data base. This experiment was then constructed to determine whether the apparatus used for float zone crystal growth could be adapted to make a variety of important based melts and their interactions with candidate inert anode materials. Compositions), driven by our perception that the basis for prior selection of candidate materials was inadequate. Results are presented.

  20. High surface area electrode materials by direct metallization of porous substrates

    SciTech Connect

    Chyan, O.; Chen, J.J.; Liu, M.; Richmond, M.G.; Yang, K.

    1995-12-31

    Recent advances in high surface area (HSA) electrode materials have played an important role in the development of high-performance batteries and fuel cells. HSA electrodes can significantly increase the power-density of batteries and fuel cells by enhancing the heterogeneous electrochemical reaction rate and concurrently reducing battery and fuel cell size and weight. The compactness of HSA electrodes can also reduce the ohmic potential drop, which has the clear advantage of reducing power losses. This paper reports results on utilizing direct metallization of porous substrates to prepare new HSA electrode materials. Specifically, Nickel HSA electrode materials, relevant to the Ni-Cd and metal-hydride rechargeable batteries, were prepared on porous carbon substrates by direct thermolysis of organometallic precursors and/or electroless Ni plating. SEM and XPS characterization results indicate a Ni metallic film was conformally coated over the porous carbon skeleton. The real electroactive areas were determined electrochemically in NaOH solution and results will be discussed in correlation with the metallization conditions.

  1. Electrode material dependence of two-dimensional electron and vapour density distribution over vacuum arc discharge

    NASA Astrophysics Data System (ADS)

    Inada, Y.; Matsuoka, S.; Kumada, A.; Ikeda, H.; Hidaka, K.

    2017-03-01

    Electrode material dependence of intense-mode vacuum arc behaviour was systematically investigated by using the Shack-Hartmann method capable of simultaneously visualising two-dimensional electron and metal vapour density distributions from single-shot recordings. The electrode materials studied included Cu, CuCr (Cu75Cr25 wt. %), WC, and AgWC (Ag40WC60 wt. %). A comparison between the Cu and CuCr electrodes showed that the metal vapour densities for the CuCr decreased in an even shorter time scale than for the Cu. In the case of the WC electrodes, the widths of the electron density distributions became narrower as the arc current decreased although the electron densities hardly decreased in the decaying process of the arc current. The density measurements conducted at the late stage of the vacuum arcs demonstrated that the metal vapour densities around the anode were maintained at the highest value for the AgWC among the electrode materials in this study.

  2. Electrode materials for hydrobromic acid electrolysis in Texas Instruments' solar chemical converter

    SciTech Connect

    Luttmer, J.D.; Konrad, D.; Trachtenberg, I.

    1985-05-01

    Texas Instruments has developed a solar chemical converter (SCC) which converts solar energy into chemical energy via the electrolysis of hydrobromic acid. Various materials were evaluated as anodes and cathodes for the electrolysis of the acid. Emphasis was placed on obtaining low overvoltage electrodes with good long-term stability. Sputtered platinum-iridium thin films were identified as the best choice as the cathode material, and sputtered iridium and iridium oxide thin films were identified as the best choice as anode materials. Electrochemical measurements indicate that low overvoltage losses are encountered on these materials at operating current densitities in the SCC. Accelerated corrosion tests of the materials predict acceptable electrode stability for 20 years in an environment representative of onthe-roof service.

  3. Microbial community structure of different electrode materials in constructed wetland incorporating microbial fuel cell.

    PubMed

    Wang, Junfeng; Song, Xinshan; Wang, Yuhui; Abayneh, Befkadu; Ding, Yi; Yan, Denghua; Bai, Junhong

    2016-12-01

    The microbial fuel cell coupled with constructed wetland (CW-MFC) microcosms were operated under fed-batch mode for evaluating the effect of electrode materials on bioelectricity generation and microbial community composition. Experimental results indicated that the bioenergy output in CW-MFC increased with the substrate concentration; maximum average voltage (177mV) was observed in CW-MFC with carbon fiber felt (CFF). In addition, the four different materials resulted in the formation of significantly different microbial community distribution around the anode electrode. The relative abundance of Proteobacteria in CFF and foamed nickel (FN) was significantly higher than that in stainless steel mesh (SSM) and graphite rod (GR) samples. Notably, the findings indicate that CW-MFC utilizing FN anode electrode could apparently improve relative abundance of Dechloromonas, which has been regarded as a denitrifying and phosphate accumulating microorganism.

  4. Synthesis of NiMnO3/C nano-composite electrode materials for electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Kakvand, Pejman; Safi Rahmanifar, Mohammad; El-Kady, Maher F.; Pendashteh, Afshin; Kiani, Mohammad Ali; Hashami, Masumeh; Najafi, Mohsen; Abbasi, Ali; Mousavi, Mir F.; Kaner, Richard B.

    2016-08-01

    Demand for high-performance energy storage materials has motivated research activities to develop nano-engineered composites that benefit from both high-rate and high-capacitance materials. Herein, NiMnO3 (NMO) nanoparticles have been synthesized through a facile co-precipitation method. As-prepared NMO samples are then employed for the synthesis of nano-composites with graphite (Gr) and reduced graphene oxide (RGO). Various samples, including pure NMO, NMO-graphite blend, as well as NMO/Gr and NMO/RGO nano-composites have been electrochemically investigated as active materials in supercapacitors. The NMO/RGO sample exhibited a high specific capacitance of 285 F g-1 at a current density of 1 A g-1, much higher than the other samples (237 F g-1 for NMO/Gr, 170 F g-1 for NMO-Gr and 70 F g-1 for NMO). Moreover, the NMO/RGO nano-composite has shown excellent cycle stability with a 93.5% capacitance retention over 1000 cycles at 2 A g-1 and still delivered around 87% of its initial capacitance after cycling for 4000 cycles. An NMO/RGO composite was assessed in practical applications by assembling NMO/RGO//NMO/RGO symmetric devices, exhibiting high specific energy (27.3 Wh kg-1), high specific power (7.5 kW kg-1), and good cycle stability over a broad working voltage of 1.5 V. All the obtained results demonstrate the promise of NMO/RGO nano-composite as a high-performance electrode material for supercapacitors.

  5. Synthesis of NiMnO3/C nano-composite electrode materials for electrochemical capacitors.

    PubMed

    Kakvand, Pejman; Rahmanifar, Mohammad Safi; El-Kady, Maher F; Pendashteh, Afshin; Kiani, Mohammad Ali; Hashami, Masumeh; Najafi, Mohsen; Abbasi, Ali; Mousavi, Mir F; Kaner, Richard B

    2016-08-05

    Demand for high-performance energy storage materials has motivated research activities to develop nano-engineered composites that benefit from both high-rate and high-capacitance materials. Herein, NiMnO3 (NMO) nanoparticles have been synthesized through a facile co-precipitation method. As-prepared NMO samples are then employed for the synthesis of nano-composites with graphite (Gr) and reduced graphene oxide (RGO). Various samples, including pure NMO, NMO-graphite blend, as well as NMO/Gr and NMO/RGO nano-composites have been electrochemically investigated as active materials in supercapacitors. The NMO/RGO sample exhibited a high specific capacitance of 285 F g(-1) at a current density of 1 A g(-1), much higher than the other samples (237 F g(-1) for NMO/Gr, 170 F g(-1) for NMO-Gr and 70 F g(-1) for NMO). Moreover, the NMO/RGO nano-composite has shown excellent cycle stability with a 93.5% capacitance retention over 1000 cycles at 2 A g(-1) and still delivered around 87% of its initial capacitance after cycling for 4000 cycles. An NMO/RGO composite was assessed in practical applications by assembling NMO/RGO//NMO/RGO symmetric devices, exhibiting high specific energy (27.3 Wh kg(-1)), high specific power (7.5 kW kg(-1)), and good cycle stability over a broad working voltage of 1.5 V. All the obtained results demonstrate the promise of NMO/RGO nano-composite as a high-performance electrode material for supercapacitors.

  6. Plasma Characterization of Hall Thruster with Active and Passive Segmented Electrodes

    SciTech Connect

    Raitses, Y.; Staack, D.; Fisch, N.J.

    2002-09-04

    Non-emissive electrodes and ceramic spacers placed along the Hall thruster channel are shown to affect the plasma potential distribution and the thruster operation. These effects are associated with physical properties of the electrode material and depend on the electrode configuration, geometry and the magnetic field distribution. An emissive segmented electrode was able to maintain thruster operation by supplying an additional electron flux to sustain the plasma discharge between the anode and cathode neutralizer. These results indicate the possibility of new configurations for segmented electrode Hall thruster.

  7. Graphene-carbon nanotube hybrid materials and use as electrodes

    DOEpatents

    Tour, James M.; Zhu, Yu; Li, Lei; Yan, Zheng; Lin, Jian

    2016-09-27

    Provided are methods of making graphene-carbon nanotube hybrid materials. Such methods generally include: (1) associating a graphene film with a substrate; (2) applying a catalyst and a carbon source to the graphene film; and (3) growing carbon nanotubes on the graphene film. The grown carbon nanotubes become covalently linked to the graphene film through carbon-carbon bonds that are located at one or more junctions between the carbon nanotubes and the graphene film. In addition, the grown carbon nanotubes are in ohmic contact with the graphene film through the carbon-carbon bonds at the one or more junctions. The one or more junctions may include seven-membered carbon rings. Also provided are the formed graphene-carbon nanotube hybrid materials.

  8. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques

    SciTech Connect

    Mehta, Apurva; Stanford Synchrotron Radiation Lightsource; Doeff, Marca M.; Chen, Guoying; Cabana, Jordi; Richardson, Thomas J.; Mehta, Apurva; Shirpour, Mona; Duncan, Hugues; Kim, Chunjoong; Kam, Kinson C.; Conry, Thomas

    2013-04-30

    We describe the use of synchrotron X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) techniques to probe details of intercalation/deintercalation processes in electrode materials for Li ion and Na ion batteries. Both in situ and ex situ experiments are used to understand structural behavior relevant to the operation of devices.

  9. Preparation and photoelectrocatalytic performance of N-doped TiO2/NaY zeolite membrane composite electrode material.

    PubMed

    Cheng, Zhi-Lin; Han, Shuai

    2016-01-01

    A novel composite electrode material based on a N-doped TiO2-loaded NaY zeolite membrane (N-doped TiO2/NaY zeolite membrane) for photoelectrocatalysis was presented. X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible (UV-vis) and X-ray photoelectron spectroscopy (XPS) characterization techniques were used to analyze the structure of the N-doped TiO2/NaY zeolite membrane. The XRD and SEM results verified that the N-doped TiO2 nanoparticles with the size of ca. 20 nm have been successfully loaded on the porous stainless steel-supported NaY zeolite membrane. The UV-vis result showed that the N-doped TiO2/NaY zeolite membrane exhibited a more obvious red-shift than that of N-TiO2 nanoparticles. The XPS characterization revealed that the doping of N element into TiO2 was successfully achieved. The photoelectrocatalysis performance of the N-doped TiO2/NaY zeolite membrane composite electrode material was evaluated by phenol removal and also the effects of reaction conditions on the catalytic performance were investigated. Owing to exhibiting an excellent catalytic activity and good recycling stability, the N-doped TiO2/NaY zeolite membrane composite electrode material was of promising application for photoelectrocatalysis in wastewater treatment.

  10. Layer by Layer Ex-Situ Deposited Cobalt-Manganese Oxide as Composite Electrode Material for Electrochemical Capacitor

    PubMed Central

    Rusi; Chan, P. Y.; Majid, S. R.

    2015-01-01

    The composite metal oxide electrode films were fabricated using ex situ electrodeposition method with further heating treatment at 300°C. The obtained composite metal oxide film had a spherical structure with mass loading from 0.13 to 0.21 mg cm-2. The structure and elements of the composite was investigated using X-ray diffraction (XRD) and energy dispersive X-ray (EDX). The electrochemical performance of different composite metal oxides was studied by cyclic voltammetry (CV) and galvanostatic charge-discharge (CD). As an active electrode material for a supercapacitor, the Co-Mn composite electrode exhibits a specific capacitance of 285 Fg-1 at current density of 1.85 Ag-1 in 0.5M Na2SO4 electrolyte. The best composite electrode, Co-Mn electrode was then further studied in various electrolytes (i.e., 0.5M KOH and 0.5M KOH/0.04M K3Fe(CN) 6 electrolytes). The pseudocapacitive nature of the material of Co-Mn lead to a high specific capacitance of 2.2 x 103 Fg-1 and an energy density of 309 Whkg-1 in a 0.5MKOH/0.04MK3Fe(CN) 6 electrolyte at a current density of 10 Ag-1. The specific capacitance retention obtained 67% of its initial value after 750 cycles. The results indicate that the ex situ deposited composite metal oxide nanoparticles have promising potential in future practical applications. PMID:26158447

  11. Recent Advances in Polymeric Materials Used as Electron Mediators and Immobilizing Matrices in Developing Enzyme Electrodes

    PubMed Central

    Moyo, Mambo; Okonkwo, Jonathan O.; Agyei, Nana M.

    2012-01-01

    Different classes of polymeric materials such as nanomaterials, sol-gel materials, conducting polymers, functional polymers and biomaterials have been used in the design of sensors and biosensors. Various methods have been used, for example from direct adsorption, covalent bonding, crossing-linking with glutaraldehyde on composites to mixing the enzymes or use of functionalized beads for the design of sensors and biosensors using these polymeric materials in recent years. It is widely acknowledged that analytical sensing at electrodes modified with polymeric materials results in low detection limits, high sensitivities, lower applied potential, good stability, efficient electron transfer and easier immobilization of enzymes on electrodes such that sensing and biosensing of environmental pollutants is made easier. However, there are a number of challenges to be addressed in order to fulfill the applications of polymeric based polymers such as cost and shortening the long laboratory synthetic pathways involved in sensor preparation. Furthermore, the toxicological effects on flora and fauna of some of these polymeric materials have not been well studied. Given these disadvantages, efforts are now geared towards introducing low cost biomaterials that can serve as alternatives for the development of novel electrochemical sensors and biosensors. This review highlights recent contributions in the development of the electrochemical sensors and biosensors based on different polymeric material. The synergistic action of some of these polymeric materials and nanocomposites imposed when combined on electrode during sensing is discussed. PMID:22368503

  12. Thin Film Electrode Materials Li4Ti5O12 and LiCoO2 Prepared by Spray Pyrolysis Method

    NASA Astrophysics Data System (ADS)

    Takahashi, M.; Tani, J.; Kido, H.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M.

    2011-05-01

    The Li4Ti5O12 and the LiCoO2 have been considered as promising candidates of electrode materials for all-solid-state lithium secondary batteries. The spray pyrolysis method is a useful economical technique to prepare various thicknesses of oxide films though have not been intensively studied for fabrication of thin film lithium batteries. Thin films of Li4Ti5O12 and LiCoO2 electrode materials about 100-400 nm were prepared on quartz and gold substrates by the spray pyrolysis method by using Liacac and, TiO(acac)4 or Co(acac)3 with DMF solvent as starting materials. Electric properties as electrode materials for lithium batteries were estimated by using 3 probe liquid cells with liquid electrolyte LiPF6 in EC-DMC and Li metal as reference and counter electrodes. Structure and morphology of the films were investigated by XRD and SEM. Crystalline Li4Ti5O12 and LiCoO2 thin films were found to be prepared over 700 °C of substrate temperature. Cyclic voltammograms of the Li4Ti5O12 electrode thin films showed sharp oxidation and reduction peaks around 1.6 and 1.5 V, respectively. Charge-discharge curves for both Li4Ti5O12 and LiCoO2 electrode thin films showed discharge plateaus around 1.4 and 3.8 V with about 80 mAhg-1 of capacity. These results showed that these electrode thin films prepared by the spray pyrolysis method are electrochemically active and spray pyrolysis method is a promising technique to prepare thin film electrode materials.

  13. Influence of the temperature of electrode material on its disintegration under the action of an arc discharge in hydrogen

    NASA Technical Reports Server (NTRS)

    Bolotov, A. V.; Yukhimchuk, S. A.

    1985-01-01

    An analysis is made of the electrophysical processes occurring at the end surface of rod electrodes during constant and alternating arc discharge in hydrogen. Experiments are reported on the effect of surface temperature of tungsten electrodes on their erosion. The influence of activating additions of thorium oxide, the structure of the tungsten, and the gas surrounding the electrode on the specific thermal loading and the erosion of the electrodes is discussed.

  14. The Science of Electrode Materials for Lithium Batteries

    SciTech Connect

    Fultz, Brent

    2007-03-15

    Rechargeable lithium batteries continue to play the central role in power systems for portable electronics, and could play a role of increasing importance for hybrid transportation systems that use either hydrogen or fossil fuels. For example, fuel cells provide a steady supply of power, whereas batteries are superior when bursts of power are needed. The National Research Council recently concluded that for dismounted soldiers "Among all possible energy sources, hybrid systems provide the most versatile solutions for meeting the diverse needs of the Future Force Warrior. The key advantage of hybrid systems is their ability to provide power over varying levels of energy use, by combining two power sources." The relative capacities of batteries versus fuel cells in a hybrid power system will depend on the capabilities of both. In the longer term, improvements in the cost and safety of lithium batteries should lead to a substantial role for electrochemical energy storage subsystems as components in fuel cell or hybrid vehicles. We have completed a basic research program for DOE BES on anode and cathode materials for lithium batteries, extending over 6 years with a 1 year phaseout period. The emphasis was on the thermodynamics and kinetics of the lithiation reaction, and how these pertain to basic electrochemical properties that we measure experimentally — voltage and capacity in particular. In the course of this work we also studied the kinetic processes of capacity fade after cycling, with unusual results for nanostructued Si and Ge materials, and the dynamics underlying electronic and ionic transport in LiFePO4. This document is the final report for this work.

  15. Development of Nano-structured Electrode Materials for High Performance Energy Storage System

    NASA Astrophysics Data System (ADS)

    Huang, Zhendong

    Systematic studies have been done to develop a low cost, environmental-friendly facile fabrication process for the preparation of high performance nanostructured electrode materials and to fully understand the influence factors on the electrochemical performance in the application of lithium ion batteries (LIBs) or supercapacitors. For LIBs, LiNi1/3Co1/3Mn1/3O2 (NCM) with a 1D porous structure has been developed as cathode material. The tube-like 1D structure consists of inter-linked, multi-facet nanoparticles of approximately 100-500nm in diameter. The microscopically porous structure originates from the honeycomb-shaped precursor foaming gel, which serves as self-template during the stepwise calcination process. The 1D NCM presents specific capacities of 153, 140, 130 and 118mAh·g-1 at current densities of 0.1C, 0.5C, 1C and 2C, respectively. Subsequently, a novel stepwise crystallization process consisting of a higher crystallization temperature and longer period for grain growth is employed to prepare single crystal NCM nanoparticles. The modified sol-gel process followed by optimized crystallization process results in significant improvements in chemical and physical characteristics of the NCM particles. They include a fully-developed single crystal NCM with uniform composition and a porous NCM architecture with a reduced degree of fusion and a large specific surface area. The NCM cathode material with these structural modifications in turn presents significantly enhanced specific capacities of 173.9, 166.9, 158.3 and 142.3mAh·g -1 at 0.1C, 0.5C, 1C and 2C, respectively. Carbon nanotube (CNT) is used to improve the relative low power capability and poor cyclic stability of NCM caused by its poor electrical conductivity. The NCM/CNT nanocomposites cathodes are prepared through simply mixing of the two component materials followed by a thermal treatment. The CNTs were functionalized to obtain uniformly-dispersed MWCNTs in the NCM matrix. The electrochemical

  16. Is Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime?

    DOE PAGES

    Zhao, Jingjing; Zheng, Xiaopeng; Deng, Yehao; ...

    2016-10-28

    One grand challenge for long-lived perovskite solar cells is that the common electrode materials in solar cells, such as silver and aluminum or even gold, strongly react with hybrid perovskites. Here we report the evaluation of the potential of copper (Cu) as the electrode material in perovskite solar cells for long-term stability. In encapsulated devices which limit exposure to oxygen and moisture, Cu in direct contact with CH3NH3PbI3 showed no reaction at laboratory time scales, and is predicted to be stable for almost 170 years at room temperature and over 22 years at the nominal operating cell temperature of 40more » °C. No diffusion of Cu into CH3NH3PbI3 has been observed after thermal annealing for over 100 hours at 80 °C, nor does Cu cause charge trap states in direct contact with CH3NH3PbI3 after long-term thermal annealing or illumination. High performance devices with efficiency above 20% with Cu electrode retains 98% of the initial efficiency after 816 hours storage in ambient environment without encapsulation. Finally, the results indicate Cu is a promising low-cost electrode material for perovskite solar cells for long-term operation.« less

  17. Is Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime?

    SciTech Connect

    Zhao, Jingjing; Zheng, Xiaopeng; Deng, Yehao; Li, Tao; Shao, Yuchuan; Gruverman, Alexei; Shield, Jeffrey; Huang, Jinsong

    2016-10-28

    One grand challenge for long-lived perovskite solar cells is that the common electrode materials in solar cells, such as silver and aluminum or even gold, strongly react with hybrid perovskites. Here we report the evaluation of the potential of copper (Cu) as the electrode material in perovskite solar cells for long-term stability. In encapsulated devices which limit exposure to oxygen and moisture, Cu in direct contact with CH3NH3PbI3 showed no reaction at laboratory time scales, and is predicted to be stable for almost 170 years at room temperature and over 22 years at the nominal operating cell temperature of 40 °C. No diffusion of Cu into CH3NH3PbI3 has been observed after thermal annealing for over 100 hours at 80 °C, nor does Cu cause charge trap states in direct contact with CH3NH3PbI3 after long-term thermal annealing or illumination. High performance devices with efficiency above 20% with Cu electrode retains 98% of the initial efficiency after 816 hours storage in ambient environment without encapsulation. Finally, the results indicate Cu is a promising low-cost electrode material for perovskite solar cells for long-term operation.

  18. Nanostructured core-shell electrode materials for electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Jiang, Long-bo; Yuan, Xing-zhong; Liang, Jie; Zhang, Jin; Wang, Hou; Zeng, Guang-ming

    2016-11-01

    Core-shell nanostructure represents a unique system for applications in electrochemical energy storage devices. Owing to the unique characteristics featuring high power delivery and long-term cycling stability, electrochemical capacitors (ECs) have emerged as one of the most attractive electrochemical storage systems since they can complement or even replace batteries in the energy storage field, especially when high power delivery or uptake is needed. This review aims to summarize recent progress on core-shell nanostructures for advanced supercapacitor applications in view of their hierarchical architecture which not only create the desired hierarchical porous channels, but also possess higher electrical conductivity and better structural mechanical stability. The core-shell nanostructures include carbon/carbon, carbon/metal oxide, carbon/conducting polymer, metal oxide/metal oxide, metal oxide/conducting polymer, conducting polymer/conducting polymer, and even more complex ternary core-shell nanoparticles. The preparation strategies, electrochemical performances, and structural stabilities of core-shell materials for ECs are summarized. The relationship between core-shell nanostructure and electrochemical performance is discussed in detail. In addition, the challenges and new trends in core-shell nanomaterials development have also been proposed.

  19. Method of preparing an electrode material of lithium-aluminum alloy

    DOEpatents

    Settle, Jack L.; Myles, Kevin M.; Battles, James E.

    1976-01-01

    A solid compact having a uniform alloy composition of lithium and aluminum is prepared as a negative electrode for an electrochemical cell. Lithium losses during preparation are minimized by dissolving aluminum within a lithium-rich melt at temperatures near the liquidus temperatures. The desired alloy composition is then solidified and fragmented. The fragments are homogenized to a uniform composition by annealing at a temperature near the solidus temperature. After comminuting to fine particles, the alloy material can be blended with powdered electrolyte and pressed into a solid compact having the desired electrode shape. In the preparation of some electrodes, an electrically conductive metal mesh is embedded into the compact as a current collector.

  20. Sulfonated graphene oxide and its nanocomposites with electroactive conjugated polymer as effective pseudocapacitor electrode materials.

    PubMed

    Ehsani, A; Kowsari, E; Boorboor Ajdari, F; Safari, R; Mohammad Shiri, H

    2017-07-01

    In this work, we synthesized amine functionalized graphene oxide (GOA), by using of 1-methyl, 3-butyl Imidazole ionic liquid, triphenylphosphine, 1,6-diamino hexane in DMSO medium. Afterward, dried GOA used for sulfonated graphene oxide (GOS). For improving electrochemical properties of the poly ortho aminophenol (POAP), we fabricated POAP/GOS films by electro-polymerization of POAP in the presence of GOS to serve as the active electrode for electrochemical supercapacitor. Different electrochemical methods including galvanostatic charge-discharge experiments, cyclic voltammetry and electrochemical impedance spectroscopy are carried out in order to investigate the performance of the system. Finally, the local charge and energy transfer of the molecular system is calculated, using DFT/AIM theories. Results show that the oxygen and nitrogen atoms of phenyl (Ph)/(Ph-OH) rings and -Ph-CO-N-R-N-R″ -SO3H ended functional group, play domain role in intra-molecular charge and energy transfer. The major aim of this computational study method is to propose or effective design electro-chemical molecular systems having different atomic basins/functional groups response (sensitivities) to external voltage. This work introduces new most efficient materials for electrochemical redox capacitors with advantages including ease synthesis, high active surface area and stability in an aqueous electrolyte.

  1. Ion selective electrode for determination of chloride ion in biological materials, food products, soils and waste water.

    PubMed

    Sekerka, I; Lechner, J F

    1978-11-01

    The chloride ion selective electrode is used for a rapid, simple, and reliable determination of chloride ion in biological materials (blood serum, urine, fish, and plant tissues), food products (milk, beef extract, nutrient broth and orange, tomato, and grapefruit juices), soils, and waste water (industrial and municipal). The method consists of treating the samples with perchloric acid (pH 1) and potassium peroxydisulfate and determining the chloride content either by a calibration curve or by known addition or analyte addition, using the chloride ion selective electrode. Such sample treatment eliminates most of the interferences occurring in the samples, including iodide, complexing and reducing compounds, and macromolecular and surface-active species. The method is suitable for a wide range of chloride concentration, e.g., 5010 ppm Cl- in nutrient broth and 4890 ppm in beef extract and as low as 12 and 80 ppm in soil extracts.

  2. Carbonaceous materials and their advances as a counter electrode in dye-sensitized solar cells: challenges and prospects.

    PubMed

    Kouhnavard, Mojgan; Ludin, Norasikin Ahmad; Ghaffari, Babak V; Sopian, Kamarozzaman; Ikeda, Shoichiro

    2015-05-11

    Dye-sensitized solar cells (DSSCs) serve as low-costing alternatives to silicon solar cells because of their low material and fabrication costs. Usually, they utilize Pt as the counter electrode (CE) to catalyze the iodine redox couple and to complete the electric circuit. Given that Pt is a rare and expensive metal, various carbon materials have been intensively investigated because of their low costs, high surface areas, excellent electrochemical stabilities, reasonable electrochemical activities, and high corrosion resistances. In this feature article, we provide an overview of recent studies on the electrochemical properties and photovoltaic performances of carbon-based CEs (e.g., activated carbon, nanosized carbon, carbon black, graphene, graphite, carbon nanotubes, and composite carbon). We focus on scientific challenges associated with each material and highlight recent advances achieved in overcoming these obstacles. Finally, we discuss possible future directions for this field of research aimed at obtaining highly efficient DSSCs.

  3. Materials and fabrication of electrode scaffolds for deposition of MnO2 and their true performance in supercapacitors

    NASA Astrophysics Data System (ADS)

    Cao, Jianyun; Li, Xiaohong; Wang, Yaming; Walsh, Frank C.; Ouyang, Jia-Hu; Jia, Dechang; Zhou, Yu

    2015-10-01

    MnO2 is a promising electrode material for high energy supercapacitors because of its large pseudo-capacitance. However, MnO2 suffers from low electronic conductivity and poor cation diffusivity, which results in poor utilization and limited rate performance of traditional MnO2 powder electrodes, obtained by pressing a mixed paste of MnO2 powder, conductive additive and polymer binder onto metallic current collectors. Developing binder-free MnO2 electrodes by loading nanoscale MnO2 deposits on pre-fabricated device-ready electrode scaffolds is an effective way to achieve both high power and energy performance. These electrode scaffolds, with interconnected skeletons and pore structures, will not only provide mechanical support and electron collection as traditional current collectors but also fast ion transfer tunnels, leading to high MnO2 utilization and rate performance. This review covers design strategies, materials and fabrication methods for the electrode scaffolds. Rational evaluation of the true performance of these electrodes is carried out, which clarifies that some of the electrodes with as-claimed exceptional performances lack potential in practical applications due to poor mass loading of MnO2 and large dead volume of inert scaffold materials/void spaces in the electrode structure. Possible ways to meet this challenge and bring MnO2 electrodes from laboratory studies to real-world applications are considered.

  4. Mapping redox energies of electrode materials for lithium batteries

    NASA Astrophysics Data System (ADS)

    Padhi, Akshaya Kumar

    A comparative study of oxides containing tetrahedral polyanions forming 3D-framework host structures with octahedral-site transition-metal oxidant cations addresses the following issues: (i) Chemical versatility of the framework structures allows one to determine the redox couples for different transition-metal cations with respect to the Fermi energy of a lithium anode and how they vary with changes of host structure, choice of polyanion, or degree of lithiation. (ii) Exploration of the advantage of a more open framework for Li+-ion diffusion versus the disadvantage of polaronic conduction. (iii) Identification of the cause of a reversible capacity fade with increasing current density. (iv) The design of new materials for secondary batteries. Variation of a redox energy at an M atom in an oxide depends on two factors: (a) the Madelung energy of the cation and (b) the covalent contribution to the M-O bonding, which may be modulated by a counter cation through the inductive effect. Electrochemical characterization of the spinel system Li1+x[ Mn1.5M0.5] O4, M = Co or Ni, indicates an overlap of the Mn4+/Mn3+ and M3+/M2+ redox energies at x = 0.5. The family of V (LiM) O4 spinels with M = Mn, Co or Ni has M3+/M2+ redox couples at 3.8, 4.2, and 4.8 eV, respectively, below the Fermi energy of a lithium anode, which indicates formation of (VO4)3- polyanions. Replacement of VO4 by PO4 yields ordered- olivine structures LiMPO4; Li1-xFePO4 and Li1-xFe0.5Mn0.5PO4 show Fe3+/Fe2+ and Mn3+/Mn2+ redox couples at 3.4 and 4.1 V vs. lithium, respectively. Reversible Li insertion into FePO4 retains a 3.4 V plateau vs. lithium with increasing current density, but shows a capacity that fades reversibly with current density as a result of a dynamic process. A change of about 0.8 eV between isostructural sulfates and phosphates for the Ti4/Ti3+, V3+/V2+ and Fe3+/Fe2+ couples is due to the inductive effect. These shifts illustrate that the relative positions of the redox energies remain

  5. In situ electrochemical activation of Ni-based colloids from an NiCl2 electrode and their advanced energy storage performance.

    PubMed

    Chen, Kunfeng; Xue, Dongfeng

    2016-10-06

    The formation of electrochemical activated cations in electrode materials to induce multiple-electron transfer reactions is a challenge for high-energy storage systems. Herein, highly electroactive Ni-based colloidal electrode materials have been synthesized by in situ electrochemical activation of a NiCl2 electrode. The highest specific capacitance of the activated Ni-based electrodes was 10 286 F g(-1) at a current density of 3 A g(-1), indicating that a three-electron Faradaic redox reaction (Ni(3+) ↔ Ni) occurred. Upon potential cycling and constant potential activation, a decrease in the charge transfer resistance can be found. Activation and utilization of multiple-electron reactions is an efficient route to increase the energy density of supercapacitors. This newly designed colloidal pseudocapacitor is compatible with inorganic pseudocapacitor chemistry, which enables us to use metal cations directly via their commercial salts rather than their oxide/hydroxide compounds.

  6. Reduction of power line interference using active electrodes and a driven-right-leg circuit in electroencephalographic recording with a minimum number of electrodes.

    PubMed

    Nonclercq, A; Mathys, P

    2004-01-01

    Unwanted power line interference is one of the most common problems in electroencephalographic recording. This paper examines how the use of active electrodes together with a driven-right-leg circuit can significantly improve interference reduction, even when the same electrode is used for common and reference which is attractive because it saves an electrode. General conclusions about the active electrodes and the driven-right-leg circuits were obtained thanks to a prototype that uses the same electrode for both common and reference. Measurements were performed both on a subject and on an electrical equivalent model.

  7. Negative electrode composition

    DOEpatents

    Kaun, Thomas D.; Chilenskas, Albert A.

    1982-01-01

    A secondary electrochemical cell and a negative electrode composition for use therewith comprising a positive electrode containing an active material of a chalcogen or a transiton metal chalcogenide, a negative electrode containing a lithium-aluminum alloy and an amount of a ternary alloy sufficient to provide at least about 5 percent overcharge capacity relative to a negative electrode solely of the lithium-aluminum alloy, the ternary alloy comprising lithium, aluminum, and iron or cobalt, and an electrolyte containing lithium ions in contact with both of the positive and the negative electrodes. The ternary alloy is present in the electrode in the range of from about 5 percent to about 50 percent by weight of the electrode composition and may include lithium-aluminum-nickel alloy in combination with either the ternary iron or cobalt alloys. A plurality of series connected cells having overcharge capacity can be equalized on the discharge side without expensive electrical equipment.

  8. Thermal-stability studies of electrode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Jiang, Junwei

    2005-07-01

    The thermal stability of lithium-ion batteries has recently attracted attention for two major reasons. (1) Attempts to make large-size cells used in power tools, E-bikes and EVs. Large cells have lower surface area to volume ratios and hence heat dissipation is more problematic than 18650-size cells. Safety problems, therefore, for large cells are more serious. (2) Next generation high-capacity electrodes will increase the energy density of lithium-ion cells meaning even an 18650-size cell may face safety concerns. This thesis presents studies of the thermal stability of electrode materials in electrolytes to understand their reactivity. A search for new positive electrode materials with high thermal stability was made. The thermal stability of two common electrode materials (Li0.81 C6 and Li0.5CoO2) in lithium-ion cells was studied by Accelerating Rate Calorimeter (ARC). Li0.81C 6 has much lower reactivity with lithium bis(oxalato)borate (LiBOB) electrolyte compared to LiPF6 electrolyte. It is not the case, however, for Li0.5CoO2. Oven tests of full LiCoO 2/C 18650-size cells with LiBOB or LiPF6 electrolytes, confirmed the ARC results. ARC was then used to study the reactivity of existing electrode materials. The thermal stability of a negative electrode material was found to increase with the binding energy of Li atoms hosted in the material. Li0.5VO 2 (B) has a higher lithium binding energy (2.45 eV vs. Li) than Li 0.81C6 (0.1 eV vs. Li) and Li7Ti5O 12 (1.55 eV) and it shows the highest thermal stability in EC/DEC among the three materials. The reactivity of two existing positive electrode materials, LiMn2O4 and LiFePO4, was studied. Cell systems expected to be highly tolerant to thermal abuse were suggested: LiFePO 4/C or Li4Ti5O12 in LiBOB electrolytes. The system, x Li[Ni1/2Mn1/2]O2 • y LiCoO2 • z Li[Li1/3Mn2/3]O2 (x + y + z = 1), was explored for new positive electrode materials with large capacity and high thermal stability. Li[(Ni0.5Mn0.5) xCo1-x]O2 (0

  9. Evaluation of materials proposed for the construction of the Plasma Electrode Pockels Cell (PEPC) on beamlet

    NASA Astrophysics Data System (ADS)

    Roberts, D.; Robb, C.; Deyoreo, J.; Atherton, J.

    1992-11-01

    The proposed upgrade of the NOVA laser system at Lawrence Livermore National Laboratory employs a multipass architecture that requires an optical switch to emit the laser light at the appropriate fluence. This Pockels cell-based optical switch does not use traditional ring or thin-film electrodes because of the large aperture and high fluence of the laser system. Rather, it uses a plasma electrode Pockels cell with a KD*P crystal as the electro-optical medium. A discharge plasma is formed on each side of the electro-optic crystal and high voltage is applied across the crystal through the plasma electrode to initiate optical switching. In October 1991 we began evaluating materials suggested for the large aperture plasma electrode optical switch. Previous experiments suggested that switching performance could be significantly affected by the deterioration of cell materials. The final prototype switch tested used polyethylene for the switch body, Mykroy for the mid-plane and a silicone vulcanite to encapsulate the KD*P crystal. The encapsulant easily compensated for the effect of assembling the optical switch and no strain-induced birefringence in the crystal after encapsulation was measured. Oxygen was eventually added to the plasma to react with the sputtered carbon from the cathode and produce a gaseous effluent. As an added benefit, the production of ozone absorbed most of the ultraviolet radiation affecting the encapsulant. All the materials tested decomposed and produced volatiles, although no change in the damage threshold of exposed optical surfaces tested to date was seen. An evaluation of the recommended materials for major cell components using published manufacturers data, experimental results from our Material Evaluation Apparatus, and outgassing performance and sputtering data produced at the Laboratory's Vacuum Process Lab is presented.

  10. Nickel-Tin Electrode Materials for Nonaqueous Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Ehrlich, Grant M.; Durand, Christopher

    2005-01-01

    Experimental materials made from mixtures of nickel and tin powders have shown promise for use as the negative electrodes of rechargeable lithium-ion electrochemical power cells. During charging (or discharging) of a lithium-ion cell, lithium ions are absorbed into (or desorbed from, respectively) the negative electrode, typically through an intercalation or alloying process. The negative electrodes (for this purpose, designated as anodes) in state-of-the-art Li-ion cells are made of graphite, in which intercalation occurs. Alternatively, the anodes can be made from metals, in which alloying can occur. For reasons having to do with the electrochemical potential of intercalated lithium, metallic anode materials (especially materials containing tin) are regarded as safer than graphite ones; in addition, such metallic anode materials have been investigated in the hope of obtaining reversible charge/discharge capacities greater than those of graphite anodes. However, until now, each of the tin-containing metallic anode formulations tested has been found to be inadequate in some respect.

  11. Nanomechanical and Electro-mechanical Characterization of Materials for Flexible Electrodes Applications

    NASA Astrophysics Data System (ADS)

    Peng, Cheng

    Flexible electronics attract research and commercial interests in last 2 decades for its flexibility, low cost, light weight and etc. To develop and improve the electro-mechanical properties of flexible electrodes is the most critical and important step. In this work, we have performed nanomechanical and electromechanical characterization of materials for flexible electrode applications, including metallic nanowires (NWs), indium tin oxide (ITO)-based and carbon nanotube (CNT)-based electrodes. First, we designed and developed four different testing platforms for nanomechanical and electro-mechanical characterization purpose. For the nano/sub-micro size samples, the micro mechanical devices can be used for uniaxial and bi-axial loading tests. For the macro size samples, the micro tester will be used for in situ monotonic tensile test, while the fatigue tester can be used for in situ cyclic tensile or bending testing purpose. Secondly, we have investigated mechanical behaviors of single crystalline Ni nanowires and single crystalline Cu nanowires under uni-axial tensile loading inside a scanning electron microscope (SEM) chamber. We demonstrated both size and strain-rate dependence on yield stress of single-crystalline Ni NWs with varying diameters (from 100 nm to 300 nm), and the molecular dynamics (MD) simulation helped to confirm and understand the experimental phenomena. Also, two different fracture modes, namely ductile and brittle-like fractures, were found in the same batch of Cu nanowire samples. Finally, we studied the electro-mechanical behaviors of flexible electrodes in macro scale. We reported a coherent study integrating in situ electro-mechanical experiments and mechanics modeling to decipher the failure mechanics of ITO-based and CNTbased electrodes under tension. It is believed that our combined experimental and simulation results provide some further insights into the important yet complicated deformation mechanisms for nanoscale metals and

  12. Energy harvesting using ionic electro-active polymer thin films with Ag-based electrodes

    NASA Astrophysics Data System (ADS)

    Anand, S. V.; Arvind, K.; Bharath, P.; Mahapatra, D. Roy

    2010-04-01

    In this paper we employ the phenomenon of bending deformation induced transport of cations via the polymer chains in the thickness direction of an electro-active polymer (EAP)-metal composite thin film for mechanical energy harvesting. While EAPs have been applied in the past in actuators and artificial muscles, promising applications of such materials in hydrodynamic and vibratory energy harvesting are reported in this paper. For this, functionalization of EAPs with metal electrodes is the key factor in improving the energy harvesting efficiency. Unlike Pt-based electrodes, Ag-based electrodes have been deposited on an EAP membrane made of Nafion. The developed ionic metal polymer composite (IPMC) membrane is subjected to a dynamic bending load, hydrodynamically, and evaluated for the voltage generated against an external electrical load. An increase of a few orders of magnitude has been observed in the harvested energy density and power density in air, deionized water and in electrolyte solutions with varying concentrations of sodium chloride (NaCl) as compared to Pt-based IPMC performances reported in the published literature. This will have potential applications in hydrodynamic and residual environmental energy harvesting to power sensors and actuators based on micro-and nano-electro-mechanical systems (MEMS and NEMS) for biomedical, aerospace and oceanic applications.

  13. Temperature Prediction in a Free-Burning Arc and Electrodes for Nanostructured Materials and Systems.

    PubMed

    Lee, Won-Ho; Kim, Youn-Jea; Lee, Jong-Chul

    2015-11-01

    Temperature in a free-burning arc used for synthesis of nanoparticles and nanostructured materials is generally around 20,000 K just below the cathode, falling to about 15,000 K just above the anode, and decreasing rapidly in the radial direction. Therefore, the electrode erosion is indispensable for these atmospheric plasma systems, as well as for switching devices, due to the high heat flux transferred from high temperature arcs to electrodes, but experimental and theoretical works have not identified the characteristic phenomena because of the complex physical processes. To the previous study, we have focused on the arc self-induced fluid flow in a free-burning arc using the computational fluid dynamics (CFD) technique. At this time, our investigation is concerned with the whole region of free-burning high-intensity arcs including the tungsten cathode, the arc plasma and the anode using a unified numerical model for applying synthesis of nanoparticles and nanostructured materials practically.

  14. Black Conductive Titanium Oxide High-Capacity Materials for Battery Electrodes

    SciTech Connect

    Han, W.

    2011-05-18

    Stoichiometric titanium dioxide (TiO{sub 2}) is one of the most widely studied transitionmetal oxides because of its many potential applications in photoelectrochemical systems, such as dye-sensitized TiO{sub 2} electrodes for photovoltaic solar cells, and water-splitting catalysts for hydrogen generation, and in environmental purification for creating or degrading specific compounds. However, TiO{sub 2} has a wide bandgap and high electrical resistivity, which limits its use as an electrode. A set of non-stoichiometric titanium oxides called the Magneli phases, having a general formula of Ti{sub n}O{sub 2n-1} with n between 4 and 10, exhibits lower bandgaps and resistivities, with the highest electrical conductivities reported for Ti{sub 4}O{sub 7}. These phases have been formulated under different conditions, but in all reported cases the resulting oxides have minimum grain sizes on the order of micrometers, regardless of the size of the starting titanium compounds. In this method, nanoparticles of TiO{sub 2} or hydrogen titanates are first coated with carbon using either wet or dry chemistry methods. During this process the size and shape of the nanoparticles are 'locked in.' Subsequently the carbon-coated nanoparticles are heated. This results in the transformation of the original TiO{sub 2} or hydrogen titanates to Magneli phases without coarsening, so that the original size and shape of the nanoparticles are maintained to a precise degree. People who work on batteries, fuel cells, ultracapacitors, electrosynthesis cells, electro-chemical devices, and soil remediation have applications that could benefit from using nanoscale Magneli phases of titanium oxide. Application of these electrode materials may not be limited to substitution for TiO{sub 2} electrodes. Combining the robustness and photosensitivity of TiO{sub 2} with higher electrical conductivity may result in a general electrode material.

  15. Hydridable material for the negative electrode in a nickel-metal hydride storage battery

    DOEpatents

    Knosp, Bernard; Bouet, Jacques; Jordy, Christian; Mimoun, Michel; Gicquel, Daniel

    1997-01-01

    A monophase hydridable material for the negative electrode of a nickel-metal hydride storage battery with a "Lave's phase" structure of hexagonal C14 type (MgZn.sub.2) has the general formula: Zr.sub.1-x Ti.sub.x Ni.sub.a Mn.sub.b Al.sub.c Co.sub.d V.sub.e where ##EQU1##

  16. Automatic selection of the active electrode set for image-guided cochlear implant programming.

    PubMed

    Zhao, Yiyuan; Dawant, Benoit M; Noble, Jack H

    2016-07-01

    Cochlear implants (CIs) are neural prostheses that restore hearing by stimulating auditory nerve pathways within the cochlea using an implanted electrode array. Research has shown when multiple electrodes stimulate the same nerve pathways, competing stimulation occurs and hearing outcomes decline. Recent clinical studies have indicated that hearing outcomes can be significantly improved by using an image-guided active electrode set selection technique we have designed, in which electrodes that cause competing stimulation are identified and deactivated. In tests done to date, an expert is needed to perform the electrode selection step with the assistance of a method to visualize the spatial relationship between electrodes and neural sites determined using image analysis techniques. We propose to automate the electrode selection step by optimizing a cost function that captures the heuristics used by the expert. Further, we propose an approach to estimate the values of parameters used in the cost function using an existing database of expert electrode selections. We test this method with different electrode array models from three manufacturers. Our automatic approach generates acceptable active electrode sets in 98.3% of the subjects tested. This approach represents a crucial step toward clinical translation of our image-guided CI programming system.

  17. Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells

    DOEpatents

    Kuo, Lewis J. H.; Singh, Prabhakar; Ruka, Roswell J.; Vasilow, Theodore R.; Bratton, Raymond J.

    1997-01-01

    A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators.

  18. Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells

    DOEpatents

    Kuo, L.J.H.; Singh, P.; Ruka, R.J.; Vasilow, T.R.; Bratton, R.J.

    1997-11-11

    A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators. 4 figs.

  19. Nickel/silicon core/shell nanosheet arrays as electrode materials for lithium ion batteries

    SciTech Connect

    Huang, X.H. Zhang, P.; Wu, J.B.; Lin, Y.; Guo, R.Q.

    2016-08-15

    Highlights: • Ni nanosheet arrays is the core and Si layer is the shell. • Ni nanosheet arrays act as a three-dimensional current collector to support Si. • Ni nanosheet arrays can improve the conductivity and stability of the electrode. • Ni/Si nanosheet arrays exhibit excellent cyclic and rate performance. - Abstract: Ni/Si core/shell nanosheet arrays are proposed to enhance the electrochemical lithium-storage properties of silicon. The arrays are characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The arrays are micro-sized in height, which are constructed by interconnected Ni nanosheet as the core and Si coating layer as the shell. The electrochemical properties as anode materials of lithium ion batteries are investigated by cyclic voltammetry (CV) and galvanostatic charge-discharge tests. The arrays can achieve high reversible capacity, good cycle stability and high rate capability. It is believed that the enhanced electrochemical performance is attributed to the electrode structure, because the interconnected Ni nanosheet can act as a three-dimensional current collector, and it has the ability of improving the electrode conductivity, enlarging the electrochemical reaction interface, and suppressing the electrode pulverization.

  20. Improved zinc electrode and rechargeable zinc-air battery

    SciTech Connect

    Ross, P.N. Jr.

    1988-06-21

    The invention comprises an improved rechargeable zinc-air cell/battery having recirculating alkaline electrolyte and a zinc electrode comprising a porous foam support material which carries the active zinc electrode material. 5 figs.

  1. Comparing wearable devices with wet and textile electrodes for activity recognition.

    PubMed

    Lokare, Namita; Gonzalez, Laura; Lobaton, Edgar

    2016-08-01

    This paper explores the idea of identifying activities from muscle activation which is captured by wearable ECG recording devices that use wet and textile electrodes. Most of the devices available today filter out the high frequency components to retain only the signal related to an ECG. We explain how the high frequency components that correspond to muscle activation can be extracted from the recorded signal and can be used to identify activities. We notice that is possible to obtain good performance for both the wet and dry electrodes. However, we observed that signals from the dry textile electrodes introduce less artifacts associated with muscle activation.

  2. Orthogonal electrode catheter array for mapping of endocardial focal site of ventricular activation

    SciTech Connect

    Desai, J.M.; Nyo, H.; Vera, Z.; Seibert, J.A.; Vogelsang, P.J. )

    1991-04-01

    Precise location of the endocardial site of origin of ventricular tachycardia may facilitate surgical and catheter ablation of this arrhythmia. The endocardial catheter mapping technique can locate the site of ventricular tachycardia within 4-8 cm2 of the earliest site recorded by the catheter. This report describes an orthogonal electrode catheter array (OECA) for mapping and radiofrequency ablation (RFA) of endocardial focal site of origin of a plunge electrode paced model of ventricular activation in dogs. The OECA is an 8 F five pole catheter with four peripheral electrodes and one central electrode (total surface area 0.8 cm{sup 2}). In eight mongrel dogs, mapping was performed by arbitrarily dividing the left ventricle (LV) into four segments. Each segment was mapped with OECA to find the earliest segment. Bipolar and unipolar electrograms were obtained. The plunge electrode (not visible on fluoroscopy) site was identified by the earliest wave front arrival times of -30 msec or earlier at two or more electrodes (unipolar electrograms) with reference to the earliest recorded surface ECG (I, AVF, and V1). Validation of the proximity of the five electrodes of the OECA to the plunge electrode was performed by digital radiography and RFA. Pathological examination was performed to document the proximity of the OECA to the plunge electrode and also for the width, depth, and microscopic changes of the ablation. To find the segment with the earliest LV activation a total of 10 {plus minus} 3 (mean {plus minus} SD) positions were mapped. Mean arrival times at the two earlier electrodes were -39 {plus minus} 4 msec and -35 {plus minus} 3 msec. Digital radiography showed the plunge electrode to be within the area covered by all five electrodes in all eight dogs. The plunge electrode was within 1 cm2 area of the region of RFA in all eight dogs.

  3. Electrode for electrochemical cell

    DOEpatents

    Kaun, T.D.; Nelson, P.A.; Miller, W.E.

    1980-05-09

    An electrode structure for a secondary electrochemical cell includes an outer enclosure defining a compartment containing electrochemical active material. The enclosure includes a rigid electrically conductive metal sheet with perforated openings over major side surfaces. The enclosure can be assembled as first and second trays each with a rigid sheet of perforated electrically conductive metal at major side surfaces and normally extending flanges at parametric margins. The trays can be pressed together with moldable active material between the two to form an expandable electrode. A plurality of positive and negative electrodes thus formed are arranged in an alternating array with porous frangible interelectrode separators within the housing of the secondary electrochemical cell.

  4. Electrode for electrochemical cell

    DOEpatents

    Kaun, Thomas D.; Nelson, Paul A.; Miller, William E.

    1981-01-01

    An electrode structure for a secondary electrochemical cell includes an outer enclosure defining a compartment containing electrochemical active material. The enclosure includes a rigid electrically conductive metal sheet with perforated openings over major side surfaces. The enclosure can be assembled as first and second trays each with a rigid sheet of perforated electrically conductive metal at major side surfaces and normally extending flanges at parametric margins. The trays can be pressed together with moldable active material between the two to form an expandable electrode. A plurality of positive and negative electrodes thus formed are arranged in an alternating array with porous frangible interelectrode separators within the housing of the secondary electrochemical cell.

  5. Solid oxide fuel cells, and air electrode and electrical interconnection materials therefor

    DOEpatents

    Bates, J.L.

    1992-09-01

    In one aspect of the invention, an air electrode material for a solid oxide fuel cell comprises Y[sub 1[minus]a]Q[sub a]MnO[sub 3], where Q is selected from the group consisting of Ca and Sr or mixtures thereof and a' is from 0.1 to 0.8. Preferably, a' is from 0.4 to 0.7. In another aspect of the invention, an electrical interconnection material for a solid oxide fuel cell comprises Y[sub 1[minus]b]Ca[sub b]Cr[sub 1[minus]c]Al[sub c]O[sub 3], where b' is from 0.1 to 0.6 and c' is from 0 to 9.3. Preferably, b' is from 0.3 to 0.5 and c' is from 0.05 to 0.1. A composite solid oxide electrochemical fuel cell incorporating these materials comprises: a solid oxide air electrode and an adjacent solid oxide electrical interconnection which commonly include the cation Y, the air electrode comprising Y[sub 1[minus]a]Q[sub a]MnO[sub 3], where Q is selected from the group consisting of Ca and Sr or mixtures thereof and a' is from 0.1 to 0.8, the electrical interconnection comprising Y[sub 1[minus]b]Ca[sub b]Cr[sub 1[minus]c]Al[sub c]O[sub 3], where b' is from 0.1 to 0.6 and c' is from 0.0 to 0.3; a yttrium stabilized solid electrolyte comprising (1[minus]d)ZrO[sub 2]-(d)Y[sub 2]O[sub 3] where d' is from 0.06 to 0.5; and a solid fuel electrode comprising X-ZrO[sub 2], where X' is an elemental metal. 5 figs.

  6. Solid oxide fuel cells, and air electrode and electrical interconnection materials therefor

    DOEpatents

    Bates, J. Lambert

    1992-01-01

    In one aspect of the invention, an air electrode material for a solid oxide fuel cell comprises Y.sub.1-a Q.sub.a MnO.sub.3, where "Q" is selected from the group consisting of Ca and Sr or mixtures thereof and "a" is from 0.1 to 0.8. Preferably, "a" is from 0.4 to 0.7. In another aspect of the invention, an electrical interconnection material for a solid oxide fuel cell comprises Y.sub.1-b Ca.sub.b Cr.sub.1-c Al.sub.c O.sub.3, where "b" is from 0.1 to 0.6 and "c" is from 0 to 9.3. Preferably, "b" is from 0.3 to 0.5 and "c" is from 0.05 to 0.1. A composite solid oxide electrochemical fuel cell incorporating these materials comprises: a solid oxide air electrode and an adjacent solid oxide electrical interconnection which commonly include the cation Y, the air electrode comprising Y.sub.1-a Q.sub.a MnO.sub.3, where "Q" is selected from the group consisting of Ca and Sr or mixtures thereof and "a" is from 0.1 to 0.8, the electrical interconnection comprising Y.sub.1-b Ca.sub.b Cr.sub.1-c Al.sub.c O.sub.3, where "b" is from 0.1 to 0.6 and "c" is from 0.0 to 0.3; a yttrium stabilized solid electrolyte comprising (1-d)ZrO.sub.2 -(d)Y.sub.2 O.sub.3 where "d" is from 0.06 to 0.5; and a solid fuel electrode comprising X-ZrO.sub.2, where "X" is an elemental metal.

  7. Hierarchically ordered mesoporous carbon/graphene composites as supercapacitor electrode materials.

    PubMed

    Song, Yanjie; Li, Zhu; Guo, Kunkun; Shao, Ting

    2016-08-25

    Hierarchically ordered mesoporous carbon/graphene (OMC/G) composites have been fabricated by means of a solvent-evaporation-induced self-assembly (EISA) method. The structures of these composites are characterized by X-ray diffraction, transmission electron microscopy, Raman spectroscopy and nitrogen adsorption-desorption at 77 K. These results indicate that OMC/G composites possess the hierarchically ordered hexagonal p6mm mesostructure with the lattice unit parameter and pore diameter close to 10 nm and 3 nm, respectively. The specific surface area of OMC/G composites after KOH activation is high up to 2109.2 m(2) g(-1), which is significantly greater than OMC after activation (1474.6 m(2) g(-1)). Subsequently, the resulting OMC/G composites as supercapacitor electrode materials exhibit an outstanding capacitance as high as 329.5 F g(-1) in 6 M KOH electrolyte at a current density of 0.5 A g(-1), which is much higher than both OMC (234.2 F g(-1)) and a sample made by mechanical mixing of OMC with graphene (217.7 F g(-1)). In addition, the obtained OMC/G composites display good cyclic stability, and the final capacitance retention is approximately 96% after 5000 cycles. These ordered mesopores in the OMC/G composites are beneficial to the accessibility and rapid diffusion of the electrolyte, while graphene in OMC/G composites can also facilitate the transport of electrons during the processes of charging and discharging owing to its high conductivity, thereby leading to an excellent energy storage performance. The method demonstrated in this work would open up a new route to design and develop graphene-based architectures for supercapacitor applications.

  8. The reaction current distribution in battery electrode materials revealed by XPS-based state-of-charge mapping.

    PubMed

    Pearse, Alexander J; Gillette, Eleanor; Lee, Sang Bok; Rubloff, Gary W

    2016-07-28

    Morphologically complex electrochemical systems such as composite or nanostructured lithium ion battery electrodes exhibit spatially inhomogeneous internal current distributions, particularly when driven at high total currents, due to resistances in the electrodes and electrolyte, distributions of diffusion path lengths, and nonlinear current-voltage characteristics. Measuring and controlling these distributions is interesting from both an engineering standpoint, as nonhomogenous currents lead to lower utilization of electrode material, as well as from a fundamental standpoint, as comparisons between theory and experiment are relatively scarce. Here we describe a new approach using a deliberately simple model battery electrode to examine the current distribution in a electrode material limited by poor electronic conductivity. We utilize quantitative spatially resolved X-ray photoelectron spectroscopy to measure the spatial distribution of the state-of-charge of a V2O5 model electrode as a proxy measure for the current distribution on electrodes discharged at varying current densities. We show that the current at the electrode-electrolyte interface falls off with distance from the current collector, and that the current distribution is a strong function of total current. We compare the observed distributions with a simple analytical model which reproduces the dependence of the distribution on total current, but fails to predict the correct length scale. A more complete numerical simulation suggests that dynamic changes in the electronic conductivity of the V2O5 concurrent with lithium insertion may contribute to the differences between theory and experiment. Our observations should help inform design criteria for future electrode architectures.

  9. PEDOT:PSS as multi-functional composite material for enhanced Li-air-battery air electrodes

    PubMed Central

    Yoon, Dae Ho; Yoon, Seon Hye; Ryu, Kwang-Sun; Park, Yong Joon

    2016-01-01

    We propose PEDOT:PSS as a multi-functional composite material for an enhanced Li-air-battery air electrode. The PEDOT:PSS layer was coated on the surface of carbon (graphene) using simple method. A electrode containing PEDOT:PSS-coated graphene (PEDOT electrode) could be prepared without binder (such as PVDF) because of high adhesion of PEDOT:PSS. PEDOT electrode presented considerable discharge and charge capacity at all current densities. These results shows that PEDOT:PSS acts as a redox reaction matrix and conducting binder in the air electrode. Moreover, after cycling, the accumulation of reaction products due to side reaction in the electrode was significantly reduced through the use of PEDOT:PSS. This implies that PEDOT:PSS coating layer can suppress the undesirable side reactions between the carbon and electrolyte (and/or Li2O2), which causes enhanced Li-air cell cyclic performance. PMID:26813852

  10. Nickel cobalt oxide nanowire-reduced graphite oxide composite material and its application for high performance supercapacitor electrode material.

    PubMed

    Wang, Xu; Yan, Chaoyi; Sumboja, Afriyanti; Lee, Pooi See

    2014-09-01

    In this paper, we report a facile synthesis method of mesoporous nickel cobalt oxide (NiCo2O4) nanowire-reduced graphite oxide (rGO) composite material by urea induced hydrolysis reaction, followed by sintering at 300 degrees C. P123 was used to stabilize the GO during synthesis, which resulted in a uniform coating of NiCo2O4 nanowire on rGO sheet. The growth mechanism of the composite material is discussed in detail. The NiCo2O4-rGO composite material showed an outstanding electrochemical performance of 873 F g(-1) at 0.5 A g(-1) and 512 F g(-1) at 40 A g(-1). This method provides a promising approach towards low cost and large scale production of supercapacitor electrode material.

  11. Effect of electrode material on characteristics of non-volatile resistive memory consisting of Ag2S nanoparticles

    NASA Astrophysics Data System (ADS)

    Jang, Jaewon

    2016-07-01

    In this study, Ag2S nanoparticles are synthesized and used as the active material for two-terminal resistance switching memory devices. Sintered Ag2S films are successfully crystallized on plastic substrates with synthesized Ag2S nanoparticles, after a relatively low-temperature sintering process (200 °C). After the sintering process, the crystallite size is increased from 6.8 nm to 80.3 nm. The high ratio of surface atoms to inner atoms of nanoparticles reduces the melting point temperature, deciding the sintering process temperature. In order to investigate the resistance switching characteristics, metal/Ag2S/metal structures are fabricated and tested. The effect of the electrode material on the non-volatile resistive memory characteristics is studied. The bottom electrochemically inert materials, such as Au and Pt, were critical for maintaining stable memory characteristics. By using Au and Pt inert bottom electrodes, we are able to significantly improve the memory endurance and retention to more than 103 cycles and 104 sec, respectively.

  12. Facile construction of 3D graphene/MoS2 composites as advanced electrode materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Sun, Tianhua; Li, Zhangpeng; Liu, Xiaohong; Ma, Limin; Wang, Jinqing; Yang, Shengrong

    2016-11-01

    Flower-like molybdenum disulfide (MoS2) microstructures are synthesized based on three-dimensional graphene (3DG) skeleton via a simple and facile one-step hydrothermal method, aiming at constructing series of novel composite electrode materials of 3DG/MoS2 with high electrochemical performances for supercapacitors. The electrochemical properties of the samples are evaluated by cyclic voltammetry and galvanostatic charge/discharge tests. Specifically, the optimal 3DG/MoS2 composite exhibits remarkable performances with a high specific capacitance of 410 F g-1 at a current density of 1 A g-1 and an excellent cycling stability with ca. 80.3% capacitance retention after 10,000 continuous charge-discharge cycles at a high current density of 2 A g-1, making it adaptive for high-performance supercapacitors. The enhanced electrochemical performances can be ascribed to the combination of 3DG and flower-like MoS2, which provides excellent charge transfer network and electrolyte diffusion channels while effectively prevents the collapse, aggregation and morphology change of active materials during charge-discharge process. The results demonstrate that 3DG/MoS2 composite is one of the attractive electrode materials for supercapacitors.

  13. Transparent Conducting Nb-Doped TiO2 Electrodes Activated by Laser Annealing for Inexpensive Flexible Organic Solar Cells

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Hsiang; Lin, Chia-Chi; Lin, Yi-Chang

    2012-01-01

    A KrF excimer laser (λ= 248 nm) has been adopted for annealing cost-effective Nb-doped TiO2 (NTO) films. Sputtered NTO layers were annealed on SiO2-coated flexible poly(ethylene terephthalate) (PET) substrates. This local laser annealing technique is very useful for the formation of anatase NTO electrodes used in flexible organic solar cells (OSCs). An amorphous NTO film with a high resistivity and a low transparency was transformed significantly into a conductive and transparent anatase NTO electrode by laser irradiation. The 210 nm anatase NTO film shows a sheet resistance of 50 Ω and an average optical transmittance of 83.5% in the wavelength range from 450 to 600 nm after annealing at 0.25 J/cm2. The activation of Nb dopants and the formation of the anatase phase contribute to the high conductivity of the laser-annealed NTO electrode. Nb activation causes an increase in the optical band gap due to the Burstein-Moss effect. The electrical properties are in agreement with the material characteristics determined by X-ray diffraction (XRD) analysis and secondary ion mass spectrometry (SIMS). The irradiation energy for the NTO electrode also affects the performance of the organic solar cell. The laser annealing technique provides good properties of the anatase NTO film used as a transparent electrode for flexible organic solar cells (OSCs) without damage to the PET substrate or layer delamination from the substrate.

  14. Emerging Prototype Sodium-Ion Full Cells with Nanostructured Electrode Materials.

    PubMed

    Ren, Wenhao; Zhu, Zixuan; An, Qinyou; Mai, Liqiang

    2017-04-10

    Due to steadily increasing energy consumption, the demand of renewable energy sources is more urgent than ever. Sodium-ion batteries (SIBs) have emerged as a cost-effective alternative because of the earth abundance of Na resources and their competitive electrochemical behaviors. Before practical application, it is essential to establish a bridge between the sodium half-cell and the commercial battery from a full cell perspective. An overview of the major challenges, most recent advances, and outlooks of non-aqueous and aqueous sodium-ion full cells (SIFCs) is presented. Considering the intimate relationship between SIFCs and electrode materials, including structure, composition and mutual matching principle, both the advance of various prototype SIFCs and the electrochemistry development of nanostructured electrode materials are reviewed. It is noted that a series of SIFCs combined with layered oxides and hard carbon are capable of providing a high specific gravimetric energy above 200 Wh kg(-1) , and an NaCrO2 //hard carbon full cell is able to deliver a high rate capability over 100 C. To achieve industrialization of SIBs, more systematic work should focus on electrode construction, component compatibility, and battery technologies.

  15. Development of materials for open-cycle magnetohydrodynamics (MHD): ceramic electrode. Final report

    SciTech Connect

    Bates, J.L.; Marchant, D.D.

    1986-09-01

    Pacific Northwest Laboratory, supported by the US Department of Energy, developed advanced materials for use in open-cycle, closed cycle magnetohydrodynamics (MHD) power generation, an advanced energy conversion system in which the flow of electrically conducting fluid interacts with an electric field to convert the energy directly into electricity. The purpose of the PNL work was to develop electrodes for the MHD channel. Such electrodes must have: (1) electrical conductivity above 0.01 (ohm-cm)/sup -1/ from near room temperature to 1900/sup 0/K, (2) resistance to both electrochemical and chemical corrosion by both slag and potassium seed, (3) resistance to erosion by high-velocity gases and particles, (4) resistance to thermal shock, (5) adequate thermal conductivity, (6) compatibility with other channel components, particularly the electrical insulators, (7) oxidation-reduction stability, and (8) adequate thermionic emission. This report describes the concept and development of high-temperature, graded ceramic composite electrode materials and their electrical and structural properties. 47 refs., 16 figs., 13 tabs.

  16. Determination of chromium(VI) in electronics materials using trioctylamine modified carbon paste electrode.

    PubMed

    Xu, Juan; Kong, Yong; Wang, Wenchang; Chen, Zhidong; Yao, Shiping

    2009-12-01

    A trioctylamine (TOA) modified carbon paste electrode (TOA/CPE) was firstly utilized to determine Cr(VI) in electronics materials. The effects of preconcentration conditions, that is, TOA amount and accumulation time on Cr(VI) accumulation were examined and the optimum experiment conditions for the determination were identified. A sensitive reduction peak in the stripping voltammogram at -0.45 V, a characteristic of trace Cr(VI), was detected when the accumulation time was 10 min. Under optimized conditions, TOA/CPE demonstrated an enhanced sensitivity for Cr(VI), providing a low detection limit (S/N = 3) at 3.4 x 10(-9) M. Interference studies also displayed high selectivity of the TOA/CPE for Cr(VI); this electrode can accurately determine Cr(VI) in the presence of Cr(III) (600-fold concentration) and other interfering cations.

  17. End-of-life Zn-MnO2 batteries: electrode materials characterization.

    PubMed

    Cabral, Marta; Pedrosa, F; Margarido, F; Nogueira, C A

    2013-01-01

    Physical and chemical characterization of several sizes and shapes of alkaline and saline spent Zn-MnO2 batteries was carried out, aiming at contributing for a better definition of the applicable recycling processes. The characterization essays included the mass balance of the components, cathode and anode elemental analysis, the identification of zinc and manganese bearing phases and the morphology analysis of the electrode particles. The electrode materials correspond to 64-79% of the total weigh of the batteries, with the cathodes having clearly the highest contribution (usually more than 50%). The steel components, mainly from the cases, are also important (17-30%). Elemental analysis showed that the electrodes are highly concentrated in zinc (from 48-87% in anodes) and manganese (from 35-50% in cathodes). X-Ray powder diffraction allowed for identifying several phases in the electrodes, namely zinc oxide, in the anodes of all the types of saline and alkaline batteries tested, while zinc hydroxide chloride and ammine zinc chloride only appear in some types of saline batteries. The manganese found in the cathode materials is present as two main phases, MnO x Mn2O3 and ZnO x Mn2O3, the latter corroborating that zinc migration from anode to cathode occurs during the batteries lifespan. A unreacted MnO2 phase was also found presenting a low crystalline level. Leaching trials with diluted HCI solutions of alkaline and saline battery samples showed that all zinc species are reactive attaining easily over than 90% leaching yields, and about 30% of manganese, present as Mn(II/III) forms. The MnO2 phase is less reactive and requires higher temperatures to achieve a more efficient solubilization.

  18. Identification and Mitigation of Generated Solid By-Products during Advanced Electrode Materials Processing.

    PubMed

    Tsai, Candace S J; Dysart, Arthur D; Beltz, Jay H; Pol, Vilas G

    2016-03-01

    A scalable, solid-state elevated-temperature process was developed to produce high-capacity carbonaceous electrode materials for energy storage devices via decomposition of a starch-based precursor in an inert atmosphere. In a separate study, it is shown that the fabricated carbonaceous architectures are useful as an excellent electrode material for lithium-ion, sodium-ion, and lithium-sulfur batteries. This article focuses on the study and analysis of the formed nanometer-sized by-products during the lab-scale synthesis of the carbon material. The material production process was studied in operando (that is, during the entire duration of heat treatment). The unknown downstream particles in the process exhaust were collected and characterized via aerosol and liquid suspensions, and they were quantified using direct-reading instruments for number and mass concentrations. The airborne emissions were collected using the Tsai diffusion sampler (TDS) for characterization and further analysis. Released by-product aerosols collected in a deionized (DI) water trap were analyzed, and the aerosols emitted from the post-water-suspension were collected and characterized. After long-term sampling, individual particles in the nanometer size range were observed in the exhaust aerosol with layer-structured aggregates formed on the sampling substrate. Upon the characterization of the released aerosol by-products, methods were identified to mitigate possible human and environmental exposures upon industrial implementation.

  19. Highly Ordered Mesostructured Vanadium Phosphonate toward Electrode Materials for Lithium-Ion Batteries.

    PubMed

    Mei, Peng; Pramanik, Malay; Lee, Jaewoo; Ide, Yusuke; Alothman, Zeid Abdullah; Kim, Jung Ho; Yamauchi, Yusuke

    2017-03-28

    Highly ordered mesostructured vanadium phosphonates (VP) have been synthesized in the presence of cetyltrimethylammonium bromide (CTAB) as a structure-directing agent. Nitrilotris(methylene)triphosphonic acid (NMPA) and (ammonium/sodium) metavanadate (NH4 VO3 /NaVO3 ) have been used for the construction of pore walls. The CTAB templates are removed from the materials by an extraction process without destroying the parent mesostructure. The formation mechanism for the ordered mesoporous structure and its impact on electrochemical application in lithium ion batteries (LIBs) are explained by considering the structural and electrochemical stability of the framework. The results demonstrate that the counter cations (NH4(+) /Na(+) ) of the metavanadate precursors have a crucial role in stabilizing the mesoporous structure of the mesoporous VP materials. Mesoporous VP materials with highly ordered structure have great applicability as high-performance electrode materials in LIBs due to the advantages of their large contact area with electrolyte and short transport paths for lithium ions. Mesoporous VP electrodes exhibit high reversible specific capacity with superb cycling stability (100 cycles) and excellent retention of capacity (92 %).

  20. Integration of microchip electrophoresis with electrochemical detection using an epoxy-based molding method to embed multiple electrode materials.

    PubMed

    Johnson, Alicia S; Selimovic, Asmira; Martin, R Scott

    2011-11-01

    This paper describes the use of epoxy-encapsulated electrodes to integrate microchip-based electrophoresis with electrochemical detection. Devices with various electrode combinations can easily be developed. This includes a palladium decoupler with a downstream working electrode material of either gold, mercury/gold, platinum, glassy carbon, or a carbon fiber bundle. Additional device components such as the platinum wires for the electrophoresis separation and the counter electrode for detection can also be integrated into the epoxy base. The effect of the decoupler configuration was studied in terms of the separation performance, detector noise, and the ability to analyze samples of a high ionic strength. The ability of both glassy carbon and carbon fiber bundle electrodes to analyze a complex mixture was demonstrated. It was also shown that a PDMS-based valving microchip can be used along with the epoxy-embedded electrodes to integrate microdialysis sampling with microchip electrophoresis and electrochemical detection, with the microdialysis tubing also being embedded in the epoxy substrate. This approach enables one to vary the detection electrode material as desired in a manner where the electrodes can be polished and modified as is done with electrochemical flow cells used in liquid chromatography.

  1. Transitions from near-surface to interior redox upon lithiation in conversion electrode materials

    SciTech Connect

    He, Kai; Xin, Huolin L.; Zhao, Kejie; Yu, Xiqian; Norlund, Dennis; Weng, Tsu-Chien; Li, Jing; Jiang, Yi; Cadigan, Christopher A.; Richards, Ryan M.; Doeff, Marca M.; Yang, Xiao-Qing; Stach, Eric A.; Li, Ju; Lin, Feng; Su, Dong

    2015-01-29

    Nanoparticle electrodes in lithium-ion batteries have both near-surface and interior contributions to their redox capacity, each with distinct rate capabilities. Using combined electron microscopy, synchrotron X-ray methods and ab initio calculations, we have investigated the lithiation pathways that occur in NiO electrodes. We find that the near-surface electroactive (Ni²⁺→Ni⁰) sites saturated very quickly, and then encounter unexpected difficulty in propagating the phase transition into the electrode (referred to as a “shrinking-core” mode). However, the interior capacity for Ni²⁺→Ni⁰ can be accessed efficiently following the nucleation of lithiation “fingers” which propagate into the sample bulk, but only after a certain incubation time. Our microstructural observations of the transition from a slow shrinking-core mode to a faster lithiation finger mode corroborate with synchrotron characterization of large-format batteries, and can be rationalized by stress effects on transport at high-rate discharge. The finite incubation time of the lithiation fingers sets the intrinsic limitation for the rate capability (and thus the power) of NiO for electrochemical energy storage devices. The present work unravels the link between the nanoscale reaction pathways and the C-rate-dependent capacity loss, and provides guidance for the further design of battery materials that favors high C-rate charging.

  2. Transitions from near-surface to interior redox upon lithiation in conversion electrode materials

    DOE PAGES

    He, Kai; Xin, Huolin L.; Zhao, Kejie; ...

    2015-01-29

    Nanoparticle electrodes in lithium-ion batteries have both near-surface and interior contributions to their redox capacity, each with distinct rate capabilities. Using combined electron microscopy, synchrotron X-ray methods and ab initio calculations, we have investigated the lithiation pathways that occur in NiO electrodes. We find that the near-surface electroactive (Ni²⁺→Ni⁰) sites saturated very quickly, and then encounter unexpected difficulty in propagating the phase transition into the electrode (referred to as a “shrinking-core” mode). However, the interior capacity for Ni²⁺→Ni⁰ can be accessed efficiently following the nucleation of lithiation “fingers” which propagate into the sample bulk, but only after a certain incubationmore » time. Our microstructural observations of the transition from a slow shrinking-core mode to a faster lithiation finger mode corroborate with synchrotron characterization of large-format batteries, and can be rationalized by stress effects on transport at high-rate discharge. The finite incubation time of the lithiation fingers sets the intrinsic limitation for the rate capability (and thus the power) of NiO for electrochemical energy storage devices. The present work unravels the link between the nanoscale reaction pathways and the C-rate-dependent capacity loss, and provides guidance for the further design of battery materials that favors high C-rate charging.« less

  3. Solid-State Electrode Engineering and Material Processing for All-Solid-State Lithium and Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Yersak, Thomas A.

    In this dissertation we demonstrate the full rechargeability of a FeS 2/lithium metal battery at 60°C. To enable the reversibility of the FeS2 redox chemistry we utilize a bulk all-solid-state battery architecture based upon the Li2S-P2S5 glass-ceramic electrolyte. The glass-ceramic electrolyte's non-volatility and non-flammability allows us to use a lithium metal anode safely, while its solid nature confines FeS2's intermediate electroactive species to prevent active material loss and capacity fade. Based only on the weight of the active materials our battery stands to triple the specific energy (Wh kg-1) of conventional state-of-the-art Li-ion batteries. We also observe ortho-FeS2 as a charge product and propose a new discharge mechanism which revises 30 years of research on the subject. Unfortunately, our laboratory FeS2/Li battery could not achieve a practical cell-level specific energy because the composite electrode was nearly 70 wt. % glass-ceramic electrolyte and carbon black. We also found that our batteries were not durable because the formation of lithium dendrites through the glass-ceramic electrolyte separator membrane frequently internally shorted test cells upon charge. The remainder of this dissertation outlines our work to develop an all-solid-state Li-ion battery to address the shorting issue and the work done to engineer better active material-electrolyte solid-solid interfaces in the composite electrode for high cell-level specific energy.

  4. Synthesis of a novel electrode material containing phytic acid-polyaniline nanofibers for simultaneous determination of cadmium and lead ions.

    PubMed

    Huang, Hui; Zhu, Wencai; Gao, Xiaochun; Liu, Xiuyu; Ma, Houyi

    2016-12-01

    The development of nanostructured conducting polymers based materials for electrochemical applications has attracted intense attention due to their environmental stability, unique reversible redox properties, abundant electron active sites, rapid electron transfer and tunable conductivity. Here, a phytic acid doped polyaniline nanofibers based nanocomposite was synthesized using a simple and green method, the properties of the resulting nanomaterial was characterized by electrochemical impedance spectroscopy (EIS), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). A glassy carbon electrode modified by the nanocomposite was evaluated as a new platform for the simultaneous detection of trace amounts of Cd(2+) and Pb(2+) using differential pulse anodic stripping voltammetry (DPASV). The synergistic contribution from PANI nanofibers and phytic acid enhances the accumulation efficiency and the charge transfer rate of metal ions during the DPASV analysis. Under the optimal conditions, good linear relationships were obtained for Cd(2+) in a range of 0.05-60 μg L(-1), with the detection limit (S/N = 3) of 0.02 μg L(-1), and for Pb(2+) in a range of 0.1-60 μg L(-1), with the detection limit (S/N = 3) of 0.05 μg L(-1). The new electrode was successfully applied to real water samples for simultaneous detection of Cd(2+) and Pb(2+) with good recovery rates. Therefore, the new electrode material may be a capable candidate for the detection of trace levels of heavy metal ions.

  5. Structural phase transition and electrode characteristics of LiMn{sub 2{minus}x}Mg{sub x}O{sub 4} positive electrode material for the lithium secondary battery

    SciTech Connect

    Idemoto, Y.; Udagawa, K.; Koura, N.; Richardson, J. W., Jr.; Takeuchi, K.; Loong, C.-K.

    1999-12-10

    With in mind improving the cycle performance of 4V class lithium manganese oxide positive electrode material for the lithium secondary battery, the authors have been investigating the effects of partial substitution of Mn by another metal. The crystal phase transition in the quaternary spinel LiMn{sub 2{minus}x}Mg{sub x}O{sub 4} was studied by neutron powder diffraction at 200K and DSC measurements at low temperatures. They find that substituting Mn by Mg resulted in a more stable crystal structure with the Jahn-Teller transition suppressed down to low temperature. The charge-discharge characteristics of these positive electrode active materials were investigated at 4V range. Although the discharge capacity decreased with increasing Mg content, the cycle performance was improved with increasing Mg content.

  6. An Electrode-based approach for monitoring in situ microbial activity during subsurface bioremediation

    SciTech Connect

    Williams, K.H.; Nevin, K.P.; Franks, A.; Englert, A.; Long, P.E.; Lovley, D.R.

    2009-11-15

    Current production by microorganisms colonizing subsurface electrodes and its relationship to substrate availability and microbial activity was evaluated in an aquifer undergoing bioremediation. Borehole graphite anodes were installed downgradient from a region of acetate injection designed to stimulate bioreduction of U(VI); cathodes consisted of graphite electrodes embedded at the ground surface. Significant increases in current density ({<=}50 mA/m{sup 2}) tracked delivery of acetate to the electrodes, dropping rapidly when acetate inputs were discontinued. An upgradient control electrode not exposed to acetate produced low, steady currents ({<=}0.2 mA/m{sup 2}). Elevated current was strongly correlated with uranium removal but minimal correlation existed with elevated Fe(II). Confocal laser scanning microscopy of electrodes revealed firmly attached biofilms, and analysis of 16S rRNA gene sequences indicated the electrode surfaces were dominated (67-80%) by Geobacter species. This is the first demonstration that electrodes can produce readily detectable currents despite long-range (6 m) separation of anode and cathode, and these results suggest that oxidation of acetate coupled to electron transfer to electrodes by Geobacter species was the primary source of current. Thus it is expected that current production may serve as an effective proxy for monitoring in situ microbial activity in a variety of subsurface anoxic environments.

  7. An electrochemical double layer capacitor using an activated carbon electrode with gel electrolyte binder

    SciTech Connect

    Osaka, Tetsuya, Liu, X.; Nojima, Masashi; Momma, Toshiyuki

    1999-05-01

    An electric double layer capacitor (EDLC) was prepared with an activated carbon powder electrode with poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) based gel electrolyte. Ethylene carbonate (EC) and propylene carbonate (PC) were used as plasticizer and tetraethylammonium tetrafluoroborate (TEABF{sub 4}) was used as the supporting electrolyte. An optimized gel electrolyte of PVdF-HFP/PC/EC/TEABF{sub 4} - 23/31/35/11 mass ratio exhibited high ionic conductivity of 5 {times} 10{sup {minus}3} S/cm, high electrode capacitance, and good mechanical strength. An electrode consisting of activated carbon (AC) with the gel electrolyte as the binder (AC/PVdF-HFP based gel, 7/3 mass ratio) showed a higher specific capacitance and a lower ion diffusion resistance within the electrode than a carbon electrode, prepared with PVdF-HFP binder without plasticizer. This suggests that an electrode mixed with the gel electrolyte has a lower ion diffusion resistance inside the electrode. The highest specific capacitance of 123 F/g was achieved with an electrode containing AC with a specific surface area of 2500 m{sup 2}/g. A coin-type EDLC cell with optimized components showed excellent cycleability exceeding 10{sup 4} cycles with ca. 100% coulombic efficiency achieved when charging and discharging was repeated between 1.0 and 2.5 V at 1.66 mA/cm{sup 2}.

  8. Physics of electron and lithium-ion transport in electrode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Musheng, Wu; Bo, Xu; Chuying, Ouyang

    2016-01-01

    The physics of ionic and electrical conduction at electrode materials of lithium-ion batteries (LIBs) are briefly summarized here, besides, we review the current research on ionic and electrical conduction in electrode material incorporating experimental and simulation studies. Commercial LIBs have been widely used in portable electronic devices and are now developed for large-scale applications in hybrid electric vehicles (HEV) and stationary distributed power stations. However, due to the physical limits of the materials, the overall performance of today’s LIBs does not meet all the requirements for future applications, and the transport problem has been one of the main barriers to further improvement. The electron and Li-ion transport behaviors are important in determining the rate capacity of LIBs. Project supported by the National High Technology Research and Development Program of China (Grant No. 2015AA034201), the National Natural Science Foundation of China (Grant Nos. 11234013 and 11264014), the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20133ACB21010 and 20142BAB212002), and the Foundation of Jiangxi Education Committee, China (Grant Nos. GJJ14254 and KJLD14024). C. Y. Ouyang is also supported by the “Gan-po talent 555” Project of Jiangxi Province, China.

  9. Conductive Polymer-Coated VS4 Submicrospheres As Advanced Electrode Materials in Lithium-Ion Batteries.

    PubMed

    Zhou, Yanli; Li, Yanlu; Yang, Jing; Tian, Jian; Xu, Huayun; Yang, Jian; Fan, Weiliu

    2016-07-27

    VS4 as an electrode material in lithium-ion batteries holds intriguing features like high content of sulfur and one-dimensional structure, inspiring the exploration in this field. Herein, VS4 submicrospheres have been synthesized via a simple solvothermal reaction. However, they quickly degrade upon cycling as an anode material in lithium-ion batteries. So, three conductive polymers, polythiophene (PEDOT), polypyrrole (PPY), and polyaniline (PANI), are coated on the surface to improve the electron conductivity, suppress the diffusion of polysulfides, and modify the interface between electrode/electrolyte. PANI is the best in the polymers. It improves the Coulombic efficiency to 86% for the first cycle and keeps the specific capacity at 755 mAh g(-1) after 50 cycles, higher than the cases of naked VS4 (100 mAh g(-1)), VS4@PEDOT (318 mAh g(-1)), and VS4@PPY (448 mAh g(-1)). The good performances could be attributed to the improved charge-transfer kinetics and the strong interaction between PANI and VS4 supported by theoretical simulation. The discharge voltage ∼2.0 V makes them promising cathode materials.

  10. High rate, long cycle life battery electrode materials with an open framework structure

    DOEpatents

    Wessells, Colin; Huggins, Robert; Cui, Yi; Pasta, Mauro

    2015-02-10

    A battery includes a cathode, an anode, and an aqueous electrolyte disposed between the cathode and the anode and including a cation A. At least one of the cathode and the anode includes an electrode material having an open framework crystal structure into which the cation A is reversibly inserted during operation of the battery. The battery has a reference specific capacity when cycled at a reference rate, and at least 75% of the reference specific capacity is retained when the battery is cycled at 10 times the reference rate.

  11. Synthesis and characterization of high performance electrode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Hong, Jian

    Lithium-ion batteries have revolutionized portable electronics. Electrode reactions in these electrochemical systems are based on reversible intercalation of Li+ ions into the host electrode material with a concomitant addition/removal of electrons into the host. If such batteries are to find a wider market such as the automotive industry, less expensive and higher capacity electrode materials will be required. The olivine phase lithium iron phosphate has attracted the most attention because of its low cost and safety (high thermal and chemical stability). However, it is an intriguing fundamental problem to understand the fast electrochemical response from the poorly electronic conducting two-phase LiFePO4/FePO 4 system. This thesis focuses on determining the rate-limit step of LiFePO4. First, a LiFePO4 material, with vanadium substituting on the P-site, was synthesized, and found that the crystal structure change may cause high lithium diffusivity. Since an accurate Li diffusion coefficient cannot be measured by traditional electrochemical method in a three-electrode cell due to the phase transformation during measurement, a new method to measure the intrinsic electronic and ionic conductivity of mixed conductive LiFePO 4 was developed. This was based on the conductivity measurements of mixed conductive solid electrolyte using electrochemical impedance spectroscopy (EIS) and blocking electrode. The effects of ionic/electronic conductivity and phase transformation on the rate performance of LiFePO4 were also first investigated by EIS and other electrochemical technologies. Based on the above fundamental kinetics studies, an optimized LiFePO4 was used as a target to deposit 1mum LiFePO4 thin film at Oak Ridge National Laboratory using radio frequency (RF) magnetron sputtering. Similar to the carbon coated LiFePO4 powder electrode, the carbon-contained RF LiFePO4 film with no preferential orientation showed excellent capacity and rate capability both at 25°C and -20

  12. Electrochemically active, anti-biofouling polymer adlayers on indium-tin-oxide electrodes.

    PubMed

    Kim, Eun Jeong; Shin, Hee-Young; Park, Sangjin; Sung, Daekyung; Jon, Sangyong; Sampathkumar, Srinivasa-Gopalan; Yarema, Kevin J; Choi, Sung-Yool; Kim, Kyuwon

    2008-08-14

    Here we report the synthesis of a novel electrochemically active polymer, preparation of adlayers of the polymer on optically transparent electrodes, and an application of the adlayers to immobilization of engineered cells through a direct covalent coupling reaction.

  13. TiO2(B) nanoribbons as negative electrode material for lithium ion batteries with high rate performance.

    PubMed

    Beuvier, Thomas; Richard-Plouet, Mireille; Mancini-Le Granvalet, Maryline; Brousse, Thierry; Crosnier, Olivier; Brohan, Luc

    2010-09-20

    Nanosized TiO(2)(B) has been investigated as a possible candidate to replace Li(4)Ti(5)O(12) or graphite as the negative electrode for a Li-ion battery. Nanoribbon precursors, classically synthesized in autogenous conditions at temperatures higher than 170 °C in alkaline medium, have been obtained, under reflux (T ∼ 120 °C, P = 1 bar). After ionic exchange, these nanoribbons exhibit a surface area of 140 m(2) g(-1), larger than those obtained under autogenous conditions or by solid state chemistry. These nanoparticles transform after annealing to isomorphic titanium dioxide. They mainly crystallize as the TiO(2)(B) variety with only 5% of anatase. This quantification of the anatase/TiO(2)(B) ratio was deduced from Raman spectroscopy measurement. TEM analysis highlights the excellent crystallinity of the nanosized TiO(2)(B), crystallizing as 6 nm thin nanoribbons. These characteristics are essential in lithium batteries for a fast lithium ion solid state diffusion into the active material. In lithium batteries, the TiO(2)(B) nanoribbons exhibit a good capacity and an excellent rate capability (reversible capacity of 200 mA h g(-1) at C/3 rate (111 mA g(-1)), 100 mA h g(-1) at 15C rate (5030 mA g(-1)) for a 50% carbon black loaded electrode). The electrode formulation study highlights the importance of the electronic and ionic connection around the active particles. The cycleability of the nano-TiO(2)(B) is another interesting point with a capacity loss of 5% only, over 500 cycles at 3C.

  14. Influences of internal resistance and specific surface area of electrode materials on characteristics of electric double layer capacitors

    NASA Astrophysics Data System (ADS)

    Suda, Yoshiyuki; Mizutani, Akitaka; Harigai, Toru; Takikawa, Hirofumi; Ue, Hitoshi; Umeda, Yoshito

    2017-01-01

    We fabricated electric double layer capacitors (EDLCs) using particulate and fibrous types of carbon nanomaterials with a wide range of specific surface areas and resistivity as an active material. The carbon nanomaterials used in this study are carbon nanoballoons (CNBs), onion-like carbon (OLC), and carbon nanocoils (CNCs). A commercially used activated carbon (AC) combined with a conductive agent was used as a comparison. We compared the EDLC performance using cyclic voltammetry (CV), galvanostatic charge/discharge testing, and electrochemical impedance spectroscopy (EIS). OLC showed a poor EDLC performance, although it has the lowest resistivity among the carbon nanomaterials. CNB, which has a 1/16 lower specific surface area than AC but higher specific surface area than CNC and OLC, had a higher specific capacitance than CNC and OLC. Moreover, at current densities of 1.5 Ag-1 and larger, the specific capacitance of the EDLC using CNB was almost the same as that using AC. Electrochemical impedance spectroscopy of the EDLCs revealed that the CNB and CNC electrodes had a much lower internal resistance than the AC electrode, which correlated with a low capacitance maintenance factor as the current density increased.

  15. Magnetic control of electrochemical processes at electrode surface using iron-rich graphene materials with dual functionality.

    PubMed

    Lim, Chee Shan; Ambrosi, Adriano; Sofer, Zdeněk; Pumera, Martin

    2014-07-07

    Metal-doped graphene hybrid materials demonstrate promising capabilities in catalysis and various sensing applications. There also exists great interest for on-demand control of the selectivity of many electrochemical processes. In this work, an iron-doped thermally reduced graphene oxide (Fe-TRGO) was prepared and used to investigate the possibility of a reproducible, magnetically controlled method to modulate electrochemical reactivities through a scalable method. We made use of the presence of both magnetic and electrocatalytic properties in the Fe-TRGOs to induce attraction and removal of the Fe-TRGO material onto and off the working electrode surfaces magnetically, thereby controlling the electrochemical oxidation and reduction processes. The outstanding electrochemical performance of the Fe-TRGO material was evident, with enhanced current signals and lower peak potentials observed upon magnetic activation. Reversible and reproducible cycles of activation and deactivation were obtained as the peak heights and peak potentials remained relatively consistent with no apparent carryover between every step. Both components of Fe-TRGO play an electrocatalytic role in the electrochemical sensing. In the cases of the oxygen reduction reaction and reduction of cumene hydroperoxide, the iron oxide plays the role of an electrocatalyst, while in the cases of ascorbic acid, the enhanced electroactivity originates from the high surface area of the graphene portion in the Fe-TRGO hybrid material. The feasibility of this magnetically switchable method for on-demand sensing and energy production thus brings about potential developments for future electrochemical applications.

  16. Magnetic control of electrochemical processes at electrode surface using iron-rich graphene materials with dual functionality

    NASA Astrophysics Data System (ADS)

    Lim, Chee Shan; Ambrosi, Adriano; Sofer, Zdeněk; Pumera, Martin

    2014-06-01

    Metal-doped graphene hybrid materials demonstrate promising capabilities in catalysis and various sensing applications. There also exists great interest for on-demand control of the selectivity of many electrochemical processes. In this work, an iron-doped thermally reduced graphene oxide (Fe-TRGO) was prepared and used to investigate the possibility of a reproducible, magnetically controlled method to modulate electrochemical reactivities through a scalable method. We made use of the presence of both magnetic and electrocatalytic properties in the Fe-TRGOs to induce attraction and removal of the Fe-TRGO material onto and off the working electrode surfaces magnetically, thereby controlling the electrochemical oxidation and reduction processes. The outstanding electrochemical performance of the Fe-TRGO material was evident, with enhanced current signals and lower peak potentials observed upon magnetic activation. Reversible and reproducible cycles of activation and deactivation were obtained as the peak heights and peak potentials remained relatively consistent with no apparent carryover between every step. Both components of Fe-TRGO play an electrocatalytic role in the electrochemical sensing. In the cases of the oxygen reduction reaction and reduction of cumene hydroperoxide, the iron oxide plays the role of an electrocatalyst, while in the cases of ascorbic acid, the enhanced electroactivity originates from the high surface area of the graphene portion in the Fe-TRGO hybrid material. The feasibility of this magnetically switchable method for on-demand sensing and energy production thus brings about potential developments for future electrochemical applications.

  17. Tungsten - Tungsten Trioxide Electrodes for the Long-term Monitoring of Corrosion Processes in Highly Alkaline Media and Concrete-based Materials.

    PubMed

    Kolar, Mitja; Doliška, Aleš; Svegl, Franc; Kalcher, Kurt

    2010-12-01

    The determination of pH in highly alkaline solutions and concrete materials is extremely important for monitoring or predicting the corrosion processes of reinforced concrete structures and to follow the hydration process of Portland cement, fly-ash, micro silica and other materials used in concrete manufacturing. The corrosion of reinforced concrete structures and the hydration of pozzolanic materials are long-term processes, which means, that appropriate durable, and resilient pH electrodes are needed, for direct implantation regarding solid concrete bodies. The purpose of this work was to characterise the potentiometric and surface properties of tungsten electrodes after exposure to extreme alkaline solutions. The tungsten wire surface was activated at 800 °C for 30 min within an oxygen flow. The formation of homogenous and compact multiple layers of WO3 crystals was observed using X-ray diffraction and scanning electron microscopy. X-ray diffraction of those tungsten electrodes exposed to saturated calcium hydroxide solution or the pore-water of cement-based materials during 10 months, indicated partly dissolved WO3. Two new compounds appeared on the electrodes surfaces; pure tungsten and CaWO4. The presence of tungsten was affecting any potentiometric response in acidic pH region (2-5) but in pH 5-12 region the response still remained linear with a slope of 42 ± 2 mV/pH unit. The W/WO3 electrode was suitable for the long-term monitoring of corrosion processes in concrete-based materials according to the pH changes as it has stable and repeatable responses to alkaline solutions (pH > 12). All the tested interferring ions had no significant influence on electrode potential. The W/WO3 electrode is simple, robust, inexpensive, and temperature resistant and can be applied in potentiometric titrations as well as in batch and flow-injection analysis. The prepared electrode is a highly promising pH sensor for the monitoring of pH changes in highly alkaline capillary

  18. In Situ Laser Activation of Electrochemical Kinetics at Carbon Electrodes

    DTIC Science & Technology

    1994-05-31

    carbon. They include polishing [5,61, chemical and electrochemical pretreatment [12-15], vacuum heat treatment [7,16], thermal and rf plasma treat ...small (approx. 0.1 Atm) nodules, apparently solidified from molten Pt. Such nodules were absent on the polished surface. Electrodes treated with the...Galus proposed that CN- forms a protective layer by occupying chemisorption sites, similar to I-, and both CN-- and I-- treated surfaces yielded k

  19. Improved Manufacturing Performance of Screen Printed Carbon Electrodes through Material Formulation

    PubMed Central

    Jewell, Eifion; Philip, Bruce; Greenwood, Peter

    2016-01-01

    Printed carbon graphite materials are the primary common component in the majority of screen printed sensors. Screen printing allows a scalable manufacturing solution, accelerating the means by which novel sensing materials can make the transition from laboratory material to commercial product. A common bottleneck in any thick film printing process is the controlled drying of the carbon paste material. A study has been undertaken which examines the interaction between material solvent, printed film conductivity and process consistency. The study illustrates that it is possible to reduce the solvent boiling point to significantly increase process productivity while maintaining process consistency. The lower boiling point solvent also has a beneficial effect on the conductivity of the film, reducing the sheet resistance. It is proposed that this is a result of greater film stressing increasing charge percolation through greater inter particle contact. Simulations of material performance and drying illustrate that a multi layered printing provides a more time efficient manufacturing method. The findings have implications for the volume manufacturing of the carbon sensor electrodes but also have implications for other applications where conductive carbon is used, such as electrical circuits and photovoltaic devices. PMID:27355967

  20. Improved Manufacturing Performance of Screen Printed Carbon Electrodes through Material Formulation.

    PubMed

    Jewell, Eifion; Philip, Bruce; Greenwood, Peter

    2016-06-27

    Printed carbon graphite materials are the primary common component in the majority of screen printed sensors. Screen printing allows a scalable manufacturing solution, accelerating the means by which novel sensing materials can make the transition from laboratory material to commercial product. A common bottleneck in any thick film printing process is the controlled drying of the carbon paste material. A study has been undertaken which examines the interaction between material solvent, printed film conductivity and process consistency. The study illustrates that it is possible to reduce the solvent boiling point to significantly increase process productivity while maintaining process consistency. The lower boiling point solvent also has a beneficial effect on the conductivity of the film, reducing the sheet resistance. It is proposed that this is a result of greater film stressing increasing charge percolation through greater inter particle contact. Simulations of material performance and drying illustrate that a multi layered printing provides a more time efficient manufacturing method. The findings have implications for the volume manufacturing of the carbon sensor electrodes but also have implications for other applications where conductive carbon is used, such as electrical circuits and photovoltaic devices.

  1. Electrode materials: a challenge for the exploitation of protonic solid oxide fuel cells

    PubMed Central

    Fabbri, Emiliana; Pergolesi, Daniele; Traversa, Enrico

    2010-01-01

    High temperature proton conductor (HTPC) oxides are attracting extensive attention as electrolyte materials alternative to oxygen-ion conductors for use in solid oxide fuel cells (SOFCs) operating at intermediate temperatures (400–700 °C). The need to lower the operating temperature is dictated by cost reduction for SOFC pervasive use. The major stake for the deployment of this technology is the availability of electrodes able to limit polarization losses at the reduced operation temperature. This review aims to comprehensively describe the state-of-the-art anode and cathode materials that have so far been tested with HTPC oxide electrolytes, offering guidelines and possible strategies to speed up the development of protonic SOFCs. PMID:27877342

  2. TOPICAL REVIEW: Electrode materials: a challenge for the exploitation of protonic solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Fabbri, Emiliana; Pergolesi, Daniele; Traversa, Enrico

    2010-08-01

    High temperature proton conductor (HTPC) oxides are attracting extensive attention as electrolyte materials alternative to oxygen-ion conductors for use in solid oxide fuel cells (SOFCs) operating at intermediate temperatures (400-700 °C). The need to lower the operating temperature is dictated by cost reduction for SOFC pervasive use. The major stake for the deployment of this technology is the availability of electrodes able to limit polarization losses at the reduced operation temperature. This review aims to comprehensively describe the state-of-the-art anode and cathode materials that have so far been tested with HTPC oxide electrolytes, offering guidelines and possible strategies to speed up the development of protonic SOFCs.

  3. Experimental and theoretical investigations of functionalized boron nitride as electrode materials for Li-ion batteries

    SciTech Connect

    Zhang, Fan; Nemeth, Karoly; Bareno, Javier; Dogan, Fulya; Bloom, Ira D.; Shaw, Leon L.

    2016-03-03

    The feasibility of synthesizing functionalized h-BN (FBN) via the reaction between molten LiOH and solid h-BN is studied for the first time and its first ever application as an electrode material in Li-ion batteries is evaluated. Density functional theory (DFT) calculations are performed to provide mechanistic understanding of the possible electrochemical reactions derived from the FBN. Various materials characterizations reveal that the melt-solid reaction can lead to exfoliation and functionalization of h-BN simultaneously, while electrochemical analysis proves that the FBN can reversibly store charges through surface redox reactions with good cycle stability and coulombic efficiency. As a result, the DFT calculations have provided physical insights into the observed electrochemical properties derived from the FBN.

  4. Experimental and theoretical investigations of functionalized boron nitride as electrode materials for Li-ion batteries

    DOE PAGES

    Zhang, Fan; Nemeth, Karoly; Bareno, Javier; ...

    2016-03-03

    The feasibility of synthesizing functionalized h-BN (FBN) via the reaction between molten LiOH and solid h-BN is studied for the first time and its first ever application as an electrode material in Li-ion batteries is evaluated. Density functional theory (DFT) calculations are performed to provide mechanistic understanding of the possible electrochemical reactions derived from the FBN. Various materials characterizations reveal that the melt-solid reaction can lead to exfoliation and functionalization of h-BN simultaneously, while electrochemical analysis proves that the FBN can reversibly store charges through surface redox reactions with good cycle stability and coulombic efficiency. As a result, the DFTmore » calculations have provided physical insights into the observed electrochemical properties derived from the FBN.« less

  5. Photoconductivity of high voltage space insulating materials: Measurements with metal electrodes

    NASA Technical Reports Server (NTRS)

    Coffey, H. T.; Nanevicz, J. E.

    1975-01-01

    The electrical conductivities of high voltage insulating materials were measured in the dark and under various intensities of illumination. The materials investigated included FEP Teflon, Kapton-H, fused quartz, and parylene. Conductivities were determined as functions of temperature between 22 and 100 C and light intensity between 0 and 2.5 kW/m2. The thickness dependence of the conductivity was determined for Teflon and Kapton, and the influence of spectral wavelengths on the conductivity was determined in several cases. All measurements were made in a vacuum to simulate a space environment, and all samples had metallic electrodes. The conductivity of Kapton was permanently increased by exposure to light; changes as great as five orders of magnitude were observed after six hours of illumination.

  6. Characterisation of porous carbon electrode materials used in proton exchange membrane fuel cells via gas adsorption

    NASA Astrophysics Data System (ADS)

    Watt-Smith, M. J.; Rigby, S. P.; Ralph, T. R.; Walsh, F. C.

    Porous carbon materials are typically used in both the substrate (typically carbon paper) and the electrocatalyst supports (often platinised carbon) within proton exchange membrane fuel cells. Gravimetric nitrogen adsorption has been studied at a carbon paper substrate, two different Pt-loaded carbon paper electrodes and three particulate carbon blacks. N 2 BET surface areas and surface fractal dimensions were determined using the fractal BET and Frenkel-Halsey-Hill models for all but one of the materials studied. The fractal dimensions of the carbon blacks obtained from gas adsorption were compared with those obtained independently by small angle X-ray scattering and showed good agreement. Density functional theory was used to characterise one of the carbon blacks, as the standard BET model was not applicable.

  7. Secondary Electron Emission from Dielectric Materials of a Hall Thruster with Segmented Electrodes

    SciTech Connect

    A. Dunaevsky; Y. Raitses; N.J. Fisch

    2003-02-12

    The discharge parameters in Hall thrusters depend strongly on the yield of secondary electron emission from channel walls. Comparative measurements of the yield of secondary electron emission at low energies of primary electrons were performed for several dielectric materials used in Hall thrusters with segmented electrodes. The measurements showed that at low energies of primary electrons the actual energetic dependencies of the total yield of secondary electron emission could differ from fits, which are usually used in theoretical models. The observed differences might be caused by electron backscattering, which is dominant at lower energies and depends strongly on surface properties. Fits based on power or linear laws are relevant at higher energies of primary electrons, where the bulk material properties play a decisive role.

  8. Calcium phosphates deposited on titanium electrode surface--part 1: Effect of the electrode polarity and oxide film on the deposited materials.

    PubMed

    Okawa, Seigo; Watanabe, Kouichi; Kanatani, Mitsugu

    2013-01-01

    We report experimental results about the effect of polarity of electrode and anodized titanium oxide film on the deposited materials by electrolysis of an acidic calcium phosphate solution. Mirror-polished titanium and anodized titanium were used as anode or cathode, and a Pt plate was used as a counter electrode. The load voltage was held constant at 20 VDC. No deposited materials were found on the anode surface. On the other hand, dicalcium phosphate dihydrate (DCPD) was deposited on the cathode surface at the beginning of the electrolysis. After the electrolysis time 600 s, the non-stoichiometric hydroxyapatite (HAp) with several hundred nanometers was formed on the specimen surface. Based on X-ray photoelectron spectroscopy data, the anodized oxide film contained both P(5+) and P(3+) ions. This characteristic of the oxide film and the electrolysis conditions were related to the behavior of the deposition of ultra fine HAp with high crystallinity.

  9. Electrode compositions

    DOEpatents

    Block, J.; Fan, X.

    1998-10-27

    An electrode composition is described for use as an electrode in a non-aqueous battery system. The electrode composition contains an electrically active powder in a solid polymer and, as a dispersant, a C{sub 8}-C{sub 15} alkyl capped oligomer of a hexanoic acid that is electrochemically inert at 2.5--4.5 volts.

  10. Electrode compositions

    DOEpatents

    Block, Jacob; Fan, Xiyun

    1998-01-01

    An electrode composition for use as an electrode in a non-aqueous battery system. The electrode composition contains an electrically active powder in a solid polymer and, as a dispersant, a C.sub.8 -C.sub.15 alkyl capped oligomer of a hexanoic acid that is electrochemically inert at 2.5-4.5 volts.

  11. Development of Novel Metal Hydride-Carbon Nanomaterial Based Nanocomposites as Anode Electrode Materials for Lithium Ion Battery

    DTIC Science & Technology

    2014-06-30

    and pG-f-MWNT after the first cycle. These may be attributed to the lithium ion consumption during the electrolyte decomposition and formation of... solid electrolyte interface film around the electrodes with large surface areas.25 After the 30th and the 100th cycle SEG yielded a reversible discharge...anode electrode materials for Lithium ion battery Objectives:- The aim of this study is to develop metal hydride–carbon nanomaterial based

  12. Nitrogen-doped carbon spheres: A new high-energy-density and long-life pseudo-capacitive electrode material for electrochemical flow capacitor.

    PubMed

    Hou, Shujin; Wang, Miao; Xu, Xingtao; Li, Yandong; Li, Yanjiang; Lu, Ting; Pan, Likun

    2017-04-01

    One of the most challenging issues in developing electrochemical flow capacitor (EFC) technology is the design and synthesis of active electrode materials with high energy density and long cycle life. However, in practical cases, the energy density and cycle ability obtained currently cannot meet the practical need. In this work, we propose a new active material, nitrogen-doped carbon spheres (NCSs), as flowable electrodes for EFC application. The NCSs were prepared via one-pot hydrothermal synthesis in the presence of resorcinol/formaldehyde as carbon precursors and melamine as nitrogen precursor, followed by carbonization in nitrogen flow at various temperatures. The results of EFC experiments demonstrate that NCSs obtained at 800°C exhibit a high energy density of 13.5Whkg(-1) and an excellent cycle ability, indicating the superiority of NCSs for EFC application.

  13. Electrode-based approach for monitoring in situ microbial activity during subsurface bioremediation

    SciTech Connect

    Williams, Kenneth H.; Nevin, Kelly P.; Franks, Ashley; Englert, Andreas L.; Long, Philip E.; Lovley, Derek R.

    2010-01-01

    Current production by microorganisms colonizing subsurface electrodes and its relationship to substrate availability and microbial activity was evaluated in an aquifer undergoing bioremediation. Borehole graphite anodes were installed downgradient from a region of acetate injection designed to stimulate bioreduction of U(VI); cathodes consisted of graphite electrodes embedded at the ground surface. Significant increases in current density (≤50 mA/m2) tracked delivery of acetate to the electrodes, dropping rapidly when acetate inputs were discontinued. An upgradient control produced low, steady currents (≤0.2 mA/m2). Elevated current was strongly correlated with uranium removal but minimal correlation existed with elevated Fe(II). Confocal laser scanning microscopy of electrodes revealed firmly attached biofilms, and analysis of 16S rRNA gene sequences indicated the electrode surfaces were dominated (67-80%) by Geobacter species. These results suggest that oxidation of acetate coupled to electron transfer to electrodes by Geobacter species was the primary source of current. This is the first demonstration that electrodes can produce readily detectable currents despite long-range (6 m) separation of anode and cathode and that current levels are likely related to rates of subsurface metabolism. It is expected that current production may serve as an effective proxy for monitoring in situ microbial activity in a variety of subsurface anoxic environments.

  14. Analysis and Simple Circuit Design of Double Differential EMG Active Electrode.

    PubMed

    Guerrero, Federico Nicolás; Spinelli, Enrique Mario; Haberman, Marcelo Alejandro

    2016-06-01

    In this paper we present an analysis of the voltage amplifier needed for double differential (DD) sEMG measurements and a novel, very simple circuit for implementing DD active electrodes. The three-input amplifier that standalone DD active electrodes require is inherently different from a differential amplifier, and general knowledge about its design is scarce in the literature. First, the figures of merit of the amplifier are defined through a decomposition of its input signal into three orthogonal modes. This analysis reveals a mode containing EMG crosstalk components that the DD electrode should reject. Then, the effect of finite input impedance is analyzed. Because there are three terminals, minimum bounds for interference rejection ratios due to electrode and input impedance unbalances with two degrees of freedom are obtained. Finally, a novel circuit design is presented, including only a quadruple operational amplifier and a few passive components. This design is nearly as simple as the branched electrode and much simpler than the three instrumentation amplifier design, while providing robust EMG crosstalk rejection and better input impedance using unity gain buffers for each electrode input. The interference rejection limits of this input stage are analyzed. An easily replicable implementation of the proposed circuit is described, together with a parameter design guideline to adjust it to specific needs. The electrode is compared with the established alternatives, and sample sEMG signals are obtained, acquired on different body locations with dry contacts, successfully rejecting interference sources.

  15. Analysis and Simple Circuit Design of Double Differential EMG Active Electrode.

    PubMed

    Guerrero, Federico Nicolas; Spinelli, Enrique Mario; Haberman, Marcelo Alejandro

    2015-12-22

    In this paper we present an analysis of the voltage amplifier needed for double differential (DD) sEMG measurements and a novel, very simple circuit for implementing DD active electrodes. The three-input amplifier that standalone DD active electrodes require is inherently different from a differential amplifier, and general knowledge about its design is scarce in the literature. First, the figures of merit of the amplifier are defined through a decomposition of its input signal into three orthogonal modes. This analysis reveals a mode containing EMG crosstalk components that the DD electrode should reject. Then, the effect of finite input impedance is analyzed. Because there are three terminals, minimum bounds for interference rejection ratios due to electrode and input impedance unbalances with two degrees of freedom are obtained. Finally, a novel circuit design is presented, including only a quadruple operational amplifier and a few passive components. This design is nearly as simple as the branched electrode and much simpler than the three instrumentation amplifier design, while providing robust EMG crosstalk rejection and better input impedance using unity gain buffers for each electrode input. The interference rejection limits of this input stage are analyzed. An easily replicable implementation of the proposed circuit is described, together with a parameter design guideline to adjust it to specific needs. The electrode is compared with the established alternatives, and sample sEMG signals are obtained, acquired on different body locations with dry contacts, successfully rejecting interference sources.

  16. Actively cooled plasma electrode for long pulse operations in a cesium-seeded negative ion source

    NASA Astrophysics Data System (ADS)

    Fujiwara, Yukio; Watanabe, Kazuhiro; Okumura, Yoshikazu; Trainham, Rusty; Jacquot, Claude

    2005-01-01

    An actively cooled plasma electrode has been developed for long pulse operation in a cesium-seeded negative ion source. To keep the electrode temperature at about 300°C, which is the optimum range of temperature to enhance cesium effects, the electrode cooling structure has been designed using three-dimensional numerical simulation assuming that the heat flux from the source plasma was 15W/cm2. Water cooling tubes were brazed to the plasma electrode substrate with spacers made of stainless steel, which acts as a thermal resistance. The fabricated plasma electrode has been tested in a cesium-seeded volume negative ion source called Kamaboko source. The temperature of the electrode reached 280°C for the arc power of 41kW, which is the operating condition required for producing D- beams with current densities exceeding 20mA/cm2. It was demonstrated that the actively cooled plasma electrode is applicable to long pulse operations, meeting the temperature requirement for optimizing the surface-production process of negative ions in the cesium-seeded ion source.

  17. Electrodeposition of gold nanoparticle arrays on ITO glass as electrode with high electrocatalytic activity

    SciTech Connect

    Zhang, Kui; Wei, Juan; Zhu, Houjuan; Ma, Fang; Wang, Suhua

    2013-03-15

    Highlights: ► Electrodeposition of gold nanoparticle arrays on ITO glass as catalytic-electrodes. ► The sizes and densities of the gold nanoparticles can be easily controlled. ► Such arrays on ITO glass shows high electrocatalytic activity and good stability. - Abstract: Herein, we reported a templateless, surfactantless, and simple electrochemical method to directly fabricate gold nanoparticle (AuNP) arrays on indium tin oxide (ITO) glass substrates as effective electrocatalytic electrodes. The as-prepared AuNP arrays have been characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), etc. AuNPs with small sizes (<20 nm) were uniformly deposited on the ITO glass under constant current densities, and particle densities can be adjusted by varying the applied charges. The resultant AuNP array electrode showed higher catalytic activity and good stability toward electro-oxidation of ascorbic acid compared with other electrodes, such as bare ITO electrode, bare glassy carbon electrode and bulk gold film electrode.

  18. Preparation and electrocatalytic activity of nanocrystalline Ni-Mo-Co alloy electrode for hydrogen evolution.

    PubMed

    Xu, Lijian; Du, Jingjing; Chen, Baizhen

    2013-03-01

    Ni-Mo-Co alloy electrodes were prepared by electrodeposition technique with citric acid as a complexing agent. The influence of the main technical parameters such as the concentration of CoSO4 7H2O, the current density and the bath temperature on the component content in the Ni-Mo-Co alloy electrode were investigated by electron dispersive spectrometer (EDS), the microstructure and surface morphology of Ni-Mo-Co alloy electrodes were characterized by employing X-ray diffractometer (XRD) and scanning electron microscope (SEM), and the electrocatalytic activity of Ni-Mo-Co alloy electrode for hydrogen evolution was investigated by the method of the cathode polarization curves. The results showed that the excellent Ni-Mo-Co alloy electrode with 41.39 wt% Ni, 53.82 wt% Mo and 4.79 wt% Co was obtained when the concentration of CoSO4 x 7H2O was 8 g/L, the current density was 12 A/dm2 and the bath temperature was 25 degrees C. The mircostructure of the Ni-Mo-Co alloy was nanocrystalline and the average grain size was about 25 nm by calculating using Scherrer Equation. The electrocatalytic activity of Ni-Mo-Co alloy electrode for hydrogen evolution was better than that of Ni-Mo alloy electrode.

  19. [Research on treatment of high salt wastewater by the graphite and activated carbon fiber composite electrodes].

    PubMed

    Zhou, Gui-Zhong; Wang, Zhao-Feng; Wang, Xuan; Li, Wen-Qian; Li, Shao-Xiang

    2014-05-01

    High salinity wastewater is one of the difficulties in the field of wastewater treatment. As a new desalination technology, electrosorption technology has many advantages. This paper studied a new type of carbon-based electrodes, the graphite and activated carbon fiber composite electrodes. And the influencing factors of electrosorption and its desalination effect were investigated. The electrosorption device had optimal desalination effect when the voltage was 1. 6 V, the retention time was 60 min and the plate spacing was 1 cm. The graphite and activated carbon fiber composite electrodes were used to treat the black liquor of refined cotton and sodium copper chlorophyll wastewater to investigate its desalination effect. When the electrodes were used to treat the black liquor of refined cotton after acid treatment, the removal rate of conductivity and COD reached 58. 8% and 75. 6% respectively when 8 pairs of electrodes were used. And when the electrode was used to treat the sodium copper chlorophyll wastewater, the removal rate of conductivity and COD reached higher than 50. 0% and 13. 5% respectively when 6-8 pairs of electrodes were used.

  20. Production of an ion-exchange membrane-catalytic electrode bonded material for electrolytic cells

    NASA Technical Reports Server (NTRS)

    Takenaka, H.; Torikai, E.

    1986-01-01

    A good bond is achieved by placing a metal salt in solution on one side of a membrane and a reducing agent on the other side so that the reducing agent penetrates the membrane and reduces the metal. Thus, a solution containing Pt, Rh, etc., is placed on one side of the membrane and a reducing agent such as NaBH, is placed on the other side. The bonded metal layer obtained is superior in catalytic activity and is suitable as an electrode in a cell such as for solid polymer electrolyte water electrolysis.

  1. Renewable Solid Electrodes in Microfluidics: Recovering the Electrochemical Activity without Treating the Surface.

    PubMed

    Teixeira, Carlos A; Giordano, Gabriela F; Beltrame, Maisa B; Vieira, Luis C S; Gobbi, Angelo L; Lima, Renato S

    2016-11-15

    The contamination, passivation, or fouling of the detection electrodes is a serious problem undermining the analytical performance of electroanalytical devices. The methods to regenerate the electrochemical activity of the solid electrodes involve mechanical, physical, or chemical surface treatments that usually add operational time, complexity, chemicals, and further instrumental requirements to the analysis. In this paper, we describe for the first time a reproducible method for renewing solid electrodes whenever their morphology or composition are nonspecifically changed without any surface treatment. These renewable electrodes are the closest analogue to the mercury drop electrodes. Our approach was applied in microfluidics, where the downsides related to nonspecific modifications of the electrode are more critical. The renewal consisted in manually sliding metal-coated microwires across a channel with the sample. For this purpose, the chip was composed of a single piece of polydimethylsiloxane (PDMS) with three parallel channels interconnected to one perpendicular and top channel. The microwires were inserted in each one of the parallel channels acting as working, counter, and pseudoreference electrodes for voltammetry. This assembly allowed the renewal of all the three electrodes by simply pulling the microwires. The absence of any interfaces in the chips and the elastomeric nature of the PDMS allowed us to pull the microwires without the occurrence of leakages for the electrode channels even at harsh flow rates of up to 40.0 mL min(-1). We expect this paper can assist the researchers to develop new microfluidic platforms that eliminate any steps of electrode cleaning, representing a powerful alternative for precise and robust analyses to real samples.

  2. Surface-modified Mg{sub 2}Ni-type negative electrode materials for Ni-MH battery

    SciTech Connect

    Cui, N.; Luan, B.; Bradhurst, D.; Liu, H.K.; Dou, S.X.

    1997-12-01

    In order to further improve the electrode performance of Mg{sub 1.9}Y{sub 0.1}Ni{sub 0.9}Al{sub 0.1} alloy at ambient temperature, its surface was modified by an ultrasound pretreatment in the alkaline solution and microencapsulation with Ni-P coating. The effects of various surface modifications on the microstructure and electrochemical performance of the alloy electrodes were investigated and compared in this paper. It was found that the modification with ultrasound pretreatment significantly improved the electrocatalytic activity of the negative electrode and then reduced the overpotential of charging/discharging, resulting in a remarkable increase of electrode capacity and high-rate discharge capability but having little influence on the cycle life. However, the electrode fabricated from the microencapsulated alloy powder showed a higher discharge capacity, better high-rate discharge capability and longer cycle life as well.

  3. Influence of carbon electrode material on energy recovery from winery wastewater using a dual-chamber microbial fuel cell.

    PubMed

    Penteado, Eduardo D; Fernandez-Marchante, Carmen M; Zaiat, Marcelo; Gonzalez, Ernesto R; Rodrigo, Manuel A

    2016-09-12

    The aim of this work was to evaluate three carbon materials as anodes in microbial fuel cells (MFCs), clarifying their influence on the generation of electricity and on the treatability of winery wastewater, a highly organic-loaded waste. The electrode materials tested were carbon felt, carbon cloth and carbon paper and they were used at the same time as anode and cathode in the tests. The MFC equipped with carbon felt reached the highest voltage and power (72 mV and 420 mW m(-2), respectively), while the lowest values were observed when carbon paper was used as electrode (0.2 mV and 8.37·10(-6) mW m(-2), respectively). Chemical oxygen demand (COD) removal from the wastewater was observed to depend on the electrode material, as well. When carbon felt was used, the MFC showed the highest average organic matter consumption rate (650 mg COD L(-1) d(-1)), whereas by using carbon paper the rate decreased to 270 mg COD L(-1) d(-1). Therefore, both electricity generation and organic matter removal are strongly related not to the chemical composition of the electrode (which was graphite carbon in the three electrodes), but to its surface features and, consequently, to the amount of biomass adhered to the electrode surface.

  4. Application of infrared spectroscopy to monitoring gas insulated high-voltage equipment: electrode material-dependent SF(6) decomposition.

    PubMed

    Kurte, R; Beyer, C; Heise, H M; Klockow, D

    2002-08-01

    Sulfur hexafluoride is a chemically inert gas which is used in gas insulated substations (GIS) and other high-voltage equipment, leading to a significant enhancement of apparatus lifetime and reductions in installation size and maintenance requirements compared to conventional air insulated substations. However, component failures due to aging of the gas through electrical discharges may occur, and on-site monitoring for risk assessment is needed. Infrared spectroscopy was used for the analysis of gaseous by-products generated from electrical discharges in sulfur hexafluoride gas. An infrared monitoring system was developed using a micro-cell coupled to an FTIR spectrometer by silver halide fibers. Partial least-squares calibration was applied by using a limited number of optimally selected spectral variables. Emphasis was placed on the determination of main decomposition products, such as SOF(2), SOF(4), and SO(2)F(2). Besides the different electrical conditions, the material of the plane counter electrode of the discharge chamber was also varied between silver, aluminum, copper, tungsten, or tungsten/copper alloy. For the spark experiments the point electrode was the same material as chosen for the plane electrode, whereas for partial discharges a stainless steel needle was employed. Complementary investigations on the chemical composition within the solid counter electrode material by secondary neutral mass spectrometry (SNMS) were also carried out. Under sparking conditions, the electrode material plays an important role in the decomposition rates of the gas-phase, but no relevant material dependence could be observed under partial discharge conditions.

  5. Atomic-scale structure evolution in a quasi-equilibrated electrochemical process of electrode materials for rechargeable batteries.

    PubMed

    Gu, Lin; Xiao, Dongdong; Hu, Yong-Sheng; Li, Hong; Ikuhara, Yuichi

    2015-04-01

    Lithium-ion batteries have proven to be extremely attractive candidates for applications in portable electronics, electric vehicles, and smart grid in terms of energy density, power density, and service life. Further performance optimization to satisfy ever-increasing demands on energy storage of such applications is highly desired. In most of cases, the kinetics and stability of electrode materials are strongly correlated to the transport and storage behaviors of lithium ions in the lattice of the host. Therefore, information about structural evolution of electrode materials at an atomic scale is always helpful to explain the electrochemical performances of batteries at a macroscale. The annular-bright-field (ABF) imaging in aberration-corrected scanning transmission electron microscopy (STEM) allows simultaneous imaging of light and heavy elements, providing an unprecedented opportunity to probe the nearly equilibrated local structure of electrode materials after electrochemical cycling at atomic resolution. Recent progress toward unraveling the atomic-scale structure of selected electrode materials with different charge and/or discharge state to extend the current understanding of electrochemical reaction mechanism with the ABF and high angle annular dark field STEM imaging is presented here. Future research on the relationship between atomic-level structure evolution and microscopic reaction mechanisms of electrode materials for rechargeable batteries is envisaged.

  6. Improved capacitive deionization performance of mixed hydrophobic/hydrophilic activated carbon electrodes

    NASA Astrophysics Data System (ADS)

    Aslan, M.; Zeiger, M.; Jäckel, N.; Grobelsek, I.; Weingarth, D.; Presser, V.

    2016-03-01

    Capacitive deionization (CDI) is a promising salt removal technology with high energy efficiency when applied to low molar concentration aqueous electrolytes. As an interfacial process, ion electrosorption during CDI operation is sensitive to the pore structure and the total pore volume of carbon electrodes limits the maximum salt adsorption capacity (SAC). Thus, activation of carbons as a widely used method to enhance the porosity of a material should also be highly attractive for improving SAC values. In our study, we use easy-to-scale and facile-to-apply CO2-activation at temperatures between 950 °C and 1020 °C to increase the porosity of commercially available activated carbon. While the pore volume and surface area can be significantly increased up to 1.51 cm3 g-1 and 2113 m2 g-1, this comes at the expense of making the carbon more hydrophobic. We present a novel strategy to capitalize on the improved pore structure by admixing as received (more hydrophilic) carbon with CO2-treated (more hydrophobic) carbon for CDI electrodes without using membranes. This translates into an enhanced charge storage ability in high and low molar concentrations (1 M and 5 mM NaCl) and significantly improved CDI performance (at 5 mM NaCl). In particular, we obtain stable CDI performance at 0.86 charge efficiency with 13.1 mg g-1 SAC for an optimized 2:1 mixture (by mass).

  7. In Situ-Grown ZnCo2O4 on Single-Walled Carbon Nanotubes as Air Electrode Materials for Rechargeable Lithium–Oxygen Batteries

    SciTech Connect

    Liu, Bin; Xu, Wu; Yan, Pengfei; Bhattacharya, Priyanka; Cao, Ruiguo; Bowden, Mark E.; Engelhard, Mark H.; Wang, Chong M.; Zhang, Jiguang

    2015-10-12

    Although lithium-oxygen (Li-O2) batteries have great potential to be used as one of the next generation energy storage systems due to their ultrahigh theoretical specific energy, there are still many significant barriers before their practical applications. These barriers include electrolyte and electrode instability, poor ORR/OER efficiency and cycling capability, etc. Development of a highly efficient catalyst will not only enhance ORR/OER efficiency, it may also improve the stability of electrolyte because the reduced charge voltage. Here we report the synthesis of nano-sheet-assembled ZnCo2O4 spheres/single walled carbon nanotubes (ZCO/SWCNTs) composites as high performance air electrode materials for Li-O2 batteries. The ZCO catalyzed SWCNTs electrodes delivered high discharge capacities, decreased the onset of oxygen evolution reaction by 0.9 V during charge processes, and led to more stable cycling stability. These results indicate that ZCO/SWCNTs composite can be used as highly efficient air electrode for oxygen reduction and evolution reactions. The highly enhanced catalytic activity by uniformly dispersed ZnCo2O4 catalyst on nanostructured electrodes is expected to inspire

  8. Electrosynthesis of neodymium oxide nanorods and its nanocomposite with conjugated conductive polymer as a hybrid electrode material for highly capacitive pseudocapacitors.

    PubMed

    Mohammad Shiri, Hamid; Ehsani, Ali

    2017-06-01

    Herein, we report for the first time a facile and cost-efficient synthesis of metal oxide nanostructures comprised of nanorods type without the use of any additive. Nd(OH)3 and Nd2O3 nanorods were obtained by ultrasound wave assisted pulse electrochemical deposition in a Nd(NO3)3·6H2O nitrate bath. In addition, the interconnected nanorods were mesoporous leading to large electrochemical active sites for the redox reaction and fast ion transport within the Nd2O3 nanorods. Furthermore, for improving the electrochemical performance of conductive polymer, hybrid POAP/Nd2O3 films have then been fabricated by POAP electropolymerization in the presence of Nd2O3 nanorods as active electrodes for electrochemical supercapacitors. Surface and electrochemical analyses have been used for characterization of Nd2O3 and POAP/Nd2O3 composite films. Different electrochemical methods including galvanostatic charge discharge experiments, cyclic voltammetry and electrochemical impedance spectroscopy have been applied to study the system performance. Prepared composite film exhibited a significantly high specific capacity, high rate capability and excellent cycling stability. Importantly, electrochemical investigation show that POAP/Nd2O3 nanorods composite material has better properties than POAP without Nd2O3 nanorods, suggesting it can be used as supercapacitor electrode material with excellent specific capacitance (379Fg(-1)) which indicates this material is a promising electrode material for energy storage applications in high-performance pseudocapacitors.

  9. Mechanics of soft active materials

    NASA Astrophysics Data System (ADS)

    Zhao, Xuanhe

    Soft active materials, mostly elastomers and polymeric gels, are being developed to mimic a salient feature of life: movement in response to stimuli. For example, when an electric voltage is applied across a layer of a dielectric elastomer, the layer reduces in thickness and expands in area, giving a strain greater than 100%. As another example, in response to a small change of pH or temperature, a hydrogel may absorb a large amount of water and increase its volume over 100 times. The mechanics involved in these processes is important, interesting, and not well understood. This thesis studies large deformations and instabilities in dielectric elastomers and polymeric gels. The thesis first presents a nonlinear field theory for deformable dielectrics. The theory uses measurable quantities to define field variables. The definitions lead to decoupled field equations, and electromechanical coupling enters the theory through material laws. We use the theory to study electromechanical instability and coexistent states in dielectric elastomers. A computational method is also developed to analyze inhomogeneous deformations in complicated structures of dielectric elastomers. The second part of the thesis discusses large deformation and mass transportation in polymeric gels. A gel can undergo large deformation of two modes: local rearrangement and long-range migration. We assume that the local rearrangement is instantaneous, and model the long-range migration by assuming that the solvent molecules diffuse inside the gel. We further study inhomogeneous and anisotropic deformations and instabilities in gels constrained by rigid materials.

  10. Supercapacitor electrode materials with hierarchically structured pores from carbonization of MWCNTs and ZIF-8 composites.

    PubMed

    Li, Xueqin; Hao, Changlong; Tang, Bochong; Wang, Yue; Liu, Mei; Wang, Yuanwei; Zhu, Yihua; Lu, Chenguang; Tang, Zhiyong

    2017-02-09

    Due to their high specific surface area and good electric conductivity, nitrogen-doped porous carbons (NPCs) and carbon nanotubes (CNTs) have attracted much attention for electrochemical energy storage applications. In the present work, we firstly prepared MWCNT/ZIF-8 composites by decoration of zeolitic imidazolate frameworks (ZIF-8) onto the surface of multi-walled CNTs (MWCNTs), then obtained MWCNT/NPCs by the direct carbonization of MWCNT/ZIF-8. By controlling the reaction conditions, MWCNT/ZIF-8 with three different particle sizes were synthesized. The effect of NPCs size on capacitance performance has been evaluated in detail. The MWCNT/NPC with large-sized NPC (MWCNT/NPC-L) displayed the highest specific capacitance of 293.4 F g(-1) at the scan rate of 5 mV s(-1) and only lost 4.2% of capacitance after 10 000 cyclic voltammetry cycles, which was attributed to the hierarchically structured pores, N-doping and high electrical conductivity. The studies of symmetric two-electrode supercapacitor cells also confirmed MWCNT/NPC-L as efficient electrode materials that have good electrochemical performance, especially for high-rate applications.

  11. Investigating microbial activities of electrode-associated microorganisms in real-time

    PubMed Central

    Aracic, Sanja; Semenec, Lucie; Franks, Ashley E.

    2014-01-01

    Electrode-associated microbial biofilms are essential to the function of bioelectrochemical systems (BESs). These systems exist in a number of different configurations but all rely on electroactive microorganisms utilizing an electrode as either an electron acceptor or an electron donor to catalyze biological processes. Investigations of the structure and function of electrode-associated biofilms are critical to further the understanding of how microbial communities are able to reduce and oxidize electrodes. The community structure of electrode-reducing biofilms is diverse and often dominated by Geobacter spp. whereas electrode-oxidizing biofilms are often dominated by other microorganisms. The application of a wide range of tools, such as high-throughput sequencing and metagenomic data analyses, provide insight into the structure and possible function of microbial communities on electrode surfaces. However, the development and application of techniques that monitor gene expression profiles in real-time are required for a more definite spatial and temporal understanding of the diversity and biological activities of these dynamic communities. This mini review summarizes the key gene expression techniques used in BESs research, which have led to a better understanding of population dynamics, cell–cell communication and molecule-surface interactions in mixed and pure BES communities. PMID:25506343

  12. Impact of electrode preparation on the bending of asymmetric planar electro-active polymer microstructures

    NASA Astrophysics Data System (ADS)

    Weiss, Florian M.; Töpper, Tino; Osmani, Bekim; Winterhalter, Carla; Müller, Bert

    2014-03-01

    Compliant electrodes of microstructures have been a research topic for many years because of the increasing interest in consumer electronics, robotics, and medical applications. This interest includes electrically activated polymers (EAP), mainly applied in robotics, lens systems, haptics and foreseen in a variety of medical devices. Here, the electrodes consist of metals such as gold, graphite, conductive polymers or certain composites. The common metal electrodes have been magnetron sputtered, thermally evaporated or prepared using ion implantation. In order to compare the functionality of planar metal electrodes in EAP microstructures, we have investigated the mechanical properties of magnetron sputtered and thermally evaporated electrodes taking advantage of cantilever bending of the asymmetric, rectangular microstructures. We demonstrate that the deflection of the sputtered electrodes is up to 39 % larger than that of thermally evaporated nanometer-thin film on a single silicone film. This difference has even more impact on nanometer-thin, multi-stack, low-voltage EAP actuators. The stiffening effect of many metallic electrode layers is expected to be one of the greatest drawbacks in the multi-stack approaches, which will be even more pronounced if the elastomer layer thickness will be in the sub-micrometer range. Additionally, an improvement in voltage and strain resolution is presented, which is as low as 2 V or 5 × 10-5 above 10 V applied.

  13. Advanced cathode materials for polymer electrolyte fuel cells based on pt/ metal oxides: from model electrodes to catalyst systems.

    PubMed

    Fabbri, Emiliana; Pătru, Alexandra; Rabis, Annett; Kötz, Rüdiger; Schmidt, Thomas J

    2014-01-01

    The development of stable catalyst systems for application at the cathode side of polymer electrolyte fuel cells (PEFCs) requires the substitution of the state-of-the-art carbon supports with materials showing high corrosion resistance in a strongly oxidizing environment. Metal oxides in their highest oxidation state can represent viable support materials for the next generation PEFC cathodes. In the present work a multilevel approach has been adopted to investigate the kinetics and the activity of Pt nanoparticles supported on SnO2-based metal oxides. Particularly, model electrodes made of SnO2 thin films supporting Pt nanoparticles, and porous catalyst systems made of Pt nanoparticles supported on Sb-doped SnO2 high surface area powders have been investigated. The present results indicate that SnO2-based supports do not modify the oxygen reduction reaction mechanism on the Pt nanoparticle surface, but rather lead to catalysts with enhanced specific activity compared to Pt/carbon systems. Different reasons for the enhancement in the specific activity are considered and discussed.

  14. A novel high capacity positive electrode material with tunnel-type structure for aqueous sodium-ion batteries

    DOE PAGES

    Wang, Yuesheng; Mu, Linqin; Liu, Jue; ...

    2015-08-06

    In this study, aqueous sodium-ion batteries have shown desired properties of high safety characteristics and low-cost for large-scale energy storage applications such as smart grid, because of the abundant sodium resources as well as the inherently safer aqueous electrolytes. Among various Na insertion electrode materials, tunnel-type Na0.44MnO2 has been widely investigated as a positive electrode for aqueous sodium-ion batteries. However, the low achievable capacity hinders its practical applications. Here we report a novel sodium rich tunnel-type positive material with a nominal composition of Na0.66[Mn0.66Ti0.34]O2. The tunnel-type structure of Na0.44MnO2 obtained for this compound was confirmed by XRD and atomic-scale STEM/EELS.more » When cycled as positive electrode in full cells using NaTi2(PO4)3/C as negative electrode in 1M Na2SO4 aqueous electrolyte, this material shows the highest capacity of 76 mAh g-1 among the Na insertion oxides with an average operating voltage of 1.2 V at a current rate of 2C. These results demonstrate that Na0.66[Mn0.66Ti0.34]O2 is a promising positive electrode material for rechargeable aqueous sodium-ion batteries.« less

  15. Water-activated graphite felt as a high-performance electrode for vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Kabtamu, Daniel Manaye; Chen, Jian-Yu; Chang, Yu-Chung; Wang, Chen-Hao

    2017-02-01

    A simple, green, novel, time-efficient, and potentially cost-effective water activation method was employed to enhance the electrochemical activity of graphite felt (GF) electrodes for vanadium redox flow batteries (VRFBs). The GF electrode prepared with a water vapor injection time of 5 min at 700 °C exhibits the highest electrochemical activity for the VO2+/VO2+ couple among all the tested electrodes. This is attributed to the small, controlled amount of water vapor that was introduced producing high contents of oxygen-containing functional groups, such as sbnd OH groups, on the surface of the GF fibers, which are known to be electrochemically active sites for vanadium redox reactions. Charge-discharge tests further confirm that only 5 min of GF water activation is required to improve the efficiency of the VRFB cell. The average coulombic efficiency, voltage efficiency, and energy efficiency are 95.06%, 87.42%, and 83.10%, respectively, at a current density of 50 mA cm-2. These voltage and energy efficiencies are determined to be considerably higher than those of VRFB cells assembled using heat-treated GF electrodes without water activation and pristine GF electrodes.

  16. Novel synthesis of Ni-ferrite (NiFe{sub 2}O{sub 4}) electrode material for supercapacitor applications

    SciTech Connect

    Venkatachalam, V.; Jayavel, R.

    2015-06-24

    Novel nanocrystalline NiFe{sub 2}O{sub 4} has been synthesized through combustion route using citric acid as a fuel. Phase of the synthesized material was analyzed using powder X-ray diffraction. The XRD study revealed the formation of spinel phase cubic NiFe{sub 2}O{sub 4} with high crystallinity. The average crystallite size of NiFe{sub 2}O{sub 4} nanomaterial was calculated from scherrer equation. The electrochemical properties were realized by cyclic voltammetry, chronopotentiometry and electrochemical impedance spectroscopy. The electrode material shows a maximum specific capacitance of 454 F/g with pseudocapacitive behavior. High capacitance retention of electrode material over 1000 continuous charging-discharging cycles suggests its excellent electrochemical stability. The results revealed that the nickel ferrite electrode is a potential candidate for energy storage applications in supercapacitor.

  17. Novel synthesis of Ni-ferrite (NiFe2O4) electrode material for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Venkatachalam, V.; Jayavel, R.

    2015-06-01

    Novel nanocrystalline NiFe2O4 has been synthesized through combustion route using citric acid as a fuel. Phase of the synthesized material was analyzed using powder X-ray diffraction. The XRD study revealed the formation of spinel phase cubic NiFe2O4 with high crystallinity. The average crystallite size of NiFe2O4 nanomaterial was calculated from scherrer equation. The electrochemical properties were realized by cyclic voltammetry, chronopotentiometry and electrochemical impedance spectroscopy. The electrode material shows a maximum specific capacitance of 454 F/g with pseudocapacitive behavior. High capacitance retention of electrode material over 1000 continuous charging-discharging cycles suggests its excellent electrochemical stability. The results revealed that the nickel ferrite electrode is a potential candidate for energy storage applications in supercapacitor.

  18. Synthesis and characterization of NiCo2O4 nanoplates as efficient electrode materials for electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Kim, Taehyun; Ramadoss, Ananthakumar; Saravanakumar, Balasubramaniam; Veerasubramani, Ganesh Kumar; Kim, Sang Jae

    2016-05-01

    In the present work, NiCo2O4 nanoplates were prepared by a facile, low temperature, hydrothermal method, followed by thermal annealing and used supercapacitor applications. The physico-chemical characterization of as-prepared materials were investigated by means of X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR) and field emission scanning electron microscopy (FE-SEM). The electrochemical measurements demonstrate that the NiCo2O4 nanoplates electrode (NC-5) exhibits a high specific capacitance of 332 F g-1 at a scan rate of 5 mV s-1 and also retained about 86% of the initial specific capacitance value even after 2000 cycles at a current density of 2.5 A g-1. These results suggest that the fabricated electrode material has huge potential as a novel electrode material for electrochemical capacitors.

  19. Solvothermal synthesis of NiAl double hydroxide microspheres on a nickel foam-graphene as an electrode material for pseudo-capacitors

    SciTech Connect

    Momodu, Damilola; Bello, Abdulhakeem; Dangbegnon, Julien; Barzeger, Farshad; Taghizadeh, Fatimeh; Fabiane, Mopeli; Manyala, Ncholu; Johnson, A. T. Charlie

    2014-09-15

    In this paper, we demonstrate excellent pseudo-capacitance behavior of nickel-aluminum double hydroxide microspheres (NiAl DHM) synthesized by a facile solvothermal technique using tertbutanol as a structure-directing agent on nickel foam-graphene (NF-G) current collector as compared to use of nickel foam current collector alone. The structure and surface morphology were studied by X-ray diffraction analysis, Raman spectroscopy and scanning and transmission electron microscopies respectively. NF-G current collector was fabricated by chemical vapor deposition followed by an ex situ coating method of NiAl DHM active material which forms a composite electrode. The pseudocapacitive performance of the composite electrode was investigated by cyclic voltammetry, constant charge–discharge and electrochemical impedance spectroscopy measurements. The composite electrode with the NF-G current collector exhibits an enhanced electrochemical performance due to the presence of the conductive graphene layer on the nickel foam and gives a specific capacitance of 1252 F g{sup −1} at a current density of 1 A g{sup −1} and a capacitive retention of about 97% after 1000 charge–discharge cycles. This shows that these composites are promising electrode materials for energy storage devices.

  20. Conformal coating of thin polymer electrolyte layer on nanostructured electrode materials for three-dimensional battery applications.

    PubMed

    Gowda, Sanketh R; Reddy, Arava Leela Mohana; Shaijumon, Manikoth M; Zhan, Xiaobo; Ci, Lijie; Ajayan, Pulickel M

    2011-01-12

    Various three-dimensional (3D) battery architectures have been proposed to address effective power delivery in micro/nanoscale devices and for increasing the stored energy per electrode footprint area. One step toward obtaining 3D configurations in batteries is the formation of core-shell nanowires that combines electrode and electrolyte materials. One of the major challenges however in creating such architectures has been the coating of conformal thin nanolayers of polymer electrolytes around nanostructured electrodes. Here we show conformal coatings of 25-30 nm poly(methyl methacralate) electrolyte layers around individual Ni-Sn nanowires used as anodes for Li ion battery. This configuration shows high discharge capacity and excellent capacity retention even at high rates over extended cycling, allowing for scalable increase in areal capacity with electrode thickness. Our results demonstrate conformal nanoscale anode-electrolyte architectures for an efficient Li ion battery system.

  1. Fabrication and characterization of buckypaper-based nanostructured electrodes as a novel material for biofuel cell applications.

    PubMed

    Hussein, Laith; Urban, Gerald; Krüger, Michael

    2011-04-07

    The fabrication process of buckypapers (BPs) made from stable suspensions of as-received or functionalized multi-walled carbon nanotubes (MWCNTs) with high purity (97.5 wt%, Baytubes), their characterization and their utilization towards novel biofuel cell electrode applications are reported. The BPs can vary in thickness between 1 μm and 200 μm, are mechanically robust, flexible, stable in solvents, possess high meso-porosities as well as high apparent electrical conductivities of up to 2500 S m(-1). Potentiodynamic measurements of biocathodes based on bilirubin oxidase (BOD)-decorated BPs for the oxygen reduction reaction (ORR) in neutral media (phosphate buffer solution) containing glucose indicate that BP electrodes based on functionalized MWCNTs (fBPs) perform better than BP electrodes of as-received MWCNTs and have high potential as an effective electrode material in biofuel cells and biosensors.

  2. Electrodic voltages in the presence of dissolved sulfide: Implications for monitoring natural microbial activity

    SciTech Connect

    Slater, L.; Ntarlagiannis, D.; Yee, N.; O'Brien, M.; Zhang, C.; Williams, K. H.

    2008-10-01

    There is growing interest in the development of new monitoring strategies for obtaining spatially extensive data diagnostic of microbial processes occurring in the earth. Open-circuit potentials arising from variable redox conditions in the fluid local-to-electrode surfaces (electrodic potentials) were recorded for a pair of silver-silver chloride electrodes in a column experiment, whereby a natural wetland soil containing a known community of sulfate reducers was continuously fed with a sulfate-rich nutrient medium. Measurements were made between five electrodes equally spaced along the column and a reference electrode placed on the column inflow. The presence of a sulfate reducing microbial population, coupled with observations of decreasing sulfate levels, formation of black precipitate (likely iron sulfide),elevated solid phase sulfide, and a characteristic sulfurous smell, suggest microbial-driven sulfate reduction (sulfide generation) in our column. Based on the known sensitivity of a silver electrode to dissolved sulfide concentration, we interpret the electrodic potentials approaching 700 mV recorded in this experiment as an indicator of the bisulfide (HS-) concentration gradients in the column. The measurement of the spatial and temporal variation in these electrodic potentials provides a simple and rapid method for monitoring patterns of relative HS- concentration that are indicative of the activity of sulfate-reducing bacteria. Our measurements have implications both for the autonomous monitoring of anaerobic microbial processes in the subsurface and the performance of self-potential electrodes, where it is critical to isolate, and perhaps quantify, electrochemical interfaces contributing to observed potentials.

  3. Role of electrode design on the volume of tissue activated during deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Butson, Christopher R.; McIntyre, Cameron C.

    2006-03-01

    Deep brain stimulation (DBS) is an established clinical treatment for a range of neurological disorders. Depending on the disease state of the patient, different anatomical structures such as the ventral intermediate nucleus of the thalamus (VIM), the subthalamic nucleus or the globus pallidus are targeted for stimulation. However, the same electrode design is currently used in nearly all DBS applications, even though substantial morphological and anatomical differences exist between the various target nuclei. The fundamental goal of this study was to develop a theoretical understanding of the impact of changes in the DBS electrode contact geometry on the volume of tissue activated (VTA) during stimulation. Finite element models of the electrodes and surrounding medium were coupled to cable models of myelinated axons to predict the VTA as a function of stimulation parameter settings and electrode design. Clinical DBS electrodes have cylindrical contacts 1.27 mm in diameter (d) and 1.5 mm in height (h). Our results show that changes in contact height and diameter can substantially modulate the size and shape of the VTA, even when contact surface area is preserved. Electrode designs with a low aspect ratio (d/h) maximize the VTA by providing greater spread of the stimulation parallel to the electrode shaft without sacrificing lateral spread. The results of this study provide the foundation necessary to customize electrode design and VTA shape for specific anatomical targets, and an example is presented for the VIM. A range of opportunities exist to engineer DBS systems to maximize stimulation of the target area while minimizing stimulation of non-target areas. Therefore, it may be possible to improve therapeutic benefit and minimize side effects from DBS with the design of target-specific electrodes.

  4. Role of electrode design on the volume of tissue activated during deep brain stimulation.

    PubMed

    Butson, Christopher R; McIntyre, Cameron C

    2006-03-01

    Deep brain stimulation (DBS) is an established clinical treatment for a range of neurological disorders. Depending on the disease state of the patient, different anatomical structures such as the ventral intermediate nucleus of the thalamus (VIM), the subthalamic nucleus or the globus pallidus are targeted for stimulation. However, the same electrode design is currently used in nearly all DBS applications, even though substantial morphological and anatomical differences exist between the various target nuclei. The fundamental goal of this study was to develop a theoretical understanding of the impact of changes in the DBS electrode contact geometry on the volume of tissue activated (VTA) during stimulation. Finite element models of the electrodes and surrounding medium were coupled to cable models of myelinated axons to predict the VTA as a function of stimulation parameter settings and electrode design. Clinical DBS electrodes have cylindrical contacts 1.27 mm in diameter (d) and 1.5 mm in height (h). Our results show that changes in contact height and diameter can substantially modulate the size and shape of the VTA, even when contact surface area is preserved. Electrode designs with a low aspect ratio (d/h) maximize the VTA by providing greater spread of the stimulation parallel to the electrode shaft without sacrificing lateral spread. The results of this study provide the foundation necessary to customize electrode design and VTA shape for specific anatomical targets, and an example is presented for the VIM. A range of opportunities exist to engineer DBS systems to maximize stimulation of the target area while minimizing stimulation of non-target areas. Therefore, it may be possible to improve therapeutic benefit and minimize side effects from DBS with the design of target-specific electrodes.

  5. Facile Synthesis of Pt-/Pd-MODIFIED NiTi Electrode with Superior Electro-Catalytic Activities Toward Methanol, Ethanol and Ethylene Glycol Oxidation

    NASA Astrophysics Data System (ADS)

    He, Yongwei; Wang, Mei; Ma, Zizai; Li, Ruixue; Kundu, Manab; Ma, Guanshui; Lin, Naiming; Tang, Bin; Wang, Xiaoguang

    2016-11-01

    Surface functional modification of NiTi electrode with noble Pt and Pd metal has been successfully carried out by simple and cost effective electro-spark deposition technique (ESD). Thin-film X-ray diffraction (TF-XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and cyclic voltammetry (CV) have been carried out in order to investigate the structure, morphology, chemical composition and electrochemical behavior of the modified electrode surface. The modified Pt/NiTi and Pd/NiTi electrode surface exhibit a circular splash pattern with a tiny amount of Pt (˜5.30 at.% Pt) and Pd (˜5.71 at.% Pd) existence. The electrochemical results demonstrate that the Pt/NiTi and Pd/NiTi electrode possess an improved electro-catalytic activities toward methanol (MeOH), ethanol (EtOH) and ethylene glycol (EG) oxidation in alkaline media in comparison with the bare NiTi electrode. In acidic environments, the Pt/NiTi electrode exhibits even much better catalytic activities than the pure Pt sheet electrode due to the bi-functional mechanism. In the same way, the electro-catalytic activity of the modified Pd/NiTi electrode is also slightly larger than that of the pure Pd sheet electrode in alkaline environment. The electro-spark surface modification approach is rapid and environmentally-benign, being attractive to widen the application of traditional surface modification technique in the field of material surface/interface design and functionalization.

  6. Hollow graphitic nanocapsules as efficient electrode materials for sensitive hydrogen peroxide detection.

    PubMed

    Liu, Wei-Na; Ding, Ding; Song, Zhi-Ling; Bian, Xia; Nie, Xiang-Kun; Zhang, Xiao-Bing; Chen, Zhuo; Tan, Weihong

    2014-02-15

    Carbon nanomaterials are typically used in electrochemical biosensing applications for their unique properties. We report a hollow graphitic nanocapsule (HGN) utilized as an efficient electrode material for sensitive hydrogen peroxide detection. Methylene blue (MB) molecules could be efficiently adsorbed on the HGN surfaces, and this adsorption capability remained very stable under different pH regimes. HGNs were used as three-dimensional matrices for coimmobilization of MB electron mediators and horseradish peroxidase (HRP) to build an HGN-HRP-MB reagentless amperometric sensing platform to detect hydrogen peroxide. This simple HGN-HRP-MB complex demonstrated very sensitive and selective hydrogen peroxide detection capability, as well as high reproducibility and stability. The HGNs could also be utilized as matrices for immobilization of other enzymes, proteins or small molecules and for different biomedical applications.

  7. Preliminary result on the enhancement of Ufer electrodes using recycle additives materials

    NASA Astrophysics Data System (ADS)

    Zulkifli, Muhammad Haziq Aniq Bin; Ahmad, Hussein Bin

    2016-11-01

    Ground building pillars is to be used as ground rod. The pillars are design, fabricated, and formulated with new ground fillers. The additives will be used from recycle waste materials mainly from the palm oil plant process. Micro scale building pillars will be fabricated and install in the test ground at all of the location. Earth tester meter are used to measure and collect the data of the soil resistivity when the research is conducted. In collecting these data, 3-terminal methods are used to carry the measurements. This experiment will be conducted for 30 weeks and regular measurements at the test ground copper grids will be conducted to measure the ground electrode resistance. The study will mainly base on IEC 62503-3. The used of reinforcing rods and mixture of recycle additives could produce a better grounding system that are suitable and can be used in all kind of soil condition and large industries.

  8. Synthesis, characterization, and electrochemical investigation of novel electrode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Kerr, Tracy Alexandra

    2002-08-01

    As the demand for better energy storage devices increases, finding new materials capable of improvement on existing technology becomes essential. Within this body of work, several new electrode materials of different structure type have been synthesized, characterized, and evaluated for their lithium insertion/deinsertion behavior in lithium ion batteries. Nanocomposites of novel alloy, and convertible oxide anode materials have been studied. Nanoparticles of Ge and Sn that are able to form lithium rich alloys have been synthesized, and their low potential lithium insertion behavior studied. In order to inhibit agglomeration of the tiny particles, a novel synthesis route was designed to attach ionically conducting polymers to their surfaces. Characterization by a combination of techniques (XRD, TEM, SEM and FTIR spectroscopy) verified the existence of nanoparticles embedded in a polymer matrix, albeit with some impurities. Electrochemical data show that even when the lithium insertion capacity within these materials is high, the process is extremely irreversible as lithium ions become trapped within the matrix, and only a very small anodic capacity is realized. The first convertible polymer/oxide nanocomposite (poly(para-phenylene)/MoO 3) to be evaluated as an anode material was synthesized using a novel surfactant mediated method. XRD data indicated a 5.2 A increase in the MoO3 layer spacing to 12.1 A after polymer incorporation. Low potential electrochemical insertion properties show that the polymer/oxide nanocomposite behaves in a similar manner to the host MoO3 material. A variety of cathode materials were also synthesized and evaluated for their high potential lithium insertion properties. A comparative study on the effect that synthetic procedure may have on the electrochemical properties of the poly(aniline)/MoO3 cathode material have been studied. Poly(aniline)/MoO 3 nanocomposites have been synthesized from a solution insertion route and via hydrothermal

  9. ZnO:H indium-free transparent conductive electrodes for active-matrix display applications

    SciTech Connect

    Chen, Shuming Wang, Sisi

    2014-12-01

    Transparent conductive electrodes based on hydrogen (H)-doped zinc oxide (ZnO) have been proposed for active-matrix (AM) display applications. When fabricated with optimal H plasma power and optimal plasma treatment time, the resulting ZnO:H films exhibit low sheet resistance of 200 Ω/◻ and high average transmission of 85% at a film thickness of 150 nm. The demonstrated transparent conductive ZnO:H films can potentially replace indium-tin-oxide and serve as pixel electrodes for organic light-emitting diodes as well as source/drain electrodes for ZnO-based thin-film transistors. Use of the proposed ZnO:H electrodes means that two photomask stages can be removed from the fabrication process flow for ZnO-based AM backplanes.

  10. Activation of retinal ganglion cells following epiretinal electrical stimulation with hexagonally arranged bipolar electrodes

    NASA Astrophysics Data System (ADS)

    Abramian, Miganoosh; Lovell, Nigel H.; Morley, John W.; Suaning, Gregg J.; Dokos, Socrates

    2011-06-01

    We investigated retinal ganglion cell (RGC) responses to epiretinal electrical stimulation delivered by hexagonally arranged bipolar (Hex) electrodes, in order to assess the feasibility of this electrode arrangement for future retinal implant devices. In vitro experiments were performed using rabbit retinal preparations, with results compared to a computational model of axonal stimulation. Single-unit RGC responses to electrical stimulation were recorded with extracellular microelectrodes. With 100 µs/phase biphasic pulses, the threshold charge densities were 24.0 ± 11.2 and 7.7 ± 3.2 µC cm-2 for 50 and 125 µm diameter Hex electrodes, respectively. Threshold profiles and response characteristics strongly suggested that RGC axons were the neural activation site. Both the model and in vitro data indicated that localized tissue stimulation is achieved with Hex electrodes.

  11. Electrochemical decolorization of dye wastewater by surface-activated boron-doped nanocrystalline diamond electrode.

    PubMed

    Chen, Chienhung; Nurhayati, Ervin; Juang, Yaju; Huang, Chihpin

    2016-07-01

    Complex organics contained in dye wastewater are difficult to degrade and often require electrochemical advanced oxidation processes (EAOPs) to treat it. Surface activation of the electrode used in such treatment is an important factor determining the success of the process. The performance of boron-doped nanocrystalline diamond (BD-NCD) film electrode for decolorization of Acid Yellow (AY-36) azo dye with respect to the surface activation by electrochemical polarization was studied. Anodic polarization found to be more suitable as electrode pretreatment compared to cathodic one. After anodic polarization, the originally H-terminated surface of BD-NCD was changed into O-terminated, making it more hydrophilic. Due to the oxidation of surface functional groups and some portion of sp(2) carbon in the BD-NCD film during anodic polarization, the electrode was successfully being activated showing lower background current, wider potential window and considerably less surface activity compared to the non-polarized one. Consequently, electrooxidation (EO) capability of the anodically-polarized BD-NCD to degrade AY-36 dye was significantly enhanced, capable of nearly total decolorization and chemical oxygen demand (COD) removal even after several times of re-using. The BD-NCD film electrode favored acidic condition for the dye degradation; and the presence of chloride ion in the solution was found to be more advantageous than sulfate active species.

  12. Few-layer MoS2-anchored graphene aerogel paper for free-standing electrode materials

    NASA Astrophysics Data System (ADS)

    Lee, Wee Siang Vincent; Peng, Erwin; Loh, Tamie Ai Jia; Huang, Xiaolei; Xue, Jun Min

    2016-04-01

    To reduce the reliance on polymeric binders, conductive additives, and metallic current collectors during the electrode preparation process, as well as to assess the true performance of lithium ion battery (LIB) anodes, a free-standing electrode has to be meticulously designed. Graphene aerogel is a popular scaffolding material that has been widely used with embedded nanoparticles for application in LIB anodes. However, the current graphene aerogel/nanoparticle composite systems still involve decomposition into powder and the addition of additives during electrode preparation because of the thick aerogel structure. To further enhance the capacity of the system, MoS2 was anchored onto a graphene aerogel paper and the composite was used directly as an LIB anode. The resultant additive-free MoS2/graphene aerogel paper composite exhibited long cyclic performance with 101.1% retention after 700 cycles, which demonstrates the importance of free-standing electrodes in enhancing cyclic stability.To reduce the reliance on polymeric binders, conductive additives, and metallic current collectors during the electrode preparation process, as well as to assess the true performance of lithium ion battery (LIB) anodes, a free-standing electrode has to be meticulously designed. Graphene aerogel is a popular scaffolding material that has been widely used with embedded nanoparticles for application in LIB anodes. However, the current graphene aerogel/nanoparticle composite systems still involve decomposition into powder and the addition of additives during electrode preparation because of the thick aerogel structure. To further enhance the capacity of the system, MoS2 was anchored onto a graphene aerogel paper and the composite was used directly as an LIB anode. The resultant additive-free MoS2/graphene aerogel paper composite exhibited long cyclic performance with 101.1% retention after 700 cycles, which demonstrates the importance of free-standing electrodes in enhancing cyclic

  13. Partial conversion of current collectors into nickel copper oxide electrode materials for high-performance energy storage devices.

    PubMed

    Zhang, Liuyang; Gong, Hao

    2015-07-22

    A novel substrate sacrifice process is proposed and developed for converting part of a current collector into supercapacitor active materials, which provides a new route in achieving high energy density of supercapacitor device. Part of a copper foam current collector is successfully converted into highly porous nickel copper oxide electrode for light- and high-performance supercapacitors. Remarkably, this strategy circumvents the problem associated with poor contact interface between electrode and current collector. Meanwhile, the overall weight of the supercapacitor could be minimized. The charge transfer kinetics is improved while the advantage of the excellent mechanical properties of metal current collector is not traded off. By virtue of this unique current collector self-involved architecture, the material derived from the current collector manifests large areal capacitance of 3.13 F cm(-2) at a current density of 1 A g(-1). The capacitance can retain 2.97 F cm(-2) at a much higher density (4 A g(-1)). Only a small decay of 6.5% appears at 4 A g(-1) after 1600 cycles. The strategy reported here sheds light on new strategies in making additional use of the metal current collector. Furthermore, asymmetric supercapacitor using both solid-state gel electrolyte and liquid counterpart are obtained and analyzed. The liquid asymmetric supercapacitor can deliver a high energy density up to 0.5 mWh cm(-2) (53 Wh kg(-1)) at a power density of 13 mW cm(-2) (1.4 kW kg(-1)).

  14. Optimized spherical manganese oxide-ferroferric oxide-tin oxide ternary composites as advanced electrode materials for supercapacitors.

    PubMed

    Zhu, Jian; Tang, Shaochun; Vongehr, Sascha; Xie, Hao; Meng, Xiangkang

    2015-09-18

    Inexpensive MnO2 is a promising material for supercapacitors (SCs), but its application is limited by poor electrical conductivity and low specific surface area. We design and fabricate hierarchical MnO2-based ternary composite nanostructures showing superior electrochemical performance via doping with electrochemically active Fe3O4 in the interior and electrically conductive SnO2 nanoparticles in the surface layer. Optimization composition results in a MnO2-Fe3O4-SnO2 composite electrode material with 5.9 wt.% Fe3O4 and 5.3 wt.% SnO2, leading to a high specific areal capacitance of 1.12 F cm(-2) at a scan rate of 5 mV s(-1). This is two to three times the values for MnO2-based binary nanostructures at the same scan rate. The low amount of SnO2 almost doubles the capacitance of porous MnO2-Fe3O4 (before SnO2 addition), which is attributed to an improved conductivity and remaining porosity. In addition, the optimal ternary composite has a good rate capability and an excellent cycling performance with stable capacitance retention of ~90% after 5000 charge/discharge cycles at 7.5 mA cm(-2). All-solid-state SCs are assembled with such electrodes using polyvinyl alcohol/Na2SO4 electrolyte. An integrated device made by connecting two identical SCs in series can power a light-emitting diode indicator for more than 10 min.

  15. Hierarchical micro- and mesoporous carbide-derived carbon as a high-performance electrode material in supercapacitors.

    PubMed

    Rose, Marcus; Korenblit, Yair; Kockrick, Emanuel; Borchardt, Lars; Oschatz, Martin; Kaskel, Stefan; Yushin, Gleb

    2011-04-18

    Ordered mesoporous carbide-derived carbon (OM-CDC) materials produced by nanocasting of ordered mesoporous silica templates are characterized by a bimodal pore size distribution with a high ratio of micropores. The micropores result in outstanding adsorption capacities and the well-defined mesopores facilitate enhanced kinetics in adsorption processes. Here, for the first time, a systematic study is presented, in which the effects of synthesis temperature on the electrochemical performance of these materials in supercapacitors based on a 1 M aqueous solution of sulfuric acid and 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid are reported. Cyclic voltammetry shows the specific capacitance of the OM-CDC materials exceeds 200 F g(-1) in the aqueous electrolyte and 185 F g(-1) in the ionic liquid, when measured in a symmetric configuration in voltage ranges of up to 0.6 and 2 V, respectively. The ordered mesoporous channels in the produced OM-CDC materials serve as ion-highways and allow for very fast ionic transport into the bulk of the OM-CDC particles. At room temperature the enhanced ion transport leads to 75% and 90% of the capacitance retention at current densities in excess of ∼10 A g(-1) in ionic liquid and aqueous electrolytes, respectively. The supercapacitors based on 250-300 μm OM-CDC electrodes demonstrate an operating frequency of up to 7 Hz in aqueous electrolyte. The combination of high specific capacitance and outstanding rate capabilities of the OM-CDC materials is unmatched by state-of-the art activated carbons and strictly microporous CDC materials.

  16. Nano-sized structured layered positive electrode materials to enable high energy density and high rate capability lithium batteries

    DOEpatents

    Deng, Haixia; Belharouak, Ilias; Amine, Khalil

    2012-10-02

    Nano-sized structured dense and spherical layered positive active materials provide high energy density and high rate capability electrodes in lithium-ion batteries. Such materials are spherical second particles made from agglomerated primary particles that are Li.sub.1+.alpha.(Ni.sub.xCo.sub.yMn.sub.z).sub.1-tM.sub.tO.sub.2-dR.sub.d- , where M is selected from can be Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti, Zr, or a mixture of any two or more thereof, R is selected from F, Cl, Br, I, H, S, N, or a mixture of any two or more thereof, and 0.ltoreq..alpha..ltoreq.0.50; 0materials and their use in electrochemical devices are also described.

  17. Carbon Nanotube Materials for Substrate Enhanced Control of Catalytic Activity

    SciTech Connect

    Heben, M.; Dillon, A. C.; Engtrakul, C.; Lee, S.-H.; Kelley, R. D.; Kini, A. M.

    2007-05-01

    Carbon SWNTs are attractive materials for supporting electrocatalysts. The properties of SWNTs are highly tunable and controlled by the nanotube's circumferential periodicity and their surface chemistry. These unique characteristics suggest that architectures constructed from these types of carbon support materials would exhibit interesting and useful properties. Here, we expect that the structure of the carbon nanotube support will play a major role in stabilizing metal electrocatalysts under extreme operating conditions and suppress both catalyst and support degradation. Furthermore, the chemical modification of the carbon nanotube surfaces can be expected to alter the interface between the catalyst and support, thus, enhancing the activity and utilization of the electrocatalysts. We plan to incorporate discrete reaction sites into the carbon nanotube lattice to create intimate electrical contacts with the catalyst particles to increase the metal catalyst activity and utilization. The work involves materials synthesis, design of electrode architectures on the nanoscale, control of the electronic, ionic, and mass fluxes, and use of advanced optical spectroscopy techniques.

  18. Graphene as conductive additives in binderless activated carbon electrodes for power enhancement of supercapacitor

    NASA Astrophysics Data System (ADS)

    Nor, N. S. M.; Deraman, M.; Suleman, M.; Norizam, M. D. M.; Basri, N. H.; Sazali, N. E. S.; Hamdan, E.; Hanappi, M. F. Y. M.; Tajuddin, N. S. M.; Othman, M. A. R.; Shamsudin, S. A.; Omar, R.

    2016-11-01

    Carbon based supercapacitor electrodes from composite of binderless activated carbon and graphene as a conductive additive were fabricated with various amount of graphene (0, 2, 4, 6, 8 and 10 wt%). Graphene was mixed in self-adhesive carbon grains produced from pre-carbonized powder derived from fibers of oil palm empty fruit bunches and converted into green monoliths (GMs). The GMs were carbonized (N2) and activated (CO2) to produce activated carbon monoliths (ACMs) electrodes. Porosity characterizations by nitrogen adsorption-desorption isotherm method shows that the pore characteristics of the ACMs are influenced by the graphene additive. The results of galvanostatic charge-discharge tests carried out on the supercapacitor cells fabricated using these electrodes shows that the addition of graphene additive (even in small amount) decreases the equivalent series resistance and enhances the specific power of the cells but significantly lowers the specific capacitance. The supercapacitor cell constructed with the electrode containing 4 wt % of graphene offers the maximum power (175 W kg-1) which corresponds to an improvement of 55%. These results demonstrate that the addition of graphene as conductive additive in activated carbon electrodes can enhance the specific power of the supercapacitor.

  19. Evaluation of Niobium as Candidate Electrode Material for DC High Voltage Photoelectron Guns

    NASA Technical Reports Server (NTRS)

    BastaniNejad, M.; Mohamed, Abdullah; Elmustafa, A. A.; Adderley, P.; Clark, J.; Covert, S.; Hansknecht, J.; Hernandez-Garcia, C.; Poelker, M.; Mammei, R.; Surles-Law, K.; Williams, P.

    2012-01-01

    The field emission characteristics of niobium electrodes were compared to those of stainless steel electrodes using a DC high voltage field emission test apparatus. A total of eight electrodes were evaluated: two 304 stainless steel electrodes polished to mirror-like finish with diamond grit and six niobium electrodes (two single-crystal, two large-grain, and two fine-grain) that were chemically polished using a buffered-chemical acid solution. Upon the first application of high voltage, the best large-grain and single-crystal niobium electrodes performed better than the best stainless steel electrodes, exhibiting less field emission at comparable voltage and field strength. In all cases, field emission from electrodes (stainless steel and/or niobium) could be significantly reduced and sometimes completely eliminated, by introducing krypton gas into the vacuum chamber while the electrode was biased at high voltage. Of all the electrodes tested, a large-grain niobium electrode performed the best, exhibiting no measurable field emission (< 10 pA) at 225 kV with 20 mm cathode/anode gap, corresponding to a field strength of 18:7 MV/m.

  20. Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts.

    PubMed

    Chen, Yihong; Kanan, Matthew W

    2012-02-01

    The importance of tin oxide (SnO(x)) to the efficiency of CO(2) reduction on Sn was evaluated by comparing the activity of Sn electrodes that had been subjected to different pre-electrolysis treatments. In aqueous NaHCO(3) solution saturated with CO(2), a Sn electrode with a native SnO(x) layer exhibited potential-dependent CO(2) reduction activity consistent with previously reported activity. In contrast, an electrode etched to expose fresh Sn(0) surface exhibited higher overall current densities but almost exclusive H(2) evolution over the entire 0.5 V range of potentials examined. Subsequently, a thin-film catalyst was prepared by simultaneous electrodeposition of Sn(0) and SnO(x) on a Ti electrode. This catalyst exhibited up to 8-fold higher partial current density and 4-fold higher faradaic efficiency for CO(2) reduction than a Sn electrode with a native SnO(x) layer. Our results implicate the participation of SnO(x) in the CO(2) reduction pathway on Sn electrodes and suggest that metal/metal oxide composite materials are promising catalysts for sustainable fuel synthesis.

  1. Laboratory-scale testing of non-consumable anode materials: Inert Electrodes Program

    SciTech Connect

    Marschman, S.C.

    1989-03-01

    Development of inert anode materials for use in the electrolytic production of aluminum is one of the major goals of the Inert Electrodes Program sponsored by the US Department of Energy, Office of Industrial Programs, at Pacific Northwest Laboratory. The objectives of the Materials Development and Testing Task include the selection, fabrication, and evaluation of candidate non-consumable anode materials. Research performed in FY 1987 focused primarily on the development and evaluation of cermets that are based on the two-phase oxide system NiO/endash/NiFe/sub 2/O/sub 4/ and contain a third, electrically conductive metal phase composed primarily of copper and nickel. The efforts of this task were focused on three areas: materials fabrication, small-scale materials testing, and laboratory-scale testing. This report summarizes the development and testing results of the laboratory-scale testing effort during FY 1987. The laboratory-scale electrolysis testing effort was instrumental in partially determining electrolysis cell operating parameters. Although not optimized, NiO/endash/NiFe/sub 2/O/sub 4//endash/Cu-based cermets were successfully operated for 20 h in cryolite-based electrolytes ranging in bath ratios from 1.1 to 1.35, in electrolytes that contained 1.5 wt % LiF, and at conditions slightly less than Al/sub 2/O/sub 3/ saturation. The operating conditions that lead to anode degradation have been partly identified, and rudimentary control methods have been developed to ensure proper operation of small electrolysis cells using nonconsumable anodes. 11 figs., 1 tab.

  2. Switching and memory characteristics of thin films of an ambipolar organic compound: effects of device processing and electrode materials

    NASA Astrophysics Data System (ADS)

    Lee, Myung-Won; Pearson, Christopher; Moon, Tae Jung; Fisher, Alison L.; Petty, Michael C.

    2014-12-01

    We report on the effects of device processing conditions, and of changing the electrode materials, on the switching and negative differential resistance (NDR) behaviour of metal/organic thin film/metal structures. The organic material was an ambipolar molecule containing both electron transporting (oxadiazole) and hole transporting (carbazole) chemical groups. Switching and NDR effects are observed for device architectures with both electrodes consisting of aluminium; optimized switching behaviour is achieved for structures incorporating gold nanoparticles. If one of the Al electrodes is replaced by a higher work function metal or coated with an electron-blocking layer, switching and NDR are no longer observed. The results are consistent with a model based on the creation and destruction of Al filaments within the thin organic layer.

  3. Disulfide-Bridged (Mo3S11) Cluster Polymer: Molecular Dynamics and Application as Electrode Material for a Rechargeable Magnesium Battery.

    PubMed

    Truong, Quang Duc; Kempaiah Devaraju, Murukanahally; Nguyen, Duc N; Gambe, Yoshiyuki; Nayuki, Keiichiro; Sasaki, Yoshikazu; Tran, Phong D; Honma, Itaru

    2016-09-14

    Exploring novel electrode materials is critical for the development of a next-generation rechargeable magnesium battery with high volumetric capacity. Here, we showed that a distinct amorphous molybdenum sulfide, being a coordination polymer of disulfide-bridged (Mo3S11) clusters, has great potential as a rechargeable magnesium battery cathode. This material provided good reversible capacity, attributed to its unique structure with high flexibility and capability of deformation upon Mg insertion. Free-terminal disulfide moiety may act as the active site for reversible insertion and extraction of magnesium.

  4. Cerium oxide nanoparticles/multi-wall carbon nanotubes composites: Facile synthesis and electrochemical performances as supercapacitor electrode materials

    NASA Astrophysics Data System (ADS)

    Deng, Dongyang; Chen, Nan; Li, Yuxiu; Xing, Xinxin; Liu, Xu; Xiao, Xuechun; Wang, Yude

    2017-02-01

    Cerium oxide nanoparticles/multi-wall carbon nanotubes (MWCNTs) composites are synthesized by a facile hydrothermal method without any surfactant or template. The morphology and microstructure of samples are examined by scanning electron microscopy (SEM), transition electron microscopy (TEM), X-ray diffraction (XRD), Raman spectrum and X-ray photoelectron spectroscopy (XPS). Electrochemical properties of the MWCNTs, the pure CeO2, and the CeO2/MWCNTs nanocomposites electrodes are investigated by cyclic voltammetry (CV), galvanostatic charge/discharge (GDC) and electrochemical impedance spectroscopy (EIS) measurements. The CeO2/MWCNTs nanocomposite (at the mole ratio of 1:1) electrode exhibits much larger specific capacitance compared with both the MWCNTs electrode and the pure CeO2 electrode and significantly improves cycling stability compared to the pure CeO2 electrode. The CeO2/MWCNTs nanocomposite (at the mole ratio of 1:1) achieves a specific capacitance of 455.6 F g-1 at the current density of 1 A g-1. Therefore, the as prepared CeO2/MWCNTs nanocomposite is a promising electrode material for high-performance supercapacitors.

  5. Enhanced photoelectrocatalytic activity for dye degradation by graphene-titania composite film electrodes.

    PubMed

    Wang, Peifang; Ao, Yanhui; Wang, Chao; Hou, Jun; Qian, Jin

    2012-07-15

    Graphene-titania composite film electrodes have been fabricated by a dip-coating method. Transmission electron microscopy (TEM) images show that the titania nanoparticles were dispersed uniformly, with only a little aggregation on the surface and edges of the graphene sheets. XRD analysis showed that the composite electrodes comprised the anatase phase of titania with just a little rutile phase. The photoelectrocatalytic activities of the as-prepared samples were investigated by studies of the degradation of Reactive Brilliant Red dye X-3B (C.I. reactive red 2). An enhancement of the photocurrents was observed using the graphene-titania composite electrodes, compared with pure titania film electrodes, under UV light irradiation. This improvement is attributed to the following two reasons: enhanced migration efficiency of the photo-induced electrons and enhanced adsorption activity of the dye molecules. In addition, we investigated the effects of graphene content and pH values on the photoelectrocatalytic activity of the as-prepared composite film electrodes. Results showed that there was an optimal amount of 5% (initial graphite oxide content).

  6. Effect of nano-scale characteristics of graphene on electrochemical performance of activated carbon supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Jasni, M. R. M.; Deraman, M.; Suleman, M.; Hamdan, E.; Sazali, N. E. S.; Nor, N. S. M.; Shamsudin, S. A.

    2016-02-01

    Graphene with its typical nano-scale characteristic properties has been widely used as an additive in activated carbon electrodes in order to enhance the performance of the electrodes for their use in high performance supercapacitors. Activated carbon monoliths (ACMs) electrodes have been prepared by carbonization and activation of green monoliths (GMs) of pre-carbonized fibers of oil palm empty fruit bunches or self-adhesive carbon grains (SACGs) and SACGs added with 6 wt% of KOH-treated multi-layer graphene. ACMs electrodes have been assembled in symmetrical supercapacitor cells that employed aqueous KOH electrolyte (6 M). The cells have been tested with cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge discharge methods to investigate the effect of graphene addition on the specific capacitance (Csp), specific energy (E), specific power (P), equivalent series resistance (ESR) and response time (τo) of the supercapacitor cells. The results show that the addition of graphene in the GMs change the values of Csp, Emax, Pmax, ESR and τo from (61-96) F/g, 2 Wh/kg, 104 W/kg, 2.6 Ω and 38 s, to the respective values of (110-124) F/g, 3 Wh/kg, 156 W/kg, 3.4 Ω and 63 s. This study demonstrates that the graphene addition in the GMs has a significant effect on the electrochemical behavior of the electrodes.

  7. A facile synthesis of graphene foam as electrode material for supercapacitor

    NASA Astrophysics Data System (ADS)

    Sivaprakash, S.; Sivaprakash, Prabhavathy

    2016-07-01

    We report here a versatile fabrication approach of graphene foam (GF) with three dimensional (3D) porous conductive networks which reveal great potential for application in energy storage devices. This facile fabrication technique is believed to be favorable for supercapacitor application as the 3D-GF comprises conductive continuous porous networks with large active surface area. Supercapacitors utilize this high surface area electrode to attain improved capacitance. The resulting graphene foam exhibited satisfactory double layer capacitive behavior with improved electrochemical performance having good electrochemical cycling stability and high specific capacitance of 310 F g-1 at current density of 5 A g-1 and 160 F g-1 at current density of 20 A g-1.

  8. The Production and Characterization of Ceramic Carbon Electrode Materials for CuCl-HCl Electrolysis

    NASA Astrophysics Data System (ADS)

    Edge, Patrick

    Current H2 gas supplies are primarily produced through steam methane reforming and other fossil fuel based processes. This lack of viable large scale and environmentally friendly H2 gas production has hindered the wide spread adoption of H2 fuel cells. A potential solution to this problem is the Cu-Cl hybrid thermochemical cycle. The cycle captures waste heat to drive two thermochemical steps creating CuCl as well as O2 gas and HCl from CuCl2 and water. The CuCl is oxidized in HCl to produce H2 gas and regenerate CuCl2, this process occurs at potentials well below those required for water electrolysis. The electrolysis process occurs in a traditional PEM fuel-cell. In the aqueous anolyte media Cu(I) will form anionic complexes such as CuCl 2 - or CuCl32-. The slow transport of these species to the anode surface limits the overall electrolysis process. To improve this transport process we have produced ceramic carbon electrode (CCE) materials through a sol-gel method incorporating a selection of amine containing silanes with increasing numbers of primary and secondary amines. When protonated these amines allow for improved transport of anionic copper complexes. The electrochemical and physical characterization of these CCE materials in a half and full-cell electrolysis environment will be presented. Electrochemical analysis was performed using cell polarization, cyclic voltammetry, and electrochemical impedance spectroscopy.

  9. Ionic Liquid Directed Mesoporous Carbon Nanoflakes as an Effiencient Electrode material

    PubMed Central

    Kong, Lirong; Chen, Wei

    2015-01-01

    Supercapacitors are considered to be the most promising approach to meet the pressing requirements for energy storage devices. The electrode materials for supercapacitors have close relationship with their electrochemical properties and thus become the key point to improve their energy storage efficiency. Herein, by using poly (vinylidene fluoride-co-hexafluoropropylene) and ionic liquid as the dual templates, polyacrylonitrile as the carbon precursor, a flake-like carbon material was prepared by a direct carbonization method. In this method, poly (vinylidene fluoride-co-hexafluoropropylene) worked as the separator for the formation of isolated carbon flakes while aggregated ionic liquid worked as the pore template. The obtained carbon flakes exhibited a specific capacitance of 170 F/g at 0.1 A/g, a high energy density of 12.2 Wh/kg and a high power density of 5 kW/kg at the current of 10 A/g. It also maintained a high capacitance retention capability with almost no declination after 500 charge-discharge cycles. The ionic liquid directed method developed here also provided a new idea for the preparation of hierarchically porous carbon nanomaterials. PMID:26656464

  10. Recent Advancements in Flexible and Stretchable Electrodes for Electromechanical Sensors: Strategies, Materials, and Features.

    PubMed

    Zhao, Songfang; Li, Jinhui; Cao, Duxia; Zhang, Guoping; Li, Jia; Li, Kui; Yang, Yang; Wang, Wei; Jin, Yufeng; Sun, Rong; Wong, Ching-Ping

    2017-03-30

    Stretchable and flexible sensors attached onto the surface of the human body can perceive external stimuli, thus attracting extensive attention due to their lightweight, low modulus, low cost, high flexibility, and stretchability. Recently, a myriad of efforts have been devoted to improving the performance and functionality of wearable sensors. Herein, this review focuses on recent remarkable advancements in the development of flexible and stretchable sensors. Multifunction of these wearable sensors is realized by incorporating some desired features (e.g., self-healing, self-powering, linearity, and printing). Next, focusing on the characteristics of carbon nanomaterials, nanostructured metal, conductive polymer, or their hybrid composites, two major strategies (e.g., materials that stretch and structures that stretch) and diverse design approaches have been developed to achieve highly flexible and stretchable electrodes. Strain sensing performances of recently reported sensors indicate that the appropriate choice of geometric engineering as well as intrinsically stretchable materials is essential for high-performance strain sensing. Finally, some important directions and challenges of a fully sensor-integrated wearable platform are proposed to realize their potential applications for human motion monitoring and human-machine interfaces.

  11. α MnMoO₄/graphene hybrid composite: high energy density supercapacitor electrode material.

    PubMed

    Ghosh, Debasis; Giri, Soumen; Moniruzzaman, Md; Basu, Tanya; Mandal, Manas; Das, Chapal Kumar

    2014-07-28

    A unique and cost effective hydrothermal procedure has been carried out for the synthesis of hexahedron shaped α MnMoO4 and its hybrid composite with graphene using three different weight percentages of graphene. Characterization techniques, such as XRD, Raman and FTIR analysis, established the phase and formation of the composite. The electrochemical characterization of the pseudocapacitive MnMoO4 and the MnMoO4/graphene composites in 1 M Na2SO4 displayed highest specific capacitances of 234 F g(-1) and 364 F g(-1), respectively at a current density of 2 A g(-1). Unlike many other pseudocapacitive electrode materials our prepared materials responded in a wide range of working potentials of (-)1 V to (+)1 V, which indeed resulted in a high energy density without substantial loss of power density. The highest energy densities of 130 Wh kg(-1) and 202.2 Wh kg(-1) were achieved, respectively for the MnMoO4 and the MnMoO4/graphene composite at a constant power delivery rate of 2000 W kg(-1). The synergistic effect of the graphene with the pseudocapacitive MnMoO4 caused an increased cycle stability of 88% specific capacitance retention after 1000 consecutive charge discharge cycles at 8 A g(-1) constant current density, which was higher than the virgin MnMoO4 with 84% specific capacitance retention.

  12. CuSbS2 as a negative electrode material for sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Marino, C.; Block, T.; Pöttgen, R.; Villevieille, C.

    2017-02-01

    CuSbS2 was tested as a negative electrode material for sodium-ion batteries. The material synthesized by ball milling offers a specific charge of 730 mAh g-1, close to the theoretical value (751 mAh g-1), over a few cycles. The reaction mechanism was investigated by means of operando X-ray diffraction, 121Sb Mössbauer spectroscopy, and Cu K-edge X-ray absorption spectroscopy. These studies reveal a sodiation mechanism that involves an original conversion reaction in two steps, through the formation of a ternary phase, CuSb(1-x)S(2-y), as well as a NaxS alloy and Sb, followed by an alloying reaction involving the previously formed Sb. The desodiation process ends with the reformation of the ternary phase, CuSb(1-x‧)S(2-y‧), deficient in Sb and S; this phase is responsible for the good reversibility observed upon cycling.

  13. Hexagonal CeO2 nanostructures: an efficient electrode material for supercapacitors.

    PubMed

    Maheswari, Nallappan; Muralidharan, Gopalan

    2016-09-28

    Cerium oxide (CeO2) has emerged as a new and promising pseudocapacitive material due to its prominent valance states and extensive applications in various fields. In the present study, hexagonal CeO2 nanostructures have been prepared via the hydrothermal method employing cationic surfactant cetyl trimethyl ammonium bromide (CTAB). CTAB ensures a slow rate of hydrolysis to form small sized CeO2 nanostructures. The role of calcination temperature on the morphological, structural, electrochemical properties and cyclic stability has been assessed for supercapacitor applications. The mesoscopic hexagonal architecture endows the CeO2 with not only a higher specific capacity, but also with an excellent rate capability and cyclability. When the charge/discharge current density is increased from 2 to 10 A g(-1) the reversible charge capacity decreased from 927 F g(-1) to 475 F g(-1) while 100% capacity retention at a high current density of 20 A g(-1) even after 1500 cycles could be achieved. Furthermore, the asymmetric supercapacitor based on CeO2 exhibited a significantly higher energy density of 45.6 W h kg(-1) at a power density of 187.5 W kg(-1) with good cyclic stability. The electrochemical richness of the CeO2 nanostructure makes it a suitable electrode material for supercapacitor applications.

  14. Kinetic modelling of molten carbonate fuel cells: Effects of cathode water and electrode materials

    NASA Astrophysics Data System (ADS)

    Arato, E.; Audasso, E.; Barelli, L.; Bosio, B.; Discepoli, G.

    2016-10-01

    Through previous campaigns the authors developed a semi-empirical kinetic model to describe MCFC performance for industrial and laboratory simulation. Although effective in a wide range of operating conditions, the model was validated for specific electrode materials and dry feeding cathode compositions. The new aim is to prove that with appropriate improvements it is possible to apply the model to MCFC provided by different suppliers and to new sets of reactant gases. Specifically, this paper describes the procedures to modify the model to switch among different materials and identify a new parameter taking into account the effects of cathode water vapour. The new equation is integrated as the kinetic core within the SIMFC (SIMulation of Fuel Cells) code, an MCFC 3D model set up by the PERT group of the University of Genova, for reliability test. Validation is performed using data collected through tests carried out at the University of Perugia using single cells. The results are discussed giving examples of the simulated performance with varying operating conditions. The final formulation average percentage error obtained for all the simulated cases with respect to experimental results is maintained around 1%, despite the difference between the basic and the new conditions and facilities.

  15. Sodium titanate nanotubes as negative electrode materials for sodium-ion capacitors.

    PubMed

    Yin, Jiao; Qi, Li; Wang, Hongyu

    2012-05-01

    The lithium-based energy storage technology is currently being considered for electric automotive industry and even electric grid storage. However, the hungry demand for vast energy sources in the modern society will conflict with the shortage of lithium resources on the earth. The first alternative choice may be sodium-related materials. Herein, we propose an electric energy storage system (sodium-ion capacitor) based on porous carbon and sodium titanate nanotubes (Na-TNT, Na(+)-insertion compounds) as positive and negative electrode materials, respectively, in conjunction with Na(+)-containing non-aqueous electrolytes. As a low-voltage (0.1-2 V) sodium insertion nanomaterial, Na-TNT was synthesized via a simple hydrothermal reaction. Compared with bulk sodium titanate, the predominance of Na-TNT is the excellent rate performance, which exactly caters to the need for electrochemical capacitors. The sodium-ion capacitors exhibited desirable energy density and power density (34 Wh kg(-1), 889 W kg(-1)). Furthermore, the sodium-ion capacitors had long cycling life (1000 cycles) and high coulombic efficiency (≈ 98 % after the second cycle). More importantly, the conception of sodium-ion capacitor has been put forward.

  16. Electrochemical cell having an alkali-metal-nitrate electrode

    DOEpatents

    Roche, M.F.; Preto, S.K.

    1982-06-04

    A power-producing secondary electrochemical cell includes a molten alkali metal as the negative-electrode material and a molten-nitrate salt as the positive-electrode material. The molten material in the respective electrodes are separated by a solid barrier of alkali-metal-ion conducting material. A typical cell includes active materials of molten sodium separated from molten sodium nitrate and other nitrates in mixture by a layer of sodium ..beta..'' alumina.

  17. Polyaniline silver nanoparticle coffee waste extracted porous graphene oxide nanocomposite structures as novel electrode material for rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Sundriyal, Poonam; Bhattacharya, Shantanu

    2017-03-01

    The exploration of new and advanced electrode materials are required in electronic and electrical devices for power storage applications. Also, there has been a continuous endeavour to formulate strategies for extraction of high performance electrode materials from naturally obtained waste products. In this work, we have developed an in situ hybrid nanocomposite from coffee waste extracted porous graphene oxide (CEPG), polyaniline (PANI) and silver nanoparticles (Ag) and have found this novel composite to serve as an efficient electrode material for batteries. The successful interaction among the three phases of the nano-composite i.e. CEPG–PANI–Ag have been thoroughly understood through RAMAN, Fourier transform infrared and x-ray diffraction spectroscopy, morphological studies through field emission scanning electron microscope and transmission electron microscope. Thermo-gravimetric analysis of the nano-composite demonstrates higher thermal stability up-to a temperature of 495 °C. Further BET studies through nitrogen adsorption–desorption isotherms confirm the presence of micro/meso and macro-pores in the nanocomposite sample. The cyclic-voltammetry (CV) analysis performed on CEPG–PANI–Ag nanocomposite exhibits a purely faradic behaviour using nickel foam as a current collector thus suggests the prepared nanocomposite as a battery electrode material. The nanocomposite reports a maximum specific capacity of 1428 C g‑1 and excellent cyclic stability up-to 5000 cycles.

  18. Sensitivity- and effort-gain analysis: multilead ECG electrode array selection for activation time imaging.

    PubMed

    Hintermüller, Christoph; Seger, Michael; Pfeifer, Bernhard; Fischer, Gerald; Modre, Robert; Tilg, Bernhard

    2006-10-01

    Methods for noninvasive imaging of electric function of the heart might become clinical standard procedure the next years. Thus, the overall procedure has to meet clinical requirements as an easy and fast application. In this paper, we propose a new electrode array which improves the resolution of methods for activation time imaging considering clinical constraints such as easy to apply and compatibility with routine leads. For identifying the body-surface regions where the body surface potential (BSP) is most sensitive to changes in transmembrane potential (TMP), a virtual array method was used to compute local linear dependency (LLD) maps. The virtual array method computes a measure for the LLD in every point on the body surface. The most suitable number and position of the electrodes within the sensitive body surface regions was selected by constructing effort gain (EG) plots. Such a plot depicts the relative attainable rank of the leadfield matrix in relation to the increase in number of electrodes required to build the electrode array. The attainable rank itself was computed by a detector criterion. Such a criterion estimates the maximum number of source space eigenvectors not covered by noise when being mapped to the electrode space by the leadfield matrix and recorded by a detector. From the sensitivity maps, we found that the BSP is most sensitive to changes in TMP on the upper left frontal and dorsal body surface. These sensitive regions are covered best by an electrode array consisting of two L-shaped parts of approximately 30 cm x 30 cm and approximately 20 cm x 20 cm. The EG analysis revealed that the array meeting clinical requirements best and improving the resolution of activation time imaging consists of 125 electrodes with a regular horizontal and vertical spacing of 2-3 cm.

  19. Low-temperature self-assembled vertically aligned carbon nanofibers as counter-electrode material for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Mahpeykar, S. M.; Tabatabaei, M. K.; Ghafoori-fard, H.; Habibiyan, H.; Koohsorkhi, J.

    2013-11-01

    Low-temperature AC-DC PECVD is employed for direct growth of vertically aligned carbon nanofibers (VACNFs) on ordinary transparent conductive glass as counter-electrode material for dye-sensitized solar cells (DSSCs). To the best of our knowledge, this is the first report on utilization of VACNFs grown directly on ordinary FTO-coated glass as a cost-effective catalyst material in DSSCs. According to the FESEM images, the as-grown arrays are well aligned and dense, and offer uniform coverage on the surface of the substrate. In-plane and out-of-plane conductivity measurements reveal their good electrical conductivity, and Raman spectroscopy suggests a high number of electrocatalytic active sites, favoring charge transport at the electrolyte/electrode interface. Hybrid VACNF/Pt electrodes are also fabricated for performance comparison with Pt and VACNF electrodes. X-ray diffraction results verify the crystallization of Pt in hybrid electrodes and further confirm the vertical alignment of carbon nanofibers. Electrochemical characterization indicates that VACNFs provide both high catalytic and good charge transfer capability, which can be attributed to their high surface area, defect-rich and one-dimensional structure, vertical alignment and low contact resistance. As a result, VACNF cells can achieve a comparable performance (˜5.6%) to that of the reference Pt cells (˜6.5%). Moreover, by combination of the excellent charge transport and catalytic ability of VACNFs and the high conductivity of Pt nanoparticles, hybrid VACNF/Pt cells can deliver a performance superior to that of the Pt cells (˜7.2%), despite having a much smaller amount of Pt loading, which raises hopes for low-cost large-scale production of DSSCs in the future.

  20. The formation and activity of platinum adlayers on diamond electrodes for electrocatalysis

    NASA Astrophysics Data System (ADS)

    Bennett, Jason Alan

    The research described in this dissertation evaluates the potential of diamond as an advanced carbon electrocatalyst support material. This includes both assessing the physical and electrochemical properties of the material as well as a comprehensive investigation into the nature of metal adlayer formation on the material. The physical and electrochemical properties of boron-doped polycrystalline diamond thin films, prepared with varying levels of sp2-bonded nondiamond carbon impurity, were systematically investigated. This impurity was introduced through adjustment of the methane-to-hydrogen source gas ratio used for the deposition. Increasing the methane-to-hydrogen ratio resulted in an increase in the fraction of grain boundary, the extent of secondary nucleation, and the amount of sp2-bonded nondiamond carbon impurity. The effect of the source gas ratio on the electrochemical response towards several well known redox analytes and the oxygen reduction reaction in both acidic and alkaline media was also investigated. The results demonstrate that the grain boundaries, and the sp2-bonded nondiamond carbon impurity presumably residing there, can have a significant impact on the electrode reaction kinetics for certain redox systems and little influence for others. The morphological and microstructural stability of microcrystalline and nanocrystalline boron-doped diamond thin film electrodes under conditions observed in phosphoric acid fuel cells was investigated. The electrodes were exposed to a 2 h period of anodic polarization in 85% H3PO 4 at ˜180°C and 0.1 A/cm2. Catastrophic degradation was not observed for either type of diamond. The oxidation of the microcrystalline diamond was limited to the surface, and the effects could be reversed upon exposure to a hydrogen plasma. The nanocrystalline diamond exhibited similar responses to well known redox analytes after anodic polarization, however an irreversible increase in the film capacitance was also observed

  1. Nanostructured Electrode Materials Derived from Metal-Organic Framework Xerogels for High-Energy-Density Asymmetric Supercapacitor.

    PubMed

    Mahmood, Asif; Zou, Ruqiang; Wang, Qingfei; Xia, Wei; Tabassum, Hassina; Qiu, Bin; Zhao, Ruo

    2016-01-27

    This work successfully demonstrates metal-organic framework (MOF) derived strategy to prepare nanoporous carbon (NPC) with or without Fe3O4/Fe nanoparticles by the optimization of calcination temperature as highly active electrode materials for asymmetric supercapacitors (ASC). The nanostructured Fe3O4/Fe/C hybrid shows high specific capacitance of 600 F/g at a current density of 1 A/g and excellent capacitance retention up to 500 F/g at 8 A/g. Furthermore, hierarchically NPC with high surface area also obtained from MOF gels displays excellent electrochemical performance of 272 F/g at 2 mV/s. Considering practical applications, aqueous ASC (aASC) was also assembled, which shows high energy density of 17.496 Wh/kg at the power density of 388.8 W/kg. The high energy density and excellent capacity retention of the developed materials show great promise for the practical utilization of these energy storage devices.

  2. Composite electrodes of activated carbon derived from cassava peel and carbon nanotubes for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Taer, E.; Iwantono, Yulita, M.; Taslim, R.; Subagio, A.; Salomo, Deraman, M.

    2013-09-01

    In this paper, a composite electrode was prepared from a mixture of activated carbon derived from precarbonization of cassava peel (CP) and carbon nanotubes (CNTs). The activated carbon was produced by pyrolysis process using ZnCl2 as an activation agent. A N2 adsorption-desorption analysis for the sample indicated that the BET surface area of the activated carbon was 1336 m2 g-1. Difference percentage of CNTs of 0, 5, 10, 15 and 20% with 5% of PVDF binder were added into CP based activated carbon in order to fabricate the composite electrodes. The morphology and structure of the composite electrodes were investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The SEM image observed that the distribution of CNTs was homogeneous between carbon particles and the XRD pattern shown the amorphous structure of the sample. The electrodes were fabricated for supercapacitor cells with 316L stainless steel as current collector and 1 M sulfuric acid as electrolyte. An electrochemical characterization was performed by using an electrochemical impedance spectroscopy (EIS) method using a Solatron 1286 instrument and the addition of CNTs revealed to improve the resistant and capacitive properties of supercapacitor cell.

  3. Ionic Conduction in Lithium Ion Battery Composite Electrode Governs Cross-sectional Reaction Distribution

    NASA Astrophysics Data System (ADS)

    Orikasa, Yuki; Gogyo, Yuma; Yamashige, Hisao; Katayama, Misaki; Chen, Kezheng; Mori, Takuya; Yamamoto, Kentaro; Masese, Titus; Inada, Yasuhiro; Ohta, Toshiaki; Siroma, Zyun; Kato, Shiro; Kinoshita, Hajime; Arai, Hajime; Ogumi, Zempachi; Uchimoto, Yoshiharu

    2016-05-01

    Composite electrodes containing active materials, carbon and binder are widely used in lithium-ion batteries. Since the electrode reaction occurs preferentially in regions with lower resistance, reaction distribution can be happened within composite electrodes. We investigate the relationship between the reaction distribution with depth direction and electronic/ionic conductivity in composite electrodes with changing electrode porosities. Two dimensional X-ray absorption spectroscopy shows that the reaction distribution is happened in lower porosity electrodes. Our developed 6-probe method can measure electronic/ionic conductivity in composite electrodes. The ionic conductivity is decreased for lower porosity electrodes, which governs the reaction distribution of composite electrodes and their performances.

  4. Ionic Conduction in Lithium Ion Battery Composite Electrode Governs Cross-sectional Reaction Distribution

    PubMed Central

    Orikasa, Yuki; Gogyo, Yuma; Yamashige, Hisao; Katayama, Misaki; Chen, Kezheng; Mori, Takuya; Yamamoto, Kentaro; Masese, Titus; Inada, Yasuhiro; Ohta, Toshiaki; Siroma, Zyun; Kato, Shiro; Kinoshita, Hajime; Arai, Hajime; Ogumi, Zempachi; Uchimoto, Yoshiharu

    2016-01-01

    Composite electrodes containing active materials, carbon and binder are widely used in lithium-ion batteries. Since the electrode reaction occurs preferentially in regions with lower resistance, reaction distribution can be happened within composite electrodes. We investigate the relationship between the reaction distribution with depth direction and electronic/ionic conductivity in composite electrodes with changing electrode porosities. Two dimensional X-ray absorption spectroscopy shows that the reaction distribution is happened in lower porosity electrodes. Our developed 6-probe method can measure electronic/ionic conductivity in composite electrodes. The ionic conductivity is decreased for lower porosity electrodes, which governs the reaction distribution of composite electrodes and their performances. PMID:27193448

  5. Advertising Content in Physical Activity Print Materials.

    ERIC Educational Resources Information Center

    Cardinal, Bradley J.

    2002-01-01

    Evaluated the advertising content contained in physical activity print materials. Analysis of print materials obtained from 80 sources (e.g., physicians' offices and fitness events) indicated that most materials contained some form of advertising. Materials coming from commercial product vendors generally contained more advertising than materials…

  6. Bifunctional oxygen/air electrodes

    NASA Astrophysics Data System (ADS)

    Jörissen, Ludwig

    A selective review on the materials and construction principles used for bifunctional oxygen/air electrodes is given. The discussion emphasizes the catalytically active materials used for the construction of these electrodes, which are a key component in electrically rechargeable air breathing electrochemical systems. Whereas, in acid electrolytes normally noble metal catalysts must be used, there is a possibility to use less expensive transition metal oxides in alkaline electrolytes. Typical transition metal oxides have the perovskite, pyrochlore and spinel structure.

  7. Engineering nanofluid electrodes: controlling rheology and electrochemical activity of γ-Fe2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Sen, Sujat; Moazzen, Elahe; Aryal, Shankar; Segre, Carlo U.; Timofeeva, Elena V.

    2015-11-01

    Nanofluid electrodes or nanoelectrofuels have significant potential in the field of flow batteries, as at high loadings of solid battery active nanoparticles, their energy density can be orders of magnitude higher than in traditional redox flow battery electrolytes. Nanofluid electrodes must have a manageable viscosity at high particle concentrations (i.e., easily pumpable) and exhibit good electrochemical activity toward charge and discharge reactions. Engineering of such nanofluid electrodes involves development of new and unique approaches to stabilization of nanoparticle suspensions. In this work, we demonstrate a surface modification approach that allows controlling the viscosity of nanofluids at high solid loading, while simultaneously retaining electrochemical activity of the nanoparticles. A scalable single step procedure for the surface grafting of small organic molecules onto iron (III) oxide nanoparticles (γ-Fe2O3, maghemite, 40-150 nm) is demonstrated. Modified iron oxide nanoparticles reported here have 5 wt% of the grafting moiety on the surface, which helps forming stable dispersions with up to 40 wt% of solid loading in alkali aqueous electrolytes with a maximum viscosity of 12 cP at room temperature. The maximum particle concentration achievable in the same electrolyte with pristine nanoparticles is 15 wt%. Electrochemical testing of the pristine and modified nanomaterials in the form of solid-casted electrodes showed a maximum reversible discharge capacity of 280 and 155 mAh/g, respectively, indicating that electrochemical activity of modified nanoparticles is partially suppressed due to the surface grafted moiety.

  8. A novel counter electrode material of La0.5Sr0.5CoO3 for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhong, Yongfeng; Qin, Tianze; Yang, Bo; Zuo, Xueqin; Li, Guang; Wu, Mingzai; Ma, Yongqing; Jin, Shaowei; Zhu, Kerong

    2016-11-01

    In this work, La0.5Sr0.5CoO3 (LSCO) perovskite oxide with perfect crystallinity was successfully synthesized via a sol-gel method and then used as counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). The DSSCs with LSCO CEs exhibited excellent electrocatalytic activity for the triiodide reduction and yielded a power conversion efficiency of 7.17%, which is greater than that of the Pt electrode (7.06%). Compared with the hydrothermal method and solvothermal method, sol-gel method is more suitable for large scale preparation. This work should open up a new class of CE materials for low-cost and high-efficiency DSSCs.

  9. Facile electrosynthesis of nano flower like metal-organic framework and its nanocomposite with conjugated polymer as a novel and hybrid electrode material for highly capacitive pseudocapacitors.

    PubMed

    Naseri, Maryam; Fotouhi, Lida; Ehsani, Ali; Dehghanpour, Saeed

    2016-12-15

    The [Cu(btec)0.5DMF] (H4btec=1,2,4,5-benzenetetracarboxylate acid) was electrosynthesized on the graphite working electrode by applying catholic potential. The [Cu(btec)0.5DMF] grows on a graphite surface which results from the coordination of 1,2,4,5-benzenetetracarboxylate anions with Cu(2+) cations. The electrosynthesized [Cu(btec)0.5DMF] was characterized by X-ray diffraction, scanning electron microscopy. Furthermore, POAP/Cu(btec)0.5DMF nanocomposite film electrosynthesized on the surface of the carbon paste electrode by cyclic voltammetry. Different electrochemical methods including galvanostatic charge-discharge experiments, cyclic voltammetry and electrochemical impedance spectroscopy are carried out in order to investigate the performance of the system. This work introduces new nanocomposite materials for electrochemical redox capacitors with advantages including ease synthesis, high active surface area and stability in an aqueous electrolyte.

  10. A novel high capacity positive electrode material with tunnel-type structure for aqueous sodium-ion batteries

    SciTech Connect

    Wang, Yuesheng; Mu, Linqin; Liu, Jue; Yang, Zhenzhong; Yu, Xiqian; Gu, Lin; Hu, Yong -Sheng; Li, Hong; Yang, Xiao -Qing; Chen, Liquan; Huang, Xuejie

    2015-08-06

    In this study, aqueous sodium-ion batteries have shown desired properties of high safety characteristics and low-cost for large-scale energy storage applications such as smart grid, because of the abundant sodium resources as well as the inherently safer aqueous electrolytes. Among various Na insertion electrode materials, tunnel-type Na0.44MnO2 has been widely investigated as a positive electrode for aqueous sodium-ion batteries. However, the low achievable capacity hinders its practical applications. Here we report a novel sodium rich tunnel-type positive material with a nominal composition of Na0.66[Mn0.66Ti0.34]O2. The tunnel-type structure of Na0.44MnO2 obtained for this compound was confirmed by XRD and atomic-scale STEM/EELS. When cycled as positive electrode in full cells using NaTi2(PO4)3/C as negative electrode in 1M Na2SO4 aqueous electrolyte, this material shows the highest capacity of 76 mAh g-1 among the Na insertion oxides with an average operating voltage of 1.2 V at a current rate of 2C. These results demonstrate that Na0.66[Mn0.66Ti0.34]O2 is a promising positive electrode material for rechargeable aqueous sodium-ion batteries.

  11. Application of active electrode compensation to perform continuous voltage-clamp recordings with sharp microelectrodes

    NASA Astrophysics Data System (ADS)

    Gómez-González, J. F.; Destexhe, A.; Bal, T.

    2014-10-01

    Objective. Electrophysiological recordings of single neurons in brain tissues are very common in neuroscience. Glass microelectrodes filled with an electrolyte are used to impale the cell membrane in order to record the membrane potential or to inject current. Their high resistance induces a high voltage drop when passing current and it is essential to correct the voltage measurements. In particular, for voltage clamping, the traditional alternatives are two-electrode voltage-clamp technique or discontinuous single electrode voltage-clamp (dSEVC). Nevertheless, it is generally difficult to impale two electrodes in a same neuron and the switching frequency is limited to low frequencies in the case of dSEVC. We present a novel fully computer-implemented alternative to perform continuous voltage-clamp recordings with a single sharp-electrode. Approach. To reach such voltage-clamp recordings, we combine an active electrode compensation algorithm (AEC) with a digital controller (AECVC). Main results. We applied two types of control-systems: a linear controller (proportional plus integrative controller) and a model-based controller (optimal control). We compared the performance of the two methods to dSEVC using a dynamic model cell and experiments in brain slices. Significance. The AECVC method provides an entirely digital method to perform continuous recording and smooth switching between voltage-clamp, current clamp or dynamic-clamp configurations without introducing artifacts.

  12. In Situ Powder Diffraction Studies of Electrode Materials in Rechargeable Batteries.

    PubMed

    Sharma, Neeraj; Pang, Wei Kong; Guo, Zaiping; Peterson, Vanessa K

    2015-09-07

    The ability to directly track the charge carrier in a battery as it inserts/extracts from an electrode during charge/discharge provides unparalleled insight for researchers into the working mechanism of the device. This crystallographic-electrochemical information can be used to design new materials or modify electrochemical conditions to improve battery performance characteristics, such as lifetime. Critical to collecting operando data used to obtain such information in situ while a battery functions are X-ray and neutron diffractometers with sufficient spatial and temporal resolution to capture complex and subtle structural changes. The number of operando battery experiments has dramatically increased in recent years, particularly those involving neutron powder diffraction. Herein, the importance of structure-property relationships to understanding battery function, why in situ experimentation is critical to this, and the types of experiments and electrochemical cells required to obtain such information are described. For each battery type, selected research that showcases the power of in situ and operando diffraction experiments to understand battery function is highlighted and future opportunities for such experiments are discussed. The intention is to encourage researchers to use in situ and operando techniques and to provide a concise overview of this area of research.

  13. Solid Liquid Interdiffusion Bonding of Zn4Sb3 Thermoelectric Material with Cu Electrode

    NASA Astrophysics Data System (ADS)

    Lin, Y. C.; Lee, K. T.; Hwang, J. D.; Chu, H. S.; Hsu, C. C.; Chen, S. C.; Chuang, T. H.

    2016-10-01

    The ZnSb intermetallic compound may have thermoelectric applications because it is low in cost and environmentally friendly. In this study, a Zn4Sb3 thermoelectric element coated with a Ni barrier layer and a Ag reaction layer was bonded with a Ag-coated Cu electrode using a Ag/Sn/Ag solid-liquid interdiffusion bonding process. The results indicated that a Ni5Zn21 intermetallic phase formed easily at the Zn4Sb3/Ni interface, leading to sound adhesion. In addition, Sn film was found to react completely with the Ag layer to form a Ag3Sn intermetallic layer having a melting point of 480°C. The resulting Zn4Sb3 thermoelectric module can be applied at the optimized operation temperature (400°C) of Zn4Sb3 material as a thermoelectric element. The bonding strengths ranged from 14.9 MPa to 25.0 MPa, and shear tests revealed that the Zn4Sb3/Cu-joints fractured through the interior of the thermoelectric elements.

  14. Sensitive determination of carbendazim in orange juice by electrode modified with hybrid material.

    PubMed

    Razzino, Claudia A; Sgobbi, Lívia F; Canevari, Thiago C; Cancino, Juliana; Machado, Sergio A S

    2015-03-01

    This paper describes the application of a glassy carbon electrode modified with a thin film of mesoporous silica/multiwalled carbon nanotubes for voltammetric determination of the fungicide carbendazim (CBZ). The hybrid material, (SiO2/MWCNT), was obtained by a sol-gel process using HF as the catalyst. The amperometric response to CBZ was measured at +0.73 V vs. Ag/AgCl by square wave voltammetry at pH 8.0. SiO2/MWCNT/GCE responded to CBZ in the linear range from 0.2 to 4.0 μmol L(-1). The calculated detection limit was 0.056 μmol L(-1), obtained using statistical methods. The SiO2/MWCNT/GCE sensor presented as the main characteristics high sensitivity, low detection limit and robustness, allowing CBZ determination in untreated real samples. In addition, this strategy afforded remarkable selectivity for CBZ against ascorbic and citric acid which are the main compounds of the orange juice. The excellent sensitivity and selectivity yielded feasible application for CBZ detection in orange juice sample.

  15. Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries.

    PubMed

    Zhang, Xiaoming; Hu, Junping; Cheng, Yingchun; Yang, Hui Ying; Yao, Yugui; Yang, Shengyuan A

    2016-08-18

    "Two-dimensional (2D) materials as electrodes" is believed to be the trend for future Li-ion and Na-ion battery technologies. Here, by using first-principles methods, we predict that the recently reported borophene (2D boron sheets) can serve as an ideal electrode material with high electrochemical performance for both Li-ion and Na-ion batteries. The calculations are performed on two experimentally stable borophene structures, namely β12 and χ3 structures. The optimized Li and Na adsorption sites are identified, and the host materials are found to maintain good electric conductivity before and after adsorption. Besides advantages including small diffusion barriers and low average open-circuit voltages, most remarkably, the storage capacity can be as high as 1984 mA h g(-1) in β12 borophene and 1240 mA h g(-1) in χ3 borophene for both Li and Na, which are several times higher than the commercial graphite electrode and are the highest among all the 2D materials discovered to date. Our results highly support that borophenes can be appealing anode materials for both Li-ion and Na-ion batteries with extremely high power density.

  16. Organic active materials for batteries

    SciTech Connect

    Abouimrane, Ali; Weng, Wei; Amine, Khalil

    2016-08-16

    A rechargeable battery includes a compound having at least two active sites, R.sup.1 and R.sup.2; wherein the at least two active sites are interconnected by one or more conjugated moieties; each active site is coordinated to one or more metal ions M.sup.a+ or each active site is configured to coordinate to one or more metal ions; and "a" is 1, 2, or 3.

  17. Activated Carbon Fiber Paper Based Electrodes with High Electrocatalytic Activity for Vanadium Flow Batteries with Improved Power Density.

    PubMed

    Liu, Tao; Li, Xianfeng; Xu, Chi; Zhang, Huamin

    2017-02-08

    Vanadium flow batteries (VFBs) have received high attention for large-scale energy storage due to their advantages of flexibility design, long cycle life, high efficiency, and high safety. However, commercial progress of VFBs has so far been limited by its high cost induced by its low power density. Ultrathin carbon paper is believed to be a very promising electrode for VFB because it illustrates super-low ohmic polarization, however, is limited by its low electrocatalytic activity. In this paper, a kind of carbon paper (CP) with super-high electrocatalytic activity was fabricated via a universal and simple CO2 activation method. The porosity and oxygen functional groups can be easily tuned via this method. The charge transfer resistance (denoting the electrochemical polarization) of a VFB with CP electrode after CO2 activation decreased dramatically from 970 to 120 mΩcm(2). Accordingly, the energy efficiency of a VFB with activated carbon paper as the electrode increased by 13% as compared to one without activation and reaches nearly 80% when the current density is 140 mAcm(-2). This paper provides an effective way to prepare high-performance porous carbon electrodes for VFBs and even for other battery systems.

  18. Study of structure and properties of oxide electrode materials (Fe3O4, AZO, SRO) and their device applications

    NASA Astrophysics Data System (ADS)

    Olga, Chichvarina

    Ferroelectric thin film capacitor heterostructures have attracted considerable attention in the last decade because of their potential applications in piezoelectric sensors, actuators, power generators and non-volatile memory devices. Strongly correlated all-perovskite oxide heterojunctions are of a particular interest, as their material properties (electronic, structural, magnetic and optical, etc.) can be tuned via doping, interface effect, applied electrical field, and formation of two-dimensional electron gas (2DEG), etc. The right selection of electrode material for this type of capacitor-like structures may modify and enhance the performance of a device, as the electrode/barrier layer interfaces can significantly influence its macroscopic properties. Although there is a number of reports on the effect of electrode interfaces on the properties of PZT capacitors deposited on SRO buffered STO substrate, very little is known about Fe3O4/PZT and AZO/PZT electrode interfaces. This thesis comprises two parts. In the first part we present a systematic study of the structural, transport, magnetic and optical properties of oxide thin films: AZO, Fe3O4 and SRO. These monolayers were fabricated via pulsed laser deposition technique on quartz, MgO and STO substrates respectively. The second part of this thesis elucidates the behaviour of these three oxides as electrode components in PZT/SRO/STO heteroepitaxial structures. The highlights of the work are summarized below: 1) Zinc-blende (ZB) phase of ZnO was predicted to possess higher values of conductivity and higher doping efficiency compared to its wurzite counterpart and thus has greater chances of facilitating the fabrication of ZnO-electrode-based devices. However, zinc-blende is a metastable phase, and it is challenging to obtain single-phase ZB. To tackle this challenge we tuned parameters such-as film thickness, substrate and annealing effect, and achieved a ZB phase of Ti-doped ZnO, ZB-(Zn1-xTix)O thin film. An

  19. Electrochemical properties of an all-solid-state lithium-ion battery with an in-situ formed electrode material grown from a lithium conductive glass ceramics sheet

    NASA Astrophysics Data System (ADS)

    Amiki, Yuichi; Sagane, Fumihiro; Yamamoto, Kazuo; Hirayama, Tsukasa; Sudoh, Masao; Motoyama, Munekazu; Iriyama, Yasutoshi

    2013-11-01

    A lithium insertion reaction in a Li+ conductive glass ceramics solid electrolyte (lithium aluminum titanium phosphate: LATP) sheet produces an in-situ formed electrode active material, which operates at 2.35 V vs. Li/Li+ in the vicinity of the LATP-sheet/current-collector interface. Electron energy loss spectroscopy clarifies that titanium in the LATP sheet in the vicinity of the current collector/LATP-sheet interface is preferentially reduced by this lithium insertion reaction. Charge transfer resistance between the in-situ-formed-electrode and the LATP-sheet is less than 100 Ω cm2, which is smaller than that of the common LiPON/LiCoO2 interface. A thin film of LiCoO2 is deposited on one side of the LATP-sheet as a Li+ source for developing the in-situ formed electrode material. Eventually, a Pt/LATP-sheet/LiCoO2/Au multilayer is fabricated. The multilayer structure successfully works as an all-solid-state lithium-ion battery operating at 1.5 V. A redox peak of the battery is observed even at 100 mV s-1 in the potential sweep curve. Additionally, charge-discharge reactions are repeated stably even after 25 cycles.

  20. Bioelectricity generation in continuously-fed microbial fuel cell: effects of anode electrode material and hydraulic retention time.

    PubMed

    Akman, Dilek; Cirik, Kevser; Ozdemir, Sebnem; Ozkaya, Bestamin; Cinar, Ozer

    2013-12-01

    The main aim of this study is to investigate the bioelectricity production in continuously-fed dual chambered microbial fuel cell (MFC). Initially, MFC was operated with different anode electrode material at constant hydraulic retention time (HRT) of 2d to evaluate the effect of electrode material on electricity production. Pt electrode yielded about 642 mW/m(2) power density, which was 4 times higher than that of the MFC with the mixed metal oxide titanium (Ti-TiO2). Further, MFC equipped with Pt electrode was operated at varying HRT (2-0.5d). The power density generation increased with decreasing HRT, corresponding to 1313 mW/m(2) which was maximum value obtained during this study. Additionally, decreasing HRT from 2 to 0.5d resulted in increasing effluent dissolved organic carbon (DOC) concentration from 1.92 g/L to 2.23 g/L, corresponding to DOC removal efficiencies of 46% and 38%, respectively.

  1. An adhesive conducting electrode material based on commercial mesoporous titanium dioxide as a support for Horseradish peroxidase for bioelectrochemical applications.

    PubMed

    Rahemi, Vanoushe; Trashin, Stanislav; Meynen, Vera; De Wael, Karolien

    2016-01-01

    An adhesive conducting electrode material containing of graphite, biocompatible ion exchange polymer nafion(®) and commercial mesoporous TiO2 impregnated with horseradish peroxidase (HRP) is prepared and characterized by amperometric, UV-vis and N2 sorption methods. The factors influencing the performance of the resulting biosensor are studied in detail. The optimal electrode material consists of 45% graphite, 50% impregnated HRP-TiO2 and 5% nafion(®). The optimum conditions for H2O2 reduction are an applied potential of -0.3 V and 0.1 mM hydroquinone. Sensitivity and limit of detection in the optimum conditions are 1 A M(-1) cm(-2) and 1 µM correspondingly. The N2 sorption results show that the pore volume of TiO2 decreases sharply upon adsorption of HRP. The preparation process of the proposed enzyme electrode is straightforward and potentially can be used for preparation of carbon paste electrodes for bioelectrochemical detections.

  2. Composite electrode/electrolyte structure

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2004-01-27

    Provided is an electrode fabricated from highly electronically conductive materials such as metals, metal alloys, or electronically conductive ceramics. The electronic conductivity of the electrode substrate is maximized. Onto this electrode in the green state, a green ionic (e.g., electrolyte) film is deposited and the assembly is co-fired at a temperature suitable to fully densify the film while the substrate retains porosity. Subsequently, a catalytic material is added to the electrode structure by infiltration of a metal salt and subsequent low temperature firing. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in ionic (electrochemical) devices such as fuel cells and electrolytic gas separation systems.

  3. Catalytic Graphitization for Preparation of Porous Carbon Material Derived from Bamboo Precursor and Performance as Electrode of Electrical Double-Layer Capacitor

    NASA Astrophysics Data System (ADS)

    Tsubota, Toshiki; Maguchi, Yuta; Kamimura, Sunao; Ohno, Teruhisa; Yasuoka, Takehiro; Nishida, Haruo

    2015-12-01

    The combination of addition of Fe (as a catalyst for graphitization) and CO2 activation (a kind of gaseous activation) was applied to prepare a porous carbon material from bamboo powder (a waste product of superheated steam treatment). Regardless of the heat treatment temperature, many macropores were successfully formed after the heating process by removal of Fe compounds. A turbostratic carbon structure was generated in the Fe-added sample heated at 850°C. It was confirmed that the added Fe acted as a template for pore formation. Moreover, it was confirmed that the added Fe acted as a catalyst for graphitization. The resulting electrochemical performance as the electrode of an electrical double-layer capacitor, as demonstrated by cyclic voltammetry, electrochemical impedance spectroscopy, and charge-discharge testing, could be explained based on the graphitization and activation effects. Addition of Fe could affect the electrical properties of carbon material derived from bamboo.

  4. Nickel gradient electrode

    SciTech Connect

    Zimmerman, A.H.

    1988-03-31

    This invention relates generally to rechargeable batteries, and, in particular, relates to batteries that use nickel electrodes. It provides an improved nickel electrode with a selected gradient of additive materials. The concentration of additives in the impregnating solution are controlled during impregnation such that an additive gradient is generated. In the situation where the highest ionic conductivity is needed at the current collector boundary with the active material, the electrochemical impregnating solution is initially high in additive, and at the end of impregnation has been adjusted to significantly lower additive concentration. For chemical impregnation, the electrodes are similarly dipped in solutions that are initially high in additive. This invention is suitable for conventional additives such as cobalt, cadmium, barium, manganese, and zinc. It is therefore one objective of the invention to provide an improved nickel electrode of a battery cell with an additive in the active material to increase the life of the battery cell. Another objective is to provide for an improved nickel electrode having a greater concentration of additive near the current collector of nickel.

  5. Influence of the active mass particle suspension in electrolyte upon corrosion of negative electrode of a lead-acid battery

    NASA Astrophysics Data System (ADS)

    Kamenev, Yu.; Shtompel, G.; Ostapenko, E.; Leonov, V.

    2014-07-01

    The influence of the suspension of positive active mass particles in the electrolyte on the performance of the negative electrode in a lead-acid battery is studied. A significant increase in the rate of corrosion of the lead electrode is shown when slime particles get in contact with its surface, which may result in the rise of macro-defects on the lugs of the negative electrodes.

  6. Rapid synthesis of monodispersed highly porous spinel nickel cobaltite (NiCo2O4) electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Naveen, A. Nirmalesh; Selladurai, S.

    2015-06-01

    Monodispersed highly porous spinel nickel cobaltite electrode material was successfully synthesized in a short time using combustion technique. Single phase cubic nature of the spinel nickel cobaltite with average crystallite size of 24 nm was determined from X-ray diffraction study. Functional groups present in the compound were determined from FTIR study and it further confirms the spinel formation. FESEM images reveal the porous nature of the prepared material and uniform size distribution of the particles. Electrochemical evaluation was performed using Cyclic Voltammetry (CV) technique, Chronopotentiometry (CP) and Electrochemical Impedance Spectroscopy (EIS). Results reveal the typical pseudocapacitive behaviour of the material. Maximum capacitance of 754 F/g was calculated at the scan rate of 5 mV/s, high capacitance was due to the unique porous morphology of the electrode. Nyquist plot depicts the low resistance and good electrical conductivity of nickel cobaltite. It has been found that nickel cobaltite prepared by this typical method will be a potential electrode material for supercapcitor application.

  7. Catalytic activity for nitrate electroreduction of nano-structured polypyrrole films electrochemically synthesized onto a copper electrode

    NASA Astrophysics Data System (ADS)

    Phuong Thoa Nguyen, Thi; Thinh Nguyen, Viet; Hai Le, Viet

    2010-03-01

    Polypyrrole film was synthesized electrochemically onto a copper electrode in oxalate, oxalic acid and salicylic acid solutions. The electrochemical oxidation of pyrrole to form polypyrrole film and the electroreduction of nitrate and nitrite ions at synthesized Ppy modified copper electrodes (Ppy/Cu) in potassium chloride aqueous solutions were studied by cyclic voltammetry. Polypyrrole nano-porous film formation and the activity of the modified Ppy/Cu electrode for nitrate reduction were found to be dependent on the synthesis medium and conditions: pH; content and concentrations of the electrolytes; pyrrole concentration; electrode potential; electrolysis duration; drying time and temperature for finishing the Ppy/Cu electrode and immersion time in water for storing the Ppy/Cu electrode before use. High catalytic activity for nitrate reduction was found for composite electrodes with nano-porous structured Ppy films. The Ppy/Cu electrodes prepared in oxalate buffer and salicylic acid solutions perform more stable catalytic activity for nitrate reduction; their service life is about ten times longer than for an electrode prepared in oxalic acid solution.

  8. HSPES membrane electrode assembly

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew (Inventor); Yen, Shiao-Ping (Inventor)

    2000-01-01

    An improved fuel cell electrode, as well as fuel cells and membrane electrode assemblies that include such an electrode, in which the electrode includes a backing layer having a sintered layer thereon, and a non-sintered free-catalyst layer. The invention also features a method of forming the electrode by sintering a backing material with a catalyst material and then applying a free-catalyst layer.

  9. Activation of porous MOF materials

    DOEpatents

    Hupp, Joseph T; Farha, Omar K

    2014-04-01

    A method for the treatment of solvent-containing MOF material to increase its internal surface area involves introducing a liquid into the MOF in which liquid the solvent is miscible, subjecting the MOF to supercritical conditions for a time to form supercritical fluid, and releasing the supercritical conditions to remove the supercritcal fluid from the MOF. Prior to introducing the liquid into the MOF, occluded reaction solvent, such as DEF or DMF, in the MOF can be exchanged for the miscible solvent.

  10. Activation of porous MOF materials

    DOEpatents

    Hupp, Joseph T; Farha, Omar K

    2013-04-23

    A method for the treatment of solvent-containing MOF material to increase its internal surface area involves introducing a liquid into the MOF in which liquid the solvent is miscible, subjecting the MOF to supercritical conditions for a time to form supercritical fluid, and releasing the supercritical conditions to remove the supercritical fluid from the MOF. Prior to introducing the liquid into the MOF, occluded reaction solvent, such as DEF or DMF, in the MOF can be exchanged for the miscible solvent.

  11. 3D Interconnected Electrode Materials with Ultrahigh Areal Sulfur Loading for Li-S Batteries.

    PubMed

    Fang, Ruopian; Zhao, Shiyong; Hou, Pengxiang; Cheng, Min; Wang, Shaogang; Cheng, Hui-Ming; Liu, Chang; Li, Feng

    2016-05-01

    Sulfur electrodes based on a 3D integrated hollow carbon fiber foam (HCFF) are synthesized with high sulfur loadings of 6.2-21.2 mg cm(-2) . Benefiting from the high electrolyte absorbability of the HCFF and the multiple conductive channels, the obtained electrode demonstrates excellent cycling stability and a high areal capacity of 23.32 mAh cm(-2) , showing great promise in commercially viable Li-S batteries.

  12. An effect of the electrode material on space charge relaxation in ferroelectric copolymers of vinylidene fluoride

    SciTech Connect

    Kochervinskii, Valentin Pavlov, Alexey; Pakuro, Natalia; Bessonova, Natalia; Shmakova, Nina; Malyshkina, Inna; Bedin, Sergey

    2015-12-28

    Processes of relaxation of space charges formed by impurities carriers in isotropic films of vinylidene fluoride and tetrafluoroethylene copolymers of the composition 71/29 and 94/6 were studied. Al and Au symmetric electrodes deposited by evaporation in vacuum have been used. In the case of Al electrodes at temperatures above 100 °C, giant low frequency dielectric dispersion was observed, while it is absent in films with Au electrodes. Causes of this phenomenon were studied by the X-ray photoelectron spectroscopy. It was shown that at Al deposition, new functional groups, such as Al-C, Al-F, and Al{sub 2}O{sub 3}, which are not characteristic of the copolymer film surface, formed. They were supposed to be traps for impurity carriers and because of this the electrode became partially blocked. This led to appearance of the giant electrode polarization on the metal-polymer boundary, which did not take place in the case of Au electrodes. Parameters of the Au4f line for the copolymer with different contents of fluorine atoms in the chain were analyzed. An increase in the number of these atoms was shown to result in the line shift to higher energies. This phenomenon was associated with an increase in the shift of the electron density from Au atoms to the F ones which has a high affinity to electrons.

  13. Ultra-fast dry microwave preparation of SnSb used as negative electrode material for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Antitomaso, P.; Fraisse, B.; Sougrati, M. T.; Morato-Lallemand, F.; Biscaglia, S.; Aymé-Perrot, D.; Girard, P.; Monconduit, L.

    2016-09-01

    Tin antimonide alloy was obtained for the first time using a very simple dry microwave route. Up to 1 g of well crystallized SnSb can be easily prepared in 90 s under air in an open crucible. A full characterization by X-ray diffraction and 119Sn Mössbauer spectroscopy demonstrated the benefit of carbon as susceptor, which avoid any oxide contamination. The microwave-prepared SnSb was tested as negative electrode material in Li batteries. Interesting results in terms of capacity and rate capability were obtained with up to 700 mAh/g sustained after 50 cycles at variable current. These results pave the way for the introduction of microwave synthesis as realistic route for a rapid, low cost and up-scalable production of electrode material for Li batteries or other large scale application types.

  14. Graphene coated with controllable N-doped carbon layer by molecular layer deposition as electrode materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Chen, Yao; Gao, Zhe; Zhang, Bin; Zhao, Shichao; Qin, Yong

    2016-05-01

    In this work, graphene is coated with nitrogen-doped carbon layer, which is produced by a carbonization process of aromatic polyimide (PI) films deposited on the surfaces of graphene by molecular layer deposition (MLD). The utilization of MLD not only allows uniform coating of PI layers on the surfaces of pristine graphene without any surface treatment, but also enables homogenous dispersion of doped nitrogen atoms in the carbonized products. The as-prepared N-doped carbon layer coated graphene (NC-G) exhibited remarkable capacitance performance as electrode materials for supercapacitor, showing a high specific capacitance of 290.2 F g-1 at current density of 1 A g-1 in 6 M KOH aqueous electrolyte, meanwhile maintaining good rate performance and stable cycle capability. The NC-G synthesized by this way represents an alternative promising candidate as electrode material for supercapacitors.

  15. Carbon-coated LiCrTiO4 electrode material promoting phase transition to reduce asymmetric polarization for lithium-ion batteries.

    PubMed

    Yang, Jianwen; Yan, Bo; Ye, Jing; Li, Xue; Liu, Yansheng; You, Haiping

    2014-02-21

    In this work, carbon-free and carbon-coated spinel LiCrTiO4 oxides were synthesized by a conventional solid state reaction. The lithium-ion diffusion coefficient and electronic conductivity of prepared electrode materials were systematically investigated using the galvanostatic intermittent titration technique (GITT), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The rate performances of the prepared materials were evaluated by galvanostatic charge-discharge. Carefully comparing the charge-discharge polarization potential of both materials, we unexpectedly discovered that the pristine LiCrTiO4 electrode demonstrated asymmetric polarization during the charging-discharging process, which is possibly attributed to the nonuniform electron conductivity between the endmember of a two-phase reaction, whereas carbon coating could level this phenomenon. Additionally, using an asymmetric core-shell model from the microscopic point of view can easily explain this common phenomenon. Meanwhile, this new research perspective can be extended to other active materials in lithium ion batteries.

  16. Correction of the power law of ac conductivity in ion-conducting materials due to the electrode polarization effect.

    PubMed

    Khamzin, A A; Popov, I I; Nigmatullin, R R

    2014-03-01

    Based on the supposition related to fractal nature of transport processes in ion-conducting materials, an expression for the low-frequency ac conductivity dependence was derived. This expression for the ac conductivity generalizes the power-law dependence and gives a possibility to take into account the influence of the electrode polarization effect. The ac conductivity expression obtained is in excellent agreement with experimental data for a wide frequency range.

  17. Electrocatalytic activity of NiO on silicon nanowires with a carbon shell and its application in dye-sensitized solar cell counter electrodes

    NASA Astrophysics Data System (ADS)

    Kim, Junhee; Jung, Cho-Long; Kim, Minsoo; Kim, Soomin; Kang, Yoonmook; Lee, Hae-Seok; Park, Jeounghee; Jun, Yongseok; Kim, Donghwan

    2016-03-01

    To improve the catalytic activity of a material, it is critical to maximize the effective surface area by directly contacting the electrolyte. Nanowires are a promising building block for catalysts in electrochemical applications because of their large surface area. Nickel oxide (NiO) decoration was achieved by drop-casting a nickel-dissolved solution onto vertically aligned silicon nanowire arrays with a carbon shell (SiNW/C). Based on the hybridization of the NiO and silicon nanowire arrays with a carbon shell this study aimed to achieve a synergic effect for the catalytic activity performance. This study demonstrated that the resulting nanomaterial exhibits excellent electrocatalytic activity and performs well as a counter electrode for dye-sensitized solar cells (DSSCs). The compositions of the materials were examined using X-ray diffraction, X-ray photoelectron spectroscopy, and energy dispersive spectroscopy. Their micro- and nano-structures were investigated using scanning electron microscopy and transmission electron microscopy. The electrochemical activity toward I-/I3- was examined using cyclic voltammetry and electrochemical impedance spectroscopy. The obtained peak power conversion efficiency of the DSSC based on the NiO@SiNW/C counter electrode was 9.49%, which was greater than that of the DSSC based on the Pt counter electrode.To improve the catalytic activity of a material, it is critical to maximize the effective surface area by directly contacting the electrolyte. Nanowires are a promising building block for catalysts in electrochemical applications because of their large surface area. Nickel oxide (NiO) decoration was achieved by drop-casting a nickel-dissolved solution onto vertically aligned silicon nanowire arrays with a carbon shell (SiNW/C). Based on the hybridization of the NiO and silicon nanowire arrays with a carbon shell this study aimed to achieve a synergic effect for the catalytic activity performance. This study demonstrated that the

  18. Evaluating biomass-derived hierarchically porous carbon as the positive electrode material for hybrid Na-ion capacitors

    NASA Astrophysics Data System (ADS)

    Chen, Jizhang; Zhou, Xiaoyan; Mei, Changtong; Xu, Junling; Zhou, Shuang; Wong, Ching-Ping

    2017-02-01

    As a promising renewable resource, biomass has several advantages such as wide availability, low cost, and versatility. In this study, we use peanut shell, wheat straw, rice straw, corn stalk, cotton stalk, and soybean stalk as the precursors to synthesize hierarchically porous carbon as the positive electrode material for hybrid Na-ion capacitors, aiming to establish a criterion of choosing suitable biomass precursors. The carbon derived from wood-like cotton stalk has abundant interconnected macropores, high surface area of 1994 m2 g-1, and large pore volume of 1.107 cm3 g-1, thanks to which it exhibits high reversible capacitance of 160.5 F g-1 at 0.2 A g-1 and great rate capability, along with excellent cyclability. The carbonaceous positive electrode material is combined with a Na2Ti2.97Nb0.03O7 negative electrode material to assemble a hybrid Na-ion capacitor, which delivers a high specific energy of 169.4 Wh kg-1 at 120.5 W kg-1, ranking among the best-performed hybrid ion capacitors.

  19. Symmetric supercapacitors using urea-modified lignin derived N-doped porous carbon as electrode materials in liquid and solid electrolytes

    NASA Astrophysics Data System (ADS)

    Wang, Keliang; Xu, Ming; Gu, Yan; Gu, Zhengrong; Fan, Qi Hua

    2016-11-01

    N-doped porous carbon materials derived from urea-modified lignin were prepared via efficient KOH activation under carbonization. The synthesized N-doped carbon materials, which displayed a well-developed porous morphology with high specific surface area of 3130 m2 g-1, were used as electrode materials in symmetric supercapacitors with aqueous and solid electrolytes. In consistent with the observed physical structures and properties, the supercapacitors exhibited specific capacitances of 273 and 306 F g-1, small resistances of 2.6 and 7.7 Ω, stable charge/discharge at different current densities for over 5000 cycles and comparable energy and power density in 6 mol L-1 KOH liquid and KOH-PVA solid electrolytes, respectively.

  20. Molybdenum polysulfide chalcogels as high-capacity, anion-redox-driven electrode materials for Li-ion batteries

    SciTech Connect

    Doan-Nguyen, Vicky V. T.; Subrahmanyam, Kota S.; Butala, Megan M.; Gerbec, Jeffrey A.; Islam, Saiful M.; Kanipe, Katherine N.; Wilson, Catrina E.; Balasubramanian, Mahalingam; Wiaderek, Kamila M.; Borkiewicz, Olaf J.; Chapman, Karena W.; Chupas, Peter J.; Moskovits, Martin; Dunn, Bruce S.; Kanatzidis, Mercouri G.; Seshadri, Ram

    2016-11-09

    Sulfur cathodes in conversion reaction batteries offer high gravimetric capacity but suffer from parasitic polysulfide shuttling. We demonstrate here that transition metal chalcogels of approximate formula MoS3.4 achieve a high gravimetric capacity close to 600 mAh g–1 (close to 1000 mAh g–1 on a sulfur basis) as electrode materials for lithium-ion batteries. Transition metal chalcogels are amorphous and comprise polysulfide chains connected by inorganic linkers. The linkers appear to act as a “glue” in the electrode to prevent polysulfide shuttling. The Mo chalcogels function as electrodes in carbonate- and ether-based electrolytes, which further provides evidence of polysulfide solubility not being a limiting issue. We employ X-ray spectroscopy and operando pair distribution function techniques to elucidate the structural evolution of the electrode. Raman and X-ray photoelectron spectroscopy track the chemical moieties that arise during the anion-redox-driven processes. As a result, we find the redox state of Mo remains unchanged across the electrochemical cycling and, correspondingly, the redox is anion-driven.

  1. Molybdenum polysulfide chalcogels as high-capacity, anion-redox-driven electrode materials for Li-ion batteries

    DOE PAGES

    Doan-Nguyen, Vicky V. T.; Subrahmanyam, Kota S.; Butala, Megan M.; ...

    2016-11-09

    Sulfur cathodes in conversion reaction batteries offer high gravimetric capacity but suffer from parasitic polysulfide shuttling. We demonstrate here that transition metal chalcogels of approximate formula MoS3.4 achieve a high gravimetric capacity close to 600 mAh g–1 (close to 1000 mAh g–1 on a sulfur basis) as electrode materials for lithium-ion batteries. Transition metal chalcogels are amorphous and comprise polysulfide chains connected by inorganic linkers. The linkers appear to act as a “glue” in the electrode to prevent polysulfide shuttling. The Mo chalcogels function as electrodes in carbonate- and ether-based electrolytes, which further provides evidence of polysulfide solubility not beingmore » a limiting issue. We employ X-ray spectroscopy and operando pair distribution function techniques to elucidate the structural evolution of the electrode. Raman and X-ray photoelectron spectroscopy track the chemical moieties that arise during the anion-redox-driven processes. As a result, we find the redox state of Mo remains unchanged across the electrochemical cycling and, correspondingly, the redox is anion-driven.« less

  2. Strategies for "wiring" redox-active proteins to electrodes and applications in biosensors, biofuel cells, and nanotechnology.

    PubMed

    Nöll, Tanja; Nöll, Gilbert

    2011-07-01

    In this tutorial review the basic approaches to establish electrochemical communication between redox-active proteins and electrodes are elucidated and examples for applications in electrochemical biosensors, biofuel cells and nanotechnology are presented. The early stage of protein electrochemistry is described giving a short overview over electron transfer (ET) between electrodes and proteins, followed by a brief introduction into experimental procedures for studying proteins at electrodes and possible applications arising thereof. The article starts with discussing the electrochemistry of cytochrome c, the first redox-active protein, for which direct reversible ET was obtained, under diffusion controlled conditions and after adsorption to electrodes. Next, examples for the electrochemical study of redox enzymes adsorbed on electrodes and modes of immobilization are discussed. Shortly the experimental approach for investigating redox-active proteins adsorbed on electrodes is outlined. Possible applications of redox enzymes in electrochemical biosensors and biofuel cells working by direct ET (DET) and mediated ET (MET) are presented. Furthermore, the reconstitution of redox active proteins at electrodes using molecular wire-like units in order to "wire" the proteins to the electrode surface and possible applications in nanotechnology are discussed.

  3. Electrocatalytically Active Nickel-Based Electrode Coatings Formed by Atmospheric and Suspension Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Aghasibeig, M.; Mousavi, M.; Ben Ettouill, F.; Moreau, C.; Wuthrich, R.; Dolatabadi, A.

    2014-01-01

    Ni-based electrode coatings with enhanced surface areas, for hydrogen production, were developed using atmospheric plasma spray (APS) and suspension plasma spray (SPS) processes. The results revealed a larger electrochemical active surface area for the coatings produced by SPS compared to those produced by APS process. SEM micrographs showed that the surface microstructure of the sample with the largest surface area was composed of a large number of small cauliflower-like aggregates with an average diameter of 10 μm.

  4. Nitroxide polymer networks formed by Michael addition: on site-cured electrode-active organic coating.

    PubMed

    Ibe, Takeshi; Frings, Rainer B; Lachowicz, Artur; Kyo, Soichi; Nishide, Hiroyuki

    2010-05-28

    Highly and homogeneously crosslinked poly(beta-ketoester) networks densely bearing robust nitroxide radicals were prepared via a click-type and stepwise Michael polyaddition. A half-battery cell composed of the thermally-cured radical network coatings displayed a rapid, reversible, and almost stoichiometric redox-activity even with a thickness of ca. 10 mum, which may be applicable as the electrode of organic-based rechargeable devices.

  5. Interactions between organic additives and active powders in water-based lithium iron phosphate electrode slurries

    NASA Astrophysics Data System (ADS)

    Li, Chia-Chen; Lin, Yu-Sheng

    2012-12-01

    The interactions of organic additives with active powders are investigated and are found to have great influence on the determination of the mixing process for preparing electrode slurries with good dispersion and electrochemical properties of lithium iron phosphate (LiFePO4) electrodes. Based on the analyses of zeta potential, sedimentation, and rheology, it is shown that LiFePO4 prefers to interact with styrene-butadiene rubber (SBR) relative to other organic additives such as sodium carboxymethyl cellulose (SCMC), and thus shows preferential adsorption by SBR, whereas SBR has much lower efficiency than SCMC in dispersing LiFePO4. Therefore, for SCMC to interact with and disperse LiFePO4 before the interaction of LiFePO4 with SBR, it is suggested to mix SCMC with LiFePO4 prior to the addition of SBR during the slurry preparation process. For the electrode prepared via the suggested process, i.e., the sequenced adding process in which SCMC is mixed with active powders prior to the addition of SBR, a much better electrochemical performance is obtained than that of the one prepared via the process referred as the simultaneous adding process, in which mixing of SCMC and SBR with active powders in simultaneous.

  6. Microwave activated electrochemical degradation of 2,4-dichlorophenoxyacetic acid at boron-doped diamond electrode.

    PubMed

    Gao, Junxia; Zhao, Guohua; Shi, Wei; Li, Dongming

    2009-04-01

    A method for improving the oxidation ability of the electrode is proposed by using microwave activation in electrochemical oxidation. The electrochemical degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) with microwave radiation (MW-EC) was carried out in a continuous flow system under atmospheric pressure. In 3 h the removal of COD, ACE (average current efficiency) and Cl(-) concentration was 1.63, 2.25 and 1.67 times as that without microwave radiation, respectively. The high degradation ability was resulted from the more active centers at the electrode surface due to the microwave radiation. The decay kinetics of 2,4-D followed a pseudo first-order reaction. The rate constant was increased to 2.16x10(-4) s(-1) with the microwave radiation, while it was 8.52x10(-5) s(-1) with electrochemical treatment only (EC). Under both conditions, the main intermediates were identified and quantified by High Performance Liquid Chromatography (HPLC). The formation rate of intermediate products and further degradation rate were increased by about 50-120% with the microwave radiation. The activation of electrochemical oxidation by microwave was discussed from the diffusion process, adsorption and the temperature at boron-doped diamond (BDD) electrode.

  7. Scanning tunneling microscopy of electrochemically activated platinum surfaces. A direct ex-situ determination of the electrode nanotopography

    SciTech Connect

    Vazquez, L.; Gomez, J.; Baro, A.M.; Garcia, N.; Marcos, M.L.; Velasco, J.G.; Vara, J.M.; Arvia, A.J.; Presa, J.; Garcia, A.; Aguilar, M.

    1987-03-18

    A direct scanning tunneling microscopy ex-situ determination on the nanometer scale of the topography of electrochemically highly activated platinum electrodes is presented. A correlation between catalytic activity and surface microtopography becomes evident. This result gives support to a structural model for the activated electrode surface. In the model, a volume with a pebble-like structure allows electrocatalytic processes to occur practically free of diffusion relaxation contributions under usual voltammetric conditions.

  8. Electrochemical and thermodynamic studies of the electrode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Bang, Hyun Joo

    profiles observed during the charge and discharge processes are related to the Li insertion/extraction reaction in the spinel host structure for both materials. The reversible heat generation due to the lithium insertion/extraction reaction in the host electrode is estimated on the basis of the cell entropy change. The heat generation calculated from DeltaS and the open circuit potential results is consistent with the heat profile (exothermic/endothermic) generated during the charge/discharge process and with the magnitude of the heat generation from the experimental results obtained from the IMC at a slow charge/discharge rate. The irreversible heat generation dependence on the current rate is discussed at different discharge rates.

  9. Study of electrochemical properties of thin film materials obtained using plasma technologies for production of electrodes for pacemakers

    NASA Astrophysics Data System (ADS)

    Obrezkov, O. I.; Vinogradov, V. P.; Krauz, V. I.; Mozgrin, D. V.; Guseva, I. A.; Andreev, E. S.; Zverev, A. A.; Starostin, A. L.

    2016-09-01

    Studies of thin film materials (TFM) as coatings of tips of pacemaker electrodes implanted into the human heart have been performed. TFM coatings were deposited in vacuum by arc magnetron discharge plasma, by pulsed discharge of “Plasma Focus”, and by electron beam evaporation. Simulation of electric charge transfer to the heart in physiological blood- imitator solution and determination of electrochemical properties of the coatings were carried out. TFM of highly developed surface of contact with tissue was produced by argon plasma spraying of titanium powder with subsequent coating by titanium nitride in vacuum arc assisted by Ti ion implantation. The TFM coatings of pacemaker electrode have passed necessary clinical tests and were used in medical practice. They provide low voltage myocardium stimulation thresholds within the required operating time.

  10. Electrochemical Properties of Poly(Anthraquinonyl Sulfide)/Graphene Sheets Composites as Electrode Materials for Electrochemical Capacitors

    PubMed Central

    Lee, Wonkyun; Suzuki, Shinya; Miyayama, Masaru

    2014-01-01

    Poly(anthraquinonyl sulfide) (PAQS)/graphene sheets (GSs) composite was synthesized through in situ polymerization to evaluate its performance as an electrode material for electrochemical capacitors. PAQS was successfully synthesized in the presence of GSs with uniform distribution. PAQS/GSs showed a pair of reversible redox peaks at around 0 V (vs. Ag/AgCl). The specific capacitance of PAQS/GSs was 349 F·g−1 (86 mAh·g−1) at a current density of 500 mA·g−1, and a capacitance of 305 F·g−1 was maintained even at a high current density of 5000 mA·g−1. The in situ polymerization of PAQS with GSs facilitated their interaction and enabled faster charge transfer and redox reaction, resulting in enhanced electrode properties.

  11. Electrochemical Properties of Poly(Anthraquinonyl Sulfide)/Graphene Sheets Composites as Electrode Materials for Electrochemical Capacitors.

    PubMed

    Lee, Wonkyun; Suzuki, Shinya; Miyayama, Masaru

    2014-07-30

    Poly(anthraquinonyl sulfide) (PAQS)/graphene sheets (GSs) composite was synthesized through in situ polymerization to evaluate its performance as an electrode material for electrochemical capacitors. PAQS was successfully synthesized in the presence of GSs with uniform distribution. PAQS/GSs showed a pair of reversible redox peaks at around 0 V (vs. Ag/AgCl). The specific capacitance of PAQS/GSs was 349 F·g(-1) (86 mAh·g(-1)) at a current density of 500 mA·g(-1), and a capacitance of 305 F·g(-1) was maintained even at a high current density of 5000 mA·g(-1). The in situ polymerization of PAQS with GSs facilitated their interaction and enabled faster charge transfer and redox reaction, resulting in enhanced electrode properties.

  12. Photoelectrocatalytic production of active chlorine on nanocrystalline titanium dioxide thin-film electrodes.

    PubMed

    Zanoni, Maria Valnice B; Sene, Jeosadaque J; Selcuk, Huseyin; Anderson, Marc A

    2004-06-01

    The production of chlorine and hypochlorite is of great economical and technological interest due to their large-scale use in many kinds of commercial applications. Yet, the current processes are not without problems such as inevitable side reactions and the high cost of production. This work reports the photoelectrocatalytic oxidation of chloride ions to free chlorine as it has been investigated by using titanium dioxide (TiO2) and several metal-doped titanium dioxide (M-TiO2) material electrodes. An average concentration of 800 mg L(-1) of free chlorine was obtained in an open-air reactor using a TiO2 thin-film electrode biased at +1.0 V (SCE) and illuminated by UV light. The M-doped electrodes have performed poorly compared with the pure TiO2 counterpart. Test solutions containing 0.05 mol L(-1) NaCl pH 2.0-4.0 were found to be the best conditions for fast production of free chlorine. A complete investigation of all parameters that influence the global process of chlorine production by the photo electrocatalytic method such as applied potential, concentration of NaCl, pH solution, and time is presented in detail. In addition, photocurrent vs potential curves and the reaction order are also discussed.

  13. Activated carbon electrodes: electrochemical oxidation coupled with desalination for wastewater treatment.

    PubMed

    Duan, Feng; Li, Yuping; Cao, Hongbin; Wang, Yi; Crittenden, John C; Zhang, Yi

    2015-04-01

    The wastewater usually contains low-concentration organic pollutants and some inorganic salts after biological treatment. In the present work, the possibility of simultaneous removal of them by combining electrochemical oxidation and electrosorption was investigated. Phenol and sodium chloride were chosen as representative of organic pollutants and inorganic salts and a pair of activated carbon plate electrodes were used as anode and cathode. Some important working conditions such as oxygen concentration, applied potential and temperature were evaluated to reach both efficient phenol removal and desalination. Under optimized 2.0 V of applied potential, 38°C of temperature, and 500 mL min(-1) of oxygen flow, over 90% of phenol, 60% of TOC and 20% of salinity were removed during 300 min of electrolysis time. Phenol was removed by both adsorption and electrochemical oxidation, which may proceed directly or indirectly by chlorine and hypochlorite oxidation. Chlorophenols were detected as degradation intermediates, but they were finally transformed to carboxylic acids. Desalination was possibly attributed to electrosorption of ions in the pores of activated carbon electrodes. The charging/regeneration cycling experiment showed good stability of the electrodes. This provides a new strategy for wastewater treatment and recycling.

  14. rGO/SWCNT composites as novel electrode materials for electrochemical biosensing.

    PubMed

    Huang, Tzu-Yen; Huang, Jen-Hsien; Wei, Hung-Yu; Ho, Kuo-Chuan; Chu, Chih-Wei

    2013-05-15

    In this study we performed electrochemical sensing using conductive carbon composite films containing reduced graphene oxide (rGO) and single-walled carbon nanotubes (SWCNTs) as electrode modifiers on glassy carbon electrodes (GCEs). Raman spectroscopy, transmission electron microscopy, atomic force microscopy, and scanning electron microscopy all suggested that the rGO acted as a surfactant, covering and smoothing out the surface, and that the SWCNTs acted as a conducting bridge to connect the isolated rGO sheets, thereby (i) minimizing the barrier for charge transfer between the rGO sheets and (ii) increasing the conductivity of the film. We used the rGO/SWCNT-modified GCE as a sensor to analyze hydrogen peroxide (H2O2) and β-nicotinamide adenine dinucleotide (NADH), obtaining substantial improvements in electrochemical reactivity and detection limits relative to those obtained from rGO- and SWCNT-modified electrodes, presumably because of the higher conductivity and greater coverage on the GCE, due to π-π interactions originating from the graphitic structures of the rGO and SWCNTs. The electrocatalysis response was measured by cyclic voltammetry and amperometric current-time (i-t) curve techniques. The linear concentration range of H2O2 and NADH detection at rGO/SWCNT-modified electrode is 0.5-5M and 20-400μM. The sensitivity for H2O2 and NADH detection is 2732.4 and 204μAmM(-1)cm(-2), and the limit of detection is 1.3 and 0.078μM respectively. Furthermore, interference tests indicated that the carbon composite film exhibited high selectivity toward H2O2 and NADH. Using GO as a solubilizing agent for SWCNTs establishes a new class of carbon electrodes for electrochemical sensors.

  15. Bacterial-cellulose-derived carbon nanofiber@MnO₂ and nitrogen-doped carbon nanofiber electrode materials: an asymmetric supercapacitor with high energy and power density.

    PubMed

    Chen, Li-Feng; Huang, Zhi-Hong; Liang, Hai-Wei; Guan, Qing-Fang; Yu, Shu-Hong

    2013-09-14

    A new kind of high-performance asymmetric supercapacitor is designed with pyrolyzed bacterial cellulose (p-BC)-coated MnO₂ as a positive electrode material and nitrogen-doped p-BC as a negative electrode material via an easy, efficient, large-scale, and green fabrication approach. The optimal asymmetric device possesses an excellent supercapacitive behavior with quite high energy and power density.

  16. Laser processing of SnO2 electrode materials for manufacturing of 3D micro-batteries

    NASA Astrophysics Data System (ADS)

    Kohler, R.; Proell, J.; Ulrich, S.; Przybylski, M.; Pfleging, W.

    2011-03-01

    The material development for advanced lithium-ion batteries plays an important role in future mobile applications and energy storage systems. It is assumed that electrode materials made of nano-composited materials will improve battery lifetime and will lead to an enhancement of lithium diffusion and thus improve battery capacity and cyclability. A major problem concerning thin film electrodes is, that increasing film thickness leads to an increase in lithium diffusion path lengths and thereby a decrease in power density. To overcome this problem, the investigation of a 3D-battery system with an increased surface area is necessary. UV-laser micromachining was applied to create defined line or grating structures via mask imaging. SnO2 is a highly investigated anode material for lithium-ion batteries. Yet, the enormous volume changes occurring during electrochemical cycling lead to immense loss of capacity. The formation of micropatterns via laser ablation to create structures which enable the compensation of the volume expansion was investigated in detail. Thin films of SnO2 were deposited in Ar:O2 atmosphere via r.f. magnetron sputtering on silicon and stainless steel substrates. The thin films were studied with X-ray diffraction to determine their crystallinity. The electrochemical properties of the manufactured films were investigated via electrochemical cycling against a lithium anode.

  17. 3D mapping of lithium in battery electrodes using neutron activation

    NASA Astrophysics Data System (ADS)

    He, Yuping; Downing, R. Gregory; Wang, Howard

    2015-08-01

    The neutron depth profiling technique based on the neutron activation reaction, 6Li (n, α) 3H, was applied with two dimensional (2D) pinhole aperture scans to spatially map lithium in 3D. The technique was used to study model LiFePO4 electrodes of rechargeable batteries for spatial heterogeneities of lithium in two cathode films that had undergone different electrochemical cycling histories. The method is useful for better understanding the functioning and failure of batteries using lithium as the active element.

  18. Preparation of energy storage material derived from a used cigarette filter for a supercapacitor electrode.

    PubMed

    Lee, Minzae; Kim, Gil-Pyo; Don Song, Hyeon; Park, Soomin; Yi, Jongheop

    2014-08-29

    We report on a one-step method for preparing nitrogen doped (N-doped) meso-/microporous hybrid carbon material (NCF) via the heat treatment of used cigarette filters under a nitrogen-containing atmosphere. The used cigarette filter, which is mostly composed of cellulose acetate fibers, can be transformed into a porous carbon material that contains both the mesopores and micropores spontaneously. The unique self-developed pore structure allowed a favorable pathway for electrolyte permeation and contact probability, resulting in the extended rate capability for the supercapacitor. The NCF exhibited a better rate capability and higher specific capacitance (153.8 F g(-1)) compared to that of conventional activated carbon (125.0 F g(-1)) at 1 A g(-1). These findings indicate that the synergistic combination of well-developed meso-/micropores, an enlarged surface area and pseudocapacitive behavior leads to the desired supercapacitive performance. The prepared carbon material is capable of reproducing its electrochemical performance during the 6000 cycles required for charge and discharge measurements.

  19. Preparation of energy storage material derived from a used cigarette filter for a supercapacitor electrode

    NASA Astrophysics Data System (ADS)

    Lee, Minzae; Kim, Gil-Pyo; Song, Hyeon Don; Park, Soomin; Yi, Jongheop

    2014-08-01

    We report on a one-step method for preparing nitrogen doped (N-doped) meso-/microporous hybrid carbon material (NCF) via the heat treatment of used cigarette filters under a nitrogen-containing atmosphere. The used cigarette filter, which is mostly composed of cellulose acetate fibers, can be transformed into a porous carbon material that contains both the mesopores and micropores spontaneously. The unique self-developed pore structure allowed a favorable pathway for electrolyte permeation and contact probability, resulting in the extended rate capability for the supercapacitor. The NCF exhibited a better rate capability and higher specific capacitance (153.8 F g-1) compared to that of conventional activated carbon (125.0 F g-1) at 1 A g-1. These findings indicate that the synergistic combination of well-developed meso-/micropores, an enlarged surface area and pseudocapacitive behavior leads to the desired supercapacitive performance. The prepared carbon material is capable of reproducing its electrochemical performance during the 6000 cycles required for charge and discharge measurements.

  20. Active Control of Dye Release for Neuronal Tracing using PEDOT-PSS Coated Electrodes.

    PubMed

    Heizmann, Stefanie; Kilias, Antje; Ruther, Patrick; Egert, Ulrich; Asplund, Maria

    2016-10-31

    Penetrating neural probes comprising arrays of microelectrodes are commonly used to monitor local field potentials and multi-unit activity in animal brain over time frames of weeks. To correlate these recorded signals to specific tissue areas, histological analysis is performed after the experimental endpoint. Even if the lesion of the penetrating probe shaft can be observed, a precise reconstruction of the exact electrode positions is still challenging. To overcome these experimental difficulties, we developed a new concept, whereupon recording electrodes are coated with a poly (3, 4-ethylenedioxythiophene/ polystyrenesulfonate) (PEDOT/PSS)-based film. The conducting polymer acts as dye reservoir over several weeks and afterwards provides controlled delivery of neurotracers. This paper presents a recording electrode based on a PEDOT/PSS bilayer optimized for dye delivery and with reduced impedance. Controlled exchange of neurotracer dye is successfully demonstrated in vitro using spectrofluorometry and in neuroblastoma cell cultures. A second PEDOT/PSS capping layer on top of the dye reservoir lowers the passive leakage of dye by a factor of 6.4 and prevents a direct contact of the dye filled layer with the cells. Stability tests over four weeks demonstrate the electrochemical stability of the PEDOT coating, as well as retained functionality of the dye delivery system.

  1. Electrode polarization vs. Maxwell-Wagner-Sillars interfacial polarization in dielectric spectra of materials: Characteristic frequencies and scaling laws.

    PubMed

    Samet, M; Levchenko, V; Boiteux, G; Seytre, G; Kallel, A; Serghei, A

    2015-05-21

    The characteristic frequencies of electrode polarization and of interfacial polarization effects in dielectric spectra of ionic liquids and of polymer bi-layers are determined and systematically analyzed, based on dielectric measurements by means of broadband dielectric spectroscopy, numerical simulations, and analytical calculations. It is shown that, to a large extent, identical scaling laws can be derived for these two dielectric phenomena taking place at external and internal interfaces. Surprisingly, a fundamentally different behavior concerning the interrelation between the characteristic frequencies is found. This brings direct evidence that different manifestations of the phenomenon of electrical polarization can be discriminated by examining the inter-relation governing their characteristic frequencies, which can be of significant importance in disseminating the nature of different contributions appearing in the dielectric spectra of complex materials. Based on our analysis, we derive a new formula, valid for both electrode polarization and interfacial polarization effects, that allows one to determine the conductivity value from the frequency position of the Maxwell-Wagner-Sillars peak. An excellent agreement between experiment and calculations is obtained. The formula can be used, furthermore, to estimate the thickness of the interfacial layers formed due to electrode polarization effects. Values in the order of several nanometers, increasing with decreasing temperature, are reported.

  2. Overoxidized polypyrrole/graphene nanocomposite with good electrochemical performance as novel electrode material for the detection of adenine and guanine.

    PubMed

    Gao, Yan-Sha; Xu, Jing-Kun; Lu, Li-Min; Wu, Li-Ping; Zhang, Kai-Xin; Nie, Tao; Zhu, Xiao-Fei; Wu, Yao

    2014-12-15

    Most conducting polymer/graphene composites have excellent electrical conductivity. However, the background currents of these composites modified electrodes are much larger. In order to improve the sensitivities of these methods, it is necessary to decrease the background signal. In this paper, porous structure films of overoxidized polypyrrole/graphene (PPyox/GR) have been electrochemically coated onto glassy carbon electrode (GCE) and successfully utilized as an efficient electrode material for the quantitive detection of adenine and guanine, two of the most important components of DNA and RNA. The permselective polymer coatings with low background current could improve the selectivity and sensitivity of microelectrodes for the electropositive purine bases. The GRs into these polymers would further improve sensitivity by increasing the electroactive surface area. The electrochemical sensor can be applied to the quantification of adenine and guanine with a linear range covering 0.06-100 µM and 0.04-100 µM, and a low detection limit of 0.02 μM and 0.01 μM, respectively. More importantly, the proposed method was applied to quantify adenine and guanine in calf thymus DNA with satisfactory results.

  3. Characterization and modeling of compliant active materials

    NASA Astrophysics Data System (ADS)

    Marra, S. P.; Ramesh, K. T.; Douglas, A. S.

    2003-09-01

    Active materials respond mechanically to changes in environmental conditions. One example of a compliant active material is a polymer gel. Active polymer gels expand and contract in response to certain environmental stimuli, such as the application of an electric field or a change in the pH level of the surroundings. This ability to achieve large, reversible deformations with no external mechanical loading has generated much interest in the use of these gels as actuators and "artificial muscles". While much work has been done to study the behavior and properties of these gels, little information is available regarding the full constitutive description of the mechanical and actuation properties. This work focuses on developing a means of characterizing the mechanical properties of compliant active materials. A thermodynamically consistent finite-elastic constitutive model was developed to describe the mechanical and actuation behaviors of these kinds of materials. The mechanical properties of compliant active materials are characterized by a free-energy function, and the model utilizes an evolving internal variable to describe the actuation state. A biaxial testing system has been developed which can measure stresses and deformations of polymer gel films in a variety of liquid environments. This testing system is used to determine the form and parameters of the free-energy function for a specific active polymer gel, poly(vinyl alcohol)-poly(acrylic acid) gel.

  4. Fabrication of 3D lawn-shaped N-doped porous carbon matrix/polyaniline nanocomposite as the electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Xiuling; Ma, Li; Gan, Mengyu; Fu, Gang; Jin, Meng; Lei, Yao; Yang, Peishu; Yan, Maofa

    2017-02-01

    A facile approach to acquire electrode materials with prominent electrochemical property is pivotal to the progress of supercapacitors. 3D nitrogen-doped porous carbon matrix (PCM), with high specific surface area (SSA) up to 2720 m2 g-1, was obtained from the carbonization and activation of the nitrogen-enriched composite precursor (graphene/polyaniline). Then 3D lawn-shaped PCM/PANI composite was obtained by the simple in-situ polymerization. The morphology and structure of these resulting composites were characterized by combining SEM and TEM measurements, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) spectroscopy analyses and Raman spectroscope. The element content of all samples was evaluated using CHN analysis. The results of electrochemical testing indicated that the PCM/PANI composite displays a higher capacitance value of 527 F g-1 at 1 A g-1 compared to 338 F g-1 for pure PANI, and exhibits appreciable rate capability with a retention of 76% at 20 A g-1 as well as fine long-term cycling performance (with 88% retention of specific capacitance after 1000 cycles at 10 A g-1). Simultaneously, the excellent capacitance performance coupled with the facile synthesis of PCM/PANI indicates it is a promising electrode material for supercapacitors.

  5. A generalized activating function for predicting virtual electrodes in cardiac tissue.

    PubMed Central

    Sobie, E A; Susil, R C; Tung, L

    1997-01-01

    To fully understand the mechanisms of defibrillation, it is critical to know how a given electrical stimulus causes membrane polarizations in cardiac tissue. We have extended the concept of the activating function, originally used to describe neuronal stimulation, to derive a new expression that identifies the sources that drive changes in transmembrane potential. Source terms, or virtual electrodes, consist of either second derivatives of extracellular potential weighted by intracellular conductivity or extracellular potential gradients weighted by derivatives of intracellular conductivity. The full response of passive tissue can be considered, in simple cases, to be a convolution of this "generalized activating function" with the impulse response of the tissue. Computer simulations of a two-dimensional sheet of passive myocardium under steady-state conditions demonstrate that this source term is useful for estimating the effects of applied electrical stimuli. The generalized activating function predicts oppositely polarized regions of tissue when unequally anisotropic tissue is point stimulated and a monopolar response when a point stimulus is applied to isotropic tissue. In the bulk of the myocardium, this new expression is helpful for understanding mechanisms by which virtual electrodes can be produced, such as the hypothetical "sawtooth" pattern of polarization, as well as polarization owing to regions of depressed conductivity, missing cells or clefts, changes in fiber diameter, or fiber curvature. In comparing solutions obtained with an assumed extracellular potential distribution to those with fully coupled intra- and extracellular domains, we find that the former provides a reliable estimate of the total solution. Thus the generalized activating function that we have derived provides a useful way of understanding virtual electrode effects in cardiac tissue. Images FIGURE 2 FIGURE 4 FIGURE 5 FIGURE 6 PMID:9284308

  6. Conductive Polymer Binder for High-Tap-Density Nanosilicon Material for Lithium-Ion Battery Negative Electrode Application.

    PubMed

    Zhao, Hui; Wei, Yang; Qiao, Ruimin; Zhu, Chenhui; Zheng, Ziyan; Ling, Min; Jia, Zhe; Bai, Ying; Fu, Yanbao; Lei, Jinglei; Song, Xiangyun; Battaglia, Vincent S; Yang, Wanli; Messersmith, Phillip B; Liu, Gao

    2015-12-09

    High-tap-density silicon nanomaterials are highly desirable as anodes for lithium ion batteries, due to their small surface area and minimum first-cycle loss. However, this material poses formidable challenges to polymeric binder design. Binders adhere on to the small surface area to sustain the drastic volume changes during cycling; also the low porosities and small pore size resulting from this material are detrimental to lithium ion transport. This study introduces a new binder, poly(1-pyrenemethyl methacrylate-co-methacrylic acid) (PPyMAA), for a high-tap-density nanosilicon electrode cycled in a stable manner with a first cycle efficiency of 82%-a value that is further improved to 87% when combined with graphite material. Incorporating the MAA acid functionalities does not change the lowest unoccupied molecular orbital (LUMO) features or lower the adhesion performance of the PPy homopolymer. Our single-molecule force microscopy measurement of PPyMAA reveals similar adhesion strength between polymer binder and anode surface when compared with conventional polymer such as homopolyacrylic acid (PAA), while being electronically conductive. The combined conductivity and adhesion afforded by the MAA and pyrene copolymer results in good cycling performance for the high-tap-density Si electrode.

  7. Novel GO-LaSmO2 Nanocomposite as an Effective Electrode Material for Hydrogen Fuel Cells

    NASA Astrophysics Data System (ADS)

    El-Amin, Ayman A.; Othman, Abdelhameed M.

    2016-04-01

    Nano-composites of lanthanum-samarium oxide (LaSmO2) were prepared in the absence and presence of graphene oxide (GO) and characterized as an effective electrode material for hydrogen fuel cells. X-ray and scanning electron microscope investigations revealed grain sizes of 8 nm for LaSmO2 and 12 nm for GO-LaSmO2 composites. The x-ray diffraction pattern showed sharp peaks, indicating a well-crystallized phase indexable to a rhombohedral structure with space group R 3 C , and their structural refinement performed in the hexagonal mode. The ionic conductivity of LaSmO2 was found to be 4.12 × 10-5 S/cm, while in the presence of GO it was enhanced to 5.32 × 10-5 S/cm. The mechanism of conduction in the proposed nano-materials was investigated based on frequency exponent S. The values of S were observed to decrease with increasing temperature. This result was found to be in good agreement with the correlated barrier hopping (CBH) model. The present work revealed GO to be a conductivity enhancer that caused the GO-LaSmO2 composite to be an effective electrode material for hydrogen fuel cells.

  8. Effect of mesocelluar carbon foam electrode material on performance of vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Jeong, Sanghyun; An, Sunhyung; Jeong, Jooyoung; Lee, Jinwoo; Kwon, Yongchai

    2015-03-01

    Languid reaction rate of VO2+/VO2+ redox couple is a problem to solve for improving performance of vanadium redox flow battery (VRFB). To facilitate the slow reaction materials including large pore sized mesocellular carbon foam (MSU-F-C and Pt/MSU-F-C) are used as new catalyst. Their catalytic activity and reaction reversibility are estimated and compared with other catalysts, while cycle tests of charge-discharge and polarization curve tests are implemented to evaluate energy efficiency (EE) and maximum power density (MPD). Their crystal structure, specific surface area and catalyst morphology are measured by XRD, BET and TEM. The new catalysts indicate high peak current ratio, small peak potential difference and high electron transfer rate constant, proving that their catalytic activity and reaction reversibility are superior. Regarding the charge-discharge and polarization curve tests, the VRFB single cells including new catalysts show high EE as well as low overpotential and internal resistance and high MPD. Such excellent results are due to mostly unique characteristics of MSU-F-C having large interconnected mesopores, high surface area and large contents of hydroxyl groups that serve as active sites for VO2+/VO2+ redox reaction and platinums (Pts) supporting the MSU-F-C. Indeed, employment of the catalysts including MSU-F-C leads to enhancement in performance of VRFB by facilitating the slow VO2+/VO2+ redox reaction.

  9. The preparation of copper fine particle paste and its application as the inner electrode material of a multilayered ceramic capacitor

    NASA Astrophysics Data System (ADS)

    Yonezawa, Tetsu; Takeoka, Shinsuke; Kishi, Hiroshi; Ida, Kiyonobu; Tomonari, Masanori

    2008-04-01

    Well size-controlled copper fine particles (diameter: 100-300 nm) were used as the inner electrode material of multilayered ceramic capacitors (MLCCs). The particles were dispersed in terpineol to form a printing paste with 50 wt% copper particles. The MLCC precursor modules prepared by the layer-by-layer printing of copper and BaTiO3 particles were cosintered. Detailed observation of the particles, paste, and MLCCs before and after sintering was carried out by electron microscopy. The sintering temperature of Cu-MLCC was as low as 960 °C. The permittivity of these MLCCs was successfully measured with the copper inner layers.

  10. Negative electrodes for Na-ion batteries.

    PubMed

    Dahbi, Mouad; Yabuuchi, Naoaki; Kubota, Kei; Tokiwa, Kazuyasu; Komaba, Shinichi

    2014-08-07

    Research interest in Na-ion batteries has increased rapidly because of the environmental friendliness of sodium compared to lithium. Throughout this Perspective paper, we report and review recent scientific advances in the field of negative electrode materials used for Na-ion batteries. This paper sheds light on negative electrode materials for Na-ion batteries: carbonaceous materials, oxides/phosphates (as sodium insertion materials), sodium alloy/compounds and so on. These electrode materials have different reaction mechanisms for electrochemical sodiation/desodiation processes. Moreover, not only sodiation-active materials but also binders, current collectors, electrolytes and electrode/electrolyte interphase and its stabilization are essential for long cycle life Na-ion batteries. This paper also addresses the prospect of Na-ion batteries as low-cost and long-life batteries with relatively high-energy density as their potential competitive edge over the commercialized Li-ion batteries.

  11. Neural Activity Propagation in an Unfolded Hippocampal Preparation with a Penetrating Micro-electrode Array

    PubMed Central

    Gonzales-Reyes, Luis E.; Durand, Dominique M.

    2015-01-01

    This protocol describes a method for preparing a new in vitro flat hippocampus preparation combined with a micro-machined array to map neural activity in the hippocampus. The transverse hippocampal slice preparation is the most common tissue preparation to study hippocampus electrophysiology. A longitudinal hippocampal slice was also developed in order to investigate longitudinal connections in the hippocampus. The intact mouse hippocampus can also be maintained in vitro because its thickness allows adequate oxygen diffusion. However, these three preparations do not provide direct access to neural propagation since some of the tissue is either missing or folded. The unfolded intact hippocampus provides both transverse and longitudinal connections in a flat configuration for direct access to the tissue to analyze the full extent of signal propagation in the hippocampus in vitro. In order to effectively monitor the neural activity from the cell layer, a custom made penetrating micro-electrode array (PMEA) was fabricated and applied to the unfolded hippocampus. The PMEA with 64 electrodes of 200 µm in height could record neural activity deep inside the mouse hippocampus. The unique combination of an unfolded hippocampal preparation and the PMEA provides a new in-vitro tool to study the speed and direction of propagation of neural activity in the two-dimensional CA1-CA3 regions of the hippocampus with a high signal to noise ratio. PMID:25868081

  12. Anode activation polarization on Pt(h k l) electrodes in dilute sulphuric acid electrolyte

    NASA Astrophysics Data System (ADS)

    Mann, R. F.; Amphlett, J. C.; Peppley, B. A.; Thurgood, C. P.

    Proton exchange membrane (PEM) fuel cells have been under development for many years and appear to be the potential solution for many electricity supply applications. Modelling and computer simulation of PEM fuel cells have been equally active areas of work as a means of developing better understanding of cell and stack operation, facilitating design improvements and supporting system simulation studies. The prediction of activation polarization in our previous PEM modelling work, as in most PEM models, concentrated on the cathode losses. Anode losses are commonly much smaller and tend to be ignored compared to cathode losses. Further development of the anode activation polarization term is being undertaken in order to broaden the application and usefulness of PEM models in general. Previously published work on the kinetics of the hydrogen oxidation reaction using Pt(h k l) electrodes in dilute H 2SO 4 has been examined and further developed for eventual application to the modelling of PEM fuel cells. New correlations for the exchange current density are developed for Pt(1 0 0), Pt(1 1 0) and Pt(1 1 1) electrodes. Predictive equations for the anode activation polarization are also proposed. In addition, terminology has been modified to make the correlation approach and, eventually, the modelling method more easily understood and used by those without an extensive background in electrochemistry.

  13. Electrochemical impregnation and cycle life of lightweight nickel electrodes for nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1990-01-01

    Development of a high specific energy nickel electrode is the main goal of the lightweight nickel electrode program at NASA-Lewis. The approach was to improve the nickel electrode by continuing combined in-house and contract efforts to develop a more efficient and lighter weight electrode for the nickel-hydrogen cell. Lightweight plaques are used as conductive supports for the nickel hydroxide active material. These plaques are commercial products that are fabricated into nickel electrodes by electrochemically impregnating them with active material. The electrodes are life cycle tested in a low earth orbit regime at 40 and 80 percent depths-of-discharge.

  14. Electrochemical impregnation and cycle life of lightweight nickel electrodes for nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1990-01-01

    Development of a high specific energy nickel electrode is the main goal of the lightweight nickel electrode program at NASA-Lewis. The approach was to improve the nickel electrode by continuing combined in-house and contract efforts to develop a more efficient and lighter weight electrode for the nickel-hydrogen cell. Lightweight plaques are used as conductive supports for the nickel hydroxide active material. These plaques are commercial products that are fabricated into nickel electrodes by electrochemically impregnating them with active material. The electrodes are life cycle tested in a low Earth orbit regime at 40 and 80 percent depths-of-discharge.

  15. Lithium-aluminum-magnesium electrode composition

    DOEpatents

    Melendres, Carlos A.; Siegel, Stanley

    1978-01-01

    A negative electrode composition is presented for use in a secondary, high-temperature electrochemical cell. The cell also includes a molten salt electrolyte of alkali metal halides or alkaline earth metal halides and a positive electrode including a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent and a magnesium-aluminum alloy as a structural matrix. Various binary and ternary intermetallic phases of lithium, magnesium, and aluminum are formed but the electrode composition in both its charged and discharged state remains substantially free of the alpha lithium-aluminum phase and exhibits good structural integrity.

  16. Moving Graphitic Carbon Nitride from Electrocatalysis and Photocatalysis to a Potential Electrode Material for Photoelectric Devices.

    PubMed

    Xu, Jingsan; Antonietti, Markus; Shalom, Menny

    2016-09-20

    Carbon nitride (g-CN) has attracted significant interest in the last years as a robust, low-cost alternative to metal-based materials in different fields due to its low price, environmentally benign character, simple synthesis and tunable properties. In particular, g-CN demonstrates promising activity in energy-related applications such as photo and heterogeneous catalysis, batteries and electrolysis. However, while g-CN is already well-established as a photocatalyst, its utilization in (opto)electronic devices is still at an early stage. This Focus Review concentrates on the utilization of g-CN in solar and photoelectrochemical cells, electrolyzers and light emitting diode alongside the recap of new synthetic approaches. This review is expected to provide useful insights into the design and fabrication of g-CN based photoelectronic devices as well as g-CN working principles, including the main challenges toward its integration in optoelectronic devices.

  17. Superior supercapacitor electrode material from hydrazine hydrate modified porous polyacrylonitrile fiber

    NASA Astrophysics Data System (ADS)

    Li, Ying; Lu, Chunxiang; Wang, Junzhong; Yan, Hua; Zhang, Shouchun

    2016-03-01

    A hierarchical porous carbon fiber with high nitrogen doping was fabricated for high-performance supercapacitor. For the purpose of high nitrogen retention, the porous polyacrylonitrile fiber was treated by hydrazine hydrate, and then underwent pre-oxidation, carbonization, and activation in sequence. The resulted material exhibited high nitrogen content of 7.82 at.%, large specific surface area of 1963.3m2 g-1, total pore volume of 1.523cm3 g-1, and the pores with size range of 1-4nm were account for 49.1%. Due to these features, the high reversible capacitance of 415F g-1 and the good performance in heavy load discharge were obtained. In addition, the amazing cyclability was observed after 10,000 circles without capacitance fading.

  18. Method of making electrodes for electrochemical cell. [Li-Al alloy

    DOEpatents

    Kaun, T.D.; Kilsdonk, D.J.

    1981-07-29

    A method is described for making an electrode for an electrochemical cell in which particulate electrode-active material is mixed with a liquid organic carrier chemically inert with respect to the electrode-active material, mixing the liquid carrier to form an extrudable slurry. The liquid carrier is present in an amount of from about 10 to about 50% by volume of the slurry, and then the carrier is removed from the slurry leaving the electrode-active material. The method is particularly suited for making a lithium-aluminum alloy negative electrode for a high-temperature cell.

  19. System-in-package solution for a low-power active electrode module.

    PubMed

    Gaio, Nikolas; Gao, Linping; Cai, Jinhe; Zhang, Jinyong; Wang, Lei

    2014-01-01

    This paper presents the design of system in package for a low-power active electrode module. The main aim of this research is to provide a low-cost, high-density, and high-quality module, exploiting the features of a System-in-Package (SiP) solution. To the best knowledge of the authors, this is the first time that SiP technology has been used in the development of a modular active electrode. Two SiPs have been designed and one of them has been fabricated and tested. The dimensions of the latter are 7×7×1 mm and it was designed taking in account the necessity of soldering it by hand. On the contrary, the other package dimensions are 4.5×4.5×1 mm and it was designed for fully exploiting the latest technologies available to authors. The SiPs have been designed to be reused in different electrocardiogram (ECG) systems and are easy to solder using ball grids arrays (BGA) and land grids arrays (LGA) as second level interconnection; both these features allow to reduce the time to market of the supra-system including the module. The active electrode presents a bandwidth which ranges from 7.9 mHz to 300 Hz and it has a mid-band gain which can be set to a maximum value of 40 dB. The fabricated SiP has been tested on a printed circuit board (PCB), with an input signal generated by a Dimetek iBUSS-P biomedical signal simulator showing a satisfying functioning of the SiP.

  20. The performance of La0.6Sr1.4MnO4 layered perovskite electrode material for intermediate temperature symmetrical solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Chen, Gang; Wu, Kai; Cheng, Yonghong

    2014-12-01

    A layered perovskite electrode material, La0.6Sr1.4MnO4+δ (LSMO4), has been studied for intermediate temperature symmetrical solid oxide fuel cells (IT-SSOFCs) on La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) electrolyte. The chemical compatibility tests indicate that no reaction occurred between LSMO4 oxide and LSGM electrolyte at temperature up to 1000 °C both in air and 5% H2. The lower conductivity in 5% H2 and higher conduction activation energy than those in air would be caused by poorer overlap of both σ and π bonds. DFT + U calculations also show that oxygen vacancies which formed in reducing atmosphere may block the 3D hopping path for electrons or holes through Mn-O-Mn chains. For LSMO4 electrode, SEM results indicate that the electrode formed good contact with the electrolyte after being sintered at 900 °C for 2 h. At 800 °C, the polarization resistance of the LSMO4 cathode is about 0.87 Ω cm2 in air, while the polarization resistance of the LSMO4 anode is about 2.07 Ω cm2 in 5% H2. LSMO4 exhibits better electrochemical activity for oxygen reduction than that for hydrogen oxidation. A cell with LSGM electrolyte, LSMO4-LSGM mixture as anode and cathode simultaneously displays a maximum power density of 59 mW cm-2 at 800 °C.

  1. Pulse electrosynthesis of novel wormlike gadolinium oxide nanostructure and its nanocomposite with conjugated electroactive polymer as a hybrid and high efficient electrode material for energy storage device.

    PubMed

    Shiri, Hamid Mohammad; Ehsani, Ali

    2016-12-15

    An effective approach for increasing the life cycle of pure p-type conductive polymers is combining conventional conductive polymers and nanomaterials to fabricate hybrid electrodes. In this paper, Gadolinium oxide (Gd2O3) has first been synthesized using pulse electrochemical approach. Hybrid POAP/Gd2O3 films have then been fabricated by POAP electropolymerization in the presence of Gd2O3 nanoparticles as active electrodes for electrochemical supercapacitors. Surface and electrochemical analyses have been used for characterization of Gd2O3 and POAP/Gd2O3 composite films. Different electrochemical methods including galvanostatic charge discharge experiments, cyclic voltammetry and electrochemical impedance spectroscopy have been applied to study the system performance. Specific capacitance, specific energy and specific power of the composite film are calculated 300F·g(-1), 41.66Wh·kg(-1) and 833.22W·kg(-1) respectively. This work introduces new nanocomposite materials for electrochemical redox capacitors with such advantages as the ease of synthesis, high active surface area and stability in an aqueous electrolyte.

  2. Activated carbon briquettes from biomass materials.

    PubMed

    Amaya, Alejandro; Medero, Natalia; Tancredi, Néstor; Silva, Hugo; Deiana, Cristina

    2007-05-01

    Disposal of biomass wastes, produced in different agricultural activities, is frequently an environmental problem. A solution for such situation is the recycling of these residues for the production of activated carbon, an adsorbent which has several applications, for instance in the elimination of contaminants. For some uses, high mechanical strength and good adsorption characteristics are required. To achieve this, carbonaceous materials are conformed as pellets or briquettes, in a process that involves mixing and pressing of char with adhesive materials prior to activation. In this work, the influence of the operation conditions on the mechanical and surface properties of briquettes was studied. Eucalyptus wood and rice husk from Uruguay were used as lignocellulosic raw materials, and concentrated grape must from Cuyo Region-Argentina, as a binder. Different wood:rice and solid:binder ratios were used to prepare briquettes in order to study their influence on mechanical and surface properties of the final products.

  3. End-of-life nickel-cadmium accumulators: characterization of electrode materials and industrial Black Mass.

    PubMed

    Hazotte, Claire; Leclerc, Nathalie; Diliberto, Sébastien; Meux, Eric; Lapicque, Francois

    2015-01-01

    The aim of this paper is the characterization of spent NiCd batteries and the characterization of an industrial Black Mass obtained after crushing spent NiCd batteries and physical separation in a treatment plant. The characterization was first performed with five cylindrical NiCd batteries which were manually dismantled. Their characterization includes mass balance of the components, active powders elemental analysis and phase identification by X-ray powder diffraction. Chemical speciation of the two metals was also investigated. For cadmium, speciation was previously developed on solid synthetic samples. In a spent battery, the active powders correspond to about 43% of the battery weight. The other components are the separator and polymeric pieces (5%), the support plates (25%) and the carbon steel external case (27%). The sequential procedure shows that the nickel in the positive powders from the dismantled Ni-Cd batteries is distributed between Ni0 (39.7%), Ni(OH)2 (58.5%) and NiOOH (1.8%). Cadmium in the negative powder is about 99.9% as the Cd(OH)2 form with 0.1% of metal cadmium. In the industrial Black Mass, the distribution of cadmium is the same, whereas the distribution of nickel is Ni0 (46.9%), Ni(OH)2 (43.2%) and NiOOH (9.9%). This material contains also 1.8% cobalt and approx. 1% iron.

  4. Pr4Ni3O10+δ: A new promising oxygen electrode material for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Vibhu, Vaibhav; Rougier, Aline; Nicollet, Clément; Flura, Aurélien; Fourcade, Sébastien; Penin, Nicolas; Grenier, Jean-Claude; Bassat, Jean-Marc

    2016-06-01

    The present work is focused on the study of Pr4Ni3O10+δ as a new cathode material for Solid Oxide Fuel Cells (SOFCs). The structural study leads to an indexation in orthorhombic structure with Fmmm space group, this structure being thermally stable throughout the temperature range up to 1000 °C under air and oxygen. The variation of oxygen content (10+δ) as a function of temperature under different atmospheres show that Pr4Ni3O10+δ is always oxygen over-stoichiometric, which further suggests its MIEC properties. The polarization resistance (Rp) of Pr4Ni3O10+δ electrode is measured for GDC/co-sintered and two-step sintered half cells. The Rp for co-sintered sample is found to be 0.16 Ω cm2 at 600 °C under air, which is as low as the one of highest performing Pr2NiO4+δ nickelate (Rp = 0.15 Ω cm2 at 600 °C). Moreover, an anode supported (Ni-YSZ//YSZ) single cell including GDC//Pr4Ni3O10+δ co-sintered electrode shows a maximum power density of 1.60 W cm-2 at 800 °C and 0.68 W cm-2 at 700 °C. Here, the work is emphasized on the very close electrochemical performance of Pr4Ni3O10+δ compared to the one of Pr2NiO4+δ with higher chemical stability, which gives great interests to consider this material as a very interesting oxygen-electrode for SOFCs.

  5. Amorphous thin film ruthenium oxide as an electrode material for electrochemical capacitors

    SciTech Connect

    Jow, T.R.; Zheng, J.P.

    1995-12-31

    Ruthenium oxide thin films of an amorphous phase were successfully prepared on a titanium (Ti) substrate at temperatures below 160 C. The sol-gel process using metal alkoxide precursor in nonaqueous solvents was used to prepare these films. The preliminary results showed that a specific capacitance of 430 F/g can be achieved for amorphous ruthenium oxide electrode in sulfuric acid. Films prepared by this method are compared with the films prepared by the thermal decomposition of the aqueous ruthenium chloride solution at temperatures above 300 C. The specific capacitance, the crystalline structure, and the surface morphology of these films as a function of the preparation temperature were also discussed.

  6. Carbon nanotube nanocomposite-modified paper electrodes for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Korivi, Naga S.; Vangari, Manisha; Jiang, Li

    2017-02-01

    This paper describes the evaluation of carbon paper electrodes for supercapacitor applications. The electrodes are based on carbon micro-fiber paper modified with active material consisting of layers of silver nano-particulate ink and a nanocomposite of multi-walled carbon nanotubes and silver nano-particulate ink. The electrodes were characterized microscopically and electrically. Current-voltage studies revealed a consistent Ohmic behavior of the electrode when modified with different nanostructured active material. Among the active materials incorporated into the electrode, a nanocomposite of carbon nanotubes and silver nano-particulate ink significantly improved capacitance. The paper electrodes can be used for lightweight and ultrathin supercapacitors and other portable energy applications.

  7. Electro-active Polymer Actuator Based on Sulfonated Polyimide with Highly Conductive Silver Electrodes Via Self-metallization.

    PubMed

    Song, Jiangxuan; Jeon, Jin-Han; Oh, Il-Kwon; Park, K C

    2011-10-04

    We report here a facile synthesis of high performance electro-active polymer actuator based on a sulfonated polyimide with well-defined silver electrodes via self-metallization. The proposed method greatly reduces fabrication time and cost, and obviates a cation exchange process required in the fabrication of ionic polymer-metal composite actuators. Also, the self-metallized silver electrodes exhibit outstanding metal-polymer adhesion with high conductivity, resulting in substantially larger tip displacements compared with Nafion-based actuators.

  8. Graphene-like carbon nanosheets as a new electrode material for electrochemical determination of hydroquinone and catechol.

    PubMed

    Jiang, Hongmei; Wang, Shuqin; Deng, Wenfang; Zhang, Youming; Tan, Yueming; Xie, Qingji; Ma, Ming

    2017-03-01

    We report here graphene-like carbon nanosheets (GCN) as a new electrode material for the electrochemical determination of hydroquinone (HQ) and catechol (CC). The GCN were prepared from maltose using ammonia chloride as a blowing agent and cobalt nitrate as a graphitization catalyst precursor. The as-prepared GCN material shows high graphitization degree, abundant porosity, and large specific surface area. Two well-separated anodic peaks for HQ and CC are obtained at GCN modified glassy carbon electrode (GCE) with a peak-to-peak separation of 118mV. The redox peak currents of HQ and CC at GCN/GCE were much higher than those at bare GCE and reduced graphene oxide modified GCE. For differential pulse voltammetric detection of HQ and CC, the GCN/GCE shows linear response ranges of 1×10(-7) ̶ 3×10(-5)M for HQ and 5×10(-7) ̶ 5×10(-5)M for CC, with detection limits of 2×10(-8)M for HQ, and 5×10(-8) M for CC. Satisfactory recoveries were achieved for the determination of HQ and CC in real water samples.

  9. Au-embedded ZnO/NiO hybrid with excellent electrochemical performance as advanced electrode materials for supercapacitor.

    PubMed

    Zheng, Xin; Yan, Xiaoqin; Sun, Yihui; Bai, Zhiming; Zhang, Guangjie; Shen, Yanwei; Liang, Qijie; Zhang, Yue

    2015-02-04

    Here we design a nanostructure by embedding Au nanoparticles into ZnO/NiO core-shell composites as supercapacitors electrodes materials. This optimized hybrid electrodes exhibited an excellent electrochemical performance including a long-term cycling stability and a maximum specific areal capacitance of 4.1 F/cm(2) at a current density of 5 mA/cm(2), which is much higher than that of ZnO/NiO hierarchical materials (0.5 F/cm(2)). Such an enhanced property is attributed to the increased electro-electrolyte interfaces, short electron diffusion pathways and good electrical conductivity. Apart from this, electrons can be temporarily trapped and accumulated at the Fermi level (EF') because of the localized schottky barrier at Au/NiO interface in charge process until fill the gap between ZnO and NiO, so that additional electrons can be released during discharge. These results demonstrate that suitable interface engineering may open up new opportunities in the development of high-performance supercapacitors.

  10. Spike sorting of muscle spindle afferent nerve activity recorded with thin-film intrafascicular electrodes.

    PubMed

    Djilas, Milan; Azevedo-Coste, Christine; Guiraud, David; Yoshida, Ken

    2010-01-01

    Afferent muscle spindle activity in response to passive muscle stretch was recorded in vivo using thin-film longitudinal intrafascicular electrodes. A neural spike detection and classification scheme was developed for the purpose of separating activity of primary and secondary muscle spindle afferents. The algorithm is based on the multiscale continuous wavelet transform using complex wavelets. The detection scheme outperforms the commonly used threshold detection, especially with recordings having low signal-to-noise ratio. Results of classification of units indicate that the developed classifier is able to isolate activity having linear relationship with muscle length, which is a step towards online model-based estimation of muscle length that can be used in a closed-loop functional electrical stimulation system with natural sensory feedback.

  11. Nitrogen-doped reduced graphene oxide electrodes for electrochemical supercapacitors.

    PubMed

    Nolan, Hugo; Mendoza-Sanchez, Beatriz; Ashok Kumar, Nanjundan; McEvoy, Niall; O'Brien, Sean; Nicolosi, Valeria; Duesberg, Georg S

    2014-02-14

    Herein we use Nitrogen-doped reduced Graphene Oxide (N-rGO) as the active material in supercapacitor electrodes. Building on a previous work detailing the synthesis of this material, electrodes were fabricated via spray-deposition of aqueous dispersions and the electrochemical charge storage mechanism was investigated. Results indicate that the functionalised graphene displays improved performance compared to non-functionalised graphene. The simplicity of fabrication suggests ease of up-scaling of such electrodes for commercial applications.

  12. Chemical and structural indicators for large redox potentials in Fe-based positive electrode materials.

    PubMed

    Melot, Brent C; Scanlon, David O; Reynaud, Marine; Rousse, Gwenaëlle; Chotard, Jean-Noël; Henry, Marc; Tarascon, Jean-Marie

    2014-07-23

    Li-ion batteries have enabled a revolution in the way portable consumer-electronics are powered and will play an important role as large-scale electrochemical storage applications like electric vehicles and grid-storage are developed. The ability to identify and design promising new positive insertion electrodes will be vital in continuing to push Li-ion technology to its fullest potential. Utilizing a combination of computational tools and structural analysis, we report new indicators which will facilitate the recognition of phases with the desired redox potential. Most importantly of these, we find there is a strong correlation between the presence of Li ions sitting in close-proximity to the redox center of polyanionic phases and the open circuit voltage in Fe-based cathodes. This common structural feature suggests that the bonding associated with Li may have a secondary inductive effect which increases the ionic character of Fe bonds beyond what is typically expected based purely on arguments of electronegativity associated with the polyanionic group. This correlation is supported by ab initio calculations which show the Bader charge increases (reflecting an increased ionicity) in a nearly linear fashion with the experimental cell potentials. These features are demonstrated to be consistent across a wide variety of compositions and structures and should help to facilitate the design of new, high-potential, and environmentally sustainable insertion electrodes.

  13. In-situ Spectroscopic and Structural Studies of Electrode Materials for Advanced Battery Applications

    SciTech Connect

    Daniel A Scherson

    2013-03-14

    Techniques have been developed and implemented to gain insight into fundamental factors that affect the performance of electrodes in Li and Li-ion batteries and other energy storage devices. These include experimental strategies for monitoring the Raman scattering spectra of single microparticles of carbon and transition metal oxides as a function of their state of charge. Measurements were performed in electrolytes of direct relevance to Li and Li-Ion batteries both in the static and dynamic modes. In addition, novel strategies were devised for performing conventional experiments in ultrahigh vacuum environments under conditions which eliminate effects associated with presence of impurities, using ultrapure electrolytes, both of the polymeric and ionic liquid type that display no measurable vapor pressure. Also examined was the reactivity of conventional non aqueous solvent toward ultrapure Li films as monitored in ultrahigh vacuum with external reflection Fourier transform infrared spectroscopy. Also pursued were efforts toward developing applying Raman-scattering for monitoring the flow of charge of a real Li ion battery. Such time-resolved, spatially-resolved measurements are key to validating the results of theoretical simulations involving real electrode structures.

  14. Potential active materials for photo-supercapacitor: A review

    NASA Astrophysics Data System (ADS)

    Ng, C. H.; Lim, H. N.; Hayase, S.; Harrison, I.; Pandikumar, A.; Huang, N. M.

    2015-11-01

    The need for an endless renewable energy supply, typically through the utilization of solar energy in most applications and systems, has driven the expansion, versatility, and diversification of marketed energy storage devices. Energy storage devices such as hybridized dye-sensitized solar cell (DSSC)-capacitors and DSSC-supercapacitors have been invented for energy reservation. The evolution and vast improvement of these devices in terms of their efficiencies and flexibilities have further sparked the invention of the photo-supercapacitor. The idea of coupling a DSSC and supercapacitor as a complete energy conversion and storage device arose because the solar energy absorbed by dye molecules can be efficiently transferred and converted to electrical energy by adopting a supercapacitor as the energy delivery system. The conversion efficiency of a photo-supercapacitor is mainly dependent on the use of active materials during its fabrication. The performances of the dye, photoactive metal oxide, counter electrode, redox electrolyte, and conducting polymer are the primary factors contributing to high-energy-efficient conversion, which enhances the performance and shelf-life of a photo-supercapacitor. Moreover, the introduction of compact layer as a primary adherent film has been earmarked as an effort in enhancing power conversion efficiency of solar cell. Additionally, the development of electrolyte-free solar cell such as the invention of hole-conductor or perovskite solar cell is currently being explored extensively. This paper reviews and analyzes the potential active materials for a photo-supercapacitor to enhance the conversion and storage efficiencies.

  15. Active Materials for Photonic Systems (AMPS)

    DTIC Science & Technology

    2007-11-02

    market . Overall Program Summary The overall objective of the Active Materials for Photonic Systems (AMPS) program was to develop and demonstrate...mode fiber, with alignment tolerances of several microns functions well for data communications , single mode fiber is required for several significant...in the laser/optics community . Boeing and MCNC have signed a memorandum of agreement for commercialization and are actively seeking partners for

  16. Nanocrosses of lead sulphate as the negative active material of lead acid batteries

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Gao, Pengran; Bu, Xianfu; Kuang, Guizhi; Liu, Wei; Lei, Lixu

    2014-10-01

    Lead sulphate transforms into PbO2 and Pb in the positive and negative electrodes, respectively, when a lead acid battery is charged, thus, it is an active material. It is also generally acknowledged that sulphation results in the failure of lead acid batteries; therefore, it is very interesting to find out how to make lead sulphate more electrochemically active. Here, we demonstrate that nanocrystalline lead sulphate can be used as excellent negative active material in lead acid batteries. The lead sulphate nanocrystals, which are prepared by a facile chemical precipitation of aqueous lead acetate and sodium sulphate in a few minutes, look like crosses with diameter of each arm being 100 nm to 3 μm. The electrode is effectively formed in much shorter time than traditional technique, yet it discharges a capacity of 103 mA h g-1 at the current density of 120 mA g-1, which is 24% higher than that discharged by the electrode made from leady oxide under the same condition. During 100% DOD cycles, more than 80% of that capacity remains in 550 cycles. These results show that lead sulphate can be a nice negative active material in lead acid batteries.

  17. Geopolymers and Related Alkali-Activated Materials

    NASA Astrophysics Data System (ADS)

    Provis, John L.; Bernal, Susan A.

    2014-07-01

    The development of new, sustainable, low-CO2 construction materials is essential if the global construction industry is to reduce the environmental footprint of its activities, which is incurred particularly through the production of Portland cement. One type of non-Portland cement that is attracting particular attention is based on alkali-aluminosilicate chemistry, including the class of binders that have become known as geopolymers. These materials offer technical properties comparable to those of Portland cement, but with a much lower CO2 footprint and with the potential for performance advantages over traditional cements in certain niche applications. This review discusses the synthesis of alkali-activated binders from blast furnace slag, calcined clay (metakaolin), and fly ash, including analysis of the chemical reaction mechanisms and binder phase assemblages that control the early-age and hardened properties of these materials, in particular initial setting and long-term durability. Perspectives for future research developments are also explored.

  18. cVEMP morphology changes with recording electrode position, but single motor unit activity remains constant.

    PubMed

    Rosengren, Sally M; Colebatch, James G; Borire, Adeniyi; Straumann, Dominik; Weber, Konrad P

    2016-04-15

    Cervical vestibular evoked myogenic potentials (cVEMPs) recorded over the lower quarter of the sternocleidomastoid (SCM) muscle in normal subjects may have opposite polarity to those recorded over the midpoint. It has thus been suggested that vestibular projections to the lower part of SCM might be excitatory rather than inhibitory. We tested the hypothesis that the SCM muscle receives both inhibitory and excitatory vestibular inputs. We recorded cVEMPs in 10 normal subjects with surface electrodes placed at multiple sites along the anterior (sternal) component of the SCM muscle. We compared several reference sites: sternum, ipsilateral and contralateral earlobes, and contralateral wrist. In five subjects, single motor unit responses were recorded at the upper, middle, and lower parts of the SCM muscle using concentric needle electrodes. The surface cVEMP had the typical positive-negative polarity at the midpoint of the SCM muscle. In all subjects, as the recording electrode was moved toward each insertion point, p13 amplitude became smaller and p13 latency increased, then the polarity inverted to a negative-positive waveform (n1-p1). Changing the reference site did not affect reflex polarity. There was a significant short-latency change in activity in 61/63 single motor units, and in each case this was a decrease or gap in firing, indicating an inhibitory reflex. Single motor unit recordings showed that the reflex was inhibitory along the entire SCM muscle. The cVEMP surface waveform inversion near the mastoid and sternal insertion points likely reflects volume conduction of the potential occurring with increasing distance from the motor point.

  19. A Biodegradable Polydopamine-Derived Electrode Material for High-Capacity and Long-Life Lithium-Ion and Sodium-Ion Batteries.

    PubMed

    Sun, Tao; Li, Zong-Jun; Wang, Heng-Guo; Bao, Di; Meng, Fan-Lu; Zhang, Xin-Bo

    2016-08-26

    Polydopamine (PDA), which is biodegradable and is derived from naturally occurring products, can be employed as an electrode material, wherein controllable partial oxidization plays a key role in balancing the proportion of redox-active carbonyl groups and the structural stability and conductivity. Unexpectedly, the optimized PDA derivative endows lithium-ion batteries (LIBs) or sodium-ion batteries (SIBs) with superior electrochemical performances, including high capacities (1818 mAh g(-1) for LIBs and 500 mAh g(-1) for SIBs) and good stable cyclabilities (93 % capacity retention after 580 cycles for LIBs; 100 % capacity retention after 1024 cycles for SIBs), which are much better than those of their counterparts with conventional binders.

  20. Mesoporous Bi₂S₃ nanorods with graphene-assistance as low-cost counter-electrode materials in dye-sensitized solar cells.

    PubMed

    Guo, Sheng-qi; Jing, Tian-zeng; Zhang, Xiao; Yang, Xiao-bing; Yuan, Zhi-hao; Hu, Fang-zhong

    2014-11-06

    In this work, we report the synthesis of mesoporous Bi₂S₃ nanorods under hydrothermal conditions without additives, and investigated their catalytic activities as the CE in DSCs by I-V curves and tested conversion efficiency. To further improve their power conversion efficiency, we added different amounts of reduced graphene by simple physical mixing. With the addition of 9 wt% reduced graphene (rGO), the short-circuit current density, open-circuit voltage and fill factor were Jsc = 15.33 mA cm(-2), Voc = 0.74 V and FF = 0.609. More importantly, the conversion efficiency reached 6.91%, which is slightly inferior to the commercial Pt counter electrode (7.44%). Compared to the conventional Pt counter electrodes of solar cells, this new material has the advantages of low-cost, facile synthesis and high efficiency with graphene assistance. To the best of our knowledge, this Bi₂S₃ + 9 wt% rGO system has the best performance ever recorded in all Bi₂S₃-based CEs in the DSCs system.

  1. Metal hydrides used as negative electrode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Sartori, Sabrina; Cuevas, Fermin; Latroche, Michel

    2016-02-01

    Energy is a key issue for future generation. Researches are conducted worldwide to develop new efficient means for energy conversion and storage. Electrochemical storage is foreseen as an efficient way to handle intermittent renewable energy production. The most advanced batteries are nowadays based on lithium-ion technology though their specific capacities should be significantly increased to bring solution to mass storage. Conversion reactions are one way to step forward larger capacities at the anode. We here review the possibility to use metallic or complex hydrides as negative electrode using conversion reaction of hydride with lithium. Moreover, promising alloying of lithium with the metallic species might provide additional reversible capacities. Both binary and ternary systems are reviewed and results are compared in the frame of the electrochemical application.

  2. Solid-state sodium batteries using polymer electrolytes and sodium intercalation electrode materials

    SciTech Connect

    Ma, Y. |

    1996-08-01

    Solid-state sodium cells using polymer electrolytes (polyethylene oxide mixed with sodium trifluoromethanesulfonate: PEO{sub n}NaCF{sub 3}SO{sub 3}) and sodium cobalt oxide positive electrodes are characterized in terms of discharge and charge characteristics, rate capability, cycle life, and energy and power densities. The P2 phase Na{sub x}CoO{sub 2} can reversibly intercalate sodium in the range of x = 0.3 to 0.9, giving a theoretical specific energy of 440 Wh/kg and energy density of 1,600 Wh/l. Over one hundred cycles to 60% depth of discharge have been obtained at 0.5 mA/cm{sup 2}. Experiments show that the electrolyte/Na interface is stable and is not the limiting factor to cell cycle life. Na{sub 0.7}CoO{sub 2} composite electrodes containing various amounts of carbon black additive are investigated. The transport properties of polymer electrolytes are the critical factors for performance. These properties (the ionic conductivity, salt diffusion coefficient, and ion transference number) are measured for the PEO{sub n}NaCF{sub 3}SO{sub 3} system over a wide range of concentrations at 85 C. All the three transport properties are very salt-concentration dependent. The ionic conductivity exhibits a maximum at about n = 20. The transference number, diffusion coefficient, and thermodynamic factor all vary with salt concentration in a similar fashion, decreasing as the concentration increases, except for a local maximum. These results verify that polymer electrolytes cannot be treated as ideal solutions. The measured transport-property values are used to analyze and optimize the electrolytes by computer simulation and also cell testing. Salt precipitation is believed to be the rate limiting process for cells using highly concentrated solutions, as a result of lower values of these properties, while salt depletion is the limiting factor when a dilute solution is used.

  3. Electrodes for sealed secondary batteries

    NASA Technical Reports Server (NTRS)

    Boies, D. B.; Child, F. T.

    1972-01-01

    Self-supporting membrane electrode structures, in which active ingredients and graphite are incorporated in a polymeric matrix, improve performance of electrodes in miniature, sealed, alkaline storage batteries.

  4. Flexible transistor active matrix array with all screen-printed electrodes

    NASA Astrophysics Data System (ADS)

    Peng, Boyu; Lin, Jiawei; Chan, Paddy K. L.

    2013-09-01

    Flexible transistor active matrix array is fabricated on PEN substrate using all screen-printed gate, source and drain electrodes. Parylene-C and DNTT act as gate dielectric layer and semiconductor, respectively. The transistor possesses high mobility (0.33 cm2V-1 s-1), large on/off ratio (< 106) and low leakage current (~10 pA). Active matrix array consists of 10×10 transistors were demonstrated. Transistors exhibited average mobility of 0.29 cm2V-1s-1 and on/off ratio larger than 104 in array form. In the transistor array, we achieve 75μm channel length and a size of 2 mm × 2 mm for each element in the array which indicates the current screen-printing method has large potential in large-area circuits and display applications.

  5. Insulated ECG electrodes

    NASA Technical Reports Server (NTRS)

    Portnoy, W. M.; David, R. M.

    1973-01-01

    Insulated, capacitively coupled electrode does not require electrolyte paste for attachment. Other features of electrode include wide range of nontoxic material that may be employed for dielectric because of sputtering technique used. Also, electrode size is reduced because there is no need for external compensating networks with FET operational amplifier.

  6. Aerospace electrode line

    NASA Astrophysics Data System (ADS)

    Miller, L.

    1980-04-01

    A facility which produces electrodes for spacecraft power supplies is described. The electrode assembly procedures are discussed. A number of design features in the production process are reported including a batch operation mode and an independent equipment module design approach for transfering the electrode materials from process tank to process tank.

  7. Monodisperse CoFe2O4 nanoparticles supported on Vulcan XC-72: High performance electrode materials for lithium-air and lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Şener, Tansel; Kayhan, Emine; Sevim, Melike; Metin, Önder

    2015-08-01

    Addressed herein is the preparation and the electrode performance of monodisperse CoFe2O4 nanoparticles (NPs) supported on Vulcan XC-72 for the Lithium-air battery (LAB) and Lithium-ion battery (LIB). Monodisperse CoFe2O4 NPs were synthesized by the thermal decomposition of cobalt(II) acetylacetonate and iron(III) acetylacetonate in oleylamine and oleic acid in the presence of 1,2-tetradecanediol and benzyl ether. As-prepared CoFe2O4 NPs with a particle size of 11 nm were then supported on Vulcan XC-72 (Vulcan-CoFe2O4) at different theoretical loadings (20, 40 and 60 wt % CoFe2O4 NPs) by using the simple liquid phase self assembly method. CoFe2O4 NPs dispersed on Vulcan-CoFe2O4 composites were characterized by transmission electron microscopy (TEM), powder X-ray diffraction (PXRD) and atomic absorption spectroscopy (AAS). The AAS analyses indicated that the Vulcan-CoFe2O4 composites with different loadings were included 3.7, 8.1 and 16.4 wt % CoFe2O4 on the metal basis. The electrode performance of Vulcan-CoFe2O4 composites were evaluated as the anode active material for LIB and cathode active material for LABs by performing the galvanostatic charge-discharge tests. The highest discharge capacity for both LAB (7510 mAh g(Vulcan+CoFe2O4)-1; 13380 mAh gCoFe2O4-1 @ 0.1C) and LIB (863 mAh g(Vulcan+CoFe2O4)-1; 9330 mAh gCoFe2O4-1@ 0.1C) was investigated with 16.4 wt % CoFe2O4.

  8. Measurement of enzyme activity in single cells by voltammetry using a microcell with a positionable dual electrode.

    PubMed

    Gao, Ning; Zhao, Minghui; Zhang, Xiaoli; Jin, Wenrui

    2006-01-01

    The electrochemical single-cell analysis for enzyme activity was developed using microcells on a microcell array coupled with a positionable dual microelectrode. The microcell array with the nanoliter-scale microcells was constructed using simple chemical etching without photolithographic techniques. The positionable dual microelectrodes consisted of the nanometer-to-micrometer-radius Au disk working electrode and a approximately 80-microm-radius Ag/AgCl reference electrode. Peroxidase was chosen as the model enzyme. Factors that concern electrochemical single-cell analysis in microcells such as solution evaporation, interference of soluble oxygen, electrode size, solution volume, and electrode fouling were investigated and discussed. The 20 or 100 nL of detection volume was found to be suitable for peroxidase determination in single neutrophils or single acute promyelocytic leukemia cells without interference from intracellular macromolecules and electrode fouling, when the dual electrode with a 10-microm-radius Au disk working electrode was used. Cells were perforated with digitonin before transferring them into the microcells, to lyse cells easily. The perforated cells were transferred into the microcells by pushing a microscope slide on a drop of the cell suspension on the microcell array. After a single cell in the microcell was lysed using a freeze-thawing technique and allowed to dry, physiological buffer saline containing 2.0 x 10(-3) mol/L hydroquinone and 2.0 x 10(-3) mol/L H2O2 as the substrates of the enzyme-catalyzed reaction was added. The microcell array was positioned in a constant-humidity chamber to prevent evaporation. Then the dual electrode was inserted into the microcell by means of a scanning electrochemical microscope and the product benzoquinone of the enzyme-catalyzed reaction was voltammetrically detected. Peroxidase activity could be quantified using the steady-state current on the voltammogram after subtracting the blank and using the

  9. Lithium-aluminum-iron electrode composition

    DOEpatents

    Kaun, Thomas D.

    1979-01-01

    A negative electrode composition is presented for use in a secondary electrochemical cell. The cell also includes an electrolyte with lithium ions such as a molten salt of alkali metal halides or alkaline earth metal halides that can be used in high-temperature cells. The cell's positive electrode contains a a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent in an alloy of aluminum-iron. Various binary and ternary intermetallic phases of lithium, aluminum and iron are formed. The lithium within the intermetallic phase of Al.sub.5 Fe.sub.2 exhibits increased activity over that of lithium within a lithium-aluminum alloy to provide an increased cell potential of up to about 0.25 volt.

  10. Magnetohydrodynamic electrode

    DOEpatents

    Marchant, David D.; Killpatrick, Don H.

    1978-01-01

    An electrode capable of withstanding high temperatures and suitable for use as a current collector in the channel of a magnetohydrodynamic (MHD) generator consists of a sintered powdered metal base portion, the upper surface of the base being coated with a first layer of nickel aluminide, an intermediate layer of a mixture of nickel aluminide - refractory ceramic on the first layer and a third or outer layer of a refractory ceramic material on the intermediate layer. The sintered powdered metal base resists spalling by the ceramic coatings and permits greater electrode compliance to thermal shock. The density of the powdered metal base can be varied to allow optimization of the thermal conductivity of the electrode and prevent excess heat loss from the channel.

  11. The use of a dynamic hydrogen electrode as an electrochemical tool to evaluate plasma activated carbon as electrocatalyst support for direct methanol fuel cell

    SciTech Connect

    Carmo, Marcelo Roepke, Thorsten; Scheiba, Frieder; Roth, Christina; Moeller, Stephan; Fuess, Hartmut; Poco, Joao G.R.; Linardi, Marcelo

    2009-01-08

    The objectives of this study were to functionalize the carbon black surface by chemically introducing oxygenated groups using plasma technology. This should enable a better interaction of the carbon support with the metallic catalyst nanoparticles, hindering posterior support particle agglomeration and preventing loss of active surface. PtRu/C nanoparticles were anchored on the carbon supports by the impregnation method and direct reduction with hydrazine. Physical characterization of the materials was carried out using energy dispersive X-ray analysis and transmission electron microscopy. The screen printing technique was used to produce membrane electrode assemblies for single cell tests in methanol/air (DMFC). Tests were carried out using the dynamic hydrogen electrode as an electrochemical tool to evaluate the anode and cathode behavior separately.

  12. Graphene Sandwiched Mesostructured Li-Ion Battery Electrodes.

    PubMed

    Liu, Jinyun; Zheng, Qiye; Goodman, Matthew D; Zhu, Haoyue; Kim, Jinwoo; Krueger, Neil A; Ning, Hailong; Huang, Xingjiu; Liu, Jinhuai; Terrones, Mauricio; Braun, Paul V

    2016-09-01

    A deterministic graphene-sandwiched Li-ion battery electrode consisting of an integrated 3D mesostructure of electrochemically active materials and graphene is presented. As demonstrations, electrodes with active nanomaterials that coat (V2 O5 @graphene@V2 O5 cathode) or are coated by (graphene@Si@graphene anode) graphene are fabricated. These electrodes exhibit high capacities and ultralong cycle lives (the cathode can be cycled over 2000 times with minimal capacity fade).

  13. Appropriately placed surface EMG electrodes reflect deep muscle activity (psoas, quadratus lumborum, abdominal wall) in the lumbar spine.

    PubMed

    McGill, S; Juker, D; Kropf, P

    1996-11-01

    This study tested the possibility of obtaining the activity of deeper muscles in the torso-specifically psoas, quadratus lumborum, external oblique, internal oblique and transverse abdominis, using surface myoelectric electrodes. It was hypothesized that: (1) surface electrodes adequately represent the amplitude of deep muscles (specifically psoas, quadratus lumborum, external oblique, internal oblique, transverse abdominis); (2) a single surface electrode location would best represent the activation profiles of each deep muscle over a broad variety of tasks. We assumed that prediction of activation within 10% of maximum voluntary contraction (RMS difference between the surface and intramuscular channels), over the time history of the signal, was reasonable and acceptable to assist clinical interpretation of muscle activation amplitude, and ultimately for modeled estimates of muscle force. Surface electrodes were applied and intramuscular electrodes were inserted on the left side of the body in five men and three women who then performed a wide variety of flexor tasks (bent knee and straight leg situps and leg raises, curl ups), extensor tasks (including lifting barbells up to 70 kg), lateral bending tasks (standing lateral bend and horizontal lying side support), twisting tasks (standing and sitting), and internal/external hip rotation. Using the criteria of RMS difference and the coefficient of determination (R2) to compare surface with intramuscular myoelectric signals, the results indicated that selected surface electrodes adequately represent the amplitude of deep muscles-always within 15% RMS difference, or less with the exception of psoas where differences up to 20% were observed but only in certain maximum voluntary contraction efforts. It appears reasonable for spine modelers, and particularly clinicians, to assume well selected surface electrode locations provide a representation of these deeper muscles-as long as they recognize the magnitude of error for

  14. Potentiostatic activation of as-made graphene electrodes for high-rate performance in supercapacitors

    NASA Astrophysics Data System (ADS)

    Senthilkumar, Krishnan; Jeong, Seok; Lah, Myoung Soo; Sohn, Kee-Sun; Pyo, Myoungho

    2016-10-01

    A thermally expanded graphene oxide (EGO) electrode is electrochemically activated to simultaneously introduce electrolyte-accessible mesopores and oxygen functional groups. The former is produced via O2 evolution and the latter is incorporated by the intermediate hydroxyl radicals generated during the potentiostatic oxidation of H2O in 1 M H2SO4 at 1.2 V (vs. Ag/AgCl). When applied as a supercapacitor, the potentiostatically treated EGO (EGO-PS) shows significant enhancement in an electric-double layer (EDL) process with a noticeable Faradaic reaction and delivers high capacitance at fast charge/discharge (C/D) rates (334 F g-1 at 0.1 A g-1 and 230 F g-1 at 50 A g-1). In contrast to EGO-PS, EGO that is oxidized potentiodynamically (EGO-PD) shows negligible enhancement in EDL currents. EGO that is subjected to successive potential pulses also shows behaviors similar to EGO-PD, which indicates the importance of hydroxyl radical accumulation via a potentiostatic method for simultaneous functionalization and microstructural control of graphenes. The potentiostatic post-treatment presented here is a convenient post-treatment strategy that could be used to readily increase capacitance and simultaneously improve the high-rate performance of carbon-based electrodes.

  15. Nanoporous separators for supercapacitor using activated carbon monolith electrode from oil palm empty fruit bunches

    SciTech Connect

    Nor, N. S. M. Deraman, M. Omar, R. Basri, N. H.; Dolah, B. N. M.; Taer, E.; Awitdrus,; Farma, R.

    2014-02-24

    Activated porous carbon electrode prepared from fibres of oil palm empty fruit bunches was used for preparing the carbon based supercapacitor cells. The symmetrical supercapacitor cells were fabricated using carbon electrodes, stainless steel current collector, H{sub 2}SO{sub 4} electrolyte, and three types of nanoporous separators. Cells A, B and C were fabricated using polypropylene, eggshell membrane, and filter paper, respectively. Electrochemical characterizations data from Electrochemical Impedance Spectroscopy, Cyclic Voltammetry, and Galvanic Charge Discharge techniques showed that specific capacitance, specific power and specific energy for cell A were 122 F g{sup −1}, 177 W kg{sup −1}, 3.42 Wh kg{sup −1}, cell B; 125 F g{sup −1}, 179 W kg{sup −1}, and 3.64 Wh kg{sup −1}, and cell C; 180 F g{sup −1}, 178 W kg{sup −1}, 4.27 Wh kg{sup −1}. All the micrographs from Field Emission Scanning Electron Microscope showed that the different in nanoporous structure of the separators lead to a significant different in influencing the values of specific capacitance, power and energy of supercapacitors, which is associated with the mobility of ion into the pore network. These results indicated that the filter paper was superior than the eggshell membrane and polypropylene nanoporous separators. However, we found that in terms of acidic resistance, polypropylene was the best nanoporous separator for acidic medium.

  16. An ionic electro-active actuator made with graphene film electrode, chitosan and ionic liquid

    NASA Astrophysics Data System (ADS)

    He, Qingsong; Yu, Min; Yang, Xu; Kim, Kwang Jin; Dai, Zhendong

    2015-06-01

    A newly developed ionic electro-active actuator composed of an ionic electrolyte layer sandwiched between two graphene film layers was investigated. Scanning electronic microscopy observation and x-ray diffraction analysis showed that the graphene sheets in the film stacked in a nearly face-to-face fashion but did not restack back to graphite, and the resulting graphene film with low sheet resistance (10 Ω sq-1) adheres well to the electrolyte membrane. Contact angle measurement showed the surface energy (37.98 mJ m-2) of the ionic electrolyte polymer is 2.67 times higher than that (14.2 mJ m-2) of the Nafion membrane, contributing to the good adhesion between the graphene film electrode and the electrolyte membrane. An electric double-layer is formed at the interface between the graphene film electrode and the ionic electrolyte membrane under the input potential, resulting in a higher capacitance of 27.6 mF cm-2. We report that this ionic actuator exhibits adequate bending strain, ranging from 0.032 to 0.1% (305 to 945 μm) as functions of voltage.

  17. Reduced graphene oxide/macrocyclic iron complex hybrid materials as counter electrodes for dye-sensitized solar cells.

    PubMed

    Tsai, Chih-Hung; Huang, Wei-Chih; Wang, Wun-Shiuan; Shih, Chun-Jyun; Chi, Wen-Feng; Hu, Yu-Chung; Yu, Yuan-Hsiang

    2017-06-01

    A novel series of reduced graphene oxide (RGO)/macrocyclic iron (Fe) complex hybrid materials were synthesized and then used in the production of counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). The electrode properties of various CEs were comprehensively analyzed using scanning electron microscopy, transmission electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, energy dispersive spectroscopy, Raman spectroscopy, X-ray diffraction, and cyclic voltammetry analyses. DSSCs, based on various CEs, were characterized using current density-voltage, incident monochromatic photon-to-current conversion efficiency, and electrochemical impedance spectroscopy measurements. DSSCs fabricated using the RGO/macrocyclic Fe nanocomposite CEs yielded an efficiency of 6.75%. The RGO/Fe CEs exhibited efficient electrocatalytic capability because catalytic Fe particles were uniformly distributed on the surface of RGO. The results indicated that a DSSC with a RGO/Fe CE can exhibit an efficiency comparable to that of a platinum (Pt) CE DSSC and can therefore replace conventional Pt CE DSSCs to lower the cost of solar cells.

  18. In situ observation of nickel as an oxidizable electrode material for the solid-electrolyte-based resistive random access memory

    SciTech Connect

    Sun, Jun; Wu, Xing; Xu, Feng; Xu, Tao; Sun, Litao; Liu, Qi; Xie, Hongwei; Long, Shibing; Lv, Hangbing; Li, Yingtao; Liu, Ming

    2013-02-04

    In this letter, we dynamically investigate the resistive switching characteristics and physical mechanism of the Ni/ZrO{sub 2}/Pt device. The device shows stable bipolar resistive switching behaviors after forming process, which is similar to the Ag/ZrO{sub 2}/Pt and Cu/ZrO{sub 2}/Pt devices. Using in situ transmission electron microscopy, we observe in real time that several conductive filaments are formed across the ZrO{sub 2} layer between Ni and Pt electrodes after forming. Energy-dispersive X-ray spectroscopy results confirm that Ni is the main composition of the conductive filaments. The ON-state resistance increases with increasing temperature, exhibiting the feature of metallic conduction. In addition, the calculated resistance temperature coefficient is equal to that of the 10-30 nm diameter Ni nanowire, further indicating that the nanoscale Ni conductive bridge is the physical origin of the observed conductive filaments. The resistive switching characteristics and the conductive filament's component of Ni/ZrO{sub 2}/Pt device are consistent with the characteristics of the typical solid-electrolyte-based resistive random access memory. Therefore, aside from Cu and Ag, Ni can also be used as an oxidizable electrode material for resistive random access memory applications.

  19. On the single sweep processing of auditory brainstem responses: click vs. chirp stimulations and active vs. passive electrodes.

    PubMed

    Corona-Strauss, Farah I; Delb, Wolfgang; Bloching, Marc; Strauss, Daniel J

    2008-01-01

    We have recently shown that click evoked auditory brainstem responses (ABRs) single sweeps can efficiently be processed by a hybrid novelty detection system. This approach allowed for the objective detection of hearing thresholds in a fraction of time of conventional schemes, making it appropriate for the efficient implementation of newborn hearing screening procedures. It is the objective of this study to evaluate whether this approach might further be improved by different stimulation paradigms and electrode settings. In particular, we evaluate chirp stimulations which compensate the basilar-membrane dispersion and active electrodes which are less sensitive to movements. This is the first study which is directed to a single sweep processing of chirp evoked ABRs. By concentrating on transparent features and a minimum number of adjustable parameters, we present an objective comparison of click vs.chirp stimulations and active vs. passive electrodes in the ultrafast ABR detection. We show that chirp evoked brainstem responses and active electrodes might improve the single sweeps analysis of ABRs.Consequently, we conclude that a single sweep processing of ABRs for the objective determination of hearing thresholds can further be improved by the use of optimized chirp stimulations and active electrodes.

  20. High-resolution mapping of in vivo gastrointestinal slow wave activity using flexible printed circuit board electrodes: methodology and validation.

    PubMed

    Du, Peng; O'Grady, G; Egbuji, J U; Lammers, W J; Budgett, D; Nielsen, P; Windsor, J A; Pullan, A J; Cheng, L K

    2009-04-01

    High-resolution, multi-electrode mapping is providing valuable new insights into the origin, propagation, and abnormalities of gastrointestinal (GI) slow wave activity. Construction of high-resolution mapping arrays has previously been a costly and time-consuming endeavor, and existing arrays are not well suited for human research as they cannot be reliably and repeatedly sterilized. The design and fabrication of a new flexible printed circuit board (PCB) multi-electrode array that is suitable for GI mapping is presented, together with its in vivo validation in a porcine model. A modified methodology for characterizing slow waves and forming spatiotemporal activation maps showing slow waves propagation is also demonstrated. The validation study found that flexible PCB electrode arrays are able to reliably record gastric slow wave activity with signal quality near that achieved by traditional epoxy resin-embedded silver electrode arrays. Flexible PCB electrode arrays provide a clinically viable alternative to previously published devices for the high-resolution mapping of GI slow wave activity. PCBs may be mass-produced at low cost, and are easily sterilized and potentially disposable, making them ideally suited to intra-operative human use.

  1. Compartmented electrode structure

    DOEpatents

    Vissers, Donald R.; Shimotake, Hiroshi; Gay, Eddie C.; Martino, Fredric J.

    1977-06-14

    Electrodes for secondary electrochemical cells are provided with compartments for containing particles of the electrode reactant. The compartments are defined by partitions that are generally impenetrable to the particles of reactant and, in some instances, to the liquid electrolyte used in the cell. During cycling of the cell, reactant material initially loaded into a particular compartment is prevented from migrating and concentrating within the lower portion of the electrode or those portions of the electrode that exhibit reduced electrical resistance.

  2. Hierarchical Heterostructures of NiCo2O4@XMoO4 (X = Ni, Co) as an Electrode Material for High-Performance Supercapacitors

    NASA Astrophysics Data System (ADS)

    Hu, Jiyu; Qian, Feng; Song, Guosheng; Wang, Linlin

    2016-05-01

    Hierarchical heterostructures of NiCo2O4@XMoO4 (X = Ni, Co) were developed as an electrode material for supercapacitor with improved pseudocapacitive performance. Within these hierarchical heterostructures, the mesoporous NiCo2O4 nanosheet arrays directly grown on the Ni foam can not only act as an excellent pseudocapacitive material but also serve as a hierarchical scaffold for growing NiMoO4 or CoMoO4 electroactive materials (nanosheets). The electrode made of NiCo2O4@NiMoO4 presented a highest areal capacitance of 3.74 F/cm2 at 2 mA/cm2, which was much higher than the electrodes made of NiCo2O4@CoMoO4 (2.452 F/cm2) and NiCo2O4 (0.456 F/cm2), respectively. Meanwhile, the NiCo2O4@NiMoO4 electrode exhibited good rate capability. It suggested the potential of the hierarchical heterostructures of NiCo2O4@CoMoO4 as an electrode material in supercapacitors.

  3. Hierarchical Heterostructures of NiCo2O4@XMoO4 (X = Ni, Co) as an Electrode Material for High-Performance Supercapacitors.

    PubMed

    Hu, Jiyu; Qian, Feng; Song, Guosheng; Wang, Linlin

    2016-12-01

    Hierarchical heterostructures of NiCo2O4@XMoO4 (X = Ni, Co) were developed as an electrode material for supercapacitor with improved pseudocapacitive performance. Within these hierarchical heterostructures, the mesoporous NiCo2O4 nanosheet arrays directly grown on the Ni foam can not only act as an excellent pseudocapacitive material but also serve as a hierarchical scaffold for growing NiMoO4 or CoMoO4 electroactive materials (nanosheets). The electrode made of NiCo2O4@NiMoO4 presented a highest areal capacitance of 3.74 F/cm(2) at 2 mA/cm(2), which was much higher than the electrodes made of NiCo2O4@CoMoO4 (2.452 F/cm(2)) and NiCo2O4 (0.456 F/cm(2)), respectively. Meanwhile, the NiCo2O4@NiMoO4 electrode exhibited good rate capability. It suggested the potential of the hierarchical heterostructures of NiCo2O4@CoMoO4 as an electrode material in supercapacitors.

  4. Aerosol jet printed p- and n-type electrolyte-gated transistors with a variety of electrode materials: exploring practical routes to printed electronics.

    PubMed

    Hong, Kihyon; Kim, Se Hyun; Mahajan, Ankit; Frisbie, C Daniel

    2014-11-12

    Printing electrically functional liquid inks is a promising approach for achieving low-cost, large-area, additive manufacturing of flexible electronic circuits. To print thin-film transistors, a basic building block of thin-film electronics, it is important to have several options for printable electrode materials that exhibit high conductivity, high stability, and low-cost. Here we report completely aerosol jet printed (AJP) p- and n-type electrolyte-gated transistors (EGTs) using a variety of different electrode materials including highly conductive metal nanoparticles (Ag), conducting polymers (polystyrenesulfonate doped poly(3,4-ethylendedioxythiophene, PEDOT:PSS), transparent conducting oxides (indium tin oxide), and carbon-based materials (reduced graphene oxide). Using these source-drain electrode materials and a PEDOT:PSS/ion gel gate stack, we demonstrated all-printed p- and n-type EGTs in combination with poly(3-hexythiophene) and ZnO semiconductors. All transistor components (including electrodes, semiconductors, and gate insulators) were printed by AJP. Both kinds of devices showed typical p- and n-type transistor characteristics, and exhibited both low-threshold voltages (<2 V) and high hole and electron mobilities. Our assessment suggests Ag electrodes may be the best option in terms of overall performance for both types of EGTs.

  5. Electricity generation from young landfill leachate in a microbial fuel cell with a new electrode material.

    PubMed

    Özkaya, Bestamin; Cetinkaya, Afşin Yusuf; Cakmakci, Mehmet; Karadağ, Doğan; Sahinkaya, Erkan

    2013-04-01

    This study aims at evaluating the performance of a two-chambered continuously fed microbial fuel cell with new Ti-TiO₂ electrodes for bioelectricity generation from young landfill leachate at varying strength of wastewater (1-50 COD g/L) and hydraulic retention time (HRT, 0.25-2 days). The COD removal efficiency in the MFC increased with time and reached 45 % at full-strength leachate (50 g/L COD) feeding. The current generation increased with increasing leachate strength and decreasing HRT up to organic loading rate of 100 g COD/L/day. The maximum current density throughout the study was 11 A/m² at HRT of 0.5 day and organic loading rate of 67 g COD/L/day. Coulombic efficiency (CE) decreased from 57 % at feed COD concentration of 1 g/L to less than 1 % when feed COD concentration was 50 g/L. Increase in OLR resulted in increase in power output but decrease in CE.

  6. Electrochemical monitoring of biointeraction by graphene-based material modified pencil graphite electrode.

    PubMed

    Eksin, Ece; Zor, Erhan; Erdem, Arzum; Bingol, Haluk

    2017-06-15

    Recently, the low-cost effective biosensing systems based on advanced nanomaterials have received a key attention for development of novel assays for rapid and sequence-specific nucleic acid detection. The electrochemical biosensor based on reduced graphene oxide (rGO) modified disposable pencil graphite electrodes (PGEs) were developed herein for electrochemical monitoring of DNA, and also for monitoring of biointeraction occurred between anticancer drug, Daunorubicin (DNR), and DNA. First, rGO was synthesized chemically and characterized by using UV-Vis, TGA, FT-IR, Raman Spectroscopy and SEM techniques. Then, the quantity of rGO assembling onto the surface of PGE by passive adsorption was optimized. The electrochemical behavior of rGO-PGEs was examined by cyclic voltammetry (CV). rGO-PGEs were then utilized for electrochemical monitoring of surface-confined interaction between DNR and DNA using differential pulse voltammetry (DPV) technique. Additionally, voltammetric results were complemented with electrochemical impedance spectroscopy (EIS) technique. Electrochemical monitoring of DNR and DNA was resulted with satisfying detection limits 0.55µM and 2.71µg/mL, respectively.

  7. Combination of porous silica monolith and gold thin films for electrode material of supercapacitor

    NASA Astrophysics Data System (ADS)

    Pastre, A.; Cristini-Robbe, O.; Boé, A.; Raulin, K.; Branzea, D.; El Hamzaoui, H.; Kinowski, C.; Rolland, N.; Bernard, R.

    2015-12-01

    An all-solid electrical double layer supercapacitor was prepared, starting from a porous silica matrix coated with a gold thin-film. The metallization of the silica xerogel was performed by an original wet chemical process, based on the controlled growth of gold nanoparticles on two opposite faces of the silica monolith as a seed layer, followed by an electroless deposition of a continuous gold thin film. The thickness of the metallic thin film was assessed to be 700 nm. The silica plays two major roles: (1) it is used as a porous matrix for the gold electrode, creating a large specific surface area, and (2) it acts as a separator (non-metallized part of the silica). The silica monolith was soaked in a polyvinyl alcohol and phosphoric acid mixture which is used as polymer electrolyte. Capacitance effect was demonstrated by cyclic voltammetry experiments. The specific capacitance was found to be equal to 0.95 mF cm- 2 (9.5 F g-1). No major degradation occurs within more than 3000 cycles.

  8. Active materials for integrated optic applications

    NASA Astrophysics Data System (ADS)

    Hayden, Joseph S.; Funk, David S.; Veasey, David L.; Peters, Philip M.; Sanford, Norman A.

    1999-11-01

    The ability to engineer glass properties through the selection and adjustment of chemical composition continues to make glass a leading material in both active and passive applications. The development of optimal glass compositions for integrated optical applications requires a number of considerations that are often at variance with one another. Of critical importance is that the glass offers compatibility with standard ion exchange technologies, allowing fabrication of guided wave structures. In addition, for application as an active material, the resultant structures must be characterized by absence of inclusions and low absorption at the lasing wavelength, putting demands on both the selection and identity of the raw materials used to prepare the glass. We report on the development of an optimized glass composition for integrated optic applications that combines good laser properties with good chemical durability allowing for a wide range of chemical processing steps to be employed without substrate deterioration. In addition, care was taken during the development of this glass to insure that the selected composition was consistent with manufacturing technology for producing high optical quality glass. We present the properties of the resultant glasses, including results of detailed chemical and laser properties, for use in the design and modeling of active waveguides prepared with these glasses.

  9. Solid oxide fuel cell with single material for electrodes and interconnect

    DOEpatents

    McPheeters, Charles C.; Nelson, Paul A.; Dees, Dennis W.

    1994-01-01

    A solid oxide fuel cell having a plurality of individual cells. A solid oxide fuel cell has an anode and a cathode with electrolyte disposed therebetween, and the anode, cathode and interconnect elements are comprised of substantially one material.

  10. The Electrode as Organolithium Reagent: Catalyst-Free Covalent Attachment of Electrochemically Active Species to an Azide-Terminated Glassy Carbon Electrode Surface

    SciTech Connect

    Das, Atanu K.; Engelhard, Mark H.; Liu, Fei; Bullock, R. Morris; Roberts, John A.

    2013-12-02

    Glassy carbon electrodes have been activated for modification with azide groups and subsequent coupling with ferrocenyl reagents by a catalyst-free route using lithium acetylide-ethylenediamine complex, and also by the more common Cu(I)-catalyzed alkyne-azide coupling (CuAAC) route, both affording high surface coverages. Electrodes were preconditioned at ambient temperature under nitrogen, and ferrocenyl surface coverages obtained by CuAAC were comparable to those reported with preconditioning at 1000 °C under hydrogen/nitrogen. The reaction of lithium acetylide-ethylenediamine with the azide-terminated electrode affords a 1,2,3-triazolyllithium-terminated surface that is active toward covalent C-C coupling reactions including displacement at an aliphatic halide and nucleophilic addition at an aldehyde. For example, surface ferrocenyl groups were introduced by reaction with (6-iodohexyl)ferrocene; the voltammetry shows narrow, symmetric peaks indicating uniform attachment. Coverages are competitive with those obtained by the CuAAC route. X-ray photoelectron spectroscopic data, presented for each synthetic step, are consistent with the proposed reactions. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

  11. Development of dielectric barrier discharge-type ozone generator constructed with piezoelectric transformers: effect of dielectric electrode materials on ozone generation

    NASA Astrophysics Data System (ADS)

    Teranishi, Kenji; Shimomura, Naoyuki; Suzuki, Susumu; Itoh, Haruo

    2009-11-01

    The dependence of ozone generation on the types of dielectric electrode material has been investigated using an ozone generator constructed with the piezoelectric transformer developed in our laboratory. The ozone generator is based on the excitation of the dielectric barrier discharge (DBD), which has the advantage of a compact configuration for generating ozone. Four kinds of dielectric materials are prepared for dielectric barrier electrodes. Electrical properties of the DBD and the ozone generation characteristics are investigated for the different dielectric materials. Differences in the discharge mode among the barrier electrode materials are recognized and discussed on the basis of the results of the Lissajous figures and voltage-current waveforms. During the continuous running of the generator, a temporal decrease in ozone concentration is observed owing to the temperature increase inside the reactor. Although the ozone generation characteristics are influenced by many properties of dielectrics, two important factors for achieving high-efficiency ozone generation are identified in this study. One is the use of a high-thermal conductivity material for the dielectric electrode, which functions well as a heat sink for transferring the generated heat to the outside through the material. The other factor is the control of the discharge mode. Our results show that the discharge mode that is considered as Townsend-like DBD is suitable for high-efficiency ozone generation.

  12. Nanoparticulate Dye-Semiconductor Hybrid Materials Formed by Electrochemical Self-Assembly as Electrodes in Photoelectrochemical Cells

    NASA Astrophysics Data System (ADS)

    Nonomura, Kazuteru; Loewenstein, Thomas; Michaelis, Esther; Kunze, Peter; Schiek, Manuela; Reemts, Jens; Yoshie Iwaya, Mirian; Wark, Michael; Rathousky, Jiri; Al-Shamery, Katharina; Kittel, Achim; Parisi, Jürgen; Wöhrle, Dieter; Yoshida, Tsukasa; Schlettwein, Derck

    2009-08-01

    Dye-sensitized zinc oxide thin films were prepared, characterized and optimized for applications as photoelectrochemically active electrodes. Conditions were established under which crystalline thin films of ZnO with a porous texture were formed by electrochemically induced crystallization controlled by structure-directing agents (SDA). Dye molecules were adsorbed either directly as SDA during this preparation step or, preferably, following desorption of a SDA. The external quantum efficiency (IPCE) could thereby be increased significantly. Particular emphasis was laid on dye molecules that absorb in the red part of the visible spectrum. Model experiments under ultrahigh vacuum (UHV) conditions with dye molecules adsorbed on defined crystal planes of single crystals aimed at a deeper understanding of the coupling of the chromophore electronic π-system within molecular aggregates and to the semiconductor surface. Detailed photoelectrochemical kinetic measurements were used to characterize and optimize the electrochemically prepared dye-sensitized ZnO films. Parallel electrical characterization in vacuum served to distinguish between contributions of charge transport within the ZnO semiconductor matrix and the ions of the electrolyte in the pore system of the electrode.

  13. Three-dimensional graphene-like carbon frameworks as a new electrode material for electrochemical determination of small biomolecules.

    PubMed

    Deng, Wenfang; Yuan, Xiaoyan; Tan, Yueming; Ma, Ming; Xie, Qingji

    2016-11-15

    Three-dimensional (3D) graphene-like carbon frameworks (3DGLCFs) were facilely prepared via copyrolysis of polyaniline and nickel nitrate powder, followed by acid etching. The as-prepared 3DGLCFs possess graphene-like network structure, high specific surface area, and high content nitrogen dopant. Because these features enable large electrochemically active surface area, rapid electron transfer, and fast transport of analytes to electrode surface, the 3DGLCFs modified glassy carbon electrode (GCE) shows current response much higher than commercial graphene (CG) modified GCE towards the oxidation of ascorbic acid (AA), dopamine (DA) and uric acid (UA). The anodic peak separations at 3DGLCFs/GCE are 0.23V between AA and DA, 0.13V between DA and UA, and 0.36V between AA and UA. For the simultaneous electrochemical determination of AA, DA and UA using differential pulse voltammetry, the 3DGLCFs/GCE shows linear response ranges of 1.25×10(-5)-4×10(-4)M for AA, 5×10(-8)-1.0×10(-5)M for DA, and 5×10(-8)-1.5×10(-5)M for UA, with low detection limits of 2×10(-6)M for AA, 1×10(-8)M for DA, and 1×10(-8)M for UA. The 3DGLCFs/GCE was also applied for the measurement of human serum, exhibiting satisfactory recoveries.

  14. Preparation of nitrogen-doped cotton stalk microporous activated carbon fiber electrodes with different surface area from hexamethylenetetramine-modified cotton stalk for electrochemical degradation of methylene blue

    NASA Astrophysics Data System (ADS)

    Li, Kunquan; Rong, Zhang; Li, Ye; Li, Cheng; Zheng, Zheng

    Cotton-stalk activated carbon fibers (CSCFs) with controllable micropore area and nitrogen content were prepared as an efficient electrode from hexamethylenetetramine-modified cotton stalk by steam/ammonia activation. The influence of microporous area, nitrogen content, voltage and initial concentration on the electrical degradation efficiency of methylene blue (MB) was evaluated by using CSCFs as anode. Results showed that the CSCF electrodes exhibited excellent MB electrochemical degradation ability including decolorization and COD removal. Increasing micropore surface area and nitrogen content of CSCF anode leaded to a corresponding increase in MB removal. The prepared CSCF-800-15-N, which has highest N content but lowest microporous area, attained the best degradation effect with 97% MB decolorization ratio for 5 mg/L MB at 12 V in 4 h, implying the doped nitrogen played a prominent role in improving the electrochemical degradation ability. The electrical degradation reaction was well described by first-order kinetics model. Overall, the aforesaid findings suggested that the nitrogen-doped CSCFs were potential electrode materials, and their electrical degradation abilities could be effectively enhanced by controlling the nitrogen content and micropore surface area.

  15. New chemical approach to obtain dense layer phosphate-based ionic conductor coating on negative electrode material surface: Synthesis way, outgassing and improvement of C-rate capability

    NASA Astrophysics Data System (ADS)

    Fleutot, Benoit; Davoisne, Carine; Gachot, Grégory; Cavalaglio, Sébastien; Grugeon, Sylvie; Viallet, Virginie

    2017-04-01

    Li4Ti5O12 (LTO) based batteries have severe gassing behavior during charge/discharge and storage process, due to interfacial reactions between active material and electrolyte solution. In the same time, the electronic and ionic conductivity of pristine LTO is very poor and induces the use of nanoparticles which increase the outgassing phenomena. The coating of LTO particles could be a solution. For this the LTO spinel particles are modified with ionic conductor Li3PO4 coating using a spray-drying method. For the first time a homogeneous thin dense layer phosphate based conductor is obtained without nanoparticles, as a thin film material. It is so possible to study the influence of ionic conductor deposited on the negative electrode material on performances by the controlled layer thickness. This coating was characterized by XRD, SEM, XPS and TEM. The electrochemical performance of Li3PO4 coated Li4Ti5O12 is improved at high C-rate by the surface modification (improvement of 30 mAh g-1 at 5 C-rate compared to pristine LTO for 5 nm of coating), inducing by a modification of surface energy. An optimum coating thickness was studied. This type of coating allows a significant decrease of outgassing phenomena due the conformal coating and opens the way to a great number of studies and new technologies.

  16. Chemical and structural stability of lithium-ion battery electrode materials under electron beam.

    PubMed

    Lin, Feng; Markus, Isaac M; Doeff, Marca M; Xin, Huolin L

    2014-07-16

    The investigation of chemical and structural dynamics in battery materials is essential to elucidation of structure-property relationships for rational design of advanced battery materials. Spatially resolved techniques, such as scanning/transmission electron microscopy (S/TEM), are widely applied to address this challenge. However, battery materials are susceptible to electron beam damage, complicating the data interpretation. In this study, we demonstrate that, under electron beam irradiation, the surface and bulk of battery materials undergo chemical and structural evolution equivalent to that observed during charge-discharge cycling. In a lithiated NiO nanosheet, a Li2CO3-containing surface reaction layer (SRL) was gradually decomposed during electron energy loss spectroscopy (EELS) acquisition. For cycled LiNi(0.4)Mn(0.4)Co(0.18)Ti(0.02)O2 particles, repeated electron beam irradiation induced a phase transition from an layered structure to an rock-salt structure, which is attributed to the stoichiometric lithium and oxygen removal from 3a and 6c sites, respectively. Nevertheless, it is still feasible to preserve pristine chemical environments by minimizing electron beam damage, for example, using fast electron imaging and spectroscopy. Finally, the present study provides examples of electron beam damage on lithium-ion battery materials and suggests that special attention is necessary to prevent misinterpretation of experimental results.

  17. Embedding metal electrodes in thick active layers for ITO-free plasmonic organic solar cells with improved performance.

    PubMed

    Lee, Sangjun; Mason, Daniel R; In, Sungjun; Park, Namkyoo

    2014-06-30

    We propose and numerically investigate the optical performance of a novel plasmonic organic solar cell with metallic nanowire electrodes embedded within the active layer. A significant improvement (~15%) in optical absorption over both a conventional ITO organic solar cell and a conventional plasmonic organic solar cell with top-loaded metallic grating is predicted in the proposed structure. Optimal positioning of the embedded metal electrodes (EME) is shown to preserve the condition for their strong plasmonic coupling with the metallic back-plane, meanwhile halving the hole path length to the anode which allows for a thicker active layer that increases the optical path length of propagating modes. With a smaller sheet resistance than a typical 100 nm thick ITO film transparent electrode, and an increased optical absorption and hole collection efficiency, our EME scheme could be an excellent alternative to ITO organic solar cells.

  18. Active Surfaces and Interfaces of Soft Materials

    NASA Astrophysics Data System (ADS)

    Wang, Qiming

    A variety of intriguing surface patterns have been observed on developing natural systems, ranging from corrugated surface of white blood cells at nanometer scales to wrinkled dog skins at millimeter scales. To mimetically harness functionalities of natural morphologies, artificial transformative skin systems by using soft active materials have been rationally designed to generate versatile patterns for a variety of engineering applications. The study of the mechanics and design of these dynamic surface patterns on soft active materials are both physically interesting and technologically important. This dissertation starts with studying abundant surface patterns in Nature by constructing a unified phase diagram of surface instabilities on soft materials with minimum numbers of physical parameters. Guided by this integrated phase diagram, an electroactive system is designed to investigate a variety of electrically-induced surface instabilities of elastomers, including electro-creasing, electro-cratering, electro-wrinkling and electro-cavitation. Combing experimental, theoretical and computational methods, the initiation, evolution and transition of these instabilities are analyzed. To apply these dynamic surface instabilities to serving engineering and biology, new techniques of Dynamic Electrostatic Lithography and electroactive anti-biofouling are demonstrated.

  19. Stabilization of battery electrodes through chemical pre-intercalation of layered materials

    NASA Astrophysics Data System (ADS)

    Clites, Mallory; Pomerantseva, Ekaterina

    2016-09-01

    Vanadium oxide with bilayered crystal structure shows high specific capacity in intercalation-based energy storage systems, such as Li-ion and Na-ion batteries. The enhanced charge storage ability is attributed to the high oxidation state of vanadium enabling intercalation of more than one Li+ (or Na+) ion per V2O5 unit cell. In addition, large interlayer spacing of 10-13 Å, typical for the bilayered vanadium oxide, is believed to lead to the facilitated diffusion of charge carrying ions further improving specific capacity of this material. However, we found that initial high capacity of the bilayered V2O5 notably decreases only after a few cycles. In this work, we show results of the capacity stabilization strategy based on inclusion of inorganic ions, other than lithium ion, between the structural layers using chemical pre-intercalation approach. These ions are believed to form bonds with the V-O layered framework improving structural stability of the material during electrochemical cycling, and therefore they are often called stabilizing ions. In this paper we report how electrochemical stability of the AxV2O5 (A = Na, K, Mg, Ca) cathode materials is correlated with the size and charge of the stabilizing ions. Li-preintercalated vanadium oxide (LixV2O5) served as the reference material in this study. We found that chemical insertion of doubly charged, small (r = 0.86 Å) Mg2+ stabilizing ion results in the highest capacity retention.

  20. Solid oxide fuel cell with single material for electrodes and interconnect

    DOEpatents

    McPheeters, C.C.; Nelson, P.A.; Dees, D.W.

    1994-07-19

    A solid oxide fuel cell is described having a plurality of individual cells. A solid oxide fuel cell has an anode and a cathode with electrolyte disposed there between, and the anode, cathode and interconnect elements are comprised of substantially one material. 9 figs.