Sample records for active electronic components

  1. Cooling system for electronic components

    DOEpatents

    Anderl, William James; Colgan, Evan George; Gerken, James Dorance; Marroquin, Christopher Michael; Tian, Shurong

    2015-12-15

    Embodiments of the present invention provide for non interruptive fluid cooling of an electronic enclosure. One or more electronic component packages may be removable from a circuit card having a fluid flow system. When installed, the electronic component packages are coincident to and in a thermal relationship with the fluid flow system. If a particular electronic component package becomes non-functional, it may be removed from the electronic enclosure without affecting either the fluid flow system or other neighboring electronic component packages.

  2. Cooling system for electronic components

    DOEpatents

    Anderl, William James; Colgan, Evan George; Gerken, James Dorance; Marroquin, Christopher Michael; Tian, Shurong

    2016-05-17

    Embodiments of the present invention provide for non interruptive fluid cooling of an electronic enclosure. One or more electronic component packages may be removable from a circuit card having a fluid flow system. When installed, the electronic component packages are coincident to and in a thermal relationship with the fluid flow system. If a particular electronic component package becomes non-functional, it may be removed from the electronic enclosure without affecting either the fluid flow system or other neighboring electronic component packages.

  3. A new active solder for joining electronic components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SMITH,RONALD W.; VIANCO,PAUL T.; HERNANDEZ,CYNTHIA L.

    Electronic components and micro-sensors utilize ceramic substrates, copper and aluminum interconnect and silicon. The joining of these combinations require pre-metallization such that solders with fluxes can wet such combinations of metals and ceramics. The paper will present a new solder alloy that can bond metals, ceramics and composites. The alloy directly wets and bonds in air without the use flux or premetallized layers. The paper will present typical processing steps and joint microstructures in copper, aluminum, aluminum oxide, aluminum nitride, and silicon joints.

  4. Bacteriostatic conformal coating for electronic components

    NASA Technical Reports Server (NTRS)

    Bland, C.; Le Doux, F. N.

    1967-01-01

    Coating for electronic components used in space applications has bacteriostatic qualities capable of hindering bacterial reproduction, both vegetative and sporulative viable microorganisms. It exhibits high electrical resistivity, a low outgassing rate, and is capable of restraining electronic components when subjected to mechanical vibrations.

  5. Electronic Components and Systems for Cryogenic Space Applications

    NASA Technical Reports Server (NTRS)

    Patterson, R. L.; Hammoud, A.; Dickman, J. E.; Gerber, S.; Elbuluk, M. E.; Overton, E.

    2001-01-01

    Electronic components and systems capable of operation at cryogenic temperatures are anticipated in many future NASA space missions such as deep space probes and planetary surface exploration. For example, an unheated interplanetary probe launched to explore the rings of Saturn would reach an average temperature near Saturn of about - 183 C. In addition to surviving the deep space harsh environment, electronics capable of low temperature operation would contribute to improving circuit performance, increasing system efficiency, and reducing payload development and launch costs. Terrestrial applications where components and systems must operate in low temperature environments include cryogenic instrumentation, superconducting magnetic energy storage, magnetic levitation transportation system, and arctic exploration. An on-going research and development program at the NASA Glenn Research Center focuses on the development of reliable electronic devices and efficient power systems capable of surviving in low temperature environments. An overview of the program will be presented in this paper. A description of the low temperature test facilities along with selected data obtained from in-house component testing will also be discussed. Ongoing research activities that are being performed in collaboration with various organizations will also be presented.

  6. 7 CFR 3201.80 - Electronic components cleaners.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... PROCUREMENT Designated Items § 3201.80 Electronic components cleaners. (a) Definition. Products that are designed to wash or remove dirt or extraneous matter from electronic parts, devices, circuits, or systems... 7 Agriculture 15 2013-01-01 2013-01-01 false Electronic components cleaners. 3201.80 Section 3201...

  7. 7 CFR 3201.80 - Electronic components cleaners.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... PROCUREMENT Designated Items § 3201.80 Electronic components cleaners. (a) Definition. Products that are designed to wash or remove dirt or extraneous matter from electronic parts, devices, circuits, or systems... 7 Agriculture 15 2014-01-01 2014-01-01 false Electronic components cleaners. 3201.80 Section 3201...

  8. Electron acoustic-Langmuir solitons in a two-component electron plasma

    NASA Astrophysics Data System (ADS)

    McKenzie, J. F.

    2003-04-01

    We investigate the conditions under which ‘high-frequency’ electron acoustic Langmuir solitons can be constructed in a plasma consisting of protons and two electron populations: one ‘cold’ and the other ‘hot’. Conservation of total momentum can be cast as a structure equation either for the ‘cold’ or ‘hot’ electron flow speed in a stationary wave using the Bernoulli energy equations for each species. The linearized version of the governing equations gives the dispersion equation for the stationary waves of the system, from which follows the necessary but not sufficient conditions for the existence of soliton structures; namely that the wave speed must be less than the acoustic speed of the ‘hot’ electron component and greater than the low-frequency compound acoustic speed of the two electron populations. In this wave speed regime linear waves are ‘evanescent’, giving rise to the exponential growth or decay, which readily can give rise to non-linear effects that may balance dispersion and allow soliton formation. In general the ‘hot’ component must be more abundant than the ‘cold’ one and the wave is characterized by a compression of the ‘cold’ component and an expansion in the ‘hot’ component necessitating a potential dip. Both components are driven towards their sonic points; the ‘cold’ from above and the ‘hot’ from below. It is this transonic feature which limits the amplitude of the soliton. If the ‘hot’ component is not sufficiently abundant the window for soliton formation shrinks to a narrow speed regime which is quasi-transonic relative to the ‘hot’ electron acoustic speed, and it is shown that smooth solitons cannot be constructed. In the special case of a very cold electron population (i.e. ‘highly supersonic’) and the other population being very hot (i.e. ‘highly subsonic’) with adiabatic index 2, the structure equation simplifies and can be integrated in terms of elementary

  9. Towards Prognostics for Electronics Components

    NASA Technical Reports Server (NTRS)

    Saha, Bhaskar; Celaya, Jose R.; Wysocki, Philip F.; Goebel, Kai F.

    2013-01-01

    Electronics components have an increasingly critical role in avionics systems and in the development of future aircraft systems. Prognostics of such components is becoming a very important research field as a result of the need to provide aircraft systems with system level health management information. This paper focuses on a prognostics application for electronics components within avionics systems, and in particular its application to an Isolated Gate Bipolar Transistor (IGBT). This application utilizes the remaining useful life prediction, accomplished by employing the particle filter framework, leveraging data from accelerated aging tests on IGBTs. These tests induced thermal-electrical overstresses by applying thermal cycling to the IGBT devices. In-situ state monitoring, including measurements of steady-state voltages and currents, electrical transients, and thermal transients are recorded and used as potential precursors of failure.

  10. 21 CFR 11.200 - Electronic signature components and controls.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Electronic signature components and controls. 11... SERVICES GENERAL ELECTRONIC RECORDS; ELECTRONIC SIGNATURES Electronic Signatures § 11.200 Electronic signature components and controls. (a) Electronic signatures that are not based upon biometrics shall: (1...

  11. Multilayer electronic component systems and methods of manufacture

    NASA Technical Reports Server (NTRS)

    Thompson, Dane (Inventor); Wang, Guoan (Inventor); Kingsley, Nickolas D. (Inventor); Papapolymerou, Ioannis (Inventor); Tentzeris, Emmanouil M. (Inventor); Bairavasubramanian, Ramanan (Inventor); DeJean, Gerald (Inventor); Li, RongLin (Inventor)

    2010-01-01

    Multilayer electronic component systems and methods of manufacture are provided. In this regard, an exemplary system comprises a first layer of liquid crystal polymer (LCP), first electronic components supported by the first layer, and a second layer of LCP. The first layer is attached to the second layer by thermal bonds. Additionally, at least a portion of the first electronic components are located between the first layer and the second layer.

  12. Electronic Components Subsystems and Equipment: a Compilation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Developments in electronic components, subsystems, and equipment are summarized. Topics discussed include integrated circuit components and techniques, circuit components and techniques, and cables and connectors.

  13. Approach to In Situ Component Level Electronics Assembly Repair (CLEAR) for Constellation

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Oeftering, Richard C.

    2010-01-01

    Maintenance resupply is a significant issue for long duration space missions. Currently, the International Space Station (ISS) approaches maintenance primarily around replaceable modules called Orbital Replacement Units (ORU). While swapping out ORUs has served the ISS well keeping crew time for maintenance to a minimum, this approach assumes a substantial logistics capacity to provide replacement ORUs and return ORUs to Earth for repair. The ORUs used for ISS require relatively large blocks of replacement hardware even though the actual failed component may be several orders of magnitude smaller. The Component Level Electronics Assembly Repair (CLEAR) task was created to explore electronics repair down to the component level for future space missions. From 2006 to 2009, CLEAR was an activity under the Supportability project of the Exploration Technology Development Program. This paper describes the activities of CLEAR including making a case for component-level electronics repair, examination of current terrestrial repair hardware, and potential repair needs. Based on those needs, the CLEAR team proposes an architecture for an in-situ repair capability aboard a spacecraft or habitat. Additionally, this paper discusses recent progress toward developing in-space repair capabilities--including two spaceflight experiments-- and presents technology concepts which could help enable or benefit the same.

  14. Electronic warfare microwave components

    NASA Astrophysics Data System (ADS)

    Cosby, L. A.

    1984-09-01

    The current and projected state-of-the-art for electronic warfare (EW) microwave components is reviewed, with attention given to microwave components used extensively in EW systems for reconnaissance, threat warning, direction finding, and repeater jamming. It is emphasized that distributed EW systems must be able to operate from manned tactical and strategic platforms, with requirements including remote aerospace and space elements, as well as the need for expandable devices for detection, location, and denial/deception functions. EW coordination, or battle management, across a distributed system is a rapidly emerging requirement that must be integrated into current and projected command-and-control programs.

  15. Electronic Components and Circuits for Extreme Temperature Environments

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Dickman, John E.; Gerber, Scott

    2003-01-01

    Planetary exploration missions and deep space probes require electrical power management and control systems that are capable of efficient and reliable operation in very low temperature environments. Presently, spacecraft operating in the cold environment of deep space carry a large number of radioisotope heating units in order to maintain the surrounding temperature of the on-board electronics at approximately 20 C. Electronics capable of operation at cryogenic temperatures will not only tolerate the hostile environment of deep space but also reduce system size and weight by eliminating or reducing the radioisotope heating units and their associate structures; thereby reducing system development as well as launch costs. In addition, power electronic circuits designed for operation at low temperatures are expected to result in more efficient systems than those at room temperature. This improvement results from better behavior and tolerance in the electrical and thermal properties of semiconductor and dielectric materials at low temperatures. The Low Temperature Electronics Program at the NASA Glenn Research Center focuses on research and development of electrical components, circuits, and systems suitable for applications in the aerospace environment and deep space exploration missions. Research is being conducted on devices and systems for reliable use down to cryogenic temperatures. Some of the commercial-off-the-shelf as well as developed components that are being characterized include switching devices, resistors, magnetics, and capacitors. Semiconductor devices and integrated circuits including digital-to-analog and analog-to-digital converters, DC/DC converters, operational amplifiers, and oscillators are also being investigated for potential use in low temperature applications. An overview of the NASA Glenn Research Center Low Temperature Electronic Program will be presented in this paper. A description of the low temperature test facilities along with

  16. Screen printed passive components for flexible power electronics.

    PubMed

    Ostfeld, Aminy E; Deckman, Igal; Gaikwad, Abhinav M; Lochner, Claire M; Arias, Ana C

    2015-10-30

    Additive and low-temperature printing processes enable the integration of diverse electronic devices, both power-supplying and power-consuming, on flexible substrates at low cost. Production of a complete electronic system from these devices, however, often requires power electronics to convert between the various operating voltages of the devices. Passive components-inductors, capacitors, and resistors-perform functions such as filtering, short-term energy storage, and voltage measurement, which are vital in power electronics and many other applications. In this paper, we present screen-printed inductors, capacitors, resistors and an RLC circuit on flexible plastic substrates, and report on the design process for minimization of inductor series resistance that enables their use in power electronics. Printed inductors and resistors are then incorporated into a step-up voltage regulator circuit. Organic light-emitting diodes and a flexible lithium ion battery are fabricated and the voltage regulator is used to power the diodes from the battery, demonstrating the potential of printed passive components to replace conventional surface-mount components in a DC-DC converter application.

  17. Potting procedure for electronic components

    NASA Technical Reports Server (NTRS)

    Rubino, A. G.; Zimmerman, J.

    1977-01-01

    Potting process is modified to effect a match more closely between embedded electronic components, potting mediums, and thermal environment. Application of room-temperature vulcanizing silicone rubber band cured in modified thermal cycle minimizes coil-to-resin adhesion and thus lowers stresses between transformer and potting compound.

  18. Recent Progress on Stretchable Electronic Devices with Intrinsically Stretchable Components.

    PubMed

    Trung, Tran Quang; Lee, Nae-Eung

    2017-01-01

    Stretchable electronic devices with intrinsically stretchable components have significant inherent advantages, including simple fabrication processes, a high integrity of the stacked layers, and low cost in comparison with stretchable electronic devices based on non-stretchable components. The research in this field has focused on developing new intrinsically stretchable components for conductors, semiconductors, and insulators. New methodologies and fabrication processes have been developed to fabricate stretchable devices with intrinsically stretchable components. The latest successful examples of stretchable conductors for applications in interconnections, electrodes, and piezoresistive devices are reviewed here. Stretchable conductors can be used for electrode or sensor applications depending on the electrical properties of the stretchable conductors under mechanical strain. A detailed overview of the recent progress in stretchable semiconductors, stretchable insulators, and other novel stretchable materials is also given, along with a discussion of the associated technological innovations and challenges. Stretchable electronic devices with intrinsically stretchable components such as field-effect transistors (FETs), photodetectors, light-emitting diodes (LEDs), electronic skins, and energy harvesters are also described and a new strategy for development of stretchable electronic devices is discussed. Conclusions and future prospects for the development of stretchable electronic devices with intrinsically stretchable components are discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Prognostics for Electronics Components of Avionics Systems

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Saha, Bhaskar; Wysocki, Philip F.; Goebel, Kai F.

    2009-01-01

    Electronics components have and increasingly critical role in avionics systems and for the development of future aircraft systems. Prognostics of such components is becoming a very important research filed as a result of the need to provide aircraft systems with system level health management. This paper reports on a prognostics application for electronics components of avionics systems, in particular, its application to the Isolated Gate Bipolar Transistor (IGBT). The remaining useful life prediction for the IGBT is based on the particle filter framework, leveraging data from an accelerated aging tests on IGBTs. The accelerated aging test provided thermal-electrical overstress by applying thermal cycling to the device. In-situ state monitoring, including measurements of the steady-state voltages and currents, electrical transients, and thermal transients are recorded and used as potential precursors of failure.

  20. An automatic chip structure optical inspection system for electronic components

    NASA Astrophysics Data System (ADS)

    Song, Zhichao; Xue, Bindang; Liang, Jiyuan; Wang, Ke; Chen, Junzhang; Liu, Yunhe

    2018-01-01

    An automatic chip structure inspection system based on machine vision is presented to ensure the reliability of electronic components. It consists of four major modules, including a metallographic microscope, a Gigabit Ethernet high-resolution camera, a control system and a high performance computer. An auto-focusing technique is presented to solve the problem that the chip surface is not on the same focusing surface under the high magnification of the microscope. A panoramic high-resolution image stitching algorithm is adopted to deal with the contradiction between resolution and field of view, caused by different sizes of electronic components. In addition, we establish a database to storage and callback appropriate parameters to ensure the consistency of chip images of electronic components with the same model. We use image change detection technology to realize the detection of chip images of electronic components. The system can achieve high-resolution imaging for chips of electronic components with various sizes, and clearly imaging for the surface of chip with different horizontal and standardized imaging for ones with the same model, and can recognize chip defects.

  1. Imaging Cytoskeleton Components by Electron Microscopy.

    PubMed

    Svitkina, Tatyana

    2016-01-01

    The cytoskeleton is a complex of detergent-insoluble components of the cytoplasm playing critical roles in cell motility, shape generation, and mechanical properties of a cell. Fibrillar polymers-actin filaments, microtubules, and intermediate filaments-are major constituents of the cytoskeleton, which constantly change their organization during cellular activities. The actin cytoskeleton is especially polymorphic, as actin filaments can form multiple higher order assemblies performing different functions. Structural information about cytoskeleton organization is critical for understanding its functions and mechanisms underlying various forms of cellular activity. Because of the nanometer-scale thickness of cytoskeletal fibers, electron microscopy (EM) is a key tool to determine the structure of the cytoskeleton. This article describes application of rotary shadowing (or metal replica) EM for visualization of the cytoskeleton. The procedure is applicable to thin cultured cells growing on glass coverslips and consists of detergent extraction of cells to expose their cytoskeleton, chemical fixation to provide stability, ethanol dehydration and critical point drying to preserve three-dimensionality, rotary shadowing with platinum to create contrast, and carbon coating to stabilize replicas. This technique provides easily interpretable three-dimensional images, in which individual cytoskeletal fibers are clearly resolved, and individual proteins can be identified by immunogold labeling. More importantly, replica EM is easily compatible with live cell imaging, so that one can correlate the dynamics of a cell or its components, e.g., expressed fluorescent proteins, with high resolution structural organization of the cytoskeleton in the same cell.

  2. Cryogenic applications of commercial electronic components

    NASA Astrophysics Data System (ADS)

    Buchanan, Ernest D.; Benford, Dominic J.; Forgione, Joshua B.; Harvey Moseley, S.; Wollack, Edward J.

    2012-10-01

    We have developed a range of techniques useful for constructing analog and digital circuits for operation in a liquid Helium environment (4.2 K), using commercially available low power components. The challenges encountered in designing cryogenic electronics include finding components that can function usefully in the cold and possess low enough power dissipation so as not to heat the systems they are designed to measure. From design, test, and integration perspectives it is useful for components to operate similarly at room and cryogenic temperatures; however this is not a necessity. Some of the circuits presented here have been used successfully in the MUSTANG [1] and in the GISMO [2] camera to build a complete digital to analog multiplexer (which will be referred to as the Cryogenic Address Driver board). Many of the circuit elements described are of a more general nature rather than specific to the Cryogenic Address Driver board, and were studied as a part of a more comprehensive approach to addressing a larger set of cryogenic electronic needs.

  3. Cryogenic Applications of Commercial Electronic Components

    NASA Technical Reports Server (NTRS)

    Buchanan, Ernest D.; Benford, Dominic J.; Forgione, Joshua B.; Moseley, S. Harvey; Wollack, Edward J.

    2012-01-01

    We have developed a range of techniques useful for constructing analog and digital circuits for operation in a liquid Helium environment (4.2K), using commercially available low power components. The challenges encountered in designing cryogenic electronics include finding components that can function usefully in the cold and possess low enough power dissipation so as not to heat the systems they are designed to measure. From design, test, and integration perspectives it is useful for components to operate similarly at room and cryogenic temperatures; however this is not a necessity. Some of the circuits presented here have been used successfully in the MUSTANG and in the GISMO camera to build a complete digital to analog multiplexer (which will be referred to as the Cryogenic Address Driver board). Many of the circuit elements described are of a more general nature rather than specific to the Cryogenic Address Driver board, and were studied as a part of a more comprehensive approach to addressing a larger set of cryogenic electronic needs.

  4. Current Space Station Experiments Investigating Component Level Electronics Repair

    NASA Technical Reports Server (NTRS)

    Easton, John W.; Struk, Peter M.

    2010-01-01

    The Soldering in a Reduced Gravity Experiment (SoRGE) and Component Repair Experiment (CRE)-1 are tests performed on the International Space Station to determine the techniques, tools, and training necessary to allow future crews to perform manual electronics repairs at the component level. SoRGE provides information on the formation and internal structure of through-hole solder joints, illustrating the challenges and implications of soldering in reduced gravity. SoRGE showed a significant increase in internal void defects for joints formed in low gravity compared to normal gravity. Methods for mitigating these void defects were evaluated using a modified soldering process. CRE-1 demonstrated the removal, cleaning, and replacement of electronics components by manual means on functional circuit boards. The majority of components successful passed a post-repair functional test demonstrating the feasibility of component-level repair within the confines of a spacecraft. Together, these tasks provide information to recommend material and tool improvements, training improvements, and future work to help enable electronics repairs in future space missions.

  5. Textile-Based Electronic Components for Energy Applications: Principles, Problems, and Perspective

    PubMed Central

    Kaushik, Vishakha; Lee, Jaehong; Hong, Juree; Lee, Seulah; Lee, Sanggeun; Seo, Jungmok; Mahata, Chandreswar; Lee, Taeyoon

    2015-01-01

    Textile-based electronic components have gained interest in the fields of science and technology. Recent developments in nanotechnology have enabled the integration of electronic components into textiles while retaining desirable characteristics such as flexibility, strength, and conductivity. Various materials were investigated in detail to obtain current conductive textile technology, and the integration of electronic components into these textiles shows great promise for common everyday applications. The harvest and storage of energy in textile electronics is a challenge that requires further attention in order to enable complete adoption of this technology in practical implementations. This review focuses on the various conductive textiles, their methods of preparation, and textile-based electronic components. We also focus on fabrication and the function of textile-based energy harvesting and storage devices, discuss their fundamental limitations, and suggest new areas of study. PMID:28347078

  6. Textile-Based Electronic Components for Energy Applications: Principles, Problems, and Perspective.

    PubMed

    Kaushik, Vishakha; Lee, Jaehong; Hong, Juree; Lee, Seulah; Lee, Sanggeun; Seo, Jungmok; Mahata, Chandreswar; Lee, Taeyoon

    2015-09-07

    Textile-based electronic components have gained interest in the fields of science and technology. Recent developments in nanotechnology have enabled the integration of electronic components into textiles while retaining desirable characteristics such as flexibility, strength, and conductivity. Various materials were investigated in detail to obtain current conductive textile technology, and the integration of electronic components into these textiles shows great promise for common everyday applications. The harvest and storage of energy in textile electronics is a challenge that requires further attention in order to enable complete adoption of this technology in practical implementations. This review focuses on the various conductive textiles, their methods of preparation, and textile-based electronic components. We also focus on fabrication and the function of textile-based energy harvesting and storage devices, discuss their fundamental limitations, and suggest new areas of study.

  7. Screen printed passive components for flexible power electronics

    NASA Astrophysics Data System (ADS)

    Ostfeld, Aminy E.; Deckman, Igal; Gaikwad, Abhinav M.; Lochner, Claire M.; Arias, Ana C.

    2015-10-01

    Additive and low-temperature printing processes enable the integration of diverse electronic devices, both power-supplying and power-consuming, on flexible substrates at low cost. Production of a complete electronic system from these devices, however, often requires power electronics to convert between the various operating voltages of the devices. Passive components—inductors, capacitors, and resistors—perform functions such as filtering, short-term energy storage, and voltage measurement, which are vital in power electronics and many other applications. In this paper, we present screen-printed inductors, capacitors, resistors and an RLC circuit on flexible plastic substrates, and report on the design process for minimization of inductor series resistance that enables their use in power electronics. Printed inductors and resistors are then incorporated into a step-up voltage regulator circuit. Organic light-emitting diodes and a flexible lithium ion battery are fabricated and the voltage regulator is used to power the diodes from the battery, demonstrating the potential of printed passive components to replace conventional surface-mount components in a DC-DC converter application.

  8. Screen printed passive components for flexible power electronics

    PubMed Central

    Ostfeld, Aminy E.; Deckman, Igal; Gaikwad, Abhinav M.; Lochner, Claire M.; Arias, Ana C.

    2015-01-01

    Additive and low-temperature printing processes enable the integration of diverse electronic devices, both power-supplying and power-consuming, on flexible substrates at low cost. Production of a complete electronic system from these devices, however, often requires power electronics to convert between the various operating voltages of the devices. Passive components—inductors, capacitors, and resistors—perform functions such as filtering, short-term energy storage, and voltage measurement, which are vital in power electronics and many other applications. In this paper, we present screen-printed inductors, capacitors, resistors and an RLC circuit on flexible plastic substrates, and report on the design process for minimization of inductor series resistance that enables their use in power electronics. Printed inductors and resistors are then incorporated into a step-up voltage regulator circuit. Organic light-emitting diodes and a flexible lithium ion battery are fabricated and the voltage regulator is used to power the diodes from the battery, demonstrating the potential of printed passive components to replace conventional surface-mount components in a DC-DC converter application. PMID:26514331

  9. Component Repair Experiment-1: An Experiment Evaluating Electronic Component-Level Repair During Spaceflight

    NASA Technical Reports Server (NTRS)

    Easton, John W.; Struk, Peter M.

    2012-01-01

    The Component Repair Experiment-1 (CRE-1) examines the capability for astronauts to perform electronics repair tasks in space. The goal is to determine the current capabilities and limits for the crew, and to make recommendations to improve and expand the range of work that astronauts may perform. CRE-1 provided two-layer, functional circuit boards and replacement components, a small tool kit, written and video training materials, and 1 hr of hands on training for the crew slated to perform the experiment approximately 7 months prior to the mission. Astronauts Michael Fincke and Sandra Magnus performed the work aboard the International Space Station (ISS) in February and March 2009. The astronauts were able to remove and replace components successfully, demonstrating the feasibility of performing component-level electronics repairs within a spacecraft. Several unsuccessful tasks demonstrated areas in need of improvement. These include improved and longer training prior to a mission, an improved soldering iron with a higher operating temperature and steady power source, video training and practice boards for refresher work or practice before a repair, and improved and varied hand tools and containment system.

  10. 77 FR 51572 - Certain Wireless Consumer Electronics Devices and Components Thereof; Institution of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-24

    ... Electronics Devices and Components Thereof; Institution of Investigation Pursuant to 19 U.S.C. 1337 AGENCY: U... importation of certain wireless consumer electronics devices and components thereof by reason of infringement... wireless consumer electronics devices and components thereof that infringe one or more of claims 1, 6, 7, 9...

  11. Advanced Power Electronics Components

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.

    2004-01-01

    This paper will give a description and status of the Advanced Power Electronics Materials and Components Technology program being conducted by the NASA Glenn Research Center for future aerospace power applications. The focus of this research program is on the following: 1) New and/or significantly improved dielectric materials for the development of power capacitors with increased volumetric efficiency, energy density, and operating temperature. Materials being investigated include nanocrystalline and composite ceramic dielectrics and diamond-like carbon films; 2) New and/or significantly improved high frequency, high temperature, low loss soft magnetic materials for the development of transformers/inductors with increased power/energy density, electrical efficiency, and operating temperature. Materials being investigated include nanocrystalline and nanocomposite soft magnetic materials; 3) Packaged high temperature, high power density, high voltage, and low loss SiC diodes and switches. Development of high quality 4H- and 6H- SiC atomically smooth substrates to significantly improve device performance is a major emphasis of the SiC materials program; 4) Demonstration of high temperature (> 200 C) circuits using the components developed above.

  12. Evaluation of runaway-electron effects on plasma-facing components for NET

    NASA Astrophysics Data System (ADS)

    Bolt, H.; Calén, H.

    1991-03-01

    Runaway electrons which are generated during disruptions can cause serious damage to plasma facing components in a next generation device like NET. A study was performed to quantify the response of NET plasma facing components to runaway-electron impact. For the determination of the energy deposition in the component materials Monte Carlo computations were performed. Since the subsurface metal structures can be strongly heated under runaway-electron impact from the computed results damage threshold values for the thermal excursions were derived. These damage thresholds are strongly dependent on the materials selection and the component design. For a carbonmolybdenum divertor with 10 and 20 mm carbon armour thickness and 1 degree electron incidence the damage thresholds are 100 MJ/m 2 and 220 MJ/m 2. The thresholds for a carbon-copper divertor under the same conditions are about 50% lower. On the first wall damage is anticipated for energy depositions above 180 MJ/m 2.

  13. Antenna with distributed strip and integrated electronic components

    DOEpatents

    Rodenbeck, Christopher T [Albuquerque, NM; Payne, Jason A [Albuquerque, NM; Ottesen, Cory W [Albuquerque, NM

    2008-08-05

    An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element can be in proximity to a ground conductor and/or arranged as a dipole. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. An antenna can comprise a distributed strip patterned on a printed wiring board, integrated with electronic components mounted on top of or below the distributed strip, and substantially within the extents of the distributed strip. Mounting of electronic components on top of or below the distributed strip has little effect on the performance of the antenna, and allows for realizing the combination of the antenna and integrated components in a compact form. An embodiment of the invention comprises an antenna including a distributed strip, integrated with a battery mounted on the distributed strip.

  14. Arbitrary amplitude fast electron-acoustic solitons in three-electron component space plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mbuli, L. N.; Maharaj, S. K.; Department of Physics, University of the Western Cape

    We examine the characteristics of fast electron-acoustic solitons in a four-component unmagnetised plasma model consisting of cool, warm, and hot electrons, and cool ions. We retain the inertia and pressure for all the plasma species by assuming adiabatic fluid behaviour for all the species. By using the Sagdeev pseudo-potential technique, the allowable Mach number ranges for fast electron-acoustic solitary waves are explored and discussed. It is found that the cool and warm electron number densities determine the polarity switch of the fast electron-acoustic solitons which are limited by either the occurrence of fast electron-acoustic double layers or warm and hotmore » electron number density becoming unreal. For the first time in the study of solitons, we report on the coexistence of fast electron-acoustic solitons, in addition to the regular fast electron-acoustic solitons and double layers in our multi-species plasma model. Our results are applied to the generation of broadband electrostatic noise in the dayside auroral region.« less

  15. Calculating Strain Relief in Electronic-Component Leads

    NASA Technical Reports Server (NTRS)

    Snytsheuvel, H.

    1985-01-01

    Stress/strain formulas applicable to design of electronic-component leads compiled in report. Such things as factors of safety and whether or not lead is likely to fall in service determined in advance. Set of formulas is simple enough to be solved on programable hand-held calculator.

  16. Electrosprayed core-shell polymer-lipid nanoparticles for active component delivery

    NASA Astrophysics Data System (ADS)

    Eltayeb, Megdi; Stride, Eleanor; Edirisinghe, Mohan

    2013-11-01

    A key challenge in the production of multicomponent nanoparticles for healthcare applications is obtaining reproducible monodisperse nanoparticles with the minimum number of preparation steps. This paper focus on the use of electrohydrodynamic (EHD) techniques to produce core-shell polymer-lipid structures with a narrow size distribution in a single step process. These nanoparticles are composed of a hydrophilic core for active component encapsulation and a lipid shell. It was found that core-shell nanoparticles with a tunable size range between 30 and 90 nm and a narrow size distribution could be reproducibly manufactured. The results indicate that the lipid component (stearic acid) stabilizes the nanoparticles against collapse and aggregation and improves entrapment of active components, in this case vanillin, ethylmaltol and maltol. The overall structure of the nanoparticles produced was examined by multiple methods, including transmission electron microscopy and differential scanning calorimetry, to confirm that they were of core-shell form.

  17. Electrical and electronic devices and components: A compilation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Components and techniques which may be useful in the electronics industry are described. Topics discussed include transducer technology, printed-circuit technology, solid state devices, MOS transistors, Gunn device, microwave antennas, and position indicators.

  18. Radiation studies of optical and electronic components used in astronomical satellite studies

    NASA Technical Reports Server (NTRS)

    Becher, J.; Kernell, R. L.

    1981-01-01

    The synchronous orbit of the IUE carries the satellite through Earth's outer electron belt. A 40 mCi Sr90 source was used to simulate these electrons. A 5 mCi source of Co60 was used to simulate bremmstrahlung. A 10 MeV electron Linac and a 1.7 MeV electron Van de Graaf wer used to investigate the energy dependence of radiation effects and to perform radiations at a high flux rate. A 100 MeV proton cyclotron was used to simulate cosmic rays. Results are presented for three instrument systems of the IUE and measurements for specific components are reported. The three instrument systems were the ultraviolet converter, the fine error sensor (FES), and the SEC vidicon camera tube. The components were optical glasses, electronic components, silicon photodiodes, and UV window materials.

  19. Pamela observational capabilities of Jovian electrons component

    NASA Astrophysics Data System (ADS)

    di Felice, V.; PAMELA Collaboration

    PAMELA is a satellite-borne experiment that will be launched in the first half of 2006 It will make long duration measurements of cosmic radiation over an extended energy range 80Mev to 200 GeV Specifically PAMELA will measure the cosmic-ray antiproton and positron spectra over the largest energy range ever achieved 80MeV -- 190 GeV and will search for antinuclei with unprecedented sensitivity Furthermore it will measure the light nuclear component of cosmic rays and investigate phenomena connected with solar and earth physics The apparatus consists of a time of flight system a magnetic spectrometer an electromagnetic imaging calorimeter a shower tail catcher scintillator a neutron detector and an anticoincidence system In this work a study of the PAMELA capabilities to detect Jovian electrons is presented The Jovian magnetosphere is a powerful accelerator of electrons to several tens of MeV as observed at first by Pioneer 10 spacecraft 1973 The propagation of Jovian electrons to Earth is affected by modulation due to Corotating Interaction Regions CIR Their flux at Earth is moreover modulated because every sim 13 months Earth and Jupiter are aligned along the average direction of the Parker spiral of the Interplanetary Magnetic Field PAMELA will be able to measure the high energy tail of the Jovian electrons in the energy range from 50 MeV up to 130 MeV Moreover it will be possible to extract the Jovian component reaccelated at the solar wind termination shock above 130 MeV up to 2 GeV from the galactic flux

  20. Electric vehicle recycling 2020: Key component power electronics.

    PubMed

    Bulach, Winfried; Schüler, Doris; Sellin, Guido; Elwert, Tobias; Schmid, Dieter; Goldmann, Daniel; Buchert, Matthias; Kammer, Ulrich

    2018-04-01

    Electromobility will play a key role in order to reach the specified ambitious greenhouse gas reduction targets in the German transport sector of 42% between 1990 and 2030. Subsequently, a significant rise in the sale of electric vehicles (EVs) is to be anticipated in future. The amount of EVs to be recycled will rise correspondingly after a delay. This includes the recyclable power electronics modules which are incorporated in every EV as an important component for energy management. Current recycling methods using car shredders and subsequent post shredder technologies show high recycling rates for the bulk metals but are still associated with high losses of precious and strategic metals such as gold, silver, platinum, palladium and tantalum. For this reason, the project 'Electric vehicle recycling 2020 - key component power electronics' developed an optimised recycling route for recycling power electronics modules from EVs which is also practicable in series production and can be implemented using standardised technology. This 'WEEE recycling route' involves the disassembly of the power electronics from the vehicle and a subsequent recycling in an electronic end-of-life equipment recycling plant. The developed recycling process is economical under the current conditions and raw material prices, even though it involves considerably higher costs than recycling using the car shredder. The life cycle assessment shows basically good results, both for the traditional car shredder route and the developed WEEE recycling route: the latter provides additional benefits from some higher recovery rates and corresponding credits.

  1. Detection of counterfeit electronic components through ambient mass spectrometry and chemometrics.

    PubMed

    Pfeuffer, Kevin P; Caldwell, Jack; Shelley, Jake T; Ray, Steven J; Hieftje, Gary M

    2014-09-21

    In the last several years, illicit electronic components have been discovered in the inventories of several distributors and even installed in commercial and military products. Illicit or counterfeit electronic components include a broad category of devices that can range from the correct unit with a more recent date code to lower-specification or non-working systems with altered names, manufacturers and date codes. Current methodologies for identification of counterfeit electronics rely on visual microscopy by expert users and, while effective, are very time-consuming. Here, a plasma-based ambient desorption/ionization source, the flowing atmospheric pressure afterglow (FAPA) is used to generate a mass-spectral fingerprint from the surface of a variety of discrete electronic integrated circuits (ICs). Chemometric methods, specifically principal component analysis (PCA) and the bootstrapped error-adjusted single-sample technique (BEAST), are used successfully to differentiate between genuine and counterfeit ICs. In addition, chemical and physical surface-removal techniques are explored and suggest which surface-altering techniques were utilized by counterfeiters.

  2. Metal–Organic Frameworks as Active Materials in Electronic Sensor Devices

    PubMed Central

    Campbell, Michael G.; Dincă, Mircea

    2017-01-01

    In the past decade, advances in electrically conductive metal–organic frameworks (MOFs) and MOF-based electronic devices have created new opportunities for the development of next-generation sensors. Here we review this rapidly-growing field, with a focus on the different types of device configurations that have allowed for the use of MOFs as active components of electronic sensor devices. PMID:28498308

  3. A review of typical thermal fatigue failure models for solder joints of electronic components

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyan; Sun, Ruifeng; Wang, Yongdong

    2017-09-01

    For electronic components, cyclic plastic strain makes it easier to accumulate fatigue damage than elastic strain. When the solder joints undertake thermal expansion or cold contraction, different thermal strain of the electronic component and its corresponding substrate is caused by the different coefficient of thermal expansion of the electronic component and its corresponding substrate, leading to the phenomenon of stress concentration. So repeatedly, cracks began to sprout and gradually extend [1]. In this paper, the typical thermal fatigue failure models of solder joints of electronic components are classified and the methods of obtaining the parameters in the model are summarized based on domestic and foreign literature research.

  4. Fixture aids soldering of electronic components on circuit board

    NASA Technical Reports Server (NTRS)

    Ross, M. H.

    1966-01-01

    Spring clamp fixture holds small electronic components in a desired position while they are being soldered on a circuit board. The spring clamp is clipped on the edge of the circuit board and an adjustable spring-steel boom holds components against the board. The felt pad at the end of the boom is replaced with different attachments for other holding tasks.

  5. Thermoelectric-enhanced, liquid-based cooling of a multi-component electronic system

    DOEpatents

    Chainer, Timothy J; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Steinke, Mark E

    2015-11-10

    Methods are provided for facilitating cooling of an electronic component. The methods include providing: a liquid-cooled structure, a thermal conduction path coupling the electronic component and the liquid-cooled structure, a coolant loop in fluid communication with a coolant-carrying channel of the liquid-cooled structure, and an outdoor-air-cooled heat exchange unit coupled to facilitate heat transfer from the liquid-cooled structure via, at least in part, the coolant loop. The thermoelectric array facilitates transfer of heat from the electronic component to the liquid-cooled structure, and the heat exchange unit cools coolant passing through the coolant loop by dissipating heat from the coolant to outdoor ambient air. In one implementation, temperature of coolant entering the liquid-cooled structure is greater than temperature of the outdoor ambient air to which heat is dissipated.

  6. Thermoelectric-enhanced, liquid-based cooling of a multi-component electronic system

    DOEpatents

    Chainer, Timothy J; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Steinke, Mark E

    2015-05-12

    Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled structure, a thermal conduction path coupling the electronic component and the liquid-cooled structure, a coolant loop in fluid communication with a coolant-carrying channel of the liquid-cooled structure, and an outdoor-air-cooled heat exchange unit coupled to facilitate heat transfer from the liquid-cooled structure via, at least in part, the coolant loop. The thermoelectric array facilitates transfer of heat from the electronic component to the liquid-cooled structure, and the heat exchange unit cools coolant passing through the coolant loop by dissipating heat from the coolant to outdoor ambient air. In one implementation, temperature of coolant entering the liquid-cooled structure is greater than temperature of the outdoor ambient air to which heat is dissipated.

  7. 77 FR 32996 - Certain Handheld Electronic Computing Devices, Related Software, and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-04

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-769] Certain Handheld Electronic Computing Devices, Related Software, and Components Thereof; Termination of the Investigation Based on... electronic computing devices, related software, and components thereof by reason of infringement of certain...

  8. Virtual enterprise model for the electronic components business in the Nuclear Weapons Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferguson, T.J.; Long, K.S.; Sayre, J.A.

    1994-08-01

    The electronic components business within the Nuclear Weapons Complex spans organizational and Department of Energy contractor boundaries. An assessment of the current processes indicates a need for fundamentally changing the way electronic components are developed, procured, and manufactured. A model is provided based on a virtual enterprise that recognizes distinctive competencies within the Nuclear Weapons Complex and at the vendors. The model incorporates changes that reduce component delivery cycle time and improve cost effectiveness while delivering components of the appropriate quality.

  9. 21 CFR 11.200 - Electronic signature components and controls.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... signature components and controls. (a) Electronic signatures that are not based upon biometrics shall: (1... signatures based upon biometrics shall be designed to ensure that they cannot be used by anyone other than...

  10. 21 CFR 11.200 - Electronic signature components and controls.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... signature components and controls. (a) Electronic signatures that are not based upon biometrics shall: (1... signatures based upon biometrics shall be designed to ensure that they cannot be used by anyone other than...

  11. 21 CFR 11.200 - Electronic signature components and controls.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... signature components and controls. (a) Electronic signatures that are not based upon biometrics shall: (1... signatures based upon biometrics shall be designed to ensure that they cannot be used by anyone other than...

  12. 21 CFR 11.200 - Electronic signature components and controls.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... signature components and controls. (a) Electronic signatures that are not based upon biometrics shall: (1... signatures based upon biometrics shall be designed to ensure that they cannot be used by anyone other than...

  13. 78 FR 56245 - Certain Wireless Consumer Electronics Devices and Components Thereof; Notice of Request for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-12

    ... Electronics Devices and Components Thereof; Notice of Request for Statements on the Public Interest AGENCY: U... wireless consumer electronics devices and components thereof imported by respondents Acer, Inc. of Taipei... Communications, Inc. of San Diego, California; LG Electronics, Inc. of Seoul, Korea; LG Electronics U.S.A., Inc...

  14. Three component plasma electron distribution in the intermediate ionized coma of Comet Giacobini-Zinner

    NASA Astrophysics Data System (ADS)

    Zwickl, R. D.; Baker, D. N.; Bame, S. J.; Feldman, W. C.; Fuselier, S. A.; Huebner, W. F.; McComas, D. J.; Young, D. T.

    1986-04-01

    The observation of three distinct components of the electron distribution function measured in the intermediate ionized coma (IIC) and plasma tail of Comet Giacobini-Zinner is reported. It is believed that the cold component represents electrons produced close to the comet nucleus by ionization of cometary matter and subsequent cooling by Coulomb collisions. The second component also appears to be composed of electrons produced by photoionization of cometary neutrals, but sufficiently far from the nucleus that the distributions are largely unaffected by Coulomb interactions. The hot component is probably a population of electrons originating in the solar wind. Throughout the IIC, the electrostatic potential of the spacecraft was very low (less than 0.8 eV), implying that ICE generated very little impact-produced plasma during its passage.

  15. System for Cooling of Electronic Components

    NASA Astrophysics Data System (ADS)

    Vasil'ev, L. L.; Grakovich, L. P.; Dragun, L. A.; Zhuravlev, A. S.; Olekhnovich, V. A.; Rabetskii, M. I.

    2017-01-01

    Results of computational and experimental investigations of heat pipes having a predetermined thermal resistance and a system based on these pipes for air cooling of electronic components and diode assemblies of lasers are presented. An efficient compact cooling system comprising heat pipes with an evaporator having a capillary coating of a caked copper powder and a condenser having a developed outer finning, has been deviced. This system makes it possible to remove, to the ambient air, a heat flow of power more than 300 W at a temperature of 40-50°C.

  16. Cooled electronic system with liquid-cooled cold plate and thermal spreader coupled to electronic component

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chainer, Timothy J.; Graybill, David P.; Iyengar, Madhusudan K.

    Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface tomore » be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.« less

  17. Cooled electronic system with liquid-cooled cold plate and thermal spreader coupled to electronic component

    DOEpatents

    Chainer, Timothy J.; Graybill, David P.; Iyengar, Madhusudan K.; Kamath, Vinod; Kochuparambil, Bejoy J.; Schmidt, Roger R.; Steinke, Mark E.

    2016-08-09

    Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.

  18. Cooled electronic system with liquid-cooled cold plate and thermal spreader coupled to electronic component

    DOEpatents

    Chainer, Timothy J.; Graybill, David P.; Iyengar, Madhusudan K.; Kamath, Vinod; Kochuparambil, Bejoy J.; Schmidt, Roger R.; Steinke, Mark E.

    2016-04-05

    Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.

  19. 78 FR 16531 - Certain Electronic Devices for Capturing and Transmitting Images, and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-15

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-831] Certain Electronic Devices for Capturing and Transmitting Images, and Components Thereof; Commission Determination Not To Review an Initial... certain electronic devices for capturing and transmitting images, and components thereof. The complaint...

  20. Electronic Publishing. Technology Learning Activity. Teacher Edition. Technology Education Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This packet of technology learning activity (TLA) materials on electronic publishing for students in grades 6-10 consists of a technology education overview, information on use, and the instructor's and student's sections. The overview discusses the technology education program and materials. Components of the instructor and student sections are…

  1. Antioxidant activity of Sempervivum tectorum and its components.

    PubMed

    Sentjurc, Marjeta; Nemec, Marjana; Connor, Henry D; Abram, Veronika

    2003-04-23

    The antioxidant properties of components of leaf extracts of the evergreen plant, Sempervivum tectorum (ST), have been evaluated using UV irradiated liposomal systems containing the spin trap 5-(diethoxyphosphoryl)-5-methyl-pyrroline-N-oxide. Decreases in free radical activity in the liposomal systems as measured by electron paramagnetic resonance (EPR) spectroscopy demonstrate that the lipophilic ST juice components, kaempferol (KA) and kaempferol-3-glucoside (KG) contribute significantly to the antioxidant properties of the juice. EPR spectral simulation established the presence of oxygen and carbon centered free radical adducts. The mixtures with low pH, citric and malic acid, and ST juice reveal increased EPR signals from oxygen centered radicals in comparison to the control, pointing to the important role of pH in oxygen radical formation. Parallel assays that measured thiobarbituric acid related substances confirm the antioxidant effects of KA and KG and explain the results of spin trapping experiments complicated by low pH's.

  2. Electronic components embedded in a single graphene nanoribbon.

    PubMed

    Jacobse, P H; Kimouche, A; Gebraad, T; Ervasti, M M; Thijssen, J M; Liljeroth, P; Swart, I

    2017-07-25

    The use of graphene in electronic devices requires a band gap, which can be achieved by creating nanostructures such as graphene nanoribbons. A wide variety of atomically precise graphene nanoribbons can be prepared through on-surface synthesis, bringing the concept of graphene nanoribbon electronics closer to reality. For future applications it is beneficial to integrate contacts and more functionality directly into single ribbons by using heterostructures. Here, we use the on-surface synthesis approach to fabricate a metal-semiconductor junction and a tunnel barrier in a single graphene nanoribbon consisting of 5- and 7-atom wide segments. We characterize the atomic scale geometry and electronic structure by combined atomic force microscopy, scanning tunneling microscopy, and conductance measurements complemented by density functional theory and transport calculations. These junctions are relevant for developing contacts in all-graphene nanoribbon devices and creating diodes and transistors, and act as a first step toward complete electronic devices built into a single graphene nanoribbon.Adding functional electronic components to graphene nanoribbons requires precise control over their atomic structure. Here, the authors use a bottom-up approach to build a metal-semiconductor junction and a tunnel barrier directly into a single graphene nanoribbon, an exciting development for graphene-based electronic devices.

  3. A simplified methylcoenzyme M methylreductase assay with artificial electron donors and different preparations of component C from Methanobacterium thermoautotrophicum delta H.

    PubMed Central

    Hartzell, P L; Escalante-Semerena, J C; Bobik, T A; Wolfe, R S

    1988-01-01

    Different preparations of the methylreductase were tested in a simplified methylcoenzyme M methylreductase assay with artificial electron donors under a nitrogen atmosphere. ATP and Mg2+ stimulated the reaction. Tris(2,2'-bipyridine)ruthenium (II), chromous chloride, chromous acetate, titanium III citrate, 2,8-diaminoacridine, formamidinesulfinic acid, cob(I)alamin (B12s), and dithiothreitol were tested as electron donors; the most effective donor was titanium III citrate. Methylreductase (component C) was prepared by 80% ammonium sulfate precipitation, 70% ammonium sulfate precipitation, phenyl-Sepharose chromatography, Mono Q column chromatography, DEAE-cellulose column chromatography, or tetrahydromethanopterin affinity column chromatography. Methylreductase preparations which were able to catalyze methanogenesis in the simplified reaction mixture contained contaminating proteins. Homogeneous component C obtained from a tetrahydromethanopterin affinity column was not active in the simplified assay but was active in a methylreductase assay that contained additional protein components. Images PMID:3372480

  4. Light and redox switchable molecular components for molecular electronics.

    PubMed

    Browne, Wesley R; Feringa, Ben L

    2010-01-01

    The field of molecular and organic electronics has seen rapid progress in recent years, developing from concept and design to actual demonstration devices in which both single molecules and self-assembled monolayers are employed as light-responsive components. Research in this field has seen numerous unexpected challenges that have slowed progress and the initial promise of complex molecular-based computers has not yet been realised. Primarily this has been due to the realisation at an early stage that molecular-based nano-electronics brings with it the interface between the hard (semiconductor) and soft (molecular) worlds and the challenges which accompany working in such an environment. Issues such as addressability, cross-talk, molecular stability and perturbation of molecular properties (e.g., inhibition of photochemistry) have nevertheless driven development in molecular design and synthesis as well as our ability to interface molecular components with bulk metal contacts to a very high level of sophistication. Numerous groups have played key roles in progressing this field not least teams such as those led by Whitesides, Aviram, Ratner, Stoddart and Heath. In this short review we will however focus on the contributions from our own group and those of our collaborators, in employing diarylethene based molecular components.

  5. 78 FR 32689 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-31

    ..., Including Mobile Phones and Components Thereof Notice of Receipt of Complaint; Solicitation of Comments... Certain Portable Electronic Communications Devices, Including Mobile Phones and Components Thereof, DN... mobile phones and components thereof. The complaint names as respondents HTC Corporation of China and HTC...

  6. 77 FR 27078 - Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-08

    ... Phones and Tablet Computers, and Components Thereof; Notice of Receipt of Complaint; Solicitation of... entitled Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof... the United States after importation of certain electronic devices, including mobile phones and tablet...

  7. Improved model for detection of homogeneous production batches of electronic components

    NASA Astrophysics Data System (ADS)

    Kazakovtsev, L. A.; Orlov, V. I.; Stashkov, D. V.; Antamoshkin, A. N.; Masich, I. S.

    2017-10-01

    Supplying the electronic units of the complex technical systems with electronic devices of the proper quality is one of the most important problems for increasing the whole system reliability. Moreover, for reaching the highest reliability of an electronic unit, the electronic devices of the same type must have equal characteristics which assure their coherent operation. The highest homogeneity of the characteristics is reached if the electronic devices are manufactured as a single production batch. Moreover, each production batch must contain homogeneous raw materials. In this paper, we propose an improved model for detecting the homogeneous production batches of shipped lot of electronic components based on implementing the kurtosis criterion for the results of non-destructive testing performed for each lot of electronic devices used in the space industry.

  8. 78 FR 71643 - Certain Wireless Consumer Electronics Devices and Components Thereof; Commission Determination To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ... Electronics Devices and Components Thereof; Commission Determination To Review in Part A Final Initial... sale within the United States after importation of certain wireless consumer electronics devices and... Electronics, Inc. of Seoul, Korea and LG Electronics U.S.A., Inc. of Englewood Cliffs, New Jersey...

  9. Component-Level Electronic-Assembly Repair (CLEAR) Operational Concept

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Bradish, Martin A.; Juergens, Jeffrey R.; Lewis, Michael J.; Vrnak, Daniel R.

    2011-01-01

    This Component-Level Electronic-Assembly Repair (CLEAR) Operational Concept document was developed as a first step in developing the Component-Level Electronic-Assembly Repair (CLEAR) System Architecture (NASA/TM-2011-216956). The CLEAR operational concept defines how the system will be used by the Constellation Program and what needs it meets. The document creates scenarios for major elements of the CLEAR architecture. These scenarios are generic enough to apply to near-Earth, Moon, and Mars missions. The CLEAR operational concept involves basic assumptions about the overall program architecture and interactions with the CLEAR system architecture. The assumptions include spacecraft and operational constraints for near-Earth orbit, Moon, and Mars missions. This document addresses an incremental development strategy where capabilities evolve over time, but it is structured to prevent obsolescence. The approach minimizes flight hardware by exploiting Internet-like telecommunications that enables CLEAR capabilities to remain on Earth and to be uplinked as needed. To minimize crew time and operational cost, CLEAR exploits offline development and validation to support online teleoperations. Operational concept scenarios are developed for diagnostics, repair, and functional test operations. Many of the supporting functions defined in these operational scenarios are further defined as technologies in NASA/TM-2011-216956.

  10. 78 FR 34132 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... INTERNATIONAL TRADE COMMISSION [Docket No 2958] Certain Portable Electronic Communications Devices, Including Mobile Phones and Components Thereof; Correction to Notice of Receipt of Complaint; Solicitation... of complaint entitled Certain Portable Electronic Communications Devices, Including Mobile Phones and...

  11. Printing Electronic Components from Copper-Infused Ink and Thermoplastic Mediums

    NASA Astrophysics Data System (ADS)

    Flowers, Patrick F.

    The demand for printable electronics has sharply increased in recent years and is projected to continue to rise. Unfortunately, electronic materials which are suitable for desired applications while being compatible with available printing techniques are still often lacking. This thesis addresses two such challenging areas. In the realm of two-dimensional ink-based printing of electronics, a major barrier to the realization of printable computers that can run programs is the lack of a solution-coatable non-volatile memory with performance metrics comparable to silicon-based devices. To address this deficiency, I developed a nonvolatile memory based on Cu-SiO2 core-shell nanowires that can be printed from solution and exhibits on-off ratios of 106, switching speeds of 50 ns, a low operating voltage of 2 V, and operates for at least 104 cycles without failure. Each of these metrics is similar to or better than Flash memory (the write speed is 20 times faster than Flash). Memory architectures based on the individual memory cells demonstrated here could enable the printing of the more complex, embedded computing devices that are expected to make up an internet of things. Recently, the exploration of three-dimensional printing techniques to fabricate electronic materials began. A suitable general-purpose conductive thermoplastic filament was not available, however. In this work I examine the current state of conductive thermoplastic filaments, including a newly-released highly conductive filament that my lab has produced which we call Electrifi. I focus on the use of dual-material fused filament fabrication (FFF) to 3D print electronic components (conductive traces, resistors, capacitors, inductors) and circuits (a fully-printed high-pass filter). The resistivity of traces printed from conductive thermoplastic filaments made with carbon-black, graphene, and copper as conductive fillers was found to be 12, 0.78, and 0.014 ohm cm, respectively, enabling the creation of

  12. Microstructural Analysis of Ti-6Al-4V Components Made by Electron Beam Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Coleman, Rashadd L.

    Electron Beam Additive Manufacturing (EBAM) is a relatively new additive manufacturing (AM) technology that uses a high-energy electron beam to melt and fuse powders to build full-density parts in a layer by layer fashion. EBAM can fabricate metallic components, particularly, of complex shapes, in an efficient and cost-effective manner compared to conventional manufacturing means. EBAM is an enabling technology for rapid manufacturing (RM) of metallic components, and thus, can efficiently integrate the design and manufacturing of aerospace components. However, EBAM for aerospace-related applications remain limited because the effect of the EBAM process on part characteristics is not fully understood. In this study, various techniques including microhardness, optical microscopy (OM), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and electron backscatter diffraction (EBSD) were used to characterize Ti-6Al-4V components processed using EBAM. The results were compared to Ti-6Al-4V components processed using conventional techniques. In this study it is shown that EBAM built Ti-64 components have increased hardness, elastic modulus, and yield strength compared to wrought Ti-6Al-4V. Further, it is also shown in this study that the horizontal build EBAM Ti-6Al-4V has increased hardness, elastic modulus, and yield strength compared to vertical build EBAM due to a preferential growth of the beta phase.

  13. 27 CFR 73.11 - What are the required components and controls for acceptable electronic signatures?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... components and controls for acceptable electronic signatures? 73.11 Section 73.11 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY (CONTINUED) PROCEDURES AND PRACTICES ELECTRONIC SIGNATURES; ELECTRONIC SUBMISSION OF FORMS Electronic Signatures § 73.11...

  14. Phenomenological characteristic of the electron component in gamma-quanta initiated showers

    NASA Technical Reports Server (NTRS)

    Nikolsky, S. I.; Stamenov, J. N.; Ushev, S. Z.

    1985-01-01

    The phenomenological characteristics of the electron component in showers initiated by primary gamma-quanta were analyzed on the basis of the Tien Shan experimental data. It is shown that the lateral distribution of the electrons ion gamma-quanta initiated showers can be described with NKG - function with age parameters bar S equals 0, 76 plus or minus 0, 02, different from the same parameter for normal showers with the same size bar S equals 0, 85 plus or minus 0, 01. The lateral distribution of the correspondent electron energy flux in gamma-quanta initiated showers is steeper as in normal cosmic ray showers.

  15. Carrier generation and electronic properties of a single-component pure organic metal

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yuka; Terauchi, Takeshi; Sumi, Satoshi; Matsushita, Yoshitaka

    2017-01-01

    Metallic conduction generally requires high carrier concentration and wide bandwidth derived from strong orbital interaction between atoms or molecules. These requisites are especially important in organic compounds because a molecule is fundamentally an insulator; only multi-component salts with strong intermolecular interaction--namely, only charge transfer complexes and conducting polymers--have demonstrated intrinsic metallic behaviour. Herein we report a single-component electroactive molecule, zwitterionic tetrathiafulvalene(TTF)-extended dicarboxylate radical (TED), exhibiting metallic conduction even at low temperatures. TED exhibits d.c. conductivities of 530 S cm-1 at 300 K and 1,000 S cm-1 at 50 K with copper-like electronic properties. Spectroscopic and theoretical investigations of the carrier-generation mechanism and the electronic states of this single molecular species reveal a unique electronic structure with a spin-density gradient in the extended TTF moieties that becomes, in itself, a metallic state.

  16. Component-Level Electronic-Assembly Repair (CLEAR) System Architecture

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Bradish, Martin A.; Juergens, Jeffrey R.; Lewis, Michael J.; Vrnak, Daniel R.

    2011-01-01

    This document captures the system architecture for a Component-Level Electronic-Assembly Repair (CLEAR) capability needed for electronics maintenance and repair of the Constellation Program (CxP). CLEAR is intended to improve flight system supportability and reduce the mass of spares required to maintain the electronics of human rated spacecraft on long duration missions. By necessity it allows the crew to make repairs that would otherwise be performed by Earth based repair depots. Because of practical knowledge and skill limitations of small spaceflight crews they must be augmented by Earth based support crews and automated repair equipment. This system architecture covers the complete system from ground-user to flight hardware and flight crew and defines an Earth segment and a Space segment. The Earth Segment involves database management, operational planning, and remote equipment programming and validation processes. The Space Segment involves the automated diagnostic, test and repair equipment required for a complete repair process. This document defines three major subsystems including, tele-operations that links the flight hardware to ground support, highly reconfigurable diagnostics and test instruments, and a CLEAR Repair Apparatus that automates the physical repair process.

  17. Vibrational Analysis of Engine Components Using Neural-Net Processing and Electronic Holography

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Fite, E. Brian; Mehmed, Oral; Thorp, Scott A.

    1997-01-01

    The use of computational-model trained artificial neural networks to acquire damage specific information from electronic holograms is discussed. A neural network is trained to transform two time-average holograms into a pattern related to the bending-induced-strain distribution of the vibrating component. The bending distribution is very sensitive to component damage unlike the characteristic fringe pattern or the displacement amplitude distribution. The neural network processor is fast for real-time visualization of damage. The two-hologram limit makes the processor more robust to speckle pattern decorrelation. Undamaged and cracked cantilever plates serve as effective objects for testing the combination of electronic holography and neural-net processing. The requirements are discussed for using finite-element-model trained neural networks for field inspections of engine components. The paper specifically discusses neural-network fringe pattern analysis in the presence of the laser speckle effect and the performances of two limiting cases of the neural-net architecture.

  18. Vibrational Analysis of Engine Components Using Neural-Net Processing and Electronic Holography

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Fite, E. Brian; Mehmed, Oral; Thorp, Scott A.

    1998-01-01

    The use of computational-model trained artificial neural networks to acquire damage specific information from electronic holograms is discussed. A neural network is trained to transform two time-average holograms into a pattern related to the bending-induced-strain distribution of the vibrating component. The bending distribution is very sensitive to component damage unlike the characteristic fringe pattern or the displacement amplitude distribution. The neural network processor is fast for real-time visualization of damage. The two-hologram limit makes the processor more robust to speckle pattern decorrelation. Undamaged and cracked cantilever plates serve as effective objects for testing the combination of electronic holography and neural-net processing. The requirements are discussed for using finite-element-model trained neural networks for field inspections of engine components. The paper specifically discusses neural-network fringe pattern analysis in the presence of the laser speckle effect and the performances of two limiting cases of the neural-net architecture.

  19. Role of the photosynthetic electron transfer chain in electrogenic activity of cyanobacteria.

    PubMed

    Pisciotta, John M; Zou, Yongjin; Baskakov, Ilia V

    2011-07-01

    Certain anaerobic bacteria, termed electrogens, produce an electric current when electrons from oxidized organic molecules are deposited to extracellular metal oxide acceptors. In these heterotrophic "metal breathers", the respiratory electron transport chain (R-ETC) works in concert with membrane-bound cytochrome oxidases to transfer electrons to the extracellular acceptors. The diversity of bacteria able to generate an electric current appears more widespread than previously thought, and aerobic phototrophs, including cyanobacteria, possess electrogenic activity. However, unlike heterotrophs, cyanobacteria electrogenic activity is light dependent, which suggests that a novel pathway could exist. To elucidate the electrogenic mechanism of cyanobacteria, the current studies used site-specific inhibitors to target components of the photosynthetic electron transport chain (P-ETC) and cytochrome oxidases. Here, we show that (1) P-ETC and, particularly, water photolysed by photosystem II (PSII) is the source of electrons discharged to the environment by illuminated cyanobacteria, and (2) water-derived electrons are transmitted from PSII to extracellular electron acceptors via plastoquinone and cytochrome bd quinol oxidase. Two cyanobacterial genera (Lyngbya and Nostoc) displayed very similar electrogenic responses when treated with P-ETC site-specific inhibitors, suggesting a conserved electrogenic pathway. We propose that in cyanobacteria, electrogenic activity may represent a form of overflow metabolism to protect cells under high-intensity light. This study offers insight into electron transfer between phototrophic microorganisms and the environment and expands our knowledge into biologically based mechanisms for harnessing solar energy.

  20. Composition and method for removing photoresist materials from electronic components

    DOEpatents

    Davenhall, Leisa B [Santa Fe, NM; Rubin, James B [Los Alamos, NM; Taylor, Craig M. V. [Jemez Springs, NM

    2008-06-03

    Composition and method for removing photoresist materials from electronic components. The composition is a mixture of at least one dense phase fluid and at least one dense phase fluid modifier. The method includes exposing a substrate to at least one pulse of the composition in a supercritical state to remove photoresist materials from the substrate.

  1. Composition and method for removing photoresist materials from electronic components

    DOEpatents

    Davenhall, Leisa B.; Rubin, James B.; Taylor, Craig M.

    2005-01-25

    Composition and method for removing photoresist materials from electronic components. The composition is a mixture of at least one dense phase fluid and at least one dense phase fluid modifier. The method includes exposing a substrate to at least one pulse of the composition in a supercritical state to remove photoresist materials from the substrate.

  2. 77 FR 4059 - Certain Electronic Devices for Capturing and Transmitting Images, and Components Thereof; Receipt...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-26

    ... Images, and Components Thereof; Receipt of Complaint; Solicitation of Comments Relating to the Public... Devices for Capturing and Transmitting Images, and Components Thereof, DN 2869; the Commission is... importation of certain electronic devices for capturing and transmitting images, and components thereof. The...

  3. Food components with anticaries activity.

    PubMed

    Gazzani, Gabriella; Daglia, Maria; Papetti, Adele

    2012-04-01

    Caries is the most common oral infectious disease in the world. Its development is influenced also by diet components that interfere with pathogen mutans group Streptococci (MGS) activity. A very active research to identify functional foods and their components that are generally recognised as safe has been ongoing, with the aim of developing alternative approaches, to the use of synthetic chlorhexidine, and at the reduction or prevention of caries. Until now convincing evidence exists only for green tea as a functional food for oral health, partly owing to its high content of catechins, especially epigallocatechin-gallate. A number of other foods showed potential anticaries activity. Some other foods able to act against MGS growth and/or their virulence factors in in vitro tests are: apple, red grape seeds, red wine (proanthocyanidins), nutmeg (macelignan), ajowan caraway (nafthalen-derivative), coffee (trigonelline, nicotinic and chlorogenic acids, melanoidins), barley coffee (melanoidins), chicory and mushroom (quinic acid). In vivo anticaries activity has been shown by cranberry (procyanidins), glycyrrhiza root (glycyrrhizol-A), myrtus ethanolic extract, garlic aqueous extract, cocoa extracts (procyanidins), and propolis (apigenin, tt-farnesol). Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Electronic switching circuit uses complementary non-linear components

    NASA Technical Reports Server (NTRS)

    Zucker, O. S.

    1972-01-01

    Inherent switching properties of saturable inductors and storage diodes are combined to perform large variety of electronic functions, such as pulse shaping, gating, and multiplexing. Passive elements replace active switching devices in generation of complex waveforms.

  5. Soft Active Materials for Actuation, Sensing, and Electronics

    NASA Astrophysics Data System (ADS)

    Kramer, Rebecca Krone

    Future generations of robots, electronics, and assistive medical devices will include systems that are soft and elastically deformable, allowing them to adapt their morphology in unstructured environments. This will require soft active materials for actuation, circuitry, and sensing of deformation and contact pressure. The emerging field of soft robotics utilizes these soft active materials to mimic the inherent compliance of natural soft-bodied systems. As the elasticity of robot components increases, the challenges for functionality revert to basic questions of fabrication, materials, and design - whereas such aspects are far more developed for traditional rigid-bodied systems. This thesis will highlight preliminary materials and designs that address the need for soft actuators and sensors, as well as emerging fabrication techniques for manufacturing stretchable circuits and devices based on liquid-embedded elastomers.

  6. 77 FR 68829 - Certain Electronic Digital Media Devices and Components Thereof; Notice of Request for Statements...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-796] Certain Electronic Digital Media... electronic digital media devices and components thereof imported by respondents Samsung Electronics Co, Ltd... Samsung. FOR FURTHER INFORMATION CONTACT: Cathy Chen, Office of the General Counsel, U.S. International...

  7. Recommendations for Enabling Manual Component Level Electronic Repair for Future Space Missions

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Easton, John W.; Funk, Gregory P.; Latta, Gary S.; Ganster, Andrew W.; Estes, Brett E.

    2011-01-01

    Long duration missions to the Moon and Mars pose a number of challenges to mission designers, controllers, and the crews. Among these challenges are planning for corrective maintenance actions which often require a repair. Current repair strategies on the International Space Station (ISS) rely primarily on the use of Orbital Replacement Units (ORUs), where a faulty unit is replaced with a spare, and the faulty unit typically returns to Earth for analysis and possible repair. The strategy of replace to repair has posed challenges even for the ISS program. Repairing faulty hardware at lower levels such as the component level can help maintain system availability in situations where no spares exist and potentially reduce logistic resupply mass.This report provides recommendations to help enable manual replacement of electronics at the component-level for future manned space missions. The recommendations include hardware, tools, containment options, and crew training. The recommendations are based on the work of the Component Level Electronics Assembly Repair (CLEAR) task of the Exploration Technology Development Program from 2006 to 2009. The recommendations are derived based on the experience of two experiments conducted by the CLEAR team aboard the International Space Station as well as a group of experienced Miniature/Microminiature (2M) electronics repair technicians and instructors from the U.S. Navy 2M Project Office. The emphasis of the recommendations is the physical repair. Fault diagnostics and post-repair functional test are discussed in other CLEAR reports.

  8. Component-Level Electronic-Assembly Repair (CLEAR) Spacecraft Circuit Diagnostics by Analog and Complex Signature Analysis

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Wade, Raymond P.; Izadnegahdar, Alain

    2011-01-01

    The Component-Level Electronic-Assembly Repair (CLEAR) project at the NASA Glenn Research Center is aimed at developing technologies that will enable space-flight crews to perform in situ component-level repair of electronics on Moon and Mars outposts, where there is no existing infrastructure for logistics spares. These technologies must provide effective repair capabilities yet meet the payload and operational constraints of space facilities. Effective repair depends on a diagnostic capability that is versatile but easy to use by crew members that have limited training in electronics. CLEAR studied two techniques that involve extensive precharacterization of "known good" circuits to produce graphical signatures that provide an easy-to-use comparison method to quickly identify faulty components. Analog Signature Analysis (ASA) allows relatively rapid diagnostics of complex electronics by technicians with limited experience. Because of frequency limits and the growing dependence on broadband technologies, ASA must be augmented with other capabilities. To meet this challenge while preserving ease of use, CLEAR proposed an alternative called Complex Signature Analysis (CSA). Tests of ASA and CSA were used to compare capabilities and to determine if the techniques provided an overlapping or complementary capability. The results showed that the methods are complementary.

  9. Solder Reflow Failures in Electronic Components During Manual Soldering

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander; Greenwell, Chris; Felt, Frederick

    2008-01-01

    This viewgraph presentation reviews the solder reflow failures in electronic components that occur during manual soldering. It discusses the specifics of manual-soldering-induced failures in plastic devices with internal solder joints. The failure analysis turned up that molten solder had squeezed up to the die surface along the die molding compound interface, and the dice were not protected with glassivation allowing solder to short gate and source to the drain contact. The failure analysis concluded that the parts failed due to overheating during manual soldering.

  10. Engineering Design Handbook. Dielectric Embedding of Electrical or Electronic Components

    DTIC Science & Technology

    1979-04-06

    its excellent electrical properties are maintained at elevated temperatures. Even when the insulation is exposed to a direct flame, it burns to a...machine by one operator; these molds are generally equipped with insulated handles to prevent personal in- jury from burns . In electronic embedment...Excellent for large volume runs; tooling is minimal. Pres- ence of a shell or housing as- sures no exposed components, as can occur in casting. Some

  11. Selection of independent components based on cortical mapping of electromagnetic activity

    NASA Astrophysics Data System (ADS)

    Chan, Hui-Ling; Chen, Yong-Sheng; Chen, Li-Fen

    2012-10-01

    Independent component analysis (ICA) has been widely used to attenuate interference caused by noise components from the electromagnetic recordings of brain activity. However, the scalp topographies and associated temporal waveforms provided by ICA may be insufficient to distinguish functional components from artifactual ones. In this work, we proposed two component selection methods, both of which first estimate the cortical distribution of the brain activity for each component, and then determine the functional components based on the parcellation of brain activity mapped onto the cortical surface. Among all independent components, the first method can identify the dominant components, which have strong activity in the selected dominant brain regions, whereas the second method can identify those inter-regional associating components, which have similar component spectra between a pair of regions. For a targeted region, its component spectrum enumerates the amplitudes of its parceled brain activity across all components. The selected functional components can be remixed to reconstruct the focused electromagnetic signals for further analysis, such as source estimation. Moreover, the inter-regional associating components can be used to estimate the functional brain network. The accuracy of the cortical activation estimation was evaluated on the data from simulation studies, whereas the usefulness and feasibility of the component selection methods were demonstrated on the magnetoencephalography data recorded from a gender discrimination study.

  12. Cytochrome bc1-cy Fusion Complexes Reveal the Distance Constraints for Functional Electron Transfer Between Photosynthesis Components*

    PubMed Central

    Lee, Dong-Woo; Öztürk, Yavuz; Osyczka, Artur; Cooley, Jason W.; Daldal, Fevzi

    2008-01-01

    Photosynthetic (Ps) growth of purple non-sulfur bacteria such as Rhodobacter capsulatus depends on the cyclic electron transfer (ET) between the ubihydroquinone (QH2): cytochrome (cyt) c oxidoreductases (cyt bc1 complex), and the photochemical reaction centers (RC), mediated by either a membrane-bound (cyt cy) or a freely diffusible (cyt c2) electron carrier. Previously, we constructed a functional cyt bc1-cy fusion complex that supported Ps growth solely relying on membrane-confined ET (Lee, D.-W., Ozturk, Y., Mamedova, A., Osyczka, A., Cooley, J. W., and Daldal, F. (2006) Biochim. Biophys. Acta1757 ,346 -35216781662). In this work, we further characterized this cyt bc1-cy fusion complex, and used its derivatives with shorter cyt cy linkers as “molecular rulers” to probe the distances separating the Ps components. Comparison of the physicochemical properties of both membrane-embedded and purified cyt bc1-cy fusion complexes established that these enzymes were matured and assembled properly. Light-activated, time-resolved kinetic spectroscopy analyses revealed that their variants with shorter cyt cy linkers exhibited fast, native-like ET rates to the RC via the cyt bc1. However, shortening the length of the cyt cy linker decreased drastically this electronic coupling between the cyt bc1-cy fusion complexes and the RC, thereby limiting Ps growth. The shortest and still functional cyt cy linker was about 45 amino acids long, showing that the minimal distance allowed between the cyt bc1-cy fusion complexes and the RC and their surrounding light harvesting proteins was very short. These findings support the notion that membrane-bound Ps components form large, active structural complexes that are “hardwired” for cyclic ET. PMID:18343816

  13. LDEF active optical system components experiment

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1992-01-01

    A preliminary report on the Active Optical System Components Experiment is presented. This experiment contained 136 components in a six inch deep tray including lasers, infrared detectors and arrays, ultraviolet light detectors, light-emitting diodes, a light modulator, flash lamps, optical filters, glasses, and samples of surface finishes. Thermal, mechanical, and structural considerations leading to the design of the tray hardware are discussed. In general, changes in the retested component characteristics appear as much related to the passage of time as to the effects of the space environment, but organic materials, multilayer optical interference filters, and extreme-infrared reflectivity of black paints show unexpected changes.

  14. [The noncoherent components of evoked brain activity].

    PubMed

    Kovalev, V P; Novototskiĭ-Vlasov, V Iu

    1998-01-01

    Poststimulus spectral EEG changes and their correlation with evoked potential (EP) were analyzed. The non-stationary components of the brain evoked activity were revealed in 32 volunteers during simple motor reaction and choice reaction to visual stimuli. This nonstationary activity was manifested in poststimulus changes in the mean wave half-period duration (MWHPD) and mean wave half-period power of the delta- and beta-frequency oscillations computed in the EEG realizations after the EP subtraction. The latencies of high-frequency EP components fell into the intervals of the MWHPD decrease and increase in the power of beta-oscillations, and the latencies of low-frequency EP components coincided with the intervals of the MWHPD increase and decrease in the power of delta and beta-oscillations, which pointed to correlation of these changes with the EP.

  15. In vitro anti-MRSA activity of Couroupita guianensis extract and its component Tryptanthrin.

    PubMed

    Costa, Danielle Cristina Machado; Azevedo, Mariana Maria Barros de; Silva, Davi Oliveira E; Romanos, Maria Teresa Villela; Souto-Padrón, Thais Cristina Baeta Soares; Alviano, Celuta Sales; Alviano, Daniela Sales

    2017-09-01

    Couroupita guianensis is known in Brazil as 'Abricó-de-Macaco' and it has some attributes such as: antihypertensive, analgesic and anti-inflammatory activities. This study evaluated the antimicrobial activity of ethanolic extract and fractions of C. guianensis flowers and isolation of bioactive component. These extracts and fractions were subjected to agar diffusion, MIC, TLC and bioautography to bacteria, filamentous fungi and yeasts. Among the fractions of EtOH extract, the DCM fraction was the most active, particularly against Methicillin-resistant Staphylococcus aureus (MRSA) with MIC of 156 μg/mL. The active compound in this fraction was identified as Tryptanthrin, which showed promising antibacterial activity for MRSA showing MIC of 62.5 μg/mL. Ultrastructural analysis of MRSA incubated in the presence of Tryptanthrin by transmission electron microscope showed significant alterations in the cellular structure. Cytotoxicity tests demonstrated that DCM fraction and Tryptanthrin showed low toxicity, which makes it a promising candidate for alternative therapies to control and combat diseases.

  16. 78 FR 12354 - Certain Wireless Consumer Electronics Devices and Components Thereof; Commission Determination...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-853] Certain Wireless Consumer Electronics Devices and Components Thereof; Commission Determination Concerning an Initial Determination Granting a Motion To Amend Complaint and Notice of Investigation AGENCY: U.S. International Trade...

  17. Electronics for Piezoelectric Smart Structures

    NASA Technical Reports Server (NTRS)

    Warkentin, D. J.; Tani, J.

    1997-01-01

    This paper briefly presents work addressing some of the basic considerations for the electronic components used in smart structures incorporating piezoelectric elements. After general remarks on the application of piezoelectric elements to the problem of structural vibration control, three main topics are described. Work to date on the development of techniques for embedding electronic components within structural parts is presented, followed by a description of the power flow and dissipation requirements of those components. Finally current work on the development of electronic circuits for use in an 'active wall' for acoustic noise is introduced.

  18. Rapid and quantitative determination of 10 major active components in Lonicera japonica Thunb. by ultrahigh pressure extraction-HPLC/DAD

    NASA Astrophysics Data System (ADS)

    Fan, Li; Lin, Changhu; Duan, Wenjuan; Wang, Xiao; Liu, Jianhua; Liu, Feng

    2015-01-01

    An ultrahigh pressure extraction (UPE)-high performance liquid chromatography (HPLC)/diode array detector (DAD) method was established to evaluate the quality of Lonicera japonica Thunb. Ten active components, including neochlorogenic acid, chlorogenic acid, 4-dicaffeoylquinic acid, caffeic acid, rutin, luteoloside, isochlorogenic acid B, isochlorogenic acid A, isochlorogenic acid C, and quercetin, were qualitatively evaluated and quantitatively determined. Scanning electron microscope images elucidated the bud surface microstructure and extraction mechanism. The optimal extraction conditions of the UPE were 60% methanol solution, 400 MPa of extraction pressure, 3 min of extraction time, and 1:30 (g/mL) solid:liquid ratio. Under the optimized conditions, the total extraction yield of 10 active components was 57.62 mg/g. All the components showed good linearity (r2 ≥ 0.9994) and recoveries. This method was successfully applied to quantify 10 components in 22 batches of L. japonica samples from different areas. Compared with heat reflux extraction and ultrasonic-assisted extraction, UPE can be considered as an alternative extraction technique for fast extraction of active ingredient from L. japonica.

  19. 76 FR 55944 - In the Matter of Certain Electronic Devices With Image Processing Systems, Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-09

    ... With Image Processing Systems, Components Thereof, and Associated Software; Notice of Commission... importation of certain electronic devices with image processing systems, components thereof, and associated... direct infringement is asserted and the accused article does not meet every limitation of the asserted...

  20. Microsupercapacitors as miniaturized energy-storage components for on-chip electronics

    NASA Astrophysics Data System (ADS)

    Kyeremateng, Nana Amponsah; Brousse, Thierry; Pech, David

    2017-01-01

    The push towards miniaturized electronics calls for the development of miniaturized energy-storage components that can enable sustained, autonomous operation of electronic devices for applications such as wearable gadgets and wireless sensor networks. Microsupercapacitors have been targeted as a viable route for this purpose, because, though storing less energy than microbatteries, they can be charged and discharged much more rapidly and have an almost unlimited lifetime. In this Review, we discuss the progress and the prospects of integrated miniaturized supercapacitors. In particular, we discuss their power performances and emphasize the need of a three-dimensional design to boost their energy-storage capacity. This is obtainable, for example, through self-supported nanostructured electrodes. We also critically evaluate the performance metrics currently used in the literature to characterize microsupercapacitors and offer general guidelines to benchmark performances towards prospective applications.

  1. Microsupercapacitors as miniaturized energy-storage components for on-chip electronics.

    PubMed

    Kyeremateng, Nana Amponsah; Brousse, Thierry; Pech, David

    2017-01-01

    The push towards miniaturized electronics calls for the development of miniaturized energy-storage components that can enable sustained, autonomous operation of electronic devices for applications such as wearable gadgets and wireless sensor networks. Microsupercapacitors have been targeted as a viable route for this purpose, because, though storing less energy than microbatteries, they can be charged and discharged much more rapidly and have an almost unlimited lifetime. In this Review, we discuss the progress and the prospects of integrated miniaturized supercapacitors. In particular, we discuss their power performances and emphasize the need of a three-dimensional design to boost their energy-storage capacity. This is obtainable, for example, through self-supported nanostructured electrodes. We also critically evaluate the performance metrics currently used in the literature to characterize microsupercapacitors and offer general guidelines to benchmark performances towards prospective applications.

  2. 3D-printed optical active components

    NASA Astrophysics Data System (ADS)

    Suresh Nair, S.; Nuding, J.; Heinrich, A.

    2018-02-01

    Additive Manufacturing (AM) has the potential to become a powerful tool in the realization of complex optical components. The primary advantage that meets the eye, is that fabrication of geometrically complicated optical structures is made easier in AM as compared to the conventional fabrication methods (using molds for instance). But this is not the only degree of freedom that AM has to offer. With the multitude of materials suitable for AM in the market, it is possible to introduce functionality into the components one step before fabrication: by altering the raw material. A passive example would be to use materials with varying properties together, in a single manufacturing step, constructing samples with localized refractive indices for instance. An active approach is to blend in materials with distinct properties into the photopolymer resin and manufacturing with this composite material. Our research is currently focused in this direction, with the desired optical property to be introduced being Photoluminescence. Formation of nanocomposite mixtures to produce samples is the current approach. With this endeavor, new sensor systems can be realized, which may be used to measure the absorption spectra of biological samples. Thereby the sample compartment, the optics and the spectral light source (different quantum dots) are 3D-printed in one run. This component can be individually adapted to the biological sample with respect to wavelength, optical and mechanical properties. Here we would like to present our work on the additive manufacturing of an active optical component. Based on the stereolithography method, a monolithic optical component was 3D-printed, showing light emission at different defined wavelengths due to UV excited quantum dots inside the 3D-printed optics.

  3. Toxicity of electronic waste leachates to Daphnia magna: screening and toxicity identification evaluation of different products, components, and materials.

    PubMed

    Lithner, Delilah; Halling, Maja; Dave, Göran

    2012-05-01

    Electronic waste has become one of the fastest growing waste problems in the world. It contains both toxic metals and toxic organics. The aim of this study was to (1) investigate to what extent toxicants can leach from different electronic products, components, and materials into water and (2) identify which group of toxicants (metals or hydrophobic organics) that is causing toxicity. Components from five discarded electronic products (cell phone, computer, phone modem, keyboard, and computer mouse) were leached in deionised water for 3 days at 23°C in concentrations of 25 g/l for metal components, 50 g/l for mixed-material components, and 100 g/l for plastic components. The water phase was tested for acute toxicity to Daphnia magna. Eighteen of 68 leachates showed toxicity (with immobility of D. magna ≥ 50% after 48 h) and came from metal or mixed-material components. The 8 most toxic leachates, with 48 h EC(50)s ranging from 0.4 to 20 g/l, came from 2 circuit sheets (key board), integrated drive electronics (IDE) cable clips (computer), metal studs (computer), a circuit board (computer mouse), a cord (phone modem), mixed parts (cell phone), and a circuit board (key board). All 5 electronic products were represented among them. Toxicity identification evaluations (with C18 and CM resins filtrations and ethylenediaminetetraacetic acid addition) indicated that metals caused the toxicity in the majority of the most toxic leachates. Overall, this study has shown that electronic waste can leach toxic compounds also during short-term leaching with pure water.

  4. 76 FR 12994 - In the Matter of Certain Digital Televisions and Components Thereof, and Certain Electronic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-09

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-764] In the Matter of Certain Digital Televisions and Components Thereof, and Certain Electronic Devices Having a Blu-Ray Disc Player and Components Thereof; Notice of Investigation AGENCY: U.S. International Trade Commission. ACTION: Institution of...

  5. Measurement of the intrinsic electron neutrino component in the T2K neutrino beam with the ND280 detector

    NASA Astrophysics Data System (ADS)

    Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Ariga, T.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Bentham, S. W.; Berardi, V.; Berger, B. E.; Berkman, S.; Bertram, I.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Di Lodovico, F.; Di Luise, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dufour, F.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery, S.; Ereditato, A.; Escudero, L.; Finch, A. J.; Floetotto, L.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gomez-Cadenas, J. J.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Ives, S. J.; Iwai, E.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koseki, K.; Koshio, Y.; Kreslo, I.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kumaratunga, S.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Lamont, I.; Larkin, E.; Laveder, M.; Lawe, M.; Lazos, M.; Lee, K. P.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Ludovici, L.; Macaire, M.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Maruyama, T.; Marzec, J.; Mathie, E. L.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Monfregola, L.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nagasaki, T.; Nakadaira, T.; Nakahata, M.; Nakai, T.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Naples, D.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J.; Paolone, V.; Payne, D.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Retiere, F.; Robert, A.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smith, R. J.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Szeglowski, T.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Ueno, K.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Walter, C. W.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2014-05-01

    The T2K experiment has reported the first observation of the appearance of electron neutrinos in a muon neutrino beam. The main and irreducible background to the appearance signal comes from the presence in the neutrino beam of a small intrinsic component of electron neutrinos originating from muon and kaon decays. In T2K, this component is expected to represent 1.2% of the total neutrino flux. A measurement of this component using the near detector (ND280), located 280 m from the target, is presented. The charged current interactions of electron neutrinos are selected by combining the particle identification capabilities of both the time projection chambers and electromagnetic calorimeters of ND280. The measured ratio between the observed electron neutrino beam component and the prediction is 1.01±0.10 providing a direct confirmation of the neutrino fluxes and neutrino cross section modeling used for T2K neutrino oscillation analyses. Electron neutrinos coming from muons and kaons decay are also separately measured, resulting in a ratio with respect to the prediction of 0.68±0.30 and 1.10±0.14, respectively.

  6. EMITTING ELECTRONS AND SOURCE ACTIVITY IN MARKARIAN 501

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mankuzhiyil, Nijil; Ansoldi, Stefano; Persic, Massimo

    2012-07-10

    We study the variation of the broadband spectral energy distribution (SED) of the BL Lac object Mrk 501 as a function of source activity, from quiescent to flaring. Through {chi}{sup 2}-minimization we model eight simultaneous SED data sets with a one-zone synchrotron self-Compton (SSC) model, and examine how model parameters vary with source activity. The emerging variability pattern of Mrk 501 is complex, with the Compton component arising from {gamma}-e scatterings that sometimes are (mostly) Thomson and sometimes (mostly) extreme Klein-Nishina. This can be seen from the variation of the Compton to synchrotron peak distance according to source state. Themore » underlying electron spectra are faint/soft in quiescent states and bright/hard in flaring states. A comparison with Mrk 421 suggests that the typical values of the SSC parameters are different in the two sources: however, in both jets the energy density is particle-dominated in all states.« less

  7. Survey of Biodegradation of Electronic Components and Associated Testing Using Decontamination Solution

    DTIC Science & Technology

    1991-08-01

    Development and Engineering Center, ATTN: SMCCR- SPS -T, Aberdeen Proving Ground, MD 21010-5423. However, the Defense Technical Information Center and the...and conducting electrical tests to determine materiel degradation. Organisms of Penicillium s were among the most aggressive biota and, in some cases...tested electronic components for fungal degradation using Aspergillus, Penicillium , Alternaria, Streptomyces, and Rhodotorula. Electrical parameter

  8. Electronic zero-point fluctuation forces inside circuit components

    PubMed Central

    Leonhardt, Ulf

    2018-01-01

    One of the most intriguing manifestations of quantum zero-point fluctuations are the van der Waals and Casimir forces, often associated with vacuum fluctuations of the electromagnetic field. We study generalized fluctuation potentials acting on internal degrees of freedom of components in electrical circuits. These electronic Casimir-like potentials are induced by the zero-point current fluctuations of any general conductive circuit. For realistic examples of an electromechanical capacitor and a superconducting qubit, our results reveal the possibility of tunable forces between the capacitor plates, or the level shifts of the qubit, respectively. Our analysis suggests an alternative route toward the exploration of Casimir-like fluctuation potentials, namely, by characterizing and measuring them as a function of parameters of the environment. These tunable potentials may be useful for future nanoelectromechanical and quantum technologies. PMID:29719863

  9. Independent components of neural activity carry information on individual populations.

    PubMed

    Głąbska, Helena; Potworowski, Jan; Łęski, Szymon; Wójcik, Daniel K

    2014-01-01

    Local field potential (LFP), the low-frequency part of the potential recorded extracellularly in the brain, reflects neural activity at the population level. The interpretation of LFP is complicated because it can mix activity from remote cells, on the order of millimeters from the electrode. To understand better the relation between the recordings and the local activity of cells we used a large-scale network thalamocortical model to compute simultaneous LFP, transmembrane currents, and spiking activity. We used this model to study the information contained in independent components obtained from the reconstructed Current Source Density (CSD), which smooths transmembrane currents, decomposed further with Independent Component Analysis (ICA). We found that the three most robust components matched well the activity of two dominating cell populations: superior pyramidal cells in layer 2/3 (rhythmic spiking) and tufted pyramids from layer 5 (intrinsically bursting). The pyramidal population from layer 2/3 could not be well described as a product of spatial profile and temporal activation, but by a sum of two such products which we recovered in two of the ICA components in our analysis, which correspond to the two first principal components of PCA decomposition of layer 2/3 population activity. At low noise one more cell population could be discerned but it is unlikely that it could be recovered in experiment given typical noise ranges.

  10. Independent Components of Neural Activity Carry Information on Individual Populations

    PubMed Central

    Głąbska, Helena; Potworowski, Jan; Łęski, Szymon; Wójcik, Daniel K.

    2014-01-01

    Local field potential (LFP), the low-frequency part of the potential recorded extracellularly in the brain, reflects neural activity at the population level. The interpretation of LFP is complicated because it can mix activity from remote cells, on the order of millimeters from the electrode. To understand better the relation between the recordings and the local activity of cells we used a large-scale network thalamocortical model to compute simultaneous LFP, transmembrane currents, and spiking activity. We used this model to study the information contained in independent components obtained from the reconstructed Current Source Density (CSD), which smooths transmembrane currents, decomposed further with Independent Component Analysis (ICA). We found that the three most robust components matched well the activity of two dominating cell populations: superior pyramidal cells in layer 2/3 (rhythmic spiking) and tufted pyramids from layer 5 (intrinsically bursting). The pyramidal population from layer 2/3 could not be well described as a product of spatial profile and temporal activation, but by a sum of two such products which we recovered in two of the ICA components in our analysis, which correspond to the two first principal components of PCA decomposition of layer 2/3 population activity. At low noise one more cell population could be discerned but it is unlikely that it could be recovered in experiment given typical noise ranges. PMID:25153730

  11. Emodin is identified as the active component of ether extracts from Rhizoma Polygoni Cuspidati, for anti-MRSA activity.

    PubMed

    Cao, Feng; Peng, Wei; Li, Xiaoli; Liu, Ming; Li, Bin; Qin, Rongxin; Jiang, Weiwei; Cen, Yanyan; Pan, Xichun; Yan, Zifei; Xiao, Kangkang; Zhou, Hong

    2015-06-01

    This study investigated the anti-methicillin-resistant Staphylococcus aureus (anti-MRSA) activity and chemical compositions of ether extracts from Rhizoma Polygoni Cuspidati (ET-RPC). Significant anti-MRSA activities of ET-RPC against MRSA252 and MRSA clinical strains were tested in in vitro antibacterial experiments, such as inhibition zone diameter test, minimal inhibitory concentration test, and dynamic bacterial growth assay. Subsequently, 7 major compounds of ET-RPC were purified and identified as polydatin, resveratrol-4-O-d-(6'-galloyl)-glucopyranoside, resveratrol, torachryson-8-O-glucoside, emodin-8-O-glucoside, 6-hydroxy-emodin, and emodin using liquid chromatography - electrospray ionization - tandem mass spectrometry. After investigation of anti-MRSA activities of the 7 major compounds, only emodin had significant anti-MRSA activity. Further, transmission electron microscopy was used to observe morphological changes in the cell wall of MRSA252, and the result revealed that emodin could damage the integrity of cell wall, leading to loss of intracellular components. In summary, our results showed ET-RPC could significantly inhibit bacterial growth of MRSA strains. Emodin was identified as the major compound with anti-MRSA activity; this activity was related to destruction of the integrity of the cell wall and cell membrane.

  12. Semantic-Aware Components and Services of ActiveMath

    ERIC Educational Resources Information Center

    Melis, Erica; Goguadze, Giorgi; Homik, Martin; Libbrecht, Paul; Ullrich, Carsten; Winterstein, Stefan

    2006-01-01

    ActiveMath is a complex web-based adaptive learning environment with a number of components and interactive learning tools. The basis for handling semantics of learning content is provided by its semantic (mathematics) content markup, which is additionally annotated with educational metadata. Several components, tools and external services can…

  13. Projectable Basic Electronics Kit.

    ERIC Educational Resources Information Center

    H'ng, John; And Others

    1982-01-01

    Outlines advantages derived from constructing and using a Projectable Basic Electronics Kit and provides: (1) list of components; (2) diagrams of 10 finished components (resistor; capacitor; diode; switch; bulb; transistor; meter; variable capacitor; coil; connecting terminal); and (3) diode and transistor activities. (JN)

  14. Emergency Dosimetry Using Ceramic Components in Personal Electronic Devices

    NASA Astrophysics Data System (ADS)

    Kouroukla, E. C.; Bailiff, I. K.; Terry, I.

    2014-02-01

    The rapid assessment of radiation dose to members of the public exposed to significant levels of ionizing radiation during a radiological incident presents a significant difficulty in the absence of planned radiation monitoring. However, within most personal electronic devices components such as resistors with alumina substrates can be found that have potentially suitable properties as solid state dosimeters using luminescence measurement techniques. The suitability of several types of ceramic-based components (e.g., resonators, inductors and resistors) has been previously examined using optically stimulated luminescence (OSL) and thermoluminescence (TL) techniques to establish their basic characteristics for the retrospective determination of absorbed dose. In this paper, we present results obtained with aluminum oxide surface mount resistors extracted from mobile phones that further extend this work. Very encouraging results have been obtained related to the measurement of luminescence sensitivity, dose response, reusability, limit of detection, signal reproducibility and known-dose recovery. However, the alumina exhibits a rapid loss of the latent luminescence signal with time following irradiation attributed to athermal (or anomalous) fading. The issues related to obtaining a reliable correction protocol for this loss and the detailed examinations required of the fading behavior are discussed.

  15. Atomtronics: Realizing the behavior of electronic components in ultracold atomic systems

    NASA Astrophysics Data System (ADS)

    Pepino, Ron

    2007-06-01

    Atomtronics focuses on creating an analogy of electronic devices and circuits with ultracold atoms. Such an analogy can come from the highly tunable band structure of ultracold neutral atoms trapped in optical lattices. Solely by tuning the parameters of the optical lattice, we demonstrate that conditions can be created that cause atoms in lattices to exhibit the same behavior as electrons moving through solid state media. We present our model and show how the atomtronic diode, field effect transistor, and bipolar junction transistor can all be realized. Our analogs of these fundamental components exhibit precisely-controlled atomic signal amplification, trimming, and switching (on/off) characteristics. In addition, the evolution of dynamics of the superfluid atomic currents within these systems is completely reversible. This implies a possible use of atomtronic systems in the development of quantum computational devices.

  16. Materials for bioresorbable radio frequency electronics.

    PubMed

    Hwang, Suk-Won; Huang, Xian; Seo, Jung-Hun; Song, Jun-Kyul; Kim, Stanley; Hage-Ali, Sami; Chung, Hyun-Joong; Tao, Hu; Omenetto, Fiorenzo G; Ma, Zhenqiang; Rogers, John A

    2013-07-12

    Materials, device designs and manufacturing approaches are presented for classes of RF electronic components that are capable of complete dissolution in water or biofluids. All individual passive/active components as well as system-level examples such as wireless RF energy harvesting circuits exploit active materials that are biocompatible. The results provide diverse building blocks for physically transient forms of electronics, of particular potential value in bioresorbable medical implants with wireless power transmission and communication capabilities. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Management status of end-of-life vehicles and development strategies of used automotive electronic control components recycling industry in China.

    PubMed

    Wang, Junjun; Chen, Ming

    2012-11-01

    Recycling companies play a leading role in the system of end-of-life vehicles (ELVs) in China. Automotive manufacturers in China are rarely involved in recycling ELVs, and they seldom provide dismantling information for recycling companies. In addition, no professional shredding plant is available. The used automotive electronic control components recycling industry in China has yet to take shape because of the lack of supporting technology and profitable models. Given the rapid growth of the vehicle population and electronic control units in automotives in China, the used automotive electronic control components recycling industry requires immediate development. This paper analyses the current recycling system of ELVs in China and introduces the automotive product recycling technology roadmap as well as the recycling industry development goals. The strengths, weaknesses, opportunities and challenges of the current used automotive electronic control components recycling industry in China are analysed comprehensively based on the 'strengths, weaknesses, opportunities and threats' (SWOT) method. The results of the analysis indicate that this recycling industry responds well to all the factors and has good opportunities for development. Based on the analysis, new development strategies for the used automotive electronic control components recycling industry in accordance with the actual conditions of China are presented.

  18. Radiation and temperature effects on electronic components investigated under the CSTI high capacity power project

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.; Niedra, Janis M.; Frasca, Albert J.; Wieserman, William R.

    1993-01-01

    The effects of nuclear radiation and high temperature environments must be fully known and understood for the electronic components and materials used in both the Power Conditioning and Control subsystem and the reactor Instrumentation and Control subsystem of future high capacity nuclear space power systems. This knowledge is required by the designer of these subsystems in order to develop highly reliable, long-life power systems for future NASA missions. A review and summary of the experimental results obtained for the electronic components and materials investigated under the power management element of the Civilian Space Technology Initiative (CSTI) high capacity power project are presented: (1) neutron, gamma ray, and temperature effects on power semiconductor switches, (2) temperature and frequency effects on soft magnetic materials; and (3) temperature effects on rare earth permanent magnets.

  19. Activation Levels, Handling, and Storage of Activated Components in the Target Hall at FRIB

    NASA Astrophysics Data System (ADS)

    Georgobiani, D.; Bennett, R.; Bollen, G.; Kostin, M.; Ronningen, R.

    2018-06-01

    The Facility for Rare Isotope Beams (FRIB) is a major new scientific user facility under construction in the United States for nuclear science research with beams of rare isotopes. 400 kW beam operations with heavy ions ranging from oxygen to uranium will create a high radiation environment for many components, particularly for the beam line components located in the target hall, where approximately 100 kW of beam power are dissipated in the target and another 300 kW are dissipated in the beam dump. Detailed studies of the component activation, their remote handling, storage, and transport, have been performed to ensure safe operation levels in this environment. Levels of activation are calculated for the beam line components within the FRIB target hall.

  20. Surface-Active Agents for Isolation of the Core Component of Avian Myeloblastosis Virus 1

    PubMed Central

    Stromberg, Kurt

    1972-01-01

    Sixty-one surface-active agents were evaluated in a procedure designed to assess their ability to remove the envelope from the core component of avian myeloblastosis virus (AMV). The procedure consisted of centrifugation of intact AMV through a series of sucrose gradients each containing an upper layer of agent at one of eight concentrations between 0.01 and 10%. The effectiveness of an agent in producing AMV cores was indicated by (i) the appearance of light-scattering bands in the region of core buoyant density in gradient tubes; (ii) the range of surfactant concentration over which these bands appeared; and (iii) an electron microscopy assessment by the negative-staining technique of the relative proportion of core to non-core material in each of these bands. Six nonionic surfactants were selected by this screening method for comparison in regard to recovery of core protein and endogenous ribonucleic acid (RNA)-dependent deoxyribonucleic acid (DNA) polymerase activity, as well as further morphologic evaluation by electron microscopy. The nonionic surfactants of the polyoxyethylene alcohol class (particularly, Sterox SL) were most effective. Nonionic surfactants of the polyoxyethylene alkylphenol class (particularly, Nonidet P-40) were also effective. Sterox SL and Nonidet P-40 each gave a more than fivefold increase in specific activity of endogenous RNA-dependent DNA polymerase, and each gave a low recovery of core protein. Sterox SL did not interfere to the extent that Nonidet P-40 did in procedures which involved spectrophotometric assay at 260 nm. The use of Sterox SL resulted in the least envelope contamination of core preparations by electron microscopy examination, the most recovery of protein and endogenous RNA-dependent DNA polymerase activity, and a core buoyant density in sucrose of 1.27 g/ml. Images PMID:4112071

  1. Research on fault characteristics about switching component failures for distribution electronic power transformers

    NASA Astrophysics Data System (ADS)

    Sang, Z. X.; Huang, J. Q.; Yan, J.; Du, Z.; Xu, Q. S.; Lei, H.; Zhou, S. X.; Wang, S. C.

    2017-11-01

    The protection is an essential part for power device, especially for those in power grid, as the failure may cost great losses to the society. A study on the voltage and current abnormality in the power electronic devices in Distribution Electronic Power Transformer (D-EPT) during the failures on switching components is presented, as well as the operational principles for 10 kV rectifier, 10 kV/400 V DC-DC converter and 400 V inverter in D-EPT. Derived from the discussion on the effects of voltage and current distortion, the fault characteristics as well as a fault diagnosis method for D-EPT are introduced.

  2. Hybrid 3D Printing of Soft Electronics.

    PubMed

    Valentine, Alexander D; Busbee, Travis A; Boley, John William; Raney, Jordan R; Chortos, Alex; Kotikian, Arda; Berrigan, John Daniel; Durstock, Michael F; Lewis, Jennifer A

    2017-10-01

    Hybrid 3D printing is a new method for producing soft electronics that combines direct ink writing of conductive and dielectric elastomeric materials with automated pick-and-place of surface mount electronic components within an integrated additive manufacturing platform. Using this approach, insulating matrix and conductive electrode inks are directly printed in specific layouts. Passive and active electrical components are then integrated to produce the desired electronic circuitry by using an empty nozzle (in vacuum-on mode) to pick up individual components, place them onto the substrate, and then deposit them (in vacuum-off mode) in the desired location. The components are then interconnected via printed conductive traces to yield soft electronic devices that may find potential application in wearable electronics, soft robotics, and biomedical devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Sequential Proton Loss Electron Transfer in Deactivation of Iron(IV) Binding Protein by Tyrosine Based Food Components.

    PubMed

    Tang, Ning; Skibsted, Leif H

    2017-08-02

    The iron(IV) binding protein ferrylmyoglobin, MbFe(IV)═O, was found to be reduced by tyrosine based food components in aqueous solution through a sequential proton loss electron transfer reaction mechanism without binding to the protein as confirmed by isothermal titration calorimetry. Dopamine and epinephrine are the most efficient food components reducing ferrylmyoglobin to oxymyoglobin, MbFe(II)O 2 , and metmyoglobin, MbFe(III), as revealed by multivariate curve resolution alternating least-squares with second order rate constants of 33.6 ± 2.3 L/mol/s (ΔH ⧧ of 19 ± 5 kJ/mol, ΔS ⧧ of -136 ± 18 J/mol K) and 228.9 ± 13.3 L/mol/s (ΔH ⧧ of 110 ± 7 kJ/mol, ΔS ⧧ of 131 ± 25 J/mol K), respectively, at pH 7.4 and 25 °C. The other tyrosine based food components were found to reduce ferrylmyoglobin to metmyoglobin with similar reduction rates at pH 7.4 and 25 °C. These reduction reactions were enhanced by protonation of ferrylmyoglobin and facilitated proton transfer at acidic conditions. Enthalpy-entropy compensation effects were observed for the activation parameters (ΔH ⧧ and ΔS ⧧ ), indicating the common reaction mechanism. Moreover, principal component analysis combined with heat map were performed to understand the relationship between density functional theory calculated molecular descriptors and kinetic data, which was further modeled by partial least squares for quantitative structure-activity relationship analysis. In addition, a three tyrosine residue containing protein, lysozyme, was also found to be able to reduce ferrylmyoglobin with a second order rate constant of 66 ± 28 L/mol/s as determined by a competitive kinetic method.

  4. 78 FR 63492 - Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-847] Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof; Notice of Request for Statements on the Public Interest AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is...

  5. Quantum-mechanical predictions of electron-induced ionization cross sections of DNA components

    NASA Astrophysics Data System (ADS)

    Champion, Christophe

    2013-05-01

    Ionization of biomolecules remains still today rarely investigated on both the experimental and the theoretical sides. In this context, the present work appears as one of the first quantum mechanical approaches providing a multi-differential description of the electron-induced ionization process of the main DNA components for impact energies ranging from the target ionization threshold up to about 10 keV. The cross section calculations are here performed within the 1st Born approximation framework in which the ejected electron is described by a Coulomb wave whereas the incident and the scattered electrons are both described by a plane wave. The biological targets of interest, namely, the DNA nucleobases and the sugar-phosphate backbone, are here described by means of the GAUSSIAN 09 system using the restricted Hartree-Fock method with geometry optimization. The theoretical predictions also obtained have shown a reasonable agreement with the experimental total ionization cross sections while huge discrepancies have been pointed out with existing theoretical models, mainly developed within a semi-classical framework.

  6. Evaluation of induced activity in various components of a PET-cyclotron

    NASA Astrophysics Data System (ADS)

    Toyoda, A.; Yoshida, G.; Matsumura, H.; Masumoto, K.; Nakabayashi, T.; Yagishita, T.; Sasaki, H.

    2018-06-01

    For decommissioning a cyclotron facility, it is important to evaluate the induced activity of the various components of the cyclotron; however, activation of the metal components has been rarely investigated. In this study, two types of cyclotrons were examined; one is a proton acceleration type using a deflector, and another is a hydride ion (H-) acceleration type using a carbon stripper foil for beam extraction to the target port. The samples were obtained from various metal components such as the yoke, sector magnet, coil, and vacuum chamber by the core boring method, and the depth distribution of the radioactivity was determined via a germanium semiconductor detector. The activities of 54Mn and 60Co were detected from the surface to a deeper site of the yoke and sector magnet. Most of the observed activities of the cyclotron components were higher than the clearance levels, suggesting that a clearance system should not be applied to the yoke and sector magnet. In the case of a high-activity sample, we have to wait for 30 years to reach the clearance level.

  7. Vaccination in children with allergy to non active vaccine components.

    PubMed

    Franceschini, Fabrizio; Bottau, Paolo; Caimmi, Silvia; Crisafulli, Giuseppe; Lucia, Liotti; Peroni, Diego; Saretta, Francesca; Vernich, Mario; Povesi Dascola, Carlotta; Caffarelli, Carlo

    2015-01-01

    Childhood immunisation is one of the greatest public health successes of the last century. Vaccines contain an active component (the antigen) which induces the immune response. They may also contain additional components such as preservatives, additives, adjuvants and traces of other substances. This review provides information about risks of hypersensitivity reactions to components of vaccines. Furthermore, recommendations to avoid or reduce reactions to vaccine components have been detailed.

  8. Effect of Electrostatic Discharge on Electrical Characteristics of Discrete Electronic Components

    NASA Technical Reports Server (NTRS)

    Wysocki, Phil; Vashchenko, Vladislav; Celaya, Jose; Saha, Sankalita; Goebel, Kai

    2009-01-01

    This article reports on preliminary results of a study conducted to examine how temporary electrical overstress seed fault conditions in discrete power electronic components that cannot be detected with reliability tests but impact longevity of the device. These defects do not result in formal parametric failures per datasheet specifications, but result in substantial change in the electrical characteristics when compared with pristine device parameters. Tests were carried out on commercially available 600V IGBT devices using transmission line pulse (TLP) and system level ESD stress. It was hypothesized that the ESD causes local damage during the ESD discharge which may greatly accelerate degradation mechanisms and thus reduce the life of the components. This hypothesis was explored in simulation studies where different types of damage were imposed to different parts of the device. Experimental results agree qualitatively with the simulation for a number of tests which will motivate more in-depth modeling of the damage.

  9. Microstructure-Evolution and Reliability Assessment Tool for Lead-Free Component Insertion in Army Electronics

    DTIC Science & Technology

    2008-10-01

    provide adequate means for thermal heat dissipation and cooling. Thus electronic packaging has four main functions [1]: • Signal distribution which... dissipation , involving structural and materials consideration. • Mechanical, chemical and electromagnetic protection of components and... nature when compared to phenomenological models. Microelectronic packaging industry spends typically several months building and reliability

  10. Exploring the Relationships between the Electronic Health Record System Components and Patient Outcomes in an Acute Hospital Setting

    ERIC Educational Resources Information Center

    Wiggley, Shirley L.

    2011-01-01

    Purpose: The purpose of this study was to examine the relationship between the electronic health record system components and patient outcomes in an acute hospital setting, given that the current presidential administration has earmarked nearly $50 billion to the implementation of the electronic health record. The relationship between the…

  11. Enantiomer-specific analysis of multi-component mixtures by correlated electron imaging-ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Fanood, Mohammad M. Rafiee; Ram, N. Bhargava; Lehmann, C. Stefan; Powis, Ivan; Janssen, Maurice H. M.

    2015-06-01

    Simultaneous, enantiomer-specific identification of chiral molecules in multi-component mixtures is extremely challenging. Many established techniques for single-component analysis fail to provide selectivity in multi-component mixtures and lack sensitivity for dilute samples. Here we show how enantiomers may be differentiated by mass-selected photoelectron circular dichroism using an electron-ion coincidence imaging spectrometer. As proof of concept, vapours containing ~1% of two chiral monoterpene molecules, limonene and camphor, are irradiated by a circularly polarized femtosecond laser, resulting in multiphoton near-threshold ionization with little molecular fragmentation. Large chiral asymmetries (2-4%) are observed in the mass-tagged photoelectron angular distributions. These asymmetries switch sign according to the handedness (R- or S-) of the enantiomer in the mixture and scale with enantiomeric excess of a component. The results demonstrate that mass spectrometric identification of mixtures of chiral molecules and quantitative determination of enantiomeric excess can be achieved in a table-top instrument.

  12. Structural complexities in the active layers of organic electronics.

    PubMed

    Lee, Stephanie S; Loo, Yueh-Lin

    2010-01-01

    The field of organic electronics has progressed rapidly in recent years. However, understanding the direct structure-function relationships between the morphology in electrically active layers and the performance of devices composed of these materials has proven difficult. The morphology of active layers in organic electronics is inherently complex, with heterogeneities existing across multiple length scales, from subnanometer to micron and millimeter range. A major challenge still facing the organic electronics community is understanding how the morphology across all of the length scales in active layers collectively determines the device performance of organic electronics. In this review we highlight experiments that have contributed to the elucidation of structure-function relationships in organic electronics and also point to areas in which knowledge of such relationships is still lacking. Such knowledge will lead to the ability to select active materials on the basis of their inherent properties for the fabrication of devices with prespecified characteristics.

  13. The alteration of components in the fermented Hwangryunhaedok-tang and its neuroprotective activity

    PubMed Central

    Yang, Hye Jin; Weon, Jin Bae; Lee, Bohyoung; Ma, Choong Je

    2011-01-01

    Background: Hwangryunhaedok-tang is a traditional herbal prescription that has sedative activity, hypotensive and anti-bacterial effects. Objective: In this study, we investigated the alteration of contents of components in Hwangryunhaedok-tang, antioxidant activity and neuroprotective activity by fermentation with Lactobacillus acidophilus KFRI 128. Materials and Methods: Contents of three marker compounds (geniposide, berberine and palmatine) and unknown compounds in the Hwangryunhaedok-tang (HR) and the fermented Hwangryunhaedok-tang (FHR) were measured and compared using the established high-performance liqued chromatograph coupled with a photodiode (HPLC-DAD) method. The antioxidant activity of HR and FHR were determined by DPPH free radical and hydrogen peroxide (H2O2) scavenging assay. Also, the neuroprotective activities of HR and FHR against glutamate-induced oxidative stress in a mouse hippocampal cell line (HT22) were evaluated by MTT assay. Results: The contents of geniposide and palmatine were decreased but the content of berberine was increased in the FHR. And the contents of unknown compounds (1), (2), (3), (4) and (5) in the HR were altered by fermentation. Electron donating activity (EDA, %) value of FHR was higher than HR for DPPH radical scavenging activity and H2O2 scavenging activity, respectively. In the MTT assay, FHR showed more potent neuroprotective activity than HR by 513.90%. Conclusion: The FHR using microorganism could convert compounds in HR and enhance the antioxidant and neuroprotective activity. PMID:21969791

  14. Carbon Nanotubes: Molecular Electronic Components

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Saini, Subhash; Menon, Madhu

    1997-01-01

    The carbon Nanotube junctions have recently emerged as excellent candidates for use as the building blocks in the formation of nanoscale molecular electronic networks. While the simple joint of two dissimilar tubes can be generated by the introduction of a pair of heptagon-pentagon defects in an otherwise perfect hexagonal graphene sheet, more complex joints require other mechanisms. In this work we explore structural characteristics of complex 3-point junctions of carbon nanotubes using a generalized tight-binding molecular-dynamics scheme. The study of pi-electron local densities of states (LDOS) of these junctions reveal many interesting features, most prominent among them being the defect-induced states in the gap.

  15. Time structure of the EAS electron and muon components measured by the KASCADE Grande experiment

    NASA Astrophysics Data System (ADS)

    Apel, W. D.; Arteaga, J. C.; Badea, A. F.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kickelbick, D.; Klages, H. O.; Kolotaev, Y.; Luczak, P.; Mathes, H. J.; Mayer, H. J.; Meurer, C.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Petcu, M.; Pierog, T.; Plewnia, S.; Rebel, H.; Roth, M.; Schieler, H.; Sima, O.; Stümpert, M.; Toma, G.; Trinchero, G. C.; Ulrich, H.; van Buren, J.; Walkowiak, W.; Weindl, A.; Wochele, J.; Zabierowski, J.

    2008-06-01

    Extensive air showers measured by the KASCADE-Grande experiment at the Forschungszentrum Karlsruhe are studied with respect to the arrival times of electrons and muons at observation level. The mean and the spread of the arrival time distributions have been used to determine the average time profile of the electromagnetic and muonic shower disk. For core distances R>200m particles of the muonic shower component arrive on average earlier at observation level than particles of the electromagnetic shower component. The difference increases with the core distance from Δ=(12.9±0.2)ns at R>200m to Δ=(47±1)ns at R=500m, where the width of the muonic and electromagnetic shower disks are comparable. This difference in arrival time is used to separate the electrons and muons dependent on the distance from the shower center. This is intended to be used by experiments with time resolving detectors.

  16. Low energy electron induced fragmentation and reactions of DNA and its molecular components

    NASA Astrophysics Data System (ADS)

    Bass, Andrew

    2005-05-01

    Much research has been stimulated by the recognition that ionizing radiation can, in condensed matter, generate large numbers of secondary electrons with energies less than 20 eV [1] and by the experimental demonstration that such electrons may induce both single and double strand breaks in plasmid DNA [2]. Identifying the underlying mechanisms involves several research methodologies, from further experiments with DNA to studies of the electron interaction with the component `sub-units' of DNA in both the gas and condensed phases [3]. In particular, understanding electron-induced strand break damage, the type of damage most difficult for organisms to repair, necessitates study of the sub-units of DNA back-bone, and here Tetrahyrofuran (THF) and its derivatives, provide a useful model for the furyl ring at the centre of the deoxyribose sugar. In this contribution, we review with particular reference to DNA and related molecules, the use of electron spectroscopy and mass spectrometry to study electron-induced fragmentation and reactions in thin molecular solids. We describe a newly completed instrument that combines laser post-ionization with a time-of-flight mass analyzer for highly sensitive ion and neutral detection. Use of the instrument is illustrated with results for THF and derivatives. Anion desorption measurements reveal the role of transient negative ions (TNI) and Dissociative Electron Attachment in significant molecular fragmentation and permit effective cross sections for this electron-induced damage to be obtained. The neutral yield functions also illustrate the importance of TNI, mirroring features seen in recently measured cross sections for electron induced aldehyde production in THF [4]. 1. J. A. Laverne and S. M. Pimblott, Radiat. Res. 141, 208 (1995) 2. B. Boudaiffa, et al, Science 287, 1658 (2000) 3. L. Sanche. Physica Scripta. 68, C108, (2003) 4. S.-P. Breton, et al.,J. Chem. Phys. 121, 11240 (2004)

  17. Flexible Electronic Substrate Film Fabricated Using Natural Clay and Wood Components with Cross-Linking Polymer.

    PubMed

    Takahashi, Kiyonori; Ishii, Ryo; Nakamura, Takashi; Suzuki, Asami; Ebina, Takeo; Yoshida, Manabu; Kubota, Munehiro; Nge, Thi Thi; Yamada, Tatsuhiko

    2017-05-01

    Requirements for flexible electronic substrate are successfully accomplished by green nanocomposite film fabricated with two natural components: glycol-modified biomass lignin and Li + montmorillonite clay. In addition to these major components, a cross-linking polymer between the lignin is incorporated into montmorillonite. Multilayer-assembled structure is formed due to stacking nature of high aspect montmorillonite, resulting in thermal durability up to 573 K, low thermal expansion, and oxygen barrier property below measurable limit. Preannealing for montmorillonite and the cross-linking formation enhance moisture barrier property superior to that of industrial engineering plastics, polyimide. As a result, the film has advantages for electronic film substrate. Furthermore, these properties can be achieved at the drying temperature up to 503 K, while the polyimide films are difficult to fabricate by this temperature. In order to examine its applicability for substrate film, flexible electrodes are finely printed on it and touch sensor device can be constructed with rigid elements on the electrode. In consequence, this nanocomposite film is expected to contribute to production of functional materials, progresses in expansion of biomass usage with low energy consumption, and construction of environmental friendly flexible electronic devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Microfabrication of passive electronic components with printed graphene-oxide deposition

    NASA Astrophysics Data System (ADS)

    Sinar, Dogan; Knopf, George K.; Nikumb, Suwas

    2014-03-01

    Flexible electronic circuitry is an emerging technology that will significantly impact the future of healthcare and medicine, food safety inspection, environmental monitoring, and public security. Recent advances in drop-on-demand printing technology and electrically conductive inks have enabled simple electronic circuits to be fabricated on mechanically flexible polymers, paper, and bioresorbable silk. Research has shown that graphene, and its derivative formulations, can be used to create low-cost electrically conductive inks. Graphene is a one atom thick two-dimensional layer composed of carbon atoms arranged in a hexagonal lattice forming a material with very high fracture strength, high Young's Modulus, and low electrical resistance. Non-conductive graphene-oxide (GO) inks can also be synthesized from inexpensive graphite powders. Once deposited on the flexible substrate the electrical conductivity of the printed GO microcircuit traces can be restored through thermal reduction. In this paper, a femtosecond laser with a wavelength of 775nm and pulse width of 120fs is used to transform the non-conductive printed GO film into electrically conductive oxygen reduced graphene-oxide (rGO) passive electronic components by the process of laser assisted thermal reduction. The heat affected zone produced during the process was minimized because of the femtosecond pulsed laser. The degree of conductivity exhibited by the microstructure is directly related to the laser power level and exposure time. Although rGO films have higher resistances than pristine graphene, the ability to inkjet print capacitive elements and modify local resistive properties provides for a new method of fabricating sensor microcircuits on a variety of substrate surfaces.

  19. Space Radiation Shielding Studies for Astronaut and Electronic Component Risk Assessment

    NASA Technical Reports Server (NTRS)

    Fuchs, Jordan Robert

    2010-01-01

    The dosimetry component of the Center for Radiation Engineering and Science for Space Exploration (CRESSE) will design, develop and characterize the response of a suite of radiation detectors and supporting instrumentation and electronics with three primary goals that will: (1) Use established space radiation detection systems to characterize the primary and secondary radiation fields existing in the experimental test-bed zones during exposures at particle accelerator facilities. (2) Characterize the responses of newly developed space radiation detection systems in the experimental test-bed zones during exposures at particle accelerator facilities, and (3) Provide CRESSE collaborators with detailed dosimetry information in experimental test-bed zones.

  20. Sensor fusion of phase measuring profilometry and stereo vision for three-dimensional inspection of electronic components assembled on printed circuit boards.

    PubMed

    Hong, Deokhwa; Lee, Hyunki; Kim, Min Young; Cho, Hyungsuck; Moon, Jeon Il

    2009-07-20

    Automatic optical inspection (AOI) for printed circuit board (PCB) assembly plays a very important role in modern electronics manufacturing industries. Well-developed inspection machines in each assembly process are required to ensure the manufacturing quality of the electronics products. However, generally almost all AOI machines are based on 2D image-analysis technology. In this paper, a 3D-measurement-method-based AOI system is proposed consisting of a phase shifting profilometer and a stereo vision system for assembled electronic components on a PCB after component mounting and the reflow process. In this system information from two visual systems is fused to extend the shape measurement range limited by 2pi phase ambiguity of the phase shifting profilometer, and finally to maintain fine measurement resolution and high accuracy of the phase shifting profilometer with the measurement range extended by the stereo vision. The main purpose is to overcome the low inspection reliability problem of 2D-based inspection machines by using 3D information of components. The 3D shape measurement results on PCB-mounted electronic components are shown and compared with results from contact and noncontact 3D measuring machines. Based on a series of experiments, the usefulness of the proposed sensor system and its fusion technique are discussed and analyzed in detail.

  1. Six Sigma Approach to Improve Stripping Quality of Automotive Electronics Component – a case study

    NASA Astrophysics Data System (ADS)

    Razali, Noraini Mohd; Murni Mohamad Kadri, Siti; Con Ee, Toh

    2018-03-01

    Lacking of problem solving skill techniques and cooperation between support groups are the two obstacles that always been faced in actual production line. Inadequate detail analysis and inappropriate technique in solving the problem may cause the repeating issues which may give impact to the organization performance. This study utilizes a well-structured six sigma DMAIC with combination of other problem solving tools to solve product quality problem in manufacturing of automotive electronics component. The study is concentrated at the stripping process, a critical process steps with highest rejection rate that contribute to the scrap and rework performance. The detail analysis is conducted in the analysis phase to identify the actual root cause of the problem. Then several improvement activities are implemented and the results show that the rejection rate due to stripping defect decrease tremendously and the process capability index improved from 0.75 to 1.67. This results prove that the six sigma approach used to tackle the quality problem is substantially effective.

  2. Characterization of Aroma-Active Components and Antioxidant Activity Analysis of E-jiao (Colla Corii Asini) from Different Geographical Origins.

    PubMed

    Zhang, Shan; Xu, Lu; Liu, Yang-Xi; Fu, Hai-Yan; Xiao, Zuo-Bing; She, Yuan-Bin

    2018-04-01

    E-jiao (Colla Corii Asini, CCA) has been widely used as a healthy food and Chinese medicine. Although authentic CCA is characterized by its typical sweet and neutral fragrance, its aroma components have been rarely investigated. This work investigated the aroma-active components and antioxidant activity of 19 CCAs from different geographical origins. CCA extracts obtained by simultaneous distillation and extraction were analyzed by gas chromatography-mass spectrometry (GC-MS), gas chromatography-olfactometry (GC-O) and sensory analysis. The antioxidant activity of CCAs was determined by ABTS and DPPH assays. A total of 65 volatile compounds were identified and quantified by GC-MS and 23 aroma-active compounds were identified by GC-O and aroma extract dilution analysis. The most powerful aroma-active compounds were identified based on the flavor dilution factor and their contents were compared among the 19 CCAs. Principal component analysis of the 23 aroma-active components showed 3 significant clusters. Canonical correlation analysis between antioxidant assays and the 23 aroma-active compounds indicates strong correlation (r = 0.9776, p = 0.0281). Analysis of aroma-active components shows potential for quality evaluation and discrimination of CCAs from different geographical origins.

  3. Heterogeneity of the electron exchange capacity of kitchen waste compost-derived humic acids based on fluorescence components.

    PubMed

    Yuan, Ying; Tan, Wen-Bing; He, Xiao-Song; Xi, Bei-Dou; Gao, Ru-Tai; Zhang, Hui; Dang, Qiu-Ling; Li, Dan

    2016-11-01

    Composting is widely used for recycling of kitchen waste to improve soil properties, which is mainly attributed to the nutrient and structural functions of compost-derived humic acids (HAs). However, the redox properties of compost-derived HAs are not fully explored. Here, a unique framework is employed to investigate the electron exchange capacity (EEC) of HAs during kitchen waste composting. Most components of compost-derived HAs hold EEC, but nearly two-thirds of them are found to be easily destroyed by Shewanella oneidensis MR-1 and thus result in an EEC lower than the electron - donating capacity in compost-derived HAs. Fortunately, a refractory component also existed within compost-derived HAs and could serve as a stable and effective electron shuttle to promote the MR-1 involved in Fe(III) reduction, and its EEC was significantly correlated with the aromaticity and the amount of quinones. Nevertheless, with the increase of composting time, the EEC of the refractory component did not show an increasing trend. These results implied that there was an optimal composting time to maximize the production of HAs with more refractory and redox molecules. Recognition of the heterogeneity of EEC of the compost-derived HAs enables an efficient utilization of the composts for a variety of environmental applications. Graphical abstract Microbial reduction of compost-derived HAs.

  4. Electricity/Electronics Systems. Laboratory Activities.

    ERIC Educational Resources Information Center

    Sutherland, Barbara, Ed.

    This electricity/electronics guide provides teachers with learning activities for secondary students. Introductory materials include an instructional planning outline and worksheet, an outline of essential elements, a list of objectives, a course description, and a content outline. The guide contains 35 modules on the following topics: electrical…

  5. A Multi-Purpose Modular Electronics Integration Node for Exploration Extravehicular Activity

    NASA Technical Reports Server (NTRS)

    Hodgson, Edward; Papale, William; Wichowski, Robert; Rosenbush, David; Hawes, Kevin; Stankiewicz, Tom

    2013-01-01

    As NASA works to develop an effective integrated portable life support system design for exploration Extravehicular activity (EVA), alternatives to the current system s electrical power and control architecture are needed to support new requirements for flexibility, maintainability, reliability, and reduced mass and volume. Experience with the current Extravehicular Mobility Unit (EMU) has demonstrated that the current architecture, based in a central power supply, monitoring and control unit, with dedicated analog wiring harness connections to active components in the system has a significant impact on system packaging and seriously constrains design flexibility in adapting to component obsolescence and changing system needs over time. An alternative architecture based in the use of a digital data bus offers possible wiring harness and system power savings, but risks significant penalties in component complexity and cost. A hybrid architecture that relies on a set of electronic and power interface nodes serving functional models within the Portable Life Support System (PLSS) is proposed to minimize both packaging and component level penalties. A common interface node hardware design can further reduce penalties by reducing the nonrecurring development costs, making miniaturization more practical, maximizing opportunities for maturation and reliability growth, providing enhanced fault tolerance, and providing stable design interfaces for system components and a central control. Adaptation to varying specific module requirements can be achieved with modest changes in firmware code within the module. A preliminary design effort has developed a common set of hardware interface requirements and functional capabilities for such a node based on anticipated modules comprising an exploration PLSS, and a prototype node has been designed assembled, programmed, and tested. One instance of such a node has been adapted to support testing the swingbed carbon dioxide and humidity

  6. Effects of the electron-phonon coupling activation in collision cascades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarkadoula, Eva; Samolyuk, German; Weber, William J.

    Using the two-temperature (2T-MD) model in molecular dynamics simulations, here we investigate the condition of switching the electronic stopping term off when the electron-phonon coupling is activated in the damage production due to 50 keV Ni ion cascades in Ni and equiatomic NiFe. Additionally we investigate the effect of the electron-phonon coupling activation time in the damage production. We find that the switching condition has negligible effect in the produced damage, while the choice of the activation time of the electron-phonon coupling can affect the amount of surviving damage.

  7. Effects of the electron-phonon coupling activation in collision cascades

    DOE PAGES

    Zarkadoula, Eva; Samolyuk, German; Weber, William J.

    2017-04-20

    Using the two-temperature (2T-MD) model in molecular dynamics simulations, here we investigate the condition of switching the electronic stopping term off when the electron-phonon coupling is activated in the damage production due to 50 keV Ni ion cascades in Ni and equiatomic NiFe. Additionally we investigate the effect of the electron-phonon coupling activation time in the damage production. We find that the switching condition has negligible effect in the produced damage, while the choice of the activation time of the electron-phonon coupling can affect the amount of surviving damage.

  8. Stability of physical activity, fitness components and diet quality indices.

    PubMed

    Mertens, E; Clarys, P; Mullie, P; Lefevre, J; Charlier, R; Knaeps, S; Huybrechts, I; Deforche, B

    2017-04-01

    Regular physical activity (PA), a high level of fitness and a high diet quality are positively associated with health. However, information about stability of fitness components and diet quality indices is limited. This study aimed to evaluate stability of those parameters. This study includes 652 adults (men=57.56 (10.28) years; women=55.90 (8.34) years at follow-up) who participated in 2002-2004 and returned for follow-up at the Policy Research Centre Leuven in 2012-2014. Minutes sport per day and Physical activity level (PAL) were calculated from the Flemish Physical Activity Computerized Questionnaire. Cardiorespiratory fitness (CRF), morphological fitness (MORF; body mass index and waist circumference) and metabolic fitness (METF) (blood cholesterol and triglycerides) were used as fitness components. Diet quality indices (Healthy Eating Index-2010 (HEI), Diet Quality Index (DQI), Mediterranean Diet Score (MDS)) were calculated from a diet record. Tracking coefficients were calculated using Pearson/Spearman correlation coefficients (r Pearson ) and intra-class correlation coefficients (r ICC ). In both men (r Pearson&ICC =0.51) and women (r Pearson =0.62 and r ICC =0.60) PAL showed good stability, while minutes sport remained stable in women (r Pearson&ICC =0.57) but less in men (r Pearson&ICC =0.45). Most fitness components remained stable (r⩾0.50) except some METF components in women. In general the diet quality indices and their components were unstable (r<0.50). PAL and the majority of the fitness components remained stable, while diet quality was unstable over 10 years. For unstable parameters such as diet quality measurements are needed at both time points in prospective research.

  9. Investigation of irradiation effects on highly integrated leading-edge electronic components of diagnostics and control systems for LHD deuterium operation

    NASA Astrophysics Data System (ADS)

    Ogawa, K.; Nishitani, T.; Isobe, M.; Murata, I.; Hatano, Y.; Matsuyama, S.; Nakanishi, H.; Mukai, K.; Sato, M.; Yokota, M.; Kobuchi, T.; Nishimura, T.; Osakabe, M.

    2017-08-01

    High-temperature and high-density plasmas are achieved by means of real-time control, fast diagnostic, and high-power heating systems. Those systems are precisely controlled via highly integrated electronic components, but can be seriously affected by radiation damage. Therefore, the effects of irradiation on currently used electronic components should be investigated for the control and measurement of Large Helical Device (LHD) deuterium plasmas. For the precise estimation of the radiation field in the LHD torus hall, the MCNP6 code is used with the cross-section library ENDF B-VI. The geometry is modeled on the computer-aided design. The dose on silicon, which is a major ingredient of electronic components, over nine years of LHD deuterium operation shows that the gamma-ray contribution is dominant. Neutron irradiation tests were performed in the OKTAVIAN at Osaka University and the Fast Neutron Laboratory at Tohoku University. Gamma-ray irradiation tests were performed at the Nagoya University Cobalt-60 irradiation facility. We found that there are ethernet connection failures of programmable logic controller (PLC) modules due to neutron irradiation with a neutron flux of 3  ×  106 cm-2 s-1. This neutron flux is equivalent to that expected at basement level in the LHD torus hall without a neutron shield. Most modules of the PLC are broken around a gamma-ray dose of 100 Gy. This is comparable with the dose in the LHD torus hall over nine years. If we consider the dose only, these components may survive more than nine years. For the safety of the LHD operation, the electronic components in the torus hall have been rearranged.

  10. Reliability of hybrid microcircuit discrete components

    NASA Technical Reports Server (NTRS)

    Allen, R. V.

    1972-01-01

    Data accumulated during 4 years of research and evaluation of ceramic chip capacitors, ceramic carrier mounted active devices, beam-lead transistors, and chip resistors are presented. Life and temperature coefficient test data, and optical and scanning electron microscope photographs of device failures are presented and the failure modes are described. Particular interest is given to discrete component qualification, power burn-in, and procedures for testing and screening discrete components. Burn-in requirements and test data will be given in support of 100 percent burn-in policy on all NASA flight programs.

  11. JPL preferred parts list: Reliable electronic components

    NASA Technical Reports Server (NTRS)

    Covey, R. E.; Scott, W. R.; Hess, L. M.; Steffy, T. G.; Stott, F. R.

    1982-01-01

    The JPL Preferred Parts List was prepared to provide a basis for selection of electronic parts for JPL spacecraft programs. Supporting tests for the listed parts were designed to comply with specific spacecraft environmental requirements. The list tabulates the electronic, magnetic, and electromechanical parts applicable to all JPL electronic equipment wherein reliability is a major concern. The parts listed are revelant to equipment supplied by subcontractors as well as fabricated at the laboratory.

  12. Tuning Electron Flux through Nitrogenase with Methanogen Iron Protein Homologues.

    PubMed

    Hiller, Caleb J; Stiebritz, Martin T; Lee, Chi Chung; Liedtke, Jasper; Hu, Yilin

    2017-11-16

    Nitrogenase uses a reductase component called Fe protein to deliver electrons to its catalytic partner for substrate reduction. The essential role of Fe protein in catalysis makes it an ideal target for regulating the electron flux and enzymatic activity of nitrogenase without perturbing the cofactor site. This work reports that hybrids between the Fe protein homologs of Methanosarcina acetivorans and the catalytic components of Azotobacter vinelandii can trap substrate CO through reduced electron fluxes. In addition, homology modeling/in silico docking is used to define markers for binding energy and specificity between the component proteins that correlate with the experimentally determined activities. This homologue-based approach could be further developed to allow identification or design of hybrids between homologous nitrogenase components for mechanistic investigations of nitrogenase through capture of substrates/ intermediates or for transgenic expression of nitrogenase through synthetic biology. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Electron spin resonance characterization of radical components in irradiated black pepper skin and core

    NASA Astrophysics Data System (ADS)

    Yamaoki, Rumi; Kimura, Shojiro; Ohta, Masatoshi

    2011-11-01

    Characteristics of free radical components of irradiated black pepper fruit (skin) and the pepper seed (core) were analyzed using electron spin resonance. A weak signal near g=2.005 was observed in black pepper before irradiation. Complex spectra near g=2.005 with three lines (the skin) or seven lines (the core) were observed in irradiated black pepper (both end line width; ca. 6.8 mT). The spectral intensities decreased considerably at 30 days after irradiation, and continued to decrease steadily thereafter. The spectra simulated on the basis of the content and the stability of radical components derived from plant constituents, including fiber, starch, polyphenol, mono- and disaccharide, were in good agreement with the observed spectra. Analysis showed that the signal intensities derived from fiber in the skin for an absorbed dose were higher, and the rates of decrease were lower, than that in the core. In particular, the cellulose radical component in the skin was highly stable.

  14. Acquisition of electrical signals using commercial electronic components for detection system of Lead ion in distilled water

    NASA Astrophysics Data System (ADS)

    Pujiyanto; Yasin, M.; Rusydi, F.

    2018-03-01

    Development of lead ion detection systems is expected to have an advantage in terms of simplicity of the device and easy for concentration analysis of a lead ion with very high performance. One important part of lead ion detection systems are electrical signal acquisition parts. The electrical signal acquisition part uses the main electronic components: non inverting op-amplifier, instrumentation amplifier, multiplier circuit and logarithmic amplifier. Here will be shown the performance of lead ion detection systems when the existing electrical signal processors use commercial electronic components. The results that can be drawn from this experimental were the lead ion sensor that has been developed can be used to detect lead ions with a sensitivity of 10.48 mV/ppm with the linearity 97.11% and had a measurement range of 0.1 ppm to 80 ppm.

  15. Investigation of the effects of long duration space exposure on active optical system components

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1994-01-01

    This experiment was exposed to the space environment for 6 years on the Long Duration Exposure Facility (LDEF). It investigated quantitatively the effects of the long-duration space exposure on the relevant performance parameters of a representative set of electron-optic system components, including lasers, radiation detectors, filters, modulators, windows, and other related components. It evaluated the results and implications of the measurements indicating real or suspected degradation mechanisms. This information will be used to establish guidelines for the selection and use of components for space-based, electro-optic systems.

  16. Universal formulation of second-order generalized Møller-Plesset perturbation theory for a spin-dependent two-component relativistic many-electron Hamiltonian

    NASA Astrophysics Data System (ADS)

    Nakano, Masahiko; Seino, Junji; Nakai, Hiromi

    2017-05-01

    We have derived and implemented a universal formulation of the second-order generalized Møller-Plesset perturbation theory (GMP2) for spin-dependent (SD) two-component relativistic many-electron Hamiltonians, such as the infinite-order Douglas-Kroll-Hess Hamiltonian for many-electron systems, which is denoted as IODKH/IODKH. Numerical assessments for He- and Ne-like atoms and 16 diatomic molecules show that the MP2 correlation energies with IODKH/IODKH agree well with those calculated with the four-component Dirac-Coulomb (DC) Hamiltonian, indicating a systematic improvement on the inclusion of relativistic two-electron terms. The present MP2 scheme for IODKH/IODKH is demonstrated to be computationally more efficient than that for DC.

  17. Effects of radix polygoni multiflori components on tyrosinase activity and melanogenesis.

    PubMed

    Guan, Shuyu; Su, Weiwei; Wang, Ning; Li, Peibo; Wang, Yonggang

    2008-04-01

    Radix Polygoni multiflori is a herb used effectively to prevent graying and treat skin depigmentation diseases in traditional Chinese medicine but its active ingredients have not been discovered yet. In this investigation, we tested six compounds isolated from Radix Polygoni multiflori, to discover the active component on melanogenesis. Three experiments were performed in the present investigation: mushroom tyrosinase activity, melanin content B16 cell proliferation assay. Among all the six components tested, THSG showed the most potent effects on tyrosinase activation and melanogenesis; it was shown to be a potent tyrosinase activator and a melanogenesis stimulator in this study. On the other hand, we found that gallic acid significantly inhibited tyrosinase and, in addition, anthraquinones were cytotoxic to melanoma cells. They were both harmful to melanogenesis. Therefore, we propose that THSG acts as the active ingredient of Radix Polygoni multiflori on melanogenesis.

  18. High energy electron cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parkhomchuk, V.

    1997-09-01

    High energy electron cooling requires a very cold electron beam. The questions of using electron cooling with and without a magnetic field are presented for discussion at this workshop. The electron cooling method was suggested by G. Budker in the middle sixties. The original idea of the electron cooling was published in 1966. The design activities for the NAP-M project was started in November 1971 and the first run using a proton beam occurred in September 1973. The first experiment with both electron and proton beams was started in May 1974. In this experiment good result was achieved very closemore » to theoretical prediction for a usual two component plasma heat exchange.« less

  19. Microstructural and micromechanical study of a Ti6Al4V component made by electron beam melting

    NASA Astrophysics Data System (ADS)

    Scherillo, F.; Franchitti, S.; Borrelli, R.; Pirozzi, C.; Squillace, A.; Langella, A.; Carrino, L.

    2016-10-01

    Additive Layer Manufacturing is one of the most promising and investigated manufacturing system due to its advantages to produces near net shape components, also with a very complex shape, in a single shot. Among the different techniques now available, the Electron Beam Melting (EBM) is of particular interest in the production of metal components. Particularly the application of this technique to titanium alloys allows to produces components with a very low buy to fly ratio. In the present paper the microstructure attained is accurately described and mini tensile tests performed allowed to understand the fracture behavior of specimen with the specific microstructure realized under static load.

  20. A Krebs Cycle Component Limits Caspase Activation Rate through Mitochondrial Surface Restriction of CRL Activation.

    PubMed

    Aram, Lior; Braun, Tslil; Braverman, Carmel; Kaplan, Yosef; Ravid, Liat; Levin-Zaidman, Smadar; Arama, Eli

    2016-04-04

    How cells avoid excessive caspase activity and unwanted cell death during apoptotic caspase-mediated removal of large cellular structures is poorly understood. We investigate caspase-mediated extrusion of spermatid cytoplasmic contents in Drosophila during spermatid individualization. We show that a Krebs cycle component, the ATP-specific form of the succinyl-CoA synthetase β subunit (A-Sβ), binds to and activates the Cullin-3-based ubiquitin ligase (CRL3) complex required for caspase activation in spermatids. In vitro and in vivo evidence suggests that this interaction occurs on the mitochondrial surface, thereby limiting the source of CRL3 complex activation to the vicinity of this organelle and reducing the potential rate of caspase activation by at least 60%. Domain swapping between A-Sβ and the GTP-specific SCSβ (G-Sβ), which functions redundantly in the Krebs cycle, show that the metabolic and structural roles of A-Sβ in spermatids can be uncoupled, highlighting a moonlighting function of this Krebs cycle component in CRL activation. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Honeycomb chassis for electronic components

    NASA Technical Reports Server (NTRS)

    Read, W. S.; Stebbins, B. W.

    1977-01-01

    In new electronic chassis support, machined honeycomb members are used to change basic relationship between chassis and support structure. Improved chassis combines internal and external support and heat dissipation by altering chassis internal geometry. Honeycomb materials allow mechanical support and thermal load sharing to be combined at lower weight and lower cost than previous equipment.

  2. 75 FR 28651 - In the Matter of Certain Electronic Paper Towel Dispensing Devices and Components Thereof; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-718] In the Matter of Certain Electronic Paper Towel Dispensing Devices and Components Thereof; Notice of Investigation AGENCY: International Trade... that a complaint was filed with the U.S. International Trade Commission on April 19, 2010, under...

  3. Variation in contents of main active components and antioxidant activity in leaves of different pigeon pea cultivars during growth.

    PubMed

    Wei, Zuo-Fu; Jin, Shuang; Luo, Meng; Pan, You-Zhi; Li, Ting-Ting; Qi, Xiao-Lin; Efferth, Thomas; Fu, Yu-Jie; Zu, Yuan-Gang

    2013-10-23

    Pigeon pea is an important and multiuse grain legume crop, and its leaves are a very valuable natural resource. To obtain a high-quality biological resource, it is necessary to choose the excellent cultivar and determine the appropriate harvest time. In this study, the variation in contents of main active components and antioxidant activity in leaves of six pigeon pea cultivars during growth were investigated. The level of each individual active component significantly varied during growth, but with a different pattern, and this variation was different among cultivars. Flavonoid glycosides orientin, vitexin, and apigenin-6,8-di-C-α-L-arabinopyranoside showed two peak values at mid-late and final stages of growth in most cases. Pinostrobin chalcone, longistyline C, and cajaninstilbene acid showed remarkablely higher values at the mid-late stage of growth than at other stages. Pinostrobin had an extremely different variation pattern compared to other active components. Its content was the highest at the earlier stage of growth. Principal component analysis (PCA) revealed that vitexin and apigenin-6,8-di-C-α-L-arabinopyranoside were mainly responsible for distinguishing cultivars analyzed. In a comprehensive consideration, the leaves should preferentially be harvested at the 135th day after sowing when the level of active components and antioxidant activity reached higher values. Cultivars ICP 13092, ICPL 87091, and ICPL 96053 were considered to be excellent cultivars with high antioxidant activity. Our findings can provide valuable information for producing a high-quality pigeon pea resource.

  4. Work-related musculoskeletal disorders (WMDs) risk assessment at core assembly production of electronic components manufacturing company

    NASA Astrophysics Data System (ADS)

    Yahya, N. M.; Zahid, M. N. O.

    2018-03-01

    This study conducted to assess the work-related musculoskeletal disorders (WMDs) among the workers at core assembly production in an electronic components manufacturing company located in Pekan, Pahang, Malaysia. The study is to identify the WMDs risk factor and risk level. A set of questionnaires survey based on modified Nordic Musculoskeletal Disorder Questionnaires have been distributed to respective workers to acquire the WMDs risk factor identification. Then, postural analysis was conducted in order to measure the respective WMDs risk level. The analysis were based on two ergonomics assessment tools; Rapid Upper Limb Assessment (RULA) and Rapid Entire Body Assessment (REBA). The study found that 30 respondents out of 36 respondents suffered from WMDs especially at shoulder, wrists and lower back. The WMDs risk have been identified from unloading process, pressing process and winding process. In term of the WMDs risk level, REBA and RULA assessment tools have indicated high risk level to unloading and pressing process. Thus, this study had established the WMDs risk factor and risk level of core assembly production in an electronic components manufacturing company at Malaysia environment.

  5. The preliminary assessment of anti-microbial activity of HPLC separated components of Kirkia wilmsii.

    PubMed

    Chigayo, K; Mojapelo, P E L; Bessong, P; Gumbo, J R

    2014-01-01

    Most communities in developing countries rely on traditional medicines for the treatment of diseases. In South Africa, the Limpopo province, within the Lebowakgomo district, uses tuberous roots of Kirkia wilmsii, after infusion in water for the treatment of a wide range of diseases by Sotho communities. The main objective of the study was to assess the anti-microbial activity of separated aqueous components of the Kirkia wilmsii tuberous roots. The clear aqueous extracts that were obtained after a 0.45 µm membrane filtration (Millipore Millex-HV Hydrophillic PVDF filter), were then injected into a preparative high performance liquid chromatography instrument in which pure components, as shown by peaks, were collected and evaluated for anti-microbial activity against a range of microorganisms. The eight separated components were obtained, out of which four components showed anti-microbial activity (AMA). The freeze dried components were re-dissolved in deionised water and then evaluated for AMA against Vibrio cholerae, Shigella dysenteriae, Aeromonas hydrophilia, Salmonella typhi Proteus mirabilis, Escherichia coli, Staphylococcus aureus, Candida albicans and Enterobacter aerogenes. Component one exhibited antimicrobial activity against Shigella dysenteriae, Aeromonas hydrophilia, Salmonella typhi, Proteus mirabilis, Escherichia coli and Staphylococcus aureus with a minimum inhibitory concentration (MIC), of 3.445 mg/ml. Component five was only active against Proteus mirabilis with a MIC of 0.08 mg/ml. Component 7, was active against Shigella dysenteriae, Staphylococcus aureus and Escherichia coli with a MIC of 0.365 mg/ml against both Shigella dysenteriae and Staphylococcus aureus and 0.091 mg/ml against Escherichia coli. Component 8, was active against Shigella, Aeromonas hydrophilia, Salmonella, Proteus mirabilis, Escherichia coli with a MIC of 155 mg/ml. Only four out of eight aqueous extracts showed AMA against both gram negative and positive bacteria and

  6. Hybridization of active and passive elements for planar photonic components and interconnects

    NASA Astrophysics Data System (ADS)

    Pearson, M.; Bidnyk, S.; Balakrishnan, A.

    2007-02-01

    The deployment of Passive Optical Networks (PON) for Fiber-to-the-Home (FTTH) applications currently represents the fastest growing sector of the telecommunication industry. Traditionally, FTTH transceivers have been manufactured using commodity bulk optics subcomponents, such as thin film filters (TFFs), micro-optic collimating lenses, TO-packaged lasers, and photodetectors. Assembling these subcomponents into a single housing requires active alignment and labor-intensive techniques. Today, the majority of cost reducing strategies using bulk subcomponents has been implemented making future reductions in the price of manufacturing FTTH transceivers unlikely. Future success of large scale deployments of FTTH depends on further cost reductions of transceivers. Realizing the necessity of a radically new packaging approach for assembly of photonic components and interconnects, we designed a novel way of hybridizing active and passive elements into a planar lightwave circuit (PLC) platform. In our approach, all the filtering components were monolithically integrated into the chip using advancements in planar reflective gratings. Subsequently, active components were passively hybridized with the chip using fully-automated high-capacity flip-chip bonders. In this approach, the assembly of the transceiver package required no active alignment and was readily suitable for large-scale production. This paper describes the monolithic integration of filters and hybridization of active components in both silica-on-silicon and silicon-on-insulator PLCs.

  7. Hot-electron-mediated surface chemistry: toward electronic control of catalytic activity.

    PubMed

    Park, Jeong Young; Kim, Sun Mi; Lee, Hyosun; Nedrygailov, Ievgen I

    2015-08-18

    nanoparticles on oxide supports and Pt-CdSe-Pt nanodumbbells. We show that the accumulation or depletion of hot electrons on metal nanoparticles, in turn, can also influence catalytic reactions. Mechanisms suggested for hot-electron-induced chemical reactions on a photoexcited plasmonic metal are discussed. We propose that the manipulation of the flow of hot electrons by changing the electrical characteristics of metal-oxide and metal-semiconductor interfaces can give rise to the intriguing capability of tuning the catalytic activity of hybrid nanocatalysts.

  8. 12 CFR 7.5003 - Composite authority to engage in electronic activities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 1 2011-01-01 2011-01-01 false Composite authority to engage in electronic activities. 7.5003 Section 7.5003 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY BANK ACTIVITIES AND OPERATIONS Electronic Activities § 7.5003 Composite authority to engage in...

  9. 12 CFR 7.5003 - Composite authority to engage in electronic activities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Composite authority to engage in electronic activities. 7.5003 Section 7.5003 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY BANK ACTIVITIES AND OPERATIONS Electronic Activities § 7.5003 Composite authority to engage in...

  10. Radio-frequency flexible and stretchable electronics: the need, challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Jung, Yei Hwan; Seo, Jung-Hun; Zhang, Huilong; Lee, Juhwan; Cho, Sang June; Chang, Tzu-Hsuan; Ma, Zhenqiang

    2017-05-01

    Successful integration of ultrathin flexible or stretchable systems with new applications, such as medical devices and biodegradable electronics, have intrigued many researchers and industries around the globe to seek materials and processes to create high-performance, non-invasive and cost-effective electronics to match those of state-of-the-art devices. Nevertheless, the crucial concept of transmitting data or power wirelessly for such unconventional devices has been difficult to realize due to limitations of radio-frequency (RF) electronics in individual components that form a wireless circuitry, such as antenna, transmission line, active devices, passive devices etc. To overcome such challenges, these components must be developed in a step-by-step manner, as each component faces a number of different challenges in ultrathin formats. Here, we report on materials and design considerations for fabricating flexible and stretchable electronics systems that operate in the microwave level. High-speed flexible active devices, including cost effective Si-based strained MOSFETs, GaAs-based HBTs and GaN-based HEMTs, performing at multi-gigahertz frequencies are presented. Furthermore, flexible or stretchable passive devices, including capacitors, inductors and transmission lines that are vital parts of a microwave circuitry are also demonstrated. We also present unique applications using the presented flexible or stretchable RF components, including wearable RF electronics and biodegradable RF electronics, which were impossible to achieve using conventional rigid, wafer-based technology. Further opportunities like implantable systems exist utilizing such ultrathin RF components, which are discussed in this report as well.

  11. UAVSAR Active Electronically Scanned Array

    NASA Technical Reports Server (NTRS)

    Sadowy, Gregory, A.; Chamberlain, Neil F.; Zawadzki, Mark S.; Brown, Kyle M.; Fisher, Charles D.; Figueroa, Harry S.; Hamilton, Gary A.; Jones, Cathleen E.; Vorperian, Vatche; Grando, Maurio B.

    2011-01-01

    The Uninhabited Airborne Vehicle Synthetic Aperture Radar (UAVSAR) is a pod-based, L-band (1.26 GHz), repeatpass, interferometric, synthetic aperture radar (InSAR) used for Earth science applications. Repeat-pass interferometric radar measurements from an airborne platform require an antenna that can be steered to maintain the same angle with respect to the flight track over a wide range of aircraft yaw angles. In order to be able to collect repeat-pass InSAR data over a wide range of wind conditions, UAVSAR employs an active electronically scanned array (AESA). During data collection, the UAVSAR flight software continuously reads the aircraft attitude state measured by the Embedded GPS/INS system (EGI) and electronically steers the beam so that it remains perpendicular to the flight track throughout the data collection

  12. [An electron microscopic study on the RNA component of synaptonemal complexes in spermatocytes of Mus musculus].

    PubMed

    Xing, M; Jing, D Z; Hao, S

    1991-01-01

    The ultrastructural and cytochemical features of synaptonemal complexes (SC) in sections of spermatocytes of Mus musculus were studied under electron microscope. In specimens stained with uranyl acetate and lead citrate the SC was found consisting of three main elements. the lateral element (LE), the central element (CE) and the transverse filament (L-C filament). When stained with the Bernhard's technique, the SC was recognized as a contrasted, tripartite structure which was usually located in the bleached area occupied by the condensed chromatin and composed of highly electron-dense LEs and medium electron-dense CE and L-C filaments. The SC and the LE, stained either by uranyl acetate-lead citrate or by the Bernhard's technique, always showed diameters of about 210 nm and 60 nm, respectively. The results suggest that RNA may be an important component of the SC.

  13. Study on the interaction between active components from traditional Chinese medicine and plasma proteins.

    PubMed

    Jiao, Qishu; Wang, Rufeng; Jiang, Yanyan; Liu, Bin

    2018-05-04

    Traditional Chinese medicine (TCM), as a unique form of natural medicine, has been used in Chinese traditional therapeutic systems over two thousand years. Active components in Chinese herbal medicine are the material basis for the prevention and treatment of diseases. Research on drug-protein binding is one of the important contents in the study of early stage clinical pharmacokinetics of drugs. Plasma protein binding study has far-reaching influence on the pharmacokinetics and pharmacodynamics of drugs and helps to understand the basic rule of drug effects. It is important to study the binding characteristics of the active components in Chinese herbal medicine with plasma proteins for the medical science and modernization of TCM. This review summarizes the common analytical methods which are used to study the active herbal components-protein binding and gives the examples to illustrate their application. Rules and influence factors of the binding between different types of active herbal components and plasma proteins are summarized in the end. Finally, a suggestion on choosing the suitable technique for different types of active herbal components is provided, and the prospect of the drug-protein binding used in the area of TCM research is also discussed.

  14. The EPQ Code System for Simulating the Thermal Response of Plasma-Facing Components to High-Energy Electron Impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Robert Cameron; Steiner, Don

    2004-06-15

    The generation of runaway electrons during a thermal plasma disruption is a concern for the safe and economical operation of a tokamak power system. Runaway electrons have high energy, 10 to 300 MeV, and may potentially cause extensive damage to plasma-facing components (PFCs) through large temperature increases, melting of metallic components, surface erosion, and possible burnout of coolant tubes. The EPQ code system was developed to simulate the thermal response of PFCs to a runaway electron impact. The EPQ code system consists of several parts: UNIX scripts that control the operation of an electron-photon Monte Carlo code to calculate themore » interaction of the runaway electrons with the plasma-facing materials; a finite difference code to calculate the thermal response, melting, and surface erosion of the materials; a code to process, scale, transform, and convert the electron Monte Carlo data to volumetric heating rates for use in the thermal code; and several minor and auxiliary codes for the manipulation and postprocessing of the data. The electron-photon Monte Carlo code used was Electron-Gamma-Shower (EGS), developed and maintained by the National Research Center of Canada. The Quick-Therm-Two-Dimensional-Nonlinear (QTTN) thermal code solves the two-dimensional cylindrical modified heat conduction equation using the Quickest third-order accurate and stable explicit finite difference method and is capable of tracking melting or surface erosion. The EPQ code system is validated using a series of analytical solutions and simulations of experiments. The verification of the QTTN thermal code with analytical solutions shows that the code with the Quickest method is better than 99.9% accurate. The benchmarking of the EPQ code system and QTTN versus experiments showed that QTTN's erosion tracking method is accurate within 30% and that EPQ is able to predict the occurrence of melting within the proper time constraints. QTTN and EPQ are verified and validated

  15. The structure of ion-acoustic waves in a low-frequency three-component electron-ion space plasma with two-electron populations

    NASA Astrophysics Data System (ADS)

    Govender, G.; Moolla, S.

    2018-07-01

    Low-frequency ion-acoustic waves are analysed on the ion time-scale, in a three-component electron-ion space plasma. The solitary waves propagate in the positive x direction relative to an ambient magnetic field ěc {B}_0 which forms static background for a configuration consisting of cool fluid ions and both warm and hot Boltzmann-distributed electrons with temperatures T_{ic}, T_{ew} and T_{eh}, respectively. We derive linear dispersion relation for the waves by introducing first-order density, pressure and velocity perturbations into the ion fluid equations. Additionally, the variation in the nonlinear structure of the waves are investigated by carrying out a full parametric analysis utilising our numerical code. Our results reveal that ion-acoustic waves exhibit well-defined nonlinear spikes at speeds of M≥ 2.25 and an electric field amplitude of E_0=0.85. It is also shown that low wave speeds (M≤ 2), higher densities of the hot electrons, antiparallel drifting of the cool fluid ions, and increased ion temperatures all lead to significant dispersive effects. The ion-acoustic plasma waves featured in this paper have forms that are consistent with those classified as the type-A and type-B broadband electrostatic noise (BEN) observed in the data obtained from earlier satellite missions.

  16. Comparison of mitochondrial and nucleolar RNase MRP reveals identical RNA components with distinct enzymatic activities and protein components.

    PubMed

    Lu, Qiaosheng; Wierzbicki, Sara; Krasilnikov, Andrey S; Schmitt, Mark E

    2010-03-01

    RNase MRP is a ribonucleoprotein endoribonuclease found in three cellular locations where distinct substrates are processed: the mitochondria, the nucleolus, and the cytoplasm. Cytoplasmic RNase MRP is the nucleolar enzyme that is transiently relocalized during mitosis. Nucleolar RNase MRP (NuMRP) was purified to homogeneity, and we extensively purified the mitochondrial RNase MRP (MtMRP) to a single RNA component identical to the NuMRP RNA. Although the protein components of the NuMRP were identified by mass spectrometry successfully, none of the known NuMRP proteins were found in the MtMRP preparation. Only trace amounts of the core NuMRP protein, Pop4, were detected in MtMRP by Western blot. In vitro activity of the two enzymes was compared. MtMRP cleaved only mitochondrial ORI5 substrate, while NuMRP cleaved all three substrates. However, the NuMRP enzyme cleaved the ORI5 substrate at sites different than the MtMRP enzyme. In addition, enzymatic differences in preferred ionic strength confirm these enzymes as distinct entities. Magnesium was found to be essential to both enzymes. We tested a number of reported inhibitors including puromycin, pentamidine, lithium, and pAp. Puromycin inhibition suggested that it binds directly to the MRP RNA, reaffirming the role of the RNA component in catalysis. In conclusion, our study confirms that the NuMRP and MtMRP enzymes are distinct entities with differing activities and protein components but a common RNA subunit, suggesting that the RNA must be playing a crucial role in catalytic activity.

  17. Effects of growing location on the production of main active components and antioxidant activity of Dasiphora fruticosa (L.) Rydb. by chemometric methods.

    PubMed

    Liu, Wei; Wang, Dongmei; Hou, Xiaogai; Yang, Yueqin; Xue, Xian; Jia, Qishi; Zhang, Lixia; Zhao, Wei; Yin, Dongxue

    2018-05-17

    Traditional Chinese medicine (TCM) plays a very important role in the health system of China. The content and activity of active component are main indexes that evaluate the quality of TCM, however they may vary with environmental factors in their growing locations. In this study, effects of environmental factors on the contents of active components and antioxidant activity of Dasiphora fruticosa from the five main production areas of China were investigated. The contents of tannin, total flavonoid and rutin were determined and varied within the range of 7.65-10.69%, 2.30-5.39% and 0.18-0.81%, respectively. Antioxidant activity was determined by DPPH assay, with the DPPH IC 50 values ranged from 8.791 to 32.534μg mL -1 . In order to further explore the cause of these significant geographical variations, the chemometric methods including correlation analysis, principal component analysis, gray correlation analysis, and path analysis were conducted. The results showed environmental factors had significant effect on the active component contents and antioxidant activity. Rapidly available phosphorus (RAP) and rapidly available nitrogen (RAN) were common dominant factors, and a significant positive correlation was observed between RAP and active components and antioxidant activity (P<0.05). Contributed by their high active components and strong antioxidant activity, Bange in Tibet and Geermu in Qinghai Province was selected as a favorable growing location, respectively. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Detection of the high energy component of Jovian electrons at 1 AU with the PAMELA experiment.

    NASA Astrophysics Data System (ADS)

    Casolino, M.; PAMELA Collaboration

    PAMELA is a satellite-borne experiment that will be launched in the first half of 2006 It will make long duration measurements of cosmic radiation over an extended energy range 80Mev to 200 GeV Specifically PAMELA will measure the cosmic-ray antiproton and positron spectra over the largest energy range ever achieved 80MeV - 190 GeV and will search for antinuclei with unprecedented sensitivity Furthermore it will measure the light nuclear component of cosmic rays and investigate phenomena connected with solar and earth physics The apparatus consists of a time of flight system a magnetic spectrometer an electromagnetic imaging calorimeter a shower tail catcher scintillator a neutron detector and an anticoincidence system The Jovian magnetosphere is a powerful accelerator of electrons to several tens of MeV as observed at first by Pioneer 10 spacecraft 1973 The propagation of Jovian electrons to Earth is affected by modulation due to Corotating Interaction Regions CIR Their flux at Earth is moreover modulated because every 13 months Earth and Jupiter are aligned along the average direction of the Parker spiral of the Interplanetary Magnetic Field For its characteristics PAMELA will be able to measure the high energy tail of the Jovian electrons in the energy range from 50 MeV up to 130 MeV With long term observation it will also be possible to detect the Jovian component reaccelated at the solar wind termination shock from the galactic flux

  19. Cleaning and activation of beryllium-copper electron multiplier dynodes.

    NASA Technical Reports Server (NTRS)

    Pongratz, M. B.

    1972-01-01

    Description of a cleaning and activation procedure followed in preparing beryllium-copper dynodes for electron multipliers used in sounding-rocket experiments to detect auroral electrons. The initial degreasing step involved a 5-min bath in trichloroethylene in an ultrasonic cleaner. This was followed by an ultrasonic rinse in methanol and by a two-step acid pickling treatment to remove the oxides. Additional rinsing in water and methanol was followed by activation in a stainless-steel RF induction oven.

  20. Selective adsorption of flavor-active components on hydrophobic resins.

    PubMed

    Saffarionpour, Shima; Sevillano, David Mendez; Van der Wielen, Luuk A M; Noordman, T Reinoud; Brouwer, Eric; Ottens, Marcel

    2016-12-09

    This work aims to propose an optimum resin that can be used in industrial adsorption process for tuning flavor-active components or removal of ethanol for producing an alcohol-free beer. A procedure is reported for selective adsorption of volatile aroma components from water/ethanol mixtures on synthetic hydrophobic resins. High throughput 96-well microtiter-plates batch uptake experimentation is applied for screening resins for adsorption of esters (i.e. isoamyl acetate, and ethyl acetate), higher alcohols (i.e. isoamyl alcohol and isobutyl alcohol), a diketone (diacetyl) and ethanol. The miniaturized batch uptake method is adapted for adsorption of volatile components, and validated with column breakthrough analysis. The results of single-component adsorption tests on Sepabeads SP20-SS are expressed in single-component Langmuir, Freundlich, and Sips isotherm models and multi-component versions of Langmuir and Sips models are applied for expressing multi-component adsorption results obtained on several tested resins. The adsorption parameters are regressed and the selectivity over ethanol is calculated for each tested component and tested resin. Resin scores for four different scenarios of selective adsorption of esters, higher alcohols, diacetyl, and ethanol are obtained. The optimal resin for adsorption of esters is Sepabeads SP20-SS with resin score of 87% and for selective removal of higher alcohols, XAD16N, and XAD4 from Amberlite resin series are proposed with scores of 80 and 74% respectively. For adsorption of diacetyl, XAD16N and XAD4 resins with score of 86% are the optimum choice and Sepabeads SP2MGS and XAD761 resins showed the highest affinity towards ethanol. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Growth-arresting Activity of Acmella Essential Oil and its Isolated Component D-Limonene (1, 8 P-Mentha Diene) against Trichophyton rubrum (Microbial Type Culture Collection 296).

    PubMed

    Padhan, Diptikanta; Pattnaik, Smaranika; Behera, Ajaya Kumar

    2017-10-01

    Spilanthes acmella is used as a remedy in toothache complaints by the tribal people of Western part of Odisha, India. The objective of this study was to study the growth-arresting activity of an indigenous Acmella essential oil (EO) ( S. acmella Murr, Asteraceae ) and its isolated component, d-limonene against Trichophyton rubrum (microbial type culture collection 296). The EO was extracted from flowers of indigenous S. acmella using Clevenger's apparatus and analyzed by gas chromatography-mass spectrometry (GC-MS). High pressure liquid chromatography (HPLC) was carried out to isolate the major constituent. The isolated fraction was subjected to fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). The antidermatophytic activity was screened for using "disc diffusion" and "slant dilution" method followed by optical, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) studies. The molecular dockings were made between d-limonene with cell wall synthesis-related key enzymes (14 methyl deaminase and monooxygenase). The GC-MS analysis EO had inferred the presence of 7 number of major (≥2%) components. The component with highest peak area (%) was found to be 41.02. The HPLC-isolated fraction was identified as d-limonene (1,8 p-Mentha-diene) by FTIR and NMR. Qualitative and quantitative assays had suggested the growth inhibitory activity of Acmella EO and its component. Shrinkage, evacuation, cell wall puncture, and leakage of cellular constituents by the activity of Acmella oil and d-limonene were evidenced from optical, SEM, and TEM studies. The computer simulation had predicted the binding strengths of d-limonene and fluconazole with dermatophyte cell wall enzymes. There could have been synergistic action of all or some of compounds present in indigenous Acmella EO. There was presence of seven number of (d-limonene, ocimene, β-myrcene, cyclohexene, 3-(1, 5-dimethyl-4-hexenyl)-6-methylene,

  2. Differences in associations between active transportation and built environmental exposures when expressed using different components of individual activity spaces.

    PubMed

    van Heeswijck, Torbjorn; Paquet, Catherine; Kestens, Yan; Thierry, Benoit; Morency, Catherine; Daniel, Mark

    2015-05-01

    This study assessed relationships between built environmental exposures measured within components of individual activity spaces (i.e., travel origins, destinations and paths in-between), and use of active transportation in a metropolitan setting. Individuals (n=37,165) were categorised as using active or sedentary transportation based on travel survey data. Generalised Estimating Equations analysis was used to test relationships with active transportation. Strength and significance of relationships between exposures and active transportation varied for different components of the activity space. Associations were strongest when including travel paths in expression of the built environment. Land use mix and greenness were negatively related to active transportation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Cannabinoid-Induced Changes in the Activity of Electron Transport Chain Complexes of Brain Mitochondria.

    PubMed

    Singh, Namrata; Hroudová, Jana; Fišar, Zdeněk

    2015-08-01

    The aim of this study was to investigate changes in the activity of individual mitochondrial respiratory chain complexes (I, II/III, IV) and citrate synthase induced by pharmacologically different cannabinoids. In vitro effects of selected cannabinoids on mitochondrial enzymes were measured in crude mitochondrial fraction isolated from pig brain. Both cannabinoid receptor agonists, Δ(9)-tetrahydrocannabinol, anandamide, and R-(+)-WIN55,212-2, and antagonist/inverse agonists of cannabinoid receptors, AM251, and cannabidiol were examined in pig brain mitochondria. Different effects of these cannabinoids on mitochondrial respiratory chain complexes and citrate synthase were found. Citrate synthase activity was decreased only by Δ(9)-tetrahydrocannabinol and AM251. Significant increase in the complex I activity was induced by anandamide. At micromolar concentration, all the tested cannabinoids inhibited the activity of electron transport chain complexes II/III and IV. Stimulatory effect of anandamide on activity of complex I may participate on distinct physiological effects of endocannabinoids compared to phytocannabinoids or synthetic cannabinoids. Common inhibitory effect of cannabinoids on activity of complex II/III and IV confirmed a non-receptor-mediated mechanism of cannabinoid action on individual components of system of oxidative phosphorylation.

  4. Components of polarization-transfer to a bound proton in a deuteron measured by quasi-elastic electron scattering

    NASA Astrophysics Data System (ADS)

    Izraeli, D.; Yaron, I.; Schlimme, B. S.; Achenbach, P.; Arenhövel, H.; Ashkenazi, A.; Beričič, J.; Böhm, R.; Bosnar, D.; Cohen, E. O.; Distler, M. O.; Esser, A.; Friščić, I.; Gilman, R.; Korover, I.; Lichtenstadt, J.; Mardor, I.; Merkel, H.; Middleton, D. G.; Mihovilovič, M.; Müller, U.; Olivenboim, M.; Piasetzky, E.; Pochodzalla, J.; Ron, G.; Schoth, M.; Schulz, F.; Sfienti, C.; Širca, S.; Štajner, S.; Strauch, S.; Thiel, M.; Tyukin, A.; Weber, A.; A1 Collaboration

    2018-06-01

    We report the first measurements of the transverse (Px and Py) and longitudinal (Pz) components of the polarization transfer to a bound proton in the deuteron via the 2H (e → ,e‧ p →) reaction, over a wide range of missing momentum. A precise determination of the electron beam polarization reduces the systematic uncertainties on the individual components to a level that enables a detailed comparison to a state-of-the-art calculation of the deuteron using free-proton electromagnetic form factors. We observe very good agreement between the measured and the calculated Px /Pz ratios, but deviations of the individual components. Our results cannot be explained by medium modified electromagnetic form factors. They point to an incomplete description of the nuclear reaction mechanism in the calculation.

  5. Antibacterial activity of crude extracts of prasaprohyai formula and its components against pathogenic bacteria.

    PubMed

    Sattaponpan, Chisanucha; Kondo, Sumalee

    2011-12-01

    Prasaprohyai formula is a Thai Traditional Medicine which has been used for reducing feverish in child. Fever is a symptom resulting from various infections and diseases. The major cause of fever is bacterial and viral infections. The Prasaprohyai formula and its components potentially have biological activities including antipyretic and antimicrobial activities. It is in a hope to develop the formula and its components for an alternative medicine of infectious diseases. To study antibacterial activity of Prasaprohyai formula and its components against pathogenic bacteria. Prasaprohyai formula and its components were extracted by different methods, A: maceration with 95% ethanol followed by evaporation (ET), B: ET followed by freeze drying (EF) and C: water distillation (VO). All extracts were tested against clinical isolates from Thammasat University Hospital, Staphylococcus aureus ATCC 25923 and Escherichia coli ATCC 25922. Disk diffusion and broth dilution methods were performed. Crude extracts of ET had higher yield of extraction than other methods. The results showed that the crude extract from different methods of Syzygium aromaticum (Linn) Merr & Perry (Flower) was effective against all bacterial strains with the inhibition zone ranging from 9 to 19 mm. The VO extract of Prasaprohyai formula showed antibacterial activity against most of the pathogenic bacteria in the present study. The activity against Streptococcus pyogenes was found in the VO extract of some components. The ET extracts of Lepidium sativum Linn, Myristica fragrans Houtt (seed) and Myristica fragrans Houtt (aril) had no antibacterial activity against all microorganism. However the EF extracts of this formula and some components were able to mostly inhibit Gram positive bacteria. The results indicated that Prasaprohyai formula and its components were able to inhibit the growth of both Gram positive and Gram negative bacteria including multiresistant strains. The volatile oil extracts seemed

  6. Ceramic component for electrodes

    DOEpatents

    Marchant, David D.

    1979-01-01

    A ceramic component suitable for preparing MHD generator electrodes consists of HfO.sub.2 and sufficient Tb.sub.4 O.sub.7 to stabilize at least 60 volume percent of the HfO.sub.2 into the cubic structure. The ceramic component may also contain a small amount of PrO.sub.2, Yb.sub.2 O.sub.3 or a mixture of both to improve stability and electronic conductivity of the electrode. The component is highly resistant to corrosion by molten potassium seed and molten coal slag in the MHD fluid and exhibits both ionic and electronic conductivity.

  7. Pay attention to the study on active antiliver fibrosis components of Chinese herbal medicine.

    PubMed

    Hu, Yi-Yang

    2012-08-01

    In this review, the researches on Chinese herb components with anti-hepatic fibrosis activity in China in the recent 20 years were generalized. Almost thirty active herb components attracted author's attention, especially, salvianolic acid B and oxymatrine which were investigated comprehensively. Moreover, the author considered that, in view of the complex pathogenesis and the multi-pathway and multi-target superiority of Chinese medicine formula, the effective components formula investigations deserve more attention and probably prompt a potential researching direction.

  8. Gravitational and Dynamic Components of Muscle Torque Underlie Tonic and Phasic Muscle Activity during Goal-Directed Reaching.

    PubMed

    Olesh, Erienne V; Pollard, Bradley S; Gritsenko, Valeriya

    2017-01-01

    Human reaching movements require complex muscle activations to produce the forces necessary to move the limb in a controlled manner. How gravity and the complex kinetic properties of the limb contribute to the generation of the muscle activation pattern by the central nervous system (CNS) is a long-standing and controversial question in neuroscience. To tackle this issue, muscle activity is often subdivided into static and phasic components. The former corresponds to posture maintenance and transitions between postures. The latter corresponds to active movement production and the compensation for the kinetic properties of the limb. In the present study, we improved the methodology for this subdivision of muscle activity into static and phasic components by relating them to joint torques. Ten healthy subjects pointed in virtual reality to visual targets arranged to create a standard center-out reaching task in three dimensions. Muscle activity and motion capture data were synchronously collected during the movements. The motion capture data were used to calculate postural and dynamic components of active muscle torques using a dynamic model of the arm with 5 degrees of freedom. Principal Component Analysis (PCA) was then applied to muscle activity and the torque components, separately, to reduce the dimensionality of the data. Muscle activity was also reconstructed from gravitational and dynamic torque components. Results show that the postural and dynamic components of muscle torque represent a significant amount of variance in muscle activity. This method could be used to define static and phasic components of muscle activity using muscle torques.

  9. Gravitational and Dynamic Components of Muscle Torque Underlie Tonic and Phasic Muscle Activity during Goal-Directed Reaching

    PubMed Central

    Olesh, Erienne V.; Pollard, Bradley S.; Gritsenko, Valeriya

    2017-01-01

    Human reaching movements require complex muscle activations to produce the forces necessary to move the limb in a controlled manner. How gravity and the complex kinetic properties of the limb contribute to the generation of the muscle activation pattern by the central nervous system (CNS) is a long-standing and controversial question in neuroscience. To tackle this issue, muscle activity is often subdivided into static and phasic components. The former corresponds to posture maintenance and transitions between postures. The latter corresponds to active movement production and the compensation for the kinetic properties of the limb. In the present study, we improved the methodology for this subdivision of muscle activity into static and phasic components by relating them to joint torques. Ten healthy subjects pointed in virtual reality to visual targets arranged to create a standard center-out reaching task in three dimensions. Muscle activity and motion capture data were synchronously collected during the movements. The motion capture data were used to calculate postural and dynamic components of active muscle torques using a dynamic model of the arm with 5 degrees of freedom. Principal Component Analysis (PCA) was then applied to muscle activity and the torque components, separately, to reduce the dimensionality of the data. Muscle activity was also reconstructed from gravitational and dynamic torque components. Results show that the postural and dynamic components of muscle torque represent a significant amount of variance in muscle activity. This method could be used to define static and phasic components of muscle activity using muscle torques. PMID:29018339

  10. Stakeholder engagement: a key component of integrating genomic information into electronic health records

    PubMed Central

    Hartzler, Andrea; McCarty, Catherine A.; Rasmussen, Luke V.; Williams, Marc S.; Brilliant, Murray; Bowton, Erica A.; Clayton, Ellen Wright; Faucett, William A.; Ferryman, Kadija; Field, Julie R.; Fullerton, Stephanie M.; Horowitz, Carol R.; Koenig, Barbara A.; McCormick, Jennifer B.; Ralston, James D.; Sanderson, Saskia C.; Smith, Maureen E.; Trinidad, Susan Brown

    2014-01-01

    Integrating genomic information into clinical care and the electronic health record can facilitate personalized medicine through genetically guided clinical decision support. Stakeholder involvement is critical to the success of these implementation efforts. Prior work on implementation of clinical information systems provides broad guidance to inform effective engagement strategies. We add to this evidence-based recommendations that are specific to issues at the intersection of genomics and the electronic health record. We describe stakeholder engagement strategies employed by the Electronic Medical Records and Genomics Network, a national consortium of US research institutions funded by the National Human Genome Research Institute to develop, disseminate, and apply approaches that combine genomic and electronic health record data. Through select examples drawn from sites of the Electronic Medical Records and Genomics Network, we illustrate a continuum of engagement strategies to inform genomic integration into commercial and homegrown electronic health records across a range of health-care settings. We frame engagement as activities to consult, involve, and partner with key stakeholder groups throughout specific phases of health information technology implementation. Our aim is to provide insights into engagement strategies to guide genomic integration based on our unique network experiences and lessons learned within the broader context of implementation research in biomedical informatics. On the basis of our collective experience, we describe key stakeholder practices, challenges, and considerations for successful genomic integration to support personalized medicine. PMID:24030437

  11. Leadership component of type A behavior predicts physical activity in early midlife.

    PubMed

    Yang, Xiaolin; Telama, Risto; Hirvensalo, Mirja; Hintsa, Taina; Pulkki-Råback, Laura; Hintsanen, Mirka; Keltikangas-Järvinen, Liisa; Viikari, Jorma S A; Raitakari, Olli T

    2012-03-01

    Research on the long-term effects of Type A behavior and its components in the prediction of physical activity in adulthood is scarce and there is a lack of prospective data that are able to show such an association. We examined the relations between components of Type A behavior and physical activity from youth to early midlife. The sample included 2,031 participants (43.8% of males) aged 9 to 24 years in 1986 from the Young Finns Study. Type A behavior was measured by the Hunter-Wolf A-B Rating Scale at three phases in 1986, 1989, and 2001. Physical activity was assessed using a short self-report questionnaire at five phases between 1986 and 2007. High Type A leadership was associated with high physical activity in 1986 (r = 0.37, P < 0.01), 1989 (r = 0.36, P < 0.01) and 2001 (r = 0.31, P < 0.01), and youth leadership also predicted high adult physical activity (P < 0.001). After adjustment for age, education, occupation, smoking, body mass index, and baseline physical activity, the association remained significant. There was also a bidirectional association between Type A leadership and physical activity. Persistent physical activity during the adult years was associated with a higher Type A leadership than persistent physical inactivity (Cohen's d = 0.34, P < 0.001), even after controlling for potential confounders. The associations of other components of Type A behavior, i.e., hard-driving, eagerness-energy, and aggression with physical activity were marginal. There is a direct relation between Type A leadership and physical activity at different development phases that maybe bidirectional.

  12. Photonic Component Qualification and Implementation Activities at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Jin, Xiaodan Linda; Chuska, Richard F.; LaRocca, Frank V.; MacMurphy, Shawn L.; Matuszeski, Adam J.; Zellar, Ronald S.; Friedberg, Patricia R.; Malenab, Mary C.

    2006-01-01

    The photonics group in Code 562 at NASA Goddard Space Flight Center supports a variety of space flight programs at NASA including the: International Space Station (ISS), Shuttle Return to Flight Mission, Lunar Reconnaissance Orbiter (LRO), Express Logistics Carrier, and the NASA Electronic Parts and Packaging Program (NEPP). Through research, development, and testing of the photonic systems to support these missions much information has been gathered on practical implementations for space environments. Presented here are the highlights and lessons learned as a result of striving to satisfy the project requirements for high performance and reliable commercial optical fiber components for space flight systems. The approach of how to qualify optical fiber components for harsh environmental conditions, the physics of failure and development lessons learned will be discussed.

  13. The study of ionization by electron impact of a substance simulating spent nuclear fuel components

    NASA Astrophysics Data System (ADS)

    Antonov, N. N.; Bochkarev, E. I.; Gavrikov, A. V.; Samokhin, A. A.; Smirnov, V. P.

    2015-11-01

    Plasma sources of model substances are necessary to solve problems associated with development of the spent nuclear fuel (SNF) plasma separation method. Lead was chosen to simulate kinetic and dynamic properties of the heavy SNF components. In this paper we present the results of a study of a lead vapor discharge with a lead concentration of 1012-1013 cm-3. Ionization was carried out by an electron beam (with energy of up to 500 eV per electron) inside a centimeter gap between planar electrodes. The discharge was numerically modeled using the hydrodynamic and single-particle approximation. Current-voltage characteristics and single ionization efficiency were obtained as functions of the vapors concentration and thermoelectric current. An ion current of hundreds of microamperes at the ionization efficiency near tenths of a percent was experimentally obtained. These results are in good agreement with our model.

  14. 12 CFR 7.5008 - Location of a national bank conducting electronic activities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 1 2011-01-01 2011-01-01 false Location of a national bank conducting electronic activities. 7.5008 Section 7.5008 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY BANK ACTIVITIES AND OPERATIONS Electronic Activities § 7.5008 Location of a national bank...

  15. 12 CFR 7.5008 - Location of a national bank conducting electronic activities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Location of a national bank conducting electronic activities. 7.5008 Section 7.5008 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY BANK ACTIVITIES AND OPERATIONS Electronic Activities § 7.5008 Location of a national bank...

  16. Connecting the irreversible capacity loss in Li-ion batteries with the electronic insulating properties of solid electrolyte interphase (SEI) components.

    DOE PAGES

    Leung, Kevin; Lin, Yu -Xiao; Liu, Zhe; ...

    2016-01-01

    The formation and continuous growth of a solid electrolyte interphase (SEI) layer are responsible for the irreversible capacity loss of batteries in the initial and subsequent cycles, respectively. In this article, the electron tunneling barriers from Li metal through three insulating SEI components, namely Li 2CO 3, LiF and Li 3PO 4, are computed by density function theory (DFT) approaches. Based on electron tunneling theory, it is estimated that sufficient to block electron tunneling. It is also found that the band gap decreases under tension while the work function remains the same, and thus the tunneling barrier decreases under tensionmore » and increases under compression. A new parameter, η, characterizing the average distances between anions, is proposed to unify the variation of band gap with strain under different loading conditions into a single linear function of η. An analytical model based on the tunneling results is developed to connect the irreversible capacity loss, due to the Li ions consumed in forming these SEI component layers on the surface of negative electrodes. As a result, the agreement between the model predictions and experimental results suggests that only the initial irreversible capacity loss is due to the self-limiting electron tunneling property of the SEI.« less

  17. UAVSAR Active Electronically-Scanned Array

    NASA Technical Reports Server (NTRS)

    Sadowy, Gregory; Brown, Kyle; Chamberlain, Neil; Figueroa, Harry; Fisher, Charlie; Grando, Maurio; Hamilton, Gary; Vorperian, Vatche; Zawadzki, Mark

    2010-01-01

    The Uninhabited Airborne Vehicle Synthetic Aperture Radar (UAVSAR) L-band (1.2-1.3 GHz) repeat pass, interferometric synthetic aperture radar (InSAR) used for Earth science applications. Using complex radar images collected during separate passes on time scales of hours to years, changes in surface topography can be measured. The repeat-pass InSAR technique requires that the radar look angle be approximately the same on successive passes. Due to variations in aircraft attitude between passes, antenna beam steering is required to replicate the radar look angle. This paper describes an active, electronically steered array (AESA) that provides beam steering capability in the antenna azimuth plane. The array contains 24 transmit/receive modules generating 2800 W of radiated power and is capable of pulse-to-pulse beam steering and polarization agility. Designed for high reliability as well as serviceability, all array electronics are contained in single 178cm x 62cm x 12 cm air-cooled panel suitable for operation up 60,000 ft altitude.

  18. ELECTRONIC COMPONENT COOLING ALTERNATIVES: COMPRESSED AIR & LIQUID NITROGEN

    EPA Science Inventory

    The goal of this study was to evaluate tools used to troubleshoot circuit boards with known or suspected thermally intermittent components. ailure modes for thermally intermittent components are typically mechanical defects, such as cracks in solder paths or joints, or broken bon...

  19. Patient activation and use of an electronic patient portal.

    PubMed

    Ancker, Jessica S; Osorio, Snezana N; Cheriff, Adam; Cole, Curtis L; Silver, Michael; Kaushal, Rainu

    2015-01-01

    Electronic patient portals give patients access to personal medical data, potentially creating opportunities to improve knowledge, self-efficacy, and engagement in healthcare. The combination of knowledge, self-efficacy, and engagement has been termed activation. Our objective was to assess the relationship between patient activation and outpatient use of a patient portal. Survey. A telephone survey was conducted with 180 patients who had been given access to a portal, 113 of whom used it and 67 of whom did not. The validated patient activation measure (PAM) was administered along with questions about demographics and behaviors. Portal users were no different from nonusers in patient activation. Portal users did have higher education level and more frequent Internet use, and were more likely to have precisely 2 prescription medications than to have more or fewer. Patients who chose to use an electronic patient portal were not more highly activated than nonusers, although they were more educated and more likely to be Internet users.

  20. Directed Vertical Diffusion of Photovoltaic Active Layer Components into Porous ZnO-Based Cathode Buffer Layers.

    PubMed

    Kang, Jia-Jhen; Yang, Tsung-Yu; Lan, Yi-Kang; Wu, Wei-Ru; Su, Chun-Jen; Weng, Shih-Chang; Yamada, Norifumi L; Su, An-Chung; Jeng, U-Ser

    2018-04-01

    Cathode buffer layers (CBLs) can effectively further the efficiency of polymer solar cells (PSCs), after optimization of the active layer. Hidden between the active layer and cathode of the inverted PSC device configuration is the critical yet often unattended vertical diffusion of the active layer components across CBL. Here, a novel methodology of contrast variation with neutron and anomalous X-ray reflectivity to map the multicomponent depth compositions of inverted PSCs, covering from the active layer surface down to the bottom of the ZnO-based CBL, is developed. Uniquely revealed for a high-performance model PSC are the often overlooked porosity distributions of the ZnO-based CBL and the differential diffusions of the polymer PTB7-Th and fullerene derivative PC 71 BM of the active layer into the CBL. Interface modification of the ZnO-based CBL with fullerene derivative PCBEOH for size-selective nanochannels can selectively improve the diffusion of PC 71 BM more than that of the polymer. The deeper penetration of PC 71 BM establishes a gradient distribution of fullerene derivatives over the ZnO/PCBE-OH CBL, resulting in markedly improved electron mobility and device efficiency of the inverted PSC. The result suggests a new CBL design concept of progressive matching of the conduction bands. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Using an electronic activity monitor system as an intervention modality: A systematic review.

    PubMed

    Lewis, Zakkoyya H; Lyons, Elizabeth J; Jarvis, Jessica M; Baillargeon, Jacques

    2015-06-24

    Obesity is a growing global health concern that may lead to cardiovascular disease, type II diabetes, and cancer. Several systematic reviews have shown that technology is successful in combating obesity through increased physical activity, but there is no known review on interventions that use an electronic activity monitor system (EAMS). EAMSs are defined as a wearable device that objectively measures lifestyle physical activity and can provide feedback, beyond the display of basic activity count information, via the monitor display or through a partnering application to elicit continual self-monitoring of activity behavior. These devices improve upon standard pedometers because they have the ability to provide visual feedback on activity progression, verbal encouragement, and social comparison. This systematic review aimed to synthesize the efficacy and feasibility results of EAMSs within published physical activity interventions. Electronic databases and journal references were searched for relevant articles. Data sources included CINAHL, Cochrane CENTRAL, Medline Ovid, PsycINFO, and clinicaltrials.gov. Out of the 1,574 retrieved, 11 articles met the inclusion criteria. These articles were reviewed for quality and content based on a risk of bias tool and intervention components. Most articles were determined to be of medium quality while two were of low quality, and one of high quality. Significant pre-post improvements in the EAMS group were found in five of nine studies for physical activity and in four of five studies for weight. One found a significant increase in physical activity and two studies found significant weight loss in the intervention group compared with the comparator group. The EAMS interventions appear to be feasible with most studies reporting continual wear of the device during waking hours and a higher retention rate of participants in the EAMS groups. These studies provide preliminary evidence suggesting that EAMS can increase physical

  2. A quantitative estimation of the exhaust, abrasion and resuspension components of particulate traffic emissions using electron microscopy

    NASA Astrophysics Data System (ADS)

    Weinbruch, Stephan; Worringen, Annette; Ebert, Martin; Scheuvens, Dirk; Kandler, Konrad; Pfeffer, Ulrich; Bruckmann, Peter

    2014-12-01

    The contribution of the three traffic-related components exhaust, abrasion, and resuspension to kerbside and urban background PM10 and PM1 levels was quantified based on the analysis of individual particles by scanning electron microscopy. A total of 160 samples was collected on 38 days between February and September 2009 at a kerbside and an urban background station in the urban/industrial Ruhr area (Germany). Based on size, morphology, chemical composition and stability under electron bombardment, the 111,003 particles studied in detail were classified into the following 14 particle classes: traffic/exhaust, traffic/abrasion, traffic/resuspension, carbonaceous/organic, industry/metallurgy, industry/power plants, secondary particles, (aged) sea salt, silicates, Ca sulfates, carbonates, Fe oxides/hydroxides, biological particles, and other particles. The traffic/exhaust component consists predominantly of externally mixed soot particles and soot internally mixed with secondary particles. The traffic/abrasion component contains all particles with characteristic tracer elements (Fe, Cu, Ba, Sb, Zn) for brake and tire abrasion. The traffic/resuspension component is defined by the mixing state and comprises all internally mixed particles with a high proportion of silicates or Fe oxides/hydroxides which contain soot or abrasion particles as minor constituent. In addition, silicates and Fe oxides/hydroxides internally mixed with chlorine and sulphur containing particles were also assigned to the traffic/resuspension component. The total contribution of traffic to PM10 was found to be 27% at the urban background station and 48% at the kerbside station, the corresponding values for PM1 are 15% and 39%. These values lie within the range reported in previous literature. The relative share of the different traffic components for PM10 at the kerbside station was 27% exhaust, 15% abrasion, and 58% resuspension (38%, 8%, 54% for PM1). For the urban background, the following

  3. Surface-enhanced Raman scattering active gold nanoparticle/nanohole arrays fabricated through electron beam lithography

    NASA Astrophysics Data System (ADS)

    Wu, Tsunghsueh; Lin, Yang-Wei

    2018-03-01

    Effective surface-enhanced Raman scattering (SERS)-active substrates from gold nanoparticle and gold nanohole arrays were successfully fabricated through electron beam lithography with precise computer-aided control of the unit size and intergap distance. Their SERS performance was evaluated using 4-mercaptobenzoic acid (4-MBA). These gold arrays yielded strong SERS signals under 785 nm laser excitation. The enhancement factors for 4-MBA molecules on the prepared gold nanoparticle and nanohole arrays maxed at 1.08 × 107 and 8.61 × 106, respectively. The observed increase in SERS enhancement was attributed to the localized surface plasmon resonance (LSPR) wavelength shifting toward the near-infrared regime when the gold nanohole diameter increased, in agreement with the theoretical prediction in this study. The contribution of LSPR to the Raman enhancement from nanohole arrays deposited on fluorine-doped tin oxide glass was elucidated by comparing SERS and transmission spectra. This simple fabrication procedure, which entails employing electron beam lithography and the controllability of the intergap distance, suggests highly promising uses of nanohole arrays as functional components in sensing and photonic devices.

  4. Modular electron-transport chains from eukaryotic organelles function to support nitrogenase activity

    PubMed Central

    Yang, Jianguo; Xie, Xiaqing; Yang, Mingxuan; Dixon, Ray; Wang, Yi-Ping

    2017-01-01

    A large number of genes are necessary for the biosynthesis and activity of the enzyme nitrogenase to carry out the process of biological nitrogen fixation (BNF), which requires large amounts of ATP and reducing power. The multiplicity of the genes involved, the oxygen sensitivity of nitrogenase, plus the demand for energy and reducing power, are thought to be major obstacles to engineering BNF into cereal crops. Genes required for nitrogen fixation can be considered as three functional modules encoding electron-transport components (ETCs), proteins required for metal cluster biosynthesis, and the “core” nitrogenase apoenzyme, respectively. Among these modules, the ETC is important for the supply of reducing power. In this work, we have used Escherichia coli as a chassis to study the compatibility between molybdenum and the iron-only nitrogenases with ETC modules from target plant organelles, including chloroplasts, root plastids, and mitochondria. We have replaced an ETC module present in diazotrophic bacteria with genes encoding ferredoxin–NADPH oxidoreductases (FNRs) and their cognate ferredoxin counterparts from plant organelles. We observe that the FNR–ferredoxin module from chloroplasts and root plastids can support the activities of both types of nitrogenase. In contrast, an analogous ETC module from mitochondria could not function in electron transfer to nitrogenase. However, this incompatibility could be overcome with hybrid modules comprising mitochondrial NADPH-dependent adrenodoxin oxidoreductase and the Anabaena ferredoxins FdxH or FdxB. We pinpoint endogenous ETCs from plant organelles as power supplies to support nitrogenase for future engineering of diazotrophy in cereal crops. PMID:28193863

  5. Modular electron-transport chains from eukaryotic organelles function to support nitrogenase activity.

    PubMed

    Yang, Jianguo; Xie, Xiaqing; Yang, Mingxuan; Dixon, Ray; Wang, Yi-Ping

    2017-03-21

    A large number of genes are necessary for the biosynthesis and activity of the enzyme nitrogenase to carry out the process of biological nitrogen fixation (BNF), which requires large amounts of ATP and reducing power. The multiplicity of the genes involved, the oxygen sensitivity of nitrogenase, plus the demand for energy and reducing power, are thought to be major obstacles to engineering BNF into cereal crops. Genes required for nitrogen fixation can be considered as three functional modules encoding electron-transport components (ETCs), proteins required for metal cluster biosynthesis, and the "core" nitrogenase apoenzyme, respectively. Among these modules, the ETC is important for the supply of reducing power. In this work, we have used Escherichia coli as a chassis to study the compatibility between molybdenum and the iron-only nitrogenases with ETC modules from target plant organelles, including chloroplasts, root plastids, and mitochondria. We have replaced an ETC module present in diazotrophic bacteria with genes encoding ferredoxin-NADPH oxidoreductases (FNRs) and their cognate ferredoxin counterparts from plant organelles. We observe that the FNR-ferredoxin module from chloroplasts and root plastids can support the activities of both types of nitrogenase. In contrast, an analogous ETC module from mitochondria could not function in electron transfer to nitrogenase. However, this incompatibility could be overcome with hybrid modules comprising mitochondrial NADPH-dependent adrenodoxin oxidoreductase and the Anabaena ferredoxins FdxH or FdxB. We pinpoint endogenous ETCs from plant organelles as power supplies to support nitrogenase for future engineering of diazotrophy in cereal crops.

  6. Actively controlling coolant-cooled cold plate configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chainer, Timothy J.; Parida, Pritish R.

    Cooling apparatuses are provided to facilitate active control of thermal and fluid dynamic performance of a coolant-cooled cold plate. The cooling apparatus includes the cold plate and a controller. The cold plate couples to one or more electronic components to be cooled, and includes an adjustable physical configuration. The controller dynamically varies the adjustable physical configuration of the cold plate based on a monitored variable associated with the cold plate or the electronic component(s) being cooled by the cold plate. By dynamically varying the physical configuration, the thermal and fluid dynamic performance of the cold plate are adjusted to, formore » example, optimally cool the electronic component(s), and at the same time, reduce cooling power consumption used in cooling the electronic component(s). The physical configuration can be adjusted by providing one or more adjustable plates within the cold plate, the positioning of which may be adjusted based on the monitored variable.« less

  7. The Known Immunologically Active Components of Astragalus Account for Only a Small Proportion of the Immunological Adjuvant Activity When Combined with Conjugate Vaccines

    PubMed Central

    Hong, Feng; Xiao, Weilie; Ragupathi, Govind; Lau, Clara B. S.; Leung, Ping Chung; Yeung, K. Simon; George, Constantine; Cassileth, Barrie; Kennelly, Edward; Livingston, Philip O.

    2013-01-01

    The 95% ethanol extract of Astragalus has been demonstrated to have potent activity as an immunological adjuvant when administered with vaccines of various types. We endeavor here to identify the components of this extract that are responsible for this adjuvant activity. Mice were immunized with KLH conjugated to cancer carbohydrate antigens globo H and GD3 and cancer peptide antigen MUC1 combined with different Astragalus fractions or with commercially available Astragalus saponins and flavonoids. The antibody responses against cancer antigens and KLH were quantitated in ELISA assays, and toxicity was calculated by weight loss. Astragalosides II and IV were the most active components, but the toxicity of these two differed dramatically. Astragaloside II was the most toxic Astragalus component with 5–10% weight loss at a dose of 500 µg while astragaloside IV showed no weight loss at all at this dose, suggesting that astragaloside IV might be utilized as an immunological adjuvant in future studies. Several flavonoids also had significant adjuvant activity. However, when the activities of these known immunologically active components of Astragalus (and of endotoxin) are calculated based on the extent of their presence in the 95% ethanol extract, they provide only a small proportion of the immunological activity. This raises the possibility that additional uniquely active components of Astragalus may contribute to adjuvant activity, or that the adjuvant activity of Astragalus is greater than the activity of the sum of its parts. PMID:21128203

  8. Spin-orbit coupling calculations with the two-component normalized elimination of the small component method

    NASA Astrophysics Data System (ADS)

    Filatov, Michael; Zou, Wenli; Cremer, Dieter

    2013-07-01

    A new algorithm for the two-component Normalized Elimination of the Small Component (2cNESC) method is presented and tested in the calculation of spin-orbit (SO) splittings for a series of heavy atoms and their molecules. The 2cNESC is a Dirac-exact method that employs the exact two-component one-electron Hamiltonian and thus leads to exact Dirac SO splittings for one-electron atoms. For many-electron atoms and molecules, the effect of the two-electron SO interaction is modeled by a screened nucleus potential using effective nuclear charges as proposed by Boettger [Phys. Rev. B 62, 7809 (2000), 10.1103/PhysRevB.62.7809]. The use of the screened nucleus potential for the two-electron SO interaction leads to accurate spinor energy splittings, for which the deviations from the accurate Dirac Fock-Coulomb values are on the average far below the deviations observed for other effective one-electron SO operators. For hydrogen halides HX (X = F, Cl, Br, I, At, and Uus) and mercury dihalides HgX2 (X = F, Cl, Br, I) trends in spinor energies and SO splittings as obtained with the 2cNESC method are analyzed and discussed on the basis of coupling schemes and the electronegativity of X.

  9. Low-Dimensional Nanomaterials as Active Layer Components in Thin-Film Photovoltaics

    NASA Astrophysics Data System (ADS)

    Shastry, Tejas Attreya

    Thin-film photovoltaics offer the promise of cost-effective and scalable solar energy conversion, particularly for applications of semi-transparent solar cells where the poor absorption of commercially-available silicon is inadequate. Applications ranging from roof coatings that capture solar energy to semi-transparent windows that harvest the immense amount of incident sunlight on buildings could be realized with efficient and stable thin-film solar cells. However, the lifetime and efficiency of thin-film solar cells continue to trail their inorganic silicon counterparts. Low-dimensional nanomaterials, such as carbon nanotubes and two-dimensional metal dichalcogenides, have recently been explored as materials in thin-film solar cells due to their exceptional optoelectronic properties, solution-processability, and chemical inertness. Thus far, issues with the processing of these materials has held back their implementation in efficient photovoltaics. This dissertation reports processing advances that enable demonstrations of low-dimensional nanomaterials in thin-film solar cells. These low-dimensional photovoltaics show enhanced photovoltaic efficiency and environmental stability in comparison to previous devices, with a focus on semiconducting single-walled carbon nanotubes as an active layer component. The introduction summarizes recent advances in the processing of carbon nanotubes and their implementation through the thin-film photovoltaic architecture, as well as the use of two-dimensional metal dichalcogenides in photovoltaic applications and potential future directions for all-nanomaterial solar cells. The following chapter reports a study of the interaction between carbon nanotubes and surfactants that enables them to be sorted by electronic type via density gradient ultracentrifugation. These insights are utilized to construct of a broad distribution of carbon nanotubes that absorb throughout the solar spectrum. This polychiral distribution is then shown

  10. Chemistry, antioxidant, antibacterial and antifungal activities of volatile oils and their components.

    PubMed

    De Martino, Laura; De Feo, Vincenzo; Fratianni, Florinda; Nazzaro, Filomena

    2009-12-01

    The present paper reports the chemical composition, antioxidant and antibacterial activities of several essential oils and their components. Analysis showed that three oils (Carum carvi L., Verbena officinalis L. and Majorana hortensis L.) contained predominantly oxygenated monoterpenes, while others studied (Pimpinella anisum L., Foeniculum vulgare Mill.) mainly contained anethole. C. carvi, V. officinalis and M. hortensis oils exhibited the most potent antioxidant activity, due their contents of carvacrol, anethole and estragol. Antibacterial action was assessed against a range of pathogenic and useful bacteria and fungi of agro-food interest. V. officinalis and C. carvi oils proved the most effective, in particular against Bacillus cereus and Pseudomonas aeruginosa. Carvacrol proved most active against Escherichia coli, and completely inhibited the growth of Penicillium citrinum. The oils proved inactive towards some Lactobacilli strains, whereas single components showed an appreciable activity. These results may be important for use of the essential oils as natural preservatives for food products.

  11. The Splitting of Double-component Active Asteroid P/2016 J1 (PANSTARRS)

    NASA Astrophysics Data System (ADS)

    Moreno, F.; Pozuelos, F. J.; Novaković, B.; Licandro, J.; Cabrera-Lavers, A.; Bolin, Bryce; Jedicke, Robert; Gladman, Brett J.; Bannister, Michele T.; Gwyn, Stephen D. J.; Vereš, Peter; Chambers, Kenneth; Chastel, Serge; Denneau, Larry; Flewelling, Heather; Huber, Mark; Schunová-Lilly, Eva; Magnier, Eugene; Wainscoat, Richard; Waters, Christopher; Weryk, Robert; Farnocchia, Davide; Micheli, Marco

    2017-03-01

    We present deep imaging observations, orbital dynamics, and dust-tail model analyses of the double-component asteroid P/2016 J1 (J1-A and J1-B). The observations were acquired at the Gran Telescopio Canarias (GTC) and the Canada-France-Hawaii Telescope (CFHT) from mid-March to late July of 2016. A statistical analysis of backward-in-time integrations of the orbits of a large sample of clone objects of P/2016 J1-A and J1-B shows that the minimum separation between them occurred most likely ˜2300 days prior to the current perihelion passage, I.e., during the previous orbit near perihelion. This closest approach was probably linked to a fragmentation event of their parent body. Monte Carlo dust-tail models show that those two components became active simultaneously ˜250 days before the current perihelion, with comparable maximum loss rates of ˜0.7 and ˜0.5 kg s-1, and total ejected masses of 8 × 106 and 6 × 106 kg for fragments J1-A and J1-B, respectively. Consequently, the fragmentation event and the present dust activity are unrelated. The simultaneous activation times of the two components and the fact that the activity lasted 6-9 months or longer, strongly indicate ice sublimation as the most likely mechanism involved in the dust emission process.

  12. Highly multireferenced arynes studied with large active spaces using two-electron reduced density matrices.

    PubMed

    Greenman, Loren; Mazziotti, David A

    2009-05-14

    Using the active-space two-electron reduced density matrix (2-RDM) method, which scales polynomially with the size of the active space [G. Gidofalvi and D. A. Mazziotti, J. Chem. Phys. 129, 134108 (2008)], we were able to use active spaces as large as 24 electrons in 24 orbitals in computing the ground-state energies and properties of highly multireferenced arynes. Because the conventional complete-active-space self-consistent-field (CASSCF) method scales exponentially with the size of the active space, its application to arynes was mainly limited to active spaces of 12 electrons in 12 orbitals. For these smaller active spaces the active-space 2-RDM method accurately reproduces the results of CASSCF. However, we show that the larger active spaces are necessary for describing changes in energies and properties with aryne chain length such as the emergence of polyradical character. Furthermore, the addition of further electron correlation by multireference perturbation theory is demonstrated to be inadequate for removing the limitations of the smaller active spaces.

  13. Biological activity of Myrtaceae plant essential oils and their major components against Drosophila suzukii (Diptera: Drosophilidae).

    PubMed

    Jang, Miyeon; Kim, Junheon; Yoon, Kyungjae Andrew; Lee, Si Hyeock; Park, Chung Gyoo

    2017-02-01

    The spotted-wing drosophila (SWD), Drosophila suzukii (Matsumura), is a globally invasive and serious pest of numerous soft-skinned fruit crops. Assessments were made of fumigant and contact toxicities of 12 Myrtaceae plant essential oils (EOs) and their components. For determining the mode of action of major components of active EOs, their activities against acetylcholinesterase (AChE) and Glutathione S-transferase (GST) were also assessed. Strong fumigant and contact toxicities were observed from EOs of Eucalyptus citriodora and Melaleuca teretifolia. The main components of E. citriodora were citronellal and isopulegol, whereas those of M. teretifolia were neral and geranial. Geranial showed the strongest fumigant activity, followed by citronellal or neral, M. teretifolia EO, isopulegol and E. citriodora EO. In contact toxicity assays, geranial also exhibited the strongest insecticidal activity, followed by neral or M. teretifolia EO, citronellol, citronellal, isopulegol and E. citriodora EO. Among the major components, all compounds showed low AChE inhibitory activity, while neral and geranial showed GST inhibitory activity against SWD. Myrtaceae plant EOs and their components have an excellent potential for being used in the control of SWD adults and could be useful in the development of more effective natural compounds as alternatives to synthetic pesticides. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Mineral components and anti-oxidant activities of tropical seaweeds

    NASA Astrophysics Data System (ADS)

    Takeshi, Suzuki; Yumiko, Yoshie-Stark; Joko, Santoso

    2005-07-01

    Seaweeds are known to hold substances of high nutritional value; they are the richest resources of minerals important to the biochemical reactions in the human body. Seaweeds also hold non-nutrient compounds like dietary fiber and polyphenols. However, there is not enough information on the mineral compounds of tropical seaweeds. Also we are interested in the antioxidant activities of seaweeds, especially those in the tropical area. In this study, Indonesian green, brown and red algae were used as experimental materials with their mineral components analyzed by using an atomic absorption spectrophotometer. The catechins and flavonoids of these seaweeds were extracted with methanol and analyzed by high performance liquid chromatography (HPLC); the antioxidant activities of these seaweeds were evaluated in a fish oil emulsion system. The mineral components of tropical seaweeds are dominated by calcium, potassium and sodium, as well as small amounts of copper, iron and zinc. A green alga usually contains epigallocatechin, gallocatechin, epigallocatechin gallate and catechin. However, catechin and its isomers are not found in some green and red algae. In the presence of a ferrous ion catalyst, all the methanol extracts from the seaweeds show significantly lower peroxide values of the emulsion than the control, and that of a green alga shows the strongest antioxidant activity. The highest chelation on ferrous ions is also found in the extract of this alga, which is significantly different from the other methanol extracts in both 3 and 24 h incubations.

  15. Influence of quantum diffraction and shielding on electron-ion collision in two-component semiclassical plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Woo-Pyo; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 426-791

    2015-01-15

    The influence of quantum diffraction and shielding on the electron-ion collision process is investigated in two-component semiclassical plasmas. The eikonal method and micropotential taking into account the quantum diffraction and shielding are used to obtain the eikonal scattering phase shift and the eikonal collision cross section as functions of the collision energy, density parameter, Debye length, electron de Broglie wavelength, and the impact parameter. The result shows that the quantum diffraction and shielding effects suppress the eikonal scattering phase shift as well as the differential eikonal collision cross section, especially, in small-impact parameter regions. It is also shown that themore » quantum shielding effect on the eikonal collision cross section is more important in low-collision energies. In addition, it is found that the eikonal collision cross section increases with an increase in the density parameter. The variations of the eikonal cross section due to the quantum diffraction and shielding effects are also discussed.« less

  16. Structure-activity modelling of essential oils, their components, and key molecular parameters and descriptors.

    PubMed

    Owen, Lucy; Laird, Katie; Wilson, Philippe B

    2018-04-01

    Many essential oil components are known to possess broad spectrum antimicrobial activity, including against antibiotic resistant bacteria. These compounds may be a useful source of new and novel antimicrobials. However, there is limited research on the structure-activity relationship (SAR) of essential oil compounds, which is important for target identification and lead optimization. This study aimed to elucidate SARs of essential oil components from experimental and literature sources. Minimum Inhibitory Concentrations (MICs) of essential oil components were determined against Escherichia coli and Staphylococcus aureus using a microdilution method and then compared to those in published in literature. Of 12 essential oil components tested, carvacrol and cuminaldehyde were most potent with MICs of 1.98 and 2.10 mM, respectively. The activity of 21 compounds obtained from the literature, MICs ranged from 0.004 mM for limonene to 36.18 mM for α-terpineol. A 3D qualitative SAR model was generated from MICs using FORGE software by consideration of electrostatic and steric parameters. An r 2 value of 0.807 for training and cross-validation sets was achieved with the model developed. Ligand efficiency was found to correlate well to the observed activity (r 2  = 0.792), while strongly negative electrostatic regions were present in potent molecules. These descriptors may be useful for target identification of essential oils or their major components in antimicrobial/drug development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Radiation effects on active camera electronics in the target chamber at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Dayton, M.; Datte, P.; Carpenter, A.; Eckart, M.; Manuel, A.; Khater, H.; Hargrove, D.; Bell, P.

    2017-08-01

    The National Ignition Facility's (NIF) harsh radiation environment can cause electronics to malfunction during high-yield DT shots. Until now there has been little experience fielding electronic-based cameras in the target chamber under these conditions; hence, the performance of electronic components in NIF's radiation environment was unknown. It is possible to purchase radiation tolerant devices, however, they are usually qualified for radiation environments different to NIF, such as space flight or nuclear reactors. This paper presents the results from a series of online experiments that used two different prototype camera systems built from non-radiation hardened components and one commercially available camera that permanently failed at relatively low total integrated dose. The custom design built in Livermore endured a 5 × 1015 neutron shot without upset, while the other custom design upset at 2 × 1014 neutrons. These results agreed with offline testing done with a flash x-ray source and a 14 MeV neutron source, which suggested a methodology for developing and qualifying electronic systems for NIF. Further work will likely lead to the use of embedded electronic systems in the target chamber during high-yield shots.

  18. Hazardous Waste Cleanup: Electronic Parts Specialty Company in Lumberton Township, New Jersey

    EPA Pesticide Factsheets

    The Electronics Parts Specialty Company (EPSCO) is located at 41 Coles Avenue in Lumberton Township, New Jersey. EPSCO is a 4.83-acre active industrial facility that has processed metal components for the electronics industry since the mid-1940s. From 1900

  19. Multiple-component covalent organic frameworks

    PubMed Central

    Huang, Ning; Zhai, Lipeng; Coupry, Damien E.; Addicoat, Matthew A.; Okushita, Keiko; Nishimura, Katsuyuki; Heine, Thomas; Jiang, Donglin

    2016-01-01

    Covalent organic frameworks are a class of crystalline porous polymers that integrate molecular building blocks into periodic structures and are usually synthesized using two-component [1+1] condensation systems comprised of one knot and one linker. Here we report a general strategy based on multiple-component [1+2] and [1+3] condensation systems that enable the use of one knot and two or three linker units for the synthesis of hexagonal and tetragonal multiple-component covalent organic frameworks. Unlike two-component systems, multiple-component covalent organic frameworks feature asymmetric tiling of organic units into anisotropic skeletons and unusually shaped pores. This strategy not only expands the structural complexity of skeletons and pores but also greatly enhances their structural diversity. This synthetic platform is also widely applicable to multiple-component electron donor–acceptor systems, which lead to electronic properties that are not simply linear summations of those of the conventional [1+1] counterparts. PMID:27460607

  20. Multiple-component covalent organic frameworks

    NASA Astrophysics Data System (ADS)

    Huang, Ning; Zhai, Lipeng; Coupry, Damien E.; Addicoat, Matthew A.; Okushita, Keiko; Nishimura, Katsuyuki; Heine, Thomas; Jiang, Donglin

    2016-07-01

    Covalent organic frameworks are a class of crystalline porous polymers that integrate molecular building blocks into periodic structures and are usually synthesized using two-component [1+1] condensation systems comprised of one knot and one linker. Here we report a general strategy based on multiple-component [1+2] and [1+3] condensation systems that enable the use of one knot and two or three linker units for the synthesis of hexagonal and tetragonal multiple-component covalent organic frameworks. Unlike two-component systems, multiple-component covalent organic frameworks feature asymmetric tiling of organic units into anisotropic skeletons and unusually shaped pores. This strategy not only expands the structural complexity of skeletons and pores but also greatly enhances their structural diversity. This synthetic platform is also widely applicable to multiple-component electron donor-acceptor systems, which lead to electronic properties that are not simply linear summations of those of the conventional [1+1] counterparts.

  1. Mass transfer in fuel cells. [electron microscopy of components, thermal decomposition of Teflon, water transport, and surface tension of KOH solutions

    NASA Technical Reports Server (NTRS)

    Walker, R. D., Jr.

    1973-01-01

    Results of experiments on electron microscopy of fuel cell components, thermal decomposition of Teflon by thermogravimetry, surface area and pore size distribution measurements, water transport in fuel cells, and surface tension of KOH solutions are described.

  2. Inkjet deposited circuit components

    NASA Astrophysics Data System (ADS)

    Bidoki, S. M.; Nouri, J.; Heidari, A. A.

    2010-05-01

    All-printed electronics as a means of achieving ultra-low-cost electronic circuits has attracted great interest in recent years. Inkjet printing is one of the most promising techniques by which the circuit components can be ultimately drawn (i.e. printed) onto the substrate in one step. Here, the inkjet printing technique was used to chemically deposit silver nanoparticles (10-200 nm) simply by ejection of silver nitrate and reducing solutions onto different substrates such as paper, PET plastic film and textile fabrics. The silver patterns were tested for their functionality to work as circuit components like conductor, resistor, capacitor and inductor. Different levels of conductivity were achieved simply by changing the printing sequence, inks ratio and concentration. The highest level of conductivity achieved by an office thermal inkjet printer (300 dpi) was 5.54 × 105 S m-1 on paper. Inkjet deposited capacitors could exhibit a capacitance of more than 1.5 nF (parallel plate 45 × 45 mm2) and induction coils displayed an inductance of around 400 µH (planar coil 10 cm in diameter). Comparison of electronic performance of inkjet deposited components to the performance of conventionally etched items makes the technique highly promising for fabricating different printed electronic devices.

  3. Deficiencies of active electronic radiation protection dosimeters in pulsed fields.

    PubMed

    Ankerhold, U; Hupe, O; Ambrosi, P

    2009-07-01

    Nowadays nearly all radiation fields used for X-ray diagnostics are pulsed. These fields are characterised by a high dose rate during the pulse and a short pulse duration in the range of a few milliseconds. The use of active electronic dosimeters has increased in the past few years, but these types of dosimeters might possibly not measure reliably in pulsed radiation fields. Not only personal dosimeters but also area dosimeters that are used mainly for dose rate measurements are concerned. These cannot be substituted by using passive dosimeter types. The characteristics of active electronic dosimeters determined in a continuous radiation field cannot be transferred to those in pulsed fields. Some provisional measurements with typical electronic dosimeters in pulsed radiation fields are presented to reveal this basic problem.

  4. Korteweg-deVries-Burgers (KdVB) equation in a five component cometary plasma with kappa described electrons and ions

    NASA Astrophysics Data System (ADS)

    Michael, Manesh; Willington, Neethu T.; Jayakumar, Neethu; Sebastian, Sijo; Sreekala, G.; Venugopal, Chandu

    2016-12-01

    We investigate the existence of ion-acoustic shock waves in a five component cometary plasma consisting of positively and negatively charged oxygen ions, kappa described hydrogen ions, hot solar electrons, and slightly colder cometary electrons. The KdVB equation has been derived for the system, and its solution plotted for different kappa values, oxygen ion densities, as well as the temperature ratios for the ions. It is found that the amplitude of the shock wave decreases with increasing kappa values. The strength of the shock profile decreases with increasing temperatures of the positively charged oxygen ions and densities of negatively charged oxygen ions.

  5. [Study on relationship between effective components and soil enzyme activity in different growth patterns of Panax ginseng].

    PubMed

    Yang, Yan-Wen; Jiang, Yuan-Tong

    2016-08-01

    Study on 5 effective components and 6 soil enzyme activities of 2 different growth patterns, analyse the dates with the canonical correlation analysis, In order to reveal the relations between the effective components and soil enzyme activities. The result showed that they had a great relation between the effective components and soil enzyme activities, the activity of the same enzyme in humus soil was higher than that in farmland soil. Growth pattern of farmland soil, if the invertase and phosphatase activity were too high, which would inhibit the accumulation of total ginsenoside, water-miscible total proteins and total amino acid; Growth pattern of humus soil, if the invertase, urease and phosphatase activity were too high, which would inhibit the accumulation of total ginsenoside and the total essential oils. Integral soil enzyme activity can be used as a index of soil quality, which, together with other growth factors. The appropriate enzyme activity can accelerate the circulation and transformation of all kinds of material in the soil, improve effectively components accumulation. Copyright© by the Chinese Pharmaceutical Association.

  6. The Space Radiation Environment as it Relates to Electronic System Performance: Or Why Not to Fly Commercial Electronic Components in Space

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.; Xapsos, Michael A.; LaBel, Kenneth A.; Polvey, Christian

    2005-01-01

    This viewgraph presentation offers an overview of the space radiation environment, primarily in near-Earth environments such as Low Earth Orbit (LEO). The presentation describes the Halloween solar event of 2003 as an example of how solar activity can affect spacecraft electronic systems. The lunar radiation environment is also briefly summarized.

  7. A Natural Component-Based Oxygen Indicator with In-Pack Activation for Intelligent Food Packaging.

    PubMed

    Won, Keehoon; Jang, Nan Young; Jeon, Junsu

    2016-12-28

    Intelligent food packaging can provide consumers with reliable and correct information on the quality and safety of packaged foods. One of the key constituents in intelligent packaging is a colorimetric oxygen indicator, which is widely used to detect oxygen gas involved in food spoilage by means of a color change. Traditional oxygen indicators consisting of redox dyes and strong reducing agents have two major problems: they must be manufactured and stored under anaerobic conditions because air depletes the reductant, and their components are synthetic and toxic. To address both of these serious problems, we have developed a natural component-based oxygen indicator characterized by in-pack activation. The conventional oxygen indicator composed of synthetic and artificial components was redesigned using naturally occurring compounds (laccase, guaiacol, and cysteine). These natural components were physically separated into two compartments by a fragile barrier. Only when the barrier was broken were all of the components mixed and the function as an oxygen indicator was begun (i.e., in-pack activation). Depending on the component concentrations, the natural component-based oxygen indicator exhibited different response times and color differences. The rate of the color change was proportional to the oxygen concentration. This novel colorimetric oxygen indicator will contribute greatly to intelligent packaging for healthier and safer foods.

  8. The Splitting of Double-component Active Asteroid P/2016 J1 (PANSTARRS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreno, F.; Pozuelos, F. J.; Novaković, B.

    We present deep imaging observations, orbital dynamics, and dust-tail model analyses of the double-component asteroid P/2016 J1 (J1-A and J1-B). The observations were acquired at the Gran Telescopio Canarias (GTC) and the Canada–France–Hawaii Telescope (CFHT) from mid-March to late July of 2016. A statistical analysis of backward-in-time integrations of the orbits of a large sample of clone objects of P/2016 J1-A and J1-B shows that the minimum separation between them occurred most likely ∼2300 days prior to the current perihelion passage, i.e., during the previous orbit near perihelion. This closest approach was probably linked to a fragmentation event of theirmore » parent body. Monte Carlo dust-tail models show that those two components became active simultaneously ∼250 days before the current perihelion, with comparable maximum loss rates of ∼0.7 and ∼0.5 kg s{sup −1}, and total ejected masses of 8 × 10{sup 6} and 6 × 10{sup 6} kg for fragments J1-A and J1-B, respectively. Consequently, the fragmentation event and the present dust activity are unrelated. The simultaneous activation times of the two components and the fact that the activity lasted 6–9 months or longer, strongly indicate ice sublimation as the most likely mechanism involved in the dust emission process.« less

  9. Active parallel redundancy for electronic integrator-type control circuits

    NASA Technical Reports Server (NTRS)

    Peterson, R. A.

    1971-01-01

    Circuit extends concept of redundant feedback control from type-0 to type-1 control systems. Inactive channels are slaves to the active channel, if latter fails, it is rejected and slave channel is activated. High reliability and elimination of single-component catastrophic failure are important in closed-loop control systems.

  10. Anticancer activity of essential oils and their chemical components - a review

    PubMed Central

    Bayala, Bagora; Bassole, Imaël HN; Scifo, Riccardo; Gnoula, Charlemagne; Morel, Laurent; Lobaccaro, Jean-Marc A; Simpore, Jacques

    2014-01-01

    Essential oils are widely used in pharmaceutical, sanitary, cosmetic, agriculture and food industries for their bactericidal, virucidal, fungicidal, antiparasitical and insecticidal properties. Their anticancer activity is well documented. Over a hundred essential oils from more than twenty plant families have been tested on more than twenty types of cancers in last past ten years. This review is focused on the activity of essential oils and their components on various types of cancers. For some of them the mechanisms involved in their anticancer activities have been carried out. PMID:25520854

  11. Feasibility of electronic peer mentoring for transition-age youth and young adults with intellectual and developmental disabilities: Project Teens making Environment and Activity Modifications.

    PubMed

    Kramer, Jessica M; Ryan, Cathryn T; Moore, Rachel; Schwartz, Ariel

    2018-01-01

    There is a need for mentoring interventions in which transition-age youth and young adults with intellectual and/or developmental disabilities (I/DD) participate as both mentors and mentees. Project TEAM (Teens making Environment and Activity Modifications) is a problem-solving intervention that includes an electronic peer-mentoring component. Forty-two mentees and nine mentors with I/DD participated. The present authors analysed recorded peer-mentoring calls and field notes for mentee engagement, mentor achievement of objectives and supports needed to implement peer mentoring. Overall, mentees attended 87% of scheduled calls and actively engaged during 94% of call objectives. Across all mentoring dyads, mentors achieved 87% of objectives and there was a significant relationship between the use of supports (mentoring script, direct supervision) and fidelity. Transition-age mentees with I/DD can engage in electronic peer mentoring to further practice problem-solving skills. Mentors with I/DD can implement electronic peer mentoring when trained personnel provide supports and individualized job accommodations. © 2017 John Wiley & Sons Ltd.

  12. Examinations for leak tightness of actively cooled components in ITER and fusion devices

    NASA Astrophysics Data System (ADS)

    Hirai, T.; Barabash, V.; Carrat, R.; Chappuis, Ph; Durocher, A.; Escourbiac, F.; Merola, M.; Raffray, R.; Worth, L.; Boscary, J.; Chantant, M.; Chuilon, B.; Guilhem, D.; Hatchressian, J.-C.; Hong, S. H.; Kim, K. M.; Masuzaki, S.; Mogaki, K.; Nicolai, D.; Wilson, D.; Yao, D.

    2017-12-01

    Any leak in one of the ITER actively cooled components would cause significant consequences for machine operations; therefore, the risk of leak must be minimized as much as possible. In this paper, the strategy of examination to ensure leak tightness of the ITER internal components (i.e. examination of base materials, vacuum boundary joints and final components) and the hydraulic parameters for ITER internal components are summarized. The experiences of component tests, especially hot helium leak tests in recent fusion devices, were reviewed and the parameters were discussed. Through these experiences, it was confirmed that the hot He leak test was effective to detect small leak paths which were not always possible to detect by volumetric examination due to limited spatial resolution.

  13. Development of Electronics for Low-Temperature Space Missions

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Dickman, John E.; Gerber, Scott S.; Overton, Eric

    2001-01-01

    Electronic systems that are capable of operating at cryogenic temperatures will be needed for many future NASA space missions, including deep space probes and spacecraft for planetary surface exploration. In addition to being able to survive the harsh deep space environment, low-temperature electronics would help improve circuit performance, increase system efficiency, and reduce payload development and launch costs. Terrestrial applications where components and systems must operate in low-temperature environments include cryogenic instrumentation, superconducting magnetic energy storage, magnetic levitation transportation systems, and arctic exploration. An ongoing research and development project for the design, fabrication, and characterization of low-temperature electronics and supporting technologies at NASA Glenn Research Center focuses on efficient power systems capable of surviving in and exploiting the advantages of low-temperature environments. Supporting technologies include dielectric and insulating materials, semiconductor devices, passive power components, optoelectronic devices, and packaging and integration of the developed components into prototype flight hardware. An overview of the project is presented, including a description of the test facilities, a discussion of selected data from component testing, and a presentation of ongoing research activities being performed in collaboration with various organizations.

  14. 12 CFR 7.5001 - Electronic activities that are part of, or incidental to, the business of banking.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 1 2014-01-01 2014-01-01 false Electronic activities that are part of, or..., DEPARTMENT OF THE TREASURY BANK ACTIVITIES AND OPERATIONS Electronic Activities § 7.5001 Electronic... the criteria that the OCC uses to determine whether an electronic activity is authorized as part of...

  15. 12 CFR 7.5001 - Electronic activities that are part of, or incidental to, the business of banking.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 1 2012-01-01 2012-01-01 false Electronic activities that are part of, or..., DEPARTMENT OF THE TREASURY BANK ACTIVITIES AND OPERATIONS Electronic Activities § 7.5001 Electronic... the criteria that the OCC uses to determine whether an electronic activity is authorized as part of...

  16. 12 CFR 7.5001 - Electronic activities that are part of, or incidental to, the business of banking.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 1 2013-01-01 2013-01-01 false Electronic activities that are part of, or..., DEPARTMENT OF THE TREASURY BANK ACTIVITIES AND OPERATIONS Electronic Activities § 7.5001 Electronic... the criteria that the OCC uses to determine whether an electronic activity is authorized as part of...

  17. 12 CFR 7.5001 - Electronic activities that are part of, or incidental to, the business of banking.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 1 2011-01-01 2011-01-01 false Electronic activities that are part of, or..., DEPARTMENT OF THE TREASURY BANK ACTIVITIES AND OPERATIONS Electronic Activities § 7.5001 Electronic... the criteria that the OCC uses to determine whether an electronic activity is authorized as part of...

  18. Physical Activity and Sedentary Behavior Associated with Components of Metabolic Syndrome among People in Rural China.

    PubMed

    Xiao, Jing; Shen, Chong; Chu, Min J; Gao, Yue X; Xu, Guang F; Huang, Jian P; Xu, Qiong Q; Cai, Hui

    2016-01-01

    Metabolic syndrome is prevalent worldwide and its prevalence is related to physical activity, race, and lifestyle. Little data is available for people living in rural areas of China. In this study we examined associations of physical activity and sedentary behaviors with metabolic syndrome components among people in rural China. The Nantong Metabolic Syndrome Study recruited 13,505 female and 6,997 male participants between 2007 and 2008. Data of socio-demographic characteristics and lifestyle were collected. The associations of physical activity and sedentary behaviors with metabolic syndrome components were analyzed. Prevalence of metabolic syndrome was 21.6%. It was significantly lower in men than in women. Low risks of metabolic syndrome were observed in those who did less sitting and engaged in more vigorous physical activity. The highest tertile of vigorous physical activity was associated with 15-40% decreased odds of metabolic syndrome and all of its components, except for low high-density lipoprotein cholesterol in men. Women with the highest tertile of moderate physical activity had 15-30% lower odds of central obesity, high glucose, and high triglycerides compared with those in the lowest tertile. Sitting time >42 hours per week had a 4%-12% attributable risk of metabolic syndrome, central obesity, and high triglycerides in both genders, and abnormal glucose and diastolic blood pressure in women. Sleeping for more than 8 hours per day was associated with risk of high serum glucose and lipids. Our data suggested that physical activity has a preventive effect against metabolic syndrome and all its abnormal components, and that longer sitting time and sleep duration are associated with an increased risk of metabolic syndrome components, including central obesity and high triglycerides, glucose, and diastolic blood pressure. This study could provide information for future investigation into these associations. Also, recommendations are developed to reduce

  19. Repair of Electronics for Long Duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Pettegrew, Richard D.; Easton, John; Struk, Peter

    2007-01-01

    To reduce mission risk, long duration spaceflight and exploration activities will require greater degrees of self-sufficiency with regards to repair capability than have ever been employed before in space exploration. The current repair paradigm of replacing Orbital Replacement Units (ORUs) of malfunctioning avionics and electronic hardware will be impractical, since carrying all of the spares that could possibly be needed for a long duration mission would require upmass and volume at unprecedented and unacceptable levels. A strategy of component-level repair for electronics, however, could significantly reduce the mass and volume necessary for spares and enhance mission safety via a generic contingency capability. This approach is already used to varying degrees by the U.S. Navy, where vessels at sea experience some similar constraints such as the need for self sufficiency for moderately long time periods, and restrictions on volume of repair spares and infrastructure. The concept of conducting component-level repairs of electronics in spacecraft requires the development of design guidelines for future avionics (to enable repair), development of diagnostic techniques to allow an astronaut to pinpoint the faulty component aboard a vastly complex vehicle, and development of tools and methodologies for dealing with the physical processes of replacing the component. This physical process includes tasks such as conformal coating removal and replacement, component removal, replacement, and alignment--all in the difficulty of a reduced gravity environment. Further, the gravitational effects on the soldering process must be characterized and accounted for to ensure reliability of the newly repaired components. The Component-Level Electronics-Assembly Repair (CLEAR) project under the NASA Supportability program was established to develop and demonstrate the practicality of this repair approach. CLEAR involves collaborative efforts between NASA s Glenn Research Center

  20. Evaluation and qualification of commercial opto-electronic components for the MOHA subsystem in ESA's SMOS mission

    NASA Astrophysics Data System (ADS)

    Gutierrez, Francisco; Cordero, Enrique; Sánchez, Carolina; Barbero, Juan; Mosberger, Martin; Boehle, Peter; Tornell, Manuel; Lundmark, Karin

    2017-11-01

    A dedicated evaluation and qualification campaign has been performed on several optical COTS components in order to use them on ESA's SMOS mission. The evaluation phase consisted of a set of critical tests and analyses and led to the selection of the flight lot component. After selection of the components, one lot of each component has been qualified for the SMOS mission. The overall approach is presented together with a summary of all activities performed. The whole task has been handled in a joint effort between ESA, EADS CASA Espacio (prime contractor), Contraves Space AG (MOHA subsystem), TECNOLOGICA SA (component qualification experts) and the respective manufacturers, each party providing their specific know-how. Test results are presented and the issues discovered and lessons learned are addressed. Special emphasis is given to particular tests for which dedicated setups had to be designed due to the unavailability of standard equipment.

  1. [Study on scavenging activity to DPPH free radical of different polarity components in Guizhou Miao medicine "bod zangd dak"].

    PubMed

    Du, Hong-zhi; Nong, Heng; Dong, Li-sha; Li, Jia-li; Liu, Ming; He, Xi-cheng; Zhang, Jing

    2015-06-01

    The paper is aimed to search more natural plant antioxidants and further research and develop new medicinal plant resources in Guizhou. The Guizhou special miao medicine "bod zangd dak" was extracted with 60% ethanol. The antioxidant activity of the different polarity components separated from the extract was tested by DPPH method with ascorbic acid as positive control. The results showed that the IC50 of the different polarity components was as following: ascorbic acid (0.033 4 g x L(-1)) < ethyl acetate components (0.052 3 g x L(-1)) < total tannins components (0.054 9 g x L(-1)) < 60% ethanol extraction components (0.076 7 g x L(-1)) < butanol extraction components (0.110 g x L(-1)) < water-soluble polysaccharides components (0.168 g x L(-1)) < water extraction components (0.174 g x L(-1)) < water components after extraction (0.226 g x L(-1)) < total polysaccharides components (0.645 g x L(-1)). It is concluded that the different polarity components have different free radical scavenging activity and that provides a scientific basis for further search of the active ingredients and the activive mechanism.

  2. C1q complement component and -antibodies reflect SLE activity and kidney involvement.

    PubMed

    Horák, P; Hermanová, Z; Zadrazil, J; Ciferská, H; Ordeltová, M; Kusá, L; Zurek, M; Tichý, T

    2006-07-01

    The role of the complement system in the pathogenesis of systemic diseases is very ambivalent. In systemic lupus erythematosus (SLE), many abnormalities in the activation of the complement system have been reported. The most important antibodies formed against the complement system in SLE are the ones associated with the C1q component. The aim of this study was to assess separately the anti-C1q antibodies and C1q component in the serum from 65 patients with SLE, then in individuals with (n=33) and without (n=32) lupus nephritis and with active (n=36) and nonactive (n=29) form of the disease (European Consensus Lupus Activity Measurement, ECLAM>3, ECLAMcomponent. The mean serum levels were 90.89+/-13 IU/ml for anti-C1q antibodies and 145+/-52 mg/l for C1q. The significant difference in C1q antibodies levels was found between individuals with and without lupus nephritis (117.5+/-52 IU/ml vs. 28.2+/-12.2 IU/ml, p=0.0001) and between those with active and nonactive SLE (154.6+/-115 IU/ml vs. 50.6+/-73, p=0.001). C1q complement component was statistically lower in patients with lupus nephritis (144+/-30 mg/l vs. 175+/-50 mg/ml, p=0.002) and in active patients (138+/-40 mg/l vs. 202+/-20 mg/l, p=0.001). If the two parameters are measured together, they seem to have a mirror-like pattern of serum concentration, and they are potential markers of SLE activity and of the presence of lupus nephritis.

  3. Activation and Environmental Aspects of In-Vacuum Vessel Components of CFETR

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaokang; Liu, Songlin; Zhu, Qingjun; Gao, Fangfang; Li, Jia

    2016-11-01

    The water-cooled ceramic breeder (WCCB) blanket is one of the three candidates of China's Fusion Engineering Test Reactor (CFETR). The evaluation of the radioactivity and decay heat produced by neutrons for the in-vacuum vessel components is essential for the assessment of radioactive wastes and the safety of CFETR. The activation calculation of CFETR in-vacuum vessel components was carried out by using the Monte Carlo N-Particle Transport Code MCNP, IAEA Fusion Evaluated Nuclear Data Library FENDL2.1, and the nuclear inventory code FISPACT-2007 and corresponding EAF-2007 libraries. In these analyses, the three-dimensional (3-D) neutronics model was employed and the WCCB blanket, the divertor, and the shield were modeled in detail to provide the detailed spatial distribution of the neutron flux and energy spectra. Then the neutron flux, energy spectra and the materials specification were transferred to FISPACT for the activation calculation with an assumed irradiation scenario of CFETR. This paper presents the main results of the activation analysis to evaluate the radioactivity, the decay heat, the contact dose, and the waste classification of the radioactive materials. At the time of shutdown, the activity of the WCCB blanket is 1.88×1019 Bq and the specific activity, the decay heat and the contact dose rate are 1.7 × 1013 Bq/kg, 3.05 MW, and 2.0 × 103 Sv/h respectively. After cooling for 100 years, 79% (4166.4 tons) radioactive wastes produced from the blanket, divertor, high temperature shield (HTS) and low temperature shield (LTS) need near surface disposal, while 21% (1112.3 tons) need geological disposal. According to results of the contact dose rate, all the components of the blanket, divertor, HTS and LTS could potentially be recycled after shutdown by using advanced remote handling equipment. In addition, the selection of Eurofer97 or RAFM for the divertor is better than that of SS316 because SS316 makes the activity of the divertor-body keep at a

  4. Brain activations during bimodal dual tasks depend on the nature and combination of component tasks

    PubMed Central

    Salo, Emma; Rinne, Teemu; Salonen, Oili; Alho, Kimmo

    2015-01-01

    We used functional magnetic resonance imaging to investigate brain activations during nine different dual tasks in which the participants were required to simultaneously attend to concurrent streams of spoken syllables and written letters. They performed a phonological, spatial or “simple” (speaker-gender or font-shade) discrimination task within each modality. We expected to find activations associated specifically with dual tasking especially in the frontal and parietal cortices. However, no brain areas showed systematic dual task enhancements common for all dual tasks. Further analysis revealed that dual tasks including component tasks that were according to Baddeley's model “modality atypical,” that is, the auditory spatial task or the visual phonological task, were not associated with enhanced frontal activity. In contrast, for other dual tasks, activity specifically associated with dual tasking was found in the left or bilateral frontal cortices. Enhanced activation in parietal areas, however, appeared not to be specifically associated with dual tasking per se, but rather with intermodal attention switching. We also expected effects of dual tasking in left frontal supramodal phonological processing areas when both component tasks required phonological processing and in right parietal supramodal spatial processing areas when both tasks required spatial processing. However, no such effects were found during these dual tasks compared with their component tasks performed separately. Taken together, the current results indicate that activations during dual tasks depend in a complex manner on specific demands of component tasks. PMID:25767443

  5. Towards seamlessly-integrated textile electronics: methods to coat fabrics and fibers with conducting polymers for electronic applications.

    PubMed

    Allison, Linden; Hoxie, Steven; Andrew, Trisha L

    2017-06-29

    Traditional textile materials can be transformed into functional electronic components upon being dyed or coated with films of intrinsically conducting polymers, such as poly(aniline), poly(pyrrole) and poly(3,4-ethylenedioxythiophene). A variety of textile electronic devices are built from the conductive fibers and fabrics thus obtained, including: physiochemical sensors, thermoelectric fibers/fabrics, heated garments, artificial muscles and textile supercapacitors. In all these cases, electrical performance and device ruggedness is determined by the morphology of the conducting polymer active layer on the fiber or fabric substrate. Tremendous variation in active layer morphology can be observed with different coating or dyeing conditions. Here, we summarize various methods used to create fiber- and fabric-based devices and highlight the influence of the coating method on active layer morphology and device stability.

  6. Electron beam injection during active experiments. I - Electromagnetic wave emissions

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Kellogg, P. J.

    1990-01-01

    The wave emissions produced in Echo 7 experiment by active injections of electron beams were investigated to determine the properties of the electromagnetic and electrostatic fields for both the field-aligned and cross-field injection in such experiments and to evaluate the sources of free energy and relative efficiencies for the generation of the VLF and HF emissions. It is shown that, for typical beam energies in active experiments, electromagnetic effects do not substantially change the bulk properties of the beam, spacecraft charging, and plasma particle acceleration. Through simulations, beam-generated whistlers; fundamental z-mode and harmonic x-mode radiation; and electrostatic electron-cyclotron, upper-hybrid, Langmuir, and lower-hybrid waves were identified. The characteristics of the observed wave spectra were found to be sensitive to both the ratio of the electron plasma frequency to the cyclotron frequency and the angle of injection relative to the magnetic field.

  7. ELECTRONIC COMPONENT COOLING ALTERNATIVES: COMPRESSED AIR AND LIQUID NITROGEN

    EPA Science Inventory

    The goal of this study was to evaluate topics used to troubleshoot circuit boards with known or suspected thermally intermittent components. Failure modes for thermally intermittent components are typically mechanical defects, such as cracks in solder paths or joints, or broken b...

  8. Tea and human health: biomedical functions of tea active components and current issues*

    PubMed Central

    Chen, Zong-mao; Lin, Zhi

    2015-01-01

    Originating in China, tea and tea planting have spread throughout the world since the middle of the Tang dynasty. Now people from 160 countries in the world are accustomed to tea drinking. A brief history of tea’s medicinal role in China and its spread to the world are introduced. The effectiveness of tea active components and tea drinking on major human diseases, including cancer, metabolic syndrome, cardiovascular disease, and neurodegenerative diseases, is discussed. Also presented are some related issues, such as the bioavailability of tea active components, the new formulations of tea polyphenols, and the safety for consumers of dietary supplements containing tea polyphenols. PMID:25644464

  9. Analytical energy gradient for the two-component normalized elimination of the small component method

    NASA Astrophysics Data System (ADS)

    Zou, Wenli; Filatov, Michael; Cremer, Dieter

    2015-06-01

    The analytical gradient for the two-component Normalized Elimination of the Small Component (2c-NESC) method is presented. The 2c-NESC is a Dirac-exact method that employs the exact two-component one-electron Hamiltonian and thus leads to exact Dirac spin-orbit (SO) splittings for one-electron atoms. For many-electron atoms and molecules, the effect of the two-electron SO interaction is modeled by a screened nucleus potential using effective nuclear charges as proposed by Boettger [Phys. Rev. B 62, 7809 (2000)]. The effect of spin-orbit coupling (SOC) on molecular geometries is analyzed utilizing the properties of the frontier orbitals and calculated SO couplings. It is shown that bond lengths can either be lengthened or shortened under the impact of SOC where in the first case the influence of low lying excited states with occupied antibonding orbitals plays a role and in the second case the jj-coupling between occupied antibonding and unoccupied bonding orbitals dominates. In general, the effect of SOC on bond lengths is relatively small (≤5% of the scalar relativistic changes in the bond length). However, large effects are found for van der Waals complexes Hg2 and Cn2, which are due to the admixture of more bonding character to the highest occupied spinors.

  10. Computational electronics and electromagnetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, C C

    The Computational Electronics and Electromagnetics thrust area serves as the focal point for Engineering R and D activities for developing computer-based design and analysis tools. Representative applications include design of particle accelerator cells and beamline components; design of transmission line components; engineering analysis and design of high-power (optical and microwave) components; photonics and optoelectronics circuit design; electromagnetic susceptibility analysis; and antenna synthesis. The FY-97 effort focuses on development and validation of (1) accelerator design codes; (2) 3-D massively parallel, time-dependent EM codes; (3) material models; (4) coupling and application of engineering tools for analysis and design of high-power components; andmore » (5) development of beam control algorithms coupled to beam transport physics codes. These efforts are in association with technology development in the power conversion, nondestructive evaluation, and microtechnology areas. The efforts complement technology development in Lawrence Livermore National programs.« less

  11. Vlasov Simulation of Electrostatic Solitary Structures in Multi-Component Plasmas

    NASA Technical Reports Server (NTRS)

    Umeda, Takayuki; Ashour-Abdalla, Maha; Pickett, Jolene S.; Goldstein, Melvyn L.

    2012-01-01

    Electrostatic solitary structures have been observed in the Earth's magnetosheath by the Cluster spacecraft. Recent theoretical work has suggested that these solitary structures are modeled by electron acoustic solitary waves existing in a four-component plasma system consisting of core electrons, two counter-streaming electron beams, and one species of background ions. In this paper, the excitation of electron acoustic waves and the formation of solitary structures are studied by means of a one-dimensional electrostatic Vlasov simulation. The present result first shows that either electron acoustic solitary waves with negative potential or electron phase-space holes with positive potential are excited in four-component plasma systems. However, these electrostatic solitary structures have longer duration times and higher wave amplitudes than the solitary structures observed in the magnetosheath. The result indicates that a high-speed and small free energy source may be needed as a fifth component. An additional simulation of a five-component plasma consisting of a stable four-component plasma and a weak electron beam shows the generation of small and fast electron phase-space holes by the bump-on-tail instability. The physical properties of the small and fast electron phase-space holes are very similar to those obtained by the previous theoretical analysis. The amplitude and duration time of solitary structures in the simulation are also in agreement with the Cluster observation.

  12. Activation of a medical emergency team using an electronic medical recording-based screening system*.

    PubMed

    Huh, Jin Won; Lim, Chae-Man; Koh, Younsuck; Lee, Jury; Jung, Youn-Kyung; Seo, Hyun-Suk; Hong, Sang-Bum

    2014-04-01

    To evaluate the efficacy of a medical emergency team activated using 24-hour monitoring by electronic medical record-based screening criteria followed by immediate intervention by a skilled team. Retrospective cohort study. Academic tertiary care hospital with approximately 2,700 beds. A total of 3,030 events activated by a medical emergency team from March 1, 2008, to February 28, 2010. None. We collected data for all medical emergency team activations: patient characteristics, trigger type for medical emergency team (electronic medical record-based screening vs calling criteria), interventions during each event, outcomes of the medical emergency team intervention, and 28-day mortality after medical emergency team activation. We analyzed data for 2009, when the medical emergency team functioned 24 hours a day, 7 days a week (period 2), compared with that for 2008, when the medical emergency team functioned 12 hours a day, 7 days a week (period 1). The commonest cause of medical emergency team activation was respiratory distress (43.6%), and the medical emergency team performed early goal-directed therapy (21.3%), respiratory care (19.9%), and difficult airway management (12.3%). For patients on general wards, 51.3% (period 1) and 38.4% (period 2) of medical emergency team activations were triggered by the electronic medical record-based screening system (electronic medical record-triggered group). In 23.4%, activation occurred because of an abnormality in laboratory screening criteria. The commonest activation criterion from electronic medical record-based screening was respiratory rate (39.4%). Over half the patients were treated in the general ward, and one third of the patients were transferred to the ICU. The electronic medical record-triggered group had lower ICU admission with an odds ratio of 0.35 (95% CI, 0.22-0.55). In surgical patients, the electronic medical record-triggered group showed the lower 28-day mortality (10.5%) compared with the call

  13. Ligand reorganization and activation energies in nonadiabatic electron transfer reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu Jianjun; Wang Jianji; Stell, George

    2006-10-28

    The activation energy and ligand reorganization energy for nonadiabatic electron transfer reactions in chemical and biological systems are investigated in this paper. The free energy surfaces and the activation energy are derived exactly in the general case in which the ligand vibration frequencies are not equal. The activation energy is derived by free energy minimization at the transition state. Our formulation leads to the Marcus-Hush [J. Chem. Phys. 24, 979 (1956); 98, 7170 (1994); 28, 962 (1958)] results in the equal-frequency limit and also generalizes the Marcus-Sumi [J. Chem. Phys. 84, 4894 (1986)] model in the context of studying themore » solvent dynamic effect on electron transfer reactions. It is found that when the ligand vibration frequencies are different, the activation energy derived from the Marcus-Hush formula deviates by 5%-10% from the exact value. If the reduced reorganization energy approximation is introduced in the Marcus-Hush formula, the result is almost exact.« less

  14. Ligand reorganization and activation energies in nonadiabatic electron transfer reactions

    NASA Astrophysics Data System (ADS)

    Zhu, Jianjun; Wang, Jianji; Stell, George

    2006-10-01

    The activation energy and ligand reorganization energy for nonadiabatic electron transfer reactions in chemical and biological systems are investigated in this paper. The free energy surfaces and the activation energy are derived exactly in the general case in which the ligand vibration frequencies are not equal. The activation energy is derived by free energy minimization at the transition state. Our formulation leads to the Marcus-Hush [J. Chem. Phys. 24, 979 (1956); 98, 7170 (1994); 28, 962 (1958)] results in the equal-frequency limit and also generalizes the Marcus-Sumi [J. Chem. Phys. 84, 4894 (1986)] model in the context of studying the solvent dynamic effect on electron transfer reactions. It is found that when the ligand vibration frequencies are different, the activation energy derived from the Marcus-Hush formula deviates by 5%-10% from the exact value. If the reduced reorganization energy approximation is introduced in the Marcus-Hush formula, the result is almost exact.

  15. Electronically controllable spoof localized surface plasmons

    NASA Astrophysics Data System (ADS)

    Zhou, Yong Jin; Zhang, Chao; Yang, Liu; Xun Xiao, Qian

    2017-10-01

    Electronically controllable multipolar spoof localized surface plasmons (LSPs) are experimentally demonstrated in the microwave frequencies. It has been shown that half integer order LSPs modes exist on the corrugated ring loaded with a slit, which actually arise from the Fabry-Perot-like resonances. By mounting active components across the slit in the corrugated rings, electronic switchability and tunability of spoof LSPs modes have been accomplished. Both simulated and measured results demonstrate efficient dynamic control of the spoof LSPs. These elements may form the basis of highly integrated programmable plasmonic circuits in microwave and terahertz regimes.

  16. Prescribing of Electronic Activity Monitors in Cardiometabolic Diseases: Qualitative Interview-Based Study

    PubMed Central

    Macé, Sandrine; Oppert, Jean-Michel

    2017-01-01

    Background The prevalence of noncommunicable diseases, including those such as type 2 diabetes, obesity, dyslipidemia, and hypertension, so-called cardiometabolic diseases, is high and is increasing worldwide. Strong evidence supports the role of physical activity in management of these diseases. There is general consensus that mHealth technology, including electronic activity monitors, can potentially increase physical activity in patients, but their use in clinical settings remains limited. Practitioners’ requirements when prescribing electronic activity monitors have been poorly described. Objective The aims of this qualitative study were (1) to explore how specialist physicians prescribe electronic activity monitors to patients presenting with cardiometabolic conditions, and (2) to better understand their motivation for and barriers to prescribing such monitors. Methods We conducted qualitative semistructured interviews in March to May 2016 with 11 senior physicians from a public university hospital in France with expertise in management of cardiometabolic diseases (type 1 and type 2 diabetes, obesity, hypertension, and dyslipidemia). Interviews lasted 45 to 60 minutes and were audiotaped, transcribed verbatim, and analyzed using directed content analysis. We report our findings following the Consolidated Criteria for Reporting Qualitative Research (COREQ) checklist. Results Most physicians we interviewed had never prescribed electronic activity monitors, whereas they frequently prescribed blood glucose or blood pressure self-monitoring devices. Reasons for nonprescription included lack of interest in the data collected, lack of evidence for data accuracy, concern about work overload possibly resulting from automatic data transfer, and risk of patients becoming addicted to data. Physicians expected future marketing of easy-to-use monitors that will accurately measure physical activity duration and intensity and provide understandable motivating feedback

  17. Prescribing of Electronic Activity Monitors in Cardiometabolic Diseases: Qualitative Interview-Based Study.

    PubMed

    Bellicha, Alice; Macé, Sandrine; Oppert, Jean-Michel

    2017-09-23

    The prevalence of noncommunicable diseases, including those such as type 2 diabetes, obesity, dyslipidemia, and hypertension, so-called cardiometabolic diseases, is high and is increasing worldwide. Strong evidence supports the role of physical activity in management of these diseases. There is general consensus that mHealth technology, including electronic activity monitors, can potentially increase physical activity in patients, but their use in clinical settings remains limited. Practitioners' requirements when prescribing electronic activity monitors have been poorly described. The aims of this qualitative study were (1) to explore how specialist physicians prescribe electronic activity monitors to patients presenting with cardiometabolic conditions, and (2) to better understand their motivation for and barriers to prescribing such monitors. We conducted qualitative semistructured interviews in March to May 2016 with 11 senior physicians from a public university hospital in France with expertise in management of cardiometabolic diseases (type 1 and type 2 diabetes, obesity, hypertension, and dyslipidemia). Interviews lasted 45 to 60 minutes and were audiotaped, transcribed verbatim, and analyzed using directed content analysis. We report our findings following the Consolidated Criteria for Reporting Qualitative Research (COREQ) checklist. Most physicians we interviewed had never prescribed electronic activity monitors, whereas they frequently prescribed blood glucose or blood pressure self-monitoring devices. Reasons for nonprescription included lack of interest in the data collected, lack of evidence for data accuracy, concern about work overload possibly resulting from automatic data transfer, and risk of patients becoming addicted to data. Physicians expected future marketing of easy-to-use monitors that will accurately measure physical activity duration and intensity and provide understandable motivating feedback. Features of electronic activity monitors

  18. Total Dose Survivability of Hubble Electronic Components

    NASA Technical Reports Server (NTRS)

    Xapsos, M. A.; Stauffer, C.; Jordan, T.; Poivey, C.; Haskins, D. N.; Lum, G.; Pergosky, A. M.; Smith, D. C.; LaBel, K. A.

    2017-01-01

    A total dose analysis for exposure of electronic parts at the box level is presented for the Hubble Space Telescope. This was done using solid angle sectoring/3-dimensional ray trace and Monte Carlo radiation transport simulations. Results are discussed in terms of parts that are potential total dose concerns.

  19. Effects of various pretreatments on biological sulfate reduction with waste activated sludge as electron donor and waste activated sludge diminution under biosulfidogenic condition.

    PubMed

    Sheng, Yuxing; Cao, Hongbin; Li, Yuping; Zhang, Yi

    2010-07-15

    The current study focused on the influences of various pretreatments, including alkaline, ultrasonic and thermal pretreatments on biological sulfate reduction with waste activated sludge (WAS) as sole electron donor. Our results showed that thermal and ultrasonic pretreatments increased the sulfate reduction percentage by 14.8% and 7.1%, respectively, compared with experiment with raw WAS, while alkaline pretreatment decreased the sulfate reduction percentage by 46%. By analyzing the WAS structure, particle size distribution, organic component, and enzyme activity after different pretreatments, we studied the effects of these pretreatments on WAS as well as on the mechanisms of how biological sulfate reduction was affected. The reduction of WAS and variation of WAS structure in the process of sulfate reduction were investigated. Our results showed that biosulfidogenesis was an efficient method of diminishing WAS, and various pretreatments could enhance the reduction efficiency of volatile solid in the WAS. 2010 Elsevier B.V. All rights reserved.

  20. Comparison of electron beam and laser beam powder bed fusion additive manufacturing process for high temperature turbine component materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dryepondt, Sebastien N; Pint, Bruce A; Ryan, Daniel

    2016-04-01

    The evolving 3D printer technology is now at the point where some turbine components could be additive manufactured (AM) for both development and production purposes. However, this will require a significant evaluation program to qualify the process and components to meet current design and quality standards. The goal of the project was to begin characterization of the microstructure and mechanical properties of Nickel Alloy X (Ni-22Cr-18Fe-9Mo) test bars fabricated by powder bed fusion (PBF) AM processes that use either an electron beam (EB) or laser beam (LB) power source. The AM materials produced with the EB and LB processes displayedmore » significant differences in microstructure and resultant mechanical properties. Accordingly, during the design analysis of AM turbine components, the specific mechanical behavior of the material produced with the selected AM process should be considered. Comparison of the mechanical properties of both the EB and LB materials to those of conventionally processed Nickel Alloy X materials indicates the subject AM materials are viable alternatives for manufacture of some turbine components.« less

  1. Using Indices of Fidelity to Intervention Core Components to Identify Program Active Ingredients

    ERIC Educational Resources Information Center

    Abry, Tashia; Hulleman, Chris S.; Rimm-Kaufman, Sara E.

    2015-01-01

    Identifying the active ingredients of an intervention--intervention-specific components serving as key levers of change--is crucial for unpacking the intervention black box. Measures of intervention fidelity can be used to identify specific active ingredients, yet such applications are rare. We illustrate how fidelity measures can be used to…

  2. Robust and Soft Elastomeric Electronics Tolerant to Our Daily Lives.

    PubMed

    Sekiguchi, Atsuko; Tanaka, Fumiaki; Saito, Takeshi; Kuwahara, Yuki; Sakurai, Shunsuke; Futaba, Don N; Yamada, Takeo; Hata, Kenji

    2015-09-09

    Clothes represent a unique textile, as they simultaneously provide robustness against our daily activities and comfort (i.e., softness). For electronic devices to be fully integrated into clothes, the devices themselves must be as robust and soft as the clothes themselves. However, to date, no electronic device has ever possessed these properties, because all contain components fabricated from brittle materials, such as metals. Here, we demonstrate robust and soft elastomeric devices where every component possesses elastomeric characteristics with two types of single-walled carbon nanotubes added to provide the necessary electronic properties. Our elastomeric field effect transistors could tolerate every punishment our clothes experience, such as being stretched (elasticity: ∼ 110%), bent, compressed (>4.0 MPa, by a car and heels), impacted (>6.26 kg m/s, by a hammer), and laundered. Our electronic device provides a novel design principle for electronics and wide range applications even in research fields where devices cannot be used.

  3. Pharmacological actions and therapeutic applications of Salvia miltiorrhiza depside salt and its active components.

    PubMed

    Wu, Wen-yu; Wang, Yi-ping

    2012-09-01

    Salvia miltiorrhiza, a traditional medical herb known as danshen, has been widely used in China to improve blood circulation, relieve blood stasis, and treat coronary heart disease. S miltiorrhiza depside salt is a novel drug recently developed at the Shanghai Institute of Materia Medica; it contains magnesium lithospermate B (MLB) and its analogs, rosmarinic acid (RA) and lithospermic acid (LA), as active components. The drug has been used in the clinic to improve blood circulation and treat coronary heart disease. The pharmacological effects of the depside salt from S miltiorrhiza and its components have been extensively investigated. Experimental studies have demonstrated that magnesium lithospermate B possesses a variety of biological activities, especially protective effects in the cardiovascular system such as attenuation of atherosclerosis and protection against myocardial ischemia-reperfusion injury. Rosmarinic acid and lithospermic acid also show beneficial effects on the cardiovascular system. This paper reviews the recent findings regarding the mechanisms underlying the pharmacological actions of the active components of S miltiorrhiza depside salt, based on published works and our own observations.

  4. Treatment characteristics of various sediment components spiked with 2-chlorobiphenyl using reactive activated carbon.

    PubMed

    Choi, Hyeok

    2018-04-05

    Previously, the concept of reactive activated carbon (RAC), where the porous structure of activated carbon (AC) is impregnated with palladized zerovalent iron, has been proposed to be effective to adsorb and dechlorinate polychlorinated biphenyls (PCBs). To explain the low dechlorination of PCBs bound to actual aquatic sediments under remediation with RAC, this study investigated the role of various solid organic and inorganic sediment components in adsorbing and desorbing PCBs. Detailed fate and transport mechanism of 2-chlorinated biphenyl (2-ClBP) spiked to sediment components, including kaolin, montmorillonite (MMT), coal, graphite, AC, and their mixture, was revealed. Adsorption and holding capability of sediment components toward 2-ClBP strongly influenced amount of spiked 2-ClBP, amount of desorbed 2-ClBP, overall dechlorination of 2-ClBP to biphenyl (BP), and eventual partitioning of 2-ClBP and BP to water, sediment component, and RAC. Order of the amount of spiked 2-ClBP to sediment components after drying, following AC > mixture > coal > graphite > kaolin > MMT, was in agreements (in opposite direction) with order of the amount of desorbed 2-ClBP and order of overall 2-ClBP dechlorination. Substantial role of organic components in aquatic sediments for holding 2-ClBP and thus preventing it from dechlorination on RAC was proven. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Can active components of licorice, glycyrrhizin and glycyrrhetinic acid, lick rheumatoid arthritis?

    PubMed

    Huang, Qing-Chun; Wang, Mao-Jie; Chen, Xiu-Min; Yu, Wan-Lin; Chu, Yong-Liang; He, Xiao-Hong; Huang, Run-Yue

    2016-01-12

    This review stated the possible application of the active components of licorice, glycyrrhizin (GL) and glycyrrhetinic acid (GA), in rheumatoid arthritis (RA) treatment based on the cyclooxygenase (COX)-2/thromboxane A2 (TxA2) pathway. The extensive literature from inception to July 2015 was searched in PubMed central, and relevant reports were identified according to the purpose of this study. The active components of licorice GL and GA exert the potential anti-inflammatory effects through, at least in part, suppressing COX-2 and its downstream product TxA2. Additionally, the COX-2/TxA2 pathway, an auto-regulatory feedback loop, has been recently found to be a crucial mechanism underlying the pathogenesis of RA. However, TxA2 is neither the pharmacological target of non-steroidal anti-inflammatory drugs (NSAIDs) nor the target of disease modifying anti-rheumatic drugs (DMARDs), and the limitations and side effects of those drugs may be, at least in part, attributable to lack of the effects on the COX-2/TxA2 pathway. Therefore, GL and GA capable of targeting this pathway hold the potential as a novel add-on therapy in therapeutic strategy, which is supported by several bench experiments. The active components of licorice, GL and GA, could not only potentiate the therapeutic effects but also decrease the adverse effects of NSAIDs or DMARDs through suppressing the COX-2/TxA2 pathway during treatment course of RA.

  6. Can active components of licorice, glycyrrhizin and glycyrrhetinic acid, lick rheumatoid arthritis?

    PubMed Central

    Huang, Qing-Chun; Wang, Mao-Jie; Chen, Xiu-Min; Yu, Wan-Lin; Chu, Yong-Liang; He, Xiao-Hong; Huang, Run-Yue

    2016-01-01

    OBJECTIVES This review stated the possible application of the active components of licorice, glycyrrhizin (GL) and glycyrrhetinic acid (GA), in rheumatoid arthritis (RA) treatment based on the cyclooxygenase (COX)-2/thromboxane A2 (TxA2) pathway. METHODS The extensive literature from inception to July 2015 was searched in PubMed central, and relevant reports were identified according to the purpose of this study. RESULTS The active components of licorice GL and GA exert the potential anti-inflammatory effects through, at least in part, suppressing COX-2 and its downstream product TxA2. Additionally, the COX-2/TxA2 pathway, an auto-regulatory feedback loop, has been recently found to be a crucial mechanism underlying the pathogenesis of RA. However, TxA2 is neither the pharmacological target of non-steroidal anti-inflammatory drugs (NSAIDs) nor the target of disease modifying anti-rheumatic drugs (DMARDs), and the limitations and side effects of those drugs may be, at least in part, attributable to lack of the effects on the COX-2/TxA2 pathway. Therefore, GL and GA capable of targeting this pathway hold the potential as a novel add-on therapy in therapeutic strategy, which is supported by several bench experiments. CONCLUSIONS The active components of licorice, GL and GA, could not only potentiate the therapeutic effects but also decrease the adverse effects of NSAIDs or DMARDs through suppressing the COX-2/TxA2 pathway during treatment course of RA. PMID:26498361

  7. Artemisinin Inhibits Chloroplast Electron Transport Activity: Mode of Action

    PubMed Central

    Bharati, Adyasha; Kar, Monaranjan; Sabat, Surendra Chandra

    2012-01-01

    Artemisinin, a secondary metabolite produced in Artemisia plant species, besides having antimalarial properties is also phytotoxic. Although, the phytotoxic activity of the compound has been long recognized, no information is available on the mechanism of action of the compound on photosynthetic activity of the plant. In this report, we have evaluated the effect of artemisinin on photoelectron transport activity of chloroplast thylakoid membrane. The inhibitory effect of the compound, under in vitro condition, was pronounced in loosely and fully coupled thylakoids; being strong in the former. The extent of inhibition was drastically reduced in the presence of uncouplers like ammonium chloride or gramicidin; a characteristic feature described for energy transfer inhibitors. The compound, on the other hand, when applied to plants (in vivo), behaved as a potent inhibitor of photosynthetic electron transport. The major site of its action was identified to be the QB; the secondary quinone moiety of photosystemII complex. Analysis of photoreduction kinetics of para-benzoquinone and duroquinone suggest that the inhibition leads to formation of low pool of plastoquinol, which becomes limiting for electron flow through photosystemI. Further it was ascertained that the in vivo inhibitory effect appeared as a consequence of the formation of an unidentified artemisinin-metabolite rather than by the interaction of the compound per se. The putative metabolite of artemisinin is highly reactive in instituting the inhibition of photosynthetic electron flow eventually reducing the plant growth. PMID:22719995

  8. Combined 4-component and relativistic pseudopotential study of ThO for the electron electric dipole moment search.

    PubMed

    Skripnikov, L V

    2016-12-07

    A precise theoretical study of the electronic structure of heavy atom diatomic molecules is of key importance to interpret the experiments in the search for violation of time-reversal (T) and spatial-parity (P) symmetries of fundamental interactions in terms of the electron electric dipole moment, eEDM, and dimensionless constant, k T,P , characterizing the strength of the T,P-odd pseudoscalar-scalar electron-nucleus neutral current interaction. The ACME collaboration has recently improved limits on these quantities using a beam of ThO molecules in the electronic H 3 Δ 1 state [J. Baron et al., Science 343, 269 (2014)]. We apply the combined direct relativistic 4-component and two-step relativistic pseudopotential/restoration approaches to a benchmark calculation of the effective electric field, E eff , parameter of the T,P-odd pseudoscalar-scalar interaction, W T,P , and hyperfine structure constant in Δ13 state of the ThO molecule. The first two parameters are required to interpret the experimental data in terms of the eEDM and k T,P constant. We have investigated the electron correlation for all of the 98 electrons of ThO simultaneously up to the level of the coupled cluster with single, double, and noniterative triple amplitudes, CCSD(T), theory. Contributions from iterative triple and noniterative quadruple cluster amplitudes for the valence electrons have been also treated. The obtained values are E eff = 79.9 GV/cm, W T,P = 113.1 kHz. The theoretical uncertainty of these values is estimated to be about two times smaller than that of our previous study [L. V. Skripnikov and A. V. Titov, J. Chem. Phys., 142, 024301 (2015)]. It was found that the correlation of the inner- and outer-core electrons contributes 9% to the effective electric field. The values of the molecule frame dipole moment of the Δ13 state and the H 3 Δ 1 →X 1 Σ + transition energy of ThO calculated within the same methods are in a very good agreement with the experiment.

  9. Investigations of electron helicity in optically active molecules using polarized beams of electrons and positrons

    NASA Technical Reports Server (NTRS)

    Gidley, D. W.; Rich, A.; Van House, J. C.; Zitzewitz, P. W.

    1981-01-01

    A positronium-formation experiment with a high sensitivity to a possible relation between the helicity of beta particles emitted in nuclear beta decay and the optical asymmetry of biological molecules is presented. The experiment is based on a mechanism in which the electrons in optically active molecules possess a helicity of less than 0.001, too weak to detect in radiolysis experiments, the sign of which depends on the chirality of the isomer. A helicity-dependent asymmetry is sought in the formation of the triplet ground state of positronium when a low-energy beam of polarized positrons of reversible helicity interacts with an optically active substance coating a channel electron multiplier. Asymmetries between positronium decays observed at positive and negative helicities for the same substance can thus be determined with a sensitivity of 0.0001, which represents a factor of 100 improvement over previous positronium experiments.

  10. Component-Level Electronic-Assembly Repair (CLEAR) Analysis of the Problem Reporting and Corrective Action (PRACA) Database of the International Space Station On-Orbit Electrical Systems

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Bradish, Martin A.; Juergens, Jeffrey R.; Lewis, Michael J.

    2011-01-01

    The NASA Constellation Program is investigating and developing technologies to support human exploration of the Moon and Mars. The Component-Level Electronic-Assembly Repair (CLEAR) task is part of the Supportability Project managed by the Exploration Technology Development Program. CLEAR is aimed at enabling a flight crew to diagnose and repair electronic circuits in space yet minimize logistics spares, equipment, and crew time and training. For insight into actual space repair needs, in early 2008 the project examined the operational experience of the International Space Station (ISS) program. CLEAR examined the ISS on-orbit Problem Reporting and Corrective Action database for electrical and electronic system problems. The ISS has higher than predicted reliability yet, as expected, it has persistent problems. A goal was to identify which on-orbit electrical problems could be resolved by a component-level replacement. A further goal was to identify problems that could benefit from the additional diagnostic and test capability that a component-level repair capability could provide. The study indicated that many problems stem from a small set of root causes that also represent distinct component problems. The study also determined that there are certain recurring problems where the current telemetry instrumentation and built-in tests are unable to completely resolve the problem. As a result, the root cause is listed as unknown. Overall, roughly 42 percent of on-orbit electrical problems on ISS could be addressed with a component-level repair. Furthermore, 63 percent of on-orbit electrical problems on ISS could benefit from additional external diagnostic and test capability. These results indicate that in situ component-level repair in combination with diagnostic and test capability can be expected to increase system availability and reduce logistics. The CLEAR approach can increase the flight crew s ability to act decisively to resolve problems while reducing

  11. Payload and Components Real-Time Automated Test System (PACRATS), Data Acquisition of Leak Rate and Pressure Data Test Procedure

    NASA Technical Reports Server (NTRS)

    Rinehart, Maegan L.

    2011-01-01

    The purpose of this activity is to provide the Mechanical Components Test Facility (MCTF) with the capability to obtain electronic leak test and proof pressure data, Payload and Components Real-time Automated Test System (PACRATS) data acquisition software will be utilized to display real-time data. It will record leak rates and pressure/vacuum level(s) simultaneously. This added functionality will provide electronic leak test and pressure data at specified sampling frequencies. Electronically stored data will provide ES61 with increased data security, analysis, and accuracy. The tasks performed in this procedure are to verify PACRATS only, and are not intended to provide verifications for MCTF equipment.

  12. Relationship among physical activity, smoking, drinking and clustering of the metabolic syndrome diagnostic components.

    PubMed

    Katano, Sayuri; Nakamura, Yasuyuki; Nakamura, Aki; Murakami, Yoshitaka; Tanaka, Taichiro; Nakagawa, Hideaki; Takebayashi, Toru; Yamato, Hiroshi; Okayama, Akira; Miura, Katsuyuki; Okamura, Tomonori; Ueshima, Hirotsugu

    2010-06-30

    To examine the relation between lifestyle and the number of metabolic syndrome (MetS) diagnostic components in a general population, and to find a means of preventing the development of MetS components. We examined baseline data from 3,365 participants (2,714 men and 651 women) aged 19 to 69 years who underwent a physical examination, lifestyle survey, and blood chemical examination. The physical activity of each participant was classified according to the International Physical Activity Questionnaire (IPAQ). We defined four components for MetS in this study as follows: 1) high BP: systolic BP > or = 130 mmHg or diastolic BP > or = 85 mmHg, or the use of antihypertensive drugs; 2) dyslipidemia: high-density lipoprotein-cholesterol concentration < 40 mg/dL, triglycerides concentration > or = 150 mg/dL, or on medication for dyslipidemia; 3) Impaired glucose tolerance: fasting blood sugar level > or = 110 mg/d, or if less than 8 hours after meals > or = 140 mg/dL), or on medication for diabetes mellitus; 4) obesity: body mass index > or = 25 kg/m(2). Those who had 0 to 4 MetS diagnostic components accounted for 1,726, 949, 484, 190, and 16 participants, respectively, in the Poisson distribution. Poisson regression analysis revealed that independent factors contributing to the number of MetS diagnostic components were being male (regression coefficient b=0.600, p < 0.01), age (b=0.027, p < 0.01), IPAQ class (b=-0.272, p= 0.03), and alcohol consumption (b=0.020, p=0.01). The contribution of current smoking was not statistically significant (b=-0.067, p=0.76). Moderate physical activity was inversely associated with the number of MetS diagnostic components, whereas smoking was not associated.

  13. Stretchable polymer-based electronic device

    DOEpatents

    Maghribi, Mariam N [Livermore, CA; Krulevitch, Peter A [Pleasanton, CA; Davidson, James Courtney [Livermore, CA; Wilson, Thomas S [Castro Valley, CA; Hamilton, Julie K [Tracy, CA; Benett, William J [Livermore, CA; Tovar, Armando R [San Antonio, TX

    2008-02-26

    A stretchable electronic circuit or electronic device and a polymer-based process to produce a circuit or electronic device containing a stretchable conducting circuit. The stretchable electronic apparatus has a central longitudinal axis and the apparatus is stretchable in a longitudinal direction generally aligned with the central longitudinal axis. The apparatus comprises a stretchable polymer body and at least one circuit line operatively connected to the stretchable polymer body. The circuit line extends in the longitudinal direction and has a longitudinal component that extends in the longitudinal direction and has an offset component that is at an angle to the longitudinal direction. The longitudinal component and the offset component allow the apparatus to stretch in the longitudinal direction while maintaining the integrity of the circuit line.

  14. Curcumin-free turmeric exhibits anti-inflammatory and anticancer activities: Identification of novel components of turmeric.

    PubMed

    Aggarwal, Bharat B; Yuan, Wei; Li, Shiyou; Gupta, Subash C

    2013-09-01

    Turmeric, a dried powder derived from the rhizome of Curcuma longa, has been used for centuries in certain parts of the world and has been linked to numerous biological activities including antioxidant, anti-inflammatory, anticancer, antigrowth, anti-arthritic, anti-atherosclerotic, antidepressant, anti-aging, antidiabetic, antimicrobial, wound healing, and memory-enhancing activities. One component of turmeric is curcumin, which has been extensively studied, as indicated by more than 5600 citations, most of which have appeared within the past decade. Recent research has identified numerous chemical entities from turmeric other than curcumin. It is unclear whether all of the activities ascribed to turmeric are due to curcumin or whether other compounds in turmeric can manifest these activities uniquely, additively, or synergistically with curcumin. However, studies have indicated that turmeric oil, present in turmeric, can enhance the bioavailability of curcumin. Studies over the past decade have indicated that curcumin-free turmeric (CFT) components possess numerous biological activities including anti-inflammatory, anticancer, and antidiabetic activities. Elemene derived from turmeric is approved in China for the treatment of cancer. The current review focuses on the anticancer and anti-inflammatory activities exhibited by CFT and by some individual components of turmeric, including turmerin, turmerone, elemene, furanodiene, curdione, bisacurone, cyclocurcumin, calebin A, and germacrone. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Drug target identification using network analysis: Taking active components in Sini decoction as an example

    NASA Astrophysics Data System (ADS)

    Chen, Si; Jiang, Hailong; Cao, Yan; Wang, Yun; Hu, Ziheng; Zhu, Zhenyu; Chai, Yifeng

    2016-04-01

    Identifying the molecular targets for the beneficial effects of active small-molecule compounds simultaneously is an important and currently unmet challenge. In this study, we firstly proposed network analysis by integrating data from network pharmacology and metabolomics to identify targets of active components in sini decoction (SND) simultaneously against heart failure. To begin with, 48 potential active components in SND against heart failure were predicted by serum pharmacochemistry, text mining and similarity match. Then, we employed network pharmacology including text mining and molecular docking to identify the potential targets of these components. The key enriched processes, pathways and related diseases of these target proteins were analyzed by STRING database. At last, network analysis was conducted to identify most possible targets of components in SND. Among the 25 targets predicted by network analysis, tumor necrosis factor α (TNF-α) was firstly experimentally validated in molecular and cellular level. Results indicated that hypaconitine, mesaconitine, higenamine and quercetin in SND can directly bind to TNF-α, reduce the TNF-α-mediated cytotoxicity on L929 cells and exert anti-myocardial cell apoptosis effects. We envisage that network analysis will also be useful in target identification of a bioactive compound.

  16. Triethylene glycol, an active component of Ashwagandha (Withania somnifera) leaves, is responsible for sleep induction.

    PubMed

    Kaushik, Mahesh K; Kaul, Sunil C; Wadhwa, Renu; Yanagisawa, Masashi; Urade, Yoshihiro

    2017-01-01

    Insomnia is the most common sleep complaint which occurs due to difficulty in falling asleep or maintaining it. Most of currently available drugs for insomnia develop dependency and/or adverse effects. Hence natural therapies could be an alternative choice of treatment for insomnia. The root or whole plant extract of Ashwagandha (Withania somnifera) has been used to induce sleep in Indian system of traditional home medicine, Ayurveda. However, its active somnogenic components remain unidentified. We investigated the effect of various components of Ashwagandha leaf on sleep regulation by oral administration in mice. We found that the alcoholic extract that contained high amount of active withanolides was ineffective to induce sleep in mice. However, the water extract which contain triethylene glycol as a major component induced significant amount of non-rapid eye movement sleep with slight change in rapid eye movement sleep. Commercially available triethylene glycol also increased non-rapid eye movement sleep in mice in a dose-dependent (10-30 mg/mouse) manner. These results clearly demonstrated that triethylene glycol is an active sleep-inducing component of Ashwagandha leaves and could potentially be useful for insomnia therapy.

  17. Drug target identification using network analysis: Taking active components in Sini decoction as an example

    PubMed Central

    Chen, Si; Jiang, Hailong; Cao, Yan; Wang, Yun; Hu, Ziheng; Zhu, Zhenyu; Chai, Yifeng

    2016-01-01

    Identifying the molecular targets for the beneficial effects of active small-molecule compounds simultaneously is an important and currently unmet challenge. In this study, we firstly proposed network analysis by integrating data from network pharmacology and metabolomics to identify targets of active components in sini decoction (SND) simultaneously against heart failure. To begin with, 48 potential active components in SND against heart failure were predicted by serum pharmacochemistry, text mining and similarity match. Then, we employed network pharmacology including text mining and molecular docking to identify the potential targets of these components. The key enriched processes, pathways and related diseases of these target proteins were analyzed by STRING database. At last, network analysis was conducted to identify most possible targets of components in SND. Among the 25 targets predicted by network analysis, tumor necrosis factor α (TNF-α) was firstly experimentally validated in molecular and cellular level. Results indicated that hypaconitine, mesaconitine, higenamine and quercetin in SND can directly bind to TNF-α, reduce the TNF-α-mediated cytotoxicity on L929 cells and exert anti-myocardial cell apoptosis effects. We envisage that network analysis will also be useful in target identification of a bioactive compound. PMID:27095146

  18. Analytical energy gradient for the two-component normalized elimination of the small component method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Wenli; Filatov, Michael; Cremer, Dieter, E-mail: dcremer@smu.edu

    2015-06-07

    The analytical gradient for the two-component Normalized Elimination of the Small Component (2c-NESC) method is presented. The 2c-NESC is a Dirac-exact method that employs the exact two-component one-electron Hamiltonian and thus leads to exact Dirac spin-orbit (SO) splittings for one-electron atoms. For many-electron atoms and molecules, the effect of the two-electron SO interaction is modeled by a screened nucleus potential using effective nuclear charges as proposed by Boettger [Phys. Rev. B 62, 7809 (2000)]. The effect of spin-orbit coupling (SOC) on molecular geometries is analyzed utilizing the properties of the frontier orbitals and calculated SO couplings. It is shown thatmore » bond lengths can either be lengthened or shortened under the impact of SOC where in the first case the influence of low lying excited states with occupied antibonding orbitals plays a role and in the second case the jj-coupling between occupied antibonding and unoccupied bonding orbitals dominates. In general, the effect of SOC on bond lengths is relatively small (≤5% of the scalar relativistic changes in the bond length). However, large effects are found for van der Waals complexes Hg{sub 2} and Cn{sub 2}, which are due to the admixture of more bonding character to the highest occupied spinors.« less

  19. A Leisure Activities Curricular Component for Severely Handicapped Youth: Why and How.

    ERIC Educational Resources Information Center

    Voeltz, Luanna M.; Apffel, James A.

    1981-01-01

    A rationale for including a leisure time activities curriculum component in educational programing for severely handicapped individuals is presented. The importance of play and the constructive use of leisure time is described through the use of a model demonstration project. (JN)

  20. Robust activation method for negative electron affinity photocathodes

    DOEpatents

    Mulhollan, Gregory A [Dripping Springs, TX; Bierman, John C [Austin, TX

    2011-09-13

    A method by which photocathodes(201), single crystal, amorphous, or otherwise ordered, can be surface modified to a robust state of lowered and in best cases negative, electron affinity has been discovered. Conventional methods employ the use of Cs(203) and an oxidizing agent(207), typically carried by diatomic oxygen or by more complex molecules, for example nitrogen trifluoride, to achieve a lowered electron affinity(404). In the improved activation method, a second alkali, other than Cs(205), is introduced onto the surface during the activation process, either by co-deposition, yo-yo, or sporadic or intermittent application. Best effect for GaAs photocathodes has been found through the use of Li(402) as the second alkali, though nearly the same effect can be found by employing Na(406). Suitable photocathodes are those which are grown, cut from boules, implanted, rolled, deposited or otherwise fabricated in a fashion and shape desired for test or manufacture independently supported or atop a support structure or within a framework or otherwise affixed or suspended in the place and position required for use.

  1. Component-Level Electronic-Assembly Repair (CLEAR) Synthetic Instrument Capabilities Assessment and Test Report

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Bradish, Martin A.

    2011-01-01

    The role of synthetic instruments (SIs) for Component-Level Electronic-Assembly Repair (CLEAR) is to provide an external lower-level diagnostic and functional test capability beyond the built-in-test capabilities of spacecraft electronics. Built-in diagnostics can report faults and symptoms, but isolating the root cause and performing corrective action requires specialized instruments. Often a fault can be revealed by emulating the operation of external hardware. This implies complex hardware that is too massive to be accommodated in spacecraft. The SI strategy is aimed at minimizing complexity and mass by employing highly reconfigurable instruments that perform diagnostics and emulate external functions. In effect, SI can synthesize an instrument on demand. The SI architecture section of this document summarizes the result of a recent program diagnostic and test needs assessment based on the International Space Station. The SI architecture addresses operational issues such as minimizing crew time and crew skill level, and the SI data transactions between the crew and supporting ground engineering searching for the root cause and formulating corrective actions. SI technology is described within a teleoperations framework. The remaining sections describe a lab demonstration intended to show that a single SI circuit could synthesize an instrument in hardware and subsequently clear the hardware and synthesize a completely different instrument on demand. An analysis of the capabilities and limitations of commercially available SI hardware and programming tools is included. Future work in SI technology is also described.

  2. Selenium enrichment on Cordyceps militaris link and analysis on its main active components.

    PubMed

    Dong, Jing Z; Lei, C; Ai, Xun R; Wang, Y

    2012-03-01

    To investigate the effects of selenium on the main active components of Cordyceps militaris fruit bodies, selenium-enriched cultivation of C. militaris and the main active components of the fruit bodies were studied. Superoxide dismutase (SOD) activity and contents of cordycepin, cordycepic acid, and organic selenium of fruit bodies were sodium selenite concentration dependent; contents of adenosine and cordycep polysaccharides were significantly enhanced by adding sodium selenite in the substrates, but not proportional to sodium selenite concentrations. In the cultivation of wheat substrate added with 18.0 ppm sodium selenite, SOD activity and contents of cordycepin, cordycepic acid, adenosine, cordycep polysaccharides, and total amino acids were enhanced by 121/145%, 124/74%, 325/520%, 130/284%, 121/145%, and 157/554%, respectively, compared to NS (non-selenium-cultivated) fruit bodies and wild Cordyceps sinensis; organic selenium contents of fruit bodies reached 6.49 mg/100 g. So selenium-enriched cultivation may be a potential way to produce more valuable medicinal food as a substitute for wild C. sinensis.

  3. Formation of the formate-nitrate electron transport pathway from inactive components in Escherichia coli.

    PubMed Central

    Scott, R H; DeMoss, J A

    1976-01-01

    When Escherichia coli was grown on medium containing 10 mM tungstate the formation of active formate dehydrogenase, nitrate reductase, and the complete formate-nitrate electron transport pathway was inhibited. Incubation of the tungstate-grown cells with 1 mM molybdate in the presence of chloramphenicol led to the rapid activation of both formate dehydrogenase and nitrate reductase, and, after a considerable lag, the complete electron transport pathway. Protein bands which corresponded to formate dehydrogenase and nitrate reductase were identified on polyacrylamide gels containing Triton X-100 after the activities were released from the membrane fraction and partially purified Cytochrome b1 was associated with the protein band corresponding to formate dehydrogenase but was not found elsewhere on the gels. When a similar fraction was prepared from cells grown on 10 mM tungstate, an inactive band corresponding to formate dehydrogenase was not observed on polyacrylamide gels; rather, a new faster migrating band was present. Cytochrome b1 was not associated with this band nor was it found anywhere else on the gels. This new band disappeared when the tungstate-grown cells were incubated with molybdate in the presence of chloramphenicol. The formate dehydrogenase activity which was formed, as well as a corresponding protein band, appeared at the original position on the gels. Cytochrome b1 was again associated with this band. The protein band which corresponded to nitrate reductase also was severely depressed in the tungstate-grown cells and a new faster migrating band appeared on the polyacrylamide gels. Upon activation of the nitrate reductase by incubation of the cells with molybdate, the new band diminished and protein reappeared at the original position. Most of the nitrate reductase activity which was formed appeared at the original position of nitrate reductase on gels although some was present at the position of the inactive band formed by tungstate-grown cells

  4. Electron beam gun with kinematic coupling for high power RF vacuum devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borchard, Philipp

    An electron beam gun for a high power RF vacuum device has components joined by a fixed kinematic coupling to provide both precise alignment and high voltage electrical insulation of the components. The kinematic coupling has high strength ceramic elements directly bonded to one or more non-ductile rigid metal components using a high temperature active metal brazing alloy. The ceramic elements have a convex surface that mates with concave grooves in another one of the components. The kinematic coupling, for example, may join a cathode assembly and/or a beam shaping focus electrode to a gun stem, which is preferably composedmore » of ceramic. The electron beam gun may be part of a high power RF vacuum device such as, for example, a gyrotron, klystron, or magnetron.« less

  5. Antioxidant property of coffee components: assessment of methods that define mechanisms of action.

    PubMed

    Liang, Ningjian; Kitts, David D

    2014-11-19

    Coffee is a rich source of dietary antioxidants, and this property, coupled with the fact that coffee is one of the world's most popular beverages, has led to the understanding that coffee is a major contributor to dietary antioxidant intake. Brewed coffee is a complex food matrix with numerous phytochemical components that have antioxidant activity capable of scavenging free radicals, donating hydrogen and electrons, providing reducing activity and also acting as metal ion pro-oxidant chelators. More recent studies have shown that coffee components can trigger tissue antioxidant gene expression and protect against gastrointestinal oxidative stress. This paper will describe different in vitro, cell-free and cell-based assays that both characterize and compare the antioxidant capacity and mechanism of action of coffee and its bioactive constituents. Moreover, evidence of cellular antioxidant activity and correlated specific genomic events induced by coffee components, which are relevant to antioxidant function in both animal and human studies, will be discussed.

  6. Identification and screening of active components from Ziziphora clinopodioides Lam. in regulating autophagy.

    PubMed

    Zhang, Xuan-Ming; An, Dong-Qing; Guo, Long-Long; Yang, Ning-Hui; Zhang, Hua

    2018-04-03

    This study investigated the flavonoid constituents of a traditional Chinese medical plant Ziziphora clinopodioides Lam. by using ultra-performance liquid chromatography coupled with quadruple time-of-flight mass spectrometry and screened the active components in regulating autophagy.Normal rat kidney (NRK) cells transfected with green fluorescent protein- microtubule-associated protein 1 light Chain 3(GFP-LC3) were treated with Z. clinopodioides flavonoids and its chemical compositions. After 4 h of treatment, the auto-phagy spot aggregation in NRK cells was photographed and observed by laser scanning confocal microscopy. The following 10 flavonoid components of Z. clinopodioides were identified: baicalein(1), quercetin(2), hyperoside(3), quercetin3-O-β-d-glucopyranoside(4), apigenin(5), kaempferol(6), chrysin(7), diosimin(8), linarin(9) and rutin(10). Among these flavonoids, chrysin, apigenin and quercetin were identified as the active principles in activating autophagy. This research may provide a reference for further developing and utilizing Z. clinopodioides.

  7. Activated complement components and complement activator molecules on the surface of cell‐derived microparticles in patients with rheumatoid arthritis and healthy individuals

    PubMed Central

    Biró, Éva; Nieuwland, Rienk; Tak, Paul P; Pronk, Loes M; Schaap, Marianne C L; Sturk, Augueste; Hack, C Erik

    2007-01-01

    Objectives In vitro, microparticles can activate complement via the classical pathway. If demonstrable ex vivo, this mechanism may contribute to the pathogenesis of rheumatoid arthritis (RA). We therefore investigated the presence of activated complement components and complement activator molecules on the surface of cell‐derived microparticles of RA patients and healthy individuals. Methods Microparticles from synovial fluid (n = 8) and plasma (n = 9) of 10 RA patients and plasma of sex‐ and age‐matched healthy individuals (n = 10) were analysed by flow cytometry for bound complement components (C1q, C4, C3) and complement activator molecules (C‐reactive protein (CRP), serum amyloid P component (SAP), immunoglobulin (Ig) M, IgG). Results Microparticles with bound C1q, C4, and/or C3 were abundant in RA synovial fluid, while in RA and control plasma much lower levels were present. Microparticles with bound C1q correlated with those with bound C3 in synovial fluid (r = 0.961, p = 0.0001), and with those with bound C4 in plasma (RA: r = 0.908, p = 0.0007; control: r = 0.632, p = 0.0498), indicating classical pathway activation. In synovial fluid, microparticles with IgM and IgG correlated with those with C1q (r = 0.728, p = 0.0408; r = 0.952, p = 0.0003, respectively), and in plasma, microparticles with CRP correlated with those with C1q (RA: r = 0.903, p = 0.0021; control: r = 0.683, p = 0.0296), implicating IgG and IgM in the classical pathway activation in RA synovial fluid, and CRP in the low level classical pathway activation in plasma. Conclusions This study demonstrates the presence of bound complement components and activator molecules on microparticles ex vivo, and supports their role in low grade complement activation in plasma and increased complement activation in RA synovial fluid. PMID:17261534

  8. Constitutive NADPH-dependent electron transferase activity of the Nox4 dehydrogenase domain.

    PubMed

    Nisimoto, Yukio; Jackson, Heather M; Ogawa, Hisamitsu; Kawahara, Tsukasa; Lambeth, J David

    2010-03-23

    NADPH oxidase 4 (Nox4) is constitutively active, while Nox2 requires the cytosolic regulatory subunits p47(phox) and p67(phox) and activated Rac with activation by phorbol 12-myristate 13-acetate (PMA). This study was undertaken to identify the domain on Nox4 that confers constitutive activity. Lysates from Nox4-expressing cells exhibited constitutive NADPH- but not NADH-dependent hydrogen peroxide production with a K(m) for NADPH of 55 +/- 10 microM. The concentration of Nox4 in cell lysates was estimated using Western blotting and allowed calculation of a turnover of approximately 200 mol of H(2)O(2) min(-1) (mol of Nox4)(-1). A chimeric protein (Nox2/4) consisting of the Nox2 transmembrane (TM) domain and the Nox4 dehydrogenase (DH) domain showed H(2)O(2) production in the absence of cytosolic regulatory subunits. In contrast, chimera Nox4/2, consisting of the Nox4 TM and Nox2 DH domains, exhibited PMA-dependent activation that required coexpression of regulatory subunits. Nox DH domains from several Nox isoforms were purified and evaluated for their electron transferase activities. Nox1 DH, Nox2 DH, and Nox5 DH domains exhibited barely detectable activities toward artificial electron acceptors, while the Nox4 DH domain exhibited significant rates of reduction of cytochrome c (160 min(-1), largely superoxide dismutase-independent), ferricyanide (470 min(-1)), and other electron acceptors (artificial dyes and cytochrome b(5)). Rates were similar to those observed for H(2)O(2) production by the Nox4 holoenzyme in cell lysates. The activity required added FAD and was seen with NADPH but not NADH. These results indicate that the Nox4 DH domain exists in an intrinsically activated state and that electron transfer from NADPH to FAD is likely to be rate-limiting in the NADPH-dependent reduction of oxygen by holo-Nox4.

  9. Quantum diffraction and shielding effects on the low-energy electron-ion bremsstrahlung in two-component semiclassical plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590

    2015-10-15

    The quantum diffraction and shielding effects on the low-energy bremsstrahlung process are investigated in two-component semiclassical plasmas. The impact-parameter analysis with the micropotential taking into account the quantum diffraction and shielding effects is employed to obtain the electron-ion bremsstrahlung radiation cross section as a function of the de Broglie wavelength, density parameter, impact parameter, photon energy, and projectile energy. The result shows that the influence of quantum diffraction and shielding strongly suppresses the bremsstrahlung radiation spectrum in semiclassical plasmas. It is found that the quantum diffraction and shielding effects have broaden the photon emission domain. It is also found thatmore » the photon emission domain is almost independent of the radiation photon energy. In addition, it is found that the influence of quantum diffraction and shielding on the bremsstrahlung spectrum decreases with an increase of the projectile energy. The density effect on the electron-ion bremsstrahlung cross section is also discussed.« less

  10. Relationship between electronic properties and drug activity of seven quinoxaline compounds: A DFT study

    NASA Astrophysics Data System (ADS)

    Behzadi, Hadi; Roonasi, Payman; Assle taghipour, Khatoon; van der Spoel, David; Manzetti, Sergio

    2015-07-01

    The quantum chemical calculations at the DFT/B3LYP level of theory were carried out on seven quinoxaline compounds, which have been synthesized as anti-Mycobacterium tuberculosis agents. Three conformers were optimized for each compound and the lowest energy structure was found and used in further calculations. The electronic properties including EHOMO, ELUMO and related parameters as well as electron density around oxygen and nitrogen atoms were calculated for each compound. The relationship between the calculated electronic parameters and biological activity of the studied compounds were investigated. Six similar quinoxaline derivatives with possible more drug activity were suggested based on the calculated electronic descriptors. A mechanism was proposed and discussed based on the calculated electronic parameters and bond dissociation energies.

  11. Activities of the DOE Nuclear Criticality Safety Program (NCSP) at the Oak Ridge Electron Linear Accelerator (ORELA)

    NASA Astrophysics Data System (ADS)

    Valentine, Timothy E.; Leal, Luiz C.; Guber, Klaus H.

    2002-12-01

    The Department of Energy established the Nuclear Criticality Safety Program (NCSP) in response to the Recommendation 97-2 by the Defense Nuclear Facilities Safety Board. The NCSP consists of seven elements of which nuclear data measurements and evaluations is a key component. The intent of the nuclear data activities is to provide high resolution nuclear data measurements that are evaluated, validated, and formatted for use by the nuclear criticality safety community to provide improved and reliable calculations for nuclear criticality safety evaluations. High resolution capture, fission, and transmission measurements are performed at the Oak Ridge Electron Linear Accelerator (ORELA) to address the needs of the criticality safety community and to address known deficiencies in nuclear data evaluations. The activities at ORELA include measurements on both light and heavy nuclei and have been used to identify improvements in measurement techniques that greatly improve the measurement of small capture cross sections. The measurement activities at ORELA provide precise and reliable high-resolution nuclear data for the nuclear criticality safety community.

  12. Effectiveness-weighted control of cooling system components

    DOEpatents

    Campbell, Levi A.; Chu, Richard C.; David, Milnes P.; Ellsworth Jr., Michael J.; Iyengar, Madhusudan K.; Schmidt, Roger R.; Simmons, Robert E.

    2015-12-22

    Energy efficient control of cooling system cooling of an electronic system is provided based, in part, on weighted cooling effectiveness of the components. The control includes automatically determining speed control settings for multiple adjustable cooling components of the cooling system. The automatically determining is based, at least in part, on weighted cooling effectiveness of the components of the cooling system, and the determining operates to limit power consumption of at least the cooling system, while ensuring that a target temperature associated with at least one of the cooling system or the electronic system is within a desired range by provisioning, based on the weighted cooling effectiveness, a desired target temperature change among the multiple adjustable cooling components of the cooling system. The provisioning includes provisioning applied power to the multiple adjustable cooling components via, at least in part, the determined control settings.

  13. Dynamic defect correlations dominate activated electronic transport in SrTiO3

    PubMed Central

    Snijders, Paul C.; Şen, Cengiz; McConnell, Michael P.; Ma, Ying-Zhong; May, Andrew F.; Herklotz, Andreas; Wong, Anthony T.; Ward, T. Zac

    2016-01-01

    Strontium titanate (SrTiO3, STO) is a critically important material for the study of emergent electronic phases in complex oxides, as well as for the development of applications based on their heterostructures. Despite the large body of knowledge on STO, there are still many uncertainties regarding the role of defects in the properties of STO, including their influence on ferroelectricity in bulk STO and ferromagnetism in STO-based heterostructures. We present a detailed analysis of the decay of persistent photoconductivity in STO single crystals with defect concentrations that are relatively low but significantly affect their electronic properties. The results show that photo-activated electron transport cannot be described by a superposition of the properties due to independent point defects as current models suggest but is, instead, governed by defect complexes that interact through dynamic correlations. These results emphasize the importance of defect correlations for activated electronic transport properties of semiconducting and insulating perovskite oxides. PMID:27443503

  14. Dynamic defect correlations dominate activated electronic transport in SrTiO 3

    DOE PAGES

    Snijders, Paul C.; Sen, Cengiz; McConnell, Michael P.; ...

    2016-07-22

    Strontium titanate (SrTiO 3, STO) is a critically important material for the study of emergent electronic phases in complex oxides, as well as for the development of applications based on their heterostructures. Despite the large body of knowledge on STO, there are still many uncertainties regarding the role of defects in the properties of STO, including their influence on ferroelectricity in bulk STO and ferromagnetism in STO-based heterostructures. In this paper, we present a detailed analysis of the decay of persistent photoconductivity in STO single crystals with defect concentrations that are relatively low but significantly affect their electronic properties. Themore » results show that photo-activated electron transport cannot be described by a superposition of the properties due to independent point defects as current models suggest but is, instead, governed by defect complexes that interact through dynamic correlations. In conclusion, these results emphasize the importance of defect correlations for activated electronic transport properties of semiconducting and insulating perovskite oxides.« less

  15. Electronic Collection Management and Electronic Information Services

    DTIC Science & Technology

    2003-04-01

    compilation report, use: ADA415655 The component part is provided here to allow users access to individually authored sections f proceedings, annals...providers or as brokers between the user and the primary service provider. There has also been a significant reorientation from concept of "ownership...access. It will also look at the major trends in electronic user services including electronic information delivery and electronic reference. Finally, it

  16. On the development of radiation tolerant surveillance camera from consumer-grade components

    NASA Astrophysics Data System (ADS)

    Klemen, Ambrožič; Luka, Snoj; Lars, Öhlin; Jan, Gunnarsson; Niklas, Barringer

    2017-09-01

    In this paper an overview on the process of designing a radiation tolerant surveillance camera from consumer grade components and commercially available particle shielding materials is given. This involves utilization of Monte-Carlo particle transport code MCNP6 and ENDF/B-VII.0 nuclear data libraries, as well as testing the physical electrical systems against γ radiation, utilizing JSI TRIGA mk. II fuel elements as a γ-ray sources. A new, aluminum, 20 cm × 20 cm × 30 cm irradiation facility with electrical power and signal wire guide-tube to the reactor platform, was designed and constructed and used for irradiation of large electronic and optical components assemblies with activated fuel elements. Electronic components to be used in the camera were tested against γ-radiation in an independent manner, to determine their radiation tolerance. Several camera designs were proposed and simulated using MCNP, to determine incident particle and dose attenuation factors. Data obtained from the measurements and MCNP simulations will be used to finalize the design of 3 surveillance camera models, with different radiation tolerances.

  17. Phosphatase activity tunes two-component system sensor detection threshold.

    PubMed

    Landry, Brian P; Palanki, Rohan; Dyulgyarov, Nikola; Hartsough, Lucas A; Tabor, Jeffrey J

    2018-04-12

    Two-component systems (TCSs) are the largest family of multi-step signal transduction pathways in biology, and a major source of sensors for biotechnology. However, the input concentrations to which biosensors respond are often mismatched with application requirements. Here, we utilize a mathematical model to show that TCS detection thresholds increase with the phosphatase activity of the sensor histidine kinase. We experimentally validate this result in engineered Bacillus subtilis nitrate and E. coli aspartate TCS sensors by tuning their detection threshold up to two orders of magnitude. We go on to apply our TCS tuning method to recently described tetrathionate and thiosulfate sensors by mutating a widely conserved residue previously shown to impact phosphatase activity. Finally, we apply TCS tuning to engineer B. subtilis to sense and report a wide range of fertilizer concentrations in soil. This work will enable the engineering of tailor-made biosensors for diverse synthetic biology applications.

  18. Anticancer and antimetastatic effects of cordycepin, an active component of Cordyceps sinensis.

    PubMed

    Nakamura, Kazuki; Shinozuka, Kazumasa; Yoshikawa, Noriko

    2015-01-01

    Cordyceps sinensis, a fungus that parasitizes on the larva of Lepidoptera, has been used as a valued traditional Chinese medicine. We investigated the effects of water extracts of Cordyceps sinensis (WECS), and particularly focused on its anticancer and antimetastatic actions. Based on in vitro studies, we report that WECS showed an anticancer action, and this action was antagonized by an adenosine A3 receptor antagonist. Moreover, this anticancer action of WECS was promoted by an adenosine deaminase inhibitor. These results suggest that one of the components of WECS with an anticancer action might be an adenosine or its derivatives. Therefore, we focused on cordycepin (3'-deoxyadenosine) as one of the active ingredients of WECS. According to our experiments, cordycepin showed an anticancer effect through the stimulation of adenosine A3 receptor, followed by glycogen synthase kinase (GSK)-3β activation and cyclin D1 suppression. Cordycepin also showed an antimetastatic action through inhibiting platelet aggregation induced by cancer cells and suppressing the invasiveness of cancer cells via inhibiting the activity of matrix metalloproteinase (MMP)-2 and MMP-9, and accelerating the secretion of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 from cancer cells. In conclusion, cordycepin, an active component of WECS, might be a candidate anticancer and antimetastatic agent. Copyright © 2014 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. All rights reserved.

  19. Analysis of Total Electron Content and Electron Density Profile during Different Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Chapagain, N. P.; Rana, B.; Adhikari, B.

    2017-12-01

    Total Electron content (TEC) and electron density are the key parameters in the mitigation of ionospheric effects on radio communication system. Detail study of the TEC and electron density variations has been carried out during geomagnetic storms, with longitude and latitude, for four different locations: (13˚N -17˚N, 88˚E -98˚E), (30˚N-50˚N, 120˚W -95˚W), (29˚S-26˚S, 167˚W-163˚W,) and (60˚S-45˚S, 120˚W-105˚W) using the Gravity Recovery and Climate Experiment (GRACE) satellite observations. In order to find the geomagnetic activity, the solar wind parameters such as north-south component of inter planetary magnetic field (Bz), plasma drift velocity (Vsw), flow pressure (nPa), AE, Dst and Kp indices were obtained from Operating Mission as Nodes on the Internet (OMNI) web system. The data for geomagnetic indices have been correlated with the TEC and electron density for four different events of geomagnetic storms on 6 April 2008, 27 March 2008, 4 September 2008, and 11 October 2008. The result illustrates that the observed TEC and electron density profile significantly vary with longitudes and latitudes. This study illustrates that the values of TEC and the vertical electron density profile are influenced by the solar wind parameters associated with solar activities. The peak values of electron density and TEC increase as the geomagnetic storms become stronger. Similarly, the electron density profile varies with altitudes, which peaks around the altitude range of about 250- 350 km, depending on the strength of geomagnetic storms. The results clearly show that the peak electron density shifted to higher altitude (from about 250 km to 350 km) as the geomagnetic disturbances becomes stronger.

  20. Thomson scattering from a three-component plasma.

    PubMed

    Johnson, W R; Nilsen, J

    2014-02-01

    A model for a three-component plasma consisting of two distinct ionic species and electrons is developed and applied to study x-ray Thomson scattering. Ions of a specific type are assumed to be identical and are treated in the average-atom approximation. Given the plasma temperature and density, the model predicts mass densities, effective ionic charges, and cell volumes for each ionic type, together with the plasma chemical potential and free-electron density. Additionally, the average-atom treatment of individual ions provides a quantum-mechanical description of bound and continuum electrons. The model is used to obtain parameters needed to determine the dynamic structure factors for x-ray Thomson scattering from a three-component plasma. The contribution from inelastic scattering by free electrons is evaluated in the random-phase approximation. The contribution from inelastic scattering by bound electrons is evaluated using the bound-state and scattering wave functions obtained from the average-atom calculations. Finally, the partial static structure factors for elastic scattering by ions are evaluated using a two-component version of the Ornstein-Zernike equations with hypernetted chain closure, in which electron-ion interactions are accounted for using screened ion-ion interaction potentials. The model is used to predict the x-ray Thomson scattering spectrum from a CH plasma and the resulting spectrum is compared with experimental results obtained by Feltcher et al. [Phys. Plasmas 20, 056316 (2013)].

  1. Actively controlling coolant-cooled cold plate configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chainer, Timothy J.; Parida, Pritish R.

    A method is provided to facilitate active control of thermal and fluid dynamic performance of a coolant-cooled cold plate. The method includes: monitoring a variable associated with at least one of the coolant-cooled cold plate or one or more electronic components being cooled by the cold plate; and dynamically varying, based on the monitored variable, a physical configuration of the cold plate. By dynamically varying the physical configuration, the thermal and fluid dynamic performance of the cold plate are adjusted to, for example, optimally cool the one or more electronic components, and at the same time, reduce cooling power consumptionmore » used in cooling the electronic component(s). The physical configuration can be adjusted by providing one or more adjustable plates within the coolant-cooled cold plate, the positioning of which may be adjusted based on the monitored variable.« less

  2. Spacecraft Heat Rejection Methods: Active and Passive Heat Transfer for Electronic Systems.

    DTIC Science & Technology

    1986-08-29

    Storage in avionics, spacecraft and electronics ,;"ters. Microencapsulated phase change materials (PCMs) in a two-component water SlUrrv- were useo with...capsules was observed in the pumping process. Inaddition, both microencapsulated and pure PCM were used to passively reduce tile tempera- tuo .tremes of...conducted as a Phase I Small Business Innovation Research (SBIR) program to explore the feasibility of using microencapsulated phase change materials (PCM) in

  3. Effects of Home Access to Active Videogames on Child Self-Esteem, Enjoyment of Physical Activity, and Anxiety Related to Electronic Games: Results from a Randomized Controlled Trial.

    PubMed

    Abbott, Rebecca A; Smith, Anne J; Howie, Erin K; Pollock, Clare; Straker, Leon

    2014-08-01

    Active-input videogames could provide a useful conduit for increasing physical activity by improving a child's self-confidence, physical activity enjoyment, and reducing anxiety. Therefore this study evaluated the impact of (a) the removal of home access to traditional electronic games or (b) their replacement with active-input videogames, on child self-perception, enjoyment of physical activity, and electronic game use anxiety. This was a crossover, randomized controlled trial, conducted over a 6-month period in participants' family homes in metropolitan Perth, Australia, from 2007 to 2010. Children 10-12 years old were recruited through school and community media. Of 210 children who were eligible, 74 met inclusion criteria, and 8 withdrew, leaving 66 children (33 girls) for analysis. A counterbalanced randomized order of three conditions sustained for 8 weeks each: No home access to electronic games, home access to traditional electronic games, and home access to active-input electronic games. Perception of self-esteem (Harter's Self Perception Profile for Children), enjoyment of physical activity (Physical Activity Enjoyment Scale questionnaire), and anxiety toward electronic game use (modified Loyd and Gressard Computer Anxiety Subscale) were assessed. Compared with home access to traditional electronic games, neither removal of all electronic games nor replacement with active-input games resulted in any significant change to child self-esteem, enjoyment of physical activity, or anxiety related to electronic games. Although active-input videogames have been shown to be enjoyable in the short term, their ability to impact on psychological outcomes is yet to be established.

  4. Electron/Ion Transport Enhancer in High Capacity Li-Ion Battery Anodes

    DOE PAGES

    Kwon, Yo Han; Minnici, Krysten; Huie, Matthew M.; ...

    2016-08-30

    In this paper, magnetite (Fe 3O 4) was used as a model high capacity metal oxide active material to demonstrate advantages derived from consideration of both electron and ion transport in the design of composite battery electrodes. The conjugated polymer, poly[3-(potassium-4-butanoate) thiophene] (PPBT), was introduced as a binder component, while polyethylene glycol (PEG) was coated onto the surface of Fe 3O 4 nanoparticles. The introduction of PEG reduced aggregate size, enabled effective dispersion of the active materials and facilitated ionic conduction. As a binder for the composite electrode, PPBT underwent electrochemical doping which enabled the formation of effective electrical bridgesmore » between the carbon and Fe 3O 4 components, allowing for more efficient electron transport. Additionally, the PPBT carboxylic moieties effect a porous structure, and stable electrode performance. Finally, the methodical consideration of both enhanced electron and ion transport by introducing a carboxylated PPBT binder and PEG surface treatment leads to effectively reduced electrode resistance, which improved cycle life performance and rate capabilities.« less

  5. Using Theoretical Descriptions in Structure Activity Relations. 3. Electronic Descriptors

    DTIC Science & Technology

    1988-08-01

    Activity Relationships (QSAR) have been used successfully in the past to develop predictive equations for several biological and physical properties...Linear Free Energy Relationships (,FF.3) and is based on work by Hammet in which he derived electronic descriptors for the dissociation of substituted...structure of a compound and its activity in a system. Several different structural descriptors have been used in QSAR equations . These range from

  6. Mapping brain activity in gradient-echo functional MRI using principal component analysis

    NASA Astrophysics Data System (ADS)

    Khosla, Deepak; Singh, Manbir; Don, Manuel

    1997-05-01

    The detection of sites of brain activation in functional MRI has been a topic of immense research interest and many technique shave been proposed to this end. Recently, principal component analysis (PCA) has been applied to extract the activated regions and their time course of activation. This method is based on the assumption that the activation is orthogonal to other signal variations such as brain motion, physiological oscillations and other uncorrelated noises. A distinct advantage of this method is that it does not require any knowledge of the time course of the true stimulus paradigm. This technique is well suited to EPI image sequences where the sampling rate is high enough to capture the effects of physiological oscillations. In this work, we propose and apply tow methods that are based on PCA to conventional gradient-echo images and investigate their usefulness as tools to extract reliable information on brain activation. The first method is a conventional technique where a single image sequence with alternating on and off stages is subject to a principal component analysis. The second method is a PCA-based approach called the common spatial factor analysis technique (CSF). As the name suggests, this method relies on common spatial factors between the above fMRI image sequence and a background fMRI. We have applied these methods to identify active brain ares during visual stimulation and motor tasks. The results from these methods are compared to those obtained by using the standard cross-correlation technique. We found good agreement in the areas identified as active across all three techniques. The results suggest that PCA and CSF methods have good potential in detecting the true stimulus correlated changes in the presence of other interfering signals.

  7. Nonlinear electron-acoustic rogue waves in electron-beam plasma system with non-thermal hot electrons

    NASA Astrophysics Data System (ADS)

    Elwakil, S. A.; El-hanbaly, A. M.; Elgarayh, A.; El-Shewy, E. K.; Kassem, A. I.

    2014-11-01

    The properties of nonlinear electron-acoustic rogue waves have been investigated in an unmagnetized collisionless four-component plasma system consisting of a cold electron fluid, non-thermal hot electrons obeying a non-thermal distribution, an electron beam and stationary ions. It is found that the basic set of fluid equations is reduced to a nonlinear Schrodinger equation. The dependence of rogue wave profiles on the electron beam and energetic population parameter are discussed. The results of the present investigation may be applicable in auroral zone plasma.

  8. Active pixel sensor array with electronic shuttering

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor)

    2002-01-01

    An active pixel cell includes electronic shuttering capability. The cell can be shuttered to prevent additional charge accumulation. One mode transfers the current charge to a storage node that is blocked against accumulation of optical radiation. The charge is sampled from a floating node. Since the charge is stored, the node can be sampled at the beginning and the end of every cycle. Another aspect allows charge to spill out of the well whenever the charge amount gets higher than some amount, thereby providing anti blooming.

  9. Active Plasma Lensing for Relativistic Laser-Plasma-Accelerated Electron Beams

    DOE PAGES

    van Tilborg, J.; Steinke, S.; Geddes, C. G. R.; ...

    2015-10-28

    The compact, tunable, radially symmetric focusing of electrons is critical to laser-plasma accelerator (LPA) applications. Experiments are presented demonstrating the use of a discharge-capillary active plasma lens to focus 100-MeV-level LPA beams. The lens can provide tunable field gradients in excess of 3000 T/m, enabling cm-scale focal lengths for GeV-level beam energies and allowing LPA-based electron beams and light sources to maintain their compact footprint. For a range of lens strengths, excellent agreement with simulation was obtained.

  10. Activity of essential oils and individual components against acetyl- and butyrylcholinesterase.

    PubMed

    Orhan, Ilkay; Kartal, Murat; Kan, Yüksel; Sener, Bilge

    2008-01-01

    We have tested acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities of nineteen essential oils obtained from cultivated plants, namely one from Anethum graveolens L. (organic fertilizer), two from Foeniculum vulgare Mill. collected at fully-mature and flowering stages (organic fertilizer), two from Melissa officinalis L. (cultivated using organic and chemical fertilizers), two from Mentha piperita L. and M. spicata L. (organic fertilizer), two from Lavandula officinalis Chaix ex Villars (cultivated using organic and chemical fertilizers), two from Ocimum basilicum L. (green and purple-leaf varieties cultivated using only organic fertilizer), four from Origanum onites L., O. vulgare L., O. munitiflorum Hausskn., and O. majorana L. (cultivated using organic fertilizer), two from Salvia sclarea L. (organic and chemical fertilizers), one from S. officinalis L. (organic fertilizer), and one from Satureja cuneifolia Ten. (organic fertilizer) by a spectrophotometric method of Ellman using ELISA microplate-reader at 1 mg/ml concentration. In addition, a number of single components widely encountered in most of the essential oils [gamma-terpinene, 4-allyl anisole, (-)-carvone, dihydrocarvone, (-)-phencone, cuminyl alcohol, cumol, 4-isopropyl benzaldehyde, trans-anethole, camphene, iso-borneol, (-)-borneol, L-bornyl acetate, 2-decanol, 2-heptanol, methyl-heptanol, farnesol, nerol, iso-pulegol, 1,8-cineole, citral, citronellal, citronellol, geraniol, linalool, alpha-pinene, beta-pinene, piperitone, iso-menthone, menthofurane, linalyl oxide, linalyl ester, geranyl ester, carvacrol, thymol, menthol, vanilline, and eugenol] was also screened for the same activity in the same manner. Almost all of the essential oils showed a very high inhibitory activity (over 80%) against both enzymes, whereas the single components were not as active as the essential oils.

  11. Ecology and thermal inactivation of microbes in and on interplanetary space vehicle components. [examined with a scanning electron microscope

    NASA Technical Reports Server (NTRS)

    Campbell, J. E.

    1974-01-01

    The uses of scanning electron microscopy in assessing changes that occur in spores exposed to wet and dry heat cycles at elevated temperatures were examined. Several species of Bacillus and other nonspore-forming species of organisms were used for the experiment. Surface morphology of viable and nonviable organisms was clearly detectable by this method, making it a potentially useful technique for investigating microbial inactivation on space vehicle surfaces and components. Micrographs of the spores and bacterial cells are provided.

  12. New High Energy Electron Component of Earth Radiation Belt

    NASA Astrophysics Data System (ADS)

    Dmitrenko, V. V.; Galper, A. M.; Gratchev, V. M.; Kirillov-Ugryumov, V. G.; Ulin, S. E.; Voronov, S. A.

    The Earth Radiation Belt (ERB) was discovered in the course of the first flights of Russian and American satellites with conventional instruments (gas discharge and scintillation counters), which made it possible to investigate many characteristics of trapped particles and simulate adequate radiation belt models. However, the experimental and theoretical evidence accumulated over recent time, needs more elaborate measurements for its interpretation. These measurements became feasible after the development of devices based on more perfect detectors (solid and gas-filled Cherenkov detectors, magnetic spectrometer, scintillation time-of-flight systems). The evidence requiring new direct measurements in the ERB was obtained in the late 1960s in the course of balloon flights carried out by Cosmophysics Laboratory of the Moscow Engineering and Physics Institute. In these flights a correlation between the high energy electron flux in the upper atmosphere and perturbations ofthe Earth's magnetosphere was established. This phenomenon could be explained assuming there exist high energy electron fluxes in the ERB. High energy electron fluxes in the ERB were recorded for the first time in the direct experiments carried out on board orbital station 'Salyut-6' (orbit altitude - 350 km, inclination 51.6 deg). A scintillation-Cherenkov telescope 'Elena' controlled by cosmonauts was preset to different programmed positions. The measurements were made in the periphery of the ERB, namely, in the part which goes as low as several hundred km in the Brazil Anomaly Region (BRA). The flux of electrons with energies above 30 MeV was up to 104 (m2s sr)-1.

  13. Suicide Risk by Military Occupation in the DoD Active Component Population

    ERIC Educational Resources Information Center

    Trofimovich, Lily; Reger, Mark A.; Luxton, David D.; Oetjen-Gerdes, Lynne A.

    2013-01-01

    Suicide risk based on occupational cohorts within the U.S. military was investigated. Rates of suicide based on military occupational categories were computed for the Department of Defense (DoD) active component population between 2001 and 2010. The combined infantry, gun crews, and seamanship specialist group was at increased risk of suicide…

  14. EU Development of High Heat Flux Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linke, J.; Lorenzetto, P.; Majerus, P.

    2005-04-15

    The development of plasma facing components for next step fusion devices in Europe is strongly focused to ITER. Here a wide spectrum of different design options for the divertor target and the first wall have been investigated with tungsten, CFC, and beryllium armor. Electron beam simulation experiments have been used to determine the performance of high heat flux components under ITER specific thermal loads. Beside thermal fatigue loads with power density levels up to 20 MWm{sup -2}, off-normal events are a serious concern for the lifetime of plasma facing components. These phenomena are expected to occur on a time scalemore » of a few milliseconds (plasma disruptions) or several hundred milliseconds (vertical displacement events) and have been identified as a major source for the production of neutron activated metallic or tritium enriched carbon dust which is of serious importance from a safety point of view.The irradiation induced material degradation is another critical concern for future D-T-burning fusion devices. In ITER the integrated neutron fluence to the first wall and the divertor armour will remain in the order of 1 dpa and 0.7 dpa, respectively. This value is low compared to future commercial fusion reactors; nevertheless, a nonnegligible degradation of the materials has been detected, both for mechanical and thermal properties, in particular for the thermal conductivity of carbon based materials. Beside the degradation of individual material properties, the high heat flux performance of actively cooled plasma facing components has been investigated under ITER specific thermal and neutron loads.« less

  15. Multiple roles of mobile active center loops in the E1 component of the Escherichia coli pyruvate dehydrogenase complex - Linkage of protein dynamics to catalysis

    PubMed Central

    Jordan, Frank; Arjunan, Palaniappa; Kale, Sachin; Nemeria, Natalia S.; Furey, William

    2009-01-01

    The region encompassing residues 401–413 on the E1 component of the pyruvate dehydrogenase multienzyme complex from Escherichia coli comprises a loop (the inner loop) which was not seen in the X-ray structure in the presence of thiamin diphosphate, the required cofactor for the enzyme. This loop is seen in the presence of a stable analogue of the pre-decarboxylation intermediate, the covalent adduct between the substrate analogue methyl acetylphosphonate and thiamin diphosphate, C2α-phosphonolactylthiamin diphosphate. It has been shown that the residue H407 and several other residues on this loop are required to reduce the mobility of the loop so electron density corresponding to it can be seen once the pre-decarboxylation intermediate is formed. Concomitantly, the loop encompassing residues 541–557 (the outer loop) appears to work in tandem with the inner loop and there is a hydrogen bond between the two loops ensuring their correlated motion. The inner loop was shown to: a) sequester the active center from carboligase side reactions; b) assist the interaction between the E1 and the E2 components, thereby affecting the overall reaction rate of the entire multienzyme complex; c) control substrate access to the active center. Using viscosity effects on kinetics it was shown that formation of the pre-decarboxylation intermediate is specifically affected by loop movement. A cysteine-less variant was created for the E1 component, onto which cysteines were substituted at selected loop positions. Introducing an electron spin resonance spin label and an 19F NMR label onto these engineered cysteines, the loop mobility was examined: a) both methods suggested that in the absence of ligand, the loop exists in two conformations; b) line-shape analysis of the NMR signal at different temperatures, enabled estimation of the rate constant for loop movement, and this rate constant was found to be of the same order of magnitude as the turnover number for the enzyme under the

  16. Phase-separated, epitaxial composite cap layers for electronic device applications and method of making the same

    DOEpatents

    Aytug, Tolga [Knoxville, TN; Paranthaman, Mariappan Parans [Knoxville, TN; Polat, Ozgur [Knoxville, TN

    2012-07-17

    An electronic component that includes a substrate and a phase-separated layer supported on the substrate and a method of forming the same are disclosed. The phase-separated layer includes a first phase comprising lanthanum manganate (LMO) and a second phase selected from a metal oxide (MO), metal nitride (MN), a metal (Me), and combinations thereof. The phase-separated material can be an epitaxial layer and an upper surface of the phase-separated layer can include interfaces between the first phase and the second phase. The phase-separated layer can be supported on a buffer layer comprising a composition selected from the group consisting of IBAD MgO, LMO/IBAD-MgO, homoepi-IBAD MgO and LMO/homoepi-MgO. The electronic component can also include an electronically active layer supported on the phase-separated layer. The electronically active layer can be a superconducting material, a ferroelectric material, a multiferroic material, a magnetic material, a photovoltaic material, an electrical storage material, and a semiconductor material.

  17. Prognostics of Power Electronics, Methods and Validation Experiments

    NASA Technical Reports Server (NTRS)

    Kulkarni, Chetan S.; Celaya, Jose R.; Biswas, Gautam; Goebel, Kai

    2012-01-01

    Abstract Failure of electronic devices is a concern for future electric aircrafts that will see an increase of electronics to drive and control safety-critical equipment throughout the aircraft. As a result, investigation of precursors to failure in electronics and prediction of remaining life of electronic components is of key importance. DC-DC power converters are power electronics systems employed typically as sourcing elements for avionics equipment. Current research efforts in prognostics for these power systems focuses on the identification of failure mechanisms and the development of accelerated aging methodologies and systems to accelerate the aging process of test devices, while continuously measuring key electrical and thermal parameters. Preliminary model-based prognostics algorithms have been developed making use of empirical degradation models and physics-inspired degradation model with focus on key components like electrolytic capacitors and power MOSFETs (metal-oxide-semiconductor-field-effect-transistor). This paper presents current results on the development of validation methods for prognostics algorithms of power electrolytic capacitors. Particularly, in the use of accelerated aging systems for algorithm validation. Validation of prognostics algorithms present difficulties in practice due to the lack of run-to-failure experiments in deployed systems. By using accelerated experiments, we circumvent this problem in order to define initial validation activities.

  18. Computational electronics and electromagnetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, C. C.

    The Computational Electronics and Electromagnetics thrust area at Lawrence Livermore National Laboratory serves as the focal point for engineering R&D activities for developing computer-based design, analysis, and tools for theory. Key representative applications include design of particle accelerator cells and beamline components; engineering analysis and design of high-power components, photonics, and optoelectronics circuit design; EMI susceptibility analysis; and antenna synthesis. The FY-96 technology-base effort focused code development on (1) accelerator design codes; (2) 3-D massively parallel, object-oriented time-domain EM codes; (3) material models; (4) coupling and application of engineering tools for analysis and design of high-power components; (5) 3-D spectral-domainmore » CEM tools; and (6) enhancement of laser drilling codes. Joint efforts with the Power Conversion Technologies thrust area include development of antenna systems for compact, high-performance radar, in addition to novel, compact Marx generators. 18 refs., 25 figs., 1 tab.« less

  19. The merger of electrochemistry and molecular electronics.

    PubMed

    McCreery, Richard L

    2012-02-01

    Molecular Electronics has the potential to greatly enhance existing silicon-based microelectronics to realize new functions, higher device density, lower power consumption, and lower cost. Although the investigation of electron transport through single molecules and molecular monolayers in "molecular junctions" is a recent development, many of the relevant concepts and phenomena are derived from electrochemistry, as practiced for the past several decades. The past 10+ years have seen an explosion of research activity directed toward how the structure of molecules affects electron transport in molecular junctions, with the ultimate objective of "rational design" of molecular components with new electronic functions, such as chemical sensing, interactions with light, and low-cost, low-power consumer electronics. In order to achieve these scientifically and commercially important objectives, the factors controlling charge transport in molecules "connected" to conducting contacts must be understood, and methods for massively parallel manufacturing of molecular circuits must be developed. This Personal Account describes the development of reproducible and robust molecular electronic devices, starting with modified electrodes used in electrochemistry and progressing to manufacturable molecular junctions. Although the field faced some early difficulties in reliability and characterization, the pieces are now in place for rapid advances in understanding charge transport at the molecular level. Inherent in the field of Molecular Electronics are many electrochemical concepts, including tunneling, redox exchange, activated electron transfer, and electron coupling between molecules and conducting contacts. Copyright © 2012 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  20. Coagulation mechanism of salt solution-extracted active component in Moringa oleifera seeds.

    PubMed

    Okuda, T; Baes, A U; Nishijima, W; Okada, M

    2001-03-01

    This study focuses on the coagulation mechanism by the purified coagulant solution (MOC-SC-PC) with the coagulation active component extracted from M. oleifera seeds using salt solution. The addition of MOC-SC-PC tap water formed insoluble matters. This formation was responsible for kaolin coagulation. On the other hand, insoluble matters were not formed when the MOC-SC-PC was added into distilled water. The formation was affected by Ca2+ or other bivalent cations which may connect each molecule of the active coagulation component in MOC-SC-PC and form a net-like structure. The coagulation mechanism of MOC-SC-PC seemed to be an enmeshment of Kaolin by the insoluble matters with the net-like structure. In case of Ca2+ ion (bivalent cations), at least 0.2 mM was necessary for coagulation at 0.3 mgC l-1 dose of MOC-SC-PC. Other coagulation mechanisms like compression of double layer, interparticle bridging or charge neutralization were not responsible for the coagulation by MOC-SC-PC.

  1. Investigating Mitochondrial Dysfunction in Human Lung Cells Exposed to Redox-Active PM Components

    EPA Science Inventory

    Exposure to ambient particulate matter (PM) causes cardiopulmonary morbidity and mortality through mechanisms that involve oxidative stress. 1,2-naphthoquinone (1,2-NQ) is a ubiquitous component of PM and a potent redox-active electrophile. We previously reported that 1,2-NQ incr...

  2. Reflex effects on components of synchronized renal sympathetic nerve activity.

    PubMed

    DiBona, G F; Jones, S Y

    1998-09-01

    The effects of peripheral thermal receptor stimulation (tail in hot water, n = 8, anesthetized) and cardiac baroreceptor stimulation (volume loading, n = 8, conscious) on components of synchronized renal sympathetic nerve activity (RSNA) were examined in rats. The peak height and peak frequency of synchronized RSNA were determined. The renal sympathoexcitatory response to peripheral thermal receptor stimulation was associated with an increase in the peak height. The renal sympathoinhibitory response to cardiac baroreceptor stimulation was associated with a decrease in the peak height. Although heart rate was significantly increased with peripheral thermal receptor stimulation and significantly decreased with cardiac baroreceptor stimulation, peak frequency was unchanged. As peak height reflects the number of active fibers, reflex increases and decreases in synchronized RSNA are mediated by parallel increases and decreases in the number of active renal nerve fibers rather than changes in the centrally based rhythm or peak frequency. The increase in the number of active renal nerve fibers produced by peripheral thermal receptor stimulation reflects the engagement of a unique group of silent renal sympathetic nerve fibers with a characteristic response pattern to stimulation of arterial baroreceptors, peripheral and central chemoreceptors, and peripheral thermal receptors.

  3. Modeling of power electronic systems with EMTP

    NASA Technical Reports Server (NTRS)

    Tam, Kwa-Sur; Dravid, Narayan V.

    1989-01-01

    In view of the potential impact of power electronics on power systems, there is need for a computer modeling/analysis tool to perform simulation studies on power systems with power electronic components as well as to educate engineering students about such systems. The modeling of the major power electronic components of the NASA Space Station Freedom Electric Power System is described along with ElectroMagnetic Transients Program (EMTP) and it is demonstrated that EMTP can serve as a very useful tool for teaching, design, analysis, and research in the area of power systems with power electronic components. EMTP modeling of power electronic circuits is described and simulation results are presented.

  4. The Electron Runaround: Understanding Electric Circuit Basics Through a Classroom Activity

    NASA Astrophysics Data System (ADS)

    Singh, Vandana

    2010-05-01

    Several misconceptions abound among college students taking their first general physics course, and to some extent pre-engineering physics students, regarding the physics and applications of electric circuits. Analogies used in textbooks, such as those that liken an electric circuit to a piped closed loop of water driven by a water pump, do not completely resolve these misconceptions. Mazur and Knight,2 in particular, separately note that such misconceptions include the notion that electric current on either side of a light bulb in a circuit can be different. Other difficulties and confusions involve understanding why the current in a parallel circuit exceeds the current in a series circuit with the same components, and include the role of the battery (where students may assume wrongly that a dry cell battery is a fixed-current rather than a fixed-voltage device). A simple classroom activity that students can play as a game can resolve these misconceptions, providing an intellectual as well as a hands-on understanding. This paper describes the "Electron Runaround," first developed by the author to teach extremely bright 8-year-old home-schooled children the basics of electric circuits and subsequently altered (according to the required level of instruction) and used for various college physics courses.

  5. Super-soliton dust-acoustic waves in four-component dusty plasma using non-extensive electrons and ions distributions

    NASA Astrophysics Data System (ADS)

    El-Wakil, S. A.; Abulwafa, Essam M.; Elhanbaly, Atalla A.

    2017-07-01

    Based on Sagdeev pseudo-potential and phase-portrait, the dynamics of four-component dust plasma with non-extensively distributed electrons and ions are investigated. Three distinct types of nonlinear waves, namely, soliton, double layer, and super-soliton, have been found. The basic features of such waves are high sensitivity to Mach number, non-extensive parameter, and dust temperature ratio. It is found that the multi-component plasma is a necessary condition for super-soliton's existence, having a wider amplitude and a larger width than the regular soliton. Super-solitons may also exist when the Sagdeev pseudo-potential curves admit at least four extrema and two roots. In our multi-component plasma system, the super-solitons can be found by increasing the Mach number and the non-extensive parameter beyond those of double-layers. On the contrary, the super-soliton can be produced by decreasing the dust temperature ratio. The conditions of the onset of such nonlinear waves and its merging to regular solitons have been studied. This work shows that the obtained nonlinear waves are found to exist only in the super-sonic Mach number regime. The obtained results may be of wide relevance in the field of space plasma and may also be helpful to better understand the nonlinear fluctuations in the Auroral-zone of the Earth's magnetosphere.

  6. Relationship between the antidiarrhoeal effects of Hange-Shashin-To and its active components.

    PubMed

    Kase, Y; Saitoh, K; Makino, B; Hashimoto, K; Ishige, A; Komatsu, Y

    1999-09-01

    This study was designed to examine the relationship between the antidiarrhoeal effects of Hange-Shashin-To (TJ-14) and its active components. Oral treatment with TJ-14 at 1000 mg/kg significantly inhibited castor oil-induced diarrhoea. Both the 50% methanol eluate fraction (fraction III) and the methanol eluate fraction (fraction IV) showed antidiarrhoeal effects at oral doses of 68 mg/kg and 63 mg/kg, respectively, corresponding to 1000 mg/kg of TJ-14. TJ-14 (1000 mg/kg, p.o.) showed a significant increase in blood corticosterone levels. Increased blood corticosterone was noted after the oral administration of 63 mg/kg of fraction IV. The inhibitory activity of TJ-14 on cyclooxygenase-2 (COX-2) was also observed in fractions III and IV. The main component of fraction III was Scutellariae Radix-derived baicalin. Fraction IV contained Glycyrrhizae Radix-derived glycyrrhizin and isoliquiritin, Coptidis Rhizoma-derived berberine, coptisine and palmitine. Ginseng Radix-derived saponins were also present in fraction IV. These compounds inhibited castor-oil induced diarrhoea at oral doses of 10 or 30 mg/kg. Thus, the present results indicate that Scutellariae Radix, Glycyrrhizae Radix, Ginseng radix and Coptidis Rhizoma-derived components are involved in the antidiarrhoeal action of TJ-14. Copyright 1999 John Wiley & Sons, Ltd.

  7. The Ferredoxin-Like Proteins HydN and YsaA Enhance Redox Dye-Linked Activity of the Formate Dehydrogenase H Component of the Formate Hydrogenlyase Complex.

    PubMed

    Pinske, Constanze

    2018-01-01

    Formate dehydrogenase H (FDH-H) and [NiFe]-hydrogenase 3 (Hyd-3) form the catalytic components of the hydrogen-producing formate hydrogenlyase (FHL) complex, which disproportionates formate to H 2 and CO 2 during mixed acid fermentation in enterobacteria. FHL comprises minimally seven proteins and little is understood about how this complex is assembled. Early studies identified a ferredoxin-like protein, HydN, as being involved in FDH-H assembly into the FHL complex. In order to understand how FDH-H and its small subunit HycB, which is also a ferredoxin-like protein, attach to the FHL complex, the possible roles of HydN and its paralogue, YsaA, in FHL complex stability and assembly were investigated. Deletion of the hycB gene reduced redox dye-mediated FDH-H activity to approximately 10%, abolished FHL-dependent H 2 -production, and reduced Hyd-3 activity. These data are consistent with HycB being an essential electron transfer component of the FHL complex. The FDH-H activity of the hydN and the ysaA deletion strains was reduced to 59 and 57% of the parental, while the double deletion reduced activity of FDH-H to 28% and the triple deletion with hycB to 1%. Remarkably, and in contrast to the hycB deletion, the absence of HydN and YsaA was without significant effect on FHL-dependent H 2 -production or total Hyd-3 activity; FDH-H protein levels were also unaltered. This is the first description of a phenotype for the E. coli ysaA deletion strain and identifies it as a novel factor required for optimal redox dye-linked FDH-H activity. A ysaA deletion strain could be complemented for FDH-H activity by hydN and ysaA , but the hydN deletion strain could not be complemented. Introduction of these plasmids did not affect H 2 production. Bacterial two-hybrid interactions showed that YsaA, HydN, and HycB interact with each other and with the FDH-H protein. Further novel anaerobic cross-interactions of 10 ferredoxin-like proteins in E. coli were also discovered and described

  8. Ionospheric total electron content anomalies due to Typhoon Nakri on 29 May 2008: A nonlinear principal component analysis

    NASA Astrophysics Data System (ADS)

    Lin, Jyh-Woei

    2012-09-01

    This paper uses Nonlinear Principal Component Analysis (NLPCA) and Principal Component Analysis (PCA) to determine Total Electron Content (TEC) anomalies in the ionosphere for the Nakri Typhoon on 29 May, 2008 (UTC). NLPCA, PCA and image processing are applied to the global ionospheric map (GIM) with transforms conducted for the time period 12:00-14:00 UT on 29 May 2008 when the wind was most intense. Results show that at a height of approximately 150-200 km the TEC anomaly using NLPCA is more localized; however its intensity increases with height and becomes more widespread. The TEC anomalies are not found by PCA. Potential causes of the results are discussed with emphasis given to vertical acoustic gravity waves. The approximate position of the typhoon's eye can be detected if the GIM is divided into fine enough maps with adequate spatial-resolution at GPS-TEC receivers. This implies that the trace of the typhoon in the regional GIM is caught using NLPCA.

  9. Black soybean promotes the formation of active components with antihepatoma activity in the fermentation product of Agaricus blazei.

    PubMed

    Su, Zheng-Yuan; Hwang, Lucy Sun; Kuo, Yueh-Hsiung; Shu, Chin-Hang; Sheen, Lee-Yan

    2008-10-22

    The antihepatoma activity and related active components in the fermentation products of Agaricus blazei (AB) cultured in the medium containing soybean (S) or black soybean (BS) were investigated. AB(BS)-pE and AB(S)-pE were the ethanolic extracts from the fermentation products of AB(BS) and AB(S), respectively. According to the IC 50 values, AB(BS)-pE (161.1 and 24.0 microg/mL for Hep 3B and Hep G2 cells, respectively) exhibited stronger cytotoxicities against hepatoma cells than AB(S)-pE (>200 and 99.9 microg/mL for Hep 3B and Hep G2 cells, respectively). AB(BS)-pE was separated by silica gel column chromatography and eluted with n-hexane/ethyl acetate/methanol gradient solvent system into 21 fractions. Fraction 3 [AB(BS)-pE-F3], eluted with n-hexane/ethyl acetate (97:3 and 19:1, v/v), was the most active fraction having inhibitory activity on the proliferation of Hep 3B and Hep G2 cells (IC 50 of 3.6 and 1.9 microg/mL, respectively). Three major compounds, compounds 1- 3, were further isolated from the AB(BS)-pE-F3 fraction by reversed-phase semipreparative high-performance liquid chromatography. Compounds 2 and 3 gave better antihepatoma activity than that of compound 1. The IC 50 values of compounds 2 and 3 were 2.8 and 4.5 microg/mL for Hep 3B cells and 1.4 and 2.0 microg/mL for Hep G2 cells, respectively. The structures of compounds 2 and 3 were identified by UV, IR, electron impact mass spectrometry, and (1)H and (13)C NMR to be blazeispirols A and C, respectively. Blazeispirols A and C existed in the mycelia but not in the broth and were more in AB(BS)-pE (49.9 +/- 8.9 and 14.2 +/- 2.4 mg/g, respectively) than AB(S)-pE (15.9 +/- 1.7 and 3.9 +/- 0.6 mg/g, respectively). Additionally, the result shows that the production of blazeispirols A and C was increased after cultivation in the medium containing black soybean on day 6 and reached the maximum on day 12, and the contents of blazeispirols A and C were negatively correlated with Hep 3B and Hep G2 cell

  10. M. leprae components induce nerve damage by complement activation: identification of lipoarabinomannan as the dominant complement activator.

    PubMed

    Bahia El Idrissi, Nawal; Das, Pranab K; Fluiter, Kees; Rosa, Patricia S; Vreijling, Jeroen; Troost, Dirk; Morgan, B Paul; Baas, Frank; Ramaglia, Valeria

    2015-05-01

    Peripheral nerve damage is the hallmark of leprosy pathology but its etiology is unclear. We previously identified the membrane attack complex (MAC) of the complement system as a key determinant of post-traumatic nerve damage and demonstrated that its inhibition is neuroprotective. Here, we determined the contribution of the MAC to nerve damage caused by Mycobacterium leprae and its components in mouse. Furthermore, we studied the association between MAC and the key M. leprae component lipoarabinomannan (LAM) in nerve biopsies of leprosy patients. Intraneural injections of M. leprae sonicate induced MAC deposition and pathological changes in the mouse nerve, whereas MAC inhibition preserved myelin and axons. Complement activation occurred mainly via the lectin pathway and the principal activator was LAM. In leprosy nerves, the extent of LAM and MAC immunoreactivity was robust and significantly higher in multibacillary compared to paucibacillary donors (p = 0.01 and p = 0.001, respectively), with a highly significant association between LAM and MAC in the diseased samples (r = 0.9601, p = 0.0001). Further, MAC co-localized with LAM on axons, pointing to a role for this M. leprae antigen in complement activation and nerve damage in leprosy. Our findings demonstrate that MAC contributes to nerve damage in a model of M. leprae-induced nerve injury and its inhibition is neuroprotective. In addition, our data identified LAM as the key pathogen associated molecule that activates complement and causes nerve damage. Taken together our data imply an important role of complement in nerve damage in leprosy and may inform the development of novel therapeutics for patients.

  11. From chemolithoautotrophs to electrolithoautotrophs: CO2 fixation by Fe(II)-oxidizing bacteria coupled with direct uptake of electrons from solid electron sources.

    PubMed

    Ishii, Takumi; Kawaichi, Satoshi; Nakagawa, Hirotaka; Hashimoto, Kazuhito; Nakamura, Ryuhei

    2015-01-01

    At deep-sea vent systems, hydrothermal emissions rich in reductive chemicals replace solar energy as fuels to support microbial carbon assimilation. Until recently, all the microbial components at vent systems have been assumed to be fostered by the primary production of chemolithoautotrophs; however, both the laboratory and on-site studies demonstrated electrical current generation at vent systems and have suggested that a portion of microbial carbon assimilation is stimulated by the direct uptake of electrons from electrically conductive minerals. Here we show that chemolithoautotrophic Fe(II)-oxidizing bacterium, Acidithiobacillus ferrooxidans, switches the electron source for carbon assimilation from diffusible Fe(2+) ions to an electrode under the condition that electrical current is the only source of energy and electrons. Site-specific marking of a cytochrome aa3 complex (aa3 complex) and a cytochrome bc1 complex (bc1 complex) in viable cells demonstrated that the electrons taken directly from an electrode are used for O2 reduction via a down-hill pathway, which generates proton motive force that is used for pushing the electrons to NAD(+) through a bc1 complex. Activation of carbon dioxide fixation by a direct electron uptake was also confirmed by the clear potential dependency of cell growth. These results reveal a previously unknown bioenergetic versatility of Fe(II)-oxidizing bacteria to use solid electron sources and will help with understanding carbon assimilation of microbial components living in electronically conductive chimney habitats.

  12. From chemolithoautotrophs to electrolithoautotrophs: CO2 fixation by Fe(II)-oxidizing bacteria coupled with direct uptake of electrons from solid electron sources

    PubMed Central

    Ishii, Takumi; Kawaichi, Satoshi; Nakagawa, Hirotaka; Hashimoto, Kazuhito; Nakamura, Ryuhei

    2015-01-01

    At deep-sea vent systems, hydrothermal emissions rich in reductive chemicals replace solar energy as fuels to support microbial carbon assimilation. Until recently, all the microbial components at vent systems have been assumed to be fostered by the primary production of chemolithoautotrophs; however, both the laboratory and on-site studies demonstrated electrical current generation at vent systems and have suggested that a portion of microbial carbon assimilation is stimulated by the direct uptake of electrons from electrically conductive minerals. Here we show that chemolithoautotrophic Fe(II)-oxidizing bacterium, Acidithiobacillus ferrooxidans, switches the electron source for carbon assimilation from diffusible Fe2+ ions to an electrode under the condition that electrical current is the only source of energy and electrons. Site-specific marking of a cytochrome aa3 complex (aa3 complex) and a cytochrome bc1 complex (bc1 complex) in viable cells demonstrated that the electrons taken directly from an electrode are used for O2 reduction via a down-hill pathway, which generates proton motive force that is used for pushing the electrons to NAD+ through a bc1 complex. Activation of carbon dioxide fixation by a direct electron uptake was also confirmed by the clear potential dependency of cell growth. These results reveal a previously unknown bioenergetic versatility of Fe(II)-oxidizing bacteria to use solid electron sources and will help with understanding carbon assimilation of microbial components living in electronically conductive chimney habitats. PMID:26500609

  13. Manufacturing of reliable actively cooled fusion components - a challenge for non-destructive inspections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reheis, N.; Zabernig, A.; Ploechl, L.

    1994-12-31

    Actively cooled in-vessel components like divertors or limiters require high quality and reliability to ensure safe operation during long term use. Such components are subjected to very severe thermal and mechanical cyclic loads and high power densities. Key requirements for materials in question are e.g. high melting point and thermal conductivity and low atomic mass number. Since no single material can simultaneously meet all of these requirements the selection of materials to be combined in composite components as well as of manufacturing and non-destructive inspection (NDI) methods is a particularly challenging task. Armour materials like graphite intended to face themore » plasma and help to maintain its desired properties, are bonded to metallic substrates like copper, molybdenum or stainless steel providing cooling and mechanical support. Several techniques such as brazing and active metal casting have been developed and successfully applied for joining materials with different thermophysical properties, pursuing the objective of sufficient heat dissipation from the hot, plasma facing surface to the coolant. NDI methods are an integral part of the manufacturing schedule of these components, starting in the design phase and ending in the final inspection. They apply all kinds of divertor types (monobloc and flat-tile concept). Particular focus is put on the feasibility of detecting small flaws and defects in complex interfaces and on the limits of these techniques. Special test pieces with defined defects acting as standards were inspected. Accompanying metallographic investigations were carried out to compare actual defects with results recorded during NDI.« less

  14. Antiamoebic Activity of Petiveria alliacea Leaves and Their Main Component, Isoarborinol.

    PubMed

    Zavala Ocampo, Lizeth M; Aguirre-HernÁndez, Eva; Pérez-HernÁndez, Nury; Rivera, Gildardo; Marchat, Laurence A; Ramírez-Moreno, Esther

    2017-08-28

    Petiveria alliacea L. (Phytolacaceae) is a medicinal plant with a broad range of traditional therapeutic properties, including the treatment of dysentery and intestinal infections caused by protozoan parasites. However, its effects against Entamoeba histolytica have not been reported yet. We investigated the antiamoebic activity present in the leaves of P. alliacea Antiamoebic activity was evaluated in methanolic and aqueous extracts, as well as in the hexanic, methanolic, and EtOAc fractions. The P. alliacea methanolic extract showed a better antiamoebic activity than the aqueous extract with an IC 50 = 0.51 mg/ml. Likewise, the hexanic fraction was the most effective fraction, showing a dose-dependent activity against E. histolytica , with an IC 50 = 0.68 mg/ml. Hexanic subfraction 12-19 showed the highest antiamoebic activity at 0.8 mg/ml, producing 74.3% growth inhibition without any toxicity in mammal cells. A major component in subfraction 12-19 was identified as isoarborinol, which produced 51.4% E. histolytica growth inhibition at 0.05 mg/ml without affecting mammal cells. The P. alliacea leaf extract has antiamoebic activity that can be attributed to a major metabolite known as isoarborinol.

  15. Electron capture activation of the disulfide bond. The role of the asymmetry and electronegativity.

    PubMed

    Gámez, José A; Serrano-Andrés, Luis; Yáñez, Manuel

    2010-02-07

    The effects of electron capture on the structure of XSSX' disulfide derivatives in which the substituents attached to the sulfur atoms have different electronegativites have been investigated at different levels of theory, namely DFT, MP2, QCISD and CASSCF/CASPT2. Although it has been generally assumed that electron attachment to disulfide derivatives leads to a systematic and significant activation of the S-S bond, our results show that this is the case only when the substituents X or X' have low electronegativity. Otherwise, the S-S bond in the anion remains practically unperturbed and only the S-X bond is largely activated or even broken, because the extra electron occupies the sigma*(S-X) rather than the sigma*(S-S) antibonding orbital. Our results also show that S-S activation yields a system with a unique anion, whereas when the S-X activation is significant, two stable anionic species, stretched and bent, are formed.

  16. Insights into the redox components of dissolved organic matters during stabilization process.

    PubMed

    Yuan, Ying; Xi, Bei-Dou; He, Xiao-Song; Ma, Yan; Zhang, Hui; Li, Dan; Zhao, Xin-Yu

    2018-05-01

    The changes of dissolved organic matter (DOM) components during stabilization process play significant effects on its redox properties but are little reported. Composting is a stabilization process of DOM, during which both the components and electron transfer capacities (ETCs) of DOM change. The redox components within compost-derived DOM during the stabilization process are investigated in this study. The results show that compost-derived DOM contained protein-like, fulvic-like, and humic-like components. The protein-like component decreases during composting, whereas the fulvic- and humic-like components increase during the process. The electron-donating capacity (EDC), electron-accepting capacity (EAC), and ETC of compost-derived DOM all increase during composting but their correlations with the components presented significant difference. The humic-like components were the main functional component responsible for both EDC and ETC, whereas the protein- and fluvic-like components show negative effects with the EAC, EDC, and ETC, suggesting that the components within DOM have specific redox properties during the stabilization process. These findings are very meaningful for better understanding the geochemical behaviors of DOM in the environment.

  17. Electron-beam-induced-current and active secondary-electron voltage-contrast with aberration-corrected electron probes

    DOE PAGES

    Han, Myung-Geun; Garlow, Joseph A.; Marshall, Matthew S. J.; ...

    2017-03-23

    The ability to map out electrostatic potentials in materials is critical for the development and the design of nanoscale electronic and spintronic devices in modern industry. Electron holography has been an important tool for revealing electric and magnetic field distributions in microelectronics and magnetic-based memory devices, however, its utility is hindered by several practical constraints, such as charging artifacts and limitations in sensitivity and in field of view. In this article, we report electron-beam-induced-current (EBIC) and secondary-electron voltage-contrast (SE-VC) with an aberration-corrected electron probe in a transmission electron microscope (TEM), as complementary techniques to electron holography, to measure electric fieldsmore » and surface potentials, respectively. These two techniques were applied to ferroelectric thin films, multiferroic nanowires, and single crystals. Electrostatic potential maps obtained by off-axis electron holography were compared with EBIC and SE-VC to show that these techniques can be used as a complementary approach to validate quantitative results obtained from electron holography analysis.« less

  18. Electronic and optoelectronic nano-devices based on carbon nanotubes.

    PubMed

    Scarselli, M; Castrucci, P; De Crescenzi, M

    2012-08-08

    The discovery and understanding of nanoscale phenomena and the assembly of nanostructures into different devices are among the most promising fields of material science research. In this scenario, carbon nanostructures have a special role since, in having only one chemical element, they allow physical properties to be calculated with high precision for comparison with experiment. Carbon nanostructures, and carbon nanotubes (CNTs) in particular, have such remarkable electronic and structural properties that they are used as active building blocks for a large variety of nanoscale devices. We review here the latest advances in research involving carbon nanotubes as active components in electronic and optoelectronic nano-devices. Opportunities for future research are also identified.

  19. Screening Active Components from Yu-Ping-Feng-San for Regulating Initiative Key Factors in Allergic Sensitization

    PubMed Central

    Zhu, Zhijie; Yu, Xi; Liu, Hailiang; Wang, Huizhu; Fan, Hongwei; Wang, Dawei; Jiang, Guorong; Hong, Min

    2014-01-01

    Yu-ping-feng-san (YPFS) is a Chinese medical formula that is used clinically for allergic diseases and characterized by reducing allergy relapse. Our previous studies demonstrated that YPFS efficiently inhibited T helper 2 cytokines in allergic inflammation. The underlying mechanisms of action of YPFS and its effective components remain unclear. In this study, it was shown that YPFS significantly inhibited production of thymic stromal lymphopoietin (TSLP), an epithelial cell-derived initiative factor in allergic inflammation, in vitro and in vivo. A method of human bronchial epithelial cell (16HBE) binding combined with HPLC-MS (named 16HBE-HPLC-MS) was established to explore potential active components of YPFS. The following five components bound to 16HBE cells: calycosin-7-glucoside, ononin, claycosin, sec-o-glucosylhamaudol and formononetin. Serum from YPFS-treated mice was analyzed and three major components were detected claycosin, formononetin and cimifugin. Among these, claycosin and formononetin were detected by 16HBE-HPLC-MS and in the serum of YPFS-treated mice. Claycosin and formononetin decreased the level of TSLP markedly at the initial stage of allergic inflammation in vivo. Nuclear factor (NF)-κB, a key transcription factor in TSLP production, was also inhibited by claycosin and formononetin, either in terms of transcriptional activation or its nuclear translocation in vitro. Allergic inflammation was reduced by claycosin and formononetin when they are administered only at the initial stage in a murine model of atopic contact dermatitis. Thus, epithelial cell binding combined with HPLC-MS is a valid method for screening active components from complex mixtures of Chinese medicine. It was demonstrated that the compounds screened from YPFS significantly attenuated allergic inflammation probably by reducing TSLP production via regulating NF-κB activation. PMID:25198676

  20. Electronic Structure Approach to Tunable Electronic Properties of Hybrid Organic-Inorganic Perovskites

    NASA Astrophysics Data System (ADS)

    Liu, Garnett; Huhn, William; Mitzi, David B.; Kanai, Yosuke; Blum, Volker

    We present a study of the electronic structure of layered hybrid organic-inorganic perovskite (HOIP) materials using all-electron density-functional theory. Varying the nature of the organic and inorganic layers should enable systematically fine-tuning the carrier properties of each component. Using the HSE06 hybrid density functional including spin-orbit coupling (SOC), we validate the principle of tuning subsystem-specific parts of the electron band structures and densities of states in CH3NH3PbX3 (X=Cl, Br, I) compared to a modified organic component in layered (C6H5C2H4NH3) 2PbX4 (X=Cl, Br, I) and C20H22S4N2PbX4 (X=Cl, Br, I). We show that tunable shifts of electronic levels indeed arise by varying Cl, Br, I as the inorganic components, and CH3NH3+ , C6H5C2H4NH3+ , C20H22S4N22 + as the organic components. SOC is found to play an important role in splitting the conduction bands of the HOIP compounds investigated here. The frontier orbitals of the halide shift, increasing the gap, when Cl is substituted for Br and I.

  1. Direct observation of children's preferences and activity levels during interactive and online electronic games.

    PubMed

    Sit, Cindy H P; Lam, Jessica W K; McKenzie, Thomas L

    2010-07-01

    Interactive electronic games have recently been popularized and are believed to help promote children's physical activity (PA). The purpose of the study was to examine preferences and PA levels during interactive and online electronic games among overweight and nonoverweight boys and girls. Using a modification of the SOFIT, we systematically observed 70 Hong Kong Chinese children (35 boys, 35 girls; 50 nonoverweight, 20 overweight), age 9 to 12 years, during 2 60-minute recreation sessions and recorded their game mode choices and PA levels. During Session One children could play either an interactive or an online electronic bowling game and during Session Two they could play an interactive or an online electronic running game. Children chose to play the games during 94% of session time and split this time between interactive (52%) and online (48%) versions. They engaged in significantly more moderate-to-vigorous physical activity (MVPA) during interactive games than their online electronic versions (70% vs. 2% of game time). Boys and nonoverweight children expended relatively more energy during the interactive games than girls and overweight children, respectively. New-generation interactive games can facilitate physical activity in children, and given the opportunity children may select them over sedentary versions.

  2. Ultrafast Spectroscopy Reveals Electron-Transfer Cascade That Improves Hydrogen Evolution with Carbon Nitride Photocatalysts.

    PubMed

    Corp, Kathryn L; Schlenker, Cody W

    2017-06-14

    Solar hydrogen generation from water represents a compelling component of a future sustainable energy portfolio. Recently, chemically robust heptazine-based polymers known as graphitic carbon nitrides (g-C 3 N 4 ) have emerged as promising photocatalysts for hydrogen evolution using visible light while withstanding harsh chemical environments. However, since g-C 3 N 4 electron-transfer dynamics are poorly understood, rational design rules for improving activity remain unclear. Here, we use visible and near-infrared femtosecond transient absorption (TA) spectroscopy to reveal an electron-transfer cascade that correlates with a near-doubling in photocatalytic activity from 2050 to 3810 μmol h -1 g -1 when we infuse a suspension of bulk g-C 3 N 4 with 10% mass loading of chemically exfoliated carbon nitride. TA spectroscopy indicates that exfoliated carbon nitride quenches photogenerated electrons on g-C 3 N 4 at rates approaching the molecular diffusion limit. The TA signal for photogenerated electrons on g-C 3 N 4 decays with a time constant of 1/k e ' = 660 ps in the mixture versus 1/k e = 4.1 ns in g-C 3 N 4 alone. Our TA measurements suggest that the charge generation efficiency in g-C 3 N 4 is greater than 65%. Exfoliated carbon nitride, which liberates only trace hydrogen levels when photoexcited directly, does not appear to independently sustain appreciable long-lived charge generation. Thus, the activity enhancement in the two-component infusion evidently results from a cooperative effect in which charge is generated on g-C 3 N 4 , followed by electron transfer to exfoliated carbon nitride containing photocatalytic chain terminations. This correlation between electron transfer and photocatalytic activity provides new insight into structural modifications for controlling charge separation dynamics and activity of carbon-based photocatalysts.

  3. Impact of active geomagnetic conditions on stimulated radiation during ionospheric second electron gyroharmonic heating

    NASA Astrophysics Data System (ADS)

    Bordikar, M. R.; Scales, W. A.; Mahmoudian, A.; Kim, H.; Bernhardt, P. A.; Redmon, R.; Samimi, A. R.; Brizcinski, S.; McCarrick, M. J.

    2014-01-01

    Recently, narrowband emissions ordered near the H+ (proton) gyrofrequency (fcH) were reported in the stimulated electromagnetic emission (SEE) spectrum during active geomagnetic conditions. This work presents new observations and theoretical analysis of these recently discovered emissions. These emission lines are observed in the stimulated electromagnetic emission (SEE) spectrum when the transmitter is tuned near the second electron gyroharmonic frequency (2fce) during recent ionospheric modification experiments at the High Frequency Active Auroral Research (HAARP) facility near Gakona, Alaska. The spectral lines are typically shifted below and above the pump wave frequency by harmonics of a frequency roughly 10% less than fcH (≈ 800 Hz) with a narrow emission bandwidth less than the O+ gyrofrequency (≈ 50 Hz). However, new observations and analysis of emission lines ordered by a frequency approximately 10% greater than fcH are presented here for the first time as well. The interaction altitude for the heating for all the observations is in the range of 160 km up to 200 km. As described previously, proton precipitation due to active geomagnetic conditions is considered as the reason for the presence of H+ ions known to be a minor background constituent in this altitude region. DMSP satellite observations over HAARP during the heating experiments and ground-based magnetometer and riometer data validate active geomagnetic conditions. The theory of parametric decay instability in multi-ion component plasma including H+ ions as a minority species described in previous work is expanded in light of simultaneously observed preexisting SEE features to interpret the newly reported observations. Impact of active geomagnetic conditions on the SEE spectrum as a diagnostic tool for proton precipitation event characterization is discussed.

  4. [In vitro transdermal delivery of the active fraction of xiangfusiwu decoction based on principal component analysis].

    PubMed

    Li, Zhen-Hao; Liu, Pei; Qian, Da-Wei; Li, Wei; Shang, Er-Xin; Duan, Jin-Ao

    2013-06-01

    The objective of the present study was to establish a method based on principal component analysis (PCA) for the study of transdermal delivery of multiple components in Chinese medicine, and to choose the best penetration enhancers for the active fraction of Xiangfusiwu decoction (BW) with this method. Improved Franz diffusion cells with isolated rat abdomen skins were carried out to experiment on the transdermal delivery of six active components, including ferulic acid, paeoniflorin, albiflorin, protopine, tetrahydropalmatine and tetrahydrocolumbamine. The concentrations of these components were determined by LC-MS/MS, then the total factor scores of the concentrations at different times were calculated using PCA and were employed instead of the concentrations to compute the cumulative amounts and steady fluxes, the latter of which were considered as the indexes for optimizing penetration enhancers. The results showed that compared to the control group, the steady fluxes of the other groups increased significantly and furthermore, 4% azone with 1% propylene glycol manifested the best effect. The six components could penetrate through skin well under the action of penetration enhancers. The method established in this study has been proved to be suitable for the study of transdermal delivery of multiple components, and it provided a scientific basis for preparation research of Xiangfusiwu decoction and moreover, it could be a reference for Chinese medicine research.

  5. Use of Electronic Documentation for Quality Improvement in Hospice

    PubMed Central

    Cagle, John G.; Rokoske, Franziska S.; Durham, Danielle; Schenck, Anna P.; Spence, Carol; Hanson, Laura C.

    2015-01-01

    Little evidence exists on the use of electronic documentation in hospice and its relationship to quality improvement practices. The purposes of this study were to: (1) estimate the prevalence of electronic documentation use in hospice; (2) identify organizational characteristics associated with use of electronic documentation; and (3) determine whether quality measurement practices differed based on documentation format (electronic vs. nonelectronic). Surveys concerning the use of electronic documentation for quality improvement practices and the monitoring of quality-related care and outcomes were collected from 653 hospices. Users of electronic documentation were able to monitor a wider range of quality-related data than users of nonelectronic documentation. Quality components such as advanced care planning, cultural needs, experience during care of the actively dying, and the number/types of care being delivered were more likely to be documented by users of electronic documentation. Use of electronic documentation may help hospices to monitor quality and compliance. PMID:22267819

  6. Photo-catalytic Activities of Plant Hormones on Semiconductor Nanoparticles by Laser-Activated Electron Tunneling and Emitting

    PubMed Central

    Tang, Xuemei; Huang, Lulu; Zhang, Wenyang; Jiang, Ruowei; Zhong, Hongying

    2015-01-01

    Understanding of the dynamic process of laser-induced ultrafast electron tunneling is still very limited. It has been thought that the photo-catalytic reaction of adsorbents on the surface is either dependent on the number of resultant electron-hole pairs where excess energy is lost to the lattice through coupling with phonon modes, or dependent on irradiation photon wavelength. We used UV (355 nm) laser pulses to excite electrons from the valence band to the conduction band of titanium dioxide (TiO2), zinc oxide (ZnO) and bismuth cobalt zinc oxide (Bi2O3)0.07(CoO)0.03(ZnO)0.9 semiconductor nanoparticles with different photo catalytic properties. Photoelectrons are extracted, accelerated in a static electric field and eventually captured by charge deficient atoms of adsorbed organic molecules. A time-of-flight mass spectrometer was used to detect negative molecules and fragment ions generated by un-paired electron directed bond cleavages. We show that the probability of electron tunneling is determined by the strength of the static electric field and intrinsic electron mobility of semiconductors. Photo-catalytic dissociation or polymerization reactions of adsorbents are highly dependent on the kinetic energy of tunneling electrons as well as the strength of laser influx. By using this approach, photo-activities of phytohormones have been investigated. PMID:25749635

  7. Photo-catalytic Activities of Plant Hormones on Semiconductor Nanoparticles by Laser-Activated Electron Tunneling and Emitting

    NASA Astrophysics Data System (ADS)

    Tang, Xuemei; Huang, Lulu; Zhang, Wenyang; Jiang, Ruowei; Zhong, Hongying

    2015-03-01

    Understanding of the dynamic process of laser-induced ultrafast electron tunneling is still very limited. It has been thought that the photo-catalytic reaction of adsorbents on the surface is either dependent on the number of resultant electron-hole pairs where excess energy is lost to the lattice through coupling with phonon modes, or dependent on irradiation photon wavelength. We used UV (355 nm) laser pulses to excite electrons from the valence band to the conduction band of titanium dioxide (TiO2), zinc oxide (ZnO) and bismuth cobalt zinc oxide (Bi2O3)0.07(CoO)0.03(ZnO)0.9 semiconductor nanoparticles with different photo catalytic properties. Photoelectrons are extracted, accelerated in a static electric field and eventually captured by charge deficient atoms of adsorbed organic molecules. A time-of-flight mass spectrometer was used to detect negative molecules and fragment ions generated by un-paired electron directed bond cleavages. We show that the probability of electron tunneling is determined by the strength of the static electric field and intrinsic electron mobility of semiconductors. Photo-catalytic dissociation or polymerization reactions of adsorbents are highly dependent on the kinetic energy of tunneling electrons as well as the strength of laser influx. By using this approach, photo-activities of phytohormones have been investigated.

  8. Closing Ranks: The Secret of Army Active and Reserve Component Harmony

    DTIC Science & Technology

    1992-02-11

    FUNDING NUMBERS PROGRAM I PROJECT TASK IWORK UNIT ELEMENT NO. NO. NO. [ACCESSION NO 11. TITLE (include Security Classification) Closing Ranks: The Secret of...and recently served on the DOD Total Force Policy Study Group Staff, Washington, DC. iv CLOSING RANKS: THE SECRET OF ARMY ACTIVE AND RESERVE COMPONENT...same old rebuff by the AC senior leadership. If we accept the premise that attitudes and perceptions are the secrets to AC/RC harmony, then the real

  9. Direct enantioselective three-component synthesis of optically active propargylamines in water.

    PubMed

    Ohara, Mutsuyo; Hara, Yoshichika; Ohnuki, Tohru; Nakamura, Shuichi

    2014-07-14

    An enantioselective three-component reaction of aldehydes, amines, and alkynes in water by using a bis(imidazoline)-Cu(I) catalysts having a hydrophobic substituent and sodium dodecyl sulfate as a surfactant was developed. The reaction was applied to a broad range of aldehydes and alkynes to give optically active propargylamines with excellent yields (up to 99 %) and enantiomeric excesses (up to 99 % ee). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Rocket measurements of electrons in a system of multiple auroral arcs

    NASA Technical Reports Server (NTRS)

    Boyd, J. S.; Davis, T. N.

    1977-01-01

    A Nike-Tomahawk rocket was launched into a system of auroral arcs northward of Poker Flat Research Range, Fairbanks, Alaska. The pitch-angle distribution of electrons was measured at 2.5, 5, and 10 keV and also at 10 keV on a separating forward section of the payload. The auroral activity appeared to be the extension of substorm activity centered to the east. The rocket crossed a westward-propagating fold in the brightest band. The electron spectrum was relatively hard through most of the flight, showing a peak in the range from 2.5 to 10 keV in the weaker aurora and below 5 keV in the brightest arc. The detailed structure of the pitch-angle distribution suggested that, at times, a very selective process was accelerating some electrons in the magnetic field direction, so that a narrow field-aligned component appeared superimposed on a more isotropic distribution. It is concluded that this process could not be a near-ionosphere field-aligned potential drop, although the more isotropic component may have been produced by a parallel electric field extending several thousand kilometers along the field line above the ionosphere.

  11. [Effects of nitrogen and sulfur combined application on nutritional components and active components of Isatis indigotica at seedling stage].

    PubMed

    Miao, Yu-Jing; Guan, Jia-Li; Zeng, Jia-le; Xu, Jing; Tang, Xiao-Qing

    2018-04-01

    Using split plot design, a pot experiment with sand culture was conducted to investigate the effects ofnitrogen and sulfur combined application on nutritional components and active component of Isatis indigotica at seedling stage under different N (5,15,25 mmol·L⁻¹)and S(0.00,1.25,2.50,5.00,7.50 mmol·L⁻¹) levels. The results showed thatthe two elements had obvious effects and the leaf and root dry weights of I. indigotica seedlings increased greatly at N₂ level. Under the same nitrogen concentration, the leaf and root dry weights increased firstly and decreased with the rising of sulfur concentrations in which S₂ was conducive to the growth and biomass accumulation. Soluble sugar, soluble protein, soluble amino acids contents were the highest in N₁, N₂ and N₃ treatments, respectively. The influence of sulfur concentrations on nutritional components was same as biomass, but the peak of different nutritional components was diversity in different nitrogen levels. The effects on secondary metabolites (total flavones, indigo, indriubin, epigotrin contents) were not obvious significantly, in which these indexes by N₁S₃,N₁S₂,N₃S₀,N₃S₁were the highest, respectively. In conclusion, the combination of nitrogen and sulfur of N₂S₂(N 15 mmol·L⁻¹ and S 2.5 mmol·L⁻¹) was beneficial to the growth and secondary metabolites accumulation of I. indigotica. These results could provide a theoretical basis for rational fertilization and cultivation of I. indigotica seedling. Copyright© by the Chinese Pharmaceutical Association.

  12. ROBNCA: robust network component analysis for recovering transcription factor activities.

    PubMed

    Noor, Amina; Ahmad, Aitzaz; Serpedin, Erchin; Nounou, Mohamed; Nounou, Hazem

    2013-10-01

    Network component analysis (NCA) is an efficient method of reconstructing the transcription factor activity (TFA), which makes use of the gene expression data and prior information available about transcription factor (TF)-gene regulations. Most of the contemporary algorithms either exhibit the drawback of inconsistency and poor reliability, or suffer from prohibitive computational complexity. In addition, the existing algorithms do not possess the ability to counteract the presence of outliers in the microarray data. Hence, robust and computationally efficient algorithms are needed to enable practical applications. We propose ROBust Network Component Analysis (ROBNCA), a novel iterative algorithm that explicitly models the possible outliers in the microarray data. An attractive feature of the ROBNCA algorithm is the derivation of a closed form solution for estimating the connectivity matrix, which was not available in prior contributions. The ROBNCA algorithm is compared with FastNCA and the non-iterative NCA (NI-NCA). ROBNCA estimates the TF activity profiles as well as the TF-gene control strength matrix with a much higher degree of accuracy than FastNCA and NI-NCA, irrespective of varying noise, correlation and/or amount of outliers in case of synthetic data. The ROBNCA algorithm is also tested on Saccharomyces cerevisiae data and Escherichia coli data, and it is observed to outperform the existing algorithms. The run time of the ROBNCA algorithm is comparable with that of FastNCA, and is hundreds of times faster than NI-NCA. The ROBNCA software is available at http://people.tamu.edu/∼amina/ROBNCA

  13. 76 FR 40454 - Proposed Information Collection (VSO Access to VHA Electronic Health Records) Activity; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-08

    ... Access to VHA Electronic Health Records) Activity; Comment Request AGENCY: Veterans Health Administration... Access to VHA Electronic Health Records, VA Form 10- 0400. OMB Control Number: 2900-0710. Type of Review... were granted power of attorney by veterans who have medical information recorded in VHA electronic...

  14. Adherence to active play and electronic media guidelines in preschool children: gender and parental education considerations.

    PubMed

    Loprinzi, Paul D; Schary, David P; Cardinal, Bradley J

    2013-01-01

    The primary purpose of the present study was to examine adherence to current active play and electronic media use guidelines in a sample of US preschool-aged children and to examine whether differences occurred across gender and parental education. 164 parents completed an on-line survey to estimate preschool children's active play and sedentary behaviors. For weekdays, 50% of the sample met the active play guideline with this increasing to 65% during the weekend. With respect to electronic media use, 90% of the sample met guidelines during the week, with the percentage meeting guidelines dropping to 78% during the weekend. A greater percentage of preschool children from high parental education families (83.4 ± 3.3) met electronic media use guidelines on the weekends, compared to preschool children from low parental education families (59.4 ± 8.1) (p = 0.002). Our findings indicate that a substantial portion of preschool children are not meeting active play guidelines and that adherence to active play and electronic media use guidelines may be influenced by parental education.

  15. Tumor necrosis factor-inducing activities of Cryptococcus neoformans components.

    PubMed Central

    Delfino, D; Cianci, L; Migliardo, M; Mancuso, G; Cusumano, V; Corradini, C; Teti, G

    1996-01-01

    Cryptococcus neoformans-induced tumor necrosis factor alpha (TNF-alpha) production may lead to increased human immunodeficiency virus replication in patients with AIDS. In order to identify cryptococcal components that are predominantly responsible for stimulating TNF production, various concentrations of glucuronoxylomannan (GXM), galactoxylomannan (GalXM), mannoproteins (MP), and alpha(1-3) [corrected] glucan were added to whole-blood cultures. All of the cryptococcal components tested, as well as whole heat-killed cryptococci, were capable of inducing TNF-alpha release in a dose-dependent manner. MP were significantly more potent than any of the other cryptococcal components tested or heat-killed cryptococci in stimulating TNF-alpha production (P < 0.05). GXM, in contrast, was significantly less potent in this activity than either GalXM or MP (P < 0.05). As little as 0.5 microg of MP per ml was sufficient to produce moderate but significant elevations of TNF-alpha release. Maximal MP-induced TNF-alpha levels were similar to those induced by Salmonella enteritidis lipopolysaccharide, our positive control. Further experiments using isolated leukocytes suggested that monocytes were the cell population mainly responsible for TNF-alpha production, although the participation of other cell types could not be excluded. The presence of complement-sufficient plasma was a necessary requirement for TNF-alpha induction by GXM, GalXM, and low doses of MP. High MP concentrations (100 microg/ml) were also capable of stimulating TNF-alpha production in the absence of plasma. These data indicate that soluble products released by C. neoformans are capable of inducing TNF-alpha secretion in human leukocytes. This may be clinically relevant, since high concentrations of such products are frequently found in the body fluids of AIDS patients infected with C. neoformans. PMID:8945566

  16. A Methodology for the Hybridization Based in Active Components: The Case of cGA and Scatter Search

    PubMed Central

    Alba, Enrique; Leguizamón, Guillermo

    2016-01-01

    This work presents the results of a new methodology for hybridizing metaheuristics. By first locating the active components (parts) of one algorithm and then inserting them into second one, we can build efficient and accurate optimization, search, and learning algorithms. This gives a concrete way of constructing new techniques that contrasts the spread ad hoc way of hybridizing. In this paper, the enhanced algorithm is a Cellular Genetic Algorithm (cGA) which has been successfully used in the past to find solutions to such hard optimization problems. In order to extend and corroborate the use of active components as an emerging hybridization methodology, we propose here the use of active components taken from Scatter Search (SS) to improve cGA. The results obtained over a varied set of benchmarks are highly satisfactory in efficacy and efficiency when compared with a standard cGA. Moreover, the proposed hybrid approach (i.e., cGA+SS) has shown encouraging results with regard to earlier applications of our methodology. PMID:27403153

  17. A Methodology for the Hybridization Based in Active Components: The Case of cGA and Scatter Search.

    PubMed

    Villagra, Andrea; Alba, Enrique; Leguizamón, Guillermo

    2016-01-01

    This work presents the results of a new methodology for hybridizing metaheuristics. By first locating the active components (parts) of one algorithm and then inserting them into second one, we can build efficient and accurate optimization, search, and learning algorithms. This gives a concrete way of constructing new techniques that contrasts the spread ad hoc way of hybridizing. In this paper, the enhanced algorithm is a Cellular Genetic Algorithm (cGA) which has been successfully used in the past to find solutions to such hard optimization problems. In order to extend and corroborate the use of active components as an emerging hybridization methodology, we propose here the use of active components taken from Scatter Search (SS) to improve cGA. The results obtained over a varied set of benchmarks are highly satisfactory in efficacy and efficiency when compared with a standard cGA. Moreover, the proposed hybrid approach (i.e., cGA+SS) has shown encouraging results with regard to earlier applications of our methodology.

  18. 78 FR 36642 - Proposed Information Collection (VA Loan Electronic Reporting Interface (VALERI) System) Activity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-18

    ... DEPARTMENT OF VETERANS AFFAIRS [OMB Control No. 2900-0021] Proposed Information Collection (VA Loan Electronic Reporting Interface (VALERI) System) Activity: Comment Request AGENCY: Veterans... techniques or the use of other forms of information technology. Title: VA Loan Electronic Reporting Interface...

  19. Electronic Nose Based on Independent Component Analysis Combined with Partial Least Squares and Artificial Neural Networks for Wine Prediction

    PubMed Central

    Aguilera, Teodoro; Lozano, Jesús; Paredes, José A.; Álvarez, Fernando J.; Suárez, José I.

    2012-01-01

    The aim of this work is to propose an alternative way for wine classification and prediction based on an electronic nose (e-nose) combined with Independent Component Analysis (ICA) as a dimensionality reduction technique, Partial Least Squares (PLS) to predict sensorial descriptors and Artificial Neural Networks (ANNs) for classification purpose. A total of 26 wines from different regions, varieties and elaboration processes have been analyzed with an e-nose and tasted by a sensory panel. Successful results have been obtained in most cases for prediction and classification. PMID:22969387

  20. Detailed characteristics of radiation belt electrons revealed by CSSWE/REPTile measurements: Geomagnetic activity response and precipitation observation

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Li, X.; Schiller, Q.; Gerhardt, D.; Zhao, H.; Millan, R.

    2017-08-01

    Earth's outer radiation belt electrons are highly dynamic. We study the detailed characteristics of relativistic electrons in the outer belt using measurements from the Colorado Student Space Weather Experiment (CSSWE) mission, a low Earth orbit (LEO) CubeSat, which traverses the radiation belt four times in one orbit ( 1.5 h) and has the advantage of measuring the dynamic activities of the electrons including their rapid precipitation. We focus on the measured electron response to geomagnetic activity for different energies to show that there are abundant sub-MeV electrons in the inner belt and slot region. These electrons are further enhanced during active times, while there is a lack of >1.63 MeV electrons in these regions. We also show that the variation of measured electron flux at LEO is strongly dependent on the local magnetic field strength, which is far from a dipole approximation. Moreover, a specific precipitation band, which happened on 19 January 2013, is investigated based on the conjunctive measurement of CSSWE, the Balloon Array for Radiation belt Relativistic Electron Losses, and one of the Polar Operational Environmental Satellites. In this precipitation band event, the net loss of the 0.58-1.63 MeV electrons (L = 3.5-6) is estimated to account for 6.8% of the total electron content.

  1. Passive and active plasma deceleration for the compact disposal of electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonatto, A., E-mail: abonatto@lbl.gov; CAPES Foundation, Ministry of Education of Brazil, Brasília, DF 700040-020; Schroeder, C. B.

    2015-08-15

    Plasma-based decelerating schemes are investigated as compact alternatives for the disposal of high-energy beams (beam dumps). Analytical solutions for the energy loss of electron beams propagating in passive and active (laser-driven) schemes are derived. These solutions, along with numerical modeling, are used to investigate the evolution of the electron distribution, including energy chirp and total beam energy. In the active beam dump scheme, a laser-driver allows a more homogeneous beam energy extraction and drastically reduces the energy chirp observed in the passive scheme. These concepts could benefit applications requiring overall compactness, such as transportable light sources, or facilities operating atmore » high beam power.« less

  2. UV-induced changes of active components and antioxidant activity in postharvest pigeon pea [Cajanus cajan (L.) Millsp.] leaves.

    PubMed

    Wei, Zuo-Fu; Luo, Meng; Zhao, Chun-Jian; Li, Chun-Ying; Gu, Cheng-Bo; Wang, Wei; Zu, Yuan-Gang; Efferth, Thomas; Fu, Yu-Jie

    2013-02-13

    In this study, the effect of UV irradiation (UV-A, UV-B, and UV-C) on phytochemicals, total phenolics, and antioxidant activity of postharvest pigeon pea leaves was evaluated. The response of pigeon pea leaves to UV irradiation was phytochemical specific. UV-B and UV-C induced higher levels of phytochemicals, total phenolics, and antioxidant activity in pigeon pea leaves compared with UV-A. Furthermore, UV-B irradiation proved to possess a long-lasting effect on the levels of phenolics and antioxidant activity. After adapting for 48 h at 4 °C following 4 h UV-B irradiation, total phenolics and antioxidant activity were approximately 1.5-fold and 2.2-fold increased from 39.4 mg GAE/g DM and 15.0 μmol GAE/g DM to 59.1 mg GAE/g DM and 32.5 μmol GAE/g DM, respectively. These results indicate that UV irradiation of pigeon pea leaves can be beneficial in terms of increasing active components and antioxidant activity.

  3. 78 FR 3411 - Agency Information Collection Activities; Comment Request; Formula Grant for the Electronic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-16

    ... DEPARTMENT OF EDUCATION [Docket No. ED-2013-ICCD-0001] Agency Information Collection Activities; Comment Request; Formula Grant for the Electronic Application System for Indian Education (EASIE) AGENCY... Electronic Application System for Indian Education (EASIE). OMB Control Number: 1810-0021. Type of Review: an...

  4. Shewanella secretes flavins that mediate extracellular electron transfer

    PubMed Central

    Marsili, Enrico; Baron, Daniel B.; Shikhare, Indraneel D.; Coursolle, Dan; Gralnick, Jeffrey A.; Bond, Daniel R.

    2008-01-01

    Bacteria able to transfer electrons to metals are key agents in biogeochemical metal cycling, subsurface bioremediation, and corrosion processes. More recently, these bacteria have gained attention as the transfer of electrons from the cell surface to conductive materials can be used in multiple applications. In this work, we adapted electrochemical techniques to probe intact biofilms of Shewanella oneidensis MR-1 and Shewanella sp. MR-4 grown by using a poised electrode as an electron acceptor. This approach detected redox-active molecules within biofilms, which were involved in electron transfer to the electrode. A combination of methods identified a mixture of riboflavin and riboflavin-5′-phosphate in supernatants from biofilm reactors, with riboflavin representing the dominant component during sustained incubations (>72 h). Removal of riboflavin from biofilms reduced the rate of electron transfer to electrodes by >70%, consistent with a role as a soluble redox shuttle carrying electrons from the cell surface to external acceptors. Differential pulse voltammetry and cyclic voltammetry revealed a layer of flavins adsorbed to electrodes, even after soluble components were removed, especially in older biofilms. Riboflavin adsorbed quickly to other surfaces of geochemical interest, such as Fe(III) and Mn(IV) oxy(hydr)oxides. This in situ demonstration of flavin production, and sequestration at surfaces, requires the paradigm of soluble redox shuttles in geochemistry to be adjusted to include binding and modification of surfaces. Moreover, the known ability of isoalloxazine rings to act as metal chelators, along with their electron shuttling capacity, suggests that extracellular respiration of minerals by Shewanella is more complex than originally conceived. PMID:18316736

  5. Rippled beam free electron laser amplifier

    DOEpatents

    Carlsten, Bruce E.

    1999-01-01

    A free electron laser amplifier provides a scalloping annular electron beam that interacts with the axial electric field of a TM.sub.0n mode. A waveguide defines an axial centerline and, a solenoid arranged about the waveguide produces an axial constant magnetic field within the waveguide. An electron beam source outputs a annular electron beam that interacts with the axial magnetic field to have an equilibrium radius and a ripple radius component having a variable radius with a ripple period along the axial centerline. An rf source outputs an axial electric field that propagates within the waveguide coaxial with the electron beam and has a radial mode that interacts at the electron beam at the equilibrium radius component of the electron beam.

  6. Physics and Engineering Design of the ITER Electron Cyclotron Emission Diagnostic

    NASA Astrophysics Data System (ADS)

    Rowan, W. L.; Austin, M. E.; Houshmandyar, S.; Phillips, P. E.; Beno, J. H.; Ouroua, A.; Weeks, D. A.; Hubbard, A. E.; Stillerman, J. A.; Feder, R. E.; Khodak, A.; Taylor, G.; Pandya, H. K.; Danani, S.; Kumar, R.

    2015-11-01

    Electron temperature (Te) measurements and consequent electron thermal transport inferences will be critical to the non-active phases of ITER operation and will take on added importance during the alpha heating phase. Here, we describe our design for the diagnostic that will measure spatial and temporal profiles of Te using electron cyclotron emission (ECE). Other measurement capability includes high frequency instabilities (e.g. ELMs, NTMs, and TAEs). Since results from TFTR and JET suggest that Thomson Scattering and ECE differ at high Te due to driven non-Maxwellian distributions, non-thermal features of the ITER electron distribution must be documented. The ITER environment presents other challenges including space limitations, vacuum requirements, and very high-neutron-fluence. Plasma control in ITER will require real-time Te. The diagnosic design that evolved from these sometimes-conflicting needs and requirements will be described component by component with special emphasis on the integration to form a single effective diagnostic system. Supported by PPPL/US-DA via subcontract S013464-C to UT Austin.

  7. Behavior change techniques implemented in electronic lifestyle activity monitors: a systematic content analysis.

    PubMed

    Lyons, Elizabeth J; Lewis, Zakkoyya H; Mayrsohn, Brian G; Rowland, Jennifer L

    2014-08-15

    Electronic activity monitors (such as those manufactured by Fitbit, Jawbone, and Nike) improve on standard pedometers by providing automated feedback and interactive behavior change tools via mobile device or personal computer. These monitors are commercially popular and show promise for use in public health interventions. However, little is known about the content of their feedback applications and how individual monitors may differ from one another. The purpose of this study was to describe the behavior change techniques implemented in commercially available electronic activity monitors. Electronic activity monitors (N=13) were systematically identified and tested by 3 trained coders for at least 1 week each. All monitors measured lifestyle physical activity and provided feedback via an app (computer or mobile). Coding was based on a hierarchical list of 93 behavior change techniques. Further coding of potentially effective techniques and adherence to theory-based recommendations were based on findings from meta-analyses and meta-regressions in the research literature. All monitors provided tools for self-monitoring, feedback, and environmental change by definition. The next most prevalent techniques (13 out of 13 monitors) were goal-setting and emphasizing discrepancy between current and goal behavior. Review of behavioral goals, social support, social comparison, prompts/cues, rewards, and a focus on past success were found in more than half of the systems. The monitors included a range of 5-10 of 14 total techniques identified from the research literature as potentially effective. Most of the monitors included goal-setting, self-monitoring, and feedback content that closely matched recommendations from social cognitive theory. Electronic activity monitors contain a wide range of behavior change techniques typically used in clinical behavioral interventions. Thus, the monitors may represent a medium by which these interventions could be translated for

  8. A model for the electronic support of practice-based research networks.

    PubMed

    Peterson, Kevin A; Delaney, Brendan C; Arvanitis, Theodoros N; Taweel, Adel; Sandberg, Elisabeth A; Speedie, Stuart; Richard Hobbs, F D

    2012-01-01

    The principal goal of the electronic Primary Care Research Network (ePCRN) is to enable the development of an electronic infrastructure to support clinical research activities in primary care practice-based research networks (PBRNs). We describe the model that the ePCRN developed to enhance the growth and to expand the reach of PBRN research. Use cases and activity diagrams were developed from interviews with key informants from 11 PBRNs from the United States and United Kingdom. Discrete functions were identified and aggregated into logical components. Interaction diagrams were created, and an overall composite diagram was constructed describing the proposed software behavior. Software for each component was written and aggregated, and the resulting prototype application was pilot tested for feasibility. A practical model was then created by separating application activities into distinct software packages based on existing PBRN business rules, hardware requirements, network requirements, and security concerns. We present an information architecture that provides for essential interactions, activities, data flows, and structural elements necessary for providing support for PBRN translational research activities. The model describes research information exchange between investigators and clusters of independent data sites supported by a contracted research director. The model was designed to support recruitment for clinical trials, collection of aggregated anonymous data, and retrieval of identifiable data from previously consented patients across hundreds of practices. The proposed model advances our understanding of the fundamental roles and activities of PBRNs and defines the information exchange commonly used by PBRNs to successfully engage community health care clinicians in translational research activities. By describing the network architecture in a language familiar to that used by software developers, the model provides an important foundation for the

  9. Long-lasting injection of solar energetic electrons into the heliosphere

    NASA Astrophysics Data System (ADS)

    Dresing, N.; Gómez-Herrero, R.; Heber, B.; Klassen, A.; Temmer, M.; Veronig, A.

    2018-05-01

    Context. The main sources of solar energetic particle (SEP) events are solar flares and shocks driven by coronal mass ejections (CMEs). While it is generally accepted that energetic protons can be accelerated by shocks, whether or not these shocks can also efficiently accelerate solar energetic electrons is still debated. In this study we present observations of the extremely widespread SEP event of 26 Dec 2013 To the knowledge of the authors, this is the widest longitudinal SEP distribution ever observed together with unusually long-lasting energetic electron anisotropies at all observer positions. Further striking features of the event are long-lasting SEP intensity increases, two distinct SEP components with the second component mainly consisting of high-energy particles, a complex associated coronal activity including a pronounced signature of a shock in radio type-II observations, and the interaction of two CMEs early in the event. Aims: The observations require a prolonged injection scenario not only for protons but also for electrons. We therefore analyze the data comprehensively to characterize the possible role of the shock for the electron event. Methods: Remote-sensing observations of the complex solar activity are combined with in situ measurements of the particle event. We also apply a graduated cylindrical shell (GCS) model to the coronagraph observations of the two associated CMEs to analyze their interaction. Results: We find that the shock alone is likely not responsible for this extremely wide SEP event. Therefore we propose a scenario of trapped energetic particles inside the CME-CME interaction region which undergo further acceleration due to the shock propagating through this region, stochastic acceleration, or ongoing reconnection processes inside the interaction region. The origin of the second component of the SEP event is likely caused by a sudden opening of the particle trap.

  10. Brefeldin A is an estrogenic, Erk1/2-activating component in the extract of Agaricus blazei mycelia.

    PubMed

    Dong, Sijun; Furutani, Yoshiyuki; Kimura, Sadao; Zhu, Yun; Kawabata, Kazutaka; Furutani, Michiko; Nishikawa, Toshio; Tanaka, Takeshi; Masaki, Tomoh; Matsuoka, Rumiko; Kiyama, Ryoiti

    2013-01-09

    We purified an Erk1/2-activating component in Agaricus blazei and identified it as brefeldin A (BFA). The extract of A. blazei mycelia (ABE) previously showed an estrogenic gene-expression profile and positive effects in patients with cardiovascular symptoms. Here, we demonstrate that BFA has estrogenic activity in reporter gene assays and stimulates an estrogen-receptor pathway revealed by activation of Erk1/2, although BFA had no growth-stimulating activity in breast cancer MCF-7 cells. The presence of estrogenic activity without any explicit growth-stimulating effect is unique to BFA, and such components are termed here "silent estrogens". To test this hypothesis, we examined the target-gene transcription and signaling pathways induced by BFA. Furthermore, BFA was found in the mycelium but not fruiting body of A. blazei, suggesting the potential use of ABE for therapeutics and its supplementary use in traditional medicines and functional foods.

  11. DOD Electronic Commerce (EC)/Electronic Data Interchange (EDI) in contracting report

    NASA Astrophysics Data System (ADS)

    1993-12-01

    Use of Electronic Commerce (EC)/Electronic Data Interchange (EDI) to support Department of Defense (DoD) procurement processes has been under consideration for some time. A 1988 Deputy Secretary of Defense memo calls for maximum use of EDI, based on 10 years of DoD EDI investigation and experiments. In 1990, Defense Management Review Decision 941 stated, 'The strategic goal of DoD's current efforts is to provide the department with the capability to initiate, conduct, and maintain its external business related transactions and internal logistics, contracting, and financial activities without requiring the use of hard copy media.' The EC in Contracting PAT membership reflected a broad cross section of Military Services and Defense Agencies working on a full-time basis for 60 days. The diversity of the EC in Contracting PAT ensured that the needs and concerns of all DoD components were addressed during the creation of the report. The resultant plan, therefore, represents a comprehensive approach for implementing EC throughout the DoD.

  12. Aloe vera in active and passive regions of electronic devices towards a sustainable development

    NASA Astrophysics Data System (ADS)

    Lim, Zhe Xi; Sreenivasan, Sasidharan; Wong, Yew Hoong; Cheong, Kuan Yew

    2017-07-01

    The increasing awareness towards sustainable development of electronics has driven the search for natural bio-organic materials in place of conventional electronic materials. The concept of using natural bio-organic materials in electronics provides not only an effective solution to address global electronic waste crisis, but also a compelling template for sustainable electronics manufacturing. This paper attempts to provide an overview of using Aloe vera gel as a natural bio-organic material for various electronic applications. Important concepts such as responses of living Aloe vera plant towards electrical stimuli and demonstrations of Aloe vera films as passive and active regions of electronic devices are highlighted in chronological order. The biodegradability and biocompatibility of Aloe vera can bring the world a step closer towards the ultimate goal of sustainable development of electronic devices from "all-natural" materials.

  13. Stress-Activated Electronic Charge Carriers in Igneous Rocks

    NASA Astrophysics Data System (ADS)

    Pan, C. T.; Jones, H. H.; Freund, F. T.

    2006-12-01

    Igneous rocks, when subjected to deviatory stress, turn into a battery. We report on gabbro (Shanxi, China) and anorthosite (Larvik, Norway). We use tiles, 30 x 30 x 0.9 cm3, and a pair of steel pistons, 4.4 cm diameter to subject a small off-center volume of ~10 cm3 to 10 MPa, about 5% failure strength. Instantly upon loading, two types of electronic charge carriers are activated in the stressed rock volume and a current begins to flow. One current leg is carried by holes, which flow from the stressed through the unstressed rock to the edges of the tile. The other current leg is carried by electrons, which flow from the stressed rock into the steel pistons and through the external wire to the edge, where they meet the holes. We have measured the impedance of the gabbro and anorthosite over the frequency range from <1 Hz to 10 MHz. We measured the impedence across the 10 cm3 volume between the two pistons and a similar volume outside the pistons in the path of the holes flowing to the edges of the tile: (1) before loading, (2) during loading. We obtain thus information about both types of charge carriers, electrons and holes. Both are associated with oxygen anions that changed their valence from 2- to 1- (peroxy). An O- among O2- represents a defect electron in the O2- sublattice, known as positive hole or p-hole for short. In unstressed rocks the O- exist in an electrically inactive form as O- pairs, chemically equivalent to peroxy links, O3X-OO-XO3 with X = Si4+, Al3+ etc. Stresses cause the peroxy links to break, allowing electrons from neighboring O2- to jump in and p-holes to jump out. The p-holes can spread through unstressed rocks using energy levels at the upper edge of the valence band.

  14. Energy deposition and thermal effects of runaway electrons in ITER-FEAT plasma facing components

    NASA Astrophysics Data System (ADS)

    Maddaluno, G.; Maruccia, G.; Merola, M.; Rollet, S.

    2003-03-01

    The profile of energy deposited by runaway electrons (RAEs) of 10 or 50 MeV in International Thermonuclear Experimental Reactor-Fusion Energy Advanced Tokamak (ITER-FEAT) plasma facing components (PFCs) and the subsequent temperature pattern have been calculated by using the Monte Carlo code FLUKA and the finite element heat conduction code ANSYS. The RAE energy deposition density was assumed to be 50 MJ/m 2 and both 10 and 100 ms deposition times were considered. Five different configurations of PFCs were investigated: primary first wall armoured with Be, with and without protecting CFC poloidal limiters, both port limiter first wall options (Be flat tile and CFC monoblock), divertor baffle first wall, armoured with W. The analysis has outlined that for all the configurations but one (port limiter with Be flat tile) the heat sink and the cooling tube beneath the armour are well protected for both RAE energies and for both energy deposition times. On the other hand large melting (W, Be) or sublimation (C) of the surface layer occurs, eventually affecting the PFCs lifetime.

  15. COMPADRE: an R and web resource for pathway activity analysis by component decompositions.

    PubMed

    Ramos-Rodriguez, Roberto-Rafael; Cuevas-Diaz-Duran, Raquel; Falciani, Francesco; Tamez-Peña, Jose-Gerardo; Trevino, Victor

    2012-10-15

    The analysis of biological networks has become essential to study functional genomic data. Compadre is a tool to estimate pathway/gene sets activity indexes using sub-matrix decompositions for biological networks analyses. The Compadre pipeline also includes one of the direct uses of activity indexes to detect altered gene sets. For this, the gene expression sub-matrix of a gene set is decomposed into components, which are used to test differences between groups of samples. This procedure is performed with and without differentially expressed genes to decrease false calls. During this process, Compadre also performs an over-representation test. Compadre already implements four decomposition methods [principal component analysis (PCA), Isomaps, independent component analysis (ICA) and non-negative matrix factorization (NMF)], six statistical tests (t- and f-test, SAM, Kruskal-Wallis, Welch and Brown-Forsythe), several gene sets (KEGG, BioCarta, Reactome, GO and MsigDB) and can be easily expanded. Our simulation results shown in Supplementary Information suggest that Compadre detects more pathways than over-representation tools like David, Babelomics and Webgestalt and less false positives than PLAGE. The output is composed of results from decomposition and over-representation analyses providing a more complete biological picture. Examples provided in Supplementary Information show the utility, versatility and simplicity of Compadre for analyses of biological networks. Compadre is freely available at http://bioinformatica.mty.itesm.mx:8080/compadre. The R package is also available at https://sourceforge.net/p/compadre.

  16. Raman active components of skin cancer.

    PubMed

    Feng, Xu; Moy, Austin J; Nguyen, Hieu T M; Zhang, Jason; Fox, Matthew C; Sebastian, Katherine R; Reichenberg, Jason S; Markey, Mia K; Tunnell, James W

    2017-06-01

    Raman spectroscopy (RS) has shown great potential in noninvasive cancer screening. Statistically based algorithms, such as principal component analysis, are commonly employed to provide tissue classification; however, they are difficult to relate to the chemical and morphological basis of the spectroscopic features and underlying disease. As a result, we propose the first Raman biophysical model applied to in vivo skin cancer screening data. We expand upon previous models by utilizing in situ skin constituents as the building blocks, and validate the model using previous clinical screening data collected from a Raman optical fiber probe. We built an 830nm confocal Raman microscope integrated with a confocal laser-scanning microscope. Raman imaging was performed on skin sections spanning various disease states, and multivariate curve resolution (MCR) analysis was used to resolve the Raman spectra of individual in situ skin constituents. The basis spectra of the most relevant skin constituents were combined linearly to fit in vivo human skin spectra. Our results suggest collagen, elastin, keratin, cell nucleus, triolein, ceramide, melanin and water are the most important model components. We make available for download (see supplemental information) a database of Raman spectra for these eight components for others to use as a reference. Our model reveals the biochemical and structural makeup of normal, nonmelanoma and melanoma skin cancers, and precancers and paves the way for future development of this approach to noninvasive skin cancer diagnosis.

  17. Raman active components of skin cancer

    PubMed Central

    Feng, Xu; Moy, Austin J; Nguyen, Hieu T. M.; Zhang, Jason; Fox, Matthew C.; Sebastian, Katherine R.; Reichenberg, Jason S.; Markey, Mia K.; Tunnell, James W.

    2017-01-01

    Raman spectroscopy (RS) has shown great potential in noninvasive cancer screening. Statistically based algorithms, such as principal component analysis, are commonly employed to provide tissue classification; however, they are difficult to relate to the chemical and morphological basis of the spectroscopic features and underlying disease. As a result, we propose the first Raman biophysical model applied to in vivo skin cancer screening data. We expand upon previous models by utilizing in situ skin constituents as the building blocks, and validate the model using previous clinical screening data collected from a Raman optical fiber probe. We built an 830nm confocal Raman microscope integrated with a confocal laser-scanning microscope. Raman imaging was performed on skin sections spanning various disease states, and multivariate curve resolution (MCR) analysis was used to resolve the Raman spectra of individual in situ skin constituents. The basis spectra of the most relevant skin constituents were combined linearly to fit in vivo human skin spectra. Our results suggest collagen, elastin, keratin, cell nucleus, triolein, ceramide, melanin and water are the most important model components. We make available for download (see supplemental information) a database of Raman spectra for these eight components for others to use as a reference. Our model reveals the biochemical and structural makeup of normal, nonmelanoma and melanoma skin cancers, and precancers and paves the way for future development of this approach to noninvasive skin cancer diagnosis. PMID:28663910

  18. In vitro antifungal activity of the tea tree (Melaleuca alternifolia) essential oil and its major components against plant pathogens.

    PubMed

    Terzi, V; Morcia, C; Faccioli, P; Valè, G; Tacconi, G; Malnati, M

    2007-06-01

    The aim of this study was to examine the effect of Melaleuca alternifolia essential oil (TTO) and its principal components on four cereal-pathogenic fungi. The antimycotic properties of TTO and of terpinen-4-ol, gamma-terpinen and 1,8-cineole (eucalyptol) were evaluated in vitro on Fusarium graminearum, Fusarium culmorum and Pyrenophora graminea. Moreover, barley leaves infected with Blumeria graminis were treated with whole TTO. All the tested fungi were susceptible to TTO and its components. TTO exerted a wide spectrum of antimycotic activity. Single TTO purified components were more active than the whole oil in reducing in vitro growth of fungal mycelium and, among the tested compounds, terpinen-4-ol was the most effective. TTO and its components can be considered potential alternative natural fungicides.

  19. Update: Cold weather injuries, active and reserve components, U.S. Armed Forces, July 2011-June 2016.

    PubMed

    O'Donnell, Francis L; Taubman, Stephen B

    2016-10-01

    From July 2015 through June 2016, a total of 447 members of the active (n=383) and reserve (n=64) components had at least one medical encounter with a primary diagnosis of cold injury. The numbers of affected individuals in both components were the lowest since the 2011-2012 cold season, when the total was 394. In the active component, the service-specific incidence rates for each of the four services were lower than the respective rates for the previous (2014-2015) cold season. Frostbite was the most common type of cold injury. During the five cold seasons in the surveillance period (2011-2016), rates tended to be higher among service members who were in the youngest age groups; female; black, non-Hispanic; or in the Army. The numbers of cold injuries associated with service in Iraq and Afghanistan have fallen precipitously in the past four cold seasons and included just 11 cases in the most recent year.

  20. Active pixel sensor array as a detector for electron microscopy.

    PubMed

    Milazzo, Anna-Clare; Leblanc, Philippe; Duttweiler, Fred; Jin, Liang; Bouwer, James C; Peltier, Steve; Ellisman, Mark; Bieser, Fred; Matis, Howard S; Wieman, Howard; Denes, Peter; Kleinfelder, Stuart; Xuong, Nguyen-Huu

    2005-09-01

    A new high-resolution recording device for transmission electron microscopy (TEM) is urgently needed. Neither film nor CCD cameras are systems that allow for efficient 3-D high-resolution particle reconstruction. We tested an active pixel sensor (APS) array as a replacement device at 200, 300, and 400 keV using a JEOL JEM-2000 FX II and a JEM-4000 EX electron microscope. For this experiment, we used an APS prototype with an area of 64 x 64 pixels of 20 microm x 20 microm pixel pitch. Single-electron events were measured by using very low beam intensity. The histogram of the incident electron energy deposited in the sensor shows a Landau distribution at low energies, as well as unexpected events at higher absorbed energies. After careful study, we concluded that backscattering in the silicon substrate and re-entering the sensitive epitaxial layer a second time with much lower speed caused the unexpected events. Exhaustive simulation experiments confirmed the existence of these back-scattered electrons. For the APS to be usable, the back-scattered electron events must be eliminated, perhaps by thinning the substrate to less than 30 microm. By using experimental data taken with an APS chip with a standard silicon substrate (300 microm) and adjusting the results to take into account the effect of a thinned silicon substrate (30 microm), we found an estimate of the signal-to-noise ratio for a back-thinned detector in the energy range of 200-400 keV was about 10:1 and an estimate for the spatial resolution was about 10 microm.

  1. Different cellular effects of four anti-inflammatory eye drops on human corneal epithelial cells: independent in active components.

    PubMed

    Qu, Mingli; Wang, Yao; Yang, Lingling; Zhou, Qingjun

    2011-01-01

    To evaluate and compare the cellular effects of four commercially available anti-inflammatory eye drops and their active components on human corneal epithelial cells (HCECs) in vitro. The cellular effects of four eye drops (Bromfenac Sodium Hydrate Eye Drops, Pranoprofen Eye Drops, Diclofenac Sodium Eye Drops, and Tobramycin & Dex Eye Drops) and their corresponding active components were evaluated in an HCEC line with five in vitro assays. Cell proliferation and migration were measured using 3-(4,5)-dimethylthiahiazo (-z-y1)-3 5-di-phenytetrazoliumromide (MTT) assay and transwell migration assay. Cell damage was determined with the lactate dehydrogenase (LDH) assay. Cell viability and median lethal time (LT₅₀) were measured by 7-amino-actinomycin D (7-AAD) staining and flow cytometry analysis. Cellular effects after exposure of HCECs to the four anti-inflammatory eye drops were concentration dependent. The differences of cellular toxicity on cell proliferation became significant at lower concentrations (<0.002%). Diclofenac Sodium Eye Drops showed significant increasing effects on cell damage and viability when compared with the other three solutions. Tobramycin & Dex Eye Drops inhibited the migration of HCECs significantly. Tobramycin & Dex Eye Drops showed the quickest effect on cell viability: the LT₅₀ was 3.28, 9.23, 10.38, and 23.80 min for Tobramycin & Dex Eye Drops, Diclofenac Sodium Eye Drops, Pranoprofen Eye Drops, and Bromfenac Sodium Hydrate Eye Drops, respectively. However, the comparisons of cellular toxicity revealed significant differences between the eye drops and their active components under the same concentration. The corneal epithelial toxicity differences among the active components of the four eye drops became significant as higher concentration (>0.020%). The four anti-inflammatory eye drops showed different cellular effects on HCECs, and the toxicity was not related with their active components, which provides new reference for the

  2. The Effect of Excess Electron and hole on CO2 Adsorption and Activation on Rutile (110) surface

    PubMed Central

    Yin, Wen-Jin; Wen, Bo; Bandaru, Sateesh; Krack, Matthias; Lau, MW; Liu, Li-Min

    2016-01-01

    CO2 capture and conversion into useful chemical fuel attracts great attention from many different fields. In the reduction process, excess electron is of key importance as it participates in the reaction, thus it is essential to know whether the excess electrons or holes affect the CO2 conversion. Here, the first-principles calculations were carried out to explore the role of excess electron on adsorption and activation of CO2 on rutile (110) surface. The calculated results demonstrate that CO2 can be activated as CO2 anions or CO2 cation when the system contains excess electrons and holes. The electronic structure of the activated CO2 is greatly changed, and the lowest unoccupied molecular orbital of CO2 can be even lower than the conduction band minimum of TiO2, which greatly facilities the CO2 reduction. Meanwhile, the dissociation process of CO2 undergoes an activated CO2− anion in bend configuration rather than the linear, while the long crossing distance of proton transfer greatly hinders the photocatalytic reduction of CO2 on the rutile (110) surface. These results show the importance of the excess electrons on the CO2 reduction process. PMID:26984417

  3. Incident diagnoses of cancers and cancer-related deaths, active component, U.S. Armed Forces, 2000-2011.

    PubMed

    2012-06-01

    In the United States, cancer is one of the five leading causes of death in all age groups among both men and women; overall, approximately one in four deaths is attributable to cancer. Compared to the general U.S. population, military members have been estimated to have lower incidence rates of several cancers including colorectal, lung, and cervical cancers and higher rates of prostate, breast, and thyroid cancer. Between 2000 and 2011 in active component members of the U.S. military, crude incidence rates of most cancer diagnoses have remained stable. 9,368 active component service members were diagnosed with one of the cancers of interest and no specific increasing or decreasing trends were observed. Cancer is an uncommon cause of death among service members on active duty and accounted for a total of 1,185 deaths during the 12-year surveillance period.

  4. Microstructural architecture developed in the fabrication of solid and open-cellular copper components by additive manufacturing using electron beam melting

    NASA Astrophysics Data System (ADS)

    Ramirez, Diana Alejandra

    The fabrication of Cu components were first built by additive manufacturing using electron beam melting (EBM) from low-purity, atomized Cu powder containing a high density of Cu2O precipitates leading to a novel example of precipitate-dislocation architecture. These microstructures exhibit cell-like arrays (1-3microm) in the horizontal reference plane perpendicular to the build direction with columnar-like arrays extending from ~12 to >60 microm in length and corresponding spatial dimensions of 1-3 microm. These observations were observed by the use of optical metallography, and scanning and transmission electron microscopy. The hardness measurements were taken both on the atomized powder and the Cu components. The hardness for these architectures ranged from ~HV 83 to 88, in contrast to the original Cu powder microindentation hardness of HV 72 and the commercial Cu base plate hardness of HV 57. These observations were utilized for the fabrication of open-cellular copper structures by additive manufacturing using EBM and illustrated the ability to fabricate some form of controlled microstructural architecture by EBM parameter alteration or optimizing. The fabrication of these structures ranged in densities from 0.73g/cm3 to 6.67g/cm3. These structures correspond to four different articulated mesh arrays. While these components contained some porosity as a consequence of some unmelted regions, the Cu2O precipitates also contributed to a reduced density. Using X-ray Diffraction showed the approximate volume fraction estimated to be ~2%. The addition of precipitates created in the EBM melt scan formed microstructural arrays which contributed to hardening contributing to the strength of mesh struts and foam ligaments. The measurements of relative stiffness versus relative density plots for Cu compared very closely with Ti-6Al-4V open cellular structures - both mesh and foams. The Cu reticulated mesh structures exhibit a slope of n = 2 in contrast to a slope of n = 2

  5. Electronic states of carbon alloy catalysts and nitrogen substituent effects on catalytic activity

    NASA Astrophysics Data System (ADS)

    Hata, Tomoyuki; Ushiyama, Hiroshi; Yamashita, Koichi

    2013-03-01

    In recent years, Carbon Alloy Catalysts (CACs) are attracting attention as a candidate for non-platinum-based cathode catalysts in fuel cells. Oxygen reduction reactions at the cathode are divided into two elementary processes, electron transfer and oxygen adsorption. The electron transfer reaction is the rate-determining, and by comparison of energy levels, catalytic activity can be evaluated quantitatively. On the other hand, to begin with, adsorption mechanism is obscure. The purpose of this study is to understand the effect of nitrogen substitution and oxygen adsorption mechanism, by first-principle electronic structure calculations for nitrogen substituted models. To reproduce the elementary processes of oxygen adsorption, we assumed that the initial structures are formed based on the Pauling model, a CACs model and nitrogen substituted CACs models in which various points are replaced with nitrogen. When we try to focus only on the DOS peaks of oxygen, in some substituted model that has high adsorption activity, a characteristic partial occupancy state was found. We conclude that this state will affect the adsorption activity, and discuss on why partially occupied states appear with simplification by using an orbital correlation diagram.

  6. Rolled-Up Optical and Electronic Components for On-Chip Integrative Applications

    DTIC Science & Technology

    2013-10-10

    attracted broad interest to create new three- dimensional electronics such as wrapable solar cells , pressure sensors and paper displays. The adaption to...cone-like microtube cavities Rolled-up electronics 1. Energy storage elements based on hybrid organic/inorganic nanomembranes 2.High performance...fabricated in this way to detect and analyze individual cells , biomolecules, and their bioactivities. 3.2 Three-dimensional confinement in asymmetric

  7. [Study on the chemical components, antimicrobial and antitumor activities of the essential oil from the leaves of Zanthoxylum avicennae].

    PubMed

    Zhang, Da-Shuai; Zhong, Qiong-Xin; Song, Xin-Ming; Liu, Wen-Jie; Wang, Jing; Zhang, Qiong-Yu

    2012-08-01

    To study the chemical constituents, antimicrobial activity and antitumor activity of the essential oil from Zanthoxylum avicennae. The essential oil from the leaves of Zanthoxylum avicennae was extracted by steam distillation. The components of the essential oil were separated and identified by GC-MS. 72 components were identified and accounted for 98.15% of the all peak area. The essential oil exhibited strong antitumor activity against K-562 human tumor cell lines with IC50 of 1.76 microg/mL. It also exhibited moderate antimicrobial activity against three bacteria. The essential oil of Zanthoxylum avicennae contains various active constituents. This result provides scientific reference for the pharmacological further research of Zanthoxylum avicennae.

  8. How does the activity level of the parents influence their children's activity? The contemporary life in a world ruled by electronic devices.

    PubMed

    Brzęk, Anna; Strauss, Markus; Przybylek, Bianca; Dworrak, Tarja; Dworrak, Birgit; Leischik, Roman

    2018-01-01

    Apart from many positive changes associated with technical civilization, there are also - from the health point of view - some threats. The reduction in the level of physical activity is one of them. The aim of the study was to investigate whether there are any relationships between children's physical activity and behaviors, and to assess the impact of the adults' activity on their children's habits. The study involved a group of 340 children aged 7-12 years (mean age: 9.81 ±1.7) and their parents. In order to evaluate children's physical activity and the amount of time that they spend with electronic devices, an original questionnaire and the IPAQ questionnaire were used. Children usually use electronic devices between 2 and 7 days per week (mean: 4.74 ±0.86), regardless of sex ( p > 0.09) and spend between 5 and 1620 min per week (mean: 459.46 ±308.1) with their mobile phone, tablet, PCs and TVs. 67.92% of boys and 69.61% of girls lead an active lifestyle. The children's activity level depends on their parents' level of activity ( p < 0.000001). Parents of semi-active children lead a lifestyle with a moderate level of physical activity. The level of physical activity in younger children depends on the children's relationship with their parents and their level of activity. Children spend a lot of free time with their electronic devices. It is necessary to develop and implement activities intended to raise awareness of children and their families about the effects of hypokinesis.

  9. Microfluidic stretchable RF electronics.

    PubMed

    Cheng, Shi; Wu, Zhigang

    2010-12-07

    Stretchable electronics is a revolutionary technology that will potentially create a world of radically different electronic devices and systems that open up an entirely new spectrum of possibilities. This article proposes a microfluidic based solution for stretchable radio frequency (RF) electronics, using hybrid integration of active circuits assembled on flex foils and liquid alloy passive structures embedded in elastic substrates, e.g. polydimethylsiloxane (PDMS). This concept was employed to implement a 900 MHz stretchable RF radiation sensor, consisting of a large area elastic antenna and a cluster of conventional rigid components for RF power detection. The integrated radiation sensor except the power supply was fully embedded in a thin elastomeric substrate. Good electrical performance of the standalone stretchable antenna as well as the RF power detection sub-module was verified by experiments. The sensor successfully detected the RF radiation over 5 m distance in the system demonstration. Experiments on two-dimensional (2D) stretching up to 15%, folding and twisting of the demonstrated sensor were also carried out. Despite the integrated device was severely deformed, no failure in RF radiation sensing was observed in the tests. This technique illuminates a promising route of realizing stretchable and foldable large area integrated RF electronics that are of great interest to a variety of applications like wearable computing, health monitoring, medical diagnostics, and curvilinear electronics.

  10. Tunneling of Bloch electrons through vacuum barrier

    NASA Astrophysics Data System (ADS)

    Mazin, I. I.

    2001-08-01

    Tunneling of Bloch electrons through a vacuum barrier introduces new physical effects in comparison with the textbook case of free (plane wave) electrons. For the latter, the exponential decay rate in the vacuum is minimal for electrons with the parallel component of momentum kparallel = 0, and the prefactor is defined by the electron momentum component in the normal to the surface direction. However, the decay rate of Bloch electrons may be minimal at an arbitrary kparallel ("hot spots" ), and the prefactor is determined by the electron's group velocity, rather than by its quasimomentum. We illustrate this by first-principles calculations for (110) Pd surface.

  11. Catalytically active nanorotor reversibly self-assembled by chemical signaling within an eight-component network.

    PubMed

    Goswami, Abir; Pramanik, Susnata; Schmittel, Michael

    2018-04-17

    A catalytically active three-component nanorotor is reversibly self-assembled and disassembled by remote control. When zinc(ii) ions (2 equiv.) are added as an external chemical trigger to the mixture of transmitter [Cu(1)]+ and pre-rotor assembly [(S)·(R)], two equiv. of copper(i) ions translocate from [Cu(1)]+ to the two phenanthroline sites of [(S)·(R)]. As a result, [Zn(1)]2+ forms along with the three-component assembly [Cu2(S)(R)]2+, which is both a nanorotor (k298 = 46 kHz, ΔH‡ = 49.1 ± 0.4 kJ mol-1, ΔS‡ = 9.5 ± 1.7 J mol-1 K-1) and a catalyst for click reactions (catalysis ON: A + B→AB). Removal of zinc from the mixture reverts the translocation sequence and thus commands disassembly of the catalytically active rotor (catalysis OFF). The ON/OFF catalytic cycle was run twice in situ in the full network.

  12. Conjugated Polymer Zwitterions: Efficient Interlayer Materials in Organic Electronics.

    PubMed

    Liu, Yao; Duzhko, Volodimyr V; Page, Zachariah A; Emrick, Todd; Russell, Thomas P

    2016-11-15

    Conjugated polymer zwitterions (CPZs) are neutral, hydrophilic, polymer semiconductors. The pendent zwitterions, viewed as side chain dipoles, impart solubility in polar solvents for solution processing, and open opportunities as interfacial components of optoelectronic devices, for example, between metal electrodes and organic semiconductor active layers. Such interlayers are crucial for defining the performance of organic electronic devices, e.g., field-effect transistors (OFETs), light-emitting diodes (OLEDs), and photovoltaics (OPVs), all of which consist of multilayer structures. The interlayers reduce the Schottky barrier height and thus improve charge injection in OFETs and OLEDs. In OPVs, the interlayers serve to increase the built-in electric potential difference (V bi ) across the active layer, ensuring efficient extraction of photogenerated charge carriers. In general, polar and even charged electronically active polymers have gained recognition for their ability to modify metal/semiconductor interfaces to the benefit of organic electronics. While conjugated polyelectrolytes (CPEs) as interlayer materials are well-documented, open questions remain about the role of mobile counterions in CPE-containing devices. CPZs possess the processing advantages of CPEs, but as neutral molecules lack any potential complications associated with counterions. The electronic implications of CPZs on metal electrodes stem from the orientation of the zwitterion dipole moment in close proximity to the metal surface, and the resultant surface-induced polarization. This generates an interfacial dipole (Δ) at the CPZ/metal interface, altering the work function of the electrode, as confirmed by ultraviolet photoelectron spectroscopy (UPS), and improving device performance. An ideal cathode interlayer would reduce electrode work function, have orthogonal processability to the active layer, exhibit good film forming properties (i.e., wettability/uniformity), prevent exciton

  13. "Sticky electrons" transport and interfacial transfer of electrons in the dye-sensitized solar cell.

    PubMed

    Peter, Laurence

    2009-11-17

    Dye-sensitized solar cells (DSCs, also known as Gratzel cells) mimic the photosynthetic process by using a sensitizer dye to harvest light energy to generate electrical power. Several functional features of these photochemical devices are unusual, and DSC research offers a rewarding arena in which to test new ideas, new materials, and new methodologies. Indeed, one of the most attractive chemical features of the DSC is that the basic concept can be used to construct a range of devices, replacing individual components with alternative materials. Despite two decades of increasing research activity, however, many aspects of the behavior of electrons in the DSC remain puzzling. In this Account, we highlight current understanding of the processes involved in the functioning of the DSC, with particular emphasis on what happens to the electrons in the mesoporous film following the injection step. The collection of photoinjected electrons appears to involve a random walk process in which electrons move through the network of interconnected titanium dioxide nanoparticles while undergoing frequent trapping and detrapping. During their passage to the cell contact, electrons may be lost by transfer to tri-iodide species in the redox electrolyte that permeates the mesoporous film. Competition between electron collection and back electron transfer determines the performance of a DSC: ideally, all injected electrons should be collected without loss. This Account then goes on to survey recent experimental and theoretical progress in the field, placing particular emphasis on issues that need to be resolved before we can gain a clear picture of how the DSC works. Several important questions about the behavior of "sticky" electrons, those that undergo multiple trapping and detrapping, in the DSC remain unanswered. The most fundamental of these concerns is the nature of the electron traps that appear to dominate the time-dependent photocurrent and photovoltage response of DSCs. The

  14. Lifecycle Prognostics Architecture for Selected High-Cost Active Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N. Lybeck; B. Pham; M. Tawfik

    There are an extensive body of knowledge and some commercial products available for calculating prognostics, remaining useful life, and damage index parameters. The application of these technologies within the nuclear power community is still in its infancy. Online monitoring and condition-based maintenance is seeing increasing acceptance and deployment, and these activities provide the technological bases for expanding to add predictive/prognostics capabilities. In looking to deploy prognostics there are three key aspects of systems that are presented and discussed: (1) component/system/structure selection, (2) prognostic algorithms, and (3) prognostics architectures. Criteria are presented for component selection: feasibility, failure probability, consequences of failure,more » and benefits of the prognostics and health management (PHM) system. The basis and methods commonly used for prognostics algorithms are reviewed and summarized. Criteria for evaluating PHM architectures are presented: open, modular architecture; platform independence; graphical user interface for system development and/or results viewing; web enabled tools; scalability; and standards compatibility. Thirteen software products were identified and discussed in the context of being potentially useful for deployment in a PHM program applied to systems in a nuclear power plant (NPP). These products were evaluated by using information available from company websites, product brochures, fact sheets, scholarly publications, and direct communication with vendors. The thirteen products were classified into four groups of software: (1) research tools, (2) PHM system development tools, (3) deployable architectures, and (4) peripheral tools. Eight software tools fell into the deployable architectures category. Of those eight, only two employ all six modules of a full PHM system. Five systems did not offer prognostic estimates, and one system employed the full health monitoring suite but lacked

  15. Ionic Liquid Activation of Amorphous Metal-Oxide Semiconductors for Flexible Transparent Electronic Devices

    DOE PAGES

    Pudasaini, Pushpa Raj; Noh, Joo Hyon; Wong, Anthony T.; ...

    2016-02-09

    To begin this abstract, amorphous metal-oxide semiconductors offer the high carrier mobilities and excellent large-area uniformity required for high performance, transparent, flexible electronic devices; however, a critical bottleneck to their widespread implementation is the need to activate these materials at high temperatures which are not compatible with flexible polymer substrates. The highly controllable activation of amorphous indium gallium zinc oxide semiconductor channels using ionic liquid gating at room temperature is reported. Activation is controlled by electric field-induced oxygen migration across the ionic liquid-semiconductor interface. In addition to activation of unannealed devices, it is shown that threshold voltages of a transistormore » can be linearly tuned between the enhancement and depletion modes. Finally, the first ever example of transparent flexible thin film metal oxide transistor on a polyamide substrate created using this simple technique is demonstrated. Finally, this study demonstrates the potential of field-induced activation as a promising alternative to traditional postdeposition thermal annealing which opens the door to wide scale implementation into flexible electronic applications.« less

  16. Approaching an experimental electron density model of the biologically active trans -epoxysuccinyl amide group-Substituent effects vs. crystal packing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Ming W.; Stewart, Scott G.; Sobolev, Alexandre N.

    The trans-epoxysuccinyl amide group as a biologically active moiety in cysteine protease inhibitors such as loxistatin acid E64c has been used as a benchmark system for theoretical studies of environmental effects on the electron density of small active ingredients in relation to their biological activity. Here, the synthesis and the electronic properties of the smallest possible active site model compound are reported to close the gap between the unknown experimental electron density of trans-epoxysuccinyl amides and the well-known function of related drugs. Intramolecular substituent effects are separated from intermolecular crystal packing effects on the electron density, which allows us tomore » predict the conditions under which an experimental electron density investigation on trans-epoxysuccinyl amides will be possible. In this context, the special importance of the carboxylic acid function in the model compound for both crystal packing and biological activity is revealed through the novel tool of model energy analysis.« less

  17. Effect of electron beam on the properties of electron-acoustic rogue waves

    NASA Astrophysics Data System (ADS)

    El-Shewy, E. K.; Elwakil, S. A.; El-Hanbaly, A. M.; Kassem, A. I.

    2015-04-01

    The properties of nonlinear electron-acoustic rogue waves have been investigated in an unmagnetized collisionless four-component plasma system consisting of a cold electron fluid, Maxwellian hot electrons, an electron beam and stationary ions. It is found that the basic set of fluid equations is reduced to a nonlinear Schrodinger equation. The dependence of rogue wave profiles and the associated electric field on the carrier wave number, normalized density of hot electron and electron beam, relative cold electron temperature and relative beam temperature are discussed. The results of the present investigation may be applicable in auroral zone plasma.

  18. Relation between the National Fire Danger spread component and fire activity in the Lake States.

    Treesearch

    Donald A. Haines; William A. Main; Von J. Johnson

    1970-01-01

    Relationships between the 1964 version of the spread component of the National Fire Danger Rating System and fire activity were established for Michigan, Minnesota, and Wisconsin. The measures of fire activity included the probability of a fire-day as well as a C, D, or E fire-day, number of fires per fire-day, and acres burned per fire. These measures were examined by...

  19. Antioxidant and biocidal activities of Carum nigrum (seed) essential oil, oleoresin, and their selected components.

    PubMed

    Singh, Gurdip; Marimuthu, Palanisamy; de Heluani, Carola S; Catalan, Cesar A N

    2006-01-11

    In the present study, chemical constituents of the essential oil and oleoresin of the seed from Carum nigrum obtained by hydrodistillation and Soxhlet extraction using acetone, respectively, have been studied by GC and GC-MS techniques. The major component was dillapiole (29.9%) followed by germacrene B (21.4%), beta-caryophyllene (7.8%), beta-selinene (7.1%), and nothoapiole (5.8%) along with many other components in minor amounts. Seventeen components were identified in the oleoresin (Table 2) with dillapiole as a major component (30.7%). It also contains thymol (19.1%), nothoapiole (15.2.3%), and gamma-elemene (8.0%). The antioxidant activity of both the essential oil and oleoresin was evaluated in mustard oil by monitoring peroxide, thiobarbituric acid, and total carbonyl and p-anisidine values of the oil substrate. The results showed that both the essential oil and oleoresin were able to reduce the oxidation rate of the mustard oil in the accelerated condition at 60 degrees C in comparison with synthetic antioxidants such as butylated hydroxyanisole and butylated hydroxytoluene at 0.02%. In addition, individual antioxidant assays such as linoleic acid assay, DPPH scavenging activity, reducing power, hydroxyl radical scavenging, and chelating effects have been used. The C. nigrum seed essential oil exhibited complete inhibition against Bacillus cereus and Pseudomonas aeruginosa at 2000 and 3000 ppm, respectively, by agar well diffusion method. Antifungal activity was determined against a panel of foodborne fungi such as Aspergillus niger, Penicillium purpurogenum, Penicillium madriti, Acrophialophora fusispora, Penicillium viridicatum, and Aspergillus flavus. The fruit essential oil showed 100% mycelial zone inhibition against P. purpurogenum and A. fusispora at 3000 ppm in the poison food method. Hence, both oil and oleoresin could be used as an additive in food and pharmaceutical preparations after screening.

  20. Structure/activity relationships for the enhancement by electron-affinic drugs of the anti-tumour effect of CCNU.

    PubMed Central

    Workman, P.; Twentyman, P. R.

    1982-01-01

    Using a regrowth-delay assay, we investigated structure/activity relationships for the enhancement by electron-affinic agents of the anti-tumour effect of the nitrosourea CCNU against the KHT sarcoma in C3H mice. A series of neutral 2-nitroimidazoles similar in electron affinity but varying in octanol/water partition coefficient (PC) over 4 orders of magnitude (0.016- greater than 200, Misonidazole = 0.43) were examined at a fixed dose of 2.5 mmol/kg. A parabolic (quadratic) dependence of activity on log PC was observed. Analogues more hydrophilic than misonidazole (MISO) were inactive as were those with very high PCs (greater than 20). Those with PC 0.43--20 were usually more active than MISO, some considerably so. The fairly lipophilic 5-nitroimidazoles nimorazole and metronidazole (METRO) had similar activity to MISO, despite their reduced electron affinity. Two basic 2-nitroimidazoles more efficient as radiosensitizers in vitro likewise showed activity comparable to MISO. We also investigated several agents more electron-affinic than MISO, including some non-nitro compounds. Most were inactive at maximum tolerated doses, but nitrofurazone showed reasonable activity. Sensitizer dose-response curves were obtained for MISO, METRO and two of the most effective agents, benznidazole (Ro 07-1051) and Ro 07-1902. The two latter agents were both considerably more active than MISO at low doses (0.1--0.9 mmol/kg). These studies indicate that the structural features of electron-affinic agents responsible for the enhancement of KHT tumour response to CCNU, are quite different from those affecting radiosensitization, lipophilicity being particularly important. The microsomal enzyme-inhibitor SKF 525A increased the anti-tumour effect of CCNU, suggesting inhibition of CCNU metabolism as one possible mechanism contributing to chemosensitization by lipophilic electron-affinic agents in mice. PMID:7150475

  1. The development of summary components for the Disablement in the Physically Active scale in collegiate athletes.

    PubMed

    Houston, Megan N; Hoch, Johanna M; Van Lunen, Bonnie L; Hoch, Matthew C

    2015-11-01

    The Disablement in the Physically Active scale (DPA) is a generic patient-reported outcome designed to evaluate constructs of disability in physically active populations. The purpose of this study was to analyze the DPA scale structure for summary components. Four hundred and fifty-six collegiate athletes completed a demographic form and the DPA. A principal component analysis (PCA) was conducted with oblique rotation. Factors with eigenvalues >1 that explained >5 % of the variance were retained. The PCA revealed a two-factor structure consistent with paradigms used to develop the original DPA. Items 1-12 loaded on Factors 1 and Items 13-16 loaded on Factor 2. Items 1-12 pertain to impairment, activity limitations, and participation restrictions. Items 13-16 address psychosocial and emotional well-being. Consideration of item content suggested Factor 1 concerned physical function, while Factor 2 concerned mental well-being. Thus, items clustered around Factor 1 and 2 were identified as physical (DPA-PSC) and mental (DPA-MSC) summary components, respectively. Together, the factors accounted for 65.1 % of the variance. The PCA revealed a two-factor structure for the DPA that resulted in DPA-PSC and DPA-MSC. Analyzing the DPA as separate constructs may provide distinct information that could help to prescribe treatment and rehabilitation strategies.

  2. X-ray absorption spectroscopy to determine originating depth of electrons that form an inelastic background of Auger electron spectrum

    NASA Astrophysics Data System (ADS)

    Isomura, Noritake; Cui, Yi-Tao; Murai, Takaaki; Oji, Hiroshi; Kimoto, Yasuji

    2017-07-01

    In Auger electron spectroscopy (AES), the spectral background is mainly due to inelastic scattering of Auger electrons that lose their kinetic energy in a sample bulk. To investigate the spectral components within this background for SiO2(19.3 nm)/Si(100) with known layer thickness, X-ray absorption spectroscopy (XAS) was used in the partial-electron-yield (PEY) mode at several electron kinetic energies to probe the background of the Si KLL Auger peak. The Si K-edge PEY-XAS spectra constituted of both Si and SiO2 components at each kinetic energy, and their component fractions were approximately the same as those derived from the simulated AES background for the same sample structure. The contributions of Auger electrons originating from layers at different depths to the inelastic background could thus be identified experimentally.

  3. Comparative research on the influence of varied Al component on the active layer of AlGaN photocathode

    NASA Astrophysics Data System (ADS)

    He, Minyou; Chen, Liang; Su, Lingai; Yin, Lin; Qian, Yunsheng

    2017-06-01

    To theoretically research the influence of a varied Al component on the active layer of AlGaN photocathodes, the first principle based on density functional theory is used to calculate the formation energy and band structure of Al x Ga1-x N with x at 0, 0.125, 0.25, 0.325, and 0.5. The calculation results show that the formation energy declines along with the Al component rise, while the band gap is increasing with Al component increasing. Al x Ga1-x N with x at 0, 0.125, 0.25, 0.325, and 0.5 are direct band gap semiconductors, and their absorption coefficient curves have the same variation tendency. For further study, we designed two kinds of reflection-mode AlGaN photocathode samples. Sample 1 has an Al x Ga1-x N active layer with varied Al component ranging from 0.5 to 0 and decreasing from the bulk to the surface, while sample 2 has an Al x Ga1-x N active layer with the fixed Al component of 0.25. Using the multi-information measurement system, we measured the spectral response of the activated samples at room temperature. Their photocathode parameters were obtained by fitting quantum efficiency curves. Results show that sample 1 has a better spectral response than sample 2 at the range of short-wavelength. This work provides a reference for the structure design of the AlGaN photocathode. Project supported by the National Natural Science Foundation of China (Nos. 61308089, 6144005) and the Public Technology Applied Research Project of Zhejiang Province (No. 2013C31068).

  4. Proton gradient regulation 5 supports linear electron flow to oxidize photosystem I.

    PubMed

    Takagi, Daisuke; Miyake, Chikahiro

    2018-03-31

    In higher plants, light drives the linear photosynthetic electron transport reaction from H 2 O to electron sinks, which is called as linear electron flow (LEF). LEF activity should be regulated depending on electron sinks; otherwise excess electrons accumulate in the thylakoid membranes and stimulate reactive oxygen species (ROS) production in photosystem I (PSI), which causes oxidative damage to PSI. To prevent ROS production in PSI, PSI should be oxidized during photosynthesis, and PROTON GRADIENT REGULATION 5 (PGR5) and PGR like 1 (PGRL1) are important to oxidized PSI. PGR5 and PGRL1 are recognized as a component of ferredoxin-dependent cyclic electron flow around PSI (Fd-CEF-PSI), however there is no direct evidence for the significant operation of Fd-CEF-PSI during photosynthesis in wild-type (WT) plants. Thus, electron distribution by PGR5 and PGRL1 between Fd-CEF-PSI and LEF is still elusive. Here, we show direct evidence that Fd-CEF-PSI activity is minor during steady state photosynthesis by measuring the Fd redox state in vivo in Arabidopsis thaliana. We found that Fd oxidation rate is determined by LEF activity during steady state photosynthesis in WT. On the other hand, pgr5 and pgrl1 showed lower electron transport efficiency from PSI to electron sinks through Fd during steady state photosynthesis. These results demonstrate that electrons are exclusively consumed in electron sinks through Fd, and the phenotypes of pgr5 and pgrl1 are likely caused by the disturbance of the LEF between PSI and electron sinks. We suggest that PGR5 and PGRL1 modulate the LEF according to electron sink activities around PSI. This article is protected by copyright. All rights reserved.

  5. Exploration of the wound healing potential of Helichrysum graveolens (Bieb.) Sweet: isolation of apigenin as an active component.

    PubMed

    Süntar, Ipek; Küpeli Akkol, Esra; Keles, Hikmet; Yesilada, Erdem; Sarker, Satyajit D

    2013-08-26

    In Turkish traditional medicine, the flowers of Helichrysum graveolens (Bieb.) Sweet (Asteraceae) have been used for the treatment of jaundice, for wound-healing and as a diuretic. In order to find scientific evidence for the traditional utilization of this plant in wound-healing, the effect of the plant extract was investigated by using in vivo and in vitro experimental models. Then through bioassay-guided fractionation procedures active wound-healing component(s) was isolated and its possible role in the wound-healing process was also determined. The linear incision and the circular excision wound models were applied in order to evaluate in vivo wound-healing potential of Helichrysum graveolens. Anti-inflammatory and antioxidant activities, which are known to involve in wound-healing process, were also assessed by the Whittle method and the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical-scavenging assay, respectively. The total phenolic content of the crude extract and solvent fractions was estimated to find correlation between the phenolic content and the antioxidant activity. Combined application of the chromatographic separation techniques on sephadex and silica gel columns, and bioassay techniques have yielded the active wound-healing principle of Helichrysum graveolens. Moreover, in vitro inhibitory effect of active principle on hyaluronidase, collagenase and elastase enzymes were investigated to explore the activity pathways. The 85% methanol (MeOH) extract of Helichrysum graveolens flowers displayed significant wound-healing, anti-inflammatory and antioxidant activities. Then the crude extract was partitioned by successive solvent extractions, in increasing polarity, to give five solvent fractions. Among the solvent fractions, the ethyl acetate (EtOAc) fraction exerted the highest activity. The EtOAc fraction was further subjected to chromatographic separations to yield active constituent and its structure was elucidated to be apigenin by spectrometric

  6. Electromagnetic Components of Auroral Hiss and Lower Hybrid Waves in the Polar Magnetosphere

    NASA Technical Reports Server (NTRS)

    Wong, H. K.

    1995-01-01

    DE-1 has frequently observed waves in the whistler and lower hybrid frequencies range. Besides the electrostatic components, these waves also exhibit electromagnetic components. It is generally believed that these waves are excited by the electron acoustic instability and the electron-beam-driven lower hybrid instability. Because the electron acoustic and the lower hybrid waves are predominately electrostatic waves, they cannot account for the observed electromagnetic components. In this work, it is suggested that these electromagnetic components can be explained by waves that are generated near the resonance cone and that propagate away from the source. The role that these electromagnetic waves can play in particle acceleration processes at low altitude is discussed.

  7. PREFACE: Spin Electronics

    NASA Astrophysics Data System (ADS)

    Dieny, B.; Sousa, R.; Prejbeanu, L.

    2007-04-01

    tunnel junctions were introduced as memory elements in new types of non-volatile magnetic memories (MRAM). A first 4Mbit product was launched by Freescale in July 2006. Future generations of memories are being developed by academic groups or companies. the combination of magnetic elements with CMOS components opens a whole new paradigm in hybrid electronic components which can change the common conception of the architecture of complex electronic components with a much tighter integration of logic and memory. the steady magnetic excitations stimulated by spin-transfer might be used in a variety of microwave components provided the output power can be increased. Intense research and development efforts are being aimed at increasing this power by the synchronization of oscillators. The articles compiled in this special issue of Journal of Physics: Condensed Matter, devoted to spin electronics, review these recent developments. All the contributors are greatly acknowledged.

  8. Moisture-triggered physically transient electronics

    PubMed Central

    Gao, Yang; Zhang, Ying; Wang, Xu; Sim, Kyoseung; Liu, Jingshen; Chen, Ji; Feng, Xue; Xu, Hangxun; Yu, Cunjiang

    2017-01-01

    Physically transient electronics, a form of electronics that can physically disappear in a controllable manner, is very promising for emerging applications. Most of the transient processes reported so far only occur in aqueous solutions or biofluids, offering limited control over the triggering and degradation processes. We report novel moisture-triggered physically transient electronics, which exempt the needs of resorption solutions and can completely disappear within well-controlled time frames. The triggered transient process starts with the hydrolysis of the polyanhydride substrate in the presence of trace amounts of moisture in the air, a process that can generate products of corrosive organic acids to digest various inorganic electronic materials and components. Polyanhydride is the only example of polymer that undergoes surface erosion, a distinct feature that enables stable operation of the functional devices over a predefined time frame. Clear advantages of this novel triggered transience mode include that the lifetime of the devices can be precisely controlled by varying the moisture levels and changing the composition of the polymer substrate. The transience time scale can be tuned from days to weeks. Various transient devices, ranging from passive electronics (such as antenna, resistor, and capacitor) to active electronics (such as transistor, diodes, optoelectronics, and memories), and an integrated system as a platform demonstration have been developed to illustrate the concept and verify the feasibility of this design strategy. PMID:28879237

  9. Carbon nanotube active-matrix backplanes for conformal electronics and sensors.

    PubMed

    Takahashi, Toshitake; Takei, Kuniharu; Gillies, Andrew G; Fearing, Ronald S; Javey, Ali

    2011-12-14

    In this paper, we report a promising approach for fabricating large-scale flexible and stretchable electronics using a semiconductor-enriched carbon nanotube solution. Uniform semiconducting nanotube networks with superb electrical properties (mobility of ∼20 cm2 V(-1) s(-1) and ION/IOFF of ∼10(4)) are obtained on polyimide substrates. The substrate is made stretchable by laser cutting a honeycomb mesh structure, which combined with nanotube-network transistors enables highly robust conformal electronic devices with minimal device-to-device stochastic variations. The utility of this device concept is demonstrated by fabricating an active-matrix backplane (12×8 pixels, physical size of 6×4 cm2) for pressure mapping using a pressure sensitive rubber as the sensor element.

  10. Asymmetry and Electronegativity in the Electron Capture Activation of the Se-Se Bond: σ*(Se-Se) vs σ*(Se-X).

    PubMed

    Gámez, José A; Yáñez, Manuel

    2010-10-12

    The effects of electron capture on the structure of XSeSeX' diselenide derivatives in which the substituents attached to the selenium atoms have different electronegativities have been investigated at different levels of theory, namely, DFT, MP2, CCSD, G2, and CASSCF/CASPT2. An analysis of the bonding changes upon electron attachment shows that when the diselenides bear low-electronegativity substituents, the Se-Se bond becomes activated upon electron capture, as previous studies have shown. However, this is no longer the case for very electronegative substituents, where this bond remains practically unaltered and is the Se-X bond the one which becomes strongly activated through a preferential population of the σ*(Se-X) antibonding orbital rather than the σ*(Se-Se) one. When this is the case, several anionic species are also encountered, namely, stretched, bent, and book structures. The present findings are similar to those obtained for a series of analogous disulfide compounds, which points out that these results are not unique and could be extrapolated to a wider range of compounds than the ones covered here. The Se-Se (Se-X) linkage in CH3SeSeOH, CH3SeSeF, FSeSeOH, and FSeSeF bears some of the characteristics of the so-called charge-shift bonds, with a clear charge fluctuation between both selenium atoms. This is more evident in their anions where the bonding reflects the important contribution of the ionic resonant forms Se-Se(-) ↔ (-)Se-Se vs the covalent component Se∴Se. This resonance changes with the nature of the substituents but also depends on the asymmetry of the substitution.

  11. Tin whiskers in electronic circuits

    NASA Astrophysics Data System (ADS)

    Stupian, Gary W.

    1992-12-01

    Fibrous, conducting 'whiskers' often grow on pure tin plating. These tin whiskers have, for many years, been known to pose a reliability problem in electronic circuitry; therefore, the use of pure tin coatings in any critical electronic application is not recommended. Despite the warnings of the experts, tin plating is still found on electronic and mechanical components and problems with whiskers still arise. This document summarizes what is known about the growth of tin whiskers. A number of factors (e.g., coating thickness, plating conditions) are thought to be important in determining whether whiskers will grow. Although tin whiskers have been investigated from some decades, there is still disagreement on the effects of virtually every coating parameter. There is no disagreement, however, on the essential fact that it is very difficult to predict with certainty whether whiskers will grow on any specific tin-plated component, which of course is the basis of the 'experts' advice not to use pure tin plating. If tin-plated components are found in an electronic system, replacement is the safest policy. Some additional recommendations to minimize risk are presented here that may be of use in situations in which replacement of all suspect components is not the option of choice because of cost or schedule constraints.

  12. Developments in space power components for power management and distribution

    NASA Technical Reports Server (NTRS)

    Renz, D. D.

    1984-01-01

    Advanced power electronic components development for space applications is discussed. The components described include transformers, inductors, semiconductor devices such as transistors and diodes, remote power controllers, and transmission lines.

  13. Behavior Change Techniques Implemented in Electronic Lifestyle Activity Monitors: A Systematic Content Analysis

    PubMed Central

    Lewis, Zakkoyya H; Mayrsohn, Brian G; Rowland, Jennifer L

    2014-01-01

    Background Electronic activity monitors (such as those manufactured by Fitbit, Jawbone, and Nike) improve on standard pedometers by providing automated feedback and interactive behavior change tools via mobile device or personal computer. These monitors are commercially popular and show promise for use in public health interventions. However, little is known about the content of their feedback applications and how individual monitors may differ from one another. Objective The purpose of this study was to describe the behavior change techniques implemented in commercially available electronic activity monitors. Methods Electronic activity monitors (N=13) were systematically identified and tested by 3 trained coders for at least 1 week each. All monitors measured lifestyle physical activity and provided feedback via an app (computer or mobile). Coding was based on a hierarchical list of 93 behavior change techniques. Further coding of potentially effective techniques and adherence to theory-based recommendations were based on findings from meta-analyses and meta-regressions in the research literature. Results All monitors provided tools for self-monitoring, feedback, and environmental change by definition. The next most prevalent techniques (13 out of 13 monitors) were goal-setting and emphasizing discrepancy between current and goal behavior. Review of behavioral goals, social support, social comparison, prompts/cues, rewards, and a focus on past success were found in more than half of the systems. The monitors included a range of 5-10 of 14 total techniques identified from the research literature as potentially effective. Most of the monitors included goal-setting, self-monitoring, and feedback content that closely matched recommendations from social cognitive theory. Conclusions Electronic activity monitors contain a wide range of behavior change techniques typically used in clinical behavioral interventions. Thus, the monitors may represent a medium by which

  14. VfrB Is a Key Activator of the Staphylococcus aureus SaeRS Two-Component System.

    PubMed

    Krute, Christina N; Rice, Kelly C; Bose, Jeffrey L

    2017-03-01

    In previous studies, we identified the fatty acid kinase virulence factor regulator B (VfrB) as a potent regulator of α-hemolysin and other virulence factors in Staphylococcus aureus In this study, we demonstrated that VfrB is a positive activator of the SaeRS two-component regulatory system. Analysis of vfrB , saeR , and saeS mutant strains revealed that VfrB functions in the same pathway as SaeRS. At the transcriptional level, the promoter activities of SaeRS class I ( coa ) and class II ( hla ) target genes were downregulated during the exponential growth phase in the vfrB mutant, compared to the wild-type strain. In addition, saePQRS expression was decreased in the vfrB mutant strain, demonstrating a need for this protein in the autoregulation of SaeRS. The requirement for VfrB-mediated activation was circumvented when SaeS was constitutively active due to an SaeS (L18P) substitution. Furthermore, activation of SaeS via human neutrophil peptide 1 (HNP-1) overcame the dependence on VfrB for transcription from class I Sae promoters. Consistent with the role of VfrB in fatty acid metabolism, hla expression was decreased in the vfrB mutant with the addition of exogenous myristic acid. Lastly, we determined that aspartic acid residues D38 and D40, which are predicted to be key to VfrB enzymatic activity, were required for VfrB-mediated α-hemolysin production. Collectively, this study implicates VfrB as a novel accessory protein needed for the activation of SaeRS in S. aureus IMPORTANCE The SaeRS two-component system is a key regulator of virulence determinant production in Staphylococcus aureus Although the regulon of this two-component system is well characterized, the activation mechanisms, including the specific signaling molecules, remain elusive. Elucidating the complex regulatory circuit of SaeRS regulation is important for understanding how the system contributes to disease causation by this pathogen. To this end, we have identified the fatty acid kinase

  15. Lack of magnetic resonance imaging lesion activity as a treatment target in multiple sclerosis: An evaluation using electronically collected outcomes.

    PubMed

    Conway, Devon S; Thompson, Nicolas R; Cohen, Jeffrey A

    2016-09-01

    The appropriate treatment target in multiple sclerosis (MS) is unclear. Lack of magnetic resonance imaging (MRI) lesion activity, a component of the no evidence of disease activity concept, has been proposed as a treatment target in MS. We used our MS database to investigate whether aggressively pursuing MRI stability by changing disease modifying therapy (DMT) when MRI activity is observed leads to better clinical and imaging outcomes. The Knowledge Program (KP) is a database linked to our electronic medical record allowing capture of patient and clinician reported outcomes. Through KP query and chart review, we identified all relapsing-remitting MS patients visiting between 1 January 2008 and 31 December 2014 with active MRIs despite DMT. Propensity modeling based on demographic and disease characteristics was used to match DMT switchers to non-switchers. KP and MRI outcomes were compared 18 months after the active MRI using mixed-effects linear regression models. We identified 417 patients who met criteria for our analysis. After propensity matching, 78 switchers and 91 non-switchers were analyzed. There was no difference in clinical or radiologic outcomes between these groups at 18 months. We did not find a short-term benefit of changing DMT to pursue MRI stability. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Advanced Electrical Materials and Components Being Developed

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.

    2004-01-01

    All aerospace systems require power management and distribution (PMAD) between the energy and power source and the loads. The PMAD subsystem can be broadly described as the conditioning and control of unregulated power from the energy source and its transmission to a power bus for distribution to the intended loads. All power and control circuits for PMAD require electrical components for switching, energy storage, voltage-to-current transformation, filtering, regulation, protection, and isolation. Advanced electrical materials and component development technology is a key technology to increasing the power density, efficiency, reliability, and operating temperature of the PMAD. The primary means to develop advanced electrical components is to develop new and/or significantly improved electronic materials for capacitors, magnetic components, and semiconductor switches and diodes. The next important step is to develop the processing techniques to fabricate electrical and electronic components that exceed the specifications of presently available state-of-the-art components. The NASA Glenn Research Center's advanced electrical materials and component development technology task is focused on the following three areas: 1) New and/or improved dielectric materials for the development of power capacitors with increased capacitance volumetric efficiency, energy density, and operating temperature; 2) New and/or improved high-frequency, high-temperature soft magnetic materials for the development of transformers and inductors with increased power density, energy density, electrical efficiency, and operating temperature; 3) Packaged high-temperature, high-power density, high-voltage, and low-loss SiC diodes and switches.

  17. X-ray spectroscopy of warm and hot electron components in the CAPRICE source plasma at EIS testbench at GSI.

    PubMed

    Mascali, D; Celona, L; Maimone, F; Maeder, J; Castro, G; Romano, F P; Musumarra, A; Altana, C; Caliri, C; Torrisi, G; Neri, L; Gammino, S; Tinschert, K; Spaedtke, K P; Rossbach, J; Lang, R; Ciavola, G

    2014-02-01

    An experimental campaign aiming to detect X radiation emitted by the plasma of the CAPRICE source - operating at GSI, Darmstadt - has been carried out. Two different detectors (a SDD - Silicon Drift Detector and a HpGe - hyper-pure Germanium detector) have been used to characterize the warm (2-30 keV) and hot (30-500 keV) electrons in the plasma, collecting the emission intensity and the energy spectra for different pumping wave frequencies and then correlating them with the CSD of the extracted beam measured by means of a bending magnet. A plasma emissivity model has been used to extract the plasma density along the cone of sight of the SDD and HpGe detectors, which have been placed beyond specific collimators developed on purpose. Results show that the tuning of the pumping frequency considerably modifies the plasma density especially in the warm electron population domain, which is the component responsible for ionization processes: a strong variation of the plasma density near axis region has been detected. Potential correlations with the charge state distribution in the plasma are explored.

  18. Electronic waste disassembly with industrial waste heat.

    PubMed

    Chen, Mengjun; Wang, Jianbo; Chen, Haiyian; Ogunseitan, Oladele A; Zhang, Mingxin; Zang, Hongbin; Hu, Jiukun

    2013-01-01

    Waste printed circuit boards (WPCBs) are resource-rich but hazardous, demanding innovative strategies for post-consumer collection, recycling, and mining for economically precious constituents. A novel technology for disassembling electronic components from WPCBs is proposed, using hot air to melt solders and to separate the components and base boards. An automatic heated-air disassembling equipment was designed to operate at a heating source temperature at a maximum of 260 °C and an inlet pressure of 0.5 MPa. A total of 13 individual WPCBs were subjected to disassembling tests at different preheat temperatures in increments of 20 °C between 80 and 160 °C, heating source temperatures ranging from 220 to 300 °C in increments of 20 °C, and incubation periods of 1, 2, 4, 6, or 8 min. For each experimental treatment, the disassembly efficiency was calculated as the ratio of electronic components released from the board to the total number of its original components. The optimal preheat temperature, heating source temperature, and incubation period to disassemble intact components were 120 °C, 260 °C, and 2 min, respectively. The disassembly rate of small surface mount components (side length ≤ 3 mm) was 40-50% lower than that of other surface mount components and pin through hole components. On the basis of these results, a reproducible and sustainable industrial ecological protocol using steam produced by industrial exhaust heat coupled to electronic-waste recycling is proposed, providing an efficient, promising, and green method for both electronic component recovery and industrial exhaust heat reutilization.

  19. Electrical/electronics working group summary

    NASA Technical Reports Server (NTRS)

    Schoenfeld, A. D.

    1984-01-01

    The electrical/electronics, technology area was considered. It was found that there are no foreseeable circuit or component problems to hinder the implementation of the flywheel energy storage concept. The definition of the major component or technology developments required to permit a technology ready date of 1987 was addressed. Recommendations: motor/generators, suspension electronics, power transfer, power conditioning and distribution, and modeling. An introduction to the area of system engineering is also included.

  20. Installing Electronics in Juno Vault

    NASA Image and Video Library

    2010-12-16

    Technicians install components that will aid with guidance, navigation and control of NASA Juno spacecraft. Like most of Juno sensitive electronics, these components are situated within the spacecraft titanium radiation vault.

  1. Development of a ferromagnetic component in the superconducting state of Fe-excess Fe1.12Te1-xSex by electronic charge redistribution

    NASA Astrophysics Data System (ADS)

    Li, Wen-Hsien; Karna, Sunil K.; Hsu, Han; Li, Chi-Yen; Lee, Chi-Hung; Sankar, Raman; Cheng Chou, Fang

    2015-06-01

    The general picture established so far for the links between superconductivity and magnetic ordering in iron chalcogenide Fe1+y(Te1-xSex) is that the substitution of Se for Te directly drives the system from the antiferromagnetic end into the superconducting regime. Here, we report on the observation of a ferromagnetic component that developed together with the superconducting transition in Fe-excess Fe1.12Te1-xSex crystals using neutron and x-ray diffractions, resistivity, magnetic susceptibility and magnetization measurements. The superconducting transition is accompanied by a negative thermal expansion of the crystalline unit cell and an electronic charge redistribution, where a small portion of the electronic charge flows from around the Fe sites toward the Te/Se sites. First-principles calculations show consistent results, revealing that the excess Fe ions play a more significant role in affecting the magnetic property in the superconducting state than in the normal state and the occurrence of an electronic charge redistribution through the superconducting transition.

  2. Identification of the protein components displaying immunomodulatory activity in aged garlic extract.

    PubMed

    Chandrashekar, P M; Venkatesh, Y P

    2009-07-30

    Traditionally, garlic (Allium sativum L.; Alliaceae) has been known to boost the immune system. Aged garlic has more potent immunomodulatory effects than raw garlic. These effects have been attributed to the transformed organosulfur compounds; the identity of the immunomodulatory proteins in aged garlic extract (AGE) is not known. The major aims are to examine the changes occurring in the protein fraction during ageing of garlic and to identify the immunomodulatory proteins. Changes occurring in garlic during ageing have been examined by protein quantitation and gel electrophoresis. Purification and identification of the immunomodulatory proteins have been achieved by Q-Sepharose chromatography and mitogenic activity. Only two major proteins (12-14 kDa range by SDS-PAGE) are observed in AGE. The purified protein components QA-1, QA-2, and QA-3 display immunomodulatory and mannose-binding activity; QA-2 shows the highest mitogenic activity. The identity of QA-2 and QA-1 proteins with the garlic lectins ASA I and ASA II, respectively, has been confirmed by hemagglutination analysis. QA-3 exhibits mitogenic activity, but no hemagglutination activity. The immunomodulatory activity of AGE is also contributed by immunomodulatory proteins. The major immunomodulatory proteins have been identified as the well-known garlic lectins.

  3. Modulation of Active Site Electronic Structure by the Protein Matrix to Control [NiFe] Hydrogenase Reactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Dayle MA; Raugei, Simone; Squier, Thomas C.

    2014-09-30

    Control of the reactivity of the nickel center of the [NiFe] hydrogenase and other metalloproteins commonly involves outer coordination sphere ligands that act to modify the geometry and physical properties of the active site metal centers. We carried out a combined set of classical molecular dynamics and quantum/classical mechanics calculations to provide quantitative estimates of how dynamic fluctuations of the active site within the protein matrix modulate the electronic structure at the catalytic center. Specifically we focused on the dynamics of the inner and outer coordination spheres of the cysteinate-bound Ni–Fe cluster in the catalytically active Ni-C state. There aremore » correlated movements of the cysteinate ligands and the surrounding hydrogen-bonding network, which modulate the electron affinity at the active site and the proton affinity of a terminal cysteinate. On the basis of these findings, we hypothesize a coupling between protein dynamics and electron and proton transfer reactions critical to dihydrogen production.« less

  4. Modulation of active site electronic structure by the protein matrix to control [NiFe] hydrogenase reactivity.

    PubMed

    Smith, Dayle M A; Raugei, Simone; Squier, Thomas C

    2014-11-21

    Control of the reactivity of the nickel center of the [NiFe] hydrogenase and other metalloproteins commonly involves outer coordination sphere ligands that act to modify the geometry and physical properties of the active site metal centers. We carried out a combined set of classical molecular dynamics and quantum/classical mechanics calculations to provide quantitative estimates of how dynamic fluctuations of the active site within the protein matrix modulate the electronic structure at the catalytic center. Specifically we focused on the dynamics of the inner and outer coordination spheres of the cysteinate-bound Ni-Fe cluster in the catalytically active Ni-C state. There are correlated movements of the cysteinate ligands and the surrounding hydrogen-bonding network, which modulate the electron affinity at the active site and the proton affinity of a terminal cysteinate. On the basis of these findings, we hypothesize a coupling between protein dynamics and electron and proton transfer reactions critical to dihydrogen production.

  5. A potent dauer pheromone component in Caenorhabditis elegans that acts synergistically with other components.

    PubMed

    Butcher, Rebecca A; Ragains, Justin R; Kim, Edward; Clardy, Jon

    2008-09-23

    In the model organism Caenorhabditis elegans, the dauer pheromone is the primary cue for entry into the developmentally arrested, dauer larval stage. The dauer is specialized for survival under harsh environmental conditions and is considered "nonaging" because larvae that exit dauer have a normal life span. C. elegans constitutively secretes the dauer pheromone into its environment, enabling it to sense its population density. Several components of the dauer pheromone have been identified as derivatives of the dideoxy sugar ascarylose, but additional unidentified components of the dauer pheromone contribute to its activity. Here, we show that an ascaroside with a 3-hydroxypropionate side chain is a highly potent component of the dauer pheromone that acts synergistically with previously identified components. Furthermore, we show that the active dauer pheromone components that are produced by C. elegans vary depending on cultivation conditions. Identifying the active components of the dauer pheromone, the conditions under which they are produced, and their mechanisms of action will greatly extend our understanding of how chemosensory cues from the environment can influence such fundamental processes as development, metabolism, and aging in nematodes and in higher organisms.

  6. Highly galloylated tannin fractions from witch hazel (Hamamelis virginiana) bark: electron transfer capacity, in vitro antioxidant activity, and effects on skin-related cells.

    PubMed

    Touriño, Sonia; Lizárraga, Daneida; Carreras, Anna; Lorenzo, Sonia; Ugartondo, Vanessa; Mitjans, Montserrat; Vinardell, María Pilar; Juliá, Luis; Cascante, Marta; Torres, Josep Lluís

    2008-03-01

    Witch hazel ( Hammamelis virginiana) bark is a rich source of both condensed and hydrolizable oligomeric tannins. From a polyphenolic extract soluble in both ethyl acetate and water, we have generated fractions rich in pyrogallol-containing polyphenols (proanthocyanidins, gallotannins, and gallates). The mixtures were highly active as free radical scavengers against ABTS, DPPH (hydrogen donation and electron transfer), and HNTTM (electron transfer). They were also able to reduce the newly introduced TNPTM radical, meaning that they included some highly reactive components. Witch hazel phenolics protected red blood cells from free radical-induced hemolysis and were mildly cytotoxic to 3T3 fibroblasts and HaCat keratinocytes. They also inhibited the proliferation of tumoral SK-Mel 28 melanoma cells at lower concentrations than grape and pine procyanidins. The high content in pyrogallol moieties may be behind the effect of witch hazel phenolics on skin cells. Because the most cytotoxic and antiproliferative mixtures were also the most efficient as electron transfer agents, we hypothesize that the final putative antioxidant effect of polyphenols may be in part attributed to the stimulation of defense systems by mild prooxidant challenges provided by reactive oxygen species generated through redox cycling.

  7. Electron-phonon interaction in three-barrier nanosystems as active elements of quantum cascade detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tkach, N. V., E-mail: ktf@chnu.edu.ua; Seti, Ju. A.; Grynyshyn, Yu. B.

    2015-04-15

    The theory of electron tunneling through an open nanostructure as an active element of a quantum cascade detector is developed, which takes into account the interaction of electrons with confined and interface phonons. Using the method of finite-temperature Green’s functions and the electron-phonon Hamiltonian in the representation of second quantization over all system variables, the temperature shifts and electron-level widths are calculated and the contributions of different electron-phonon-interaction mechanisms to renormalization of the spectral parameters are analyzed depending on the geometrical configuration of the nanosystem. Due to weak electron-phonon coupling in a GaAs/Al{sub 0.34}Ga{sub 0.66}As-based resonant tunneling nanostructure, the temperaturemore » shift and rf field absorption peak width are not very sensitive to the electron-phonon interaction and result from a decrease in potential barrier heights caused by a difference in the temperature dependences of the well and barrier band gaps.« less

  8. Two-component scattering model and the electron density spectrum

    NASA Astrophysics Data System (ADS)

    Zhou, A. Z.; Tan, J. Y.; Esamdin, A.; Wu, X. J.

    2010-02-01

    In this paper, we discuss a rigorous treatment of the refractive scintillation caused by a two-component interstellar scattering medium and a Kolmogorov form of density spectrum. It is assumed that the interstellar scattering medium is composed of a thin-screen interstellar medium (ISM) and an extended interstellar medium. We consider the case that the scattering of the thin screen concentrates in a thin layer represented by a δ function distribution and that the scattering density of the extended irregular medium satisfies the Gaussian distribution. We investigate and develop equations for the flux density structure function corresponding to this two-component ISM geometry in the scattering density distribution and compare our result with the observations. We conclude that the refractive scintillation caused by this two-component ISM scattering gives a more satisfactory explanation for the observed flux density variation than does the single extended medium model. The level of refractive scintillation is strongly sensitive to the distribution of scattering material along the line of sight (LOS). The theoretical modulation indices are comparatively less sensitive to the scattering strength of the thin-screen medium, but they critically depend on the distance from the observer to the thin screen. The logarithmic slope of the structure function is sensitive to the scattering strength of the thin-screen medium, but is relatively insensitive to the thin-screen location. Therefore, the proposed model can be applied to interpret the structure functions of flux density observed in pulsar PSR B2111 + 46 and PSR B0136 + 57. The result suggests that the medium consists of a discontinuous distribution of plasma turbulence embedded in the interstellar medium. Thus our work provides some insight into the distribution of the scattering along the LOS to the pulsar PSR B2111 + 46 and PSR B0136 + 57.

  9. Optical read/write memory system components

    NASA Technical Reports Server (NTRS)

    Kozma, A.

    1972-01-01

    The optical components of a breadboard holographic read/write memory system have been fabricated and the parameters specified of the major system components: (1) a laser system; (2) an x-y beam deflector; (3) a block data composer; (4) the read/write memory material; (5) an output detector array; and (6) the electronics to drive, synchronize, and control all system components. The objectives of the investigation were divided into three concurrent phases: (1) to supply and fabricate the major components according to the previously established specifications; (2) to prepare computer programs to simulate the entire holographic memory system so that a designer can balance the requirements on the various components; and (3) to conduct a development program to optimize the combined recording and reconstruction process of the high density holographic memory system.

  10. Assessment of human exposure doses received by activation of medical linear accelerator components

    NASA Astrophysics Data System (ADS)

    Lee, D.-Y.; Kim, J.-H.; Park, E.-T.

    2017-08-01

    This study analyzes the radiation exposure dose that an operator can receive from radioactive components during maintenance or repair of a linear accelerator. This study further aims to evaluate radiological safety. Simulations are performed on 10 MV and 15 MV photon beams, which are the most frequently used high-energy beams in clinics. The simulation analyzes components in order of activity and the human exposure dose based on the amount of neutrons received. As a result, the neutron dose, radiation dose, and human exposure dose are ranked in order of target, primary collimator, flattening filter, multi-leaf collimator, and secondary collimator, where the minimum dose is 9.34E-07 mSv/h and the maximum is 1.71E-02 mSv/h. When applying the general dose limit (radiation worker 20 mSv/year, pubic 1 mSv/year) in accordance with the Nuclear Safety Act, all components of a linear accelerator are evaluated as below the threshold value. Therefore, the results suggest that there is no serious safety issue for operators in maintaining and repairing a linear accelerator. Nevertheless, if an operator recognizes an exposure from the components of a linear accelerator during operation and considers the operating time and shielding against external exposure, exposure of the operator is expected to be minimized.

  11. Pressure activated interconnection of micro transfer printed components

    NASA Astrophysics Data System (ADS)

    Prevatte, Carl; Guven, Ibrahim; Ghosal, Kanchan; Gomez, David; Moore, Tanya; Bonafede, Salvatore; Raymond, Brook; Trindade, António Jose; Fecioru, Alin; Kneeburg, David; Meitl, Matthew A.; Bower, Christopher A.

    2016-05-01

    Micro transfer printing and other forms of micro assembly deterministically produce heterogeneously integrated systems of miniaturized components on non-native substrates. Most micro assembled systems include electrical interconnections to the miniaturized components, typically accomplished by metal wires formed on the non-native substrate after the assembly operation. An alternative scheme establishing interconnections during the assembly operation is a cost-effective manufacturing method for producing heterogeneous microsystems, and facilitates the repair of integrated microsystems, such as displays, by ex post facto addition of components to correct defects after system-level tests. This letter describes pressure-concentrating conductor structures formed on silicon (1 0 0) wafers to establish connections to preexisting conductive traces on glass and plastic substrates during micro transfer printing with an elastomer stamp. The pressure concentrators penetrate a polymer layer to form the connection, and reflow of the polymer layer bonds the components securely to the target substrate. The experimental yield of series-connected test systems with >1000 electrical connections demonstrates the suitability of the process for manufacturing, and robustness of the test systems against exposure to thermal shock, damp heat, and mechanical flexure shows reliability of the resulting bonds.

  12. Functional electronic inversion layers at ferroelectric domain walls

    NASA Astrophysics Data System (ADS)

    Mundy, J. A.; Schaab, J.; Kumagai, Y.; Cano, A.; Stengel, M.; Krug, I. P.; Gottlob, D. M.; Doğanay, H.; Holtz, M. E.; Held, R.; Yan, Z.; Bourret, E.; Schneider, C. M.; Schlom, D. G.; Muller, D. A.; Ramesh, R.; Spaldin, N. A.; Meier, D.

    2017-06-01

    Ferroelectric domain walls hold great promise as functional two-dimensional materials because of their unusual electronic properties. Particularly intriguing are the so-called charged walls where a polarity mismatch causes local, diverging electrostatic potentials requiring charge compensation and hence a change in the electronic structure. These walls can exhibit significantly enhanced conductivity and serve as a circuit path. The development of all-domain-wall devices, however, also requires walls with controllable output to emulate electronic nano-components such as diodes and transistors. Here we demonstrate electric-field control of the electronic transport at ferroelectric domain walls. We reversibly switch from resistive to conductive behaviour at charged walls in semiconducting ErMnO3. We relate the transition to the formation--and eventual activation--of an inversion layer that acts as the channel for the charge transport. The findings provide new insight into the domain-wall physics in ferroelectrics and foreshadow the possibility to design elementary digital devices for all-domain-wall circuitry.

  13. Nuclear Factor Kappa B Activation and Peroxisome Proliferator-activated Receptor Transactivational Effects of Chemical Components of the Roots of Polygonum multiflorum.

    PubMed

    Sun, Ya Nan; Li, Wei; Song, Seok Bean; Yan, Xi Tao; Yang, Seo Young; Kim, Young Ho

    2016-01-01

    Polygonum multiflorum is well-known as "Heshouwu" in traditional Chinese herbal medicine. In Northeast Asia, it is often used as a tonic to prevent premature aging of the kidney and liver, tendons, and bones and strengthening of the lower back and knees. To research the anti-inflammatory activities of components from P. multiflorum. The compounds were isolated by a combination of silica gel and YMC R-18 column chromatography, and their structures were identified by analysis of spectroscopic data (1D, 2D-nuclear magnetic resonance, and mass spectrometry). The anti-inflammatory activities of the isolated compounds 1-15 were evaluated by luciferase reporter gene assays. Fifteen compounds (1-15) were isolated from the roots of P. multiflorum. Compounds 1-5 and 14-15 significantly inhibited tumor necrosis factor-α-induced nuclear factor kappa B-luciferase activity, with IC50 values of 24.16-37.56 μM. Compounds 1-5 also greatly enhanced peroxisome proliferator-activated receptors transcriptional activity with EC50 values of 18.26-31.45 μM. The anthraquinone derivatives were the active components from the roots of P. multiflorum as an inhibitor on inflammation-related factors in human hepatoma cells. Therefore, we suggest that the roots of P. multiflorum can be used to treat natural inflammatory diseases. This study presented that fifteen compounds (1-15) isolated from the roots of Polygonum multiflrum exert signifiant anti inflmmatory effects by inhibiting TNF α induced NF κB activation and PPARs transcription. Abbreviation used: NF κB: Nuclear factor kappa B, PPARs: Peroxisome proliferator activated receptors, PPREs: Peroxisome proliferator response elements, TNF α: Tumor necrosis factor α, ESI-MS: Electrospray ionization mass spectrometry, HepG2: Human hepatoma cells.

  14. Sinks for photosynthetic electron flow in green petioles and pedicels of Zantedeschia aethiopica: evidence for innately high photorespiration and cyclic electron flow rates.

    PubMed

    Yiotis, Charilaos; Manetas, Yiannis

    2010-07-01

    A combination of gas exchange and various chlorophyll fluorescence measurements under varying O(2) and CO(2) partial pressures were used to characterize photosynthesis in green, stomata-bearing petioles of Zantedeschia aethiopica (calla lily) while corresponding leaves served as controls. Compared to leaves, petioles displayed considerably lower CO(2) assimilation rates, limited by both stomatal and mesophyll components. Further analysis of mesophyll limitations indicated lower carboxylating efficiencies and insufficient RuBP regeneration but almost similar rates of linear electron transport. Accordingly, higher oxygenation/carboxylation ratios were assumed for petioles and confirmed by experiments under non-photorespiratory conditions. Higher photorespiration rates in petioles were accompanied by higher cyclic electron flow around PSI, the latter being possibly linked to limitations in electron transport from intermediate electron carriers to end acceptors and low contents of PSI. Based on chlorophyll fluorescence methods, similar conclusions can be drawn for green pedicels, although gas exchange in these organs could not be applied due to their bulky size. Since our test plants were not subjected to stress we argue that higher photorespiration and cyclic electron flow rates are innate attributes of photosynthesis in stalks of calla lily. Active nitrogen metabolism may be inferred, while increased cyclic electron flow may provide the additional ATP required for the enhanced photorespiratory activity in petiole and pedicel chloroplasts and/or the decarboxylation of malate ascending from roots.

  15. Long-range ordering of composites for organic electronics: TIPS-pentacene single crystals with incorporated nano-fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Huanbin; Xue, Guobiao; Wu, Jiake

    Multi-component active materials are widely used for organic electronic devices, with every component contributing complementary and synergistic optoelectronic functions. Mixing these components generally leads to lowered crystallinity and weakened charge transport. Therefore, preparing the active materials without substantially disrupting the crystalline lattice is highly desired. In this paper, we show that crystallization of TIPS-pentacene from solutions in the presence of fluorescent nanofibers of a perylene bisimide derivative (PBI) leads to formation of composites with nanofiber guest incorporated in the crystal host. In spite of the binary composite structure, the TIPS-pentacene maintains the single-crystalline nature. As a result, the incorporation ofmore » the PBI guest introduces additional fluorescence function but does not significantly reduce the charge transport property of the TIPS-pentacene host, exhibiting field-effect mobility as high as 3.34 cm 2 V -1 s -1 even though 26.4% of the channel area is taken over by the guest. Finally, as such, this work provides a facile approach toward high-performance multifunctional organic electronic materials.« less

  16. Long-range ordering of composites for organic electronics: TIPS-pentacene single crystals with incorporated nano-fibers

    DOE PAGES

    Li, Huanbin; Xue, Guobiao; Wu, Jiake; ...

    2017-08-18

    Multi-component active materials are widely used for organic electronic devices, with every component contributing complementary and synergistic optoelectronic functions. Mixing these components generally leads to lowered crystallinity and weakened charge transport. Therefore, preparing the active materials without substantially disrupting the crystalline lattice is highly desired. In this paper, we show that crystallization of TIPS-pentacene from solutions in the presence of fluorescent nanofibers of a perylene bisimide derivative (PBI) leads to formation of composites with nanofiber guest incorporated in the crystal host. In spite of the binary composite structure, the TIPS-pentacene maintains the single-crystalline nature. As a result, the incorporation ofmore » the PBI guest introduces additional fluorescence function but does not significantly reduce the charge transport property of the TIPS-pentacene host, exhibiting field-effect mobility as high as 3.34 cm 2 V -1 s -1 even though 26.4% of the channel area is taken over by the guest. Finally, as such, this work provides a facile approach toward high-performance multifunctional organic electronic materials.« less

  17. Tailored-waveform Collisional Activation of Peptide Ion Electron Transfer Survivor Ions in Cation Transmission Mode Ion/Ion Reaction Experiments

    PubMed Central

    Han, Hongling; Londry, Frank A.; Erickson, David E.; McLuckey, Scott A.

    2010-01-01

    SUMMARY Broad-band resonance excitation via a tailored waveform in a high pressure collision cell (Q2) on a hybrid quadrupole/time-of-flight (QqTOF) tandem mass spectrometer has been implemented for cation transmission mode electron transfer ion/ion reactions of tryptic polypeptides. The frequency components in the broadband waveform were defined to excite the first generation intact electron transfer products for relatively large tryptic peptides. The optimum amplitude of the arbitrary waveform applied has been determined empirically to be 3.0 Vp-p, which is effective for relatively high mass-to-charge (m/z) ratio precursor ions with little elimination of sequence information for low m/z ions. The application of broadband activation during the transmission mode ion/ion reaction obviates frequency and amplitude tuning normally associated with ion trap collision induced dissociation (CID). This approach has been demonstrated with triply and doubly charged tryptic peptides with and without post-translational modifications. Enhanced structural information was achieved by production of a larger number of informative c- and z-type fragments using the tailored waveform on unmodified and modified (phosphorylated and glycosylated) peptides when the first generation intact electron transfer products fell into the defined frequency range. This approach can be applied to a wide range of tryptic peptide ions, making it attractive as a rapid and general approach for ETD LC-MS/MS of tryptic peptides in a QqTOF instrument. PMID:19305916

  18. Electron acoustic solitons in magneto-rotating electron-positron-ion plasma with nonthermal electrons and positrons

    NASA Astrophysics Data System (ADS)

    Jilani, K.; Mirza, Arshad M.; Iqbal, J.

    2015-02-01

    The propagation of electron acoustic solitary waves (EASWs) in a magneto-rotating electron-positron-ion (epi) plasma containing cold dynamical electrons, nonthermal electrons and positrons obeying Cairns' distribution have been explored in the stationary background of massive positive ions. Through the linear dispersion relation (LDR) the effects of nonthermal components, magnetic field and rotation have been analyzed, wherein, various limiting cases have been deduced from the LDR. For nonlinear analysis, Korteweg-de Vries (KdV) equation is obtained using the reductive perturbation technique. It is found that in the presence of nonthermal positrons both hump and dip type solitons appear to excite, the structural properties of these solitary waves change drastically with magneto-rotating effects. The present work may be employed to explore and to understand the formation of electron acoustic solitary structures in the space and laboratory plasmas with nonthermal electrons and positrons under magneto-rotating effects.

  19. Association between electronic equipment in the bedroom and sedentary lifestyle, physical activity, and body mass index of children.

    PubMed

    Ferrari, Gerson Luis de Moraes; Araújo, Timóteo Leandro; Oliveira, Luis Carlos; Matsudo, Victor; Fisberg, Mauro

    2015-01-01

    To describe the association between electronic devices in the bedroom with sedentary time and physical activity, both assessed by accelerometry, in addition to body mass index in children from São Caetano do Sul. The sample consisted of 441 children. The presence of electronic equipment (television, personal computer, and videogames) in the bedroom was assessed by a questionnaire. For seven consecutive days, children used an accelerometer to objectively monitor the sedentary time and moderate-to-vigorous physical activity. Body mass index was categorized as suggested by the World Health Organization. Overall, 73.9%, 54.2% and 42.8% of children had TV, computer, and videogames in the bedroom, respectively, and spent an average of 500.7 and 59.1 min/day of sedentary time and moderate-to-vigorous physical activity. Of the children, 45.3% were overweight/obese. Girls with a computer in the bedroom (45 min/day) performed less moderate-to-vigorous physical activity than those without it (51.4 min/day). Similar results were observed for body mass index in boys. Moderate-to-vigorous physical activity was higher and body mass index was lower in children that had no electronic equipment in the bedroom. Presence of a computer (β=-4.798) and the combination TV+computer (β=-3.233) were negatively associated with moderate-to-vigorous physical activity. Videogames and the combinations with two or three electronic devices were positively associated with body mass index. Sedentary time was not associated with electronic equipment. Electronic equipment in the children's bedroom can negatively affect moderate-to-vigorous physical activity and body mass index regardless of gender, school, and annual family income, which can contribute to physical inactivity and childhood obesity. Copyright © 2015 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  20. Electron-density descriptors as predictors in quantitative structure--activity/property relationships and drug design.

    PubMed

    Matta, Chérif F; Arabi, Alya A

    2011-06-01

    The use of electron density-based molecular descriptors in drug research, particularly in quantitative structure--activity relationships/quantitative structure--property relationships studies, is reviewed. The exposition starts by a discussion of molecular similarity and transferability in terms of the underlying electron density, which leads to a qualitative introduction to the quantum theory of atoms in molecules (QTAIM). The starting point of QTAIM is the topological analysis of the molecular electron-density distributions to extract atomic and bond properties that characterize every atom and bond in the molecule. These atomic and bond properties have considerable potential as bases for the construction of robust quantitative structure--activity/property relationships models as shown by selected examples in this review. QTAIM is applicable to the electron density calculated from quantum-chemical calculations and/or that obtained from ultra-high resolution x-ray diffraction experiments followed by nonspherical refinement. Atomic and bond properties are introduced followed by examples of application of each of these two families of descriptors. The review ends with a study whereby the molecular electrostatic potential, uniquely determined by the density, is used in conjunction with atomic properties to elucidate the reasons for the biological similarity of bioisosteres.

  1. Injuries associated with combat sports, active component, U.S. Armed Forces, 2010-2013.

    PubMed

    2014-05-01

    The practice of combat sports creates a potential for training- and sports-related injuries among military members. During the 4-year surveillance period, there were 12,108 cases of injuries associated with combat sports among active component service members; the overall incidence rate was 21.0 per 10,000 person-years (p-yrs). The rates were higher among service members who were male, Hispanic, in the youngest age groups, in the Army, junior enlisted, and in combat-specific occupations. The rate among recruit/ trainees (779.4 per 10,000 p-yrs) was more than 165 times the rate among all other active component service members (non-recruits) (4.7 per 10,000 p-yrs). Sprains, strains, and contusions accounted for more than one-half of the primary (first-listed) diagnoses associated with combat sports cases. More serious conditions such as concussions/head injuries and skull/face fractures/intracranial injuries were reported among 3.9% and 2.1% of all cases and were more common among boxing-related cases. Hand/wrist fractures were also common among boxing cases. Wrestling had comparatively greater proportions of dislocations and open wounds. Although the combat sport training provides many physical and mental benefits to the individual, safety practices should be enforced to reduce the most frequent and serious injuries.

  2. Electron shuttles in biotechnology.

    PubMed

    Watanabe, Kazuya; Manefield, Mike; Lee, Matthew; Kouzuma, Atsushi

    2009-12-01

    Electron-shuttling compounds (electron shuttles [ESs], or redox mediators) are essential components in intracellular electron transfer, while microbes also utilize self-produced and naturally present ESs for extracellular electron transfer. These compounds assist in microbial energy metabolism by facilitating electron transfer between microbes, from electron-donating substances to microbes, and/or from microbes to electron-accepting substances. Artificially supplemented ESs can create new routes of electron flow in the microbial energy metabolism, thereby opening up new possibilities for the application of microbes to biotechnology processes. Typical examples of such processes include halogenated-organics bioremediation, azo-dye decolorization, and microbial fuel cells. Herein we suggest that ESs can be applied widely to create new microbial biotechnology processes.

  3. Quinic acid is a biologically active component of the Uncaria tomentosa extract C-Med 100.

    PubMed

    Akesson, Christina; Lindgren, Hanna; Pero, Ronald W; Leanderson, Tomas; Ivars, Fredrik

    2005-01-01

    We have previously reported that the C-Med 100 extract of the plant Uncaria tomentosa induces prolonged lymphocyte half life and hence increased spleen cell number in mice receiving the extract in their drinking water. Further, the extract induces cell proliferation arrest and inhibits activation of the transcriptional regulator nuclear factor kappaB (NF-kappaB) in vitro. We now report that mice exposed to quinic acid (QA), a component of this extract, had significantly increased number of spleen cells, thus recapitulating the in vivo biological effect of C-Med 100 exposure. Commercially supplied QA (H(+) form) did not, however, inhibit cell proliferation in vitro, while the ammonia-treated QA (QAA) was a potent inhibitor. Both QA and QAA inhibited NF-kappaB activity in exposed cells at similar concentrations. Thus, our present data identify QA as a candidate component for both in vivo and in vitro biological effects of the C-Med 100 extract.

  4. Association of objectively measured physical activity with body components in European adolescents.

    PubMed

    Jiménez-Pavón, David; Fernández-Vázquez, Amaya; Alexy, Ute; Pedrero, Raquel; Cuenca-García, Magdalena; Polito, Angela; Vanhelst, Jérémy; Manios, Yannis; Kafatos, Anthony; Molnar, Dénes; Sjöström, Michael; Moreno, Luis A

    2013-07-18

    Physical activity (PA) is suggested to contribute to fat loss not only through increasing energy expenditure "per se" but also increasing muscle mass; therefore, it would be interesting to better understand the specific associations of PA with the different body's components such as fat mass and muscle mass. The aim of the present study was to examine the association between objectively measured PA and indices of fat mass and muscle components independently of each other giving, at the same time, gender-specific information in a wide cohort of European adolescents. A cross-sectional study in a school setting was conducted in 2200 (1016 males) adolescents (14.7 ± 1.2 years). Weight, height, skinfold thickness, bioimpedance and PA (accelerometry) were measured. Indices of fat mass (body mass index, % fat mass, sum of skinfolds) and muscular component (assessed as fat-free mass) were calculated. Multiple regression analyses were performed adjusting for several confounders including fat-free mass and fat mass when possible. Vigorous PA was positively associated with height (p<0.05) in males, whilst, vigorous PA, moderate-vigorous PA and average PA were negatively associated with all the indices of fat mass (all p<0.01) in both genders, except for average PA in relation with body mass index in females. Regarding muscular components, vigorous PA showed positive associations with fat-free mass and muscle mass (all p<0.05) in both genders. Average PA was positively associated with fat-free mass (both p<0.05) in males and females. The present study suggests that PA, especially vigorous PA, is negatively associated with indices of fat mass and positively associated with markers of muscle mass, after adjusting for several confounders (including indices of fat mass and muscle mass when possible). Future studies should focus not only on the classical relationship between PA and fat mass, but also on PA and muscular components, analyzing the independent role of both with the

  5. Association of objectively measured physical activity with body components in European adolescents

    PubMed Central

    2013-01-01

    Background Physical activity (PA) is suggested to contribute to fat loss not only through increasing energy expenditure “per se” but also increasing muscle mass; therefore, it would be interesting to better understand the specific associations of PA with the different body’s components such as fat mass and muscle mass. The aim of the present study was to examine the association between objectively measured PA and indices of fat mass and muscle components independently of each other giving, at the same time, gender-specific information in a wide cohort of European adolescents. Methods A cross-sectional study in a school setting was conducted in 2200 (1016 males) adolescents (14.7 ±1.2 years). Weight, height, skinfold thickness, bioimpedance and PA (accelerometry) were measured. Indices of fat mass (body mass index, % fat mass, sum of skinfolds) and muscular component (assessed as fat-free mass) were calculated. Multiple regression analyses were performed adjusting for several confounders including fat-free mass and fat mass when possible. Results Vigorous PA was positively associated with height (p < 0.05) in males, whilst, vigorous PA, moderate-vigorous PA and average PA were negatively associated with all the indices of fat mass (all p < 0.01) in both genders, except for average PA in relation with body mass index in females. Regarding muscular components, vigorous PA showed positive associations with fat-free mass and muscle mass (all p < 0.05) in both genders. Average PA was positively associated with fat-free mass (both p < 0.05) in males and females. Conclusion The present study suggests that PA, especially vigorous PA, is negatively associated with indices of fat mass and positively associated with markers of muscle mass, after adjusting for several confounders (including indices of fat mass and muscle mass when possible). Future studies should focus not only on the classical relationship between PA and fat mass, but also on PA and

  6. Skin-Inspired Electronics: An Emerging Paradigm.

    PubMed

    Wang, Sihong; Oh, Jin Young; Xu, Jie; Tran, Helen; Bao, Zhenan

    2018-05-15

    stretchable conductors, semiconductors, and dielectrics without sacrificing their electrical performance. Employing such materials, innovative device design coupled with fabrication method development has enabled stretchable sensors and displays as input/output components and large-scale transistor arrays for circuits and active matrixes. Strategies to incorporate self-healing into electronic materials are the second focus of this Account. To date, dynamic intermolecular interactions have been the most effective approach for imparting self-healing properties onto polymeric electronic materials, which have been utilized to fabricate self-healing sensors and actuators. Moreover, biodegradability has emerged as an important feature in skin-inspired electronics. The incorporation of degradable moieties along the polymer backbone allows for degradable conducting polymers and the use of bioderived materials has led to the demonstration of biodegradable functional devices, such as sensors and transistors. Finally, we highlight examples of skin-inspired electronics for three major applications: prosthetic e-skins, wearable electronics, and implantable electronics.

  7. Acaricidal activity and repellency of essential oil from Piper aduncum and its components against Tetranychus urticae.

    PubMed

    Araújo, Mário J C; Câmara, Cláudio A G; Born, Flávia S; Moraes, Marcílio M; Badji, César A

    2012-06-01

    The chemical composition of essential oil of leaves of Piper aduncum L., growing wild in a fragment of the Atlantic Rainforest biome in northeastern Brazil, was determined through gas chromatography-mass spectrometry. The acaricidal activity and repellency of the essential oil and its components [dillapiole (0.28 g/ml), α-humulene (0.016 g/ml), (E)-nerolidol (0.0007 g/ml) and β-caryophyllene (0.0021 g/ml)] were evaluated in the laboratory against adults of Tetranychus urticae Koch. The mites were more susceptible to the oil in fumigation tests (LC(50) = 0.01 μl/l of air) than in contact test with closed Petri dish (LC(50) = 7.17 μl/ml); mortality was reduced by approximately 50 % in the latter test. The repellent action of the oil and toxicity by fumigation and contact did not differ significantly from the positive control (eugenol). The repellent activity was attributed to the components (E)-nerolidol, α-humulene and β-caryophyllene, whereas toxicity by fumigation and contact was attributed to β-caryophyllene. The effect of Piper oil and the role of its components regarding host plant preference with a two-choice leaf disk test are also discussed.

  8. Extraversion and behavioral activation: integrating the components of approach.

    PubMed

    Quilty, Lena C; DeYoung, Colin G; Oakman, Jonathan M; Bagby, R Michael

    2014-01-01

    This investigation evaluates the structure and correlates of lower order traits related to approach, specifically, facets of extraversion and behavioral activation system (BAS) sensitivity. A 3-factor structure of approach was derived in community and clinical samples: assertiveness, enthusiasm, and sensation seeking. All factors were positively associated with Openness/Intellect scores. Enthusiasm and assertiveness were both negatively associated with Neuroticism scores, but were distinguished by associations with Agreeableness and Conscientiousness. Sensation seeking was negatively associated with Conscientiousness scores. The 3 factors demonstrated a unique profile of association with components of impulsivity. Enthusiasm and assertiveness were negatively related to psychopathological symptoms, whereas sensation seeking was largely independent of psychopathology. Results suggest that approach is associated with 3 subfactors, which differ in their pattern or magnitude of associations with other variables, thus underscoring the importance of distinguishing among them. Further, results support the construct validity of the Assertiveness and Enthusiasm aspect scales of the Big Five Aspect Scales to assess traits at this level of the personality hierarchy.

  9. Assembling surface mounted components on ink-jet printed double sided paper circuit board.

    PubMed

    Andersson, Henrik A; Manuilskiy, Anatoliy; Haller, Stefan; Hummelgård, Magnus; Sidén, Johan; Hummelgård, Christine; Olin, Håkan; Nilsson, Hans-Erik

    2014-03-07

    Printed electronics is a rapidly developing field where many components can already be manufactured on flexible substrates by printing or by other high speed manufacturing methods. However, the functionality of even the most inexpensive microcontroller or other integrated circuit is, at the present time and for the foreseeable future, out of reach by means of fully printed components. Therefore, it is of interest to investigate hybrid printed electronics, where regular electrical components are mounted on flexible substrates to achieve high functionality at a low cost. Moreover, the use of paper as a substrate for printed electronics is of growing interest because it is an environmentally friendly and renewable material and is, additionally, the main material used for many packages in which electronics functionalities could be integrated. One of the challenges for such hybrid printed electronics is the mounting of the components and the interconnection between layers on flexible substrates with printed conductive tracks that should provide as low a resistance as possible while still being able to be used in a high speed manufacturing process. In this article, several conductive adhesives are evaluated as well as soldering for mounting surface mounted components on a paper circuit board with ink-jet printed tracks and, in addition, a double sided Arduino compatible circuit board is manufactured and programmed.

  10. THE ENVIRONMENT AND DISTRIBUTION OF EMITTING ELECTRONS AS A FUNCTION OF SOURCE ACTIVITY IN MARKARIAN 421

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mankuzhiyil, Nijil; Ansoldi, Stefano; Persic, Massimo

    2011-05-20

    For the high-frequency-peaked BL Lac object Mrk 421, we study the variation of the spectral energy distribution (SED) as a function of source activity, from quiescent to active. We use a fully automatized {chi}{sup 2}-minimization procedure, instead of the 'eyeball' procedure more commonly used in the literature, to model nine SED data sets with a one-zone synchrotron self-Compton (SSC) model and examine how the model parameters vary with source activity. The latter issue can finally be addressed now, because simultaneous broadband SEDs (spanning from optical to very high energy photon) have finally become available. Our results suggest that in Mrkmore » 421 the magnetic field (B) decreases with source activity, whereas the electron spectrum's break energy ({gamma}{sub br}) and the Doppler factor ({delta}) increase-the other SSC parameters turn out to be uncorrelated with source activity. In the SSC framework, these results are interpreted in a picture where the synchrotron power and peak frequency remain constant with varying source activity, through a combination of decreasing magnetic field and increasing number density of {gamma} {<=} {gamma}{sub br} electrons: since this leads to an increased electron-photon scattering efficiency, the resulting Compton power increases, and so does the total (= synchrotron plus Compton) emission.« less

  11. Catalytic activity of the two-component flavin-dependent monooxygenase from Pseudomonas aeruginosa toward cinnamic acid derivatives.

    PubMed

    Furuya, Toshiki; Kino, Kuniki

    2014-02-01

    4-Hydroxyphenylacetate 3-hydroxylases (HPAHs) of the two-component flavin-dependent monooxygenase family are attractive enzymes that possess the catalytic potential to synthesize valuable ortho-diphenol compounds from simple monophenol compounds. In this study, we investigated the catalytic activity of HPAH from Pseudomonas aeruginosa strain PAO1 toward cinnamic acid derivatives. We prepared Escherichia coli cells expressing the hpaB gene encoding the monooxygenase component and the hpaC gene encoding the oxidoreductase component. E. coli cells expressing HpaBC exhibited no or very low oxidation activity toward cinnamic acid, o-coumaric acid, and m-coumaric acid, whereas they rapidly oxidized p-coumaric acid to caffeic acid. Interestingly, after p-coumaric acid was almost completely consumed, the resulting caffeic acid was further oxidized to 3,4,5-trihydroxycinnamic acid. In addition, HpaBC exhibited oxidation activity toward 3-(4-hydroxyphenyl)propanoic acid, ferulic acid, and coniferaldehyde to produce the corresponding ortho-diphenols. We also investigated a flask-scale production of caffeic acid from p-coumaric acid as the model reaction for HpaBC-catalyzed syntheses of hydroxycinnamic acids. Since the initial concentrations of the substrate p-coumaric acid higher than 40 mM markedly inhibited its HpaBC-catalyzed oxidation, the reaction was carried out by repeatedly adding 20 mM of this substrate to the reaction mixture. Furthermore, by using the HpaBC whole-cell catalyst in the presence of glycerol, our experimental setup achieved the high-yield production of caffeic acid, i.e., 56.6 mM (10.2 g/L) within 24 h. These catalytic activities of HpaBC will provide an easy and environment-friendly synthetic approach to hydroxycinnamic acids.

  12. One size fits all electronics for insole-based activity monitoring.

    PubMed

    Hegde, Nagaraj; Bries, Matthew; Melanson, Edward; Sazonov, Edward

    2017-07-01

    Footwear based wearable sensors are becoming prominent in many areas of monitoring health and wellness, such as gait and activity monitoring. In our previous research we introduced an insole based wearable system SmartStep, which is completely integrated in a socially acceptable package. From a manufacturing perspective, SmartStep's electronics had to be custom made for each shoe size, greatly complicating the manufacturing process. In this work we explore the possibility of making a universal electronics platform for SmartStep - SmartStep 3.0, which can be used in the most common insole sizes without modifications. A pilot human subject experiments were run to compare the accuracy between the one-size fits all (SmartStep 3.0) and custom size SmartStep 2.0. A total of ~10 hours of data was collected in the pilot study involving three participants performing different activities of daily living while wearing SmartStep 2.0 and SmartStep 3.0. Leave one out cross validation resulted in a 98.5% average accuracy from SmartStep 2.0, while SmartStep 3.0 resulted in 98.3% accuracy, suggesting that the SmartStep 3.0 can be as accurate as SmartStep 2.0, while fitting most common shoe sizes.

  13. Rhythmic Components in Extracranial Brain Signals Reveal Multifaceted Task Modulation of Overlapping Neuronal Activity

    PubMed Central

    van Ede, Freek; Maris, Eric

    2016-01-01

    Oscillatory neuronal activity is implicated in many cognitive functions, and its phase coupling between sensors may reflect networks of communicating neuronal populations. Oscillatory activity is often studied using extracranial recordings and compared between experimental conditions. This is challenging, because there is overlap between sensor-level activity generated by different sources, and this can obscure differential experimental modulations of these sources. Additionally, in extracranial data, sensor-level phase coupling not only reflects communicating populations, but can also be generated by a current dipole, whose sensor-level phase coupling does not reflect source-level interactions. We present a novel method, which is capable of separating and characterizing sources on the basis of their phase coupling patterns as a function of space, frequency and time (trials). Importantly, this method depends on a plausible model of a neurobiological rhythm. We present this model and an accompanying analysis pipeline. Next, we demonstrate our approach, using magnetoencephalographic (MEG) recordings during a cued tactile detection task as a case study. We show that the extracted components have overlapping spatial maps and frequency content, which are difficult to resolve using conventional pairwise measures. Because our decomposition also provides trial loadings, components can be readily contrasted between experimental conditions. Strikingly, we observed heterogeneity in alpha and beta sources with respect to whether their activity was suppressed or enhanced as a function of attention and performance, and this happened both in task relevant and irrelevant regions. This heterogeneity contrasts with the common view that alpha and beta amplitude over sensory areas are always negatively related to attention and performance. PMID:27336159

  14. Research on major antitumor active components in Zi-Cao-Cheng-Qi decoction based on hollow fiber cell fishing with high performance liquid chromatography.

    PubMed

    Li, Miaomiao; Hu, Shuang; Chen, Xuan; Wang, Runqin; Bai, Xiaohong

    2018-02-05

    Hollow fiber cell fishing (HFCF) based on hepatoma HepG-2 cells, human renal tubular ACHN cells or human cervical carcinoma HeLa cells, coupled with high-performance liquid chromatography (HPLC), was developed and employed to research the major active components in Zi-Cao-Cheng-Qi decoction both in vitro and in vivo. The research showed that the active components, such as hesperidin, magnolol, honokiol, shikonin, emodin and β,β'-dimethylacrylshikonin were screened out by HFCF based on the cancer cells in vitro, furthermore they can be absorbed into blood and reach in the target organ, and some of the active components can be fished by the cells and maintain effective concentrations. Before application of HFCF with HPLC, cell growth state, cell survival rate, positive effect on screening results binding between active centers on the fiber and target components, repeatability of retention times and relative peak areas of the target analytes were analysed and investigated. In short, HFCF with HPLC is a simple, inexpensive, effective, and reliable method that can be used in researching active components from traditional Chinese medicine (TCM) and its formula both in vitro and in vivo, elucidating preliminarily the TCM characteristics of multiple components and multiple targets, laying a foundation for expounding the antitumor efficacy material basis in TCM. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Bacterial components are the major contributors to the macrophage stimulating activity exhibited by extracts of common edible mushrooms.

    PubMed

    Tyler, Heather L; Haron, Mona H; Pugh, Nirmal D; Zhang, Jin; Jackson, Colin R; Pasco, David S

    2016-10-12

    Recent studies have indicated that a major contributor to the innate immune enhancing properties of some medicinal plants is derived from the cell wall components of bacteria colonizing these plants. The purpose of the current study was to assess if the bacteria present within edible and medicinal mushrooms substantially contribute to the innate immune stimulating potential of these mushrooms. Whole mushrooms from thirteen types of edible fungi and individual parts from Agaricus bisporus were analyzed for in vitro macrophage activation as well as bacterial lipopolysaccharides (LPS) content, cell load, and community composition. Substantial variation between samples was observed in macrophage activation (over 500-fold), total bacterial load (over 200-fold), and LPS content (over 10 million-fold). Both LPS content (ρ = 0.832, p < 0.0001) and total bacterial load (ρ = 0.701, p < 0.0001) correlated significantly with macrophage activation in the whole mushroom extracts. Extract activity was negated by treatment with NaOH, conditions that inactivate LPS and other bacterial components. Significant correlations between macrophage activation and total bacterial load (ρ = 0.723, p = 0.0001) and LPS content (ρ = 0.951, p < 0.0001) were also observed between different tissues of Agaricus bisporus. Pseudomonas and Flavobacterium were the most prevalent genera identified in the different tissue parts and these taxa were significantly correlated with in vitro macrophage activation (ρ = 0.697, p < 0.0001 and ρ = 0.659, p = 0.0001, respectively). These results indicate that components derived from mushroom associated bacteria contribute substantially to the innate immune enhancing activity exhibited by mushrooms and may result in similar therapeutic actions as reported for ingestion of bacterial preparations such as probiotics.

  16. Gas pressure and electron density at the level of the active zone of hollow cathode arc discharges

    NASA Technical Reports Server (NTRS)

    Minoo, M. H.

    1984-01-01

    A model for the longitudinal variations of the partial pressures of electrons, ions, and neutral particles is proposed as a result of an experimental study of pressure variations at the level of the active zone as a function of the various discharge parameters of a hollow cathode arc. The cathode region where the temperature passes through its maximum is called active zone. The proposed model embodies the very important variations which the partial electron and neutral particles pressures undergo at the level of the active zone.

  17. ALTERATION OF CARDIAC ELECTRICAL ACTIVITY BY WATER-LEACHABLE COMPONENTS OF RESIDUAL OIL FLY ASH (ROFA)

    EPA Science Inventory

    Alteration of cardiac electrical activity by water-leachable components
    of residual oil fly ash (ROFA)

    Desuo Wang, Yuh-Chin T. Huang*, An Xie, Ting Wang

    *Human Studies Division, NHEERL, US EPA
    104 Mason Farm Road, Chapel Hill, NC 27599
    Department of Basic ...

  18. 76 FR 56503 - Agency Information Collection Activity (VSO Access to VHA Electronic Health Records) Under OMB...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-13

    ... power of attorney by veterans who have medical information recorded in VHA electronic health records... DEPARTMENT OF VETERANS AFFAIRS [OMB Control No. 2900-0710] Agency Information Collection Activity (VSO Access to VHA Electronic Health Records) Under OMB Review AGENCY: Veterans Health Administration...

  19. Connectivity between electron transport complexes and modulation of photosystem II activity in chloroplasts.

    PubMed

    Tikhonov, Alexander N; Vershubskii, Alexey V

    2017-09-01

    In chloroplasts, photosynthetic electron transport complexes interact with each other via the mobile electron carriers (plastoquinone and plastocyanin) which are in surplus amounts with respect to photosystem I and photosystem II (PSI and PSII), and the cytochrome b 6 f complex. In this work, we analyze experimental data on the light-induced redox transients of photoreaction center P 700 in chloroplasts within the framework of our mathematical model. This analysis suggests that during the action of a strong actinic light, even significant attenuation of PSII [for instance, in the result of inhibition of a part of PSII complexes by DCMU or due to non-photochemical quenching (NPQ)] will not cause drastic shortage of electron flow through PSI. This can be explained by "electronic" and/or "excitonic" connectivity between different PSII units. At strong AL, the overall flux of electrons between PSII and PSI will maintain at a high level even with the attenuation of PSII activity, provided the rate-limiting step of electron transfer is beyond the stage of PQH 2 formation. Results of our study are briefly discussed in the context of NPQ-dependent mechanism of chloroplast protection against light stress.

  20. Space radiation shielding studies for astronaut and electronic component risk assessment

    NASA Astrophysics Data System (ADS)

    Fuchs, Jordan; Gersey, Brad; Wilkins, Richard

    The space radiation environment is comprised of a complex and variable mix of high energy charged particles, gamma rays and other exotic species. Elements of this radiation field may also interact with intervening matter (such as a spaceship wall) and create secondary radiation particles such as neutrons. Some of the components of the space radiation environment are highly penetrating and can cause adverse effects in humans and electronic components aboard spacecraft. Developing and testing materials capable of providing effective shielding against the space radiation environment presents special challenges to researchers. Researchers at the Cen-ter for Radiation Engineering and Science for Space Exploration (CRESSE) at Prairie View AM University (PVAMU) perform accelerator based experiments testing the effectiveness of various materials for use as space radiation shields. These experiments take place at the NASA Space Radiation Laboratory at Brookhaven National Laboratory, the proton synchrotron at Loma Linda University Medical Center, and the Los Alamos Neutron Science Center at Los Alamos National Laboratory where charged particles and neutrons are produced at energies similar to those found in the space radiation environment. The work presented in this paper constitutes the beginning phase of an undergraduate research project created to contribute to this ongoing space radiation shielding project. Specifically, this student project entails devel-oping and maintaining a database of information concerning the historical data from shielding experiments along with a systematic categorization and storage system for the actual shielding materials. The shielding materials referred to here range in composition from standard materi-als such as high density polyethylene and aluminum to exotic multifunctional materials such as spectra-fiber infused composites. The categorization process for each material includes deter-mination of the density thickness of individual

  1. Low temperature and binding to food components inhibit the antibacterial activity of carvacrol against Listeria monocytogenes in steak tartare.

    PubMed

    Veldhuizen, Edwin J A; Creutzberg, T Olaf; Burt, Sara A; Haagsman, Henk P

    2007-09-01

    Carvacrol is a major component of thyme and oregano essential oils and has potential uses as a food preservative. The effect of carvacrol on the growth of Listeria monocytogenes was investigated in vitro and in steak tartare. Carvacrol had strong antilisterial activity in growth medium (MIC = 1.6 mM), but no effect was observed when carvacrol was tested in steak tartare. There were two reasons for this reduced activity: the antilisterial activity of carvacrol was strongly reduced at lower temperatures (10 versus 30 degrees C), and the presence of food components interfered with the activity of carvacrol. Both bovine serum albumin and egg yolk inhibited carvacrol activity at > 0.2% (wt/vol) in growth medium. For the first time, carvacrol was found to bind to albumin, suggesting that the reduced antilisterial activity of carvacrol in foods such as dairy products and uncooked meats is the result of fewer free unbound carvacrol molecules available to interact with bacteria.

  2. Clustering of leptin and physical activity with components of metabolic syndrome in Iranian population: an exploratory factor analysis.

    PubMed

    Esteghamati, Alireza; Zandieh, Ali; Khalilzadeh, Omid; Morteza, Afsaneh; Meysamie, Alipasha; Nakhjavani, Manouchehr; Gouya, Mohammad Mehdi

    2010-10-01

    Metabolic syndrome (MetS), manifested by insulin resistance, dyslipidemia, central obesity, and hypertension, is conceived to be associated with hyperleptinemia and physical activity. The aim of this study was to elucidate the factors underlying components of MetS and also to test the suitability of leptin and physical activity as additional components of this syndrome. Data of the individuals without history of diabetes mellitus, aged 25-64 years, from third national surveillance of risk factors of non-communicable diseases (SuRFNCD-2007), were analyzed. Performing factor analysis on waist circumference, homeostasis model assessment of insulin resistance, systolic blood pressure, triglycerides (TG) and high-density lipoprotein cholesterol (HDL-C) led to extraction of two factors which explained around 59.0% of the total variance in both genders. When TG and HDL-C were replaced by TG to HDL-C ratio, a single factor was obtained. In contrast to physical activity, addition of leptin was consistent with one-factor structure of MetS and improved the ability of suggested models to identify obesity (BMI≥30 kg/m2, P<0.01), using receiver-operator characteristics curve analysis. In general, physical activity loaded on the first identified factor. Our study shows that one underlying factor structure of MetS is also plausible and the inclusion of leptin does not interfere with this structure. Further, this study suggests that physical activity influences MetS components via modulation of the main underlying pathophysiologic pathway of this syndrome.

  3. 77 FR 3386 - Export and Reexport License Requirements for Certain Microwave and Millimeter Wave Electronic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-24

    ... electronic components. The two components are packaged high electron mobility transistors and packaged..., 2012, FR Doc. 2012- 135). The two components are packaged high electron mobility transistors (HEMT) and...

  4. The concept of electron activity and its relation to redox potentials in aqueous geochemical systems

    USGS Publications Warehouse

    Thorstenson, D.C.

    1984-01-01

    The definition of a formal thermodynamic activity of electrons in redox reactions appears in the literature of the 1920's. The concept of pe as -log (electron activity) was introduced by Jorgensen in 1945 and popularized in the geochemical literature by Sillen, who considered pe and pH as master variables in geochemical reactions. The physical significance of the concept of electron activity was challenged as early as 1928. However, only in the last two decades have sufficient thermodynamic data become available to examine this question quantitatively. The chemical nature of hydrated electrons differs greatly from that of hydrated protons, and thermodynamic data show that hydrated electrons cannot exist at physically meaningful equilibrium concentrations under natural conditions. This has important consequences for the understanding of redox processes in natural waters. These are: (1) the analogy between pe and pH as master variables is generally carried much further than is justified; (2) a thermodynamically meaningful value of redox potential cannot be assigned to disequilibrium systems; (3) the most useful approach to the study of redox characteristics is the analysis and study of multiple redox couples in the system; and (4) for all practical purposes, thermodynamically defined redox potentials do not exist (and thus cannot be measured) in natural waters. The overall implication for natural systems is that, in terms of redox reactions, each case must be considered on an individual and detailed basis. Field studies would appear to be a mandatory part of any site-specific study; conclusions regarding redox processes cannot be based solely on electrode measurements or thermodynamic stability calculations. (USGS)

  5. X-ray spectroscopy of warm and hot electron components in the CAPRICE source plasma at EIS testbench at GSI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mascali, D., E-mail: davidmascali@lns.infn.it; Celona, L.; Castro, G.

    2014-02-15

    An experimental campaign aiming to detect X radiation emitted by the plasma of the CAPRICE source – operating at GSI, Darmstadt – has been carried out. Two different detectors (a SDD – Silicon Drift Detector and a HpGe – hyper-pure Germanium detector) have been used to characterize the warm (2–30 keV) and hot (30–500 keV) electrons in the plasma, collecting the emission intensity and the energy spectra for different pumping wave frequencies and then correlating them with the CSD of the extracted beam measured by means of a bending magnet. A plasma emissivity model has been used to extract themore » plasma density along the cone of sight of the SDD and HpGe detectors, which have been placed beyond specific collimators developed on purpose. Results show that the tuning of the pumping frequency considerably modifies the plasma density especially in the warm electron population domain, which is the component responsible for ionization processes: a strong variation of the plasma density near axis region has been detected. Potential correlations with the charge state distribution in the plasma are explored.« less

  6. Aspergillus ficuum phytase activity is inhibited by cereal grain components.

    PubMed

    Bekalu, Zelalem Eshetu; Madsen, Claus Krogh; Dionisio, Giuseppe; Brinch-Pedersen, Henrik

    2017-01-01

    In the current study, we report for the first time that grain components of barley, rice, wheat and maize can inhibit the activity of Aspergillus ficuum phytase. The phytase inhibition is dose dependent and varies significantly between cereal species, between cultivars of barley and cultivars of wheat and between Fusarium graminearum infected and non-infected wheat grains. The highest endpoint level of phytase activity inhibition was 90%, observed with grain protein extracts (GPE) from F. graminearum infected wheat. Wheat GPE from grains infected with F. graminearum inhibits phytase activity significantly more than GPE from non-infected grains. For four barley cultivars studied, the IC50 value ranged from 0.978 ± 0.271 to 3.616 ± 0.087 mg×ml-1. For two non-infected wheat cultivars investigated, the IC50 values were varying from 2.478 ± 0.114 to 3.038 ± 0.097 mg×ml-1. The maize and rice cultivars tested gaveIC50 values on 0.983 ± 0.205 and 1.972 ± 0.019 mg×ml-1, respectively. After purifying the inhibitor from barley grains via Superdex G200, an approximately 30-35 kDa protein was identified. No clear trend for the mechanism of inhibition could be identified via Michaelis-Menten kinetics and Lineweaver-Burk plots. However, testing of the purified phytase inhibitor together with the A. ficuum phytase and the specific protease inhibitors pepstatin A, E64, EDTA and PMSF revealed that pepstatin A repealed the phytase inhibition. This indicates that the observed inhibition of A. ficuum phytase by cereal grain extracts is caused by protease activity of the aspartic proteinase type.

  7. Aspergillus ficuum phytase activity is inhibited by cereal grain components

    PubMed Central

    Bekalu, Zelalem Eshetu; Madsen, Claus Krogh; Dionisio, Giuseppe

    2017-01-01

    In the current study, we report for the first time that grain components of barley, rice, wheat and maize can inhibit the activity of Aspergillus ficuum phytase. The phytase inhibition is dose dependent and varies significantly between cereal species, between cultivars of barley and cultivars of wheat and between Fusarium graminearum infected and non-infected wheat grains. The highest endpoint level of phytase activity inhibition was 90%, observed with grain protein extracts (GPE) from F. graminearum infected wheat. Wheat GPE from grains infected with F. graminearum inhibits phytase activity significantly more than GPE from non-infected grains. For four barley cultivars studied, the IC50 value ranged from 0.978 ± 0.271 to 3.616 ± 0.087 mg×ml-1. For two non-infected wheat cultivars investigated, the IC50 values were varying from 2.478 ± 0.114 to 3.038 ± 0.097 mg×ml-1. The maize and rice cultivars tested gaveIC50 values on 0.983 ± 0.205 and 1.972 ± 0.019 mg×ml-1, respectively. After purifying the inhibitor from barley grains via Superdex G200, an approximately 30–35 kDa protein was identified. No clear trend for the mechanism of inhibition could be identified via Michaelis-Menten kinetics and Lineweaver-Burk plots. However, testing of the purified phytase inhibitor together with the A. ficuum phytase and the specific protease inhibitors pepstatin A, E64, EDTA and PMSF revealed that pepstatin A repealed the phytase inhibition. This indicates that the observed inhibition of A. ficuum phytase by cereal grain extracts is caused by protease activity of the aspartic proteinase type. PMID:28472144

  8. Gallic acid is an active component for the anticarcinogenic action of grape seed procyanidins in pancreatic cancer cells.

    PubMed

    Cedó, Lídia; Castell-Auví, Anna; Pallarès, Victor; Macià, Alba; Blay, Mayte; Ardévol, Anna; Motilva, Maria-José; Pinent, Montserrat

    2014-01-01

    The aim of the present work was to evaluate the effects of a grape seed procyanidin extract (GSPE) on proliferation and apoptosis in the pancreatic adenocarcinoma cell line MIA PaCa-2 and identify the components of the extract with higher activity. The effects of the extract were analyzed on the proliferation and apoptosis processes in MIA PaCa-2 cells, as well as in the levels of the apoptosis markers Bcl-2 and Bax, the mitochondrial membrane potential, and reactive oxygen species levels. Finally, the components of the extract with higher effects were elucidated using enriched fractions of the extract and pure compounds. The results showed that GSPE inhibits cell proliferation and increases apoptosis in MIA PaCa-2 cells, which is primarily mediated by the downregulation of the antiapoptotic protein Bcl-2 and the depolarization of the mitochondrial membrane. GSPE also reduced the formation of reactive oxygen species. The component of the extract that possesses the highest antiproliferative and proapoptotic activity was gallic acid. In conclusion, GSPE acts as anticarcinogenic in MIA PaCa-2 cells, with gallic acid as the major single active constituent of the extract.

  9. Initiation of Electron Transport Chain Activity in the Embryonic Heart Coincides with the Activation of Mitochondrial Complex 1 and the Formation of Supercomplexes

    PubMed Central

    Beutner, Gisela; Eliseev, Roman A.; Porter, George A.

    2014-01-01

    Mitochondria provide energy in form of ATP in eukaryotic cells. However, it is not known when, during embryonic cardiac development, mitochondria become able to fulfill this function. To assess this, we measured mitochondrial oxygen consumption and the activity of the complexes (Cx) 1 and 2 of the electron transport chain (ETC) and used immunoprecipitation to follow the generation of mitochondrial supercomplexes. We show that in the heart of mouse embryos at embryonic day (E) 9.5, mitochondrial ETC activity and oxidative phosphorylation (OXPHOS) are not coupled, even though the complexes are present. We show that Cx-1 of the ETC is able to accept electrons from the Krebs cycle, but enzyme assays that specifically measure electron flow to ubiquinone or Cx-3 show no activity at this early embryonic stage. At E11.5, mitochondria appear functionally more mature; ETC activity and OXPHOS are coupled and respond to ETC inhibitors. In addition, the assembly of highly efficient respiratory supercomplexes containing Cx-1, -3, and -4, ubiquinone, and cytochrome c begins at E11.5, the exact time when Cx-1 becomes functional activated. At E13.5, ETC activity and OXPHOS of embryonic heart mitochondria are indistinguishable from adult mitochondria. In summary, our data suggest that between E9.5 and E11.5 dramatic changes occur in the mitochondria of the embryonic heart, which result in an increase in OXPHOS due to the activation of complex 1 and the formation of supercomplexes. PMID:25427064

  10. Initiation of electron transport chain activity in the embryonic heart coincides with the activation of mitochondrial complex 1 and the formation of supercomplexes.

    PubMed

    Beutner, Gisela; Eliseev, Roman A; Porter, George A

    2014-01-01

    Mitochondria provide energy in form of ATP in eukaryotic cells. However, it is not known when, during embryonic cardiac development, mitochondria become able to fulfill this function. To assess this, we measured mitochondrial oxygen consumption and the activity of the complexes (Cx) 1 and 2 of the electron transport chain (ETC) and used immunoprecipitation to follow the generation of mitochondrial supercomplexes. We show that in the heart of mouse embryos at embryonic day (E) 9.5, mitochondrial ETC activity and oxidative phosphorylation (OXPHOS) are not coupled, even though the complexes are present. We show that Cx-1 of the ETC is able to accept electrons from the Krebs cycle, but enzyme assays that specifically measure electron flow to ubiquinone or Cx-3 show no activity at this early embryonic stage. At E11.5, mitochondria appear functionally more mature; ETC activity and OXPHOS are coupled and respond to ETC inhibitors. In addition, the assembly of highly efficient respiratory supercomplexes containing Cx-1, -3, and -4, ubiquinone, and cytochrome c begins at E11.5, the exact time when Cx-1 becomes functional activated. At E13.5, ETC activity and OXPHOS of embryonic heart mitochondria are indistinguishable from adult mitochondria. In summary, our data suggest that between E9.5 and E11.5 dramatic changes occur in the mitochondria of the embryonic heart, which result in an increase in OXPHOS due to the activation of complex 1 and the formation of supercomplexes.

  11. Design and analysis of automobile components using industrial procedures

    NASA Astrophysics Data System (ADS)

    Kedar, B.; Ashok, B.; Rastogi, Nisha; Shetty, Siddhanth

    2017-11-01

    Today’s automobiles depend upon mechanical systems that are crucial for aiding in the movement and safety features of the vehicle. Various safety systems such as Antilock Braking System (ABS) and passenger restraint systems have been developed to ensure that in the event of a collision be it head on or any other type, the safety of the passenger is ensured. On the other side, manufacturers also want their customers to have a good experience while driving and thus aim to improve the handling and the drivability of the vehicle. Electronics systems such as Cruise Control and active suspension systems are designed to ensure passenger comfort. Finally, to ensure optimum and safe driving the various components of a vehicle must be manufactured using the latest state of the art processes and must be tested and inspected with utmost care so that any defective component can be prevented from being sent out right at the beginning of the supply chain. Therefore, processes which can improve the lifetime of their respective components are in high demand and much research and development is done on these processes. With a solid base research conducted, these processes can be used in a much more versatile manner for different components, made up of different materials and under different input conditions. This will help increase the profitability of the process and also upgrade its value to the industry.

  12. Effects of the Combination of the Main Active Components of Astragalus and Panax notoginseng on Inflammation and Apoptosis of Nerve Cell after Cerebral Ischemia-Reperfusion.

    PubMed

    Huang, Xiao-Ping; Ding, Huang; Lu, Jin-Dong; Tang, Ying-Hong; Deng, Bing-Xiang; Deng, Chang-Qing

    2015-01-01

    Astragalus and Panax notoginseng are commonly used to treat cardio-cerebrovascular diseases in China and are often combined together to promote curative effect. We speculate that the enhancement of the combination on anticerebral ischemia injury may come from the main active components. The purpose of this work was to probe the effects and mechanisms of Astragaloside IV (the active component of Astragalus) combined with Ginsenoside Rg1, Ginsenoside Rb1, and Notoginsenoside R1 (the active components of P. notoginseng) to antagonize ischemia/reperfusion (I/R) injury via inflammation and apoptosis. C57BL/6 mice were randomly divided into sham, model, Astragaloside IV, Ginsenoside Rg1, Ginsenoside Rb1, Notoginsenoside R1, four active components combination, and Edaravone groups. After administration for 3 days, bilateral common carotid arteries (CCA) were occluded with artery clip for 20[Formula: see text]min followed by reperfusion for 24[Formula: see text]h. Our results showed that the survival rate of nerve cell in hippocampal CA1 decreased while the apoptotic rate increased, and the level of caspase-3 protein in brain tissues was elevated, the expressions of TNF-a, IL-1, and ICAM-1 mRNA as well as phosphorylated nuclear factor kappa B (NF-κB) inhibitor protein α (p-IκBa) in brain tissues were up-regulated, and the nuclear translocation rate of NF-κB was raised. Additionally, the protein expressions of phosphorylated tyrosine kinase 1 (p-JAK1), phosphorylated signal transducer and activator of transcription-1 (p-STAT1), glucose regulated protein 78 (GRP78), caspase-12, and phosphorylated c-Jun N-terminal kinases 1/2 (p-JNK1/2) in brain tissues were also significantly strengthened after I/R for 24 h. All drugs could increase neurocyte survival rate in hippocampal CA1, decrease the apoptotic rate, and inhibit caspase-3 protein expression, in contrast, the effects of four active components combination were better than those of active components alone. In addition

  13. Feasibility of a multi-component additive for efficient control of activated sludge filamentous bulking.

    PubMed

    Seka, A M; Van De Wiele, T; Verstraete, W

    2001-08-01

    Instantaneous improvement of the settling of bulking filamentous activated sludge can be achieved by the addition of a polymer or a large amount (up to 100% of the MLSS concentration) of talc powder to the sludge. Long-term improvement relies on repeated additions, as these additives have no adverse effects on the causative filaments. A multi-component additive was compared to the traditional additives in lab-scale activated sludge units using three highly filamentous sludges from different industrial treatment plants. The study demonstrated that the multi-component additive was superior to the traditional remedies. It was shown that, in the case of severe filamentous bulking, a single addition of the new additive immediately improved sludge settling and exerted a destructive effect on the causative filamentous bacteria. Thus, the latter additive also ensured a long-term sludge sedimentation improvement. The traditional additives exhibited an immediate and short-term effect. The novel additive also retarded sludge rising due to denitrification and it improved sludge dewaterability. The study revealed Nostocoido limicola II, with slightly hydrophobic cell wall, to be somewhat resistant to the quaternary ammonium salt present as biocide in the additive.

  14. Electromagnetic Waves and Bursty Electron Acceleration: Implications from Freja

    NASA Technical Reports Server (NTRS)

    Andersson, Laila; Ivchenko, N.; Wahlund, J.-E.; Clemmons, J.; Gustavsson, B.; Eliasson, L.

    2000-01-01

    Dispersive Alfven wave activity is identified in four dayside auroral oval events measured by the Freja satellite. The events are characterized by ion injection, bursty electron precipitation below about I keV, transverse ion heating and broadband extremely low frequency (ELF) emissions below the lower hybrid cutoff frequency (a few kHz). The broadband emissions are observed to become more electrostatic towards higher frequencies. Large-scale density depletions/cavities, as determined by the Langmuir probe measurements, and strong electrostatic emissions are often observed simultaneously. A correlation study has been carried out between the E- and B-field fluctuations below 64 Hz (the dc instrument's upper threshold) and the characteristics of the precipitating electrons. This study revealed that the energization of electrons is indeed related to the broadband ELF emissions and that the electrostatic component plays a predominant role during very active magnetospheric conditions. Furthermore, the effect of the ELF electromagnetic emissions on the larger scale field-aligned current systems has been investigated, and it is found that such an effect cannot be detected. Instead, the Alfvenic activity creates a local region of field-aligned currents. It is suggested that dispersive Alfven waves set up these local field-aligned current regions and in turn trigger more electrostatic emissions during certain conditions. In these regions ions are transversely heated, and large-scale density depletions/cavities may be created during especially active periods.

  15. Two-Dimensional Halide Perovskites: Tuning Electronic Activities of Defects

    DOE PAGES

    Liu, Yuanyue; Xiao, Hai; Goddard, William A.

    2016-04-21

    Two-dimensional (2D) halide perovskites are emerging as promising candidates for nanoelectronics and optoelectronics. To realize their full potential, it is important to understand the role of those defects that can strongly impact material properties. In contrast to other popular 2D semiconductors (e.g., transition metal dichalcogenides MX 2) for which defects typically induce harmful traps, we show that the electronic activities of defects in 2D perovskites are significantly tunable. For example, even with a fixed lattice orientation one can change the synthesis conditions to convert a line defect (edge or grain boundary) from electron acceptor to inactive site without deep gapmore » states. Here, we show that this difference originates from the enhanced ionic bonding in these perovskites compared with MX 2. The donors tend to have high formation energies and the harmful defects are difficult to form at a low halide chemical potential. Thus, we unveil unique properties of defects in 2D perovskites and suggest practical routes to improve them.« less

  16. Study of multipactor suppression of microwave components using perforated waveguide technology for space applications

    NASA Astrophysics Data System (ADS)

    Ye, Ming; Li, Yun; He, Yongning; Daneshmand, Mojgan

    2017-05-01

    With the development of space technology, microwave components with increased power handling capability and reduced weight have been urgently required. In this work, the perforated waveguide technology is proposed to suppress the multipactor effect of high power microwave components. Meanwhile, this novel method has the advantage of reducing components' weight, which makes it to have great potential in space applications. The perforated part of the waveguide components can be seen as an electron absorber (namely, its total electron emission yield is zero) since most of the electrons impacting on this part will go out of the components. Based on thoroughly benchmarked numerical simulation procedures, we simulated an S band and an X band waveguide transformer to conceptually verify this idea. Both electron dynamic simulations and electrical loss simulations demonstrate that the perforation technology can improve the multipactor threshold at least ˜8 dB while maintaining the acceptable insertion loss level compared with its un-perforated components. We also found that the component with larger minimum gap is easier to achieve multipactor suppression. This effect is interpreted by a parallel plate waveguide model. What's more, to improve the multipactor threshold of the X band waveguide transformer with a minimum gap of ˜0.1 mm, we proposed a perforation structure with the slope edge and explained its mechanism. Future study will focus on further optimization of the perforation structure, size, and distribution to maximize the comprehensive performances of microwave components.

  17. Activated recombinative desorption: A potential component in mechanisms of spacecraft glow

    NASA Technical Reports Server (NTRS)

    Cross, J. B.

    1985-01-01

    The concept of activated recombination of atomic species on surfaces can explain the production of vibrationally and translationally excited desorbed molecular species. Equilibrium statistical mechanics predicts that the molecular quantum state distributions of desorbing molecules is a function of surface temperature only when the adsorption probability is unity and independent of initial collision conditions. In most cases, the adsorption probability is dependent upon initial conditions such as collision energy or internal quantum state distribution of impinging molecules. From detailed balance, such dynamical behavior is reflected in the internal quantum state distribution of the desorbing molecule. This concept, activated recombinative desorption, may offer a common thread in proposed mechanisms of spacecraft glow. Using molecular beam techniques and equipment available at Los Alamos, which includes a high translational energy 0-atom beam source, mass spectrometric detection of desorbed species, chemiluminescence/laser induced fluorescence detection of electronic and vibrationally excited reaction products, and Auger detection of surface adsorbed reaction products, a fundamental study of the gas surface chemistry underlying the glow process is proposed.

  18. Energetic electrons, hard x-ray emission and MHD activity studies in the IR-T1 tokamak.

    PubMed

    Agah, K Mikaili; Ghoranneviss, M; Elahi, A Salar

    2015-01-01

    Determinations of plasma parameters as well as the Magnetohydrodynamics (MHD) activity, energetic electrons energy and energy confinement time are essential for future fusion reactors experiments and optimized operation. Also some of the plasma information can be deduced from these parameters, such as plasma equilibrium, stability, and MHD instabilities. In this contribution we investigated the relation between energetic electrons, hard x-ray emission and MHD activity in the IR-T1 Tokamak. For this purpose we used the magnetic diagnostics and a hard x-ray spectroscopy in IR-T1 tokamak. A hard x-ray emission is produced by collision of the runaway electrons with the plasma particles or limiters. The mean energy was calculated from the slope of the energy spectrum of hard x-ray photons.

  19. Vibrational spectroscopy in the electron microscope.

    PubMed

    Krivanek, Ondrej L; Lovejoy, Tracy C; Dellby, Niklas; Aoki, Toshihiro; Carpenter, R W; Rez, Peter; Soignard, Emmanuel; Zhu, Jiangtao; Batson, Philip E; Lagos, Maureen J; Egerton, Ray F; Crozier, Peter A

    2014-10-09

    Vibrational spectroscopies using infrared radiation, Raman scattering, neutrons, low-energy electrons and inelastic electron tunnelling are powerful techniques that can analyse bonding arrangements, identify chemical compounds and probe many other important properties of materials. The spatial resolution of these spectroscopies is typically one micrometre or more, although it can reach a few tens of nanometres or even a few ångströms when enhanced by the presence of a sharp metallic tip. If vibrational spectroscopy could be combined with the spatial resolution and flexibility of the transmission electron microscope, it would open up the study of vibrational modes in many different types of nanostructures. Unfortunately, the energy resolution of electron energy loss spectroscopy performed in the electron microscope has until now been too poor to allow such a combination. Recent developments that have improved the attainable energy resolution of electron energy loss spectroscopy in a scanning transmission electron microscope to around ten millielectronvolts now allow vibrational spectroscopy to be carried out in the electron microscope. Here we describe the innovations responsible for the progress, and present examples of applications in inorganic and organic materials, including the detection of hydrogen. We also demonstrate that the vibrational signal has both high- and low-spatial-resolution components, that the first component can be used to map vibrational features at nanometre-level resolution, and that the second component can be used for analysis carried out with the beam positioned just outside the sample--that is, for 'aloof' spectroscopy that largely avoids radiation damage.

  20. Activities and Strategies for the Inclusion of a K-12 Educational Component in Digitization Grant Projects of Academic Libraries

    ERIC Educational Resources Information Center

    Teel, Linda

    2010-01-01

    This article seeks to explore and discuss activities and strategies for including a K-12 educational component in digitization grant projects in academic libraries. The article is based on cases studying the K-12 educational component of the three following grants awarded to East Carolina University Joyner Library by North Carolina Exploring…

  1. Macrophage biospecific extraction and HPLC-ESI-MSn analysis for screening immunological active components in Smilacis Glabrae Rhizoma.

    PubMed

    Zheng, Zhao-Guang; Duan, Ting-Ting; He, Bao; Tang, Dan; Jia, Xiao-Bin; Wang, Ru-Shang; Zhu, Jia-Xiao; Xu, You-Hua; Zhu, Quan; Feng, Liang

    2013-04-15

    A cell-permeable membrane, as typified by Transwell insert Permeable Supports, permit accurate repeatable invasion assays, has been developed as a tool for screening immunological active components in Smilacis Glabrae Rhizoma (SGR). In this research, components in the water extract of SGR (ESGR) might conjugate with the receptors or other targets on macrophages which invaded Transwell inserts, and then the eluate which contained components biospecific binding to macrophages was identified by HPLC-ESI-MS(n) analysis. Six compounds, which could interact with macrophages, were detected and identified. Among these compounds, taxifolin (2) and astilbin (4) were identified by comparing with the chromatography of standards, while the four others including 5-O-caffeoylshikimic acid (1), neoastilbin (3), neoisoastilbin (5) and isoastilbin (6), were elucidated by their structure clearage characterizations of tandem mass spectrometry. Then compound 1 was isolated and purified from SGR, along with 2 and 4, was applied to the macrophage migration and adhesion assay in HUVEC (Human Umbilical Vein Endothelial Cells) -macrophages co-incultured Transwell system for immunological activity assessment. The results showed that compounds 1, 2 and 4 with concentration of 5μM (H), 500nM (M) and 50nM (L) could remarkably inhibit the macrophage migration and adhesion (Vs AGEs (Advanced Glycation End Produces) group, 1-L, 2-H and 4-L groups: p<0.05; other groups: p<0.01). Moreover, 1 and 4 showed satisfactory dose-effect relationship. In conclusion, the application of macrophage biospecific extraction coupled with HPLC-ESI-MS(n) analysis is a rapid, simple and reliable method for screening immunological active components from Traditional Chinese Medicine. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Characteristic electron variations across simple high-speed solar wind streams

    NASA Technical Reports Server (NTRS)

    Feldman, W. C.; Asbridge, J. R.; Bame, S. J.; Gosling, J. T.; Lemons, D. S.

    1978-01-01

    The paper deals with electron variations across simple high-speed streams. Comprehensive scans of the shapes of electron distributions measured at the highest bulk speeds confirm the results of Rosenbauer et al. (1976, 1977) and show that the electron velocity distributions can be broken down into a low-energy or core component and a high-energy strongly beamed component. The low-energy component displays many characteristics expected from a fluid: the internal particle coupling necessary to maintain this state must result from both binary Coulomb collisions and wave-particle interactions. The high-energy or halo component displays many characteristics expected to develop in the absence of collisions beyond a certain base radius. These electrons appear to evolve under the primary influence of static interplanetary magnetic and electric fields and, therefore, develop very anisotropic velocity distributions.

  3. Susceptor heating device for electron beam brazing

    DOEpatents

    Antieau, Susan M.; Johnson, Robert G. R.

    1999-01-01

    A brazing device and method are provided which locally apply a controlled amount of heat to a selected area, within a vacuum. The device brazes two components together with a brazing metal. A susceptor plate is placed in thermal contact with one of the components. A serrated pedestal supports the susceptor plate. When the pedestal and susceptor plate are in place, an electron gun irradiates an electron beam at the susceptor plate such that the susceptor plate is sufficiently heated to transfer heat through the one component and melt the brazing metal.

  4. Recent Advances in Active Infrared Thermography for Non-Destructive Testing of Aerospace Components.

    PubMed

    Ciampa, Francesco; Mahmoodi, Pooya; Pinto, Fulvio; Meo, Michele

    2018-02-16

    Active infrared thermography is a fast and accurate non-destructive evaluation technique that is of particular relevance to the aerospace industry for the inspection of aircraft and helicopters' primary and secondary structures, aero-engine parts, spacecraft components and its subsystems. This review provides an exhaustive summary of most recent active thermographic methods used for aerospace applications according to their physical principle and thermal excitation sources. Besides traditional optically stimulated thermography, which uses external optical radiation such as flashes, heaters and laser systems, novel hybrid thermographic techniques are also investigated. These include ultrasonic stimulated thermography, which uses ultrasonic waves and the local damage resonance effect to enhance the reliability and sensitivity to micro-cracks, eddy current stimulated thermography, which uses cost-effective eddy current excitation to generate induction heating, and microwave thermography, which uses electromagnetic radiation at the microwave frequency bands to provide rapid detection of cracks and delamination. All these techniques are here analysed and numerous examples are provided for different damage scenarios and aerospace components in order to identify the strength and limitations of each thermographic technique. Moreover, alternative strategies to current external thermal excitation sources, here named as material-based thermography methods, are examined in this paper. These novel thermographic techniques rely on thermoresistive internal heating and offer a fast, low power, accurate and reliable assessment of damage in aerospace composites.

  5. Recent Advances in Active Infrared Thermography for Non-Destructive Testing of Aerospace Components

    PubMed Central

    Mahmoodi, Pooya; Pinto, Fulvio; Meo, Michele

    2018-01-01

    Active infrared thermography is a fast and accurate non-destructive evaluation technique that is of particular relevance to the aerospace industry for the inspection of aircraft and helicopters’ primary and secondary structures, aero-engine parts, spacecraft components and its subsystems. This review provides an exhaustive summary of most recent active thermographic methods used for aerospace applications according to their physical principle and thermal excitation sources. Besides traditional optically stimulated thermography, which uses external optical radiation such as flashes, heaters and laser systems, novel hybrid thermographic techniques are also investigated. These include ultrasonic stimulated thermography, which uses ultrasonic waves and the local damage resonance effect to enhance the reliability and sensitivity to micro-cracks, eddy current stimulated thermography, which uses cost-effective eddy current excitation to generate induction heating, and microwave thermography, which uses electromagnetic radiation at the microwave frequency bands to provide rapid detection of cracks and delamination. All these techniques are here analysed and numerous examples are provided for different damage scenarios and aerospace components in order to identify the strength and limitations of each thermographic technique. Moreover, alternative strategies to current external thermal excitation sources, here named as material-based thermography methods, are examined in this paper. These novel thermographic techniques rely on thermoresistive internal heating and offer a fast, low power, accurate and reliable assessment of damage in aerospace composites. PMID:29462953

  6. Adjuvanted pandemic influenza vaccine: variation of emulsion components affects stability, antigen structure, and vaccine efficacy

    PubMed Central

    Fox, Christopher B.; Barnes V, Lucien; Evers, Tara; Chesko, James D.; Vedvick, Thomas S.; Coler, Rhea N.; Reed, Steven G.; Baldwin, Susan L.

    2012-01-01

    Please cite this paper as: Fox et al. (2012) Adjuvanted pandemic influenza vaccine: variation of emulsion components affects stability, antigen structure, and vaccine efficacy. Influenza and Other Respiratory Viruses DOI: 10.1111/irv.12031. Abstract Background  Adjuvant formulations are critical components of modern vaccines based on recombinant proteins, which are often poorly immunogenic without additional immune stimulants. Oil‐in‐water emulsions comprise an advanced class of vaccine adjuvants that are components of approved seasonal and pandemic influenza vaccines. However, few reports have been published that systematically evaluate the in vitro stability and in vivo adjuvant effects of different emulsion components. Objectives  To evaluate distinct classes of surfactants, oils, and excipients, for their effects on emulsion particle size stability, antigen structural interactions, and in vivo activity when formulated with a recombinant H5N1 antigen. Methods  Emulsions were manufactured by high pressure homogenization and characterized alone or in the presence of vaccine antigen by dynamic light scattering, zeta potential, viscosity, pH, hemolytic activity, electron microscopy, fluorescence spectroscopy, and SDS‐PAGE. In vivo vaccine activity in the murine model was characterized by measuring antibody titers, antibody‐secreting plasma cells, hemagglutination inhibition titers, and cytokine production. Results  We demonstrate that surfactant class and presence of additional excipients are not critical for biological activity, whereas oil structure is crucial. Moreover, we report that simplified two‐component emulsions appear more stable by particle size than more complex formulations.Finally, differences in antigen structural interactions with the various emulsions do not appear to correlate with in vivo activity. Conclusions  Oil‐in‐water emulsions can significantly enhance antibody and cellular immune responses to a pandemic influenza

  7. Following an electron bunch for free electron laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2012-01-01

    A video artist's ultra-slow-motion impression of an APEX-style electron gun firing a continuous train of electron bunches into a superconducting linear accelerator (in reality this would happen a million times a second). As they approach the speed of light the bunches contract, maintaining beam quality. After acceleration, the electron bunches are diverted into one or more undulators, the key components of free electron lasers. Oscillating back and forth in the changing magnetic field, they create beams of structured x-ray pulses. Before entering the experimental areas the electron bunches are diverted to a beam dump. (Animation created by Illumina Visual, http://www.illuminavisual.com/,more » for Lawrence Berkeley National Laboratory. Music for this excerpt, "Feeling Dark (Behind The Mask)" is by 7OOP3D http://ccmixter.org/files/7OOP3D/29126 and is licensed under a Creative Commons license: http://creativecommons.org/licenses/by-nc/3.0/)« less

  8. THE LOCALIZATION OF CHOLINESTERASE ACTIVITY IN RAT CARDIAC MUSCLE BY ELECTRON MICROSCOPY

    PubMed Central

    Karnovsky, Morris J.

    1964-01-01

    A method has been developed for localizing sites of cholinesterase activity in rat cardiac muscle by electron microscopy. The method utilizes thiocholine esters as substrates, and is believed to be dependent on the reduction of ferricyanide to ferrocyanide by thiocholine released by enzymatic activity. The ferrocyanide thus formed is captured by copper to form fine, electron-opaque deposits of copper ferrocyanide, which sharply delineate sites of enzymatic activity at the ultrastructural level. Cholinesterase activity in formalin-fixed heart muscle was localized: (a) in longitudinal elements of the sarcoplasmic reticulum, but not in the T, or transverse, elements; and (b) in the A band, with virtually no activity noted in the M band, or in the H zone. The I band was also negative. No activity was detected in the sarcolemma, or in invaginations of the sarcolemma at the level of the Z band. The perinuclear element of the sarcoplasmic (endoplasmic) reticulum was frequently strongly positive. Activity at all sites was completely abolished by omitting the substrates, or by inhibition with eserine 10-4 M and diisopropylfluorophosphate 10-5 M. Eserine 10-5 M completely inhibited reaction in the sarcoplasmic reticulum, and virtually abolished that in the A band. These observations, together with the use of the relatively specific substrates and suitable controls to eliminate non-enzymatic staining, indicate that cholinesterase activity was being demonstrated. The activity in rat heart against different substrates was that of non-specific cholinesterases, in accordance with biochemical data. The activity in the A band was considered to be probably due to myosincholinesterase. It is proposed that the localization of cholinesterases in myocardium at the ultrastructural level should be taken into account in considering the possible functions of these myocardial enzymes, and it is hoped that knowledge of their localization will open up new avenues of approach in considering

  9. Comparative study of cross-field and field-aligned electron beams in active experiments. [in upper atmosphere

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Pritchett, P. L.

    1988-01-01

    Beam-plasma interactions associated with the cross-field and field-aligned injection of electron beams from spacecraft were investigated using a two-dimensional (three velocity component) electrostatic particle simulations. It is shown that the beam properties and plasma response can be characterized well by the ratio between the stagnation time and the plasma response time, which depends on the ratio of the ambient plasma density to the beam density, the beam width, the beam energy, and the spacecraft length. It was found that the beams injected across the field lines tend to lose their coherence after about one or two gyrations due to space-charge oscillations induced by the beam, irrespective of the spacecraft charging. These oscillations scatter the beam electrons into a hollow cylinder of a radius equal to a beam electron gyroradius and thickness of the order of two beam Debye lengths. Parallel injected beams are subjected to similar oscillations, which cause the beam to expand to fill a solid cylinder of a comparable thickness.

  10. Activated stress response pathways within multicellular aggregates utilize an autocrine component.

    PubMed

    Jack, Graham D; Cabrera, M Carla; Manning, Michael L; Slaughter, Stephen M; Potts, Malcolm; Helm, Richard F

    2007-04-01

    Multicellular aggregates (spheroids) of primary human foreskin fibroblasts (HFF-2) and a glioblastoma cell line (T98G) entered and exited from long term (2 weeks) metabolic arrest utilizing an autocrine response. Cytokine production (specifically IFN-gamma) activated a Gadd45alpha/p38 pathway that led to increased AP-1 (c-jun and ATF3) transcription factor levels, augmenting cytokine production in an autocrine fashion. Whereas HFF-2 aggregates were capable of surviving long term arrest and recovery during NF-kappaB inhibition independent of JNK activation, T98G aggregates were not. Such endogenous processes are not easily observed with adherent monolayer cell culturing systems, strongly suggesting that more emphasis needs to be placed on determining the operational signal transduction cascades within multicellular aggregates. Extracellular inputs such as spheroid formation, arrest, and regrowth as monolayers invoke intracellular signaling responses converging at the AP-1 transcription factor level. Variations in responses are both cell type and transformation state dependent and require an autocrine cytokine component. The data are discussed in relation to the wounding response and avascular tumor growth mechanisms.

  11. On the adequacy of modeling the concentration dependences of the activity coefficients for the components of solutions

    NASA Astrophysics Data System (ADS)

    Sergievskii, V. V.; Rudakov, A. M.

    2006-11-01

    An analysis of the accepted methods for calculating the activity coefficients for the components of binary aqueous solutions was performed. It was demonstrated that the use of the osmotic coefficients in auxiliary calculations decreases the accuracy of estimates of the activity coefficients. The possibility of calculating the activity coefficient of the solute from the concentration dependence of the water activity was examined. It was established that, for weak electrolytes, the interpretation of data on heterogeneous equilibria within the framework of the standard assumption that the dissociation is complete encounters serious difficulties.

  12. Resting sympathetic activity is associated with the sympathetically mediated component of energy expenditure following a meal.

    PubMed

    Limberg, Jacqueline K; Malterer, Katherine R; Matzek, Luke J; Levine, James A; Charkoudian, Nisha; Miles, John M; Joyner, Michael J; Curry, Timothy B

    2017-08-01

    Individuals with high plasma norepinephrine (NE) levels at rest have a smaller reduction in resting energy expenditure (REE) following β -adrenergic blockade. If this finding extends to the response to a meal, it could have important implications for the role of the sympathetic nervous system in energy balance and weight gain. We hypothesized high muscle sympathetic nerve activity (MSNA) would be associated with a low sympathetically mediated component of energy expenditure following a meal. Fourteen young, healthy adults completed two visits randomized to continuous saline (control) or intravenous propranolol to achieve systemic β -adrenergic blockade. Muscle sympathetic nerve activity and REE were measured (indirect calorimetry) followed by a liquid mixed meal (Ensure). Measures of energy expenditure continued every 30 min for 5 h after the meal and are reported as an area under the curve (AUC). Sympathetic support of energy expenditure was calculated as the difference between the AUC during saline and β -blockade (AUC P ropranolol -AUC S aline , β -REE) and as a percent (%) of control (AUC P ropranolol ÷AUC S aline  × 100). β -REE was associated with baseline sympathetic activity, such that individuals with high resting MSNA (bursts/100 heart beats) and plasma NE had the greatest sympathetically mediated component of energy expenditure following a meal (MSNA: β -REE R  =   -0.58, P =  0.03; %REE R  = -0.56, P =  0.04; NE: β -REE R  = -0.55, P  = 0.0535; %REE R  = -0.54, P  = 0.0552). Contrary to our hypothesis, high resting sympathetic activity is associated with a greater sympathetically mediated component of energy expenditure following a liquid meal. These findings may have implications for weight maintenance in individuals with varying resting sympathetic activity. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  13. Functional components in Scutellaria barbata D. Don with anti-inflammatory activity on RAW 264.7 cells.

    PubMed

    Liu, Hsin-Lan; Kao, Tsai-Hua; Shiau, Chyuan-Yuan; Chen, Bing-Huei

    2018-01-01

    The objectives of this study were to determine the variety and amount of various functional components in Scutellaria barbata D. Don as well as study their anti-inflammatory activity on RAW 264.7 cells. Both ethanol and ethyl acetate extracts were shown to contain the functional components including phenolics, flavonoids, chlorophylls, and carotenoids, with the former mainly composed of phenolics and flavonoids, and the latter of carotenoids and chlorophylls. Both extracts could significantly inhibit (p < 0.05) the production of lipopolysaccharide-induced nitric oxide, prostaglandin E 2 , interlukin-6, and interlukin-1β, as well as the expressions of phosphor extracellular signal-regulated kinase and phosphor-c-Jun N-terminal kinase (p-JNK), but failed to retard tumor necrosis factor-α expression. Both ethanol and ethyl acetate extracts had a dose-dependent anti-inflammatory activity on RAW 264.7 cells. Furthermore, the anti-inflammatory efficiency can be varied for both ethanol and ethyl acetate extracts, which can be attributed to the presence of different varieties and amounts of functional components, as mentioned above. This finding suggested that S. Barbata extract may be used as an anti-inflammatory agent for possible future biomedical application. Copyright © 2017. Published by Elsevier B.V.

  14. Materials Characterization of Additively Manufactured Components for Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Carter, Robert; Draper, Susan; Locci, Ivan; Lerch, Bradley; Ellis, David; Senick, Paul; Meyer, Michael; Free, James; Cooper, Ken; Jones, Zachary

    2015-01-01

    To advance Additive Manufacturing (AM) technologies for production of rocket propulsion components the NASA Glenn Research Center (GRC) is applying state of the art characterization techniques to interrogate microstructure and mechanical properties of AM materials and components at various steps in their processing. The materials being investigated for upper stage rocket engines include titanium, copper, and nickel alloys. Additive manufacturing processes include laser powder bed, electron beam powder bed, and electron beam wire fed processes. Various post build thermal treatments, including Hot Isostatic Pressure (HIP), have been studied to understand their influence on microstructure, mechanical properties, and build density. Micro-computed tomography, electron microscopy, and mechanical testing in relevant temperature environments has been performed to develop relationships between build quality, microstructure, and mechanical performance at temperature. A summary of GRC's Additive Manufacturing roles and experimental findings will be presented.

  15. Material Characterization of Additively Manufactured Components for Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Carter, Robert; Draper, Susan; Locci, Ivan; Lerch, Bradley; Ellis, David; Senick, Paul; Meyer, Michael; Free, James; Cooper, Ken; Jones, Zachary

    2015-01-01

    To advance Additive Manufacturing (AM) technologies for production of rocket propulsion components the NASA Glenn Research Center (GRC) is applying state of the art characterization techniques to interrogate microstructure and mechanical properties of AM materials and components at various steps in their processing. The materials being investigated for upper stage rocket engines include titanium, copper, and nickel alloys. Additive manufacturing processes include laser powder bed, electron beam powder bed, and electron beam wire fed processes. Various post build thermal treatments, including Hot Isostatic Pressure (HIP), have been studied to understand their influence on microstructure, mechanical properties, and build density. Micro-computed tomography, electron microscopy, and mechanical testing in relevant temperature environments has been performed to develop relationships between build quality, microstructure, and mechanical performance at temperature. A summary of GRCs Additive Manufacturing roles and experimental findings will be presented.

  16. Suicide risk by military occupation in the DoD active component population.

    PubMed

    Trofimovich, Lily; Reger, Mark A; Luxton, David D; Oetjen-Gerdes, Lynne A

    2013-06-01

    Suicide risk based on occupational cohorts within the U.S. military was investigated. Rates of suicide based on military occupational categories were computed for the Department of Defense (DoD) active component population between 2001 and 2010. The combined infantry, gun crews, and seamanship specialist group was at increased risk of suicide compared to the overall military population even when adjusted for gender, age, and deployment history. The results provide useful information that can help inform the DoD's suicide prevention mission. Data limitations and recommended areas for future research are discussed. © 2013 The American Association of Suicidology.

  17. Synthesis and antioxidant activity of curcumin analogs.

    PubMed

    Zheng, Qu-Tong; Yang, Ze-Hua; Yu, Liu-Ying; Ren, Yu-Yan; Huang, Qiu-Xia; Liu, Qiu; Ma, Xiang-Yu; Chen, Zi-Kang; Wang, Zong-Bao; Zheng, Xing

    2017-05-01

    Numerous biological activities including antioxidant, antitumor, anti-inflammation, and antivirus of the natural product curcumin were reported. However, the clinical application of it was significantly limited by its instability, poor solubility, less body absorbing, and low bioavailability. This review focuses on the structure modification and antioxidant activity evaluation of curcumin. To study the structure-activity relationship (SAR), five series of curcumin analogs were synthesized and their antioxidant activity were evaluated in vitro. The results showed that electron-donating groups, especially the phenolic hydroxyl group are an essential component to improve the antioxidant activity.

  18. Individual Differences in Skilled Adult Readers Reveal Dissociable Patterns of Neural Activity Associated with Component Processes of Reading

    ERIC Educational Resources Information Center

    Welcome, Suzanne E.; Joanisse, Marc F.

    2012-01-01

    We used fMRI to examine patterns of brain activity associated with component processes of visual word recognition and their relationships to individual differences in reading skill. We manipulated both the judgments adults made on written stimuli and the characteristics of the stimuli. Phonological processing led to activation in left inferior…

  19. EDITORIAL: Nanotechnology-based flexible electronics Nanotechnology-based flexible electronics

    NASA Astrophysics Data System (ADS)

    Subramanian, Vivek; Lee, Takhee

    2012-08-01

    Research on flexible electronics has grown exponentially over the last decade. Researchers around the globe are developing a wide range of flexible systems, including displays [1, 2], sensors [3-5], RFID tags [6, 7] and other similar devices [8]. Innovations in materials have been key to the increased research success in this field of research in recent years [9]. Transistors, interconnects, memory cells, passive components and other assorted devices all have challenging material demands for flexible electronics to become a reality. Nanomaterials of various kinds have been found to represent a tremendously powerful tool, with nanoparticles [10], nanotubes, nanowires [3, 11] and engineered organic molecules [12, 13] contributing to the realization of high-performance semiconductors, dielectrics and conductors for flexible electronics applications. Nanomaterials offer tunability in terms of performance, solution processability and processing temperature requirements, which makes them very attractive as building blocks for flexible electronic systems. Indeed, such systems represent some of the largest families of commercially produced nanomaterials today, and numerous commercial products based on nanoparticle formulations are widely available. This special issue focuses on the rapidly blossoming field of flexible electronics, with a particular focus on the use of nanotechnology to facilitate flexible electronic materials, processes, devices and systems. Contributions to the issue describe the development of nanomaterials—including nanoparticles, nanotubes, nanowires and carbon-based thin films—for use in conductors, transparent electrodes, semiconductors and dielectrics. The articles feature innovations in nanomanufacturing and novel materials, as well as the application of these technologies to advanced flexible devices and systems. As flexible electronics systems move rapidly towards successful commercial deployment, it is extremely likely that they will exploit

  20. Hydrodynamic Electron Flow and Hall Viscosity

    NASA Astrophysics Data System (ADS)

    Scaffidi, Thomas; Moll, Philip; Kushwaha, Pallavi; Nandi, Nabhanila; Schmidt, Burkhard; MacKenzie, Andrew; Moore, Joel

    In metallic samples of small enough size and sufficiently strong electron-electron scattering, the viscosity of the electron gas can become the dominant process governing transport. In this regime, momentum is a long-lived quantity whose evolution is described by an emergent hydrodynamical theory for which bounds on diffusion were conjectured based on an holographic correspondence. Furthermore, breaking time-reversal symmetry can lead to the appearance of an odd component to the viscosity called the Hall viscosity which has attracted a lot of attention recently due to its quantized nature in gapped systems but still eludes experimental confirmation. Based on microscopic calculations, we discuss how to measure the effects of both the even and odd components of the viscosity using hydrodynamic electronic transport in mesoscopic samples under applied magnetic fields. Gordon and Betty Moore Foundation.