Science.gov

Sample records for active electromagnetic system

  1. Active System for Electromagnetic Perturbation Monitoring in Vehicles

    NASA Astrophysics Data System (ADS)

    Matoi, Adrian Marian; Helerea, Elena

    Nowadays electromagnetic environment is rapidly expanding in frequency domain and wireless services extend in terms of covered area. European electromagnetic compatibility regulations refer to limit values regarding emissions, as well as procedures for determining susceptibility of the vehicle. Approval procedure for a series of cars is based on determining emissions/immunity level for a few vehicles picked randomly from the entire series, supposing that entire vehicle series is compliant. During immunity assessment, the vehicle is not subjected to real perturbation sources, but exposed to electric/magnetic fields generated by laboratory equipment. Since current approach takes into account only partially real situation regarding perturbation sources, this paper proposes an active system for determining electromagnetic parameters of vehicle's environment, that implements a logical diagram for measurement, satisfying the imposed requirements. This new and original solution is useful for EMC assessment of hybrid and electrical vehicles.

  2. A hybrid electromagnetic shock absorber for active vehicle suspension systems

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Babak; Bolandhemmat, Hamidreza; Behrad Khamesee, Mir; Golnaraghi, Farid

    2011-02-01

    The use of electromagnetic dampers (ED) in vehicle active suspension systems has drawn considerable attention in the past few years, attributed to the fact that active suspension systems have shown superior performance in improving ride comfort and road handling of terrain vehicles, compared with their passive and semi-active counterparts. Although demonstrating superb performance, active suspensions still have some shortcomings that must be overcome. They have high energy consumption, weight, and cost and are not fail-safe in case of a power breakdown. The novel hybrid ED, which is proposed in this paper, is a potential solution to the above-mentioned drawbacks of conventional active suspension systems. The proposed hybrid ED is designed to inherit the high-performance characteristics of an active ED with the reliability of a passive damper in a single package. The eddy current damping effect is utilised as a source of the passive damping. First, a prototype ED is designed and fabricated. The prototype ED is then utilised to experimentally establish the design requirements for a real-size active ED. This is accomplished by comparing its vibration isolation performance in a 1-DOF quarter-car test rig with that of a same-class semi-active damper. Then, after a real-size active ED is designed, the concept of hybrid damper is introduced to the damper design to address the drawbacks of the active ED. Finally, the finite-element method is used to accurately model and analyse the designed hybrid damper. It is demonstrated that by introducing the eddy current damping effect to the active part, a passive damping of approximately 1570 Ns/m is achieved. This amount of passive damping guarantees that the damper is fail-safe and reduces the power consumption more than 70%, compared with an active ED in an automotive active suspension system.

  3. Electronic systems failures and anomalies attributed to electromagnetic interference

    NASA Technical Reports Server (NTRS)

    Leach, R. D. (Editor); Alexander, M. B. (Editor)

    1995-01-01

    The effects of electromagnetic interference can be very detrimental to electronic systems utilized in space missions. Assuring that subsystems and systems are electrically compatible is an important engineering function necessary to assure mission success. This reference publication will acquaint the reader with spacecraft electronic systems failures and anomalies caused by electromagnetic interference and will show the importance of electromagnetic compatibility activities in conjunction with space flight programs. It is also hoped that the report will illustrate that evolving electronic systems are increasingly sensitive to electromagnetic interference and that NASA personnel must continue to diligently pursue electromagnetic compatibility on space flight systems.

  4. Use of pupil size to determine the effect of electromagnetic acupuncture on activation level of the autonomic nervous system.

    PubMed

    Kim, Soo-Byeong; Choi, Woo-Hyuk; Liu, Wen-Xue; Lee, Na-Ra; Shin, Tae-Min; Lee, Yong-Heum

    2014-06-01

    Magnetic fields are widely considered as a method of treatment to increase the therapeutic effect when applied to acupoints. Hence, this study proposes a new method which creates significant stimulation of acupoints by using weak magnetic fields. We conducted this experiment in order to confirm the effect on the activation level of the autonomic nervous system by measuring pupil sizes in cases of stimulation by using manual acupuncture and electromagnetic acupuncture (EMA) at BL15. We selected 30 Hz of biphasic wave form with 570.1 Gauss. To confirm the biopotential by the magnetic flux density occurring in EMA that affected the activation of the autonomic nervous system, we observed the biopotential induced at the upper and the mid left and right trapezius. We observed a significant decrease in pupil size only in the EMA group (p < 0.05), thus confirming that EMA decreased the pupil size through activation of the parasympathetic nerve in the autonomic nervous system. Moreover, we confirmed that the amplitude of the biopotential which was caused by 570.1 Gauss was higher than ±20 μA. Thus, we can conclude that EMA treatment successfully activates the parasympathetic nerve in the autonomic nervous system by inducing a biotransformation by the induced biopotential.

  5. Active source electromagnetic methods for marine munitions

    NASA Astrophysics Data System (ADS)

    Schultz, Gregory; Shubiditze, Fridon; Miller, Jonathan; Evans, Rob

    2011-06-01

    The detection of munitions targets obscured in coastal and marine settings has motivated the need for advanced geophysical technologies suited for underwater deployment. Building on conventional marine electromagnetic theory and based on the use of existing electric and magnetic field sensing designs, we analyze the electromagnetic fields emitted from excited targets in the frequency range between 1 kHz and 1 MHz. We present evidence that employing electromagnetic modes that are higher in frequency relative to those typically used in ground-based sensing yields greater range and sensitivity for underwater surveys. We develop potential design strategies for implementing both magnetic (B) and electric (E) field sources and sensors in the marine environment, and determine optimal arrangements for a potential combined E- and B-field sensing system. The implementation of both 1D analytical and 3D numerical simulations yields the primary and secondary field distributions in representative underwater settings for various sourcereceiver arrangements. We study the electromagnetic field distributions from both electric (voltage-fed dipole) and magnetic field (encased and submerged induction coil) active sources. Application of these concepts provide unique and useful information about targets from the addition of electric field sensing alone as well as through the combination of electric and magnetic field sensing.

  6. Real time electromagnetic monitoring system used for short-term earthquakes forecast related to the seismic-active Vrancea zone

    NASA Astrophysics Data System (ADS)

    Stanica, Dumitru; Armand Stanica, Dragos

    2016-04-01

    The existence of the pre-seismic electromagnetic signals related to the earthquakes is still under scientific debate and requires new reliable information about their possible inter-relationship. In this paper, to obtain new insights into the seismic active Vrancea zone (Romania), a 3-D magnetotelluric imaging has been used to strengthen the connection between the geodynamic model and a possible generation mechanism of the intermediate depth earthquakes. Consequently, it is considered that before an earthquake initiation, due to the torsion effect, a high stress reached inside the seismogenic volume that may generates dehydration and rupture processes of the rocks, associated with the fluid migration through the lithospheric faults system, what leads to the resistivity changes. These changes have been investigated by using ULF electromagnetic data recorded in real time at the Geodynamic Observatory Provita de Sus (GOPS), placed on the Carpathian Electrical Conductivity Anomaly (CECA) at about 100km far from the seismic active Vrancea zone. The daily mean distribution of the normalized function Bzn(f) = Bz(f)/Bperp(f) (where: Bz is vertical component of the geomagnetic field; Bperp is geomagnetic component perpendicular to strike; f is frequency in Hz) and its standard deviation are performed by using a FFT band-pass filter analysis in the ULF range 0.001Hz to 0.0083Hz, for which a 2-D geoelectrical structure under GOPS has been identified. To provide reliable information in anticipating the likelihood occurrence of an earthquake of Mw higher than 4, a statistical analysis based on standardized random variable equation has been used to identify the anomalous intervals on the new time series (Bzn*) carried out in a span of three years (2013-2015). The final conclusion is that the Bzn* shows a significant anomalous effect some days (weeks) before an impending earthquake and it should be used for short-term earthquakes forecast.

  7. Electromagnetic modeling of active silicon nanocrystal waveguides.

    PubMed

    Redding, Brandon; Shi, Shouyuan; Creazzo, Tim; Prather, Dennis W

    2008-06-01

    In this paper we propose an electromagnetic analysis of active silicon nano-crystal (Si-nc) waveguide devices. To account for the nonlinearity in the active medium we introduce a four level rate equation model whose parameters are based on experimentally reported material properties. The electromagnetic polarization serves to couple the quantum mechanical and electromagnetic behavior within the ADE-FDTD scheme. The developed modeling tool is used to simulate waveguide amplifiers, enhanced spontaneous emission microcavities, and the temporal lasing dynamics of active Si-nc based devices.

  8. Rotational Electromagnetic Energy Harvesting System

    NASA Astrophysics Data System (ADS)

    Dinulovic, Dragan; Brooks, Michael; Haug, Martin; Petrovic, Tomislav

    This paper presents development of the rotational electromagnetic energy harvesting transducer. The transducer is driven mechanically by pushing a button; therefore, the mechanical energy will be converted into electrical energy. The energy harvesting (EH) transducer consists of multilayer planar coils embedded in a PCB, multipolar NdFeB hard magnets, and a mechanical system for movement conversion. The EH transducer generate an energy of about 4 mJ at a load of 10 Ω. The maximum open circuit output voltage is as high as 2 V and the maximum short circuit output current is 800 mA.

  9. Imaging Hidden Water in Three Dimensions Using an Active Airborne Electromagnetic System

    NASA Astrophysics Data System (ADS)

    Wynn, J.

    2001-05-01

    The San Pedro Basin aquifer in southeastern Arizona and northern Mexico is important not only for local agriculture and residential communities, but also because it is the source of the San Pedro River. Declared a Riparian Conservation Area by Congress in 1988, the San Pedro is a critical element of one of four major migratory bird fly-ways over North America. The basin crosses the international frontier, extending into northern Mexico, where about 12,000 acre-ft of water is withdrawn yearly by the Cananea Mine. An additional 11,000 acre-ft is withdrawn by the US Army base at Fort Huachuca and surrounding towns including Sierra Vista. About 6,000 to 8,000 acre-ft of water is also estimated as lost to evapotranspiration, while recharge (mainly from the Huachuca Mountains) ranges from 12,500 to 15,000 acre-ft per year. This apparent net deficit is considered a serious threat by environmental groups to the integrity of the Riparian Conservation Area. Efforts have been underway to develop catchments and to implement water-conservation measures, but these have been hampered by a lack of detailed knowledge of the three-dimensional geometry and extent of the aquifer beneath the entire basin - at least until recently. In an effort to identify subcomponents and interconnectivities within the San Pedro Basin aquifer, the US Army funded several airborne EM surveys, conducted in 1997 and 1999 under the supervision of the US Geological Survey east of Fort Huachuca. These surveys used the Geoterrex GEOTEM system with 20 gated time-domain windows in three perpendicular orientations. The 60+ channel information was inverted using two different methods into conductivity-depth transforms, i.e., conductivity vs. depth along each flight-line. The resulting inversions have been assembled into a three-dimensional map of the aquifer, which in this arid region is quite conductive (the average is 338 micro-S/cm, around 30 ohm-meters). The coverage is about 1,000 square kilometers down to a

  10. ECSS Space Systems Electromagnetic Compatibility Handbook

    NASA Astrophysics Data System (ADS)

    Trougnou, L.

    2012-05-01

    This paper provides an overview of the final draft of the ECSS EMC Handbook (European Cooperation for Space Standardization, Space Systems Electromagnetic Compatibility Handbook), ECSS-E-HB-20-07A [1] that has been written by a working group involving representatives of European space industry, CNES (Centre National d'Études Spatiales) and ESA (European Space Agency). The purpose of the Handbook is to provide practical and helpful information for Electromagnetic Compatibility in the development of spacecraft equipment and systems. It gathers experience, know-how and lessons-learnt from the European space community with the aim to assist engineers throughout the design and development phases. The Handbook discusses system level activities and suggests design techniques, analyses and test methods. It also complements the ECSS-E-ST-20-07C standard (Space engineering - Electromagnetic compatibility) [2] by providing rationale for unit level test requirements. The ultimate objective of the Handbook is to guide engineers towards solid spacecraft EMC design and to assist them in the decision making process to avoid lengthy negotiations or late adjustments.

  11. Narrow field electromagnetic sensor system and method

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments.

  12. Narrow field electromagnetic sensor system and method

    DOEpatents

    McEwan, T.E.

    1996-11-19

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments. 12 figs.

  13. Electromagnetic Interactions with Few Body Systems

    SciTech Connect

    R. Roy Whitney

    1988-04-01

    The current status of electromagnetic interactions with few-body systems is presented. Results of recent experiments and theoretical investigations are discussed. Comments are made on several experimental investigations planned for the near future.

  14. Working principle of an electromagnetic wiping system

    NASA Astrophysics Data System (ADS)

    Ernst, R.; Fautrelle, Y.; Bianchi, A.-M.; Iliescu, M.

    2009-03-01

    In galvanizing lines, the gas knife wiping device works well for controlling the zinc coating thickness up to 2 to 3 m/s strip velocities. But for higher velocities, a strong liquid zinc splash risk forbids the gas pressure increase, which would be necessary to keep the same thickness control efficiency of the knives. That is why a complementary electromagnetic wiping system, whose purpose is to pre-wipe the liquid zinc before the gas knives take over, is presented here. After mentioning different kinds of AC and DC possible electromagnetic solutions, a DC field electromagnetic brake (EMB) system based on the use of permanent magnets is selected for a future experimental implementation. In order to better understand the electromagnetic and fluid mechanics phenomena, an analytical model and then different numerical models are presented here. These models show an interesting wiping effect on the liquid zinc, which seems promising for a future experimental pilot design. Figs 8, Refs 9.

  15. Electromagnetic imaging of dynamic brain activity

    SciTech Connect

    Mosher, J.; Leahy, R. . Dept. of Electrical Engineering); Lewis, P.; Lewine, J.; George, J. ); Singh, M. . Dept. of Radiology)

    1991-01-01

    Neural activity in the brain produces weak dynamic electromagnetic fields that can be measured by an array of sensors. Using a spatio-temporal modeling framework, we have developed a new approach to localization of multiple neural sources. This approach is based on the MUSIC algorithm originally developed for estimating the direction of arrival of signals impinging on a sensor array. We present applications of this technique to magnetic field measurements of a phantom and of a human evoked somatosensory response. The results of the somatosensory localization are mapped onto the brain anatomy obtained from magnetic resonance images.

  16. Electromagnetic imaging of dynamic brain activity

    SciTech Connect

    Mosher, J.; Leahy, R.; Lewis, P.; Lewine, J.; George, J.; Singh, M.

    1991-12-31

    Neural activity in the brain produces weak dynamic electromagnetic fields that can be measured by an array of sensors. Using a spatio-temporal modeling framework, we have developed a new approach to localization of multiple neural sources. This approach is based on the MUSIC algorithm originally developed for estimating the direction of arrival of signals impinging on a sensor array. We present applications of this technique to magnetic field measurements of a phantom and of a human evoked somatosensory response. The results of the somatosensory localization are mapped onto the brain anatomy obtained from magnetic resonance images.

  17. Electromagnetic field interactions with biological systems

    SciTech Connect

    Frey, A.H. )

    1993-02-01

    This is a report on Symposia organized by the International Society for Bioelectricity and presented at the 1992 FASEB Meeting. The presentations summarized here were intended to provide a sampling of new and fruitful lines of research. The theme topics for the Symposia were cancer, neural function, cell signaling, pineal gland function, and immune system interactions. Living organisms are complex electrochemical systems that evolved over billions of years in a world with a relatively simple weak magnetic field and with few electromagnetic energy emitters. As is characteristic of living organisms, they interacted with and adapted to this environment of electric and magnetic fields. In recent years there has been a massive introduction of equipment that emits electromagnetic fields in an enormous range of new frequencies, modulations, and intensities. As living organisms have only recently found themselves immersed in this new and virtually ubiquitous environment, they have not had the opportunity to adapt to it. This gives biologists the opportunity to use these electromagnetic fields as probes to study the functioning of living systems. This is a significant opportunity, as new approaches to studying living systems so often provide the means to make great leaps in science. In recent years, a diversity of biologists have carried out experiments using electromagnetic fields to study the function of living cells and systems. This approach is now becoming quite fruitful and is yielding data that are advancing our knowledge in diverse areas of biology. 25 refs., 6 figs., 3 tabs.

  18. Electromagnetic driving units for complex microrobotic systems

    NASA Astrophysics Data System (ADS)

    Michel, Frank; Ehrfeld, Wolfgang; Berg, Udo; Degen, Reinhard; Schmitz, Felix

    1998-10-01

    Electromagnetic actuators play an important role in macroscopic robotic systems. In combination with motion transformers, like reducing gear units, angular gears or spindle-screw drives, electromagnetic motors in large product lines ensure the rotational or linear motion of robot driving units and grippers while electromagnets drive valves or part conveyors. In this paper micro actuators and miniaturized motion transformers are introduced which allow a similar development in microrobotics. An electromagnetic motor and a planetary gear box, both with a diameter of 1.9 mm, are already commercially available from the cooperation partner of IMM, the company Dr. Fritz Faulhaber GmbH in Schonaich, Germany. In addition, a motor with a diameter of 2.4 mm is in development. The motors successfully drive an angular gear and a belt drive. A linear stage with a motion range of 7 mm and an overall size as small as 5 X 3.5 X 24 mm3 has been realized involving the motor, a stationary spur gear with zero backlash and a spindle-screw drive. By the use of these commercially available elements complex microrobots can be built up cost-efficiently and rapidly. Furthermore, a batch process has been developed to produce the coils of micro actuator arrays using lithographic techniques with SU-8 resin. In applying these components, the modular construction of complex microrobotic systems becomes feasible.

  19. Experimental Demonstration of Active Electromagnetic Cloaking

    NASA Astrophysics Data System (ADS)

    Selvanayagam, Michael; Eleftheriades, George V.

    2013-10-01

    Active electromagnetic cloaking uses an array of elementary sources to cancel the scattered fields created by an object. An active interior cloak does this by placing the sources along the boundary of the object. This process can be thought of as introducing a discontinuity in the field to cancel out the scattered field by the object. Here, an experimental version of a thin active cloak at microwave frequencies is demonstrated for an aluminum cylinder with a radius of 0.56λ. The cloak consists of a 12-element magnetic-dipole array. By controlling the weights of the current on each element of the array, the scattering off of the cylinder is reduced in the backward and forward directions. The ability to disguise the aluminum cylinder as another object by varying the weights of the dipole array is also demonstrated. Finally, potential ways of overcoming the constraint of requiring a priori knowledge of the incident field leading to camouflaging-type behavior are discussed.

  20. Flightweight Electro-Magnet Systems

    NASA Technical Reports Server (NTRS)

    Goodrich, Roy G.; Litchford, Ron; Robertson, Tony; Schmidt, Dianne; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    NASA has a need for lightweight high performance magnets to be used in propulsion systems involving plasmas. We report the design, construction, and testing of a six inch diameter by twelve inch long solenoid using high purity aluminum wire operating at a temperature of 77 Kelvin (K) for the current carrying element. High purity aluminum is the material of choice because of three properties that make it optimal for magnetic construction. At 77 K high purity aluminum has one of the lowest resistivities at 77 K of any metal (p = 0.254 muOMEGA-cm), thus reducing the power requirements for creating magnetic fields. Aluminum is a low-density (2.6989 g/cc) material and the end product magnet will be of low total mass compared to similar designs involving copper or other elements. The magneto-resistance of aluminum saturates at low magnetic fields and does not increase indefinitely as is the case in copper. The magnet consists of four layers of closely wound wire and is approximately 150 mm in diameter by 300 mm long. A cylinder made from G - 10 was machined with a spiral groove to hold the high purity Al wire and the wire wound on it. Following the winding, each layer was potted in STYCAST high thermal conductivity epoxy to provide insulation between the turns of the coil and mechanical strength. The magneto-resistance of the coil has been measured at the National High Magnetic Field Laboratory (NHMFL), Tallahassee, FL in externally applied fields to 10 tesla. Following these tests it was energized to the full 2 tesla field it can produce using the facilities of the NHMFL at the Los Alamos National Laboratory. The results of all of these tests will be presented.

  1. [Effect of coherent extremely high-frequency and low-intensity electromagnetic radiation on the activity of membrane systems in Escherichia coli].

    PubMed

    Tadevosian, A; Trchunian, A

    2009-01-01

    It has been shown that the exposure of wild-type Escherichia coli K12 bacteria grown in anaerobic conditions upon fermentation of glucose to coherent extremely high-frequency (51.8 and 53 GHz) electromagnetic radiation (EMR) or millimeter waves (wavelength 5.8 to 6.7 mm) of low intensity (flux capacity 0.06 mW/cm2) caused a marked decrease in energy-dependent and N,N'-dicyclohexylcarbodiimide- or azide-sensitive proton and potassium ions transport fluxes through the membrane, including proton fluxes via proton F0F1-ATPase and through the potassium uptake Trk system, correspondingly. K+ uptake was less for the E. coli mutant Trk 1110. The rate of molecular hydrogen production by formate hydrogen lyase 2 is strongly inhibited. The results indicate that the bacterial effect of coherent extremely high-frequency EMR includes changes in the activity of membrane transport and enzymatic systems in which the F0F1-ATPase plays a key role.

  2. Spectral perspective on the electromagnetic activity of cells.

    PubMed

    Kučera, Ondrej; Červinková, Kateřina; Nerudová, Michaela; Cifra, Michal

    2015-01-01

    In this mini-review, we summarize the current hypotheses, theories and experimental evidence concerning the electromagnetic activity of living cells. We systematically classify the bio-electromagnetic phenomena in terms of frequency and we assess their general acceptance in scientific community. We show that the electromagnetic activity of cells is well established in the low frequency range below 1 kHz and on optical wavelengths, while there is only limited evidence for bio-electromagnetic processes in radio- frequency and millimeter-wave ranges. This lack of generally accepted theory or trustful experimental results is the cause for controversy which accompanies this topic. We conclude our review with the discussion of the relevance of the electromagnetic activity of cells to human medicine.

  3. Immunizing digital systems against electromagnetic interference

    NASA Astrophysics Data System (ADS)

    Ewing, P. D.; Korsah, K.; Antonescu, C.

    This paper discusses the development of the technical basis for acceptance criteria applicable to the immunization of digital systems against electromagnetic interference (EMI). The work is sponsored by the US Nuclear Regulatory Commission and stems from the safety-related issues that need to be addressed as a result of the application of digital instrumentation and control systems in nuclear power plants. Designers of digital circuits are incorporating increasingly higher clock frequencies and lower logic level voltages, thereby leading to potentially greater susceptibility of spurious interference being misinterpreted as legitimate logic. Development of the technical basis for acceptance criteria to apply to these digital systems centers around establishing good engineering practices to ensure that sufficient levels of electromagnetic compatibility (EMC) are maintained between the nuclear power plant's electronic and electromechanical systems. First, good EMC design and installation practices are needed to control the emissions from interference sources and thereby their impact on other nearby circuits and systems. Secondly, a test and evaluation program is needed to outline the EMI tests to be performed, the associated test methods to be followed, and adequate test limits to ensure that the circuit or system under test meets the recommended guidelines. Test and evaluation should be followed by periodic maintenance to assess whether the recommended EMI control practices continue to be adhered to as part of the routine operation of the nuclear power plant. By following these steps, the probability of encountering safety-related instrumentation problems associated with EMI will be greatly reduced.

  4. Sensing network for electromagnetic fields generated by seismic activities

    NASA Astrophysics Data System (ADS)

    Gershenzon, Naum I.; Bambakidis, Gust; Ternovskiy, Igor V.

    2014-06-01

    The sensors network is becoming prolific and play now increasingly more important role in acquiring and processing information. Cyber-Physical Systems are focusing on investigation of integrated systems that includes sensing, networking, and computations. The physics of the seismic measurement and electromagnetic field measurement requires special consideration how to design electromagnetic field measurement networks for both research and detection earthquakes and explosions along with the seismic measurement networks. In addition, the electromagnetic sensor network itself could be designed and deployed, as a research tool with great deal of flexibility, the placement of the measuring nodes must be design based on systematic analysis of the seismic-electromagnetic interaction. In this article, we review the observations of the co-seismic electromagnetic field generated by earthquakes and man-made sources such as vibrations and explosions. The theoretical investigation allows the distribution of sensor nodes to be optimized and could be used to support existing geological networks. The placement of sensor nodes have to be determined based on physics of electromagnetic field distribution above the ground level. The results of theoretical investigations of seismo-electromagnetic phenomena are considered in Section I. First, we compare the relative contribution of various types of mechano-electromagnetic mechanisms and then analyze in detail the calculation of electromagnetic fields generated by piezomagnetic and electrokinetic effects.

  5. Noncontact monitoring of cardiorespiratory activity by electromagnetic coupling.

    PubMed

    Teichmann, Daniel; Foussier, Jérôme; Jia, Jing; Leonhardt, Steffen; Walter, Marian

    2013-08-01

    In this paper, the method of noncontact monitoring of cardiorespiratory activity by electromagnetic coupling with human tissue is investigated. Two measurement modalities were joined: an inductive coupling sensor based on magnetic eddy current induction and a capacitive coupling sensor based on displacement current induction. The system's sensitivity to electric tissue properties and its dependence on motion are analyzed theoretically as well as experimentally for the inductive and capacitive coupling path. The potential of both coupling methods to assess respiration and pulse without contact and a minimum of thoracic wall motion was verified by laboratory experiments. The demonstrator was embedded in a chair to enable recording from the back part of the thorax.

  6. A multichannel electromagnetic flowmeter telemetry system.

    NASA Technical Reports Server (NTRS)

    Fryer, T. B.; Sandler, H.; Doane, D. H.

    1972-01-01

    An eight-channel biomedical telemetry system provides four channels of blood flow measurements in addition to blood-pressure and EKG data. Emphasis is placed on the amplifiers and signal conditioning circuitry required for interfacing of the electromagnetic flow transducers with the transmission and modulation subsystems. The large number of data channels permits measurement of flow distribution as well as total cardiac output. The batteries and electronics for four channels (blood flow) weigh about 500 g and have a volume of 250 cu cm.

  7. Electromagnetic Measurements in an Active Oilfield Environment

    NASA Astrophysics Data System (ADS)

    Schramm, K. A.; Aldridge, D. F.; Bartel, L. C.; Knox, H. A.; Weiss, C. J.

    2015-12-01

    An important issue in oilfield development pertains to mapping and monitoring of the fracture distributions (either natural or man-made) controlling subsurface fluid flow. Although microseismic monitoring and analysis have been used for this purpose for several decades, there remain several ambiguities and uncertainties with this approach. We are investigating a novel electromagnetic (EM) technique for detecting and mapping hydraulic fractures in a petroleum reservoir by injecting an electrically conductive contrast agent into an open fracture. The fracture is subsequently illuminated by a strong EM field radiated by a large engineered antenna. Specifically, a grounded electric current source is applied directly to the steel casing of the borehole, either at/near the wellhead or at a deep downhole point. Transient multicomponent EM signals (both electric and magnetic) scattered by the conductivity contrast are then recorded by a surface receiver array. We are presently utilizing advanced 3D numerical modeling algorithms to accurately simulate fracture responses, both before and after insertion of the conductive contrast agent. Model results compare favorably with EM field data recently acquired in a Permian Basin oilfield. However, extraction of the very-low-amplitude fracture signatures from noisy data requires effective noise suppression strategies such as long stacking times, rejection of outliers, and careful treatment of natural magnetotelluric fields. Dealing with the ever-present "episodic EM noise" typical in an active oilfield environment (associated with drilling, pumping, machinery, traffic, etc.) constitutes an ongoing problem. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Deep prospecting electromagnetic system and its application

    NASA Astrophysics Data System (ADS)

    Lin, J.; Liu, C.; Zhou, F.; Zhang, W.; Chen, J.; Xue, K.; Sun, C.; Xu, W.; Hu, R.

    2011-12-01

    Today mineral resource is becoming the impediment to the society development because less and less mineral resource can be available. People are trying all kinds of technological tools to find the mineral deposit concealed in deep lithosphere. Unfortunately, current technology can not meet the exploration requirement completely and it is still difficult to know whether a deep mineral deposit exists and how it is presented at a considered site. In order to meet the requirement of discovering the mineral deposit in the second mine prospecting space (500-2000m under earth surface), we developed a deep prospecting electromagnetic system (DPS-I). This system consists of an electromagnetic receiver array and a high-power transmitter. The receiver array consists of 24 sub-receivers and one controller and has up to 53 electromagnetic channels. The sub-receivers can be extended conveniently if the user would like and they communicate with the controller through a cable or wireless antenna. When the channel interval is set to typical value of 50 m, the system can cover 2500 m survey line at one arrangement with two magnetic records. Since the signals are collected at the same time some disturbances, such as time variable but space invariable noise, will be suppressed because they have almost the same effect to all channels. The transmitter is designed to be 45 KW of upper power limit so that strong signals will be detected. Series transmission technology is adopted to avoid unwieldiness of transmitter. In fact it is made of three portable transmission units and each one can work independently. The system can transmit several kinds of waves and records all samples of signals in time sequences. So it can work for different electromagnetic methods. The prior methods for our application are the combination of IP, CSAMT and MT. Utilizing joint inversion and model restriction, we can obtain more refined model at large depth than conventional exploration. We have applied this

  9. Electromagnetic optimization of EMS-MAGLEV systems

    SciTech Connect

    Andriollo, M.; Martinelli, G.; Morini, A.; Tortella, A.

    1998-07-01

    In EMS-MAGLEV high-speed transport systems, devices for propulsion, levitation and contactless on-board electric power transfer are combined in a single electromagnetic structure. The strong coupling among the windings affects the performance of each device and requires the utilization of numerical codes. The paper describes an overall optimization procedure, based on a suitable mathematical model of the system, which takes into account several items of the system performance. The parameters of the model are calculated by an automated sequence of FEM analyses of the configuration. Both the linear generator output characteristics and the propulsion force ripple are improved applying the procedure to a reference configuration. The results are compared with the results obtained by a sequence of partial optimizations operating separately on two different subsets of the geometric parameters.

  10. Electromagnetic Emission at Micron Wavelengths from Active Nerves

    PubMed Central

    Fraser, Allan; Frey, Allan H.

    1968-01-01

    In recent years there has been experimental work and speculation bearing upon the significance in neural functioning of electromagnetic energy in the region of the spectrum between 0.3 and 10 μ. We demonstrate, in this experiment, micron wavelength electromagnetic emission from active live crab nerves as compared to inactive live and dead nerves. Further, the data indicate that the active nerve emission is caused by specific biophysical reactions rather than being simply black-body radiation. PMID:5699805

  11. Stability of miniature electromagnetic tracking systems

    NASA Astrophysics Data System (ADS)

    Schicho, Kurt; Figl, Michael; Donat, Markus; Birkfellner, Wolfgang; Seemann, Rudolf; Wagner, Arne; Bergmann, Helmar; Ewers, Rolf

    2005-05-01

    This study aims at a comparative evaluation of two recently introduced electromagnetic tracking systems under reproducible simulated operating-room (OR) conditions: the recently launched Medtronic StealthStation™ Treon-EM™ and the NDI Aurora™. We investigate if and to what extent these systems provide improved performance and stability in the presence of surgical instruments as possible sources of distortions compared with earlier reports on electromagnetic tracking technology. To investigate possible distortions under pseudo-realistic OR conditions, a large Langenbeck hook, a dental drill with its handle and an ultrasonic (US) scanhead are fixed on a special measurement rack at variable distances from the navigation sensor. The position measurements made by the Treon-EM™ were least affected by the presence of the instruments. The lengths of the mean deviation vectors were 0.21 mm for the Langenbeck hook, 0.23 mm for the drill with handle and 0.56 mm for the US scanhead. The Aurora™ was influenced by the three sources of distortion to a higher degree. A mean deviation vector of 1.44 mm length was observed in the vicinity of the Langenbeck hook, 0.53 mm length with the drill and 2.37 mm due to the US scanhead. The maximum of the root mean squared error (RMSE) for all coordinates in the presence of the Langenbeck hook was 0.3 mm for the Treon™ and 2.1 mm for the Aurora™ the drill caused a maximum RMSE of 0.2 mm with the Treon™ and 1.2 mm with the Aurora™. In the presence of the US scanhead, the maximum RMSE was 1.4 mm for the Treon™ and 5.1 mm for the Aurora™. The new generation of electromagnetic tracking systems has significantly improved compared to common systems that were available in the middle of the 1990s and has reached a high level of technical development. We conclude that, in general, both systems are suitable for routine clinical application.

  12. Electromagnetically induced gain in molecular systems

    NASA Astrophysics Data System (ADS)

    Mukherjee, Nandini; Patel, C. Kumar N.

    2009-12-01

    We report electromagnetically induced gain in a highly degenerate two-level rotational vibrational molecular system. Using two photon (Raman-type) interaction with right and left circularly polarized pump and probe waves, the Zeeman coherence is established within the manifold of degenerate sublevels belonging to a rotational vibrational eigenstate. We analytically and numerically calculate the third-order nonlinear optical susceptibility for a Doppler-broadened molecular transition for an arbitrary high rotational angular momentum (J≥20) . It is shown that for a Q -type open transition, a weak probe will experience an electromagnetically induced gain in presence of a strong copropagating pump wave. The inversionless gain originates due to cancellation of absorption from the interference of the coupled Λ - and V-type excitation channels in an N -type configuration. A detailed analysis of the optical susceptibility as a function of Doppler detuning explains how the gain bands are generated in a narrow transparency window from the overlapping contributions of different velocity groups. It is shown that the orientation dependent coherent interaction in presence of a strong pump induces narrow resonances for the probe susceptibility. The locations, intensity, and sign (positive or negative susceptibility) of these resonances are decided by the frequency detuning of the Doppler group and the strength of the coupling field. The availability of high power tunable quantum cascade lasers covering a spectral region from about 4 to 12μm opens up the possibility of investigating the molecular vibrational rotational transitions for a variety of coherent effects.

  13. Ultra low frequency electromagnetic fire alarm system for underground mines

    SciTech Connect

    Not Available

    1991-01-01

    During an underground mine fire, air can be rapidly depleted of oxygen and contaminated with smoke and toxic fire gases. Any delay in warning miners could have disastrous consequences. Unfortunately, present mine fire alarm systems, such as stench, audible or visual alarms, telephones, and messengers, are often slow, unreliable, and limited in mine area coverage. Recent research by the U.S. Bureau of Mines has demonstrated that ultra-low-frequency electromagnetic signaling can be used for an underground mine fire alarm. In field tests of prototype equipment at five mines, electromagnetic signals from 630 to 2,000 Hz were transmitted through mine rock for distances as great as 1,645 m to an intrinsically safe receiver. The prototype system uses off-the-shelf components and state-of-the-art technology to ensure high reliability and low cost. When utilized, this technology would enable simultaneous and instantaneous warning of all underground personnel, regardless of their location or work activity, thereby increasing the likelihood of their successfully escaping a mine disaster. This paper presents the theoretical basis for through-the-rock ultra-low-frequency electromagnetic transmission, design of the prototype transmitter and receiver, and the results of in-mine tests of the prototype system.

  14. Electromagnetic interference in electrical systems of motor vehicles

    NASA Astrophysics Data System (ADS)

    Dziubiński, M.; Drozd, A.; Adamiec, M.; Siemionek, E.

    2016-09-01

    Electronic ignition system affects the electronic equipment of the vehicle by electric and magnetic fields. The measurement of radio electromagnetic interference originating from the ignition system affecting the audiovisual test bench was carried out with a variable speed of the ignition system. The paper presents measurements of radio electromagnetic interference in automobiles. In order to determine the level of electromagnetic interference, the audiovisual test bench was equipped with a set of meters for power consumption and assessment of the level of electromagnetic interference. Measurements of the electromagnetic interference level within the audiovisual system were performed on an experimental test bench consisting of the ignition system, starting system and charging system with an alternator and regulator.

  15. Digital electromagnetic telemetry system for studying behaviour of decapod crustaceans.

    PubMed

    Smith; Collins; Jensen

    2000-05-01

    1 year and the receiving system batteries are replaced by divers at intervals of up to 4 weeks. In field tests, crab (Cancer pagurus L.) and lobster (Homarus gammarus (L.)) activity was monitored at an artificial reef for 14 months. Examples of the type of information acquired are presented to illustrate the capabilities of the system and potential applications are discussed. Limitations of digital electromagnetic telemetry stem mainly from the short range of detection, the need for cables on the seabed and the size and shape of the transmitting tag. PMID:10742505

  16. High temperature electromagnetic characterization of thermal protection system tile materials

    NASA Technical Reports Server (NTRS)

    Heil, Garrett G.

    1993-01-01

    This study investigated the impact of elevated temperatures on the electromagnetic performance of the LI-2200 thermal protection system. A 15-kilowatt CO2 laser was used to heat an LI-2200 specimen to 3000 F while electromagnetic measurements were performed over the frequency range of l9 to 21 GHz. The electromagnetic measurement system consisted of two Dual-Lens Spot-Focusing (DLSF) antennas, a sample support structure, and an HP-8510B vector network analyzer. Calibration of the electromagnetic system was accomplished with a Transmission-Reflection-Line (TRL) procedure and was verified with measurements on a two-layer specimen of known properties. The results of testing indicated that the LI-2200 system's electromagnetic performance is slightly temperature dependent at temperatures up to 3000 F.

  17. Healing of Chronic Wounds through Systemic Effects of Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Cañedo, L.; Trigos, I.; García-Cantú, R.; Godina-Nava, J. J.; Serrano, G.

    2002-08-01

    Extremely low frequency electromagnetic fields (ELF) were configured to interact with peripheral blood mononuclear cells (PBMC). These ELF were applied in the arm to five patients with chronic wounds resistant to medical and surgical treatment. Wound healing began in all patients during the first two weeks after ELF exposure permiting their previously unresponsive chronic wounds to function as internal controls. All lesions were cured or healed >70% in less than four months. Systemic effects were explained by ELF activation of PBMC and their transportation through the blood to the affected site. This therapy is effective in selected patients with chronic wounds.

  18. A high frequency electromagnetic impedance imaging system

    SciTech Connect

    Tseng, Hung-Wen; Lee, Ki Ha; Becker, Alex

    2003-01-15

    Non-invasive, high resolution geophysical mapping of the shallow subsurface is necessary for delineation of buried hazardous wastes, detecting unexploded ordinance, verifying and monitoring of containment or moisture contents, and other environmental applications. Electromagnetic (EM) techniques can be used for this purpose since electrical conductivity and dielectric permittivity are representative of the subsurface media. Measurements in the EM frequency band between 1 and 100 MHz are very important for such applications, because the induction number of many targets is small and the ability to determine the subsurface distribution of both electrical properties is required. Earlier workers were successful in developing systems for detecting anomalous areas, but quantitative interpretation of the data was difficult. Accurate measurements are necessary, but difficult to achieve for high-resolution imaging of the subsurface. We are developing a broadband non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using an EM impedance approach similar to the MT exploration technique. Electric and magnetic sensors were tested to ensure that stray EM scattering is minimized and the quality of the data collected with the high-frequency impedance (HFI) system is good enough to allow high-resolution, multi-dimensional imaging of hidden targets. Additional efforts are being made to modify and further develop existing sensors and transmitters to improve the imaging capability and data acquisition efficiency.

  19. Characteristics of an electromagnetic levitation system using a bulk superconductor

    SciTech Connect

    Senba, A.; Kitahara, H.; Ohsaki, H.; Masada, E.

    1996-09-01

    It is beneficial to apply a high-Tc bulk superconductor as a large flux source to an electromagnetic levitation system, which needs large amounts of levitation force. The authors made an attractive-type electromagnetic levitation system using a hybrid magnet that mainly consisted of bulk superconductor and control coils to confirm the principle of the levitation, and obtained characteristics of its system by both experiment and numerical analysis with magnetic circuit calculation. This is applicable to maglev transportation systems.

  20. ALTERATIONS IN CALCIUM ION ACTIVITY BY ELF AND RF ELECTROMAGNETIC FIELDS

    EPA Science Inventory



    Alterations in calcium ion activity by ELF and RF electromagnetic fields

    Introduction

    Calcium ions play many important roles in biological systems. For example, calcium ion activity can be used as an indicator of second-messenger signal-transduction processe...

  1. Superconducting Electromagnetic Suspension (EMS) system for Grumman Maglev concept

    NASA Technical Reports Server (NTRS)

    Kalsi, Swarn S.

    1994-01-01

    The Grumman developed Electromagnetic Suspension (EMS) Maglev system has the following key characteristics: a large operating airgap--40 mm; levitation at all speeds; both high speed and low speed applications; no deleterious effects on SC coils at low vehicle speeds; low magnetic field at the SC coil--less than 0.35 T; no need to use non-magnetic/non-metallic rebar in the guideway structure; low magnetic field in passenger cabin--approximately 1 G; low forces on the SC coil; employs state-of-the-art NbTi wire; no need for an active magnet quench protection system; and lower weight than a magnet system with copper coils. The EMS Maglev described in this paper does not require development of any new technologies. The system could be built with the existing SC magnet technology.

  2. Relations Among Systems of Electromagnetic Equations

    ERIC Educational Resources Information Center

    page, Chester H.

    1970-01-01

    Contends that the equations of electromagnetism, whether in rationalized or non-rationalized form, express an invariant set of physical relationships. The relationships among corresponding symbols are given and applied to precise statements about the relation between the oersted and the amphere per meter, the abampere and the ampere, etc.…

  3. Surface visualization of electromagnetic brain activity.

    PubMed

    Badea, Alexandra; Kostopoulos, George K; Ioannides, Andreas A

    2003-08-15

    Advances in hardware and software have made possible the reconstruction of brain activity from non-invasive electrophysiological measurements over a large part of the brain. The appreciation of the information content in the data is enhanced when relevant anatomical detail is also available for visualization. Different neuroscientific questions give rise to different requirements for optimal superposition of structure and function. Most available software deal with scalar measures of activity, especially hemodynamic changes. In contrast, the electrophysiological observables are generated by electrical activity, which depends on the synchrony of neuronal assemblies and the geometry of the local cortical surface. We describe methods for segmentation and visualization of spatio-temporal brain activity, which allow the interplay of geometry and scalar as well as vector properties of the current density directly in the representations. The utility of these methods is demonstrated through displays of tomographic reconstructions of early sensory processing in the somatosensory and visual modality extracted from magnetoencephalography (MEG) data. The activation course characteristic to a specific area could be observed as current density or statistical maps independently and/or contrasted to the activity in other areas or the whole brain. MEG and functional magnetic resonance imaging (fMRI) activations were simultaneously visualized. Integrating and visualizing complementary functional data into a single environment helps evaluating analysis and understanding structure/function relationships in normal and diseased brain.

  4. Nuclear electromagnetic pulse and the electric power system

    SciTech Connect

    Legro, J.R.; Reed, T.J.

    1985-01-01

    A single, high-altitude nuclear detonation over the continental United States can expose large geographic areas to transient, electromagnetic pulse (EMP). The initial electromagnetic fields produced by this event have been defined as high-altitude electromagnetic pulse (HEMP). Later-time, low frequency fields have been defined as magnetohydrodynamic-electromagnetic pulse (MHD-EMP). Nuclear detonations at, or near the surface of the earth can also produce transient EMP. These electromagnetic phenomena have been defined as source region electromagnetic pulse (SREMP). The Division of Electric Energy Systems (EES) of the United States Department of Energy (DOE) has formulated and implemented a Program Plan to assess the possible effects of the above nuclear EMP on civilian electric power systems. This unclassified research effort is under the technical leadership of the Oak Ridge National Laboratory. This paper presents a brief perspective of EMP phenomenology and important interaction issues for power systems based on research performed by Westinghouse Advanced Systems Technology as a principal subcontractor in the research effort.

  5. Electron beam injection during active experiments. I - Electromagnetic wave emissions

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Kellogg, P. J.

    1990-01-01

    The wave emissions produced in Echo 7 experiment by active injections of electron beams were investigated to determine the properties of the electromagnetic and electrostatic fields for both the field-aligned and cross-field injection in such experiments and to evaluate the sources of free energy and relative efficiencies for the generation of the VLF and HF emissions. It is shown that, for typical beam energies in active experiments, electromagnetic effects do not substantially change the bulk properties of the beam, spacecraft charging, and plasma particle acceleration. Through simulations, beam-generated whistlers; fundamental z-mode and harmonic x-mode radiation; and electrostatic electron-cyclotron, upper-hybrid, Langmuir, and lower-hybrid waves were identified. The characteristics of the observed wave spectra were found to be sensitive to both the ratio of the electron plasma frequency to the cyclotron frequency and the angle of injection relative to the magnetic field.

  6. Electromagnetic emission experiences using electric propulsion systems: A survey

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Zana, Lynnette M.; Knowles, Steven C.

    1987-01-01

    As electric propulsion systems become ready to integrate with spacecraft systems, the impact of propulsion system radiated emissions are of significant interest. Radiated emissions from electromagnetic, electrostatic, and electrothermal systems have been characterized and results synopsized from the literature describing 21 space flight programs. Electromagnetic radiated emission results from ground tests and flight experiences are presented with particular attention paid to the performance of spacecraft subsystems and payloads during thruster operations. The impacts to transmission of radio frequency signals through plasma plumes are also reviewed.

  7. How Active Learning Affects Student Understanding of Concepts in Electromagnetism

    NASA Astrophysics Data System (ADS)

    Belcher, John; Dori, Judy; Breslow, Lori

    2009-05-01

    We discuss the effects of the learning environment of the MIT TEAL project on student cognitive and affective outcomes in introductory electromagnetism. Our assessment included examining student conceptual understanding before and after studying electromagnetism in a media-rich environment. We developed pre-and posttests consisting of conceptual questions from standardized tests, as well as questions designed to assess the effect of visualizations and experiments. The research population consisted of 811 undergraduate students, consisting of small-and a large-scale experimental group and control group. The active learning students improved their conceptual understanding of the subject matter to a significantly higher extent than their control group peers. A subsequent longitudinal study indicates that the long-term effect of the TEAL course on student retention of concepts was significantly stronger than that of the traditional course.

  8. Energy and linear and angular momenta in simple electromagnetic systems

    NASA Astrophysics Data System (ADS)

    Mansuripur, Masud

    2015-08-01

    We present examples of simple electromagnetic systems in which energy, linear momentum, and angular momentum exhibit interesting behavior. The systems are sufficiently simple to allow exact solutions of Maxwell's equations in conjunction with the electrodynamic laws of force, torque, energy, and momentum. In all the cases examined, conservation of energy and momentum is confirmed.

  9. Spectrally isomorphic Dirac systems: Graphene in an electromagnetic field

    NASA Astrophysics Data System (ADS)

    Jakubský, Vít

    2015-02-01

    We construct the new one-dimensional Dirac Hamiltonians that are spectrally isomorphic (not isospectral) with the known exactly solvable models. Explicit formulas for their spectra and eigenstates are provided. The operators are utilized for the description of Dirac fermions in graphene in the presence of an inhomogeneous electromagnetic field. We discuss explicit, physically relevant, examples of spectrally isomorphic systems with both nonperiodic and periodic electromagnetic barriers. In the latter case, spectrally isomorphic two- and three-gap systems associated with the Ablowitz-Kaup-Newell-Segur hierarchy are considered.

  10. Mobile phone electromagnetic radiation activates MAPK signaling and regulates viability in Drosophila.

    PubMed

    Lee, Kyu-Sun; Choi, Jong-Soon; Hong, Sae-Yong; Son, Tae-Ho; Yu, Kweon

    2008-07-01

    Mobile phones are widely used in the modern world. However, biological effects of electromagnetic radiation produced by mobile phones are largely unknown. In this report, we show biological effects of the mobile phone 835 MHz electromagnetic field (EMF) in the Drosophila model system. When flies were exposed to the specific absorption rate (SAR) 1.6 W/kg, which is the proposed exposure limit by the American National Standards Institute (ANSI), more than 90% of the flies were viable even after the 30 h exposure. However, in the SAR 4.0 W/kg strong EMF exposure, viability dropped from the 12 h exposure. These EMF exposures triggered stress response and increased the production of reactive oxygen species. The EMF exposures also activated extracellular signal regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling, but not p38 kinase signaling. Interestingly, SAR 1.6 W/kg activated mainly ERK signaling and expression of an anti-apoptotic gene, whereas SAR 4.0 W/kg strongly activated JNK signaling and expression of apoptotic genes. In addition, SAR 4.0 W/kg amplified the number of apoptotic cells in the fly brain. These findings demonstrate that the exposure limit on electromagnetic radiation proposed by ANSI triggered ERK-survival signaling but the strong electromagnetic radiation activated JNK-apoptotic signaling in Drosophila.

  11. Positioning and Microvibration Control by Electromagnets of an Air Spring Vibration Isolation System

    NASA Technical Reports Server (NTRS)

    Watanabe, Katsuhide; Cui, Weimin; Haga, Takahide; Kanemitsu, Yoichi; Yano, Kenichi

    1996-01-01

    Active positioning and microvibration control has been attempted by electromagnets equipped in a bellows-type, air-spring vibration isolation system. Performance tests have been carried out to study the effects. The main components of the system's isolation table were four electromagnetic actuators and controllers. The vibration isolation table was also equipped with six acceleration sensors for detecting microvibration of the table. The electromagnetic actuators were equipped with bellows-type air springs for passive support of the weight of the item placed on the table, with electromagnets for active positioning, as well as for microvibration control, and relative displacement sensors. The controller constituted a relative feedback system for positioning control and an absolute feedback system for vibration isolation control. In the performance test, a 1,490 kg load (net weight of 1,820 kg) was placed on the vibration isolation table, and both the positioning and microvibration control were carried out electromagnetically. Test results revealed that the vibration transmission was reduced by 95%.

  12. Rigorous electromagnetic simulation applied to alignment systems

    NASA Astrophysics Data System (ADS)

    Deng, Yunfei; Pistor, Thomas V.; Neureuther, Andrew R.

    2001-09-01

    Rigorous electromagnetic simulation with TEMPEST is used to provide benchmark data and understanding of key parameters in the design of topographical features of alignment marks. Periodic large silicon trenches are analyzed as a function of wavelength (530-800 nm), duty cycle, depth, slope and angle of incidence. The signals are well behaved except when the trench width becomes about 1 micrometers or smaller. Segmentation of the trenches to form 3D marks shows that a segmentation period of 2-5 wavelengths makes the diffraction in the (1,1) direction about 1/3 to 1/2 of that in the main first order (1,0). Transmission alignment marks nanoimprint lithography using the difference between the +1 and -1 reflected orders showed a sensitivity of the difference signal to misalignment of 0.7%/nm for rigorous simulation and 0.5%/nm for simple ray-tracing. The sensitivity to a slanted substrate indentation was 10 nm off-set per degree of tilt from horizontal.

  13. Electromagnetic recording of the auditory system.

    PubMed

    Poeppel, David; Hickok, Gregory

    2015-01-01

    Auditory processing is remarkably fast and sensitive to the precise temporal structure of acoustic signals over a range of scales, from submillisecond phenomena such as localization to the construction of elementary auditory attributes at tens of milliseconds to basic properties of speech and music at hundreds of milliseconds. In light of the rapid (and often transitory) nature of auditory phenomena, in order to investigate the neurocomputational basis of auditory perception and cognition, a technique with high temporal resolution is appropriate. Here we briefly outline the utility of magnetoencephalography (MEG) for the study of the neural basis of audition. The basics of MEG are outlined in brief, and some of the most-used neural responses are described. We discuss the classic transient evoked fields (e.g., M100), responses elicited by change in a stimulus (e.g., pitch-onset response), the auditory steady-state response, and neural oscillations (e.g., theta-phase tracking). Because of the high temporal resolution and the good spatial resolution of MEG, paired with the convenient location of human auditory cortex for MEG-based recording, electromagnetic recording of this type is well suited to investigate various aspects from audition, from crafted laboratory experiments on pitch perception or scene analysis to naturalistic speech and music tasks.

  14. Control and monitoring method and system for electromagnetic forming process

    DOEpatents

    Kunerth, Dennis C.; Lassahn, Gordon D.

    1990-01-01

    A process, system, and improvement for a process for electromagnetic forming of a workpiece in which characteristics of the workpiece such as its geometry, electrical conductivity, quality, and magnetic permeability can be determined by monitoring the current and voltage in the workcoil. In an electromagnet forming process in which a power supply provides current to a workcoil and the electromagnetic field produced by the workcoil acts to form the workpiece, the dynamic interaction of the electromagnetic fields produced by the workcoil with the geometry, electrical conductivity, and magnetic permeability of the workpiece, provides information pertinent to the physical condition of the workpiece that is available for determination of quality and process control. This information can be obtained by deriving in real time the first several time derivatives of the current and voltage in the workcoil. In addition, the process can be extended by injecting test signals into the workcoil during the electromagnetic forming and monitoring the response to the test signals in the workcoil.

  15. Graded pitch electromagnetic pump for thin strip metal casting systems

    DOEpatents

    Kuznetsov, Stephen B.

    1986-01-01

    A metal strip casing system is provided with an electromagnetic pump which includes a pair of primary blocks having a graded pole pitch, polyphase ac winding and being arranged on opposite sides of a movable heat sink. A nozzle is provided for depositing liquid metal on the heat sink such that the resulting metal strip and heat sink combination is subjected to a longitudinal electromagnetic field which increases in wavelength in the direction of travel of the heat sink, thereby subjecting the metal and heat sink to a longitudinal force having a magnitude which increases in the direction of travel.

  16. Graded pitch electromagnetic pump for thin strip metal casting systems

    DOEpatents

    Kuznetsov, S.B.

    1986-04-01

    A metal strip casing system is provided with an electromagnetic pump which includes a pair of primary blocks having a graded pole pitch, polyphase ac winding and being arranged on opposite sides of a movable heat sink. A nozzle is provided for depositing liquid metal on the heat sink such that the resulting metal strip and heat sink combination is subjected to a longitudinal electromagnetic field which increases in wavelength in the direction of travel of the heat sink, thereby subjecting the metal and heat sink to a longitudinal force having a magnitude which increases in the direction of travel. 4 figs.

  17. Classical electrodynamic systems interacting with classical electromagnetic random radiation

    NASA Astrophysics Data System (ADS)

    Cole, Daniel C.

    1990-02-01

    In the past, a few researchers have presented arguments indicating that a statistical equilibrium state of classical charged particles necessarily demands the existence of a temperature-independent, incident classical electromagnetic random radiation. Indeed, when classical electromagnetic zero-point radiation is included in the analysis of problems with macroscopic boundaries, or in the analysis of charged particles in linear force fields, then good agreement with nature is obtained. In general, however, this agreement has not been found to hold for charged particles bound in nonlinear force fields. The point is raised here that this disagreement arising for nonlinear force fields may be a premature conclusion on this classical theory for describing atomic systems, because past calculations have not directed strict attention to electromagnetic interactions between charges. This point is illustrated here by examining the classical hydrogen atom and showing that this problem has still not been adequately solved.

  18. Electromagnetic induction moisture measurement system acceptance test report

    SciTech Connect

    Vargo, G.J.

    1996-10-07

    This document presents the results of the acceptance test for the hardware and software that was developed to operate the ElectroMagnetic Induction (EMI) moisture measurement system to be used for in-tank moisture measurements. This document satisfies EP 4.1, ``Design Verification Requirements``.

  19. Electromagnetic Safety of Spacecraft During Active Experiments with the Use of Plasma Accelerators and Ion Injectors

    NASA Astrophysics Data System (ADS)

    Plokhikh, Andrey; Popov, Garri; Shishkin, Gennady; Antropov, Nikolay; Vazhenin, Nikolay; Soganova, Galina

    Works under the development and application of stationary and pulsed plasma accelerators of charged particles conducted at the Moscow Aviation Institute and Research Institute of Applied Mechanics and Electrodynamics during over 40 years, active experiments on board meteorological rockets, artificial Earth satellites and "Mir" orbital station including [1], allowed to obtain data on the influence of pulsed and continuous plasma injection with the given parameters on the drop of energetic particles out of the radiation belts, efficiency of artificial excitation and propagation of electromagnetic waves in ELF and VLF ranges, and evolution of artificial plasma formations in different regions of ionosphere. Variation of the near-spacecraft electromagnetic environment related to the operation of plasma injectors was registered during active experiments along with the global electrodynamic processes. The measured electromagnetic fields are of rather high intensity and occupy frequency spectrum from some Hz to tens of GHz that may be of definite danger for the operation of spacecraft and its onboard systems. Analysis for the known test data is presented in the paper and methods are discussed for the diagnostics and modeling under laboratory conditions of radiative processes proceeding at the operation of plasma accelerators and ion injectors used while making active space experiments. Great attention is paid to the methodological and metrological bases for making radio measurements in vacuum chambers, design concept and hardware configuration of ground special-purpose instrumentation scientific complexes [2]. Basic requirements are formulated for the measurements and analysis of electromagnetic fields originating during the operation of plasma accelerators, including the radiative induced and conductive components inside the spacecraft, as well as the wave emission and excitation outside the spacecraft, in the ionosphere including. Measurement results for the intrinsic

  20. Electromagnetic induction moisture measurement system acceptance test plan

    SciTech Connect

    Vargo, G.F., Westinghouse Hanford

    1996-08-01

    The purpose of this acceptance test plan (ATP) is to verify that the mechanical, electrical and software features of the ElectroMagnetic Induction (EMI) probe are operating as designed,and that the unit is ready for field service. The accepted EMI and Surface Moisture Measurement Systems (SMMS) will be used primarily in support of Tank Waste Remediation System (TWRS) Safety Programs for moisture measurement of organic and ferrocyanide watch list tanks.

  1. Electromagnetic design of a microwave radiometer antenna system

    NASA Technical Reports Server (NTRS)

    Agrawal, P. K.; Cockrell, C. R.

    1981-01-01

    A preliminary electromagnetic (EM) design of a radiometric antenna system was developed for the microwave radiometer spacecraft mission. The antenna system consists of a large spherical reflector and an array of feed horns along a concentric circular arc in front of the reflector. The reflector antenna was sized to simultaneously produce 200 contiguous 1 km diameter footprints with an overall beam efficiency of 90 percent, and the feed horns and feed horn array were designed to monitor the radiation from the footprints.

  2. Electromagnetically induced absorption in a three-resonator metasurface system

    PubMed Central

    Zhang, Xueqian; Xu, Ningning; Qu, Kenan; Tian, Zhen; Singh, Ranjan; Han, Jiaguang; Agarwal, Girish S.; Zhang, Weili

    2015-01-01

    Mimicking the quantum phenomena in metamaterials through coupled classical resonators has attracted enormous interest. Metamaterial analogs of electromagnetically induced transparency (EIT) enable promising applications in telecommunications, light storage, slow light and sensing. Although the EIT effect has been studied extensively in coupled metamaterial systems, excitation of electromagnetically induced absorption (EIA) through near-field coupling in these systems has only been sparsely explored. Here we present the observation of the EIA analog due to constructive interference in a vertically coupled three-resonator metamaterial system that consists of two bright and one dark resonator. The absorption resonance is one of the collective modes of the tripartite unit cell. Theoretical analysis shows that the absorption arises from a magnetic resonance induced by the near-field coupling of the three resonators within the unit cell. A classical analog of EIA opens up opportunities for designing novel photonic devices for narrow-band filtering, absorptive switching, optical modulation, and absorber applications. PMID:26023061

  3. Systemic Effects of Electromagnetic Fields in Patients with Myocardial Infarction

    NASA Astrophysics Data System (ADS)

    Cañedo-Dorantes, L.; Valle, L.; Uruchurtu, E.; Medel, A.; García-Mayen, F.; Serrano-Luna, G.

    2003-09-01

    Healing of acute myocardial infarction (AMI) is associated with inflammatory response, which promotes healing and scar formation. Activation of a local inflammatory response in patients with sequel of AMI could have an important role to enhance angiogenesis and regeneration of hibernating myocardial tissue. Chronic arterial leg ulcers have a similar etiology, and healing has been promoted by exposure to extremely low frequency electromagnetic fields (ELF). We report the evolution of three AMI patients with sequel of AMI that were exposed to ELF.

  4. [Changes in the brain spontaneous bioelectrical activity during transcranial electrical and electromagnetic stimulation].

    PubMed

    Sharova, E V; Mel'nikov, A V; Novikova, M R; Kulikov, M A; Grechenko, T N; Shekhter, E D; Zaslavskiĭ, A Iu

    2006-01-01

    In order to study systemic brain reactions on transcranial electrical or electromagnetic medical stimulation and specify the neurophysiological criteria of its efficiency, comparative clinical and experimental examination was performed with the analysis of spontaneous bioelectric activity and behavioral or clinical parameters. We examined 6 patients with prolonged posttraumatic unconsciousness states treated with electrical stimulation and 17 intact Wistar rats subjected to electromagnetic stimulation of the brain. The effect of the transcranial stimulation was shown to depend on the initial level of the intercentral interactions of brain bioelectrical activity, estimated by the EEG coherence. Hypersynchronization of biopotentials as the main element of the brain reactivity can be the most useful for the rehabilitation of patients with cerebral pathology in cases of initially lowered level of the intercentral interactions in the absence of pathologically strengthened functional connections.

  5. Regulation of confining liquid for cement systems properties by means of electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Gorlenko, N. P.; Laptev, B. I.; Sarkisov, Ju S.; Sidorenko, G. N.; Kulchenko, A. K.; Minakova, T. S.

    2015-01-01

    The paper studies theoretical aspects of methods for electrochemical, electromagnetic, magnetic activation of water as a confining liquid for cement systems. The ideas about processes of water structural organization are shown to be the basis for one of possible mechanisms of activating impact. Experimental data for electric conductivity, electric capacity on the example of distilled water treatment by means of magnetic field which confirm the change of water structure have been presented.

  6. A 1152 channel timing system for an electromagnetic calorimeter readout

    NASA Astrophysics Data System (ADS)

    Bonesini, M.; Bonvin, E.; Booth, P. S. L.; Carroll, L. J.; Cass, A. J.; Cavalli, D.; Cecchet, G.; Costa, G.; Donnat, M.; Dorsaz, P. A.; Edwards, D. N.; Fischer, J. R.; Fluri, L.; Frame, D.; Gianotti, F.; Jack, S.; Jackson, J. N.; Kelly, M.; Kienzle-Focacci, M. N.; Lucock, R.; Lynch, J. G.; Mandelli, L.; Martin, M.; Mathys, L.; Maxwell, A.; Mazzanti, M.; Myerscough, J. J.; Negus, P. J.; Pensotti-Rancoita, S.; Perini, L.; Perrin, D.; Range, W. H.; Rosselet, L.; Rutschmann, J.; Snow, S. W.; Tamborini, M.; Thompson, A. S.; Turnbull, R. M.; Wells, J.; Werlen, M.

    1988-01-01

    A 1152 channel timing system used with a large electromagnetic calorimeter is described. Analysis of the timing information from the vertical and horizontal elements of the calorimeter yielded values for the position coordinates of the showers. This information was used to resolve ambiguities in the pattern recognition arising from multiple showers. A resolution of better than 0.25 ns for all channels was achieved. The calibration methods employed to maintain this resolution over several years are discussed.

  7. A review on Electromagnetic fields (EMFs) and the reproductive system.

    PubMed

    Asghari, Ali; Khaki, Amir Afshin; Rajabzadeh, Asghar; Khaki, Arash

    2016-07-01

    Environmental factors, such as electromagnetic waves, induce biological and genetic effects. One of the most important physiological systems involved with electromagnetic fields (EMFs) is the genital system. This paper reviews the effects of EMFs on human reproductive organs, female animals, fetus development and the importance of two types of natural antioxidants, i.e., vitamin E and fennel. The studies presented in this review referred to the effects of different exposures to EMFs on the reproductive system, and we tried to show the role of natural antioxidants in reducing the effects of the exposures. Many studies have been done on the effects of ionizing and non-ionizing electromagnetic waves on the cell line of spermatogenesis, sexual hormones, and the structure of the testes. Also, about the hormonal cycle, folliculogenesis and female infertility related to EMF have been given more consideration. In particular, attention is directed to pregnant women due to the importance of their fetuses. However, in addition to the studies conducted on animals, further epidemiological research should be conducted. PMID:27648194

  8. A review on Electromagnetic fields (EMFs) and the reproductive system

    PubMed Central

    Asghari, Ali; Khaki, Amir Afshin; Rajabzadeh, Asghar; Khaki, Arash

    2016-01-01

    Environmental factors, such as electromagnetic waves, induce biological and genetic effects. One of the most important physiological systems involved with electromagnetic fields (EMFs) is the genital system. This paper reviews the effects of EMFs on human reproductive organs, female animals, fetus development and the importance of two types of natural antioxidants, i.e., vitamin E and fennel. The studies presented in this review referred to the effects of different exposures to EMFs on the reproductive system, and we tried to show the role of natural antioxidants in reducing the effects of the exposures. Many studies have been done on the effects of ionizing and non-ionizing electromagnetic waves on the cell line of spermatogenesis, sexual hormones, and the structure of the testes. Also, about the hormonal cycle, folliculogenesis and female infertility related to EMF have been given more consideration. In particular, attention is directed to pregnant women due to the importance of their fetuses. However, in addition to the studies conducted on animals, further epidemiological research should be conducted.

  9. A 16 MJ compact pulsed power system for electromagnetic launch

    NASA Astrophysics Data System (ADS)

    Dai, Ling; Zhang, Qin; Zhong, Heqing; Lin, Fuchang; Li, Hua; Wang, Yan; Su, Cheng; Huang, Qinghua; Chen, Xu

    2015-07-01

    This paper has established a compact pulsed power system (PPS) of 16 MJ for electromagnetic rail gun. The PPS consists of pulsed forming network (PFN), chargers, monitoring system, and current junction. The PFN is composed of 156 pulse forming units (PFUs). Every PFU can be triggered simultaneously or sequentially in order to obtain different total current waveforms. The whole device except general control table is divided into two frameworks with size of 7.5 m × 2.2 m × 2.3 m. It is important to estimate the discharge current of PFU accurately for the design of the whole electromagnetic launch system. In this paper, the on-state characteristics of pulse thyristor have been researched to improve the estimation accuracy. The on-state characteristics of pulse thyristor are expressed as a logarithmic function based on experimental data. The circuit current waveform of the single PFU agrees with the simulating one. On the other hand, the coaxial discharge cable is a quick wear part in PFU because the discharge current will be up to dozens of kA even hundreds of kA. In this article, the electromagnetic field existing in the coaxial cable is calculated by finite element method. On basis of the calculation results, the structure of cable is optimized in order to improve the limit current value of the cable. At the end of the paper, the experiment current wave of the PPS with the load of rail gun is provided.

  10. A review on Electromagnetic fields (EMFs) and the reproductive system.

    PubMed

    Asghari, Ali; Khaki, Amir Afshin; Rajabzadeh, Asghar; Khaki, Arash

    2016-07-01

    Environmental factors, such as electromagnetic waves, induce biological and genetic effects. One of the most important physiological systems involved with electromagnetic fields (EMFs) is the genital system. This paper reviews the effects of EMFs on human reproductive organs, female animals, fetus development and the importance of two types of natural antioxidants, i.e., vitamin E and fennel. The studies presented in this review referred to the effects of different exposures to EMFs on the reproductive system, and we tried to show the role of natural antioxidants in reducing the effects of the exposures. Many studies have been done on the effects of ionizing and non-ionizing electromagnetic waves on the cell line of spermatogenesis, sexual hormones, and the structure of the testes. Also, about the hormonal cycle, folliculogenesis and female infertility related to EMF have been given more consideration. In particular, attention is directed to pregnant women due to the importance of their fetuses. However, in addition to the studies conducted on animals, further epidemiological research should be conducted.

  11. A review on Electromagnetic fields (EMFs) and the reproductive system

    PubMed Central

    Asghari, Ali; Khaki, Amir Afshin; Rajabzadeh, Asghar; Khaki, Arash

    2016-01-01

    Environmental factors, such as electromagnetic waves, induce biological and genetic effects. One of the most important physiological systems involved with electromagnetic fields (EMFs) is the genital system. This paper reviews the effects of EMFs on human reproductive organs, female animals, fetus development and the importance of two types of natural antioxidants, i.e., vitamin E and fennel. The studies presented in this review referred to the effects of different exposures to EMFs on the reproductive system, and we tried to show the role of natural antioxidants in reducing the effects of the exposures. Many studies have been done on the effects of ionizing and non-ionizing electromagnetic waves on the cell line of spermatogenesis, sexual hormones, and the structure of the testes. Also, about the hormonal cycle, folliculogenesis and female infertility related to EMF have been given more consideration. In particular, attention is directed to pregnant women due to the importance of their fetuses. However, in addition to the studies conducted on animals, further epidemiological research should be conducted. PMID:27648194

  12. A 16 MJ compact pulsed power system for electromagnetic launch.

    PubMed

    Dai, Ling; Zhang, Qin; Zhong, Heqing; Lin, Fuchang; Li, Hua; Wang, Yan; Su, Cheng; Huang, Qinghua; Chen, Xu

    2015-07-01

    This paper has established a compact pulsed power system (PPS) of 16 MJ for electromagnetic rail gun. The PPS consists of pulsed forming network (PFN), chargers, monitoring system, and current junction. The PFN is composed of 156 pulse forming units (PFUs). Every PFU can be triggered simultaneously or sequentially in order to obtain different total current waveforms. The whole device except general control table is divided into two frameworks with size of 7.5 m × 2.2 m × 2.3 m. It is important to estimate the discharge current of PFU accurately for the design of the whole electromagnetic launch system. In this paper, the on-state characteristics of pulse thyristor have been researched to improve the estimation accuracy. The on-state characteristics of pulse thyristor are expressed as a logarithmic function based on experimental data. The circuit current waveform of the single PFU agrees with the simulating one. On the other hand, the coaxial discharge cable is a quick wear part in PFU because the discharge current will be up to dozens of kA even hundreds of kA. In this article, the electromagnetic field existing in the coaxial cable is calculated by finite element method. On basis of the calculation results, the structure of cable is optimized in order to improve the limit current value of the cable. At the end of the paper, the experiment current wave of the PPS with the load of rail gun is provided. PMID:26233401

  13. Electromagnetic pulse research on electric power systems: Program summary and recommendations. Power Systems Technology Program

    SciTech Connect

    Barnes, P.R.; McConnell, B.W.; Van Dyke, J.W.; Tesche, F.M.; Vance, E.F.

    1993-01-01

    A single nuclear detonation several hundred kilometers above the central United States will subject much of the nation to a high-altitude electromagnetic pulse (BENT). This pulse consists of an intense steep-front, short-duration transient electromagnetic field, followed by a geomagnetic disturbance with tens of seconds duration. This latter environment is referred to as the magnetohydrodynamic electromagnetic pulse (NMENT). Both the early-time transient and the geomagnetic disturbance could impact the operation of the nation`s power systems. Since 1983, the US Department of Energy has been actively pursuing a research program to assess the potential impacts of one or more BENT events on the nation`s electric energy supply. This report summarizes the results of that program and provides recommendations for enhancing power system reliability under HENT conditions. A nominal HENP environment suitable for assessing geographically large systems was developed during the program and is briefly described in this report. This environment was used to provide a realistic indication of BEMP impacts on electric power systems. It was found that a single high-altitude burst, which could significantly disturb the geomagnetic field, may cause the interconnected power network to break up into utility islands with massive power failures in some areas. However, permanent damage would be isolated, and restoration should be possible within a few hours. Multiple bursts would likely increase the blackout areas, component failures, and restoration time. However, a long-term blackout of many months is unlikely because major power system components, such as transformers, are not likely to be damaged by the nominal HEND environment. Moreover, power system reliability, under both HENT and normal operating conditions, can be enhanced by simple, and often low cost, modifications to current utility practices.

  14. Electromagnetic interference filter for automotive electrical systems

    DOEpatents

    Herron, Nicholas Hayden; Carlson, Douglas S; Tang, David; Korich, Mark D

    2013-07-02

    A filter for an automotive electrical system includes a substrate having first and second conductive members. First and second input terminals are mounted to the substrate. The first input terminal is electrically connected to the first conductive member, and the second input terminal is electrically connected to the second conductive member. A plurality of capacitors are mounted to the substrate. Each of the capacitors is electrically connected to at least one of the first and second conductive members. First and second power connectors are mounted to the substrate. The first power connector is electrically connected to the first conductive member, and the second power connector is electrically connected to the second conductive member. A common mode choke is coupled to the substrate and arranged such that the common mode choke extends around at least a portion of the substrate and the first and second conductive members.

  15. Using the TSAR electromagnetic modeling system

    NASA Astrophysics Data System (ADS)

    Pennock, S. T.; Laguna, G. W.

    1993-09-01

    A new user, upon receipt of the TSAR EM modeling system, may be overwhelmed by the number of software packages to learn and the number of manuals associated with those packages. This is a document to describe the creation of a simple TSAR model, beginning with an MGED solid and continuing the process through final results from TSAR. It is not intended to be a complete description of all the parts of the TSAR package. Rather, it is intended simply to touch on all the steps in the modeling process and to take a new user through the system from start to finish. There are six basic parts to the TSAR package. The first, MGED, is part of the BRL-CAD package and is used to create a solid model. The second part, ANASTASIA, is the program used to sample the solid model and create a finite-difference mesh. The third program, IMAGE, lets the user view the mesh itself and verify its accuracy. If everything about the mesh is correct, the process continues to the fourth step, SETUP-TSAR, which creates the parameter files for compiling TSAR and the input file for running a particular simulation. The fifth step is actually running TSAR, the field modeling program. Finally, the output from TSAR is placed into SIG, B2RAS or another program for post-processing and plotting. Each of these steps will be described below. The best way to learn to use the TSAR software is to actually create and run a simple test problem. As an example of how to use the TSAR package, let's create a sphere with a rectangular internal cavity, with conical and cylindrical penetrations connecting the outside to the inside, and find the electric field inside the cavity when the object is exposed to a Gaussian plane wave. We will begin with the solid modeling software, MGED, a part of the BRL-CAD modeling release.

  16. Structures, systems and methods for harvesting energy from electromagnetic radiation

    DOEpatents

    Novack, Steven D.; Kotter, Dale K.; Pinhero, Patrick J.

    2011-12-06

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  17. Electromagnetic interference assessment of an ion drive electric propulsion system

    NASA Technical Reports Server (NTRS)

    Whittlesey, A. C.

    1979-01-01

    The electromagnetic interference (EMI) form elements of an ion drive electric propulsion system was analyzed, and the effects of EMI interaction with a typical interplanetary spacecraft engineering and scientific subsystems were predicted. SEMCAP, a computerized electromagnetic compatibility assessment code, was used to analyze the impact of EMI noise sources on 65 engineering/telemetry circuits and 48 plasma wave and planetary radio astronomy channels measuring over the range of 100 Hz to 40 MHz in a spacecraft of the Voyager type; manual methods were used to evaluate electrostatics, magnetics, and communications effects. Results indicate that some conducted and radiated spectra are in excess of electromagnetic compatibility specification limits; direct design changes may be required for filtering and shielding of thrust system elements. The worst source of broadband radiated noise appears to be the power processor. The magnetic field necessary to thruster operation is equivalent to about 18 amp-sq m per amp of beam current at right angles to the axis caused by the neutralizer/plume loop.

  18. Effect exerted by a radio wave electromagnetic field on the rheological properties of water and portland-cement systems

    NASA Astrophysics Data System (ADS)

    Azharonok, V. V.; Belous, N. Kh.; Rodtsevich, S. P.; Koshevar, V. D.; Shkadretsova, V. G.; Goncharik, S. V.; Chubrik, N. I.; Orlovich, A. I.

    2013-09-01

    We have studied the effect of the regimes of high-frequency (radio wave) electromagnetic treatment of gauging water on the process of structurization and on the technological characteristics of portland-cement systems. It has been established that the radio wave electromagnetic activation of water leads to a reduction in its surface tension, dynamic viscosity, and shear stress, as well as intensifies the formation of coagulation structures in a portlandcement slurry and aids in increasing the mobility of cement-sand mixtures.

  19. A. A. Ukhtomskii's dominance principle of brain activity in the perception of electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Kholodov, Yu. A.

    1994-01-01

    Preliminary instruction of the subject plays an important role in the perception of weak electromagnetic fields acting on the hand. Active attention to a potential effect amplifies a brain state that can be called caution dominance and arises spontaneously with a “placebo” or an electromagnetic field. The radar principle of brain operation is discussed among the physiological mechanisms through which electromagnetic fields act on an organism.

  20. A. A. Ukhtomskii`s dominance principle of brain activity in the perception of electromagnetic fields

    SciTech Connect

    Kholodov, Yu.A.

    1994-07-01

    Preliminary instruction of the subject plays an important role in the perception of weak electromagnetic fields acting on the hand. Active attention to a potential effect amplifies a brain state that can be called caution dominance and arises spontaneously with a {open_quotes}placebo{close_quotes} or an electromagnetic field. The radar principle of brain operation is discussed among the physiological mechanisms through which electromagnetic fields act on an organism.

  1. Surface moisture measurement system electromagnetic induction probe calibration technique

    SciTech Connect

    Crowe, R.D., Westinghouse Hanford

    1996-07-08

    The Surface Moisture Measurement System (SMMS) is designed to measure the moisture concentration near the surfaces of the wastes located in the Hanford Site tank farms. This document describes a calibration methodology to demonstrate that the Electromagnetic Induction (EMI) moisture probe meets relevant requirements in the `Design Requirements Document (DRD) for the Surface Moisture Measurement System.` The primary purpose of the experimental tests described in this methodology is to make possible interpretation of EMI in-tank surface probe data to estimate the surface moisture.

  2. Androgynous, Reconfigurable Closed Loop Feedback Controlled Low Impact Docking System With Load Sensing Electromagnetic Capture Ring

    NASA Technical Reports Server (NTRS)

    Lewis, James L. (Inventor); Carroll, Monty B. (Inventor); Morales, Ray H. (Inventor); Le, Thang D. (Inventor)

    2002-01-01

    The present invention relates to a fully androgynous, reconfigurable closed loop feedback controlled low impact docking system with load sensing electromagnetic capture ring. The docking system of the present invention preferably comprises two Docking- assemblies, each docking assembly comprising a load sensing ring having an outer face, one of more electromagnets, one or more load cells coupled to said load sensing ring. The docking assembly further comprises a plurality of actuator arms coupled to said load sensing ring and capable of dynamically adjusting the orientation of said load sensing ring and a reconfigurable closed loop control system capable of analyzing signals originating from said plurality of load cells and of outputting real time control for each of the actuators. The docking assembly of the present invention incorporates an active load sensing system to automatically dynamically adjust the load sensing ring during capture instead of requiring significant force to push and realign the ring.

  3. Renewable Energy, Photovoltaic Systems Near Airfields. Electromagnetic Interference

    SciTech Connect

    Deline, Chris; Dann, Geoff

    2015-04-01

    Recent increases in photovoltaic (PV) systems on Department of the Navy (DON) land and potential siting near airfields prompted Commander, Naval Installations Command to fund the Naval Facilities Engineering Command to evaluate the impact of electromagnetic interference (EMI) from PV systems on airfield electronic equipment. Naval Facilities Engineering and Expeditionary Warfare Center tasked Department of Energy National Renewable Energy laboratory (NREL) to conduct the assessment. PV systems often include high-speed switching semiconductor circuits to convert the voltage produced by the PV arrays to the voltage needed by the end user. Switching circuits inherently produce electromagnetic radiation at harmonics of the switching frequency. In this report, existing literature is summarized and tests to measure emissions and mitigation methods are discussed. The literature shows that the emissions from typical PV systems are low strength and unlikely to cause interference to most airfield electronic systems. With diligent procurement and siting of PV systems, including specifications for FCC Part 15 Class A compliant equipment and a 250-foot setback from communication equipment, NREL anticipates little to no EMI impact on nearby communications or telemetry equipment.

  4. Electromagnetic Pumps for Conductive-Propellant Feed Systems

    NASA Technical Reports Server (NTRS)

    Markusic, T. E.; Polzin, K. A.

    2005-01-01

    There has been a recent, renewed interest in high-power electric thrusters for application in nuclear-electric propulsion systems. Two of the most promising thrusters utilize liquid metal propellants: the lithium-fed magnetoplasmadynamic thruster and the bismuth-fed Hall thruster. An important element of part of the maturation of these thrusters will be the development of compact, reliable conductive-propellant feed system components. In the present paper we provide design considerations and experimental calibration data for electromagnetic (EM) pumps. The role of an electromagnetic pump in a liquid metal feed system is to establish a pressure gradient between the propellant reservoir and the thruster - to establish the requisite mass flow rate. While EM pumps have previously been used to a limited extent in nuclear reactor cooling loops, they have never been implemented in electric propulsion (EP) systems. The potential benefit of using EM pumps for EP are reliability (no moving parts) and the ability to precisely meter the propellant flow rate. We have constructed and tested EM pumps that use gallium, lithium, and bismuth propellants. Design details, test results (pressure developed versus current), and material compatibility issues are reported. It is concluded that EM pumps are a viable technology for application in both laboratory and flight EP conductive-propellant feed systems.

  5. Characteristic parameters of electromagnetic signals from a human heart system

    NASA Astrophysics Data System (ADS)

    Liu, Xin-Yuan; Pei, Liu-Qing; Wang, Yin; Zhang, Su-Ming; Gao, Hong-Lei; Dai, Yuan-Dong

    2011-04-01

    The electromagnetic field of a human heart system is a bioelectromagnetic field. Electrocardiography (ECG) and magnetocardiography (MCG) are both carriers of electromagnetic information about the cardiac system, and they are nonstationary signals. In this study, ECG and MCG data from healthy subjects are acquired; the MCG data are captured using a high-Tc radio frequency superconducting quantum interference device (HTc rf SQUIDs) and the QRS complexes in these data are analysed by the evolutionary spectrum analysis method. The results show that the quality factor Q and the central frequency fz of the QRS complex evolutionary spectrum are the characteristic parameters (CHPs) of ECG and MCG in the time—frequency domain. The confidence intervals of the mean values of the CHPs are estimated by the Student t distribution method in mathematical statistics. We believe that there are threshold ranges of the mean values of Q and fz for healthy subjects. We have postulated the following criterion: if the mean values of CHPs are in the proper ranges, the cardiac system is in a normal condition and it possesses the capability of homeostasis. In contrast, if the mean values of the CHPs do not lie in the proper ranges, the homeostasis of the cardiac system is lacking and some cardiac disease may follow. The results and procedure of MCG CHPs in the study afford a technological route for the application of HTc rf SQUIDs in cardiology.

  6. Numerical predictions of EML (electromagnetic launcher) system performance

    SciTech Connect

    Schnurr, N.M.; Kerrisk, J.F.; Davidson, R.F.

    1987-01-01

    The performance of an electromagnetic launcher (EML) depends on a large number of parameters, including the characteristics of the power supply, rail geometry, rail and insulator material properties, injection velocity, and projectile mass. EML system performance is frequently limited by structural or thermal effects in the launcher (railgun). A series of computer codes has been developed at the Los Alamos National Laboratory to predict EML system performance and to determine the structural and thermal constraints on barrel design. These codes include FLD, a two-dimensional electrostatic code used to calculate the high-frequency inductance gradient and surface current density distribution for the rails; TOPAZRG, a two-dimensional finite-element code that simultaneously analyzes thermal and electromagnetic diffusion in the rails; and LARGE, a code that predicts the performance of the entire EML system. Trhe NIKE2D code, developed at the Lawrence Livermore National Laboratory, is used to perform structural analyses of the rails. These codes have been instrumental in the design of the Lethality Test System (LTS) at Los Alamos, which has an ultimate goal of accelerating a 30-g projectile to a velocity of 15 km/s. The capabilities of the individual codes and the coupling of these codes to perform a comprehensive analysis is discussed in relation to the LTS design. Numerical predictions are compared with experimental data and presented for the LTS prototype tests.

  7. Fault detection in electromagnetic suspension systems with state estimation methods

    SciTech Connect

    Sinha, P.K.; Zhou, F.B.; Kutiyal, R.S. . Dept. of Engineering)

    1993-11-01

    High-speed maglev vehicles need a high level of safety that depends on the whole vehicle system's reliability. There are many ways of attaining high reliability for the system. Conventional method uses redundant hardware with majority vote logic circuits. Hardware redundancy costs more, weigh more and occupy more space than that of analytically redundant methods. Analytically redundant systems use parameter identification and state estimation methods based on the system models to detect and isolate the fault of instruments (sensors), actuator and components. In this paper the authors use the Luenberger observer to estimate three state variables of the electromagnetic suspension system: position (airgap), vehicle velocity, and vertical acceleration. These estimates are compared with the corresponding sensor outputs for fault detection. In this paper, they consider FDI of the accelerometer, the sensor which provides the ride quality.

  8. Electromagnetic Pumps for Conductive-Propellant Feed Systems

    NASA Technical Reports Server (NTRS)

    Markusic, Thomas E.; Polzin, Kurt A.; Dehoyos, Amado

    2005-01-01

    Prototype electromagnetic pumps for use with lithium and bismuth propellants were constructed and tested. Such pumps may be used to pressurize future electric propulsion liquid metal feed systems, with the primary advantages being the compactness and simplicity versus alternative pressurization technologies. Design details for two different pumps are described: the first was designed to withstand (highly corrosive) lithium propellant, and t he second was designed to tolerate the high temperature required to pump liquid bismuth. Both qualitative and quantitative test results are presented. Open-loop tests demonstrated the capability of each device to electromagnetically pump its design propellant (lithium or bismuth). A second set of tests accurately quantified the pump pressure developed as a function of current. These experiments, which utilized a more easily handled material (gallium), demonstrated continuously-adjustable pump pressure levels ranging from 0-100 Torr for corresponding input current levels of 0-75 A. While the analysis and testing in this study specifically targeted lithium and bismuth propellants, the underlying design principles should be useful in implementing liquid metal pumps in any conductive-propellant feed system.

  9. Electromagnetic system for the management of the output power of the carbon dioxide laser

    NASA Astrophysics Data System (ADS)

    Martsinukov, S. A.; Kostrin, D. K.; Chernigovskiy, V. V.; Lisenkov, A. A.

    2016-07-01

    The methods to control the output power of the gas-discharge lasers are shown. An electromagnetic system for the management of the output power of the carbon dioxide laser is described. The results of calculation and modeling of the magnetic field in the working gap of the electromagnetic system are presented. Experimental studies on the distribution of magnetic induction in the electromagnetic system are carried out.

  10. System overview on electromagnetic compensation for reflector antenna surface distortion

    NASA Technical Reports Server (NTRS)

    Acosta, R. J.; Zaman, A. J.; Terry, J. D.

    1993-01-01

    The system requirements and hardware implementation for electromagnetic compensation of antenna performance degradations due to thermal effects was investigated. Future commercial space communication antenna systems will utilize the 20/30 GHz frequency spectrum and support very narrow multiple beams (0.3 deg) over wide angle field of view (15-20 beamwidth). On the ground, portable and inexpensive very small aperture terminals (VSAT) for transmitting and receiving video, facsimile and data will be employed. These types of communication system puts a very stringent requirement on spacecraft antenna beam pointing stability (less than .01 deg), high gain (greater than 50 dB) and very lowside lobes (less than -25 dB). Thermal analysis performed on the advanced communication technology satellite (ACTS) has shown that the reflector surfaces, the mechanical supporting structures and metallic surfaces on the spacecraft body will distort due thermal effects from a varying solar flux. The antenna performance characteristics (e.g., pointing stability, gain, side lobe, etc.) will degrade due to thermal distortion in the reflector surface and supporting structures. Specifically, antenna RF radiation analysis has shown that pointing error is the most sensitive antenna performance parameter to thermal distortions. Other antenna parameters like peak gain, cross polarization level (beam isolation), and side lobe level will also degrade with thermal distortions. In order to restore pointing stability and in general antenna performance several compensation methods were proposed. In general these compensation methods can be classified as being either of mechanical or electromagnetic type. This paper will address only the later one. In this approach an adaptive phased array antenna feed is used to compensate for the antenna performance degradation. Extensive work has been devoted to demonstrate the feasibility of adaptive feed compensation on space communication antenna systems. This

  11. Electromagnetic design of magneto-rheological mount and its open-loop semi-active control

    NASA Astrophysics Data System (ADS)

    Zheng, Ling; Li, Yinong; Deng, Zhaoxue

    2009-07-01

    Magneto-Rheological mount is a new type of semi-active and intelligent vibration isolator. It can adjust damping to reduce unwanted vibration from engine by supplying required input currents. The performance of Magneto-Rheological (MR) mount is much better than the conventional rubber mount or hydraulic mount due to its controllability and flexibility. In this paper, a novel MR engine mount with the flow mode-type for a sedan is devised, manufactured and characterized. Some important parameters are optimized to meet the requirements of MR mount by using Electromagnetic design methodology.. Electromagnetic finite element analysis verifies the effectiveness of the magnetic circuit design. The dynamic performances of MR engine mount in frequency domain are investigated experimentally. The results show that the dynamic stiffness and phase lag of MR engine mount can change continuously. They are frequency-dependent. In additional, a open-loop control strategy based on engine rotational speed measurement is proposed and the control system is performed in hardware and software. The experimental and theoretical results identified the effectiveness of such a semi-active vibration isolation system.

  12. Study on coupled shock absorber system using four electromagnetic dampers

    NASA Astrophysics Data System (ADS)

    Fukumori, Y.; Hayashi, R.; Okano, H.; Suda, Y.; Nakano, K.

    2016-09-01

    Recently, the electromagnetic damper, which is composed of an electric motor, a ball screw, and a nut, was proposed. The electromagnetic damper has high responsiveness, controllability, and energy saving performance. It has been reported that it improved ride comfort and drivability. In addition, the authors have proposed a coupling method of two electromagnetic dampers. The method enables the characteristics of bouncing and rolling or pitching motion of a vehicle to be tuned independently. In this study, the authors increase the number of coupling of electromagnetic dampers from two to four, and propose a method to couple four electromagnetic dampers. The proposed method enables the characteristics of bouncing, rolling and pitching motion of a vehicle to be tuned independently. Basic experiments using proposed circuit and motors and numerical simulations of an automobile equipped with the proposed coupling electromagnetic damper are carried out. The results indicate the proposed method is effective.

  13. Nonresonant interaction of ultrashort electromagnetic pulses with multilevel quantum systems

    NASA Technical Reports Server (NTRS)

    Belenov, E.; Isakov, V.; Nazarkin, A.

    1994-01-01

    Some features of the excitation of multilevel quantum systems under the action of electromagnetic pulses which are shorter than the inverse frequency of interlevel transitions are considered. It is shown that the interaction is characterized by a specific type of selectivity which is not connected with the resonant absorption of radiation. The simplest three-level model displays the inverse population of upper levels. The effect of an ultrashort laser pulse on a multilevel molecule was regarded as an instant reception of the oscillation velocity by the oscillator and this approach showed an effective excitation and dissociation of the molecule. The estimations testify to the fact that these effects can be observed using modern femtosecond lasers.

  14. Electromagnetic Sensor-Guided Enteral Access Systems: A Literature Review.

    PubMed

    Smithard, David; Barrett, Nicholas A; Hargroves, David; Elliot, Stuart

    2015-06-01

    Enteral feeding is the nutritional support of choice for acutely ill patients with functional gastrointestinal tracts who are unable to swallow. Several benefits including reduced mortality and length of hospital stay have been associated with early initiation of enteral feeding. However, misplacement of conventional nasoenteric tubes is relatively common and can result in complications including pneumothorax. In addition, the need to confirm the position by X-ray can delay the start of using the tube. Eliminating these delays can help patients start feeding, and minimise the adverse impact on initiating hydration and medication. The purpose of this review was to critically examine whether electromagnetic sensor-guided enteral access systems (EMS-EAS) can help overcome the challenges of conventional nasoenteric feeding tube placement and confirmation. The Royal Society of Medicine's library performed two searches on Medline (1946-March 2014) and Embase (1947-March 2014) covering all papers on Cortrak or electromagnetic or magnetic guidance systems for feeding tubes in adults. Results from the literature search found an agreement between the radiographic and EMS-EAS confirmation of placement. EMS-EAS virtually eliminated the risk of misplacement and pneumothorax was not reported. In addition, studies showed a small decrease in the number of X-rays with EMS-EAS and a reduced average time to start feeding compared with blind placement. This review suggests that EMS-EAS reduces several complications associated with the misplacement of nasoenteric feeding tubes, and that there could be considerable improvements in mortality, morbidity, patient experience and cost if EMS-EAS is used instead of conventional methods.

  15. Electromagnetic Structure of Few-Nucleon Systems: a Critical Review

    SciTech Connect

    R. Schiavilla

    2000-10-01

    Our current understanding of the structure of nuclei with up to A=8, including energy spectra, electromagnetic form factors, and capture reactions, is critically reviewed within the context of a realistic approach to nuclear dynamics based on two- and three-nucleon interactions and associated electromagnetic currents.

  16. Measurement and control systems for an imaging electromagnetic flow metre.

    PubMed

    Zhao, Y Y; Lucas, G; Leeungculsatien, T

    2014-03-01

    Electromagnetic flow metres based on the principles of Faraday's laws of induction have been used successfully in many industries. The conventional electromagnetic flow metre can measure the mean liquid velocity in axisymmetric single phase flows. However, in order to achieve velocity profile measurements in single phase flows with non-uniform velocity profiles, a novel imaging electromagnetic flow metre (IEF) has been developed which is described in this paper. The novel electromagnetic flow metre which is based on the 'weight value' theory to reconstruct velocity profiles is interfaced with a 'Microrobotics VM1' microcontroller as a stand-alone unit. The work undertaken in the paper demonstrates that an imaging electromagnetic flow metre for liquid velocity profile measurement is an instrument that is highly suited for control via a microcontroller.

  17. Development of a frequency-domain electromagnetic scattering measurement system

    NASA Astrophysics Data System (ADS)

    Oh, Kenneth K.

    1993-12-01

    This thesis describes the development of a system for measuring frequency-domain scattered fields in the Transient Electromagnetic Scattering Range at the Naval Postgraduate School. The new system employs a stepped-frequency CW waveform and utilizes an HP-8510B network analyzer as an RF front-end and a coherent receiver. A pair of AEL H1498 antennas was installed to cover a frequency range of 2 GHz to 18 GHz. An HP-82300C BASIC Language Processor was installed on a COMPAQ Deskpro-386 PC, and an HP-BASIC program was developed for remote control of the HP-8510B with data acquisition over the HPIB bus. A post-processing algorithm was created using MatLab for background subtraction, calibration, and deconvolution. A set of RCS measurements was made using various size spheres, and the postprocessing outputs were compared to computed values. Good agreement between these measurements and computed data indicates excellent accuracy of the measurement system and valid operations of the postprocessing algorithm.

  18. Electromagnetic mixed waste processing system for asbestos decontamination

    SciTech Connect

    Kasevich, R.S.; Vaux, W.; Ulerich, N.; Nocito, T.

    1996-12-31

    The overall objective of this three-phase program is to develop an integrated process for treating asbestos-containing material that is contaminated with radioactive and hazardous constituents. The integrated process will attempt to minimize processing and disposal costs. The objectives of Phase 1 were to establish the technical feasibility of asbestos decomposition, inorganic radionuclide nd heavy metal removal, and organic volatilization. Phase 1 resulted in the successful bench-scale demonstration of the elements required to develop a mixed waste treatment process for asbestos-containing material (ACM) contaminated with radioactive metals, heavy metals, and organics. Using the Phase 1 data, a conceptual process was developed. The Phase 2 program, currently in progress, is developing an integrated system design for ACM waste processing. The Phase 3 program will target demonstration of the mixed waste processing system at a DOE facility. The electromagnetic mixed waste processing system employs patented technologies to convert DOE asbestos to a non-hazardous, radionuclide-free, stable waste. The dry, contaminated asbestos is initially heated with radiofrequency energy to remove organic volatiles. Second,the radionuclides are removed by solvent extraction coupled with ion exchange solution treatment. Third, the ABCOV method converts the asbestos to an amorphous silica suspension at low temperature (100{degrees}C). Finally the amorphous silica is solidified for disposal.

  19. Upset susceptibility study employing circuit analysis and digital simulation. [digital systems and electromagnetic interference

    NASA Technical Reports Server (NTRS)

    Carreno, V. A.

    1984-01-01

    An approach to predict the susceptibility of digital systems to signal disturbances is described. Electrical disturbances on a digital system's input and output lines can be induced by activities and conditions including static electricity, lightning discharge, electromagnetic interference (EMI), and electromagnetic pulsation (EMP). The electrical signal disturbances employed for the susceptibility study were limited to nondestructive levels, i.e., the system does not sustain partial or total physical damage and reset and/or reload brings the system to an operational status. The front-end transition from the electrical disturbances to the equivalent digital signals was accomplished by computer-aided circuit analysis. The super-sceptre (system for circuit evaluation of transient radiation effects) programs was used. Gate models were developed according to manufacturers' performance specifications and parameters resulting from construction processes characteristic of the technology. Digital simulation at the gate and functional level was employed to determine the impact of the abnormal signals on system performance and to study the propagation characteristics of these signals through the system architecture. Example results are included for an Intel 8080 processor configuration.

  20. Electromagnetic field effects on cells of the immune system: The role of calcium signalling

    SciTech Connect

    Walleczek, J.

    1991-07-01

    During the past decade considerable evidence has accumulated demonstrating the exposures of cells of the immune system to relatively weak extremely-low-frequency (ELF) electromagnetic fields (< 300 Hz) can elicit cellular changes which might be relevant to in-vivo immune activity. However, knowledge about the underlying biological mechanisms by which weak fields induce cellular changes is still very limited. It is generally believed that the cell membrane and Ca{sup 2+} regulated activity is involved in bioactive ELF field-coupling to living systems. This article begins with a short review of the current state of knowledge concerning the effects of nonthermal levels of ELF electromagnetic fields on the biochemistry and activity of immune cells, and then closely examines new results which suggest a role for Ca{sup 2+} in the induction of these cellular field effects. Based on these findings it is proposed that membrane-mediated Ca{sup 2+} signalling processes are involved in the mediation of field effects on the immune system. 64 refs., 2 tabs.

  1. Resolution analyses for selecting an appropriate airborne electromagnetic (AEM) system

    NASA Astrophysics Data System (ADS)

    Christensen, Niels B. 13Lawrie, Ken C.

    2012-07-01

    The choice of an appropriate airborne electromagnetic system for a given task should be based on a comparative analysis of candidate systems, consisting of both theoretical considerations and field studies including test lines. It has become common practice to quantify the system resolution for a series of models relevant to the survey area by comparing the sum over the data of squares of noise-normalised derivatives. We compare this analysis method with a resolution analysis based on the posterior covariance matrix of an inversion formulation. Both of the above analyses depend critically on the noise models of the systems being compared. A reasonable estimate of data noise and other sources of error is therefore of primary importance. However, data processing and noise reduction procedures, as well as other system parameters important for the modelling, are commonly proprietary, and generally it is not possible to verify whether noise figures have been arrived at by reasonable means. Consequently, it is difficult - sometimes impossible - to know if a comparative analysis has a sound basis. Nevertheless, in the real world choices have to be made, a comparative system analysis is necessary and has to be approached in a pragmatic way involving a range of different aspects. In this paper, we concentrate on the resolution analysis perspective and demonstrate that the inversion analysis must be preferred over the derivative analysis because it takes parameter coupling into account, and, furthermore, that the derivative analysis generally overestimates the resolution capability. Finally we show that impulse response data are to be preferred over step response data for near-surface resolution.

  2. Electromagnetic pulse research on electric power systems: Program summary and recommendations

    SciTech Connect

    Barnes, P.R.; McConnell, B.W.; Van Dyke, J.W. ); Tesche, F.M. , Dallas, TX ); Vance, E.F. , Fort Worth, TX )

    1993-01-01

    A single nuclear detonation several hundred kilometers above the central United States will subject much of the nation to a high-altitude electromagnetic pulse (BENT). This pulse consists of an intense steep-front, short-duration transient electromagnetic field, followed by a geomagnetic disturbance with tens of seconds duration. This latter environment is referred to as the magnetohydrodynamic electromagnetic pulse (NMENT). Both the early-time transient and the geomagnetic disturbance could impact the operation of the nation's power systems. Since 1983, the US Department of Energy has been actively pursuing a research program to assess the potential impacts of one or more BENT events on the nation's electric energy supply. This report summarizes the results of that program and provides recommendations for enhancing power system reliability under HENT conditions. A nominal HENP environment suitable for assessing geographically large systems was developed during the program and is briefly described in this report. This environment was used to provide a realistic indication of BEMP impacts on electric power systems. It was found that a single high-altitude burst, which could significantly disturb the geomagnetic field, may cause the interconnected power network to break up into utility islands with massive power failures in some areas. However, permanent damage would be isolated, and restoration should be possible within a few hours. Multiple bursts would likely increase the blackout areas, component failures, and restoration time. However, a long-term blackout of many months is unlikely because major power system components, such as transformers, are not likely to be damaged by the nominal HEND environment. Moreover, power system reliability, under both HENT and normal operating conditions, can be enhanced by simple, and often low cost, modifications to current utility practices.

  3. Treatment of Diabetic Foot Ulcers through Systemic Effects of Extremely Low Frequency Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Trejo-Núñez, A. D.; Pérez-Chávez, F.; García-Sánchez, C.; Serrano-Luna, G.; Cañendo-Dorantes, L.

    2008-08-01

    This study was designed to, investigate the healing effects of extremely low frequency electromagnetic fields (ELF-EMF) on diabetic foot ulcers and test two different exposure systems aimed at reducing the ELF-EMF exposure time of patients. In the first system the ELF-EMF were applied to the arm where only 3% of the total blood volume/min circulates at any given time. In the second system the ELF-EMF were applied to the thorax where more than 100% of the total blood volume/minute circulates at any given time. Twenty-six diabetic patients, with superficial neuropathic ulcers unresponsive to medical treatment were included in this preliminary report. In the first group (17 patients), the arm was exposed two hours twice a week to a extremely low frequency electromagnetic field of 0.45-0.9 mTrms, 120 Hz generated inside a solenoid coil of 10.1 cm by 20.5 cm long. In the second group the thorax of 7 patients was exposed 25 minutes twice a week to an electromagnetic field of 0.4-0.85 mTrms, 120 Hz generated in the center of a squared quasi-Helmholtz coil 52 cm by side. One patient was assigned to a placebo configuration of each exposure system with identical appearance as the active equipment but without magnetic field. Patients with deep ulcers, infected ulcers, cancer, or auto-immune disease were excluded. These preliminary results showed that the two exposure systems accelerate the healing process of neuropathic ulcers. Complete healing of the ulcer had a median duration of 90 days in both exposure systems. Therefore thorax exposure where more blood is exposed to ELF-EMF per unit of time was able to reduce 4.8 times the patient treatment time. In those patients assigned to the placebo equipment no healing effects were observed. This study will continue with a parallel, double blind placebo controlled protocol.

  4. Electromagnetically induced transparency in hybrid plasmonic-dielectric system.

    PubMed

    Tang, Bin; Dai, Lei; Jiang, Chun

    2011-01-17

    We present theoretical and numerical analysis of a plasmonic-dielectric hybrid system for symmetric and asymmetric coupling between silver cut-wire pairs and silicon grating waveguide with periodic grooves. The results show that both couplings can induce electromagnetically-induced transparency (EIT) analogous to the quantum optical phenomenon. The transmission spectrum shows a single transparency window for the symmetric coupling. The strong normal phase dispersion in the vicinity of this transparent window results in the slow light effect. However, the transmission spectrum appears an additional transparency window for asymmetry coupling due to the double EIT effect, which stems from an asymmetrically coupled resonance (ACR) between the dark and bright modes. More importantly, the excitation of ACR is further associated with remarkable improvement of the group index from less than 40 to more than 2500 corresponding to a high transparent efficiency by comparing with the symmetry coupling. This scheme provides an alternative way to develop the building block of systems for plasmonic sensing, all optical switching and slow light applications.

  5. Review of studies on modulating enzyme activity by low intensity electromagnetic radiation.

    PubMed

    Vojisavljevic, Vuk; Pirogova, Elena; Cosic, Irena

    2010-01-01

    This paper is a compilation of our findings on non-thermal effects of electromagnetic radiation (EMR) at the molecular level. The outcomes of our studies revealed that that enzymes' activity can be modulated by external electromagnetic fields (EMFs) of selected frequencies. Here, we discuss the possibility of modulating protein activity using visible and infrared light based on the concepts of protein activation outlined in the resonant recognition model (RRM), and by low intensity microwaves. The theoretical basis behind the RRM model expounds a potential interaction mechanism between electromagnetic radiation and proteins as well as protein-protein interactions. Possibility of modulating protein activity by external EMR is experimentally validated by irradiation of the L-lactate Dehydrogenase enzyme.

  6. ELF (Extremely Low Frequency) communication system ecological monitoring program: Electromagnetic field measurements and engineering support, 1987

    NASA Astrophysics Data System (ADS)

    Haradem, David P.; Gauger, James R.; Zapotosky, John E.

    1988-08-01

    A long-term program for studying possible effects from the operation of the Navy's Extremely Low Frequency (ELF) Communications System is being conducted on biota and ecosystems components in northwestern Wisconsin and the Upper Peninsula of Michigan. Sixteen general types of organisms from three major ecosystems in the ELF system area are being examined. Formulation of an ELF Ecological Monitoring Program was completed in early 1982 by the Department of the Navy, and studies were initiated in late summer of the same year. Beginning in 1983 and continuing during 1984, major activities of the program consisted of characterization of critical aspects of each study, collection of data to validate assumptions made in proposals, and selection of study sites. From 1985 through 1987, activities centered on the operation of full-scale studies. This report documents electromagnetic (EM) field measurements at investigator selected study sites from 1982 through 1987. Other engineering support activities are also described.

  7. ELF (Extremely Low Frequency) Communications System Ecological Monitoring Program: Electromagnetic field measurements and engineering support, 1988

    NASA Astrophysics Data System (ADS)

    Haradem, D. P.; Gauger, J. R.; Zapotosky, J. E.

    1989-05-01

    A long-term program for studying possible effects from the operation of the Navy's ELF (extremely low frequency) Communications System is being conducted on biota and ecosystems components in north-western Wisconsin and the Upper Peninsula of Michigan. Sixteen general types of organisms from three major ecosystems in the ELF system area are being examined. Formulation of an ELF Ecological Monitoring Program was completed in early 1982 by the Department of the Navy, and studies were initiated in late summer of the same year. Beginning in 1983 and continuing during 1984, major activities of the program consisted of characterization of critical aspects of each study, collection of data to validate assumptions made in proposals, and selection of study sites. From 1985 through 1988, activities centered on the operation of full-scale studies. This report documents electromagnetic (EM) field measurements at investigator selected study sites from 1982 through 1988. Other engineering support activities are also described.

  8. Electromagnetic heating of minor planets in the early solar system

    NASA Technical Reports Server (NTRS)

    Herbert, F.; Sonett, C. P.

    1979-01-01

    Electromagnetic processes occurring in the primordial solar system are likely to have significantly affected planetary evolution. In particular, electrical coupling of the kinetic energy of a dense T-Tauri-like solar wind into the interior of the smaller planets could have been a major driver of thermal metamorphism. Accordingly a grid of asteroid models of various sizes and solar distances was constructed using dc transverse magnetic induction theory. Plausible parameterizations with no requirement for a high environmental temperature led to complete melting for Vesta with no melting for Pallas and Ceres. High temperatures were reached in the Pallas model, perhaps implying nonmelting thermal metamorphosis as a cause of its anomalous spectrum. A reversal of this temperature sequence seems implausible, suggesting that the Ceres-Pallas-Vesta dichotomy is a natural outcome of the induction mechanism. Highly localized heating is expected to arise due to an instability in the temperature-controlled current distribution. Localized metamorphosis resulting from this effect may be relevant to the production and evolution of pallasites, the large presumed metal component of S object spectra, and the formation of the lunar magma ocean.

  9. Design and analysis of an electromagnetic turnout for the superconducting Maglev system

    NASA Astrophysics Data System (ADS)

    Li, Y. J.; Dai, Q.; Zhang, Y.; Wang, H.; Chen, Z.; Sun, R. X.; Zheng, J.; Deng, C. Y.; Deng, Z. G.

    2016-09-01

    Turnout is a crucial track junction device of the ground rail transportation system. For high temperature superconducting (HTS) Maglev system, the permanent magnet guideway (PMG) makes the strong magnetic force existing between rail segments, which may cause moving difficulties and increase the operation cost when switching a PMG. In this paper, a non-mechanical 'Y' shaped Halbach-type electromagnetic turnout was proposed. By replacing the PMs with electromagnets, the turnout can guide the maglev vehicle running into another PMG by simply controlling the current direction of electromagnets. The material and structure parameters of the electromagnets were optimized by simulation. The results show that the optimized electromagnet can keep the magnetic field above it as strong as the PMs', meanwhile feasible for design and manufacture. This work provides valuable references for the future design in non-mechanical PMG turnout.

  10. Model simulations of possible electromagnetic induction effects at Magsat activities

    NASA Technical Reports Server (NTRS)

    Hermance, J. F.

    1982-01-01

    Model simulations are used in a consideration of whether terrestrial induced-current magnetic field effects are significant for near-earth satellite observation, and the nature of the effect at satellite altitudes of lateral differences in the gross conductivity structure of the earth. It is shown that induction in a spherical earth by distant magnetospheric sources can contribute magnetic field fluctuations at Magsat orbit altitudes which are 30-40% of external field amplitudes. It is found that, when phenomenon dimensions are small by comparison with the earth's radius, the earth may be approximated by a plane, horizontal half-space by which electromagnetic energy is reflected with nearly 100% efficiency from the surface. This implies that while the total horizontal field is twice the source field when the source is above the satellite, it is reduced to values smaller than the source field when the source is below the satellite and tends to enhance gross electrical discontinuity signatures in the lithosphere.

  11. Electromagnetic Attraction.

    ERIC Educational Resources Information Center

    Milson, James L.

    1990-01-01

    Three activities involving electromagnetism are presented. Discussed are investigations involving the construction of an electromagnet, the effect of the number of turns of wire in the magnet, and the effect of the number of batteries in the circuit. Extension activities are suggested. (CW)

  12. Numerical simulations of electromagnetic scattering by Solar system objects

    NASA Astrophysics Data System (ADS)

    Dlugach, Janna M.

    2016-11-01

    Having been profoundly stimulated by the seminal work of Viktor V. Sobolev, I have been involved in multi-decadal research in the fields of radiative transfer, electromagnetic scattering by morphologically complex particles and particulate media, and planetary remote sensing. Much of this research has been done in close collaboration with other "descendants" of Academician Sobolev. This tutorial paper gives a representative overview of the results of extensive numerical simulations (in the vast majority carried out in collaboration with Michael Mishchenko) used to analyze remote-sensing observations of Solar system objects and based on highly accurate methods of the radiative transfer theory and direct computer solvers of the Maxwell equations. Using the atmosphere of Jupiter as a proving ground and performing T-matrix and radiative-transfer calculations helps demonstrate the strong effect of aerosol-particle shapes on the accuracy of remote-sensing retrievals. I then discuss the application of the T-matrix method, a numerically exact solution of the vector radiative transfer equation, and the theory of coherent backscattering to an analysis of polarimetric radar observations of Saturn's rings. Numerical modeling performed by using the superposition T-matrix method in application to cometary dust in the form of aggregates serves to reproduce the results of polarimetric observations of the distant comet C/2010 S1. On the basis of direct computer solutions of the Maxwell equations, it is demonstrated that all backscattering effects predicted by the low-density theories of radiative transfer and coherent backscattering can also be identified for media with volume packing densities typically encountered in natural and artificial environments. This result implies that spectacular opposition effects observed for some high-albedo atmoshereless Solar system bodies can be attributed to coherent backscattering of sunlight by regolith layers composed of microscopic particles.

  13. [Changes in gastric electric activity and serum catecholamine level under the influence of electromagnetic microwaves (experimental studies)].

    PubMed

    Kulkybaev, G A; Pospelov, N I

    2000-01-01

    Chronic experiments on 17 dogs revealed that ultrahigh-frequency electromagnetic waves applied on epigastric area and head induce a double-phase response: depressed electric activity of gaster and increased total catecholamines level during exposure, but higher gastric activity and lower levels of epinephrine and norepinephrine in 24 hours after each of 10 procedures and during 7 days after 10 procedures. Double-phase changes in electric activity of gaster could be explained by double-phase fluctuations of humoral division in chromaffin system.

  14. Effects of low-energy electromagnetic fields (pulsed and DC) on membrane signal transduction processes in biological systems

    SciTech Connect

    Luben, R.A. )

    1991-07-01

    The vertebrate organism possesses a number of internal processes for signaling and communication between cell types. Hormones and neurotransmitters move from one cell type to another and carry chemical messages that modulate the metabolic responses of tissues to the environment. Interaction with these signaling systems is a potential mechanism by which very low-energy electromagnetic fields might produce metabolic responses in the body. Hormone and neurotransmitter receptors are specialized protein molecules that use a variety of biochemical activities to pass chemical signals from the outside of a cell across the plasma membrane to the interior of the cell. Since many low-energy electromagnetic fields have too little energy to directly traverse the membrane, it is possible that they may modify the existing signal transduction processes in cell membranes, thus producing both transduction and biochemical amplification of the effects of the field itself. As an example of the kinds of processes that may be involved in these interactions, one metabolic process in which the physiological effects of low-energy electromagnetic fields is well established is the healing of bone fractures. The process of regulation of bone turnover and healing is reviewed in the context of clinical applications of electromagnetic energy to the healing process, especially for persistent nonunion fractures. A hypothetical molecular mechanism is presented that might account for the observed effects of electromagnetic fields on bone cell metabolism in terms of the fields' interference with signal transduction events involved in the hormonal regulation of osteoblast function and differentiation. 88 refs.

  15. Statistical EMC: A new dimension electromagnetic compatibility of digital electronic systems

    NASA Astrophysics Data System (ADS)

    Tsaliovich, Anatoly

    Electromagnetic compatibility compliance test results are used as a database for addressing three classes of electromagnetic-compatibility (EMC) related problems: statistical EMC profiles of digital electronic systems, the effect of equipment-under-test (EUT) parameters on the electromagnetic emission characteristics, and EMC measurement specifics. Open area test site (OATS) and absorber line shielded room (AR) results are compared for equipment-under-test highest radiated emissions. The suggested statistical evaluation methodology can be utilized to correlate the results of different EMC test techniques, characterize the EMC performance of electronic systems and components, and develop recommendations for electronic product optimal EMC design.

  16. Electromagnetic hydrophone with tomographic system for absolute velocity field mapping

    NASA Astrophysics Data System (ADS)

    Grasland-Mongrain, Pol; Mari, Jean-Martial; Gilles, Bruno; Chapelon, Jean-Yves; Lafon, Cyril

    2012-06-01

    The velocity and pressure of an ultrasonic wave can be measured by an electromagnetic hydrophone made of a thin wire and a magnet. The ultrasonic wave vibrates the wire inside a magnetic field, inducing an electrical current. Previous articles reported poor spatial resolution of comparable hydrophones along the axis of the wire. In this study, submillimetric spatial resolution has been achieved by using a tomographic method. Moreover, a physical model is presented for obtaining absolute measurements. A pressure differential of 8% has been found between piezoelectric and electromagnetic hydrophone measurements. These characteristics show this technique as an alternative to standard hydrophones.

  17. Effect of electromagnetic disturbance on the practical QKD system in the smart grid

    NASA Astrophysics Data System (ADS)

    Li, Fang-Yi; Wang, Dong; Wang, Shuang; Li, Mo; Yin, Zhen-Qiang; Li, Hong-Wei; Chen, Wei; Han, Zheng-Fu

    2014-12-01

    To improve the security of the smart grid, quantum key distribution (QKD) is an excellent choice. The rapid fluctuations on the power aerial optical cable and electromagnetic disturbance in substations are two main challenges for implementation of QKD. Due to insensitivity to birefringence of the channel, the stable phase-coding Faraday—Michelson QKD system is very practical in the smart grid. However, the electromagnetic disturbance in substations on this practical QKD system should be considered. The disturbance might change the rotation angle of the Faraday mirror, and would introduce an additional quantum bit error rate (QBER). We derive the new fringe visibility of the system and the additional QBER from the electromagnetic disturbance. In the worst case, the average additional QBER only increases about 0.17% due to the disturbance, which is relatively small to normal QBER values. We also find the way to degrade the electromagnetic disturbance on the QKD system.

  18. Active remote detection of radioactivity based on electromagnetic signatures

    SciTech Connect

    Sprangle, P.; Hafizi, B.; Milchberg, H.; Nusinovich, G.; Zigler, A.

    2014-01-15

    This paper presents a new concept for the remote detection of radioactive materials. The concept is based on the detection of electromagnetic signatures in the vicinity of radioactive material and can enable stand-off detection at distances greater than 100 m. Radioactive materials emit gamma rays, which ionize the surrounding air. The ionized electrons rapidly attach to oxygen molecules forming O{sub 2}{sup −} ions. The density of O{sub 2}{sup −} around radioactive material can be several orders of magnitude greater than background levels. The elevated population of O{sub 2}{sup −} extends several meters around the radioactive material. Electrons are easily photo-detached from O{sub 2}{sup −} ions by laser radiation. The photo-detached electrons, in the presence of laser radiation, initiate avalanche ionization which results in a rapid increase in electron density. The rise in electron density induces a frequency modulation on a probe beam, which becomes a direct spectral signature for the presence of radioactive material.

  19. [Effect of electromagnetic field of extremely low frequency on ATPase activity of actomyosin].

    PubMed

    Tseĭslier, Iu V; Sheliuk, O V; Martyniuk, V S; Nuryshchenko, N Ie

    2012-01-01

    The Mg2+/Ca2+ and K(+)-ATPase actomyosin activity of rabbit skeletal muscle was evaluated by the Fiske-Subbarow method during a five-hour exposition of protein solutions in electromagnetic field of extremely low frequency of 8 Hz and 25 microT induction. The results of the study of the ATPase activity of actomyosin upon electromagnetic exposure have shown statistically significant changes that are characterized by a rather complex time dynamics. After 1, 2 and 4 hours of exposure of protein solutions the effect of ELF EMF exposure inhibits the ATPase activity compared to control samples, which are not exposed to the magnetic field. By the third and fifth hours of exposure to the electromagnetic field, there is a significant increase in the ATPase activity of actomyosin. It should be noted that a similar pattern of change in enzyme activity was universal, both for the environment by Mg2+ and Ca2+, and in the absence of these ions in the buffer. This can evidence for Ca(2+)-independent ways of the infuence of electromagnetic field (EMP) on biologic objects. In our opinion, the above effects are explained by EMP influence on the dynamic properties of actomyosin solutions, which are based on the processes of spontaneous dynamic formation of structure.

  20. Giant optical activity from the radiative electromagnetic interactions in plasmonic nanoantennas

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Chen, Li; Wang, Rongyao; Ji, Yinglu; Zhai, Dawei; Wu, Xiaochun; Liu, Yu; Chen, Keqiu; Xu, Hongxing

    2013-04-01

    We fabricate the linear chains of twisted gold nanorods by a facile chiral molecular templating method. In such a chiral plasmonic system, particle-particle separation distances are in the order of the light wavelength and are much larger than the sizes of individual particles. As a result, the inter-particle interactions in this chiral system are mediated mainly by a relatively weak far-field plasmonic coupling, rather than a strong near-field coupling. However, such a chiral system of twisted gold nanorods show a huge surface plasmon based circular dichroism response, with the highest anisotropy factor around 0.027. This is in contrast to the previous studies in which near-field plasmonic coupling is an indispensable prerequisite to obtain strong optical activity from a chiral plasmonic nanostructure. Our study demonstrates here an alternative strategy for achieving huge chiroptical response of a chiral plasmonic nanostructure based on far-field, radiative electromagnetic interactions of metallic nanoparticles. Theoretical simulations show a satisfactory agreement with the experimental results. This study may provide more flexible ways to design chiral plasmon nanostructures with strong CD responses for various applications.We fabricate the linear chains of twisted gold nanorods by a facile chiral molecular templating method. In such a chiral plasmonic system, particle-particle separation distances are in the order of the light wavelength and are much larger than the sizes of individual particles. As a result, the inter-particle interactions in this chiral system are mediated mainly by a relatively weak far-field plasmonic coupling, rather than a strong near-field coupling. However, such a chiral system of twisted gold nanorods show a huge surface plasmon based circular dichroism response, with the highest anisotropy factor around 0.027. This is in contrast to the previous studies in which near-field plasmonic coupling is an indispensable prerequisite to obtain

  1. Impacts of a nominal nuclear electromagnetic pulse on electric power systems; A probabilistic approach

    SciTech Connect

    Kruse, V.J.; Nickel, D.L.; Taylor, E.R. Jr. ); Barnes, P.R. )

    1991-07-01

    This paper reports on a high-altitude nuclear detonation several hundred kilometers above the central United States that will subject much of the nation to an electromagnetic pulse (EMP) consisting of intense steep-front short-duration transient electromagnetic fields followed by a geomagnetic disturbance with a duration of tens of seconds. Since 1983, the Department of energy has been actively pursuing a research program to assess the potential impacts of one or more EMP events on the nation's electric energy supply. A nominal EMP environment suitable for assessing geographically large systems has been used to provide an indication of EMP impacts on electric power systems. It was found that a single high-altitude burst, which significantly disturbs the geomagnetic field, could cause significant load and generation loss, but permanent damage would be isolated. Multiple bursts would increase the disturbance. Nevertheless, based on the effects of a nominal EMP environment, a long term blackout is not expected since major components such as power transformers are not likely to be damaged.

  2. Impacts of a nominal nuclear electromagnetic pulse on electric power systems

    SciTech Connect

    Kruse, V.J.; Nickel, D.L.; Bonk, J.J.; Taylor, E.R. Jr. )

    1991-04-01

    A high-altitude nuclear detonation several hundred kilometers above the central United States will subject much of the nation to an electromagnetic pulse (EMP) consisting of intense steep-front short- duration transient electromagnetic fields followed by a geomagnetic disturbance with a duration of tens of seconds. Since 1983, the Department of Energy has been actively pursuing a research program to assess the potential impacts of one or more EMP events on the nation's electric energy supply. A nominal EMP environmental suitable for assessing geographically large systems has been used to provide an indication of EMP impacts on electric power systems. It was found that a single high-altitude burst, which significantly disturbs the geomagnetic field, could cause significant load and generation loss, but permanent damage would be isolated. Multiple bursts would increase the disturbance. Nevertheless, based on the effects of a nominal EMP environment, a long-term blackout is not expected since major components such as power transformers are not likely to be damaged. 60 refs., 10 figs., 8 tabs.

  3. Measuring glottal activity during voiced speech using a tuned electromagnetic resonating collar sensor

    NASA Astrophysics Data System (ADS)

    Brown, D. R., III; Keenaghan, K.; Desimini, S.

    2005-11-01

    Non-acoustic speech sensors can be employed to obtain measurements of one or more aspects of the speech production process, such as glottal activity, even in the presence of background noise. These sensors have a long history of clinical applications and have also recently been applied to the problem of denoising speech signals recorded in acoustically noisy environments (Ng et al 2000 Proc. Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP) (Istanbul, Turkey) vol 1, pp 229-32). Recently, researchers developed a new non-acoustic speech sensor based primarily on a tuned electromagnetic resonator collar (TERC) (Brown et al 2004 Meas. Sci. Technol. 15 1291). The TERC sensor measures glottal activity by sensing small changes in the dielectric properties of the glottis that result from voiced speech. This paper builds on the seminal work in Brown et al (2004). The primary contributions of this paper are (i) a description of a new single-mode TERC sensor design addressing the comfort and complexity issues of the original sensor, (ii) a complete description of new external interface systems used to obtain long-duration recordings from the TERC sensor and (iii) more extensive experimental results and analysis for the single-mode TERC sensor including spectrograms of speech containing both voiced and unvoiced speech segments in quiet and acoustically noisy environments. The experimental results demonstrate that the single-mode TERC sensor is able to detect glottal activity up to the fourth harmonic and is also insensitive to acoustic background noise.

  4. Simulation study of localization of electromagnetic waves in two-dimensional random dipolar systems.

    PubMed

    Wang, Ken Kang-Hsin; Ye, Zhen

    2003-12-01

    We study the propagation and scattering of electromagnetic waves by random arrays of dipolar cylinders in a uniform medium. A set of self-consistent equations, incorporating all orders of multiple scattering of the electromagnetic waves, is derived from first principles and then solved numerically for electromagnetic fields. For certain ranges of frequencies, spatially localized electromagnetic waves appear in such a simple but realistic disordered system. Dependence of localization on the frequency, radiation damping, and filling factor is shown. The spatial behavior of the total, coherent, and diffusive waves is explored in detail, and found to comply with a physical intuitive picture. A phase diagram characterizing localization is presented, in agreement with previous investigations on other systems.

  5. Giant optical activity from the radiative electromagnetic interactions in plasmonic nanoantennas.

    PubMed

    Wang, Peng; Chen, Li; Wang, Rongyao; Ji, Yinglu; Zhai, Dawei; Wu, Xiaochun; Liu, Yu; Chen, Keqiu; Xu, Hongxing

    2013-05-01

    We fabricate the linear chains of twisted gold nanorods by a facile chiral molecular templating method. In such a chiral plasmonic system, particle-particle separation distances are in the order of the light wavelength and are much larger than the sizes of individual particles. As a result, the inter-particle interactions in this chiral system are mediated mainly by a relatively weak far-field plasmonic coupling, rather than a strong near-field coupling. However, such a chiral system of twisted gold nanorods show a huge surface plasmon based circular dichroism response, with the highest anisotropy factor around 0.027. This is in contrast to the previous studies in which near-field plasmonic coupling is an indispensable prerequisite to obtain strong optical activity from a chiral plasmonic nanostructure. Our study demonstrates here an alternative strategy for achieving huge chiroptical response of a chiral plasmonic nanostructure based on far-field, radiative electromagnetic interactions of metallic nanoparticles. Theoretical simulations show a satisfactory agreement with the experimental results. This study may provide more flexible ways to design chiral plasmon nanostructures with strong CD responses for various applications.

  6. An electromagnetic microvalve for pneumatic control of microfluidic systems.

    PubMed

    Liu, Xuling; Li, Songjing

    2014-10-01

    An electromagnetic microvalve for pneumatic control of microfluidic devices has been designed, fabricated, and tested. The microvalve is composed of two parts: a miniature electromagnetic actuator and a valve body. The electromagnetic actuator consists mainly of a thin polydimethylsiloxane (PDMS)-based elastomer, which acts as the valve diaphragm. The diaphragm, used as a solid hydraulic medium, converts the large contact area of a valve core into a small contact area of valve head while maintaining a large stroking force. This microvalve remains closed because of a compressed mechanical spring force generated by the actuator. On the other hand, when a voltage is applied, the valve core moves up, relaxing the thin PDMS membrane, opening the microvalve. The fast open response (~17 ms) of the valve was achieved with a leak rate as low as 0.026 sccm at 200 KPa (N2) pressure. We tested the pertinent dynamic parameters such as flow rate in on/off mode, flow rate of duty cycles, and actuated frequencies in pulse width modulation (PWM) mode. Our method provides a simple, cheap, and small microvalve that avoids the bulky and expensive external pressure control solenoid manifold. This allows it to be easily integrated into portable and disposable devices. PMID:24742860

  7. An electromagnetic microvalve for pneumatic control of microfluidic systems.

    PubMed

    Liu, Xuling; Li, Songjing

    2014-10-01

    An electromagnetic microvalve for pneumatic control of microfluidic devices has been designed, fabricated, and tested. The microvalve is composed of two parts: a miniature electromagnetic actuator and a valve body. The electromagnetic actuator consists mainly of a thin polydimethylsiloxane (PDMS)-based elastomer, which acts as the valve diaphragm. The diaphragm, used as a solid hydraulic medium, converts the large contact area of a valve core into a small contact area of valve head while maintaining a large stroking force. This microvalve remains closed because of a compressed mechanical spring force generated by the actuator. On the other hand, when a voltage is applied, the valve core moves up, relaxing the thin PDMS membrane, opening the microvalve. The fast open response (~17 ms) of the valve was achieved with a leak rate as low as 0.026 sccm at 200 KPa (N2) pressure. We tested the pertinent dynamic parameters such as flow rate in on/off mode, flow rate of duty cycles, and actuated frequencies in pulse width modulation (PWM) mode. Our method provides a simple, cheap, and small microvalve that avoids the bulky and expensive external pressure control solenoid manifold. This allows it to be easily integrated into portable and disposable devices.

  8. Maximum contrast beamformer for electromagnetic mapping of brain activity.

    PubMed

    Chen, Yong-Sheng; Cheng, Chih-Yu; Hsieh, Jen-Chuen; Chen, Li-Fen

    2006-09-01

    Beamforming technique can be applied to map the neuronal activities from magnetoencephalographic/electroencephalographic (MEG/EEG) recordings. One of the major difficulties of the scalar-type MEG/EEG beamformer is the determination of accurate dipole orientation, which is essential to an effective spatial filter. This paper presents a new beamforming technique which exploits a maximum contrast criterion to maximize the ratio of the neuronal activity estimated in a specified active state to the activity estimated in a control state. This criterion leads to a closed-form solution of the dipole orientation. Experiments with simulation, phantom, and finger-lifting data clearly demonstrate the effectiveness, efficiency, and accuracy of the proposed method.

  9. A new electromagnetic levitation system for rapid transit and high speed transportation

    SciTech Connect

    Wang, T.C.; Tzeng, Y.K. . Dept. of Electrical Engineering)

    1994-11-01

    A Maglev system using permanent and electromagnet is described. Such a system offers the advantages of high lift force to magnet weight ratio and nearly zero ohmic loss of its control winding. However, it is more difficult to control. Also, unlike the conventional electromagnetic levitation system, the control current is always maintained at zero value even with load variations. Analysis shows that the size and weight of this system are smaller by a factor of three compared to the conventional Maglev system. Basic design criteria and control strategy using variable structure control method are given, together with experimental results of a small model to verify its feasibility and good dynamic response.

  10. Environmental assessment for the satellite power system concept development and evaluation program-electromagnetic systems compatibility

    SciTech Connect

    Davis, K A; Grant, W B; Morrison, E L; Juroshek, J R

    1981-01-01

    The EMC analysis addressed only the direct effects of electromagnetic emissions from the SPS on other technological systems. Emissions were defined quite broadly, including not only those from the microwave system, but also thermal blackbody emission and scattered sunlight from the satellite. The analysis is based on the design for an SPS as described in the Reference System Report and some quantitative conclusions, e.g., ranges from rectenna sites at which effects are expected are specific to that design. The methodology and qualitative conclusions, however, apply to an SPS concept using microwave power transmission. Quantitative conclusions have been obtained parametrically and can be adjusted as SPS designs change. The electromagnetic environment that the Reference System would produce, and in which other systems would have to function, is described. As an early part of the EMC Assessment, the problems expected for a hypothetical rectenna site, in the Mojave Desert of southern California, were analyzed in detail. This effort provided an initial quantitative indication of the scope of potential EMC problems and indicated the importance of EMC considerations in rectenna site selection. The results of this analysis are presented. The effects of SPS microwave emissions on important categories of electronic systems and equipment are summarized, with many examples of test results and demonstrated techniques for mitigation of problems encountered. SPS effects on other satellite systems are presented. Astronomical research frequently involves measurement of extremely low levels of electromagnetic radiation and is thus very susceptible to interference. The concerns of both radio astronomy with microwave emissions from SPS and optical astronomy with sunlight scattered from SPS spacecraft are discussed. Summaries of mitigation techniques, cost estimates, and conclusions are presented. (WHK)

  11. Electromagnetic radiation and nonlinear energy flow in an electron beam-plasma system

    NASA Technical Reports Server (NTRS)

    Whelan, D. A.; Stenzel, R. L.

    1985-01-01

    It is shown that the unstable electron-plasma waves of a beam-plasma system can generate electromagnetic radiation in a uniform plasma. The generation mechanism is a scattering of the unstable electron plasma waves off ion-acoustic waves, producing electromagnetic waves whose frequency is near the local plasma frequency. The wave vector and frequency matching conditions of the three-wave mode coupling are experimentally verified. The electromagnetic radiation is observed to be polarized with the electric field parallel to the beam direction, and its source region is shown to be localized to the unstable plasma wave region. The frequency spectrum shows negligible intensity near the second harmonic of the plasma frequency. These results suggest that the observed electromagnetic radiation of type III solar bursts may be generated near the local plasma frequency and observed downstream where the wave frequency is near the harmonic of the plasma frequency.

  12. Electromagnetic-wave excitation in a large laboratory beam-plasma system

    NASA Technical Reports Server (NTRS)

    Whelan, D. A.; Stenzel, R. L.

    1981-01-01

    The mechanism by which unstable electrostatic waves of a beam-plasma system are converted into observed electromagnetic waves is of current interest in space physics and in tokamak fusion research. The process involved in the conversion of electrostatic to electromagnetic waves at the critical layer is well understood. However, the radiation from uniform plasmas cannot be explained on the basis of this process. In connection with certain difficulties, it has not yet been possible to establish the involved emission processes by means of experimental observations. In the considered investigation these difficulties are overcome by employing a large laboratory plasma in a parameter range suitable for detailed diagnostics. A finite-diameter electron beam is injected into a uniform quiescent afterglow plasma of dimensions large compared with electromagnetic wavelengths. The considered generation mechanism concerning the electromagnetic waves is conclusively confirmed by observing the temporal evolution of an instability

  13. An MEG-Compatible Electromagnetic-Tracking System for Monitoring Orofacial Kinematics.

    PubMed

    Alves, Natasha; Jobst, Cecilia; Hotze, Fanny; Ferrari, Paul; Lalancette, Marc; Chau, Tom; van Lieshout, Pascal; Cheyne, Douglas

    2016-08-01

    We describe a novel motion-tracking system, called MASK (magnetoarticulography for the assessment of speech kinematics) designed to track detailed orofacial movements during magnetoencephalographic (MEG) measures of human brain activity. A three-dimensional electromagnetic-tracking method was employed using lightweight coils energized with high-frequency sinusoidal currents, creating magnetic dipoles that can be continuously localized by the MEG sensors. In addition to being compatible with commercial MEG devices, this system has advantages over optical or video methods in that it can record nonline-of-sight movements (e.g., tongue movements) and advantages over surface electromyographic recordings, which are prone to movement-related artifacts and signal crosstalk. Static and dynamic tracking accuracy was evaluated using calibration devices with fixed intercoil distances. MEG data were collected in two healthy adult volunteers to test feasibility of tracking movements during tongue and facial movement, and during overt speech. The MASK system was shown to have sufficient static and dynamic accuracy to track orofacial movements within the MEG helmet. We successfully acquired spatially precise kinematic information time-locked to brain activity with high temporal resolution. We demonstrated successful tracking of oromotor and speech movements together with brain activity using the MASK system. This novel technology will provide an innovative tool in support of research and clinical applications for individuals with speech and other oromotor disorders.

  14. A modified Bitter-type electromagnet and control system for cold atom experiments.

    PubMed

    Luan, Tian; Zhou, Tianwei; Chen, Xuzong; Ma, Zhaoyuan

    2014-02-01

    We present a modified Bitter-type electromagnet which features high magnetic field, fine electronic properties and efficient heat removal. The electromagnet is constructed from a stack of copper layers separated by mica layers that have the same shape. A distinctive design of cooling channels on the insulating layers and the parallel ducts between the layers ensures low resistance for cooling water to flow. A continuous current control system is also made to regulate the current through the electromagnet. In our experiment, versatile electromagnets are applied to generate magnetic field and gradient field. From our measurements, a peak magnetic field of 1000 G and a peak gradient field of 80 G/cm are generated in the center of the apparatuses which are 7 cm and 5 cm away from the edge of each electromagnet with a current of 230 A and 120 A, respectively. With the effective feedback design in the current control system and cooling water flow of 3.8 l/min, the stability of the current through the electromagnets can reach 10(-5). PMID:24593377

  15. A modified Bitter-type electromagnet and control system for cold atom experiments.

    PubMed

    Luan, Tian; Zhou, Tianwei; Chen, Xuzong; Ma, Zhaoyuan

    2014-02-01

    We present a modified Bitter-type electromagnet which features high magnetic field, fine electronic properties and efficient heat removal. The electromagnet is constructed from a stack of copper layers separated by mica layers that have the same shape. A distinctive design of cooling channels on the insulating layers and the parallel ducts between the layers ensures low resistance for cooling water to flow. A continuous current control system is also made to regulate the current through the electromagnet. In our experiment, versatile electromagnets are applied to generate magnetic field and gradient field. From our measurements, a peak magnetic field of 1000 G and a peak gradient field of 80 G/cm are generated in the center of the apparatuses which are 7 cm and 5 cm away from the edge of each electromagnet with a current of 230 A and 120 A, respectively. With the effective feedback design in the current control system and cooling water flow of 3.8 l/min, the stability of the current through the electromagnets can reach 10(-5).

  16. A modified Bitter-type electromagnet and control system for cold atom experiments

    NASA Astrophysics Data System (ADS)

    Luan, Tian; Zhou, Tianwei; Chen, Xuzong; Ma, Zhaoyuan

    2014-02-01

    We present a modified Bitter-type electromagnet which features high magnetic field, fine electronic properties and efficient heat removal. The electromagnet is constructed from a stack of copper layers separated by mica layers that have the same shape. A distinctive design of cooling channels on the insulating layers and the parallel ducts between the layers ensures low resistance for cooling water to flow. A continuous current control system is also made to regulate the current through the electromagnet. In our experiment, versatile electromagnets are applied to generate magnetic field and gradient field. From our measurements, a peak magnetic field of 1000 G and a peak gradient field of 80 G/cm are generated in the center of the apparatuses which are 7 cm and 5 cm away from the edge of each electromagnet with a current of 230 A and 120 A, respectively. With the effective feedback design in the current control system and cooling water flow of 3.8 l/min, the stability of the current through the electromagnets can reach 10-5.

  17. A modified Bitter-type electromagnet and control system for cold atom experiments

    SciTech Connect

    Luan, Tian; Zhou, Tianwei; Chen, Xuzong; Ma, Zhaoyuan

    2014-02-15

    We present a modified Bitter-type electromagnet which features high magnetic field, fine electronic properties and efficient heat removal. The electromagnet is constructed from a stack of copper layers separated by mica layers that have the same shape. A distinctive design of cooling channels on the insulating layers and the parallel ducts between the layers ensures low resistance for cooling water to flow. A continuous current control system is also made to regulate the current through the electromagnet. In our experiment, versatile electromagnets are applied to generate magnetic field and gradient field. From our measurements, a peak magnetic field of 1000 G and a peak gradient field of 80 G/cm are generated in the center of the apparatuses which are 7 cm and 5 cm away from the edge of each electromagnet with a current of 230 A and 120 A, respectively. With the effective feedback design in the current control system and cooling water flow of 3.8 l/min, the stability of the current through the electromagnets can reach 10{sup −5}.

  18. Electromagnetic compatibility fundamentals applied to spacecraft radio communication systems

    NASA Technical Reports Server (NTRS)

    Haber, F.; Celebiler, M.; Weil-Malherbe, C.

    1971-01-01

    A design guide for minimizing electromagnetic interference in aerospace communication equipment for ground stations is presented. Specifically treated are the mechanisms of generating unwanted radio emissions that may affect station operations as well as other communications services, the mechanisms by which sensitive receivers become susceptible to interference, means for reducing interference, standard methods of measurement, and the problems of site selection. The sources of interference are viewed primarily as originating from communications transmitters aboard spacecraft and aircraft, ground transmitters within and outside the ground stations, and other electrical sources on the ground that are not intended to radiate.

  19. [The biological activity of a decameter-range electromagnetic field with a frequency of 24 MHz].

    PubMed

    Bezdol'naia, I S; Dumanskiĭ, Iu D; Smolia, A L

    1991-03-01

    A study of behavioural reactions indicates that the effect of 24 MHz frequencies of the electromagnetic field results in changes of the ratio of excitatory and inhibitory processes in the nervous system of white rats with prevalence of inhibitory processes. By the 90-th day of effect of the above factor all changes returned to the initial level. This indicates stability of the adaptative reactions of the integrative level of the nervous system to the acting factor. PMID:2042349

  20. Multi-Dimensional Dynamics of Human Electromagnetic Brain Activity

    PubMed Central

    Kida, Tetsuo; Tanaka, Emi; Kakigi, Ryusuke

    2016-01-01

    Magnetoencephalography (MEG) and electroencephalography (EEG) are invaluable neuroscientific tools for unveiling human neural dynamics in three dimensions (space, time, and frequency), which are associated with a wide variety of perceptions, cognition, and actions. MEG/EEG also provides different categories of neuronal indices including activity magnitude, connectivity, and network properties along the three dimensions. In the last 20 years, interest has increased in inter-regional connectivity and complex network properties assessed by various sophisticated scientific analyses. We herein review the definition, computation, short history, and pros and cons of connectivity and complex network (graph-theory) analyses applied to MEG/EEG signals. We briefly describe recent developments in source reconstruction algorithms essential for source-space connectivity and network analyses. Furthermore, we discuss a relatively novel approach used in MEG/EEG studies to examine the complex dynamics represented by human brain activity. The correct and effective use of these neuronal metrics provides a new insight into the multi-dimensional dynamics of the neural representations of various functions in the complex human brain. PMID:26834608

  1. Multi-Dimensional Dynamics of Human Electromagnetic Brain Activity.

    PubMed

    Kida, Tetsuo; Tanaka, Emi; Kakigi, Ryusuke

    2015-01-01

    Magnetoencephalography (MEG) and electroencephalography (EEG) are invaluable neuroscientific tools for unveiling human neural dynamics in three dimensions (space, time, and frequency), which are associated with a wide variety of perceptions, cognition, and actions. MEG/EEG also provides different categories of neuronal indices including activity magnitude, connectivity, and network properties along the three dimensions. In the last 20 years, interest has increased in inter-regional connectivity and complex network properties assessed by various sophisticated scientific analyses. We herein review the definition, computation, short history, and pros and cons of connectivity and complex network (graph-theory) analyses applied to MEG/EEG signals. We briefly describe recent developments in source reconstruction algorithms essential for source-space connectivity and network analyses. Furthermore, we discuss a relatively novel approach used in MEG/EEG studies to examine the complex dynamics represented by human brain activity. The correct and effective use of these neuronal metrics provides a new insight into the multi-dimensional dynamics of the neural representations of various functions in the complex human brain. PMID:26834608

  2. Effectiveness of noise in blocking electromagnetic effects on enzyme activity in the chick embryo.

    PubMed

    Martin, A H; Moses, G C

    1995-05-01

    We have previously demonstrated that exposure of the chick embryo to a 60 Hz, 4 microT split sine wave for the first 72 hours of development causes a significant reduction in the activity of the ectoenzyme 5'-nucleotidase. This reduced activity persisted, throughout the embryonic period, despite further incubation in a field free environment. We also showed that the reduction in 5'NT activity can be localized in the developing brain to the Cerebellum. The present study reveals that superimposition of an electromagnetic noise, of similar amplitude and frequency, can mitigate the effect of the field on 5'NT activity.

  3. ELF (Extremely Low Frequency) communications system ecological monitoring program: Measurements of ELF electromagnetic fields for site selection and Characterization-1984

    NASA Astrophysics Data System (ADS)

    Gauger, J. R.; Brosh, R. M.; Zapotosky, J. E.

    1985-06-01

    A long-term program for studying possible effects from the operation of the Navy's ELF Communications System is being conducted on biota and ecosystems components in north-western Wisconsin and the Upper Peninsula of Michigan. Sixteen general types of organisms from three major ecosystems in the ELF system area are being examined. Formulation of an ELF Ecological Monitoring Program was completed in early 1982 by the Department of the Navy. Monitoring studies were conducted through a peer-reviewed, competitive bidding process in mid-1982, and studies were initiated in late summer of the same year. Beginning in 1983 and continuing during 1984 major activities of the program consisted of characterization of critical aspects of each study, collection of data to validate assumptions made in proposals, and selection of study sites. Measurements of electromagnetic fields at the investigator-selected sites are documented, and the acceptability and status of the sites in light of the electromagnetic exposure criteria are discussed.

  4. ELF (Extremely Low Frequency) communications system ecological monitoring program: Measurements of ELF electromagnetic fields for site selection and characterization, 1983

    NASA Astrophysics Data System (ADS)

    Enk, J. O.; Gauger, J. R.

    1985-01-01

    A long-term program for studying possible effects from the operation of the Navy's ELF Communications System is being conducted on biota and ecosystems components in northwestern Wisconsin and the Upper Peninsula of Michigan. Sixteen general types of organisms from three major ecosystems in ELF system areas are being examined. Formulation of an ELF Ecological Monitoring Program was completed in early 1982 by the Department of the Navy. Monitoring studies were conducted through a peer-reviewed, competitive bidding process in mid-1982, and studies were initiated in late summer. Major activities of the program during 1983 consisted of characterization of critical aspects of each study, collection of data to validate assumption made in proposals, and selection of study sites. Measurements of electromagnetic fields at the investigator-selected sites are documented, and the acceptability and status of the sites in light of the electromagnetic exposure criteria are discussed.

  5. Numerical Methods of Computational Electromagnetics for Complex Inhomogeneous Systems

    SciTech Connect

    Cai, Wei

    2014-05-15

    Understanding electromagnetic phenomena is the key in many scientific investigation and engineering designs such as solar cell designs, studying biological ion channels for diseases, and creating clean fusion energies, among other things. The objectives of the project are to develop high order numerical methods to simulate evanescent electromagnetic waves occurring in plasmon solar cells and biological ion-channels, where local field enhancement within random media in the former and long range electrostatic interactions in the latter are of major challenges for accurate and efficient numerical computations. We have accomplished these objectives by developing high order numerical methods for solving Maxwell equations such as high order finite element basis for discontinuous Galerkin methods, well-conditioned Nedelec edge element method, divergence free finite element basis for MHD, and fast integral equation methods for layered media. These methods can be used to model the complex local field enhancement in plasmon solar cells. On the other hand, to treat long range electrostatic interaction in ion channels, we have developed image charge based method for a hybrid model in combining atomistic electrostatics and continuum Poisson-Boltzmann electrostatics. Such a hybrid model will speed up the molecular dynamics simulation of transport in biological ion-channels.

  6. Electromagnet Weight Reduction in a Magnetic Levitation System for Contactless Delivery Applications

    PubMed Central

    Hong, Do-Kwan; Woo, Byung-Chul; Koo, Dae-Hyun; Lee, Ki-Chang

    2010-01-01

    This paper presents an optimum design of a lightweight vehicle levitation electromagnet, which also provides a passive guide force in a magnetic levitation system for contactless delivery applications. The split alignment of C-shaped electromagnets about C-shaped rails has a bad effect on the lateral deviation force, therefore, no-split positioning of electromagnets is better for lateral performance. This is verified by simulations and experiments. This paper presents a statistically optimized design with a high number of the design variables to reduce the weight of the electromagnet under the constraint of normal force using response surface methodology (RSM) and the kriging interpolation method. 2D and 3D magnetostatic analysis of the electromagnet are performed using ANSYS. The most effective design variables are extracted by a Pareto chart. The most desirable set is determined and the influence of each design variable on the objective function can be obtained. The generalized reduced gradient (GRG) algorithm is adopted in the kriging model. This paper’s procedure is validated by a comparison between experimental and calculation results, which shows that the predicted performance of the electromagnet designed by RSM is in good agreement with the simulation results. PMID:22163572

  7. Electromagnet weight reduction in a magnetic levitation system for contactless delivery applications.

    PubMed

    Hong, Do-Kwan; Woo, Byung-Chul; Koo, Dae-Hyun; Lee, Ki-Chang

    2010-01-01

    This paper presents an optimum design of a lightweight vehicle levitation electromagnet, which also provides a passive guide force in a magnetic levitation system for contactless delivery applications. The split alignment of C-shaped electromagnets about C-shaped rails has a bad effect on the lateral deviation force, therefore, no-split positioning of electromagnets is better for lateral performance. This is verified by simulations and experiments. This paper presents a statistically optimized design with a high number of the design variables to reduce the weight of the electromagnet under the constraint of normal force using response surface methodology (RSM) and the kriging interpolation method. 2D and 3D magnetostatic analysis of the electromagnet are performed using ANSYS. The most effective design variables are extracted by a Pareto chart. The most desirable set is determined and the influence of each design variable on the objective function can be obtained. The generalized reduced gradient (GRG) algorithm is adopted in the kriging model. This paper's procedure is validated by a comparison between experimental and calculation results, which shows that the predicted performance of the electromagnet designed by RSM is in good agreement with the simulation results.

  8. Electromagnetic and structural coupled finite element analysis of active control in an anti-vibration device

    SciTech Connect

    Nakamoto, Eiji; Chen, Q.M.; Takeuchi, Hitoshi; Brauer, J.R.

    1997-03-01

    An active control model of an anti-vibration device is analyzed using a coupled electromagnetic and structural finite element technique. The model consists of two parallel conducting wires moving in a uniform magnetic field. Displacement and velocity of the wires are detected and transformed into voltages. Those voltages are fed back to each wire to control the motion by Lorentz force. Calculated response of the motion is shown to agree with the theory of the equivalent mechanical model.

  9. Excitation of electromagnetic ion cyclotron waves under different geomagnetic activities: THEMIS observation and modeling

    NASA Astrophysics Data System (ADS)

    Zhou, Qinghua; Xiao, Fuliang; Shi, Jiankui; Yang, Chang; He, Yihua; Tang, Lijun

    2013-01-01

    Understanding excitation of electromagnetic ion cyclotron (EMIC) waves remains a considerable scientific challenge in the magnetospheric physics. Here we adopt correlated data from the Thermal Emission Imaging System (THEMIS) spacecraft under low (Kp = 1+) and medium (Kp = 4) geomagnetic activities to investigate the favorable conditions for the excitation of EMIC waves. We utilize a sum of bi-Maxwellian components and kappa components to fit the observed ion (6-25 keV) distributions collected by the electrostatic analyzer (ESA) onboard the THEMIS spacecraft. We show that the kappa distribution models better and more smoothly with the observations. Then we evaluate the local growth rate and path-integrated gain of EMIC waves by bi-Maxwellian and kappa distributions, respectively. We demonstrate that the path-integrated wave gain simulated from the kappa distribution is consistent with observations, with intensities 24 dB in H+ band and 33 dB in He+ band. However, bi-Maxwellian distribution tends to overestimate the wave growth rate and path-integrated gain, with intensities 49 dB in H+ band and 48 dB in He+ band. Moreover, compared to the He+ band, a higher proton anisotropy is needed to excite the H+ band waves. The current study presents a further observational support for the understanding of EMIC wave instability under different geomagnetic conditions and suggests that the kappa-type distributions representative of the power law spectra are probably ubiquitous in space plasmas.

  10. Electromagnetically induced transparency and fluorescence in blockaded Rydberg atomic system

    SciTech Connect

    Li, Cheng; Zheng, Huaibin; Zhang, Zhaoyang; Yao, Xin; Zhang, Yunzhe; Zhang, Yiqi; Zhang, Yanpeng

    2013-10-28

    We investigate the interaction between dark states and Rydberg excitation blockade by using electromagnetically induced transparency (EIT), fluorescence, and four-wave mixing (FWM) signals both theoretically and experimentally. By scanning the frequency detunings of the probe and dressing fields, respectively, we first observe these signals (three coexisting EIT windows, two fluorescence signals, and two FWM signals) under Rydberg excitation blockade. Next, frequency detuning dependences of these signals are obtained, in which the modulated results are well explained by introducing the dressing effects (leading to the dark states) with the corrected factor of the Rydberg excitation blockade. In addition, the variations by changing the principal quantum number n of Rydberg state shown some interesting phenomena resulting from Rydberg blockade are observed. The unique nature of such blockaded signals can have potential application in the demonstration of quantum computing.

  11. Comparison of Precision between Optical and Electromagnetic Navigation Systems in Total Knee Arthroplasty

    PubMed Central

    Rhee, Seung Joon; Park, Shi Hwan; Cho, He Myung

    2014-01-01

    Purpose The purpose of this study is to compare and analyze the precision of optical and electromagnetic navigation systems in total knee arthroplasty (TKA). Materials and Methods We retrospectively reviewed 60 patients who underwent TKA using an optical navigation system and 60 patients who underwent TKA using an electromagnetic navigation system from June 2010 to March 2012. The mechanical axis that was measured on preoperative radiographs and by the intraoperative navigation systems were compared between the groups. The postoperative positions of the femoral and tibial components in the sagittal and coronal plane were assessed. Results The difference of the mechanical axis measured on the preoperative radiograph and by the intraoperative navigation systems was 0.6 degrees more varus in the electromagnetic navigation system group than in the optical navigation system group, but showed no statistically significant difference between the two groups (p>0.05). The positions of the femoral and tibial components in the sagittal and coronal planes on the postoperative radiographs also showed no statistically significant difference between the two groups (p>0.05). Conclusions In TKA, both optical and electromagnetic navigation systems showed high accuracy and reproducibility, and the measurements from the postoperative radiographs showed no significant difference between the two groups. PMID:25505703

  12. Computer simulation of magnetization-controlled shunt reactors for calculating electromagnetic transients in power systems

    SciTech Connect

    Karpov, A. S.

    2013-01-15

    A computer procedure for simulating magnetization-controlled dc shunt reactors is described, which enables the electromagnetic transients in electric power systems to be calculated. It is shown that, by taking technically simple measures in the control system, one can obtain high-speed reactors sufficient for many purposes, and dispense with the use of high-power devices for compensating higher harmonic components.

  13. Evaluation of Honeywell Recoverable Computer System (RCS) in Presence of Electromagnetic Effects

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar

    1997-01-01

    The design and development of a Closed-Loop System to study and evaluate the performance of the Honeywell Recoverable Computer System (RCS) in electromagnetic environments (EME) is presented. The development of a Windows-based software package to handle the time critical communication of data and commands between the RCS and flight simulation code in real-time, while meeting the stringent hard deadlines is also presented. The performance results of the RCS while exercising flight control laws under ideal conditions as well as in the presence of electromagnetic fields is also discussed.

  14. Matter coupling to strong electromagnetic fields in two-level quantum systems with broken inversion symmetry.

    PubMed

    Kibis, O V; Slepyan, G Ya; Maksimenko, S A; Hoffmann, A

    2009-01-16

    We demonstrate theoretically the parametric oscillator behavior of a two-level quantum system with broken inversion symmetry exposed to a strong electromagnetic field. A multitude of resonance frequencies and additional harmonics in the scattered light spectrum as well as an altered Rabi frequency are predicted to be inherent to such systems. In particular, dipole radiation at the Rabi frequency appears to be possible. Since the Rabi frequency is controlled by the strength of the coupling electromagnetic field, the effect can serve for the frequency-tuned parametric amplification and generation of electromagnetic waves. Manifestation of the effect is discussed for III-nitride quantum dots with strong built-in electric field breaking the inversion symmetry. Terahertz emission from arrays of such quantum dots is shown to be experimentally observable. PMID:19257272

  15. Matter coupling to strong electromagnetic fields in two-level quantum systems with broken inversion symmetry.

    PubMed

    Kibis, O V; Slepyan, G Ya; Maksimenko, S A; Hoffmann, A

    2009-01-16

    We demonstrate theoretically the parametric oscillator behavior of a two-level quantum system with broken inversion symmetry exposed to a strong electromagnetic field. A multitude of resonance frequencies and additional harmonics in the scattered light spectrum as well as an altered Rabi frequency are predicted to be inherent to such systems. In particular, dipole radiation at the Rabi frequency appears to be possible. Since the Rabi frequency is controlled by the strength of the coupling electromagnetic field, the effect can serve for the frequency-tuned parametric amplification and generation of electromagnetic waves. Manifestation of the effect is discussed for III-nitride quantum dots with strong built-in electric field breaking the inversion symmetry. Terahertz emission from arrays of such quantum dots is shown to be experimentally observable.

  16. Influence of Electric, Magnetic, and Electromagnetic Fields on the Circadian System: Current Stage of Knowledge

    PubMed Central

    Żak, Arkadiusz

    2014-01-01

    One of the side effects of each electrical device work is the electromagnetic field generated near its workplace. All organisms, including humans, are exposed daily to the influence of different types of this field, characterized by various physical parameters. Therefore, it is important to accurately determine the effects of an electromagnetic field on the physiological and pathological processes occurring in cells, tissues, and organs. Numerous epidemiological and experimental data suggest that the extremely low frequency magnetic field generated by electrical transmission lines and electrically powered devices and the high frequencies electromagnetic radiation emitted by electronic devices have a potentially negative impact on the circadian system. On the other hand, several studies have found no influence of these fields on chronobiological parameters. According to the current state of knowledge, some previously proposed hypotheses, including one concerning the key role of melatonin secretion disruption in pathogenesis of electromagnetic field induced diseases, need to be revised. This paper reviews the data on the effect of electric, magnetic, and electromagnetic fields on melatonin and cortisol rhythms—two major markers of the circadian system as well as on sleep. It also provides the basic information about the nature, classification, parameters, and sources of these fields. PMID:25136557

  17. 3D relaxation MHD modeling with FOI-PERFECT code for electromagnetically driven HED systems

    NASA Astrophysics Data System (ADS)

    Wang, Ganghua; Duan, Shuchao; Xie, Weiping; Kan, Mingxian; Institute of Fluid Physics Collaboration

    2015-11-01

    One of the challenges in numerical simulations of electromagnetically driven high energy density (HED) systems is the existence of vacuum region. The electromagnetic part of the conventional model adopts the magnetic diffusion approximation (magnetic induction model). The vacuum region is approximated by artificially increasing the resistivity. On one hand the phase/group velocity is superluminal and hence non-physical in the vacuum region, on the other hand a diffusion equation with large diffusion coefficient can only be solved by implicit scheme. Implicit method is usually difficult to parallelize and converge. A better alternative is to solve the full electromagnetic equations for the electromagnetic part. Maxwell's equations coupled with the constitutive equation, generalized Ohm's law, constitute a relaxation model. The dispersion relation is given to show its transition from electromagnetic propagation in vacuum to resistive MHD in plasma in a natural way. The phase and group velocities are finite for this system. A better time stepping is adopted to give a 3rd full order convergence in time domain without the stiff relaxation term restriction. Therefore it is convenient for explicit & parallel computations. Some numerical results of FOI-PERFECT code are also given. Project supported by the National Natural Science Foundation of China (Grant No. 11172277,11205145).

  18. A resonant electromagnetic vibration energy harvester for intelligent wireless sensor systems

    SciTech Connect

    Qiu, Jing Wen, Yumei; Li, Ping; Liu, Xin; Chen, Hengjia; Yang, Jin

    2015-05-07

    Vibration energy harvesting is now receiving more interest as a means for powering intelligent wireless sensor systems. In this paper, a resonant electromagnetic vibration energy harvester (VEH) employing double cantilever to convert low-frequency vibration energy into electrical energy is presented. The VEH is made up of two cantilever beams, a coil, and magnetic circuits. The electric output performances of the proposed electromagnetic VEH have been investigated. With the enhancement of turns number N, the optimum peak power of electromagnetic VEH increases sharply and the resonance frequency deceases gradually. When the vibration acceleration is 0.5 g, we obtain the optimum output voltage and power of 9.04 V and 50.8 mW at frequency of 14.9 Hz, respectively. In a word, the prototype device was successfully developed and the experimental results exhibit a great enhancement in the output power and bandwidth compared with other traditional electromagnetic VEHs. Remarkably, the proposed resonant electromagnetic VEH have great potential for applying in intelligent wireless sensor systems.

  19. Influence of electric, magnetic, and electromagnetic fields on the circadian system: current stage of knowledge.

    PubMed

    Lewczuk, Bogdan; Redlarski, Grzegorz; Zak, Arkadiusz; Ziółkowska, Natalia; Przybylska-Gornowicz, Barbara; Krawczuk, Marek

    2014-01-01

    One of the side effects of each electrical device work is the electromagnetic field generated near its workplace. All organisms, including humans, are exposed daily to the influence of different types of this field, characterized by various physical parameters. Therefore, it is important to accurately determine the effects of an electromagnetic field on the physiological and pathological processes occurring in cells, tissues, and organs. Numerous epidemiological and experimental data suggest that the extremely low frequency magnetic field generated by electrical transmission lines and electrically powered devices and the high frequencies electromagnetic radiation emitted by electronic devices have a potentially negative impact on the circadian system. On the other hand, several studies have found no influence of these fields on chronobiological parameters. According to the current state of knowledge, some previously proposed hypotheses, including one concerning the key role of melatonin secretion disruption in pathogenesis of electromagnetic field induced diseases, need to be revised. This paper reviews the data on the effect of electric, magnetic, and electromagnetic fields on melatonin and cortisol rhythms-two major markers of the circadian system as well as on sleep. It also provides the basic information about the nature, classification, parameters, and sources of these fields.

  20. Overview of electromagnetic methods applied in active volcanic areas of western United States

    NASA Astrophysics Data System (ADS)

    Skokan, Catherine K.

    1993-06-01

    A better understanding of active volcanic areas in the United States through electromagnetic geophysical studies received foundation from the many surveys done for geothermal exploration in the 1970's. Investigations by governmental, industrial, and academic agencies include (but are not limited to) mapping of the Cascades. Long Valley/Mono area, the Jemez volcanic field, Yellowstone Park, and an area in Colorado. For one example — Mt. Konocti in the Mayacamas Mountains, California — gravity, magnetic, and seismic, as well as electromagnetic methods have all been used in an attempt to gain a better understanding of the subsurface structure. In each of these volcanic regions, anomalous zones were mapped. When conductive, these anomalies were interpreted to be correlated with hydrothermal activity and not to represent a magma chamber. Electrical and electromagnetic geophysical methods can offer valuable information in the understanding of volcanoes by being the method which is most sensitive to change in temperature and, therefore, can best map heat budget and hydrological character to aid in prediction of eruptions.

  1. Electromagnetic fasteners

    DOEpatents

    Crane, Randolph W.; Marts, Donna J.

    1994-11-01

    An electromagnetic fastener for manipulating objects in space uses the matic attraction of various metals. An end effector is attached to a robotic manipulating system having an electromagnet such that when current is supplied to the electromagnet, the object is drawn and affixed to the end effector, and when the current is withheld, the object is released. The object to be manipulated includes a multiplicity of ferromagnetic patches at various locations to provide multiple areas for the effector on the manipulator to become affixed to the object. The ferromagnetic patches are sized relative to the object's geometry and mass.

  2. Electromagnetic fasteners

    DOEpatents

    Crane, Randolph W.; Marts, Donna J.

    1994-01-01

    An electromagnetic fastener for manipulating objects in space uses the matic attraction of various metals. An end effector is attached to a robotic manipulating system having an electromagnet such that when current is supplied to the electromagnet, the object is drawn and affixed to the end effector, and when the current is withheld, the object is released. The object to be manipulated includes a multiplicity of ferromagnetic patches at various locations to provide multiple areas for the effector on the manipulator to become affixed to the object. The ferromagnetic patches are sized relative to the object's geometry and mass.

  3. Electromagnetic pulse (EMP) interaction with electric power systems. Power Systems Technology Program. Final report

    SciTech Connect

    Zaininger, H.W.

    1984-08-01

    A high altitude nuclear burst, detonated at a height of 50 km or more, causes two types of electromagnetic pulses (EMP) - high altitude EMP (HEMP) and magnetohydrodynamic EMP (MHD-EMP). This high altitude EMP scenario is of principal concern when assessing the effects of EMP on electric power systems, because the total United States can be simultaneously illuminated by HEMP and MHD-EMP can cover a large area of up to several hundred kilometers in diameter. The purpose of this project was first to define typical electrical power system characteristics for EMP analysis, and second, to determine reasonable worst case EMP induced surges on overhead electric power system transmission and distribution lines for reasonable assumptions, using unclassified HEMP and MHD-EMP electric field waveforms.

  4. [Change of cholinesterase relative activity under modulated ultra high frequency electromagnetic radiation in experiments in vitro].

    PubMed

    Pashovkina, M S; Pashovkin, T N

    2011-01-01

    Changes in the activity of enzyme cholinesterase (ChE) have been experimentally investigated under the influence of amplitude-modulated super-high-frequency electromagnetic radiation (carrier frequency of 2.375 MHz; power flux density of 8 mW/cm2, 20 mW/cm2 and 50 mW/cm2; modulation frequency range 10 to 210 Hz; exposure time 5 min). The appearance of peaks of the cholinesterase increased relative activity, as well as the changes in the direction and intensity of the reaction associated with the modulation frequency and power flux are observed at equal power flux densities and exposure times.

  5. Selection of independent components based on cortical mapping of electromagnetic activity

    NASA Astrophysics Data System (ADS)

    Chan, Hui-Ling; Chen, Yong-Sheng; Chen, Li-Fen

    2012-10-01

    Independent component analysis (ICA) has been widely used to attenuate interference caused by noise components from the electromagnetic recordings of brain activity. However, the scalp topographies and associated temporal waveforms provided by ICA may be insufficient to distinguish functional components from artifactual ones. In this work, we proposed two component selection methods, both of which first estimate the cortical distribution of the brain activity for each component, and then determine the functional components based on the parcellation of brain activity mapped onto the cortical surface. Among all independent components, the first method can identify the dominant components, which have strong activity in the selected dominant brain regions, whereas the second method can identify those inter-regional associating components, which have similar component spectra between a pair of regions. For a targeted region, its component spectrum enumerates the amplitudes of its parceled brain activity across all components. The selected functional components can be remixed to reconstruct the focused electromagnetic signals for further analysis, such as source estimation. Moreover, the inter-regional associating components can be used to estimate the functional brain network. The accuracy of the cortical activation estimation was evaluated on the data from simulation studies, whereas the usefulness and feasibility of the component selection methods were demonstrated on the magnetoencephalography data recorded from a gender discrimination study.

  6. Electromagnetically induced absorption via spontaneously generated coherence of a Λ system

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-pu; Gong, Shang-qing; Fan, Xi-jun; Xu, Zhi-zhan

    2004-02-01

    The effect of spontaneously generated coherence (SGC) on the pump-probe response of a nearly degenerate Λ system is investigated by taking into account the dephasing of the low-frequency coherence. It is found, in the case of small dephasing, that instead of electromagnetically induced transparency (EIT) at resonance, electromagnetically induced absorption (EIA) can occur due to the effect of SGC. We also study the effect of relative phase between the two applied fields and find that EIA and EIT can transform mutually by adjusting the relative phase.

  7. Open-loop characteristics of magnetic suspension systems using electromagnets mounted in a planar array

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.; Britcher, Colin P.

    1992-01-01

    The open-loop characteristics of a Large-Gap Magnetic Suspension System (LGMSS) were studied and numerical results are presented. The LGMSS considered provides five-degree-of-freedom control. The suspended element is a cylinder that contains a core composed of permanent magnet material. The magnetic actuators are air core electromagnets mounted in a planar array. Configurations utilizing five, six, seven, and eight electromagnets were investigated and all configurations were found to be controllable from coil currents and observable from suspended element positions. Results indicate that increasing the number of coils has an insignificant effect on mode shapes and frequencies.

  8. High-order FDTD methods for transverse electromagnetic systems in dispersive inhomogeneous media.

    PubMed

    Zhao, Shan

    2011-08-15

    This Letter introduces a novel finite-difference time-domain (FDTD) formulation for solving transverse electromagnetic systems in dispersive media. Based on the auxiliary differential equation approach, the Debye dispersion model is coupled with Maxwell's equations to derive a supplementary ordinary differential equation for describing the regularity changes in electromagnetic fields at the dispersive interface. The resulting time-dependent jump conditions are rigorously enforced in the FDTD discretization by means of the matched interface and boundary scheme. High-order convergences are numerically achieved for the first time in the literature in the FDTD simulations of dispersive inhomogeneous media.

  9. Communications system using a mirror kept in outer space by electromagnetic radiation pressure

    DOEpatents

    Csonka, Paul L.

    1981-01-01

    A method and system are described for transmitting electromagnetic radiation by using a communications mirror located between about 100 kilometers and about 200 kilometers above ground. The communications mirror is kept aloft above the atmosphere by the pressure of the electromagnetic radiation which it reflects, and which is beamed at the communications mirror by a suitably constructed transmitting antenna on the ground. The communications mirror will reflect communications, such as radio, radar, or television waves up to about 1,100 kilometers away when the communications mirror is located at a height of about 100 kilometers.

  10. Dual-row needle arrays under an electromagnetic thermotherapy system for bloodless liver resection surgery.

    PubMed

    Huang, Sheng Chieh; Chang, Yi Yuan; Chao, Ying Jui; Shan, Yan Shen; Lin, Xi Zhang; Lee, Gwo Bin

    2012-03-01

    Electromagnetic thermotherapy has been extensively investigated recently and may become a new surgical modality for a variety of medical applications. It applies a high-frequency alternating magnetic field to heat up magnetic materials inserted within the human body to generate tissue coagulation or cell apoptosis. Using a new procedure with dual-row needle arrays under an electromagnetic thermotherapy system with a feedback temperature control system, this study demonstrates bloodless porcine liver resection, which is challenging using existing methods. In vitro experiments showed that hollowed, stainless-steel needles could be heated up to more than 300 °C within 30 s when centered under the induction coils of the electromagnetic thermotherapy system. In order to generate a wide ablation zone and to prevent the dual-row needle arrays from sticking to the tissue after heating, a constant temperature of 120 °C was applied using a specific treatment protocol. The temperature distribution in the porcine livers was also measured to explore the effective coagulation area. Liver resection was then performed in Lan-Yu pigs. Experimental results showed that seven pigs underwent liver resection without bleeding during surgery and no complications afterward. The dual-row needle arrays combined with the electromagnetic thermotherapy system are thus shown to be promising for bloodless tissue resection.

  11. Analysis of electromagnetic interference from power system processing and transmission components for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Barber, Peter W.; Demerdash, Nabeel A. O.; Wang, R.; Hurysz, B.; Luo, Z.

    1991-01-01

    The goal is to analyze the potential effects of electromagnetic interference (EMI) originating from power system processing and transmission components for Space Station Freedom.The approach consists of four steps: (1) develop analytical tools (models and computer programs); (2) conduct parameterization studies; (3) predict the global space station EMI environment; and (4) provide a basis for modification of EMI standards.

  12. Dual-row needle arrays under an electromagnetic thermotherapy system for bloodless liver resection surgery.

    PubMed

    Huang, Sheng Chieh; Chang, Yi Yuan; Chao, Ying Jui; Shan, Yan Shen; Lin, Xi Zhang; Lee, Gwo Bin

    2012-03-01

    Electromagnetic thermotherapy has been extensively investigated recently and may become a new surgical modality for a variety of medical applications. It applies a high-frequency alternating magnetic field to heat up magnetic materials inserted within the human body to generate tissue coagulation or cell apoptosis. Using a new procedure with dual-row needle arrays under an electromagnetic thermotherapy system with a feedback temperature control system, this study demonstrates bloodless porcine liver resection, which is challenging using existing methods. In vitro experiments showed that hollowed, stainless-steel needles could be heated up to more than 300 °C within 30 s when centered under the induction coils of the electromagnetic thermotherapy system. In order to generate a wide ablation zone and to prevent the dual-row needle arrays from sticking to the tissue after heating, a constant temperature of 120 °C was applied using a specific treatment protocol. The temperature distribution in the porcine livers was also measured to explore the effective coagulation area. Liver resection was then performed in Lan-Yu pigs. Experimental results showed that seven pigs underwent liver resection without bleeding during surgery and no complications afterward. The dual-row needle arrays combined with the electromagnetic thermotherapy system are thus shown to be promising for bloodless tissue resection. PMID:22194233

  13. Experimental distinction of Autler-Townes splitting from electromagnetically induced transparency using coupled mechanical oscillators system

    PubMed Central

    Liu, Jingliang; Yang, Hujiang; Wang, Chuan; Xu, Kun; Xiao, Jinghua

    2016-01-01

    Here we experimentally demonstrated the electromagnetically induced transparency (EIT) and Autler-Townes splitting (ATS) effects in mechanical coupled pendulums. The analogue of EIT and ATS has been studied in mechanical systems and the intrinsic physics between these two phenomena are also been discussed. Exploiting the Akaike Information Criterion, we discern the ATS effect from EIT effect in our experimental results. PMID:26751738

  14. Experimental distinction of Autler-Townes splitting from electromagnetically induced transparency using coupled mechanical oscillators system

    NASA Astrophysics Data System (ADS)

    Liu, Jingliang; Yang, Hujiang; Wang, Chuan; Xu, Kun; Xiao, Jinghua

    2016-01-01

    Here we experimentally demonstrated the electromagnetically induced transparency (EIT) and Autler-Townes splitting (ATS) effects in mechanical coupled pendulums. The analogue of EIT and ATS has been studied in mechanical systems and the intrinsic physics between these two phenomena are also been discussed. Exploiting the Akaike Information Criterion, we discern the ATS effect from EIT effect in our experimental results.

  15. [New generation aurora electromagnetic tracking system in the medical surgical navigation].

    PubMed

    Luo, Wei; Zhang, Qing; Li, Shanshan; Wei, Xiaofeng

    2013-03-01

    Through a range of clinical applications of the new generation Aurora electromagnetic tracking system, it's performance and the significance in the medical surgical navigation are introduced. Its advantages and the development direction for clinical work are described that it can provide a newer, broader application space, enhance the accuracy and controllability of surgical navigation.

  16. Design and Realization of an Electromagnetic Guiding System for Blind Running Athletes

    PubMed Central

    Pieralisi, Marco; Petrini, Valerio; Di Mattia, Valentina; Manfredi, Giovanni; De Leo, Alfredo; Scalise, Lorenzo; Russo, Paola; Cerri, Graziano

    2015-01-01

    Nowadays the technologies aimed at improving the quality of life of people affected by visual diseases are quite common; e.g., devices to support walking or reading. Surprisingly, there is a lack of innovative technologies aimed at helping visually impaired athletes during physical activities. An example is represented by blind runners who need to be physically linked to a sighted guide by means of non-stretchable tethers during races; with consequent limitations in terms of performance and independence. This paper wants to investigate the possibility of realizing a system able to guide blind runners along a complex path, paving the way for the realization of an innovative device designed to improve their independence during training or competitions. The system consists of: (1) a mobile unit, which is placed before the runner and generates two “electromagnetic walls” delimiting the way; (2) a receiving unit (worn by the athlete) that provides vibro-tactile warnings every time the user is going outside the safe area so as to encourage him to move toward the central position. The feasibility and the utility of the system proposed are demonstrated by means of tests carried out thanks to the collaboration of a blind volunteer. PMID:26184192

  17. Electromagnetic design of an all-diffractive millimeter-wave imaging system.

    PubMed

    Chen, Caihua; Shi, Shouyan; Prather, Dennis W

    2004-04-20

    We present the design and electromagnetic analysis of an all-diffractive millimeter-wave imaging system having a field of view of +/- 15 degrees. This system consists of two 16-level diffractive lenses, with the stop in contact with the first lens. By considering the Seidel aberrations for a diffractive lens and applying the corresponding stop shift formula, we established the expressions of third-order wave aberrations for this system. By setting all primary Seidel aberrations to zero and solving the corresponding system of equations, we obtained two sets of solutions for this two-element all-diffractive system, which totally compensate for all Seidel aberrations. To assess image system performance, we apply the finite-difference time-domain technique and a vector plane-wave spectrum method, in combination, to validate the performance of the system. To reduce the computational cost and thereby enable the complete electromagnetic analysis of the system, a four-step analysis procedure has been developed and applied as an electromagnetic system model.

  18. Electromagnetic Design of an All-Diffractive Millimeter-Wave Imaging System

    NASA Astrophysics Data System (ADS)

    Chen, Caihua; Shi, Shouyan; Prather, Dennis W.

    2004-04-01

    We present the design and electromagnetic analysis of an all-diffractive millimeter-wave imaging system having a field of view of +/-15°. This system consists of two 16-level diffractive lenses, with the stop in contact with the first lens. By considering the Seidel aberrations for a diffractive lens and applying the corresponding stop shift formula, we established the expressions of third-order wave aberrations for this system. By setting all primary Seidel aberrations to zero and solving the corresponding system of equations, we obtained two sets of solutions for this two-element all-diffractive system, which totally compensate for all Seidel aberrations. To assess image system performance, we apply the finite-difference time-domain technique and a vector plane-wave spectrum method, in combination, to validate the performance of the system. To reduce the computational cost and thereby enable the complete electromagnetic analysis of the system, a four-step analysis procedure has been developed and applied as an electromagnetic system model.

  19. The minimization of the extraneous electromagnetic fields of an inductive power transfer system

    NASA Astrophysics Data System (ADS)

    McLean, James; Sutton, Robert

    2013-04-01

    The efficiency of inductive wireless power transfer (IPT) systems has been extensively studied. However, the electromagnetic compatibility of such systems is at least as important as the efficiency and has received much less attention. We consider the net magnetic dipole moment of the system as a figure of merit. That is, we seek to minimize the magnitude of the net dipole moment in order to minimize both the near magnetic fields and the radiated power. A 20 kHz, 3.3 kW, IPT system, representative of typical wireless vehicular battery charging systems, is considered and it is seen that one particular value of load impedance minimizes the net dipole moment while another, distinct, value maximizes efficiency. Thus, efficiency must be traded off, at least to some extent, in order to minimize extraneous electromagnetic fields.

  20. Weak-light rogue waves, breathers, and their active control in a cold atomic gas via electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Liu, Junyang; Hang, Chao; Huang, Guoxiang

    2016-06-01

    We propose a scheme to demonstrate the existence of optical Peregrine rogue waves and Akhmediev and Kuznetsov-Ma breathers and realize their active control via electromagnetically induced transparency (EIT). The system we suggest is a cold, Λ -type three-level atomic gas interacting with a probe and a control laser fields and working under EIT condition. We show that, based on EIT with an incoherent optical pumping, which can be used to cancel optical absorption, (1+1)-dimensional optical Peregrine rogue waves, Akhmediev breathers, and Kuznetsov-Ma breathers can be generated with very low light power. In addition, we demonstrate that the Akhmediev and Kuznetsov-Ma breathers in (2+1)-dimensions obtained can be actively manipulated by using an external magnetic field. As a result, these breathers can display trajectory deflections and bypass obstacles during propagation.

  1. Surface enhanced Raman optical activity of molecules on orientationally averaged substrates: theory of electromagnetic effects.

    PubMed

    Janesko, Benjamin G; Scuseria, Gustavo E

    2006-09-28

    We present a model for electromagnetic enhancements in surface enhanced Raman optical activity (SEROA) spectroscopy. The model extends previous treatments of SEROA to substrates, such as metal nanoparticles in solution, that are orientationally averaged with respect to the laboratory frame. Our theoretical treatment combines analytical expressions for unenhanced Raman optical activity with molecular polarizability tensors that are dressed by the substrate's electromagnetic enhancements. We evaluate enhancements from model substrates to determine preliminary scaling laws and selection rules for SEROA. We find that dipolar substrates enhance Raman optical activity (ROA) scattering less than Raman scattering. Evanescent gradient contributions to orientationally averaged ROA scale to first or higher orders in the gradient of the incident plane-wave field. These evanescent gradient contributions may be large for substrates with quadrupolar responses to the plane-wave field gradient. Some substrates may also show a ROA contribution that depends only on the molecular electric dipole-electric dipole polarizability. These conclusions are illustrated via numerical calculations of surface enhanced Raman and ROA spectra from (R)-(-)-bromochlorofluoromethane on various model substrates.

  2. Influence of 400, 900, and 1900 MHz electromagnetic fields on Lemna minor growth and peroxidase activity.

    PubMed

    Tkalec, Mirta; Malarić, Kresimir; Pevalek-Kozlina, Branka

    2005-04-01

    Increased use of radio and microwave frequencies requires investigations of their effects on living organisms. Duckweed (Lemna minor L.) has been commonly used as a model plant for environmental monitoring. In the present study, duckweed growth and peroxidase activity was evaluated after exposure in a Gigahertz Transversal Electromagnetic (GTEM) cell to electric fields of frequencies 400, 900, and 1900 MHz. The growth of plants exposed for 2 h to the 23 V/m electric field of 900 MHz significantly decreased in comparison with the control, while an electric field of the same strength but at 400 MHz did not have such effect. A modulated field at 900 MHz strongly inhibited the growth, while at 400 MHz modulation did not influence the growth significantly. At both frequencies a longer exposure mostly decreased the growth and the highest electric field (390 V/m) strongly inhibited the growth. Exposure of plants to lower field strength (10 V/m) for 14 h caused significant decrease at 400 and 1900 MHz while 900 MHz did not influence the growth. Peroxidase activity in exposed plants varied, depending on the exposure characteristics. Observed changes were mostly small, except in plants exposed for 2 h to 41 V/m at 900 MHz where a significant increase (41%) was found. Our results suggest that investigated electromagnetic fields (EMFs) might influence plant growth and, to some extent, peroxidase activity. However, the effects of EMFs strongly depended on the characteristics of the field exposure. PMID:15768427

  3. Low frequency electromagnetic signals in the atmosphere caused by geodynamics and solar activity

    NASA Astrophysics Data System (ADS)

    Novik, Oleg; Ruzhin, Yuri; Ershov, Sergey; Volgin, Max; Smirnov, Fedor

    Due to the composed structure of the medium and large portions of energy transferred, a seismic excitation in the oceanic or continental lithosphere disturbs all types of geophysical fields. To investigate the problem of electromagnetic (EM) forcing on the atmosphere from the seismically activated lithosphere, we have formulated two mathematical models of interaction of fields of different physical nature resulting in arising of the low-frequency (from 0.1 to 10 Hz by amplitude of a few hundreds of pT) EM signals in the atmosphere. First we have considered the EM field generation in the moving oceanic lithosphere and then in the moving continental one. For both cases, the main physical principles and geological data were applied for formulation of the model and characteristics of the computed signals of different nature agree with measurements of other authors. On the basis of the 2D model of the seismo-hydro-EM-temperature interaction in a lithosphere-Ocean-atmosphere domain, a block-scheme of a multisensory vertically distributed (from a seafloor up to the ionosphere) tsunami precursors’ detection system is described. On the basis of the 3D model of the seismo-EM interaction in a lithosphere-atmosphere domain, we explain effect of location of the future seismic epicenter area (obtained by Prof. Kopytenko, Yu. A. from Inst. IZMIRAN of Russian Acad. Sci. and co-authors) as the result of the magnetic field measurements in the atmosphere near the earth’s surface. We believe that the biosphere effects of forcing on the atmosphere may not be ignored. We formulate the result of our measurements with the system of micro-voltmeters: low-frequency EM disturbances of the atmosphere caused by solar activity (namely, geomagnetic storms with the geomagnetic index values K = 5 and K = 6), are decreasing temporarily the coherence of oscillations of the electric potentials of different points on the surface of a head, i.e. the coherence of the human brain EM processes. We are

  4. Electromagnetically induced transparency in an open {Lambda}-type molecular lithium system

    SciTech Connect

    Lazoudis, A.; Kirova, T.; Ahmed, E. H.; Lyyra, A. M.; Li, L.; Qi, J.

    2010-08-15

    We present an experimental study of electromagnetically induced transparency (EIT) in a {Lambda}-type molecular lithium system. Copropagating beam geometry is utilized in order to minimize the residual Doppler width. A coupling laser power dependent study of the EIT feature is carried out. Our findings have been complemented by theoretical studies of open systems that trace the presence of EIT starting from the density-matrix equations. Numerical simulations have been performed and are in good agreement with the experimental results.

  5. Electromagnetic interference assessment of an ion drive electric propulsion system

    NASA Technical Reports Server (NTRS)

    Whittlesey, A. C.

    1981-01-01

    An electric propulsion thrust system has the capability of providing a high specific impulse for long duration scientific missions in space. The EMI from the elements of an ion engine was characterized. The compatibility of ion drive electric propulsion systems with typical interplanetary spacecraft engineering was predicted.

  6. The effect of time delay on control stability of an electromagnetic active tuned mass damper for vibration control

    NASA Astrophysics Data System (ADS)

    Hassan, A.; Torres-Perez, A.; Kaczmarczyk, S.; Picton, P.

    2016-05-01

    The aim of this paper is to investigate the effect of time delays on the stability of a zero-placement position and velocity feedback law for a vibratory system comprising harmonic excitation equipped with an electromagnetic active tuned mass damper (ATMD). The purpose of the active control is broadening the vibration attenuation envelope of a primary mass to a higher frequency region identified as from 50±0.5Hz with a passive tuned mass damper (TMD) to a wider range of 50±5Hz with an ATMD. Stability conditions of the closed-loop system are determined by studying the position of the system closed-loop poles after the introduction of time delays for different excitation frequencies. A computer simulation of the model predicted that the proposed control system is subject to instability after a critical time delay margin dependent upon the frequency of excitation and the finding were experimentally validated. Three solutions are derived and experimentally tested for minimising the effect of time delays on the stability of the control system. The first solution is associated with the introduction of more damping in the absorber system. The second incorporates using a time-delayed ATMD by tuning its original natural resonant frequency to beyond the nominal operational frequency range of the composite system. The third involves an online gain tuning of filter coefficients in a dual arrangement of low-pass and high-pass filters to eliminate the effect time delays by manipulating the signal phase shifts.

  7. Miniature battery-operated electromagnetic system for blood flow measurements

    NASA Technical Reports Server (NTRS)

    Fryer, T. B.

    1971-01-01

    System consisting of solid state electronics package and a pair of standard flow-transducer cuffs is useful in cardiovascular studies. Device shows good zero stability and calibrations, and low noise levels.

  8. Annular suspension and pointing system with controlled DC electromagnets

    NASA Technical Reports Server (NTRS)

    Vu, Josephine Lynn; Tam, Kwok Hung

    1993-01-01

    The Annular Suspension and Pointing System (ASPS) developed by the Flight System division of Sperry Corporation is a six-degree of freedom payload pointing system designed for use with the space shuttle. This magnetic suspension and pointing system provides precise controlled pointing in six-degrees of freedom, isolation of payload-carrier disturbances, and end mount controlled pointing. Those are great advantages over the traditional mechanical joints for space applications. In this design, we first analyzed the assumed model of the single degree ASPS bearing actuator and obtained the plant dynamics equations. By linearizing the plant dynamics equations, we designed the cascade and feedback compensators such that a stable and satisfied result was obtained. The specified feedback compensator was computer simulated with the nonlinearized plant dynamics equations. The results indicated that an unstable output occurred. In other words, the designed feedback compensator failed. The failure of the design is due to the Taylor's series expansion not converging.

  9. Image-based synchronization of force and bead motion in active electromagnetic microrheometry

    NASA Astrophysics Data System (ADS)

    Park, Chang-Young; Saleh, Omar A.

    2014-12-01

    In the past, electromagnetic tweezers have been used to make active microrheometers. An active microrheometer measures the dynamic mechanical properties of a material from the motion of embedded particles under external force, e.g. a sinusoidal magnetic force generated by a sinusoidal current on a coil. The oscillating amplitude and the phase lag of the motion are then used to estimate the material’s dynamic mechanical properties. The phase lag, in particular, requires precise synchronization of the particle motion with the external force. In previous works, synchronization difficulties have arisen from measuring two parameters with two instruments, one of them being a camera. We solved the synchronization issue by measuring two parameters with a single instrument, the camera alone. From captured images, particles can be tracked in three dimensions through an image-analysis algorithm while the current on the coil can be measured from the brightness of the image; this enables simultaneous synchronization of the phases of the driving current on the electromagnet coil and the motion of the magnetic probe particle. We calibrate the phase delay between the magnetic force and the particle’s motion in glycerol and confirm the calibration with a Hall probe. The technique is further tested by measuring the shear modulus of a polyacrylamide gel, and comparing the results to those obtained using a conventional rheometer.

  10. Peculiarities of ULF electromagnetic disturbances before strong earthquakes in seismic active zone of Kamchatka peninsula

    NASA Astrophysics Data System (ADS)

    Kopytenko, Y. A.; Ismagilov, V. S.; Schekotov, A.; Molchanov, O.; Chebrov, V.; Raspopov, O. M.

    2006-12-01

    Regular observations of ULF electromagnetic disturbances and acoustic emissions at st. Karymshino in seismic active zone of Kamchatka peninsula were carried out during 2001-2003 years. Five seismic active periods with strong earthquakes (M>5) were displayed during this period. These EQs occurred at the Pacific at 20-60 km depth at 100-140 km distances to the East from the st. Karymshino. Analysis of normalized dynamic power spectra of data of high-sensitive (0.2 pT/sqrt(Hz)) three-component induction magnetometer achieved a significant disorder of daily variation and increasing of the magnetic disturbance intensities (from 0.2 to ~1 pT) in the whole investigated frequency range (0.2-5 Hz). The anomaly intensity increasing was observed during the 12-18 hours before main seismic shocks. Maximum of the increasing occurred during 4-6 hours before the EQs. An increasing of acoustic emissions (F=30 Hz) was observed during the same period. A sharp decreasing of the magnetic disturbance intensities was observed 2-4 hours before the EQs. We suppose that physical processes in a hearth of forthcoming EQ lead to an irreversible avalanche-like formation of cracks and stimulation of the acoustic and ULF electromagnetic disturbances.

  11. The Influence of Electromagnetic Radiation Generated by a Mobile Phone on the Skeletal System of Rats

    PubMed Central

    Sieroń-Stołtny, Karolina; Teister, Łukasz; Cieślar, Grzegorz; Sieroń, Dominik; Śliwinski, Zbigniew; Sieroń, Aleksander

    2015-01-01

    The study was focused on the influence of electromagnetic field generated by mobile phone on the skeletal system of rats, assessed by measuring the macrometric parameters of bones, mechanical properties of long bones, calcium and phosphorus content in bones, and the concentration of osteogenesis (osteocalcin) and bone resorption (NTX, pyridinoline) markers in blood serum. The study was carried out on male rats divided into two groups: experimental group subjected to 28-day cycle of exposures in electromagnetic field of 900 MHz frequency generated by mobile phone and a control, sham-exposed one. The mobile phone-generated electromagnetic field did not influence the macrometric parameters of long bones and L4 vertebra, it altered mechanical properties of bones (stress and energy at maximum bending force, stress at fracture), it decreased the content of calcium in long bones and L4 vertebra, and it altered the concentration of osteogenesis and bone resorption markers in rats. On the basis of obtained results, it was concluded that electromagnetic field generated by 900 MHz mobile phone does not have a direct impact on macrometric parameters of bones; however, it alters the processes of bone mineralization and the intensity of bone turnover processes and thus influences the mechanical strength of bones. PMID:25705697

  12. The influence of electromagnetic radiation generated by a mobile phone on the skeletal system of rats.

    PubMed

    Sieroń-Stołtny, Karolina; Teister, Łukasz; Cieślar, Grzegorz; Sieroń, Dominik; Śliwinski, Zbigniew; Kucharzewski, Marek; Sieroń, Aleksander

    2015-01-01

    The study was focused on the influence of electromagnetic field generated by mobile phone on the skeletal system of rats, assessed by measuring the macrometric parameters of bones, mechanical properties of long bones, calcium and phosphorus content in bones, and the concentration of osteogenesis (osteocalcin) and bone resorption (NTX, pyridinoline) markers in blood serum. The study was carried out on male rats divided into two groups: experimental group subjected to 28-day cycle of exposures in electromagnetic field of 900 MHz frequency generated by mobile phone and a control, sham-exposed one. The mobile phone-generated electromagnetic field did not influence the macrometric parameters of long bones and L4 vertebra, it altered mechanical properties of bones (stress and energy at maximum bending force, stress at fracture), it decreased the content of calcium in long bones and L4 vertebra, and it altered the concentration of osteogenesis and bone resorption markers in rats. On the basis of obtained results, it was concluded that electromagnetic field generated by 900 MHz mobile phone does not have a direct impact on macrometric parameters of bones; however, it alters the processes of bone mineralization and the intensity of bone turnover processes and thus influences the mechanical strength of bones.

  13. The influence of electromagnetic radiation generated by a mobile phone on the skeletal system of rats.

    PubMed

    Sieroń-Stołtny, Karolina; Teister, Łukasz; Cieślar, Grzegorz; Sieroń, Dominik; Śliwinski, Zbigniew; Kucharzewski, Marek; Sieroń, Aleksander

    2015-01-01

    The study was focused on the influence of electromagnetic field generated by mobile phone on the skeletal system of rats, assessed by measuring the macrometric parameters of bones, mechanical properties of long bones, calcium and phosphorus content in bones, and the concentration of osteogenesis (osteocalcin) and bone resorption (NTX, pyridinoline) markers in blood serum. The study was carried out on male rats divided into two groups: experimental group subjected to 28-day cycle of exposures in electromagnetic field of 900 MHz frequency generated by mobile phone and a control, sham-exposed one. The mobile phone-generated electromagnetic field did not influence the macrometric parameters of long bones and L4 vertebra, it altered mechanical properties of bones (stress and energy at maximum bending force, stress at fracture), it decreased the content of calcium in long bones and L4 vertebra, and it altered the concentration of osteogenesis and bone resorption markers in rats. On the basis of obtained results, it was concluded that electromagnetic field generated by 900 MHz mobile phone does not have a direct impact on macrometric parameters of bones; however, it alters the processes of bone mineralization and the intensity of bone turnover processes and thus influences the mechanical strength of bones. PMID:25705697

  14. Electromagnetic scattering in two-dimensional dissipative systems without localization

    NASA Astrophysics Data System (ADS)

    Spieker, H.; Nimtz, G.

    1996-10-01

    Two-dimensional microwave propagation is experimentally studied in strongly scattering and absorbing random media. The results are compared with adapted theories of Genack, Ferrari, and Kaveh, as well as with classical diffusion theory. The diffusion constants and propagation velocities are determined. Most metallic or semiconductor system's localization effects, if they exist, are so weak that a classical description of the system is appropriate within measuring resolution.

  15. Capacity of electromagnetic communication modes in a noise-limited optical system.

    PubMed

    Lee, Myungjun; Neifeld, Mark A; Ashok, Amit

    2016-02-20

    We present capacity bounds of an optical system that communicates using electromagnetic waves between a transmitter and a receiver. The bounds are investigated in conjunction with a rigorous theory of degrees of freedom (DOF) in the presence of noise. By taking into account the different signal-to-noise ratio (SNR) levels, an optimal number of DOF that provides the maximum capacity is defined. We find that for moderate noise levels, the DOF estimate of the number of active modes is approximately equal to the optimum number of channels obtained by a more rigorous water-filling procedure. On the other hand, for very low- or high-SNR regions, the maximum capacity can be obtained using less or more channels compared to the number of communicating modes given by the DOF theory. In general, the capacity is shown to increase with increasing size of the transmitting and receiving volumes, whereas it decreases with an increase in the separation between volumes. Under the practical channel constraints of noise and finite available power, the capacity upper bound can be estimated by the well-known iterative water-filling solution to determine the optimal power allocation into the subchannels corresponding to the set of singular values when channel state information is known at the transmitter.

  16. Capacity of electromagnetic communication modes in a noise-limited optical system.

    PubMed

    Lee, Myungjun; Neifeld, Mark A; Ashok, Amit

    2016-02-20

    We present capacity bounds of an optical system that communicates using electromagnetic waves between a transmitter and a receiver. The bounds are investigated in conjunction with a rigorous theory of degrees of freedom (DOF) in the presence of noise. By taking into account the different signal-to-noise ratio (SNR) levels, an optimal number of DOF that provides the maximum capacity is defined. We find that for moderate noise levels, the DOF estimate of the number of active modes is approximately equal to the optimum number of channels obtained by a more rigorous water-filling procedure. On the other hand, for very low- or high-SNR regions, the maximum capacity can be obtained using less or more channels compared to the number of communicating modes given by the DOF theory. In general, the capacity is shown to increase with increasing size of the transmitting and receiving volumes, whereas it decreases with an increase in the separation between volumes. Under the practical channel constraints of noise and finite available power, the capacity upper bound can be estimated by the well-known iterative water-filling solution to determine the optimal power allocation into the subchannels corresponding to the set of singular values when channel state information is known at the transmitter. PMID:26906586

  17. Investigation of the groundwater system at Masaya Caldera, Nicaragua, using transient electromagnetics and numerical simulation

    USGS Publications Warehouse

    MacNeil, R.E.; Sanford, W.E.; Connor, C.B.; Sandberg, S.K.; Diez, M.

    2007-01-01

    The distribution of groundwater beneath Masaya Volcano, in Nicaragua, and its surrounding caldera was characterized using the transient electromagnetic method (TEM). Multiple soundings were conducted at 30 sites. Models of the TEM data consistently indicate a resistive layer that is underlain by one or more conductive layers. These two layers represent the unsaturated and saturated zones, respectively, with the boundary between them indicating the water-table elevation. A map of the TEM data shows that the water table in the caldera is a subdued replica of the topography, with higher elevations beneath the edifice in the south-central caldera and lower elevations in the eastern caldera, coinciding with the elevation of Laguna de Masaya. These TEM data, combined with regional hydrologic data, indicate that the caldera in hydrologically isolated from the surrounding region, with as much as 60??m of difference in elevation of the groundwater table across caldera-bounding faults. The water-table information and estimates of fluxes of water through the system were used to constrain a numerical simulation of groundwater flow. The simulation results indicate that basalt flows in the outer parts of the caldera have a relatively high transmissivity, whereas the central edifice has a substantially lower transmissivity. A layer of relatively high transmissivity must be present at depth within the edifice in order to deliver the observed flux of water and steam to the active vent. This hydrologic information about the caldera provides a baseline for assessing the response of this isolated groundwater system to future changes in magmatic activity. ?? 2007.

  18. Investigation of Electromagnetic Properties of Multiparticle Systems in the Optical and Microwave Regions

    NASA Astrophysics Data System (ADS)

    Yip, Wendy

    The goal of this work is to examine the electromagnetic properties of multiple particles ensembles in optical and microwave regions. Electromagnetic scattering problems of multi-particles systems appear in many research areas, including biomedical research problems. When a particle system becomes dense, multiple scattering between the particles need to be included in order to fully describe the response of the system to an EM wave. The generalized multiparticle Mie (GMM) solution is used to rigorously solve the Maxwell's equations for multi-particles systems. The algorithm accounts for multiple scattering effects by transforming the waves scattered by an individual particle to the incident waves of other spheres in the ensemble. In the optical region, light scattering from biological tissues can reveal structural changes in the tissues which can be a mean for disease diagnosis. A new Monte Carlo simulation method is introduced to study the effect of tissue structure on signals from two diagnostic probes, the polarization gating probe and low coherence enhanced back scattering probe (LEBS). In the microwave region, the study of electromagnetic properties with metallic nanoparticles can determine their potential as effective heating agents in microwave hyperthermia therapy. The investigation aims to study the dielectric properties of metallic nanoparticles and quantify the relationship between the characteristics of metallic nanoparticles and the heating effect. The finding should help optimize the design and use of metallic nanoparticles in hyperthermia treatment. In addition, the metallic nanoparticles are studied for their potential to be contrast agents for biological tissue in the microwave region.

  19. A survey on electromagnetic interferences on aircraft avionics systems and a GSM on board system overview

    NASA Astrophysics Data System (ADS)

    Vinto, Natale; Tropea, Mauro; Fazio, Peppino; Voznak, Miroslav

    2014-05-01

    Recent years have been characterized by an increase in the air traffic. More attention over micro-economic and macroeconomic indexes would be strategic to gather and enhance the safety of a flight and customer needing, for communicating by wireless handhelds on-board aircrafts. Thus, European Telecommunications Standards Institute (ETSI) proposed a GSM On Board (GSMOBA) system as a possible solution, allowing mobile terminals to communicate through GSM system on aircraft, avoiding electromagnetic interferences with radio components aboard. The main issues are directly related with interferences that could spring-out when mobile terminals attempt to connect to ground BTS, from the airplane. This kind of system is able to resolve the problem in terms of conformance of Effective Isotropic Radiated Power (EIRP) limits, defined outside the aircraft, by using an On board BTS (OBTS) and modeling the relevant key RF parameters on the air. The main purpose of this work is to illustrate the state-of-the-art of literature and previous studies about the problem, giving also a good detail of technical and normative references.

  20. A measurement technique to determine the calibration accuracy of an electromagnetic tracking system to radiation isocenter

    SciTech Connect

    Litzenberg, Dale W.; Gallagher, Ian; Masi, Kathryn J.; Lee, Choonik; Prisciandaro, Joann I.; Hamstra, Daniel A.; Ritter, Timothy; Lam, Kwok L.

    2013-08-15

    Purpose: To present and characterize a measurement technique to quantify the calibration accuracy of an electromagnetic tracking system to radiation isocenter.Methods: This technique was developed as a quality assurance method for electromagnetic tracking systems used in a multi-institutional clinical hypofractionated prostate study. In this technique, the electromagnetic tracking system is calibrated to isocenter with the manufacturers recommended technique, using laser-based alignment. A test patient is created with a transponder at isocenter whose position is measured electromagnetically. Four portal images of the transponder are taken with collimator rotations of 45° 135°, 225°, and 315°, at each of four gantry angles (0°, 90°, 180°, 270°) using a 3 × 6 cm{sup 2} radiation field. In each image, the center of the copper-wrapped iron core of the transponder is determined. All measurements are made relative to this transponder position to remove gantry and imager sag effects. For each of the 16 images, the 50% collimation edges are identified and used to find a ray representing the rotational axis of each collimation edge. The 16 collimator rotation rays from four gantry angles pass through and bound the radiation isocenter volume. The center of the bounded region, relative to the transponder, is calculated and then transformed to tracking system coordinates using the transponder position, allowing the tracking system's calibration offset from radiation isocenter to be found. All image analysis and calculations are automated with inhouse software for user-independent accuracy. Three different tracking systems at two different sites were evaluated for this study.Results: The magnitude of the calibration offset was always less than the manufacturer's stated accuracy of 0.2 cm using their standard clinical calibration procedure, and ranged from 0.014 to 0.175 cm. On three systems in clinical use, the magnitude of the offset was found to be 0.053 ± 0.036, 0

  1. Electromagnetic variable degrees of freedom actuator systems and methods

    DOEpatents

    Montesanti, Richard C.; Trumper, David L.; Kirtley, Jr., James L.

    2009-02-17

    The present invention provides a variable reluctance actuator system and method that can be adapted for simultaneous rotation and translation of a moving element by applying a normal-direction magnetic flux on the moving element. In a beneficial example arrangement, the moving element includes a swing arm that carries a cutting tool at a set radius from an axis of rotation so as to produce a rotary fast tool servo that provides a tool motion in a direction substantially parallel to the surface-normal of a workpiece at the point of contact between the cutting tool and workpiece. An actuator rotates a swing arm such that a cutting tool moves toward and away from a mounted rotating workpiece in a controlled manner in order to machine the workpiece. Position sensors provide rotation and displacement information for a swing arm to a control system. A control system commands and coordinates motion of the fast tool servo with the motion of a spindle, rotating table, cross-feed slide, and in feed slide of a precision lathe.

  2. Multimodality image guidance system integrating X-ray fluoroscopy and ultrasound image streams with electromagnetic tracking

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Luis F.; Shechter, Guy; Stanton, Douglas; Dalal, Sandeep; Elgort, Daniel; Manzke, Robert; Chan, Raymond C.; Zagorchev, Lyubomir

    2007-03-01

    This work presents an integrated system for multimodality image guidance of minimally invasive medical procedures. This software and hardware system offers real-time integration and registration of multiple image streams with localization data from navigation systems. All system components communicate over a local area Ethernet network, enabling rapid and flexible deployment configurations. As a representative configuration, we use X-ray fluoroscopy (XF) and ultrasound (US) imaging. The XF imaging system serves as the world coordinate system, with gantry geometry derived from the imaging system, and patient table position tracked with a custom-built measurement device using linear encoders. An electromagnetic (EM) tracking system is registered to the XF space using a custom imaging phantom that is also tracked by the EM system. The RMS fiducial registration error for the EM to X-ray registration was 2.19 mm, and the RMS target registration error measured with an EM-tracked catheter was 8.81 mm. The US image stream is subsequently registered to the XF coordinate system using EM tracking of the probe, following a calibration of the US image within the EM coordinate system. We present qualitative results of the system in operation, demonstrating the integration of live ultrasound imaging spatially registered to X-ray fluoroscopy with catheter localization using electromagnetic tracking.

  3. [The action of a decimeter-wave electromagnetic field on the indices of the blood kallikrein-kinin system in rabbits with an experimental myocardial infarct].

    PubMed

    Liubimova, N N; Popov, V I

    1990-01-01

    Continuous 10-day exposure of the heart and adrenal regions of rabbits with myocardial infarction to electromagnetic field produced by decimeter waves leads to activation of kallikrein-kinin system. With the heart exposure, this activation comes through marked changes in microcirculatory bed, whereas in the adrenal exposure it is trophic defects that are induced in the myocardium. The exposure of the thyroid regions brings about unnoticeable effect.

  4. The calibration and monitoring system for the PHENIX lead-scintillator electromagnetic calorimeter

    SciTech Connect

    David, G.; Kistenev, E.; Stoll, S.

    1997-11-01

    A system for calibrating the PHENIX lead-scintillator electromagnetic calorimeter modules with cosmic rays and monitoring the stability during operation is described. The system is based on a UV laser which delivers light to each module through a network of optical fibers and splutters and is monitored at various points with silicon and vacuum photodiodes. Results are given from a prototype system which used a nitrogen laser to set the initial phototube gains and to establish the energy calibration of calorimeter modules and monitor their stability. A description of the final system to be used in PHENIX based on a high power YAG laser, is also given.

  5. The calibration and monitoring system for the PHENIX lead-scintillator electromagnetic calorimeter

    SciTech Connect

    David, G.; Kistenev, E.; Stoll, S.; White, S.; Woody, C.; Bazilevsky, A.; Belikov, S.; Chernichenkov, S.; Denisov, A.; Gilitzky, Y.; Kochetkov, V.; Melnikov, Y.; Onuchin, V.; Semenov, A.; Shelikhov, V.; Soldatov, A.

    1998-11-09

    A system for calibrating the PHENIX lead-scintillator electromagnetic calorimeter modules with cosmic rays and monitoring the stability during operation is described. The system is based on a UV laser which delivers light to each module through a network of optical fibers and splitters and is monitored at various points with silicon and vacuum photodiodes. Results are given from a prototype system which used a nitrogen laser to set the initial phototube gains and to establish the energy calibration of calorimeter modules and monitor their stability. A description of the final system to be used in PHENIX, based on a high power YAG laser, is also given.

  6. Analysis of electromagnetic interference from power system processing and transmission components for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Barber, Peter W.; Demerdash, Nabeel A. O.; Hurysz, B.; Luo, Z.; Denny, Hugh W.; Millard, David P.; Herkert, R.; Wang, R.

    1992-01-01

    The goal of this research project was to analyze the potential effects of electromagnetic interference (EMI) originating from power system processing and transmission components for Space Station Freedom. The approach consists of four steps: (1) developing analytical tools (models and computer programs); (2) conducting parameterization (what if?) studies; (3) predicting the global space station EMI environment; and (4) providing a basis for modification of EMI standards.

  7. Four-wave mixing in a three-level bichromatic electromagnetically induced transparency system

    SciTech Connect

    Yang, G. Q.; Xu, P.; Wang, J.; Zhan, M. S.; Zhu Yifu

    2010-10-15

    We investigate the four-wave mixing (FWM) phenomenon in a three-level bichromatic electromagnetically induced transparency system. Theoretical results predict that the FWM will exhibit a multipeak structure under bichromatic coupling fields. The stronger the coupling fields are, the more FWM the peaks should exhibit. Results of an experiment carried out with cold {sup 87}Rb atoms in a magneto-optical trap agree with the theoretical prediction.

  8. A decoupled control approach for magnetic suspension systems using electromagnets mounted in a planar array

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.

    1993-01-01

    A decoupled control approach for a Large Gap Magnetic Suspension System (LGMSS) is presented. The control approach is developed for an LGMSS which provides five degree-of-freedom control of a cylindrical suspended element that contains a core composed of permanent magnet material. The suspended element is levitated above five electromagnets mounted in a planar array. Numerical results are obtained by using the parameters of the Large Angle Magnetic Suspension Test Fixture (LAMSTF) which is a small scale laboratory model LGMSS.

  9. Electromagnetic mixed waste processing system for asbestos decontamination

    SciTech Connect

    Kasevich, R.S.; Vaux, W.G.; Nocito, T.

    1995-10-01

    DOE sites contain a broad spectrum of asbestos materials (cloth, pipe lagging, sprayed insulation and other substances) which are contaminated with a combination of hazardous and radioactive wastes due to its use during the development of the U.S. nuclear weapons complex. These wastes consist of cutting oils, lubricants, solvents, PCB`s, heavy metals and radioactive contaminants. The radioactive contaminants are the activation, decay and fission products of DOE operations. The asbestos must be converted by removing and separating the hazardous and radioactive materials to prevent the formation of mixed wastes and to allow for both sanitary disposal and effective decontamination. Currently, no technology exists that can meet these sanitary and other objectives.

  10. Electromagnetic mixed-waste processing system for asbestos decontamination

    SciTech Connect

    1995-04-01

    The first phase of a program to develop and demonstrate a cost-effective, integrated process for remediation of asbestos-containing material that is contaminated with organics, heavy metals, and radioactive compounds was successfully completed. Laboratory scale tests were performed to demonstrate initial process viability for asbestos conversion, organics removal, and radionuclide and heavy metal removal. All success criteria for the laboratory tests were met. (1) Ohio DSI demonstrated greater than 99% asbestos conversion to amorphous solids using their commercial process. (2) KAI demonstrated 90% removal of organics from the asbestos suspension. (3) Westinghouse STC achieved the required metals removal criteria on a laboratory scale (e.g., 92% removal of uranium from solution, resin loadings of 0.6 equivalents per liter, and greater than 50% regeneration of resin in a batch test.) Using the information gained in the laboratory tests, the process was reconfigured to provide the basis for the mixed waste remediation system. An integrated process is conceptually developed, and a Phase 2 program plan is proposed to provide the bench-scale development needed in order to refine the design basis for a pilot processing system.

  11. The electromagnetic environment of Magnetic Resonance Imaging systems. Occupational exposure assessment reveals RF harmonics

    NASA Astrophysics Data System (ADS)

    Gourzoulidis, G.; Karabetsos, E.; Skamnakis, N.; Kappas, C.; Theodorou, K.; Tsougos, I.; Maris, T. G.

    2015-09-01

    Magnetic Resonance Imaging (MRI) systems played a crucial role in the postponement of the former occupational electromagnetic fields (EMF) European Directive (2004/40/EC) and in the formation of the latest exposure limits adopted in the new one (2013/35/EU). Moreover, the complex MRI environment will be finally excluded from the implementation of the new occupational limits, leading to an increased demand for Occupational Health and Safety (OHS) surveillance. The gradient function of MRI systems and the application of the RF excitation frequency result in low and high frequency exposures, respectively. This electromagnetic field exposure, in combination with the increased static magnetic field exposure, makes the MRI environment a unique case of combined EMF exposure. The electromagnetic field levels in close proximity of different MRI systems have been assessed at various frequencies. Quality Assurance (QA) & safety issues were also faced. Preliminary results show initial compliance with the forthcoming limits in each different frequency band, but also revealed peculiar RF harmonic components, of no safety concern, to the whole range detected (20-1000MHz). Further work is needed in order to clarify their origin and characteristics.

  12. Fuel injection system electromagnetic-valve controlled type

    SciTech Connect

    Oshizawa, H.; Ishikawa, M.

    1989-01-31

    A fuel injection system for an engine is described including: (a) a fuel injection pump having a pump housing, a plunger associated with the pump housing and reciprocatively movable in relation to rotation of a crankshaft of the engine, and a fuel pressurizing chamber associated with the pump housing and variable in volume in response to reciprocative movement of the plunger; (b) supply passage means supplying fuel to the fuel pressurizing chamber, the supply passage means being closed substantially during a forward stroke of the plunger and being opened substantially during a backward stroke of the plunger; (c) forcible-delivery passage means connecting the fuel pressurizing chamber to at least one fuel injection nozzle of the engine; (d) release passage means communicating with the fuel pressurizing chamber.

  13. Schumann Resonances as a Means of Investigating the Electromagnetic Environment in the Solar System

    NASA Astrophysics Data System (ADS)

    Simões, F.; Rycroft, M.; Renno, N.; Yair, Y.; Aplin, K. L.; Takahashi, Y.

    The propagation of extremely low frequency (ELF, 3 Hz to 3 kHz) radio waves and resonant phenomena in the spherical Earth-ionosphere cavity has been studied for almost fifty years. When such a cavity is excited by naturally occurring broadband electromagnetic radiation, resonances can develop if the equatorial circumference is approximately equal to an integral number of wavelengths of the propagating electromagnetic waves; these are termed Schumann resonances. They provide information not only about thunderstorm and lightning activity on the Earth, and their relation to climate, but also on the properties of the low ionosphere. Similar investigations can be performed for any other planet or satellite, provided that it has an ionosphere.

  14. Application of superconducting technology to earth-to-orbit electromagnetic launch systems

    NASA Technical Reports Server (NTRS)

    Hull, J. R.; Carney, L. M.

    1988-01-01

    Benefits may occur by incorporating superconductors, both existing and those currently under development, in one or more parts of a large-scale electromagnetic launch (EML) system that is capable of delivering payloads from the surface of the Earth to space. The use of superconductors for many of the EML components results in lower system losses; consequently, reductions in the size and number of energy storage devices are possible. Applied high-temperature superconductivity may eventually enable novel design concepts for energy distribution and switching. All of these technical improvements have the potential to reduce system complexity and lower payload launch costs.

  15. Quantum random walks in a coherent atomic system via electromagnetically induced transparency

    SciTech Connect

    Li Yun; Hang Chao; Ma Lei; Zhang Weiping; Huang Guoxiang

    2008-12-15

    We propose a scheme to realize the quantum random walk in a coherent five-level atomic system via electromagnetically induced transparency (EIT). From optical Bloch equations describing the dynamics of the electromagnetic field and atomic population and coherence, we show that two circular-polarized components of a probe field display different dispersion properties and hence acquire different phase-shift modifications when passing through atomic cells. We demonstrate that the quantum coherence and interference owing to the EIT effect result in a low absorption of the probe field and hence provide a possibility of realizing a many-step phase-shift quantum random walk. The scheme may be used to experimentally highlight the characteristics of quantum random walk and lead to a promising application for quantum computation.

  16. An electromagnetic thermotherapy system with a deep penetration depth for percutaneous thermal ablation.

    PubMed

    Huang, Sheng-Chieh; Chang, Yi-Yuan; Kang, Jui-Wen; Tsai, Hung-Wen; Shan, Yan-Shen; Lin, Xi-Zhang; Lee, Gwo-Bin

    2014-01-01

    Thermal ablation has been a promising method to remove the cancerous tissues. Electromagnetic-based thermotherapy has been extensively investigated for a variety of medical applications recently. In this study, a prototype electromagnetic thermotherapy system has been developed with a new coil design and a two-section needle. The coil can generate an alternating electromagnetic field (EMF) with a deep penetration depth to remotely heat the needle which is located up to 15 cm away, enabling percutaneous thermal ablation. Several important parameters, including the heating effects of the needle at different positions, the intensity of the EMF and the induced temperature distribution on the surrounding tissue, are first explored. An in vitro animal experiment has also been performed which shows EMF-induced ablation in a porcine liver by the needle. Furthermore, an in vivo experiment on an animal model (a New Zealand white rabbit) is also conducted in the study. Thus, the two-section needle combined with the coil-generated EMF has been demonstrated to be a promising thermotherapy system for percutaneous thermal ablation. PMID:23990331

  17. Electromagnetic field redistribution induced selective plasmon driven surface catalysis in metal nanowire-film systems.

    PubMed

    Pan, Liang; Huang, Yingzhou; Yang, Yanna; Xiong, Wen; Chen, Guo; Su, Xun; Wei, Hua; Wang, Shuxia; Wen, Weijia

    2015-01-01

    For the novel interpretation of Raman spectrum from molecule at metal surface, the plasmon driven surface catalysis (PDSC) reactions have become an interesting topic in the research field of surface enhanced Raman scattering (SERS). In this work, the selective PDSC reactions of p,p'-dimercaptoazobenzene (DMAB) produced from para-aminothiophenol (PATP) or 4-nitrobenzenethiol (4NBT) were demonstrated in the Ag nanowires dimer-Au film systems. The different SERS spectra collected at individual part and adjacent part of the same nanowire-film system pointed out the importance of the electromagnetic field redistribution induced by image charge on film in this selective surface catalysis, which was confirmed by the simulated electromagnetic simulated electro- magnetic field distributions. Our result indicated this electromagnetic field redistribution induced selective surface catalysis was largely affected by the polarization and wavelength of incident light but slightly by the difference in diameters between two nanowires. Our work provides a further understanding of PDSC reaction in metal nanostructure and could be a deep support for the researches on surface catalysis and surface analysis.

  18. Electromagnetic field redistribution induced selective plasmon driven surface catalysis in metal nanowire-film systems

    PubMed Central

    Pan, Liang; Huang, Yingzhou; Yang, Yanna; Xiong, Wen; Chen, Guo; Su, Xun; Wei, Hua; Wang, Shuxia; Wen, Weijia

    2015-01-01

    For the novel interpretation of Raman spectrum from molecule at metal surface, the plasmon driven surface catalysis (PDSC) reactions have become an interesting topic in the research field of surface enhanced Raman scattering (SERS). In this work, the selective PDSC reactions of p,p’-dimercaptoazobenzene (DMAB) produced from para-aminothiophenol (PATP) or 4-nitrobenzenethiol (4NBT) were demonstrated in the Ag nanowires dimer-Au film systems. The different SERS spectra collected at individual part and adjacent part of the same nanowire-film system pointed out the importance of the electromagnetic field redistribution induced by image charge on film in this selective surface catalysis, which was confirmed by the simulated electromagnetic simulated electro- magnetic field distributions. Our result indicated this electromagnetic field redistribution induced selective surface catalysis was largely affected by the polarization and wavelength of incident light but slightly by the difference in diameters between two nanowires. Our work provides a further understanding of PDSC reaction in metal nanostructure and could be a deep support for the researches on surface catalysis and surface analysis. PMID:26601698

  19. An electromagnetic thermotherapy system with a deep penetration depth for percutaneous thermal ablation.

    PubMed

    Huang, Sheng-Chieh; Chang, Yi-Yuan; Kang, Jui-Wen; Tsai, Hung-Wen; Shan, Yan-Shen; Lin, Xi-Zhang; Lee, Gwo-Bin

    2014-01-01

    Thermal ablation has been a promising method to remove the cancerous tissues. Electromagnetic-based thermotherapy has been extensively investigated for a variety of medical applications recently. In this study, a prototype electromagnetic thermotherapy system has been developed with a new coil design and a two-section needle. The coil can generate an alternating electromagnetic field (EMF) with a deep penetration depth to remotely heat the needle which is located up to 15 cm away, enabling percutaneous thermal ablation. Several important parameters, including the heating effects of the needle at different positions, the intensity of the EMF and the induced temperature distribution on the surrounding tissue, are first explored. An in vitro animal experiment has also been performed which shows EMF-induced ablation in a porcine liver by the needle. Furthermore, an in vivo experiment on an animal model (a New Zealand white rabbit) is also conducted in the study. Thus, the two-section needle combined with the coil-generated EMF has been demonstrated to be a promising thermotherapy system for percutaneous thermal ablation.

  20. Computer Analysis of Electromagnetic Field Exposure Hazard for Space Station Astronauts during Extravehicular Activity

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.; Kelley, James S.; Panneton, Robert B.; Arndt, G. Dickey

    1995-01-01

    In order to estimate the RF radiation hazards to astronauts and electronics equipment due to various Space Station transmitters, the electric fields around the various Space Station antennas are computed using the rigorous Computational Electromagnetics (CEM) techniques. The Method of Moments (MoM) was applied to the UHF and S-band low gain antennas. The Aperture Integration (AI) method and the Geometrical Theory of Diffraction (GTD) method were used to compute the electric field intensities for the S- and Ku-band high gain antennas. As a result of this study, The regions in which the electric fields exceed the specified exposure levels for the Extravehicular Mobility Unit (EMU) electronics equipment and Extravehicular Activity (EVA) astronaut are identified for various Space Station transmitters.

  1. Active control of electromagnetic radiation through an enhanced thermo-optic effect.

    PubMed

    Sheng, Chong; Liu, Hui; Zhu, Shining; Genov, Dentcho A

    2015-03-09

    The control of electromagnetic radiation in transformation optical metamaterials brings the development of vast variety of optical devices. Of a particular importance is the possibility to control the propagation of light with light. In this work, we use a structured planar cavity to enhance the thermo-optic effect in a transformation optical waveguide. In the process, a control laser produces apparent inhomogeneous refractive index change inside the waveguides. The trajectory of a second probe laser beam is then continuously tuned in the experiment. The experimental results agree well with the developed theory. The reported method can provide a new approach toward development of transformation optical devices where active all-optical control of the impinging light can be achieved.

  2. Low-resolution electromagnetic tomography (LORETA) of cerebral activity in chronic depressive disorder.

    PubMed

    Lubar, Joel F; Congedo, Marco; Askew, John H

    2003-09-01

    In this study we compared the current density power and power asymmetry in 15 right-handed, medication-free chronically depressed females (of the unipolar type) and age-matched non-clinical female controls. We used frequency domain LORETA (Low-Resolution Electromagnetic Tomography). In the interhemispheric asymmetry analysis, compared with the control group, the depression group exhibited a left-to-right Alpha2 (10-12 Hz) current density dominance in the left postcentral gyrus. The pattern of left-to-right dominance included frontal (especially medial and middle frontal gyri) and temporal locations. The between groups comparison of spectral power revealed decreased activity in the right middle temporal gyrus in the depressed group. The decrease emerged in the whole frequency spectrum analyzed (2-32 Hz), although it reached significance in the Delta (2-3.5 Hz) band only. These findings are discussed in terms of the existing literature on affect using EEG, PET and SPECT.

  3. Active control of electromagnetic radiation through an enhanced thermo-optic effect.

    PubMed

    Sheng, Chong; Liu, Hui; Zhu, Shining; Genov, Dentcho A

    2015-01-01

    The control of electromagnetic radiation in transformation optical metamaterials brings the development of vast variety of optical devices. Of a particular importance is the possibility to control the propagation of light with light. In this work, we use a structured planar cavity to enhance the thermo-optic effect in a transformation optical waveguide. In the process, a control laser produces apparent inhomogeneous refractive index change inside the waveguides. The trajectory of a second probe laser beam is then continuously tuned in the experiment. The experimental results agree well with the developed theory. The reported method can provide a new approach toward development of transformation optical devices where active all-optical control of the impinging light can be achieved. PMID:25746689

  4. Graphical computational method for active materials in simulation of optical electromagnetics

    NASA Astrophysics Data System (ADS)

    Potasek, M.; Parilov, E.; Beeson, K.

    2014-03-01

    Traditional numerical analyses of laser beam transmission through "active" nonlinear materials have involved many assumptions that narrow their general applicability. As more complex optical phenomena are widely employed in research and industry, it is necessary to expand the use of numerical simulation methods. Historically, laser-matter interactions have involved calculations of "classical" wave propagation by Maxwell's equations and photon absorption through rate equations using numerous approximations. We describe a novel numerical modeling framework that adapts itself for simulation of different types of active materials provided by a simple graphical input. Our framework combines classical electric field propagation with "active" photon absorption kinetics using computational active photonic building blocks (APBB). It allows investigating a plane electromagnetic wave propagating through generic organic or inorganic photoactive materials; while, "active" photo-transitions are implemented using the APBB algorithm on the user interface. To date we have used the method in multiphoton absorbers, upconversion, semiconductor quantum dots, rare earth ions, organic chromophores, singlet oxygen formation, energy transfer, and optically-induced chemical reactions. We will demonstrate the method with applications of amplification in rare-earth ions and multiple two-photon absorbers materials in tandem.

  5. Bayesian Inference for Neural Electromagnetic Source Localization: Analysis of MEG Visual Evoked Activity

    SciTech Connect

    George, J.S.; Schmidt, D.M.; Wood, C.C.

    1999-02-01

    We have developed a Bayesian approach to the analysis of neural electromagnetic (MEG/EEG) data that can incorporate or fuse information from other imaging modalities and addresses the ill-posed inverse problem by sarnpliig the many different solutions which could have produced the given data. From these samples one can draw probabilistic inferences about regions of activation. Our source model assumes a variable number of variable size cortical regions of stimulus-correlated activity. An active region consists of locations on the cortical surf ace, within a sphere centered on some location in cortex. The number and radi of active regions can vary to defined maximum values. The goal of the analysis is to determine the posterior probability distribution for the set of parameters that govern the number, location, and extent of active regions. Markov Chain Monte Carlo is used to generate a large sample of sets of parameters distributed according to the posterior distribution. This sample is representative of the many different source distributions that could account for given data, and allows identification of probable (i.e. consistent) features across solutions. Examples of the use of this analysis technique with both simulated and empirical MEG data are presented.

  6. Active optical zoom system

    DOEpatents

    Wick, David V.

    2005-12-20

    An active optical zoom system changes the magnification (or effective focal length) of an optical imaging system by utilizing two or more active optics in a conventional optical system. The system can create relatively large changes in system magnification with very small changes in the focal lengths of individual active elements by leveraging the optical power of the conventional optical elements (e.g., passive lenses and mirrors) surrounding the active optics. The active optics serve primarily as variable focal-length lenses or mirrors, although adding other aberrations enables increased utility. The active optics can either be LC SLMs, used in a transmissive optical zoom system, or DMs, used in a reflective optical zoom system. By appropriately designing the optical system, the variable focal-length lenses or mirrors can provide the flexibility necessary to change the overall system focal length (i.e., effective focal length), and therefore magnification, that is normally accomplished with mechanical motion in conventional zoom lenses. The active optics can provide additional flexibility by allowing magnification to occur anywhere within the FOV of the system, not just on-axis as in a conventional system.

  7. A bronchoscopic navigation system using bronchoscope center calibration for accurate registration of electromagnetic tracker and CT volume without markers

    SciTech Connect

    Luo, Xiongbiao

    2014-06-15

    Purpose: Various bronchoscopic navigation systems are developed for diagnosis, staging, and treatment of lung and bronchus cancers. To construct electromagnetically navigated bronchoscopy systems, registration of preoperative images and an electromagnetic tracker must be performed. This paper proposes a new marker-free registration method, which uses the centerlines of the bronchial tree and the center of a bronchoscope tip where an electromagnetic sensor is attached, to align preoperative images and electromagnetic tracker systems. Methods: The chest computed tomography (CT) volume (preoperative images) was segmented to extract the bronchial centerlines. An electromagnetic sensor was fixed at the bronchoscope tip surface. A model was designed and printed using a 3D printer to calibrate the relationship between the fixed sensor and the bronchoscope tip center. For each sensor measurement that includes sensor position and orientation information, its corresponding bronchoscope tip center position was calculated. By minimizing the distance between each bronchoscope tip center position and the bronchial centerlines, the spatial alignment of the electromagnetic tracker system and the CT volume was determined. After obtaining the spatial alignment, an electromagnetic navigation bronchoscopy system was established to real-timely track or locate a bronchoscope inside the bronchial tree during bronchoscopic examinations. Results: The electromagnetic navigation bronchoscopy system was validated on a dynamic bronchial phantom that can simulate respiratory motion with a breath rate range of 0–10 min{sup −1}. The fiducial and target registration errors of this navigation system were evaluated. The average fiducial registration error was reduced from 8.7 to 6.6 mm. The average target registration error, which indicates all tracked or navigated bronchoscope position accuracy, was much reduced from 6.8 to 4.5 mm compared to previous registration methods. Conclusions: An

  8. [Measurement and study report as a part of the control system for human safety and health protection against electromagnetic fields and electromagnetic radiation (0 Hz-300 GHz)].

    PubMed

    Aniołczyk, Halina

    2007-01-01

    The National Control System for safety and health protection against electromagnetic fields (EMF) and electromagnetic radiation (EMR) (0 Hz-300 GHz) is constantly analyzed in view of Directive 2004/40/EC. Reports on the effects of investments (at the designing stage or at the stage of looking for their localization) on the environment and measurement and study reports on the objects already existing or being put into operation are important elements of this system. These documents should meet both national and European Union's legislation requirements. The overriding goal of the control system is safety and health protection of humans against electromagnetic fields in the environment and in occupational settings. The author pays a particular attention to provisions made in directives issued by relevant ministers and to Polish standards, which should be documented in measurement and study reports published by the accredited laboratories and relating to the problems of human safety and health protection. Similar requirements are valid for the Reports. Therefore, along with measurement outcomes, the reports should include data on the EMF exposure classification at work-posts and the assessment of occupational risk resulting from EMF exposure or at least thorough data facilitating such a classification.

  9. Quantitative analysis of factors affecting intraoperative precision and stability of optoelectronic and electromagnetic tracking systems.

    PubMed

    Wagner, A; Schicho, K; Birkfellner, W; Figl, M; Seemann, R; König, F; Kainberger, Franz; Ewers, R

    2002-05-01

    This study aims to provide a quantitative analysis of the factors affecting the actual precision and stability of optoelectronic and electromagnetic tracking systems in computer-aided surgery under real clinical/intraoperative conditions. A "phantom-skull" with five precisely determined reference distances between marker spheres is used for all measurements. Three optoelectronic and one electromagnetic tracking systems are included in this study. The experimental design is divided into three parts: (1) evaluation of serial- and multislice-CT (computed tomography) images of the phantom-skull for the precision of distance measurements by means of navigation software without a digitizer, (2) digitizer measurements under realistic intraoperative conditions with the factors OR-lamp (radiating into the field of view of the digitizer) or/and "handling with ferromagnetic surgical instruments" (in the field of view of the digitizer) and (3) "point-measurements" to analyze the influence of changes in the angle of inclination of the stylus axis. Deviations between reference distances and measured values are statistically investigated by means of analysis of variance. Computerized measurements of distances based on serial-CT data were more precise than based on multislice-CT data. All tracking systems included in this study proved to be considerably less precise under realistic OR conditions when compared to the technical specifications in the manuals of the systems. Changes in the angle of inclination of the stylus axis resulted in deviations of up to 3.40 mm (mean deviations for all systems ranging from 0.49 to 1.42 mm, variances ranging from 0.09 to 1.44 mm), indicating a strong need for improvements of stylus design. The electromagnetic tracking system investigated in this study was not significantly affected by small ferromagnetic surgical instruments.

  10. Nanoscale/multilayer gradient materials for application in electromagnetic gun systems

    SciTech Connect

    Otooni, M.A.; Brown, I.G.; Anders, S.; Wang, Z.

    1996-12-31

    Analysis of fired rails from electromagnetic railguns indicates severe surface damage occurs due to high current arcing and tribological mismatch. The authors have explored the behavior of several nanoscale multilayered materials as possible routes to improve the thermomechanical properties of the rail and armature materials. Structures investigated include (i) Ti-Co alloy on Ta-Cu alloy on dlc (diamond-like carbon) on stainless steel; (ii) Ti-Co alloy on Ta-Cu alloy on dlc on Cu, (iii) Ti-Co alloy on Ta-Cu on Cu; and (iv) Ti-Co on Ta-Cu alloy on Al. The alloys were all 50:50 at% and film thicknesses were fin the range 400--1,000 {angstrom}. The films were formed using a repetitively pulsed vacuum arc plasma deposition method with substrate biasing- and IBAD-like techniques. The surfaces were characterized by scanning electron microscopy, transmission electron microscopy, Rutherford backscattering spectroscopy, optical microscopy, microhardness measurements, arc erosion resistance and scratch resistance tests. Preliminary results show improvement in the microhardness, arc erosion resistance and scratch resistance, most especially for the dlc-coated surfaces. This kind of multilayered approach to the fabrication of electromagnetic railgun and armature surfaces could be important for future advanced Electromagnetic EM Gun systems.

  11. Interaction of electromagnetic pulse with commercial nuclear-power-plant systems

    SciTech Connect

    Ericson, D.M. Jr.; Strawe, D.F.; Sandberg, S.J.; Jones, V.K.; Rensner, G.D.; Shoup, R.W.; Hanson, R.J.; Williams, C.B.

    1983-02-01

    This study examines the interaction of the electromagnetic pulse from a high altitude nuclear burst with commercial nuclear power plant systems. The potential vulnerability of systems required for safe shutdown of a specific nuclear power plant are explored. EMP signal coupling, induced plant response and component damage thresholds are established using techniques developed over several decades under Defense Nuclear Agency sponsorship. A limited test program was conducted to verify the coupling analysis technique as applied to a nuclear power plant. The results are extended, insofar as possible, to other nuclear plants.

  12. The Lagrange Points in a Binary Black Hole System: Applications to Electromagnetic Signatures

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy

    2010-01-01

    We study the stability and evolution of the Lagrange points L_4 and L-5 in a black hole (BH) binary system, including gravitational radiation. We find that gas and stars can be shepherded in with the BH system until the final moments before merger, providing the fuel for a bright electromagnetic counterpart to a gravitational wave signal. Other astrophysical signatures include the ejection of hyper-velocity stars, gravitational collapse of globular clusters, and the periodic shift of narrow emission lines in AGN.

  13. Electromagnetic-acoustic-transducer synthetic-aperture system for thick-weld inspection

    NASA Astrophysics Data System (ADS)

    Fortunko, C. M.; Schramm, R. E.; Moulder, J. C.; McColskey, J. D.

    1984-05-01

    A system is described based on electromagnetic acoustic transducers (EMATs) as an approach to automated nondestructive evaluation of thick weldments. Applications include a new type of ultrasonic inspection system for thick, butt welds used in ship construction. A minicomputer controlled transducer positioned and acquired the digitized ultrasonic waveforms for synthetic aperture processing. The synthetic aperture technique further improved signal quality and yielded flaw localization through the weld thickness. Details include the design of the transducers and electronics, as well as the mechanical positioner, signal processing algorithms, and complete computer program listings.

  14. Coherent perfect absorption in an electromagnetically induced transparency-like (EIT-like) system

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Guo, Jing; Dong, Liang; Meng, Fan-Yi; Wu, Qun

    2016-09-01

    We propose a scheme for realizing the coherent perfect absorption (CPA) by exploiting the moderate coupling between the electric and magnetic resonators in an electromagnetically induced transparency-like (EIT-like) system. Moreover, the ideal parity-time (PT) symmetry can be established in such a passive system by precisely engineering the rate between the scattering and dissipative losses of resonators as well as their coupling. Specifically, by controlling the phase difference between two incident waves, the absorption ratio of CPA at the peak frequency can be dynamically modulated from 1 to 0. Such a scheme provides an effective route to construct absorbing devices.

  15. Modeling and Simulation of Upset-Inducing Disturbances for Digital Systems in an Electromagnetic Reverberation Chamber

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2014-01-01

    This report describes a modeling and simulation approach for disturbance patterns representative of the environment experienced by a digital system in an electromagnetic reverberation chamber. The disturbance is modeled by a multi-variate statistical distribution based on empirical observations. Extended versions of the Rejection Samping and Inverse Transform Sampling techniques are developed to generate multi-variate random samples of the disturbance. The results show that Inverse Transform Sampling returns samples with higher fidelity relative to the empirical distribution. This work is part of an ongoing effort to develop a resilience assessment methodology for complex safety-critical distributed systems.

  16. Mitigation of magnetohydrodynamic electromagnetic pulse (MHD-EMP) effects from commerical electric power systems

    SciTech Connect

    Barnes, P.R. ); Tesche, F.M. , Dallas, TX ); Vance, E.F. , Fort Worth, TX )

    1992-03-01

    A large nuclear detonation at altitudes of several hundred kilometers above the earth distorts the earth's magnetic field and produces a strong magnetohydrodynamic electromagnetic pulse (MHD-EMP). This can adversely affect electrical power systems. In this report, the effects of this nuclear environment on critical facilities connected to the commercial power system are considered. Methods of mitigating the MHD-EMP impacts are investigated, and recommended protection schemes are presented. Guidelines for testing facilities to determine the effects of MHD-EMP and to validate the mitigation methods also are discussed.

  17. New Method of active electromagnetic induction and seismic Monitoring in Oil saturated Media

    NASA Astrophysics Data System (ADS)

    Hachay, Olga, ,, Prof.; Khachay, Oleg; Khachay, Andrey

    2014-05-01

    to further develop the system of seism acoustic and electromagnetic observations. That work was fulfilled according the Program of Presidium UB RAS 2012 - 2014.

  18. Biomolecular structure manipulation using tailored electromagnetic radiation: a proof of concept on a simplified model of the active site of bacterial DNA topoisomerase.

    PubMed

    Jarukanont, Daungruthai; Coimbra, João T S; Bauerhenne, Bernd; Fernandes, Pedro A; Patel, Shekhar; Ramos, Maria J; Garcia, Martin E

    2014-10-21

    We report on the viability of breaking selected bonds in biological systems using tailored electromagnetic radiation. We first demonstrate, by performing large-scale simulations, that pulsed electric fields cannot produce selective bond breaking. Then, we present a theoretical framework for describing selective energy concentration on particular bonds of biomolecules upon application of tailored electromagnetic radiation. The theory is based on the mapping of biomolecules to a set of coupled harmonic oscillators and on optimal control schemes to describe optimization of temporal shape, the phase and polarization of the external radiation. We have applied this theory to demonstrate the possibility of selective bond breaking in the active site of bacterial DNA topoisomerase. For this purpose, we have focused on a model that was built based on a case study. Results are given as a proof of concept.

  19. Interaction of extremely-low-frequency electromagnetic fields with living systems

    SciTech Connect

    Tenforde, T.S.

    1991-11-01

    The sources and physical properties of extremely-low-frequency (ELF) electromagnetic fields are described in this paper. Biological effects and mechanisms through which ELF fields interact with humans and other organisms are discussed, including several aspects of this subject that are presently under active laboratory investigation. Studies on the potential health effects of ELF fields present in the home and workplace are also summarized, including a critical evaluation of evidence for a possible linkage between exposure to ELF fields and cancer risk. 53 refs.

  20. Non-Markovian master equation for a system of Fermions interacting with an electromagnetic field

    SciTech Connect

    Stefanescu, Eliade Scheid, Werner; Sandulescu, Aurel

    2008-05-15

    For a system of charged Fermions interacting with an electromagnetic field, we derive a non-Markovian master equation in the second-order approximation of the weak dissipative coupling. A complex dissipative environment including Fermions, Bosons and the free electromagnetic field is taken into account. Besides the well-known Markovian term of Lindblad's form, that describes the decay of the system by correlated transitions of the system and environment particles, this equation includes new Markovian and non-Markovian terms proceeding from the fluctuations of the self-consistent field of the environment. These terms describe fluctuations of the energy levels, transitions among these levels stimulated by the fluctuations of the self-consistent field of the environment, and the influence of the time-evolution of the environment on the system dynamics. We derive a complementary master equation describing the environment dynamics correlated with the dynamics of the system. As an application, we obtain non-Markovian Maxwell-Bloch equations and calculate the absorption spectrum of a field propagation mode transversing an array of two-level quantum dots.

  1. Schumann Resonances as a Means of Investigating the Electromagnetic Environment in the Solar System

    NASA Astrophysics Data System (ADS)

    Simões, F.; Rycroft, M.; Renno, N.; Yair, Y.; Aplin, K. L.; Takahashi, Y.

    2008-06-01

    The propagation of extremely low frequency (ELF, 3 Hz to 3 kHz) radio waves and resonant phenomena in the spherical Earth-ionosphere cavity has been studied for almost fifty years. When such a cavity is excited by naturally occurring broadband electromagnetic radiation, resonances can develop if the equatorial circumference is approximately equal to an integral number of wavelengths of the propagating electromagnetic waves; these are termed Schumann resonances. They provide information not only about thunderstorm and lightning activity on the Earth, and their relation to climate, but also on the properties of the low ionosphere. Similar investigations can be performed for any other planet or satellite, provided that it has an ionosphere. There are important differences between the Earth and other celestial bodies regarding, for example, the surface conductivity, the atmospheric conductivity profile, the geometry of the ionospheric cavity, and the sources of excitation. To a first approximation, the size of the cavity defines the fundamental resonant frequency, the atmospheric electron density profile controls the wave attenuation, the nature of the sources influences the electromagnetic field distribution in the cavity, and the body surface conductivity indicates to what extent the subsurface can be explored. The frequencies and attenuation rates of the principal eigenmodes depend upon the electrical properties of the cavity. Instruments that monitor the electromagnetic environment in the ELF range on the surface, on balloons, or on descent probes provide unique information on the cavity. In this paper, we present Schumann resonance models for selected inner planets, some gaseous giant planets and a few of their satellites. We review the crucial parameters of ELF electromagnetic waves in their atmospheric cavities, namely the electric and magnetic field spectra, their eigenfrequencies, and the associated Q-factors (damping factors). Then we present important

  2. Real-time closed-loop simulation and upset evaluation of control systems in harsh electromagnetic environments

    NASA Technical Reports Server (NTRS)

    Belcastro, Celeste M.

    1989-01-01

    Digital control systems for applications such as aircraft avionics and multibody systems must maintain adequate control integrity in adverse as well as nominal operating conditions. For example, control systems for advanced aircraft, and especially those with relaxed static stability, will be critical to flight and will, therefore, have very high reliability specifications which must be met regardless of operating conditions. In addition, multibody systems such as robotic manipulators performing critical functions must have control systems capable of robust performance in any operating environment in order to complete the assigned task reliably. Severe operating conditions for electronic control systems can result from electromagnetic disturbances caused by lightning, high energy radio frequency (HERF) transmitters, and nuclear electromagnetic pulses (NEMP). For this reason, techniques must be developed to evaluate the integrity of the control system in adverse operating environments. The most difficult and illusive perturbations to computer-based control systems that can be caused by an electromagnetic environment (EME) are functional error modes that involve no component damage. These error modes are collectively known as upset, can occur simultaneously in all of the channels of a redundant control system, and are software dependent. Upset studies performed to date have not addressed the assessment of fault tolerant systems and do not involve the evaluation of a control system operating in a closed-loop with the plant. A methodology for performing a real-time simulation of the closed-loop dynamics of a fault tolerant control system with a simulated plant operating in an electromagnetically harsh environment is presented. In particular, considerations for performing upset tests on the controller are discussed. Some of these considerations are the generation and coupling of analog signals representative of electromagnetic disturbances to a control system under test

  3. Effects of electromagnetic fields produced by radiotelevision broadcasting stations on the immune system of women.

    PubMed

    Boscol, P; Di Sciascio, M B; D'Ostilio, S; Del Signore, A; Reale, M; Conti, P; Bavazzano, P; Paganelli, R; Di Gioacchino, M

    2001-06-12

    The object of this study was to investigate the immune system of 19 women with a mean age of 35 years, for at least 2 years (mean = 13 years) exposed to electromagnetic fields (ELMFs) induced by radiotelevision broadcasting stations in their residential area. In September 1999, the ELMFs (with range 500 KHz-3 GHz) in the balconies of the homes of the women were (mean +/- S.D.) 4.3 +/- 1.4 V/m. Forty-seven women of similar age, smoking habits and atopy composed the control group, with a nearby resident ELMF exposure of < 1.8 V/m. Blood lead and urinary trans-trans muconic acid (a metabolite of benzene), markers of exposure to urban traffic, were higher in the control women. The ELMF exposed group showed a statistically significant reduction of blood NK CD16+-CD56+, cytotoxic CD3(-)-CD8+, B and NK activated CD3(-)-HLA-DR+ and CD3(-)-CD25+ lymphocytes. 'In vitro' production of IL-2 and interferon-gamma (INF-gamma) by peripheral blood mononuclear cells (PBMC) of the ELMF exposed group, incubated either with or without phytohaemoagglutinin (PHA), was significantly lower; the 'in vitro' production of IL-2 was significantly correlated with blood CD16+-CD56+ lymphocytes. The stimulation index (S.I.) of blastogenesis (ratio between cell proliferation with and without PHA) of PBMC of ELMF exposed women was lower than that of the control subjects. The S.I. of blastogenesis of the ELMF exposed group (but not blood NK lymphocytes and the 'in vitro' production of IL-2 and INF-gamma by PBMC) was significantly correlated with the ELMF levels. Blood lead and urinary trans-trans muconic acid were barely correlated with immune parameters: the urinary metabolite of benzene of the control group was only correlated with CD16+-CD56+ cells indicating a slight effect of traffic on the immune system. In conclusion, this study demonstrates that high frequency ELMFs reduce cytotoxic activity in the peripheral blood of women without a dose-response effect.

  4. Electromagnetically levitated vibration isolation system for the manufacturing process of silicon monocrystals

    NASA Technical Reports Server (NTRS)

    Kanemitsu, Yoichi; Watanabe, Katsuhide; Yano, Kenichi; Mizuno, Takayuki

    1994-01-01

    This paper introduces a study on an Electromagnetically Levitated Vibration Isolation System (ELVIS) for isolation control of large-scale vibration. This system features no mechanical contact between the isolation table and the installation floor, using a total of four electromagnetic actuators which generate magnetic levitation force in the vertical and horizontal directions. The configuration of the magnet for the vertical direction is designed to prevent any generation of restoring vibratory force in the horizontal direction. The isolation system is set so that vibration control effects due to small earthquakes can be regulated to below 5(gal) versus horizontal vibration levels of the installation floor of up t 25(gal), and those in the horizontal relative displacement of up to 30 (mm) between the floor and levitated isolation table. In particular, studies on the relative displacement between the installation floor and the levitated isolation table have been made for vibration control in the horizontal direction. In case of small-scale earthquakes (Taft wave scaled: max. 25 gal), the present system has been confirmed to achieve a vibration isolation to a level below 5 gal. The vibration transmission ratio of below 1/10 has been achieved versus continuous micro-vibration (approx. one gal) in the horizontal direction on the installation floor.

  5. Addendum to `numerical modeling of an enhanced very early time electromagnetic (VETEM) prototype system'

    USGS Publications Warehouse

    Cui, T.J.; Chew, W.C.; Aydiner, A.A.; Wright, D.L.; Smith, D.V.; Abraham, J.D.

    2000-01-01

    Two numerical models to simulate an enhanced very early time electromagnetic (VETEM) prototype system that is used for buried-object detection and environmental problems are presented. In the first model, the transmitting and receiving loop antennas accurately analyzed using the method of moments (MoM), and then conjugate gradient (CG) methods with the fast Fourier transform (FFT) are utilized to investigate the scattering from buried conducting plates. In the second model, two magnetic dipoles are used to replace the transmitter and receiver. Both the theory and formulation are correct and the simulation results for the primary magnetic field and the reflected magnetic field are accurate.

  6. Dynamics of ionisation and entanglement in the 'atom + quantum electromagnetic field' system

    SciTech Connect

    Sharapova, P R; Tikhonova, O V

    2012-03-31

    The dynamics of a model Rydberg atom in a strong nonclassical electromagnetic field is investigated. The field-induced transitions to the continuum involving different numbers of photons (with intermediate states in the discrete spectrum) are taken into account and the specific features of ionisation in 'squeezed' field states are considered in comparison with the case of classical light. A significant decrease in the ionisation rate is found, which is caused by the interference stabilisation of the atomic system. The entanglement of the atomic and field subsystems, the temporal dynamics of the correlations found, and the possibility of measuring them are analysed.

  7. Dephasing-Induced Control of Interference Nature in Three-Level Electromagnetically Induced Tansparency Systems

    PubMed Central

    Sun, Yong; Yang, Yaping; Chen, Hong; Zhu, Shiyao

    2015-01-01

    The influence of the dephasing on interference is investigated theoretically and experimentally in three-level electromagnetically induced transparency systems. The nature of the interference, constructive, no interference or destructive, can be controlled by adjusting the dephasing rates. This new phenomenon is experimentally observed in meta-atoms. The physics behind the dephasing-induced control of interference nature is the competing between stimulated emission and spontaneous emission. The random phase fluctuation due to the dephasing will result in the correlation and anti-correlation between the two dressed states, which will enhance and reduce the stimulated emission, respectively. PMID:26567708

  8. Trigger-less readout system with pulse pile-up recovery for the PANDA electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Kavatsyuk, M.; Tambave, G.; Hevinga, M.; Lemmens, P. J. J.; Schakel, P.; Schreuder, F.; Speelman, R.; Löhner, H.; Panda Collaboration

    2013-08-01

    A simple, efficient, and robust on-line data-processing scheme was developed for the digital front-end electronics of the electromagnetic calorimeter of the PANDA spectrometer at FAIR, Darmstadt. The implementation of the processing algorithm in FPGA enables the construction of an almost dead-time free data acquisition system. The prototype of a complete trigger-less readout chain has been developed and evaluated. The precision of time synchronisation commands has been verified. A pile-up recovery algorithm was developed and evaluated over a large dynamic range of signal amplitudes.

  9. The electromagnetic-trait imaging computation of traveling wave method in breast tumor microwave sensor system.

    PubMed

    Tao, Zhi-Fu; Han, Zhong-Ling; Yao, Meng

    2011-01-01

    Using the difference of dielectric constant between malignant tumor tissue and normal breast tissue, breast tumor microwave sensor system (BRATUMASS) determines the detected target of imaging electromagnetic trait by analyzing the properties of target tissue back wave obtained after near-field microwave radicalization (conelrad). The key of obtained target properties relationship and reconstructed detected space is to analyze the characteristics of the whole process from microwave transmission to back wave reception. Using traveling wave method, we derive spatial transmission properties and the relationship of the relation detected points distances, and valuate the properties of each unit by statistical valuation theory. This chapter gives the experimental data analysis results.

  10. Electromagnetic pulse activated brain microglia via the p38 MAPK pathway.

    PubMed

    Yang, Long-Long; Zhou, Yan; Tian, Wei-Dong; Li, Hai-Juan; Kang-Chu-Li; Miao, Xia; An, Guang-Zhou; Wang, Xiao-Wu; Guo, Guo-Zhen; Ding, Gui-Rong

    2016-01-01

    Previously, we found that electromagnetic pulses (EMP) induced an increase in blood brain barrier permeability and the leakage of albumin from blood into brain tissue. Albumin is known to activate microglia cells. Thus, we hypothesised that microglia activation could occur in the brain after EMP exposure. To test this hypothesis, the morphology and secretory function of microglia cells, including the expression of OX-42 (a marker of microglia activation), and levels of TNF-α, IL-10, IL-1β, and NO were determined in the rat cerebral cortex after EMP exposure. In addition, to examine the signalling pathway of EMP-induced microglia activation, protein and phosphorylated protein levels of p38, JNK and ERK were determined. It was found that the expression of OX-42increased significantly at 1, 6 and 12h (p<0.05) and recovered to the sham group level at 24h after EMP exposure. Levels of NO, TNF-α and IL-10 also changed significantly in vivo and in vitro after EMP exposure. The protein level of p38 and phosphorylated p38 increased significantly after EMP exposure (p<0.05) and recovered to sham levels at 12 and 24h, respectively. Protein and phosphorylated protein levels of ERK and JNK did not change. SB203580 (p38 inhibitor) partly prevented the change in NO, IL-10, IL-1β, TNF-α levels induced by EMP exposure. Taken together, these results suggested that EMP exposure (200kV/m, 200 pulses) could activate microglia in rat brain and affect its secretory function both in vivo and in vitro, and the p38 pathway is involved in this process. PMID:26688329

  11. Electromagnetic pulse activated brain microglia via the p38 MAPK pathway.

    PubMed

    Yang, Long-Long; Zhou, Yan; Tian, Wei-Dong; Li, Hai-Juan; Kang-Chu-Li; Miao, Xia; An, Guang-Zhou; Wang, Xiao-Wu; Guo, Guo-Zhen; Ding, Gui-Rong

    2016-01-01

    Previously, we found that electromagnetic pulses (EMP) induced an increase in blood brain barrier permeability and the leakage of albumin from blood into brain tissue. Albumin is known to activate microglia cells. Thus, we hypothesised that microglia activation could occur in the brain after EMP exposure. To test this hypothesis, the morphology and secretory function of microglia cells, including the expression of OX-42 (a marker of microglia activation), and levels of TNF-α, IL-10, IL-1β, and NO were determined in the rat cerebral cortex after EMP exposure. In addition, to examine the signalling pathway of EMP-induced microglia activation, protein and phosphorylated protein levels of p38, JNK and ERK were determined. It was found that the expression of OX-42increased significantly at 1, 6 and 12h (p<0.05) and recovered to the sham group level at 24h after EMP exposure. Levels of NO, TNF-α and IL-10 also changed significantly in vivo and in vitro after EMP exposure. The protein level of p38 and phosphorylated p38 increased significantly after EMP exposure (p<0.05) and recovered to sham levels at 12 and 24h, respectively. Protein and phosphorylated protein levels of ERK and JNK did not change. SB203580 (p38 inhibitor) partly prevented the change in NO, IL-10, IL-1β, TNF-α levels induced by EMP exposure. Taken together, these results suggested that EMP exposure (200kV/m, 200 pulses) could activate microglia in rat brain and affect its secretory function both in vivo and in vitro, and the p38 pathway is involved in this process.

  12. Possibilities for Observations of Electromagnetic Perturbations Related to Seismic Activity with Swarm Satellites

    NASA Astrophysics Data System (ADS)

    De Santis, A.; Mandea, M.; Balasis, G.

    2014-12-01

    It has been suggested that intense seismic activity might generate upward electromagnetic (EM) perturbations that can be detected by ground-based and low altitude spaceborne measurements. For instance, DEMETER satellite (2004-2010) very low frequency (VLF) wave observations pointed out a statistically significant decrease of the measured ionospheric wave intensity a few hours before large shallow earthquakes (EQs). This result would confirm the existence of a lithosphere-atmosphere-ionosphere coupling before the occurrence of an impending significant EQ. Swarm offers a great opportunity to study EM perturbations possibly related to seismic activity because it is a multi-satellite low Earth orbit (LEO) mission with a unique space-time configuration able to measure both electric and magnetic fields at various altitudes in the topside ionosphere. Here, we are analyzing, using various signal processing techniques, Swarm measurements shortly before and after large shallow EQs (magnitude above 7 and depth < 40 km) that occurred in the first year of the mission and report on the initial results of our analysis.

  13. Superconducting electromagnets for large wind tunnel magnetic suspension and balance systems

    NASA Technical Reports Server (NTRS)

    Boom, R. W.; Eyssa, Y. M.; Mcintosh, G. E.; Abdelsalam, M. K.; Scurlock, R. G.; Wu, Y. Y.; Goodyer, M. J.; Balcerek, K.; Eskins, J.; Britcher, C. P.

    1984-01-01

    A superconducting electromagnetic suspension and balance system for an 8 x 8-ft, Mach 0.9 wind tunnel is presented. The system uses a superconducting solenoid as a model core 70 cm long and with a 11.5 cm OD, and a combination of permanent magnet material in the model wings to produce the required roll torque. The design, which uses an integral cold structure rather than separate cryostats for mounting all control magnets, has 14 external magnets, including 4 racetrack-shaped roll coils. Helium capacity of the system is 3.0 to 3.5 l with idling boiloff rate predicted at 0.147 to 0.2 l/h. The improvements yielded a 50-percent reduction in the system size, weight, and cost.

  14. The calibration and monitoring system for the PHENIX lead-scintillator electromagnetic calorimeter

    SciTech Connect

    David, G.; Kistenev, E.; Stoll, S.; White, S.; Woody, C.; Bazilevsky, A.; Belikov, S.; Chernichenkov, S.; Denisov, A.; Gilitzky, Y.; Kochetkov, V.; Melnikov, Y.; Onuchin, V.; Semenov, A.; Shelikhov, V.; Soldatov, A.

    1998-11-01

    A system for calibrating the PHENIX lead-scintillator electromagnetic calorimeter modules with cosmic rays and monitoring the stability during operation is described. The system is based on a UV laser which delivers light to each module through a network of optical fibers and splitters and is monitored at various points with silicon and vacuum photodiodes. Results are given from a prototype system which used a nitrogen laser to set the initial phototube gains and to establish the energy calibration of calorimeter modules and monitor their stability. A description of the final system to be used in PHENIX, based on a high power YAG laser, is also given. {copyright} {ital 1998 American Institute of Physics.}

  15. Study to assess the effects of high-altitude electromagnetic pulse on electric power systems. Phase I, final report

    SciTech Connect

    Legro, J.R.; Abi-Samra, N.C.; Crouse, J.C.; Hileman, A.R.; Kruse, V.J.; Taylor, E.R. Jr.; Tesche, F.M.

    1986-02-01

    The high-altitude burst of a nuclear device over the continental United States can expose civilian electric utility systems to transient electromagnetic pulses (EMP). The electromagnetic fields experienced within one second after the burst have been collectively defined by the term high-altitude EMP (HEMP). The phenomena has been subdivided, for this report, into an early-time HEMP field followed by an intermediate-time HEMP field. This volume documents a preliminary research effort to: investigate the nature and coupling of the HEMP environments to electric power systems, define the construction of approximate system response models, and document the development of a methodology to assess equipment and system vulnerability.

  16. Optically powered active sensing system for Internet Of Things

    NASA Astrophysics Data System (ADS)

    Gao, Chen; Wang, Jin; Yin, Long; Yang, Jing; Jiang, Jian; Wan, Hongdan

    2014-10-01

    Internet Of Things (IOT) drives a significant increase in the extent and type of sensing technology and equipment. Sensors, instrumentation, control electronics, data logging and transmission units comprising such sensing systems will all require to be powered. Conventionally, electrical powering is supplied by batteries or/and electric power cables. The power supply by batteries usually has a limited lifetime, while the electric power cables are susceptible to electromagnetic interference. In fact, the electromagnetic interference is the key issue limiting the power supply in the strong electromagnetic radiation area and other extreme environments. The novel alternative method of power supply is power over fiber (PoF) technique. As fibers are used as power supply lines instead, the delivery of the power is inherently immune to electromagnetic radiation, and avoids cumbersome shielding of power lines. Such a safer power supply mode would be a promising candidate for applications in IOT. In this work, we built up optically powered active sensing system, supplying uninterrupted power for the remote active sensors and communication modules. Also, we proposed a novel maximum power point tracking technique for photovoltaic power convertors. In our system, the actual output efficiency greater than 40% within 1W laser power. After 1km fiber transmission and opto-electric power conversion, a stable electric power of 210mW was obtained, which is sufficient for operating an active sensing system.

  17. Geogagnetic Activity and Effectiveness of Millimeter Electromagnetic Radiation in Unstable Angina Treatment

    NASA Astrophysics Data System (ADS)

    Parshina, S. S.; Samsonov, S. N.; Afanasiyeva, T. N.; Tokayeva, L. K.; Petrova, V. D.; Dolgova, E. M.; Manykina, V. I.; Vodolagina, E. S.

    There had been performed a research of an effectiveness of millimeter electromagnetic radiation (MM EMR) use in patients with an unstable angina (UA) at periods of a lower (daily value of Kp-index 16,19±0,18) and a higher (daily value of Kp-index 17,25±0,21, p<0,05) gemagnetic activity (GA). It was found that involving of the MM EMR (the wave length 7.1 mm) into the treatment of the patients with an UA, enhances an antianginal effect of a drug therapy independently on the period of GA. The MM EMR at the period of a lower geomagnetic activity (LGA) enhances the decrease of diastolic blood pressure (BP), and at the period of a higher geomagnetic activity (HGA) - the decrease of systolic BP. At a HGA there were noted: a quick and more serious antianginal effect, maximal antihypertensive effect was achieved quicker, but (as opposed to the period of a LGA) there was no a pulse slowing effect of a MM EMR. Including the MM EMR into the treatment accelerates stabilization of the patients' condition only at a LGA. Positive effect on blood rheological properties is an independent effect of MM EMR, and it is in blood viscosity reduce in microcirculatory at both of the periods of GA. Normalization of blood viscosity under the MM EMR is only at the period of a LGA. So, the effect of MM EMR on a clinical condition of the patients is more evident at the period of a HGA, blood viscosity - at the period of a LGA.

  18. A novel compensating approach for self-sensing Maglev system with controlled-PM electromagnets

    SciTech Connect

    Tzeng, Y.K.; Wang, T.C.

    1995-11-01

    This paper describes a novel compensating approach for the self-sensing (gap-sensor-free) Maglev system with controlled-PM electromagnets. The proposed compensator consists of two parts: the hybrid observer and the robust controller. The hybrid observer combing a reduced-order observer and an external-force observer can estimate the steady-state gap variation even with payload change. A new reaching-law-based variable structure control (VSC) method is employed to the robust controller synthesis for enhancing system stability. The performance of the overall compensator is tested with a single-degree-of-freedom Maglev system. Results obtained indicate the good response of the proposed compensating scheme.

  19. Matrix equation decomposition and parallel solution of systems resulting from unstructured finite element problems in electromagnetics

    SciTech Connect

    Cwik, T.; Katz, D.S.

    1996-12-31

    Finite element modeling has proven useful for accurately simulating scattered or radiated electromagnetic fields from complex three-dimensional objects whose geometry varies on the scale of a fraction of an electrical wavelength. An unstructured finite element model of realistic objects leads to a large, sparse, system of equations that needs to be solved efficiently with regard to machine memory and execution time. Both factorization and iterative solvers can be used to produce solutions to these systems of equations. Factorization leads to high memory requirements that limit the electrical problem size of three-dimensional objects that can be modeled. An iterative solver can be used to efficiently solve the system without excessive memory use and in a minimal amount of time if the convergence rate is controlled.

  20. A Lunar Electromagnetic Launch System for In-Situ Resource Utilization

    NASA Technical Reports Server (NTRS)

    Wright, Michael R.; Kuznetsov, Steven B.; Kloesel, Kurt J.

    2010-01-01

    Future human exploration of the moon will require the development of capabilities for in-situ resource utilization (ISRU). Transport of lunar-derived commodities such as fuel and oxygen to orbiting resource depots has been proposed to enable refueling landers or other vehicles. A lunar electromagnetic launch (LEML) system could be an effective means of transporting materials, as an alternative to non-renewable chemical-based propulsion systems. An example LEML concept is presented based on previous studies, existing EML technologies, and NASA's human exploration architecture. A preliminary assessment of the cost-versus-benefit of such a system is also offered; the conclusion, however, is not as favorable for LEML as originally suggested.

  1. Pulsed electromagnetic fields on postmenopausal osteoporosis in Southwest China: a randomized, active-controlled clinical trial.

    PubMed

    Liu, Hui-Fang; Yang, Lin; He, Hong-Chen; Zhou, Jun; Liu, Ying; Wang, Chun-Yan; Wu, Yuan-Chao; He, Cheng-Qi

    2013-05-01

    A randomized, active-controlled clinical trial was conducted to examine the effect of pulsed electromagnetic fields (PEMFs) on women with postmenopausal osteoporosis (PMO) in southwest China. Forty-four participants were randomly assigned to receive alendronate or one course of PEMFs treatment. The primary endpoint was the mean percentage change in bone mineral density of the lumbar spine (BMDL), and secondary endpoints were the mean percentage changes in left proximal femur bone mineral density (BMDF), serum 25OH vitamin D3 (25(OH)D) concentrations, total lower-extremity manual muscle test (LE MMT) score, and Berg Balance Scale (BBS) score. The BMDL, BMDF, total LE MMT score and BBS score were recorded at baseline, 5, 12, and 24 weeks. Serum concentrations of 25(OH)D were measured at baseline and 5 weeks. Using a mixed linear model, there was no significant treatment difference between the two groups in the BMDL, BMDF, total LE MMT score, and BBS score (P ≥ 0.05). For 25(OH)D concentrations, the effects were also comparable between the two groups (P ≥ 0.05) with the Mann-Whitney's U-test. These results suggested that a course of PEMFs treatment with specific parameters was as effective as alendronate in treating PMO within 24 weeks.

  2. Slow-light Airy wave packets and their active control via electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Hang, Chao; Huang, Guoxiang

    2013-07-01

    We propose a scheme to generate (3+1)-dimensional slow-light Airy wave packets in a resonant Λ-type three-level atomic gas via electromagnetically induced transparency. We show that in the absence of dispersion the Airy wave packets formed by a probe field consist of two Airy wave packets accelerated in transverse directions and a longitudinal Gaussian pulse with a constant propagating velocity lowered to 10-5c (c is the light speed in vacuum). We also show that in the presence of dispersion it is possible to generate another type of slow-light Airy wave packet consisting of two Airy beams in transverse directions and an Airy wave packet in the longitudinal direction. In this case, the longitudinal velocity of the Airy wave packet can be further reduced during propagation. Additionally, we further show that the transverse accelerations (or bending) of the both types of slow-light Airy wave packets can be completely eliminated and the motional trajectories of them can be actively manipulated and controlled by using a Stern-Gerlach gradient magnetic field.

  3. Electromagnetic tracking system for minimal invasive interventions using a C-arm system with CT option: first clinical results

    NASA Astrophysics Data System (ADS)

    Nagel, Markus; Hoheisel, Martin; Bill, Ulrich; Klingenbeck-Regn, Klaus; Kalender, Willi A.; Petzold, Ralf

    2008-03-01

    To ensure precise needle placement in soft tissue of a patient for e.g. biopsies, the intervention is normally carried out image-guided. Whereas there are several imaging modalities such as computed tomography, magnetic resonance tomography, ultrasound, or C-arm X-ray systems with CT-option, navigation systems for such minimally invasive interventions are still quite rare. However, prototypes and also first commercial products of optical and electromagnetic tracking systems demonstrated excellent clinical results. Such systems provide a reduction of control scans, a reduction of intervention time, and an improved needle positioning accuracy specially for deep and double oblique access. Our novel navigation system CAPPA IRAD EMT with electromagnetic tracking for minimally invasive needle applications is connected to a C-arm imaging system with CT-option. The navigation system was investigated in clinical interventions by different physicians and with different clinical applications. First clinical results demonstrated a high accuracy during needle placement and a reduction of control scans.

  4. A new adaptive hybrid electromagnetic damper: modelling, optimization, and experiment

    NASA Astrophysics Data System (ADS)

    Asadi, Ehsan; Ribeiro, Roberto; Behrad Khamesee, Mir; Khajepour, Amir

    2015-07-01

    This paper presents the development of a new electromagnetic hybrid damper which provides regenerative adaptive damping force for various applications. Recently, the introduction of electromagnetic technologies to the damping systems has provided researchers with new opportunities for the realization of adaptive semi-active damping systems with the added benefit of energy recovery. In this research, a hybrid electromagnetic damper is proposed. The hybrid damper is configured to operate with viscous and electromagnetic subsystems. The viscous medium provides a bias and fail-safe damping force while the electromagnetic component adds adaptability and the capacity for regeneration to the hybrid design. The electromagnetic component is modeled and analyzed using analytical (lumped equivalent magnetic circuit) and electromagnetic finite element method (FEM) (COMSOL® software package) approaches. By implementing both modeling approaches, an optimization for the geometric aspects of the electromagnetic subsystem is obtained. Based on the proposed electromagnetic hybrid damping concept and the preliminary optimization solution, a prototype is designed and fabricated. A good agreement is observed between the experimental and FEM results for the magnetic field distribution and electromagnetic damping forces. These results validate the accuracy of the modeling approach and the preliminary optimization solution. An analytical model is also presented for viscous damping force, and is compared with experimental results The results show that the damper is able to produce damping coefficients of 1300 and 0-238 N s m-1 through the viscous and electromagnetic components, respectively.

  5. Quantifying the auroral response from measured source populations of electrons and electromagnetic wave activity

    NASA Astrophysics Data System (ADS)

    Samara, M.; Michell, R.; Grubbs, G. A., II; Davidson, R. K.; Khazanov, G. V.; Glocer, A.; Hampton, D.

    2015-12-01

    A case study is presented, where a quantitative connection is made between the measured auroral intensities and the source populations of electromagnetic waves and trapped electrons measured by THEMIS. We combine a theoretical model and high-resolution multi-spectral ground based imaging of the aurora at the THEMIS footpoint in order to interpret these data in the context of the coupled magnetosphere-ionosphere system. The THEMIS wave and particle measurements form the inputs into the Khazanov, et al., 2014 model that uses a Boltzman-Landau kinetic equation, uniformly describing the entire electron distribution function, which includes the affiliated production of secondary electrons (E < 600 eV) and their associated ionosphere-magnetosphere coupling processes. The model output will in turn be used to determine the expected auroral intensities (in Rayleighs) when considering only the primary precipitating electrons and also when both the primary and mirroring secondary electrons are included. These predicted auroral intensities will be compared to measured ones from several ground-based imagers at Poker Flat, AK, where we have high-resolution multiple emission line (557.7 nm and 427.8 nm) data at a 3.3 Hz frame rate.

  6. Mitigation of magnetohydrodynamic electromagnetic pulse (MHD-EMP) effects from commerical electric power systems. Power Systems Technology Program

    SciTech Connect

    Barnes, P.R.; Tesche, F.M.; Vance, E.F.

    1992-03-01

    A large nuclear detonation at altitudes of several hundred kilometers above the earth distorts the earth`s magnetic field and produces a strong magnetohydrodynamic electromagnetic pulse (MHD-EMP). This can adversely affect electrical power systems. In this report, the effects of this nuclear environment on critical facilities connected to the commercial power system are considered. Methods of mitigating the MHD-EMP impacts are investigated, and recommended protection schemes are presented. Guidelines for testing facilities to determine the effects of MHD-EMP and to validate the mitigation methods also are discussed.

  7. Do ambient electromagnetic fields affect behaviour? A demonstration of the relationship between geomagnetic storm activity and suicide.

    PubMed

    Berk, Michael; Dodd, Seetal; Henry, Margaret

    2006-02-01

    The relationship between ambient electromagnetic fields and human mood and behaviour is of great public health interest. The relationship between Ap indices of geomagnetic storm activity and national suicide statistics for Australia from 1968 to 2002 was studied. Ap index data was normalised so as to be globally uniform and gave a measure of storm activity for each day. A geomagnetic storm event was defined as a day in which the Ap index was equal to or exceeded 100 nT. Suicide data was a national tally of daily male and female death figures where suicide had been documented as the cause of death. A total of 51 845 males and 16 327 females were included. The average number of suicides was greatest in spring for males and females, and lowest in autumn for males and summer for females. Suicide amongst females increased significantly in autumn during concurrent periods of geomagnetic storm activity (P = .01). This pattern was not observed in males (P = .16). This suggests that perturbations in ambient electromagnetic field activity impact behaviour in a clinically meaningful manner. The study furthermore raises issues regarding other sources of stray electromagnetic fields and their effect on mental health. PMID:16304696

  8. Real-Time Tumor Tracking in the Lung Using an Electromagnetic Tracking System

    SciTech Connect

    Shah, Amish P.; Kupelian, Patrick A.; Waghorn, Benjamin J.; Willoughby, Twyla R.; Rineer, Justin M.; Mañon, Rafael R.; Vollenweider, Mark A.; Meeks, Sanford L.

    2013-07-01

    Purpose: To describe the first use of the commercially available Calypso 4D Localization System in the lung. Methods and Materials: Under an institutional review board-approved protocol and an investigational device exemption from the US Food and Drug Administration, the Calypso system was used with nonclinical methods to acquire real-time 4-dimensional lung tumor tracks for 7 lung cancer patients. The aims of the study were to investigate (1) the potential for bronchoscopic implantation; (2) the stability of smooth-surface beacon transponders (transponders) after implantation; and (3) the ability to acquire tracking information within the lung. Electromagnetic tracking was not used for any clinical decision making and could only be performed before any radiation delivery in a research setting. All motion tracks for each patient were reviewed, and values of the average displacement, amplitude of motion, period, and associated correlation to a sinusoidal model (R{sup 2}) were tabulated for all 42 tracks. Results: For all 7 patients at least 1 transponder was successfully implanted. To assist in securing the transponder at the tumor site, it was necessary to implant a secondary fiducial for most transponders owing to the transponder's smooth surface. For 3 patients, insertion into the lung proved difficult, with only 1 transponder remaining fixed during implantation. One patient developed a pneumothorax after implantation of the secondary fiducial. Once implanted, 13 of 14 transponders remained stable within the lung and were successfully tracked with the tracking system. Conclusions: Our initial experience with electromagnetic guidance within the lung demonstrates that transponder implantation and tracking is achievable though not clinically available. This research investigation proved that lung tumor motion exhibits large variations from fraction to fraction within a single patient and that improvements to both transponder and tracking system are still necessary

  9. [Effects of electromagnetic field from cellular phones on selected central nervous system functions: a literature review].

    PubMed

    Bak, Marek; Zmyślony, Marek

    2010-01-01

    In the opinion of some experts, a growing emission of man-made electromagnetic fields (EMF), also known as electromagnetic is a source of continuously increasing health hazards to the general population. Due to their large number and very close proximity to the user's head, mobile phones deserve special attention. This work is intended to give a systematic review of objective studies, assessing the effects of mobile phone EMF on the functions of the central nervous system (CNS) structures. Our review shows that short exposures to mobile phone EMF, experienced by telephone users during receiving calls, do not affect the cochlear function. Effects of GSM mobile phone EMF on the conduction of neural impulses from the inner car neurons to the brainstem auditory centres have not been detected either. If Picton's principle, saying that P300 amplitude varies with the improbability of the targets and its latency varies with difficulty of discriminating the target stimulus from standard stimuli, is true, EMF changes the improbability of the targets without hindering their discrimination. Experiments with use of indirect methods do not enable unequivocal verification of EMF effects on the cognitive functions due to the CNS anatomical and functional complexity. Thus, it seems advisable to develop a model of EMF effects on the excitable brain structures at the cellular level. PMID:21452571

  10. Electromagnetic thermotherapy system with needle arrays: a practical tool for the removal of cancerous tumors.

    PubMed

    Huang, Sheng-Chieh; Kang, Jui-Wen; Tsai, Hung-Wen; Shan, Yan-Shen; Lin, Xi-Zhang; Lee, Gwo-Bin

    2014-02-01

    Thermotherapy has been a promising method to treat tumor. In recent years, electromagnetic thermotherapy (EMT) has been extensively investigated and holds the potential for a variety of medical applications including for cancer treatment when combined with minimally invasive surgery approach. In this study, an alternating electromagnetic frequency was provided by an EMT system to heat up stainless steel needle arrays which were inserted into the target tumor to a high temperature, therefore leading to local ablation of the tumor. A new two-section needle-array apparatus was further demonstrated to encompass the tumor to prevent the tumor cells to spread after the treatment process. By using the needle-array insertion apparatus, there is no limitation of the treatment area; this method could, therefore, be applied for tumors that are larger than 6 cm. It was first successfully demonstrated in the in vitro experiments on porcine livers. Then an in vivo experiment was directly conducted on pigs. The two-section needle array incorporated with the needle-array apparatus and EMT was demonstrated to be promising for no-touch isolation treatment of cancerous tumors.

  11. Electromagnetic and thermal effects of IR-UWB wireless implant systems on the human head.

    PubMed

    Thotahewa, Kasun M S; Redouté, Jean-Michel; Yuce, Mehmet R

    2013-01-01

    The usage of implanted wireless transmitting devices inside the human body has become widely popular in recent years. Applications such as multi-channel neural recording systems require high data rates in the wireless transmission link. Because of the inherent advantages provided by Impulse-Radio Ultra Wide Band (IR-UWB) such as high data rate capability, low power consumption and small form factor, there has been an increased research interest in using IR-UWB for bio-medical implant applications. Hence it has become imperative to analyze the electromagnetic effects caused by the use of IR-UWB when it is operated in or near the human body. This paper reports the electromagnetic effects of head implantable transmitting devices operating based on Impulse Radio Ultra Wide Band (IR-UWB) wireless technology. Simulations illustrate the performance of an implantable UWB antenna tuned to operate at 4 GHz with an -10 dB bandwidth of approximately 1 GHz when it is implanted in a human head model. Specific Absorption Rate (SAR), Specific Absorption (SA) and temperature increase are analyzed to compare the compliance of the transmitting device with international safety regulations. PMID:24110902

  12. Electromagnetically induced transparency and steady-state propagation characteristics in Doppler broadened diamond systems

    NASA Astrophysics Data System (ADS)

    Baig Mirza, Azeem; Singh, Suneel

    2015-01-01

    We explore the feasibility of attaining simultaneous electromagnetically induced transparency (EIT) and efficient nonlinear generation in different configurations of Doppler broadened diamond (double-cascade) systems such as, the frequency up-conversion, nearly degenerate and degenerate scheme. We show that EIT and nonlinear generation efficiency depend critically on the type of residual Doppler broadening present in each of the two cascade subsystems constituting the diamond system. Furthermore, it is observed that nonlinear generation with perfect EIT simultaneously in both subsystems is not possible as the process of nonlinear generation actually tends to oppose EIT. Yet in an extended medium, on resonance field propagation under matched conditions for probe and generated signal can occur when a balance (equilibrium) is established between these two competing processes.

  13. Optical Analog to Electromagnetically Induced Transparency in Cascaded Ring-Resonator Systems

    PubMed Central

    Wang, Yonghua; Zheng, Hua; Xue, Chenyang; Zhang, Wendong

    2016-01-01

    The analogue of electromagnetically induced transparency in optical methods has shown great potential in slow light and sensing applications. Here, we experimentally demonstrated a coupled resonator induced transparency system with three cascaded ring coupled resonators in a silicon chip. The structure was modeled by using the transfer matrix method. Influences of various parameters including coupling ratio of couplers, waveguide loss and additional loss of couplers on transmission characteristic and group index have been investigated theoretically and numerically in detail. The transmission character of the system was measured by the vertical grating coupling method. The enhanced quality factor reached 1.22 × 105. In addition, we further test the temperature performance of the device. The results provide a new method for the manipulation of light in highly integrated optical circuits and sensing applications. PMID:27463720

  14. Construction of a conductive distortion reduced electromagnetic tracking system for computer assisted image-guided interventions.

    PubMed

    Li, Mengfei; Bien, Tomasz; Rose, Georg

    2014-11-01

    Alternating current electromagnetic tracking system (EMTS) is widely used in computer-assisted image-guided interventions. However, EMTS suffers from distortions caused by electrically conductive objects in close proximity to tracker tools. Eddy currents in conductive distorters generate secondary magnetic fields that disrupt the measured position and orientation (P&O) of the tracker. This paper proposes a LabVIEW field programmable gate array (FPGA) based EMTS to reduce the interference caused by nearby conductive, but non-ferromagnetic objects upon the method developed in the authors' previous studies. The system's performance was tested in the presence of single/multiple nearby conductive distorters. The results illustrated that the constructed EMTS worked accurately and stably despite nearby static or mobile conductive objects. The technology will allow surgeons to perform image-guided interventions with EMTS even when there are conductive objects close by the tracker tool. PMID:25156154

  15. A parallel FDTD scheme for electromagnetic analysis and design of MRI system.

    PubMed

    Wang, Hua; Trakic, Adnan; Xia, Ling; Crozier, Stuart; Liu, Feng; Bialkowski, Marek

    2006-01-01

    This paper presents a parallel-computing FDTD simulator for electromagnetic analysis and design applications in Magnetic Resonance Imaging system. It is intended to be a complete, high-performance FDTD model of an MRI system including all temporal RF and low-frequency field generating units and electrical models of the patient. The developed MRI-dedicated FDTD algorithm is adapted to a parallel computing architecture with the MPI library. Its capabilities are illustrated in two distinct, large-scale field problems. One concerns the interaction of RF-fields with human tissue at high magnitude fields. The other includes the characterization of the temporal eddy currents induced in the cryostat vessel during gradient switching. The presented examples demonstrate the computational efficiency and extended analyses available due to the parallel FDTD framework.

  16. The Effect of Transponder Motion on the Accuracy of the Calypso Electromagnetic Localization System

    SciTech Connect

    Murphy, Martin J. Eidens, Richard; Vertatschitsch, Edward; Wright, J. Nelson

    2008-09-01

    Purpose: To determine position and velocity-dependent effects in the overall accuracy of the Calypso Electromagnetic localization system, under conditions that emulate transponder motion during normal free breathing. Methods and Materials: Three localization transponders were mounted on a remote-controlled turntable that could move the transponders along a circular trajectory at speeds up to 3 cm/s. A stationary calibration established the coordinates of multiple points on each transponder's circular path. Position measurements taken while the transponders were in motion at a constant speed were then compared with the stationary coordinates. Results: No statistically significant changes in the transponder positions in (x,y,z) were detected when the transponders were in motion. Conclusions: The accuracy of the localization system is unaffected by transponder motion.

  17. Construction of a conductive distortion reduced electromagnetic tracking system for computer assisted image-guided interventions.

    PubMed

    Li, Mengfei; Bien, Tomasz; Rose, Georg

    2014-11-01

    Alternating current electromagnetic tracking system (EMTS) is widely used in computer-assisted image-guided interventions. However, EMTS suffers from distortions caused by electrically conductive objects in close proximity to tracker tools. Eddy currents in conductive distorters generate secondary magnetic fields that disrupt the measured position and orientation (P&O) of the tracker. This paper proposes a LabVIEW field programmable gate array (FPGA) based EMTS to reduce the interference caused by nearby conductive, but non-ferromagnetic objects upon the method developed in the authors' previous studies. The system's performance was tested in the presence of single/multiple nearby conductive distorters. The results illustrated that the constructed EMTS worked accurately and stably despite nearby static or mobile conductive objects. The technology will allow surgeons to perform image-guided interventions with EMTS even when there are conductive objects close by the tracker tool.

  18. Magnetohydrodynamic electromagnetic pulse (MHD-EMP) interaction with power transmission and distribution systems

    SciTech Connect

    Tesche, F.M. , Dallas, TX ); Barnes, P.R. ); Meliopoulos, A.P.S. . Dept. of Electrical Engineering)

    1992-02-01

    This report discusses the effects of the late-time high-altitude electromagnetic pulse (HEMP) on electrical transmission and distribution (T D) systems. This environment, known as the magnetohydrodynamic electromagnetic pulse (MHD-EMP), is a very slowly varying electric field induced in the earth's surface, similar to the field induced by a geomagnetic storm. It can result in the flow of a quasi-dc current in grounded power lines and in the subsequent magnetic saturation of transformers. This saturation, in turn, causes 6-Hz harmonic distortion and an increase in the reactive power required by generation facilities. This report analyzes and discusses these phenomena. The MHD-EMP environment is briefly discussed, and a simplified form of the earth-induced electric field is developed for use in a parametric study of transmission line responses. Various field coupling models are described, and calculated results for the responses of both transmission- and distribution-class power lines are presented. These calculated responses are compared with measurements of transformer operation under dc excitation to infer the MHD-EMP response of these power system components. It is found that the MHD-EMP environment would have a marked effect on a power system by inducing up to several hundreds of amperes of quasi-dc current on power lines. These currents will cause transformers to saturate which could result in excessive harmonic generation, voltage swings, and voltage suppression. The design of critical facilities which are required to operate during and after MHD-EMP events will have to be modified in order to mitigate the effects of these abnormal power system conditions.

  19. Magnetohydrodynamic electromagnetic pulse (MHD-EMP) interaction with power transmission and distribution systems

    SciTech Connect

    Tesche, F.M.; Barnes, P.R.; Meliopoulos, A.P.S.

    1992-02-01

    This report discusses the effects of the late-time high-altitude electromagnetic pulse (HEMP) on electrical transmission and distribution (T&D) systems. This environment, known as the magnetohydrodynamic electromagnetic pulse (MHD-EMP), is a very slowly varying electric field induced in the earth`s surface, similar to the field induced by a geomagnetic storm. It can result in the flow of a quasi-dc current in grounded power lines and in the subsequent magnetic saturation of transformers. This saturation, in turn, causes 6-Hz harmonic distortion and an increase in the reactive power required by generation facilities. This report analyzes and discusses these phenomena. The MHD-EMP environment is briefly discussed, and a simplified form of the earth-induced electric field is developed for use in a parametric study of transmission line responses. Various field coupling models are described, and calculated results for the responses of both transmission- and distribution-class power lines are presented. These calculated responses are compared with measurements of transformer operation under dc excitation to infer the MHD-EMP response of these power system components. It is found that the MHD-EMP environment would have a marked effect on a power system by inducing up to several hundreds of amperes of quasi-dc current on power lines. These currents will cause transformers to saturate which could result in excessive harmonic generation, voltage swings, and voltage suppression. The design of critical facilities which are required to operate during and after MHD-EMP events will have to be modified in order to mitigate the effects of these abnormal power system conditions.

  20. Strong nonlinear focusing of light in nonlinearly controlled electromagnetic active metamaterial field concentrators

    NASA Astrophysics Data System (ADS)

    Rapoport, Yu G.; Boardman, A. D.; Grimalsky, V. V.; Ivchenko, V. M.; Kalinich, N.

    2014-05-01

    The idea of nonlinear ‘transformation optics-inspired’ [1-6] electromagnetic cylindrical field concentrators has been taken up in a preliminary manner in a number of conference reports [7-9]. Such a concentrator includes both external linear region with a dielectric constant increased towards the centre and internal region with nonlinearity characterized by constant coefficients. Then, in the process of farther investigations we realized the following factors considered neither in [7-9] nor in the recent paper [10]: saturation of nonlinearity, nonlinear losses, linear gain, numerical convergence, when nonlinear effect becomes very strong and formation of ‘hotspots’ starts. It is clearly demonstrated here that such a strongly nonlinear process starts when the nonlinear amplitude of any incident beam(s) exceeds some ‘threshold’ value. Moreover, it is shown that the formation of hotspots may start as the result of any of the following processes: an increase of the input amplitude, increasing the linear amplification in the central nonlinear region, decreasing the nonlinear losses, a decrease in the saturation of the nonlinearity. Therefore, a tendency to a formation of ‘hotspots’ is a rather universal feature of the strongly nonlinear behaviour of the ‘nonlinear resonator’ system, while at the same time the system is not sensitive to the ‘prehistory’ of approaching nonlinear threshold intensity (amplitude). The new proposed method includes a full-wave nonlinear solution analysis (in the nonlinear region), a new form of complex geometric optics (in the linear inhomogeneous external cylinder), and new boundary conditions, matching both solutions. The observed nonlinear phenomena will have a positive impact upon socially and environmentally important devices of the future. Although a graded-index concentrator is used here, it is a direct outcome of transformation optics. Numerical evaluations show that for known materials these nonlinear effects

  1. Communication Systems. Laboratory Activities.

    ERIC Educational Resources Information Center

    Sutherland, Barbara, Ed.

    This communication systems guide provides teachers with learning activities for secondary students. Introductory materials include an instructional planning outline and worksheet, an outline of essential elements, a list of objectives, a course description, and a content outline. The guide contains 32 modules on the following topics: story…

  2. Production Systems. Laboratory Activities.

    ERIC Educational Resources Information Center

    Gallaway, Ann, Ed.

    This production systems guide provides teachers with learning activities for secondary students. Introductory materials include an instructional planning outline and worksheet, an outline of essential elements, domains and objectives, a course description, and a content outline. The guide contains 30 modules on the following topics: production…

  3. Effects of electromagnetic radiation of mobile phones on the central nervous system.

    PubMed

    Hossmann, K-A; Hermann, D M

    2003-01-01

    With the increasing use of mobile communication, concerns have been expressed about the possible interactions of electromagnetic radiation with the human organism and, in particular, the brain. The effects on neuronal electrical activity, energy metabolism, genomic responses, neurotransmitter balance, blood-brain barrier permeability, cognitive function, sleep, and various brain diseases including brain tumors are reviewed. Most of the reported effects are small as long as the radiation intensity remains in the nonthermal range, and none of the research reviewed gives an indication of the mechanisms involved at this range. However, health risks may evolve from indirect consequences of mobile telephony, such as the sharply increased incidence rate of traffic accidents caused by telephony during driving, and possibly also by stress reactions which annoyed bystanders may experience when cellular phones are used in public places. These indirect health effects presumably outweigh the direct biological perturbations and should be investigated in more detail in the future.

  4. Study to assess the effects of magnetohydrodynamic electromagnetic pulse on electric power systems. Phase I, final report. Volume 3

    SciTech Connect

    Legro, J.R.; Abi-Samra, N.C.; Tesche, F.M.

    1985-05-01

    In addition to the initial transients designated as fast transient high-altitude EMP (HEMP) and intermediate time EMP, electromagnetic signals are also perceived at times from seconds to hundreds of seconds after a high-altitude nuclear burst. This signal has been defined by the term magnetohydrodynamic-electromagnetic pulse (MHD-EMP). The MHD-EMP phenomena has been both detected in actual weapon tests and predicted from theoretical models. This volume documents a preliminary research effort to investigate the nature and coupling of the MHD-EMP environments to electric power systems, define the construction of approximate system response network models, and document the development of a unified methodology to assess equipment and systematic vulnerability. The MHD-EMP environment is compared to a qualitatively similar natural event, the electromagnetic environment produced by geomagnetic storms.

  5. Fiducial-Based Translational Localization Accuracy of Electromagnetic Tracking System and On-Board Kilovoltage Imaging System

    SciTech Connect

    Santanam, Lakshmi Malinowski, Kathleen; Hubenshmidt, James; Dimmer, Steve; Mayse, Martin L.; Bradley, Jeffrey; Chaudhari, Amir; Lechleiter, Kirsten; Goddu, Sree Krishna Murty; Esthappan, Jacqueline; Mutic, Sasa; Low, Daniel A.; Parikh, Parag

    2008-03-01

    Purpose: The Calypso medical four-dimensional localization system uses AC electromagnetics, which do not require ionizing radiation, for accurate, real-time tumor tracking. This investigation compared the static and dynamic tracking accuracy of this system to that of an on-board imaging kilovoltage X-ray system for concurrent use of the two systems. Methods and Materials: The localization accuracies of a kilovoltage imaging system and a continuous electromagnetic tracking system were compared. Using an in-house developed four-dimensional stage, quality-assurance fixture containing three radiofrequency transponders was positioned at a series of static locations and then moved through the ellipsoidal and nonuniform continuous paths. The transponder positions were tracked concurrently by the Calypso system. For static localization, the transponders were localized using portal images and digitally reconstructed radiographs by commercial matching software. For dynamic localization, the transponders were fluoroscopically imaged, and their positions were determined retrospectively using custom-written image processing programs. The localization data sets were synchronized with and compared to the known quality assurance fixture positions. The experiment was repeated to retrospectively track three transponders implanted in a canine lung. Results: The root mean square error of the on-board imaging and Calypso systems was 0.1 cm and 0.0 cm, respectively, for static localization, 0.22 mm and 0.33 mm for dynamic phantom positioning, and 0.42 mm for the canine study. Conclusion: The results showed that both localization systems provide submillimeter accuracy. The Calypso and on-board imaging tracking systems offer distinct sets of advantages and, given their compatibility, patients could benefit from the complementary nature of the two systems when used concurrently.

  6. Modelling climate change effects on a Dutch coastal groundwater system using airborne electromagnetic measurements

    NASA Astrophysics Data System (ADS)

    Faneca Sànchez, M.; Gunnink, J. L.; van Baaren, E. S.; Oude Essink, G. H. P.; Siemon, B.; Auken, E.; Elderhorst, W.; de Louw, P. G. B.

    2012-12-01

    The forecast of climate change effects on the groundwater system in coastal areas is of key importance for policy makers. The Dutch water system has been deeply studied because of its complex system of low-lying areas, dunes, land won to the sea and dikes, but nowadays large efforts are still being done to find out the best techniques to describe complex fresh-brackish-saline groundwater dynamic systems. In this paper, we describe a methodology consisting of high-resolution airborne electromagnetic (EM) measurements used in a 3-D variable-density transient groundwater model for a coastal area in the Netherlands. We used the airborne EM measurements in combination with borehole-logging data, electrical conductivity cone penetration tests and groundwater samples to create a 3-D fresh-brackish-saline groundwater distribution of the study area. The EM measurements proved to be an improvement compared to older techniques and provided quality input for the model. With the help of the built 3-D variable-density groundwater model, we removed the remaining inaccuracies of the 3-D chloride field and predicted the effects of three climate scenarios on the groundwater and surface water system. Results showed significant changes in the groundwater system, and gave direction for future water policy. Future research should provide more insight in the improvement of data collection for fresh-brackish-saline groundwater systems as it is of high importance to further improve the quality of the model.

  7. Cooling systems and hybrid A/C systems using an electromagnetic radiation-absorbing complex

    DOEpatents

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2015-05-19

    A method for powering a cooling unit. The method including applying electromagnetic (EM) radiation to a complex, where the complex absorbs the EM radiation to generate heat, transforming, using the heat generated by the complex, a fluid to vapor, and sending the vapor from the vessel to a turbine coupled to a generator by a shaft, where the vapor causes the turbine to rotate, which turns the shaft and causes the generator to generate the electric power, wherein the electric powers supplements the power needed to power the cooling unit

  8. Electromagnetic interference impact of the proposed emitters for the High Frequency Active Auroral Research Program (HAARP). Interim report

    SciTech Connect

    Robertshaw, G.A.; Snyder, A.L.; Weiner, M.M.

    1993-05-14

    The proposed HAARP emitters at the Gakona (Alaska) preferred site and at the Clear AFS (Alaska) alternative site are the Ionospheric Research Instrument (IRI), the Incoherent Scatter Radar (ISR), and the Vertical Incidence Sounder(VIS). The electromagnetic interference (EMI) impact of those emitters on receiving systems in the vicinity of the sites is estimated in this study. The results are intended for use as an input to the Air Force Environmental Impact Statement as part of the Environmental Impact Analysis Process.

  9. Method for identifying electromagnetically induced transparency in a tunable circuit quantum electrodynamics system

    NASA Astrophysics Data System (ADS)

    Liu, Qi-Chun; Li, Tie-Fu; Luo, Xiao-Qing; Zhao, Hu; Xiong, Wei; Zhang, Ying-Shan; Chen, Zhen; Liu, J. S.; Chen, Wei; Nori, Franco; Tsai, J. S.; You, J. Q.

    2016-05-01

    Electromagnetically induced transparency (EIT) has been realized in atomic systems, but fulfilling the EIT conditions for artificial atoms made from superconducting circuits is a more difficult task. Here we report an experimental observation of the EIT in a tunable three-dimensional transmon by probing the cavity transmission. To fulfill the EIT conditions, we tune the transmon to adjust its damping rates by utilizing the effect of the cavity on the transmon states. From the experimental observations, we clearly identify the EIT and Autler-Townes splitting (ATS) regimes as well as the transition regime in between. Also, the experimental data demonstrate that the threshold ΩAIC determined by the Akaike information criterion can describe the EIT-ATS transition better than the threshold ΩEIT given by the EIT theory.

  10. Geophysical technique for mineral exploration and discrimination based on electromagnetic methods and associated systems

    DOEpatents

    Zhdanov; Michael S.

    2008-01-29

    Mineral exploration needs a reliable method to distinguish between uneconomic mineral deposits and economic mineralization. A method and system includes a geophysical technique for subsurface material characterization, mineral exploration and mineral discrimination. The technique introduced in this invention detects induced polarization effects in electromagnetic data and uses remote geophysical observations to determine the parameters of an effective conductivity relaxation model using a composite analytical multi-phase model of the rock formations. The conductivity relaxation model and analytical model can be used to determine parameters related by analytical expressions to the physical characteristics of the microstructure of the rocks and minerals. These parameters are ultimately used for the discrimination of different components in underground formations, and in this way provide an ability to distinguish between uneconomic mineral deposits and zones of economic mineralization using geophysical remote sensing technology.

  11. A blind signal separation method for single-channel electromagnetic surveillance system

    NASA Astrophysics Data System (ADS)

    Pang, Lihui; Qi, Zhilong; Li, Shuai; Tang, Bin

    2015-10-01

    In this paper, a blind signal separation (BSS) methodology for simultaneously received multisystem frequency-overlapped signals in a single-channel (SC) electromagnetic surveillance system is proposed using fast independent component analysis (FastICA) in a dynamical embedding (DE) framework. Firstly, an appropriate DE matrix is constructed out of a series of delay vectors from the SC recording. The lag-time and the dimensional of embedding matrix setting principal are introduced in details. Next, multiple independent components (ICs) are calculated by decomposing the embedding matrix through FastICA algorithm, and ICs can be regarded as a convenient expansion basis of the original signals. Then, these ICs are projected back into the measurement space. After that, these projected ICs are classified and used for recovering the sources of interest based on their independent nature and their power density spectrum. Numerical simulation results obtained in evaluating the proposed methodology's performance confirmed the effectiveness of the proposed algorithm.

  12. Electromagnetic properties of a double-layer graphene system with electron-hole pairing

    NASA Astrophysics Data System (ADS)

    Germash, K. V.; Fil, D. V.

    2016-05-01

    We study electromagnetic properties of a double-layer graphene system in which electrons from one layer are coupled with holes from the other layer. The gauge invariant linear response functions are obtained. The frequency dependences of the transmission, reflection, and absorption coefficients are computed. We predict a peak in the reflection and absorption at the frequency equal to the gap in the quasiparticle spectrum. It is shown that the electron-hole pairing results in an essential modification of the spectrum of surface TM plasmons. We find that the optical TM mode splits into a low frequency undamped branch and a high frequency damped branch. At zero temperature the lower branch disappears. It is established that the pairing does not influence the acoustic TM mode. It is also shown that the pairing opens the frequency window in the subgap range for the surface TE wave.

  13. Electromagnetically induced transparency without a Doppler background in a multilevel ladder-type cesium atomic system

    SciTech Connect

    Yang Baodong; Gao Jing; Zhang Tiancai; Wang Junmin

    2011-01-15

    We present an investigation of electromagnetically induced transparency (EIT) without Doppler background due to a locked probe laser. The EIT is theoretically studied based on a multilevel ladder-type cesium atomic system 6S{sub 1/2}-6P{sub 3/2}-8S{sub 1/2} in a room-temperature vapor cell. The experimental results agree with the theoretical calculations. Compared with the traditional EIT spectra with a Doppler profile limiting the spectral resolution for keeping the coupling laser locked and scanning the probe laser, these EIT spectra with the probe laser locked and the coupling laser scanned have a flat background, which seem be of great benefit for applications such as the measurement of hyperfine intervals between excited states, the study of highly excited Rydberg states, laser-frequency stabilization, etc.

  14. Electromagnet configurations for extreme attitude testing in magnetic suspension and balance systems

    NASA Technical Reports Server (NTRS)

    Britcher, C. P.

    1980-01-01

    The inclusion of adequate versatility into the electromagnet array configuration requires sizing the electromagnets to satisfy particular absolute force and moment requirements. Magnetic performance of a permanent magnet model core, air cored electromagnet may easily and reliably be computed by using the FORCE program which calculates model forces and moments via representations of the model as an assembly of dipoles and the electromagnets as an assembly of line currents. Some aspects of the performance of an ellipsoidal iron cored model may be inferred from the above under certain circumstances.

  15. A methodology to assess the effects of high altitude electromagnetic pulse (HEMP) on electric power systems

    SciTech Connect

    Taylor, E.R. Jr.; Eichler, C.H.; Barnes, P.R.

    1988-01-01

    Nuclear electromagnetic pulse (EMP) from high altitude nuclear detonations (HEMP) has the potential to seriously disrupt electric power systems. A methodology has been developed to assess the vulnerability of electric power systems to this phenomena for any specified nuclear burst scenario. The methodology is based on a structured approach whereby the power system is broken down into subsystems, functional groups, and circuits and devices. Vulnerability (likelihood of failure) is assessed for individual equipment (circuits and devices) for each nuclear burst scenario. These effects are then evaluated for their performance impact on successively higher system levels. This forms the input for classical load flow, short circuit and transient stability studies to evaluate system stability and survivability. Applicability of the assessment methodology is not dependent on the quality of component/equipment vulnerability data. Susceptibility of power equipment to HEMP damage may be determined by established technical analysis, by intepretation of equipment design and testing standards, and by laboratory testing. This paper has been written not only for the electric utility engineer, but also for experts in EMP who may not be knowledgeable in electric utility systems. 12 refs., 11 figs., 1 tab.

  16. A research program to assess the impact of the electromagnetic pulse on electric power systems

    SciTech Connect

    McConnell, B.W.; Barnes, P.R.

    1987-01-01

    A strong electromagnetic pulse (EMP) with an electric-field component on the order of tens of kilovolts per meter is produced by a nuclear detonation in or above the atmosphere. This paper presents an overview and a summary of the results to date of a program formulated to address the research and development of technologies and systems required to assess and reduce the impact of EMP on electric power systems. The technologies and systems being considered include simulation models, methods of assessment, definition of required experiments and data, development of protective hardware, and the creation or revision of operating and control procedures. Results to date include the development of relatively simple unclassified EMP environment models, the development of methods for extending EMP coupling models to the large transmission and distribution network associated with the electric power system, and the performance of a parametric study of HEMP induced surges using an appropriate EMP environment. An experiment to investigate the effect of corona on the coupling of EMP to conductors has been defined and has been performed in an EMP simulator. Experiments to determine the response of key components to simulated EMP surges and an investigation of the impact of steep-front, short-duration impulse on a selected number of the insulation systems used in electric power systems apparatus are being performed.

  17. Detection of buried targets using a new enhanced very early time electromagnetic (VETEM) prototype system

    USGS Publications Warehouse

    Cui, T.J.; Chew, W.C.; Aydiner, A.A.; Wright, D.L.; Smith, D.V.

    2001-01-01

    In this paper, numerical simulations of a new enhanced very early time electromagnetic (VETEM) prototype system are presented, where a horizontal transmitting loop and two horizontal receiving loops are used to detect buried targets, in which three loops share the same axis and the transmitter is located at the center of receivers. In the new VETEM system, the difference of signals from two receivers is taken to eliminate strong direct-signals from the transmitter and background clutter and furthermore to obtain a better SNR for buried targets. Because strong coupling exists between the transmitter and receivers, accurate analysis of the three-loop antenna system is required, for which a loop-tree basis function method has been utilized to overcome the low-frequency breakdown problem. In the analysis of scattering problem from buried targets, a conjugate gradient (CG) method with fast Fourier transform (FFT) is applied to solve the electric field integral equation. However, the convergence of such CG-FFT algorithm is extremely slow at very low frequencies. In order to increase the convergence rate, a frequency-hopping approach has been used. Finally, the primary, coupling, reflected, and scattered magnetic fields are evaluated at receiving loops to calculate the output electric current. Numerous simulation results are given to interpret the new VETEM system. Comparing with other single-transmitter-receiver systems, the new VETEM has better SNR and ability to reduce the clutter.

  18. Method for evaluating compatibility of commercial electromagnetic (EM) microsensor tracking systems with surgical and imaging tables

    NASA Astrophysics Data System (ADS)

    Nafis, Christopher; Jensen, Vern; von Jako, Ron

    2008-03-01

    Electromagnetic (EM) tracking systems have been successfully used for Surgical Navigation in ENT, cranial, and spine applications for several years. Catheter sized micro EM sensors have also been used in tightly controlled cardiac mapping and pulmonary applications. EM systems have the benefit over optical navigation systems of not requiring a line-of-sight between devices. Ferrous metals or conductive materials that are transient within the EM working volume may impact tracking performance. Effective methods for detecting and reporting EM field distortions are generally well known. Distortion compensation can be achieved for objects that have a static spatial relationship to a tracking sensor. New commercially available micro EM tracking systems offer opportunities for expanded image-guided navigation procedures. It is important to know and understand how well these systems perform with different surgical tables and ancillary equipment. By their design and intended use, micro EM sensors will be located at the distal tip of tracked devices and therefore be in closer proximity to the tables. Our goal was to define a simple and portable process that could be used to estimate the EM tracker accuracy, and to vet a large number of popular general surgery and imaging tables that are used in the United States and abroad.

  19. ADASY (Active Daylighting System)

    NASA Astrophysics Data System (ADS)

    Vázquez-Moliní, Daniel; González-Montes, Mario; Fernández-Balbuena, Antonio Á.; Bernabéu, Eusebio; García-Botella, Ángel; García-Rodríguez, Lucas; Pohl, Wilfried

    2009-08-01

    The main objective of ADASY (Active Daylighting System) work is to design a façade static daylighting system oriented to office applications, mainly. The goal of the project is to save energy by guiding daylight into a building for lighting purpose. With this approach we can reduce the electrical load for artificial lighting, completing it with sustainable energy. The collector of the system is integrated on a vertical façade and its distribution guide is always horizontal inside of the false ceiling. ADASY is designed with a specific patent pending caption system, a modular light-guide and light extractor luminaire system. Special care has been put on the final cost of the system and its building integration purpose. The current ADASY configuration is able to illuminate 40 m2 area with a 300lx-400lx level in the mid time work hours; furthermore it has a good enough spatial uniformity distribution and a controlled glare. The data presented in this study are the result of simulation models and have been confirmed by a physical scaled prototype. ADASY's main advantages over regular illumination systems are: -Low maintenance; it has not mobile pieces and therefore it lasts for a long time and require little attention once installed. - No energy consumption; solar light continue working even if there has been a power outage. - High quality of light: the colour rendering of light is very high - Psychological benefits: People working with daylight get less stress and more comfort, increasing productivity. - Health benefits

  20. Development of a CSEM system for the electromagnetic investigation of the North Alex Mud Volcano

    NASA Astrophysics Data System (ADS)

    Hölz, S.; Jegen, M.

    2009-04-01

    Controlled source electromagnetics (CSEM) may be used to measure the electrical resistivity of the seafloor, which is indicative of the presence of fluids, gas or methane hydrates. A typical CSEM system consists of an electric dipole transmitter producing a time varying source field and electric dipole receivers, which measure the earth's response to this signal. Large CSEM systems are used in oil and gas exploration as well as methane hydrate detection, mapping electrical resistivity variations on a depth scale of up to several kilometers and a horizontal scale of several hundred meters to kilometers. For a detailed investigation of fluid and gas leakage of the North Alex Mud Volcano with a target area of about 1 km2, we developed a new high resolution CSEM system. The system consists of a lightweight electric dipole transmitter mounted on a small remotely operated underwater vehicle (ROV) and autonomous electric dipole receivers. Since the ROV is used to place the transmitter, electromagnetic signals may be transmitted from different directions with respect to the stationary receivers, allowing for a 3D-style tomographic experiment. With respect to the experiment at the North Alex, crucial points in the system development were: - Weight and power-supply of the transmitter, - mechanical stability of the transmitter's dipole antenna, - exact time synchronization (<1ms) between transmitter and receivers over an extended time period (14 days) - precise determination of distances (<5m) between transmitter and receivers. The new system, developed within the framework of the West Nile Delta Project funded by RWE Dea, was first tested on North Alex in November 2007. Ten receivers were deployed at a total of 16 receiver locations. During three successful dives with a Cherokee ROV (Ghent University, Belgium), the transmitter was deployed at a total of 80 locations. At each location the transmitter was placed stationary during transmissions and operated twice, once inline

  1. Efficient mapping of agricultural soils using a novel electromagnetic measurement system

    NASA Astrophysics Data System (ADS)

    Trinks, Immo; Pregesbauer, Michael

    2016-04-01

    "Despite all our accomplishments, we owe our existence to a six-inch layer of topsoil and the fact that it rains." - Paul Harvey. Despite the fact, that a farmers most precious good is the soil that he or she cultivates, in most cases actually very little is known about the soils that are being farmed. Agricultural soils are under constant threat through erosion, depletion, pollution and other degrading processes, in particular when considering intensive industrial scale farming. The capability of soils to retain water and soil moisture is of vital importance for their agricultural potential. Detailed knowledge of the physical properties of soils, their types and texture, water content and the depth of the agricultural layer would be of great importance for resource-efficient tillage with sub-area dependent variable depth, and the targeted intelligent application of fertilizers or irrigation. Precision farming, which has seen increasing popularity in the USA as well as Australia, is still in its infancy in Europe. Traditional near-surface geophysical prospection systems for agricultural soil mapping have either been based on earth resistance measurements using electrode-disks that require soil contact, with inherent issues, or electromagnetic induction (EMI) measurements conducted with EMI devices mounted in non-metallic sledges towed several metres behind survey vehicles across the fields. Every farmer passes over the fields several times during each growing season, working the soil and treating the crops. Therefore a novel user-friendly measurement system, the "Topsoil Mapper" (TSM) has been developed, which enables the farmer to simultaneously acquire soil conductivity information and derived soil parameters while anyway passing over the fields using different agricultural implements. The measurement principle of the TSM is electromagnetic induction using a multi-coil array to acquire conductivity information along a vertical profile down to approximately 1.1 m

  2. The reliability and accuracy of an electromagnetic motion analysis system when used conjointly with an accelerometer.

    PubMed

    Ribeiro, D C; Sole, G; Abbott, J H; Milosavljevic, S

    2011-07-01

    The effect of an accelerometer driven electronic postural monitor (Spineangel®) placed within the electromagnetic measurement field of the Polhemus Fastrak™ is unknown. This study assessed the reliability and accuracy of Fastrak™ linear and angular measurements, when the Spineangel® was placed close to the sensor(s) and transmitter. Bland Altman plots and intraclass correlation coefficient (2,1) were used to determine protocol reproducibility and measurement consistency. Excellent reliability was found for linear and angular measurements (0.96, 95% CI: 0.90-0.99; and 1.00, 95% CI: 1.00-1.00, respectively) with the inclusion of Spineangel®; similar results were found, without the inclusion of Spineangel®, for linear and angular measurements, (0.96, 95% CI: 0.89-0.99; and 1.00, 95% CI: 1.00-1.00, respectively). The greatest linear discrepancies between the two test conditions were found to be less than 3.5 mm, while the greatest angular discrepancies were below 3.5°. As the effect on accuracy was minimal, these findings support the conjoint use of the Fastrak™ during validation studies of the Spineangel® device. STATEMENT OF RELEVANCE: Although previous studies have used the Fastrak™ as the gold standard measurement system, the influence of an accelerometer driven postural monitor on accuracy has not been reported. The strength of the present study has been to determine the effect of accelerometer placement within the electromagnetic field on the reliability and accuracy of the Fastrak™.

  3. Solution of dense systems of linear equations in electromagnetic scattering calculations

    SciTech Connect

    Rahola, J.

    1994-12-31

    The discrete-dipole approximation (DDA) is a method for calculating the scattering of light by an irregular particle. The DDA has been used for example in calculations of optical properties of cosmic dust. In this method the particle is approximated by interacting electromagnetic dipoles. Computationally the DDA method includes the solution of large dense systems of linear equations where the coefficient matrix is complex symmetric. In the author`s work, the linear systems of equations are solved by various iterative methods such as the conjugate gradient method applied to the normal equations and QMR. The linear systems have rather low condition numbers due to which many iterative methods perform quite well even without any preconditioning. Some possible preconditioning strategies are discussed. Finally, some fast special methods for computing the matrix-vector product in the iterative methods are considered. In some cases, the matrix-vector product can be computed with the fast Fourier transform, which enables the author to solve dense linear systems of hundreds of thousands of unknowns.

  4. A Self-Powered Hybrid Energy Scavenging System Utilizing RF and Vibration Based Electromagnetic Harvesters

    NASA Astrophysics Data System (ADS)

    Uluşan, H.; Gharehbaghi, K.; Zorlu, Ö.; Muhtaroğlu, A.; Külah, H.

    2015-12-01

    This study presents a novel hybrid system that combines the power generated simultaneously by a vibration-based Electromagnetic (EM) harvester and a UHF band RF harvester. The novel hybrid scavenger interface uses a power management circuit in 180 nm CMOS technology to step-up and to regulate the combined output. At the first stage of the system, the RF harvester generates positive DC output with a 7-stage threshold compensated rectifier, while the EM harvester generates negative DC output with a self-powered AC/DC negative doubler circuit. At the second stage, the generated voltages are serially added, stepped-up with an on-chip charge pump circuit, and regulated to a typical battery voltage of 3 V. Test results indicate that the hybrid operation enables generation of 9 μW at 3 V output for a wide range of input stimulations, which could not be attained with either harvesting mode by itself. Moreover the hybrid system behaves as a typical battery, and keeps the output voltage stable at 3 V up to 18 μW of output power. The presented system is the first battery-like harvester to our knowledge that generates energy from two independent sources and regulates the output to a stable DC voltage.

  5. Multiple pole electromagnetic propulsion system with separated ballistic guidance and electrical current contact surfaces

    DOEpatents

    Sims, Jr., James R.

    2008-07-15

    An electromagnetic propulsion system is disclosed having separate rails for ballistic guidance and for carrying current. In this system, one or more pairs of ballistic guidance rails are provided, with each ballistic guidance rail having a pair of current carrying rails joined to it to form a combined rail. Each combined rail is separated electrically from adjacent combined rails by electrically insulating blocks. Each of the current carrying rails in a given combined rail pair have the same electrical polarity, and the polarities alternate between adjacent combined rails. Armatures contact current carrying rails to complete the circuit to generate the accelerating Lorentz force on the armatures. Bore riders on the sabot and/or projectile are in contact with the ballistic guide rails. Separation of the current carrying and ballistic guidance functions increases resistance of the system to rail movement and bending, as well as reduced wear/damage to the rails. In further embodiments, a circumferential over wrap providing compressive force on the rails further increases resistance of the system to rail movement and bending.

  6. Underground electromagnetic activity in two regions with contrasting seismicity: a case study from the Eastern Alps and Bohemian Massif

    NASA Astrophysics Data System (ADS)

    Baroň, Ivo; Koktavý, Pavel; Stemberk, Josef; Macků, Robert; Trčka, Tomáš; Škarvada, Pavel; Lenhardt, Wolfgang; Meurers, Bruno; Rowberry, Mattew; Marti, Xavi; Plan, Lukas; Grasemann, Berhnard; Mitrovic, Ivanka

    2016-04-01

    observed in Obir Caves. From May to the end of July the data were characterised by a series of irregular high energy anomalies, lasting from hours to days, along with a series of regular nightly anomalies which are thought to relate to the VLF transmitters. From the beginning of August to October the data were characterised (except for the artificial nightly signals) by relative quiescence of other signals with only a few distinct anomalies. Data relating to rock deformation along active tectonic faults is also recorded at Zbrašov Aragonite Caves and Obir Caves using a type of automated moiré extensometer called a TM-71. These data have been interrogated alongside other environmental factors such as seismicity, precipitation, earth tides, and extraterrestrial magnetic radiation (all data provided by the Central Institution for Meteorology and Geodynamics (ZAMG)). It has been possible to compare all the phenomena with our data of natural electromagnetic activity. This pilot study was supported by the Institute of Physics at the Brno University of Technology, the Institute of Rock Structure & Mechanics CAS, and the Austrian Science Foundation (Project P25884-N29 "Active tectonics and recent dynamics of microdisplacements along major fault systems of the Eastern Alps registered in caves (SPELEOTECT)".

  7. System concept definition of the Grumman superconducting Electromagnetic Suspension (EMS) Maglev design

    NASA Technical Reports Server (NTRS)

    Proise, M.

    1994-01-01

    Grumman, under contract to the Army Corps of Engineers, completed a System Concept Definition (SCD) study to design a high-speed 134 m/s (300 m.p.h.) magnetically levitated (Maglev) transportation system. The primary development goals were to design a Maglev that is safe, reliable, environmentally acceptable, and low-cost. The cost issue was a predominant one, since previous studies have shown that an economically viable Maglev system (one that is attractive to investors for future models of passenger and/or freight transportation) requires a cost that is about $12.4 M/km ($20 Million per mile). The design is based on the electromagnetic suspension (EMS) system using superconducting iron-core magnets mounted along both sides of the vehicle. The EMS system has several advantages compared to the electrodynamic suspension (EDS) Maglev systems such as low stray magnetic fields in the passenger cabin and the surrounding areas, uniform load distribution along the full length of the vehicle, and small pole pitch for smoother propulsion and ride comfort. It is also levitated at all speeds and incorporates a wrap-around design of safer operation. The Grumman design has all the advantages of an EMS system identified above, while eliminating (or significantly improving) drawbacks associated with normal magnet powered EMS systems. Improvements include larger gap clearance, lighter weight, lower number of control servos, and higher off line switching speeds. The design also incorporates vehicle tilt (plus or minus 9 deg) for higher coordinated turn and turn out speed capability.

  8. System concept definition of the Grumman superconducting Electromagnetic Suspension (EMS) Maglev design

    NASA Astrophysics Data System (ADS)

    Proise, M.

    1994-05-01

    Grumman, under contract to the Army Corps of Engineers, completed a System Concept Definition (SCD) study to design a high-speed 134 m/s (300 m.p.h.) magnetically levitated (Maglev) transportation system. The primary development goals were to design a Maglev that is safe, reliable, environmentally acceptable, and low-cost. The cost issue was a predominant one, since previous studies have shown that an economically viable Maglev system (one that is attractive to investors for future models of passenger and/or freight transportation) requires a cost that is about $12.4 M/km ($20 Million per mile). The design is based on the electromagnetic suspension (EMS) system using superconducting iron-core magnets mounted along both sides of the vehicle. The EMS system has several advantages compared to the electrodynamic suspension (EDS) Maglev systems such as low stray magnetic fields in the passenger cabin and the surrounding areas, uniform load distribution along the full length of the vehicle, and small pole pitch for smoother propulsion and ride comfort. It is also levitated at all speeds and incorporates a wrap-around design of safer operation. The Grumman design has all the advantages of an EMS system identified above, while eliminating (or significantly improving) drawbacks associated with normal magnet powered EMS systems. Improvements include larger gap clearance, lighter weight, lower number of control servos, and higher off line switching speeds. The design also incorporates vehicle tilt (plus or minus 9 deg) for higher coordinated turn and turn out speed capability.

  9. Radiating Fröhlich system as a model of cellular electromagnetism.

    PubMed

    Šrobár, Fedor

    2015-01-01

    Oscillating polar entities inside the biological cells, most notably microtubules, are bound to emit electromagnetic radiation. This phenomenon is described by Fröhlich kinetic equations expressing, in terms of quantum occupancy numbers of each discrete collective oscillatory mode, the balance between incoming metabolic energy flow and losses due to linear and non-linear interactions with the thermal environs of the oscillators. Hitherto, radiation losses have not been introduced as part of the balance; it was assumed that they were proportional to the modal occupation numbers. It is demonstrated that this formulation is incorrect and the radiation losses must be taken into account in the kinetic equations explicitly. Results of a numerical study of kinetic equations, enlarged in this sense, are presented for the case of three coupled oscillators which was shown to evince the essential attributes of the Fröhlich systems. Oscillator eigenfrequencies were chosen, alternatively, to fall into the MHz and the THz frequency domains. It was found that large radiation levels destroy the main hallmark of the Fröhlich systems, the energy condensation in the lowest frequency mode. The system then functions as a convertor of metabolic energy into radiation. At more moderate radiation levels, both energy condensation and significant radiation can coexist. Possible consequences for the cell physiology are suggested.

  10. Numerical modeling of an enhanced very early time electromagnetic (VETEM) prototype system

    USGS Publications Warehouse

    Cui, T.J.; Chew, W.C.; Aydiner, A.A.; Wright, D.L.; Smith, D.V.; Abraham, J.D.

    2000-01-01

    In this paper, two numerical models are presented to simulate an enhanced very early time electromagnetic (VETEM) prototype system, which is used for buried-object detection and environmental problems. Usually, the VETEM system contains a transmitting loop antenna and a receiving loop antenna, which run on a lossy ground to detect buried objects. In the first numerical model, the loop antennas are accurately analyzed using the Method of Moments (MoM) for wire antennas above or buried in lossy ground. Then, Conjugate Gradient (CG) methods, with the use of the fast Fourier transform (FFT) or MoM, are applied to investigate the scattering from buried objects. Reflected and scattered magnetic fields are evaluated at the receiving loop to calculate the output electric current. However, the working frequency for the VETEM system is usually low and, hence, two magnetic dipoles are used to replace the transmitter and receiver in the second numerical model. Comparing these two models, the second one is simple, but only valid for low frequency or small loops, while the first modeling is more general. In this paper, all computations are performed in the frequency domain, and the FFT is used to obtain the time-domain responses. Numerical examples show that simulation results from these two models fit very well when the frequency ranges from 10 kHz to 10 MHz, and both results are close to the measured data.

  11. Application of Iterative Time-Reversal for Electromagnetic Wave Focusing in a Wave Chaotic System

    NASA Astrophysics Data System (ADS)

    Taddese, Biniyam; Antonsen, Thomas; Ott, Edward; Anlage, Steven

    2011-03-01

    Time-reversal mirrors exploit the time-reversal invariance of the wave equation to achieve spatial and temporal focusing, and they have been shown to be very effective sensors of perturbations to wave chaotic systems. The sensing technique is based on a classical analogue of the Loschmidt echo. However, dissipation results in an imperfect focusing, hence we created a sensing technique employing exponential amplification to overcome this limitation [1,2]. We now apply the technique of iterative time-reversal, which had been demonstrated in a dissipative acoustic system, to an electromagnetic time-reversal mirror, and experimentally demonstrate improved temporal focusing. We also use a numerical model of a network of transmission lines to demonstrate improved focusing by the iterative technique for various degrees and statistical distributions of loss in the system. The application of the iterative technique to improve the performance and practicality of our sensor is explored. This work is supported by an ONR MURI Grant No. N000140710734, AFOSR Grant No. FA95501010106, and the Maryland CNAM.

  12. Neutron activation analysis system

    DOEpatents

    Taylor, M.C.; Rhodes, J.R.

    1973-12-25

    A neutron activation analysis system for monitoring a generally fluid media, such as slurries, solutions, and fluidized powders, including two separate conduit loops for circulating fluid samples within the range of radiation sources and detectors is described. Associated with the first loop is a neutron source that emits s high flux of slow and thermal neutrons. The second loop employs a fast neutron source, the flux from which is substantially free of thermal neutrons. Adjacent to both loops are gamma counters for spectrographic determination of the fluid constituents. Other gsmma sources and detectors are arranged across a portion of each loop for deterMining the fluid density. (Official Gazette)

  13. Introducing Electromagnetic Field Momentum

    ERIC Educational Resources Information Center

    Hu, Ben Yu-Kuang

    2012-01-01

    I describe an elementary way of introducing electromagnetic field momentum. By considering a system of a long solenoid and line charge, the dependence of the field momentum on the electric and magnetic fields can be deduced. I obtain the electromagnetic angular momentum for a point charge and magnetic monopole pair partially through dimensional…

  14. An Attachable Electromagnetic Energy Harvester Driven Wireless Sensing System Demonstrating Milling-Processes and Cutter-Wear/Breakage-Condition Monitoring.

    PubMed

    Chung, Tien-Kan; Yeh, Po-Chen; Lee, Hao; Lin, Cheng-Mao; Tseng, Chia-Yung; Lo, Wen-Tuan; Wang, Chieh-Min; Wang, Wen-Chin; Tu, Chi-Jen; Tasi, Pei-Yuan; Chang, Jui-Wen

    2016-02-23

    An attachable electromagnetic-energy-harvester driven wireless vibration-sensing system for monitoring milling-processes and cutter-wear/breakage-conditions is demonstrated. The system includes an electromagnetic energy harvester, three single-axis Micro Electro-Mechanical Systems (MEMS) accelerometers, a wireless chip module, and corresponding circuits. The harvester consisting of magnets with a coil uses electromagnetic induction to harness mechanical energy produced by the rotating spindle in milling processes and consequently convert the harnessed energy to electrical output. The electrical output is rectified by the rectification circuit to power the accelerometers and wireless chip module. The harvester, circuits, accelerometer, and wireless chip are integrated as an energy-harvester driven wireless vibration-sensing system. Therefore, this completes a self-powered wireless vibration sensing system. For system testing, a numerical-controlled machining tool with various milling processes is used. According to the test results, the system is fully self-powered and able to successfully sense vibration in the milling processes. Furthermore, by analyzing the vibration signals (i.e., through analyzing the electrical outputs of the accelerometers), criteria are successfully established for the system for real-time accurate simulations of the milling-processes and cutter-conditions (such as cutter-wear conditions and cutter-breaking occurrence). Due to these results, our approach can be applied to most milling and other machining machines in factories to realize more smart machining technologies.

  15. An Attachable Electromagnetic Energy Harvester Driven Wireless Sensing System Demonstrating Milling-Processes and Cutter-Wear/Breakage-Condition Monitoring

    PubMed Central

    Chung, Tien-Kan; Yeh, Po-Chen; Lee, Hao; Lin, Cheng-Mao; Tseng, Chia-Yung; Lo, Wen-Tuan; Wang, Chieh-Min; Wang, Wen-Chin; Tu, Chi-Jen; Tasi, Pei-Yuan; Chang, Jui-Wen

    2016-01-01

    An attachable electromagnetic-energy-harvester driven wireless vibration-sensing system for monitoring milling-processes and cutter-wear/breakage-conditions is demonstrated. The system includes an electromagnetic energy harvester, three single-axis Micro Electro-Mechanical Systems (MEMS) accelerometers, a wireless chip module, and corresponding circuits. The harvester consisting of magnets with a coil uses electromagnetic induction to harness mechanical energy produced by the rotating spindle in milling processes and consequently convert the harnessed energy to electrical output. The electrical output is rectified by the rectification circuit to power the accelerometers and wireless chip module. The harvester, circuits, accelerometer, and wireless chip are integrated as an energy-harvester driven wireless vibration-sensing system. Therefore, this completes a self-powered wireless vibration sensing system. For system testing, a numerical-controlled machining tool with various milling processes is used. According to the test results, the system is fully self-powered and able to successfully sense vibration in the milling processes. Furthermore, by analyzing the vibration signals (i.e., through analyzing the electrical outputs of the accelerometers), criteria are successfully established for the system for real-time accurate simulations of the milling-processes and cutter-conditions (such as cutter-wear conditions and cutter-breaking occurrence). Due to these results, our approach can be applied to most milling and other machining machines in factories to realize more smart machining technologies. PMID:26907297

  16. An Attachable Electromagnetic Energy Harvester Driven Wireless Sensing System Demonstrating Milling-Processes and Cutter-Wear/Breakage-Condition Monitoring.

    PubMed

    Chung, Tien-Kan; Yeh, Po-Chen; Lee, Hao; Lin, Cheng-Mao; Tseng, Chia-Yung; Lo, Wen-Tuan; Wang, Chieh-Min; Wang, Wen-Chin; Tu, Chi-Jen; Tasi, Pei-Yuan; Chang, Jui-Wen

    2016-01-01

    An attachable electromagnetic-energy-harvester driven wireless vibration-sensing system for monitoring milling-processes and cutter-wear/breakage-conditions is demonstrated. The system includes an electromagnetic energy harvester, three single-axis Micro Electro-Mechanical Systems (MEMS) accelerometers, a wireless chip module, and corresponding circuits. The harvester consisting of magnets with a coil uses electromagnetic induction to harness mechanical energy produced by the rotating spindle in milling processes and consequently convert the harnessed energy to electrical output. The electrical output is rectified by the rectification circuit to power the accelerometers and wireless chip module. The harvester, circuits, accelerometer, and wireless chip are integrated as an energy-harvester driven wireless vibration-sensing system. Therefore, this completes a self-powered wireless vibration sensing system. For system testing, a numerical-controlled machining tool with various milling processes is used. According to the test results, the system is fully self-powered and able to successfully sense vibration in the milling processes. Furthermore, by analyzing the vibration signals (i.e., through analyzing the electrical outputs of the accelerometers), criteria are successfully established for the system for real-time accurate simulations of the milling-processes and cutter-conditions (such as cutter-wear conditions and cutter-breaking occurrence). Due to these results, our approach can be applied to most milling and other machining machines in factories to realize more smart machining technologies. PMID:26907297

  17. Minimizing the Impact of Electromagnetic Interference Affecting the Control System of Personal Rapid Transit in the Context of the Competitiveness of the Supply Chain

    NASA Astrophysics Data System (ADS)

    Choromański, Włodzimierz; Dyduch, Janusz; Paś, Jacek

    2011-06-01

    Personal Rapid Transit control system is exploited in diverse electromagnetic enlivenments. The unintentional or intentional electromagnetic disturbances on a vast railway area can disturb operation of PRT control system. The security systems are responsible for security of humans and goods transpiration and therefore their disturbance can threaten life or health their disturbance can threaten life or health of people exploitation decisions in the reference to these systems. The paper presents the ways of minimization of the influence of electromagnetic disturbances on PRT control system.

  18. Technical concepts for vascular electromagnetic navigated interventions: aortic in situ fenestration and transjugular intrahepatic porto-systemic shunts.

    PubMed

    Penzkofer, Tobias; Isfort, Peter; Na, Hong-Sik; Wilkmann, Christoph; Osterhues, Sabine; Besting, Andreas; Hänisch, Christoph; Bisplinghoff, Stefan; Jansing, Johannes; von Werder, Sylvie; Gooding, Jorge; de la Fuente, Mathias; Mahnken, Andreas H; Disselhorst-Klug, Catherine; Schmitz-Rode, Thomas; Kuhl, Christiane K; Bruners, Philipp

    2014-04-01

    This work presents concepts for complex endovascular procedures using electromagnetic navigation technology (EMT). Navigation software interfacing a standard commercially available navigation system was developed, featuring registration, electromagnetic field distortion correction, breathing motion detection and gating, and state-of-the-art 3D imaging post processing. Protocols for endovascularly placed, in-situ fenestrated abdominal aortic stent grafts and an EMT guided transjugular intrahepatic portosystemic shunt (TIPSS) creation have been designed. A dedicated set of interventional devices was developed for each of the procedures: For aortic in-situ fenestration a combination of high-porosity stentgrafts, steerable catheters and electromagnetically navigated guidewires was used, for TIPSS a dual-navigated (sheath and stylet) TIPSS-device was designed and manufactured. The developed devices underwent phantom testing, in preparation for animal experiments to prove the feasibility of the approach. Once established, these systems could aid in performing these challenging interventional radiology procedures, exploiting the unique characteristics of electromagnetic navigation and solving multiple of the problems associated with these interventions being performed under X-ray fluoroscopy, such as lacking real-time 3D information or extensive exposure to ionizing radiation.

  19. A monitor for the laboratory evaluation of control integrity in digital control systems operating in harsh electromagnetic environments

    NASA Technical Reports Server (NTRS)

    Belcastro, Celeste M.; Fischl, Robert; Kam, Moshe

    1992-01-01

    This paper presents a strategy for dynamically monitoring digital controllers in the laboratory for susceptibility to electromagnetic disturbances that compromise control integrity. The integrity of digital control systems operating in harsh electromagnetic environments can be compromised by upsets caused by induced transient electrical signals. Digital system upset is a functional error mode that involves no component damage, can occur simultaneously in all channels of a redundant control computer, and is software dependent. The motivation for this work is the need to develop tools and techniques that can be used in the laboratory to validate and/or certify critical aircraft controllers operating in electromagnetically adverse environments that result from lightning, high-intensity radiated fields (HIRF), and nuclear electromagnetic pulses (NEMP). The detection strategy presented in this paper provides dynamic monitoring of a given control computer for degraded functional integrity resulting from redundancy management errors, control calculation errors, and control correctness/effectiveness errors. In particular, this paper discusses the use of Kalman filtering, data fusion, and statistical decision theory in monitoring a given digital controller for control calculation errors.

  20. [Adaptive changes in the body upon exposure to electromagnetic radiation].

    PubMed

    Zubkova, S M

    1996-01-01

    The chance to use electromagnetic exposures as active adaptogen and the detecting of adaptive changes following them were objects of our studies. The data of experimental and clinical studies significative the dependence of changes on the functional state of organism were seen. Particular attention is paid to the site of exposure and to the advantages in the action of electromagnetic exposures on areas overlaying the endocrine glands and control centers of central nerve system. In these conditions electromagnetic exposures play a part of trigger initiated natural processes of homeostatic regulation in the organism functional systems. It is shown that the course of electromagnetic exposures in wide frequency range until laser radiation (infrared and red) arises adaptive changes of the regulator systems, of the bioenergetic and the biosynthetic processes in myocardium, liver, brain, thymus and other tissues predetermined genetically and secured the power of the adaptive systems. The cross-adaptation effects underlie the electromagnetic exposures medical action.

  1. Experimental system for real-time assessment of potential changes in protein conformation induced by electromagnetic fields.

    PubMed

    Beyer, Christian; Christen, Philipp; Jelesarov, Ilian; Fröhlich, Jürg

    2013-09-01

    A novel experimental system to distinguish between potential thermal and non-thermal effects of electromagnetic fields (EMFs) on the conformational equilibrium and folding kinetics of proteins is presented. The system comprises an exposure chamber installed within the measurement compartment of a spectropolarimeter and allows real-time observation of the circular dichroism (CD) signal of the protein during EMF exposure. An optical temperature probe monitors the temperature of the protein solution at the site of irradiation. The electromagnetic, thermal, and fluid-dynamic behavior of the system is characterized by numerical and experimental means. The number of repeated EMF on/off cycles needed for achieving a certain detection limit is determined on the basis of the experimentally assessed precision of the CD measurements. The isolated thermosensor protein GrpE of the Hsp70 chaperone system of Eschericha coli serves as the test protein. Long-term experiments show high thermal reproducibility as well as thermal stability of the experimental setup.

  2. Analysis of the Radiated Field in an Electromagnetic Reverberation Chamber as an Upset-Inducing Stimulus for Digital Systems

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2012-01-01

    Preliminary data analysis for a physical fault injection experiment of a digital system exposed to High Intensity Radiated Fields (HIRF) in an electromagnetic reverberation chamber suggests a direct causal relation between the time profile of the field strength amplitude in the chamber and the severity of observed effects at the outputs of the radiated system. This report presents an analysis of the field strength modulation induced by the movement of the field stirrers in the reverberation chamber. The analysis is framed as a characterization of the discrete features of the field strength waveform responsible for the faults experienced by a radiated digital system. The results presented here will serve as a basis to refine the approach for a detailed analysis of HIRF-induced upsets observed during the radiation experiment. This work offers a novel perspective into the use of an electromagnetic reverberation chamber to generate upset-inducing stimuli for the study of fault effects in digital systems.

  3. 240-kA switch with potential application in electromagnetic-launch systems

    SciTech Connect

    Honig, E.M.

    1983-01-01

    Electromagnetic (EM) launchers have severe switching requirements. Switching demands for railgun systems, for instance, inlcude current conduction from hundreds of kA to a few MA, conduction times of a ms to a few s, standoff voltages as high as a few tens of kV, to rcovery voltages of 1 to 10 kV after conduction, opening and closing duty, and repetitive operation up to about 50 Hz. These demands, particularly for repetitive opening duty, are far beyond the capability of most current switches and switching concepts. This paper will review the performance of rod array triggered vacuum gap (RATVG) switches and discuss their potential for solving switching problems in EM launcher systems. A new mode of operation for the RATVG switch is proposed. Fundamental considerations for the operation of opening switches and their associated transfer circuits are presented. Methods of recovering the railgun's inductive energy to enable efficient repetitive operation are discussed and new circuits with such capability are proposed.

  4. Bipolar square-wave current source for transient electromagnetic systems based on constant shutdown time

    NASA Astrophysics Data System (ADS)

    Wang, Shilong; Yin, Changchun; Lin, Jun; Yang, Yu; Hu, Xueyan

    2016-03-01

    Cooperative work of multiple magnetic transmitting sources is a new trend in the development of transient electromagnetic system. The key is the bipolar current waves shutdown, concurrently in the inductive load. In the past, it was difficult to use the constant clamping voltage technique to realize the synchronized shutdown of currents with different peak values. Based on clamping voltage technique, we introduce a new controlling method with constant shutdown time. We use the rising time to control shutdown time and use low voltage power source to control peak current. From the viewpoint of the circuit energy loss, by taking the high-voltage capacitor bypass resistance and the capacitor of the passive snubber circuit into account, we establish the relationship between the rising time and the shutdown time. Since the switch is not ideal, we propose a new method to test the shutdown time by the low voltage, the high voltage and the peak current. Experimental results show that adjustment of the current rising time can precisely control the value of the clamp voltage. When the rising time is fixed, the shutdown time is unchanged. The error for shutdown time deduced from the energy consumption is less than 6%. The new controlling method on current shutdown proposed in this paper can be used in the cooperative work of borehole and ground transmitting system.

  5. [Metabolic changes in cells under electromagnetic radiation of mobile communication systems].

    PubMed

    Iakimenko, I L; Sidorik, E P; Tsybulin, A S

    2011-01-01

    Review is devoted to the analysis of biological effects of microwaves. The results of last years' researches indicated the potential risks of long-term low-level microwaves exposure for human health. The analysis of metabolic changes in living cells under the exposure of microwaves from mobile communication systems indicates that this factor is stressful for cells. Among the reproducible effects of low-level microwave radiation are overexpression of heat shock proteins, an increase of reactive oxygen species level, an increase of intracellular Ca2+, damage of DNA, inhibition of DNA reparation, and induction of apoptosis. Extracellular-signal-regulated kinases ERK and stress-related kinases p38MAPK are involved in metabolic changes. Analysis of current data suggests that the concept of exceptionally thermal mechanism of biological effects of microwaves is not correct. In turn, this raises the question of the need to revaluation of modern electromagnetic standards based on thermal effects of non-ionizing radiation on biological systems.

  6. Electromagnetic Interference to Flight Navigation and Communication Systems: New Strategies in the Age of Wireless

    NASA Technical Reports Server (NTRS)

    Ely, Jay J.

    2005-01-01

    Electromagnetic interference (EMI) promises to be an ever-evolving concern for flight electronic systems. This paper introduces EMI and identifies its impact upon civil aviation radio systems. New wireless services, like mobile phones, text messaging, email, web browsing, radio frequency identification (RFID), and mobile audio/video services are now being introduced into passenger airplanes. FCC and FAA rules governing the use of mobile phones and other portable electronic devices (PEDs) on board airplanes are presented along with a perspective of how these rules are now being rewritten to better facilitate in-flight wireless services. This paper provides a comprehensive overview of NASA cooperative research with the FAA, RTCA, airlines and universities to obtain laboratory radiated emission data for numerous PED types, aircraft radio frequency (RF) coupling measurements, estimated aircraft radio interference thresholds, and direct-effects EMI testing. These elements are combined together to provide high-confidence answers regarding the EMI potential of new wireless products being used on passenger airplanes. This paper presents a vision for harmonizing new wireless services with aeronautical radio services by detecting, assessing, controlling and mitigating the effects of EMI.

  7. Cooling System Design for a Split High Field Bitter-type Electromagnet

    NASA Astrophysics Data System (ADS)

    Birmingham, William; Bates, Evan; Romero-Talamas, Carlos; Rivera, William

    2014-10-01

    For the purpose of analyzing magnetized dusty plasma at the University of Maryland Baltimore County (UMBC), we are designing a split resistive electromagnet. When completed, the magnet will be capable of generating fields of 10 T for 10 seconds. The type of design proposed here was originally developed by Francis Bitter, and achieves high magnetic fields by helically stacked disk-shaped solenoids with axially oriented cooling channels. In order to ensure the safety and functionality of the apparatus, the geometry and placement of the cooling passages must be designed to establish a manageable temperature profile throughout the coil. The estimated power consumption from resistive losses is nearly 7 MW, thus it is imperative to optimize the cooling capacity of the system. The cooling capacity is limited by the mass of chilled water available at one time and the maximum achievable mass flow through the coils. The system is also designed to withstand the resultant mechanical stresses from the Lorentz force. Slot-shaped cooling channels are used. The number and placement of these channels is optimized through an iterative and integrated design process which combines analytic calculations with finite element analyses. The methodology and results of the design process is presented.

  8. [Effects of extremely high-frequency electromagnetic radiation on the immune system and systemic regulation of homeostasis].

    PubMed

    Lushnikov, K V; Gapeev, A B; Chemeris, N K

    2002-01-01

    Low-intensity of electromagnetic radiation of extremely high frequencies (EHF EMR) is effectively used in medical practice for diagnostics, prevention and treatment of a broad spectrum of diseases of different etiology. However, in spite of existence of many hypotheses about mechanisms of EHF EMR effects on the molecular and cellular levels of organization of living systems, there is not conception that could explain all diversity of the EHF-therapy effects from unified approach. In our opinion, the problem of determination of mechanisms of EHF EMR effects on living organism is divided into two basic tasks: first, determining subcellular structures which can receive radiation, and, second, studying physiological reactions of the organism which are caused by radiation. It is obviously, that investigation of functions of single cells and subcellular elements can not entirely explain therapeutic effects and mechanisms of EHF EMR influence on multicellular organism on the whole. Plenty of functional relationships between organs and systems of organs should be taken into account. In the present review, a realization of the EHF-therapy effects due to the influence on immune system functions and start of system mechanisms of maintenance of the homeostasis on the organism level is hypothesized. Potential targets for EHF EMR acception on the level of different systems of the organism are analysed. The material is formed so that functional relations between immune system and other regulatory systems (nervous and endocrine systems) are traced.

  9. Final report on passive and active low-frequency electromagnetic spectroscopy for airborne detection of underground facilities

    SciTech Connect

    SanFilipo, Bill

    2000-04-01

    The objective of this program is to perform research to advance the science in the application of both passive and active electromagnetic measurement techniques for the detection and spatial delineation of underground facilities. Passive techniques exploit the electromagnetic fields generated by electrical apparatus within the structure, including generators, motors, power distribution circuitry, as well as communications hardware and similar electronics equipment. Frequencies monitored are generally in the audio range (60-20,000 Hz), anticipating strong sources associated with normal AC power (i.e., 50 or 60 Hz and associated harmonics), and low frequency power from broad-band sources such as switching circuits. Measurements are made using receiver induction coils wired to electronics that digitize and record the voltage induced by the time varying magnetic fields. Active techniques employ electromagnetic field transmitters in the form of AC current carrying loops also in the audio frequency range, and receiving coils that measure the resultant time varying magnetic fields. These fields are perturbed from those expected in free space by any conductive material in the vicinity of the coils, including the ground, so that the total measured field is comprised of the primary free-space component and the secondary scattered component. The latter can be further delineated into an average background field (uniform conductive half-space earth) and anomalous field associated with heterogeneous zones in the earth, including both highly conductive objects such as metallic structures as well as highly resistive structures such as empty voids corresponding to rooms or tunnels. Work performed during Phase I included the development of the prototype GEM-2H instrumentation, collection of data at several test sites in the passive mode and a single site in the active mode, development of processing and interpretation software. The technical objectives of Phase II were to: (1

  10. Implementation of a decoupled controller for a magnetic suspension system using electromagnets mounted in a planar array

    NASA Technical Reports Server (NTRS)

    Cox, D. E.; Groom, N. J.

    1994-01-01

    An implementation of a decoupled, single-input/single-output control approach for a large angle magnetic suspension test fixture is described. Numerical and experimental results are presented. The experimental system is a laboratory model large gap magnetic suspension system which provides five degree-of-freedom control of a cylindrical suspended element. The suspended element contains a core composed of permanent magnet material and is levitated above five electromagnets mounted in a planar array.

  11. European Neutron Activation System.

    2013-01-11

    Version 03 EASY-2010 (European Activation System) consists of a wide range of codes, data and documentation all aimed at satisfying the objective of calculating the response of materials irradiated in a neutron flux. The main difference from the previous version is the upper energy limit, which has increased from 20 to 60 MeV. It is designed to investigate both fusion devices and accelerator based materials test facilities that will act as intense sources of high-energymore » neutrons causing significant activation of the surrounding materials. The very general nature of the calculational method and the data libraries means that it is applicable (with some reservations) to all situations (e.g. fission reactors or neutron sources) where materials are exposed to neutrons below 60 MeV. EASY can be divided into two parts: data and code development tools and user tools and data. The former are required to develop the latter, but EASY users only need to be able to use the inventory code FISPACT and be aware of the contents of the EAF library (the data source). The complete EASY package contains the FISPACT-2007 inventory code, the EAF-2003, EAF-2005, EAF-2007 and EAF-2010 libraries, and the EASY User Interface for the Window version. The activation package EASY-2010 is the result of significant development to extend the upper energy range from 20 to 60 MeV so that it is capable of being used for IFMIF calculations. The EAF-2010 library contains 66,256 reactions, almost five times more than in EAF-2003 (12,617). Deuteron-induced and proton-induced cross section libraries are also included, and can be used with EASY to enable calculations of the activation due to deuterons and proton [2].« less

  12. Electromagnetic wave test

    NASA Astrophysics Data System (ADS)

    Matthews, R. K.; Stepanek, S. A.

    Electromagnetic wave testing, which represents a relatively new test technique that involves the union of several disciplines (aerothermodynamics, electromagnetics, materials/structures, and advanced diagnostics) is introduced. The essence of this new technique deals with the transmission and possible distortion of electromagnetic waves (RF or IR) as they pass through the bow shock, flow field, and electromagnetic window of a missile flying at hypersonic speeds. Variations in gas density along the optical path can cause significant distortion of the electromagnetic waves and, therefore the missile seeker system may not effectively track the target. Two specific test techniques are described. The first example deals with the combining of a wind tunnel and an RF range while the second example discusses the complexities of evaluating IR seeker system performance.

  13. 4 T actively detunable transmit/receive transverse electromagnetic coil and 4-channel receive-only phased array for (1)H human brain studies.

    PubMed

    Avdievich, Nikolai I; Hetherington, Hoby P

    2004-12-01

    The design and construction of a 4 T transverse electromagnetic (TEM) transmit/receive head coil and a four-channel phased array receive-only RF system are described. To enable both high-resolution imaging of the entire brain and high-resolution spectroscopic imaging, active PIN diode decoupling was used in both the TEM resonator and each surface coil in the array. This configuration allows for both transmission and reception from the volume coil as well as reception from the phased array. The surface coils were decoupled by overlapping the coils and using preamplifier decoupling. Since at high frequencies construction of a lumped element matching quarter wavelength transformer, an important component of the preamplifier decoupling, becomes difficult, a transmission line approach was used. The system was tested and compared to a TEM volume transmit/receive head coil. A four- to sixfold improvement in signal-to-noise ratio from the sensitive volume of the array was achieved.

  14. 4 T actively detunable transmit/receive transverse electromagnetic coil and 4-channel receive-only phased array for (1)H human brain studies.

    PubMed

    Avdievich, Nikolai I; Hetherington, Hoby P

    2004-12-01

    The design and construction of a 4 T transverse electromagnetic (TEM) transmit/receive head coil and a four-channel phased array receive-only RF system are described. To enable both high-resolution imaging of the entire brain and high-resolution spectroscopic imaging, active PIN diode decoupling was used in both the TEM resonator and each surface coil in the array. This configuration allows for both transmission and reception from the volume coil as well as reception from the phased array. The surface coils were decoupled by overlapping the coils and using preamplifier decoupling. Since at high frequencies construction of a lumped element matching quarter wavelength transformer, an important component of the preamplifier decoupling, becomes difficult, a transmission line approach was used. The system was tested and compared to a TEM volume transmit/receive head coil. A four- to sixfold improvement in signal-to-noise ratio from the sensitive volume of the array was achieved. PMID:15562466

  15. Study of plasma environments for the integrated Space Station electromagnetic analysis system

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra

    1992-01-01

    The final report includes an analysis of various plasma effects on the electromagnetic environment of the Space Station Freedom. Effects of arcing are presented. Concerns of control of arcing by a plasma contactor are highlighted. Generation of waves by contaminant ions are studied and amplitude levels of the waves are estimated. Generation of electromagnetic waves by currents in the structure of the space station, driven by motional EMF, is analyzed and the radiation level is estimated.

  16. Calibration technique for electromagnetic flowmeters

    NASA Technical Reports Server (NTRS)

    Sawochka, S. G.

    1967-01-01

    Thermal calorimetric method is used to calibrate electromagnetic flowmeters for liquid alkali metals. The electromagnetic flowmeter is placed in the liquid metal flow system in series with a thermal calorimeter. Therefore, the calculated flow rate through the calorimeter can be compared directly with the respective electromagnetic flowmeter reading.

  17. A radio-frequency system for in vivo pilot experiments aimed at the studies on biological effects of electromagnetic fields.

    PubMed

    Ardoino, Lucia; Lopresto, Vanni; Mancini, Sergio; Marino, Carmela; Pinto, Rosanna; Lovisolo, Giorgio A

    2005-08-01

    An exposure system consisting of two long transversal electromagnetic (TEM) cells, operating at a frequency of 900 MHz, is presented and discussed. The set-up allows simultaneous exposure of a significant number of animals (up to 12 mice per cell) in a blind way to a uniform plane wave at a frequency of 900 MHz, for investigating possible biological effects of exposure to electromagnetic fields produced by wireless communication systems. A heating/refrigerating system has also been designed for maintaining comfortable environmental conditions within the TEM cells during experiments. An accurate dosimetric study has been performed both numerically and by means of direct measurements on phantoms and living mice. The results have shown that good homogeneity of exposure and adequate power efficiency, in terms of whole-body specific absorption rate (SAR) per 1 W of input power, are achievable for the biological target.

  18. Research on ITO transparent electromagnetic shielding coatings for E-O system

    NASA Astrophysics Data System (ADS)

    Zhu, Mi; Xiong, Changxin; Lee, Qiantao

    2007-12-01

    The key factors, which affect the shield effectiveness of ITO transparent conductive coating, have been analyzed in the paper. All the coatings are deposited on K9 glass substrates by electron beam evaporation technology and ion-assistant deposition (IAD) technique. And the relationships between visible transmittance, sheet resistance and shield effectiveness (reflectivity of microwave ) in 2~18GHz range have been investigated. Two kinds of electromagnetic shielding coatings have been developed. One is single-layer electromagnetic shielding coating, which is ITO coating only. The other is multi-layer electromagnetic shielding coating, which is ITO with matched antireflection coatings. The performance of electromagnetic shielding coatings is as follows: average transmittance from 425 to 675nm is 83% for the K9 substrate with the single layer electromagnetic shielding coating only, and average transmittance is 88% for the substrate with the back surface antireflection coating. Average transmittance from 425 to 675nm is 88% for the substrate with the multi-layer electromagnetic shielding coating and average transmittance is 94% for the substrate with the back surface AR coating. The average reflectivity of perpendicularly incident microwave of the best coating sample is not lower than -1.5dB, for which the frequency band is from 2GHz to 18GHz. According to MIL-675C environmental stability standards, environmental and physical durability test results, including thermal cycling test, humidity test, moderate abrasion test and salt spray fog test, etc, are also in detail presented in the paper.

  19. Electromagnetic system for detection and localization of the miners caught by accident in mine

    NASA Astrophysics Data System (ADS)

    Pronenko, Vira; Dudkin, Fedir

    2016-04-01

    It is well known that the profession of a miner is one of the most dangerous in the world. Among the main causes of the people death in the underground coal mining enterprises is their untimely alerting of the accident, as well as the lack of information for the rescuers about the actual location of the miners after the accident. As world practice shows, the electromagnetic (EM) systems for the search and detection of people across a massive layer of rock are the most effective. Such systems are under development almost half a century in many countries dealing with mine industry. However, substantial progress related to the localization of personnel at a distance at least of 20-30 meters through the rock is not reached. In an emergency situation (failure or destruction of underground infrastructure), personnel search behind and beneath of obstruction should be provided urgently. But none of the standard technologies (RFID, DECT, WiFi, emitting cable), which use the stationary technical devices in mines, do not provide notification of people caught by accident location. The only technology that provides guaranteed delivery of messages about the accident to the mine personnel, regardless of their location and under any destruction in the mine, is low-frequency radio technology able to operate through the thickness of rocks. From the general theoretical considerations, it is clear that the miners localization system requires solving the inverse problem of the magnetic field source coordinates determining using the data of 3-component magnetic field measurements. A fundamentally new approach, based on the measurement of the magnetic field of the miner's responder beacon by two fixed and spaced three-component magnetic field receivers and solution of the inverse problem using the results of the magnetic field measurement, was proposed. As a result, the concept of the equipment for miners beacon search and localization implementation (MILES - miner's location emergency

  20. Electromagnetism in the Movies.

    ERIC Educational Resources Information Center

    Everitt, Lori R.; Patterson, Evelyn T.

    1999-01-01

    Describes how the authors used portions of popular movies to help students review concepts related to electromagnetism. Movies used and concepts covered in the review are listed, and a sample activity is described. (WRM)

  1. Collecting shoulder kinematics with electromagnetic tracking systems and digital inclinometers: A review.

    PubMed

    Hannah, Daniel C; Scibek, Jason S

    2015-11-18

    The shoulder complex presents unique challenges for measuring motion as the scapula, unlike any other bony segment in the body, glides and rotates underneath layers of soft tissue and skin. The ability for clinicians and researchers to collect meaningful kinematic data is dependent on the reliability and validity of the instrumentation utilized. The aim of this study was to review the relevant literature pertaining to the reliability and validity of electromagnetic tracking systems (ETS) and digital inclinometers for assessing shoulder complex motion. Advances in technology have led to the development of biomechanical instrumentation, like ETS, that allow for the collection of three-dimensional kinematic data. The existing evidence has demonstrated that ETS are reliable and valid instruments for collecting static and dynamic kinematic data of the shoulder complex. Similarly, digital inclinometers have become increasingly popular among clinicians due to their cost effectiveness and practical use in the clinical setting. The existing evidence supports the use of digital inclinometers for the collection of shoulder complex kinematics as these instruments have been demonstrated to yield acceptable reliability and validity. While digital inclinometers pose a disadvantage to ETS regarding accuracy, precision, and are limited to two-dimensional and static measurements, this instrument provides clinically meaningful data that allow clinicians and researchers the ability to measure, monitor, and compare shoulder complex kinematics.

  2. Error analysis of a direct current electromagnetic tracking system in digitizing 3-dimensional surface geometries.

    PubMed

    Milne, A D; Lee, J M

    1999-01-01

    The direct current electromagnetic tracking device has seen increasing use in biomechanics studies of joint kinematics and anatomical surface geometry. In these applications, a stylus is attached to a sensor to measure the spatial location of three-dimensional landmarks. Stylus calibration is performed by rotating the stylus about a fixed point in space and using regression analysis to determine the tip offset vector. Measurement errors can be induced via several pathways, including; intrinsic system errors in sensor position or angle and tip offset calibration errors. A detailed study was performed to determine the errors introduced in digitizing small surfaces with different stylus lengths (35, 55, and 65 mm) and approach angles (30 and 45 degrees) using a plastic calibration board and hemispherical models. Two-point discrimination errors increased to an average of 1.93 mm for a 254 mm step size. Rotation about a single point produced mean errors of 0.44 to 1.18 mm. Statistically significant differences in error were observed with increasing approach angles (p < 0.001). Errors of less than 6% were observed in determining the curvature of a 19 mm hemisphere. This study demonstrates that the "Flock of Birds" can be used as a digitizing tool with accuracy better than 0.76% over 254 mm step sizes. PMID:11143353

  3. Collecting shoulder kinematics with electromagnetic tracking systems and digital inclinometers: A review

    PubMed Central

    Hannah, Daniel C; Scibek, Jason S

    2015-01-01

    The shoulder complex presents unique challenges for measuring motion as the scapula, unlike any other bony segment in the body, glides and rotates underneath layers of soft tissue and skin. The ability for clinicians and researchers to collect meaningful kinematic data is dependent on the reliability and validity of the instrumentation utilized. The aim of this study was to review the relevant literature pertaining to the reliability and validity of electromagnetic tracking systems (ETS) and digital inclinometers for assessing shoulder complex motion. Advances in technology have led to the development of biomechanical instrumentation, like ETS, that allow for the collection of three-dimensional kinematic data. The existing evidence has demonstrated that ETS are reliable and valid instruments for collecting static and dynamic kinematic data of the shoulder complex. Similarly, digital inclinometers have become increasingly popular among clinicians due to their cost effectiveness and practical use in the clinical setting. The existing evidence supports the use of digital inclinometers for the collection of shoulder complex kinematics as these instruments have been demonstrated to yield acceptable reliability and validity. While digital inclinometers pose a disadvantage to ETS regarding accuracy, precision, and are limited to two-dimensional and static measurements, this instrument provides clinically meaningful data that allow clinicians and researchers the ability to measure, monitor, and compare shoulder complex kinematics. PMID:26601060

  4. The Effects of Electromagnetic Field on the Endocrine System in Children and Adolescents.

    PubMed

    Sangün, Özlem; Dündar, Bumin; Çömlekçi, Selçuk; Büyükgebiz, Attila

    2015-12-01

    Children are exposed to various kind of non-ionizan radiation in their daily life involuntarily. The potential sensitivity of developing organism to the effects of radiofrequency (RF) signals, the higher estimated specific absorption rate (SAR) values of children and greater lifetime cumulative risk raised the scientific interest for children's vulnerability to electromagnetic fields (EMFs). In modern societies, children are being exposed to EMFs in very early ages. There are many researches in scientific literature investigating the alterations of biological parameters in living organisms after EMFs. Although the international guidelines did not report definite, convincing data about the causality, there are unignorable amount of studies indicating the increased risk of cancer, hematologic effects and cognitive impairment. Although they are less in amount; growing number of studies reveal the impacts on metabolism and endocrine function. Reproductive system and growth look like the most challenging fields. However there are also some concerns on detrimental effects of EMFs on thyroid functions, adrenal hormones, glucose homeostasis and melatonin levels. It is not easy to conduct a study investigating the effects of EMFs on a fetus or child due to ethical issues. Hence, the studies are usually performed on virtual models or animals. Although the results are conflicting and cannot be totally matched with humans; there is growing evidence to distress us about the threats of EMF on children.

  5. Design and Optimization of Large Accelerator Systems through High-Fidelity Electromagnetic Simulations

    SciTech Connect

    Ng, Cho; Akcelik, Volkan; Candel, Arno; Chen, Sheng; Ge, Lixin; Kabel, Andreas; Lee, Lie-Quan; Li, Zenghai; Prudencio, Ernesto; Schussman, Greg; Uplenchwar1, Ravi; Xiao1, Liling; Ko1, Kwok; Austin, T.; Cary, J.R.; Ovtchinnikov, S.; Smith, D.N.; Werner, G.R.; Bellantoni, L.; /SLAC /TechX Corp. /Fermilab

    2008-08-01

    SciDAC1, with its support for the 'Advanced Computing for 21st Century Accelerator Science and Technology' (AST) project, witnessed dramatic advances in electromagnetic (EM) simulations for the design and optimization of important accelerators across the Office of Science. In SciDAC2, EM simulations continue to play an important role in the 'Community Petascale Project for Accelerator Science and Simulation' (ComPASS), through close collaborations with SciDAC CETs/Institutes in computational science. Existing codes will be improved and new multi-physics tools will be developed to model large accelerator systems with unprecedented realism and high accuracy using computing resources at petascale. These tools aim at targeting the most challenging problems facing the ComPASS project. Supported by advances in computational science research, they have been successfully applied to the International Linear Collider (ILC) and the Large Hadron Collider (LHC) in High Energy Physics (HEP), the JLab 12-GeV Upgrade in Nuclear Physics (NP), as well as the Spallation Neutron Source (SNS) and the Linac Coherent Light Source (LCLS) in Basic Energy Sciences (BES).

  6. Impact of electromagnetic fields on human vestibular system and standing balance: pilot results and future developments

    NASA Astrophysics Data System (ADS)

    Allen, A.; Villard, S.; Corbacio, M.; Goulet, D.; Plante, M.; Souques, M.; Deschamps, F.; Ostiguy, G.; Lambrozo, J.; Thomas, A. W.; Legros, A.

    2016-03-01

    Although studies have found that extremely low-frequency (ELF, < 300 Hz) magnetic fields (MF) can modulate human standing balance, the acute effects of electromagnetic fields on standing balance have not been systematically investigated. This work aims to establish the threshold for acute standing balance modulation during ELFMF exposure. One hundred volunteers will be exposed to transcranial electric stimulations (Direct Current - DC and Alternating Current - AC, 1 mA) and ELFMF (0 to 160 Hz, 0 to 100 mT). The displacement of their center of pressure will be collected and analyzed as an indicator of vestibular performance. During pilot testing (n=6), we found increased lateral sway with DC, and to a lesser extent, AC exposure. The ELFMF exposure system still needs to be adapted to allow meaningful results. Future protocol design will test for possible effects due to exposures in the radiofrequency range (i.e. above 3 kHz). These results will contribute to the literature documenting exposure guidelines aiming to protect workers and the general public.

  7. Beamformer-based imaging of phase-amplitude coupling using electromagnetic brain activity.

    PubMed

    Hui-Ling Chan; Yong-Sheng Chen; Li-Fen Chen; Baillet, Sylvain

    2015-01-01

    Phase-amplitude coupling (PAC) between neural oscillations of different frequencies plays a crucial role in cognitive processing. Assessing the PAC at both sensor and source levels may encounter the problem of spurious coupling because of the volume conduction, field spread, and source leakage. This paper presents a novel method, beamformer-based imaging of PAC (BIPAC), to estimate PAC between sources from electromagnetic signals. For each targeted brain region, this method can extract the source component with the maximum PAC to the reference signal. The results from two simulated MEG data sets demonstrated that the proposed method can achieve high localization accuracy and low spurious coupling.

  8. Electromagnetic Calculation of Combined Earthing System with Ring Earth Electrode and Vertical Rods for Wind Turbine

    NASA Astrophysics Data System (ADS)

    Fujii, Toshiaki; Yasuda, Yoh; Ueda, Toshiaki

    With the worldwide spread of wind turbine installations, various problems such as landscape issues, bird strikes and grid connections have arisen. Protection of wind turbines from lightning is cited as one of the main problems. Wind turbines are often struck by lightning because of their open-air locations, such as in mountainous areas, and their special configuration and very-high construction. Especially, low-voltage and control circuits can fail or suffer burnout while blades can incur serious damage if struck by lightning. Wind turbine failures caused by lightning strikes account for approximately 25% of all failures. The problem is regarded as a global one that needs immediate resolution. It is important to understand the impedance characteristics of wind turbine earthing systems from the viewpoint of lightning protection. A report from IEC TR61400-24 recommends a “ring earth electrode”. This was originally defined in IEC 61024 (currently revised and re-numbered as IEC 62305), where such an electrode is recommended to reduce touch and step voltages in households and buildings. IEC TR61400-24 also recommended additional electrodes of vertical or horizontal rods. However, these concepts have not been fully discussed from the viewpoint of its application to wind turbines. To confirm the effect of a combination of a ring earth electrode and additional vertical rods for protection of a wind turbine, this report uses the Finite Difference Time Domain (FDTD) method to present an electromagnetic transient analysis on such a wind turbine earthing system. The results show that an optimal combination can be arranged from viewpoints of lightning protection and construction cost. Thus, this report discusses how to establish a quantitative design methodology of the wind turbine earthing system to provide effective lightning protection.

  9. Schizophrenia: Do Sense Perceptions Correlate with Episodic Activity, as Indians Know Kokopelli/Pele Matches with Mother Earth's Electromagnetic Field Activity, EMF?

    NASA Astrophysics Data System (ADS)

    McCulley, Aspen; Pawa Matagamon, Sagamo; McLeod, David Matthew

    2007-10-01

    Certain Indian cognomens seem to indicate an environmental awareness of an electromagnetic wrath some traditional cultures are careful to acknowledge and accommodate. These include Pele/Kokopelli, Keitan, and Hobomock, that have carried explicit information our cultures have been cognizant of Mother Earth's not-always-benign influences. Let's consider schizophrenia, with or without a viral cofactor, and Kokopelli/Pele. She/he may be explicitly referenced as a hunch-backed, flute-playing individual, dancing-around in correlation with Earth's electromagnetic activities. Depending on the specific version and its details, individuals, particularly children, are admonished to avoid certain areas. Of especial importance and relevance may be cultural awareness that individuals, whom another type of culture has discriminated against, despite no a priori guilt, are explicitly absolved of culpability by the blanket statement that The Great Spirit is implicated in their behavior. Of course, this provides information of a religious sort, possibly corroborated by a currently prominent individual.

  10. Polarization: A Key Difference between Man-made and Natural Electromagnetic Fields, in regard to Biological Activity.

    PubMed

    Panagopoulos, Dimitris J; Johansson, Olle; Carlo, George L

    2015-10-12

    In the present study we analyze the role of polarization in the biological activity of Electromagnetic Fields (EMFs)/Electromagnetic Radiation (EMR). All types of man-made EMFs/EMR - in contrast to natural EMFs/EMR - are polarized. Polarized EMFs/EMR can have increased biological activity, due to: 1) Ability to produce constructive interference effects and amplify their intensities at many locations. 2) Ability to force all charged/polar molecules and especially free ions within and around all living cells to oscillate on parallel planes and in phase with the applied polarized field. Such ionic forced-oscillations exert additive electrostatic forces on the sensors of cell membrane electro-sensitive ion channels, resulting in their irregular gating and consequent disruption of the cell's electrochemical balance. These features render man-made EMFs/EMR more bioactive than natural non-ionizing EMFs/EMR. This explains the increasing number of biological effects discovered during the past few decades to be induced by man-made EMFs, in contrast to natural EMFs in the terrestrial environment which have always been present throughout evolution, although human exposure to the latter ones is normally of significantly higher intensities/energy and longer durations. Thus, polarization seems to be a trigger that significantly increases the probability for the initiation of biological/health effects.

  11. Polarization: A Key Difference between Man-made and Natural Electromagnetic Fields, in regard to Biological Activity

    NASA Astrophysics Data System (ADS)

    Panagopoulos, Dimitris J.; Johansson, Olle; Carlo, George L.

    2015-10-01

    In the present study we analyze the role of polarization in the biological activity of Electromagnetic Fields (EMFs)/Electromagnetic Radiation (EMR). All types of man-made EMFs/EMR - in contrast to natural EMFs/EMR - are polarized. Polarized EMFs/EMR can have increased biological activity, due to: 1) Ability to produce constructive interference effects and amplify their intensities at many locations. 2) Ability to force all charged/polar molecules and especially free ions within and around all living cells to oscillate on parallel planes and in phase with the applied polarized field. Such ionic forced-oscillations exert additive electrostatic forces on the sensors of cell membrane electro-sensitive ion channels, resulting in their irregular gating and consequent disruption of the cell’s electrochemical balance. These features render man-made EMFs/EMR more bioactive than natural non-ionizing EMFs/EMR. This explains the increasing number of biological effects discovered during the past few decades to be induced by man-made EMFs, in contrast to natural EMFs in the terrestrial environment which have always been present throughout evolution, although human exposure to the latter ones is normally of significantly higher intensities/energy and longer durations. Thus, polarization seems to be a trigger that significantly increases the probability for the initiation of biological/health effects.

  12. Polarization: A Key Difference between Man-made and Natural Electromagnetic Fields, in regard to Biological Activity

    PubMed Central

    Panagopoulos, Dimitris J.; Johansson, Olle; Carlo, George L.

    2015-01-01

    In the present study we analyze the role of polarization in the biological activity of Electromagnetic Fields (EMFs)/Electromagnetic Radiation (EMR). All types of man-made EMFs/EMR - in contrast to natural EMFs/EMR - are polarized. Polarized EMFs/EMR can have increased biological activity, due to: 1) Ability to produce constructive interference effects and amplify their intensities at many locations. 2) Ability to force all charged/polar molecules and especially free ions within and around all living cells to oscillate on parallel planes and in phase with the applied polarized field. Such ionic forced-oscillations exert additive electrostatic forces on the sensors of cell membrane electro-sensitive ion channels, resulting in their irregular gating and consequent disruption of the cell’s electrochemical balance. These features render man-made EMFs/EMR more bioactive than natural non-ionizing EMFs/EMR. This explains the increasing number of biological effects discovered during the past few decades to be induced by man-made EMFs, in contrast to natural EMFs in the terrestrial environment which have always been present throughout evolution, although human exposure to the latter ones is normally of significantly higher intensities/energy and longer durations. Thus, polarization seems to be a trigger that significantly increases the probability for the initiation of biological/health effects. PMID:26456585

  13. Electromagnetic thermotherapy for deep organ ablation by using a needle array under a synchronized-coil system.

    PubMed

    Huang, Sheng-Chieh; Kang, Jui-Wen; Tsai, Hung-Wen; Shan, Yan-Shen; Lin, Xi-Zhang; Lee, Gwo-Bin

    2014-11-01

    Thermal ablation by using electromagnetic thermotherapy (EMT) has been a promising cancer modality in recent years. It has relatively few side effects and has therefore been extensively investigated for a variety of medical applications in internal medicine and surgery. The EMT system applies a high-frequency alternating electromagnetic field to heat up the needles which are inserted into the target tumor to cause tumor ablation. In this study, a new synchronized-coil EMT system was demonstrated, which was equipped with two synchronized coils and magnetic field generators to provide a long-range, penetrated electromagnetic field to effectively heat up the needles. The heating effect of the needles at the center of the two coils was first explored. The newly designed two-section needle array combined with the synchronized-coil EMT system was thus demonstrated in the in vitro and in vivo animal experiments. Experimental data showed that the developed system is promising for minimally invasive surgery since it might provide superior performance for thermotherapy in cancer treatment.

  14. Ternary systems based on PVDF, BaTiO{sub 3} and MWCNTs: Fabrication, characterization, electromagnetic simulation

    SciTech Connect

    Cacciotti, Ilaria; Valentini, Manlio; Nanni, Francesca

    2015-03-10

    In this work, ternary bulk systems based on polyvinylidene fluoride (PVDF), synthesised barium titanate (BaTiO{sub 3}, BT) nanopowder and multi walled carbon nanotubes (MWCNTs) were fabricated by film stacking technique, starting from solvent cast films. The main purpose was to investigate the influence of BT and MWCNTs addition to the polymeric matrix on its microstructural and dielectrical properties. In order to achieve it, different BT concentrations, ranging between the 60 and 75 %wt, were tested, whereas a MWCNTs content of 2 %wt was maintained constant. The morphology was studied by observation at scanning electron microscopy (SEM), the microstructure and crystalline phases investigated by X-Ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy, and the electromagnetic properties measured in the microwave region (8-12 GHz). The electromagnetic response of the investigated bulk systems was also simulated as function of the sample thickness.

  15. A Warning System For Catastrophic Man-made Hazards Using Electromagnetic Induction Monitoring Verified In Rock Burst Massif

    NASA Astrophysics Data System (ADS)

    Hachay, Olga; Khachay, Oleg

    2010-05-01

    By providing mining works in high stressed rock massif the man-made seismicity become evident, therefore the problem of its forecasting and prevention attracts much attention in all countries with developed mining industry. The near-term forecasting plays a significant role, but till now the developing of a method which allows to define quantitative criterions for the warning system is a large problem as in mining and in seismology [1]. Using the idea of physical mesomechanics, which includes the synergetic approach for analyzing the state changing of rock massif of different matter content, that problem can be solved by monitoring methods, which can research a medium with hierarchic structure. [2-3]. The medium changing, which lead to near-term precursors of dynamical events can be explained in a frame of a conception of self organized criticality [4-5], for which the main factors are heterogeneity and nonlinearity. In the frame of the Siberian Mining Institute a new direction of massive state research develops, which is named as nonlinear geomechanics [6]. But in our opinion we can achieve more success using together geomechanical and geophysical methods, which are based on a medium model as a model of a stratified block structure with hierarchic inclusions. More over if we are interested also in the evolution of that structure we are needed to use complex geophysical methods, which have sufficient resolution of revealing of the origin and decay of the self organized structures [3]. For the first time by using the planshet electromagnetic method, which was elaborated in the Institute of geophysics UD RAS we could in the frame of natural investigations realize the idea of revealing of disintegration zones in the rock massif and organize the monitoring of their morphology [7-8]. That method covers to geophysical methods of non destroying control. It differs from other tomography methods by a system of observation and methods of processing and interpretation, which

  16. A system for simultaneous ultraviolet light and electromagnetic field exposure in in vitro experiments.

    PubMed

    Vesper, D N; Nindl, G; Johnson, M T; Spandau, D F; Swez, J A; Balcavage, W X

    2001-01-01

    Ultraviolet light (UV) is a common treatment for skin diseases such as psoriasis, but bears the risk of carcinogenic side effects. We have biological evidence that electromagnetic fields (EMFs) can act additively with UV so that new therapeutic protocols combining UV and EMF might be developed to improve psoriasis phototherapy. In this study we report on a system that allows in vitro experiments testing this hypothesis. For simultaneous exposure of cell cultures to UVB and EMF, we built Merritt coils with an integrated UV exposure system. The coils can be operated in a sham or experimental mode (up to 1.5 mT and 20,000 Hz). Two UV bulbs were fitted inside the coils for UVB doses between 100-1000 J/m2/nm. In the exposure area the EMF is uniform within 0.0038%. For exposure, the cells are cultured in standard culture plates and placed in a specifically designed box. The box holds two plates in a top chamber covered with a Saran Wrap lid (91% UV transmission) so that cells are exposed to UVB and EMFs. The bottom chamber holds two plates, where cells are screened from UVB and only exposed to EMFs. Temperature control is maintained (+/- 1 degree C) by airflow vents on the side of the box and a fan placed 25 cm away from the cell culture box. To maintain sterility within the box the vents are covered with a bacterial filter. The box lid has additional ventilation through two air direction changes to create an additional bacterial barrier similar to that in culture plate lids. PMID:11347392

  17. ELECTROMAGNETIC PUMP

    DOEpatents

    Pulley, O.O.

    1954-08-17

    This patent reiates to electromagnetic pumps for electricity-conducting fluids and, in particular, describes several modifications for a linear conduction type electromagnetic interaction pump. The invention resides in passing the return conductor for the current traversing the fiuid in the duct back through the gap in the iron circuit of the pump. Both the maximum allowable pressure and the efficiency of a linear conduction electromagnetic pump are increased by incorporation of the present invention.

  18. Large space antenna communications systems: Integrated Langley Research Center/Jet Propulsion Laboratory development activities. 2: Langley Research Center activities

    NASA Technical Reports Server (NTRS)

    Cambell, T. G.; Bailey, M. C.; Cockrell, C. R.; Beck, F. B.

    1983-01-01

    The electromagnetic analysis activities at the Langley Research Center are resulting in efficient and accurate analytical methods for predicting both far- and near-field radiation characteristics of large offset multiple-beam multiple-aperture mesh reflector antennas. The utilization of aperture integration augmented with Geometrical Theory of Diffraction in analyzing the large reflector antenna system is emphasized.

  19. Electromagnets 1: Turn on the Power. Science in a Box.

    ERIC Educational Resources Information Center

    Whitman, Betsy Blizard

    1992-01-01

    The article presents inexpensive activities to teach elementary school students about electromagnets. Students learn to make an electromagnet with a battery, nail, and wire, then different activities help them explore the difference between permanent magnets and electromagnets. (SM)

  20. Explosive electromagnetic radiation by the relaxation of a multimode magnon system.

    PubMed

    Vasyuchka, V I; Serga, A A; Sandweg, C W; Slobodianiuk, D V; Melkov, G A; Hillebrands, B

    2013-11-01

    Microwave emission from a parametrically pumped ferrimagnetic film of yttrium iron garnet was studied versus the magnon density evolution, which was detected by Brillouin light scattering spectroscopy. It has been found that the shutdown of external microwave pumping leads to an unexpected effect: The conventional monotonic decrease of the population of parametrically injected magnons is accompanied by an explosive behavior of electromagnetic radiation at the magnon frequency. The developed theory shows that this explosion is caused by a nonlinear energy transfer from parametrically driven short-wavelength dipolar-exchange magnons to a long-wavelength dipolar magnon mode effectively coupled to an electromagnetic wave.

  1. Measurement of electromagnetic fields generated by air traffic control radar systems with spectrum analysers.

    PubMed

    Barellini, A; Bogi, L; Licitra, G; Silvi, A M; Zari, A

    2009-12-01

    Air traffic control (ATC) primary radars are 'classical' radars that use echoes of radiofrequency (RF) pulses from aircraft to determine their position. High-power RF pulses radiated from radar antennas may produce high electromagnetic field levels in the surrounding area. Measurement of electromagnetic fields produced by RF-pulsed radar by means of a swept-tuned spectrum analyser are investigated here. Measurements have been carried out both in the laboratory and in situ on signals generated by an ATC primary radar. PMID:19864331

  2. A Telemetric system for electromagnetic measurements based on Internet technologies and cloud computing

    NASA Astrophysics Data System (ADS)

    Tassoulas, E.; Vereses, A.; Agiakatsikas, D.; Koulouras, Gr.; Nomicos, C.

    2010-05-01

    A few years ago, real time communication, data collection and transmission from a field station measuring electromagnetic variations in the middle of nowhere, was a very expensive accomplishment. Nowadays, wireless communications and Internet access reach end users much easier and they are less expensive. WIFI, GPRS, 3G or Satellite Internet connections enable this to come true even at the most detached areas of our world where no cables can easily reach at a low cost. Except for the effective potential range, these communication technologies can also give high speed, constant and low cost Internet access. As the Internet access speeds grow, a new term is coming to the foreground. Cloud Computing. The terminology of Cloud Computing refers to a wide subset of Internet technologies usage that the clients: A)Do not need to store any valuable information in any physical infrastructure owned by themselves. B)Consume on-line resources from a third party provider, enabling them to focus on their productivity without having to worry about their data or any other possible local hardware failure. C)Collaborate and share between associates faster and easier, as they can access their work from anywhere, just with the existence of Internet access. This telemetric system, relies on Cloud Computing for the delivery of collected data from the field station to an on-line storage. Collaborators and scientists, can be synchronized with the on-line storage, make changes and synchronize vice versa. Local storage at the field station end, is only needed in the case of an Internet connection failure, so that the data can be stored until the Internet connection is regained. Local storage at the user's side is optional, however desirable thus giving the ability to work off-line and synchronize again the changes when one goes on-line.

  3. Comparison Study of Electromagnet and Permanent Magnet Systems for an Accelerator Using Cost-Based Failure Modes and Effects Analysis.

    SciTech Connect

    Spencer, C

    2004-02-19

    The next generation of particle accelerators will be one-of-a-kind facilities, and to meet their luminosity goals they must have guaranteed availability over their several decade lifetimes. The Next Linear Collider (NLC) is one viable option for a 1 TeV electron-positron linear collider, it has an 85% overall availability goal. We previously showed how a traditional Failure Modes and Effects Analysis (FMEA) of a SLAC electromagnet leads to reliability-enhancing design changes. Traditional FMEA identifies failure modes with high risk but does not consider the consequences in terms of cost, which could lead to unnecessarily expensive components. We have used a new methodology, ''Life Cost-Based FMEA'', which measures risk of failure in terms of cost, in order to evaluate and compare two different technologies that might be used for the 8653 NLC magnets: electromagnets or permanent magnets. The availabilities for the two different types of magnet systems have been estimated using empirical data from SLAC's accelerator failure database plus expert opinion on permanent magnet failure modes and industry standard failure data. Labor and material costs to repair magnet failures are predicted using a Monte Carlo simulation of all possible magnet failures over a 30-year lifetime. Our goal is to maximize up-time of the NLC through magnet design improvements and the optimal combination of electromagnets and permanent magnets, while reducing magnet system lifecycle costs.

  4. Fast, automatic, and accurate catheter reconstruction in HDR brachytherapy using an electromagnetic 3D tracking system

    SciTech Connect

    Poulin, Eric; Racine, Emmanuel; Beaulieu, Luc; Binnekamp, Dirk

    2015-03-15

    Purpose: In high dose rate brachytherapy (HDR-B), current catheter reconstruction protocols are relatively slow and error prone. The purpose of this technical note is to evaluate the accuracy and the robustness of an electromagnetic (EM) tracking system for automated and real-time catheter reconstruction. Methods: For this preclinical study, a total of ten catheters were inserted in gelatin phantoms with different trajectories. Catheters were reconstructed using a 18G biopsy needle, used as an EM stylet and equipped with a miniaturized sensor, and the second generation Aurora{sup ®} Planar Field Generator from Northern Digital Inc. The Aurora EM system provides position and orientation value with precisions of 0.7 mm and 0.2°, respectively. Phantoms were also scanned using a μCT (GE Healthcare) and Philips Big Bore clinical computed tomography (CT) system with a spatial resolution of 89 μm and 2 mm, respectively. Reconstructions using the EM stylet were compared to μCT and CT. To assess the robustness of the EM reconstruction, five catheters were reconstructed twice and compared. Results: Reconstruction time for one catheter was 10 s, leading to a total reconstruction time inferior to 3 min for a typical 17-catheter implant. When compared to the μCT, the mean EM tip identification error was 0.69 ± 0.29 mm while the CT error was 1.08 ± 0.67 mm. The mean 3D distance error was found to be 0.66 ± 0.33 mm and 1.08 ± 0.72 mm for the EM and CT, respectively. EM 3D catheter trajectories were found to be more accurate. A maximum difference of less than 0.6 mm was found between successive EM reconstructions. Conclusions: The EM reconstruction was found to be more accurate and precise than the conventional methods used for catheter reconstruction in HDR-B. This approach can be applied to any type of catheters and applicators.

  5. [Responses of thymocytes and splenocytes to low-intensity extremely high-frequency electromagnetic radiation in normal mice and in mice with systemic inflammation].

    PubMed

    Gapeev, A B; Sirota, N P; Kudriavtsev, A A; Chemeris, N K

    2010-01-01

    Changes in T cell subsets and expression of cytokine genes in thymocytes and splenocytes after exposure of BAL/c mice to low-intensity extremely high-frequency electromagnetic radiation (42.2 GHz, 0.1 mW/cm2, exposure duration 20 min) under normal conditions and in systemic inflammation were studied using flow cytometry and the methods of reverse transcription and real-time polymerase chain reaction. It was found that the number of CD4+ and CD8+ T cells statistically significantly increased in the thymus and considerably decreased in the spleen of exposed animals. Apparently, the exposure of animals leads to an intensification of the host defense, by activating the T-cellular immunity. As for effector functions, the increased expression of IL-1beta and IFNgamma genes in thymocytes and essentially enhanced expression of IL-1beta, IL-10, and TNFalpha genes in splenocytes were observed in mice exposed against the background of a progressive inflammatory process. The experimental data obtained specify that the directed (anti-inflammatory) response of an organism to a specific combination of effective exposure parameters of electromagnetic radiation can be realized by the activation of particular immunocompetent cells and changes in the cytokine profile.

  6. Universal properties of the electromagnetic interactions of spin-one systems

    SciTech Connect

    Brodsky, S.J. ); Hiller, J.R. )

    1992-09-01

    The dominance of helicity-conserving amplitudes in gauge theory is shown to imply universal ratios for the charge, magnetic, and quadrupole form factors of spin-one bound states: {ital G}{sub {ital C}}({ital Q}{sup 2}):{ital G}{sub {ital M}}({ital Q}{sup 2}):{ital G}{sub {ital Q}}({ital Q}{sup 2})=(1{minus}2/3{eta}):2:{minus}1. These ratios hold at large spacelike or timelike momentum transfer in the case of composite systems such as the {rho} or deuteron in QCD. They are also the ratios predicted for the electromagnetic couplings of the {ital W}{sup {plus minus}} for all {ital Q}{sup 2} in the standard model at the tree level. In the case of the deuteron, the leading-twist perturbative QCD predictions are valid at {ital Q}{sup 2}={vert bar}{ital q}{sup 2}1{much gt}{Lambda}{sub QCD}{ital M{ital d}}, but do not require the kinematical ratio {eta}={ital Q}{sup 2}/4{ital M}{sub {ital d}}{sup 2} to be large. These results provide new all-angle predictions for the leading power behavior of the tensor polarization {ital T}{sub 20}({ital Q}{sup 2},{theta}) and the invariant ratio {ital B}({ital Q}{sup 2})/{ital A}({ital Q}{sup 2}). We also use a generalization of the Drell-Hearn-Gerasimov sum rule to show that the magnetic and quadrupole moments of any composite spin-one system take on the canonical values {mu}={ital e}/{ital M} and {ital Q}={minus}{ital e}/{ital M}{sup 2} in the strong binding limit of the zero bound-state radius or infinite excitation energy. This allows new empirical constraints on the possible internal structure of the {ital Z}{sup 0} and {ital W}{sup {plus minus}} vector bosons. Simple gauge-invariant and -covariant models and null zone theory are used to illustrate these results. Complications that arise when the Breit frame is used for form-factor analyses are also pointed out.

  7. Linear system approach to the Debye series for electromagnetic scattering by a multi-layer sphere: A tutorial

    NASA Astrophysics Data System (ADS)

    Lock, James A.

    2016-07-01

    A general elementary linear system containing two inputs and two outputs is defined, and the behavior of a composite system consisting of a number of elementary systems connected in series is reviewed. In particular, the four proportionality coefficients relating the outputs of the composite system to its inputs have the same formal mathematical structure, independent of the number of elementary systems that are connected together. This composite linear system is then used to model scattering of an electromagnetic plane wave by a singly-coated sphere or a multi-layer sphere. Mirroring the behavior of a general linear system, the partial wave scattering amplitudes and their Debye series representation also have the same formal mathematical structure, independent of the number of layers of the sphere. Lastly, the interpretation of coherent multiple-scattering inside a multi-layer sphere in the frequency-domain is commented on.

  8. [Biological effects of electromagnetic radiation of extremely high frequencies combined with physiologically active compounds].

    PubMed

    Rogacheva, S M; Denisova, S A; Shul'gin, S V; Somov, A Iu; Kuznetsov, P E

    2008-01-01

    The study of the action of the electromagnetic radiation (EMR) of low intensity (10 microW/cm2) in the range of frequencies 120-170 GHz at the test-reaction of Infusoria Paramecium caudatum was carried out. The resonant character of the effects was established. The EMR action at 156.6 and 161.3 GHz caused the increase of infusorians mobility, the action at frequencies 151.8, 155.7, 167.1 GHz caused the mobility reduction. Isolated and combined with EMR effects of nicotine (10(-4)-10(-15) mol/l) and antimicrobial drug metronidazole (10(-5), 10(-8), 10(-9) mol/l) were investigated. The radiation at the frequency 167.1 GHz was shown to reduce the effect of nicotine (10(-9) mol/l) and to enhance the effect of metronidazole (10(-9) mol/l). This phenomenon may be explained by different effects of the substances in low concentration at the water hydrogen bonds net structure.

  9. An opening electromagnetic transducer

    NASA Astrophysics Data System (ADS)

    Sun, Yanhua; Kang, Yihua

    2013-12-01

    Tubular solenoids have been widely used without any change since an electrical wire was discovered to create magnetic fields by Hans Christian Oersted in 1820 and thereby the wire was first coiled as a helix into a solenoid coil by William Sturgeon in 1823 and was improved by Joseph Henry in 1829 [see http://www.myetymology.com/encyclopedia/History_of_the_electricity.html; J. M. D. Coey, Magnetism and Magnetic Materials (Cambridge University Press, New York, 2010); and F. Winterberg, Plasma Phys. 8, 541553 (1996)]. A magnetic control method of C-shaped carrying-current wire is proposed, and thereby a new opening electromagnetic transducer evidently differing from the traditional tubular solenoid is created, capable of directly encircling and centering the acted objects in it, bringing about convenient and innovative electromagnetic energy conversion for electromagnetic heating, electromagnetic excitation, physical information capture, and electro-mechanical motion used in science research, industry, and even biomedical activities.

  10. Modeling of metal delivery systems used in electromagnetic and direct-chill semicontinuous casting of aluminum

    NASA Astrophysics Data System (ADS)

    Jones, William Kinzy, Jr.

    1999-11-01

    The flow of liquid metal in the upper region of an EM (electromagnetic) or DC (direct chill) caster significantly contributes to the solidification behavior and subsequently the final ingot properties (e.g., average grain size and macrosegregation). The characterization of such a flow is a complicated task due to the high operating temperatures and the inherent opacity of the metal. However, as the demand for improved quality and reduced operational costs continues, understanding the mechanics of the flow becomes increasingly important. Hazardous, and often catastrophic, casting defects, such as hot cracks and tears, have been linked to non-uniformities in the solidification front that occur due to improper flow in the liquid pool. A novel technique to measure the flow, using particle imaging velocimetry (PIV), has been incorporated into a laboratory scale physical model of an aluminum caster. The instantaneous vector plots reveal valuable information regarding the turbulent nature and the intrinsic flow oscillations. However, time-averaged vector plots (TAV), obtained by ensemble averaging instantaneous plots, detail information regarding the average features of the flow. The results show that the method of metal delivery into the ingot significantly effected the flow patterns observed. Computational studies of the model geometry reproduce the same flow profiles adding to the validity of the PIV method. Based on the information obtained through physical modeling, an experimental campaign, on production size ingots, was conducted to determine the influence of the liquid pool velocities on the sump profile. Furthermore, a 3D coupled fluid flow-solidification finite element model was developed as a tool to predict the fluid flow/solid front interaction in an attempt to anticipate non-uniformities in the solid. The study has shown that the method of metal delivery into the mold, the upper region where solidification initiates, is critical in determining the flow of

  11. Numerical techniques for electromagnetic applications in microelectronic and radar imaging systems

    NASA Astrophysics Data System (ADS)

    Akerson, Jerome J.

    1998-12-01

    In this thesis, the application of numerical techniques to electromagnetic problems in microelectronic and radar imaging systems are investigated. In particular the following problems are studied: (1) Dielectric rib waveguide discontinuities are analyzed with the Finite Difference Time Domain (FDTD) method. The application of Berenger's Perfectly Matched Layer to multi-layered dielectrics is analyzed and the specific conditions needed to successfully match the multiple dielectric layers are determined and justified. An FDTD method to find the fundamental mode's spatial distribution is used to excite the discontinuity problem. It is shown that the computational domain can be reduced by twenty percent over Gaussian excitations. The effects of rib waveguide bend discontinuities and the effects of the rib geometry to the bend loss are presented. (2) An Impedance Boundary Condition (IBC) for two dimensional FDTD simulations containing thin, good conductor sheets is developed. The IBC uses a recursive convolution scheme based on approximating the conductor's impedance as a sum of exponentials. The effects of FDTD parameters such as grid size and time step on simulation accuracy are presented. The IBC is shown to accurately model the conductor loss over a wide frequency range. The verification is performed by comparing the quality factors of rectangular resonant structures determined by the FDTD simulation and analytical methods. (3) Phase unwrapping techniques for the inversion of terrain height using Synthetic Aperture Radar Interferometry (InSAR) data are analyzed. The weighted least squares and branch cut phase unwrapping techniques are specifically studied. An optimal branch cut method and a hybrid least squares/branch cut method are presented and used to unwrap the phase of both simulated and real SAR interferograms. When used to invert terrain height, these new SAR phase unwrapping methods offer over fifty percent reduction in root mean square (rms) height error

  12. [Effect of low-intensity 900 MHz frequency electromagnetic radiation on rat liver and blood serum enzyme activities].

    PubMed

    Nersesova, L S; Petrosian, M S; Gazariants, M G; Mkrtchian, Z S; Meliksetian, G O; Pogosian, L G; Akopian, Zh I

    2014-01-01

    The comparative analysis of the rat liver and blood serum creatine kinase, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and purine nucleoside phosphorylase post-radiation activity levels after a total two-hour long single and fractional exposure of the animals to low-intensity 900 MHz frequency electromagnetic field showed that the most sensitive enzymes to the both schedules of radiation are the liver creatine kinase, as well as the blood serum creatine kinase and alkaline phosphatase. According to the comparative analysis of the dynamics of changes in the activity level of the liver and blood serum creatine kinase, alanine aminotransferase, aspartate aminotransferase and purine nucleoside phosphorylase, both single and fractional radiation schedules do not affect the permeability of a hepatocyte cell membrane, but rather cause changes in their energetic metabolism. The correlation analysis of the post-radiation activity level changes of the investigated enzymes did not reveal a clear relationship between them. The dynamics of post-radiation changes in the activity of investigated enzyme levels following a single and short-term fractional schedules of radiation did not differ essentially.

  13. Radiation-free distal locking of intramedullary nails: evaluation of a new electromagnetic computer-assisted guidance system.

    PubMed

    Stathopoulos, Ioannis; Karampinas, Panagiotis; Evangelopoulos, Dimitrios-Stergios; Lampropoulou-Adamidou, Kalliopi; Vlamis, John

    2013-06-01

    Distal locking of intramedullary nails (IMNs) is a difficult part of intramedullary nailing (IMN) that could be time-consuming and expose the surgeon, the surgery personnel and the patient to a considerable amount of radiation as fluoroscopy is usually guiding the procedure. Utilization of electromagnetic fields for that purpose offers an attractive alternative. The SURESHOT™ Distal Targeting System (Smith & Nephew, Inc., Memphis, TN, USA) is a novel commercially available radiation-free aiming system that utilizes computerized electromagnetic field tracking technology for the distal locking of IMNs. In order to evaluate the efficacy of the system we conducted the present study. Nineteen patients (six females-thirteen males, mean age 39.5 years, range 17-85 years) with closed diaphyseal fracture of the femur (eight patients) or the tibia (eleven patients) were treated with IMN using the SURESHOT™ Distal Targeting System for the distal interlocking. All targeting attempts were successful at first try and followed by correct positioning of the screws. Mean time for distal locking of tibial IMNs (two screws) was 219sec (range 200-250sec). Mean time for distal locking of femoral IMNs (two screws) was 249 (range 220-330sec). In the current study the SURESHOT™ Distal Targeting System proved to be accurate, fast and easy to learn.

  14. Test research of Surface Electromagnetic Prospecting (SEP) System in Yang-jia-zhang-zi of Liao Ning province

    NASA Astrophysics Data System (ADS)

    Di, Q.

    2013-12-01

    In recent years, deep prospecting method such as magnetotelluric and controlled source audio-frequency magnetotelluric develop rapidly, but the instruments almost monopolized by several big geophysical companies from the United States, Canada and Germany. From prospecting practice, foreign equipment adaptation on complicated geological conditions in China is unsatisfactory. As increasing of national strength, electromagnetic exploration system development independently is on the agenda. In the year of 2010, the institute of geology and geophysics, Chinese academy of sciences, took on one subject of the SinoProbe project, the research of surface Electromagnetic Prospecting (SEP) System, and has achieved some achievements. SEP is an independent research instrumentation system, which is available for MT, AMT and CSAMT soundings. After laboratory testing, in order to test SEP's performance in field, the yang-jia-zhang-zi molybdenum deposit area is selected for SEP experiment. All modules and components of SEP system have been tested, and the field ability of the whole system also has been tested. The experimental results show that SEP performance has reached the level of commercial instruments.

  15. Proceedings of the Workshop on an Electromagnetic Positioning System in Space

    NASA Technical Reports Server (NTRS)

    Oran, W. A. (Editor)

    1978-01-01

    A workshop was convened to help determine if sufficient justification existed to proceed with the design of an electromagnetic (EM) positioning device for use in space. Those in attendance included experts in crystal growth, nucleation phenomena, containerless processing techniques, properties of materials, metallurgical techniques, and glass technology. Specific areas mentioned included the study of metallic glasses and investigations of the properties of high temperature materials.

  16. Electromagnetic free suspension system for space manufacturing. Volume 1: Technology department

    NASA Technical Reports Server (NTRS)

    Buerger, E. H.; Frost, R. T.; Lambert, R. H.; Oconnor, M. F.; Odell, E. L. G.; Napaluch, L. J.; Stockhoff, E. H.; Wouch, G.

    1972-01-01

    The technology developed in defining a facility to be used on the Skylab mission for electromagnetic suspension of small, molten spheres in the weightless space environment is described. The technologies discussed include: four-coil optimization, four-coil versus six-coil configuration comparison, four-coil position servocontrol, four-coil breadboard, position sensing and servosystem, two-color pyrometer, and specimen toration mode analysis.

  17. Electromagnetic fields: activities in the European Commission with a focus on research projects and the Scientific Committee of Emerging and Newly Identified Health Risks (SCENIHR).

    PubMed

    Meroni, Donata; Schreck, Stefan

    2015-09-01

    The article summarizes the main activities of the European Commission concerning electromagnetic fields. It explains also the regulatory context, with a special focus on past and current research projects funded by the European Union and the role of the SCENIHR in assessing risks related to EMF. Main conclusions of the SCENIHR opinion adopted in 2015 on EMF are reported.

  18. Evaluation of the maximum permissible level of low-intensity electromagnetic radiation at mobile connection frequency (1 GHz) by changes in motor activity of Spirostomum Ambiguum.

    PubMed

    Sarapultseva, E I; Igolkina, J V; Litovchenko, A V

    2009-04-01

    Electromagnetic radiation at the mobile connection frequency (1 GHz) at maximum energy flow density (10 microW/cm(2)) permitted in Russia causes serious functional disorders in the studied unicellular hydrobionts infusoria Spirostomum ambiguum: reduction of their spontaneous motor activity. The form of biological reaction is uncommon: the effect is threshold, overall, and does not depend on the duration of microwave exposure.

  19. A system to use electromagnetic tracking for the quality assurance of brachytherapy catheter digitization

    SciTech Connect

    Damato, Antonio L. Viswanathan, Akila N.; Don, Sarah M.; Hansen, Jorgen L.; Cormack, Robert A.

    2014-10-15

    Purpose: To investigate the use of a system using electromagnetic tracking (EMT), post-processing and an error-detection algorithm for detecting errors and resolving uncertainties in high-dose-rate brachytherapy catheter digitization for treatment planning. Methods: EMT was used to localize 15 catheters inserted into a phantom using a stepwise acquisition technique. Five distinct acquisition experiments were performed. Noise associated with the acquisition was calculated. The dwell location configuration was extracted from the EMT data. A CT scan of the phantom was performed, and five distinct catheter digitization sessions were performed. No a priori registration of the CT scan coordinate system with the EMT coordinate system was performed. CT-based digitization was automatically extracted from the brachytherapy plan DICOM files (CT), and rigid registration was performed between EMT and CT dwell positions. EMT registration error was characterized in terms of the mean and maximum distance between corresponding EMT and CT dwell positions per catheter. An algorithm for error detection and identification was presented. Three types of errors were systematically simulated: swap of two catheter numbers, partial swap of catheter number identification for parts of the catheters (mix), and catheter-tip shift. Error-detection sensitivity (number of simulated scenarios correctly identified as containing an error/number of simulated scenarios containing an error) and specificity (number of scenarios correctly identified as not containing errors/number of correct scenarios) were calculated. Catheter identification sensitivity (number of catheters correctly identified as erroneous across all scenarios/number of erroneous catheters across all scenarios) and specificity (number of catheters correctly identified as correct across all scenarios/number of correct catheters across all scenarios) were calculated. The mean detected and identified shift was calculated. Results: The

  20. Optimised sensor selection for control and fault tolerance of electromagnetic suspension systems: a robust loop shaping approach.

    PubMed

    Michail, Konstantinos; Zolotas, Argyrios C; Goodall, Roger M

    2014-01-01

    This paper presents a systematic design framework for selecting the sensors in an optimised manner, simultaneously satisfying a set of given complex system control requirements, i.e. optimum and robust performance as well as fault tolerant control for high integrity systems. It is worth noting that optimum sensor selection in control system design is often a non-trivial task. Among all candidate sensor sets, the algorithm explores and separately optimises system performance with all the feasible sensor sets in order to identify fallback options under single or multiple sensor faults. The proposed approach combines modern robust control design, fault tolerant control, multiobjective optimisation and Monte Carlo techniques. Without loss of generality, it's efficacy is tested on an electromagnetic suspension system via appropriate realistic simulations. PMID:24041402

  1. [Effect of Low-Intensity 900 MHz Frequency Electromagnetic Radiation on Rat Brain Enzyme Activities Linked to Energy Metabolism].

    PubMed

    Petrosyan, M S; Nersesova, L S; Gazaryants, M G; Meliksetyan, G O; Malakyan, M G; Bajinyan, S A; Akopian, J I

    2015-01-01

    The research deals with the effect of low-intensity 900 MHz frequency electromagnetic radiation (EMR), power density 25 μW/cm2, on the following rat brain and blood serum enzyme activities: creatine kinase (CK), playing a central role in the process of storing and distributing the cell energy, as well as alanine aminotransferase (ALT) and aspartate aminotransferase (AST) that play a key role in providing the conjunction of carbohydrate and amino acid metabolism. The comparative analysis of the changes in the enzyme activity studied at different times following the two-hour single, as well as fractional, radiation equivalent of the total time showed that the most radiosensitive enzyme is the brain creatine kinase, which may then be recommended as a marker of the radio frequency radiation impact. According to the analysis of the changing dynamics of the CK, ALT and AST activity level, with time these changes acquire the adaptive character and are directed to compensate the damaged cell energy metabolism.

  2. Augmentation of antibiotic activity by low-frequency electric and electromagnetic fields examining Staphylococcus aureus in broth media.

    PubMed

    Matl, F D; Obermeier, A; Zlotnyk, J; Friess, W; Stemberger, A; Burgkart, R

    2011-07-01

    Systemic treatment of biomaterial-associated bacterial infections with high doses of antibiotics is an established therapeutic concept. The purpose of this in vitro study was to determine the influence of magnetic, electromagnetic, and electric fields on gentamicin-based, antibiotic therapy. It has been previously reported that these fields are successful in the treatment of bone healing and reducing osteitis in infected tibia-pseudarthroses. Four separate experimental setups were used to expose bacterial cultures of Staphylococcus aureus both in Mueller-Hinton broth (MHB) and on Mueller-Hinton agar (MHA), in the presence of gentamicin, to (1) a low-frequency magnetic field (MF) 20 Hz, 5 mT; (2) a low-frequency MF combined with an additional alternating electric field (MF + EF) 20 Hz, 5 mT, 470 mV/cm; (3) a sinusoidal alternating electric field (EF AC) 20 Hz, 470 mV/cm; and (4) a direct current electric field (EF DC) 588 mV/cm. No significant difference between samples and controls was detected on MHA. However, in MHB each of the four fields applied showed a significant growth reduction of planktonically grown Staphylococcus aureus in the presence of gentamicin between 32% and 91% within 24 h of the experiment. The best results were obtained by a direct current EF, decreasing colony-forming units (CFU)/ml more than 91%. The application of electromagnetic fields in the area of implant and bone infections could offer new perspectives in antibiotic treatment and antimicrobial chemotherapy. PMID:21437921

  3. Electromagnetic radiation.

    PubMed

    Ahlbom, Anders; Feychting, Maria

    2003-01-01

    Electromagnetic fields (EMF) are ubiquitous in modern society. It is well known that exposure to strong fields can result in acute effects, such as burns; the mechanisms behind such effects are well established. There is, however, also a concern that long-term exposure to weak fields might have health effects due to an as-yet unknown mechanism. Because of the already widespread exposure, even small health effects could have profound public health implications. Comprehensive research efforts are therefore warranted, and are indeed ongoing. The strongest evidence for health risks is from exposure to fields generated in connection with use of electric power. As for fields used by telecommunications technology, there is still considerably fewer data available and for the time being there is only very weak support for the existence of health effects. However, extensive research activities are ongoing and much more data will be available in the near future. This situation of scientific uncertainty and considerable public concern creates dilemmas for decision makers.

  4. Investigation of the structure of the electromagnetic field and related phenomena, generated by the active satellite

    NASA Technical Reports Server (NTRS)

    Alpert, Yakov L.

    1992-01-01

    A short review is given for the general frequency and angle distribution of the electric field radiated by an electric dipole E = E(sub 0)cos(omega)t, in a magnetoplasma. Detailed results of numerical calculations of (E) were made in the Very Low Frequency (VLF) and the Low Frequency (LF) bands 0.02f(sub b) is less than or equal to F is less than or equal to 0.5f(sub b) (F is approximately (4-500) kHz) in the ionosphere and magnetosphere in the altitude region Z = (800-6000) km; f(sub b) is the electron gyro-frequency of the plasmas in the discussed region f(sub b) is approximately equal to (1.1 to 0.2) MHz. The amplitudes of the electric field have large maxima in four regions: close to the direction of the Earth's magnetic field line (B(sub 0)), it is the so called Axis field (E(sub 0)) and in the Storey (E(sub St)), Reversed Storey (E(sub RevSt)), and Resonance (E(sub Res)) Cones. The maximal values of E(sub 0), E(sub Res), and E(sub RevSt) are very pronounced close to the low hybrid frequency, F approximately F(sub L). The flux of the electric field is concentrated in very narrow regions, the apex angles of the cones delta(beta) is approximately equal to (0.1 - 1) degree. The enhancement and focusing of the electric field is growing up, especially quickly at Z greater than 800 km. At Z is greater than 1000 up to 6000 km, the relative value of (E), in comparison with its value at Z = 800 km is about (10(exp 2) to 10(exp 4)) times larger. Thus, the flux of VLF and LF electromagnetic waves in the Earth magnetoplasma produces and is guided by very narrow pencil beams, similar, let us say, to laser beams.

  5. Computational electronics and electromagnetics

    SciTech Connect

    Shang, C. C.

    1997-02-01

    The Computational Electronics and Electromagnetics thrust area at Lawrence Livermore National Laboratory serves as the focal point for engineering R&D activities for developing computer-based design, analysis, and tools for theory. Key representative applications include design of particle accelerator cells and beamline components; engineering analysis and design of high-power components, photonics, and optoelectronics circuit design; EMI susceptibility analysis; and antenna synthesis. The FY-96 technology-base effort focused code development on (1) accelerator design codes; (2) 3-D massively parallel, object-oriented time-domain EM codes; (3) material models; (4) coupling and application of engineering tools for analysis and design of high-power components; (5) 3-D spectral-domain CEM tools; and (6) enhancement of laser drilling codes. Joint efforts with the Power Conversion Technologies thrust area include development of antenna systems for compact, high-performance radar, in addition to novel, compact Marx generators. 18 refs., 25 figs., 1 tab.

  6. Two-dimensional electromagnetically induced grating via gain and phase modulation in a two-level system

    NASA Astrophysics Data System (ADS)

    Cheng, Guang-Ling; Cong, Lu; Chen, Ai-Xi

    2016-04-01

    A scheme for two-dimensional (2D) electromagnetically induced grating via spatial gain and phase modulation is presented in a two-level atomic system. Based on the interactions of two orthogonal standing-wave fields, the atom could diffract the weak probe beam into high-order directions and a 2D diffraction grating is generated. It is shown that the diffraction efficiency of the grating can be efficiently manipulated by controlling the Rabi frequencies of control fields, the detunings of the control and probe fields, and interaction length. Different from 2D cross-grating via electromagnetically induced transparency in a four-level atomic system, the present scheme results from the spatial modulation of gain and phase in a simple two-level system, which could lead to 2D gain-phase grating with larger diffraction intensities in the diffraction directions. The studies we present may have potential applications in developing photon devices for optical-switching, optical imaging and quantum information processing.

  7. Physiologic activities of the contact activation system.

    PubMed

    Schmaier, Alvin H

    2014-05-01

    The plasma contact activation (CAS) and kallikrein/kinin (KKS) systems consist of 4 proteins: factor XII, prekallikrein, high molecular weight kininogen, and the bradykinin B2 receptor. Murine genetic deletion of factor XII (F12(-/-)), prekallikrein (Klkb1(-/-)), high molecular weight kininogen (Kgn1(-/-)) and the bradykinin B2 receptor (Bdkrb2(-/-)) yield animals protected from thrombosis. With possible exception of F12(-/-) and Kgn1(-/-) mice, the mechanism(s) for thrombosis protection is not reduced contact activation. Bdkrb2(-/-) mice are best characterized and they are protected from thrombosis through over expression of components of the renin angiotensin system (RAS) leading to elevated prostacyclin with vascular and platelet inhibition. Alternatively, prolylcarboxypeptidase, a PK activator and degrader of angiotensin II, when deficient in the mouse leads to a prothrombotic state. Its mechanism for increased thrombosis also is mediated in part by components of the RAS. These observations suggest that thrombosis in mice of the CAS and KKS are mediated in part through the RAS and independent of reduced contact activation. PMID:24759141

  8. Localization of MDMA-induced brain activity in healthy volunteers using low resolution brain electromagnetic tomography (LORETA).

    PubMed

    Frei, E; Gamma, A; Pascual-Marqui, R; Lehmann, D; Hell, D; Vollenweider, F X

    2001-11-01

    3,4-Methylenedioxymethamphetamine (MDMA; 'Ecstasy') is a psychostimulant drug producing heightened mood and facilitated social communication. In animal studies, MDMA effects are primarily mediated by serotonin (5-HT), but also by dopamine (DA) and possibly noradrenaline (NA). In humans, however, the neurochemical and neurophysiological basis of acute MDMA effects remains unknown. The distribution of active neuronal populations after administration of a single dose of MDMA (1.7 mg/kg) or placebo was studied in 16 healthy, MDMA-naïve volunteers. Thirty-one-channel scalp EEGs during resting with open and closed eyes was analyzed in the different EEG frequency bands. Scalp maps of power showed significant, global differences between MDMA and placebo in both eye conditions and all frequency bands. Low resolution brain electromagnetic tomography (LORETA) was used to compute 3D, functional images of electric neuronal activity from the scalp EEG data. MDMA produced a widespread decrease of slow and medium frequency activity and an increase of fast frequency activity in the anterior temporal and posterior orbital cortex, concomitant with a marked enhancement of mood, emotional arousal and increased extraversion. This activation of frontotemporal areas indicates that the observed enhancement of mood and possibly the increased extroversion rely on modulation of limbic orbitofrontal and anterotemporal structures known to be involved in emotional processes. Comparison of the MDMA-specific EEG pattern with that of various 5-HT, DA, and NA agonists indicates that serotonin, noradrenaline, and, to a lesser degree, dopamine, contribute to the effects of MDMA on EEG, and possibly also on mood and behavior.

  9. Electric field absorption and emission as an indicator of active electromagnetic nature of organisms--preliminary report.

    PubMed

    Skarja, Metod; Jerman, Igor; Ruzic, Romana; Leskovar, Robert T; Jejcic, Luka

    2009-01-01

    Measurements of the response of organisms to the near field exposure show that this response, i.e., its absorption, transmission, and emission (ATE) of the organism, markedly differs from the behavior expected if one treats the organism as a simple dissipative conductive body. The results point to the at least partial active response of the organism. This active electrical response can be attributed at least partially to the response of the endogenous electromagnetic field of organisms, first postulated by Frohlich, and to the material structures that form an inseparable whole with this field. The near electric field influence, both on the organism and of the organism on the sensors, can be established either through the vicinity or through a direct nonconductive contact. This response correlates with the physiological state of an organism. Measurements performed with mealworm beetles indicated that the normal living organisms absorb and use some energy of the near electric field and therefore the transmitted (re-emitted) signal is weaker. The inactivated or the dead organisms are more passive electrical absorbers. PMID:19337899

  10. High-field actively detuneable transverse electromagnetic (TEM) coil with low-bias voltage for high-power RF transmission.

    PubMed

    Avdievich, Nikolai I; Bradshaw, Ken; Kuznetsov, Andrey M; Hetherington, Hoby P

    2007-06-01

    The design and construction of a 4T (170 MHz) transverse electromagnetic (TEM) actively detuneable quadrature head coil is described. Conventional schemes for active detuning require high negative bias voltages (>300 V) to prevent leakage of RF pulses with amplitudes of 1-2 kW. To extend the power handling capacity and avoid the use of high DC bias voltages, we developed an alternate method of detuning the volume coil. In this method the PIN diodes in the detuning circuits are shorted when the RF volume coil is tuned, and negatively biased with -12 V when the coil is detuned. To preserve the high Q(U)/Q(L) ratio of the TEM coil, we modified the method of Nabetani and Watkins (Proceedings of the 13th Annual Meeting of ISMRM, Kyoto, Japan, 2004, abstract 1574) by utilizing a high-impedance (approximately 200 Omega), lumped-element, quarter-wavelength transformer. A Q(U) of 500 was achieved for the detuneable TEM, such that incorporation of the detuning network had minimal effect (<1 dB) on the performance of the coil in vivo. PMID:17534919

  11. Relativistic Two-Boson System in Presence of Electromagnetic Plane Wave

    NASA Astrophysics Data System (ADS)

    Droz-Vincent, Ph.

    2016-09-01

    The relativistic two-body problem is considered for spinless particles subject to an external electromagnetic field. When this field is made of the monochromatic superposition of two counter-propagating plane waves (and provided the mutual interaction between particles is known), it is possible to write down explicitly a pair of coupled wave equations (corresponding to a pair of mass-shell constraints) which takes into account also the field contribution. These equations are manifestly covariant; constants of the motion are exhibited, so one ends up with a reduced problem involving five degrees of freedom.

  12. The effect of electromagnetic fields on biofouling in a heat exchange system using seawater.

    PubMed

    Trueba, Alfredo; García, Sergio; Otero, Félix M; Vega, Luis M; Madariaga, Ernesto

    2015-01-01

    This article discusses the antifouling action of a continuous physical treatment process comprising the application of electromagnetic fields (EMFs) to seawater used as the refrigerant fluid in a heat exchanger-condenser to maintain the initial 'clean tube' condition. The results demonstrated that the EMFs accelerated the ionic nucleation of calcium and precipitation as calcium carbonate, which weakened the growing biofilm and reduced its adhesion capacity. Consequently, EMFs induced an erosive effect that reduced biofilm formation and fouling. This treatment allowed for the maintenance of significantly lower fouling factors in the treated tubes compared to a control group of untreated tubes, thereby leading to a higher heat transfer efficiency. PMID:25567299

  13. The effect of electromagnetic fields on biofouling in a heat exchange system using seawater.

    PubMed

    Trueba, Alfredo; García, Sergio; Otero, Félix M; Vega, Luis M; Madariaga, Ernesto

    2015-01-01

    This article discusses the antifouling action of a continuous physical treatment process comprising the application of electromagnetic fields (EMFs) to seawater used as the refrigerant fluid in a heat exchanger-condenser to maintain the initial 'clean tube' condition. The results demonstrated that the EMFs accelerated the ionic nucleation of calcium and precipitation as calcium carbonate, which weakened the growing biofilm and reduced its adhesion capacity. Consequently, EMFs induced an erosive effect that reduced biofilm formation and fouling. This treatment allowed for the maintenance of significantly lower fouling factors in the treated tubes compared to a control group of untreated tubes, thereby leading to a higher heat transfer efficiency.

  14. Influences of Electromagnetic Energy on Bio-Energy Transport through Protein Molecules in Living Systems and Its Experimental Evidence.

    PubMed

    Pang, Xiaofeng; Chen, Shude; Wang, Xianghui; Zhong, Lisheng

    2016-07-25

    The influences of electromagnetic fields (EMFs) on bio-energy transport and its mechanism of changes are investigated through analytic and numerical simulation and experimentation. Bio-energy transport along protein molecules is performed by soliton movement caused by the dipole-dipole electric interactions between neighboring amino acid residues. As such, EMFs can affect the structure of protein molecules and change the properties of the bio-energy transported in living systems. This mechanism of biological effect from EMFs involves the amino acid residues in protein molecules. To study and reveal this mechanism, we simulated numerically the features of the movement of solitons along protein molecules with both a single chain and with three channels by using the Runge-Kutta method and Pang's soliton model under the action of EMFs with the strengths of 25,500, 51,000, 76,500, and 102,000 V/m in the single-chain protein, as well as 17,000, 25,500, and 34,000 V/m in the three-chain protein, respectively. Results indicate that electric fields (EFs) depress the binding energy of the soliton, decrease its amplitude, and change its wave form. Also, the soliton disperses at 102,000 V/m in a single-chain protein and at 25,500 and 34,000 V/m in three-chain proteins. These findings signify that the influence of EMFs on the bio-energy transport cannot be neglected; however, these variations depend on both the strength and the direction of the EF in the EMF. This direction influences the biological effects of EMF, which decrease with increases in the angle between the direction of the EF and that of the dipole moment of amino acid residues; however, randomness at the macroscopic level remains. Lastly, we experimentally confirm the existence of a soliton and the validity of our conclusion by using the infrared spectra of absorption of the collagens, which is activated by another type of EF. Thus, we can affirm that both the described mechanism and the corresponding theory are

  15. Influences of Electromagnetic Energy on Bio-Energy Transport through Protein Molecules in Living Systems and Its Experimental Evidence.

    PubMed

    Pang, Xiaofeng; Chen, Shude; Wang, Xianghui; Zhong, Lisheng

    2016-01-01

    The influences of electromagnetic fields (EMFs) on bio-energy transport and its mechanism of changes are investigated through analytic and numerical simulation and experimentation. Bio-energy transport along protein molecules is performed by soliton movement caused by the dipole-dipole electric interactions between neighboring amino acid residues. As such, EMFs can affect the structure of protein molecules and change the properties of the bio-energy transported in living systems. This mechanism of biological effect from EMFs involves the amino acid residues in protein molecules. To study and reveal this mechanism, we simulated numerically the features of the movement of solitons along protein molecules with both a single chain and with three channels by using the Runge-Kutta method and Pang's soliton model under the action of EMFs with the strengths of 25,500, 51,000, 76,500, and 102,000 V/m in the single-chain protein, as well as 17,000, 25,500, and 34,000 V/m in the three-chain protein, respectively. Results indicate that electric fields (EFs) depress the binding energy of the soliton, decrease its amplitude, and change its wave form. Also, the soliton disperses at 102,000 V/m in a single-chain protein and at 25,500 and 34,000 V/m in three-chain proteins. These findings signify that the influence of EMFs on the bio-energy transport cannot be neglected; however, these variations depend on both the strength and the direction of the EF in the EMF. This direction influences the biological effects of EMF, which decrease with increases in the angle between the direction of the EF and that of the dipole moment of amino acid residues; however, randomness at the macroscopic level remains. Lastly, we experimentally confirm the existence of a soliton and the validity of our conclusion by using the infrared spectra of absorption of the collagens, which is activated by another type of EF. Thus, we can affirm that both the described mechanism and the corresponding theory are

  16. Influences of Electromagnetic Energy on Bio-Energy Transport through Protein Molecules in Living Systems and Its Experimental Evidence

    PubMed Central

    Pang, Xiaofeng; Chen, Shude; Wang, Xianghui; Zhong, Lisheng

    2016-01-01

    The influences of electromagnetic fields (EMFs) on bio-energy transport and its mechanism of changes are investigated through analytic and numerical simulation and experimentation. Bio-energy transport along protein molecules is performed by soliton movement caused by the dipole–dipole electric interactions between neighboring amino acid residues. As such, EMFs can affect the structure of protein molecules and change the properties of the bio-energy transported in living systems. This mechanism of biological effect from EMFs involves the amino acid residues in protein molecules. To study and reveal this mechanism, we simulated numerically the features of the movement of solitons along protein molecules with both a single chain and with three channels by using the Runge–Kutta method and Pang’s soliton model under the action of EMFs with the strengths of 25,500, 51,000, 76,500, and 102,000 V/m in the single-chain protein, as well as 17,000, 25,500, and 34,000 V/m in the three-chain protein, respectively. Results indicate that electric fields (EFs) depress the binding energy of the soliton, decrease its amplitude, and change its wave form. Also, the soliton disperses at 102,000 V/m in a single-chain protein and at 25,500 and 34,000 V/m in three-chain proteins. These findings signify that the influence of EMFs on the bio-energy transport cannot be neglected; however, these variations depend on both the strength and the direction of the EF in the EMF. This direction influences the biological effects of EMF, which decrease with increases in the angle between the direction of the EF and that of the dipole moment of amino acid residues; however, randomness at the macroscopic level remains. Lastly, we experimentally confirm the existence of a soliton and the validity of our conclusion by using the infrared spectra of absorption of the collagens, which is activated by another type of EF. Thus, we can affirm that both the described mechanism and the corresponding theory

  17. Hydrogen pellet acceleration with a two-stage system consisting of a gas gun and a fuseless electromagnetic railgun

    SciTech Connect

    Honig, J.; Kim, K.; Wedge, S.W.

    1986-05-01

    Hydrogen pellets are successfully accelerated for the first time using a two-stage system consisting of a pneumatic gun and an electromagnetic railgun. The pneumatic gun preaccelerator forms cylindrical hydrogen ice pellets (1.6-mm diam x 2.15-mm long) and accelerates them with high-pressure helium gas to velocities in excess of 500 m/s. The booster accelerator, which is a fuseless, circular-bore electromagnetic railgun, derives its propulsive force from a plasma arc armature. The plasma arc armature is formed by electrically breaking down the propellant gas which follows the pellet from the gas gun into the railgun. The diagnostics are for the monitoring of the main capacitor bank and rail currents, for the pellet detection and velocity measurements at the breech and muzzle ends of the railgun, for the recording of the plasma-arc-armature movement inside the railgun bore, and for the photographing of the hydrogen pellet exiting the railgun. Using the system, which is a 60-cm long proof-of-principle machine for refueling magnetic fusion devices, hyrogen pellet velocities exceeding 1 km/s have been achieved for pellets exiting the gas gun at velocities of approx.500 m/s.

  18. Accuracy analysis of an image-guided system for vertebroplasty spinal therapy based on electromagnetic tracking of instruments

    NASA Astrophysics Data System (ADS)

    Ding, Jienan; Khan, Noureen; Cheng, Patrick; Wilson, Emmanuel; Watson, Vance; Cleary, Kevin; Yaniv, Ziv

    2008-03-01

    Vertebroplasty is a minimally invasive procedure in which bone cement is pumped into a fractured vertebral body that has been weakened by osteoporosis, long-term steroid use, or cancer. In this therapy, a trocar (large bore hollow needle) is inserted through the pedicle of the vertebral body which is a narrow passage and requires great skill on the part of the physician to avoid going outside of the pathway. In clinical practice, this procedure is typically done using 2D X-ray fluoroscopy. To investigate the feasibility of providing 3D image guidance, we developed an image-guided system based on electromagnetic tracking and our open source software platform the Image-Guided Surgery Toolkit (IGSTK). The system includes path planning, interactive 3D navigation, and dynamic referencing. This paper will describe the system and our initial evaluation.

  19. Biophysical aspects of cancer--electromagnetic mechanism.

    PubMed

    Pokorný, J; Hasek, J; Vanis, J; Jelínek, F

    2008-05-01

    Hypothesis of coherent vibration states in biological systems based on nonlinear interaction between longitudinal elastic and electric polarization fields with metabolic energy supply was formulated by Frohlich. Conditions for excitation of coherent states and generation of electromagnetic fields are satisfied in microtubules which form electrical polar structures. Numerical models are used for analysis of Frohlich's vibration states in cells. Reduction of activity and of energy production in mitochondria, and disintegration of cytoskeleton structures by phosphorylation on the pathway of cancer trasformation can diminish excitation of the Frohlich's vibration states and of the generated electromagnetic field, which results in disturbances of the interaction forces between cells. Interaction forces between cancer cells may be smaller than interaction forces between healthy cells and cancer cells as follows from numerical models. Mechanism of malignity, i.e. local invasion, detachment of cancer cells, and metastasis, is assumed to depend on the electromagnetic field.

  20. Magnetic-field-driven surface electromagnetic states in the graphene-antiferromagnetic photonic crystal system

    NASA Astrophysics Data System (ADS)

    Averkov, Yu. O.; Tarapov, S. I.; Yakovenko, V. M.; Yampol'skii, V. A.

    2015-04-01

    The surface electromagnetic states (SEMSs) on graphene, which has a linear carrier dispersion law and is placed in an antiferromagnetic photonic crystal, are theoretically studied in the terahertz frequency range. The unit cell of such a crystal consists of layers of a nonmagnetic insulator and a uniaxial antiferromagnet, the easy axis of which is parallel to the crystal layers. A dc magnetic field is parallel to the easy axis of the antiferromagnet. An expression that relates the SEMS frequencies to the structure parameters is obtained. The problem of SEMS excitation by an external TE-polarized electromagnetic wave is solved, and the dependences of the transmission coefficient on the dc magnetic field and the carrier concentration are constructed. These dependences are shown to differ substantially from the case of a conventional two-dimensional electron gas with a quadratic electron dispersion law. Thus, the positions of the transmission coefficient peaks related to resonance SEMS excitation can be used to determine the character of carrier dispersion law in a two-dimensional electron gas.

  1. Magnetic-field-driven surface electromagnetic states in the graphene-antiferromagnetic photonic crystal system

    SciTech Connect

    Averkov, Yu. O. Tarapov, S. I.; Yakovenko, V. M.; Yampol’skii, V. A.

    2015-04-15

    The surface electromagnetic states (SEMSs) on graphene, which has a linear carrier dispersion law and is placed in an antiferromagnetic photonic crystal, are theoretically studied in the terahertz frequency range. The unit cell of such a crystal consists of layers of a nonmagnetic insulator and a uniaxial antiferromagnet, the easy axis of which is parallel to the crystal layers. A dc magnetic field is parallel to the easy axis of the antiferromagnet. An expression that relates the SEMS frequencies to the structure parameters is obtained. The problem of SEMS excitation by an external TE-polarized electromagnetic wave is solved, and the dependences of the transmission coefficient on the dc magnetic field and the carrier concentration are constructed. These dependences are shown to differ substantially from the case of a conventional two-dimensional electron gas with a quadratic electron dispersion law. Thus, the positions of the transmission coefficient peaks related to resonance SEMS excitation can be used to determine the character of carrier dispersion law in a two-dimensional electron gas.

  2. Technical basis for evaluating electromagnetic and radio-frequency interference in safety-related I&C systems

    SciTech Connect

    Ewing, P.D.; Korsah, K.

    1994-04-01

    This report discusses the development of the technical basis for the control of upsets and malfunctions in safety-related instrumentation and control (I&C) systems caused by electromagnetic and radio-frequency interference (EMI/RFI) and power surges. The research was performed at the Oak Ridge National Laboratory (ORNL) and was sponsored by the USNRC Office of Nuclear Regulatory Research (RES). The motivation for research stems from the safety-related issues that need to be addressed with the application of advanced I&C systems to nuclear power plants. Development of the technical basis centered around establishing good engineering practices to ensure that sufficient levels of electromagnetic compatibility (EMC) are maintained between the nuclear power plant`s electronic and electromechanical systems known to be the source(s) of EMI/RFI and power surges. First, good EMC design and installation practices need to be established to control the impact of interference sources on nearby circuits and systems. These EMC good practices include circuit layouts, terminations, filtering, grounding, bonding, shielding, and adequate physical separation. Second, an EMI/RFI test and evaluation program needs to be established to outline the tests to be performed, the associated test methods to be followed, and carefully formulated acceptance criteria based on the intended environment to ensure that the circuit or system under test meets the recommended guidelines. Third, a program needs to be developed to perform confirmatory tests and evaluate the surge withstand capability (SWC) and of I&C equipment connected to or installed in the vicinity of power circuits within the nuclear power plant. By following these three steps, the design and operability of safety-related I&C systems against EMI/RFI and power surges can be evaluated, acceptance criteria can be developed, and appropriate regulatory guidance can be provided.

  3. Electromagnetic attachment mechanism

    NASA Technical Reports Server (NTRS)

    Monford, Leo G., Jr. (Inventor)

    1992-01-01

    An electromagnetic attachment mechanism is disclosed for use as an end effector of a remote manipulator system. A pair of electromagnets, each with a U-shaped magnetic core with a pull-in coil and two holding coils, are mounted by a spring suspension system on a base plate of the mechanism housing with end pole pieces adapted to move through openings in the base plate when the attractive force of the electromagnets is exerted on a strike plate of a grapple fixture affixed to a target object. The pole pieces are spaced by an air gap from the strike plate when the mechanism first contacts the grapple fixture. An individual control circuit and power source is provided for the pull-in coil and one holding coil of each electromagnet. A back-up control circuit connected to the two power sources and a third power source is provided for the remaining holding coils. When energized, the pull-in coils overcome the suspension system and air gap and are automatically de-energized when the pole pieces move to grapple and impose a preload force across the grapple interface. A battery backup is a redundant power source for each electromagnet in each individual control circuit and is automatically connected upon failure of the primary source. A centerline mounted camera and video monitor are used in cooperation with a target pattern on the reflective surface of the strike plate to effect targeting and alignment.

  4. How Does Technology-Enabled Active Learning Affect Undergraduate Students' Understanding of Electromagnetism Concepts?

    ERIC Educational Resources Information Center

    Dori, Yehudit Judy; Belcher, John

    2005-01-01

    Educational technology supports meaningful learning and enables the presentation of spatial and dynamic images, which portray relationships among complex concepts. The Technology-Enabled Active Learning (TEAL) Project at the Massachusetts Institute of Technology (MIT) involves media-rich software for simulation and visualization in freshman…

  5. Information Security due to Electromagnetic Environments

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Hidenori; Seto, Shinji

    Generally, active electronic devices emit slightly unintentional electromagnetic noise. From long ago, electromagnetic emission levels have been regulated from the aspect of electromagnetic compatibility (EMC). Also, it has been known the electromagnetic emissions have been generated from the ON/OFF of signals in the device. Recently, it becomes a topic of conversation on the information security that the ON/OFF on a desired signal in the device can be reproduced or guessed by receiving the electromagnetic emission. For an example, a display image on a personal computer (PC) can be reconstructed by receiving and analyzing the electromagnetic emission. In sum, this fact makes known information leakage due to electromagnetic emission. “TEMPEST" that has been known as a code name originated in the U. S. Department of Defense is to prevent the information leakage caused by electromagnetic emissions. This paper reports the brief summary of the information security due to electromagnetic emissions from information technology equipments.

  6. Recent seismic activity at Cephalonia (Greece): a study through candidate electromagnetic precursors in terms of non-linear dynamics

    NASA Astrophysics Data System (ADS)

    Potirakis, Stelios M.; Contoyiannis, Yiannis; Melis, Nikolaos S.; Kopanas, John; Antonopoulos, George; Balasis, Georgios; Kontoes, Charalampos; Nomicos, Constantinos; Eftaxias, Konstantinos

    2016-08-01

    The preparation process of two recent earthquakes (EQs) that occurred in Cephalonia (Kefalonia), Greece, ((38.22° N, 20.53° E), 26 January 2014, Mw = 6.0, depth ˜ 20 km) and ((38.25° N, 20.39° E), 3 February 2014, Mw = 5.9, depth ˜ 10 km), respectively, is studied in terms of the critical dynamics revealed in observables of the involved non-linear processes. Specifically, we show, by means of the method of critical fluctuations (MCF), that signatures of critical, as well as tricritical, dynamics were embedded in the fracture-induced electromagnetic emissions (EMEs) recorded by two stations in locations near the epicentres of these two EQs. It is worth noting that both the MHz EMEs recorded by the telemetric stations on the island of Cephalonia and the neighbouring island of Zante (Zakynthos) reached a simultaneously critical condition a few days before the occurrence of each earthquake. The critical characteristics embedded in the EME signals were further verified using the natural time (NT) method. Moreover, we show, in terms of the NT method, that the foreshock seismic activity also presented critical characteristics before each event. Importantly, the revealed critical process seems to be focused on the area corresponding to the western Cephalonia zone, following the seismotectonic and hazard zoning of the Ionian Islands area near Cephalonia.

  7. Low frequency and low intensity pulsed electromagnetic field exerts its antiinflammatory effect through restoration of plasma membrane calcium ATPase activity.

    PubMed

    Selvam, Ramasamy; Ganesan, Kalaivani; Narayana Raju, K V S; Gangadharan, Akkalayi Chandrapuram; Manohar, Bhakthavatchalam Murali; Puvanakrishnan, Rengarajulu

    2007-06-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disorder affecting 1% of the population worldwide. Pulsed electromagnetic field (PEMF) has a number of well-documented physiological effects on cells and tissues including antiinflammatory effect. This study aims to explore the antiinflammatory effect of PEMF and its possible mechanism of action in amelioration of adjuvant induced arthritis (AIA). Arthritis was induced by a single intradermal injection of heat killed Mycobacterium tuberculosis at a concentration of 500 microg in 0.1 ml of paraffin oil into the right hind paw of rats. The arthritic animals showed a biphasic response regarding changes in the paw edema volume. During the chronic phase of the disease, arthritic animals showed an elevated level of lipid peroxides and depletion of antioxidant enzymes with significant radiological and histological changes. Besides, plasma membrane Ca(2+) ATPase (PMCA) activity was inhibited while intracellular Ca(2+) level as well as prostaglandin E(2) levels was noticed to be elevated in blood lymphocytes of arthritic rats. Exposure of arthritic rats to PEMF at 5 Hzx4 microT x 90 min, produced significant antiexudative effect resulting in the restoration of the altered parameters. The antiinflammatory effect could be partially mediated through the stabilizing action of PEMF on membranes as reflected by the restoration of PMCA and intracellular Ca(2+) levels in blood lymphocytes subsequently inhibiting PGE(2) biosynthesis. The results of this study indicated that PEMF could be developed as a potential therapy for RA in human beings.

  8. Active Response Gravity Offload System

    NASA Technical Reports Server (NTRS)

    Valle, Paul; Dungan, Larry; Cunningham, Thomas; Lieberman, Asher; Poncia, Dina

    2011-01-01

    The Active Response Gravity Offload System (ARGOS) provides the ability to simulate with one system the gravity effect of planets, moons, comets, asteroids, and microgravity, where the gravity is less than Earth fs gravity. The system works by providing a constant force offload through an overhead hoist system and horizontal motion through a rail and trolley system. The facility covers a 20 by 40-ft (approximately equals 6.1 by 12.2m) horizontal area with 15 ft (approximately equals4.6 m) of lifting vertical range.

  9. Low-Energy Parameters of the Nucleon-Nucleon Scattering and Deuteron Properties, Electromagnetic Interactions with Bound Systems

    NASA Astrophysics Data System (ADS)

    Shebeko, A.; Dubovik, E.

    2013-08-01

    One more application of the method of unitary clothing transformations (UCT's) in the theory of nucleon-nucleon ( N - N) interaction has been presented. We have extended our previous analysis (Dubovik and Shebeko in Few-Body Syst 48:109-142, 2010) of the N - N scattering below the pion production threshold to treat the neutron-proton ( n - p) scattering at low energies and the deuteron static properties. Our calculations of deuteron magnetic and quadrupole moments have been carried out in the framework of a gauge independent description of electromagnetic (EM) interactions with nuclei (bound systems) using the clothed particle representation of the Hamiltonian, the boost and EM current density operators for the n-p system.

  10. Effect of buffer gas on an electromagnetically induced transparency in a ladder system using thermal rubidium vapor

    SciTech Connect

    Sargsyan, Armen; Sarkisyan, David; Krohn, Ulrich; Keaveney, James; Adams, Charles

    2010-10-15

    We report on the observation of electromagnetically induced transparency in a ladder system in the presence of a buffer gas. In particular, we study the 5S{sub 1/2}-5P{sub 3/2}-5D{sub 5/2} transition in thermal rubidium vapor with a neon buffer gas at a pressure of 6 Torr. In contrast to the line-narrowing effect of buffer gas on {Lambda} systems, we show that the presence of the buffer gas leads to an additional broadening of (34{+-}5) MHz, which suggests a cross section for Rb(5D{sub 5/2})-Ne of {sigma}{sub k}{sup (D)}=(23{+-}4)x10{sup -19} m{sup 2}. However, in the limit where the coupling Rabi frequency is larger than the collisional dephasing, a strong transparency feature can still be observed.

  11. Cortical neuron activation induced by electromagnetic stimulation: a quantitative analysis via modelling and simulation.

    PubMed

    Wu, Tiecheng; Fan, Jie; Lee, Kim Seng; Li, Xiaoping

    2016-02-01

    Previous simulation works concerned with the mechanism of non-invasive neuromodulation has isolated many of the factors that can influence stimulation potency, but an inclusive account of the interplay between these factors on realistic neurons is still lacking. To give a comprehensive investigation on the stimulation-evoked neuronal activation, we developed a simulation scheme which incorporates highly detailed physiological and morphological properties of pyramidal cells. The model was implemented on a multitude of neurons; their thresholds and corresponding activation points with respect to various field directions and pulse waveforms were recorded. The results showed that the simulated thresholds had a minor anisotropy and reached minimum when the field direction was parallel to the dendritic-somatic axis; the layer 5 pyramidal cells always had lower thresholds but substantial variances were also observed within layers; reducing pulse length could magnify the threshold values as well as the variance; tortuosity and arborization of axonal segments could obstruct action potential initiation. The dependence of the initiation sites on both the orientation and the duration of the stimulus implies that the cellular excitability might represent the result of the competition between various firing-capable axonal components, each with a unique susceptibility determined by the local geometry. Moreover, the measurements obtained in simulation intimately resemble recordings in physiological and clinical studies, which seems to suggest that, with minimum simplification of the neuron model, the cable theory-based simulation approach can have sufficient verisimilitude to give quantitatively accurate evaluation of cell activities in response to the externally applied field. PMID:26719168

  12. Tuning all-Optical Analog to Electromagnetically Induced Transparency in nanobeam cavities using nanoelectromechanical system

    PubMed Central

    Shi, Peng; Zhou, Guangya; deng, Jie; Tian, Feng; Chau, Fook Siong

    2015-01-01

    We report the observations of all-optical electromagnetically induced transparency in nanostructures using waveguide side-coupled with photonic crystal nanobeam cavities, which has measured linewidths much narrower than individual resonances. The quality factor of transparency resonance can be 30 times larger than those of measured individual resonances. When the gap between cavity and waveguide is reduced to 10 nm, the bandwidth of destructive interference region can reach 10 nm while the width of transparency resonance is 0.3 nm. Subsequently, a comb-drive actuator is introduced to tune the line shape of the transparency resonance. The width of the peak is reduced to 15 pm and the resulting quality factor exceeds 105. PMID:26415907

  13. Investigations of the structure and electromagnetic interactions of few-body systems

    SciTech Connect

    Lehman, D.R.

    1991-07-01

    In order to make it easy for the reader to see the specific research carried out and the progress make, the following report of progress is done by topic. Each item has a format layout of Topic, Investigators, Objective, Significance, and Description of Progress, followed at the end by the relevant references. As is clear from the topics listed, the emphasis of the GWU theory group has been on the structure and electromagnetic interactions of few-body nuclei. Both low- and intermediate-energy electromagnetic disintegration of these nuclei is considered. When the excitation energy of the target nucleus is low, the aim has been carry out the continuum part of the theoretical work exactly, this is, by means of exact three- and four-body dynamics. When structure questions are the issue, exact calculations are always carried through, limited only by the underlying two-body or three-body interactions used as input. Implicit in our work is the question of how far one can go within the traditional nuclear physics framework, i.e., nucleons and mesons in a nonrelativistic setting. Our central goal is to carry through state-of-the-art few-body calculations that will serve as an unambiguous means of determining at what point standard nuclear physics requires quark degrees of freedom in order to understand the phenomena in question. So far, in the problems considered, there has been no evidence of the necessity to go beyond the traditional approach, though we always keep in mind that possibility. As our work is involved with questions in the intermediate-energy realm, moving from a nonrelativistic framework to a relativistic one is always a consideration. Currently, for the problems that have been pursued in this domain of energy, the issues concern far more the mechanisms of the reactions and structural questions than the need to move to relativistic dynamics.

  14. Investigations of the structure and electromagnetic interactions of few-body systems

    SciTech Connect

    Lehman, D.R.; Haberzettl, H.; Maximon, L.C.; Parke, W.C.

    1992-07-01

    In order to make it easy for the reader to see the specific research carried out and the progress made, the following report of progress is done by topic. Each item has a format layout of Topic, Investigators, Objective, Significance, and Description of Progress, followed at the end by the relevant references. As is clear from the topics listed, the emphasis of the George Washington University (GWU) theory group has been on the structure and electromagnetic interactions of few-body nuclei. Both low- and intermediate-energy electromagnetic disintegration of these nuclei is considered. When the excitation energy of the target nucleus is low, the aim has been to handle the continuum part of the theoretical work numerically with no approximations, that is, by means of full three- or four-body dynamics. When structure questions axe the issue, numerically accurate calculations axe always carried through, limited only by the underlying two-body or three-body interactions used as input. Implicit in our work is the question of how far one can go within the traditional nuclear physics framework, i.e., nucleons and mesons in a nonrelativistic setting. Our central goal is to carry through state-of-the-art fewbody calculations that wig serve as a means of determining at what point standard nuclear physics requires quark degrees of freedom in order to understand the phenomena in question. So far, in the problems considered, there has been no evidence of the necessity to go beyond the traditional approach, though we always keep in mind that possibility. As our work is involved with questions in the intermediate-energy realm, moving from a nonrelativistic framework to a relativistic one is always a consideration. Currently, for the problems that have been pursued in this domain of energy, the issues concern far more the mechanisms of the reactions and structural questions than the need to move to relativistic dynamics.

  15. Noninvasive localization of electromagnetic epileptic activity. I. Method descriptions and simulations.

    PubMed

    Grave de Peralta Menendez, R; Gonzalez Andino, S; Lantz, G; Michel, C M; Landis, T

    2001-01-01

    This paper considers the solution of the bioelectromagnetic inverse problem with particular emphasis on focal compact sources that are likely to arise in epileptic data. Two linear inverse methods are proposed and evaluated in simulations. The first method belongs to the class of distributed inverse solutions, capable of dealing with multiple simultaneously active sources. This solution is based on a Local Auto Regressive Average (LAURA) model. Since no assumption is made about the number of activated sources, this approach can be applied to data with multiple sources. The second method, EPIFOCUS, assumes that there is only a single focal source. However, in contrast to the single dipole model, it allows the source to have a spatial extent beyond a single point and avoids the non-linear optimization process required by dipole fitting. The performance of both methods is evaluated with synthetic data in noisy and noise free conditions. The simulation results demonstrate that LAURA and EPIFOCUS increase the number of sources retrieved with zero dipole localization error and produce lower maximum error and lower average error compared to Minimum Norm, Weighted Minimum Norm and Minimum Laplacian (LORETA). The results show that EPIFOCUS is a robust and powerful tool to localize focal sources. Alternatives to localize data generated by multiple sources are discussed. A companion paper (Lantz et al. 2001, this issue) illustrates the application of LAURA and EPIFOCUS to the analysis of interictal data in epileptic patients.

  16. [Mechanisms of primary reception of electromagnetic waves of optical range].

    PubMed

    Huliar, S O; Lymans'kyĭ, Iu P

    2003-01-01

    An existence of separate functional system of regulation of electromagnetic balance of organism has been substantiated and a working conception of light therapy has been formulated. As a basis, there is a possibility to use the acupuncture points for input of biologically necessary electromagnetic waves into the system of their conductors in a body that might be considered as a transport facility for energy of the polarized electromagnetic waves. Zones-recipients are organs having an electromagnetic disbalance due to excess of biologically inadequate radiation and being the targets for peroxide oxidation. Foremost, a body has the neurohormonal and immune regulatory systems. Electromagnetic stimulation or modification of functions of the zones-recipients determines the achievement of therapeutic and useful effects, and their combination with local reparative processes allows to attain a clinical goal. We represent own and literary experimental data about the development of physiological responses (analgesia) to BIOPTRON-light exposure on the acupuncture points or biologically active zones. We show the experimental facts in support of a hypothesis that a living organism can perceive an action of the electromagnetic fields of optical range not only via the visual system, but also through the off-nerve receptors (specific energy-sensitive proteins detecting critical changes of energy in cells and functioning as the "sensory" cell systems), as well as via the acupuncture points. It confirms an important role of the electromagnetic waves of optical range in providing normal vital functions of living organisms. A current approach to BIOPTRON light therapy (by polarized polychromatic coherent low energy light) consists in combined (local and system) exposure of the electromagnetic waves within the biologically necessary range. PMID:12945112

  17. Effects of low intensity radiofrequency electromagnetic fields on electrical activity in rat hippocampal slices.

    PubMed

    Tattersall, J E; Scott, I R; Wood, S J; Nettell, J J; Bevir, M K; Wang, Z; Somasiri, N P; Chen, X

    2001-06-15

    Slices of rat hippocampus were exposed to 700 MHz continuous wave radiofrequency (RF) fields (25.2-71.0 V m(-1), 5-15 min exposure) in a stripline waveguide. At low field intensities, the predominant effect on the electrically evoked field potential in CA1 was a potentiation of the amplitude of the population spike by up to 20%, but higher intensity fields could produce either increases or decreases of up to 120 and 80%, respectively, in the amplitude of the population spike. To eliminate the possibility of RF-induced artefacts due to the metal stimulating electrode, the effect of RF exposure on spontaneous epileptiform activity induced in CA3 by 4-aminopyridine (50-100 microM) was investigated. Exposure to RF fields (50.0 V m(-1)) reduced or abolished epileptiform bursting in 36% of slices tested. The maximum field intensity used in these experiments, 71.0 V m(-1), was calculated to produce a specific absorption rate (SAR) of between 0.0016 and 0.0044 W kg(-1) in the slices. Measurements with a Luxtron fibreoptic probe confirmed that there was no detectable temperature change (+/- 0.1 degrees C) during a 15 min exposure to this field intensity. Furthermore, imposed temperature changes of up to 1 degrees C failed to mimic the effects of RF exposure. These results suggest that low-intensity RF fields can modulate the excitability of hippocampal tissue in vitro in the absence of gross thermal effects. The changes in excitability may be consistent with reported behavioural effects of RF fields.

  18. Investigation of the structure of the electromagnetic field and related phenomena, generated by the Active Satellite

    NASA Technical Reports Server (NTRS)

    Alpert, Yakov L.

    1991-01-01

    The altitude dependencies of the moduli of the electric field E in the VLF and LF frequency bands (f sub B much less than F less than f sub B) and in the altitude range of the ionosphere Z equals (400 to 2500) km up to Z equals 6000 km (the bottom of the magnetosphere) were calculated by the linear theory. The amplitudes of the field have large maxima in four regions: the axis field (E sub o) close to the direction of the Earth's magnetic field line B sub o, beta approximately 0 degrees, the fields (E sub St), (E sub RevSt) and (E sub Res) in the Storey, Reversed Story and Resonance cones, beta approximately (0 approaches 20) degrees. Their maxima are very pronounced close to the low hybrid frequency F sub L. The nonlinear heating of the magnetoplasma under the action of an electric field Ee (sup iwt) was recently expanded by the macroscopic theory by the author. The velocities, collision frequencies and temperatures of all the constituents of a magnetoplasma - electrons, ions, and neutral particles - are taken into account. Formulae and numerical results are presented for the ionosphere in the frequency band F equals (1 to 10 exp 4) kHz and altitude range Z approximately (100 - 1000) km. Some results of calculations by the self consistent solution of the basis system of equations are also discussed.

  19. Nonlinear electromagnetic responses of active membrane protein complexes in live cells and organelles

    NASA Astrophysics Data System (ADS)

    Nawarathna, Dharmakirthi

    The response of biological cells to an applied oscillating electric field contains both linear and nonlinear components (eg. induced harmonics). Such noninvasive measurements can be used to study active processes taking place inside the cells. The measurement of induced harmonics is the tool used for the study described here. A highly sensitive superconducting quantum interference device (SQUID) is used to detect the response at low frequencies, which greatly reduces electrode polarization effects. At high frequencies, a four- probe method is used. At low frequencies, harmonic generation by budding yeast cells in response to a sinusoidal electric field is reported, which is seen to be minimal when the field amplitude is less than a threshold value. Surprisingly, sodium metavanadate, an inhibitor of P-type ATPases and glucose, a substrate of P-type ATPase responsible for nonlinear response in yeast, reduces the threshold field amplitude, increasing harmonic generation at low amplitudes while reducing it at large amplitudes. We have thus proposed a model that explicitly introduces a threshold field, similar to those observed in density waves, where fields above threshold drive charge transport through an energy landscape with multiple wells, and in Coulomb blockade tunnel junctions, recently exploited to define the current standard. At high frequencies, the induced harmonics exhibit pronounced features that depend on the specific organism. Budding yeast (S. cerevisiae ) cells produce numerous harmonics. When the second or third harmonic amplitude is plotted vs. applied frequency, we observe two peaks, around 3 kHz and 12 kHz, which are suppressed by the respiratory inhibitor potassium cyanide. We then measured the response to oscillatory electric fields of intact bovine heart mitochondria, a reproducible second harmonic (at ˜3-4 kHz applied frequency) was detected. Further, with coupled mouse mitochondria, an ADP sensitive peak (˜ 12-15 kHz applied frequency) was

  20. Mapping marine gas hydrate systems in the Gulf of Mexico with electromagnetic methods

    NASA Astrophysics Data System (ADS)

    Weitemeyer, K.; Constable, S.; Key, K.

    2013-12-01

    In 2008 we collected an extensive marine controlled source electromagnetic (CSEM) data set in the Gulf of Mexico aimed at mapping gas hydrates at four geologically distinct locations in water depths that varied from 900 to 3,000 m: Walker Ridge 313 (WR313) and Green Canyon 955 (GC 955) sites, which where drilled by the joint industry project 2 (JIP 2); Alaminos Canyon 818 (AC818), a proposed JIP drill location; and Mississippi Canyon 118 (MC118) a designated hydrate observatory. The CSEM data set were collected using 94 ocean bottom electromagnetic (OBEM) receiver deployments and a towed 3 axis electric field receiver. The towed receiver measured data at a fixed offset of 300 m behind the transmitter while the ocean bottom receivers recorded data over a range of offsets as the transmitter passed by each receiver. A total of 18 profiles were collected either as single lines (GC 955, WR 313, AC 818) or as parallel and crossing lines (for example MC 118 consists of an array of receivers composed of crossing tow lines) and so a 2D analysis of each individual line can be carried out. We have inverted the CSEM data using a newly developed parallel goal-oriented adaptive finite-element modeling algorithm (referred to as MARE2DEM) for efficient 2.5D imaging of CSEM data recently modified for non-linear smooth inversion using the Occam approach. 2D inversions from MC118 are consistent with 1D apparent resistivity pseudosections and reveal resistive areas associated with the carbonate/hydrate mound. An extensive conductive region exists below this, associated with conductive brines sourced from a deeper more resistive salt body. Away from the mound the resistivity structure is a fairly uniform and homogeneous. 2D inversions from WR313 were able to distinguish the shallow shale interval with stratal bound fracture filling hydrate observed in JIP2 well logs, as well as the deeper hydrate region found within sheeted sand deposits. This was not evident in previous 1D

  1. Toward a System-Based Approach to Electromagnetic Ion Cyclotron Waves in Earth's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Gamayunov, K. V.; Engebretson, M. J.; Rassoul, H.

    2015-12-01

    We consider a nonlinear wave energy cascade from the low frequency range into the higher frequency domain of electromagnetic ion cyclotron (EMIC) wave generation as a possible source of seed fluctuations for EMIC wave growth due to the ion cyclotron instability in Earth's magnetosphere. The theoretical analysis shows that energy cascade from the Pc 4-5 frequency range (2-22 mHz) into the range of Pc 1-2 pulsations (0.1-5 Hz) is able to supply the level of seed fluctuations that guarantees growth of EMIC waves up to an observable level during one pass through the near equatorial region where the ion cyclotron instability takes place. We also analyze magnetic field data from the Polar and Van Allen Probes spacecraft to test this nonlinear mechanism. We restrict our analysis to magnetic spectra only. We do not analyze the third-order moment for total energy of the magnetic and velocity fluctuations, but judge whether a nonlinear energy cascade is present or whether it is not by only analyzing the appearance of power-law distributions in the low frequency part of the magnetic field spectra. While the power-law spectrum alone does not guarantee that a nonlinear cascade is present, the power-law distribution is a strong indication of the possible development of a nonlinear cascade. Our data analysis shows that a nonlinear energy cascade is indeed observed in both the outer and inner magnetosphere, and EMIC waves are growing from this nonthermal background. All the analyzed data are in good agreement with the theoretical model presented in this study. Overall, the results of this study support a nonlinear energy cascade in Earth's magnetosphere as a mechanism which is responsible for supplying seed fluctuating energy in the higher frequency domain where EMIC waves grow due to the ion cyclotron instability. Keywords: nonlinear energy cascade, ultra low frequency waves, electromagnetic ion cyclotron waves, seed fluctuationsAcknowledgments: This paper is based upon work

  2. Modeling approaches for active systems

    NASA Astrophysics Data System (ADS)

    Herold, Sven; Atzrodt, Heiko; Mayer, Dirk; Thomaier, Martin

    2006-03-01

    To solve a wide range of vibration problems with the active structures technology, different simulation approaches for several models are needed. The selection of an appropriate modeling strategy is depending, amongst others, on the frequency range, the modal density and the control target. An active system consists of several components: the mechanical structure, at least one sensor and actuator, signal conditioning electronics and the controller. For each individual part of the active system the simulation approaches can be different. To integrate the several modeling approaches into an active system simulation and to ensure a highly efficient and accurate calculation, all sub models must harmonize. For this purpose, structural models considered in this article are modal state-space formulations for the lower frequency range and transfer function based models for the higher frequency range. The modal state-space formulations are derived from finite element models and/or experimental modal analyses. Consequently, the structure models which are based on transfer functions are directly derived from measurements. The transfer functions are identified with the Steiglitz-McBride iteration method. To convert them from the z-domain to the s-domain a least squares solution is implemented. An analytical approach is used to derive models of active interfaces. These models are transferred into impedance formulations. To couple mechanical and electrical sub-systems with the active materials, the concept of impedance modeling was successfully tested. The impedance models are enhanced by adapting them to adequate measurements. The controller design strongly depends on the frequency range and the number of modes to be controlled. To control systems with a small number of modes, techniques such as active damping or independent modal space control may be used, whereas in the case of systems with a large number of modes or with modes that are not well separated, other control

  3. Dynamic analysis of the Maglev system using controlled-PM electromagnets and robust zero-power-control strategy

    SciTech Connect

    Tzeng, Y.K.; Wang, T.C.

    1995-11-01

    This paper presents a rigorous dynamic analysis for the Maglev system with controlled-PM electromagnets and robust zero-power-control strategy. A variable structure control (VSC) theory using new reaching law method is applied to the robust controller synthesis for reducing the control-voltage chattering and enhancing the suspension stability. Analytical expressions of the rms gap variation and the average regulation power loss under the excitation of random guideway irregularity are derived on the basis of this new control scheme by using frequency-domain approach. The power spectral density (PSD) method and the discrete frequency method of modelling the guideway roughness are both adopted to evaluate the overall vehicle ride dynamics. Numerical results gained from both approaches verify the feasibility and the superiority of applying this novel Maglev scheme to high speed transportation.

  4. Electromagnetically induced transparency in a Zeeman-sublevels Λ-system of cold 87Rb atoms in free space

    NASA Astrophysics Data System (ADS)

    Xiaojun, Jiang; Haichao, Zhang; Yuzhu, Wang

    2016-03-01

    We report the experimental investigation of electromagnetically induced transparency (EIT) in a Zeeman-sublevels Λ-type system of cold 87Rb atoms in free space. We use the Zeeman substates of the hyperfine energy states 52S1/2, F = 2 and 52P3/2, F‧ = 2 of 87Rb D2 line to form a Λ-type EIT scheme. The EIT signal is obtained by scanning the probe light over 1 MHz in 4 ms with an 80 MHz arbitrary waveform generator. More than 97% transparency and 100 kHz EIT window are observed. This EIT scheme is suited for an application of pulsed coherent storage atom clock (Yan B, et al. 2009 Phys. Rev. A 79 063820). Project supported by the National Basic Research Program of China (Grant No. 2011CB921504) and the National Natural Science Foundation of China (Grant No. 91536107).

  5. Efficient reflection via four-wave mixing in a Doppler-free electromagnetically-induced-transparency gas system

    SciTech Connect

    Zhou, Hai-Tao; Wang, Dan; Zhang, Jun-Xiang; Wang, Da-Wei; Zhu, Shi-Yao

    2011-11-15

    We experimentally demonstrate the high-efficiency reflection of a probe field in {Lambda}-type three-level atoms of cesium vapor driven by two counterpropagating coupling fields. More than 60% of reflection efficiency is observed at the phase-matching angle. The underlying mechanism theoretically is investigated as the four-wave mixing is enhanced by the electromagnetically-induced transparency. Both of the two Doppler-free two-photon resonances (one for the probe and co-propagating fields, the other for the reflected and the counterpropagation fields) play an important role in satisfying the phase matching in the reflection direction. The phase compensation due to the anomalous dispersion and the decrease of effective absorption length in the atomic system allow the efficient reflection to be observed in a wide range of incident angles of the probe field and detunings of the coupling field.

  6. Characterization and Suppression of the Electromagnetic Interference Induced Phase Shift in the JLab FEL Photo - Injector Advanced Drive Laser System

    SciTech Connect

    F. G. Wilson, D. Sexton, S. Zhang

    2011-09-01

    The drive laser for the photo-cathode gun used in the JLab Free Electron Laser (FEL) facility had been experiencing various phase shifts on the order of tens of degrees (>20{sup o} at 1497 MHz or >40ps) when changing the Advanced Drive Laser (ADL) [2][3][4] micro-pulse frequencies. These phase shifts introduced multiple complications when trying to setup the accelerator for operation, ultimately inhibiting the robustness and overall performance of the FEL. Through rigorous phase measurements and systematic characterizations, we determined that the phase shifts could be attributed to electromagnetic interference (EMI) coupling into the ADL phase control loop, and subsequently resolved the issue of phase shift to within tenths of a degree (<0.5{sup o} at 1497 MHz or <1ps). The diagnostic method developed and the knowledge gained through the entire process will prove to be invaluable for future designs of similar systems.

  7. [Electromagnetic fields hypersensitivity].

    PubMed

    Sobiczewska, Elzbieta; Szmigielski, Stanisław

    2009-01-01

    The development of industry, particularly of new technologies in communication systems, gives rise to the number and diversty of electromagnetic field (EMF) sources in the environment. These sources, including power-frequent, radiofrequent and microwaves, make human life richer, safer and easier. But at the same time, there is growing concern about possible health risks connected with EMF exposure. An increasing number of persons have recently reported on a variety of health problems induced, in their opinion, by exposure to EMF. It is important to note that EMF levels to which these individuals are exposed are generally well below the recommended exposure limits and are certainly far below those known to produce any adverse effects. These persons call themselves "electromagnetic hypersensitivity individuals" And complain about experiencing various types of non-specific symptoms, including dermatological, neurological and vegetative. In the present paper, the problem of electromagnetic hypersensitivity phenomenon is discussed based on the recently published literature.

  8. Equivalence principles and electromagnetism

    NASA Technical Reports Server (NTRS)

    Ni, W.-T.

    1977-01-01

    The implications of the weak equivalence principles are investigated in detail for electromagnetic systems in a general framework. In particular, it is shown that the universality of free-fall trajectories (Galileo weak equivalence principle) does not imply the validity of the Einstein equivalence principle. However, the Galileo principle plus the universality of free-fall rotation states does imply the Einstein principle.

  9. Thermomechanically modulated nanoscale multilayered materials for application in electromagnetic gun systems

    SciTech Connect

    Otooni, M.A.; Brown, I.G.; Monteiro, O.

    1997-12-01

    Fired rails from electromagnetic railguns show severe damage from arcing and tribological mismatch. The authors have fabricated and studied several different nanoscale multilayered materials as possible routes to improve the thermal transport and thermomechanical properties of the rail and armature materials. A vacuum-arc-based plasma deposition technique with wide control of ion energy was used for the film synthesis, and high-energy high-dose (energy up to {approximately}150 keV, dose up to {approximately}1 {times} 10{sup 17} cm{sup {minus}2}) metal ion implantation was also used. The multilayered film structures formed and investigated included sublayers of Ti, TiCo, ZrN, TaN and dlc (diamond-like carbon) in the following combinations: (1) ZrN on TiCo on TaN on dlc on a Cu substrate, (2) ZrN on TiCo on TaN on dlc on an Al substrate, (3) TiN on TiCo on TaN on a stainless steel substrate, and (4) Ti on TiCo on a stainless steel substrate. Individual sublayer film thickness was in the range of 400 {angstrom}--7{micro}. The surfaces were characterized by SEM, TEM, RBS, high energy electron diffraction, and microhardness measurements. Significant improvements in the material surface properties were obtained for virtually all of the surface structures investigated. Here the authors outline the material synthesis and surface modification techniques used and the materials characterization results obtained.

  10. No Electromagnetic Interference Occurred in a Patient with a HeartMate II Left Ventricular Assist System and a Subcutaneous Implantable Cardioverter-Defibrillator

    PubMed Central

    Raman, Ajay Sundara; Kar, Biswajit; Loyalka, Pranav; Hariharan, Ramesh

    2016-01-01

    The use of subcutaneous implantable cardioverter-defibrillators is a novel option for preventing arrhythmia-mediated cardiac death in patients who are at risk of endovascular-device infection or in whom venous access is difficult. However, the potential for electromagnetic interference between subcutaneous defibrillators and left ventricular assist devices is largely unknown. We report the case of a 24-year-old man in whom we observed no electromagnetic interference between a subcutaneous implanted cardioverter-defibrillator and a HeartMate II Left Ventricular Assist System, at 3 different pump speeds. To our knowledge, this is the first report of such findings in this circumstance. PMID:27127441

  11. No Electromagnetic Interference Occurred in a Patient with a HeartMate II Left Ventricular Assist System and a Subcutaneous Implantable Cardioverter-Defibrillator.

    PubMed

    Raman, Ajay Sundara; Shabari, Farshad Raissi; Kar, Biswajit; Loyalka, Pranav; Hariharan, Ramesh

    2016-04-01

    The use of subcutaneous implantable cardioverter-defibrillators is a novel option for preventing arrhythmia-mediated cardiac death in patients who are at risk of endovascular-device infection or in whom venous access is difficult. However, the potential for electromagnetic interference between subcutaneous defibrillators and left ventricular assist devices is largely unknown. We report the case of a 24-year-old man in whom we observed no electromagnetic interference between a subcutaneous implanted cardioverter-defibrillator and a HeartMate II Left Ventricular Assist System, at 3 different pump speeds. To our knowledge, this is the first report of such findings in this circumstance.

  12. Electromagnetic Reciprocity.

    SciTech Connect

    Aldridge, David F.

    2014-11-01

    A reciprocity theorem is an explicit mathematical relationship between two different wavefields that can exist within the same space - time configuration. Reciprocity theorems provi de the theoretical underpinning for mod ern full waveform inversion solutions, and also suggest practical strategies for speed ing up large - scale numerical modeling of geophysical datasets . In the present work, several previously - developed electromagnetic r eciprocity theorems are generalized to accommodate a broader range of medi um, source , and receiver types. Reciprocity relations enabling the interchange of various types of point sources and point receivers within a three - dimensional electromagnetic model are derived. Two numerical modeling algorithms in current use are successfully tested for adherence to reciprocity. Finally, the reciprocity theorem forms the point of departure for a lengthy derivation of electromagnetic Frechet derivatives. These mathe matical objects quantify the sensitivity of geophysical electromagnetic data to variatio ns in medium parameters, and thus constitute indispensable tools for solution of the full waveform inverse problem. ACKNOWLEDGEMENTS Sandia National Labor atories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. Signif icant portions of the work reported herein were conducted under a Cooperative Research and Development Agreement (CRADA) between Sandia National Laboratories (SNL) and CARBO Ceramics Incorporated. The author acknowledges Mr. Chad Cannan and Mr. Terry Pa lisch of CARBO Ceramics, and Ms. Amy Halloran, manager of SNL's Geophysics and Atmospheric Sciences Department, for their interest in and encouragement of this work. Special thanks are due to Dr . Lewis C. Bartel ( recently retired from Sandia National Labo ratories and now a

  13. Investigations of the structure and electromagnetic interactions of few-body systems. Progress report, September 1, 1983-August 31, 1984

    SciTech Connect

    Harper, E.P.; Lehman, D.R.; Prats, F.

    1984-09-26

    The George Washington University nuclear theory group proposes to conduct investigations of the structure and electromagnetic interactions of few-body systems. The structural properties of the very light nuclei are examined by developing theoretical models that begin from the basic interactions between the constituents and that are solved exactly (numerically), i.e., full three or four-body dynamics. Such models are then used in an attempt to understand the details of the strong and electromagnetic interactions of the few-nucleon nuclei after the basic underlying reaction mechanisms are understood with simpler models. Examples of specific work proposed are the following: (1) From exact four-body dynamics, derive the equations that will permit calculation of the /sup 4/He..-->../sup 3/He+n and /sup 4/He..-->..d+d asymptotic normalization constants; (2) Develop a unified picture of the p + d ..-->.. /sup 3/He = ..gamma.., p + d ..-->.. /sup 3/He = ..pi../sup 0/ , p + d ..-->.. /sup 3/H + ..pi../sup +/ reactions at intermediate energies; (3) Calculate the elastic and inelastic (1/sup +/..-->..0/sup +/) form factors for /sup 6/Li with three-body (..cap alpha..NN) wave functions; (4) Calculate static properties (RMS radius, magnetic moment, and quadrupole moment) of /sup 6/Li with three-body wave functions; and (5) Develop the theory for the coincidence reactions /sup 6/Li(p,2p)n..cap alpha.., /sup 6/Li(e,e'p)n..cap alpha.., and /sup 6/Li(e,e'd)..cap alpha... It is anticipated that these efforts will expand the frontiers of our knowledge about few-body nuclei.

  14. [Electromagnetic fields of mobile telephone systems--thresholds, effects and risks for cochlear implant patients and healthy people].

    PubMed

    Bischof, F; Langer, J; Begall, K

    2008-11-01

    Every day life is detectably affected by manifold natural sources of electromagnetic fields (EMF), e. g. infrared radiation, light and the terrestrial magnetic field. However, there is still uncertainty about the consequences or hazards of artificial EMF, which emerge from mobile phone or wireless network (wireless local area network [WLAN]) services, for instance. Following recommendations of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) the German Commission on Radiation Protection (SSK) defined corresponding thresholds for high frequency electromagnetic fields (HF-EMF) in 2003. By observing those thresholds HF-EMF is thought to be innocent so far. However, there is still controversial discussion about induction of cancer or neurovegetative symptoms due to inconsistent study results. Patients with cochlea implants are of particular interest within the speciality of otorhinolaryngology due to specific hazards, which arise during mobile telephone use from the distance between brain and inductive metal implants (electrode) on the one hand and the electronic system of the cochlear implant and the source of HF-EMF on the other hand. Besides many studies about the impact of HF-EMF on common welfare, there are only very few surveys (n = 6) covering the effects on patients with cochlear implants. The purpose of this paper is to overview sources, thresholds and subsequently harmful or harmless effects of HFEMF. Due to the current state of knowledge about the impact of mobile phone use on health, we assume, that HF-EMF are harmless both for healthy people and patients with cochlea implants, provided that legal thresholds are observed.

  15. Radial Electromagnetic Press for Ignitor

    NASA Astrophysics Data System (ADS)

    Pizzuto, A.; Capriccioli, A.; Gasparotto, M.; Palmieri, A.; Rita, C.; Roccella, M.; Coppi, B.

    1996-11-01

    The active vertical press included so far in the Ignitor design can be substituted advantageously (e.g. in terms of the machine maintenance procedure) by a radial electromagnetic press, without involving modification of the main machine components. Only the bracing ring of the radial mechanical preloading system that is permanently applied requires some changes. The radial press has to compensate for the reduced ring load (from 200 MN to 120 MN) and the original vertical press load of 35 MN. To get an equivalent preloading system, the radial press load has to be 140 MN, which is 25 MN higher, to account for the lower efficiency of the radial load. The current needed to originate the 140 MN force is about 3.2 MA. The press is active for 2 s starting from the plasma current rise. The temperature increase is about 20 ^oC. The stray field at the plasma border is well within the allowable value and can be easily compensated by varying slightly the current of one couple of poloidal coils. The new machine layout is illustrated and the electromagnetic and mechanical analyses carried out for the new configuration are given. Sponsored by ENEA, CNR and ASP, of Italy, and by the US DoE

  16. The development of and experiments on electromagnetic measurement while a drilling system is used for deep exploration

    NASA Astrophysics Data System (ADS)

    Lu, Chunhua; Jiang, Guosheng; Wang, Ziqi; Wang, Jiahao; Wang, Chenli

    2016-10-01

    An electromagnetic measurement while drilling system (EM-MWD) can transfer well track state parameters to the ground in real time, which makes it an indispensable technology for deep-hole drilling. This paper introduces the development of and experiments on an EM-MWD system used for deep exploration in the People’s Republic of China. The designed EM-MWD system is composed of a downhole instrument and a ground instrument, and we elaborate on the structural design of the downhole instrument, the design of the transmission and control circuits and the signal modulation. This work also covers the software and hardware design of the ground instrument and signal demodulation technologies. Finally, some indoor signal decoding experiments and some in-hole signal transmission experiments are performed. This study indicates that the designed EM-MWD system can measure information for downhole drilling parameters and send it to the ground effectively, while the ground receiver can decode the signal accurately and reliably, and the desired signal can be obtained. Furthermore, the strength of the received signal is not affected by the polar distance within a certain polar distance.

  17. Fast and accurate calibration of an X-ray imager to an electromagnetic tracking system for interventional cardiac procedures.

    PubMed

    Lang, Andrew; Stanton, Douglas; Parthasarathy, Vijay; Jain, Ameet

    2010-01-01

    Cardiovascular disease affects millions of Americans each year. Interventional guidance systems are being developed as treatment options for some of the more delicate procedures, including targeted stem cell therapy. As advanced systems for such types of interventional guidance are being developed, electromagnetic (EM) tracking is coming in demand to perform navigation. To use this EM tracking technology, a calibration is necessary to register the tracker to the imaging system. In this paper we investigate the calibration of an X-ray imaging system to EM tracking. Two specially designed calibration phantoms have been designed for this purpose, each having a rigidly attached EM sensor. From a clinical usability point-of-view, we propose to divide this calibration problem into two steps: i) in initial calibration of the EM sensor to the phantom design using an EM tracked needle to trace out grooves in the phantom surface and ii) segmentation from X-ray images and 3D reconstruction of beads embedded in the phantom in a known geometric pattern. Combining these two steps yields and X-ray-to-EM calibration accuracy of less than 1 mm when overlaying an EM tracked needle on X-ray images.

  18. Effect of the 5-HT(1A) partial agonist buspirone on regional brain electrical activity in man: a functional neuroimaging study using low-resolution electromagnetic tomography (LORETA).

    PubMed

    Anderer, P; Saletu, B; Pascual-Marqui, R D

    2000-12-01

    In a double-blind, placebo-controlled study, the effects of 20 mg buspirone - a 5-HT(1A) partial agonist - on regional electrical generators within the human brain were investigated utilizing three-dimensional EEG tomography. Nineteen-channel vigilance-controlled EEG recordings were carried out in 20 healthy subjects before and 1, 2, 4, 6 and 8 h after drug intake. Low-resolution electromagnetic tomography (LORETA; Key Institute for Brain-Mind Research, software: http://www.keyinst.unizh.ch) was computed from spectrally analyzed EEG data, and differences between drug- and placebo-induced changes were displayed as statistical parametric maps. Data were registered to the Talairach-Tournoux human brain atlas available as a digitized MRI (McConnell Brain Imaging Centre: http://www.bic.mni.mcgill.ca). At the pharmacodynamic peak (1st hour), buspirone increased theta and decreased fast alpha and beta sources. Areas of theta increase were mainly the left temporo-occipito-parietal and left prefrontal cortices, which is consistent with PET studies on buspirone-induced decreases in regional cerebral blood flow and fenfluramine-induced serotonin activation demonstrated by changes in regional cerebral glucose metabolism. In later hours (8th hour) with lower buspirone plasma levels, delta, theta, slow alpha and fast beta decreased, predominantly in the prefrontal and anterior limbic lobe. Whereas the results of the 1st hour speak for a slight CNS sedation (more in the sense of relaxation), those obtained in the 8th hour indicate activation. Thus, LORETA may provide useful and direct information on drug-induced changes in central nervous system function in man.

  19. Electromagnetic compatibility - A general overview

    NASA Astrophysics Data System (ADS)

    Wood, M. J.

    The initial flight was not known to be affected by electromagnetic interference. Had it of done it would have sown the seeds for electromagnetic compatibility (EMC). however, it was not until the introduction of electric / electronic navigational aids and communications that the effects were realized. The definition of electromagnetic compatibility (EMC) is: The ability of electrical and electronic equipments, sub systems and systems to share the electomagnetic spectrum and perform their desired function without unacceptable degradation from or to the specified electomagnetic enviromnment. In other words the equipment must work without causing interference or being upset by interference from d. c. to light frequencies.

  20. No Effects of Acute Exposure to Wi-Fi Electromagnetic Fields on Spontaneous EEG Activity and Psychomotor Vigilance in Healthy Human Volunteers.

    PubMed

    Zentai, Norbert; Csathó, Árpád; Trunk, Attila; Fiocchi, Serena; Parazzini, Marta; Ravazzani, Paolo; Thuróczy, György; Hernádi, István

    2015-12-01

    Mobile equipment use of wireless fidelity (Wi-Fi) signal modulation has increased exponentially in the past few decades. However, there is inconclusive scientific evidence concerning the potential risks associated with the energy deposition in the brain from Wi-Fi and whether Wi-Fi electromagnetism interacts with cognitive function. In this study we investigated possible neurocognitive effects caused by Wi-Fi exposure. First, we constructed a Wi-Fi exposure system from commercial parts. Dosimetry was first assessed by free space radiofrequency field measurements. The experimental exposure system was then modeled based on real geometry and physical characteristics. Specific absorption rate (SAR) calculations were performed using a whole-body, realistic human voxel model with values corresponding to conventional everyday Wi-Fi exposure (peak SAR10g level was 99.22 mW/kg with 1 W output power and 100% duty cycle). Then, in two provocation experiments involving healthy human volunteers we tested for two hypotheses: 1. Whether a 60 min long 2.4 GHz Wi-Fi exposure affects the spectral power of spontaneous awake electroencephalographic (sEEG) activity (N = 25); and 2. Whether similar Wi-Fi exposure modulates the sustained attention measured by reaction time in a computerized psychomotor vigilance test (PVT) (N = 19). EEG data were recorded at midline electrode sites while volunteers watched a silent documentary. In the PVT task, button press reaction time was recorded. No measurable effects of acute Wi-Fi exposure were found on spectral power of sEEG or reaction time in the psychomotor vigilance test. These results indicate that a single, 60 min Wi-Fi exposure does not alter human oscillatory brain function or objective measures of sustained attention. PMID:26600173

  1. No Effects of Acute Exposure to Wi-Fi Electromagnetic Fields on Spontaneous EEG Activity and Psychomotor Vigilance in Healthy Human Volunteers.

    PubMed

    Zentai, Norbert; Csathó, Árpád; Trunk, Attila; Fiocchi, Serena; Parazzini, Marta; Ravazzani, Paolo; Thuróczy, György; Hernádi, István

    2015-12-01

    Mobile equipment use of wireless fidelity (Wi-Fi) signal modulation has increased exponentially in the past few decades. However, there is inconclusive scientific evidence concerning the potential risks associated with the energy deposition in the brain from Wi-Fi and whether Wi-Fi electromagnetism interacts with cognitive function. In this study we investigated possible neurocognitive effects caused by Wi-Fi exposure. First, we constructed a Wi-Fi exposure system from commercial parts. Dosimetry was first assessed by free space radiofrequency field measurements. The experimental exposure system was then modeled based on real geometry and physical characteristics. Specific absorption rate (SAR) calculations were performed using a whole-body, realistic human voxel model with values corresponding to conventional everyday Wi-Fi exposure (peak SAR10g level was 99.22 mW/kg with 1 W output power and 100% duty cycle). Then, in two provocation experiments involving healthy human volunteers we tested for two hypotheses: 1. Whether a 60 min long 2.4 GHz Wi-Fi exposure affects the spectral power of spontaneous awake electroencephalographic (sEEG) activity (N = 25); and 2. Whether similar Wi-Fi exposure modulates the sustained attention measured by reaction time in a computerized psychomotor vigilance test (PVT) (N = 19). EEG data were recorded at midline electrode sites while volunteers watched a silent documentary. In the PVT task, button press reaction time was recorded. No measurable effects of acute Wi-Fi exposure were found on spectral power of sEEG or reaction time in the psychomotor vigilance test. These results indicate that a single, 60 min Wi-Fi exposure does not alter human oscillatory brain function or objective measures of sustained attention.

  2. A New Electromagnetic Navigation System for Pedicle Screws Placement: A Human Cadaver Study at the Lumbar Spine

    PubMed Central

    Hahn, Patrick; Oezdemir, Semih; Komp, Martin; Giannakopoulos, Athanasios; Heikenfeld, Roderich; Kasch, Richard; Merk, Harry; Godolias, Georgios; Ruetten, Sebastian

    2015-01-01

    Introduction Technical developments for improving the safety and accuracy of pedicle screw placement play an increasingly important role in spine surgery. In addition to the standard techniques of free-hand placement and fluoroscopic navigation, the rate of complications is reduced by 3D fluoroscopy, cone-beam CT, intraoperative CT/MRI, and various other navigation techniques. Another important aspect that should be emphasized is the reduction of intraoperative radiation exposure for personnel and patient. The aim of this study was to investigate the accuracy of a new navigation system for the spine based on an electromagnetic field. Material and Method Twenty pedicle screws were placed in the lumbar spine of human cadavers using EMF navigation. Navigation was based on data from a preoperative thin-slice CT scan. The cadavers were positioned on a special field generator and the system was matched using a patient tracker on the spinous process. Navigation was conducted using especially developed instruments that can be tracked in the electromagnetic field. Another thin-slice CT scan was made postoperatively to assess the result. The evaluation included the position of the screws in the direction of trajectory and any injury to the surrounding cortical bone. The results were classified in 5 groups: grade 1: ideal screw position in the center of the pedicle with no cortical bone injury; grade 2: acceptable screw position, cortical bone injury with cortical penetration ≤ 2 mm; grade 3: cortical bone injury with cortical penetration 2,1-4 mm, grad 4: cortical bone injury with cortical penetration 4,1-6 mm, grade 5: cortical bone injury with cortical penetration >6 mm. Results The initial evaluation of the system showed good accuracy for the lumbar spine (65% grade 1, 20% grade 2, 15% grade 3, 0% grade 4, 0% grade 5). A comparison of the initial results with other navigation techniques in literature (CT navigation, 2D fluoroscopic navigation) shows that the accuracy of

  3. System engineering study of electrodynamic tether as a spaceborne generator and radiator of electromagnetic waves in the ULF/ELF frequency band

    NASA Technical Reports Server (NTRS)

    Estes, R. D.; Grossi, M. D.; Lorenzini, E. C.

    1986-01-01

    The transmission and generation by orbiting tethered satellite systems of information carrying electromagnetic waves in the ULF/ELF frequency band to the Earth at suitably high signal intensities was examined and the system maintaining these intensities in their orbits for long periods of time without excessive onboard power requirements was investigated. The injection quantity power into electromagnetic waves as a function of system parameters such as tether length and orbital height was estimated. The basic equations needed to evaluate alternataing current tethered systems for external energy requirements are presented. The energy equations to tethered systems with various lengths, tether resistances, and radiation resistances, operating at different current values are applied. Radiation resistance as a function of tether length and orbital height is discussed. It is found that ULF/ELF continuously radiating systems could be maintained in orbit with moderate power requirements. The effect of tether length on the power going into electromagnetic waves and whether a single or dual tether system is preferable for the self-driven mode is discussed. It is concluded that the single tether system is preferable over the dual system.

  4. Phantom evaluation of an image-guided navigation system based on electromagnetic tracking and open source software

    NASA Astrophysics Data System (ADS)

    Lin, Ralph; Cheng, Peng; Lindisch, David; Banovac, Filip; Lee, Justin; Cleary, Kevin

    2008-03-01

    We have developed an image-guided navigation system using electromagnetically-tracked tools, with potential applications for abdominal procedures such as biopsies, radiofrequency ablations, and radioactive seed placements. We present the results of two phantom studies using our navigation system in a clinical environment. In the first study, a physician and medical resident performed a total of 18 targeting passes in the abdomen of an anthropomorphic phantom based solely upon image guidance. The distance between the target and needle tip location was measured based on confirmatory scans which gave an average of 3.56 mm. In the second study, three foam nodules were placed at different depths in a gelatin phantom. Ten targeting passes were attempted in each of the three depths. Final distances between the target and needle tip were measured which gave an average of 3.00 mm. In addition to these targeting studies, we discuss our refinement to the standard four-quadrant image-guided navigation user interface, based on clinician preferences. We believe these refinements increase the usability of our system while decreasing targeting error.

  5. Computational Electronics and Electromagnetics

    SciTech Connect

    DeFord, J.F.

    1993-03-01

    The Computational Electronics and Electromagnetics thrust area is a focal point for computer modeling activities in electronics and electromagnetics in the Electronics Engineering Department of Lawrence Livermore National Laboratory (LLNL). Traditionally, they have focused their efforts in technical areas of importance to existing and developing LLNL programs, and this continues to form the basis for much of their research. A relatively new and increasingly important emphasis for the thrust area is the formation of partnerships with industry and the application of their simulation technology and expertise to the solution of problems faced by industry. The activities of the thrust area fall into three broad categories: (1) the development of theoretical and computational models of electronic and electromagnetic phenomena, (2) the development of useful and robust software tools based on these models, and (3) the application of these tools to programmatic and industrial problems. In FY-92, they worked on projects in all of the areas outlined above. The object of their work on numerical electromagnetic algorithms continues to be the improvement of time-domain algorithms for electromagnetic simulation on unstructured conforming grids. The thrust area is also investigating various technologies for conforming-grid mesh generation to simplify the application of their advanced field solvers to design problems involving complicated geometries. They are developing a major code suite based on the three-dimensional (3-D), conforming-grid, time-domain code DSI3D. They continue to maintain and distribute the 3-D, finite-difference time-domain (FDTD) code TSAR, which is installed at several dozen university, government, and industry sites.

  6. Understanding possible electromagnetic counterparts to loud gravitational wave events: Binary black hole effects on electromagnetic fields

    SciTech Connect

    Palenzuela, Carlos; Lehner, Luis; Yoshida, Shin

    2010-04-15

    In addition to producing loud gravitational waves, the dynamics of a binary black hole system could induce emission of electromagnetic radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as an enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves.

  7. Solar active region display system

    NASA Astrophysics Data System (ADS)

    Golightly, M.; Raben, V.; Weyland, M.

    2003-04-01

    The Solar Active Region Display System (SARDS) is a client-server application that automatically collects a wide range of solar data and displays it in a format easy for users to assimilate and interpret. Users can rapidly identify active regions of interest or concern from color-coded indicators that visually summarize each region's size, magnetic configuration, recent growth history, and recent flare and CME production. The active region information can be overlaid onto solar maps, multiple solar images, and solar difference images in orthographic, Mercator or cylindrical equidistant projections. Near real-time graphs display the GOES soft and hard x-ray flux, flare events, and daily F10.7 value as a function of time; color-coded indicators show current trends in soft x-ray flux, flare temperature, daily F10.7 flux, and x-ray flare occurrence. Through a separate window up to 4 real-time or static graphs can simultaneously display values of KP, AP, daily F10.7 flux, GOES soft and hard x-ray flux, GOES >10 and >100 MeV proton flux, and Thule neutron monitor count rate. Climatologic displays use color-valued cells to show F10.7 and AP values as a function of Carrington/Bartel's rotation sequences - this format allows users to detect recurrent patterns in solar and geomagnetic activity as well as variations in activity levels over multiple solar cycles. Users can customize many of the display and graph features; all displays can be printed or copied to the system's clipboard for "pasting" into other applications. The system obtains and stores space weather data and images from sources such as the NOAA Space Environment Center, NOAA National Geophysical Data Center, the joint ESA/NASA SOHO spacecraft, and the Kitt Peak National Solar Observatory, and can be extended to include other data series and image sources. Data and images retrieved from the system's database are converted to XML and transported from a central server using HTTP and SOAP protocols, allowing

  8. Developments of Electromagnetic Particle Simulation Code for Magnetic Reconnection Researches in Open System PASMO and Visualization Library VISMO

    NASA Astrophysics Data System (ADS)

    Ohtani, H.; Horiuchi, R.; Nunami, M.; Usami, S.; Ohno, N.

    2014-10-01

    As the capabilities of computers are improved, the sizes of simulations become greater and greater. In this situation, we have some big issues. One of them is how to develop an efficient simulation code, and another is how to visualize the large data by the simulation. In order to investigate magnetic reconnection from the microscopic viewpoint, we develop a three-dimensional electromagnetic PIC code in an open system (PASMO). For performing the code on a distributed memory and multi-processor computer system with a distributed parallel algorithm, we decompose three-dimensionally the simulation domain, and introduce the charge conservation scheme to exclude the global calculation, such as Poisson solver with FFT. In the visualization of the simulation data, we develop an in-situ visualization library VISMO for the PIC simulation to carry out the visualization in tandem with the simulation on the same computers. The simulation code with VISMO generates image files instead of raw data. We will discuss the performance of the new PASMO and the simulation results visualized by VISMO on the magnetic reconnection. Supported by a Grant-in-Aid for Scientific Research from JSPS (Grant No. 23340182) and General Coordinated Research at NIFS (NIFS14KNSS046, NIFS13KNXN260 and NIFS13KNTS024).

  9. Quantum 3D spin-glass system on the scales of space-time periods of external electromagnetic fields

    SciTech Connect

    Gevorkyan, A. S.

    2012-10-15

    A dielectric medium consisting of rigidly polarized molecules has been treated as a quantum 3D disordered spin system. It is shown that using Birkhoff's ergodic hypothesis the initial 3D disordered spin problem on scales of space-time periods of external field is reduced to two conditionally separable 1D problems. The first problem describes a 1D disordered N-particle quantum system with relaxation in random environment while the second one describes statistical properties of ensemble of disordered 1D steric spin chains of certain length. Basing on constructions which are developed in both problems, the coefficient of polarizability related to collective orientational effects under the influence of external field was calculated. On the basis of these investigations the equation of Clausius-Mossotti (CM) has been generalized as well as the equation for permittivity. It is shown that under the influence of weak standing electromagnetic fields in the equation of CM arising of catastrophe is possible, that can substantially change behavior of permittivity in the X-ray region on the macroscopic scale of space.

  10. Therapeutic Experience on Stance Control Knee-Ankle-Foot Orthosis With Electromagnetically Controlled Knee Joint System in Poliomyelitis

    PubMed Central

    Kim, Jung-Hwan; Ji, Sang-Goo; Jung, Kang-Jae

    2016-01-01

    A 54-year-old man with poliomyelitis had been using a conventional, passive knee-ankle-foot orthosis (KAFO) with a drop ring lock knee joint for about 40 years. A stance control KAFO (SCKAFO) with an electromagnetically controlled (E-MAG) knee joint system was prescribed. To correct his gait pattern, he also underwent rehabilitation therapy, which included muscle re-education, neuromuscular electrical stimulation, strengthening exercises for the lower extremities, and balance training twice a week for about 4 months. Both before and after rehabilitation, we conducted a gait analysis and assessed the physiological cost index in energy expended during walking in a locked-knee state and while he wore a SCKAFO with E-MAG. When compared with the pre-rehabilitation data, the velocity, step length, stride length, and knee kinematic data were improved after rehabilitation. Although the SCKAFO with E-MAG system facilitated the control of knee motion during ambulation, appropriate rehabilitative therapy was also needed to achieve a normal gait pattern. PMID:27152288

  11. AN ELECTROMAGNETIC PNEUMO CAPSULE SYSTEM FOR CONVEYING MINERALS AND MINE WASTES

    SciTech Connect

    Henry Liu; Charles W. Lenau

    2005-03-01

    The purpose of this project is to investigate the technical and economic feasibility of using a new and advanced pneumatic capsule pipeline (PCP) system for transporting minerals and mine wastes. The new system is different from conventional PCPs in two main respects: (1) it uses linear induction motors (LIMs) instead of blowers (fans) at the inlet of the pipeline to drive (pump) the capsules and the air through the pipeline; and (2) the capsules in the PCP have steel wheels running on steel rails as opposed to capsules in conventional systems, which use wheels with rubber tires running inside a pipe without rail. The advantage of using LIM pump instead of blower is that the former is non-intrusive and hence does not block the passage of capsules, enabling the system to run continuously without having to make the capsules bypass the pump. This not only simplifies the system but also enables the system to achieve much larger cargo throughput than that of PCPs using blowers, and use of LIMs as booster pumps which enables the system to have any length or to be used for transporting cargoes over practically any distance, say even one thousand kilometers or miles. An advantage of using steel wheels rolling on steel rails instead of using rubber tires rolling inside a pipeline is that the rolling friction coefficient and hence the use of energy is greatly reduced from that of conventional PCP systems. Moreover, rails enable easy control of capsule motion, such as switching capsules to a branch line by using railroad switching equipment. The advanced PCP system studied under this project uses rectangular conduits instead of circular pipe, having cross-sectional areas of 1 m by 1 m approximately. The system can be used for various transportation distances, and it can transport up to 50 million tonnes (metric tons) of cargo annually--the throughput of the largest mines in the world. Both an aboveground and an underground system were investigated and compared. The technical

  12. Extending human perception of electromagnetic radiation to the UV region through biologically inspired photochromic fuzzy logic (BIPFUL) systems.

    PubMed

    Gentili, Pier Luigi; Rightler, Amanda L; Heron, B Mark; Gabbutt, Christopher D

    2016-01-25

    Photochromic fuzzy logic systems have been designed that extend human visual perception into the UV region. The systems are founded on a detailed knowledge of the activation wavelengths and quantum yields of a series of thermally reversible photochromic compounds. By appropriate matching of the photochromic behaviour unique colour signatures are generated in response differing UV activation frequencies.

  13. Extending human perception of electromagnetic radiation to the UV region through biologically inspired photochromic fuzzy logic (BIPFUL) systems.

    PubMed

    Gentili, Pier Luigi; Rightler, Amanda L; Heron, B Mark; Gabbutt, Christopher D

    2016-01-25

    Photochromic fuzzy logic systems have been designed that extend human visual perception into the UV region. The systems are founded on a detailed knowledge of the activation wavelengths and quantum yields of a series of thermally reversible photochromic compounds. By appropriate matching of the photochromic behaviour unique colour signatures are generated in response differing UV activation frequencies. PMID:26658700

  14. General Law of Electromagnetic Radiation Conversion Efficiency in Systems with Linear and Non-Linear Irreversibility

    NASA Astrophysics Data System (ADS)

    Chukova, Yu. P.

    2011-12-01

    It is shown, that the efficiency of conversion of solar radiation obeys the same law in alive and nonliving (technical) systems. For different processes in alive systems the evolution has selected different ranges of solar intensity and different conditions of irreversibility.

  15. Estimation of soil salinity in a drip irrigation system by using joint inversion of multicoil electromagnetic induction measurements

    NASA Astrophysics Data System (ADS)

    Jadoon, Khan Zaib; Moghadas, Davood; Jadoon, Aurangzeb; Missimer, Thomas M.; Al-Mashharawi, Samir K.; McCabe, Matthew F.

    2015-05-01

    Low frequency electromagnetic induction (EMI) is becoming a useful tool for soil characterization due to its fast measurement capability and sensitivity to soil moisture and salinity. In this research, a new EMI system (the CMD mini-Explorer) is used for subsurface characterization of soil salinity in a drip irrigation system via a joint inversion approach of multiconfiguration EMI measurements. EMI measurements were conducted across a farm where Acacia trees are irrigated with brackish water. In situ measurements of vertical bulk electrical conductivity (σb) were recorded in different pits along one of the transects to calibrate the EMI measurements and to compare with the modeled electrical conductivity (σ) obtained by the joint inversion of multiconfiguration EMI measurements. Estimates of σ were then converted into the universal standard of soil salinity measurement (i.e., electrical conductivity of a saturated soil paste extract - ECe). Soil apparent electrical conductivity (ECa) was repeatedly measured with the CMD mini-Explorer to investigate the temperature stability of the new system at a fixed location, where the ambient air temperature increased from 26°C to 46°C. Results indicate that the new EMI system is very stable in high temperature environments, especially above 40°C, where most other approaches give unstable measurements. In addition, the distribution pattern of soil salinity is well estimated quantitatively by the joint inversion of multicomponent EMI measurements. The approach of joint inversion of EMI measurements allows for the quantitative mapping of the soil salinity distribution pattern and can be utilized for the management of soil salinity.

  16. Use of generalized curvilinear coordinate systems in electromagnetic and hybrid codes

    SciTech Connect

    Swift, D.W.

    1995-07-01

    The author develops a code to simulate the dynamics in the magnetosphere system. The calculation involves a single level, structured, curvilinear 2D mesh. The mesh density is varied to support regions which demand higher resolution.

  17. Electromagnetic wave activity detected by MMS at the vicinity of the magnetopause and its relation to heating and acceleration of particles

    NASA Astrophysics Data System (ADS)

    Le Contel, Olivier; Retino, Alessandro; Breuillard, Hugo; Berthomier, Matthieu; Mirioni, Laurent; Sahraoui, Fouad; Chust, Thomas; Chasapis, Alexandros; Aunai, Nicolas; Lavraud, Benoit; Lindqvist, Per-Arne; Khotyaintsev, Yuri; Vaivads, Andris; Marklund, Goran; Ergun, Robert E.; Goodrich, Katherine; Wilder, Frederick D.; Argall, Matthew; Burch, Jim L.; Torbert, Roy B.

    2016-04-01

    In the present study, we analyze different dayside magnetopause crossings detected by the MMS mission in order to investigate the relation between the electromagnetic wave activity and particle heating/acceleration. In particular, our study is focused on two different frequency ranges: (1) 1-10 Hz range which corresponds to the frequency domain of kinetic Alfvén and lower-hybrid waves, (2) 10 Hz-1kHz which corresponds mainly to the whistler mode wave frequency domain. After characterizing the different types of waves, we estimate their respective energy content as well as their possible role for heating and accelerating the plasma.

  18. Electromagnetic Analysis For The Design Of ITER Diagnostic Port Plugs During Plasma Disruptions

    SciTech Connect

    Zhai, Y

    2014-03-03

    ITER diagnostic port plugs perform many functions including structural support of diagnostic systems under high electromagnetic loads while allowing for diagnostic access to plasma. The design of diagnotic equatorial port plugs (EPP) are largely driven by electromagnetic loads and associate response of EPP structure during plasma disruptions and VDEs. This paper summarizes results of transient electromagnetic analysis using Opera 3d in support of the design activities for ITER diagnostic EPP. A complete distribution of disruption loads on the Diagnostic First Walls (DFWs). Diagnostic Shield Modules (DSMs) and the EPP structure, as well as impact on the system design integration due to electrical contact among various EPP structural components are discussed.

  19. Active annular-beam laser autocollimator system.

    PubMed

    Yoder, P R; Schlesinger, E R; Chickvary, J L

    1975-08-01

    An autocollimator using an axicon and a beam expander telescope to generate a 12.5-cm. o.d. annular beam of helium-neon laser light with high (25:1) diameter-to-width ratio has been developed. It is used with a two-axis, electromagnetically actuated mirror assembly to acquire automatically and maintain dynamically autocollimation from a nearby but separately mounted annular mirror. The servo system controls beam alignment even though angular vibratory motions of the annular mirror make it appear to tilt relative to the autocollimator as much as 7 mrad at frequencies below 300 Hz. This paper describes the optical system and the alignment sensing and control system.

  20. Molecular change signal-to-noise criteria for interpreting experiments involving exposure of biological systems to weakly interacting electromagnetic fields.

    PubMed

    Vaughan, Timothy E; Weaver, James C

    2005-05-01

    hazards. Understanding necessary conditions for such effects can be based on a unified approach: quantitative comparison of the estimated chemical change due to a particular electromagnetic field exposure to that due to competing influences, with both estimates based on a biophysical mechanism model within the context of a model of a biological system.

  1. [Effect of rehabilitation using antihomotoxic drug together with energy stabilizing electromagnetic therapy on morphological, biochemical, and system immunity indices in children with recurrent bronchitis].

    PubMed

    Lyseniuk, V P; Naumova, M I; Shapoval, V N

    2012-01-01

    There is now good evidence that the use of electromagnetic millimeter waves the following curative effects: analgesic, normalization of relations or increased formation of neurohumoral substances. The introduction of a therapeutic practice complex biological drugs that trigger, not overwhelming the body auxiliary immunological reaction, based on the activation of the regulation clones of T-lymphocytes and helper functions, is an important step in achieving a qualitatively level of health patients with chronic disease.

  2. FELIX: construction and testing of a facility to study electromagnetic effects for first wall, blanket, and shield systems

    SciTech Connect

    Praeg, W.F.; Turner, L.R.; Biggs, J.A.; Knott, M.J.; Lari, R.J.; McGhee, D.G.; Wehrle, R.B.

    1983-01-01

    An experimental test facility for the study of electromagnetic effects in the FWBS systems of fusion reactors has been constructed over the past 1-1/2 years at Argonne National Laboratory (ANL). In a test volume of 0.76 m/sup 3/ a vertical pulsed 0.5 T dipole field (B < 50 T/s) is perpendicular to a 1 T solenoid field. Power supplies of 2.75 MW and 5.5 MW and a solid state switch rated 13 kV, 13.1 kA (170 MW) control the pulsed magnetic fields. The total stored energy in the coils is 2.13 MJ. The coils are designed for a future upgrade to 4 T or the solenoid and 1 T for the dipole field (a total of 23.7 MJ). This paper describes the design and construction features of the facility. These include the power supplies, the solid state switches, winding and impregnation of large dipole saddle coils, control of the magnetic forces, computer control of FELIX and of experimental data acquisition and analysis, and an initial experimental test setup to analyze the eddy current distribution in a flat disk.

  3. Computational exposure assessment of electromagnetic fields generated by an RFID system for mother--newborn identity reconfirmation.

    PubMed

    Fiocchi, Serena; Parazzini, Marta; Paglialonga, Alessia; Ravazzani, Paolo

    2011-07-01

    Radio frequency identification (RFID) is an innovative technology currently applied in a large number of industrial and consumer applications. The spread of RFID technology does not correspond to a parallel increase in studies on its possible impact on health in terms of electromagnetic field (EMF) exposure. The aim of this paper is to estimate, by computational techniques, the EMF generated by passive RFID systems for mother-newborn identity reconfirmation. The computation was performed on realistic models of newborn and mother for three different reader positions. The compliance with EMF exposure guidelines was investigated as a function of the change in reader-tag specifications (magnetic field threshold and maximum distance of the reader to awake the tag) and time of use of the reader close to the body. The results show that attention should be paid to the identification of the optimal reader-tag technical specifications to be used in this type of application. That should be done by an accurate exposure assessment investigation, in particular for newborn exposure. The need to reduce the exposure time as much as possible indicates the importance of specific training on the practical applications of the RFID (DATALOGIC J-series, Bologna, Italy) device.

  4. Triggered-Lightning Interaction with a Lightning Protective System: Current Distribution and Electromagnetic Environment

    NASA Technical Reports Server (NTRS)

    Mata, C. T.; Rakov, V. A.; Mata, A. G.

    2010-01-01

    A new comprehensive lightning instrumentation system has been designed for Launch Complex 39B (LC3913) at the Kennedy Space Center, Florida. This new instrumentation system includes the synchronized recording of six high-speed video cameras; currents through the nine downconductors of the new lightning protection system for LC3913; four dH/dt, 3-axis measurement stations; and five dE/dt stations composed of two antennas each. A 20:1 scaled down model of the new Lightning Protection System (LPS) of LC39B was built at the International Center for Lightning Research and Testing, Camp Blanding, FL. This scaled down lightning protection system was instrumented with the transient recorders, digitizers, and sensors to be used in the final instrumentation installation at LC3913. The instrumentation used at the ICLRT is also a scaled-down instrumentation of the LC39B instrumentation. The scaled-down LPS was subjected to seven direct lightning strikes and six (four triggered and two natural nearby flashes) in 2010. The following measurements were acquired at the ICLRT: currents through the nine downconductors; two dl-/dt, 3-axis stations, one at the center of the LPS (underneath the catenary wires), and another 40 meters south from the center of the LPS; ten dE/dt stations, nine of them on the perimeter of the LPS and one at the center of the LPS (underneath the catenary wire system); and the incident current. Data from representative events are presented and analyzed in this paper.

  5. Electromagnetic wave manipulation by layered systems using the transformation media concept

    NASA Astrophysics Data System (ADS)

    Chen, Huanyang; Chan, C. T.

    2008-08-01

    We show that the optical properties of an oblique layered system with two kinds of isotropic materials can be described using the concept of transformation media, as long as the thickness of the layers is much smaller than the wavelength. Once the connection with transformation media is established, we then show that oblique layered system can serve as a universal element to build a variety of interesting functional optical components such as wave splitters, wave combiners, one-dimensional cloaking devices, and reflectionless field rotators.

  6. Planning guide for the review of telecommunications systems for frequency availability and electromagnetic compatibility

    NASA Astrophysics Data System (ADS)

    Watson, R. T.

    1984-01-01

    Guidance to Federal system planners in security spectrum support for proposed new or modified telecommunications systems in compliance with procedures of the National Telecommunications and Information Administration (NTIA) is provided. These procedures are in response to an Office of Management and Budget Circular (OMB Circular No. A-11) requiring certification from NTIA of spectrum support prior to submission of budget estimates to OMB. The various steps involved in the process are summarized, along with suggested questions each agency should address in preparation for submission and provides example outputs.

  7. Performance and suitability assessment of a real-time 3D electromagnetic needle tracking system for interstitial brachytherapy

    PubMed Central

    Boutaleb, Samir; Fillion, Olivier; Bonillas, Antonio; Hautvast, Gilion; Binnekamp, Dirk; Beaulieu, Luc

    2015-01-01

    Purpose Accurate insertion and overall needle positioning are key requirements for effective brachytherapy treatments. This work aims at demonstrating the accuracy performance and the suitability of the Aurora® V1 Planar Field Generator (PFG) electromagnetic tracking system (EMTS) for real-time treatment assistance in interstitial brachytherapy procedures. Material and methods The system's performance was characterized in two distinct studies. First, in an environment free of EM disturbance, the boundaries of the detection volume of the EMTS were characterized and a tracking error analysis was performed. Secondly, a distortion analysis was conducted as a means of assessing the tracking accuracy performance of the system in the presence of potential EM disturbance generated by the proximity of standard brachytherapy components. Results The tracking accuracy experiments showed that positional errors were typically 2 ± 1 mm in a zone restricted to the first 30 cm of the detection volume. However, at the edges of the detection volume, sensor position errors of up to 16 mm were recorded. On the other hand, orientation errors remained low at ± 2° for most of the measurements. The EM distortion analysis showed that the presence of typical brachytherapy components in vicinity of the EMTS had little influence on tracking accuracy. Position errors of less than 1 mm were recorded with all components except with a metallic arm support, which induced a mean absolute error of approximately 1.4 mm when located 10 cm away from the needle sensor. Conclusions The Aurora® V1 PFG EMTS possesses a great potential for real-time treatment assistance in general interstitial brachytherapy. In view of our experimental results, we however recommend that the needle axis remains as parallel as possible to the generator surface during treatment and that the tracking zone be restricted to the first 30 cm from the generator surface. PMID:26622231

  8. Active thermal control system evolution

    NASA Technical Reports Server (NTRS)

    Petete, Patricia A.; Ames, Brian E.

    1991-01-01

    The 'restructured' baseline of the Space Station Freedom (SSF) has eliminated many of the growth options for the Active Thermal Control System (ATCS). Modular addition of baseline technology to increase heat rejection will be extremely difficult. The system design and the available real estate no longer accommodate this type of growth. As the station matures during its thirty years of operation, a demand of up to 165 kW of heat rejection can be expected. The baseline configuration will be able to provide 82.5 kW at Eight Manned Crew Capability (EMCC). The growth paths necessary to reach 165 kW have been identified. Doubling the heat rejection capability of SSF will require either the modification of existing radiator wings or the attachment of growth structure to the baseline truss for growth radiator wing placement. Radiator performance can be improved by enlarging the surface area or by boosting the operating temperature with a heat pump. The optimal solution will require both modifications. The addition of growth structure would permit the addition of a parallel ATCS using baseline technology. This growth system would simplify integration. The feasibility of incorporating these growth options to improve the heat rejection capacity of SSF is under evaluation.

  9. Stability considerations for magnetic suspension systems using electromagnets mounted in a planar array

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.; Britcher, Colin P.

    1991-01-01

    Mathematical models of a 5, 6, 7, and 8 coil large gap magnetic suspension system (MSDS) are presented. Some of the topics covered include: force and torque equations, reduction of state-space form, natural modes, origins of modes, effect of rotation in azimuth (yaw), future work, and n-coil ring conclusions.

  10. Compact rf heating and levitation systems for the NASA modular electromagnetic levitator

    NASA Technical Reports Server (NTRS)

    Fox, R. J.

    1990-01-01

    The levitator demonstrates levitation of a 5 mm diam aluminum sphere at 1 G using a small, compact rf levitator operating from a small 12-V battery. This system is designed to levitate and melt niobium in space; however, the small battery unit limits the power for melting operations.

  11. Advanced Active-Magnetic-Bearing Thrust-Measurement System

    NASA Technical Reports Server (NTRS)

    Imlach, Joseph; Kasarda, Mary; Blumber, Eric

    2008-01-01

    -magnetic-bearing force-measurement systems is to calculate levitation forces on the basis of simple proportionalities between changes in those forces and changes in feedback-controlled currents applied to levitating electromagnetic coils. In the prior systems, the effects of gap lengths on fringing magnetic fields and the concomitant effects on magnetic forces were neglected. In the present system, the control subsystems of the active magnetic bearings are coupled with a computer-based automatic calibration system running special-purpose software wherein gap-length-dependent fringing factors are applied to current and magnetic-flux-based force equations and combined with a multipoint calibration method to obtain greater accuracy.

  12. Design and experiment of wireless power transfer systems via electromagnetic field near-zone region

    NASA Astrophysics Data System (ADS)

    Wang, Wensong; Chen, Yinchao; Yang, Shuhui; Chan, Allan; Wang, Yi; Cao, Qunsheng

    2016-10-01

    This paper presents the fundamental principle, circuit implementation and measurement of wireless power transfer (WPT) technology through both Colpitts and Hartley oscillation prototype circuits. The Colpitts and Hartley oscillation prototypes are used to convert DC voltages into AC ones. Meanwhile, both half- and full-wave rectification circuits are designed correspondingly for AC/DC voltage conversion. In addition, the orientation and distance effects between the transmitting and receiving coils are investigated. The self-inductance, mutual-inductance and coupling coefficient for the coupled inductors are extracted as a function of distance and frequency by using an equivalent T-circuit network and a derived Z-parameter matrix. The proposed WPT systems operate at around 3.6 MHz and the transferred voltage is measured at the WPT receiving terminal. The measured results indicate that the two proposed WPT systems can operate properly for potential short-distance applications.

  13. Approach for fast numerical propagation of uniformly polarized random electromagnetic fields in dispersive linearly birefringent systems.

    PubMed

    Makowski, Piotr L; Domanski, Andrzej W

    2013-09-01

    An efficient simulation technique is proposed for computing propagation of uniformly polarized statistically stationary fields in linear nonimage-forming systems that includes dispersion of linear birefringence to all orders. The method is based on the discrete-time Fourier transformation of modified frequency profiles of the spectral Stokes parameters. It works under the condition that all (linearly) birefringent sections present in the system are described by the same phase birefringence dispersion curve, being a monotonic function of the optical frequency within the bandwidth of the light. We demonstrate the technique as a supplement for the Mueller-Stokes matrix formalism extended to any uniformly polarized polychromatic illumination. Accuracy of its numerical implementation has been verified by using parameters of a Lyot depolarizer made of a highly birefringent and dispersive monomode photonic crystal fiber.

  14. Conversion between electromagnetically induced absorption and transparency in a four-level system

    NASA Astrophysics Data System (ADS)

    Sarkisyan, D.; Sargsyan, A.; Wilson-Gordon, A. D.; Cartaleva, S.

    2015-01-01

    A narrowband R-type resonance is formed in a Λ-system, on the D1 line of Rb atomic vapor using two continuous diode lasers with λ=795 nm. A 8mm- long cell filled with the Rb vapor and 20 Torr neon gas has been used. We have shown that use of an additional (3rd) laser which is resonant with the Rb D2 line (λ=780 nm) makes it possible to control the amplitude and sign of the R -type resonance, i.e. to convert a resonance which demonstrates increase in absorption into one which demonstrates reduction in absorption. The good signal/noise ratio of the observed resonance allows us to follow its behavior in an applied magnetic field from several gauss to several hundred gauss. A description in terms of double-Λ systems allows us to explain the experimental results in a simple manner.

  15. Three-dimensional atom localization via electromagnetically induced transparency in a three-level atomic system.

    PubMed

    Wang, Zhiping; Cao, Dewei; Yu, Benli

    2016-05-01

    We present a new scheme for three-dimensional (3D) atom localization in a three-level atomic system via measuring the absorption of a weak probe field. Owing to the space-dependent atom-field interaction, the position probability distribution of the atom can be directly determined by measuring the probe absorption. It is found that, by properly varying the parameters of the system, the probability of finding the atom in 3D space can be almost 100%. Our scheme opens a promising way to achieve high-precision and high-efficiency 3D atom localization, which provides some potential applications in laser cooling or atom nano-lithography via atom localization.

  16. Computer simulation of the process of absorption of electromagnetic field by liquid crystal systems

    NASA Astrophysics Data System (ADS)

    Petrova, T. O.; Gerasimov, R. A.; Maksimova, O. G.; Maksimov, A. V.

    2016-08-01

    The behavior of LC systems in alternating external fields is investigated; hysteresis curves are calculated. The dependencies of the area of the hysteresis curves on the frequency of the external field, at various values of temperature, amplitude of external field and of intermolecular interactions constants are discussed. The position of maximum and the peak height depending on the temperature and the of interactions constants are investigated.

  17. Cylindrical waveguide electromagnetic exposure system for biological studies with unrestrained mice at 1.9 GHz.

    PubMed

    Wasoontarajaroen, Siriwat; Thansandote, Artnarong; Gajda, Gregory B; Lemay, Eric P; McNamee, James P; Bellier, Pascale V

    2012-09-01

    This paper presents the development of an in vivo exposure system for exposing small rodents. The system consists of four identical cylindrical waveguide chambers, each with a plastic cage for housing the animal. The chamber is fed by circularly polarized radiofrequency power in the 1.9 GHz cellular frequency band and is vertically mounted so that the long axis of the animal is co-planar with the rotating incident electric field. Power sensors were used along with directional or hybrid couplers and a digital voltmeter for data acquisition for real-time dose rate monitoring. The system was tested to evaluate its dose rate performance when a mouse phantom or a mouse cadaver was inside the cage. The dose rate was quantified in terms of whole-body-average (WBA) specific absorption rate (SAR) per input power using both measurement and computational methods. The exposures of the mouse phantom and cadaver were evaluated for various possible postures and positions. The measurement results showed that the highest WBA-SAR was 16.9 W kg per 1 W incident power when the cadaver was lying prone against the cage wall and the lowest WBA-SAR was 10.4 W kg per 1 W incident power when the cadaver was standing upright in the cage center. These results were found to be in good agreement with those obtained from the computational method. PMID:22850231

  18. [Electromagnetic radiation of non-thermal intensity and short exposition as a sub-threshold irritant for the central nervous system].

    PubMed

    Luk'ianova, S N

    2013-01-01

    This work represents generalization and the analysis of the long-term own materials characterizing reaction of the brain on electromagnetic radiation of low intensity (energy flow density in the continuous regime or in the impulse approximately 500 microW/sm2) and a short exposition (approximately 30 min). A set of the experimental results received on separate neurons, formations and brain as a whole give an idea about the reaction of the central nervous system to the studied influence. Comparison of these data with the corresponding responses to the known incentives (light, sound, electric current) testifies to the electromagnetic radiation of low energy flow density and a short exposition as a sub-threshold irritant for the central nervous system.

  19. [Electromagnetic radiation of non-thermal intensity and short exposition as a sub-threshold irritant for the central nervous system].

    PubMed

    2013-01-01

    This work represents generalization and the analysis of the long-term own materials characterizing reaction of the brain on electromagnetic radiation of low intensity (energy flow density in the continuous regime or in the impulse approximately 500 microW/sm2) and a short exposition (aproximately 30 min). A set of the experimental results received on separate neurons, formations and brain as a whole give an idea about the reaction of the central nervous system to the studied influence. Comparison of these data with the corresponding responses to the known incentives (light, sound, electric current) testifies to the electromagnetic radiation of low energy flow density and a short exposition as a sub-threshold irritant for the central nervous system.

  20. Task 4 - EMI/RFI Issues Potentially Impacting Electromagnetic Compatibility of I&C Systems (NRCHQ6014D0015)

    SciTech Connect

    Wood, Richard Thomas; Ewing, Paul D.

    2015-05-01

    The U.S. Nuclear Regulatory Commission’s (NRC’s) regulations in Part 50, “Domestic Licensing of Production and Utilization Facilities,” of Title 10 of the Code of Federal Regulations (10 CFR Part 50) state that structures, systems, and components important to safety in a nuclear power plant are to be designed to accommodate the effects of environmental conditions (i.e., remain functional under all postulated service conditions) and that design control measures such as testing are to be used to check the adequacy of design. Regulatory Guide (RG) 1.180 was developed to provide guidance to licensees and applicants on methods acceptable to the NRC staff for complying with the NRC’s regulations on design, installation, and testing practices for addressing the effects of electromagnetic and radio-frequency interference (EMI/RFI) and power surges on safety-related instrumentation and control (I&C) systems. The first revision of RG 1.180 was issued in January 2000 and a second revision was issued in October 2003*. The second revision differed from the first revision in endorsing Military Standard (MIL-STD)-461E and the International Electrotechnical Commission (IEC) Standard (Std) 61000 series of EMI/RFI test methods, extending the guidance to cover signal line testing, incorporating frequency ranges where portable communications devices are experiencing increasing use, and relaxing the operating envelopes (test levels) when experience and confirmatory research warranted. It also offered exemptions from specific test criteria based on technical considerations such as plant conditions and the intended location of the safety-related I&C equipment. Since the last revision, new requirements have been identified, associated RGs have been created and updated, and additional industry guidance has been developed. Additionally, the operational environment has changed with the increase in wireless communication technology for both personal (smartphone) and industrial

  1. Effects of the action of microwave-frequency electromagnetic radiation on the spike activity of neurons in the supraoptic nucleus of the hypothalamus in rats.

    PubMed

    Minasyan, S M; Grigoryan, G Yu; Saakyan, S G; Akhumyan, A A; Kalantaryan, V P

    2007-02-01

    Acute experiments on white rats anesthetized with Nembutal (40 mg/kg, i.p.) were performed with extracellular recording and analysis of background spike activity from neurons in the supraoptic nucleus of the hypothalamus after exposure to electromagnetic radiation in the millimeter range. The distribution of neurons was determined in terms of the degree of regularity, the nature of the dynamics of neural streams, and the modalities of histograms of interspike intervals; the mean neuron spike frequency was calculated, along with the coefficient of variation of interspike intervals. These studies demonstrated changes in the background spike activity, predominantly affecting the internal structure of the spike streams recorded. The major changes were in the duration of interspike intervals and the degree of regularity of spike activity. Statistically significant changes in the mean spike frequencies of neuron populations in individual frequency ranges were also seen.

  2. Superconducting electromagnets for large wind tunnel magnetic suspension and balance systems

    SciTech Connect

    Boom, R.W.; Abdelsalam, M.K.; Bakerek, K.; Britcher, C.P.; Esking, J.; Eyssa, Y.M.; Goodyer, M.J.; McIntosh, G.E.; Scurlock, R.G.; Wu, Y.Y.

    1985-03-01

    This paper presents a new design study of a Magnetic Suspension and Balance System (MSBS) for airplane models in a large 8 ft x 8 ft wind tunnel. New developments in the design include: use of a superconducting solenoid as a model core instead of magnetized iron; combination of permanent magnet material in the model wings along with four race-track coils to produce the required roll torque; and mounting of all the magnets in an integral cold structure instead of in separate cryostats. Design of superconducting solenoid model cores and practical experience with a small-scale prototype are discussed.

  3. Using medaka embryos as a model system to study biological effects of the electromagnetic fields on development and behavior.

    PubMed

    Lee, Wenjau; Yang, Kun-Lin

    2014-10-01

    The electromagnetic fields (EMFs) of anthropogenic origin are ubiquitous in our environments. The health hazard of extremely low frequency and radiofrequency EMFs has been investigated for decades, but evidence remains inconclusive, and animal studies are urgently needed to resolve the controversies regarding developmental toxicity of EMFs. Furthermore, as undersea cables and technological devices are increasingly used, the lack of information regarding the health risk of EMFs to aquatic organisms needs to be addressed. Medaka embryos (Oryzias latipes) have been a useful tool to study developmental toxicity in vivo due to their optical transparency. Here we explored the feasibility of using medaka embryos as a model system to study biological effects of EMFs on development. We also used a white preference test to investigate behavioral consequences of the EMF developmental toxicity. Newly fertilized embryos were randomly assigned to four groups that were exposed to an EMF with 3.2kHz at the intensity of 0.12, 15, 25, or 60µT. The group exposed to the background 0.12µT served as the control. The embryos were exposed continually until hatch. They were observed daily, and the images were recorded for analysis of several developmental endpoints. Four days after hatching, the hatchlings were tested with the white preference test for their anxiety-like behavior. The results showed that embryos exposed to all three levels of the EMF developed significantly faster. The endpoints affected included the number of somites, eye width and length, eye pigmentation density, midbrain width, head growth, and the day to hatch. In addition, the group exposed to the EMF at 60µT exhibited significantly higher levels of anxiety-like behavior than the other groups did. In conclusion, the EMF tested in this study accelerated embryonic development and heightened anxiety-like behavior. Our results also demonstrate that the medaka embryo is a sensitive and cost-efficient in vivo model

  4. Validation of a paleo river system derived by ground based electromagnetic induction measurements with satellite based RapidEye images

    NASA Astrophysics Data System (ADS)

    Rudolph, Sebastian; von Hebel, Christian; Ali, Mohammed; Stadler, Anja; Herbst, Michael; Montzka, Carsten; Pätzold, Stefan; Weihermüller, Lutz; van der Kruk, Jan; Vereecken, Harry

    2013-04-01

    Morphological remnants of an inactive river system that has been filled by younger sediments can provide datable proxies about past climatic conditions. However, sediment composition of their infillings is a challenge for agriculture, in particular for precision agriculture. Differential crop development and yield reduction are often a consequence of lateral and vertical textural inhomogeneities. Several studies have shown that buried river systems can be traced by the use of remote sensing. However, the appearance of crop marks strongly depends on environmental conditions, and therefore, the reliance of remotely acquired data can become time and cost expensive. Soil physical properties which are related to textural differences can be mapped fast and cost-effective by the use of near surface geophysics. Especially electromagnetic induction (EMI), which measures soil apparent conductivity (ECa), has become a tool of choice to characterize large areas in high resolution. The introduction of multiple coil EMI systems as well as the quantification of respective measurements enables a reliable multilayer inversion. The aim of this study was to map a postglacial river system on agricultural fields and to mark out buried remains such as trenches and bomb craters of World War II. In summer 2012 ten fields (17 ha) were mapped with the CMD MiniExplorer, a multiple coil EMI system especially appropriate for near surface applications, after the harvest of winter wheat and sugar beet. At elevated sandy sites meander like patterns with higher conductivity were mapped. ECa measurements were verified by textural data taken from directed soil samples and vertical ECa logs. Sediment thickness was evaluated on soil cores and electrical resistivity tomography (ERT) transects. Furthermore, ERT quantified ECa measurements were correlated with satellite as well as destructive derived leaf area index (LAI) measurements. In 3 of 71 LAI maps derived by multispectral RapidEye imagery crop

  5. Electromagnetic topology: Characterization of internal electromagnetic coupling

    NASA Technical Reports Server (NTRS)

    Parmantier, J. P.; Aparicio, J. P.; Faure, F.

    1991-01-01

    The main principles are presented of a method dealing with the resolution of electromagnetic internal problems: Electromagnetic Topology. A very interesting way is to generalize the multiconductor transmission line network theory to the basic equation of the Electromagnetic Topology: the BLT equation. This generalization is illustrated by the treatment of an aperture as a four port junction. Analytical and experimental derivations of the scattering parameters are presented. These concepts are used to study the electromagnetic coupling in a scale model of an aircraft, and can be seen as a convenient means to test internal electromagnetic interference.

  6. [Fluorescence used to investigate the sensitivity of spinach chloroplast membrane to low intensity electromagnetic radiation].

    PubMed

    Xi, Gang; Yang, Yun-Jing; Lu, Hong

    2009-07-01

    A system for studying biological effect of radio frequency electromagnetic field was developed. The system can form an area where electromagnetic wave with large frequency range is well distributed. The strength of electromagnetic wave was measured easily. Electromagnetic wave in the system did not have effect on environment. The sensitivity of spinach chloroplast membrane to low intensity electromagnetic radiation of 300 MHz under power density of 5 mW x cm(-2) was studied by the spectral analysis method of fluorescence of 8-anilino-1-naphthalene-sulfonic acid (ANS) and the changes in chlorophyll a (Chla) fluorescence parameters of spinach chloroplast membrane. The result showed that the position of spectrum of ANS fluorescence of spinach chloroplast membrane did not change, but the intensity of ANS fluorescence was obviously increased under the action of electromagnetic radiation with power density of 1-5 mW x cm(-2). There was an increase in the intensity of ANS fluorescence with the increase in electromagnetic radiation. The increase of ANS fluorescence of spinach chloroplast membrane showed that low level electromagnetic field induced the decrease in fluidity of chloroplast membrane compared with control experiment. The cause of the change in the fluidity could be related to the polarization of chloroplast membrane under the electromagnetic field. The analysis of Chla fluorescence parameters of spinach chloroplast membrane indicated that low level electromagnetic field of 300 MHz made the fluorescence parameters F0 and F(VI/)F(V) decrease, and F(V)/Fo, Fv/F(m) and deltaF(V)/T increase. It was showed that low level electromagnetic field caused the change of non-active center of photosystem II of spinach chloroplast membrane to active center and the increase in potential active and photochemical efficiency of PSII, and promoted the transmit process of electron in photosynthesis of chloroplast membrane of photosynthesis cell in spinach leaf. The study confirmed

  7. On the asymptotic behaviour for an electromagnetic system with a dissipative boundary condition

    NASA Astrophysics Data System (ADS)

    Amendola, Giovambattista

    2005-04-01

    In this work we study some properties of solutions for the system describing a three-dimensional non-homogeneous non-conducting dielectric with a general boundary condition with memory. We first show the existence of the inverse of this boundary condition, which allows us to introduce a boundary free energy, similar to the one considered by Fabrizio & Morro (1996, Arch. Rat. Mech. Anal., 136, 359-381). Then, we prove existence and uniqueness theorems for weak and strong solutions of the evolutive problem in a finite time interval. Moreover, following Rivera & Olivera (1997, Boll. U.M.I., 11-A, 115-127), we examine some dissipative properties of the boundary condition and of its inverse and we give a useful energy estimate. Finally, when there is no memory in the boundary condition the exponential decay of the solution is proved.

  8. Cellular and molecular pathways of extremely-low-frequency electromagnetic field interactions with living systems

    SciTech Connect

    Tenforde, T.S.

    1992-06-01

    There is growing evidence that environmental electric and magnetic fields in the extremely-low-frequency (ELF) band below 300 Hz can influence biological functions by mechanisms that are only poorly understood at the present time. The primary objectives of this paper are to review the physical properties of ELF fields, their interactions with living systems at the tissue, cellular, and subcellular levels, and the key role of cell membranes ;in the transduction of signals from imposed ELF fields. Topics of discussion include signal-to-noise ratios for single cells and cell aggregates, resonance phenomena involving a combination of static and ELF magnetic fields, and the possible influence of ELF fields on molecular signaling pathways that involve membrane receptors and cytoplasmic second messengers.

  9. [Reaction of the endocrine system and peripheral blood of rats to a single and chronic exposure to pulsed low-frequency electromagnetic field].

    PubMed

    Zagorskaia, E A; Rodina, G P

    1990-01-01

    Wistar male rats underwent a single exposure for 20 min, 1 and 2.5 hour to a pulsed electromagnetic field of 20 mT or a single exposure for 2.5 hour and a chronic exposure for 6 hours a day during 30 days to a pulsed electromagnetic field of 0.1 mT, the pulse time and an interval between pulses being 10(-2) sec. As a result, the experimental animals showed changes in the activity of the adrenals, thyroid and sex glands as well as eosinopenia and lymphopenia. The concentration of thyroid hormones and lymphocytes remained lowered during 2 months after a single exposure to 20 mT. In some cases the exposure modified the physiological responses of rats to an acute stress-5-hour immobilization.

  10. Using Electromagnetic Techniques to Test Models for Shallow Permeability in the Surprise Valley, CA Geothermal System

    NASA Astrophysics Data System (ADS)

    Hawkes, S.; McClain, J. S.; Kahn, A.; Lewis, K.

    2013-12-01

    Surprise Valley in northeastern Modoc County, CA is the westernmost major extensional graben in the northwestern Basin and Range province. There are abundant faults coincident with moderate to boiling temperature hot springs that discharge along the western rim of the valley and in the central eastern part of the valley. Fluid recharge and discharge pathways are poorly understood despite sporadic geothermal exploration, drilling, and development since the 1950's and a wide variety of academic studies that have been focused in the region. It is hypothesized that thermal fluids discharged into the basin exploit fracture permeability related to active extensional faulting along the Surprise Valley Fault (SVF), Lake City Fault Zone (LCFZ), and faults in the Hays Canyon Range (HCR). We present several fault-perpendicular Magnetotelluric profiles conducted across the LCFZ and HCR faults with the goal of imaging the orientation and extent of the geothermal reservoir that supplies the hot springs. Initial results are consistent with the HCR faults tapping a deep conductive aquifer below shallow resistive extrusive igneous rocks, with narrow low resistivity regions beneath the faults. There is no conclusive evidence for or against the LCFZ acting as a preferred fluid pathway, due to relatively homogeneous distribution highly conductive materials and the difficulty in differentiating clay-rich lacustrine sediments from hydrothermal fluids or clays.

  11. Effect of 60 Hz electromagnetic fields on the activity of hsp70 promoter: an in vitro study.

    PubMed

    Rodríguez de la Fuente, Abraham O; Alcocer-González, Juan M; Antonio Heredia-Rojas, J; Balderas-Candanosa, Isaías; Rodríguez-Flores, Laura E; Rodríguez-Padilla, Cristina; Taméz-Guerra, Reyes S

    2009-03-01

    We have evaluated the effect of 60 Hz sinusoidal magnetic fields (MF) at 8 and 8 microT on expression of the luciferase gene contained in a gene construct labelled as Electromagnetic Field-plasmid (pEMF). The vector included the hsp70 promotor containing the 3 nCTCTn sequences previously described for the induction of hsp70 expression by magnetic fields, as well as the reporter of the luciferase gene. We also replicated the study of Lin et al. [Lin H, Blank M, Rossol-Haseroth K, Goodman R. Regulating genes with electromagnetic response elements. J Cell Biochem 2001;81(1):143-48]. The pEMF plasmid was transfected into HeLa and BMK16 cell lines that were later exposed to either MF or thermal shock (TS). An increased luciferase expression was found in both the cells exposed to MF and TS compared with their control groups (P < 0.05). Furthermore, the combined effect of MF and TS was also analyzed. A synergistic effect between two factors was observed for this co-exposure condition in terms of luciferase gene expression.

  12. The electromagnetic response of a relativistic Fermi gas at finite temperatures: Applications to condensed-matter systems

    NASA Astrophysics Data System (ADS)

    Reyes-Gómez, E.; Oliveira, L. E.; de Carvalho, C. A. A.

    2016-04-01

    We investigate the electromagnetic response of a relativistic Fermi gas at finite temperatures. Our theoretical results are first-order in the fine-structure constant. The electromagnetic permittivity and permeability are introduced via general constitutive relations in reciprocal space, and computed for different values of the gas density and temperature. As expected, the electric permittivity of the relativistic Fermi gas is found in good agreement with the Lindhard dielectric function in the low-temperature limit. Applications to condensed-matter physics are briefly discussed. In particular, theoretical results are in good agreement with experimental measurements of the plasmon energy in graphite and tin oxide, as functions of both the temperature and wave vector. We stress that the present electromagnetic response of a relativistic Fermi gas at finite temperatures could be of potential interest in future plasmonic and photonic investigations.

  13. Application of an Electro-Magnetic Induction Technique for the Magnetization up to 100 T in a Vertical Single-turn Coil System

    NASA Astrophysics Data System (ADS)

    Sakakura, R.; Matsuda, Y. H.; Tokunaga, M.; Kojima, E.; Takeyama, S.

    2010-04-01

    The system was developed for the magnetization measurement in the vertical single-turn coil (V-STC) system at ISSP, which can generate magnetic fields over 100 T in a semi-destructive manner. We have adjusted the electro-magnetic induction method to our V-STC. The new system was applied to the manganite with the perovskite-type structure Bi1/2Ca1/2MnO3. The total magnetization process was obtained up to 105 T in excellent quality comparable to those obtained by the non-destructive long pulse magnet.

  14. Effect of 60 Hz electromagnetic fields on the activity of hsp70 promoter: an in vivo study

    PubMed Central

    Rodríguez-De la Fuente, Abraham O.; Alcocer-González, Juan M.; Heredia-Rojas, J. Antonio; Rodríguez-Padilla, Cristina; Rodríguez-Flores, Laura E.; Santoyo-Stephano, Martha A.; Castañeda-Garza, Esperanza; Taméz-Guerra, Reyes S.

    2012-01-01

    Exposure to EMFs (electromagnetic fields) results in a number of important biological changes, including modification of genetic expression. We have investigated the effect of 60 Hz sinusoidal EMFs at a magnetic flux density of 80 μT on the expression of the luciferase gene contained in a plasmid labelled as pEMF (EMF plasmid). This gene construct contains the specific sequences for the induction of hsp70 (heat-shock protein 70) expression by EMFs, as well as the reporter for the luciferase gene. The pEMF vector was electrotransferred into quadriceps muscles of BALB/c mice that were later exposed to EMFs. Increased luciferase expression was observed in mice exposed to EMFs 2 h daily for 7 days compared with controls (P<0.05). These data along with other reports in the literature suggest that EMFs can have far-reaching effects on the genome. PMID:23124775

  15. Clinical Assessment of the RHUMART System Based on the Use of Pulsed Electromagnetic Fields with Low Frequency.

    ERIC Educational Resources Information Center

    Begue-Simon, A-M.; Drolet, R. A.

    1993-01-01

    Difficulties in using the double-blind method of evaluation with use of Pulsed Electromagnetic Fields led to an open evaluation with 96 patients with musculoskeletal diseases, neurological disorders, circulatory diseases, or gastroenterological diseases. This paper reports the impact of use on dependency, pain, and patient satisfaction. (DB)

  16. Electromagnetic Imaging Methods for Nondestructive Evaluation Applications

    PubMed Central

    Deng, Yiming; Liu, Xin

    2011-01-01

    Electromagnetic nondestructive tests are important and widely used within the field of nondestructive evaluation (NDE). The recent advances in sensing technology, hardware and software development dedicated to imaging and image processing, and material sciences have greatly expanded the application fields, sophisticated the systems design and made the potential of electromagnetic NDE imaging seemingly unlimited. This review provides a comprehensive summary of research works on electromagnetic imaging methods for NDE applications, followed by the summary and discussions on future directions. PMID:22247693

  17. Thin sheet casting with electromagnetic pressurization

    DOEpatents

    Walk, Steven R.; Slepian, R. Michael; Nathenson, Richard D.; Williams, Robert S.

    1991-01-01

    An apparatus, method and system for the casting of thin strips or strips of metal upon a moving chill block that includes an electromagnet located so that molten metal poured from a reservoir onto the chill block passes into the magnetic field produced by the electromagnet. The electromagnet produces a force on the molten metal on said chill block in the direction toward said chill block in order to enhance thermal contact between the molten metal and the chill block.

  18. Electromagnetic imaging methods for nondestructive evaluation applications.

    PubMed

    Deng, Yiming; Liu, Xin

    2011-01-01

    Electromagnetic nondestructive tests are important and widely used within the field of nondestructive evaluation (NDE). The recent advances in sensing technology, hardware and software development dedicated to imaging and image processing, and material sciences have greatly expanded the application fields, sophisticated the systems design and made the potential of electromagnetic NDE imaging seemingly unlimited. This review provides a comprehensive summary of research works on electromagnetic imaging methods for NDE applications, followed by the summary and discussions on future directions.

  19. Shallow subsurface imaging of the Piano di Pezza active normal fault (central Italy) by high-resolution refraction and electrical resistivity tomography coupled with time domain electromagnetic data

    NASA Astrophysics Data System (ADS)

    Villani, Fabio; Tulliani, Valerio; Fierro, Elisa; Sapia, Vincenzo; Civico, Riccardo

    2015-04-01

    The Piano di Pezza fault is the north-westernmost segment of the >20 km long Ovindoli-Pezza active normal fault-system (central Italy). Although existing paleoseismic data document high vertical Holocene slip rates (~1 mm/yr) and a remarkable seismogenic potential of this fault, its subsurface setting and Pleistocene cumulative displacement are still poorly known. We investigated for the first time by means of high-resolution seismic and electrical resistivity tomography coupled with time domain electromagnetic (TDEM) measurements the shallow subsurface of a key section of the Piano di Pezza fault. Our surveys cross a ~5 m-high fault scarp that was generated by repeated surface-rupturing earthquakes displacing some Late Holocene alluvial fans. We provide 2-D Vp and resistivity images which clearly show significant details of the fault structure and the geometry of the shallow basin infill material down to 50 m depth. We can estimate the dip (~50°) and the Holocene vertical displacement of the master fault (~10 m). We also recognize in the hangingwall some low-velocity/low-resistivity regions that we relate to packages of colluvial wedges derived from scarp degradation, which may represent the record of several paleo-earthquakes older than the Late Holocene events previously recognized by paleoseismic trenching. Conversely, due to the limited investigation depth of seismic and electrical tomography, the estimation of the cumulative amount of Pleistocene throw is hampered. Therefore, to increase the depth of investigation, we performed 7 TDEM measurements along the electrical profile using a 50 m loop size both in central and offset configuration. The recovered 1-D resistivity models show a good match with 2-D resistivity images in the near surface. Moreover, TDEM inversion results indicate that in the hangingwall, ~200 m away from the surface fault trace, the carbonate pre-Quaternary basement may be found at ~90-100 m depth. The combined approach of electrical and

  20. Illumination system having a plurality of movable sources

    DOEpatents

    Sweatt, William C.; Kubiak, Glenn D.

    2002-01-01

    An illumination system includes several discharge sources that are multiplexed together to reduce the amount of debris generated. The system includes: (a) a first electromagnetic radiation source array that includes a plurality of first activatable radiation source elements that are positioned on a first movable carriage; (b) a second electromagnetic radiation source array that includes a plurality of second activatable radiation source elements that are positioned on a second movable carriage; (c) means for directing electromagnetic radiation from the first electromagnetic radiation source array and electromagnetic radiation from the second electromagnetic radiation source array toward a common optical path; (d) means for synchronizing (i) the movements of the first movable carriage and of the second movable carriage and (ii) the activation of the first electromagnetic radiation source array and of the second electromagnetic radiation source array to provide an essentially continuous illumination of electromagnetic radiation along the common optical path.