Sample records for active essential oils

  1. The in vitro Antimicrobial Activity and Chemometric Modelling of 59 Commercial Essential Oils against Pathogens of Dermatological Relevance.

    PubMed

    Orchard, Ané; Sandasi, Maxleene; Kamatou, Guy; Viljoen, Alvaro; van Vuuren, Sandy

    2017-01-01

    This study reports on the inhibitory concentration of 59 commercial essential oils recommended for dermatological conditions, and identifies putative compounds responsible for antimicrobial activity. Essential oils were investigated for antimicrobial activity using minimum inhibitory concentration assays. Ten essential oils were identified as having superior antimicrobial activity. The essential oil compositions were determined using gas chromatography coupled to mass spectrometry and the data analysed with the antimicrobial activity using multivariate tools. Orthogonal projections to latent structures models were created for seven of the pathogens. Eugenol was identified as the main biomarker responsible for antimicrobial activity in the majority of the essential oils. The essential oils mostly displayed noteworthy antimicrobial activity, with five oils displaying broad-spectrum activity against the 13 tested micro-organisms. The antimicrobial efficacies of the essential oils highlight their potential in treating dermatological infections and through chemometric modelling, bioactive volatiles have been identified. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  2. Analysis of essential oils from Voacanga africana seeds at different hydrodistillation extraction stages: chemical composition, antioxidant activity and antimicrobial activity.

    PubMed

    Liu, Xiong; Yang, Dongliang; Liu, Jiajia; Ren, Na

    2015-01-01

    In this study, essential oils from Voacanga africana seeds at different extraction stages were investigated. In the chemical composition analysis, 27 compounds representing 86.69-95.03% of the total essential oils were identified and quantified. The main constituents in essential oils were terpenoids, alcohols and fatty acids accounting for 15.03-24.36%, 21.57-34.43% and 33.06-57.37%, respectively. Moreover, the analysis also revealed that essential oils from different extraction stages possessed different chemical compositions. In the antioxidant evaluation, all analysed oils showed similar antioxidant behaviours, and the concentrations of essential oils providing 50% inhibition of DPPH-scavenging activity (IC50) were about 25 mg/mL. In the antimicrobial experiments, essential oils from different extraction stages exhibited different antimicrobial activities. The antimicrobial activity of oils was affected by extraction stages. By controlling extraction stages, it is promising to obtain essential oils with desired antimicrobial activities.

  3. Characterization of the volatile composition of essential oils of some lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils.

    PubMed

    Bozin, Biljana; Mimica-Dukic, Neda; Simin, Natasa; Anackov, Goran

    2006-03-08

    The essential oils of Ocimum basilicum L., Origanum vulgare L., and Thymus vulgaris L. were analyzed by means of gas chromatography-mass spectrometry and assayed for their antioxidant and antimicrobial activities. The antioxidant activity was evaluated as a free radical scavenging capacity (RSC), together with effects on lipid peroxidation (LP). RSC was assessed measuring the scavenging activity of the essential oils on 2,2-diphenyl-1-picrylhydrazil (DPPH(*)) and OH(*) radicals. Effects on LP were evaluated following the activities of essential oils in Fe(2+)/ascorbate and Fe(2+)/H(2)O(2) systems of induction. Essential oils exhibited very strong RSCs, reducing the DPPH radical formation (IC(50)) in the range from 0.17 (oregano) to 0.39 microg/mL (basil). The essential oil of T. vulgaris exhibited the highest OH radical scavenging activity, although none of the examined essential oils reached 50% of neutralization (IC(50)). All of the tested essential oils strongly inhibited LP, induced either by Fe(2+)/ascorbate or by Fe(2+)/H(2)O(2). The antimicrobial activity was tested against 13 bacterial strains and six fungi. The most effective antibacterial activity was expressed by the essential oil of oregano, even on multiresistant strains of Pseudomonas aeruginosa and Escherichia coli. A significant rate of antifungal activity of all of the examined essential oils was also exhibited.

  4. Chemical Composition of Volatiles; Antimicrobial, Antioxidant and Cholinesterase Inhibitory Activity of Chaerophyllum aromaticum L. (Apiaceae) Essential Oils and Extracts.

    PubMed

    Petrović, Goran M; Stamenković, Jelena G; Kostevski, Ivana R; Stojanović, Gordana S; Mitić, Violeta D; Zlatković, Bojan K

    2017-05-01

    The present study reports the chemical composition of the headspace volatiles (HS) and essential oils obtained from fresh Chaerophyllum aromaticum root and aerial parts in full vegetative phase, as well as biological activities of their essential oils and MeOH extracts. In HS samples, the most dominant components were monoterpene hydrocarbons. On the other hand, the essential oils consisted mainly of sesquiterpenoids, representing 73.4% of the root and 63.4% of the aerial parts essential oil. The results of antibacterial assay showed that the aerial parts essential oil and MeOH extract have no antibacterial activity, while the root essential oil and extract showed some activity. Both of the tested essential oils exhibited anticholinesterase activity (47.65% and 50.88%, respectively); MeOH extract of the root showed only 8.40% inhibition, while aerial part extract acted as an activator of cholinesterase. Regarding the antioxidant activity, extracts were found to be more effective than the essential oils. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  5. Antifungal activity of clove essential oil and its volatile vapour against dermatophytic fungi.

    PubMed

    Chee, Hee Youn; Lee, Min Hee

    2007-12-01

    Antifungal activities of clove essential oil and its volatile vapour against dermatophytic fungi including Candida albicans, Epidermophyton floccosum. Microsporum audouinii, Trichophyton mentagrophytes, and Trichophyton rubrum were investigated. Both clove essential oil and its volatile vapour strongly inhibit spore germination and mycelial growth of the dermatophytic fungi tested. The volatile vapour of clove essential oil showed fungistatic activity whereas direct application of clove essential oil showed fungicidal activity.

  6. Chemical Composition and Biological Activity of Essential Oils from Wild Growing Aromatic Plant Species of Skimmia laureola and Juniperus macropoda from Western Himalaya.

    PubMed

    Stappen, Iris; Tabanca, Nurhayat; Ali, Abbas; Wedge, David E; Wanner, Jürgen; Kaul, Vijay K; Lal, Brij; Jaitak, Vikas; Gochev, Velizar K; Schmidt, Erich; Jirovetz, Leopold

    2015-06-01

    The Himalayan region is very rich in a great variety of medicinal plants. In this investigation the essential oils of two selected species are described for their antimicrobial and larvicidal as well as biting deterrent activities. Additionally, the odors are characterized. Analyzed by simultaneous GC-MS and GC-FID, the essential oils' chemical compositions are given. The main components of Skimmia laureola oil were linalool and linalyl acetate whereas sabinene was found as the main compound for Juniperus macropoda essential oil. Antibacterial testing by agar dilution assay revealed highest activity of S. laureola oil against all tested bacteria, followed by J. macropoda oil. Antifungal activity was evaluated against the strawberry anthracnose causing plant pathogens Colletotrichum acutatum, C. fragariae and C. gloeosporioides. Juniperus macropoda essential oil indicated higher antifungal activity against all three pathogens than S. laureola oil. Both essential oils showed biting deterrent activity above solvent control but low larvicidal activity.

  7. Chemical composition and some biological activities of the essential oils from basil Ocimum different cultivars.

    PubMed

    Avetisyan, Arpi; Markosian, Anahit; Petrosyan, Margarit; Sahakyan, Naira; Babayan, Anush; Aloyan, Samvel; Trchounian, Armen

    2017-01-19

    The plants belonging to the Ocimum genus of the Lamiaceae family are considered to be a rich source of essential oils which have expressed biological activity and use in different area of human activity. There is a great variety of chemotypes within the same basil species. Essential oils from three different cultivars of basil, O. basilicum var. purpureum, O. basilicum var. thyrsiflora, and O. citriodorum Vis. were the subjects of our investigations. The oils were obtained by steam distillation in a Clevenger-type apparatus. The gas chromatography mass selective analysis was used to determine their chemical composition. The antioxidant activities of these essential oils were measured using 1,1-diphenyl-2-picrylhydrazyl assays; the tyrosinase inhibition abilities of the given group of oils were also assessed spectophotometrically, and the antimicrobial activity of the essential oils was determined by the agar diffusion method, minimal inhibitory concentrations were expressed. According to the results, the qualitative and quantitative composition of essential oils was quite different: O. basilicum var. purpureum essential oil contained 57.3% methyl-chavicol (estragol); O. basilicum var. thyrsiflora oil had 68.0% linalool. The main constituents of O. citriodorum oil were nerol (23.0%) and citral (20.7%). The highest antioxidant activity was demonstrated by O. basilicum var. thyrsiflora essential oil. This oil has also exhibited the highest tyrosinase inhibition level, whereas the oil from O. citriodorum cultivar demonstrated the highest antimicrobial activity. The results obtained indicate that these essential oils have antioxidant, antibacterial and antifungal activity and can be used as natural antioxidant and antimicrobial agents in medicine, food industry and cosmetics.

  8. Antimicrobial and antioxidant activity of the essential oil and methanol extracts of Thymus pectinatus Fisch. et Mey. Var. pectinatus (Lamiaceae).

    PubMed

    Vardar-Unlü, Gülhan; Candan, Ferda; Sökmen, Atalay; Daferera, Dimitra; Polissiou, Moschos; Sökmen, Münevver; Dönmez, Erol; Tepe, Bektaş

    2003-01-01

    The essential oil, obtained by using a Clevenger distillation apparatus, and water-soluble (polar) and water-insoluble (nonpolar) subfractions of the methanol extract of Thymus pectinatus Fisch. et Mey. var. pectinatus were assayed for their antimicrobial and antioxidant properties. No (or slight) antimicrobial activity was observed when the subfractions were tested, whereas the essential oil showed strong antimicrobial activity against all microorganisms tested. Antioxidant activities of the polar subfraction and the essential oil were evaluated using 2,2-diphenyl-1-picrylhydrazyl, hydroxyl radical, superoxide radical scavenging, and lipid peroxidation assays. The essential oil, in particular, and the polar subfraction of the methanol extract showed antioxidant activity. The essential oil was analyzed by GC/MS, and 24 compounds, representing 99.6% of the essential oil, were identified: thymol, gamma-terpinene, p-cymene, carvacrol, and borneol were the main components. An antimicrobial activity test carried out with fractions of the essential oil showed that the activity was mainly observed in those fractions containing thymol, in particular, and carvacrol. The activity was, therefore, attributed to the presence of these compounds. Other constituents of the essential oil, such as borneol, gamma-terpinene, and p-cymene, could be also taken into account for their possible synergistic or antagonistic effects. On the other hand, thymol and carvacrol were individually found to possess weaker antioxidant activity than the crude oil itself, indicating that other constituents of the essential oil may contribute to the antioxidant activity observed. In conclusion, the results presented here show that T. pectinatus essential oil could be considered as a natural antimicrobial and antioxidant source.

  9. Antibacterial and antioxidant activities of essential oils isolated from Thymbra capitata L. (Cav.) andOriganum vulgare L.

    PubMed

    Faleiro, Leonor; Miguel, Graça; Gomes, Sónia; Costa, Ludmila; Venâncio, Florencia; Teixeira, Adriano; Figueiredo, A Cristina; Barroso, José G; Pedro, Luis G

    2005-10-19

    Antilisterial activities of Thymbra capitata and Origanum vulgare essential oils were tested against 41 strains of Listeria monocytogenes. The oil of T. capitata was mainly constituted by one component, carvacrol (79%), whereas for O. vulgare three components constituted 70% of the oil, namely, thymol (33%), gamma-terpinene (26%), and p-cymene (11%). T. capitata essential oil had a significantly higher antilisterial activity in comparison to O. vulgare oil and chloramphenicol. No significant differences in L. monocytogenes susceptibilities to the essential oils tested were registered. The minimum inhibitory concentration values of T. capitata essential oil and of carvacrol were quite similar, ranging between 0.05 and 0.2 microL/mL. Antioxidant activity was also tested, the essential oil of T. capitata showing significantly higher antioxidant activity than that of O. vulgare. Use of T. capitata and O. vulgare essential oils can constitute a powerful tool in the control of L. monocytogenes in food and other industries.

  10. Differential Inhibitory Activities of Four Plant Essential Oils on In Vitro Growth of Fusarium oxysporum f. sp. fragariae Causing Fusarium Wilt in Strawberry Plants.

    PubMed

    Park, Jin Young; Kim, Su Hyeon; Kim, Na Hee; Lee, Sang Woo; Jeun, Yong-Chull; Hong, Jeum Kyu

    2017-12-01

    The objective of this study was to determine inhibitory activities of four volatile plant essential oils (cinnamon oil, fennel oil, origanum oil and thyme oil) on in vitro growth of Fusarium oxysporum f. sp. fragariae causing Fusarium wilt of strawberry plants. Results showed that these essential oils inhibited in vitro conidial germination and mycelial growth of F. oxysporum f. sp. fragariae in a dose-dependent manner. Cinnamon oil was found to be most effective one in suppressing conidial germination while fennel oil, origanum oil and thyme oil showed moderate inhibition of conidial germination at similar levels. Cinnamon oil, origanum oil and thyme oil showed moderate antifungal activities against mycelial growth at similar levels while fennel oil had relatively lower antifungal activity against mycelial growth. Antifungal effects of these four plant essential oils in different combinations on in vitro fungal growth were also evaluated. These essential oils demonstrated synergistic antifungal activities against conidial germination and mycelial growth of F. oxysporum f. sp. fragariae in vitro. Simultaneous application of origanum oil and thyme oil enhanced their antimicrobial activities against conidial germination and fungal mycelial growth. These results underpin that volatile plant essential oils could be used in eco-friendly integrated disease management of Fusarium wilt in strawberry fields.

  11. Anti-Inflammatory, Antioxidant, Antibiotic, and Cytotoxic Activities of Tanacetum vulgare L. Essential Oil and Its Constituents.

    PubMed

    Coté, Héloïse; Boucher, Marie-Anne; Pichette, André; Legault, Jean

    2017-05-25

    Background: Tanacetum vulgare L. (Asteraceae) is a perennial herb that has been used to treat multiple ailments. Regional variability of the chemical composition of T. vulgare essential oils is well-known. Despite these regional chemotypes, most relevant studies did not analyze the complete chemical composition of the T. vulgare essential oil and its constituents in relation to their biological activities. Here, we assess the anti-inflammatory, antioxidant, antibacterial, and cytotoxic activities of T. vulgare collected from northern Quebec (Saguenay-Lac-St-Jean), Canada. Methods: Essential oil was extracted from plants by steam distillation and analyzed using GC-FID. Biological activities of essential oil and its main constituents were evaluated in vitro. Results: We identified the major compounds as camphor, borneol, and 1,8-cineole. The oil possesses anti-inflammatory activity inhibiting NO production. It also inhibits intracellular DCFH oxidation induced by tert-butylhydroperoxide. Anti-inflammatory activity of essential oil appears driven mainly by α-humulene while antioxidant activity is provided by α-pinene and caryophyllene oxide. Essential oil from T vulgare was active against both Escherichia coli and Staphylococcus aureus with camphor and caryophyllene oxide responsible for antibacterial activity. Finally, T. vulgare essential oil was slightly cytotoxic against the human healthy cell line WS1 while α-humulene and caryophyllene oxide were moderately cytotoxic against A-549, DLD-1, and WS1. Conclusion: We report, for the first time, links between the specific compounds found in T. vulgare essential oil and anti-inflammatory, antioxidant, antibacterial, and cytotoxic activities. T. vulgare essential oil possesses interesting biological properties.

  12. Chemical composition and evaluation of antinociceptive activity of the essential oil of Stevia serrata Cav. from Guatemala.

    PubMed

    Reis Simas, Daniel Luiz; Mérida-Reyes, Max Samuel; Muñoz-Wug, Manuel Alejandro; Cordeiro, Millena Santos; Giorno, Thais Biondino Sardella; Taracena, Edwin Adolfo; Oliva-Hernández, Bessie Evelyn; Martínez-Arévalo, José Vicente; Fernandes, Patricia Dias; Pérez-Sabino, Juan Francisco; Jorge Ribeiro da Silva, Antonio

    2017-11-13

    The composition and the antinociceptive activity of the essential oil of Stevia serrata Cav. from a population located in the west highlands of Guatemala were evaluated. A yield of 0.2% (w/w) of essential oil was obtained by hydrodistillation of the dried aerial parts of the plant. The essential oil analysed by GC-FID and GC-MS showed a high content of sesquiterpenoids, with chamazulene (60.1%) as the major component and 91.5% of the essential oil composition was identified. To evaluate antinociceptive activity in mice, the essential oil of S. serrata Cav. was administered as gavage, using three different doses. In the formalin test, the animals were pre-treated with oral doses of the essential oil before the administration of formalin. Oral administration of S. serrata Cav. essential oil produced a marked antinociceptive activity. Therefore, the plant could be domesticated as a source of essential oil rich in chamazulene for developing medicinal products.

  13. Antimicrobial, antibiofilm and antitumor activities of essential oil of Agastache rugosa from Xinjiang, China.

    PubMed

    Haiyan, Gong; Lijuan, He; Shaoyu, Li; Chen, Zhang; Ashraf, Muhammad Aqeel

    2016-07-01

    In the study, we evaluated chemical composition and antimicrobial, antibiofilm, and antitumor activities of essential oils from dried leaf essential oil of leaf and flower of Agastache rugosa for the first time. Essential oil of leaf and flower was evaluated with GC and GC-MS methods, and the essential oil of flower revealed the presence of 21 components, whose major compounds were pulegone (34.1%), estragole (29.5%), and p-Menthan-3-one (19.2%). 26 components from essential oil of leaf were identified, the major compounds were p-Menthan-3-one (48.8%) and estragole (20.8%). At the same time, essential oil of leaf, there is a very effective antimicrobial activity with MIC ranging from 9.4 to 42 μg ml(-1) and potential antibiofilm, antitumor activities for essential oils of flower and leaf essential oil of leaf. The study highlighted the diversity in two different parts of A. rugosa grown in Xinjiang region and other places, which have different active constituents. Our results showed that this native plant may be a good candidate for further biological and pharmacological investigations.

  14. [Study on the chemical components, antimicrobial and antitumor activities of the essential oil from the leaves of Zanthoxylum avicennae].

    PubMed

    Zhang, Da-Shuai; Zhong, Qiong-Xin; Song, Xin-Ming; Liu, Wen-Jie; Wang, Jing; Zhang, Qiong-Yu

    2012-08-01

    To study the chemical constituents, antimicrobial activity and antitumor activity of the essential oil from Zanthoxylum avicennae. The essential oil from the leaves of Zanthoxylum avicennae was extracted by steam distillation. The components of the essential oil were separated and identified by GC-MS. 72 components were identified and accounted for 98.15% of the all peak area. The essential oil exhibited strong antitumor activity against K-562 human tumor cell lines with IC50 of 1.76 microg/mL. It also exhibited moderate antimicrobial activity against three bacteria. The essential oil of Zanthoxylum avicennae contains various active constituents. This result provides scientific reference for the pharmacological further research of Zanthoxylum avicennae.

  15. Singlet Oxygen Scavenging Activity and Cytotoxicity of Essential Oils from Rutaceae

    PubMed Central

    Ao, Yoko; Satoh, Kazue; Shibano, Katsushige; Kawahito, Yukari; Shioda, Seiji

    2008-01-01

    Since we have been exposed to excessive amounts of stressors, aromatherapy for the relaxation has recently become very popular recently. However, there is a problem which responds to light with the essential oil used by aromatherapy. It is generally believed that singlet oxygen is implicated in the pathogenesis of various diseases such as light-induced skin disorders and inflammatory responses. Here we studied whether essential oils can effectively scavenge singlet oxygen upon irradiation, using the electron spin resonance (ESR) method. Green light was used to irradiate twelve essential oils from rutaceae. Among these twelve essential oils, eight were prepared by the expression (or the compression) method (referred to as E oil), and four samples were prepared by the steam distillation method (referred to as SD oil). Five E oils enhanced singlet oxygen production. As these essential oils may be phototoxic, it should be used for their use whit light. Two E oils and three SD oils showed singlet oxygen scavenging activity. These results may suggest that the antioxidant activity of essential oils are judged from their radical scavenging activity. Essential oils, which enhance the singlet oxygen production and show higher cytotoxicity, may contain much of limonene. These results suggest that limonene is involved not only in the enhancement of singlet oxygen production but also in the expression of cytotoxic activity, and that attention has to be necessary for use of blended essential oils. PMID:18648659

  16. Antimicrobial activity of commercially available essential oils against Streptococcus mutans.

    PubMed

    Chaudhari, Lalit Kumar D; Jawale, Bhushan Arun; Sharma, Sheeba; Sharma, Hemant; Kumar, C D Mounesh; Kulkarni, Pooja Adwait

    2012-01-01

    Many essential oils have been advocated for use in complementary medicine for bacterial and fungal infections. However, few of the many claims of therapeutic efficacy have been validated adequately by either in vitro testing or in vivo clinical trials. To study the antibacterial activity of nine commercially available essential oils against Streptococcus mutans in vitro and to compare the antibacterial activity between each material. Nine pure essential oils; wintergreen oil, lime oil, cinnamon oil, spearmint oil, peppermint oil, lemongrass oil, cedarwood oil, clove oil and eucalyptus oil were selected for the study. Streptococcus mutans was inoculated at 37ºC and seeded on blood agar medium. Agar well diffusion assay was used to measure antibacterial activity. Zone of inhibition was measured around the filter paper in millimeters with vernier caliper. Cinnamon oil showed highest activity against Streptococcus mutans followed by lemongrass oil and cedarwood oil. Wintergreen oil, lime oil, peppermint oil and spearmint oil showed no antibacterial activity. Cinnamon oil, lemongrass oil, cedarwood oil, clove oil and eucalyptus oil exhibit antibacterial property against S. mutans. The use of these essential oils against S. mutans can be a viable alternative to other antibacterial agents as these are an effective module used in the control of both bacteria and yeasts responsible for oral infections.

  17. Repellent activities of some Labiatae plant essential oils against the saltmarsh mosquito Ochlerotatus caspius (Pallas, 1771) (Diptera: Culicidae).

    PubMed

    Koc, Samed; Oz, Emre; Cetin, Huseyin

    2012-06-01

    The repellent activities of the essential oils of two Thymus (Thymus sipyleus Boiss. subsp. sipyleus and Thymus revolutus Celak) and two Mentha (Mentha spicata L. subsp. spicata and Mentha longifolia L.) species against Ochlerotatus caspius (Pallas, 1771) (Diptera: Culicidae) are presented. The essential oils were obtained by hydrodistillation of the aerial parts of the plants in flowering period and repellency tests were done with a Y-tube olfactometer. All essential oils showed repellency in varying degrees and exhibited no significant time-dependent repellent activities. When all test oils compared for repellent activities there was no significant activity detected within 15 min exposure period. Mentha essential oils had better activity than Thymus essential oils, producing high repellency (73.8-84.2%) at 30th min on Oc. caspius. Mentha longifolia has the best mosquito repellent activity among the plants tested at the 25th min. Th. sipyleus subsp. sipyleus essential oil produced >85% repellent activity at the 15th min, but the effect decreased noticeably to 63.1% and 68% at 25th and 30th min, respectively.

  18. Foeniculum vulgare essential oils: chemical composition, antioxidant and antimicrobial activities.

    PubMed

    Miguel, Maria Graça; Cruz, Cláudia; Faleiro, Leonor; Simões, Mariana T F; Figueiredo, Ana Cristina; Barroso, José G; Pedro, Luis G

    2010-02-01

    The essential oils from Foeniculum vulgare commercial aerial parts and fruits were isolated by hydrodistillation, with different distillation times (30 min, 1 h, 2 h and 3 h), and analyzed by GC and GC-MS. The antioxidant ability was estimated using four distinct methods. Antibacterial activity was determined by the agar diffusion method. Remarkable differences, and worrying from the quality and safety point of view, were detected in the essential oils. trans-Anethole (31-36%), alpha-pinene (14-20%) and limonene (11-13%) were the main components of the essentials oil isolated from F. vulgare dried aerial parts, whereas methyl chavicol (= estragole) (79-88%) was dominant in the fruit oils. With the DPPH method the plant oils showed better antioxidant activity than the fruits oils. With the TBARS method and at higher concentrations, fennel essential oils showed a pro-oxidant activity. None of the oils showed a hydroxyl radical scavenging capacity > 50%, but they showed an ability to inhibit 5-lipoxygenase. The essential oils showed a very low antimicrobial activity. In general, the essential oils isolated during 2 h were as effective, from the biological activity point of view, as those isolated during 3 h.

  19. Use of rosemary, oregano, and a commercial blend of essential oils in broiler chickens: in vitro antimicrobial activities and effects on growth performance.

    PubMed

    Mathlouthi, N; Bouzaienne, T; Oueslati, I; Recoquillay, F; Hamdi, M; Urdaci, M; Bergaoui, R

    2012-03-01

    The present study was conducted to characterize the in vitro antimicrobial activities of 3 essential oils [oregano, rosemary, and a commercial blend of essential oils (BEO)] against pathogenic and nonpathogenic bacteria and to evaluate their effects on broiler chicken performances. The chemical composition of the essential oils was determined using the gas chromatography interfaced with a mass spectroscopy. The disc diffusion method, the minimum inhibitory concentration (MIC), and the minimum bactericidal concentration (MBC) were applied for the determination of antimicrobial activities of essential oils. In vivo study, a total of seven hundred fifty 1-d-old male broiler chickens were assigned to 6 dietary treatment groups: basal diet (control; CON), CON + 44 mg of avilamycin/kg (A), CON + 100 mg of rosemary essential oil/kg (ROS), CON + 100 mg of oregano essential oil/kg (OR), CON + 50 mg of rosemary and 50 mg of oregano essential oils/kg (RO), and CON + 1,000 mg of BEO/kg (essential oil mixture, EOM). The essential oils isolated from rosemary and oregano were characterized by their greater content of 1,8-cineole (49.99%) and carvacrol (69.55%), respectively. The BEO was mainly represented by the aldehyde (cinnamaldehyde) and the monoterpene (1,8-cineole) chemical groups. The results of the disc diffusion method indicated that the rosemary essential oil had antibacterial activity (P ≤ 0.05) against only 3 pathogenic bacteria, Escherichia coli (8 mm), Salmonella indiana (11 mm), and Listeria innocua (9 mm). The essential oil of oregano had antimicrobial activities (P ≤ 0.05) on the same bacteria as rosemary but also on Staphylococcus aureus (22 mm) and Bacillus subtilis (12 mm). Oregano essential oil had greater (P ≤ 0.05) antimicrobial activities against pathogenic bacteria than rosemary essential oil but they had no synergism between them. The BEO showed an increased antimicrobial activity (P ≤ 0.05) against all studied bacteria (pathogenic and nonpathogenic bacteria) except for Lactobacillus rhamnosus. The supplementation of the basal diet with avilamycin or essential oils improved (P ≤ 0.05) broiler chicken BW, BW gain, and G:F compared with the CON diet. There were no differences in growth performances among birds fed A, ROS, OR, RO, or EOM diets. In general, essential oils contained in rosemary, oregano, and BEO can substitute for growth promoter antibiotics. Although the 3 essential oils had different antimicrobial activities, they exhibited the same efficiency in broiler chickens.

  20. Antispasmodic activity of essential oil from Lippia dulcis Trev.

    PubMed

    Görnemann, T; Nayal, R; Pertz, H H; Melzig, M F

    2008-04-17

    To investigate the essential oil of Lippia dulcis Trev. (Verbenaceae) that is traditionally used in the treatment of cough, colds, bronchitis, asthma, and colic in Middle America for antispasmodic activity. We used a porcine bronchial bioassay to study contractile responses to carbachol and histamine in the absence or presence of the essential oil. The essential oil showed anti-histaminergic and anti-cholinergic activities at 100 microg/ml. The anti-histaminergic and anti-cholinergic activities of the essential oil of Lippia dulcis support the rational use of the plant or plant extracts to treat bronchospasm.

  1. Dual Bioactivities of Essential Oil Extracted from the Leaves of Artemisia argyi as an Antimelanogenic versus Antioxidant Agent and Chemical Composition Analysis by GC/MS

    PubMed Central

    Huang, Huey-Chun; Wang, Hsiao-Fen; Yih, Kuang-Hway; Chang, Long-Zen; Chang, Tsong-Min

    2012-01-01

    The study was aimed at investigating the antimelanogenic and antioxidant properties of essential oil when extracted from the leaves of Artemisia argyi, then analyzing the chemical composition of the essential oil. The inhibitory effect of the essential oil on melanogenesis was evaluated by a mushroom tyrosinase activity assay and B16F10 melanoma cell model. The antioxidant capacity of the essential oil was assayed by spectrophotometric analysis, and the volatile chemical composition of the essential oil was analyzed with gas chromatography-mass spectrometry (GC/MS). The results revealed that the essential oil significantly inhibits mushroom tyrosinase activity (IC50 = 19.16 mg/mL), down-regulates B16F10 intracellular tyrosinase activity and decreases the amount of melanin content in a dose-dependent pattern. Furthermore, the essential oil significantly scavenged 2,2-diphenyl-1-picryl-hydrazyl (DPPH) and 2,2′-azino-bis (3-ethylbenzthiazoline- 6-sulphonic acid) ABTS radicals, showed an apparent reduction power as compared with metal-ion chelating activities. The chemicals constituents in the essential oil are ether (23.66%), alcohols (16.72%), sesquiterpenes (15.21%), esters (11.78%), monoterpenes (11.63%), ketones (6.09%), aromatic compounds (5.01%), and account for a 90.10% analysis of its chemical composition. It is predicted that eucalyptol and the other constituents, except for alcohols, in the essential oil may contribute to its antioxidant activities. The results indicated that essential oil extracted from A. argyi leaves decreased melanin production in B16F10 cells and showed potent antioxidant activity. The essential oil can thereby be applied as an inhibitor of melanogenesis and could also act as a natural antioxidant in skin care products. PMID:23203088

  2. Dual bioactivities of essential oil extracted from the leaves of Artemisia argyi as an antimelanogenic versus antioxidant agent and chemical composition analysis by GC/MS.

    PubMed

    Huang, Huey-Chun; Wang, Hsiao-Fen; Yih, Kuang-Hway; Chang, Long-Zen; Chang, Tsong-Min

    2012-11-12

    The study was aimed at investigating the antimelanogenic and antioxidant properties of essential oil when extracted from the leaves of Artemisia argyi, then analyzing the chemical composition of the essential oil. The inhibitory effect of the essential oil on melanogenesis was evaluated by a mushroom tyrosinase activity assay and B16F10 melanoma cell model. The antioxidant capacity of the essential oil was assayed by spectrophotometric analysis, and the volatile chemical composition of the essential oil was analyzed with gas chromatography-mass spectrometry (GC/MS). The results revealed that the essential oil significantly inhibits mushroom tyrosinase activity (IC(50) = 19.16 mg/mL), down-regulates B16F10 intracellular tyrosinase activity and decreases the amount of melanin content in a dose-dependent pattern. Furthermore, the essential oil significantly scavenged 2,2-diphenyl-1-picryl-hydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) ABTS radicals, showed an apparent reduction power as compared with metal-ion chelating activities. The chemicals constituents in the essential oil are ether (23.66%), alcohols (16.72%), sesquiterpenes (15.21%), esters (11.78%), monoterpenes (11.63%), ketones (6.09%), aromatic compounds (5.01%), and account for a 90.10% analysis of its chemical composition. It is predicted that eucalyptol and the other constituents, except for alcohols, in the essential oil may contribute to its antioxidant activities. The results indicated that essential oil extracted from A. argyi leaves decreased melanin production in B16F10 cells and showed potent antioxidant activity. The essential oil can thereby be applied as an inhibitor of melanogenesis and could also act as a natural antioxidant in skin care products.

  3. Chemical composition and antimicrobial activity of Satureja hortensis and Trachyspermum copticum essential oil

    PubMed Central

    Mahboubi, M; Kazempour, N

    2011-01-01

    Background and Objectives The aim of this study was to evaluate the chemical composition and antimicrobial activity of Satureja hortensis and Trachyspermum copticum essential oils against different kinds of microorganisms in vitro. Material and Methods The antimicrobial activity was evaluated by micro broth dilution assay and the chemical composition of essential oils was analyzed by GC and GC/MS. Results Thymol, p-cymene, γ-terpinene and carvacrol were the main components of S. hortensis oil while thymol, γ-terpinene, and o-cymene were the major components of T. copticum oil. Two essential oils exhibited strong antimicrobial activity but the antimicrobial activity of T. copticum oil was higher than that of S. hortensis oil. Conclusion Thymol as a main component of oils plays an important role in antimicrobial activity. PMID:22530088

  4. Antimicrobial, antioxidant, and anti-inflammatory activities of essential oils from five selected herbs.

    PubMed

    Tsai, Mei-Lin; Lin, Chih-Chien; Lin, Wei-Chao; Yang, Chao-Hsun

    2011-01-01

    Eucalyptus bridgesiana, Cymbopogon martinii, Thymus vulgaris, Lindernia anagallis, and Pelargonium fragrans are five species of herbs used in Asia. Their essential oils were analyzed by GC-MS, and a total of 36 components were detected. The results of our study indicated that, except for the essential oil of P. fragrans, all of the essential oils demonstrated obvious antimicrobial activity against a broad range of microorganisms. The C. martinii essential oil, which is rich in geraniol, was the most effective antimicrobial additive. All of the essential oils demonstrated antioxidant activities on 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay, β-carotene/linoleic acid assay, and nitric oxide radical scavenging assay. Furthermore, the T. vulgaris essential oil, which possesses plentiful thymol, exhibited the highest antioxidant activity. For P. acnes-induced secretion of pro-inflammatory cytokines, the essential oils of P. aeruginosa, C. martinii, and T. vulgaris reduced the TNF-α, IL-1β, and IL-8 secretion levels of THP-1 cells.

  5. Chemical composition and antimicrobial activity of the essential oil of Tanacetum walteri (Anthemideae-Asteraceae) from Iran.

    PubMed

    Ghaderi, Airin; Sonboli, Ali

    2018-02-06

    The composition and antimicrobial activity of the essential oil of Tanacetum walteri were studied. Aerial flowering parts of plant were collected from North Khorasan Province of Iran and the essential oil was isolated by hydrodistillation and analysed by GC-FID and GC-MS. Antimicrobial activity of the essential oil was determined by disc diffusion and MIC and MBC determination. Thirty-five compounds were identified in the oil of T. walteri accounting for 94.4% of the total oil. Thymol (22.5%), 1,8-cineole (8.2%), umbellulone (6.9%), α-bisabolol (6.3%) and camphor (5.3%) were as the principal constituents. The highest antimicrobial activity of the essential oil was observed against Staphylococcus aureus, Enterococcus faecalis and Klebsiella pneumoniae with MIC value of 0.63 mg/mL. The inhibitory effect of the essential oil of T. walteri could be attributed mainly to the high levels of phenolic compound thymol and oxygenated terpenes in essential oil.

  6. Differential effects of selective frankincense (Ru Xiang) essential oil versus non-selective sandalwood (Tan Xiang) essential oil on cultured bladder cancer cells: a microarray and bioinformatics study.

    PubMed

    Dozmorov, Mikhail G; Yang, Qing; Wu, Weijuan; Wren, Jonathan; Suhail, Mahmoud M; Woolley, Cole L; Young, D Gary; Fung, Kar-Ming; Lin, Hsueh-Kung

    2014-01-01

    Frankincense (Boswellia carterii, known as Ru Xiang in Chinese) and sandalwood (Santalum album, known as Tan Xiang in Chinese) are cancer preventive and therapeutic agents in Chinese medicine. Their biologically active ingredients are usually extracted from frankincense by hydrodistillation and sandalwood by distillation. This study aims to investigate the anti-proliferative and pro-apoptotic activities of frankincense and sandalwood essential oils in cultured human bladder cancer cells. The effects of frankincense (1,400-600 dilutions) (v/v) and sandalwood (16,000-7,000 dilutions) (v/v) essential oils on cell viability were studied in established human bladder cancer J82 cells and immortalized normal human bladder urothelial UROtsa cells using a colorimetric XTT cell viability assay. Genes that responded to essential oil treatments in human bladder cancer J82 cells were identified using the Illumina Expression BeadChip platform and analyzed for enriched functions and pathways. The chemical compositions of the essential oils were determined by gas chromatography-mass spectrometry. Human bladder cancer J82 cells were more sensitive to the pro-apoptotic effects of frankincense essential oil than the immortalized normal bladder UROtsa cells. In contrast, sandalwood essential oil exhibited a similar potency in suppressing the viability of both J82 and UROtsa cells. Although frankincense and sandalwood essential oils activated common pathways such as inflammatory interleukins (IL-6 signaling), each essential oil had a unique molecular action on the bladder cancer cells. Heat shock proteins and histone core proteins were activated by frankincense essential oil, whereas negative regulation of protein kinase activity and G protein-coupled receptors were activated by sandalwood essential oil treatment. The effects of frankincense and sandalwood essential oils on J82 cells and UROtsa cells involved different mechanisms leading to cancer cell death. While frankincense essential oil elicited selective cancer cell death via NRF-2-mediated oxidative stress, sandalwood essential oil induced non-selective cell death via DNA damage and cell cycle arrest.

  7. Differential effects of selective frankincense (Ru Xiang) essential oil versus non-selective sandalwood (Tan Xiang) essential oil on cultured bladder cancer cells: a microarray and bioinformatics study

    PubMed Central

    2014-01-01

    Background Frankincense (Boswellia carterii, known as Ru Xiang in Chinese) and sandalwood (Santalum album, known as Tan Xiang in Chinese) are cancer preventive and therapeutic agents in Chinese medicine. Their biologically active ingredients are usually extracted from frankincense by hydrodistillation and sandalwood by distillation. This study aims to investigate the anti-proliferative and pro-apoptotic activities of frankincense and sandalwood essential oils in cultured human bladder cancer cells. Methods The effects of frankincense (1,400–600 dilutions) (v/v) and sandalwood (16,000–7,000 dilutions) (v/v) essential oils on cell viability were studied in established human bladder cancer J82 cells and immortalized normal human bladder urothelial UROtsa cells using a colorimetric XTT cell viability assay. Genes that responded to essential oil treatments in human bladder cancer J82 cells were identified using the Illumina Expression BeadChip platform and analyzed for enriched functions and pathways. The chemical compositions of the essential oils were determined by gas chromatography–mass spectrometry. Results Human bladder cancer J82 cells were more sensitive to the pro-apoptotic effects of frankincense essential oil than the immortalized normal bladder UROtsa cells. In contrast, sandalwood essential oil exhibited a similar potency in suppressing the viability of both J82 and UROtsa cells. Although frankincense and sandalwood essential oils activated common pathways such as inflammatory interleukins (IL-6 signaling), each essential oil had a unique molecular action on the bladder cancer cells. Heat shock proteins and histone core proteins were activated by frankincense essential oil, whereas negative regulation of protein kinase activity and G protein-coupled receptors were activated by sandalwood essential oil treatment. Conclusion The effects of frankincense and sandalwood essential oils on J82 cells and UROtsa cells involved different mechanisms leading to cancer cell death. While frankincense essential oil elicited selective cancer cell death via NRF-2-mediated oxidative stress, sandalwood essential oil induced non-selective cell death via DNA damage and cell cycle arrest. PMID:25006348

  8. The chemical composition, antimicrobial, and antioxidant activities of Pycnocycla spinosa and Pycnocyla flabellifolia essential oils.

    PubMed

    Mahboubi, Mohaddese; Mahdizadeh, Elaheh; Heidary Tabar, Rezvan

    2016-11-01

    The purpose of our study was to compare the chemical compositions and antimicrobial and antioxidant activities of Pycnocycla spinosa and Pycnocycla flabellifolia essential oils. cis-Asarone (62.5%) and widdra-2,4(14)-diene (9%) were the main components of P. spinosa aerial part essential oil, while elemicin (60.1%) and caryophyllene oxide (9.8%) were the main components of P. spinosa seed essential oil. α-Phellandrene (25.5%), p-cymene (15.3%), and limonene (13.3%) were found in P. flabellifolia essential oil. The inhibition zone diameters for P. flabellifolia essential oil were significantly higher than for the two other essential oils from P. spinosa (p<0.05). In broth dilution assay (µL/mL), the sensitive microorganism to Pycnocycla sp. (P. spinosa, P. flabellifolia) was Aspergillus niger, followed by Candida albicans. In 2,2-diphenyl-1-picrylhydrazyl (DPPH) system, P. spinosa aerial parts essential oil (IC50=548 µg/mL) had higher antioxidant activity than that of two other essential oils.

  9. Immunomodulatory activity of Zingiber officinale Roscoe, Salvia officinalis L. and Syzygium aromaticum L. essential oils: evidence for humor- and cell-mediated responses.

    PubMed

    Carrasco, Fábio Ricardo; Schmidt, Gustavo; Romero, Adriano Lopez; Sartoretto, Juliano Luiz; Caparroz-Assef, Silvana Martins; Bersani-Amado, Ciomar Aparecida; Cuman, Roberto Kenji Nakamura

    2009-07-01

    The immunomodulatory effect of ginger, Zingiber officinale (Zingiberaceae), sage, Salvia officinalis (Lamiaceae) and clove, Syzygium aromaticum (Myrtaceae), essential oils were evaluated by studying humor- and cell-mediated immune responses. Essential oils were administered to mice (once a day, orally, for a week) previously immunized with sheep red blood cells (SRBCs). Clove essential oil increased the total white blood cell (WBC) count and enhanced the delayed-type hypersensitivity (DTH) response in mice. Moreover, it restored cellular and humoral immune responses in cyclophosphamide-immunosuppressed mice in a dose-dependent manner. Ginger essential oil recovered the humoral immune response in immunosuppressed mice. Contrary to the ginger essential oil response, sage essential oil did not show any immunomodulatory activity. Our findings establish that the immunostimulatory activity found in mice treated with clove essential oil is due to improvement in humor- and cell-mediated immune response mechanisms.

  10. Anti-oxidant activity and major chemical component analyses of twenty-six commercially available essential oils.

    PubMed

    Wang, Hsiao-Fen; Yih, Kuang-Hway; Yang, Chao-Hsun; Huang, Keh-Feng

    2017-10-01

    This study analyzed 26 commercially available essential oils and their major chemical components to determine their antioxidant activity levels by measuring their total phenolic content (TPC), reducing power (RP), β-carotene bleaching (BCB) activity, trolox equivalent antioxidant capacity (TEAC), and 1,1-diphenyl-2-picrylhydrazyl free radical scavenging (DFRS) ability. The clove bud and thyme borneol essential oils had the highest RP, BCB activity levels, and TPC values among the 26 commercial essential oils. Furthermore, of the 26 essential oils, the clove bud and ylang ylang complete essential oils had the highest TEAC values, and the clove bud and jasmine absolute essential oils had the highest DFRS ability. At a concentration of 2.5 mg/mL, the clove bud and thyme borneol essential oils had RP and BCB activity levels of 94.56% ± 0.06% and 24.64% ± 0.03% and 94.58% ± 0.01% and 89.33% ± 0.09%, respectively. At a concentration of 1 mg/mL, the clove bud and thyme borneol essential oils showed TPC values of 220.00 ± 0.01 and 69.05 ± 0.01 mg/g relative to gallic acid equivalents, respectively, and the clove bud and ylang ylang complete essential oils had TEAC values of 809.00 ± 0.01 and 432.33 ± 0.01 μM, respectively. The clove bud and jasmine absolute essential oils showed DFRS abilities of 94.13% ± 0.01% and 78.62% ± 0.01%, respectively. Phenolic compounds of the clove bud, thyme borneol and jasmine absolute essential oils were eugenol (76.08%), thymol (14.36%) and carvacrol (12.33%), and eugenol (0.87%), respectively. The phenolic compounds in essential oils were positively correlated with the RP, BCB activity, TPC, TEAC, and DFRS ability. Copyright © 2017. Published by Elsevier B.V.

  11. Essential oil composition and antiradical activity of the oil of Iraq plants.

    PubMed

    Kiralan, Mustafa; Bayrak, Ali; Abdulaziz, Omar Fawzi; Ozbucak, Tuğba

    2012-01-01

    This study examined the antiradical activity and chemical composition of essential oils of some plants grown in Mosul, Iraq. The essential oils of myrtle and parsley seed contained α-pinene (36.08% and 22.89%, respectively) as main constituents. Trans-Anethole was the major compound found in fennel and aniseed oils (66.98% and 93.51%, respectively). The dominant constituent of celery seed oil was limonene (76.63%). Diallyl disulphide was identified as the major component in garlic oil (36.51%). Antiradical activity was higher in garlic oil (76.63%) and lower in myrtle oil (39.23%). The results may suggest that some essential oils from Iraq possess compounds with antiradical activity, and these oils can be used as natural antioxidants in food applications.

  12. Nematicidal activity of plant essential oils and components from coriander (Coriandrum sativum), Oriental sweetgum (Liquidambar orientalis), and valerian (Valeriana wallichii) essential oils against pine wood nematode (Bursaphelenchus xylophilus).

    PubMed

    Kim, Junheon; Seo, Sun-Mi; Lee, Sang-Gil; Shin, Sang-Chul; Park, Il-Kwon

    2008-08-27

    Commercial essential oils from 28 plant species were tested for their nematicidal activities against the pine wood nematode, Bursaphelenchus xylophilus. Good nematicidal activity against B. xylophilus was achieved with essential oils of coriander (Coriandrum sativum), Oriental sweetgum (Liquidambar orientalis), and valerian (Valeriana wallichii). Analysis by gas chromatography-mass spectrometry led to the identification of 26, 11, and 4 major compounds from coriander (Coriandrum sativum), Oriental sweetgum (Liquidambar orientalis), and valerian (Valeriana wallichii) oils, respectively. Compounds from each plant essential oil were tested individually for their nematicidal activities against the pine wood nematode. Among the compounds, benzaldehyde, trans-cinnamyl alcohol, cis-asarone, octanal, nonanal, decanal, trans-2-decenal, undecanal, dodecanal, decanol, and trans-2-decen-1-ol showed strong nematicidal activity. The essential oils described herein merit further study as potential nematicides against the pine wood nematode.

  13. Antifungal efficacy of plant essential oils against stored grain fungi of Fusarium spp.

    PubMed

    Kumar, Peeyush; Mishra, Sapna; Kumar, Atul; Sharma, Amit Kumar

    2016-10-01

    The control potential of seven plant essential oils was evaluated against Fusarium proliferatum (Matsushima) Nirenberg and Fusarium verticillioides Sheldon. The fungicidal activity was assessed through microtiter plate assay to determine the minimum inhibitory and fungicidal concentration of essential oils. The essential oil of Mentha arvensis was adjudged as best for inhibiting the fungal growth, while oil of Thymus vulgaris and Anethum graveolens showed high efficacy in terms of fungicidal activity. The oil of M. arvensis and T. vulgaris also showed good inhibition activity in agar disc diffusion assay. M. arvensis essential oil was analysed for its composition using gas chromatography/mass spectrometry revealing menthol (63.18 %), menthone (15.08 %), isomenthyl acetate (5.50 %) and limonene (4.31 %) as major components. Significant activity of M. arvensis essential oil against F. proliferatum and F. verticillioides isolates obtained, pave the way for its use as antifungal control agents.

  14. Essential oils chemical composition, antioxidant activities and total phenols of Astrodaucus persicus.

    PubMed

    Goodarzi, Saeid; Hadjiakhoondi, Abbas; Yassa, Narguess; Khanavi, Mahnaz; Tofighi, Zahra

    2016-02-01

    Astrodaucus persicus, Apiaceae, is used as vegetable or food additive in some parts of Iran. The essential oils of different parts of Astrodaucus persicus from Kordestan province were analyzed for the first time and compared with other regions. In this study, antioxidant activities and total phenols determination of aerial parts essential oils and root fractions of A. persicus were investigated. The essential oils were obtained by hydro-distillation from flowers/fruits, leaves/stems, ripe fruits and roots of plant and analyzed by GC-MS. Crude root extract was fractionated with hexane, chloroform, ethyl acetate and methanol. Antioxidant activities by DPPH and FRAP methods and total phenols by Folin-ciocalteu assay were measured. The abundant compounds of flowers/fruits blue essential oil were α-thujene, β-pinene and α-pinene. The predominant components of blue leaves/stems essential oil were α-thujene, α-pinene and α-fenchene. The major volatiles of ripe fruits blue essential oil were β-pinene, α-thujene and α-pinene. The chief compounds of root yellow essential oil were trans-caryophyllene, bicycogermacrene and germacrene-D. Total root extract and ethyl acetate fraction showed potent antioxidant activities and high amount of total phenols in comparison to other samples. Among volatile oils, the flowers/fruits essential oil showed potent reducing capacity. The major compounds of aerial parts essential oils were hydrocarbon monoterpenes while the chief percentage of roots essential oil constituents were hydrocarbon sesquiterpenes. α-Eudesmol and β-eudesmol were identified as responsible for creation of blue color in aerial parts essential oils. A. persicus was known as a potent antioxidant among Apiaceae.

  15. Chemical composition and antibacterial activity of methanolic extract and essential oil of Iranian Teucrium polium against some of phytobacteria.

    PubMed

    Purnavab, S; Ketabchi, S; Rowshan, V

    2015-01-01

    The antibacterial activity of essential oil and methanolic extract of Teucrium polium was determined against Pseudomonas aeruginosa, Pantoea agglomerans, Brenneria nigrifluens, Rhizobium radiobacter, Rhizobium vitis, Streptomyces scabies, Ralstonia solanacearum, Xanthomonas campestris and Pectobacterium cartovorum by disc diffusion method. Minimum inhibitory concentration and minimum bactericidal concentration were determined by using the serial dilution method. Chemical composition of essential oil and methanolic extract was determined by GC-MS and HPLC. α-Pinene (25.769%) and myrcene (12.507) were of the highest percentage in T. polium essential oil, and sinapic acid (15.553 mg/g) and eugenol (6.805 mg/g) were the major compounds in the methanolic extract. Our results indicate that both methanolic extract and essential oil did not show antibacterial activity against P. aeruginosa. Also the essential oil did not show antibacterial activity against P. cartovorum. In general, both methanolic extract and essential oil showed the same antibacterial activity against R. solanacearum, P. agglomerans, B. nigrifluens and S. scabies.

  16. Antibacterial activity and composition of essential oils from Pelargonium graveolens L'Her and Vitex agnus-castus L.

    PubMed

    Ghannadi, A; Bagherinejad, Mr; Abedi, D; Jalali, M; Absalan, B; Sadeghi, N

    2012-12-01

    Essential oils are volatile compounds that have been used since Middle Ages as antimicrobial, anti-inflammatory, sedative, local anesthetic and food flavoring agents. In the current study, essential oils of Pelargonium graveolens L'Her and Vitex agnus-castus L. were analyzed for their antibacterial activities. The chemical compositions of essential oils were characterized by GC-MS. Disc diffusion method was used to study antimicrobial activity. Inhibition zones showed that the essential oils of the two plants were active against all of the studied bacteria (except Listeria monocytogenes). The susceptibility of the strains changed with the dilution of essential oils in DMSO. The pure essential oils showed the most extensive inhibition zones and they were very effective antimicrobial compounds compared to chloramphenicol and amoxicillin. The most susceptible strain against these two essential oils was Staphylococcus aureus. It seems that β-citronellol is a prominent part of P. graveolens volatile oil and caryophyllene oxide is a famous and important part of V. agnus-castus volatile oil and their probable synergistic effect with other constituents are responsible for the antibacterial effects of these oils. However further studies must be performed to confirm the safety of these oils for use as antimicrobial agents and natural preservatives in different products.

  17. Chemical Composition and Antimicrobial Activity of the Essential Oil of Kumquat (Fortunella crassifolia Swingle) Peel

    PubMed Central

    Wang, Yong-Wei; Zeng, Wei-Cai; Xu, Pei-Yu; Lan, Ya-Jia; Zhu, Rui-Xue; Zhong, Kai; Huang, Yi-Na; Gao, Hong

    2012-01-01

    The aim of this study was to determine the main constituents of the essential oil isolated from Fortunella crassifolia Swingle peel by hydro-distillation, and to test the efficacy of the essential oil on antimicrobial activity. Twenty-five components, representing 92.36% of the total oil, were identified by GC-MS analysis. The essential oil showed potent antimicrobial activity against both Gram-negative (E. coli and S. typhimurium) and Gram-positive (S. aureus, B. cereus, B. subtilis, L. bulgaricus, and B. laterosporus) bacteria, together with a remarkable antifungal activity against C. albicans. In a food model of beef extract, the essential oil was observed to possess an effective capacity to control the total counts of viable bacteria. Furthermore, the essential oil showed strongly detrimental effects on the growth and morphological structure of the tested bacteria. It was suggested that the essential oil from Fortunella crassifolia Swingle peel might be used as a natural food preservative against bacteria or fungus in the food industry. PMID:22489157

  18. Inhibitory effects of some plant essential oils against Arcobacter butzleri and potential for rosemary oil as a natural food preservative.

    PubMed

    Irkin, Reyhan; Abay, Secil; Aydin, Fuat

    2011-03-01

    We investigated the inhibitory activity of commercially marketed essential oils of mint, rosemary, orange, sage, cinnamon, bay, clove, and cumin against Arcobacter butzleri and Arcobacter skirrowii and the effects of the essential oil of rosemary against A. butzleri in a cooked minced beef system. Using the disc diffusion method to determine the inhibitory activities of these plant essential oils against strains of Arcobacter, we found that those of rosemary, bay, cinnamon, and clove had strong inhibitory activity against these organisms, whereas the essential oils of cumin, mint, and sage failed to show inhibitory activity against most of the Arcobacter strains tested. The 0.5% (vol/wt) essential oil of rosemary was completely inhibitory against A. butzleri in the cooked minced beef system at 4°C. These essential oils may be further investigated as a natural solution to the food industry by creating an additional barrier (hurdle technology) to inhibit the growth of Arcobacter strains.

  19. ANTIMICROBIAL ACTIVITY OF BURSERA MORELENSIS RAMÍREZ ESSENTIAL OIL.

    PubMed

    M, Canales-Martinez; C R, Rivera-Yañez; J, Salas-Oropeza; H R, Lopez; M, Jimenez-Estrada; R, Rosas-Lopez; D A, Duran; C, Flores; L B, Hernandez; M A, Rodriguez-Monroy

    2017-01-01

    Bursera morelensis , known as "Aceitillo", is an endemic tree of Mexico. Infusions made from the bark of this species have been used for the treatment of skin infections and for their wound healing properties. In this work, we present the results of a phytochemical and antimicrobial investigation of the essential oil of B. morelensis . The essential oil was obtained by a steam distillation method and analyzed using GC-MS. The antibacterial and antifungal activities were evaluated. GC-MS of the essential oil demonstrated the presence of 28 compounds. The principal compound of the essential oil was a-Phellandrene (32.69%). The essential oil had antibacterial activity against Gram positive and negative strains. The most sensitive strains were S. pneumoniae , V. cholerae (cc) and E. coli (MIC 0.125 mg/mL, MBC 0.25 mg/mL). The essential oil was bactericidal for V. cholera (cc). The essential oil inhibited all the filamentous fungi. F. monilifome (IC 50 = 2.27 mg/mL) was the most sensitive fungal strain. This work provides evidence that confirms the antimicrobial activity of the B. morelensis essential oil and this is a scientific support about of traditional uses of this species.

  20. ANTIMICROBIAL ACTIVITY OF BURSERA MORELENSIS RAMÍREZ ESSENTIAL OIL

    PubMed Central

    M., Canales-Martinez; C.R., Rivera-Yañez; J., Salas-Oropeza; H.R., Lopez; M., Jimenez-Estrada; R., Rosas-Lopez; D.A., Duran; C., Flores; L.B., Hernandez; M.A., Rodriguez-Monroy

    2017-01-01

    Background: Bursera morelensis, known as “Aceitillo”, is an endemic tree of Mexico. Infusions made from the bark of this species have been used for the treatment of skin infections and for their wound healing properties. In this work, we present the results of a phytochemical and antimicrobial investigation of the essential oil of B. morelensis. Materials and Methods: The essential oil was obtained by a steam distillation method and analyzed using GC-MS. The antibacterial and antifungal activities were evaluated. Results: GC-MS of the essential oil demonstrated the presence of 28 compounds. The principal compound of the essential oil was a-Phellandrene (32.69%). The essential oil had antibacterial activity against Gram positive and negative strains. The most sensitive strains were S. pneumoniae, V. cholerae (cc) and E. coli (MIC 0.125 mg/mL, MBC 0.25 mg/mL). The essential oil was bactericidal for V. cholera (cc). The essential oil inhibited all the filamentous fungi. F. monilifome (IC50 = 2.27 mg/mL) was the most sensitive fungal strain. Conclusions: This work provides evidence that confirms the antimicrobial activity of the B. morelensis essential oil and this is a scientific support about of traditional uses of this species. PMID:28480418

  1. Chemical composition, antimicrobial and antioxidant activities of essential oils from organically cultivated fennel cultivars.

    PubMed

    Shahat, Abdelaaty A; Ibrahim, Abeer Y; Hendawy, Saber F; Omer, Elsayed A; Hammouda, Faiza M; Abdel-Rahman, Fawzia H; Saleh, Mahmoud A

    2011-02-01

    Essential oils of the fruits of three organically grown cultivars of Egyptian fennel (Foeniculum vulgare var. azoricum, Foeniculum vulgare var. dulce and Foeniculum vulgare var. vulgare) were examined for their chemical constituents, antimicrobial and antioxidant activities. Gas chromatography/mass spectrometry analysis of the essential oils revealed the presence of 18 major monoterpenoids in all three cultivars but their percentage in each oil were greatly different. trans-Anethole, estragole, fenchone and limonene were highly abundant in all of the examined oils. Antioxidant activities of the essential oils were evaluated using the DPPH radical scavenging, lipid peroxidation and metal chelating assays. Essential oils from the azoricum and dulce cultivars were more effective antioxidants than that from the vulgare cultivar. Antimicrobial activities of each oil were measured against two species of fungi, two species of Gram negative and two species of Gram positive bacteria. All three cultivars showed similar antimicrobial activity.

  2. Antimicrobial activity of blended essential oil preparation.

    PubMed

    Tadtong, Sarin; Suppawat, Supatcha; Tintawee, Anchalee; Saramas, Phanida; Jareonvong, Suchada; Hongratanaworakit, Tapanee

    2012-10-01

    Antimicrobial activities of two blended essential oil preparations comprising lavender oil, petigrain oil, clary sage oil, ylang ylang oil and jasmine oil were evaluated against various pathogenic microorganisms. Both preparations showed antimicrobial activity in the agar disc diffusion assay against the Gram-positive bacteria, Staphylococcus aureus ATCC6538 and S. epidermidis isolated strain, the fungus, Candida albicans ATCC10231, and the Gram-negative bacterium, Escherichia coli ATCC25922, but showed no activity against Pseudomonas aeruginosa ATCC9027. The minimum inhibitory concentration (MIC) of these preparations was evaluated. By the broth microdilution assay, preparation 1, comprising lavender oil, clary sage oil, and ylang ylang oil (volume ratio 3:4:3), exhibited stronger antimicrobial activity than preparation 2, which was composed of petigrain oil, clary sage oil, and jasmine oil (volume ratio 3:4:3). Moreover, the sum of the fractional inhibitory concentrations (Sigma fic) of preparation 1 expressed a synergistic antimicrobial effect against the tested microorganisms (Sigma fic

  3. Anti-Candida Activity of Bursera morelensis Ramirez Essential Oil and Two Compounds, α-Pinene and γ-Terpinene-An In Vitro Study.

    PubMed

    Rivera-Yañez, C Rebeca; Terrazas, L Ignacio; Jimenez-Estrada, Manuel; Campos, Jorge E; Flores-Ortiz, Cesar M; Hernandez, Luis B; Cruz-Sanchez, Tonatiuh; Garrido-Fariña, German I; Rodriguez-Monroy, Marco A; Canales-Martinez, M Margarita

    2017-12-05

    The candidiasis caused by C. albicans is a public health problem. The abuse of antifungals has contributed to the development of resistance. B. morelensis has demonstrated antibacterial and antifungal activities. In this work the activity of the essential oil of B. morelensis was evaluated and for its two pure compounds with analysis of the different mechanisms of pathogenesis important for C. albicans . The essential oil was obtained by the hydro-distillation method and analyzed using GC-MS. The anti- Candida activity was compared between to essential oil, α-Pinene and γ-Terpinene. GC-MS of the essential oil demonstrated the presence of 13 compounds. The essential oil showed antifungal activity against four C. albicans strains. The most sensitive strain was C. albicans 14065 (MFC 2.0 mg/mL and MIC 50 0.125 mg/mL) with α-Pinene and γ-Terpinene having MFCs of 4.0 and 16.0 mg/mL respectively. The essential oil inhibited the growth of the germ tube in 87.94% (8.0 mg/mL). Furthermore, it was observed that the essential oil diminishes the transcription of the gene INT1. This work provides evidence that confirms the anti- Candida activity of the B. morelensis essential oil and its effect on the growth of the germ tube and transcription of the gene INT1.

  4. Evaluation of the leishmanicidal and cytotoxic potential of essential oils derived from ten colombian plants.

    PubMed

    Sanchez-Suarez, Jf; Riveros, I; Delgado, G

    2013-01-01

    The leishmanicidal and cytotoxic activity of ten essential oils obtained from ten plant specimens were evaluated. Essential oils were obtained by the steam distillation of plant leaves without any prior processing. Cytotoxicity was tested on J774 macrophages and leishmanicidal activity was assessed against four species of Leishmania associated with cutaneous leishmaniasis. Seven essential oils exhibited activity against Leishmania parasites, five of which were toxic against J774 macrophages. Selectivity indices of >6 and 13 were calculated for the essential oils of Ocimum basilicum and Origanum vulgare, respectively. The essential oil of Ocimum basilicum was active against promastigotes of Leishmania and innocuous to J774 macrophages at concentrations up to 1600 µg/mL and should be further investigated for leishmanicidal activity in others in vitro and in vivo experimental models.

  5. Antimicrobial activity of the bioactive components of essential oils from Pakistani spices against Salmonella and other multi-drug resistant bacteria

    PubMed Central

    2013-01-01

    Background The main objective of this study was the phytochemical characterization of four indigenous essential oils obtained from spices and their antibacterial activities against the multidrug resistant clinical and soil isolates prevalent in Pakistan, and ATCC reference strains. Methods Chemical composition of essential oils from four Pakistani spices cumin (Cuminum cyminum), cinnamon (Cinnamomum verum), cardamom (Amomum subulatum) and clove (Syzygium aromaticum) were analyzed on GC/MS. Their antibacterial activities were investigated by minimum inhibitory concentration (MIC) and Thin-Layer Chromatography-Bioautographic (TLC-Bioautographic) assays against pathogenic strains Salmonella typhi (D1 Vi-positive), Salmonella typhi (G7 Vi-negative), Salmonella paratyphi A, Escherichia coli (SS1), Staphylococcus aureus, Pseudomonas fluorescens and Bacillus licheniformis (ATCC 14580). The data were statistically analyzed by using Analysis of Variance (ANOVA) and Least Significant Difference (LSD) method to find out significant relationship of essential oils biological activities at p <0.05. Results Among all the tested essential oils, oil from the bark of C. verum showed best antibacterial activities against all selected bacterial strains in the MIC assay, especially with 2.9 mg/ml concentration against S. typhi G7 Vi-negative and P. fluorescens strains. TLC-bioautography confirmed the presence of biologically active anti-microbial components in all tested essential oils. P. fluorescens was found susceptible to C. verum essential oil while E. coli SS1 and S. aureus were resistant to C. verum and A. subulatum essential oils, respectively, as determined in bioautography assay. The GC/MS analysis revealed that essential oils of C. cyminum, C. verum, A. subulatum, and S. aromaticum contain 17.2% cuminaldehyde, 4.3% t-cinnamaldehyde, 5.2% eucalyptol and 0.73% eugenol, respectively. Conclusions Most of the essential oils included in this study possessed good antibacterial activities against selected multi drug resistant clinical and soil bacterial strains. Cinnamaldehyde was identified as the most active antimicrobial component present in the cinnamon essential oil which acted as a strong inhibitory agent in MIC assay against the tested bacteria. The results indicate that essential oils from Pakistani spices can be pursued against multidrug resistant bacteria. PMID:24119438

  6. The synergistic effects of insecticidal essential oils and piperonyl butoxide on biotransformational enzyme activities in Aedes aegypti (Diptera: Culicidae).

    PubMed

    Waliwitiya, Ranil; Nicholson, Russell A; Kennedy, Christopher J; Lowenberger, Carl A

    2012-05-01

    The biochemical mechanisms underlying the increased toxicity of several plant essential oils (thymol, eugenol, pulegone, terpineol, and citronellal) against fourth instar of Aedes aegypti L. when exposed simultaneously with piperonyl butoxide (PBO) were examined. Whole body biotransformational enzyme activities including cytochrome P450-mediated oxidation (ethoxyresorufin O-dethylase [EROD]), glutathione S-transferase (GST), and beta-esterase activity were measured in control, essential oil-exposed only (single chemical), and essential oil + PBO (10 mg/liter) exposed larvae. At high concentrations, thymol, eugenol, pulegone, and citronellal alone reduced EROD activity by 5-25% 16 h postexposure. Terpineol at 10 mg/liter increased EROD activity by 5 +/- 1.8% over controls. The essential oils alone reduced GST activity by 3-20% but PBO exposure alone did not significantly affect the activity of any of the measured enzymes. All essential oils in combination with PBO reduced EROD activity by 58-76% and reduced GST activity by 3-85% at 16 h postexposure. This study indicates a synergistic interaction between essential oils and PBO in inhibiting the cytochrome P450 and GST detoxification enzymes in Ae. aegypti.

  7. Microwave-assisted hydrodistillation of essential oil from rosemary.

    PubMed

    Karakaya, Sibel; El, Sedef Nehir; Karagozlu, Nural; Sahin, Serpil; Sumnu, Gulum; Bayramoglu, Beste

    2014-06-01

    Effects of microwave assisted hydrodistillation (MAHD) and conventional hydrodistillation (HD) methods on yield, composition, specific gravity, refractive index, and antioxidant and antimicrobial activities of essential oil of Rosmarinus officinalis L were studied. The main aroma compounds of rosemary essential oil were found as 1,8-cineole and camphor. Trolox equivalent antioxidant capacity (TEAC) values for essential oils extracted by MAHD and HD were 1.52 mM/ml oil and 1.95 mM/ml oil, respectively. DPPH radical scavenging activity of the oils obtained by MAHD and HD were found as 60.55% and 51.04% respectively. Inhibitory effects of essential oils obtained by two methods on linoleic acid peroxidation were almost the same. Essential oils obtained by two methods inhibited growth of Esherichia coli O157:H7, Salmonella typhimurium NRRLE 4463 and Listeria monocytogenes Scott A with the same degree. However, inhibitory activity of essential oil obtained by MAHD on Staphylococcus aureus 6538P was stronger than that of obtained by HD (p < 0.05).

  8. The Composition, Antioxidant and Antibacterial Activities of Cold-Pressed and Distilled Essential Oils of Citrus paradisi and Citrus grandis (L.) Osbeck

    PubMed Central

    Ou, Ming-Chiu; Liu, Yi-Hsin; Sun, Yung-Wei; Chan, Chin-Feng

    2015-01-01

    The chemical composition and functional activities of cold-pressed and water distilled peel essential oils of Citrus paradisi (C. paradisi) and Citrus grandis (L.) Osbeck (C. grandis) were investigated in present study. Yields of cold-pressed oils were much higher than those of distilled oils. Limonene was the primary ingredient of essential oils of C. paradisi (cold 92.83%; distilled 96.06%) and C. grandis (cold 32.63%; distilled 55.74%). In addition, C. grandis oils obtained were rich in oxygenated or nitrogenated compounds which may be involved in reducing cardiovascular diseases or enhancing sleep effectiveness. The order of free radical scavenging activities of 4 citrus oils was distilled C. paradisi oil > cold-pressed C. paradisi oil > distilled C. grandis oil > cold-pressed C. grandis oil. Cold-pressed C. grandis oil exhibited the lowest activity in all antioxidative assays. The order of antimicrobial activities of 4 citrus oils was distilled C. grandis oil, cold-pressed C. paradisi oil > distilled C. paradisi oil > cold-pressed C. paradisi oil. Surprisingly, distilled C. grandis oil exhibited better antimicrobial activities than distilled C. paradisi oil, especially against Escherichia coli and Salmonella enterica subsp. The results also indicated that the antimicrobial activities of essential oils may not relate to their antioxidative activities. PMID:26681970

  9. Chemical Composition and In Vitro Antioxidant, Cytotoxic, Antimicrobial, and Larvicidal Activities of the Essential Oil of Mentha piperita L. (Lamiaceae)

    PubMed Central

    da Silva Ramos, Ryan; Rodrigues, Alex Bruno Lobato; Farias, Ana Luzia Ferreira; Simões, Ranggel Carvalho; Pinheiro, Mayara Tânia; Ferreira, Ricardo Marcelo dos Anjos; Costa Barbosa, Ledayane Mayana; Picanço Souto, Raimundo Nonato; Fernandes, João Batista

    2017-01-01

    The essential oil was obtained by hydrodistillation and the identification and quantification of components were achieved with the use of GC-MS analysis. The antioxidant activity was evaluated by the method of sequestration of DPPH. Essential oils were used for study the cytotoxic front larvae of Artemia salina. In the evaluation of the antimicrobial activity of essential oils, we employed the disk-diffusion method. The potential larvicide in mosquito larvae of the third stage of development of Aedes aegypti to different concentrations of essential oils was evaluated. The major compounds found in the essential oils of M. piperita were linalool (51.8%) and epoxyocimene (19.3%). The percentage of antioxidant activity was 79.9 ± 1.6%. The essential oil showed LC50 = 414.6 μg/mL front of A. saline and is considered highly toxic. It shows sensitivity and halos significant inhibition against E. coli. The essential possessed partial larvicidal efficiency against A. aegypti. PMID:28116346

  10. Antimicrobial and antioxidant activity of essential oil and different plant extracts of Psidium cattleianum Sabine.

    PubMed

    Scur, M C; Pinto, F G S; Pandini, J A; Costa, W F; Leite, C W; Temponi, L G

    2016-02-01

    The goals of the study were to determinethe antimicrobial and antioxidant activities of essential oil and plant extracts aqueous and ethanolic of Psidium cattleianum Sabine; the chemical composition of the essential oil of P. cattleianum; and the phytochemical screening of aqueous and ethanolic extracts of the same plant. Regarding the antimicrobial activity, the ethanolic extract exhibited moderate antimicrobial activity with respect to bacteria K. pneumoniae and S. epidermidis, whereas, regarding other microorganisms, it showed activity considered weak. The aqueous extract and the essential oil showed activity considered weak, although they inhibited the growth of microorganisms. About the antioxidant potential, the ethanolic and aqueous extracts exhibited a scavenging index exceeding 90%, while the essential oil didn´t show significant antioxidant activity. Regarding the phytochemical composition, the largest class of volatile compounds identified in the essential oil of P. cattleianum included the following terpenic hydrocarbons: α-copaene (22%); eucalyptol (15%), δ-cadinene (9.63%) and α-selinene (6.5%). The phytochemical screening of extracts showed the presence of tannins, flavonoids, and triterpenoids for aqueous and ethanolic extracts. The extracts and essential oils inhibit the growth of microrganisms and plant extracts showed significant antioxidant activity. Also, the phytochemical characterization of the essential oil showed the presence of compounds interest commercial, as well as extracts showed the presence of important classes and compounds with biological activities.

  11. Chemotaxonomic Characterization and in-Vitro Antimicrobial and Cytotoxic Activities of the Leaf Essential Oil of Curcuma longa Grown in Southern Nigeria

    PubMed Central

    Essien, Emmanuel E.; Newby, Jennifer Schmidt; Walker, Tameka M.; Setzer, William N.; Ekundayo, Olusegun

    2015-01-01

    Curcuma longa (turmeric) has been used in Chinese traditional medicine and Ayurvedic medicine for many years. Methods: The leaf essential oil of C. longa from southern Nigeria was obtained by hydrodistillation and analyzed by gas chromatography–mass spectrometry (GC-MS). The essential oil was screened for in vitro antibacterial, antifungal, and cytotoxic activities. The major components in C. longa leaf oil were ar-turmerone (63.4%), α-turmerone (13.7%), and β-turmerone (12.6%). A cluster analysis has revealed this to be a new essential oil chemotype of C. longa. The leaf oil showed notable antibacterial activity to Bacillus cereus and Staphylococcus aureus, antifungal activity to Aspergillus niger, and cytotoxic activity to Hs 578T (breast tumor) and PC-3 (prostate tumor) cells. The ar-turmerone-rich leaf essential oil of C. longa from Nigeria has shown potent biological activity and therapeutic promise. PMID:28930216

  12. Chemical composition, antimicrobial and insecticidal activities of the essential oils of Conyza linifolia and Chenopodium ambrosioides.

    PubMed

    Harraz, Fathalla M; Hammoda, Hala M; El Ghazouly, Maged G; Farag, Mohamed A; El-Aswad, Ahmed F; Bassam, Samar M

    2015-01-01

    Two essential oil-containing plants growing wildly in Egypt: Conyza linifolia (Willd.) Täckh. (Asteraceae) and Chenopodium ambrosioides L. (Chenopodiaceae) were subjected to essential oil analysis and biological investigation. The essential oils from both plants were prepared by hydrodistillation, and GC/MS was employed for volatiles profiling. This study is the first to perform GC/MS analysis of C. linifolia essential oil growing in Egypt. C. linifolia essential oil contained mainly sesquiterpenes, while that of C. ambrosioides was rich in monoterpenes. Ascaridole, previously identified as the major component of the latter, was found at much lower levels. In addition, the oils were investigated for their antimicrobial activity against two Gram positive and two Gram negative bacteria, and one fungus. The insecticidal activities of both oils, including mosquitocidal and pesticidal potentials, were also evaluated. The results of biological activities encourage further investigation of the two oils as antimicrobial and insecticidal agents of natural origin.

  13. The antibacterial and antifungal activity of essential oils extracted from Guatemalan medicinal plants.

    PubMed

    Miller, Andrew B; Cates, Rex G; Lawrence, Michael; Soria, J Alfonso Fuentes; Espinoza, Luis V; Martinez, Jose Vicente; Arbizú, Dany A

    2015-04-01

    Essential oils are prevalent in many medicinal plants used for oral hygiene and treatment of diseases. Medicinal plant species were extracted to determine the essential oil content. Those producing sufficient oil were screened for activity against Staphylococcus aureus, Escherichia coli, Streptococcus mutans, Lactobacillus acidophilus, and Candida albicans. Plant samples were collected, frozen, and essential oils were extracted by steam distillation. Minimum inhibitory concentrations (MIC) were determined using a tube dilution assay for those species yielding sufficient oil. Fifty-nine of the 141 plant species produced sufficient oil for collection and 12 species not previously reported to produce essential oils were identified. Essential oil extracts from 32 species exhibited activity against one or more microbes. Oils from eight species were highly inhibitory to S. mutans, four species were highly inhibitory to C. albicans, and 19 species yielded MIC values less than the reference drugs. RESULTS suggest that 11 species were highly inhibitory to the microbes tested and merit further investigation. Oils from Cinnamomum zeylanicum Blume (Lauraceae), Citrus aurantiifolia (Christm.) Swingle (Rutaceae), Lippia graveolens Kunth (Verbenaceae), and Origanum vulgare L. (Lamiaceae) yielded highly significant or moderate activity against all microbes and have potential as antimicrobial agents. Teas prepared by decoction or infusion are known methods for extracting essential oils. Oils from 11 species were highly active against the microbes tested and merit investigation as to their potential for addressing health-related issues and in oral hygiene.

  14. Thymbra capitata essential oil as potential therapeutic agent against Gardnerella vaginalis biofilm-related infections.

    PubMed

    Machado, Daniela; Gaspar, Carlos; Palmeira-de-Oliveira, Ana; Cavaleiro, Carlos; Salgueiro, Lígia; Martinez-de-Oliveira, José; Cerca, Nuno

    2017-04-01

    To evaluate the antibacterial activity of Thymbra capitata essential oil and its main compound, carvacrol, against Gardnerella vaginalis grown planktonically and as biofilms, and its effect of vaginal lactobacilli. Minimal inhibitory concentration, minimal lethal concentration determination and flow cytometry analysis were used to assess the antibacterial effect against planktonic cells. Antibiofilm activity was measured through quantification of biomass and visualization of biofilm structure by confocal laser scanning microscopy. T. capitata essential oil and carvacrol exhibited a potent antibacterial activity against G. vaginalis cells. Antibiofilm activity was more evident with the essential oil than carvacrol. Furthermore, vaginal lactobacilli were significantly more tolerant to the essential oil. T. capitata essential oil stands up as a promising therapeutic agent against G. vaginalis biofilm-related infections.

  15. Antibacterial and Antioxidant Activities of Essential Oils from Artemisia herba-alba Asso., Pelargonium capitatum × radens and Laurus nobilis L.

    PubMed Central

    Rafiq, Ragina; Hayek, Saeed A.; Anyanwu, Ugochukwu; Hardy, Bonita I.; Giddings, Valerie L.; Ibrahim, Salam A.; Tahergorabi, Reza; Kang, Hye Won

    2016-01-01

    Essential oils are natural antimicrobials that have the potential to provide a safer alternative to synthetic antimicrobials currently used in the food industry. Therefore, the aim of this study was to evaluate the antimicrobial and antioxidant activities of essential oils from white wormwood, rose-scented geranium and bay laurel against Salmonella typhimurium and Escherichia coli O157:H7 on fresh produce and to examine consumer acceptability of fresh produce treated with these essential oils. Our results showed that essential oil derived from rose-scented geranium exhibited the most effective antimicrobial activity at the same and similar minimum inhibition concentration levels (0.4%, v/v and 0.4% and 0.5%, v/v) respectively against Salmonella typhimurium and Escherichia coli O157:H7. All three essential oils showed antioxidant properties, with the highest activity occurring in bay laurel essential oil. In a sensory test, tomatoes, cantaloupe and spinach sprayed with 0.4% rose-scented geranium essential oil received higher scores by panelists. In conclusion, rose-scented geranium essential oil could be developed into a natural antimicrobial to prevent contamination of Salmonella typhimurium and Escherichia coli O157:H7 in fresh produce, plus this oil would provide additional health benefits due to the antioxidant properties of its residue. PMID:28231123

  16. [Study on material basis of essential oil from Yin Teng Gu Bi Kang prescription on activating blood circulation].

    PubMed

    Wang, Yuan-Qing; Yan, Jian-Ye; Gong, Li-Min; Luo, Kun; Li, Shun-Xiang; Yang, Yan-Tao; Xie, Yu

    2014-08-01

    To explore the component difference of the serum containing essential oil from Yin Teng Gu Bi Kang prescription in pathologic and physiologic rat models, and to reveal the material basis of its efficacy of activating blood circulation. The essential oils were obtained by CO2 supercritical fluid extraction and the ingredients of the essential oils in vitro and in vivo (under physiological and pathological status) were analyzed by GC-MS to compare differences of the essential oil under physiological and pathological status in rats. 32 components were identified with the main components of Z-ligustilide (39.23%) and d-limonene (21.7%) in the essential oil. In vivo analysis on the essential oil indicated that 16 components were identified, 7 existed originally in essential oil and 9 were metabolites under physiological status; while 22 components were identified, 10 existed originally in essential oil and 12 were metabolites under pathological status (acute blood stasis). There were 7 common prototypes and 8 common metabolites under different physiological status. The absorption and metabolism of essential oils were affected by blood stasis and the compounds migrating to blood may be the effective substance in activating blood circulation.

  17. Chemical composition, antioxidant and antimicrobial activity of the essential oil from the leaves of Macleaya cordata (Willd) R. Br.

    PubMed

    Li, Chun-Mei; Yang, Xiao-Yong; Zhong, Yi-Rong; Yu, Jian-Ping

    2016-01-01

    The essential oil from the leaves of Macleaya cordata R.Br. obtained by hydrodistillation was analysed by gas chromatography/mass spectrometry. Sixty-eight compounds consisting of up to 92.53% of the essential oil were identified. Antioxidant activities of the essential oil were evaluated by using DPPH radical scavenging and β-carotene-linoleic acid assays. The essential oil showed moderate antioxidant activity. In addition, the essential oil exhibited potential antimicrobial activity against all tested microorganisms, with diameters of inhibition zones ranging from 8.7 ± 0.5 to 17.2 ± 1.2 mm and minimum inhibitory concentration values from 125 to 500 μg/mL. We selected the most sensitive bacterium Staphylococcus aureus as model to observe of the action of essential oils of M. cordata on the membrane structure by scanning electron microscopy. The treated cell membranes were damaged severely. The results presented here indicate that the essential oil of M. cordata may be potential sources of antioxidant and antimicrobial agents in the future.

  18. Analysis of Indonesian Spice Essential Oil Compounds That Inhibit Locomotor Activity in Mice

    PubMed Central

    Muchtaridi; Diantini, Adjeng; Subarnas, Anas

    2011-01-01

    Some fragrance components of spices used for cooking are known to have an effect on human behavior. The aim of this investigation was to examine the effect of the essential oils of basil (Ocimum formacitratum L.) leaves, lemongrass (Cymbopogon citrates L.) herbs, ki lemo (Litsea cubeba L.) bark, and laja gowah (Alpinia malaccencis Roxb.) rhizomes on locomotor activity in mice and identify the active component(s) that might be responsible for the activity. The effect of the essential oils was studied by a wheel cage method and the active compounds of the essential oils were identified by GC/MS analysis. The essential oils were administered by inhalation at doses of 0.1, 0.3, and 0.5 mL/cage. The results showed that the four essential oils had inhibitory effects on locomotor activity in mice. Inhalation of the essential oils of basil leaves, lemongrass herbs, ki lemo bark, and laja gowah rhizomes showed the highest inhibitory activity at doses of 0.5 (57.64%), 0.1 (55.72%), 0.5 (60.75%), and 0.1 mL/cage (47.09%), respectively. The major volatile compounds 1,8-cineole, α-terpineol, 4-terpineol, citronelol, citronelal, and methyl cinnamate were identified in blood plasma of mice after inhalation of the four oils. These compounds had a significant inhibitory effect on locomotion after inhalation. The volatile compounds of essential oils identified in the blood plasma may correlate with the locomotor-inhibiting properties of the oil when administered by inhalation.

  19. Antifungal activity of Piper diospyrifolium Kunth (Piperaceae) essential oil

    PubMed Central

    Vieira, Silvia Cristina Heredia; de Paulo, Luis Fernando; Svidzinski, Terezinha Inez Estivaleti; Dias Filho, Benedito Prado; Nakamura, Celso Vataru; de Souza, Amanda; Young, Maria Cláudia Marx; Cortez, Diógenes Aparício Garcia

    2011-01-01

    In vitro activity of the essential oil from Piper diospyrifolium leaves was tested using disk diffusion techniques. The antifungal assay showed significant potencial antifungal activity: the oil was effective against several clinical fungal strains. The majority compounds in the essential oil were identified as sesquiterpenoids by GC-MS and GC-FID techniques. PMID:24031717

  20. Antifungal activity of essential oils of Croton species from the Brazilian Caatinga biome.

    PubMed

    Fontenelle, R O S; Morais, S M; Brito, E H S; Brilhante, R S N; Cordeiro, R A; Nascimento, N R F; Kerntopf, M R; Sidrim, J J C; Rocha, M F G

    2008-05-01

    To find new antifungal agents among essential oils from Brazilian Croton species. Plant leaves were steam distilled and the obtained essential oils were analyzed by gas chromatography/mass spectroscopy. The main constituents were estragole and anethole for Croton zehntneri, methyl-eugenol and bicyclogermacrene for Croton nepetaefolius and spathulenol and bicyclogermacrene for Croton argyrophylloides. The antifungal activity of essential oils was evaluated against Candida albicans, Candida tropicalis and Microsporum canis by the agar-well diffusion method and the minimum inhibitory concentration (MIC) by the broth microdilution method. Essential oils of Croton species demonstrated better activity against M. canis. Among the three plants C. argyrophylloides showed the best results, with MIC ranging from 9 to 19 microg ml(-1). The acute administration of the essential oil up to 3 g kg(-1) by the oral route to mice was devoid of overt toxicity. The studied essential oils are active in vitro against the dermatophyte M. canis and present relative lack of acute toxicity in vivo. Because of its antifungal activity and low toxicity, the essential oils of studied Croton species are promising sources for new phytotherapeutic agents to treat dermatophytosis.

  1. Anti-microbial screening and cytotoxic activity of aerial part of Thymelaea hirsuta L. essential oil growing in south-west Tunisia.

    PubMed

    Felhi, Samir; Chaaibia, Mouna; Bakari, Sana; Mansour, Riadh Ben; Békir, Ahmed; Gharsallah, Néji; Kadri, Adel

    2017-01-01

    This study aimed to investigate the antimicrobial and cytotoxic activities of essential oil isolated by the hydro-distillation of aerial parts of Thymelaea hirsuta. The antimicrobial activity of the oil was evaluated against eight bacterial and three fungal pathogenic strains. The results revealed that the essential oil exhibited a moderate-to-potent anti-microbial activity against all the microorganisms tested. Gram-positive bacteria were noted to be more sensitive to the oil than gram-negative bacteria and yeasts. In vitro cytotoxicity evaluation against HeLa cell lines showed that the essential oil exhibited moderate cytotoxicity on human tumor cells, with a high IC 50 value of 175μg/mL. To the author's knowledge, this is the first study reporting on the antimicrobial and cytotoxic activities of Thymelaea hirsuta essential oil. Overall, the results indicate that the T. hirsuta essential oil has a number of attractive properties that might open new promising opportunities for the control or prevention of a wide range of microbial infections and cancers and can facilitate the use of essential oils as natural preservatives against spoilage microorganisms in food systems.

  2. Microbicide activity of clove essential oil (Eugenia caryophyllata)

    PubMed Central

    Nuñez, L.; Aquino, M. D’

    2012-01-01

    Clove essential oil, used as an antiseptic in oral infections, inhibits Gram-negative and Gram-positive bacteria as well as yeast. The influence of clove essential oil concentration, temperature and organic matter, in the antimicrobial activity of clove essential oil, was studied in this paper, through the determination of bacterial death kinetics. Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa were the microorganisms selected for a biological test. To determine the temperature effect, they were assayed at 21° and 37° C. The concentration coefficient was determined with 0.4%, and 0.2% of essential oil. The influence of the presence of organic matter was determined with 0.4% of essential oil. The results obtained demonstrated that Escherichia coli were more sensitive even though the essential oil exerted a satisfactory action in three cases. In the three microbial species, 0.4% of essential oil at 21° C have reduced the bacterial population in 5 logarithmic orders. Organic matter reduces the antibacterial activity even though the bactericide efficacy was not lost. Clove essential oil can be considered as a potential antimicrobial agent for external use PMID:24031950

  3. Repellant and insecticidal activities of shyobunone and isoshyobunone derived from the essential oil of Acorus calamus rhizomes.

    PubMed

    Chen, Hai-Ping; Yang, Kai; Zheng, Li-Shi; You, Chun-Xue; Cai, Qian; Wang, Cheng-Fang

    2015-01-01

    It was found that the essential oil of Acorus calamus rhizomes showed insecticidal activity. The aim of this study was to determine the chemical composition of the essential oil from A. calamus rhizomes, evaluate insecticidal and repellant activity against Lasioderma serricorne (LS) and Tribolium castaneum (TC), and to isolate any insecticidal constituents from the essential oil. Essential oil from A. calamus was obtained by hydrodistillation and analyzed by gas chromatography (GC) flame ionization detector and GC-mass spectrometry. The insecticidal and repellant activity of the essential oil and isolated compounds was tested using a variety of methods. The main components of the essential oil were identified to be isoshyobunone (15.56%), β-asarone (10.03%), bicyclo[6.1.0]non-1-ene (9.67%), shyobunone (9.60%) and methylisoeugenol (6.69%). Among them, the two active constituents were isolated and identified as shyobunone and isoshyobunone. The essential oil showed contact toxicity against LS and TC with LD50 values of 14.40 and 32.55 μg/adult, respectively. The isolated compounds, shyobunone and isoshyobunone also exhibited strong contact toxicity against LS adults with LD50 values of 20.24 and 24.19 μg/adult, respectively, while the LD50 value of isoshyobunone was 61.90 μg/adult for TC adults. The essential oil, shyobunone and isoshyobunone were strongly repellent (98%, 90% and 94%, respectively, at 78.63 nL/cm(2), after 2 h treatment) against TC. The essential oil, shyobunone and isoshyobunone possessed insecticidal and repellant activity against LS and TC.

  4. Chemical composition and antifungal activity of the essential oils of Schinus weinmannifolius collected in the spring and winter.

    PubMed

    Hernandes, Camila; Taleb-Contini, Silvia H; Bartolomeu, Ana Carolina D; Bertoni, Bianca W; França, Suzelei C; Pereira, Ana Maria S

    2014-09-01

    Reports on the chemical and pharmacological profile of the essential oil of Schinus weinmannifolius do not exist, although other Schinus species have been widely investigated for their biological activities. This work aimed to evaluate the chemical composition and antimicrobial activity of the essential oil of S. weinmannifolius collected in the spring and winter. The essential oils were extracted by hydrodistillation, analyzed by GC/MS and submitted to microdilution tests, to determine the minimum inhibitory concentration. The oils displayed different chemical composition and antimicrobial action. Bicyclogermacrene and limonene predominated in the oils extracted in the winter and spring, respectively, whereas only the latter oil exhibited antifungal activity.

  5. Chemical composition, in vitro antitumor and pro-oxidant activities of Glandora rosmarinifolia (Boraginaceae) essential oil.

    PubMed

    Poma, Paola; Labbozzetta, Manuela; Notarbartolo, Monica; Bruno, Maurizio; Maggio, Antonella; Rosselli, Sergio; Sajeva, Maurizio; Zito, Pietro

    2018-01-01

    The biological properties of essential oils have been demonstrated in the treatment of several diseases and to enhance the bioavailability of other drugs. In natural habitats the essential oils compounds may play important roles in the protection of the plants as antibacterials, antivirals, antifungals, insecticides and also against herbivores by reducing their appetite for such plants or by repelling undesirable others. We analyzed by gas-chromatography mass spectrometry the chemical composition of the essential oil of aerial parts of Glandora rosmarinifolia (Ten.) D.C. Thomas obtained by hydrodistillation and verified some biological activities on a panel of hepatocellular carcinoma cell lines (HA22T/VGH, HepG2, Hep3B) and triple negative breast cancer cell lines (SUM 149, MDA-MB-231). In the essential oil we detected 35 compounds. The results of the biological assays indicate that essential oil of G. rosmarinifolia induces cell growth inhibition at concentration-dependent way in all cell line models. This oil does not seem to possess antioxidant activity, while the cytotoxicity of G. rosmarinifolia essential oil appeared to involve, at least in part, a pro-oxidant mechanism. Our results show for the first time the antitumoral and pro-oxidant activities of G. rosmarinifolia essential oil and suggest that it may represent a resource of pharmacologically active compounds.

  6. Essential Oil Yield Pattern and Antibacterial and Insecticidal Activities of Trachyspermum ammi and Myristica fragrans.

    PubMed

    Soni, Rajgovind; Sharma, Gaurav; Jasuja, Nakuleshwar Dut

    2016-01-01

    Two Indian spices, Trachyspermum ammi and Myristica fragrans, were studied for their essential oil (EO) yielding pattern, insecticidal activity, antibacterial activity, and composition. The essential oils (EOs) of T. ammi (1.94 ± 30 mL/100 gm) and M. fragrans (5.93 ± 90 mL/100 gm) were extracted using hydrodistillation method. In Gas Chromatography analysis, the beta-pinene, alpha-pinene, alpha-p-menth-1-en-4-ol, Limonene, and elemicin were found as major constituents of T. ammi essential oil whereas M. fragrans essential oil mostly contains Gamma-Terpinolene, p-Cymene, Thymol, and beta-pinene. The insecticidal activities of EO were demonstrated using LC50 values against Plodia interpunctella and EO of T. ammi was found comparatively more effective than EO of M. fragrans. Further, individual EO and combination of essential oil were examined for antibacterial activity against three Gram (-) bacterial strains (E. coli-MTCC 443, P. vulgaris-MTCC 1771, and K. pneumoniae-MTCC number 7028) and three Gram (+) bacterial strains (S. aureus-MTCC 3381, B. subtilis-MTCC 10619, and B. megaterium-MTCC 2412) by well agar diffusion method. The essential oil in combination (CEO) exhibited higher antibacterial activity as compared with individual essential oils.

  7. Antibacterial activity of essential oils of edible spices, Ocimum canum and Xylopia aethiopica.

    PubMed

    Vyry Wouatsa, N A; Misra, Laxminarain; Venkatesh Kumar, R

    2014-05-01

    The essential oils of 2 Cameroonian spices, namely, Xylopia aethiopica and Ocimum canum, were chemically investigated and screened for their antibacterial activity. The essential oils were analyzed by means of GC, GC/MS, and NMR. X. aethiopica oil contained myrtenol (12%), a monoterpenoid in highest concentration. The essential oil of O. canum belonged to the known linalool (44%) rich chemotype. The results of the antibacterial screening against the food spoiling bacteria revealed a significant and broad spectrum of activity for these essential oils. The present material of X. aethiopica, which is having myrtenol in relatively higher concentration, has shown moderate antibacterial activity. The bioassay-guided fractionation of Ocimum canum oil through flash chromatography showed that minor compounds, namely, α-terpineol, chavicol, chavibetol, and trans-p-mentha-2,8-dien-ol, significantly contributed for the overall activity observed. Hence, these results evidenced the possible potential of the essential oil of O. canum as a suitable antibacterial for controlling food-borne pathogens whereas the X. aethiopica oil has moderate possibility. There is a strong global demand for the microbe-free, safe, and healthy foods. In this study, we showed that the essential oil of O. canum (wild basil) can be used as antibacterial for food items. Also, we showed that a value addition in the antibacterial potential of O. canum oil can be done by processing the essential oil through flash chromatographic separations. © 2014 Institute of Food Technologists®

  8. In Vitro Study of the Antifungal Activity of Essential Oils Obtained from Mentha spicata, Thymus vulgaris, and Laurus nobilis.

    PubMed

    Houicher, Abderrahmane; Hechachna, Hind; Teldji, Hanifa; Ozogul, Fatih

    2016-01-01

    The aim of this study was to determine the antifungal activity of the essential oils isolated from three aromatic plants against 13 filamentous fungal strains. The major constituents of Mentha spicata, Thymus vulgaris, and Laurus nobilis essential oils were carvone (52.2%), linalool (78.1%), and 1,8-cineole (45.6%), respectively. There are also some patents suggesting the use of essential oils as natural and safe alternatives to fungicides for plant protection. In the present work, M. spicata essential oil exhibited the strongest activity against all tested fungi in which Fusarium graminearum, F.moniliforme, and Penicillium expansum were the most sensitive to mint oil with lower minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) values of 2.5 μL mL-1 (v/v). Thymus vulgaris essential oil was less active compared to the oil of M. spicata. Aspergillus ochraceus was the most sensitive strain to thyme oil with MIC and MFC values of 2.5 and 5 μL mL-1, respectively. Thymus vulgaris essential oil also exhibited a moderate fungicidal effect against the tested fungi, except for A. niger (MFC >20 μL-1). L. nobilis essential oil showed a similar antifungal activity with thyme oil in which A. parasiticus was the most resistant strain to this oil (MFC >20 μL mL-1). Our findings suggested the use of these essential oils as alternatives to synthetic fungicides in order to prevent pre-and post-harvest infections and ensure product safety. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Acetylcholinesterase inhibition and antioxidant activity of essential oils from Schinus areira L. and Schinus longifolia (Lindl.) Speg.

    PubMed

    Murray, Ana P; Gurovic, Maria S Vela; Rodriguez, Silvana A; Murray, María G; Ferrero, Adriana A

    2009-06-01

    The essential oils of Schinus areira L. and S. longifolia (Lindl.) Speg. (Anacardiaceae) have been studied for their in vitro anti-acetylcholinesterase and antioxidant activities. The chemical composition of the oils obtained by hydrodistillation was determined by GC-MS. Fruit and leaf oils of S. areira were analyzed separately. The essential oil from S. longifolia elicited marked enzymatic inhibition (IC50 = 20.0 +/- 1.0 microg/mL) and showed radical scavenger activity (IC50 = 25.2 +/- 2.4 microg/mL). The essential oil from S. areira leaves was more active than that of the fruits in both bioassays.

  10. Chemical composition, antioxidant and antimicrobial activities of essential oil from Wedelia prostrata

    PubMed Central

    Dai, Jiali; Zhu, Liang; Yang, Li; Qiu, Jun

    2013-01-01

    The following study deals with the chemical composition, antioxidant and antimicrobial activity of essential oils of Wedelia prostrata and their main constituents in vitro. A total of 70 components representing 99.26 % of the total oil were identified. The main compounds in the oil were limonene (11.38 %) and α-pinene (10.74 %). Antioxidant assays (1,1-diphenyl-2-picrylhydrazyl, superoxide anion radical, and reducing power test) demonstrate moderate activities for the essential oil and its main components (limonene and α-pinene). The essential oil (1000 μg/disc) exhibited promising antimicrobial activity against 10 strains of test microorganisms as a diameter of zones of inhibition (20.8 to 22.2 mm) and MIC values (125 to 250 µg/ml). The activities of limonene and α-pinene were also determined as main components of the oil. α-Pinene showed higher antimicrobial activity than the essential oil with a diameter of zones of inhibition (20.7 to 22.3 mm) and MIC values (62.5 to 125 µg/ml). The antioxidant and antimicrobial properties of the essential oil may be attributed to the synergistic effects of its diverse major and minor components. PMID:26648809

  11. Essential oil of the leaves of Ricinus communis L.: in vitro cytotoxicity and antimicrobial properties.

    PubMed

    Zarai, Zied; Ben Chobba, Ines; Ben Mansour, Riadh; Békir, Ahmed; Gharsallah, Néji; Kadri, Adel

    2012-08-13

    The aim of the present study was to appraise the antimicrobial activity of Ricinus communis L. essential oil against different pathogenic microorganisms and the cytotoxic activity against HeLa cell lines. The agar disk diffusion method was used to study the antibacterial activity of Ricinus communis L. essential oil against 12 bacterial and 4 fungi strains. The disc diameters of zone of inhibition (DD), the minimum inhibitory concentrations (MIC) and the concentration inhibiting 50% (IC50) were investigated to characterize the antimicrobial activities of this essential oil. The in vitro cytotoxicity of Ricinus communis L. essential oil was examined using a modified MTT assay; the viability and the IC50 were used to evaluate this test. The essential oil from the leaves of Ricinus communis L. was analyzed by GC-MS and bioassays were carried out. Five constituents of the oil were identified by GC-MS. The antimicrobial activity of the oil was investigated in order to evaluate its efficacy against twelve bacteria and four fungi species, using disc diffusion and minimum inhibitory concentration methods. The essential oil showed strong antimicrobial activity against all microorganisms tested with higher sensitivity for Bacillus subtilis, Staphylococcus aureus and Enterobacter cloacae. The cytotoxic and apoptotic effects of the essential oil on HeLa cell lines were examined by MTT assay. The cytotoxicity of the oil was quite strong with IC50 values less than 2.63 mg/ml for both cell lines. The present study showed the potential antimicrobial and anticarcinogenic properties of the essential oil of Ricinus communis L., indicating the possibilities of its potential use in the formula of natural remedies for the topical treatment of infections.

  12. Evaluation of the Leishmanicidal and Cytotoxic Potential of Essential Oils Derived From Ten Colombian Plants

    PubMed Central

    Sanchez-Suarez, JF; Riveros, I; Delgado, G

    2013-01-01

    Background The leishmanicidal and cytotoxic activity of ten essential oils obtained from ten plant specimens were evaluated. Methods Essential oils were obtained by the steam distillation of plant leaves without any prior processing. Cytotoxicity was tested on J774 macrophages and leishmanicidal activity was assessed against four species of Leishmania associated with cutaneous leishmaniasis. Results Seven essential oils exhibited activity against Leishmania parasites, five of which were toxic against J774 macrophages. Selectivity indices of >6 and 13 were calculated for the essential oils of Ocimum basilicum and Origanum vulgare, respectively. Conclusion The essential oil of Ocimum basilicum was active against promastigotes of Leishmania and innocuous to J774 macrophages at concentrations up to 1600 µg/mL and should be further investigated for leishmanicidal activity in others in vitro and in vivo experimental models. PMID:23682270

  13. Nematicidal activity of essential oils and volatiles derived from Portuguese aromatic flora against the pinewood nematode, Bursaphelenchus xylophilus

    PubMed Central

    Barbosa, P.; Lima, A. S.; Vieira, P.; Dias, L. S.; Tinoco, M. T.; Barroso, J. G.; Pedro, L. G.; Figueiredo, A. C.

    2010-01-01

    Twenty seven essential oils, isolated from plants representing 11 families of Portuguese flora, were screened for their nematicidal activity against the pinewood nematode (PWN), Bursaphelenchus xylophilus. The essential oils were isolated by hydrodistillation and the volatiles by distillation-extraction, and both were analysed by GC and GC-MS. High nematicidal activity was achieved with essential oils from Chamaespartium tridentatum, Origanum vulgare, Satureja montana, Thymbra capitata, and Thymus caespititius. All of these essential oils had an estimated minimum inhibitory concentration ranging between 0.097 and 0.374 mg/ml and a lethal concentration necessary to kill 100% of the population (LC100) between 0.858 and 1.984 mg/ml. Good nematicidal activity was also obtained with the essential oil from Cymbopogon citratus. The dominant components of the effective oils were 1–octen-3-ol (9%), n–nonanal, and linalool (both 7%) in C. tridentatum, geranial (43%), neral (29%), and β-myrcene (25%) in C. citratus, carvacrol (36% and 39%), γ-terpinene (24% and 40%), and p-cymene (14% and 7%) in O. vulgare and S. montana, respectively, and carvacrol (75% and 65%, respectively) in T. capitata and T. caespititius. The other essential oils obtained from Portuguese flora yielded weak or no activity. Five essential oils with nematicidal activity against PWN are reported for the first time. PMID:22736831

  14. Anti-inflammatory and anti-allergic properties of the essential oil and active compounds from Cordia verbenacea.

    PubMed

    Passos, Giselle F; Fernandes, Elizabeth S; da Cunha, Fernanda M; Ferreira, Juliano; Pianowski, Luiz F; Campos, Maria M; Calixto, João B

    2007-03-21

    The anti-inflammatory and anti-allergic effects of the essential oil of Cordia verbenacea (Boraginaceae) and some of its active compounds were evaluated. Systemic treatment with the essential oil of Cordia verbenacea (300-600mg/kg, p.o.) reduced carrageenan-induced rat paw oedema, myeloperoxidase activity and the mouse oedema elicited by carrageenan, bradykinin, substance P, histamine and platelet-activating factor. It also prevented carrageenan-evoked exudation and the neutrophil influx to the rat pleura and the neutrophil migration into carrageenan-stimulated mouse air pouches. Moreover, Cordia verbenacea oil inhibited the oedema caused by Apis mellifera venom or ovalbumin in sensitized rats and ovalbumin-evoked allergic pleurisy. The essential oil significantly decreased TNFalpha, without affecting IL-1beta production, in carrageenan-injected rat paws. Neither the PGE(2) formation after intrapleural injection of carrageenan nor the COX-1 or COX-2 activities in vitro were affected by the essential oil. Of high interest, the paw edema induced by carrageenan in mice was markedly inhibited by both sesquiterpenic compounds obtained from the essential oil: alpha-humulene and trans-caryophyllene (50mg/kg, p.o.). Collectively, the present results showed marked anti-inflammatory effects for the essential oil of Cordia verbenacea and some active compounds, probably by interfering with TNFalpha production. Cordia verbenacea essential oil or its constituents might represent new therapeutic options for the treatment of inflammatory diseases.

  15. Antimicrobial Impacts of Essential Oils on Food Borne-Pathogens.

    PubMed

    Ozogul, Yesim; Kuley, Esmeray; Ucar, Yilmaz; Ozogul, Fatih

    2015-01-01

    The antimicrobial activity of twelve essential oil (pine oil, eucalyptus, thyme, sage tea, lavender, orange, laurel, lemon, myrtle, lemon, rosemary and juniper) was tested by a disc diffusion method against food borne pathogens (Escherichia coli, Salmonella paratyphi A, Klebsiella pneumoniae, Yersinia enterocolitica, Pseudomonas aeruginosa, Aeromonas hydrophila, Campylobacter jejuni, Enterococcus faecalis, Staphylococcus aureus). The major components in essential oils were monoterpenes hydrocarbons, α-pinene, limonene; monoterpene phenol, carvacrol and oxygenated monoterpenes, camphor, 1,8-cineole, eucalyptol, linalool and linalyl acetate. Although the antimicrobial effect of essential oils varied depending on the chemical composition of the essential oils and specific microorganism tested, majority of the oils exhibited antibacterial activity against one or more strains. The essential oil with the lowest inhibition zones was juniper with the values varied from 1.5 to 6 mm. However, the components of essential oil of thyme and pine oil are highly active against food borne pathogen, generating the largest inhibition zones for both gram negative and positive bacteria (5.25-28.25 mm vs. 12.5-30 mm inhibition zones). These results indicate the possible use of the essential oils on food system as antimicrobial agents against food-borne pathogen. The article also offers some promising patents on applications of essential oils on food industry as antimicrobial agent.

  16. Composition and antimicrobial activity of the essential oils of Laserpitium latifolium L. and L. ochridanum Micevski (Apiaceae).

    PubMed

    Popović, Višnja B; Petrović, Silvana D; Milenković, Marina T; Drobac, Milica M; Couladis, Maria A; Niketić, Marjan S

    2015-01-01

    The chemical composition and antimicrobial activity of essential oils of Laserpitium latifolium and L. ochridanum were investigated. The essential oils were isolated by steam distillation and characterized by GC-FID and GC/MS analyses. All essential oils were distinguished by high contents of monoterpenes, and α-pinene was the most abundant compound in the essential oils of L. latifolium underground parts and fruits (contents of 44.4 and 44.0%, resp.). The fruit essential oil was also rich in sabinene (26.8%). Regarding the L. ochridanum essential oils, the main constituents were limonene in the fruit oil (57.7%) and sabinene in the herb oil (25.9%). The antimicrobial activity of these essential oils as well as that of L. ochridanum underground parts, whose composition was reported previously, was tested by the broth-microdilution method against four Gram-positive and three Gram-negative bacteria and two Candida albicans strains. Except the L. latifolium underground-parts essential oil, the other investigated oils showed a high antimicrobial potential against Staphylococcus aureus, S. epidermidis, Micrococcus luteus, or Candida albicans (minimal inhibitory concentrations of 13.0-73.0 μg/ml), comparable to or even higher than that of thymol, which was used as reference compound. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  17. Antibacterial activity and composition of essential oils from Pelargonium graveolens L'Her and Vitex agnus-castus L

    PubMed Central

    Ghannadi, A; Bagherinejad, MR; Abedi, D; Jalali, M; Absalan, B; Sadeghi, N

    2012-01-01

    Background and Objectives Essential oils are volatile compounds that have been used since Middle Ages as antimicrobial, anti-inflammatory, sedative, local anesthetic and food flavoring agents. In the current study, essential oils of Pelargonium graveolens L'Her and Vitex agnus-castus L. were analyzed for their antibacterial activities. Materials and Methods The chemical compositions of essential oils were characterized by GC-MS. Disc diffusion method was used to study antimicrobial activity. Results and Conclusion Inhibition zones showed that the essential oils of the two plants were active against all of the studied bacteria (except Listeria monocytogenes). The susceptibility of the strains changed with the dilution of essential oils in DMSO. The pure essential oils showed the most extensive inhibition zones and they were very effective antimicrobial compounds compared to chloramphenicol and amoxicillin. The most susceptible strain against these two essential oils was Staphylococcus aureus. It seems that β-citronellol is a prominent part of P. graveolens volatile oil and caryophyllene oxide is a famous and important part of V. agnus-castus volatile oil and their probable synergistic effect with other constituents are responsible for the antibacterial effects of these oils. However further studies must be performed to confirm the safety of these oils for use as antimicrobial agents and natural preservatives in different products. PMID:23205247

  18. Comparative investigation of Umbellularia californica and Laurus nobilis leaf essential oils and identification of constituents active against Aedes aegypti.

    PubMed

    Tabanca, Nurhayat; Avonto, Cristina; Wang, Mei; Parcher, Jon F; Ali, Abbas; Demirci, Betul; Raman, Vijayasankar; Khan, Ikhlas A

    2013-12-18

    Umbellularia californica (California bay laurel) and Laurus nobilis (Mediterranean bay laurel) leaves may be mistaken or used as a substitute on the market due to their morphological similarity. In this study, a comparison of anatomical and chemical features and biological activity of both plants is presented. L. nobilis essential oil biting deterrent and larvicidal activity were negligible. On the other hand, U. californica leaf oil showed biting deterrent activity against Aedes aegypti . The identified active repellents was thymol, along with (-)-umbellulone, 1,8-cineole, and (-)-α-terpineol. U. californica essential oil also demonstrated good larvicidal activity against 1-day-old Ae. aegypti larvae with a LD50 value of 52.6 ppm. Thymol (LD50 = 17.6 ppm), p-cymene, (-)-umbellulone, and methyleugenol were the primary larvicidal in this oil. Umbellulone was found as the principal compound (37%) of U. californica essential oil, but was not present in L. nobilis essential oil. Umbellulone mosquito activity is here reported for the first time.

  19. Genotoxicity of dill (Anethum graveolens L.), peppermint (Menthaxpiperita L.) and pine (Pinus sylvestris L.) essential oils in human lymphocytes and Drosophila melanogaster.

    PubMed

    Lazutka, J R; Mierauskiene, J; Slapsyte, G; Dedonyte, V

    2001-05-01

    Genotoxic properties of the essential oils extracted from dill (Anethum graveolens L.) herb and seeds, peppermint (Menthaxpiperita L.) herb and pine (Pinus sylvestris L.) needles were studied using chromosome aberration (CA) and sister chromatid exchange (SCE) tests in human lymphocytes in vitro, and Drosophila melanogaster somatic mutation and recombination test (SMART) in vivo. In the CA test, the most active essential oil was from dill seeds, then followed essential oils from dill herb, peppermint herb and pine needles, respectively. In the SCE test, the most active essential oils were from dill herb and seeds followed by essential oils from pine needles and peppermint herb. Essential oils from dill herb and seeds and pine needles induced CA and SCE in a clear dose-dependent manner, while peppermint essential oil induced SCE in a dose-independent manner. All essential oils were cytotoxic for human lymphocytes. In the SMART test, a dose-dependent increase in mutation frequency was observed for essential oils from pine and dill herb. Peppermint essential oil induced mutations in a dose-independent manner. Essential oil from dill seeds was almost inactive in the SMART test.

  20. Chemical composition and evaluation of the antimicrobial activity of the essential oil from leaves of Eugenia platysema.

    PubMed

    Tenfen, Adrielli; Siebert, Diogo Alexandre; Yamanaka, Celina Noriko; Mendes de Córdova, Caio Maurício; Scharf, Dilamara Riva; Simionatto, Edésio Luiz; Alberton, Michele Debiasi

    2016-09-01

    This study describes the qualitative and quantitative chemical composition and evaluates the antibacterial activity of essential oil from Eugenia platysema leaves. Analysis by GC-FID and GC-MS allowed the identification of 22 compounds. Different from the other species of the Eugenia genus, the major compound found in the essential oil was the diterpene phytol (66.05%), being this the first report of the presence of this compound in the essential oils from Eugenia genus. The sesquiterpene elixene was the second most concentrated compound in the studied essential oil (9.16%). The essential oil from E. platysema was tested for its antibacterial activity against cell-walled bacteria and mollicute strains of clinical interest using the microdilution broth assay. The results showed that the essential oil of E. platysema was inactive until 1000 μg mL(-1) against tested bacteria.

  1. Essential Oil Composition of Phagnalon sordidum (L.) from Corsica, Chemical Variability and Antimicrobial Activity.

    PubMed

    Brunel, Marion; Vitrac, Caroline; Costa, Jean; Mzali, Fatima; Vitrac, Xavier; Muselli, Alain

    2016-03-01

    The chemical composition of Phagnalon sordidum (L.) essential oil was investigated for the first time using gas chromatography and chromatography/mass spectrometry. Seventy-six compounds, which accounted for 87.9% of the total amount, were identified in a collective essential oil of P. sordidum from Corsica. The main essential oil components were (E)-β-caryophyllene (14.4%), β-pinene (11.0%), thymol (9.0%), and hexadecanoic acid (5.3%). The chemical compositions of essential oils from 19 Corsican locations were investigated. The study of the chemical variability using statistical analysis allowed identifying direct correlation between the three populations of P. sordidum widespread in Corsica and the essential oil compositions they produce. The in vitro antimicrobial activity of P. sordidum essential oil was evaluated and it exhibited a notable activity on a large panel of clinically significant microorganisms. © 2016 Verlag Helvetica Chimica Acta AG, Zürich.

  2. Volatile constituents of Pinus roxburghii from Nepal.

    PubMed

    Satyal, Prabodh; Paudel, Prajwal; Raut, Josna; Deo, Akash; Dosoky, Noura S; Setzer, William N

    2013-01-01

    Pinus roxburghii Sarg. Is one of 3 species of pine found in Nepal, the oil of which is traditionally used to treat cuts, wounds, boils, and blisters. To obtain, analyze, and examine the anti-microbial and cytotoxic activities of the essential oils of P. roxburghii. Three plant parts (cone, needle, and bark) of Pinus roxburghii were collected in Biratnagar, Nepal. The essential oils were obtained by hydrodistillation, and the chemical compositions were determined by GC-MS. The needle and cone essential oils were screened for anti-microbial activity against Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Aspergillus niger; brine shrimp (Artemia salina) lethality; and in-vitro cytotoxicity against MCF-7 cells. GC-MS analysis for the cone oil revealed 81 compounds with 78 components being identified (95.5% of the oil) while 98.3% of needle oil was identified to contain 68 components and 98.6% of the bark oil (38 components) was identified. The 3 essential oils were dominated by sesquiterpenes, particularly (E)-caryophyllene (26.8%-34.5%) and α-humulene (5.0%-7.3%) as well as monoterpene alcohols terpinen-4-ol (4.1%-30.1%) and α-terpineol(2.8%-5.0%). The monoterpene δ-3-carene was present only in needle and cone essential oils (2.3% and 6.8%, respectively). Bio-activity assays of the cone essential oil of P. roxburghii showed remarkable cytotoxic activity (100% killing of MCF-7 cells at 100 μg/mL) along with notable brine shrimp lethality (LC50 =11.8 μg/mL). The cone essential oil did not show anti-bacterial activity, but it did exhibit anti-fungal activity against Aspergillus niger (MIC=39 μg/mL). The bioactivity of P. roxburghii essential oil is consistent with its traditional medicinal use.

  3. Chemical composition, antioxidant properties and antimicrobial activity of the essential oil of Murraya paniculata leaves from the mountains of Central Cuba.

    PubMed

    Rodríguez, Elisa Jorge; Ramis-Ramos, Guillermo; Heyden, Yvan Vander; Simó-Alfonso, Ernesto F; Lerma-García, María Jesús; Saucedo-Hernández, Yanelis; Monteagudo, Urbano; Morales, Yeni; Holgado, Beatriz; Herrero-Martínez, José Manuel

    2012-11-01

    The essential oil of Murraya paniculata L leaves from the mountains of the Central Region of Cuba, obtained by hydrodistillation, was analyzed by gas chromatography-mass spectrometry. Eighteen compounds, accounting for 95.1% of the oil were identified. The major component was beta-caryophyllene (ca. 30%). The antioxidant activity of essential oil was evaluated against Cucurbita seed oil by peroxide, thiobarbituric acid and p-anisidine methods. The essential oil showed stronger antioxidant activity than that of butylated hydroxyanisole and butylated hydroxytoluene, but lower than that of propyl gallate. Moreover, this antioxidant activity was supported by the complementary antioxidant assay in the linoleic acid system and 2, 2'-diphenyl-1-picrylhydrazyl. The essential oil also showed good to moderate inhibitory effects against Klebsiellapneumoniae and Bacillus subtilis.

  4. Chemical composition and antioxidant activity of phenolic compounds and essential oils from Calamintha nepeta L.

    PubMed

    Khodja, Nabyla Khaled; Boulekbache, Lila; Chegdani, Fatima; Dahmani, Karima; Bennis, Faiza; Madani, Khodir

    2018-05-24

    Background Essential oils, infusion and decoction extracts of Calamintha nepeta L. were evaluated for their bioactive substances (polyphenols and essential oils) and antioxidant activities. Methods The amounts of phenolic compounds were determined by colorimetric assays and identified by high performance and liquid chromatography coupled with ultraviolet detector (HPLC-UV) method. The chemical composition of essential oils was determined by gas-chromatography coupled with mass spectrometry (GC/MS) method. For the evaluation of the antioxidant activity of essential oils and extracts, two different assays (reducing power and DPPH radical scavenging activity) were used. Results Infusion extract presented the highest phenolic content, followed by the decoction one, while the lowest amount was observed in essential oils. The amount of flavonoids of the decocted extract was higher than that of the infused one. The phenolic profile of C. nepeta infusion and decoction extracts revealed the presence of 28 and 13 peaks, respectively. Four phenolics compounds were identified in infusion (gallic acid (GA), rosmarinic acid (RA), caffeine (C) and caffeic acid (CA)) and two were identified in decoction (GA and RA). The chemical composition of essential oils revealed the presence of 29 compounds, accounting for the 99.7% of the total oils. Major compounds of essential oil (EO) were trans-menthone (50.06%) and pulegone (33.46%). Infusion and decoction extracts revealed an interesting antioxidant activity which correlates positively with their total phenolic contents. Conclusions These results showed that Calamintha nepeta could be considered as a valuable source of phenolics and essential oils with potent antioxidant activity.

  5. Oliveria decumbens essential oil: Chemical compositions and antimicrobial activity against the growth of some clinical and standard strains causing infection.

    PubMed

    Alizadeh Behbahani, Behrooz; Tabatabaei Yazdi, Farideh; Vasiee, Alireza; Mortazavi, Seyed Ali

    2018-01-01

    Oliveria decumbens as a valuable medicinal plant is extensively used in traditional medicine. clinical and standard strains causing infection resistance to antimicrobial agents, is one of the important problems in medicine. The aim of this study was to investigate the antibacterial activities and phytochemical analysis of Oliveria decumbens essential oil on the growth of some clinical and standard strains causing infection (Pseudomonas aerogenes, Escherichia coli, Streptococcus pyogenes and Staphylococcus epidermidis). Oliveria decumbens essential oil composition was identified by gas chromatography/mass spectrometry. Phytochemical analysis (alkaloids, saponins, flavone and phenolic) essential oil of the Oliveria decumbens were appraised based on qualitative methods. Several methods (disk diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)) were used to appraise the antibacterial activity of the Oliveria decumbens essential oil. Thymol (28.45%) was the major compound of Oliveria decumbens essential oil. The total phenolics content (TPC) of the essential oil positively correlated with antioxidant activity (AA). The TPC and AA of Oliveria decumbens essential oil was equal to 92.45 ± 0.70 μg GAE/mg and 164.45 ± 1.20 μg/ml, respectively. The MIC of Oliveria decumbens essential oil ranged from 1 to 8 mg/ml depending on the type of bacteria (clinical and standard strains). The MBC of Oliveria decumbens essential oil varied from 1 mg/ml to 16 mg/ml. The smallest inhibition zone diameter (IZD) on different Oliveria decumbens essential oil concentrations on P. aeruginosa. Results indicate that Oliveria decumbens essential oil can prove to be an important source of AA and antibacterial and may be used for the treatment of infection diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Comparative Phytochemical Analysis of Essential Oils from Different Biological Parts of Artemisia herba alba and Their Cytotoxic Effect on Cancer Cells.

    PubMed

    Tilaoui, Mounir; Ait Mouse, Hassan; Jaafari, Abdeslam; Zyad, Abdelmajid

    2015-01-01

    Carrying out the chemical composition and antiproliferative effects against cancer cells from different biological parts of Artemisia herba alba. Essential oils were studied by gas chromatography coupled to mass spectrometry (GC-MS) and their antitumoral activity was tested against P815 mastocytoma and BSR kidney carcinoma cell lines; also, in order to evaluate the effect on normal human cells, oils were tested against peripheral blood mononuclear cells PBMCs. Essential oils from leaves and aerial parts (mixture of capitulum and leaves) were mainly composed by oxygenated sesquiterpenes 39.89% and 46.15% respectively; capitulum oil contained essentially monoterpenes (22.86%) and monocyclic monoterpenes (21.48%); esters constituted the major fraction (62.8%) of stem oil. Essential oils of different biological parts studied demonstrated a differential antiproliferative activity against P815 and BSR cancer cells; P815 cells are the most sensitive to the cytotoxic effect. Leaves and capitulum essential oils are more active than aerial parts. Interestingly, no cytotoxic effect of these essential oils was observed on peripheral blood mononuclear cells. Our results showed that the chemical composition variability of essential oils depends on the nature of botanical parts of Artemisia herba alba. Furthermore, we have demonstrated that the differential cytotoxic effect depends not only on the essential oils concentration, but also on the target cells and the botanical parts of essential oils used.

  7. The in-vitro evaluation of antibacterial, antifungal and cytotoxic properties of Marrubium vulgare L. essential oil grown in Tunisia

    PubMed Central

    2011-01-01

    Background In order to validate its antiseptic and anticancer properties with respect to traditional uses, we have screened for the first time the antimicrobial activity of aerial parts of M. vulgare L. essential oil against different pathogenic microorganisms and the cytotoxic activity against HeLa cell lines. Methods The agar disk diffusion method was used to study the antibacterial activity of M. vulgare essential oil against 12 bacterial and 4 fungi strains. The disc diameters of zone of inhibition (DD), the minimum inhibitory concentrations (MIC) and the concentration inhibiting 50% (IC50) were investigated to characterize the antimicrobial activities of this essential oil. The in vitro cytotoxicity of M. vulgare essential oil was examined using a modified MTT assay; the viability and the IC50 were used to evaluate this test. Results The antimicrobial activity of the essential oil was investigated in order to evaluate its efficacy against the different tested microorganisms. The present results results showed a significant activity against microorganisms especially Gram (+) bacteria with inhibition zones and minimal inhibitory concentration values in the range of 6.6-25.2 mm and 1120-2600 μg/ml, respectively, whereas Gram (-) bacteria exhibited a higher resistance. As far as the antifungal activity, among four strains tested, Botrytis cinerea exhibited the strongest activity with inhibition zones of 12.6 mm. However, Fusarium solani, Penicillium digitatum and Aspergillus niger were less sensitive to M. vulgare essential oil. About the citotoxicity assay, this finding indicate the capability of this essential oil to inhibited the proliferation of HeLa cell lines under some conditions with IC50 value of 0.258 μg/ml. Conclusion This investigation showed that the M. vulgare essential oil has a potent antimicrobial activity against some Gram (+) pathogenic bacteria and Botrytis cinerea fungi. The present studies confirm the use of this essential oil as anticancer agent. Further research is required to evaluate the practical values of therapeutic applications. PMID:21936887

  8. The in-vitro evaluation of antibacterial, antifungal and cytotoxic properties of Marrubium vulgare L. essential oil grown in Tunisia.

    PubMed

    Zarai, Zied; Kadri, Adel; Ben Chobba, Ines; Ben Mansour, Riadh; Bekir, Ahmed; Mejdoub, Hafedh; Gharsallah, Néji

    2011-09-21

    In order to validate its antiseptic and anticancer properties with respect to traditional uses, we have screened for the first time the antimicrobial activity of aerial parts of M. vulgare L. essential oil against different pathogenic microorganisms and the cytotoxic activity against HeLa cell lines. The agar disk diffusion method was used to study the antibacterial activity of M. vulgare essential oil against 12 bacterial and 4 fungi strains. The disc diameters of zone of inhibition (DD), the minimum inhibitory concentrations (MIC) and the concentration inhibiting 50% (IC50) were investigated to characterize the antimicrobial activities of this essential oil. The in vitro cytotoxicity of M. vulgare essential oil was examined using a modified MTT assay; the viability and the IC50 were used to evaluate this test. The antimicrobial activity of the essential oil was investigated in order to evaluate its efficacy against the different tested microorganisms. The present results results showed a significant activity against microorganisms especially Gram (+) bacteria with inhibition zones and minimal inhibitory concentration values in the range of 6.6-25.2 mm and 1120-2600 μg/ml, respectively, whereas Gram (-) bacteria exhibited a higher resistance. As far as the antifungal activity, among four strains tested, Botrytis cinerea exhibited the strongest activity with inhibition zones of 12.6 mm. However, Fusarium solani, Penicillium digitatum and Aspergillus niger were less sensitive to M. vulgare essential oil. About the citotoxicity assay, this finding indicate the capability of this essential oil to inhibited the proliferation of HeLa cell lines under some conditions with IC50 value of 0.258 μg/ml. This investigation showed that the M. vulgare essential oil has a potent antimicrobial activity against some Gram (+) pathogenic bacteria and Botrytis cinerea fungi. The present studies confirm the use of this essential oil as anticancer agent. Further research is required to evaluate the practical values of therapeutic applications.

  9. Antimicrobial activity of clove and rosemary essential oils alone and in combination.

    PubMed

    Fu, Yujie; Zu, Yuangang; Chen, Liyan; Shi, Xiaoguang; Wang, Zhe; Sun, Su; Efferth, Thomas

    2007-10-01

    In the present study, the antimicrobial activity of the essential oils from clove (Syzygium aromaticum (L.) Merr. et Perry) and rosemary (Rosmarinus officinalis L.) was tested alone and in combination. The compositions of the oils were analysed by GC/MS. Minimum inhibitory concentrations (MIC) against three Gram-positive bacteria, three Gram-negative bacteria and two fungi were determined for the essential oils and their mixtures. Furthermore, time-kill dynamic processes of clove and rosemary essential oils against Staphylococcus epidermidis, Escherichia coli and Candida albicans were tested. Both essential oils possessed significant antimicrobial effects against all microorganisms tested. The MICs of clove oil ranged from 0.062% to 0.500% (v/v), while the MICs of rosemary oil ranged from 0.125% to 1.000% (v/v). The antimicrobial activity of combinations of the two essential oils indicated their additive, synergistic or antagonistic effects against individual microorganism tests. The time-kill curves of clove and rosemary essential oils towards three strains showed clearly bactericidal and fungicidal processes of (1)/(2) x MIC, MIC, MBC and 2 x MIC.

  10. [Antioxidant properties of essential oils from lemon, grapefruit, coriander, clove, and their mixtures].

    PubMed

    Misharina, T A; Samusenko, A L

    2008-01-01

    Antioxidant properties of individual essential oils from lemon (Citrus limon L.), pink grapefruit (Citrus paradise L.), coriander (Coriandrum sativum L.), and clove (Caryophyllus aromaticus L.) buds and their mixtures were studied by capillary gas-liquid chromatography. Antioxidant activity was assessed by oxidation of the aliphatic aldehyde hexanal to the carboxylic acid. The lowest and highest antioxidant activities were exhibited by grapefruit and clove bud essential oils, respectively. Mixtures containing clove bud essential oil also strongly inhibited oxidation of hexanal. Changes in the composition of essential oils and their mixtures in the course of long-term storage in the light were studied. The stability of components of lemon and coriander essential oils in mixtures increased compared to individual essential oils.

  11. Chemical Composition and Biological Investigations of Eryngium triquetrum Essential Oil from Algeria.

    PubMed

    Medbouhi, Ali; Merad, Nadjiya; Khadir, Abdelmounaim; Bendahou, Mourad; Djabou, Nassim; Costa, Jean; Muselli, Alain

    2018-01-01

    The chemical composition, antibacterial and antioxidant activities of the essential oil obtained from Eryngium triquetrum from Algeria were studied. The chemical composition of sample oils from 25 locations was investigated using GC-FID and GC/MS. Twenty-four components representing always more than 87% were identified in essential oils from total aerial parts of plants, stems, flowers and roots. Falcarinol is highly dominant in the essential oil from the roots (95.5%). The relative abundance of falcarinol in the aerial parts correlates with the phenological stages of the plant. Aerial parts of E. triquetrum produce an essential oil dominated by falcarinol during the early flowering stage, and then there is a decrease in falcarinol and rebalancing of octanal during the flowering stage. To our knowledge, the present study is the first report of the chemical composition of E. triquetrum essential oil. Evaluation of the antibacterial activity by means of the paper disc diffusion method and minimum inhibitory concentration assays, showed a moderate efficiency of E. triquetrum essential oil. Using the DPPH method, the interesting antioxidant activity of E. triquetrum essential oil was established. These activities could be attributed to the dominance of falcarinol. The outcome of our literature search on the occurrence of falcarinol in essential oils suggests that E. triquetrum from Algeria could be considered as a possible source of natural falcarinol. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  12. Antimicrobial properties of essential oils against Salmonella in organic soil

    USDA-ARS?s Scientific Manuscript database

    Soil is one of the important sources of preharvest contamination of produce with pathogens. Demand for natural pesticides such as essential oils for organic farming practices has increased. Antimicrobial activity of essential oils in vitro has been documented. The antimicrobial activity of essential...

  13. Antimicrobial Activity and Modulatory Effect of Essential Oil from the Leaf of Rhaphiodon echinus (Nees & Mart) Schauer on Some Antimicrobial Drugs.

    PubMed

    Duarte, Antonia Eliene; de Menezes, Irwin Rose Alencar; Bezerra Morais Braga, Maria Flaviana; Leite, Nadghia Figueiredo; Barros, Luiz Marivando; Waczuk, Emily Pansera; Pessoa da Silva, Maria Arlene; Boligon, Aline; Teixeira Rocha, João Batista; Souza, Diogo Onofre; Kamdem, Jean Paul; Melo Coutinho, Henrique Douglas; Escobar Burger, Marilise

    2016-06-08

    Rhaphiodon echinus is a weed plant used in the Brazilian folk medicinal for the treatment of infectious diseases. In this study, the essential oil of R. echinus leaf was investigated for its antimicrobial properties. The chemical constituents of the essential oil were characterized by GC-MS. The antimicrobial properties were determined by studying by the microdilution method the effect of the oil alone, and in combination with antifungal or antibiotic drugs against the fungi Candida albicans, Candida krusei and Candida tropicalis and the microbes Escherichia coli, Staphylococcus aureus and Pseudomonas. In addition, the iron (II) chelation potential of the oil was determined. The results showed the presence of β-caryophyllene and bicyclogermacrene in major compounds, and revealed a low antifungal and antibacterial activity of the essential oil, but a strong modulatory effect on antimicrobial drugs when associated with the oil. The essential oil showed iron (II) chelation activity. The GC-MS characterization revealed the presence of monoterpenes and sesquiterpenes in the essential oil and metal chelation potential, which may be responsible in part for the modulatory effect of the oil. These findings suggest that essential oil of R. echinus is a natural product capable of enhancing the antibacterial and antifungal activity of antimicrobial drugs.

  14. Chemical composition and antibacterial activity of the essential oil from Pyrrosia tonkinensis (Giesenhagen) Ching.

    PubMed

    Xin, Xiaowei; Liu, Qingshen; Zhang, Yingying; Gao, Demin

    2016-01-01

    The present study aimed to analyse the chemical components of the essential oil from Pyrrosia tonkinensis by GC-MS and evaluate the in vitro antibacterial activity. Twenty-eight compounds, representing 88.1% of the total essential oil, were identified and the major volatile components were trans-2-hexenal (22.1%), followed by nonanal (12.8%), limonene (9.6%), phytol (8.4%), 1-hexanol (3.8%), 2-furancarboxaldehyde (3.5%) and heptanal (3.1%). The antibacterial assays showed that the essential oil of P. tonkinensis had good antibacterial activities against all the tested microorganisms. This paper first reported the chemical composition and antimicrobial activity of the essential oil from P. tonkinensis.

  15. Investigation of the Anti-Melanogenic and Antioxidant Characteristics of Eucalyptus camaldulensis Flower Essential Oil and Determination of Its Chemical Composition.

    PubMed

    Huang, Huey-Chun; Ho, Ya-Chi; Lim, Jia-Min; Chang, Tzu-Yun; Ho, Chen-Lung; Chang, Tsong-Min

    2015-05-07

    The effects of essential oil from Eucalyptus camaldulensis flowers oil on melanogenesis and the oil's antioxidant characteristics were investigated. Assays of mushroom and cellular tyrosinase activities and melanin content of mouse melanoma cells were performed spectrophotometrically, and the expression of melanogenesis-related proteins was determined by Western blotting. The possible signaling pathways involved in essential oil-mediated depigmentation were also investigated using specific protein kinase inhibitors. The results revealed that E. camaldulensis flower essential oil effectively suppresses intracellular tyrosinase activity and decreases melanin amount in B16F10 mouse melanoma cells. The essential oil also exhibits antioxidant properties and effectively decreases intracellular reactive oxygen species (ROS) levels. The volatile chemical composition of the essential oil was analyzed with gas chromatography-mass spectrometry (GC/MS). The chemical constituents in the essential oil are predominately oxygenated monoterpenes (34.9%), followed by oxygenated sesquiterpenes (31.8%), monoterpene hydrocarbons (29.0%) and sesquiterpene hydrocarbons (4.3%). Our results indicated that E. camaldulensis flower essential oil inhibits melanogenesis through its antioxidant properties and by down-regulating both mitogen-activated protein kinases (MAPK) and protein kinase A (PKA) signaling pathways. The present study indicates that the essential oil has the potential to be developed into a skin care product.

  16. Essential oils--their antimicrobial activity against Escherichia coli and effect on intestinal cell viability.

    PubMed

    Fabian, Dusan; Dusan, Fabian; Sabol, Marián; Marián, Sabol; Domaracká, Katarína; Katarína, Domaracká; Bujnáková, Dobroslava; Dobroslava, Bujnáková

    2006-12-01

    Essential oils are known to possess antimicrobial activity against a wide spectrum of bacteria. The main objective of this study was to evaluate possible harmful effects of four commonly used essential oils and their major components on intestinal cells. Antimicrobial activity of selected plant extracts against enteroinvasive Escherichia coli was dose dependent. However, doses of essential oils with the ability to completely inhibit bacterial growth (0.05%) showed also relatively high cytotoxicity to intestinal-like cells cultured in vitro. Lower doses of essential oils (0.01%) had only partial antimicrobial activity and their damaging effect on Caco-2 cells was only modest. Cell death assessment based on morphological and viability staining followed by fluorescence microscopy showed that essential oils of cinnamon and clove and their major component eugenol had almost no cytotoxic effect at lower doses. Although essential oil of oregano and its component carvacrol slightly increased the incidence of apoptotic cell death, they showed extensive antimicrobial activity even at lower concentrations. Relatively high cytotoxicity was demonstrated by thyme oil, which increased both apoptotic and necrotic cell death incidence. In contrast, its component thymol showed no cytotoxic effect as well as greatly-reduced ability to inhibit visible growth of the chosen pathogen in the doses used. On the other hand, the addition of all essential oils and their components at lower doses, with the exception of thyme oil, to bacterial suspension significantly reduced the cytotoxic effect of E. coli on Caco-2 cells after 1h culture. In conclusion, it is possible to find appropriate doses of essential oils showing both antimicrobial activity and very low detrimental effect on intestinal cells.

  17. Antibacterial, Anti-Inflammatory, Antioxidant, and Antiproliferative Properties of Essential Oils from Hairy and Normal Roots of Leonurus sibiricus L. and Their Chemical Composition.

    PubMed

    Sitarek, Przemysław; Rijo, Patricia; Garcia, Catarina; Skała, Ewa; Kalemba, Danuta; Białas, Adam J; Szemraj, Janusz; Pytel, Dariusz; Toma, Monika; Wysokińska, Halina; Śliwiński, Tomasz

    2017-01-01

    Essential oils obtained from the NR (normal roots) and HR (hairy roots) of the medicinal plant Leonurus sibiricus root were used in this study. The essential oil compositions were detected by GC-MS. Eighty-five components were identified in total. Seventy components were identified for NR essential oil. The major constituents in NR essential oil were β -selinene (9.9%), selina-4,7-diene (9.7%), (E) - β -caryophyllene (7.3%),myli-4(15)-ene (6.4%), and guaia-1(10),11-diene (5.9%). Sixty-seven components were identified in HR essential oil, the main constituents being (E) - β -caryophyllene (22.6%), and germacrene D (19.8%). The essential oils were tested for cytotoxic effect, antimicrobial, anti-inflammatory, and antioxidant activities. Both essential oils showed activity against grade IV glioma cell lines (IC 50 = 400  μ g/mL), antimicrobial (MIC and MFC values of 2500 to 125  μ g/mL), and anti-inflammatory (decreased level of IL-1 β , IL-6, TNF- α , and IFN- γ in LPS-stimulated cells).The essential oils exhibited moderate antioxidant activity in ABTS (EC 50 = 98 and 88  μ g/mL) assay. This is the first study to examine composition of the essential oils and their antimicrobial, antioxidant, antiproliferative, and anti-inflammatory activities. The results indicate that essential oils form L. sibiricus root may be used in future as an alternative to synthetic antimicrobial agents with potential application in the food and pharmaceutical industries.

  18. Antibacterial, Anti-Inflammatory, Antioxidant, and Antiproliferative Properties of Essential Oils from Hairy and Normal Roots of Leonurus sibiricus L. and Their Chemical Composition

    PubMed Central

    Rijo, Patricia; Garcia, Catarina; Kalemba, Danuta; Szemraj, Janusz; Pytel, Dariusz; Toma, Monika; Śliwiński, Tomasz

    2017-01-01

    Essential oils obtained from the NR (normal roots) and HR (hairy roots) of the medicinal plant Leonurus sibiricus root were used in this study. The essential oil compositions were detected by GC-MS. Eighty-five components were identified in total. Seventy components were identified for NR essential oil. The major constituents in NR essential oil were β-selinene (9.9%), selina-4,7-diene (9.7%), (E)-β-caryophyllene (7.3%),myli-4(15)-ene (6.4%), and guaia-1(10),11-diene (5.9%). Sixty-seven components were identified in HR essential oil, the main constituents being (E)-β-caryophyllene (22.6%), and germacrene D (19.8%). The essential oils were tested for cytotoxic effect, antimicrobial, anti-inflammatory, and antioxidant activities. Both essential oils showed activity against grade IV glioma cell lines (IC50 = 400 μg/mL), antimicrobial (MIC and MFC values of 2500 to 125 μg/mL), and anti-inflammatory (decreased level of IL-1β, IL-6, TNF-α, and IFN-γ in LPS-stimulated cells).The essential oils exhibited moderate antioxidant activity in ABTS (EC50 = 98 and 88 μg/mL) assay. This is the first study to examine composition of the essential oils and their antimicrobial, antioxidant, antiproliferative, and anti-inflammatory activities. The results indicate that essential oils form L. sibiricus root may be used in future as an alternative to synthetic antimicrobial agents with potential application in the food and pharmaceutical industries. PMID:28191277

  19. Eupatorium capillifolium essential oil: chemical composition antifungal activity and insecticidal activity

    USDA-ARS?s Scientific Manuscript database

    Natural plant extracts often contain compounds that are useful in pest management applications. The essential oil of Eupatorium capillifolium (dog-fennel) was investigated for antifungal and insecticidal activities. Essential oil obtained by hydrodistillation of aerial parts was analyzed by gas chro...

  20. Chemical composition, antimicrobial, insecticidal, phytotoxic and antioxidant activities of Mediterranean Pinus brutia and Pinus pinea resin essential oils.

    PubMed

    Ulukanli, Zeynep; Karabörklü, Salih; Bozok, Fuat; Ates, Burhan; Erdogan, Selim; Cenet, Menderes; Karaaslan, Merve Göksin

    2014-12-01

    Essential oils of the resins of Pinus brutia and Pinus pinea were evaluated for their biological potential. Essential oils were characterized using GC-MS and GC/FID. in vitro antimicrobial, phytotoxic, antioxidant, and insecticidal activities were carried out using the direct contact and the fumigant assays, respectively. The chemical profile of the essential oils of the resins of P. pinea and P. brutia included mainly α-pinene (21.39% and 25.40%), β-pinene (9.68% and 9.69%), and caryophyllene (9.12% and 4.81%). The essential oils of P. pinea and P. brutia exerted notable antimicrobial activities on Micrococcus luteus and Bacillus subtilis, insecticidal activities on Ephestia kuehniella eggs, phytotoxic activities on Lactuca sativa, Lepidium sativum, and Portulaca oleracea, as well as antioxidant potential. Indications of the biological activities of the essential oils suggest their use in the formulation of ecofriendly and biocompatible pharmaceuticals. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  1. Analysis and evaluation of the antimicrobial and anticancer activities of the essential oil isolated from Foeniculum vulgare from Hamedan, Iran.

    PubMed

    Akhbari, Maryam; Kord, Reza; Jafari Nodooshan, Saeedeh; Hamedi, Sepideh

    2018-01-07

    In this study, biological properties of the essential oil isolated from seeds of Foeniculum vulgare (F. vulgare) were evaluated. GC-MS analysis revealed Trans-Anethole (80.63%), L-Fenchone (11.57%), Estragole (3.67%) and Limonene (2.68%) were the major compounds of the essential oil. Antibacterial activity of the essential oil against nine Gram-positive and Gram-negative strains was studied using disc diffusion and micro-well dilution assays. Essential oil exhibited the antibacterial activity against three Gram-negative strains of Pseudomonas aeruginosa, Escherichia coli, and Shigella dysenteriae. The preliminary study on toxicity of seed oil was performed using Brine Shrimp lethality test (BSLT). Results indicated the high toxicity effect of essential oil (LC50 = 10 μg/mL). In vitro anticancer activity of seed oil was investigated against human breast cancer (MDA-Mb) and cervical epithelioid carcinoma (Hela) cell lines by MTT assay. Results showed the seed oil behave as a very potent anticancer agent with IC50 of lower than 10 μg/mL in both cases.

  2. Chemical Variability and Biological Activities of Brassica rapa var. rapifera Parts Essential Oils Depending on Geographic Variation and Extraction Technique.

    PubMed

    Saka, Boualem; Djouahri, Abderrahmane; Djerrad, Zineb; Terfi, Souhila; Aberrane, Sihem; Sabaou, Nasserdine; Baaliouamer, Aoumeur; Boudarene, Lynda

    2017-06-01

    In the present work, the Brassica rapa var. rapifera parts essential oils and their antioxidant and antimicrobial activities were investigated for the first time depending on geographic origin and extraction technique. Gas-chromatography (GC) and GC/mass spectrometry (MS) analyses showed several constituents, including alcohols, aldehydes, esters, ketones, norisoprenoids, terpenic, nitrogen and sulphur compounds, totalizing 38 and 41 compounds in leaves and root essential oils, respectively. Nitrogen compounds were the main volatiles in leaves essential oils and sulphur compounds were the main volatiles in root essential oils. Qualitative and quantitative differences were found among B. rapa var. rapifera parts essential oils collected from different locations and extracted by hydrodistillation and microwave-assisted hydrodistillation techniques. Furthermore, our findings showed a high variability for both antioxidant and antimicrobial activities. The highlighted variability reflects the high impact of plant part, geographic variation and extraction technique on chemical composition and biological activities, which led to conclude that we should select essential oils to be investigated carefully depending on these factors, in order to isolate the bioactive components or to have the best quality of essential oil in terms of biological activities and preventive effects in food. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  3. Application of lemon peel essential oil with edible coating agent to prolong shelf life of tofu and strawberry

    NASA Astrophysics Data System (ADS)

    Rahmawati, Della; Chandra, Mega; Santoso, Stefanus; Puteri, Maria Gunawan

    2017-01-01

    The essential oil of sweet orange, lemon, and key lime peel were analyzed for their antimicrobial activity. The antimicrobial activity of each citrus essential oil with different concentration was assessed using broth macro-dilution against Bacillus sp, Eschericia coli, Rhizopus stolonifer, and Botrytis sp which represented specific spoilage microorganism in tofu and fresh strawberry. Among all the citrus peel essential oils tested, lemon peel essential oil with 0.6% concentration showed significant activity as an antimicrobial agent against Escherichia coli and Bacillus sp. In other hand 1% of lemon peel essential oil is also considered to be the best concentration of inhibiting the Rhizopus Stolonifer and Botrytis sp. Lemon peel essential oil which has the highest antimicrobial activity was combined with two different kind of edible coating agents (cassava starch and sodium alginate) and was applied in both tofu and strawberry to observe whether it had possibility to decrease the degradation rate of tofu and strawberry. The addition of 0.6% and 1% lemon peel essential oil with each of edible coating agents was significantly able to reduce the degradation of tofu and fresh strawberry.

  4. Chemical composition and antioxidant properties of clove leaf essential oil.

    PubMed

    Jirovetz, Leopold; Buchbauer, Gerhard; Stoilova, Ivanka; Stoyanova, Albena; Krastanov, Albert; Schmidt, Erich

    2006-08-23

    The antioxidant activity of a commercial rectified clove leaf essential oil (Eugenia caryophyllus) and its main constituent eugenol was tested. This essential oil comprises in total 23 identified constituents, among them eugenol (76.8%), followed by beta-caryophyllene (17.4%), alpha-humulene (2.1%), and eugenyl acetate (1.2%) as the main components. The essential oil from clove demonstrated scavenging activity against the 2,2-diphenyl-1-picryl hydracyl (DPPH) radical at concentrations lower than the concentrations of eugenol, butylated hydroxytoluene (BHT), and butylated hydroxyanisole (BHA). This essential oil also showed a significant inhibitory effect against hydroxyl radicals and acted as an iron chelator. With respect to the lipid peroxidation, the inhibitory activity of clove oil determined using a linoleic acid emulsion system indicated a higher antioxidant activity than the standard BHT.

  5. Antibacterial activity and mode of action of the Artemisia capillaris essential oil and its constituents against respiratory tract infection-causing pathogens.

    PubMed

    Yang, Chang; Hu, Dong-Hui; Feng, Yan

    2015-04-01

    Inhalation therapy using essential oils has been used to treat acute and chronic sinusitis and bronchitis. The aim of the present study was to determine the chemical composition of the essential oil of Artemisia capillaris, and evaluate the antibacterial effects of the essential oil and its main components, against common clinically relevant respiratory bacterial pathogens. Gas chromatography and gas chromatography‑mass spectrometry revealed the presence of 25 chemical constituents, the main constituents being: α‑pinene, β‑pinene, limonene, 1,8‑cineole, piperitone, β‑caryophyllene and capillin. The antibacterial activities of the essential oil, and its major constituents, were evaluated against Streptococcus pyogenes, methicillin‑resistant Staphylococcus aureus (MRSA), MRSA (clinical strain), methicillin‑gentamicin resistant Staphylococcus aureus (MGRSA), Streptococcus pneumoniae, Klebsiella pneumoniae, Haemophilus influenzae and Escherichia coli. The essential oil and its constituents exhibited a broad spectrum and variable degree of antibacterial activity against the various strains. The essential oil was observed to be much more potent, as compared with any of its major chemical constituents, exhibiting low minimum inhibitory and bacteriocidal concentration values against all of the bacterial strains. The essential oil was most active against S. pyogenes, MRSA (clinical strain), S. pneumoniae, K. pneumoniae, H. influenzae and E. coli. Piperitone and capillin were the most potent growth inhibitors, among the major chemical constituents. Furthermore, the essential oil of A. capillaris induced significant and dose‑dependent morphological changes in the S. aureus bacterial strain, killing >90% of the bacteria when administered at a higher dose; as determined by scanning electron microscopy. In addition, the essential oil induced a significant leakage of potassium and phosphate ions from the S. aureus bacterial cultures. These results indicate that the antibacterial action of A. capillaris essential oil may be mediated through the leakage of these two important ions. In conclusion, A. capillaris essential oil exhibits potent antibacterial activity by inducing morphological changes and leakage of ions in S. aureus bacterial cultures.

  6. In vitro antimicrobial activity and antagonistic effect of essential oils from plant species.

    PubMed

    Toroglu, Sevil

    2007-07-01

    Kahramanmaras, is a developing city located in the southern part of Turkey Thymus eigii (M. Zohary and RH. Davis) Jalas, Pinus nigraAm. sub sp pallasiana and Cupressus sempervirens L. are the useful plants of the Kahramanmaras province and have been understudy since 2004 for the traditional uses of plants empiric drug, spice, herbal tea industry herbal gum and fuel. The study was designed to examine the antimicrobial activities of essential oils of these plants by the disc diffusion and minimum inhibitory concentration (MIC) methods. In addition, antimicrobial activity of Thymus eigii was researched by effects when it was used together with antibiotics and even when it was combined with other essential oils. When the results of this study were compared with vancomycin (30 mcg) and erytromycin (15 mcg) standards, it was found that Thymus eigii essential oil was particularly found to possess strongerantimicrobial activity whereas other essential oils showed susceptible or moderate activity However, antimicrobial activity changed also by in vitro interactions between antibiotics and Thymus eigii essential oil, also between essential oils of these plants and that of Thymus eigii causing synergic, additive, antagonist effect.

  7. Chemical composition and phagocyte immunomodulatory activity of Ferula iliensis essential oils.

    PubMed

    Özek, Gulmira; Schepetkin, Igor A; Utegenova, Gulzhakhan A; Kirpotina, Liliya N; Andrei, Spencer R; Özek, Temel; Başer, Kemal Hüsnü Can; Abidkulova, Karime T; Kushnarenko, Svetlana V; Khlebnikov, Andrei I; Damron, Derek S; Quinn, Mark T

    2017-06-01

    Essential oil extracts from Ferula iliensis have been used traditionally in Kazakhstan for treatment of inflammation and other illnesses. Because little is known about the biologic activity of these essential oils that contributes to their therapeutic properties, we analyzed their chemical composition and evaluated their phagocyte immunomodulatory activity. The main components of the extracted essential oils were ( E )-propenyl sec -butyl disulfide (15.7-39.4%) and ( Z )-propenyl sec -butyl disulfide (23.4-45.0%). Ferula essential oils stimulated [Ca 2+ ] i mobilization in human neutrophils and activated ROS production in human neutrophils and murine bone marrow phagocytes. Activation of human neutrophil [Ca 2+ ] i flux by Ferula essential oils was dose-dependently inhibited by capsazepine, a TRPV1 channel antagonist, indicating that TRPV1 channels mediate this response. Furthermore, Ferula essential oils stimulated Ca 2+ influx in TRPV1 channel-transfected HEK293 cells and desensitized the capsaicin-induced response in these cells. Additional molecular modeling with known TRPV1 channel agonists suggested that the active component is likely to be ( Z )-propenyl sec -butyl disulfide. Our results provide a cellular and molecular basis to explain at least part of the beneficial therapeutic properties of FEOs. © Society for Leukocyte Biology.

  8. Inhibition of quorum sensing regulated bacterial functions by plant essential oils with special reference to clove oil.

    PubMed

    Khan, M S A; Zahin, M; Hasan, S; Husain, F M; Ahmad, I

    2009-09-01

    To evaluate quorum sensing (QS) inhibitory activity of plant essential oils using strains of Chromobacterium violaceum (CV12472 and CVO26) and Pseudomonas aeruginosa (PAO1). Inhibition of QS-controlled violacein production in C. violaceum was assayed using disc diffusion and agar well diffusion method. Of the 21 essential oils, four oils showed varying levels of anti-QS activity. Syzygium aromaticum (Clove) oil showed promising anti-QS activity on both wild and mutant strains with zones of pigment inhibition 19 and 17 mm, respectively, followed by activity in cinnamon, lavender and peppermint oils. The effect of clove oil on the extent of violacein production was estimated photometrically and found to be concentration dependent. At sub-MICs of clove oil, 78.4% reduction in violacein production over control and up to 78% reduction in swarming motility in PAO1 over control were recorded. Gas chromatography-mass spectrometry analysis of clove oil indicated presence of many phytocompounds. Eugenol, the major constituent of clove oil could not exhibit anti-QS activity. Presence of anti-QS activity in clove oil and other essential oils has indicated new anti-infective activity. The identification of anti-QS phytoconstituents is needed to assess the mechanism of action against both C. violaceum and Ps. aeruginosa. Essential oils having new antipathogenic drugs principle because of its anti-QS activity might be important in reducing virulence and pathogenicity of drug-resistant bacteria in vivo.

  9. Antibacterial activity of essential oils from Australian native plants.

    PubMed

    Wilkinson, Jenny M; Cavanagh, Heather M A

    2005-07-01

    To date, of the Australian essential oils, only tea tree (Melaleuca alternifolia) and Eucalyptus spp. have undergone extensive investigation. In this study a range of Australian essential oils, including those from Anethole anisata, Callistris glaucophyllia, Melaleuca spp. and Thyptomine calycina, were assayed for in vitro antibacterial activity. M. alternifolia was also included for comparison purposes. Activity was determined using standard disc diffusion assays with each oil assayed at 100%, 10% and 1% against five bacteria (Escherichia coli, Salmonella typhimurium, Staphylococcus aureus, Pseudomonas aeruginosa and Alcaligenes faecalis) and the yeast, Candida albicans. All bacteria, with the exception of Ps. aeruginosa, were susceptible to one or more of the essential oils at 100%, with only Eremophilia mitchelli inhibiting the growth of any bacteria at 1% (inhibition of Sal. typhimurium). Where multiple samples of a single oil variety were tested variability in activity profiles were noted. This suggests that different methods of preparation of essential oils, together with variability in plant chemical profiles has an impact on whether or not the essential oil is of use as an antimicrobial agent. These results show that essential oils from Australian plants may be valuable antimicrobial agents for use alone or incorporated into cosmetics, cleaning agents and pharmaceutical products.

  10. Chemical composition and anticancer, antiinflammatory, antioxidant and antimalarial activities of leaves essential oil of Cedrelopsis grevei.

    PubMed

    Afoulous, Samia; Ferhout, Hicham; Raoelison, Emmanuel Guy; Valentin, Alexis; Moukarzel, Béatrice; Couderc, François; Bouajila, Jalloul

    2013-06-01

    The essential oil from Cedrelopsis grevei leaves, an aromatic and medicinal plant from Madagascar, is widely used in folk medicine. Essential oil was characterized by GC-MS and quantified by GC-FID. Sixty-four components were identified. The major constituents were: (E)-β-farnesene (27.61%), δ-cadinene (14.48%), α-copaene (7.65%) and β-elemene (6.96%). The essential oil contained a complex mixture consisting mainly sesquiterpene hydrocarbons (83.42%) and generally sesquiterpenes (98.91%). The essential oil was tested cytotoxic (on human breast cancer cells MCF-7), antimalarial (Plasmodium falciparum), antiinflammatory and antioxidant (ABTS and DPPH assays) activities. C. grevei essential oil was active against MCF-7 cell lines (IC50=21.5 mg/L), against P. falciparum, (IC50=17.5mg/L) and antiinflammatory (IC50=21.33 mg/L). The essential oil exhibited poor antioxidant activity against DPPH (IC50>1000 mg/L) and ABTS (IC50=110 mg/L) assays. A bibliographical review was carried out of all essential oils identified and tested with respect to antiplasmodial, anticancer and antiinflammatory activities. The aim was to establish correlations between the identified compounds and their biological activities (antiplasmodial, anticancer and antiinflammatory). According to the obtained correlations, 1,4-cadinadiene (R(2)=0.61) presented a higher relationship with antimalarial activity. However, only (Z)-β-farnesene (R(2)=0.73) showed a significant correlation for anticancer activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Chemical composition and in vitro antibacterial activity of Pistacia terebinthus essential oils derived from wild populations in Kosovo.

    PubMed

    Pulaj, Bledar; Mustafa, Behxhet; Nelson, Kate; Quave, Cassandra L; Hajdari, Avni

    2016-05-26

    Plant material from different organs of Pistacia terebinthus L., (Anacardiaceae) were collected in Kosovo with aim to analyze the chemical variability of the essential oils among native populations and to test them for potential antibacterial activity against Staphylococcus aureus. Essential oils obtained from leaves, pedicels, fruits and galls were analyzed by GC-FID and GC/MS. Minimum inhibitory concentration (MIC) against three clinically relevant strains of S. aureus (NRS385, LAC and UAMS-1) were used to evaluate the antibacterial activity of essential oils. In total, 33 different compounds were identified. The main constituents were α-pinene (12.58-66.29 %), D-limonene (13.95-46.29 %), β-ocimene (0.03-40.49 %), β-pinene (2.63-20.47 %), sabinene (0.00-5.61 %) and (Z)-β-ocimene (0.00-44.85 %). Antibacterial testing of the essential oils against three clinical isolates of S. aureus revealed that seven of the eight samples had some activity at the concentration range tested (0.04-0.512 % v/v). The gall tissues from both sites produced the highest yield of essential oil (3.24 and 6 %), and both exhibited growth inhibitory activity against S. aureus. The most bioactive essential oils, which exhibited MIC90 values ranging from 0.032-0.128 % v/v, obtained from the fruits of the Ura e Shejtë collection site. Likewise, the leaf and pedicel essential oil from the same site was highly active with MIC90 values of 0.064-0.128 and 0.032-0.256 % v/v, respectively. Principle Component Analyses demonstrated that there is a variation in the chemical composition of essential oil depending on the plant organs from which essential oil are obtained and the geographical origin of the plant populations. The highest variability regarding the chemical composition of essential oil was found between oils obtained from different organs originating from the Prizren site. The MIC90 activity of Pistacia terebinthus was on par or superior compared with Tea Tree Oil control (0.128 % v/v), suggesting that essential oils from this species may have some potential for development as an antibacterial agent for S. aureus infections.

  12. Selective Essential Oils from Spice or Culinary Herbs Have High Activity against Stationary Phase and Biofilm Borrelia burgdorferi

    PubMed Central

    Feng, Jie; Zhang, Shuo; Shi, Wanliang; Zubcevik, Nevena; Miklossy, Judith; Zhang, Ying

    2017-01-01

    Although the majority of patients with acute Lyme disease can be cured with the standard 2–4 week antibiotic treatment, about 10–20% of patients continue suffering from chronic symptoms described as posttreatment Lyme disease syndrome. While the cause for this is debated, one possibility is that persister bacteria are not killed by the current Lyme antibiotics and remain active in the system. It has been reported that essential oils have antimicrobial activities and some have been used by patients with persisting Lyme disease symptoms. However, the activity of essential oils against the causative agent Borrelia burgdorferi (B. burgdorferi) has not been well studied. Here, we evaluated the activity of 34 essential oils against B. burgdorferi stationary phase culture as a model for persister bacteria. We found that not all essential oils had activity against the B. burgdorferi stationary phase culture, with top five essential oils (oregano, cinnamon bark, clove bud, citronella, and wintergreen) at a low concentration of 0.25% showing high anti-persister activity that is more active than the known persister drug daptomycin. Interestingly, some highly active essential oils were found to have excellent anti-biofilm ability as shown by their ability to dissolve the aggregated biofilm-like structures. The top three hits, oregano, cinnamon bark, and clove bud completely eradicated all viable cells without any regrowth in subculture in fresh medium, whereas but not citronella and wintergreen did not have this effect. Carvacrol was found to be the most active ingredient of oregano oil showing excellent activity against B. burgdorferi stationary phase cells, while other ingredients of oregano oil p-cymene and α-terpinene had no apparent activity. Future studies are needed to characterize and optimize the active essential oils in drug combination studies in vitro and in vivo and to address their safety and pharmacokinetic properties before they can be considered as a novel treatment of persistent Lyme disease. PMID:29075628

  13. Selective Essential Oils from Spice or Culinary Herbs Have High Activity against Stationary Phase and Biofilm Borrelia burgdorferi.

    PubMed

    Feng, Jie; Zhang, Shuo; Shi, Wanliang; Zubcevik, Nevena; Miklossy, Judith; Zhang, Ying

    2017-01-01

    Although the majority of patients with acute Lyme disease can be cured with the standard 2-4 week antibiotic treatment, about 10-20% of patients continue suffering from chronic symptoms described as posttreatment Lyme disease syndrome. While the cause for this is debated, one possibility is that persister bacteria are not killed by the current Lyme antibiotics and remain active in the system. It has been reported that essential oils have antimicrobial activities and some have been used by patients with persisting Lyme disease symptoms. However, the activity of essential oils against the causative agent Borrelia burgdorferi ( B. burgdorferi ) has not been well studied. Here, we evaluated the activity of 34 essential oils against B. burgdorferi stationary phase culture as a model for persister bacteria. We found that not all essential oils had activity against the B. burgdorferi stationary phase culture, with top five essential oils (oregano, cinnamon bark, clove bud, citronella, and wintergreen) at a low concentration of 0.25% showing high anti-persister activity that is more active than the known persister drug daptomycin. Interestingly, some highly active essential oils were found to have excellent anti-biofilm ability as shown by their ability to dissolve the aggregated biofilm-like structures. The top three hits, oregano, cinnamon bark, and clove bud completely eradicated all viable cells without any regrowth in subculture in fresh medium, whereas but not citronella and wintergreen did not have this effect. Carvacrol was found to be the most active ingredient of oregano oil showing excellent activity against B. burgdorferi stationary phase cells, while other ingredients of oregano oil p-cymene and α-terpinene had no apparent activity. Future studies are needed to characterize and optimize the active essential oils in drug combination studies in vitro and in vivo and to address their safety and pharmacokinetic properties before they can be considered as a novel treatment of persistent Lyme disease.

  14. Antioxidant activity of rosemary (Rosmarinus officinalis L.) essential oil and its hepatoprotective potential

    PubMed Central

    2014-01-01

    Background Natural antioxidant products are increasingly being used to treat various pathological liver conditions considering the role of oxidative stress in their pathogenesis. Rosemary essential oil has already being used as a preservative in food industry due to its antioxidant and antimicrobial activities, but it was shown to possess additional health benefits. The aim of our study was to evaluate the protective effect of rosemary essential oil on carbon tetrachloride - induced liver injury in rats and to explore whether its mechanism of action is associated with modulation of hepatic oxidative status. Methods Chemical composition of isolated rosemary essential oil was determined by gas chromatography and mass spectrometry. Antioxidant activity was determined in vitro using DPPH assay. Activities of enzyme markers of hepatocellular damage in serum and antioxidant enzymes in the liver homogenates were measured using the kinetic spectrophotometric methods. Results In this research, we identified 29 chemical compounds of the studied rosemary essential oil, and the main constituents were 1,8-cineole (43.77%), camphor (12.53%), and α-pinene (11.51%). Investigated essential oil was found to exert hepatoprotective effects in the doses of 5 mg/kg and 10 mg/kg by diminishing AST and ALT activities up to 2-fold in serum of rats with carbon tetrachloride - induced acute liver damage. Rosemary essential oil prevented carbon tetrachloride - induced increase of lipid peroxidation in liver homogenates. Furthermore, pre-treatment with studied essential oil during 7 days significantly reversed the activities of antioxidant enzymes catalase, peroxidase, glutathione peroxidase and glutathione reductase in liver homogenates, especially in the dose of 10 mg/kg. Conclusions Our results demonstrate that rosemary essential oil, beside exhibiting free radical scavenging activity determined by DPPH assay, mediates its hepatoprotective effects also through activation of physiological defense mechanisms. PMID:25002023

  15. Antioxidant activity of rosemary (Rosmarinus officinalis L.) essential oil and its hepatoprotective potential.

    PubMed

    Rašković, Aleksandar; Milanović, Isidora; Pavlović, Nebojša; Ćebović, Tatjana; Vukmirović, Saša; Mikov, Momir

    2014-07-07

    Natural antioxidant products are increasingly being used to treat various pathological liver conditions considering the role of oxidative stress in their pathogenesis. Rosemary essential oil has already being used as a preservative in food industry due to its antioxidant and antimicrobial activities, but it was shown to possess additional health benefits. The aim of our study was to evaluate the protective effect of rosemary essential oil on carbon tetrachloride - induced liver injury in rats and to explore whether its mechanism of action is associated with modulation of hepatic oxidative status. Chemical composition of isolated rosemary essential oil was determined by gas chromatography and mass spectrometry. Antioxidant activity was determined in vitro using DPPH assay. Activities of enzyme markers of hepatocellular damage in serum and antioxidant enzymes in the liver homogenates were measured using the kinetic spectrophotometric methods. In this research, we identified 29 chemical compounds of the studied rosemary essential oil, and the main constituents were 1,8-cineole (43.77%), camphor (12.53%), and α-pinene (11.51%). Investigated essential oil was found to exert hepatoprotective effects in the doses of 5 mg/kg and 10 mg/kg by diminishing AST and ALT activities up to 2-fold in serum of rats with carbon tetrachloride-induced acute liver damage. Rosemary essential oil prevented carbon tetrachloride-induced increase of lipid peroxidation in liver homogenates. Furthermore, pre-treatment with studied essential oil during 7 days significantly reversed the activities of antioxidant enzymes catalase, peroxidase, glutathione peroxidase and glutathione reductase in liver homogenates, especially in the dose of 10 mg/kg. Our results demonstrate that rosemary essential oil, beside exhibiting free radical scavenging activity determined by DPPH assay, mediates its hepatoprotective effects also through activation of physiological defense mechanisms.

  16. Anti-inflammatory activities of essential oil isolated from the calyx of Hibiscus sabdariffa L.

    PubMed

    Shen, Chun-Yan; Zhang, Tian-Tian; Zhang, Wen-Li; Jiang, Jian-Guo

    2016-10-12

    Hibiscus sabdariffa Linn., belonging to the family of Malvaceae, is considered to be a plant with health care applications in China. The main purpose of this study was to analyze the composition of its essential oil and assess its potential therapeutic effect on anti-inflammatory activity. A water steam distillation method was used to extract the essential oil from H. Sabdariffa. The essential oil components were determined by gas chromatography/mass spectrometry (GC-MS) analysis and a total of 18 volatile constituents were identified, the majority of which were fatty acids and ester compounds. Biological activity showed that the essential oil extracted from H. Sabdariffa exhibited excellent anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated macrophage RAW 264.7 cells. The nitric oxide (NO) inhibition rate reached 67.46% when the concentration of the essential oil was 200 μg mL -1 . Further analysis showed that the anti-inflammatory activity of the essential oil extracted from H. Sabdariffa might be exerted through inhibiting the activation of NF-κB and MAPK (JNK and ERK1/2) signaling pathways to decrease NO and pro-inflammatory cytokine (IL-1, IL-6, TNF-α, COX-2, and iNOS) production. Thus, the essential oil extracted from H. Sabdariffa is a good source of a natural product with a beneficial effect against inflammation, and it may be applied as a food supplement and/or functional ingredient.

  17. Antibacterial activity of essential oils extracted from Satureja hortensis against selected clinical pathogens

    NASA Astrophysics Data System (ADS)

    Görmez, Arzu; Yanmiş, Derya; Bozari, Sedat; Gürkök, Sumeyra

    2017-04-01

    The antibiotic resistance of pathogenic microorganisms has become a worldwide concern to public health. To overcome the current resistance problem, new antimicrobial agents are extremely needed. The aim of the present study was to evaluate the antibacterial activity of Satureja hortensis essential oils against seven clinical pathogens. Chemical compositions of hydro distillated essential oils from S. hortensis were analyzed by GS-MS. The antibacterial activity was investigated against Corynebacterium diphtheria, Salmonella typhimurium, Serratia plymuthica Yersinia enterocolitica, Y. frederiksenii, Y. pseudotuberculosis and Vibrio cholerae by the use of disc diffusion method and broth micro dilution method. The minimum inhibitory concentration (MIC) values of essential oils were found as low as 7.81 µg/mL. Notably, essential oils of S. hortensis exhibited remarkable antimicrobial activities against the tested clinical pathogens. The results indicate that these essential oils can be used in treatment of different infectious diseases.

  18. General Toxicity and Antifungal Activity of a New Dental Gel with Essential Oil from Abies Sibirica L

    PubMed Central

    Noreikaitė, Aurelija; Ayupova, Rizvangul; Satbayeva, Elmira; Seitaliyeva, Aida; Amirkulova, Marzhan; Pichkhadze, Guram; Datkhayev, Ubaidilla; Stankeviandccaron;ius, Edgaras

    2017-01-01

    Background The aim of this study was to analyze the antifungal activity and the general toxicity of a new dental gel containing essential oil from the tree Abies sibirica L., which grows in the Republic of Kazakhstan. Material/Methods The essential oil from Abies sibirica L. was obtained by microwave heating method using the STARTE Microwave Extraction System. Adjutants used to prepare the oil were carbomer 974P, glycerin, polysorbate 80, xylitol, triethanolamine, and purified water, all allowed for medical usage. The antifungal activity of the essential oil was assessed by monitoring the optical density of Candida albicans in a microplate reader. The safety was determined by analyzing the acute and subacute toxicity. Results The essential oil obtained by the microwave heating method revealed a higher antifungal activity in comparison with the essential oil obtained by the steam distillation method. No obvious changes were detected in guinea pigs following cutaneous application of the gel. Enteral administration of the essential oil caused minimal functional and histological changes in mice after 4 weeks. The new harmless dental gel containing pine oil from Abies sibirica L. was provided for the purposes of this particular clinical research. Conclusions The high antifungal activity of the gel is the basis for more in-depth studies on its safety and pharmacological activity. PMID:28132065

  19. General Toxicity and Antifungal Activity of a New Dental Gel with Essential Oil from Abies Sibirica L.

    PubMed

    Noreikaitė, Aurelija; Ayupova, Rizvangul; Satbayeva, Elmira; Seitaliyeva, Aida; Amirkulova, Marzhan; Pichkhadze, Guram; Datkhayev, Ubaidilla; Stankevičius, Edgaras

    2017-01-29

    BACKGROUND The aim of this study was to analyze the antifungal activity and the general toxicity of a new dental gel containing essential oil from the tree Abies sibirica L., which grows in the Republic of Kazakhstan. MATERIAL AND METHODS The essential oil from Abies sibirica L. was obtained by microwave heating method using the STARTE Microwave Extraction System. Adjutants used to prepare the oil were carbomer 974P, glycerin, polysorbate 80, xylitol, triethanolamine, and purified water, all allowed for medical usage. The antifungal activity of the essential oil was assessed by monitoring the optical density of Candida albicans in a microplate reader. The safety was determined by analyzing the acute and subacute toxicity. RESULTS The essential oil obtained by the microwave heating method revealed a higher antifungal activity in comparison with the essential oil obtained by the steam distillation method. No obvious changes were detected in guinea pigs following cutaneous application of the gel. Enteral administration of the essential oil caused minimal functional and histological changes in mice after 4 weeks. The new harmless dental gel containing pine oil from Abies sibirica L. was provided for the purposes of this particular clinical research. CONCLUSIONS The high antifungal activity of the gel is the basis for more in-depth studies on its safety and pharmacological activity.

  20. Antimicrobial Activity of Individual and Combined Essential Oils against Foodborne Pathogenic Bacteria.

    PubMed

    Reyes-Jurado, Fatima; López-Malo, Aurelio; Palou, Enrique

    2016-02-01

    The antimicrobial activities of essential oils from Mexican oregano (Lippia berlandieri Schauer), mustard (Brassica nigra), and thyme (Thymus vulgaris) were evaluated alone and in binary combinations against Listeria monocytogenes, Staphylococcus aureus, or Salmonella Enteritidis. Chemical compositions of the essential oils were analyzed by gas chromatography-mass spectrometry. The MICs of the evaluated essential oils ranged from 0.05 to 0.50% (vol/vol). Mustard essential oil was the most effective, likely due to the presence of allyl isothiocyanate, identified as its major component. Furthermore, mustard essential oil exhibited synergistic effects when combined with either Mexican oregano or thyme essential oils (fractional inhibitory concentration indices of 0.75); an additive effect was obtained by combining thyme and Mexican oregano essential oils (fractional inhibitory concentration index = 1.00). These results suggest the potential of studied essential oil mixtures to inhibit microbial growth and preserve foods; however, their effect on sensory quality in selected foods compatible with their flavor needs to be assessed.

  1. 77 FR 28568 - Foreign-Trade Zone 216-Olympia, WA; Notification of Proposed Production Activity; Callisons, Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-15

    ... during customs entry procedures that apply to essential oils of peppermint (mentha piperita), other essential mint oils, odoriferous mixtures for use by the food and drink industries and non- alcohol perfume... oxygen, essential oils of peppermint (mentha piperita), essential oils of mint and essential oils of...

  2. Factorial design of essential oil extraction from Fagraea fragrans Roxb. flowers and evaluation of its biological activities for perfumery and cosmetic applications.

    PubMed

    Yingngam, B; Brantner, A H

    2015-06-01

    To optimize the extraction yields of essential oil from Fagraea fragrans Roxb. flowers in hydro-distillation using a central composite design (CCD) and to evaluate its biological activities for perfumery and cosmetic applications. Central composite design was applied to study the influences of operational parameters [water to flower weight (X(1)) and distillation time (X(2))] on the yields of essential oil (Y). Chemical compositions of the essential oil extracted from the optimized condition were identified by gas chromatography-mass spectrometry. Antioxidant activities of the essential oil were determined against ABTS(•+) and DPPH(•) radicals, and the cytotoxic effects were assessed on human embryonic kidney (HEK293) cells by the use of the MTT assay. Also, the aromatic properties of the essential oil were evaluated by five healthy trained volunteers. The best conditions to obtain the maximum essential oil yield were 7.5 mL g(-1) (X(1)) and 215 min (X(2)). The experimental yield of the essential oil (0.35 ± 0.02% v/w) was close to the value predicted by a mathematical model (0.35 ± 0.01% v/w). 3-Octadecyne, Z,Z,Z-7,10,13-hexadecatrienal, E-nerolidol, pentadecanal and linalool were the major constituents of the essential oil. The essential oil showed moderate antioxidant capacities with no toxic effects on HEK293 cells at 1-250 μg mL(-1). Also, the essential oil exhibited a very strong aroma and was classified to be top- to middle-notes. The results offer the effectively operational conditions in the extraction of essential oil from F. fragrans using hydro-distillation. The essential oil could be used as a natural fragrance, having antioxidant activity with slight cytotoxicity, for perfumery and cosmetic applications. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  3. Composition, antibacterial, antioxidant and antiproliferative activities of essential oils from three Origanum species growing wild in Lebanon and Greece.

    PubMed

    Marrelli, Mariangela; Conforti, Filomena; Formisano, Carmen; Rigano, Daniela; Arnold, Nelly Apostolides; Menichini, Francesco; Senatore, Felice

    2016-01-01

    The essential oils from Origanum dictamnus, Origanum libanoticum and Origanum microphyllum were analysed by GC-MS, finding carvacrol, p-cymene, linalool, γ-terpinene and terpinen-4-ol as major components. The antioxidant activity by the DPPH and FRAP tests and the antiproliferative activity against two human cancer cell lines, LoVo and HepG2, were investigated, showing that the essential oil of O. dictamnus was statistically the most inhibitory on both the cell lines, while all the oils exerted a weak antioxidant activity. Furthermore, the samples were tested against 10 Gram-negative and Gram-positive bacteria; all the oils were active on Gram-positive bacteria but O. dictamnus essential oil was the most effective (MIC = 25-50 μg/mL), showing also a good activity against the Gram-negative Escherichia coli (MIC = 50 μg/mL). Data suggest that these essential oils and particularly O. dictamnus oil could be used as valuable new flavours with functional properties for food or nutraceutical products.

  4. Chemical compositions and antibacterial activities of the essential oils from aerial parts and corollas of Origanum acutidens (Hand.-Mazz.) Ietswaart, an endemic species to Turkey.

    PubMed

    Cosge, Belgin; Turker, Arzu; Ipek, Arif; Gurbuz, Bilal

    2009-04-30

    Essential oils extracted by hydrodistillation from the aerial parts and corollas of Origanum acutidens (Hand.-Mazz.) Ietswaart, an endemic Turkish flora species, were analyzed by GC-MS. The amounts of essential oil obtained from the aerial parts and the corollas were 0.73% and 0.93%, respectively. Twenty-five components in both the aerial parts oil and the corolla oil, representing 95.11% and 93.88%, respectively, were identified. The aerial parts and corolla oils were characterized by the predominance of two components: p-cymene (9.43% and 17.51%) and carvacrol (67.51% and 52.33%), respectively. The essential oils were also evaluated for their antimicrobial activity against ten bacteria by the disc diffusion assay. Our findings showed the following order in the sensitivity to the essential oils, as indicated by the corresponding inhibition zones: Proteus vulgaris > Salmonella typhimurium > Enterobacter cloacae > Klebsiella pneumonia > Escherichia coli > Serratia marcescens > Pseudomonas aeruginosa for the aerial parts essential oil, and Salmonella typhimurium > Proteus vulgaris > Enterobacter cloacae > Escherichia coli > Klebsiella pneumoniae > Serratia marcescens > Pseudomonas aeruginosa for the corolla essential oil. The studied essential oils thus exhibited a broad-spectrum of activity against both Gram-positive and Gram-negative bacteria, whereas the tested Gram-positive bacteria were more susceptible to the essential oil samples.

  5. Chemical Constituents and Activity of Murraya microphylla Essential Oil against Lasioderma serricorne.

    PubMed

    You, Chun-Xue; Guo, Shan-Shan; Zhang, Wen-Juan; Yang, Kai; Wang, Cheng-Fang; Geng, Zhu-Feng; Du, Shu-Shan; Deng, Zhi-Wei; Wang, Yong-Yan

    2015-09-01

    The chemical composition, contact and repellent activities of the essential oil from Murraya microphylla branches and leaves against Lasioderma serricorne adults were determined and six compounds from the essential oil were isolated as well. The essential oil of M microphylla obtained by hydrodistillation was analyzed by gas chromatography-mass spectrometric (GC-MS) analysis; 22 compounds were identified. The main constituents of the essential oil included β-caryophyllene (18.0%), α-pinene (13.8%), spathulenol (9.5%), α-humulene (6.0%), γ-elemene (5.1%) and zingiberene (4.6%), followed by α-cadinol (3.9%) and caryophyllene oxide (3.8%). Six of these compounds were isolated and fully identified as α-pinene, β-caryophyllene, α-humulene, caryophyllene oxide, spathulenol and α-cadinol. L. serricorne adults had different sensitivities to the crude essential oil and isolated compounds. α-Humulene exhibited the strongest contact activity against L. serricorne, showing an LD50 value of 13.1 µg adult(-1). However, spathulenol, the crude essential oil and α-cadinol showed stronger contact activity against L. serricorne than caryophyllene oxide and β-caryophyllene. The essential oil, α-humulene and spathulenol showed comparable repellency against L. serricorne adults at 2 h after exposure, relative to the positive control, DEET. The results demonstrate that the essential oil and isolated compounds exhibited important contact and repellent activities against L. serricorne. Thus, they could become potential natural insecticides or repellents for control of insects in stored products.

  6. Commercial Origanum compactum Benth. and Cinnamomum zeylanicum Blume essential oils against natural mycoflora in Valencia rice.

    PubMed

    Santamarina, M Pilar; Roselló, Josefa; Sempere, Francisca; Giménez, Silvia; Blázquez, M Amparo

    2015-01-01

    Chemical composition of commercial Origanum compactum and Cinnamomum zeylanicum essential oils and the antifungal activity against pathogenic fungi isolated from Mediterranean rice grains have been investigated. Sixty-one compounds accounting for more than 99.5% of the total essential oil were identified by using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Carvacrol (43.26%), thymol (21.64%) and their biogenetic precursors p-cymene (13.95%) and γ-terpinene (11.28%) were the main compounds in oregano essential oil, while the phenylpropanoids, eugenol (62.75%), eugenol acetate (16.36%) and (E)-cinnamyl acetate (6.65%) were found in cinnamon essential oil. Both essential oils at 300 μg/mL showed antifungal activity against all tested strains. O. compactum essential oil showed the best antifungal activity towards Fusarium species and Bipolaris oryzae with a total inhibition of the mycelial growth. In inoculated rice grains at lower doses (100 and 200 μg/mL) significantly reduced the fungal infection, so O. compactum essential oil could be used as ecofriendly preservative for field and stored Valencia rice.

  7. Antioxidant activity and chemical characterization of essential oil of Bunium persicum.

    PubMed

    Shahsavari, Neda; Barzegar, Mohsen; Sahari, Mohammad Ali; Naghdibadi, Hasanali

    2008-12-01

    The search for natural antioxidants, especially of plant origin, has notably increased in recent years. Bunium persicum Boiss. is an economically important medicinal plant growing wild in the dry temperature regions in Iran. In this study, chemical constituents of the essential oil of the seed from Bunium persicum Boiss. have been studied by GC/MS technique. The major components were caryophyllene (27.81%), gamma-terpinene (15.19%), cuminyl acetate (14.67%). Individual antioxidant assays such as, DPPH* scavenging activity and beta-carotene bleaching have been carried out. In DPPH* system, the EC(50) value of essential oil was determined as 0.88 mg/mL. In beta-carotene bleaching antioxidant activity of essential oil (0.45%) was almost equal to BHT at 0.01%. In addition, the antioxidant activity of the essential oil was evaluated in crude soybean oil by monitoring peroxide and thiobarbituric acid values of the oil substrate. The results showed that the Bunium persicum essential oil (BPEO) was able to reduce the oxidation rate of the soybean oil in the accelerated condition at 60 degrees C (oven test). The essential oil at 0.06% showed the same effect of BHA at 0.02%. Hence, BPEO could be used as an additive in food after screening.

  8. Essential oil of Artemisia vestita exhibits potent in vitro and in vivo antibacterial activity: Investigation of the effect of oil on biofilm formation, leakage of potassium ions and survival curve measurement

    PubMed Central

    YANG, CHANG; HU, DONG-HUI; FENG, YAN

    2015-01-01

    The aim of the present study was to investigate the chemical composition of the essential oil of Artemisia vestita and to determine the antibacterial activity of the essential oil and its two major components, grandisol and 1,8-cineole, against certain respiratory infection-causing bacterial strains, in vitro and in vivo. The chemical composition of the essential oil was analyzed using gas chromatography-mass spectrometry. A micro-well dilution method was used to determine the minimum inhibition concentration (MIC) values of the essential oil and its major constituents. A model of Streptococcus pyogenes infection in mice was used to determine its in vivo activities. Lung and blood samples were obtained to assess bacterial cell counts. Toxicity evaluation of the essential oil and its components was completed by performing biochemical analysis of the serum, particularly monitoring aspartate transaminase, alanine transaminase, urea and creatinine. The essential oil exhibited potent antibacterial activity, whereas the two major constituents were less potent. The essential oil exhibited MIC values between 20 and 80 μg/ml, while the values of the two constituents were between 130 and 200 μg/ml. Scanning electron microscopy results demonstrated that the essential oil inhibited biofilm formation and altered its architecture. Survival curves indicated that the essential oil led to a reduction in the viability of different bacteria. The essential oil also induced significant leakage of potassium ions from S. pyogenes. The essential oil (100 μg/mouse) and grandisol (135 μg/mouse) significantly reduced the number of viable bacterial cells in the lungs (P<0.01). However, intake of 100 μg/mouse of essential oil or grandisol 135 μg/mouse once or twice each day for 9 days did not produce any toxic effects in the mice. In conclusion, the in vitro and in vivo results suggested that the essential oil of A. vestita and one of its major constituents, grandisol, can significantly inhibit the growth of different bacterial strains. PMID:26259564

  9. Essential oil of Artemisia vestita exhibits potent in vitro and in vivo antibacterial activity: Investigation of the effect of oil on biofilm formation, leakage of potassium ions and survival curve measurement.

    PubMed

    Yang, Chang; Hu, Dong-Hui; Feng, Yan

    2015-10-01

    The aim of the present study was to investigate the chemical composition of the essential oil of Artemisia vestita and to determine the antibacterial activity of the essential oil and its two major components, grandisol and 1,8‑cineole, against certain respiratory infection‑causing bacterial strains, in vitro and in vivo. The chemical composition of the essential oil was analyzed using gas chromatography‑mass spectrometry. A micro‑well dilution method was used to determine the minimum inhibition concentration (MIC) values of the essential oil and its major constituents. A model of Streptococcus pyogenes infection in mice was used to determine its in vivo activities. Lung and blood samples were obtained to assess bacterial cell counts. Toxicity evaluation of the essential oil and its components was completed by performing biochemical analysis of the serum, particularly monitoring aspartate transaminase, alanine transaminase, urea and creatinine. The essential oil exhibited potent antibacterial activity, whereas the two major constituents were less potent. The essential oil exhibited MIC values between 20 and 80 µg/ml, while the values of the two constituents were between 130 and 200 µg/ml. Scanning electron microscopy results demonstrated that the essential oil inhibited biofilm formation and altered its architecture. Survival curves indicated that the essential oil led to a reduction in the viability of different bacteria. The essential oil also induced significant leakage of potassium ions from S. pyogenes. The essential oil (100 µg/mouse) and grandisol (135 µg/mouse) significantly reduced the number of viable bacterial cells in the lungs (P<0.01). However, intake of 100 µg/mouse of essential oil or grandisol 135 µg/mouse once or twice each day for 9 days did not produce any toxic effects in the mice. In conclusion, the in vitro and in vivo results suggested that the essential oil of A. vestita and one of its major constituents, grandisol, can significantly inhibit the growth of different bacterial strains.

  10. Investigation of the Anti-Melanogenic and Antioxidant Characteristics of Eucalyptus camaldulensis Flower Essential Oil and Determination of Its Chemical Composition

    PubMed Central

    Huang, Huey-Chun; Ho, Ya-Chi; Lim, Jia-Min; Chang, Tzu-Yun; Ho, Chen-Lung; Chang, Tsong-Min

    2015-01-01

    The effects of essential oil from Eucalyptus camaldulensis flowers oil on melanogenesis and the oil’s antioxidant characteristics were investigated. Assays of mushroom and cellular tyrosinase activities and melanin content of mouse melanoma cells were performed spectrophotometrically, and the expression of melanogenesis-related proteins was determined by Western blotting. The possible signaling pathways involved in essential oil-mediated depigmentation were also investigated using specific protein kinase inhibitors. The results revealed that E. camaldulensis flower essential oil effectively suppresses intracellular tyrosinase activity and decreases melanin amount in B16F10 mouse melanoma cells. The essential oil also exhibits antioxidant properties and effectively decreases intracellular reactive oxygen species (ROS) levels. The volatile chemical composition of the essential oil was analyzed with gas chromatography–mass spectrometry (GC/MS). The chemical constituents in the essential oil are predominately oxygenated monoterpenes (34.9%), followed by oxygenated sesquiterpenes (31.8%), monoterpene hydrocarbons (29.0%) and sesquiterpene hydrocarbons (4.3%). Our results indicated that E. camaldulensis flower essential oil inhibits melanogenesis through its antioxidant properties and by down-regulating both mitogen-activated protein kinases (MAPK) and protein kinase A (PKA) signaling pathways. The present study indicates that the essential oil has the potential to be developed into a skin care product. PMID:25961954

  11. The Genus Artemisia: A 2012–2017 Literature Review on Chemical Composition, Antimicrobial, Insecticidal and Antioxidant Activities of Essential Oils

    PubMed Central

    Singh, Pooja

    2017-01-01

    Essential oils of aromatic and medicinal plants generally have a diverse range of activities because they possess several active constituents that work through several modes of action. The genus Artemisia includes the largest genus of family Asteraceae has several medicinal uses in human and plant diseases aliments. Extensive investigations on essential oil composition, antimicrobial, insecticidal and antioxidant studies have been conducted for various species of this genus. In this review, we have compiled data of recent literature (2012–2017) on essential oil composition, antimicrobial, insecticidal and antioxidant activities of different species of the genus Artemisia. Regarding the antimicrobial and insecticidal properties we have only described here efficacy of essential oils against plant pathogens and insect pests. The literature revealed that 1, 8-cineole, beta-pinene, thujone, artemisia ketone, camphor, caryophyllene, camphene and germacrene D are the major components in most of the essential oils of this plant species. Oils from different species of genus Artemisia exhibited strong antimicrobial activity against plant pathogens and insecticidal activity against insect pests. However, only few species have been explored for antioxidant activity. PMID:28930281

  12. Anticancer activity of essential oils and their chemical components - a review

    PubMed Central

    Bayala, Bagora; Bassole, Imaël HN; Scifo, Riccardo; Gnoula, Charlemagne; Morel, Laurent; Lobaccaro, Jean-Marc A; Simpore, Jacques

    2014-01-01

    Essential oils are widely used in pharmaceutical, sanitary, cosmetic, agriculture and food industries for their bactericidal, virucidal, fungicidal, antiparasitical and insecticidal properties. Their anticancer activity is well documented. Over a hundred essential oils from more than twenty plant families have been tested on more than twenty types of cancers in last past ten years. This review is focused on the activity of essential oils and their components on various types of cancers. For some of them the mechanisms involved in their anticancer activities have been carried out. PMID:25520854

  13. Antimicrobial, Antioxidant, and Anti-Inflammatory Activities of Essential Oils of Selected Aromatic Plants from Tajikistan.

    PubMed

    Sharopov, Farukh; Braun, Markus Santhosh; Gulmurodov, Isomiddin; Khalifaev, Davlat; Isupov, Salomiddin; Wink, Michael

    2015-11-02

    Antimicrobial, antioxidant, and anti-inflammatory activities of the essential oils of 18 plant species from Tajikistan (Central Asia) were investigated. The essential oil of Origanum tyttanthum showed a strong antibacterial activity with both minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 312.5 µg/mL for E. coli , 625 µg/mL (MIC) and 1250 µg/mL (MBC) for MRSA (methicillin-resistant Staphylococcus aureus), respectively. The essential oil of Galagania fragrantissima was highly active against MRSA at concentrations as low as 39.1 µg/mL and 78.2 µg/mL for MIC and MBC, respectively. Origanum tyttanthum essential oil showed the highest antioxidant activity with IC 50 values of 0.12 mg/mL for ABTS (2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid)) and 0.28 mg/mL for DPPH (2,2-diphenyl-1-picrylhydrazyl) . Galagania fragrantissima and Origanum tyttanthum essential oils showed the highest anti-inflammatory activity; IC 50 values of 5-lipoxygenase (5-LOX) inhibition were 7.34 and 14.78 µg/mL, respectively. In conclusion, essential oils of Origanum tyttanthum and Galagania fragrantissima exhibit substantial antimicrobial, antioxidant, and anti-inflammatory activities. They are interesting candidates in phytotherapy.

  14. Acaricidal activities of the essential oil from Rhododendron nivale Hook. f. and its main compund, δ-cadinene against Psoroptes cuniculi.

    PubMed

    Guo, Xiao; Shang, Xiaofei; Li, Bing; Zhou, Xu Zheng; Wen, Hao; Zhang, Jiyu

    2017-03-15

    In this paper, the acaricidal activities of Rhododendron nivale Hook. f. and its main compound, δ-cadinene were investigated, and the chemical composition of the essential oil was analyzed. The results showed that among aqueous, 70% ethanols, acetic ether, chloroform, petroleum ether and essential oil extracts from the shoots and leaves, the essential oil showed the best in vitro acaricidal activity against adult P. cuniculi, which occurred in a concentration- and time-dependent manner. The median lethal time (LT 50 ) values of four concentrations (33.33-4.17mg/ml) of the essential oil ranged from 1.476 to 25.900h, respectively. After the treatment of P. cuniculi with the essential oil and ivermectin, infected rabbits were free of scabs or secretions in the ear canal by day 20. Then, the percent yield of essential oil from the leaves and shoots was 2.45% (w/w), which includes 50 compounds. The primary component identified was terpenes, and among of compounds identified from the essential oil of R. nivale the highest relative content was δ-cadinene, which also presented the marked acaricidal activity against Psoroptes cuniculi in vitro. These findings provide evidence for the use of acaricides as a traditional medicine and indicate that the essential oil and δ-cadinene could be used to control mites in livestock. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Antifungal and antibacterial activities of Petroselinum crispum essential oil.

    PubMed

    Linde, G A; Gazim, Z C; Cardoso, B K; Jorge, L F; Tešević, V; Glamoćlija, J; Soković, M; Colauto, N B

    2016-07-29

    Parsley [Petroselinum crispum (Mill.) Fuss] is regarded as an aromatic, culinary, and medicinal plant and is used in the cosmetic, food, and pharmaceutical industries. However, few studies with conflicting results have been conducted on the antimicrobial activity of parsley essential oil. In addition, there have been no reports of essential oil obtained from parsley aerial parts, except seeds, as an alternative natural antimicrobial agent. Also, microorganism resistance is still a challenge for health and food production. Based on the demand for natural products to control microorganisms, and the re-evaluation of potential medicinal plants for controlling diseases, the objective of this study was to determine the chemical composition and antibacterial and antifungal activities of parsley essential oil against foodborne diseases and opportunistic pathogens. Seven bacteria and eight fungi were tested. The essential oil major compounds were apiol, myristicin, and b-phellandrene. Parsley essential oil had bacteriostatic activity against all tested bacteria, mainly Staphylococcus aureus, Listeria monocytogenes, and Salmonella enterica, at similar or lower concentrations than at least one of the controls, and bactericidal activity against all tested bacteria, mainly S. aureus, at similar or lower concentrations than at least one of the controls. This essential oil also had fungistatic activity against all tested fungi, mainly, Penicillium ochrochloron and Trichoderma viride, at lower concentrations than the ketoconazole control and fungicidal activity against all tested fungi at higher concentrations than the controls. Parsley is used in cooking and medicine, and its essential oil is an effective antimicrobial agent.

  16. Rhanterium epapposum Oliv. essential oil: Chemical composition and antimicrobial,insect-repellent and anticholinesterase activities

    USDA-ARS?s Scientific Manuscript database

    Essential oils from Rhanterium epapposum Oliv. (Asteraceae) was investigated for its repellent, antimicrobial and acetyl- and butyrylcholine esterase inhibitory activities. The oil showed good repellent activity while oils demonstrated weak in antimicrobial and cholinesterase inhibitions. Terpenoids...

  17. Raman spectroscopy for the evaluation of the effects of different concentrations of Copper on the chemical composition and biological activity of basil essential oil

    NASA Astrophysics Data System (ADS)

    Nawaz, Haq; Hanif, Muhammad Asif; Ayub, Muhammad Adnan; Ishtiaq, Faiqa; Kanwal, Nazish; Rashid, Nosheen; Saleem, Muhammad; Ahmad, Mushtaq

    2017-10-01

    The present study is performed to evaluate the effect of different concentrations of Cu as fertilizer on the chemical composition of basil essential oil and its biological activity including antioxidant and antifungal activities by employing Raman spectroscopy. Moreover, the effect of Cu is also determined on the vegetative growth and essential oil yield. Both, antifungal and antioxidant activities were found to be maximum with essential oils obtained at 0.04 mg/l concentration of Cu fertilizer. The results of the GC-MS and Raman spectroscopy have revealed that the linalool and estragole are found to be as a major chemical compound in basil essential oil. The Raman spectral changes associated with these biological components lead to the conclusion that estragole seems to have dominating effect in the biological activities of the basil essential oil as compared to linalool although the latter is observed in greater concentration.

  18. Essential oils and hydrophilic extracts from the leaves and flowers of Succisa pratensis Moench. and their biological activity.

    PubMed

    Witkowska-Banaszczak, Ewa; Długaszewska, Jolanta

    2017-11-01

    This study was undertaken to evaluate the antioxidant activity of methanol and water extracts from Succisa pratensis Moench (Dipsacaceae) leaves and flowers as well as the chemical composition of the essential oils found in them and the antimicrobial activity of the oils and extracts thereof. The essential oils from S. pratensis leaves and flowers were analysed by the GC-MS. The total phenolic content was determined with Folin-Ciocalteu, that of flavonoids with aluminium chloride and that of phenolic acids with Arnov's reagent. The antioxidant activity was investigated by the DPPH radical scavenging assay. Antimicrobial activity was studied in vitro against G-positive and G-negative bacteria, and fungi using disc diffusion and broth microdilution methods. Eighty-six components of the leaf essential oil and 50 of the flower essential oil were identified. The main components of the leaf essential oil were 2-hexyl-1-octanol (5.76%) and heptacosane (5.53%), whereas hexadecanoic acid (16.10%), 8-octadecen-1-ol acetate (9.86%), methyl linolenate (8.58%), pentacosane (6.63%) and heptacosane (5.50%) were found in the flower essential oil. The essential oils exerted high antimicrobial activity (range: 0.11 to >3.44mg/ml) against the following bacteria: Pseudomonas aeruginosa, Staphylococcus aureus and fungi: Trichophyton mentagrophytes, Candida albicans, whereas the methanol and water extracts showed moderate or weak activity. The strongest antioxidant activity was shown by methanol extracts from S. pratensis leaves, IC 50 = 0.09 mg/ml. There was a positive correlation between the total phenolic content and the antimicrobial activity, while for the antioxidant effect, it was not observed. The results suggest great antibacterial activity of the oils and high antioxidant activity of the methanol extract and may justify the application in treating infections. © 2017 Royal Pharmaceutical Society.

  19. Comparative Phytochemical Analysis of Essential Oils from Different Biological Parts of Artemisia herba alba and Their Cytotoxic Effect on Cancer Cells

    PubMed Central

    Tilaoui, Mounir; Ait Mouse, Hassan; Jaafari, Abdeslam; Zyad, Abdelmajid

    2015-01-01

    Purpose Carrying out the chemical composition and antiproliferative effects against cancer cells from different biological parts of Artemisia herba alba. Methods Essential oils were studied by gas chromatography coupled to mass spectrometry (GC–MS) and their antitumoral activity was tested against P815 mastocytoma and BSR kidney carcinoma cell lines; also, in order to evaluate the effect on normal human cells, oils were tested against peripheral blood mononuclear cells PBMCs. Results Essential oils from leaves and aerial parts (mixture of capitulum and leaves) were mainly composed by oxygenated sesquiterpenes 39.89% and 46.15% respectively; capitulum oil contained essentially monoterpenes (22.86%) and monocyclic monoterpenes (21.48%); esters constituted the major fraction (62.8%) of stem oil. Essential oils of different biological parts studied demonstrated a differential antiproliferative activity against P815 and BSR cancer cells; P815 cells are the most sensitive to the cytotoxic effect. Leaves and capitulum essential oils are more active than aerial parts. Interestingly, no cytotoxic effect of these essential oils was observed on peripheral blood mononuclear cells. Conclusion Our results showed that the chemical composition variability of essential oils depends on the nature of botanical parts of Artemisia herba alba. Furthermore, we have demonstrated that the differential cytotoxic effect depends not only on the essential oils concentration, but also on the target cells and the botanical parts of essential oils used. PMID:26196123

  20. Inhibition of melanogenesis versus antioxidant properties of essential oil extracted from leaves of Vitex negundo Linn and chemical composition analysis by GC-MS.

    PubMed

    Huang, Huey-Chun; Chang, Tzu-Yun; Chang, Long-Zen; Wang, Hsiao-Fen; Yih, Kuang-Hway; Hsieh, Wan-Yu; Chang, Tsong-Min

    2012-03-30

    This study was aimed at investigating the antimelanogenic and antioxidative properties of the essential oil extracted from leaves of V. negundo Linn and the analysis of the chemical composition of this essential oil. The efficacy of the essential oil was evaluated spectrophotometrically, whereas the volatile chemical compounds in the essential oil were analyzed by gas chromatography-mass spectrometry (GC-MS). The results revealed that the essential oil effectively suppresses murine B16F10 tyrosinase activity and decreases the amount of melanin in a dose-dependent manner. Additionally, the essential oil significantly scavenged 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radicals, and showed potent reducing power versus metal-ion chelating properties in a dose-dependent pattern. The chemical constituents in the essential oil are sesquiterpenes (44.41%), monoterpenes (19.25%), esters (14.77%), alcohols (8.53%), aromatic compound (5.90%), ketone (4.96%), ethers (0.4%) that together account for 98.22% of its chemical composition. It is predicted that the aromatic compound in the essential oil may contribute to its antioxidant activities. The results indicated that essential oil extracted from V. negundo Linn leaves decreased melanin production in B16F10 melanoma cells and showed potent antioxidant activities. The essential oil can thereby serve as an inhibitor of melanin synthesis and could also act as a natural antioxidant.

  1. Chemical composition, in vitro antioxidant, antimicrobial and insecticidal activities of essential oil from Cladanthus arabicus

    USDA-ARS?s Scientific Manuscript database

    The essential oil obtained from the aerial parts of Cladanthus arabicus (L.) Cass was studied for its chemical composition, antioxidant, antimicrobial and insecticidal activities. The essential oil (EO) was analyzed by GC-MS. Sixty seven compounds representing 94.2% of the oil were identified. The m...

  2. Enhancement of the Norfloxacin Antibiotic Activity by Gaseous Contact with the Essential Oil of Croton zehntneri

    PubMed Central

    Coutinho, HDM; Matias, EFF; Santos, KKA; Tintino, SR; Souza, CES; Guedes, GMM; Santos, FAD; Costa, JGM; Falcão-Silva, VS; Siqueira-Júnior, JP

    2010-01-01

    This is the first on the modulation of norfloxacin antibiotic activity by the volatile compounds of an essential oil. We report the chemical composition and antibiotic modifying activity of the essential oil extracted from the leaves of Croton zehntneri Pax et Hoffm (variety estragole), using the minimal inhibitory dose method and gaseous contact. The leaves of Croton zehntneri Pax et Hoffm (Euphorbiaceae) were subjected to hydrodistillation, and the essential oil extracted was examined with respect to the chemical composition, by gas chromatography-mass spectrometry (GC/MS), and to inhibitory activity of efflux pump by gaseous contact. The main component of the essential oil of C. zehntneri was estragole (76,8%). The gaseous components of the oil enhanced the inhibition zone of norfloxacin in 39,5%. This result shows that this oil influences the antibiotic activity of norfloxacin, possibly affecting the bacterial NorA efflux system, and may be used as an adjuvant in the antibiotic therapy of multidrug resistant pathogens. PMID:21264094

  3. Antioxidant Activity of the Essential Oils of Different Parts of Juniperus excelsa M. Bieb. subsp. excelsa and J. excelsa M. Bieb. subsp. polycarpos (K. Koch) Takhtajan (Cupressaceae)

    PubMed Central

    Emami, Sayyed Ahmad; Abedindo, Bibi Fatemeh; Hassanzadeh-Khayyat, Mohammad

    2011-01-01

    The essential oils of branchlets and fruits of Juniperus excelsa subsp. excelsa and Juniperus excelsa subsp. polycarpos were examined for their antioxidant activity. The compositions of the essential oils were studied by GC and GC-MS. To evaluation the antioxidants activity of the volatile oils, pure components and positive controls at different concentrations, thin-layer chromatography (TLC) screening methods, diphenylpicrylhydrazyl (DPPH) assay, deoxyribose degradation test and modified deoxyribose degradation test were employed. The results of the present study demonstrate some antioxidant activity for the tested essential oils obtained from various parts of both plants. It indicates that the use of these essential oils, in very low concentrations, may be useful as a natural preservative. However before any final conclusion, it is suggested that the antioxidant activity of these oils should also be evaluated by using lipid solvent system methods. PMID:24250416

  4. Antimicrobial activity of the essential oils of Thymus vulgaris L. measured using a bioimpedometric method.

    PubMed

    Marino, M; Bersani, C; Comi, G

    1999-09-01

    The essential oils obtained from Thymus vulgaris L. harvested at four ontogenetic stages were evaluated for their biological activity and chemical composition. The thyme essential oils were tested for their inhibitory effects against nine strains of gram-negative bacteria and six strains of gram-positive bacteria. The bioimpedance method was chosen for studying the antibacterial activity of the essential oils and the parameter chosen for defining and quantifying the antibacterial activity of the essential oils was the detection time. The plate counting technique was used to study the inhibitory effect by direct contact. All the thyme essential oils examined had a significant bacteriostatic activity against the microorganisms tested. This activity was more marked against the gram-positive bacteria. The oil from thyme in full flower was the most effective at stopping the growth of the microbial species examined. The oils tested were also shown to have good antibacterial activity by direct contact, which appeared to be more marked against the gram-negative bacteria. Only a few of the species were capable of recovering at least 50% of their metabolic function after contact with the inhibitor, while most of the strains were shown to have been inactivated almost completely. Escherichia coli O157:H7 was the most sensitive species, given that after contact with even the lowest concentration of oil cells could not be recovered.

  5. Biological Activities and Composition of Ferulago carduchorum Essential Oil

    PubMed Central

    Golfakhrabadi, Fereshteh; Khanavi, Mahnaz; Ostad, Seyed Nasser; Saeidnia, Soodabeh; Vatandoost, Hassan; Abai, Mohammad Reza; Hafizi, Mitra; Yousefbeyk, Fatemeh; Rad, Yaghoob Razzaghi; Baghenegadian, Ameneh; Ardekani, Mohammad Reza Shams

    2015-01-01

    Background: Ferulago carduchorum Boiss and Hausskn belongs to the Apiaceae family. This plant grows in west part of Iran that local people added it to dairy and oil ghee to delay expiration date and give them a pleasant taste. The aim of this study was to investigate the antioxidant, antimicrobial, acetyl cholinesterase inhibition, cytotoxic, larvicidal activities and composition of essential oil of F. carduchorum. Methods: Acetyl cholinesterase (AChE) inhibitory, larvicidal activities and chemical composition of essential oil of F. carduchorum were investigated. Besides, antioxidant, antimicrobial and cytotoxic activities of essential oil were tested using DPPH, microdilution method and MTT assay, respectively. Results: The major components of essential oil were (z)-β-ocimene (43.3%), α-pinene (18.23%) and bornyl acetate (3.98%). Among 43 identified components, monoterpenes were the most compounds (84.63%). The essential oil had noticeable efficiency against Candida albicans (MIC= 2340 μg ml−1) and it was effective against Anopheles stephensi with LC50 and LC90 values of 12.78 and 47.43 ppm, respectively. The essential oil could inhibit AChE (IC50= 23.6 μl ml−1). The essential oil showed high cytotoxicity on T47D, HEP-G2 and HT-29 cell lines (IC50< 2 μg ml−1). Conclusion: The essential oil of F. carduchorum collected from west of Iran had anti-Candida, larvicidal and cytotoxicity effects and should be further investigated in others in vitro and in vivo experimental models. PMID:26114148

  6. [Apoptosis and activity changes of telomerase induced by essential oil from pine needles in HepG2 cell line].

    PubMed

    Wei, Feng-xiang; Li, Mei-yu; Song, Yu-hong; Li, Hong-zhi

    2008-08-01

    To study the effects of essential oil extracted from pine needles on HepG2 cell line. HepG2 cells were treated with essential oil extracted from pine needles. Cell growth rate was determined with MTF assay, cell morphologic changes were examined under transmission electromicroscope and HE straining. Flow cytometry was used to exmine apoptotic cells. Bcl-2 gene expression was determined by flow cytometry and telomerase activity by TRAP assay. Essential oils from pine needles could not only repress the growth of HepG2 cells significantly, but also induce apoptosis to them. Both dose-effect and time-effect relationship could be confirmed. Typical morphology changes of apoptosis such as nuclear enrichment and karyorrhexis were observed through transmission electromicroscope and HE straining. Telomerase activity was down regulated in the essential oil extracted from pine needles induced apoptotic cells. The expression of bcl-2 gene was suppressed after the essential oil from pine needles treatement. The essential oil extracted from pine needles can inhibit cell growth of HepG2 cell line and induce apoptosis, which may associate with inhibition of telomerase activity and bcl-2 may be involved in the regulation of telomerase activity.

  7. Antigiardial activity of Ocimum basilicum essential oil.

    PubMed

    de Almeida, Igor; Alviano, Daniela Sales; Vieira, Danielle Pereira; Alves, Péricles Barreto; Blank, Arie Fitzgerald; Lopes, Angela Hampshire C S; Alviano, Celuta Sales; Rosa, Maria do Socorro S

    2007-07-01

    In this study, we investigated the effects of Ocimum basilicum essential oil on Giardia lamblia and on the modulation of the interaction of these parasites by peritoneal mouse macrophage. The essential oil (2 mg/ml) and its purified substances demonstrated antigiardial activity. Linalool (300 microg/ml), however, was able to kill 100% parasites after 1 h of incubation, which demonstrates its high antigiardial potential. Pretreatment of peritoneal mouse macrophages with 2 mg/ml essential oil dilution reduced in 79% the association index between these macrophages and G. lamblia, with a concomitant increase by 153% on nitric oxide production by the G. lamblia-ingested macrophages. The protein profiles and proteolitic activity of these parasite trophozoites, previously treated or not with 2 mg/ml essential oil or with the purified fractions, were also determined. After 1 and 2 h of incubation, proteins of lysates and culture supernatants revealed significant differences in bands patterns when compared to controls. Besides, the proteolitic activity, mainly of cysteine proteases, was clearly inhibited by the essential oil (2 mg/ml) and the purified linalool (300 microg/ml). These results suggest that, with G. lamblia, the essential oil from O. basilicum and its purified compounds, specially linalool, have a potent antimicrobial activity.

  8. Antifungal activity of volatile compounds generated by essential oils against fungi commonly causing deterioration of bakery products.

    PubMed

    Guynot, M E; Ramos, A J; Setó, L; Purroy, P; Sanchis, V; Marín, S

    2003-01-01

    To investigate the volatile fractions of 16 essential oils for activity against the more common fungi causing spoilage of bakery products, Eurotium amstelodami, E. herbariorum, E. repens, E. rubrum, Aspergillus flavus, A. niger and Penicillium corylophilum. The study applied 50 microl of pure essential oils in a sterilized filter paper, were carried out at pH 6 and at different water activity levels (0.80-0.90). First, a wheat flour based agar medium was used, where cinnamon leaf, clove, bay, lemongrass and thyme essential oils where found to totally inhibit all microorganisms tested. These five essential oils were then tested in sponge cake analogues, but the antifungal activity detected was much more limited. Five essential oils showed potential antifungal capacity against all species tested, over a wide range of water availability. Their activity, however, seems to be substrate-dependent. More research is needed to make them work in real bakery products, as in the preliminary study limited effectiveness was found. The potential of the cinnamon leaf, clove, bay, lemongrass and thyme essential oils against species belonging to Eurotium, Aspergillus and Penicillium genus has been demonstrated.

  9. Adult repellency and larvicidal activity of five plant essential oils against mosquitoes.

    PubMed

    Zhu, Junwei; Zeng, Xiaopeng; Yanma; Liu, Ting; Qian, Kuen; Han, Yuhua; Xue, Suqin; Tucker, Brad; Schultz, Gretchen; Coats, Joel; Rowley, Wayne; Zhang, Aijun

    2006-09-01

    The larvicidal activity and repellency of 5 plant essential oils--thyme oil, catnip oil, amyris oil, eucalyptus oil, and cinnamon oil--were tested against 3 mosquito species: Aedes albopictus, Ae. aegypti, and Culex pipiens pallens. Larvicidal activity of these essentials oils was evaluated in the laboratory against 4th instars of each of the 3 mosquito species, and amyris oil demonstrated the greatest inhibitory effect with LC50 values in 24 h of 58 microg/ml (LC90 = 72 microg/ml) for Ae. aegypti, 78 microg/ml (LC90 = 130 microg/ml) for Ae. albopictus, and 77 microg/ml (LC90 = 123 microg/ml) for Cx. p. pallens. The topical repellency of these selected essential oils and deet against laboratory-reared female blood-starved Ae. albopictus was examined. Catnip oil seemed to be the most effective and provided 6-h protection at both concentrations tested (23 and 468 microg/ cm2). Thyme oil had the highest effectiveness in repelling this species, but the repellency duration was only 2 h. The applications using these natural product essential oils in mosquito control are discussed.

  10. In vitro Antibacterial Activity of Ocimum suave Essential Oils against Uropathogens Isolated from Patients in Selected Hospitals in Bushenyi District, Uganda

    PubMed Central

    Tibyangye, Julius; Okech, Matilda Angela; Nyabayo, Josephat Maniga; Nakavuma, Jessica Lukanga

    2015-01-01

    Aims To determine antibacterial activity of Ocimum suave essential oils against bacterial uropathogens. Study Design A cross sectional and experimental study. Place and Duration of Study Six selected hospitals in Bushenyi District, Uganda between June 2012 and July 2013. Methodology Clean catch midstream urine samples were collected and inoculated on Cystine Lysine Electrolyte Deficient (CLED) agar. The plates were incubated at 37°C for 24hrs to 48hrs. The O. suave essential oils were extracted by hydrodistillation of leaves for 4hrs using a Clevenger apparatus. The oil was collected and dried over anhydrous sodium sulphate (Na2SO4) and kept at 4°C till further use. The antimicrobial activity of O. suave essential oils against isolates was determined by agar well method. The MIC of O. suave essential oil extract was carried out by microbroth dilution method. Results Of the three hundred (300) midstream urine samples collected, 67(22.33%) had significant bacterial growth. Escherichia coli is the most common isolate (61.19%, n = 41). The essential oil from O. suave showed activity against isolates of E. coli, K. pneumoniae, S. aureus, E. feacalis, M. morganii, Citrobacter species, Enterobacter species and P. aeruginosa with mean zone of inhibition (ZI) ranging from 10–22 mm. The essential oils had no inhibitory activity on Acinetobacter species. The minimum inhibitory concentration (MIC) for O. suave essential oils ranged from 0.78 to 22 μg/ml. This study showed that O. suave essential oils had MIC value of 0.78 μg/ml against S. aureus and MIC values ranging from 3 to 22 μg/ml against the other tested isolates. Conclusion The most common uropathogen was E. coli (61.19% n = 41). O. suave essential oils exhibited antibacterial activity against majority of the uropathogens, except Acinetobacter species, mean ZI of 10–22 mm and MIC of 0.78 – 22 μg/ml. PMID:26120574

  11. Chemical composition and antifungal activity of the essential oils of Lavandula pedunculata (Miller) Cav.

    PubMed

    Zuzarte, Monica; Gonçalves, Maria J; Cavaleiro, Carlos; Dinis, Augusto M; Canhoto, Jorge M; Salgueiro, Lígia R

    2009-08-01

    The chemical composition and antifungal activity of the essential oils of Lavandula pedunculata (Miller) Cav., harvested in North and Central Portugal, were investigated. The essential oils were isolated by hydrodistillation and analyzed by GC and GC/MS. The minimal-inhibitory concentration (MIC) and the minimal-lethal concentration (MLC) of the essential oils and of their major constituents were used to evaluate the antifungal activity against different strains of fungi involved in candidosis, dematophytosis, and aspergillosis. The oils were characterized by a high percentage of oxygenated monoterpenes, the main compounds being 1,8-cineole (2.4-55.5%), fenchone (1.3-59.7%), and camphor (3.6-48.0%). Statistical analysis differentiated the essential oils into two main types, one characterized by the predominance of fenchone and the other one by the predominance of 1,8-cineole. Within the 1,8-cineole chemotype, two subgroups were well-defined taking into account the percentages of camphor. A significant antifungal activity of the oils was found against dermatophyte strains. The essential oil with the highest content of camphor was the most active with MIC and MLC values ranging from 0.32-0.64 microl/ml.

  12. Antimicrobial activity of essential oils from Mediterranean aromatic plants against several foodborne and spoilage bacteria.

    PubMed

    Silva, Nuno; Alves, Sofia; Gonçalves, Alexandre; Amaral, Joana S; Poeta, Patrícia

    2013-12-01

    The antimicrobial activity of essential oils extracted from a variety of aromatic plants, often used in the Portuguese gastronomy was studied in vitro by the agar diffusion method. The essential oils of thyme, oregano, rosemary, verbena, basil, peppermint, pennyroyal and mint were tested against Gram-positive (Listeria monocytogenes, Clostridium perfringens, Bacillus cereus, Staphylococcus aureus, Enterococcus faecium, Enterococcus faecalis, and Staphylococcus epidermidis) and Gram-negative strains (Salmonella enterica, Escherichia coli, and Pseudomonas aeruginosa). For most essential oils examined, S. aureus, was the most susceptible bacteria, while P. aeruginosa showed, in general, least susceptibility. Among the eight essential oils evaluated, thyme, oregano and pennyroyal oils showed the greatest antimicrobial activity, followed by rosemary, peppermint and verbena, while basil and mint showed the weakest antimicrobial activity. Most of the essential oils considered in this study exhibited a significant inhibitory effect. Thyme oil showed a promising inhibitory activity even at low concentration, thus revealing its potential as a natural preservative in food products against several causal agents of foodborne diseases and food spoilage. In general, the results demonstrate that, besides flavoring the food, the use of aromatic herbs in gastronomy can also contribute to a bacteriostatic effect against pathogens.

  13. Essential Oil from the Resin of Protium heptaphyllum: Chemical Composition, Cytotoxicity, Antimicrobial Activity, and Antimutagenicity.

    PubMed

    de Lima, Ewelyne Miranda; Cazelli, Didley Sâmia Paiva; Pinto, Fernanda Endringer; Mazuco, Renata Alves; Kalil, Ieda Carneiro; Lenz, Dominik; Scherer, Rodrigo; de Andrade, Tadeu Uggere; Endringer, Denise Coutinho

    2016-01-01

    Protium heptaphyllum (Aubl.) March is popularly used as an analgesic and anti-inflammatory agent. This study aimed to evaluate the chemical composition of P. heptaphyllum essential oil, its cytotoxicity in a breast cancer cell line (MCF-7), antimicrobial activity, and its antimutagenicity in vivo. The chemical composition of the essential oil collected in three 3 years was determined by gas chromatography-mass spectrometry. The cytotoxicity was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Annexin V conjugated with fluorescein isothiocyanate, caspase-3, and tumor necrosis factor-alpha (TNF-α) assays were performed to evaluate apoptosis and inflammatory events. The antimutagenic activity at doses of 25, 50, and 100 mg/kg was determined using a micronucleus test in murine bone marrow. The essential oil showed a predominance of monoterpene compounds, being the terpinolene, p-cymene-8-ol, and p-cymene, present in the essential oil extracted in the 3 years. The essential oil showed a protection against cyclophosphamide-induced genotoxicity, and the cytotoxicity index polychromatic erythrocytes/normochromatic erythrocytes ratio in animals treated with oil at all doses (1.34 ± 0.33; 1.15 ± 0.1; 1.11 ± 0.13) did not differ from the negative control animal (1.31 ± 0.33), but from the cyclophosphamide group (0.61 ± 0.12). Cytotoxicity, at a concentration of 40.0 μg/mL, and antimicrobial activity were not observed for the essential oil (minimum inhibitory concentration ≥0.5 mg/mL). The essential oil did not change the levels of caspase-3 in the TNF-α level. The essential oil showed antimutagenic activity due to its chemical composition. Terpinolene, p-cymene-8-ol, and p-cymene are the main constituents of the essential oil of P. heptaphyllum collected within 3-yearsThe essential oil of P. heptaphyllum did not show antimicrobial activity (MIC >0.5 mg/mL) against E. coli, S. aureus, E. faecalis, and C. albicansThe essential oil of P. heptaphyllum has activity against S. mutans (MIC = 0.5 mg/mL)The essential oil showed a protection against cyclophosphamide-induced genotoxicity in the micronuclei assay. Abbreviations used: GC-MS: Gas Chromatography-Mass Spectrometry, MTT: 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, Annexin V-FITC: Annexin V conjugated with fluorescein isothiocyanate, TNF-α: Tumor necrosis factor alpha, MIC: Minimum Inhibitory Concentration.

  14. Chemical composition and antioxidant and anti-Listeria activities of essential oils obtained from some Egyptian plants.

    PubMed

    Viuda-Martos, Manuel; El Gendy, Abd El-Nasser G S; Sendra, Esther; Fernández-López, Juana; Abd El Razik, K A; Omer, Elsayed A; Pérez-Alvarez, Jose A

    2010-08-25

    The aim of this work was to (i) determine the chemical composition of the essential oils of six spices widely cultivated in Egypt (Origanum syriacum, Majorana hortensis, Rosmarinus officinalis, Cymbopogon citratus, Thymus vulgaris, and Artemisia annua); (ii) determine the antioxidant activity of the Egyptian essential oils by means of five different antioxidant tests; and (iii) determine the effectiveness of these essential oils on the inhibition of Listeria innocua CECT 910. There is a great variability in the chemical composition of essential oils obtained from the six Egyptian aromatic plants. Overall, thyme (highest percentage of inhibition of DPPH radical: 89.40%) and oregano (highest percentage of inhibition of TBARS: 85.79) essential oils presented the best antioxidant profiles, whereas marjoram, lemongrass, and artemisia were highly effective in metal chelating but had a pro-oxidative behavior by Rancimat induction test. Lemongrass essential oil showed the highest antibacterial activity against L. innocua with an inhibition zone of 49.00 mm, followed in effectiveness by thyme, marjoram, and oregano.

  15. C15078. Essential oil composition of Phagnalon sordidum (L.) from Corsica, chemical variability and antimicrobial activity.

    PubMed

    Brunel, Marion; Vitrac, Caroline; Costa, Jean; Mzali, Fatima; Vitrac, Xavier; Muselli, Alain

    2016-02-10

    The chemical composition of Phagnalon sordidum (L.) essential oil was investigated for the first time using gas chromatography and chromatography-mass spectrometry. Seventy-six compounds, which accounted for 87.9% of the total amount, were identified in a collective essential oil of P. sordidum from Corsica. The main essential oil components were (E)-β-caryophyllene (14.4%), β-pinene (11.0%), thymol (9.0%), and hexadecanoic acid (5.3%). The chemical compositions of essential oils from 19 Corsican locations were investigated. The study of the chemical variability using statistical analysis allowed identifying direct correlation between the three populations of P. sordidum widespread in Corsica and the essential oil compositions they produce. The in vitro antimicrobial activity of P. sordidum essential oil was evaluated and exhibited a notable activity on a large panel of clinically significant microorganisms. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Plant essential oils potency as natural antibiotic in Indonesian medicinal herb of “jamu”

    NASA Astrophysics Data System (ADS)

    Soetjipto, H.; Martono, Y.

    2017-02-01

    The main purposes of this study are to compile antibacterial activity data of essential oils from Indonesian’s plants in order which can be used as a natural antibiotic in “jamu” to increase potential Indonesian medicinal herb. By using Agar Diffusing method, Bioautography and Gas Chromatography Mass Spectrum, respectively, antibacterial activity and chemical compounds of 12 plants essential oils were studied in the Natural Product Chemistry Laboratory, Department of Chemistry, Faculty of Science and Mathematics, Satya Wacana Christian University, Salatiga since 2007 until 2015. The results of this studies showed that all of the essential oils have a medium to a strong antibacterial activity which are in the range of 30 - 2,500 μg and 80-5,000 μg. Further on, the essential oils analyzed by GCMS showed that each essential oils have different dominant compounds. These data can be used as basic doses in the usage of essential oils as natural antibiotics.

  17. Chemical content, antibacterial and antioxidant properties of essential oil extract from Tunisian Origanum majorana L. cultivated under saline condition.

    PubMed

    Olfa, Baâtour; Mariem, Aouadi; Salah, Abbassi Mohamed; Mouhiba, BenNasri Ayachi

    2016-11-01

    Essential oils of marjoram were extracted from plants, growing under non-saline and saline condition (75mM NaCl). Their antioxidant and antibaterial activity against six bacteria (Enterococcus faecalis, Escherichia coli, Salmonella enteritidis, Listeria ivanovii, Listeria inocula, and Listeria monocytogenes) were assessed. Result showed that, (i) independently of salt treatment, marjoram essential oils inhibited the growth of most of the bacteria but in degrees. The least susceptible one was Enterococcus faecalis. (ii) Gram negative bacteria seemed more sensitive to treated essential oils than Gram positive ones. (iii) Compared to synthetic antibiotics, marjoram essential oils were more effective against E. coli, L. innocua and S. enteridis. This activity was due to their high antioxidant activity. Thus, essential oils of marjoram may be an alternative source of natural antibacterial and antioxidant agents.

  18. Gas Chromatography, GC/Mass Analysis and Bioactivity of Essential Oil from Aerial Parts of Ferulago trifida: Antimicrobial, Antioxidant, AChE Inhibitory, General Toxicity, MTT Assay and Larvicidal Activities

    PubMed Central

    Tavakoli, Saeed; Vatandoost, Hassan; Zeidabadinezhad, Reza; Hajiaghaee, Reza; Hadjiakhoondi, Abbas; Abai, Mohammad Reza; Yassa, Narguess

    2017-01-01

    Background: We aimed to investigate different biological properties of aerial parts essential oil of Ferulago trifida Boiss and larvicidal activity of its volatile oils from all parts of plant. Methods: Essential oil was prepared by steam distillation and analyzed by Gas chromatography and GC/Mass. Antioxidant, antimicrobial, cytotoxic effects and AChE inhibitory of the oil were investigated using DPPH, disk diffusion method, MTT assay and Ellman methods. Larvicidal activity of F. trifida essential oil against malaria vector Anopheles stephensi was carried out according to the method described by WHO. Results: In GC and GC/MS analysis, 58 compounds were identified in the aerial parts essential oil, of which E-verbenol (9.66%), isobutyl acetate (25.73%) and E-β-caryophyllene (8.68%) were main compounds. The oil showed (IC50= 111.2μg/ml) in DPPH and IC50= 21.5 mg/ml in the investigation of AChE inhibitory. Furthermore, the oil demonstrated toxicity with (LD50= 1.1μg/ml) in brine shrimp lethality test and with (IC50= 22.0, 25.0 and 42.55 μg/ml) on three cancerous cell lines (MCF-7, A-549 and HT-29) respectively. LC50 of stem, root, aerial parts, fruits, and flowers essential oils against larvae of An. stephensi were equal with 10.46, 22.27, 20.50, 31.93 and 79.87ppm respectively. In antimicrobial activities, essential oil was effective on all specimens except Escherichia coli, Aspergillus niger and Candida albicans. Conclusion: The essential oil showed moderate antioxidant activity, strong antimicrobial properties and good toxic effect in brine shrimp test and MTT assay on three cancerous cell lines. PMID:29322058

  19. Gas Chromatography, GC/Mass Analysis and Bioactivity of Essential Oil from Aerial Parts of Ferulago trifida: Antimicrobial, Antioxidant, AChE Inhibitory, General Toxicity, MTT Assay and Larvicidal Activities.

    PubMed

    Tavakoli, Saeed; Vatandoost, Hassan; Zeidabadinezhad, Reza; Hajiaghaee, Reza; Hadjiakhoondi, Abbas; Abai, Mohammad Reza; Yassa, Narguess

    2017-09-01

    We aimed to investigate different biological properties of aerial parts essential oil of Ferulago trifida Boiss and larvicidal activity of its volatile oils from all parts of plant. Essential oil was prepared by steam distillation and analyzed by Gas chromatography and GC/Mass. Antioxidant, antimicrobial, cytotoxic effects and AChE inhibitory of the oil were investigated using DPPH, disk diffusion method, MTT assay and Ellman methods. Larvicidal activity of F. trifida essential oil against malaria vector Anopheles stephensi was carried out according to the method described by WHO. In GC and GC/MS analysis, 58 compounds were identified in the aerial parts essential oil, of which E-verbenol (9.66%), isobutyl acetate (25.73%) and E-β-caryophyllene (8.68%) were main compounds. The oil showed (IC 50 = 111.2μg/ml) in DPPH and IC 50 = 21.5 mg/ml in the investigation of AChE inhibitory. Furthermore, the oil demonstrated toxicity with (LD 50 = 1.1μg/ml) in brine shrimp lethality test and with (IC 50 = 22.0, 25.0 and 42.55 μg/ml) on three cancerous cell lines (MCF-7, A-549 and HT-29) respectively. LC 50 of stem, root, aerial parts, fruits, and flowers essential oils against larvae of An. stephensi were equal with 10.46, 22.27, 20.50, 31.93 and 79.87ppm respectively. In antimicrobial activities, essential oil was effective on all specimens except Escherichia coli , Aspergillus niger and Candida albicans. The essential oil showed moderate antioxidant activity, strong antimicrobial properties and good toxic effect in brine shrimp test and MTT assay on three cancerous cell lines.

  20. Antioxidant and antiangiogenic activities of the essential oils of Myristica fragrans and Morinda citrifolia.

    PubMed

    Piaru, Suthagar Pillai; Mahmud, Roziahanim; Abdul Majid, Amin Malik Shah; Mahmoud Nassar, Zeyad Daoud

    2012-04-01

    Toinvestigate the anti-angiogenic activity and antioxidant properties of Myristica fragrans (M. fragrans) (nutmeg) and Morinda citrifolia (M. citrifolia)(mengkudu) oils. The nutmeg and megkudu essential oils were obtained by steam distillation. The antioxidant activities of both essential oils were determined by beta-carotene/linoleic acid bleaching assay and reducing power while the anti-angiogenic activity was investigated using rat aortic ring assay using various concentrations. The results showed that nutmeg oil has higher antioxidant activity than mengkudu oil. The nutmeg oil effectively inhibited the oxidation of linoleic acid with (88.68±0.1)% while the inhibition percentage of oxidation of linoleic acid of the mengkudu oil is (69.44±0.4)%. The nutmeg oil and mengkudu oil showed reducing power with an EC(50) value of 181.4 μg/mL and 3 043.0 μg/mL, respectively. The antiangiogenic activity of nutmeg oil showed significant antiangiogenic activity with IC(50) of 77.64 μg/mL comparing to mengkudu oil which exhibits IC(50) of 109.30 μg/mL. Bioactive compound(s) will be isolated from the nutmeg essential oil to be developed as antiangiogenic drugs. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  1. Essential oils showing in vitro anti MRSA and synergistic activity with penicillin group of antibiotics.

    PubMed

    Uzair, Bushra; Niaz, Naheed; Bano, Asma; Khan, Barkat Ali; Zafar, Naheed; Iqbal, Muhammad; Tahira, Riffat; Fasim, Fehmida

    2017-09-01

    This study was planned in order to investigate effective essential oils to inhibit in-vitro growth of Methicillin resistant Staphylococcus aureus (MRSA). In this study using disc diffusion method anti MRSA activity of ten diverse essential oils extracted from traditional plants namely Thymus vulgaris L, Mentha pulegium, Ocimum sanctum, Mentha piperita, Cymbopogon citratus, Rosmarinus officinalis L., Cortex cinnamom, Citrus nobilis x Citrus deliciosa, Origanum vulgare and Mentha sp. was examined. All the essential oils inhibited growth of S. aureus to different extent, by exhibiting moderate to elevated zones of inhibitions. Essential oils of cinnamon (Cortex cinnamomi) and thyme (Thymus vulgaris L) were observed to be the most powerful against MRSA strains used in this study. At lowest concentration of 25μl/ml essential oils comprehensible zone of inhibition was found 9±0.085mm and 8±0.051mm respectively, and at elevated concentrations there was a total decline in growth of MRSA and a very clear zone of inhibition was observed. A synergistic effect of essential oils in amalgamation with amoxicillin a Penicillin group of antibiotic was also examined. Interestingly a strong synergism was observed with oregano (Origanum vulgare) and pennyroyal mint (Mentha pulegium) essential oils, which were not so effective alone driven out to be important synergistic candidate. Our results demonstrated that essential oils of cinnamon and thyme can be used as potential antimicrobial agent against the Methicillin-resistant Staphylococcus aureus infections and Amoxicillin antibacterial activity can be enhanced using active constituents present in oregano and pennyroyal mint essential oils.

  2. Antifungal activity of essential oils on two Venturia inaequalis strains with different sensitivities to tebuconazole.

    PubMed

    Muchembled, Jérôme; Deweer, Caroline; Sahmer, Karin; Halama, Patrice

    2017-11-02

    The antifungal activity of seven essential oils (eucalyptus, clove, mint, oregano, savory, tea tree, and thyme) was studied on Venturia inaequalis, the fungus responsible for apple scab. The composition of the essential oils was checked by gas chromatography-mass spectrometry. Each essential oil had its main compound. Liquid tests were performed to calculate the IC 50 of essential oils as well as their majority compounds. The tests were made on two strains with different sensitivities to tebuconazole: S755, the sensitive strain, and rs552, the strain with reduced sensitivity. Copper sulfate was selected as the reference mineral fungicidal substance. IC 50 with confidence intervals were calculated after three independent experiments. The results showed that all essential oils and all major compounds had in vitro antifungal activities. Moreover, it was highlighted that the effectiveness of four essential oils (clove, eucalyptus, mint, and savory) was higher than copper sulfate on both strains. For each strain, the best activity was obtained using clove and eucalyptus essential oils. For clove, the IC 50 obtained on the sensitive strain (5.2 mg/L [4.0-6.7 mg/L]) was statistically lower than the IC 50 of reduced sensitivity strain (14 mg/L [11.1-17.5 mg/L]). In contrast, for eucalyptus essential oil, the IC 50 were not different with respectively 9.4-13.0 and 12.2-17.9 mg/L for S755 and rs552 strains. For mint, origano, savory, tea tree, and thyme, IC 50 were always the best on rs552 strain. The majority compounds were not necessarily more efficient than their corresponding oils; only eugenol (for clove) and carvacrol (for oregano and savory) seemed to be more effective on S755 strain. On the other hand, rs552 strain seemed to be more sensitive to essential oils than S755 strain. In overall, it was shown that essential oils have different antifungal activities but do not have the same antifungal activities depending on the fungus strain used.

  3. Insecticidal activity of the essential oils from different plants against three stored-product insects.

    PubMed

    Ayvaz, Abdurrahman; Sagdic, Osman; Karaborklu, Salih; Ozturk, Ismet

    2010-01-01

    This study was conducted to determine the insecticidal activity of essential oils from oregano, Origanum onites L. (Lamiales: Lamiaceae), savory, Satureja thymbra L. (Lamiales: Lamiaceae), and myrtle, Myrtus communis L. (Rosales: Myrtaceae) against three stored-product insects. Essential oils from three species of plants were obtained by Clevenger-type water distillation. The major compounds in these essential oils were identified using gas chromatography-mass spectrometry and their insecticidal activity was tested against adults of the Mediterranean flour moth Ephestia kuehniella Zeller (Lepidoptera: Pyralidae), the Indian meal moth Plodia interpunctella Hübner (Lepidoptera: Pyralidae) and the bean weevil Acanthoscelides obtectus Say (Coleoptera: Bruchidae). While the major compound found in oregano and savory was carvacrol, the main constituent of the myrtle was linalool. Among the tested insects, A. obtectus was the most tolerant species against the essential oils. However, the insecticidal activity of the myrtle oil was more pronounced than other oils tested against A. obtectus adults. The essential oils of oregano and savory were highly effective against P. interpunctella and E. kuehniella, with 100% mortality obtained after 24 h at 9 and 25 microl/l air for P. interpunctella and E. kuehniella, respectively. LC(50) and LC(99) values of each essential oil were estimated for each insect species.

  4. Insecticidal Activity of the Essential Oils from Different Plants Against Three Stored-Product Insects

    PubMed Central

    Ayvaz, Abdurrahman; Sagdic, Osman; Karaborklu, Salih; Ozturk, Ismet

    2010-01-01

    This study was conducted to determine the insecticidal activity of essential oils from oregano, Origanum onites L. (Lamiales: Lamiaceae), savory, Satureja thymbra L. (Lamiales: Lamiaceae), and myrtle, Myrtus communis L. (Rosales: Myrtaceae) against three stored-product insects. Essential oils from three species of plants were obtained by Clevenger-type water distillation. The major compounds in these essential oils were identified using gas chromatography-mass spectrometry and their insecticidal activity was tested against adults of the Mediterranean flour moth Ephestia kuehniella Zeller (Lepidoptera: Pyralidae), the Indian meal moth Plodia interpunctella Hübner (Lepidoptera: Pyralidae) and the bean weevil Acanthoscelides obtectus Say (Coleoptera: Bruchidae). While the major compound found in oregano and savory was carvacrol, the main constituent of the myrtle was linalool. Among the tested insects, A. obtectus was the most tolerant species against the essential oils. However, the insecticidal activity of the myrtle oil was more pronounced than other oils tested against A. obtectus adults. The essential oils of oregano and savory were highly effective against P. interpunctella and E. kuehniella, with 100% mortality obtained after 24 h at 9 and 25 µl/l air for P. interpunctella and E. kuehniella, respectively. LC50 and LC99 values of each essential oil were estimated for each insect species. PMID:20578885

  5. Antioxidant properties of the essential oil of Eugenia caryophyllata and its antifungal activity against a large number of clinical Candida species.

    PubMed

    Chaieb, Kamel; Zmantar, Tarek; Ksouri, Riadh; Hajlaoui, Hafedh; Mahdouani, Kacem; Abdelly, Chedly; Bakhrouf, Amina

    2007-09-01

    Many essential oils are known to possess an antioxidant activity and antifungal properties and therefore they potentially act as antimycotic agents. Essential oil of clove (Eugenia caryophyllata) was isolated by hydrodistillation. The chemical composition of the essential oil was analysed by gas chromatography and gas chromatography/mass spectroscopy. The antioxidant effect of the tested oil was evaluated by measuring its 2,2-diphenyl-l-1-picrylhydrazil radical scavenging ability and the antiradical dose required to cause a 50% inhibition (IC50) was recorded. The antifungal activity of essential oils was evaluated against 53 human pathogenic yeasts using a disc paper diffusion method. Our results show that the major components present in the clove bund oil were eugenol (88.6%), eugenyl acetate (5.6%), beta-caryophyllene (1.4%) and 2-heptanone (0.9%). The tested essential oil exhibited a very strong radical scavenging activity (IC50 = 0.2 microg ml-1) when compared with the synthetic antioxidant (tert-butylated hydroxytoluene, IC50 = 11.5 microg ml-1). On the other hand, this species displayed an important antifungal effect against the tested strains. It is clear that clove oil shows powerful antifungal activity; and it can be used as an easily accessible source of natural antioxidants and in pharmaceutical applications.

  6. Antifungal activity of the essential oil from Calendula officinalis L. (asteraceae) growing in Brazil.

    PubMed

    Gazim, Zilda Cristiane; Rezende, Claudia Moraes; Fraga, Sandra Regina; Svidzinski, Terezinha Inez Estivaleti; Cortez, Diógenes Aparicio Garcia

    2008-01-01

    This study tested in vitro activity of the essential oil from flowers of Calendula officinalis using disk-diffusion techniques. The antifungal assay results showed for the first time that the essential oil has good potential antifungal activity: it was effective against all 23 clinical fungi strains tested.

  7. Antifungal activity of the essential oil from Calendula officinalis L. (asteraceae) growing in Brazil

    PubMed Central

    Gazim, Zilda Cristiane; Rezende, Claudia Moraes; Fraga, Sandra Regina; Svidzinski, Terezinha Inez Estivaleti; Cortez, Diógenes Aparicio Garcia

    2008-01-01

    This study tested in vitro activity of the essential oil from flowers of Calendula officinalis using disk-diffusion techniques. The antifungal assay results showed for the first time that the essential oil has good potential antifungal activity: it was effective against all 23 clinical fungi strains tested. PMID:24031180

  8. Anesthetic activity and bio-guided fractionation of the essential oil of Aloysia gratissima (Gillies & Hook.) Tronc. in silver catfish Rhamdia quelen.

    PubMed

    Benovit, Simone C; Silva, Lenise L; Salbego, Joseânia; Loro, Vania L; Mallmann, Carlos A; Baldisserotto, Bernardo; Flores, Erico M M; Heinzmann, Berta M

    2015-09-01

    This work aimed to determine the efficacy of the essential oil of A. gratissima as anesthetic for silver catfish, and to perform the bio-guided fractionation of essential oil aiming to isolate compounds responsible for the noted effects. Fish were submitted to anesthesia bath with essential oil, its fractions and isolated compounds to determine time of anesthetic induction and recovery. Eugenol (50 mg L(-1)) was used as positive control. Essential oil of A. gratissima was effective as an anesthetic at concentrations of 300 to 900 mg L(-1). Fish presented involuntary muscle contractions during induction and recovery. The bio-guided fractionation of essential oil furnished E-(-)-pinocamphone, (-)-caryophyllene oxide, (-)-guaiol and (+)-spathulenol. E-(-)-pinocamphone caused the same side effects observed for essential oil. (-)-Caryophyllene oxide, (-)-guaiol and (+)-spathulenol showed only sedative effects at proportional concentrations to those of the constituents in essential oil. (+)-Spathulenol (51.2 mg L(-1)) promoted deep anesthesia without side effects. A higher concentration of (+)-spathulenol, and lower or absent amounts ofE-(-)-pinocamphone could contribute to increase the activity and safety of the essential oil of A. gratissima. (+)-Spathulenol showed potent sedative and anesthetic activities in silver catfish, and could be considered as a viable compound for the development of a new anesthetic.

  9. Chemical Composition, Antioxidant, DNA Damage Protective, Cytotoxic and Antibacterial Activities of Cyperus rotundus Rhizomes Essential Oil against Foodborne Pathogens

    PubMed Central

    Hu, Qing-Ping; Cao, Xin-Ming; Hao, Dong-Lin; Zhang, Liang-Liang

    2017-01-01

    Cyperus rotundus L. (Cyperaceae) is a medicinal herb traditionally used to treat various clinical conditions at home. In this study, chemical composition of Cyperus rotundus rhizomes essential oil, and in vitro antioxidant, DNA damage protective and cytotoxic activities as well as antibacterial activity against foodborne pathogens were investigated. Results showed that α-cyperone (38.46%), cyperene (12.84%) and α-selinene (11.66%) were the major components of the essential oil. The essential oil had an excellent antioxidant activity, the protective effect against DNA damage, and cytotoxic effects on the human neuroblastoma SH-SY5Y cell, as well as antibacterial activity against several foodborne pathogens. These biological activities were dose-dependent, increasing with higher dosage in a certain concentration range. The antibacterial effects of essential oil were greater against Gram-positive bacteria as compared to Gram-negative bacteria, and the antibacterial effects were significantly influenced by incubation time and concentration. These results may provide biological evidence for the practical application of the C. rotundus rhizomes essential oil in food and pharmaceutical industries. PMID:28338066

  10. Influence of technical processing units on chemical composition and antimicrobial activity of carrot (Daucus carrot L.) juice essential oil.

    PubMed

    Ma, Tingting; Luo, Jiyang; Tian, Chengrui; Sun, Xiangyu; Quan, Meiping; Zheng, Cuiping; Kang, Lina; Zhan, Jicheng

    2015-03-01

    The effect of three processing units (blanching, enzyme liquefaction, pasteurisation) on chemical composition and antimicrobial activity of carrot juice essential oil was investigated in this paper. A total of 36 compounds were identified by GC-MS from fresh carrot juice essential oil. The main constituents were carotol (20.20%), sabinene (12.80%), β-caryophyllene (8.04%) and α-pinene (6.05%). Compared with the oil of fresh juice, blanching and pasteurisation could significantly decrease the components of the juice essential oil, whereas enzyme liquefaction had no considerable effect on the composition of juice essential oil. With regard to the antimicrobial activity, carrot juice essential oil could cause physical damage and morphological alteration on microorganisms, while the three different processing units showed noticeable differences on the species of microorganisms, the minimum inhibitory concentration and minimum bactericidal concentration. Results revealed that the carrot juice essential oil has great potential for application as a natural antimicrobial applied in pharmaceutical and food industries. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Volatile constituents of Pinus roxburghii from Nepal

    PubMed Central

    Satyal, Prabodh; Paudel, Prajwal; Raut, Josna; Deo, Akash; Dosoky, Noura S.; Setzer, William N.

    2013-01-01

    Background: Pinus roxburghii Sarg. Is one of 3 species of pine found in Nepal, the oil of which is traditionally used to treat cuts, wounds, boils, and blisters. Objective: To obtain, analyze, and examine the anti-microbial and cytotoxic activities of the essential oils of P. roxburghii. Materials and Methods: Three plant parts (cone, needle, and bark) of Pinus roxburghii were collected in Biratnagar, Nepal. The essential oils were obtained by hydrodistillation, and the chemical compositions were determined by GC-MS. The needle and cone essential oils were screened for anti-microbial activity against Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Aspergillus niger; brine shrimp (Artemia salina) lethality; and in-vitro cytotoxicity against MCF-7 cells. Results: GC-MS analysis for the cone oil revealed 81 compounds with 78 components being identified (95.5% of the oil) while 98.3% of needle oil was identified to contain 68 components and 98.6% of the bark oil (38 components) was identified. The 3 essential oils were dominated by sesquiterpenes, particularly (E)-caryophyllene (26.8%-34.5%) and α-humulene (5.0%-7.3%) as well as monoterpene alcohols terpinen-4-ol (4.1%-30.1%) and α-terpineol(2.8%-5.0%). The monoterpene δ-3-carene was present only in needle and cone essential oils (2.3% and 6.8%, respectively). Bio-activity assays of the cone essential oil of P. roxburghii showed remarkable cytotoxic activity (100% killing of MCF-7 cells at 100 μg/mL) along with notable brine shrimp lethality (LC50 =11.8 μg/mL). The cone essential oil did not show anti-bacterial activity, but it did exhibit anti-fungal activity against Aspergillus niger (MIC=39 μg/mL). Conclusion: The bioactivity of P. roxburghii essential oil is consistent with its traditional medicinal use. PMID:23598924

  12. Chemical composition and biological activities of leaf and fruit essential oils from Eucalyptus camaldulensis.

    PubMed

    Dogan, Gulden; Kara, Nazan; Bagci, Eyup; Gur, Seher

    2017-10-26

    The chemical composition of the essential oils from the leaves and fruit of Eucalyptus camaldulensis grown in Mersin, Turkey was analyzed using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) techniques. The biological activities (antibacterial and antifungal) were examined using the agar well diffusion method. The main leaf oil constituents were p-cymene (42.1%), eucalyptol (1,8-cineole) (14.1%), α-pinene (12.7%) and α-terpinol (10.7%). The main constituents of the fruit oil were eucalyptol (1,8-cineole) (34.5%), p-cymene (30.0%), α-terpinol (15.1%) and α-pinene (9.0%). Our results showed that both types of oils are rich in terms of monoterpene hydrocarbons and oxygenated monoterpenes. The leaf and fruit essential oils of E. camaldulensis significantly inhibited the growth of Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli and Streptococcus sp.) bacteria (p<0.05). The oils also showed fungicidal activity against Candida tropicalis and C. globrata. Leaf essential oils showed more activity than fruit essential oils, probably due to the higher p-cymene concentration in leaves.

  13. Chemical composition and biological activities of the essential oil of Skimmia laureola leaves.

    PubMed

    Barkatullah; Ibrar, Muhammad; Muhammad, Naveed; De Feo, Vincenzo

    2015-03-16

    The composition of the essential oil from leaves of Skimmia laureola was determined by GC and GC-MS. Twenty-eight components were identified, accounting for 93.9% of the total oil. The oil is mainly composed of monoterpenes (93.5%), of which monoterpene hydrocarbons and oxygenated monoterpenes represent 11.0% and 82.5%, respectively. Sesquiterpenes constitute only 0.3% of the total oil. Linalyl acetate is the main component (50.5%), with linalool (13.1%), geranyl acetate (8.5%) and cis-p-menth-2-en-1-ol (6.2%) as other principal constituents. The essential oil showed a significant antispasmodic activity, in a dose range of 0.03-10 mg/mL. The essential oil also possesses antibacterial and antifungal activities against some pathogenic strains. The phytotoxic and cytotoxic activities were also assessed.

  14. The inhibitory effect of Mesembryanthemum edule (L.) bolus essential oil on some pathogenic fungal isolates.

    PubMed

    Omoruyi, Beauty E; Afolayan, Anthony J; Bradley, Graeme

    2014-05-23

    Mesembryanthemum edule is a medicinal plant which has been indicated by Xhosa traditional healers in the treatment HIV associated diseases such as tuberculosis, dysentery, diabetic mellitus, laryngitis, mouth infections, ringworm eczema and vaginal infections. The investigation of the essential oil of this plant could help to verify the rationale behind the use of the plant as a cure for these illnesses. The essential oil from M. edule was analysed by GC/MS. Concentration ranging from 0.005-5 mg/ml of the hydro-distilled essential oil was tested against some fungal strains, using micro-dilution method. The plant minimum inhibitory activity on the fungal strains was determined. GC/MS analysis of the essential oil resulted in the identification of 28 compounds representing 99.99% of the total essential oil. A total amount of 10.6 and 36.61% constituents were obtained as monoterpenes and oxygenated monoterpenes. The amount of sesquiterpene hydrocarbons (3.58%) was low compared to the oxygenated sesquiterpenes with pick area of 9.28%. Total oil content of diterpenes and oxygenated diterpenes detected from the essential oil were 1.43% and 19.24%. The fatty acids and their methyl esters content present in the essential oil extract were found to be 19.25%. Antifungal activity of the essential oil extract tested against the pathogenic fungal, inhibited C. albican, C. krusei, C. rugosa, C. glabrata and C. neoformans with MICs range of 0.02-0.31 mg/ml. the activity of the essential oil was found competing with nystatin and amphotericin B used as control. Having accounted the profile chemical constituent found in M. edule oil and its important antifungal properties, we consider that its essential oil might be useful in pharmaceutical and food industry as natural antibiotic and food preservative.

  15. Food preservative potential of essential oils and fractions from Cymbopogon citratus, Ocimum gratissimum and Thymus vulgaris against mycotoxigenic fungi.

    PubMed

    Nguefack, J; Dongmo, J B Lekagne; Dakole, C D; Leth, V; Vismer, H F; Torp, J; Guemdjom, E F N; Mbeffo, M; Tamgue, O; Fotio, D; Zollo, P H Amvam; Nkengfack, A E

    2009-05-31

    The food preservative potential of essential oils from three aromatic plants Cymbopogon citratus, Ocimum gratissimum and Thymus vulgaris and their fractions was investigated against two mycotoxigenic strains each of Aspergillus ochraceus, Penicillium expansum and P. verrucosum. The fungicidal activity was determined and expressed as a Number of Decimal Reduction of the colony forming units per ml (NDR cfu). The influence of pH variation on this activity was studied. The NDR cfu varied with the essential oils and its concentration, the pH of the medium and the strain tested. The essential oils from O. gratissimum exhibited the highest activity against the six fungal strains under the three pH tested. T. vulgaris and C. citratus essential oils were less active against the Penicillium species tested and A. ochraceus, respectively. Potassium sorbate did not present any activity at pH 6 and 9. At pH 3, its NDR cfu was the lowest against the six fungal strains. At the same pH and at 4000 ppm, the three essential oils presented a NRD cfu > or = 6 against strains of A. ochraceus and P. expansum. The same result was obtained with T. vulgaris and C. citratus at 8000 ppm against both strains of P. verrucosum. The highest activity of the three essential oils was recorded at pH 3 against A. ochraceus strains and at pH 9 against both species of Penicillium. From the fractionation, three active fractions were obtained each from C. citratus and O. gratissimum, and two active fractions from T. vulgaris. These active fractions exhibited a NDR cfu, two to seven folds higher than that of the complete essential oils.

  16. Chemical composition and antioxidant activities of essential oils from different parts of the oregano.

    PubMed

    Han, Fei; Ma, Guang-Qiang; Yang, Ming; Yan, Li; Xiong, Wei; Shu, Ji-Cheng; Zhao, Zhi-Dong; Xu, Han-Lin

    This research was undertaken in order to characterize the chemical compositions and evaluate the antioxidant activities of essential oils obtained from different parts of the Origanum vulgare L. It is a medicinal plant used in traditional Chinese medicine for the treatment of heat stroke, fever, vomiting, acute gastroenteritis, and respiratory disorders. The chemical compositions of the three essential oils from different parts of the oregano (leaves-flowers, stems, and roots) were identified by gas chromatography-mass spectrometry (GC-MS). The antioxidant activity of each essential oil was assessed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay and reducing the power test. Among the essential oils from different parts of the oregano, the leaf-flower oils have the best antioxidant activities, whereas the stem oils are the worst. The results of the DPPH free radical scavenging assay showed that the half maximal inhibitory concentration (IC 50 ) values of the essential oils were (0.332±0.040) mg/ml (leaves-flowers), (0.357±0.031) mg/ml (roots), and (0.501±0.029) mg/ml (stems), respectively. Interestingly, the results of reducing the power test also revealed that when the concentration exceeded 1.25 mg/ml, the leaf-flower oils had the highest reducing power; however, the stem oils were the lowest.

  17. Essential Oil from Clove Bud (Eugenia aromatica Kuntze) Inhibit Key Enzymes Relevant to the Management of Type-2 Diabetes and Some Pro-oxidant Induced Lipid Peroxidation in Rats Pancreas in vitro.

    PubMed

    Oboh, Ganiyu; Akinbola, Ifeoluwa A; Ademosun, Ayokunle O; Sanni, David M; Odubanjo, Oluwatoyin V; Olasehinde, Tosin A; Oyeleye, Sunday I

    2015-01-01

    The inhibition of enzymes involved in the breakdown of carbohydrates is considered a therapeutic approach to the management of type-2 diabetes. This study sought to investigate the effects of essential oil from clove bud on α-amylase and α-glucosidase activities. Essential oil from clove bud was extracted by hydrodistillation, dried with anhydrous Na2SO4 and characterized using gas chromatography-mass spectrometry (GC-MS). The effects of the essential oil on α-amylase and α-glucosidase activities were investigated. The antioxidant properties of the oil and the inhibition of Fe(2+) and sodium nitroprusside-induced malondialdehyde (MDA) production in rats pancreas homogenate were also carried out. The essential oil inhibited α-amylase (EC50=88.9 μl/L) and α-glucosidase (EC50=71.94 μl/L) activities in a dose-dependent manner. Furthermore, the essential oil inhibited Fe(2+) and SNP-induced MDA production and exhibited antioxidant activities through their NO*, OH*, scavenging and Fe(2+)- chelating abilities. The total phenolic and flavonoid contents of the essential oil were 12.95 mg/g and 6.62 mg/g respectively. GC-MS analysis revealed the presence of α-pinene, β-pinene, neral, geranial, gamma terpinene, cis-ocimene, allo ocimene, 1,8-cineole, linalool, borneol, myrcene and pinene-2-ol in significant amounts. Furthermore, the essential oils exhibited antioxidant activities as typified by hydroxyl (OH) and nitric oxide (NO)] radicals scavenging and Fe(2+)-chelating abilities. The inhibition of α-amylase and α-glucosidase activities, inhibition of pro-oxidant induced lipid peroxidation in rat pancreas and antioxidant activities could be possible mechanisms for the use of the essential oil in the management and prevention of oxidative stress induced type-2 diabetes.

  18. The anti-dermatophyte activity of Zataria multiflora essential oils.

    PubMed

    Mahboubi, M; HeidaryTabar, R; Mahdizadeh, E

    2017-06-01

    Dermtophytes are a group of pathogenic fungi and the major cause of dermatophytosis in humans and animals. Fighting dermatophytes by natural essential oils is one important issue in new researches. In this investigation, we evaluated the anti-dermatophyte activities of three samples of Z. multiflora essential oils against dermatophytes along with analysis of chemical compositions of the essential oils and their anti-elastase activities on elastase production in dermatophytes. Carvacrol (1.5-34.4%), thymol (25.8-41.2%), carvacrol methyl ether (1.9-28.3%) and p-cymene (2.3-8.3%) were the main components of Z. multiflora essential oils. Z. multiflora essential oils (100ppm) inhibited the mycelium growth of dermatophytes (6±1.7-47.0±1.4%) and had the minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) values of 0.03-0.25μl/ml against dermatophytes. Essential oils inhibited elastase produced in dermatophytes and pure porcine elastase. Z. multiflora essential oils can be used as natural anti-dermatophyte agent for fighting dermatophytes in further preclinical and clinical studies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Anti-inflammatory activity of leaf essential oil from Cinnamomum longepaniculatum (Gamble) N. Chao.

    PubMed

    Du, Yong-Hua; Feng, Rui-Zhang; Li, Qun; Wei, Qin; Yin, Zhong-Qiong; Zhou, Li-Jun; Tao, Cui; Jia, Ren-Yong

    2014-01-01

    The anti-inflammatory activity of the essential oil from C. longepaniculatum was evaluated by three experimental models including the dimethyl benzene-induced ear edema in mice, the carrageenan-induced paw edema in rat and the acetic acid-induced vascular permeability in mice. The influence of the essential oil on histological changes and prostaglandin E2 (PGE2), histamine and 5-hydroxytryptamine (5-HT) production associated with carrageenan-induced rat paw edema was also investigated. The essential oil (0.5, 0.25, 0.13 ml/kg b.w.) showed significantly inhibition of inflammation along with a dose-dependent manner in the three experimental models. The anti-inflammatory activity of essential oil was occurred both in early and late phase and peaked at 4 h after carrageenan injection. The essential oil resulted in a dose dependent reduction of the paw thickness, connective tissue injury and the infiltration of inflammatory cell. The essential oil also significantly reduced the production of PGE2, histamine and 5-HT in the exudates of edema paw induced by carrageenan. Both the essential oil and indomethacin resulted relative lower percentage inhibition of histamine and 5-HT than that of PGE2 at 4 h after carrageenan injection.

  20. Biocontrol of Salmonella in organic soil using essential oils

    USDA-ARS?s Scientific Manuscript database

    Soil is one of the most important sources of preharvest contamination of produce with pathogens. Demand for natural pesticides such as essential oils for organic farming practices has increased. Antimicrobial activity of essential oils in vitro has been documented. The antimicrobial activity of esse...

  1. Pinus Roxburghii essential oil anticancer activity and chemical composition evaluation.

    PubMed

    Sajid, Arfaa; Manzoor, Qaisar; Iqbal, Munawar; Tyagi, Amit Kumar; Sarfraz, Raja Adil; Sajid, Anam

    2018-01-01

    The present study was conducted to appraise the anticancer activity of Pinus roxburghii essential oil along with chemical composition evaluation. MTT assay revealed cytotoxicity induction in colon, leukemia, multiple myeloma, pancreatic, head and neck and lung cancer cells exposed to essential oil. Cancer cell death was also observed through live/dead cell viability assay and FACS analysis. Apoptosis induced by essential oil was confirmed by cleavage of PARP and caspase-3 that suppressed the colony-forming ability of tumor cells and 50 % inhibition occurred at a dose of 25 μg/mL. Moreover, essential oil inhibited the activation of inflammatory transcription factor NF-κB and inhibited expression of NF-κB regulated gene products linked to cell survival (survivin, c-FLIP, Bcl-2, Bcl-xL, c-Myc, c-IAP2), proliferation (Cyclin D1) and metastasis (MMP-9). P. roxburghii essential oil has considerable anticancer activity and could be used as anticancer agent, which needs further investigation to identify and purify the bioactive compounds followed by in vivo studies.

  2. In-vitro antimicrobial activity and identification of bioactive components using GC-MS of commercially available essential oils in Saudi Arabia.

    PubMed

    Ashraf, Syed Amir; Al-Shammari, Eyad; Hussain, Talib; Tajuddin, Shaikh; Panda, Bibhu Prasad

    2017-11-01

    This study was designed to evaluate antimicrobial activity and chemical composition of four different plant essential oils i.e. Ginger oil (GiO), Black seed oil (BSO), Oregano oil (OO) and Rose oil (RO) against different bacterial and fungal strains. Anti-microbial activities of selected essential oils were determined by the microbiological technique using Agar well diffusion assay. After in vitro study, most of the essential oils showed antimicrobial activity against all the selected pathogens. Among all the tested oils, GiO showed strong antimicrobial activity. GiO showed highest antimicrobial activity against Shigella (119.79%), Enteococcus hirae (110.61%) and Escherichia coli (106.02%), when compared with the tetracycline (50 µg/mL) activity. However, Antifungal activity of GiO was found to be present against Candida albicans and Aspergilluas flavus , when compared with clotrimazole (50 µg/mL) activity. Among all the selected bacteria, BSO showed maximum antimicrobial activity against the E. coli followed by Citrobacter freundii. Moreover, BSO had highest zone of inhibition against the C. ablicans (33.58%). OO indicated that, Shigella had the highest sensitivity (12.6 ± 0.58, 131.25%), followed by E. hirae (19.1 ± 0.61, 96.46%) and Salmonella typhi (15.2 ± 0.27, 83.06%) when compared with tetracycline activity. OO showed poor sensitivity against all the selected fungal strains. Furthermore, Gas Chromatography analysis revealed that, Gingerol (10.86%) was the chief chemical constituents found in GiO followed by α -Sesquiphellandrene (6.29%), Zingiberene (5.88%). While, BSO, OO and RO had higher percentage of p-Cymene (6.90%), Carvacrol (15.87%) and Citronellol (8.07%) respectively. The results exhibited that the essential oils used for this study was the richest source for antimicrobial activity which indicates the presence of broad spectrum antimicrobial compounds in these essential oils. Hence, essential oils and their components can be recommended for therapeutic purposes as source of an alternative medicine.

  3. Laurus nobilis, Zingiber officinale and Anethum graveolens Essential Oils: Composition, Antioxidant and Antibacterial Activities against Bacteria Isolated from Fish and Shellfish.

    PubMed

    Snuossi, Mejdi; Trabelsi, Najla; Ben Taleb, Sabrine; Dehmeni, Ameni; Flamini, Guido; De Feo, Vincenzo

    2016-10-22

    Several bacterial strains were isolated from wild and reared fish and shellfish. The identification of these strains showed the dominance of the Aeromonas hydrophila species in all seafood samples, followed by Staphylococcus spp., Vibrio alginolyticus , Enterobacter cloacae , Klebsiella ornithinolytica , Klebsiella oxytoca and Serratia odorifera . The isolates were studied for their ability to produce exoenzymes and biofilms. The chemical composition of the essential oils from Laurus nobilis leaves, Zingiber officinale rhizomes and Anethum graveolens aerial parts was studied by GC and GC/MS. The essential oils' antioxidant and antibacterial activities against the isolated microorganisms were studied. Low concentrations of the three essential oils were needed to inhibit the growth of the selected bacteria and the lowest MBCs values were obtained for the laurel essential oil. The selected essential oils can be used as a good natural preservative in fish food due to their antioxidant and antibacterial activities.

  4. Chemical composition and antibacterial activity of the essential oil from Agathis dammara (Lamb.) Rich fresh leaves.

    PubMed

    Chen, Zhifen; He, Daohang; Deng, Jingdan; Zhu, Jiaying; Mao, Qiuping

    2015-01-01

    The essential oil of fresh leaves from Agathis dammara (Lamb.) Rich was extracted using hydro-distillation, and GC-FID and GC-MS were used to analyse the essential oil. Nineteen compounds were identified, among which the major components were limonene (36.81%), β-bisabolene (33.43%) and β-myrcene (25.48%). In the antibacterial test, disc diffusion method and micro-well dilution assay proved that the essential oil had significant antibacterial activities. The inhibition zones against Staphylococcus aureus and Pseudomonas aeruginosa were 23.7 and 23 mm, respectively, which demonstrated that the inhibition effects were greater than positive control (10 μg/disc streptomycin). And the lowest MIC value of the essential oil was found against S. aureus (1.25 mg/mL) and Bacillus subtilis (1.25 mg/mL). This is the first report on the antibacterial activities of A. dammara essential oil.

  5. Chemical composition, antioxidant and antibacterial activities of essential oils from Ferulago angulata.

    PubMed

    Ghasemi Pirbalouti, Abdollah; Izadi, Arezo; Malek Poor, Fatemeh; Hamedi, Behzad

    2016-11-01

    Ferulago angulata Boiss. (Apiaceae), a perennial aromatic herb, grows wild in Iran. The aerial parts of F. angulata are used as a flavouring in foods, especially dairy foods by indigenous people in western and southwestern Iran. This study investigates variation in chemical compositions, antioxidant and antibacterial activities of the essential oils from F. angulata collected from natural habitats in the alpine regions of southwestern Iran. The antimicrobial activity, minimum inhibitory concentration (MIC) and minimum bactericidal (MBC) of the essential oils were evaluated against four bacteria (Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus and Salmonella typhimurium). Antioxidant activity of the oils was determined by DPPH assay. The essential oils were analyzed by GC-FID and GC/MS, which 49 volatile components were identified. There were significant differences between the various populations for oil yield and some main compounds. The major constituents of the essential oils from F. angulata were α-pinene, and cis-β-ocimene. The MICs of the essential oils were within concentration ranges from 62 to 250 μg/mL and the respective MBCs were 125 to > 500 μg/mL. Generally, the oils from F. angulata indicated weak to moderate inhibitory activities against bacteria, especially against Listeria monocytogenes. The highest antioxidant activity was obtained from the oil of the Kallar population (IC 50 value   =   488 μg/mL) and BHT as positive control (IC 50  value =   321 μg/mL). The essential oil of F. angulata could be serving as a potential source of α-pinene and cis-β-ocimene for use in the food, cosmetic and pharmaceutical industries.

  6. Essential Oils from Thyme (Thymus vulgaris): Chemical Composition and Biological Effects in Mouse Model.

    PubMed

    Vetvicka, Vaclav; Vetvickova, Jana

    2016-12-01

    Thymus species are popular spices and contain volatile oils as main chemical constituents. Recently, plant-derived essential oils are gaining significant attention due to their significant biological activities. Seven different thymus-derived essential oils were compared in our study. First, we focused on their chemical composition, which was followed up by testing their effects on phagocytosis, cytokine production, chemotaxis, edema inhibition, and liver protection. We found limited biological activities among tested oils, with no correlation between composition and biological effects. Similarly, no oils were effective in every reaction. Based on our data, the tested biological use of these essential oils is questionable.

  7. Synergistic antibacterial activity of the essential oil of aguaribay (Schinus molle L.).

    PubMed

    de Mendonça Rocha, Pedro M; Rodilla, Jesus M; Díez, David; Elder, Heriberto; Guala, Maria Silvia; Silva, Lúcia A; Pombo, Eunice Baltazar

    2012-10-12

    Schinus molle L. (aguaribay, aroeira-falsa, "molle", family Anacardiaceae), a native of South America, produces an active antibacterial essential oil extracted from the leaves and fruits. This work reports a complete study of its chemical composition and determines the antibacterial activity of Schinus molle L. essential oil and its main components. The results showed that the crude extract essential oil has a potent antibacterial effect on Staphylococcus aureus ATCC 25923, a strong/moderate effect on Escherichia coli ATCC 25922 and moderate/weak one on Pseudomonas aeruginosa ATCC 27853.

  8. Fumigant activity of plant essential oils and components from garlic (Allium sativum) and clove bud (Eugenia caryophyllata) oils against the Japanese termite (Reticulitermes speratus Kolbe).

    PubMed

    Park, Il-Kwon; Shin, Sang-Chul

    2005-06-01

    Plant essential oils from 29 plant species were tested for their insecticidal activities against the Japanese termite, Reticulitermes speratus Kolbe, using a fumigation bioassay. Responses varied with plant material, exposure time, and concentration. Good insecticidal activity against the Japanese termite was achived with essential oils of Melaleuca dissitiflora, Melaleuca uncinata, Eucalyptus citriodora, Eucalyptus polybractea, Eucalyptus radiata, Eucalyptus dives, Eucalyptus globulus, Orixa japonica, Cinnamomum cassia, Allium cepa, Illicium verum, Evodia officinalis, Schizonepeta tenuifolia, Cacalia roborowskii, Juniperus chinensis var. horizontalis, Juniperus chinensis var. kaizuka, clove bud, and garlic applied at 7.6 microL/L of air. Over 90% mortality after 3 days was achieved with O. japonica essential oil at 3.5 microL/L of air. E. citriodora, C. cassia, A. cepa, I. verum, S. tenuifolia, C. roborowskii, clove bud, and garlic oils at 3.5 microL/L of air were highly toxic 1 day after treatment. At 2.0 microL/L of air concentration, essential oils of I. verum, C. roborowskik, S. tenuifolia, A. cepa, clove bud, and garlic gave 100% mortality within 2 days of treatment. Clove bud and garlic oils showed the most potent antitermitic activity among the plant essential oils. Garlic and clove bud oils produced 100% mortality at 0.5 microL/L of air, but this decreased to 42 and 67% after 3 days of treatment at 0.25 microL/L of air, respectively. Analysis by gas chromatography-mass spectrometry led to the identification of three major compounds from garlic oil and two from clove bud oils. These five compounds from two essential oils were tested individually for their insecticidal activities against Japanese termites. Responses varied with compound and dose. Diallyl trisulfide was the most toxic, followed by diallyl disulfide, eugenol, diallyl sulfide, and beta-caryophyllene. The essential oils described herein merit further study as potential fumigants for termite control.

  9. Antimicrobial activity of Eucalyptus camaldulensis essential oils and their interactions with conventional antimicrobial agents against multi-drug resistant Acinetobacter baumannii.

    PubMed

    Knezevic, Petar; Aleksic, Verica; Simin, Natasa; Svircev, Emilija; Petrovic, Aleksandra; Mimica-Dukic, Neda

    2016-02-03

    Traditional herbal medicine has become an important issue on the global scale during the past decade. Among drugs of natural origin, special place belongs to essential oils, known as strong antimicrobial agents that can be used to combat antibiotic-resistant bacteria. Eucalyptus camaldulensis leaves are traditional herbal remedy used for various purposes, including treatment of infections. The aim of this study was to determine antimicrobial potential of two E. camaldulensis essential oils against multi-drug resistant (MDR) Acinetobacter baumannii wound isolates and to examine possible interactions of essential oils with conventional antimicrobial agents. Chemical composition of essential oils was determined by gas chromatography-mass spectrometry analysis (GC-MS). MIC values of essential oils against A. baumannii strains were estimated by modified broth microdilution method. The components responsible for antimicrobial activity were detected by bioautographic analysis. The potential synergy between the essential oils and antibiotics (ciprofloxacin, gentamicin and polymyxin B) was examined by checkerboard method and time kill curve. The dominant components of both essential oils were spatulenol, cryptone, p-cimene, 1,8-cineole, terpinen-4-ol and β-pinene. The detected MICs for the E. camaldulensis essential oils were in range from 0.5 to 2 μl mL(-1). The bioautographic assay confirmed antibacterial activity of polar terpene compounds. In combination with conventional antibiotics (ciprofloxacin, gentamicin and polymyxin B), the examined essential oils showed synergistic antibacterial effect in most of the cases, while in some even re-sensitized MDR A. baumannii strains. The synergistic interaction was confirmed by time-kill curves for E. camaldulensis essential oil and polymyxin B combination which reduced bacterial count under detection limit very fast, i.e. after 6h of incubation. The detected anti-A. baumannii activity of E. camaldulensis essential oils justifies traditional use of this plant. The proven E. camaldulensis essential oil synergistic interactions with conventional antibiotics could lead to the development of new treatment strategies of infections caused by MDR A. baumannii strains in the term of antibiotic dose reduction. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. In vitro antioxidant and antihemolytic effects of the essential oil and methanolic extract of Allium rotundum L.

    PubMed

    Assadpour, S; Nabavi, S M; Nabavi, S F; Dehpour, A A; Ebrahimzadeh, M A

    2016-12-01

    A plethora of scientific evidence showed that several plant species from the genus Allium (Alliaceae) possess multiple therapeutic effects. Present paper aimed to examine the antioxidant and antihemolytic activities of the essential oil and methanol extract Allium rotundum L. through different in vitro assays. 1,1-diphenyl-2-picryl hydroxyl radical (DPPH), nitric oxide as well as hydrogen peroxide scavenging, Fe2+ chelating, reducing power and also hemoglobin-induced linoleic acid peroxidation assay systems have been utilized to examine antioxidant effects of these samples. Total amounts of phenolic and flavonoid contents were calculated. The antihemolytic effect was investigated against hemolysis induced by hydrogen peroxide in rat erythrocytes. Also, mineral contents of plant were evaluated by atomic absorption spectroscopy. IC50 for DPPH radical-scavenging activity were 284 ± 11.64 for methanol extract and 1264 ± 45.60 µg ml-1 for essential oil, respectively. The extract has shown better reducing effects versus essential oil. The extract also demonstrated better activity in nitric oxide-scavenging activity. IC50 were 464 ± 19.68 for extract and 1093 ± 38.25 µg ml-1 for essential oil. The extract shows better activity than essential oil in Fe2+ chelating system. IC50 were 100 ± 3.75 for extract and 1223 ± 36.25 µg ml-1 for essential oil. The A. rotundum extract and essential oil showed significant H2O2 scavenging effects at dose-dependent manners. IC50 was 786 ± 29.08 mg ml-1 for essential oil. The amounts of eight elements were determined. The concentrations of elements were in the order: Mn> Fe> Zn> Cu> Ni> Cd. The extract showed a higher antioxidant effect in all tested models including DPPH, nitric oxide, reducing power as well as iron chelating and antihemolytic activities than essential oil. The latter showed more potent antioxidant activity in scavenging H2O2 and lipid peroxidation model. Antioxidant activities of extract may be attributed at least in part, due to its phenolic and flavonoid contents.

  11. Lavender (Lavandula stoechas L.) essential oils attenuate hyperglycemia and protect against oxidative stress in alloxan-induced diabetic rats

    PubMed Central

    2013-01-01

    Background The present study described the phytochemical profile of Lavandula stoechas essential oils, collected in the area of Ain-Draham (North-West of Tunisia), as well as their protective effects against alloxan-induced diabetes and oxidative stress in rat. Methods Essential oils samples were obtained from the aerial parts of the plant by hydrodistillation and analyzed by GC–MS. Rats were divided into four groups: Healthy Control (HC); Diabetic Control (DC); Healthy + Essential Oils (H + EO) and Diabetic + Essential Oils (D + EO). Antidiabetic and antioxidant activities were evaluated after subacute intraperitoneally injection of Lavandula stoechas essential oils (50 mg/kg b.w., i.p.) to rats during 15 days. Results The principal compounds detected are: D-Fenchone (29.28%), α-pinene (23.18%), Camphor (15.97%), Camphene (7.83%), Eucapur (3.29%), Limonene, (2.71%) Linalool, (2.01%) Endobornyl Acetate (1.03%). The essential oils also contained smaller percentages of Tricyclene, Cymene, Delta-Cadinene, Selina-3,7(11)-diene. Furthermore, we found that Lavandula stoechas essential oils significantly protected against the increase of blood glucose as well as the decrease of antioxidant enzyme activities induced by aloxan treatment. Subacute essential oils treatment induced a decrease of lipoperoxidation as well as an increase of antioxidant enzyme activities. Conclusions These findings suggested that lavandula stoechas essential oils protected against diabetes and oxidative stress induced by alloxan treatment. These effects are in partly due to its potent antioxidant properties. PMID:24373672

  12. Lavender (Lavandula stoechas L.) essential oils attenuate hyperglycemia and protect against oxidative stress in alloxan-induced diabetic rats.

    PubMed

    Sebai, Hichem; Selmi, Slimen; Rtibi, Kais; Souli, Abdelaziz; Gharbi, Najoua; Sakly, Mohsen

    2013-12-28

    The present study described the phytochemical profile of Lavandula stoechas essential oils, collected in the area of Ain-Draham (North-West of Tunisia), as well as their protective effects against alloxan-induced diabetes and oxidative stress in rat. Essential oils samples were obtained from the aerial parts of the plant by hydrodistillation and analyzed by GC-MS. Rats were divided into four groups: Healthy Control (HC); Diabetic Control (DC); Healthy + Essential Oils (H + EO) and Diabetic + Essential Oils (D + EO).Antidiabetic and antioxidant activities were evaluated after subacute intraperitoneally injection of Lavandula stoechas essential oils (50 mg/kg b.w., i.p.) to rats during 15 days. The principal compounds detected are: D-Fenchone (29.28%), α-pinene (23.18%), Camphor (15.97%), Camphene (7.83%), Eucapur (3.29%), Limonene, (2.71%) Linalool, (2.01%) Endobornyl Acetate (1.03%). The essential oils also contained smaller percentages of Tricyclene, Cymene, Delta-Cadinene, Selina-3,7(11)-diene. Furthermore, we found that Lavandula stoechas essential oils significantly protected against the increase of blood glucose as well as the decrease of antioxidant enzyme activities induced by aloxan treatment. Subacute essential oils treatment induced a decrease of lipoperoxidation as well as an increase of antioxidant enzyme activities. These findings suggested that lavandula stoechas essential oils protected against diabetes and oxidative stress induced by alloxan treatment. These effects are in partly due to its potent antioxidant properties.

  13. In vitro synergistic antibacterial activity of the essential oil from Zingiber cassumunar Roxb against extensively drug-resistant Acinetobacter baumannii strains.

    PubMed

    Boonyanugomol, Wongwarut; Kraisriwattana, Kairin; Rukseree, Kamolchanok; Boonsam, Kraisorn; Narachai, Panchaporn

    In this study, we determined the antibacterial and synergistic activities of the essential oil from Zingiber cassumunar against the extensively drug-resistant (XDR) Acinetobacter baumannii strains. The antibacterial and synergistic properties of the essential oil from Z. cassumunar were examined by agar disc diffusion tests. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were evaluated by broth microdilution using the resazurin assay. The in vitro time-kill antibacterial kinetics was analyzed using the plate count technique. We found that the essential oil from Z. cassumunar had antibacterial activity against A. baumannii, with MIC and MBC ranging from 7.00 to 9.24mg/ml. The essential oil could completely inhibit A. baumannii at 1h, and coccoid-shaped bacteria were found after treatment. In addition, the essential oil had a synergistic effect when combined with antibiotics, e.g., aminoglycosides, fluoroquinolones, tetracyclines, and folate pathway inhibitors. Thus, the essential oil from Z. cassumunar has strong antibacterial and synergistic activities against XDR A. baumannii, which may provide the basis for the development of a new therapy against drug-resistant bacteria. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Antimicrobial activity of essential oil and aqueous and ethanol extracts of Teucrium polium L. subsp. gabesianum (L.H.) from Tunisia.

    PubMed

    Ben Othman, Mahmoud; Bel Hadj Salah-Fatnassi, Karima; Ncibi, Saida; Elaissi, Amer; Zourgui, Lazhar

    2017-07-01

    The antimicrobial effects of essential oil, ethanol and aqueous extracts of Teucrium polium L. were investigated against 13 microorganisms. Extracts and essential oil were obtained from maceration, decoction and hydrodistillation respectively. Samples were tested for their antimicrobial activity using the disk diffusion, the agar dilution and the agar incorporation method. Essential oil was analysed using GC/MS, results showed that β-pinene (35.97%) and α-pinene (13.32%) were the main components. Furthermore, essential oil exhibited the highest antimicrobial activity, it was most effective against Proteus mirabilis, Staphylococcus aureus and Citrobacter freundei where inhibition zone ranged between 15 and 25 mm, and with the microbial inhibitory concentration (MIC) values of 0.078-0.156 mg/ml. The oil and ethanol extract showed the best antifungal activity against Microsporum canis , Scopulariopsis brevicaulis , and Trichophyton rubrum with the inhibition percentage (I%) ranging from 18.94 to 100%. However, none of the samples exhibited antifungal activity against Aspergillus fumigatus . In this study, the obtained results showed significant effects of essential oils and ethanol extracts of T. polium which may used as a substitute to the synthetic drugs against certain microbial diseases.

  15. A Systematic Review of the Anxiolytic-Like Effects of Essential Oils in Animal Models.

    PubMed

    de Sousa, Damião Pergentino; de Almeida Soares Hocayen, Palloma; Andrade, Luciana Nalone; Andreatini, Roberto

    2015-10-14

    The clinical efficacy of standardized essential oils (such as Lavender officinalis), in treating anxiety disorders strongly suggests that these natural products are an important candidate source for new anxiolytic drugs. A systematic review of essential oils, their bioactive constituents, and anxiolytic-like activity is conducted. The essential oil with the best profile is Lavendula angustifolia, which has already been tested in controlled clinical trials with positive results. Citrus aurantium using different routes of administration also showed significant effects in several animal models, and was corroborated by different research groups. Other promising essential oils are Citrus sinensis and bergamot oil, which showed certain clinical anxiolytic actions; along with Achillea wilhemsii, Alpinia zerumbet, Citrus aurantium, and Spiranthera odoratissima, which, like Lavendula angustifolia, appear to exert anxiolytic-like effects without GABA/benzodiazepine activity, thus differing in their mechanisms of action from the benzodiazepines. The anxiolytic activity of 25 compounds commonly found in essential oils is also discussed.

  16. Chemical composition, antibacterial activity and related mechanism of the essential oil from the leaves of Juniperus rigida Sieb. et Zucc against Klebsiella pneumoniae.

    PubMed

    Meng, Xiaxia; Li, Dengwu; Zhou, Dan; Wang, Dongmei; Liu, Qiaoxiao; Fan, Sufang

    2016-12-24

    Juniperus rigida is used as Tibetan and Mongolian medicine in China for the treatment of rheumatoid arthritis, nephritis, brucellosis and other various inflammatory diseases. To evaluate antibacterial potential of essential oils from J. rigida leaves against Klebsiella pneumoniae and to examine its possible related mechanisms. The study was undertaken in order to scientifically validate the traditional use of J. rigida. The essential oil was extracted from the leaves of J. rigida by supercritical CO 2 fluid extraction technology. Chemical composition of essential oils was analyzed by gas chromatography-mass spectrometry (GC-MS). The antibacterial activity was evaluated against 10 bacteria by the paper disc diffusion method. The minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values of the essential oil were estimated by agar dilution method. The antibacterial mechanism was evaluated by growth curve, the integrity of cell membrane, the SDS-PAGE of protein patterns and scanning electron microscope (SEM). 61 components were identified from the essential oil. Caryophyllene (13.11%) and α-Caryophyllene (11.72%) were found to be the major components. The antibacterial activities of the essential oil were screened and compared against 10 bacteria. The essential oil showed good antibacterial activity against K. pneumoniae, with the biggest diameters of inhibition zones (DIZ) (16.00±0.25mm) and the lowest MIC and MBC values of 3.125mg/mL. The increase in proteins, 260nm absorbing materials of bacterial cells suspension indicated that the cytoplasmic membranes were broken by the essential oil. The SDS-PAGE of bacterial proteins demonstrated that the essential oil could damage bacterial cells through the destruction of cellular proteins. Scanning electron microscopy (SEM) showed that the essential oil damaged the morphology of cell wall and membrane. The essential oil of J. rigida has potential antibacterial activities against K. pneumoniae. The antibacterial mechanism is the essential oil causing the irreversible damage to the cell wall and membrane, leading to the leakage of proteins and 260nm absorbing materials (DNA and RNA). Further phytochemical and pharmacological studies are required for proper scientific validation of the folk use of this plant species. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Repellent activity of herbal essential oils against Aedes aegypti (Linn.) and Culex quinquefasciatus (Say.)

    PubMed Central

    Sritabutra, Duangkamon; Soonwera, Mayura

    2013-01-01

    Objective To determine the mosquito repellent activity of herbal essential oils against female Aedes aegypti and Culex quinquefasciatus. Methods On a volunteer's forearm, 0.1 mL of each essential oil was applied to 3 cm×10 cm of exposed skin. The protection time was recorded for 3 min after every 30 min. Results Essential oil from clove oil in olive oil and in coconut oil gave the longest lasting period of 76.50 min and 96.00 min respectively against Aedes aegypti. The citronella grass oil in olive oil, citronella grass oil in coconut oil and lemongrass oil in coconut oil exhibited protection against Culex quinquefasciatus at 165.00, 105.00, and 112.50 min respectively. Conclusions The results clearly indicated that clove, citronella and lemongrass oil were the most promising for repellency against mosquito species. These oils could be used to develop a new formulation to control mosquitoes.

  18. Molluscicidal and leishmanicidal activity of the leaf essential oil of Syzygium cumini (L.) SKEELS from Brazil.

    PubMed

    Dias, Clarice N; Rodrigues, Klinger A F; Carvalho, Fernando A A; Carneiro, Sabrina M P; Maia, Jose G S; Andrade, Eloisa H A; Moraes, Denise F C

    2013-06-01

    The chemical composition and biological potential of the essential oil extracted from Syzygium cumini leaves collected in Brazil were examined. GC/MS Analyses revealed a high abundance of monoterpenes (87.12%) in the oil. Eleven compounds were identified, with the major components being α-pinene (31.85%), (Z)-β-ocimene (28.98%), and (E)-β-ocimene (11.71%). To evaluate the molluscicidal effect of the oil, it was tested against Biomphalaria glabrata and the LC₅₀ obtained was 90 mg/l. The essential oil also showed significant activity against Leishmania amazonensis, with an IC50 value equal to 60 mg/l. In addition, to evaluate its toxicity towards a non-target organism, the essential oil was tested against Artemia salina and showed a LC₅₀ of 175 mg/l. Thus, the essential oil of S. cumini showed promising activity as a molluscicidal and leishmanicidal agent and might be valuable in combating neglected tropical diseases such as schistosomiasis and leishmaniasis. Further research is being conducted with regard to the purification and isolation of the most active essential-oil compounds. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  19. Repellent Activity of Apiaceae Plant Essential Oils and their Constituents Against Adult German Cockroaches.

    PubMed

    Lee, Hyo-Rim; Kim, Gil-Hah; Choi, Won-Sil; Park, Il-Kwon

    2017-04-01

    We evaluated the repellent activity of 12 Apiaceae plant essential oils and their components against male and female adult German cockroaches, Blattella germanica L., to find new natural repellents. Of all the plant essential oils tested, ajowan (Trachyspermum ammi Sprague) and dill (Anethum graveolens L.) essential oils showed the most potent repellent activity against male and female adult German cockroaches. Repellent activities of chemicals already identified in active oils were also investigated. Of the compounds identified, carvacrol, thymol, and R-(-)-carvone showed >80% repellent activity against male and female adult German cockroaches at 2.5 µg/cm2. S-(+)-Carvone, (+)-dihydrocarvone, and terpinen-4-ol showed >70% repellent activity against male and female adult German cockroaches at 10 µg/cm2. Our results indicated that Apiaceae plant essential oils and their constituents have good potential as natural repellents against adult German cockroaches. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Anti-inflammation activity of fruit essential oil from Cinnamomum insularimontanum Hayata.

    PubMed

    Lin, Chien-Tsong; Chen, Chi-Jung; Lin, Ting-Yu; Tung, Judia Chen; Wang, Sheng-Yang

    2008-12-01

    In this study, the fruit essential oil of Cinnamomum insularimontanum was prepared by using water distillation. Followed by GC-MS analysis, the composition of fruit essential oil was characterized. The main constituents of essential oil were alpha-pinene (9.45%), camphene (1.70%), beta-pinene (4.30%), limonene (1.76%), citronellal (24.64%), citronellol (16.78%), and citral (35.89%). According to the results obtained from nitric oxide (NO) inhibitory activity assay, crude essential oil and its dominant compound (citral) presented the significant NO production inhibitory activity, IC(50) of crude essential oil and citral were 18.68 and 13.18microg/mL, respectively. Moreover, based on the results obtained from the protein expression assay, the expression of IKK, iNOS, and nuclear NF-kappaB was decreased and IkappaBalpha was increased in dose-dependent manners, it proved that the anti-inflammatory mechanism of citral was blocked via the NF-kappaB pathway, but it could not efficiently suppress the activity on COX-2. In addition, citral exhibited a potent anti-inflammatory activity in the assay of croton oil-induced mice ear edema, when the dosage was 0.1 and 0.3mg per ear, the inflammation would reduce to 22% and 83%, respectively. The results presented that the fruit essential oil of C. insularimontanum and/or citral may have a great potential to develop the anti-inflammatory medicine in the future.

  1. Chemical Composition, Antioxidant and Antimicrobial Activities of Thymus capitata Essential Oil with Its Preservative Effect against Listeria monocytogenes Inoculated in Minced Beef Meat

    PubMed Central

    El Abed, Nariman; Kaabi, Belhassen; Smaali, Mohamed Issam; Chabbouh, Meriem; Habibi, Kamel; Mejri, Mondher; Marzouki, Mohamed Nejib; Ben Hadj Ahmed, Sami

    2014-01-01

    The chemical composition, antioxidant and antimicrobial activities, and the preservative effect of Thymus capitata essential oil against Listeria monocytogenes inoculated in minced beef meat were evaluated. The essential oil extracted was chemically analyzed by gas chromatography-mass spectrometry. Nineteen components were identified, of which carvacrol represented (88.89%) of the oil. The antioxidant activity was assessed in vitro by using both the DPPH and the ABTS assays. The findings showed that the essential oil exhibited high antioxidant activity, which was comparable to the reference standards (BHT and ascorbic acid) with IC50 values of 44.16 and 0.463 μg/mL determined by the free-radical scavenging DPPH and ABTS assays, respectively. Furthermore, the essential oil was evaluated for its antimicrobial activity using disc agar diffusion and microdilution methods. The results demonstrated that the zone of inhibition varied from moderate to strong (15–80 mm) and the minimum inhibition concentration values ranged from 0.32 to 20 mg/mL. In addition, essential oil evaluated in vivo against Listeria monocytogenes showed clear and strong inhibitory effect. The application of 0.25 or 1% (v/w) essential oil of T. capitata to minced beef significantly reduced the L. monocytogenes population when compared to those of control samples (P-value  <0.01). PMID:24719640

  2. Chemical composition, phytotoxic and antifungal properties of Ruta chalepensis L. essential oils.

    PubMed

    Bouabidi, Wafa; Hanana, Mohsen; Gargouri, Samia; Amri, Ismail; Fezzani, Tarek; Ksontini, Mustapha; Jamoussi, Bassem; Hamrouni, Lamia

    2015-01-01

    The chemical composition, and phytotoxic and antifungal activities of the essential oils isolated by using hydrodistillation from the aerial parts of Tunisian rue were evaluated. Significant variations were observed among harvest periods. The analysis of the chemical composition by gas chromatography/mass spectrometry showed that 2-undecanone (33.4-49.8%), 2-heptanol acetate (13.5-15.4%) and α-pinene (9.8-11.9%) were the main components. The antifungal ability of rue essential oils was tested by using disc agar diffusion against ten plant pathogenic fungi. A high antifungal activity was observed for the essential oil isolated at flowering developmental phase. Furthermore, rue essential oils showed high level of herbicidal activity against several weeds.

  3. Chemical composition, antioxidant, and antimicrobial activities of essential oil from pine needle (Cedrus deodara).

    PubMed

    Zeng, Wei-Cai; Zhang, Zeng; Gao, Hong; Jia, Li-Rong; He, Qiang

    2012-07-01

    The chemical composition of essential oil from pine needles (Cedrus deodara) was determined, and its antioxidant and antimicrobial activities were evaluated. Twenty-three components, representing 95.79% of the oil, were identified by gas chromatography mass spectrometry. The main components include α-terpineol (30.2%), linalool (24.47%), limonene (17.01%), anethole (14.57%), caryophyllene (3.14%), and eugenol (2.14%). Pine needle essential oil showed remarkable antioxidant activity in scavenging free radicals, in lipid peroxidation, and in reducing power assays. Moreover, the essential oil revealed strong antimicrobial activity against typical food-borne microorganisms, with minimum inhibitory concentration and minimum bactericidal concentration values of 0.2 to 1.56 and 0.39 to 6.25 μg/mL, respectively. Transmission electron microscope observation ascertained that the bactericidal mechanism of pine needle essential oil may be the induction of cytoplasmic outflow and plasmolysis. These results suggest that the essential oil from pine needles has potential to be used as a natural antioxidant and antimicrobial agent in food processing. The present study provides a theoretical basis for the potential application of essential oil from pine needles (C. deodara) to be used as a natural resource of antioxidant and antimicrobial agents in food industry. © 2012 Institute of Food Technologists®

  4. Composition, In Vitro Antioxidant and Antimicrobial Activities of Essential Oil and Oleoresins Obtained from Black Cumin Seeds (Nigella sativa L.)

    PubMed Central

    Singh, Sunita; Das, S. S.; Singh, G.; Schuff, Carola; de Lampasona, Marina P.; Catalán, César A. N.

    2014-01-01

    Gas chromatography-mass spectrometry (GC-MS) analysis revealed the major components in black cumin essential oils which were thymoquinone (37.6%) followed by p-cymene (31.2%), α-thujene (5.6%), thymohydroquinone (3.4%), and longifolene (2.0%), whereas the oleoresins extracted in different solvents contain linoleic acid as a major component. The antioxidant activity of essential oil and oleoresins was evaluated against linseed oil system at 200 ppm concentration by peroxide value, thiobarbituric acid value, ferric thiocyanate, ferrous ion chelating activity, and 1,1-diphenyl-2-picrylhydrazyl radical scavenging methods. The essential oil and ethyl acetate oleoresin were found to be better than synthetic antioxidants. The total phenol contents (gallic acid equivalents, mg GAE per g) in black cumin essential oil, ethyl acetate, ethanol, and n-hexane oleoresins were calculated as 11.47 ± 0.05, 10.88 ± 0.9, 9.68 ± 0.06, and 8.33 ± 0.01, respectively, by Folin-Ciocalteau method. The essential oil showed up to 90% zone inhibition against Fusarium moniliforme in inverted petri plate method. Using agar well diffusion method for evaluating antibacterial activity, the essential oil was found to be highly effective against Gram-positive bacteria. PMID:24689064

  5. Composition, in vitro antioxidant and antimicrobial activities of essential oil and oleoresins obtained from black cumin seeds (Nigella sativa L.).

    PubMed

    Singh, Sunita; Das, S S; Singh, G; Schuff, Carola; de Lampasona, Marina P; Catalán, César A N

    2014-01-01

    Gas chromatography-mass spectrometry (GC-MS) analysis revealed the major components in black cumin essential oils which were thymoquinone (37.6%) followed by p-cymene (31.2%), α-thujene (5.6%), thymohydroquinone (3.4%), and longifolene (2.0%), whereas the oleoresins extracted in different solvents contain linoleic acid as a major component. The antioxidant activity of essential oil and oleoresins was evaluated against linseed oil system at 200 ppm concentration by peroxide value, thiobarbituric acid value, ferric thiocyanate, ferrous ion chelating activity, and 1,1-diphenyl-2-picrylhydrazyl radical scavenging methods. The essential oil and ethyl acetate oleoresin were found to be better than synthetic antioxidants. The total phenol contents (gallic acid equivalents, mg GAE per g) in black cumin essential oil, ethyl acetate, ethanol, and n-hexane oleoresins were calculated as 11.47 ± 0.05, 10.88 ± 0.9, 9.68 ± 0.06, and 8.33 ± 0.01, respectively, by Folin-Ciocalteau method. The essential oil showed up to 90% zone inhibition against Fusarium moniliforme in inverted petri plate method. Using agar well diffusion method for evaluating antibacterial activity, the essential oil was found to be highly effective against Gram-positive bacteria.

  6. Formulation of antiacne serum based on lime peel essential oil and in vitro antibacterial activity test against Propionibacterium acnes

    NASA Astrophysics Data System (ADS)

    Fitri, Noor; Fatimah, Ifat; Chabib, Lutfi; Fajarwati, Febi Indah

    2017-03-01

    Propionibacterium acnes are a normal bacterium in human skin but it can become primary pathogens that can cause inflammation on the skin. Research about new antibacterial compounds is important because resistance of bacteria acne to antibiotics. Some of Essential oils have antibacterial properties. Lime peel essential oil and patchouli essential oil have some terpenoids that act as antibacterial compounds such as Linalool and Seychellene. The purpose of this research was to formulate anti acne serum based on lime peel essential oil and patchouli oil and to determine the zone of inhibition against of Propionibacterium acnes. This study made 21 variations of formulation of anti acne serum, consisted of lime peel essential oil, patchouli oil and olive oil. Anti acne serum was evaluated i.e. in vitro antibacterial activity test against Propionibacterium acnes for 5 days, organoleptic, stability test, pH test, viscosity test and GC-MS analysis. Nine serum formulations had been selected, which based on their most favorite order. Those favorite serums had antibacterial inhibitory against Propionibacterium acnes between 20.80 - 26.12 mm, whereas control positive only 12.47 mm and control negative 5.78 mm. The most favorite serum with the best antibacterial activity was serum formula A. The composition of serum A consist of lime peel essential oil: patchouli oil: olive oil (11:1:18).

  7. Screening for Antiviral Activities of Isolated Compounds from Essential Oils

    PubMed Central

    Astani, Akram; Reichling, Jürgen; Schnitzler, Paul

    2011-01-01

    Essential oil of star anise as well as phenylpropanoids and sesquiterpenes, for example, trans-anethole, eugenol, β-eudesmol, farnesol, β-caryophyllene and β-caryophyllene oxide, which are present in many essential oils, were examined for their antiviral activity against herpes simplex virus type 1 (HSV-1) in vitro. Antiviral activity was analyzed by plaque reduction assays and mode of antiviral action was determined by addition of the drugs to uninfected cells, to the virus prior to infection or to herpesvirus-infected cells. Star anise oil reduced viral infectivity by >99%, phenylpropanoids inhibited HSV infectivity by about 60–80% and sesquiterpenes suppressed herpes virus infection by 40–98%. Both, star anise essential oil and all isolated compounds exhibited anti-HSV-1 activity by direct inactivation of free virus particles in viral suspension assays. All tested drugs interacted in a dose-dependent manner with herpesvirus particles, thereby inactivating viral infectivity. Star anise oil, rich in trans-anethole, revealed a high selectivity index of 160 against HSV, whereas among the isolated compounds only β-caryophyllene displayed a high selectivity index of 140. The presence of β-caryophyllene in many essential oils might contribute strongly to their antiviral ability. These results indicate that phenylpropanoids and sesquiterpenes present in essential oils contribute to their antiviral activity against HSV. PMID:20008902

  8. Chemical composition, antimicrobial and antioxidant potential of the essential oil of Guarea kunthiana A. Juss.

    PubMed

    Pandini, J A; Pinto, F G S; Scur, M C; Santana, C B; Costa, W F; Temponi, L G

    2018-02-01

    The essential oils are extracted from plant compounds and can present activities antimicrobial and antioxidant properties. The goals of the present study were: (a) to determine the chemical composition of the essential oil of Guarea kunthiana A. Juss using the method of gas chromatography coupled to mass spectrometry (GC-MS); (b) to evaluate the antimicrobial potential of this oil using the broth microdilution method against different microorganisms: five Gram-negative bacteria, four Gram-positive bacteria and a yeast and (c) to determine the antioxidant activity of the oil using the DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical assay. The GC-MS analyses allowed identifying 13 constituents, representing 96.52% of the essencial oil composition. The main compounds identified were α-zingiberene (34.48%), β-sesquiphellandrene (22.90%), and α-curcumene (16.17%). With respect to the antimicrobial activity, the essential oil was effective against all the microorganisms tested, except for the bacteria E. coli and K. pneumoniae, which were resistant to the action of the oil. From a general point of view, Gram-positive bacteria were more susceptible to the action of the essential oil than Gram-negative bacteria. The essential oil exhibited antioxidant potential.

  9. Identification of antibacterial and antioxidant constituents of the essential oils of Cynanchum chinense and Ligustrum compactum.

    PubMed

    Yu, Lan; Ren, Ji-Xiang; Nan, Hong-Mei; Liu, Bao-Feng

    2015-01-01

    The aim of this research was to determine the chemical composition, antioxidant and antibacterial properties of the essential oils from Cynanchum chinense and Ligustrum compactum and isolation of antioxidant and antibacterial constituents from the essential oils. Thirty-eight components were identified in essential oils. Based on bioactivity-guided fractionation, guaiacol, linalool and 2-phenylethanol were isolated and identified as active constituents. Both L. compactum flower oil and 2-phenylethanol showed high antibacterial performance, with inhibition zone from 22.8 ± 0.8 to 11.9 ± 2.0 mm at highest concentration, and minimum inhibitory concentration values ranging from 0.25% to 1%. In both DPPH and ABTS assay, the active constituent guaiacol (IC50 = 4.15 ± 0.72 and 9.12 ± 0.98 μg mL(-1), respectively) exhibited high antioxidant activity, and the oils showed moderate antioxidant activity. These results indicate potential efficacy of active constituents and essential oils of L. compactum and C. chinense to control food-borne pathogenic and spoilage bacteria.

  10. Antioxidant activity of essential oil and extracts of Valeriana jatamansi roots.

    PubMed

    Thusoo, Sakshima; Gupta, Sahil; Sudan, Rasleen; Kour, Jaspreet; Bhagat, Sahil; Hussain, Rashid; Bhagat, Madhulika

    2014-01-01

    Valeriana jatamansi is an indigenous medicinal plant used in the treatment of a number of diseases. In the present study, chemical composition of the essential oil was determined by GC-MS. Seven major components were identified in Valeriana jatamansi essential oil, namely, β-vatirenene, β-patchoulene, dehydroaromadendrene, β-gurjunene, patchoulic alcohol, β-guaiene, and α-muurolene. Methanolic, aqueous, and chloroform extracts of Valeriana jatamansi roots were also prepared and analyzed for their polyphenols and flavonoid content. Antioxidant activity of essential oil and different extracts of Valeriana jatamansi roots was determined by DPPH radical scavenging and chelation power assay. A linear correlation has been obtained by comparing the antioxidant activity and polyphenols and flavonoid content of the extracts. Results indicated that antioxidant activity of methanolic extract could be attributed to the presence of rich amount of polyphenols and flavonoid. Essential oil of Valeriana jatamansi roots showed moderate antioxidant activity.

  11. Chemical Composition, Antioxidant and Antimicrobial Activity of Essential Oils from Organic Fennel, Parsley, and Lavender from Spain

    PubMed Central

    Marín, Irene; Sayas-Barberá, Estrella; Viuda-Martos, Manuel; Navarro, Casilda; Sendra, Esther

    2016-01-01

    The aim of this work was to (i) determine the chemical composition of the essential oils of three spices widely cultivated in Spain from organic growth: Foeniculum vulgare, Petroselium crispum, and Lavandula officinalis; (ii) determine the total phenolic content; (iii) determine the antioxidant activity of the essentials oils by means of three different antioxidant tests and (iv) determine the effectiveness of these essentials oils on the inhibition of Listeria innocua CECT 910 and Pseudomonas fluorescens CECT 844. There is a great variability in the chemical composition of the essential oils. Parsley had the highest phenolic content. Overall, parsley presented the best antioxidant profile, given its highest % of inhibition of DPPH radical (64.28%) and FRAP (0.93 mmol/L Trolox), but had a pro-oxidative behavior by TBARS. Lavender essential oil showed the highest antibacterial activity against L. innocua (>13 mm of inhibition at 20–40 μL oil in the discs), followed by parsley with an inhibition zone of 10 mm (when more than 5 μL oil in the discs), and fennel 10 mm (when more than 40 μL oil in the discs). P. fluorescens was not inhibited by the tested essential oils. PMID:28231113

  12. Anti-Legionella activity of essential oil of Satureja cuneifolia.

    PubMed

    Dunkić, Valerija; Mikrut, Antonija; Bezić, Nada

    2014-05-01

    The essential oil of Satureja cuneifolia Ten. was characterized by a high concentration of the phenolic compounds carvacrol (21.3%) and thymol (9.2%). The in vitro activity of the essential oil against Legionela pneumophila serogroups (SG) I and 2-15 and Legionella spp. from different sources, using microdilution, showed that L. pneumofila is sensitive to the oil, with MICs ranging from 0.12 to 0.5%, v/v, and a MBC at 0.5 to 1%, v/v. The essential oil of S. cuneifolia was effective in the reduction of Legionellosis infections.

  13. GC×GC-TOFMS Analysis of Essential Oils Composition from Leaves, Twigs and Seeds of Cinnamomum camphora L. Presl and Their Insecticidal and Repellent Activities.

    PubMed

    Jiang, Hao; Wang, Jin; Song, Li; Cao, Xianshuang; Yao, Xi; Tang, Feng; Yue, Yongde

    2016-03-28

    Interest in essential oils with pesticidal activity against insects and pests is growing. In this study, essential oils from different parts (leaves, twigs and seeds) of Cinnamomum camphora L. Presl were investigated for their chemical composition, and insecticidal and repellent activities against the cotton aphid. The essential oils, obtained by hydrodistillation, were analyzed by GC×GC-TOFMS. A total of 96 components were identified in the essential oils and the main constituents found in the leaves and twigs were camphor, eucalyptol, linalool and 3,7-dimethyl-1,3,7-octatriene. The major components found in the seeds were eucalyptol (20.90%), methyleugenol (19.98%), linalool (14.66%) and camphor (5.5%). In the contact toxicity assay, the three essential oils of leaves, twigs and seeds exhibited a strong insecticidal activity against cotton aphids with LC50 values of 245.79, 274.99 and 146.78 mg/L (after 48 h of treatment), respectively. In the repellent assay, the highest repellent rate (89.86%) was found in the seed essential oil at the concentration of 20 μL/mL after 24 h of treatment. Linalool was found to be a significant contributor to the insecticidal and repellent activities. The results indicate that the essential oils of C. camphora might have the potential to be developed into a natural insecticide or repellent for controlling cotton aphids.

  14. Dittrichia graveolens (L.) Greuter Essential Oil: Chemical Composition, Multivariate Analysis, and Antimicrobial Activity.

    PubMed

    Mitic, Violeta; Stankov Jovanovic, Vesna; Ilic, Marija; Jovanovic, Olga; Djordjevic, Aleksandra; Stojanovic, Gordana

    2016-01-01

    The chemical composition and in vitro antimicrobial activities of Dittrichia graveolens (L.) Greuter essential oil was studied. Moreover, using agglomerative hierarchical cluster (AHC) and principal component analyses (PCA), the interrelationships of the D. graveolens essential-oil profiles characterized so far (including the sample from this study) were investigated. To evaluate the chemical composition of the essential oil, GC-FID and GC/MS analyses were performed. Altogether, 54 compounds were identified, accounting for 92.9% of the total oil composition. The D. graveolens oil belongs to the monoterpenoid chemotype, with monoterpenoids comprising 87.4% of the totally identified compounds. The major components were borneol (43.6%) and bornyl acetate (38.3%). Multivariate analysis showed that the compounds borneol and bornyl acetate exerted the greatest influence on the spatial differences in the composition of the reported oils. The antimicrobial activity against five bacterial and one fungal strain was determined using a disk-diffusion assay. The studied essential oil was active only against Gram-positive bacteria. Copyright © 2016 Verlag Helvetica Chimica Acta AG, Zürich.

  15. Mosquito larvicidal activity of botanical-based mosquito repellents.

    PubMed

    Zhu, Junwei; Zeng, Xiaopeng; O'Neal, Megan; Schultz, Gretchen; Tucker, Brad; Coats, Joel; Bartholomay, Lyric; Xue, Rui-De

    2008-03-01

    The larvicidal activity of 4 plant essential oils--innamon oil, lemon eucalyptus oil, sandalwood oil, and turmeric oil--previously reported as insect repellents was evaluated in the laboratory against 4th instars of Aedes albopictus, Ae. aegypti, and Culex pipiens. Sandalwood oil appeared to be the most effective of the larvicides, killing larvae of all 3 mosquito species in relatively short times. The values of LT50 and LT90 at the application dosage (0.2 mg/ml) were 1.06 +/- 0.11 and 3.24 +/- 0.14 h for Ae. aegypti, 1.82 +/- 0.06 and 3.33 +/- 0.48 h for Ae. albopictus, and 1.55 +/- 0.07 and 3.91 +/- 0.44 h for Cx. pipiens, respectively. Chemical compositions of these essential oils were also studied, and the lavicidal activity of their major ingredient compounds was compared with that of each of the essential oils. The acute toxicity of the 4 essential oils to fathead minnows was also evaluated. The safe use of these natural plant essential oils in future applications of mosquito control was discussed.

  16. Chemical Composition and Antioxidant Activity of Essential Oils and Methanol Extracts of Different Parts from Juniperus rigida Siebold & Zucc.

    PubMed

    Liu, Qiaoxiao; Li, Dengwu; Wang, Wei; Wang, Dongmei; Meng, Xiaxia; Wang, Yongtao

    2016-09-01

    The chemical composition and antioxidant activity of essential oils and MeOH extracts of stems, needles, and berries from Juniperus rigida were studied. The results indicated that the yield of essential oil from stems (2.5%) was higher than from needles (0.8%) and berries (1.0%). The gas chromatography/mass spectrometer (GC/MS) analysis indicated that 21, 17, and 14 compounds were identified from stems, needles, and berries essential oils, respectively. Caryophyllene, α-caryophyllene, and caryophyllene oxide were primary compounds in both stems and needles essential oils. However, α-pinene and β-myrcene mainly existed in berries essential oils and α-ionone only in needles essential oils. The high-performance liquid chromatography (HPLC) analysis indicated that the phenolic profiles of three parts exhibited significant differences. Needles extracts had the highest content of chlorogenic acid, catechin, podophyllotoxin, and amentoflavone, and for berries extracts, the content of those compounds was the lowest. Meanwhile, three in vitro methods (DPPH, ABTS, and FRAP) were used to evaluate antioxidant activity. Stems essential oil and needles extracts exhibited the powerful antioxidant activity than other parts. This is the first comprehensive study on the different parts of J. rigida. The results suggested that stems and needles of J. rigida are useful supplements for healthy products as new resources. © 2016 Wiley-VHCA AG, Zürich.

  17. Contact and Repellent Activities of the Essential Oil from Juniperus formosana against Two Stored Product Insects.

    PubMed

    Guo, Shanshan; Zhang, Wenjuan; Liang, Junyu; You, Chunxue; Geng, Zhufeng; Wang, Chengfang; Du, Shushan

    2016-04-16

    The chemical composition of the essential oil from Juniperus formosana leaves and its contact and repellent activities against Tribolium castaneum and Liposcelis bostrychophila adults were investigated. The essential oil of J. formosana leaves was obtained by hydrodistillation and analyzed by GC-MS. A total of 28 components were identified and the main compounds in the essential oil were α-pinene (21.66%), 4-terpineol (11.25%), limonene (11.00%) and β-phellandrene (6.63%). The constituents α-pinene, 4-terpineol and d-limonene were isolated from the essential oil. It was found that the essential oil exhibited contact activity against T. castaneum and L. bostrychophila adults (LD50 = 29.14 μg/adult and 81.50 µg/cm², respectively). The compound 4-terpineol exhibited the strongest contact activity (LD50 = 7.65 μg/adult). In addition, data showed that at 78.63 nL/cm², the essential oil and the three isolated compounds strongly repelled T. castaneum adults. The compounds α-pinene and d-limonene reached the same level (Class V) of repellency as DEET (p = 0.396 and 0.664) against L. bostrychophila at 63.17 nL/cm² after 2 h treatment. The results indicate that the essential oil and the isolated compounds have potential to be developed into natural insecticides and repellents to control insects in stored products.

  18. Antimicrobial and antioxidant activities of clove essential oil and eugenyl acetate produced by enzymatic esterification.

    PubMed

    Vanin, Adriana B; Orlando, Tainara; Piazza, Suelen P; Puton, Bruna M S; Cansian, Rogério L; Oliveira, Debora; Paroul, Natalia

    2014-10-01

    This work reports the maximization of eugenyl acetate production by esterification of essential oil of clove in a solvent-free system using Novozym 435 as catalyst. The antimicrobial and antioxidant activities of clove essential oil and eugenyl acetate produced were determined. The conditions that maximized eugenyl acetate production were 60 °C, essential oil of clove to acetic anhydride ratio of 1:5, 150 rpm, and 10 wt% of enzyme, with a conversion of 99.87 %. A kinetic study was performed to assess the influence of substrates' molar ratio, enzyme concentration, and temperature on product yield. Results show that an excess of anhydride, enzyme concentration of 5.5 wt%, 50 °C, and essential oil of clove to acetic anhydride ratio of 1:5 afforded nearly a complete conversion after 2 h of reaction. Comparing the antibacterial activity of the essential oil of clove before and after esterification, we observed a decrease in the antimicrobial activity of eugenyl acetate, particularly with regard to minimum inhibitory concentration (MIC). Both eugenyl acetate and clove essential oil were most effective to the gram-negative than gram-positive bacteria group. The results showed a high antioxidant potential for essential oil before and particularly after the esterification reaction thus becoming an option for the formulation of new antioxidant products.

  19. Chemical composition and biological activity of four salvia essential oils and individual compounds against two species of mosquitoes.

    PubMed

    Ali, Abbas; Tabanca, Nurhayat; Demirci, Betul; Blythe, Eugene K; Ali, Zulfiqar; Baser, K Husnu Can; Khan, Ikhlas A

    2015-01-21

    The chemical compositions of essential oils obtained from four species of genus Salvia were analyzed by gas chromatography with a flame ionization detector (GC-FID) and gas chromatography-mass spectrometry (GC-MS). The main compounds identified from Salvia species essential oils were as follows: 1,8-cineole (71.7%), α-pinene (5.1%), camphor (4.4%), and β-pinene (3.8%) in Salvia apiana; borneol (17.4%), β-eudesmol (10.4%), bornyl acetate (5%), and guaiol (4.8%) in Salvia elegans; bornyl acetate (11.4%), β-caryophyllene (6.5%), caryophyllene oxide (13.5%), and spathulenol (7.0%) in Salvia leucantha; α-thujene (25.8%), viridiflorol (20.4%), β-thujene (5.7%), and camphor (6.4%) in Salvia officinalis. In biting-deterrent bioassays, essential oils of S. leucantha and S. elegans at 10 μg/cm(2) showed activity similar to that of DEET (97%, N, N-diethyl-m-toluamide) in two species of mosquitoes, whereas the activities of S. officinalis and S. apiana essential oils were lower than those of the other oils or DEET. Pure compounds β-eudesmol and guaiol showed biting-deterrent activity similar to DEET at 25 nmol/cm(2), whereas the activity of 13-epi-manool, caryophyllene oxide, borneol, bornyl acetate, and β-caryophyllene was significantly lower than that of β-eudesmol, guaiol, or DEET. All essential oils showed larvicidal activity except that of S. apiana, which was inactive at the highest dose of 125 ppm against both mosquito species. On the basis of 95% CIs, all of the essential oils showed higher toxicity in Anopheles quadrimaculatus than in Aedes aegypti. The essential oil of S. leucantha with an LC50 value of 6.2 ppm showed highest toxicity in An. quadrimaculatus.

  20. Development of nanoemulsion from Vitex negundo L. essential oil and their efficacy of antioxidant, antimicrobial and larvicidal activities (Aedes aegypti L.).

    PubMed

    Balasubramani, Sundararajan; Rajendhiran, Thamaraiselvi; Moola, Anil Kumar; Diana, Ranjitha Kumari Bollipo

    2017-06-01

    It is believed that nanoemulsions were emerged as a promising candidate to improve the qualities of natural essential oil towards antimicrobial and insecticidal applications. In the present study, we have focused on the encapsulation of Vitex negundo L. leaf essential oil using Polysorbate80 for its different biological activities including antioxidant, bactericidal and larvicidal activity against dengue fever vector Aedes aegypti L. Initially, the nanoemulsion was prepared by low energy method and droplet size of the formulated nanoemulsion was characterized by using Dynamic Light Scattering analysis. The freshly prepared V. negundo essential nanoemulsion was observed with the mean droplet size of below 200 nm indicating its excellent stability. Further, the larvicidal activity of essential oil and nanoemulsion with various concentrations (25, 50, 100, 200 and 400 ppm). The larvicidal activities were tested 2nd and 3rd instar larval mortality rate that was observed against the 12 and 24 h exposure period. After a 12 h exposure period, the larvicidal activities of 2nd instar larva were observed as essential oil (73.33 ± 1.88), nanoemulsion (81.00 ± 0.88) and the larvicidal activities of 3rd instar larva were displayed essential oil (70.33 ± 2.60) and nanoemulsion (79.00 ± 3.70). Likewise, after a 24 h exposure period, the larvicidal activities of 2nd instar larva were observed as essential oil (90.30 ± 2.15), nanoemulsion (94.33 ± 1.20) and the larvicidal activities of 3rd instar larva were essential oil (80.66 ± 0.66) and nanoemulsion (93.00 ± 1.25) respectively. We finally concluded that the developed plant-based emulsion essential oil systems were thermodynamically stable. Owing to its improved bioavailability and biocompatibility, formulated nanoemulsion can be used in various biomedical applications including drug delivery as well as disease transmitting mosquito vector control. Graphical abstract ᅟ.

  1. Lantana montevidensis Essential Oil: Chemical Composition and Mosquito Repellent Activity against Aedes aegypti

    USDA-ARS?s Scientific Manuscript database

    The essential oil (EO) of Lantana montevidensis (Spreng.) Briq. (L. sellowiana Link & Otto) was investigated for its chemical composition and mosquito repellent activity. The essential oil obtained by hydrodistillation of aerial plant parts was analyzed by GC-FID and GC-MS. The major constituents we...

  2. Antimicrobial activities of commercial essential oils and their components against food-borne pathogens and food spoilage bacteria

    PubMed Central

    Mith, Hasika; Duré, Rémi; Delcenserie, Véronique; Zhiri, Abdesselam; Daube, Georges; Clinquart, Antoine

    2014-01-01

    This study was undertaken to determine the in vitro antimicrobial activities of 15 commercial essential oils and their main components in order to pre-select candidates for potential application in highly perishable food preservation. The antibacterial effects against food-borne pathogenic bacteria (Listeria monocytogenes, Salmonella Typhimurium, and enterohemorrhagic Escherichia coli O157:H7) and food spoilage bacteria (Brochothrix thermosphacta and Pseudomonas fluorescens) were tested using paper disk diffusion method, followed by determination of minimum inhibitory (MIC) and bactericidal (MBC) concentrations. Most of the tested essential oils exhibited antimicrobial activity against all tested bacteria, except galangal oil. The essential oils of cinnamon, oregano, and thyme showed strong antimicrobial activities with MIC ≥ 0.125 μL/mL and MBC ≥ 0.25 μL/mL. Among tested bacteria, P. fluorescens was the most resistant to selected essential oils with MICs and MBCs of 1 μL/mL. The results suggest that the activity of the essential oils of cinnamon, oregano, thyme, and clove can be attributed to the existence mostly of cinnamaldehyde, carvacrol, thymol, and eugenol, which appear to possess similar activities against all the tested bacteria. These materials could be served as an important natural alternative to prevent bacterial growth in food products. PMID:25473498

  3. Inhibitory Effect of Black and Red Pepper and Thyme Extracts and Essential Oils on Enterohemorrhagic Escherichia coli and DNase Activity of Staphylococcus aureus.

    PubMed

    Zarringhalam, Maryam; Zaringhalam, Jalal; Shadnoush, Mehdi; Safaeyan, Firouzeh; Tekieh, Elaheh

    2013-01-01

    In this study, extracts and essential oils of Black and Red pepper and Thyme were tested for antibacterial activity against Escherichia coli O157: H7 and Staphylococcus aureus. Black and Red pepper and Thyme were provided from Iranian agricultural researches center. 2 g of each plant powder was added to 10 cc ethanol 96°. After 24 h, the crude extract was separated as an alcoholic extract and concentrated by distillation method. Plants were examined for determining their major component and essential oils were separated. Phytochemical analyses were done for detection of some effective substances in extracts. The antibacterial activity against Escherichia coli O157: H7 and Staphylococcus aureus was tested and the results showed that all extracts and essential oils were effective and essential oils were more active. The extracts and oils that showed antimicrobial activity were later tested to determine the Minimum Inhibitory Dilution (MID) for those bacteria. They were also effective on the inhibition of DNase activity. This study was indicated that extracts and essential oils of Black and Red pepper and Thyme can play a significant role in inhibition of Escherichia coli O157: H7 and Staphylococcus aureus.

  4. Inhibitory Effect of Black and Red Pepper and Thyme Extracts and Essential Oils on Enterohemorrhagic Escherichia coli and DNase Activity of Staphylococcus aureus

    PubMed Central

    Zarringhalam, Maryam; Zaringhalam, Jalal; Shadnoush, Mehdi; Safaeyan, Firouzeh; Tekieh, Elaheh

    2013-01-01

    In this study, extracts and essential oils of Black and Red pepper and Thyme were tested for antibacterial activity against Escherichia coli O157: H7 and Staphylococcus aureus. Black and Red pepper and Thyme were provided from Iranian agricultural researches center. 2 g of each plant powder was added to 10 cc ethanol 96°. After 24 h, the crude extract was separated as an alcoholic extract and concentrated by distillation method. Plants were examined for determining their major component and essential oils were separated. Phytochemical analyses were done for detection of some effective substances in extracts. The antibacterial activity against Escherichia coli O157: H7 and Staphylococcus aureus was tested and the results showed that all extracts and essential oils were effective and essential oils were more active. The extracts and oils that showed antimicrobial activity were later tested to determine the Minimum Inhibitory Dilution (MID) for those bacteria. They were also effective on the inhibition of DNase activity. This study was indicated that extracts and essential oils of Black and Red pepper and Thyme can play a significant role in inhibition of Escherichia coli O157: H7 and Staphylococcus aureus. PMID:24250643

  5. Chemical Compositions and Insecticidal Activities of Alpinia kwangsiensis Essential Oil against Lasioderma serricorne.

    PubMed

    Wu, Yan; Zhang, Wen-Juan; Huang, Dong-Ye; Wang, Ying; Wei, Jian-Yu; Li, Zhi-Hua; Sun, Jian-Sheng; Bai, Jia-Feng; Tian, Zhao-Fu; Wang, Ping-Juan; Du, Shu-Shan

    2015-12-08

    The essential oil obtained by hydrodistillation from Alpinia kwangsiensis rhizomes was investigated by GC-MS. A total of 31 components representing 92.45% of the oil were identified and the main compounds in the oil were found to be camphor (17.59%), eucalyptol (15.16%), β-pinene (11.15%) and α-pinene (10.50%). These four compounds were subsequently isolated and the essential oil and four isolated compounds exhibited potent insecticidal activity against Lasioderma serricorne adults. During the assay, it was shown that the essential oil exhibited both potential contact (LD50 = of 24.59 μg/adult) and fumigant (LC50 = of 9.91 mg/L air) toxicity against Lasioderma serricorne. The study revealed that the insecticidal activity of the essential oil can be attributed to the synergistic effects of its diverse major components, which indicates that oil of Alpinia kwangsiensis and its isolated compounds have potential to be developed into natural insecticides to control insects in stored grains and traditional Chinese medicinal materials.

  6. Reactive oxygen species and hormone signaling cascades in endophytic bacterium induced essential oil accumulation in Atractylodes lancea.

    PubMed

    Zhou, Jia-Yu; Li, Xia; Zhao, Dan; Deng-Wang, Meng-Yao; Dai, Chuan-Chao

    2016-09-01

    Pseudomonas fluorescens induces gibberellin and ethylene signaling via hydrogen peroxide in planta . Ethylene activates abscisic acid signaling. Hormones increase sesquiterpenoid biosynthesis gene expression and enzyme activity, inducing essential oil accumulation. Atractylodes lancea is a famous Chinese medicinal plant, whose main active components are essential oils. Wild A. lancea has become endangered due to habitat destruction and over-exploitation. Although cultivation can ensure production of the medicinal material, the essential oil content in cultivated A. lancea is significantly lower than that in the wild herb. The application of microbes as elicitors has become an effective strategy to increase essential oil accumulation in cultivated A. lancea. Our previous study identified an endophytic bacterium, Pseudomonas fluorescens ALEB7B, which can increase essential oil accumulation in A. lancea more efficiently than other endophytes; however, the underlying mechanisms remain unknown (Physiol Plantarum 153:30-42, 2015; Appl Environ Microb 82:1577-1585, 2016). This study demonstrates that P. fluorescens ALEB7B firstly induces hydrogen peroxide (H2O2) signaling in A. lancea, which then simultaneously activates gibberellin (GA) and ethylene (ET) signaling. Subsequently, ET activates abscisic acid (ABA) signaling. GA and ABA signaling increase expression of HMGR and DXR, which encode key enzymes involved in sesquiterpenoid biosynthesis, leading to increased levels of the corresponding enzymes and then an accumulation of essential oils. Specific reactive oxygen species and hormone signaling cascades induced by P. fluorescens ALEB7B may contribute to high-efficiency essential oil accumulation in A. lancea. Illustrating the regulation mechanisms underlying P. fluorescens ALEB7B-induced essential oil accumulation not only provides the theoretical basis for the inducible synthesis of terpenoids in many medicinal plants, but also further reveals the complex and diverse interactions among different plants and their endophytes.

  7. Essential Oils as Biocides for the Control of Fungal Infections and Devastating Pest (Tuta absoluta) of Tomato (Lycopersicon esculentum Mill.).

    PubMed

    Bouayad Alam, Samira; Dib, Mohammed El Amine; Djabou, Nassim; Tabti, Boufeldja; Gaouar Benyelles, Nassira; Costa, Jean; Muselli, Alain

    2017-07-01

    Thymus capitatus and Tetraclinis articulata essential oils as well their major components (carvacrol and α-pinene) were evaluated for their antifungal and insecticidal activities. Both oils showed good in vitro antifungal activity against Fusarium oxysporum, Aspergillus niger, Penicillium sp., Alternaria alternata, and Botrytis cinerea, the fungi causing tomato rot. In vivo results indicate the efficacies of both essential oils and carvacrol of reduce postharvest fungal pathogens, such as B. cinerea and Al. alternata that are responsible of black and gray rot of tomato fruit. Disease incidence of Al. alternata and B. cinerea decreased on average from 55% to 80% with essential oil of Th. capitatus and pure carcvacrol, while Te. articulata essential oil exhibited inhibition of fungal growth of 55% and 25% against Al. alternata and B. cinerea, respectively, with concentration of 0.4 μl/l air. The insecticidal activity of Th. capitatus and Te. articulata essential oils exhibited also a good insecticidal activity. At the concentration of 0.2 μl/ml air, the oils caused mortality over 80% for all larval stages of Tuta absoluta and 100% mortality for the first-instar after 1.5 h only of exposure. α-Pinene presented lower insecticidal and antifungal activities compared to essential oils of Th. capitatus, Te. articulata and pure carvacrol. Thus, these essential oils can be used as a potential source to develop control agents to manage some of the main pests and fungal diseases of tomato crops. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  8. Chemical composition and antimicrobial activity of the essential oil from the edible aromatic plant Aristolochia delavayi.

    PubMed

    Li, Zhi-Jian; Njateng, Guy S S; He, Wen-Jia; Zhang, Hong-Xia; Gu, Jian-Long; Chen, Shan-Na; Du, Zhi-Zhi

    2013-11-01

    The essential oil obtained by hydrodistillation from the aerial parts of Aristolochia delavayi Franch. (Aristolochiaceae), a unique edible aromatic plant consumed by the Nakhi (Naxi) people in Yunnan, China, was investigated using GC/MS analysis. In total, 95 components, representing more than 95% of the oil composition, were identified, and the main constituents found were (E)-dec-2-enal (52.0%), (E)-dodec-2-enal (6.8%), dodecanal (3.35%), heptanal (2.88%), and decanal (2.63%). The essential oil showed strong inhibitory activity (96% reduction) of the production of bacterial volatile sulfide compounds (VSC) by Klebsiella pneumoniae, an effect that was comparable with that of the reference compound citral (91% reduction). Moreover, the antimicrobial activity of the essential oil and the isolated major compound against eight bacterial and six fungal strains were evaluated. The essential oil showed significant antibacterial activity against Providencia stuartii and Escherichia coli, with minimal inhibitory concentrations (MIC) ranging from 3.9 to 62.5 μg/ml. The oil also showed strong inhibitory activity against the fungal strains Trichophyton ajelloi, Trichophyton terrestre, Candida glabrata, Candida guilliermondii, and Cryptococcus neoformans, with MIC values ranging from 3.9 to 31.25 μg/ml, while (E)-dec-2-enal presented a lower antifungal activity than the essential oil. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  9. Hydrodistillation extraction time effect on essential oil yield, composition, and bioactivity of coriander oil.

    PubMed

    Zheljazkov, Valtcho D; Astatkie, Tess; Schlegel, Vicki

    2014-01-01

    Coriander (Coriandrum sativum L.) is a major essential oil crop grown throughout the world. Coriander essential oil is extracted from coriander fruits via hydrodistillation, with the industry using 180-240 min of distillation time (DT), but the optimum DT for maximizing essential oil yield, composition of constituents, and antioxidant activities are not known. This research was conducted to determine the effect of DT on coriander oil yield, composition, and bioactivity. The results show that essential oil yield at the shorter DT was low and generally increased with increasing DT with the maximum yields achieved at DT between 40 and 160 min. The concentrations of the low-boiling point essential oil constituents: α-pinene, camphene, β-pinene, myrcene, para-cymene, limonene, and γ-terpinene were higher at shorter DT (< 2.5 min) and decreased with increasing DT; but the trend reversed for the high-boiling point constituents: geraniol and geranyl-acetate. The concentration of the major essential oil constituent, linalool, was 51% at DT 1.15 min, and increased steadily to 68% with increasing DT. In conclusion, 40 min DT is sufficient to maximize yield of essential oil; and different DT can be used to obtain essential oil with differential composition. Its antioxidant capacity was affected by the DT, with 20 and 240 min DT showing higher antioxidant activity. Comparisons of coriander essential oil composition must consider the length of the DT.

  10. Biological activities of Zingiber officinale (Zingiberaceae) and Piper cubeba (Piperaceae) essential oils against pulse beetle, Callosobruchus chinensis (Coleoptera: Bruchidae).

    PubMed

    Chaubey, Mukesh Kumar

    2013-06-01

    Zingiber officinale (Zingiberaceae) and Piper cubeba (Piperaceae) was essential oils were investigated for repellent, insecticidal, antiovipositional, egg hatching, persistence of its insecticidal activities against pulse beetle, Callosobruchus chinensis (Coleoptera: Bruchidae). Essential oil vapours repelled bruchid adults significantly as oviposition was found reduced in choice oviposition assay. Z. officinale and P. cubeba essential oils caused both fumigant and contact toxicity in C. chinensis adults. In fumigation toxicity assay, median lethal concentrations (LC50) were 0.34 and 0.27 microL cm(-3) for Z. officinale and P. cubeba essential oils, respectively, while in contact toxicity assay, LC50 were 0.90 and 0.66 microL cm(-2) for Z. officinale and P. cubeba essential oils, respectively. These two essential oils reduced oviposition in C. chinensis adults when treated with sublethal concentrations by fumigation and contact method. Oviposition inhibition was more pronounced when adults come in contact than in vapours. Both essential oils significantly reduced egg hatching rate when fumigated. Persistence in insecticidal efficiency of both essential oils decreased with time. P. cubeba showed less persistence than Z. officinale essential oil because no mortality was observed in C. chinensis adults after 36 h of treatment with P. cubeba and after 48 h of treatment of Z. officinale essential oil. Fumigation with these essential oils has no effect on the germination of the cowpea seeds. Findings of the study suggest that Z. officinale and P. cubeba essential oils can be useful as promising agent in insect pest management programme.

  11. The Essential Oils of Rhaponticum carthamoides Hairy Roots and Roots of Soil-Grown Plants: Chemical Composition and Antimicrobial, Anti-Inflammatory, and Antioxidant Activities.

    PubMed

    Skała, Ewa; Rijo, Patrícia; Garcia, Catarina; Sitarek, Przemysław; Kalemba, Danuta; Toma, Monika; Szemraj, Janusz; Pytel, Dariusz; Wysokińska, Halina; Śliwiński, Tomasz

    2016-01-01

    The essential oils were isolated by hydrodistillation from the hairy roots (HR) and roots of soil-grown plants (SGR) of Rhaponticum carthamoides and were analyzed by GC-MS method. In the both essential oils 62 compounds were identified. The root essential oils showed the differences in the qualitative and quantitative composition. The sesquiterpene hydrocarbons (55-62%) dominated in both essential oils. The major compounds of HR essential oil were cyperene, 13-norcypera-1(5),11(12)-diene, and cadalene while aplotaxene, nardosina-1(10),11-diene, and dauca-4(11),8-diene dominated in SGR essential oil. Both essential oils showed antibacterial activity especially against Enterococcus faecalis (ATCC 29212) and Pseudomonas aeruginosa (ATCC 27853) (MIC value = 125  µ g/mL). HR and SGR essential oils also decreased the expression of IL-1 β , IL-6, and TNF- α and the ROS level in LPS-treatment astrocytes. This is the first report to describe the chemical composition of R. carthamoides essential oil from hairy roots, its protective effect against LPS-induced inflammation and ROS production in astrocytes, and its antimicrobial potential. The results show that R. carthamoides hairy roots may be a valuable source of the essential oil and may be an alternative to the roots of soil-grown plants.

  12. The Essential Oils of Rhaponticum carthamoides Hairy Roots and Roots of Soil-Grown Plants: Chemical Composition and Antimicrobial, Anti-Inflammatory, and Antioxidant Activities

    PubMed Central

    Rijo, Patrícia; Garcia, Catarina; Kalemba, Danuta; Toma, Monika; Szemraj, Janusz; Pytel, Dariusz; Śliwiński, Tomasz

    2016-01-01

    The essential oils were isolated by hydrodistillation from the hairy roots (HR) and roots of soil-grown plants (SGR) of Rhaponticum carthamoides and were analyzed by GC-MS method. In the both essential oils 62 compounds were identified. The root essential oils showed the differences in the qualitative and quantitative composition. The sesquiterpene hydrocarbons (55–62%) dominated in both essential oils. The major compounds of HR essential oil were cyperene, 13-norcypera-1(5),11(12)-diene, and cadalene while aplotaxene, nardosina-1(10),11-diene, and dauca-4(11),8-diene dominated in SGR essential oil. Both essential oils showed antibacterial activity especially against Enterococcus faecalis (ATCC 29212) and Pseudomonas aeruginosa (ATCC 27853) (MIC value = 125 µg/mL). HR and SGR essential oils also decreased the expression of IL-1β, IL-6, and TNF-α and the ROS level in LPS-treatment astrocytes. This is the first report to describe the chemical composition of R. carthamoides essential oil from hairy roots, its protective effect against LPS-induced inflammation and ROS production in astrocytes, and its antimicrobial potential. The results show that R. carthamoides hairy roots may be a valuable source of the essential oil and may be an alternative to the roots of soil-grown plants. PMID:28074117

  13. Chemical composition, antibacterial and antifungal activities of essential oil from Cordia verbenacea DC leaves.

    PubMed

    Rodrigues, Fabiola F G; Oliveira, Liana G S; Rodrigues, Fábio F G; Saraiva, Manuele E; Almeida, Sheyla C X; Cabral, Mario E S; Campos, Adriana R; Costa, Jose Galberto M

    2012-07-01

    Cordia verbenacea is a Brazilian coastal shrub popularly known as "erva baleeira". The essential oil from fresh leaves was obtained by hydrodistillation and analyzed by CG/MS. The main components were identified as β-caryophyllene (25.4%), bicyclogermacrene (11.3%), δ-cadinene (9.%) and α-pinene (9.5%). In this study, the antimicrobial activity of Cordia verbenacea was evaluated. The minimal inhibitory concentration (MIC) of the essential oil was obtained using the broth microdilution assay (from 512 to 8 μg/ml). The results showed that the essential oil presented fungistatic activity against Candida albicans and Candida krusei and antibacterial activity against Gram-positive strains (Staphylococcus aureus and Bacillus cereus) and against multiresistant Gram-negative (Escherichia coli 27), in all tests the MIC was 64 μg/ml. When the essential oil was associated to aminoglycosides (subinhibitory concentrations, MIC/8), a synergic and antagonic activity was verified. The synergic effect was observed to the amikacin association (MIC reduction from 256 mlto 64 μg/ml) in all strains tested. The essential oil of Cordia verbenacea influences the activity of antibiotics and may be used as an adjuvant in antibiotic therapy against respiratory tract bacterial pathogens.

  14. Synergistic antimicrobial activity of Boswellia serrata Roxb. ex Colebr. (Burseraceae) essential oil with various azoles against pathogens associated with skin, scalp and nail infections.

    PubMed

    Sadhasivam, S; Palanivel, S; Ghosh, S

    2016-12-01

    Antimicrobials from natural sources have gained immense importance in recent times to combat the global challenge of antibiotic resistance. Essential oils are implicated in antimicrobial action against several species. Here, we have screened nine commercially available essential oils for their antimicrobial activity against organisms associated with skin, scalp and nail infections mainly Propionibacterium acnes, Malassezia spp., Candida albicans and Trichophyton spp. Among nine essential oils, Boswellia serrata essential oil demonstrated superior antimicrobial activity against all the micro-organisms and surprisingly it showed maximum activity against Trichophyton spp. The gas chromatography-mass spectrometry analysis of B. serrata oil indicates a major composition of α thujene, ρ cymene and sabinene. Additionally, B. serrata oil was found to inhibit Staphylococcus epidermidis biofilm, and its combination with azoles has shown synergistic activity against azole-resistant strain of C. albicans. These broad-spectrum antimicrobial activities of B. serrata oil will make it an ideal candidate for topical use. Eradication of skin and nail infections still remain a challenge and there are serious concerns regarding the recurrence of the diseases associated with these infections. Antimicrobials from plant sources are gaining importance in therapeutics because they encounter minimal challenges of emergence of resistance. We have demonstrated the antimicrobial activity of Boswellia serrata essential oil against micro-organisms involved in skin, scalp and nail infections, especially if it has shown favourable synergistic antifungal activity in combination with azoles against the azole-resistant Candida albicans strain. Thus, B. serrata oil can be one of the plausible therapeutic agents for management of skin, scalp and nail infections. © 2016 The Society for Applied Microbiology.

  15. Sensitivity of Candida albicans to essential oils: are they an alternative to antifungal agents?

    PubMed

    Bona, E; Cantamessa, S; Pavan, M; Novello, G; Massa, N; Rocchetti, A; Berta, G; Gamalero, E

    2016-12-01

    Candida albicans is an important opportunistic pathogen, responsible for the majority of yeast infections in humans. Essential oils, extracted from aromatic plants, are well-known antimicrobial agents, characterized by a broad spectrum of activities, including antifungal properties. The aim of this work was to assess the sensitivity of 30 different vaginal isolated strains of C. albicans to 12 essential oils, compared to the three main used drugs (clotrimazole, fluconazole and itraconazole). Thirty strains of C. albicans were isolated from vaginal swab on CHROMagar ™ Candida. The agar disc diffusion method was employed to determine the sensitivity to the essential oils. The antifungal activity of the essential oils and antifungal drugs (clotrimazole, itraconazole and fluconazole) were investigated using a microdilution method. Transmission and scanning electron microscopy analyses were performed to get a deep inside on cellular damages. Mint, basil, lavender, tea tree oil, winter savory and oregano essential oils inhibited both the growth and the activity of C. albicans more efficiently than clotrimazole. Damages induced by essential oils at the cellular level were stronger than those caused by clotrimazole. Candida albicans is more sensitive to different essential oils compared to the main used drugs. Moreover, the essential oil affected mainly the cell wall and the membranes of the yeast. The results of this work support the research for new alternatives or complementary therapies against vaginal candidiasis. © 2016 The Society for Applied Microbiology.

  16. Comparison of antispasmodic effects of Dracocephalum kotschyi essential oil, limonene and α-terpineol.

    PubMed

    Sadraei, H; Asghari, G; Kasiri, F

    2015-01-01

    Dracocephalum kotschyi is an essential oil containing plant found in Iran. In Iranian traditional medicine, D. kotschyi has been used as antispasmodic and analgesic but so far there is no pharmacological report about its antispasmodic activity. Therefore, the objective of this research was to study antispasmodic activity of the essential oil of D. kotschyi and two of its constituents namely limonene and α-terpineol. The essential oil was obtained from aerial parts of D. kotschyi using hydrodistillation method. The main components found in the essential oil were α-pinene (10%), neral (11%), geraniol (10%), α-citral (12%), limonene (9%) and α-terpineol (1.1%). For antispasmodic studies, a portion of rat ileum was suspended under 1 g tension in Tyrode's solution at 37 °C and gassed with O2. Effect of the D. kotschyi essential oil, limonene and α-terpineol were studied on ileum contractions induced by KCl (80 mM), acetylcholine (ACh, 500 nM) and electrical field stimulation (EFS). The essential oil, in a concentration dependent manner inhibited the response to KCl (IC50=51 ± 8.7 nl/ml), ACh (IC50=19 ± 2.7 nl/ml) and EFS (IC50=15 ± 0.5 nl/ml). Limonene and α-terpineol showed same pattern of inhibitory effect on ileum contraction. Their inhibitory effects were also concentration dependent. However, limonene was more potent than the essential oil while the α-terpineol was less potent than either limonene or the essential oil. From this experiment it was concluded that D. kotschyi essential oil has inhibitory effect on ileum contractions. Limonene contribute a major role in inhibitory effect of the essential oil while α-terpineol has weak antispasmodic activity.

  17. Black Zira essential oil: Chemical compositions and antimicrobial activity against the growth of some pathogenic strain causing infection.

    PubMed

    Noshad, Mohammad; Hojjati, Mohammad; Alizadeh Behbahani, Behrooz

    2018-03-01

    The aim of this study was to perform chemical compositions and phytochemical analysis of Black Zira essential oil and other goal of this research was to investigate the antimicrobial effects of Black Zira essential oil against Enterobacter aerogenes, Pseudomonas aeruginosa, Escherichia coli, Shigella flexneri, Staphylococcus epidermidis, Streptococcus pyogenes and Candida albicans. Black Zira essential oil was extracted by hydrodistillation method using clevenger apparatus. Black Zira essential oil chemical composition was identified through gas chromatography/mass spectrometry. γ-terpinene with a percentage of 24.8% was the major compound of Black Zira essential oil. The antimicrobial effect Black Zira essential oil was evaluated by several qualitative and quantitative methods (disk diffusion, well diffusion, microdilution broth, agar dilution and minimum bactericidal/fungicidal concentration). Phytochemical analysis Black Zira essential oil were appraised based on qualitative methods. Antioxidant activity (2,2-diphenyl-1-picrylhydrazyl and β-carotene/linoleic acid inhibition) and total phenolic content (Folin-Ciocalteu) were examined. The results of phytochemical analysis of Black Zira essential oil showed the existence of phenolic, flavonoids, saponins, alkaloids and tannins. The total phenolic content and antioxidant activity (reported as IC 50 ) of Black Zira essential oil were equal to 120.50 ± 0.50 mg GAE/g and 11.55 ± 0.25 μg/ml, respectively. The MIC of the Black Zira essential oil ranged from 1 mg/ml to 8 mg/ml, while its MBC and MFC ranged from 1 mg/ml to 16 mg/ml. The results presented that the longest and the shortest inhibition zone diameter at the concentration of 8 mg/ml pertained to C. albicans and E. aerogenes, respectively. Copyright © 2018. Published by Elsevier Ltd.

  18. Comparison of antispasmodic effects of Dracocephalum kotschyi essential oil, limonene and α-terpineol

    PubMed Central

    Sadraei, H.; Asghari, G.; Kasiri, F.

    2015-01-01

    Dracocephalum kotschyi is an essential oil containing plant found in Iran. In Iranian traditional medicine, D. kotschyi has been used as antispasmodic and analgesic but so far there is no pharmacological report about its antispasmodic activity. Therefore, the objective of this research was to study antispasmodic activity of the essential oil of D. kotschyi and two of its constituents namely limonene and α-terpineol. The essential oil was obtained from aerial parts of D. kotschyi using hydrodistillation method. The main components found in the essential oil were α-pinene (10%), neral (11%), geraniol (10%), α-citral (12%), limonene (9%) and α-terpineol (1.1%). For antispasmodic studies, a portion of rat ileum was suspended under 1 g tension in Tyrode's solution at 37 °C and gassed with O2. Effect of the D. kotschyi essential oil, limonene and α-terpineol were studied on ileum contractions induced by KCl (80 mM), acetylcholine (ACh, 500 nM) and electrical field stimulation (EFS). The essential oil, in a concentration dependent manner inhibited the response to KCl (IC50=51 ± 8.7 nl/ml), ACh (IC50=19 ± 2.7 nl/ml) and EFS (IC50=15 ± 0.5 nl/ml). Limonene and α-terpineol showed same pattern of inhibitory effect on ileum contraction. Their inhibitory effects were also concentration dependent. However, limonene was more potent than the essential oil while the α-terpineol was less potent than either limonene or the essential oil. From this experiment it was concluded that D. kotschyi essential oil has inhibitory effect on ileum contractions. Limonene contribute a major role in inhibitory effect of the essential oil while α-terpineol has weak antispasmodic activity. PMID:26487887

  19. Chemical composition, anthelmintic, antibacterial and antioxidant effects of Thymus bovei essential oil.

    PubMed

    Jaradat, Nidal; Adwan, Lina; K'aibni, Shadi; Shraim, Naser; Zaid, Abdel Naser

    2016-10-26

    It has been recently recognized that oxidative stress, helminth and microbial infections are the cause of much illness found in the underdeveloped, developing and developed countries. The present study was undertaken to identify the chemical composition, and to assess anthelmintic, antimicrobial and antioxidant effects of Thymus bovei essential oil. The chemical composition of the essential oil was analyzed using gas chromatography mass spectrometry (GC-MS). Antimicrobial activity was tested against the selected strains from American Type Culture Collection (ATCC) and clinical isolates such as Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Methicillin Resistant Staphylococcus aureus, Candida albicans using MIC assay. The anthelmintic assay was carried out on adult earthworm (Pheretima posthuma), while antioxidant activity was analyzed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging method. Trans-geraniol (35.38 %), α-citral (20.37 %) and β-citral (14.76 %) were the major compounds comprising 70.51 % of the essential oil. Our results showed that T. bovei essential oil exhibited strong anthelmintic activity, even higher than piperazine citrate, the used reference standard, with potential antioxidant activity almost equal to the Trolox standard. Furthermore, T. bovei essential oil had powerful antibacterial and antifungal activities against the studied pathogens. Essential oil of T. bovei exerted excellent antioxidant, antimicrobial, and anthelmintic activities. Moreover, this study found that T. bovei volatile oil contains active substances that could potentially be used as natural preservatives in food and pharmaceutical industries, these substances could also be employed for developing new anthelmintic, antimicrobial and antioxidant agents.

  20. Anti-oxidative and anti-inflammatory effects of Tagetes minuta essential oil in activated macrophages

    PubMed Central

    Karimian, Parastoo; Kavoosi, Gholamreza; Amirghofran, Zahra

    2014-01-01

    Objective To investigate antioxidant and anti-inflammatory effects of Tagetes minuta (T. minuta) essential oil. Methods In the present study T. minuta essential oil was obtained from leaves of T. minuta via hydro-distillation and then was analyzed by gas chromatography-mass spectrometry. The anti-oxidant capacity of T. minuta essential oil was examined by measuring reactive oxygen, reactive nitrogen species and hydrogen peroxide scavenging. The anti-inflammatory activity of T. minuta essential oil was determined through measuring NADH oxidase, inducible nitric oxide synthase and TNF-α mRNA expression in lipopolysacharide-stimulated murine macrophages using real-time PCR. Results Gas chromatography-mass spectrometry analysis indicated that the main components in the T. minuta essential oil were dihydrotagetone (33.86%), E-ocimene (19.92%), tagetone (16.15%), cis-β-ocimene (7.94%), Z-ocimene (5.27%), limonene (3.1%) and epoxyocimene (2.03%). The T. minuta essential oil had the ability to scavenge all reactive oxygen/reactive nitrogen species radicals with IC50 12-15 µg/mL, which indicated a potent radical scavenging activity. In addition, T. minuta essential oil significantly reduced NADH oxidase, inducible nitric oxide synthaseand TNF-α mRNA expression in the cells at concentrations of 50 µg/mL, indicating a capacity of this product to potentially modulate/diminish immune responses. Conclusions T. minuta essential oil has radical scavenging and anti-inflammatory activities and could potentially be used as a safe effective source of natural anti-oxidants in therapy against oxidative damage and stress associated with some inflammatory conditions. PMID:25182441

  1. Effect of Hinoki and Meniki Essential Oils on Human Autonomic Nervous System Activity and Mood States.

    PubMed

    Chen, Chi-Jung; Kumar, K J Senthil; Chen, Yu-Ting; Tsao, Nai-Wen; Chien, Shih-Chang; Chang, Shang-Tzen; Chu, Fang-Hua; Wang, Sheng-Yang

    2015-07-01

    Meniki (Chamecyparis formosensis) and Hinoki (C. obtusa) are precious conifers with excellent wood properties and distinctive fragrances that make these species popular in Taiwan for construction, interiors and furniture. In the present study, the compositions of essential oils prepared from Meniki and Hinoki were analyzed by gas chromatography-mass spectrometry (GC/MS). Thirty-six compounds were identified from the wood essential oil of Meniki, including Δ-cadinene, γ-cadinene, Δ-cadinol, α-muurolene, calamenene, linalyl acetate and myrtenol; 29 compounds were identified from Hinoki, including α-terpineol, α-pinene, Δ-cadinene, borneol, terpinolene, and limonene. Next, we examined the effect of Meniki and Hinoki essential oils on human autonomic nervous system activity. Sixteen healthy adults received Meniki or Hinoki by inhalation for 5 min, and the physiological and psychological effects were examined. After inhaling Meniki essential oil, participant's systolic blood pressure and heart rate (HR) were decreased, and diastolic blood pressure increased. In addition, sympathetic nervous activity (SNS) was significantly decreased, and parasympathetic activity (PSNS) was significantly increased. On the other hand, after inhaling Hinoki essential oil, systolic blood pressure, heart rate and PSNS were decreased, whereas SNA was increased. Indeed, both Meniki and Hinoki essential oils increased heart rate variability (HRV) in tested adults. Furthermore, in the Profile of Mood States (POMS) test, both Meniki and Hinoki wood essential oils stimulated a pleasant mood status. Our results strongly suggest that Meniki and Hinoki essential oils could be suitable agents for the development of regulators of sympathetic nervous system dysfunctions.

  2. Chemical composition analysis and in vitro biological activities of ten essential oils in human skin cells.

    PubMed

    Han, Xuesheng; Beaumont, Cody; Stevens, Nicole

    2017-12-01

    Research on the biological effects of essential oils on human skin cells is scarce. In the current study, we primarily explored the biological activities of 10 essential oils (nine single and one blend) in a pre-inflamed human dermal fibroblast system that simulated chronic inflammation. We measured levels of proteins critical for inflammation, immune responses, and tissue-remodeling processes. The nine single oils were distilled from Citrus bergamia (bergamot), Coriandrum sativum (cilantro), Pelargonium graveolens (geranium), Helichrysum italicum (helichrysum), Pogostemon cablin (patchouli), Citrus aurantium (petitgrain), Santalum album (sandalwood), Nardostachys jatamansi (spikenard), and Cananga odorata (ylang ylang). The essential oil blend (commercial name Immortelle) is composed of oils from frankincense, Hawaiian sandalwood, lavender, myrrh, helichrysum, and rose. All the studied oils were significantly anti-proliferative against these cells. Furthermore, bergamot, cilantro, and spikenard essential oils primarily inhibited protein molecules related to inflammation, immune responses, and tissue-remodeling processes, suggesting they have anti-inflammatory and wound healing properties. Helichrysum and ylang ylang essential oils, as well as Immortelle primarily inhibited tissue remodeling-related proteins, suggesting a wound healing property. The data are consistent with the results of existing studies examining these oils in other models and suggest that the studied oils may be promising therapeutic candidates. Further research into their biological mechanisms of action is recommended. The differential effects of these essential oils suggest that they exert activities by different mechanisms or pathways, warranting further investigation. The chemical composition of these oils was analyzed using gas chromatography-mass spectrometry.

  3. Antifungal activity of Juniperus essential oils against dermatophyte, Aspergillus and Candida strains.

    PubMed

    Cavaleiro, C; Pinto, E; Gonçalves, M J; Salgueiro, L

    2006-06-01

    The increasing resistance to antifungal compounds and the reduced number of available drugs led us to search therapeutic alternatives among aromatic plants and their essential oils, empirically used by antifungal proprieties. In this work the authors report on the antifungal activity of Juniperus essential oils (Juniperus communis ssp. alpina, J. oxycedrus ssp. oxycedrus and J. turbinata). Antifungal activity was evaluated by determination of MIC and MLC values, using a macrodilution method (NCCLS protocols), on clinical and type strains of Candida, Aspergillus and dermatophytes. The composition of the oils was ascertained by GC and GC/MS analysis. All essential oils inhibited test dermatophyte strains. The oil from leaves of J. oxycedrus ssp. oxycedrus is the most active, with MIC and MLC values ranging from 0.08-0.16 microl ml(-1) to 0.08-0.32 microl ml(-1), respectively. This oil is mainly composed of alpha-pinene (65.5%) and delta-3-carene (5.7%). J. oxycedrus ssp. oxycedrus leaf oil proved to be an emergent alternative as antifungal agent against dermatophyte strains. delta-3-Carene, was shown to be a fundamental compound for this activity. Results support that essential oils or some of their constituents may be useful in the clinical management of fungal infections, justifying future clinical trials to validate their use as therapeutic alternatives for dermatophytosis.

  4. Chemical composition and antioxidant activities of essential oils from different parts of the oregano* #

    PubMed Central

    Han, Fei; Ma, Guang-qiang; Yang, Ming; Yan, Li; Xiong, Wei; Shu, Ji-cheng; Zhao, Zhi-dong; Xu, Han-lin

    2017-01-01

    This research was undertaken in order to characterize the chemical compositions and evaluate the antioxidant activities of essential oils obtained from different parts of the Origanum vulgare L. It is a medicinal plant used in traditional Chinese medicine for the treatment of heat stroke, fever, vomiting, acute gastroenteritis, and respiratory disorders. The chemical compositions of the three essential oils from different parts of the oregano (leaves-flowers, stems, and roots) were identified by gas chromatography-mass spectrometry (GC-MS). The antioxidant activity of each essential oil was assessed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay and reducing the power test. Among the essential oils from different parts of the oregano, the leaf-flower oils have the best antioxidant activities, whereas the stem oils are the worst. The results of the DPPH free radical scavenging assay showed that the half maximal inhibitory concentration (IC50) values of the essential oils were (0.332±0.040) mg/ml (leaves-flowers), (0.357±0.031) mg/ml (roots), and (0.501±0.029) mg/ml (stems), respectively. Interestingly, the results of reducing the power test also revealed that when the concentration exceeded 1.25 mg/ml, the leaf-flower oils had the highest reducing power; however, the stem oils were the lowest. PMID:28071000

  5. The Inhibitory Effects of Curcuma longa L. Essential Oil and Curcumin on Aspergillus flavus Link Growth and Morphology

    PubMed Central

    Mossini, Simone Aparecida Galerani; Ferreira, Francine Maery Dias; Arrotéia, Carla Cristina; da Costa, Christiane Luciana; Nakamura, Celso Vataru; Machinski Junior, Miguel

    2013-01-01

    The essential oil from Curcuma longa L. was analysed by GC/MS. The major components of the oil were ar-turmerone (33.2%), α-turmerone (23.5%) and β-turmerone (22.7%). The antifungal activities of the oil were studied with regard to Aspergillus flavus growth inhibition and altered morphology, as preliminary studies indicated that the essential oil from C. longa inhibited Aspergillus flavus Link aflatoxin production. The concentration of essential oil in the culture media ranged from 0.01% to 5.0% v/v, and the concentration of curcumin was 0.01–0.5% v/v. The effects on sporulation, spore viability, and fungal morphology were determined. The essential oil exhibited stronger antifungal activity than curcumin on A. flavus. The essential oil reduced the fungal growth in a concentration-dependent manner. A. flavus growth rate was reduced by C. longa essential oil at 0.10%, and this inhibition effect was more efficient in concentrations above 0.50%. Germination and sporulation were 100% inhibited in 0.5% oil. Scanning electron microscopy (SEM) of A. flavus exposed to oil showed damage to hyphae membranes and conidiophores. Because the fungus is a plant pathogen and aflatoxin producer, C. longa essential oil may be used in the management of host plants. PMID:24367241

  6. The inhibitory effects of Curcuma longa L. essential oil and curcumin on Aspergillus flavus link growth and morphology.

    PubMed

    Dias Ferreira, Flávio; Mossini, Simone Aparecida Galerani; Dias Ferreira, Francine Maery; Arrotéia, Carla Cristina; da Costa, Christiane Luciana; Nakamura, Celso Vataru; Machinski, Miguel

    2013-01-01

    The essential oil from Curcuma longa L. was analysed by GC/MS. The major components of the oil were ar-turmerone (33.2%), α -turmerone (23.5%) and β -turmerone (22.7%). The antifungal activities of the oil were studied with regard to Aspergillus flavus growth inhibition and altered morphology, as preliminary studies indicated that the essential oil from C. longa inhibited Aspergillus flavus Link aflatoxin production. The concentration of essential oil in the culture media ranged from 0.01% to 5.0% v/v, and the concentration of curcumin was 0.01-0.5% v/v. The effects on sporulation, spore viability, and fungal morphology were determined. The essential oil exhibited stronger antifungal activity than curcumin on A. flavus. The essential oil reduced the fungal growth in a concentration-dependent manner. A. flavus growth rate was reduced by C. longa essential oil at 0.10%, and this inhibition effect was more efficient in concentrations above 0.50%. Germination and sporulation were 100% inhibited in 0.5% oil. Scanning electron microscopy (SEM) of A. flavus exposed to oil showed damage to hyphae membranes and conidiophores. Because the fungus is a plant pathogen and aflatoxin producer, C. longa essential oil may be used in the management of host plants.

  7. Chemical composition and antimicrobial activity of essential oil from cones of Pinus koraiensis.

    PubMed

    Lee, Jeong-Ho; Yang, Hye-Young; Lee, Hong-Sub; Hong, Soon-Kwang

    2008-03-01

    The essential oil from the cones of Pinus koraiensis was prepared after removing the seeds, and its chemical composition analyzed using gas chromatography-mass spectrometry (GC-MS). Hydrodistillation of the P. koraiensis cones yielded 1.07% (v/w) of essential oil, which was almost three times the amount of essential oil extracted from the needles of the same plant. Moreover, the antimicrobial activities of the oil against the growth of Gram-positive bacteria, Gram-negative bacteria, and fungi were evaluated using the agar disc diffusion method and broth microdilution method. Eighty-seven components, comprising about 96.8% of the total oil, were identified. The most abundant oil components were limonene (27.90%), alpha-pinene (23.89%), beta-pinene (12.02%), 3-carene (4.95%), beta-myrcene (4.53%), isolongifolene (3.35%), (-)-bornyl acetate (2.02%), caryophyllene (1.71%), and camphene (1.54%). The essential oil was confirmed to have significant antimicrobial activities, especially against pathogenic fungal strains such as Candida glabrata YFCC 062 and Cryptococcus neoformans B 42419. Therefore, the present results indicate that the essential oil from the cones of Pinus koraiensis can be used in various ways as a nontoxic and environmentally friendly disinfectant.

  8. Synergistic mosquito-repellent activity of Curcuma longa, Pogostemon heyneanus and Zanthoxylum limonella essential oils.

    PubMed

    Das, N G; Dhiman, Sunil; Talukdar, P K; Rabha, Bipul; Goswami, Diganta; Veer, Vijay

    2015-01-01

    Mosquito repellents play an important role in preventing man-mosquito contact. In the present study, we evaluated the synergistic mosquito-repellent activity of Curcuma longa, Pogostemon heyneanus and Zanthoxylum limonella essential oils. The mosquito repellent efficacies of three essential oils were evaluated separately and in combination under laboratory and field conditions. N,N-Diethylphenylacetamide (DEPA) and dimethylphthalate (DMP) were used for comparison of the protection time of the mixture of essential oils. At an optimum concentration of 20%, the essential oils of C. longa, Z. limonella and P. heyneanus provided complete protection times (CPTs) of 96.2, 91.4 and 123.4 min, respectively, against Aedes albopictus mosquitoes in the laboratory. The 1:1:2 mixture of the essential oils provided 329.4 and 391.0 min of CPT in the laboratory and field trials, respectively. The percent increases in CPTs for the essential oil mixture were 30 for DMP and 55 for N,N-diethylphenylacetamide (DEPA). The synergistic repellent activity of the essential oils used in the present study might be useful for developing safer alternatives to synthetic repellents for personal protection against mosquitoes. Copyright © 2015 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  9. Alpinia Essential Oils and Their Major Components against Rhodnius nasutus, a Vector of Chagas Disease

    PubMed Central

    de Souza, Thamiris de A.; Lopes, Marcio B. P.; Ferreira, José Luiz P.; Queiroz, Margareth M. C.; Araújo, Kátia G. de Lima

    2018-01-01

    Species of the genus Alpinia are widely used by the population and have many described biological activities, including activity against insects. In this paper, we describe the bioactivity of the essential oil of two species of Alpinia genus, A. zerumbet and A. vittata, against Rhodnius nasutus, a vector of Chagas disease. The essential oils of these two species were obtained by hydrodistillation and analyzed by GC-MS. The main constituent of A. zerumbet essential oil (OLALPZER) was terpinen-4-ol, which represented 19.7% of the total components identified. In the essential oil of A. vittata (OLALPVIT) the monoterpene β-pinene (35.3%) was the main constituent. The essential oils and their main constituents were topically applied on R. nasutus fifth-instar nymphs. In the first 10 min of application, OLALPVIT and OLALPZER at 125 μg/mL provoked 73.3% and 83.3% of mortality, respectively. Terpinen-4-ol at 25 μg/mL and β-pinene at 44 μg/mL provoked 100% of mortality. The monitoring of resistant insects showed that both essential oils exhibited antifeedant activity. These results suggest the potential use of A. zerumbet and A. vittata essential oils and their major constituents to control R. nasutus population. PMID:29643755

  10. Properties and antioxidant activity of fish skin gelatin film incorporated with citrus essential oils.

    PubMed

    Tongnuanchan, Phakawat; Benjakul, Soottawat; Prodpran, Thummanoon

    2012-10-01

    Properties of protein-based film from fish skin gelatin incorporated with different citrus essential oils, including bergamot, kaffir lime, lemon and lime (50% based on protein) in the presence of 20% and 30% glycerol were investigated. Films containing 20% glycerol had higher tensile strength (TS) but lower elongation at break (EAB), compared with those prepared with 30% glycerol, regardless of essential oils incorporated (p<0.05). Films incorporated with essential oils, especially from lime, at both glycerol levels showed the lower TS but higher EAB than the control films (without incorporated essential oil) (p<0.05). Water vapour permeability (WVP) of films containing essential oils was lower than that of control films for both glycerol levels (p<0.05). Films with essential oils had varying ΔE(*) (total colour difference), where the highest value was observed in that added with bergamot essential oil (p<0.05). Higher glycerol content increased EAB and WVP but decreased TS of films. Fourier transforms infrared (FTIR) spectra indicated that films added with essential oils exhibited higher hydrophobicity with higher amplitude at wavenumber of 2874-2926 cm(-1) and 1731-1742 cm(-1) than control film. Film incorporated with essential oils exhibited slightly lower thermal degradation resistance, compared to the control film. Varying effect of essential oil on thermal degradation temperature and weight loss was noticeable, but all films prepared using 20% glycerol had higher thermal degradation temperature with lower weight loss, compared with those containing 30% glycerol. Films added with all types of essential oils had rough cross-section, compared with control films, irrespective of glycerol levels. However, smooth surface was observed in all film samples. Film incorporated with lemon essential oil showed the highest ABTS radical scavenging activity and ferric reducing antioxidant power (FRAP) (p<0.05), while the other films had lower activity. Thus, the incorporation of different essential oils and glycerol levels directly affected the properties of gelatin-based film from fish skin. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Composition and cytotoxic activity of essential oils from Xylopia aethiopica (Dunal) A. Rich, Xylopia parviflora (A. Rich) Benth.) and Monodora myristica (Gaertn) growing in Chad and Cameroon.

    PubMed

    Bakarnga-Via, Issakou; Hzounda, Jean Baptiste; Fokou, Patrick Valere Tsouh; Tchokouaha, Lauve Rachel Yamthe; Gary-Bobo, Magali; Gallud, Audrey; Garcia, Marcel; Walbadet, Lucain; Secka, Youssouf; Dongmo, Pierre Michel Jazet; Boyom, Fabrice Fekam; Menut, Chantal

    2014-04-04

    Cancer has become a global public health problem and the search for new control measures is urgent. Investigation of plant products such as essential oils from Monodora myristica, Xylopia aethiopica and Xylopia parviflora might lead to new anticancer therapy. In this study, we have investigated the antineoplastic activity of essential oils from fruits of these plants growing in Chad and Cameroon. The essential oils obtained by hydrodistillation of fruits of Monodora myristica, Xylopia aethiopica and Xylopia parviflora collected in Chad and Cameroon were analyzed by GC-FID and GC-MS and investigated for their antiproliferative activity against the breast cancer cell line (MCF7). Overall, monoterpenes were mostly found in the six essential oils. Oils from X. aethiopica and X. parviflora from Chad and Cameroon mainly contain β-pinene at 24.6%, 28.2%, 35.7% and 32.9% respectively. Monodora myristica oils from both origins contain mainly α-phellandrene at 52.7% and 67.1% respectively. The plant origin did not significantly influence the chemical composition of oils. The six essential oils exerted cytotoxic activity against cancer (MCF-7) and normal cell lines (ARPE-19), with more pronounced effect on neoplastic cells in the majority of cases. The highest selectivity was obtained with the essential oils of X. parviflora from Chad and Cameroon (5.87 and 5.54) which were more cytotoxic against MCF-7 than against normal cell line (ARPE-19) with IC50 values of 0.155 μL/mL and 0.166 μL/mL respectively. Essential oils from fruits of Monodora myristica, Xylopia aethiopica and Xylopia parviflora have shown acceptable antineoplastic potency, and might be investigated further in this regard.

  12. Chemical composition and antibacterial activity of the essential oil of Retrohpyllum rospigliosii fruits from Colombia.

    PubMed

    Quijano-Celis, Clara E; Gaviria, Mauricio; Consuelo, Vanegas-López; Ontiveros, Ina; Echeverri, Leonardo; Morales, Gustavo; Pino, Jorge A

    2010-07-01

    The essential oil from fruits of Retrophyllum rospigliosii (Pilger) C.N. Page grown in Colombia was analyzed by GC and GC/MS. Ninety-one compounds were identified, of which the most prominent were limonene (37.7%) and alpha-pinene (16.3%). The in vitro antibacterial activity of the essential oil was studied against seven bacterial strains using the disc diffusion method. The strongest activity of the oil was against the Gram-positive bacterium Bacillus cereus.

  13. Chemical composition, insecticidal and insect repellent activity of Schinus molle L. leaf and fruit essential oils against Trogoderma granarium and Tribolium castaneum.

    PubMed

    Abdel-Sattar, Essam; Zaitoun, Ahmed A; Farag, Mohamed A; Gayed, Sabah H El; Harraz, Fathalla M H

    2010-02-01

    Fruit and leaf essential oils of Schinus molle showed insect repellent and insecticidal activity against Trogoderma granarium and Tribolium castaneum. In these oils, 65 components were identified by GC-MS analysis. Hydrocarbons dominated the oil composition with monoterpenes occurring in the largest amounts in fruits and leaves, 80.43 and 74.84%, respectively. p-Cymene was identified as a major component in both oils. The high yield and efficacy of S. molle essential oil against T. granarium and T. castaneum suggest that it may provide leads for active insecticidal agents.

  14. Comparison of chemical compositions and antimicrobial activities of essential oils from three conifer trees; Pinus densiflora, Cryptomeria japonica, and Chamaecyparis obtusa.

    PubMed

    Lee, Jeong-Ho; Lee, Byung-Kyu; Kim, Jong-Hee; Lee, Sang Hee; Hong, Soon-Kwang

    2009-04-01

    The chemical compositions, and antibacterial and antifungal effects of essential oils extracted from three coniferous species, Pinus densiflora, Cryptomeria japonica, and Chamaecyparis obtusa, were investigated. Gas chromatography mass analysis of the essential oils revealed that the major components and the percentage of each essential oil were 16.66% beta-phellandrene and 14.85% alpha-pinene in P. densiflora; 31.45% kaur-16-ene and 11.06% sabinene in C. japonica; and 18.75% bicyclo [2, 2, 1] heptan-2-ol and 17.41% 2-carene in Ch. obtusa. The antimicrobial assay by agar disc diffusion method showed that 2.2 microg of Ch. obtusa oil inhibited most effectively the growth of Escherichia coli ATCC 33312 and Klebsiella oxytoca ATCC 10031, whereas the C. japonica oil gave weak antimicrobial activity. The minimal inhibitory concentration (MIC) values for bacterial strains were in the range of 5.45-21.8 mg/ml depending on essential oils, but most Gram-negative bacteria were resistant even at 21.8 mg oil/ml. P. densiflora oil showed the most effective antifungal activity and the MIC values for Cryptococcus neoformans B42419 and Candida glabrata YFCC 062CCM 11658 were as low as 0.545 and 2.18 mg/ml, respectively. Cryp. neoformans B42419 was the most sensitive to all essential oils in the range of 0.545-2.18 mg/ml. Our data clearly showed that the essential oils from the three conifers had effective antimicrobial activity, especially against fungi.

  15. Chemical composition, in vitro antioxidant and anti-inflammatory properties of essential oils of four dietary and medicinal plants from Cameroon.

    PubMed

    Ndoye Foe, Florentine Marie-Chantal; Tchinang, Tatiana Flore Kemegni; Nyegue, Ascencion Maximilienne; Abdou, Jean-Pierre; Yaya, Abel Joel Gbaweng; Tchinda, Alembert Tiabou; Essame, Jean-Louis Oyono; Etoa, François-Xavier

    2016-04-07

    In the Cameroonian traditional medicine, plants of the Capparidaceae, Euphorbiaceae and Liliaceae families are used to treat several metabolic diseases. These plants are rich in various compounds belonging to the glucosinolates and thiosulfinates family. Till date, very little studies have been done aiming at assessing the antioxidant and inflammatory properties of the essential oils (EOs) of these plants. Essential oils are volatile extracts produced by secondary metabolism. They are usually constituted of terpens and may also contain specific non terpenic components such as glucosinolates and thiosulfinates for the species that are being considered in the present study. This study highlights and compares the chemical composition, antioxidant and anti-inflammatory properties of the essential oils of the stem barks of Drypetes gossweileri (Euphorbiaceae), roots of Pentadiplandra brazzeana (Capparidaceae), red bulbs of Allium cepa and Alium sativum (Liliaceae) collected in Cameroon (Central Africa). The essential oils were extracted by hydrodistillation and analyzed by gas chromatography (GC) and gas chromatography coupled to mass spectrometry (GC-MS). In vitro antioxidant activities were determined using the radical scavenging assay, total phenolic content, ferric reducing antioxidant power (FRAP) assay and determination of antioxidant activity index (AAI) according to the method described by Scherer and Godoy. The anti-inflammatory activities were evaluated using albumin denaturation method. Differences (p < 0.05) between the experimental and the control groups were evaluated using one way analysis of variance (ANOVA) followed by Tukey's test for multiple comparisons. The main components of Allium sativum essential oil were diallyl trisulfide (41.62 %), diallyl disulfide (19.74 %), allyl methyl trisulfide (12.95 %), diallyl sulfide (7.1 %) and diallyl tetrasulfide (4.22 %). Those of Allium cepa essential oil were diallyl trisulfide (22.17 %), dipropyl trisulfide (11.11 %), 2-methyl-3,4-dithiaheptane (9.88 %), methyl propyl trisulfide (8.14 %), dipropyl tetrasulfide (8.07 %) and 2-propenyl propyl disulfide (5.15 %). Drypetes gossweileri and Pentadiplandra brazzeana essential oils presented similar chemical compositions as compared with benzylisothiocyanate content (63.19 and 97.63 % respectively), but differed in benzylcyanide content (35.72 and 0.86 % respectively). The essential oils were rich in phenolic compounds in the following order Allium sativum < Allium cepa < D. gossweileiri < P. brazzeana. The essential oils exhibited high antioxidant and DPPH radical scavenging effect but low ferric reducing power activity. Moreover, the four essential oils showed anti-inflammatory activities (by heat denaturation of Bovine Serum Albumin). The anti-inflammatory activities of P. brazzeana and A. cepa essential oils were comparable but higher than those of D. gossweileri and sodium diclofenac used as a reference non-steroidal anti-inflammatory drug. The essential oils of the plants were rich in organosulfur compounds. These compounds were probably responsible for their appreciable antioxidant and anti-inflammatory activities. Due to their antioxidant and anti-inflammatory properties, the essential oils of some of these plants might be used as natural additives in the pharmaceutical, cosmetic and agro-industries.

  16. Anti-Pseudomonas aeruginosa activity of hemlock (Conium maculatum, Apiaceae) essential oil.

    PubMed

    Di Napoli, Michela; Varcamonti, Mario; Basile, Adriana; Bruno, Maurizio; Maggi, Filippo; Zanfardino, Anna

    2018-05-21

    Conium maculatum is a nitrophilous weed belonging to the Apiaceae family and occurring in hedgerows, pastures, waste ground, along rivers and roadsides. Little is known on the chemistry and bioactivity of other secondary metabolites occurring in the plant. In the present work, we have analysed the chemical composition and antimicrobial activity of the essential oils hydrodistilled from leaves and inflorescenes of C. maculatum growing in Sicily, Italy. The composition of essential oils was achieved by gas chromatography-mass spectrometry (GC-MS) analysis, whereas the inhibitory effects on the growth of two Gram negative strains, namely Escherichia coli and Pseudomonas aeruginosa were assessed by two different analysis. The essential oils exhibited different chemical profiles (1-butylpiperidine and myrcene in the inflorescenes), (mostly (E)-caryophyllene in the leaves). The latter oil was particularly active in inhibiting the growth of P. aeruginosa. These results shed light on the possible application of hemlock essential oils as antimicrobial agents.

  17. Essential oil constituents and antimicrobial activity of Pycnocycla bashagardiana Mozaff. from Iran.

    PubMed

    Alizadeh, Ardalan; Abdollahzadeh, Hamid

    2017-09-01

    Pycnocycla bashagardiana is a rare endemic and endangered species that has been used in folkloric medicine in Southern Iran. This study aimed to evaluate the essential oil constituents and antimicrobial activity of wild and cultivated p. bashagardiana. The aerial parts of wild and cultivated plants were collected from two provinces of Iran. The essential oil was isolated by hydrodistillation and analyzed by a combination of capillary GC and GC-MS. The main components in wild plants were myristicin (39.12%), (E)-β-ocimene (21.97%), sabinene (15.0%) and cis-iso-miristicin (2.67%) and in cultivated plants, (E)-β-ocimene (55.40%), myristicin (18.27%), (Z)-β-ocimene (12.47%) and cis-iso-miristicin (2.94%) were the main constituents in essential oil. The in vitro antimicrobial activity of the essential oil of P. bashagardiana were studied against Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli and Candida albicans for the first time. The results showed that the oil exhibited strong antimicrobial activity against all the tested pathogens.

  18. Chemical Composition and Antioxidant Activity of Essential Oils from Cinnamodendron dinisii Schwacke and Siparuna guianensis Aublet

    PubMed Central

    Andrade, Milene Aparecida; Cardoso, Maria das Graças; de Andrade, Juliana; Silva, Lucilene Fernandes; Teixeira, Maria Luisa; Resende, Juliana Maria Valério; Figueiredo, Ana Cristina da Silva; Barroso, José Gonçalves

    2013-01-01

    The objectives of this study were to chemically characterize and evaluate the antioxidant activity of essential oils Cinnamodendron dinisii Schwacke (pepper) and Siparuna guianensis Aublet (negramina). The essential oil was isolated by hydrodistillation using a Clevenger modified apparatus, and the identification and quantification of constituents, through GC/MS and GC-FID analysis. The antioxidant activity was evaluated using β-carotene/linoleic acid system and the DPPH radical sequestering method. In chromatographic analysis, the majority constituents found in the essential oil of C. dinisii were bicyclic monoterpenes, α-pinene (35.41%), β-pinene (17.81%), sabinene (12.01%) and sesquiterpene bicyclogermacrene (7.59%). In the essential oil of the fresh leaves of Siparuna guianensis Aublet, acyclic monoterpene, β-myrcene (13.14%), and sesquiterpenes, germacrene-D (8.68%) and bicyclogermacrene (16.71%) were identified. The antioxidant activity was low by the β-carotene/linoleic acid test and was not evidenced by the DPPH test, for both oils evaluated. PMID:26784471

  19. Chemical composition, antioxidant properties and anti-cholinesterase activity of Cordia gilletii (Boraginaceae) leaves essential oil.

    PubMed

    Bonesi, Marco; Okusa, Philippe N; Tundis, Rosa; Loizzo, Monica R; Menichini, Federica; Stévigny, Caroline; Duez, Pierre; Menichini, Francesco

    2011-02-01

    This study aimed to investigate for the first time the chemical composition, the antioxidant properties and the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity of the essential oil from the leaves of Cordia gilletii De Wild (Boraginaceae). The essential oil, characterized by 23 constituents (90.1% of the total oil), was constituted by terpene derivatives (25.6%) and non-terpene derivatives (64.5%), among which aldehydes, fatty acids and alkanes were present with the percentage of 16.5%, 18.8% and 23.1%, respectively. The antioxidant activity of C. gilletii essential oil was screened by two in vitro tests: DPPH and beta-carotene bleaching test. The essential oil revealed antioxidant activity with an IC50 value of 75.0 and 129.9 microg/mL on DPPH radical and beta-carotene decoloration tests, respectively. Moreover, C. gilletii inhibited AChE enzyme with an IC50 value of 105.6 microg/mL.

  20. Chemical composition and biological activity of the essential oil of rhizome of Zingiber zerumbet (L.) smith

    USDA-ARS?s Scientific Manuscript database

    Technical Abstract: The aim was designed to study the biological activity and chemical composition of essential oil of Zingiber zerumbet (L.) Smith. The essential oil extracted from the rhizome of the plant was analysed by gas chromatography-mass spectroscopy and its major components amounting t...

  1. Phoenix dactylifera L. spathe essential oil: Chemical composition and repellent activity against the yellow fever mosquito

    USDA-ARS?s Scientific Manuscript database

    Date palm, Phoenix dactylifera L. (Arecaceae), grows commonly in the Arabian Peninsula and is traditionally used to treat various diseases. The aim of the present study was to identify chemical composition of the essential oil and to investigate the repellent activity. The essential oil of P. dacty...

  2. Antimicrobial activity of essential oils against E. coli O157:H7 in organic soil

    USDA-ARS?s Scientific Manuscript database

    Soil can be a significant source of preharvest contamination of produce by pathogens. Demand for natural pesticides such as essential oils for organic farming continues to increase. Antimicrobial activity of essential oils in vitro has been well documented, but there is no information about their ef...

  3. In vitro biological activity and essential oil composition of four indigenous South African Helichrysum species.

    PubMed

    Lourens, A C U; Reddy, D; Başer, K H C; Viljoen, A M; Van Vuuren, S F

    2004-12-01

    Helichrysum species are used widely to treat various medical conditions. In this study, the anti-microbial, anti-oxidant (DPPH assay) and anti-inflammatory activity (5-lipoxygenase assay) of Helichrysum dasyanthum, Helichrysum felinum, Helichrysum excisum and Helichrysum petiolare were investigated. The essential oil compositions of these species were determined. The acetone and methanol extracts as well as the essential oils exhibited activity against Gram-positive bacteria, while both the methanol and acetone extracts of all four species were active in the anti-oxidant assay. The essential oils, on the other hand, displayed activity in the 5-lipoxygenase assay, which was used as an indication of anti-inflammatory activity. Two extracts exhibited promising activity in the anti-microbial assay, the acetone extract of Helichrysum dasyanthum with a MIC value of 15.63 microg/ml and the methanol extract of Helichrysum excisum with a MIC value of 62.5 microg/ml. The acetone extract of Helichrysum dasyanthum was the most active free radical scavenger in the DPPH assay (IC(50) of 9.53 microg/ml) while values for the anti-inflammatory activity of the essential oils ranged between 25 and 32 microg/ml. The essential oil compositions of three species (Helichrysum dasyanthum, Helichrysum excisum and Helichrysum petiolare) were dominated by the presence of monoterpenes such as alpha-pinene, 1,8-cineole and p-cymene. In the oil of Helichrysum felinum, monoterpenes were largely absent. Its profile consisted of a variety of sesquiterpenes in low concentrations with beta-caryophyllene dominating.

  4. Pinus Roxburghii essential oil anticancer activity and chemical composition evaluation

    PubMed Central

    Sajid, Arfaa; Manzoor, Qaisar; Iqbal, Munawar; Tyagi, Amit Kumar; Sarfraz, Raja Adil; Sajid, Anam

    2018-01-01

    The present study was conducted to appraise the anticancer activity of Pinus roxburghii essential oil along with chemical composition evaluation. MTT assay revealed cytotoxicity induction in colon, leukemia, multiple myeloma, pancreatic, head and neck and lung cancer cells exposed to essential oil. Cancer cell death was also observed through live/dead cell viability assay and FACS analysis. Apoptosis induced by essential oil was confirmed by cleavage of PARP and caspase-3 that suppressed the colony-forming ability of tumor cells and 50 % inhibition occurred at a dose of 25 μg/mL. Moreover, essential oil inhibited the activation of inflammatory transcription factor NF-κB and inhibited expression of NF-κB regulated gene products linked to cell survival (survivin, c-FLIP, Bcl-2, Bcl-xL, c-Myc, c-IAP2), proliferation (Cyclin D1) and metastasis (MMP-9). P. roxburghii essential oil has considerable anticancer activity and could be used as anticancer agent, which needs further investigation to identify and purify the bioactive compounds followed by in vivo studies. PMID:29743861

  5. Chemical Composition and Antimicrobial Activities of the Essential Oil From Salvia mirzayanii Leaves.

    PubMed

    Zomorodian, Kamiar; Moein, Mahmoodreza; Pakshir, Keyvan; Karami, Forough; Sabahi, Zahra

    2017-10-01

    Resistance of many pathogens to available drugs is a global challenge and is leading to growing interest in natural alternative products. In this study, chemical composition and in vitro antibacterial and antifungal activities of the essential oil from Salvia mirzayanii were investigated. The chemical constituents of essential oil from S mirzayanii were analyzed by gas chromatography-mass spectrometry. The antimicrobial activity was determined by broth microdilution. The main identified compounds were 1,8-cineole (41.2 ± 1.3%), linalool acetate (11.0 ± 0.5%), and α-terpinyl acetate (6.0 ± 0.4%) (mL of essential oil/g of plant material). The MIC 95 were 0.03 to 0.5 µL/mL and 16 to 128 µL/mL for gram-positive and gram-negative bacteria, respectively. These results indicated that Salvia mirzayanii essential oil significantly inhibited the growth of standard and clinically isolated tested yeasts by MIC 50 0.03 to 1 µL/mL. Potent antibacterial and antifungal activities of Salvia mirzayanii essential oil may be considered in future study, particularly against antibiotic-resistant cases.

  6. Chemical Composition and Antimicrobial Activities of the Essential Oil From Salvia mirzayanii Leaves

    PubMed Central

    Zomorodian, Kamiar; Moein, Mahmoodreza; Pakshir, Keyvan; Karami, Forough; Sabahi, Zahra

    2017-01-01

    Resistance of many pathogens to available drugs is a global challenge and is leading to growing interest in natural alternative products. In this study, chemical composition and in vitro antibacterial and antifungal activities of the essential oil from Salvia mirzayanii were investigated. The chemical constituents of essential oil from S mirzayanii were analyzed by gas chromatography–mass spectrometry. The antimicrobial activity was determined by broth microdilution. The main identified compounds were 1,8-cineole (41.2 ± 1.3%), linalool acetate (11.0 ± 0.5%), and α-terpinyl acetate (6.0 ± 0.4%) (mL of essential oil/g of plant material). The MIC95 were 0.03 to 0.5 µL/mL and 16 to 128 µL/mL for gram-positive and gram-negative bacteria, respectively. These results indicated that Salvia mirzayanii essential oil significantly inhibited the growth of standard and clinically isolated tested yeasts by MIC50 0.03 to 1 µL/mL. Potent antibacterial and antifungal activities of Salvia mirzayanii essential oil may be considered in future study, particularly against antibiotic-resistant cases. PMID:28689440

  7. Essential oil from the leaves of Annona vepretorum: chemical composition and bioactivity.

    PubMed

    Costa, Emmanoel Vilaça; Dutra, Lívia Macedo; Nogueira, Paulo Cesar de Lima; Moraes, Valéria Regina de Souza; Salvador, Marcos José; Ribeiro, Luis Henrique Gonzaga; Gadelha, Fernanda Ramos

    2012-02-01

    The essential oil from the leaves of Annona vepretorun was obtained by hydrodistillation using a Clevenger-type apparatus and analyzed by GC-MS and GC-FID. Eighteen compounds representing 98.1% of the crude essential oil were identified. The major compounds identified were bicyclogermacrene (43.7%), spathulenol (11.4%), alpha-felandrene (10.0%), alpha-pinene (7.1%), (E)-beta-ocimene (6.8%), germacrene D (5.8%), and p-cymene (4.2%). The trypanocidal activity against Trypanosoma cruzi epimastigote forms, as well as, the antimicrobial and antioxidant proprieties was investigated. The essential oil showed a potent trypanocidal activity with IC50 value of 31.9 +/-1.3 microg x mL(-1). For antimicrobial activity, the best result was observed against Candida tropicalis with a MIC value of 100 microg x mL(-1). For antioxidant capacity the essential oil showed weak activity.

  8. Antimicrobial activity of juniper berry essential oil (Juniperus communis L., Cupressaceae).

    PubMed

    Pepeljnjak, Stjepan; Kosalec, Ivan; Kalodera, Zdenka; Blazević, Nikola

    2005-12-01

    Juniper essential oil (Juniperi aetheroleum) was obtained from the juniper berry, and the GC/MS analysis showed that the main compounds in the oil were alpha-pinene (29.17%) and beta-pinene (17.84%), sabinene (13.55%), limonene (5.52%), and mircene (0.33%). Juniper essential oil was evaluated for the antimicrobial activity against sixteen bacterial species, seven yeast-like fungi, three yeast and four dermatophyte strains. Juniper essential oil showed similar bactericidal activities against Gram-positive and Gram-negative bacterial species, with MIC values between 8 and 70% (V/V), as well as a strong fungicidal activity against yeasts, yeast-like fungi and dermatophytes, with MIC values below 10% (V/V). The strongest fungicidal activity was recorded against Candida spp. (MIC from 0.78 to 2%, V/V) and dermatophytes (from 0.39 to 2%, V/V).

  9. Composition and Biological Activities of Murraya paniculata (L.) Jack Essential Oil from Nepal

    PubMed Central

    Dosoky, Noura S.; Satyal, Prabodh; Gautam, Tilak P.; Setzer, William N.

    2016-01-01

    Murraya paniculata (L.) Jack, a small tropical evergreen shrub growing in Nepal, has numerous uses in traditional medicine for treatment of abdominal pain, diarrhea, stomach ache, headache, edema, thrombosis, and blood stasis. The present study investigated the chemical composition and bioactivities of the leaf essential oil from M. paniculata from Nepal. The essential oil from leaves was obtained by hydrodistillation and a detailed chemical analysis was conducted by gas chromatography-mass spectrometry (GC-MS). The essential oil was screened for antimicrobial activity using the microbroth dilution test, for nematicidal activity against Caenorhabditis elegans, and for lethality against brine shrimp (Artemia salina). A total of 76 volatile components were identified from the essential oil. The major components were methyl palmitate (11.1%), isospathulenol (9.4%), (E,E)-geranyl linalool (5.3%), benzyl benzoate (4.2%), selin-6-en-4-ol (4.0%), β-caryophyllene (4.0%), germacrene B (3.6%), germacrene D (3.4%), and γ-elemene (3.2%). The essential oil showed no antibacterial activity, marginal antifungal activity against Aspergillus niger (MIC = 313 μg/mL), a moderate activity against A. salina (LC50 = 41 μg/mL), and a good nematicidal activity against C. elegans (LC50 = 37 μg/mL). PMID:28930117

  10. Chemical composition and antibacterial activity of essential oils from Thymus spinulosus Ten. (Lamiaceae).

    PubMed

    De Feo, Vincenzo; Bruno, Maurizio; Tahiri, Bochra; Napolitano, Francesco; Senatore, Felice

    2003-06-18

    The chemical composition of essential oils from aerial parts of Thymus spinulosus Ten. (Lamiaceae) is reported. Four oils from plants growing in different environmental conditions were characterized by GC and GC-MS methods; the oils seem to indicate a new chemotype in the genus Thymus. Influences of soil and altitude characteristics on the essential oil composition are discussed. The oils showed antibacterial activity against Gram-positive (Staphylococcus aureus, Streptococcus faecalis, Bacillus subtilis, and Bacillus cereus) and Gram-negative (Proteus mirabilis, Escherichia coli, Salmonella typhimuium Ty2, and Pseudomonas aeruginosa) bacteria.

  11. Chemical composition, antimicrobial, antioxidant and cytotoxic activity of the essential oil from the leaves of Acanthopanax leucorrhizus (Oliv.) Harms.

    PubMed

    Hu, Haobin; Zheng, Xudong; Hu, Huaisheng

    2012-09-01

    The leaf essential oil of Acanthopanax leucorrhizus, a widely used medicinal plant, was obtained by hydrodistillation and analyzed by using combination of capillary GC-FID, GC-MS and RI. Fifty-nine components, representing 93.1% of the total oil, were identified in the essential oil and the main components of the oil were β-pinene (7.3%), linalool (6.5%), p-cymene (6.3%), β-elemene (3.8%), γ-terpinene (3.7%), spathulenol (3.2%) and cis-sabinene hydrate (3.1%). Furthermore, the in vitro antimicrobial, antioxidant and cytotoxic activities of the essential oil were examined. The test results showed that the essential oil exhibited a broad spectrum of anti-microbial activity against all microorganisms tested. Gram-positive bacteria were more sensitive to the oil than gram-negative bacteria and yeasts. The oil possessed moderate cytotoxicity on human tumor cells with lower IC(50) values of 25.65μg/ml (Hep G2), 28.71μg/ml (Hela), 30.15μg/ml (Bel-7402) and 37.55μg/ml (A-549). The moderate antioxidant activity of the oil was also evaluated by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical method. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Microwave-assisted extraction of Nigella sativa L. essential oil and evaluation of its antioxidant activity.

    PubMed

    Abedi, Abdol-Samad; Rismanchi, Marjan; Shahdoostkhany, Mehrnoush; Mohammadi, Abdorreza; Mortazavian, Amir Mohammad

    2017-11-01

    It has been previously reported that the essential oil of Nigella sativa L. seeds and its major active component, thymoquinone (TQ), possess a broad variety of biological activities and therapeutic properties. In this work, microwave-assisted extraction (MAE) of the essential oil from Nigella sativa L. seeds and its antioxidant activity were studied. Response surface methodology based on central composite design was used to evaluate the effects of extraction time, irradiation power and moisture content on extraction yield and TQ content. Optimal parameters obtained by CCD and RSM were extraction time 30 min, irradiation power 450 W, and moisture content 50%. The extraction yield and TQ content of the essential oil were 0.33 and 20% under the optimum conditions, respectively. In contrast, extraction yield and TQ amount of oil obtained by hydrodistillation (HD) were 0.23 and 3.71%, respectively. The main constituents of the essential oil extracted by MAE and HD were p -cymene, TQ, α-thujene and longifolene, comprising more than 60% of total peak area. The antioxidant capacity of essential oils extracted by different methods were evaluated using 2,2-diphenyl-1-picrylhydrazyl and Ferric reducing antioxidant power assays, and compared with traditional antioxidants. The results showed that MAE method was a viable alternative to HD for the essential oil extraction from N. sativa seeds due to the excellent extraction efficiency, higher thymoquinone content, and stronger antioxidant activity.

  13. Chemical Composition, Antioxidant, Antimicrobial and Cytotoxic Activities of Essential Oil from Premna microphylla Turczaninow.

    PubMed

    Zhang, Han-Yu; Gao, Yang; Lai, Peng-Xiang

    2017-02-28

    Premna microphylla Turczaninow, an erect shrub, was widely used in Chinese traditional medicine to treat dysentery, appendicitis, and infections. In this study, the essential oil from P. microphylla Turcz. was obtained by hydrodistillation and analyzed by GC (Gas Chromatography) and GC-MS (Gas Chromatography-Mass Spectrometer). Fifty-six compounds were identified in the oil which comprised about 97.2% of the total composition of the oil. Major components of the oil were blumenol C (49.7%), β-cedrene (6.1%), limonene (3.8%), α-guaiene (3.3%), cryptone (3.1%), and α-cyperone (2.7%). Furthermore, we assessed the in vitro biological activities displayed by the oil obtained from the aerial parts of P. microphylla, namely the antioxidant, antimicrobial, and cytotoxic activities. The antioxidant activity of the essential oil was evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity. For this, the IC50 value was estimated to be 0.451 mg/mL. The essential oil of P. microphylla exhibited considerable antibacterial capacity against Escherichia coli with an MIC (Minimum Inhibitory Concentration) value of 0.15 mg/mL, along with noticeable antibacterial ability against Bacillus subtilis and Staphylococcus aureus with an MIC value of 0.27 mg/mL. However, the essential oil did not show significant activity against fungus. The oil was tested for its cytotoxic activity towards HepG2 (liver hepatocellular cells) and MCF-7 Cells (human breast adenocarcinoma cell line) using the MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assay, and exerted cytotoxic activity with an IC50 of 0.072 and 0.188 mg/mL for 72 h. In conclusion, the essential oil from P. microphylla is an inexpensive but favorable resource with strong antibacterial capacity as well as cytotoxic activity. Thus, it has the potential for utilization in the cosmetics and pharmaceutical industries.

  14. In vitro and in vivo anti-plasmodial activity of essential oils, including hinokitiol.

    PubMed

    Fujisaki, Ryuichi; Kamei, Kiyoko; Yamamura, Mariko; Nishiya, Hajime; Inouye, Shigeharu; Takahashi, Miki; Abe, Shigeru

    2012-03-01

    Abstract. The anti-plasmodial activity of 47 essential oils and 10 of their constituents were screened for in vitro activity against Plasmodium falciparum. Five of these essential oils (sandalwood, caraway, monarda, nutmeg, and Thujopsis dolabrata var. hondai) and 2 constituents (thymoquinone and hinokitiol) were found to be active against P. falciparum in vitro, with 50% inhibitory concentration (IC50) values equal to or less than 1.0 microg/ml. Furthermore, in vivo analysis using a rodent model confirmed the anti-plasmodial potential of subcutaneously administered sandalwood oil, and percutaneously administered hinokitiol and caraway oil against rodent P. berghei. Notably, these oils showed no efficacy when administered orally, intraperitoneally or intravenously. Caraway oil and hinokitiol dissolved in carrier oil, applied to the skin of hairless mice caused high levels in the blood, with concentrations exceeding their IC50 values.

  15. Antioxidant activity of rosemary essential oil fractions obtained by molecular distillation and their effect on oxidative stability of sunflower oil.

    PubMed

    Mezza, Gabriela N; Borgarello, Ana V; Grosso, Nelson R; Fernandez, Héctor; Pramparo, María C; Gayol, María F

    2018-03-01

    The objective of this study was to evaluate the antioxidant activity of rosemary essential oil fractions obtained by molecular distillation (MD) and investigate their effect on the oxidative stability of sunflower oil. MD fractions were prepared in a series of low-pressure stages where rosemary essential oil was the first feed. Subsequently, a distillate (D1) and residue (R1) were obtained and the residue fraction from the previous stage used as the feed for the next. The residue fractions had the largest capacity to capture free radicals, and the lowest peroxide values, conjugated dienes and conjugated trienes. The antioxidant activity of the fractions was due to oxygenated monoterpenes, specifically α-terpineol and cis-sabinene hydrate. Oxidative stability results showed the residues (R1 and R4) and butylated hydroxytoluene had greater antioxidant activity than either the distillate fractions or original rosemary essential oil. The residue fractions obtained by short path MD of rosemary essential oil could be used as a natural antioxidants by the food industry. Copyright © 2017. Published by Elsevier Ltd.

  16. Anti-Fungal activity of essential oil from Baeckea frutescens L against Pleuratus ostreatus

    NASA Astrophysics Data System (ADS)

    Jemi, Renhart; Barus, Ade Irma; Nuwa, Sarinah, Luhan, Gimson

    2017-11-01

    Ujung Atap is an herb that have distinctive odor on its leaves. The plant's essential oil contains bioactive compounds but has not been investigated its anti-fungal activity against Pleurotus ostreatus. Essential oil from Ujung Atap leaves is one environmentally friendly natural preservative. This study consisted of distillation Ujung Atap leaves with boiled method, determining the number of acid, essential oil ester, and anti-fungal activity against Pleurotus ostreatus. Analysis of the data to calculate anti-fungal activity used probit analysis method to determine the IC50. Results for the distillation of leaves Ujung Atap produce essential oil yield of 0.071% and the average yield of the acid number and the ester of essential oils Ujung Atap leaves are 5.24 and 12.15. Anti-fungal activity Pleurotus ostreatus at a concentration of 1000 µg/mL, 100 µg/mL, 75 µg/mL, 50 µg/mL and 100 µg/mL BA defunct or fungi was declared dead, while at a concentration of 25 µg/mL, 10 µg/mL and 5 µg/mL still occur inhibitory processes. Results obtained probit analysis method IC50 of 35.48 mg/mL; means the essential oil of Ujung Atap leaf can inhibit fungal growth by 50 percent to 35.48 µg/mL concentration.

  17. Does antioxidant properties of the main component of essential oil reflect its antioxidant properties? The comparison of antioxidant properties of essential oils and their main components.

    PubMed

    Dawidowicz, Andrzej L; Olszowy, Małgorzata

    2014-01-01

    This study discusses the similarities and differences between the antioxidant activities of some essential oils: thyme (Thymus vulgaris), basil (Ocimum basilicum), peppermint (Mentha piperita), clove (Caryophyllus aromaticus), summer savory (Satureja hortensis), sage (Salvia hispanica) and lemon (Citrus limon (L.) Burm.) and of their main components (thymol or estragole or menthol or eugenol or carvacrol or camphor or limonene) estimated by using 2,2'-Diphenyl-1-picrylhydrazyl, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt and β-carotene bleaching assays. The obtained data show that the antioxidant properties of essential oil do not always depend on the antioxidant activity of its main component, and that they can be modulated by their other components. The conclusions concerning the interaction of essential oil components depend on the type of method applied for assessing the antioxidant activity. When comparing the antioxidant properties of essential oils and their main components, the concepts of synergism, antagonism and additivity are very relevant.

  18. Essential oils and herbal extracts as antimicrobial agents in cosmetic emulsion.

    PubMed

    Herman, Anna; Herman, Andrzej Przemysław; Domagalska, Beata Wanda; Młynarczyk, Andrzej

    2013-06-01

    The cosmetic industry adapts to the needs of consumers seeking to limit the use of preservatives and develop of preservative-free or self-preserving cosmetics, where preservatives are replaced by raw materials of plant origin. The aim of study was a comparison of the antimicrobial activity of extracts (Matricaria chamomilla, Aloe vera, Calendula officinalis) and essential oils (Lavandulla officinallis, Melaleuca alternifolia, Cinnamomum zeylanicum) with methylparaben. Extracts (2.5 %), essential oils (2.5 %) and methylparaben (0.4 %) were tested against Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 29213, Candida albicans ATCC 14053. Essentials oils showed higher inhibitory activity against tested microorganism strain than extracts and methylparaben. Depending on tested microorganism strain, all tested extracts and essential oils show antimicrobial activity 0.8-1.7 and 1-3.5 times stronger than methylparaben, respectively. This shows that tested extracts and essential oils could replace use of methylparaben, at the same time giving a guarantee of microbiological purity of the cosmetic under its use and storage.

  19. Chemical compositions and antioxidant/antimicrobial activities of various samples prepared from Schinus terebinthifolius leaves cultivated in Egypt.

    PubMed

    El-Massry, Khaled F; El-Ghorab, Ahmed H; Shaaban, Hamdy A; Shibamoto, Takayuki

    2009-06-24

    Essential oil, dichloromethane extract, and ethanol extract were prepared from fresh Schinus terebinthifolius leaves cultivated in Egypt. The essential oil was analyzed by gas chromatography and gas chromatography/mass spectrometry. The essential oil comprised 4.97% monoterpenes, 56.96% sesquiterpenes, 34.37% oxygenated monoterpenes, and 3.32% oxygenated sesquiterpenes. The major compounds in the essential oil were cis-beta-terpineol (GC peak area%, 17.87%), (E)-caryophyllene (17.56%), beta-cedrene (9.76%), and citronellal (7.03%). The major phenolic compounds identified in the ethanol extract were caffeic acid (5.07 mg/100 mg extract), coumaric acid (1.64 mg), and syringic acid (1.59 mg). The antioxidant activity of ethanol extract, which was comparable with that of butylhydroquinone, was superior to essential oil and dichloromethane extract in 2,2-diphenylpicrylhydrazyl and beta-carotene/bleaching assays. The dichloromethane extract exhibited the greatest antimicrobial activity against 6 strains, followed by the ethanol extract and the essential oil.

  20. The inhibitory effect of Mesembryanthemum edule (L.) bolus essential oil on some pathogenic fungal isolates

    PubMed Central

    2014-01-01

    Background Mesembryanthemum edule is a medicinal plant which has been indicated by Xhosa traditional healers in the treatment HIV associated diseases such as tuberculosis, dysentery, diabetic mellitus, laryngitis, mouth infections, ringworm eczema and vaginal infections. The investigation of the essential oil of this plant could help to verify the rationale behind the use of the plant as a cure for these illnesses. Methods The essential oil from M. edule was analysed by GC/MS. Concentration ranging from 0.005 - 5 mg/ml of the hydro-distilled essential oil was tested against some fungal strains, using micro-dilution method. The plant minimum inhibitory activity on the fungal strains was determined. Result GC/MS analysis of the essential oil resulted in the identification of 28 compounds representing 99.99% of the total essential oil. A total amount of 10.6 and 36.61% constituents were obtained as monoterpenes and oxygenated monoterpenes. The amount of sesquiterpene hydrocarbons (3.58%) was low compared to the oxygenated sesquiterpenes with pick area of 9.28%. Total oil content of diterpenes and oxygenated diterpenes detected from the essential oil were 1.43% and 19.24%. The fatty acids and their methyl esters content present in the essential oil extract were found to be 19.25%. Antifungal activity of the essential oil extract tested against the pathogenic fungal, inhibited C. albican, C. krusei, C. rugosa, C. glabrata and C. neoformans with MICs range of 0.02-0.31 mg/ml. the activity of the essential oil was found competing with nystatin and amphotericin B used as control. Conclusion Having accounted the profile chemical constituent found in M. edule oil and its important antifungal properties, we consider that its essential oil might be useful in pharmaceutical and food industry as natural antibiotic and food preservative. PMID:24885234

  1. Chemical Variability, Antioxidant and Antifungal Activities of Essential Oils and Hydrosol Extract of Calendula arvensis L. from Western Algeria.

    PubMed

    Belabbes, Rania; Dib, Mohammed El Amine; Djabou, Nassim; Ilias, Faiza; Tabti, Boufeldja; Costa, Jean; Muselli, Alain

    2017-05-01

    The chemical composition of the essential oils and hydrosol extract from aerial parts of Calendula arvensis L. was investigated using GC-FID and GC/MS. Intra-species variations of the chemical compositions of essential oils from 18 Algerian sample locations were investigated using statistical analysis. Chemical analysis allowed the identification of 53 compounds amounting to 92.3 - 98.5% with yields varied of 0.09 - 0.36% and the main compounds were zingiberenol 1 (8.7 - 29.8%), eremoligenol (4.2 - 12.5%), β-curcumene (2.1 - 12.5%), zingiberenol 2 (4.6 - 19.8%) and (E,Z)-farnesol (3.5 - 23.4%). The study of the chemical variability of essential oils allowed the discrimination of two main clusters confirming that there is a relation between the essential oil compositions and the harvest locations. Different concentrations of essential oil and hydrosol extract were prepared and their antioxidant activity were assessed using three methods (2,2-diphenyl-1-picrylhydrazyl, Ferric-Reducing Antioxidant Power Assay and β-carotene). The results showed that hydrosol extract presented an interesting antioxidant activity. The in vitro antifungal activity of hydrosol extract produced the best antifungal inhibition against Penicillium expansum and Aspergillus niger, while, essential oil was inhibitory at relatively higher concentrations. Results showed that the treatments of pear fruits with essential oil and hydrosol extract presented a very interesting protective activity on disease severity of pears caused by P. expansum. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  2. Evaluation of active ingredients and larvicidal activity of clove and cinnamon essential oils against Anopheles gambiae (sensu lato).

    PubMed

    Thomas, Adelina; Mazigo, Humphrey D; Manjurano, Alphaxard; Morona, Domenica; Kweka, Eliningaya J

    2017-09-06

    Mosquitoes are well-known vectors of many diseases including malaria and lymphatic filariasis. Uses of synthetic insecticides are associated with high toxicity, resistance, environmental pollution and limited alternative, effective synthetic insecticides. This study was undertaken to evaluate the larvicidal efficacy of clove and cinnamon essential oils against laboratory Anopheles gambiae (sensu stricto) and wild An. arabiensis larvae. The standard WHO guideline for larvicides evaluation was used, and the GC-MS machine was used for active compounds percentage composition analysis and structures identification. Probit regression analysis was used for LC 50 and LC 95 calculations while a t-test was used to test for significant differences between laboratory-reared and wild larvae populations in each concentration of plant extract. Mortality effect of clove and cinnamon essential oils against wild and laboratory-reared larvae had variations indicated by their LC 50 and LC 95 values. The mortality at different concentrations of cinnamon and clove post-exposure for wild and laboratory-reared larvae were dosage-dependent and were higher for cinnamon than for clove essential oils. The mortality effect following exposure to a blend of the two essential oils was higher for blends containing a greater proportion of cinnamon oil. In the chemical analysis of the active ingredients of cinnamon essential oil, the main chemical content was Eugenol, and the rarest was β-Linalool while for clove essential oil, the main chemical content was Eugenol and the rarest was Bicyclo. The essential oils showed a larvicidal effect which was concentration-dependent for both laboratory and wild collected larvae. The active ingredient compositions triggered different responses in mortality. Further research in small-scale should be conducted with concentrated extracted compounds.

  3. The effects of herbal essential oils on the oviposition-deterrent and ovicidal activities of Aedes aegypti (Linn.), Anopheles dirus (Peyton and Harrison) and Culex quinquefasciatus (Say).

    PubMed

    Siriporn, P; Mayura, S

    2012-03-01

    The effect of oviposition-deterrent and ovicidal of seven essential oils were evaluated towards three mosquito vectors, Aedes aegypti, Anopheles dirus and Culex quinquefasciatus. The oviposition activity index (OAI) values of six essential oils namely Cananga odorata, Cymbopogon citratus, Cymbopogon nardus, Eucalyptus citriodora, Ocimum basilicum and Syzygium aromaticum indicated that there were more deterrent than the control whereas Citrus sinensis oil acted as oviposition attractant. At higher concentration (10%) of Ca. odorata (ylang ylang flowers) showed high percent effective repellency (ER) against oviposition at 99.4% to Ae. aegypti, 97.1% to An. dirus and 100% to Cx. quinquefasciatus, respectively. The results showed that mean numbers of eggs were lower in treated than in untreated water. In addition, there was an inverse relationship between essential oil concentrations and ovicidal activity. As the concentration of essential oil increased from 1%, 5% and up to 10% conc., the hatching rate decreased. The essential oil of Ca. odorata at 10% conc. gave minimum egg hatch of 10.4% (for Ae. aegypti), 0.8% (for An. dirus) and 1.1% (for Cx. quinquefasciatus) respectively. These results clearly revealed that the essential oil of Ca. odorata served as a potential oviposition-deterrent and ovicidal activity against Ae. aegypti, An. dirus and Cx. quinquefasciatus.

  4. Liquid and vapour-phase antifungal activities of selected essential oils against candida albicans: microscopic observations and chemical characterization of cymbopogon citratus

    PubMed Central

    2010-01-01

    Background Use of essential oils for controlling Candida albicans growth has gained significance due to the resistance acquired by pathogens towards a number of widely-used drugs. The aim of this study was to test the antifungal activity of selected essential oils against Candida albicans in liquid and vapour phase and to determine the chemical composition and mechanism of action of most potent essential oil. Methods Minimum Inhibitory concentration (MIC) of different essential oils in liquid phase, assayed through agar plate dilution, broth dilution & 96-well micro plate dilution method and vapour phase activity evaluated through disc volatilization method. Reduction of C. albicans cells with vapour exposure was estimated by kill time assay. Morphological alteration in treated/untreated C. albicans cells was observed by the Scanning electron microscopy (SEM)/Atomic force microscopy (AFM) and chemical analysis of the strongest antifungal agent/essential oil has been done by GC, GC-MS. Results Lemon grass (Cymbopogon citratus) essential oil exhibited the strongest antifungal effect followed by mentha (Mentha piperita) and eucalyptus (Eucalyptus globulus) essential oil. The MIC of lemon grass essential oil in liquid phase (288 mg/l) was significantly higher than that in the vapour phase (32.7 mg/l) and a 4 h exposure was sufficient to cause 100% loss in viability of C. albicans cells. SEM/AFM of C. albicans cells treated with lemon grass essential oil at MIC level in liquid and vapour phase showed prominent shrinkage and partial degradation, respectively, confirming higher efficacy of vapour phase. GC-MS analysis revealed that lemon grass essential oil was dominated by oxygenated monoterpenes (78.2%); α-citral or geranial (36.2%) and β-citral or neral (26.5%), monoterpene hydrocarbons (7.9%) and sesquiterpene hydrocarbons (3.8%). Conclusion Lemon grass essential oil is highly effective in vapour phase against C. albicans, leading to deleterious morphological changes in cellular structures and cell surface alterations. PMID:21067604

  5. Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives

    PubMed Central

    Chouhan, Sonam; Sharma, Kanika

    2017-01-01

    Extensive documentation on the antimicrobial properties of essential oils and their constituents has been carried out by several workers. Although the mechanism of action of a few essential oil components has been elucidated in many pioneering works in the past, detailed knowledge of most of the compounds and their mechanism of action is still lacking. This knowledge is particularly important for the determination of the effect of essential oils on different microorganisms, how they work in combination with other antimicrobial compounds, and their interaction with food matrix components. Also, recent studies have demonstrated that nanoparticles (NPs) functionalized with essential oils have significant antimicrobial potential against multidrug- resistant pathogens due to an increase in chemical stability and solubility, decreased rapid evaporation and minimized degradation of active essential oil components. The application of encapsulated essential oils also supports their controlled and sustained release, which enhances their bioavailability and efficacy against multidrug-resistant pathogens. In the recent years, due to increasingly negative consumer perceptions of synthetic preservatives, interest in essential oils and their application in food preservation has been amplified. Moreover, the development of resistance to different antimicrobial agents by bacteria, fungi, viruses, parasites, etc. is a great challenge to the medical field for treating the infections caused by them, and hence, there is a pressing need to look for new and novel antimicrobials. To overcome these problems, nano-encapsulation of essential oils and exploiting the synergies between essential oils, constituents of essential oils, and antibiotics along with essential oils have been recommended as an answer to this problem. However, less is known about the interactions that lead to additive, synergistic, or antagonistic effects. A contributing role of this knowledge could be the design of new and more potent antimicrobial blends, and understanding of the interplay between the components of crude essential oils. This review is written with the purpose of giving an overview of current knowledge about the antimicrobial properties of essential oils and their mechanisms of action, components of essential oils, nano-encapsulated essential oils, and synergistic combinations of essential oils so as to find research areas that can facilitate applications of essential oils to overcome the problem of multidrug-resistant micro-organisms. PMID:28930272

  6. Antimicrobial activity of five essential oils against origin strains of the Enterobacteriaceae family.

    PubMed

    Peñalver, Pedro; Huerta, Belén; Borge, Carmen; Astorga, Rafael; Romero, Rafael; Perea, Anselmo

    2005-01-01

    An in vitro assay measuring the antimicrobial activity of essential oils of Coridothymus capitatus (Spanish origanum), Satureja montana, Thymus mastichina (Spanish Origanum majorana), Thymus zygis (Spanish variety of Thymus vulgaris) and Origanum vulgare has been carried out against poultry origin strains of Escherichia coli, Salmonella enteritidis and Salmonella essen, and pig origin strains of enterotoxigenic E. coli (ETEC), Salmonella choleraesuis and Salmonella typhimurium. Using the broth microdilution method, all the essential oils showed an MIC > or = 2% (v/v) for the two strains of E. coli. The essential oil that showed the highest antimicrobial activity against the four strains of Salmonella was Origanum vulgare (MIC < or = 1% v/v), followed by Thymus zygis (MIC < or =2% v/v). Thymus mastichina inhibited all the microorganisms at the highest concentration, 4% (v/v), while the rest of the essential oils showed highly variable results. By chemotyping, higher inhibitory capacity was observed in the oils with a higher percentage of phenolic components (carvacrol and thymol) in comparison with oils containing the monoterpenic alcohol linalool. The results of this work confirm the antimicrobial activity of some essential oils, as well as their potential application in the treatment and prevention of poultry and pig diseases caused by salmonella.

  7. The In Vitro Antimicrobial Activity of Lavandula angustifolia Essential Oil in Combination with Other Aroma-Therapeutic Oils

    PubMed Central

    de Rapper, Stephanie; Kamatou, Guy; Viljoen, Alvaro

    2013-01-01

    The antimicrobial activity of Lavandula angustifolia essential oil was assessed in combination with 45 other oils to establish possible interactive properties. The composition of the selected essential oils was confirmed using GC-MS with a flame ionization detector. The microdilution minimum inhibitory concentration (MIC) assay was undertaken, whereby the fractional inhibitory concentration (ΣFIC) was calculated for the oil combinations. When lavender oil was assayed in 1 : 1 ratios with other oils, synergistic (26.7%), additive (48.9%), non-interactive (23.7%), and antagonistic (0.7%) interactions were observed. When investigating different ratios of the two oils in combination, the most favourable interactions were when L. angustifolia was combined with Cinnamomum zeylanicum or with Citrus sinensis, against C. albicans and S. aureus, respectively. In 1 : 1 ratios, 75.6% of the essential oils investigated showed either synergistic or additive results, lending in vitro credibility to the use of essential oil blends in aroma-therapeutic practices. Within the field of aromatherapy, essential oils are commonly employed in mixtures for the treatment of infectious diseases; however, very little evidence exists to support the use in combination. This study lends some credence to the concomitant use of essential oils blended with lavender. PMID:23737850

  8. Chemical composition, antioxidant and antibacterial activities of essential oils from leaves and flowers of Eugenia klotzschiana Berg (Myrtaceae).

    PubMed

    Carneiro, Nárgella S; Alves, Cassia C F; Alves, José M; Egea, Mariana B; Martins, Carlos H G; Silva, Thayná S; Bretanha, Lizandra C; Balleste, Maira P; Micke, Gustavo A; Silveira, Eduardo V; Miranda, Mayker L D

    2017-01-01

    Many essential oils (EOs) of different plant species possess interesting antimicrobial effects on buccal bacteria and antioxidant properties. Eugenia klotzschiana Berg (pêra-do-cerrado, in Portuguese) is a species of Myrtaceae with restricted distribution in the Cerrado. The essential oils were extracted through the hydrodistillation technique using a modified Clevenger apparatus (2 hours) and chemically characterized by GC-MS. The major compounds were α-copaene (10.6 %) found in oil from leaves in natura, β-bisabolene (17.4 %) in the essential oil from dry leaves and α-(E)-bergamotene (29.9 %) in oil from flowers. The antioxidant activity of essential oils showed similarities in both methods under analysis (DPPH and ABTS˙+) and the results suggested moderate to high antioxidant activity. The antibacterial activity was evaluated by determining minimum inhibitory concentrations (MICs), using the microdilution method. MIC values below 400 µg/mL were obtained against Streptococcus salivarius (200 µg/mL), S. mutans (50 µg/mL), S. mitis (200 µg/mL) and Prevotella nigrescens (50 µg/mL). This is the first report of the chemical composition and antibacterial and antioxidant activities of the essential oils of E. klotzschiana. These results suggest that E. klotzschiana, a Brazilian plant, provide initial evidence of a new and alternative source of substances with medicinal interest.

  9. Essential oil composition and antifungal activity of Foeniculum vulgare Mill obtained by different distillation conditions.

    PubMed

    Mimica-Dukić, N; Kujundzić, S; Soković, M; Couladis, M

    2003-04-01

    The influence of different hydrodistillation conditions was evaluated from the standpoint of essential oil yield, chemical composition and antifungal activity from seeds of Foeniculum vulgare Mill. Three hydrodistillation conditions were considered. The main constituents of the oils were: (E)-anethole (72.27%-74.18%), fenchone (11.32%-16.35%) and methyl chavicol (3.78%-5.29%). The method of distillation significantly effected the essential oil yield and quantitative composition, although the antifungal activity of the oils against some fungi was only slightly altered. Copyright 2003 John Wiley & Sons, Ltd.

  10. Eupatorium Capillifolium Essential Oil: Chemical Composition, Antifungal Activity, and Insecticidal Activity

    DTIC Science & Technology

    2010-01-01

    armigera) than had the extracts of other plant species [16]. The essential oil of E. buniifolium was evaluated against Varroa mite (Varroa...however by hours 3, 4 and 5, mortality increased to about 95% (Fig. 1). Many of more potent essential oil compounds such as Neem oil can inflict...did kill greater than 95% of adult bugs at 1% concentration after 3h exposure. This was nearly as many bugs that were killed by 100% neem oil and

  11. In vitro total phenolics, flavonoids contents and antioxidant activity of essential oil, various organic extracts from the leaves of tropical medicinal plant Tetrastigma from Sabah.

    PubMed

    Hossain, M Amzad; Shah, Muhammad Dawood; Gnanaraj, Charles; Iqbal, Muhammad

    2011-09-01

    To detect the in vitro total phenolics, flavonoids contents and antioxidant activity of essential oil, various organic extracts from the leaves of tropical medicinal plant Tetrastigma from Sabah. The dry powder leaves of Tetrastigma were extracted with different organic solvent such as hexane, ethyl acetate, chloroform, butanol and aqueous methanol. The total phenolic and total flavonoids contents of the essential oil and various organic extracts such as hexane, ethyl acetate, chloroform, butanol and aqueous ethanol were determined by Folin - Ciocalteu method and the assayed antioxidant activity was determined in vitro models such as antioxidant capacity by radical scavenging activity using α, α-diphenyl- β-picrylhydrazyl (DPPH) method. The total phenolic contents of the essential oil and different extracts as gallic acid equivalents were found to be highest in methanol extract (386.22 mg/g) followed by ethyl acetate (190.89 mg/g), chloroform (175.89 mg/g), hexane (173.44 mg/g), and butanol extract (131.72 mg/g) and the phenolic contents not detected in essential oil. The antioxidant capacity of the essential oil and different extracts as ascorbic acid standard was in the order of methanol extract > ethyl acetate extract >chloroform> butanol > hexane extract also the antioxidant activity was not detected in essential oil. The findings show that the extent of antioxidant activity of the essential oil and all extracts are in accordance with the amount of phenolics present in that extract. Leaves of Tetrastigma being rich in phenolics may provide a good source of antioxidant. Copyright © 2011 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  12. Chemical Composition and Bioactivity of Essential Oil from Blepharocalyx salicifolius

    PubMed Central

    Furtado, Fabiana Barcelos; Borges, Bruna Cristina; Teixeira, Thaise Lara; de Almeida Junior, Luiz Domingues; Alves, Fernanda Cristina Bérgamo; da Silva, Claudio Vieira

    2018-01-01

    Natural products represent a source of biologically active molecules that have an important role in drug discovery. The aromatic plant Blepharocalyx salicifolius has a diverse chemical constitution but the biological activities of its essential oils have not been thoroughly investigated. The aims of this paper were to evaluate in vitro cytotoxic, antifungal and antibacterial activities of an essential oil from leaves of B. salicifolius and to identify its main chemical constituents. The essential oil was extracted by steam distillation, chemical composition was determined by gas chromatography/mass spectrometry, and biological activities were performed by a microdilution broth method. The yield of essential oil was 0.86% (w/w), and the main constituents identified were bicyclogermacrene (17.50%), globulol (14.13%), viridiflorol (8.83%), γ-eudesmol (7.89%) and α-eudesmol (6.88%). The essential oil was cytotoxic against the MDA-MB-231 (46.60 μg·mL−1) breast cancer cell line, being more selective for this cell type compared to the normal breast cell line MCF-10A (314.44 μg·mL−1). Flow cytometry and cytotoxicity results showed that this oil does not act by inducing cell death, but rather by impairment of cellular metabolism specifically of the cancer cells. Furthermore, it presented antifungal activity against Paracoccidioides brasiliensis (156.25 μg·mL−1) but was inactive against other fungi and bacteria. Essential oil from B. salicifolius showed promising biological activities and is therefore a source of molecules to be exploited in medicine or by the pharmaceutical industry. PMID:29300307

  13. Chemical composition and antibacterial activity of essential oil from fruit of Micromelum integerrimum (Buch.-Ham. ex DC.) Wight & Arn. ex M. Roem.

    PubMed

    Kotoky, Rumi; Bordoloi, Manobjyoti; Yadav, Archana; Tamuli, Kashyap J; Saikia, Surovi; Dutta, Partha P; Khound, Prodip P; Saikia, Siddhartha P

    2018-06-13

    The essential oil extracted from fruit of Micromelum integrrimum were evaluated through gas chromatography and gas chromatography-mass spectroscopy. 52 compounds were identified from the fruit oil representing 99.98% of the oil. The major components of the total fruit oil are monoterpene hydrocarbons (72.23%), oxygenated monoterpenes (14.78%) and sesquiterpene (11.54%) which were predominated by terpinolene (32.21%), α-pinene (17.24%), β-pinene (17.24%), and camphene (4.05%). Moreover, other components that present in 1.45% were aromatic compounds, fatty acid, etc. The essential oil exhibited broad spectrum antimicrobial activity which is concentration dependent and 100 μL of the fruit oil showed the inhibition zones ranging from 7-16 mm. Fruit oil exhibited strong inhibition activity compared to standard anti-bacterial drug neomycin B (22 mm) against Bacillus subtilis MTCC 441 and Bacillus spizizenii ATCC 6633. This is the first hand report on the chemical profiles and promising anti-microbial activity of Micromelum integrrimum fruit essential oil towards Basillus Sp.

  14. Anti-inflammatory activity and chemical composition of the essential oils from Senecio flammeus

    PubMed Central

    Xiao, Kai-Jun; Wang, Wen-Xia; Dai, Jia-Li; Zhu, Liang

    2014-01-01

    Many species from Senecio genus have been used in traditional medicine, and their pharmacological activities have been demonstrated. This study investigated the chemical composition and anti-inflammatory activities of essential oils from Senecio flammeus. A total of 48 components representing 98.41 % of the total oils were identified. The main compounds in the oils were α-farnesene (11.26 %), caryophyllene (8.69 %), n-hexadecanoic acid (7.23 %), and α-pinene (6.36 %). The anti-inflammatory activity of the essential oils was evaluated in rodents (10–90 mg/kg bw) in classical models of inflammation [carrageenan-induced paw edema, 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-induced ear edema, and cotton pellet-induced granuloma]. The essential oils at doses of 10, 30, and 90 mg/kg bw significantly reduced carrageenan-induced paw edema by 17.42 % (P < 0.05), 52.90 % (P < 0.05), and 66.45 % (P < 0.05) 4 h after carrageenan injection, respectively, and significantly reduced myeloperoxidase activity (P < 0.05). The essential oils (10, 30, and 90 mg/kg) also produced a significant dose-dependent response to reduce TPA-induced ear edema by 20.27 % (P < 0.05), 33.06 % (P < 0.05), and 53.90 % (P < 0.05), respectively. The essential oils produced significant dose-response anti-inflammatory activity against cotton pellet-induced granuloma that peaked at the highest dose of 90 mg/kg (49.08 % wet weight and 47.29 % dry weight). Results demonstrate that the essential oils of S. flammeus were effective in the treatment of both acute and chronic inflammatory conditions, thereby supporting the traditional use of this herb. PMID:26417301

  15. Plant Essential Oils Synergize and Antagonize Toxicity of Different Conventional Insecticides against Myzus persicae (Hemiptera: Aphididae)

    PubMed Central

    Faraone, Nicoletta; Hillier, N. Kirk; Cutler, G. Christopher

    2015-01-01

    Plant-derived products can play an important role in pest management programs. Essential oils from Lavandula angustifolia (lavender) and Thymus vulgaris (thyme) and their main constituents, linalool and thymol, respectively, were evaluated for insecticidal activity and synergistic action in combination with insecticides against green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). The essential oils and their main constituents exerted similar insecticidal activity when aphids were exposed by direct sprays, but were non-toxic by exposure to treated leaf discs. In synergism experiments, the toxicity of imidacloprid was synergized 16- to 20-fold by L. angustifolia and T. vulgaris essential oils, but far less synergism occurred with linalool and thymol, indicating that secondary constituents of the oils were probably responsible for the observed synergism. In contrast to results with imidacloprid, the insecticidal activity of spirotetramat was antagonized by L. angustifolia and T. vulgaris essential oils, and linalool and thymol. Our results demonstrate the potential of plant essential oils as synergists of insecticides, but show that antagonistic action against certain insecticides may occur. PMID:26010088

  16. Antioxidant activity, phenolic content, and peroxide value of essential oil and extracts of some medicinal and aromatic plants used as condiments and herbal teas in Turkey.

    PubMed

    Ozcan, Mehmet Musa; Erel, Ozcan; Herken, Emine Etöz

    2009-02-01

    The antioxidant activity, total peroxide values, and total phenol contents of several medicinal and aromatic plant essential oil and extracts from Turkey were examined. Total phenolic contents were determined using a spectrophotometric technique and calculated as gallic acid equivalents. Total antioxidant activity of essential oil and extracts varied from 0.6853 to 1.3113 and 0.3189 to 0.6119 micromol of Trolox equivalents/g, respectively. The total phenolic content of essential oil ranged from 0.0871 to 0.5919 mg of gallic acid/g dry weight. However, the total phenolic contents of extracts were found to be higher compared with those of essential oils. The amount of total peroxide values of oils varied from 7.31 (pickling herb) to 58.23 (bitter fennel flower) mumol of H(2)O(2)/g. As a result, it is shown that medicinal plant derivatives such as extract and essential oils can be useful as a potential source of total phenol, peroxide, and antioxidant capacity for protection of processed foods.

  17. In-vitro activity of essential oils, in particular Melaleuca alternifolia (tea tree) oil and tea tree oil products, against Candida spp.

    PubMed

    Hammer, K A; Carson, C F; Riley, T V

    1998-11-01

    The in-vitro activity of a range of essential oils, including tea tree oil, against the yeast candida was examined. Of the 24 essential oils tested by the agar dilution method against Candida albicans ATCC 10231, three did not inhibit C. albicans at the highest concentration tested, which was 2.0% (v/v) oil. Sandalwood oil had the lowest MIC, inhibiting C. albicans at 0.06%. Melaleuca alternifolia (tea tree) oil was investigated for activity against 81 C. albicans isolates and 33 non-albicans Candida isolates. By the broth microdilution method, the minimum concentration of oil inhibiting 90% of isolates for both C. albicans and non-albicans Candida species was 0.25% (v/v). The minimum concentration of oil killing 90% of isolates was 0.25% for C. albicans and 0.5% for non-albicans Candida species. Fifty-seven Candida isolates were tested for sensitivity to tea tree oil by the agar dilution method; the minimum concentration of oil inhibiting 90% of isolates was 0.5%. Tests on three intra-vaginal tea tree oil products showed these products to have MICs and minimum fungicidal concentrations comparable to those of non-formulated tea tree oil, indicating that the tea tree oil contained in these products has retained its anticandidal activity. These data indicate that some essential oils are active against Candida spp., suggesting that they may be useful in the topical treatment of superficial candida infections.

  18. Characterization and Antimicrobial Activity of Volatile Constituents from Fresh Fruits of Alchornea cordifolia and Canthium subcordatum

    PubMed Central

    Essien, Emmanuel E.; Newby, Jennifer Schmidt; Walker, Tameka M.; Setzer, William N.; Ekundayo, Olusegun

    2015-01-01

    Bacterial resistance has been increasingly reported worldwide and is one of the major causes of failure in the treatment of infectious diseases. Natural-based products, including plant secondary metabolites (phytochemicals), can be exploited to ameliorate the problem of microbial resistance. The fruit essential oils of Alchornea cordifolia and Canthium subcordatum were obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS). The essential oils were subjected to in vitro antibacterial, antifungal and cytotoxic activity screening. Thirty-eight compounds comprising 97.7% of A. cordifolia oil and forty-six constituents representing 98.2% of C. subcordatum oil were identified. The major components in A. cordifolia oil were methyl salicylate (25.3%), citronellol (21.4%), α-phellandrene (7.4%), terpinolene (5.7%) and 1,8-cineole (5.5%). Benzaldehyde (28.0%), β-caryophyllene (15.5%), (E,E)-α-farnesene (5.3%) and methyl salicylate (4.5%) were the quantitatively significant constituents in C. subcordatum fruit essential oil. A. cordifolia essential oil demonstrated potent in vitro antibacterial activity against Staphylococcus aureus (MIC = 78 μg/mL) and marginal antifungal activity against Aspergillus niger (MIC = 156 μg/mL). C. subcordatum showed antibacterial activity against Bacillus cereus and S. aureus (MIC = 156 μg/mL) and notable antifungal activity against A. niger (MIC = 39 μg/mL). However, no appreciable cytotoxic effects on human breast carcinoma cells (Hs 578T) and human prostate carcinoma cells (PC-3) were observed for either essential oil. The antimicrobial activities of A. cordifolia and C. subcordatum fruit essential oils are a function of their distinct chemical profiles; their volatiles and biological activities are reported for the first time. PMID:28930111

  19. Essential Oils and Their Components as Modulators of Antibiotic Activity against Gram-Negative Bacteria

    PubMed Central

    Aelenei, Petruta; Miron, Anca; Trifan, Adriana; Bujor, Alexandra; Gille, Elvira; Aprotosoaie, Ana Clara

    2016-01-01

    Gram-negative bacteria cause infections that are difficult to treat due to the emergence of multidrug resistance. This review summarizes the current status of the studies investigating the capacity of essential oils and their components to modulate antibiotic activity against Gram-negative bacteria. Synergistic interactions are particularly discussed with reference to possible mechanisms by which essential oil constituents interact with antibiotics. Special emphasis is given to essential oils and volatile compounds that inhibit efflux pumps, thus reversing drug resistance in Gram-negative bacteria. In addition, indifference and antagonism between essential oils/volatile compounds and conventional antibiotics have also been reported. Overall, this literature review reveals that essential oils and their purified components enhance the efficacy of antibiotics against Gram-negative bacteria, being promising candidates for the development of new effective formulations against Gram-negative bacteria. PMID:28930130

  20. In vitro interactions of Peucedanum officinale essential oil with antibiotics.

    PubMed

    Miladinović, Dragoljub L; Ilić, Budimir S; Kocić, Branislava D; Miladinović, Ljiljana C; Marković, Marija S

    2015-01-01

    The chemical composition and antibacterial activity of Peucedanum officinale L. (Apiaceae) essential oil were examined, as well as the association between it and antibiotics: tetracycline, streptomycin and chloramphenicol. The interactions of the essential oil with antibiotics were evaluated using the microdilution checkerboard assay. Monoterpene hydrocarbons, with α-phellandrene as the dominant constituent, were the most abundant compound class of the essential oil of P. officinale. The researched essential oil exhibited slight antibacterial activity against the tested bacterial strains in vitro. On the contrary, essential oil of P. officinale possesses a great synergistic potential with chloramphenicol and tetracycline. Their combinations reduced the minimum effective dose of the antibiotic and, consequently, minimised its adverse side effects. In addition, investigated interactions are especially successful against Gram-negative bacteria, the pharmacological treatment of which is very difficult nowadays.

  1. Insecticidal activity and chemical composition of the Morinda lucida essential oil against pulse beetle Callosobruchus maculatus.

    PubMed

    Owolabi, Moses S; Padilla-Camberos, Eduardo; Ogundajo, Akintayo L; Ogunwande, Isiaka A; Flamini, Guido; Yusuff, Olaniyi K; Allen, Kirk; Flores-Fernandez, Karen Isabel; Flores-Fernandez, Jose Miguel

    2014-01-01

    Insecticidal activity of essential oil extracted from Morinda lucida was tested on pulse beetle Callosobruchus maculatus, which is a pest that causes serious damage to several pulses. The insecticidal activity was compared with two pesticides, Phostoxin and Primo-ban-20. 120 mixed sex adult C. maculatus were introduced, along with 30 g of cowpeas. Four concentrations (0.40, 0.20, 0.10, and 0.05 μg/mL) of the M. lucida essential oil, Phostoxin, and Primo-ban-20 were tested. Essential oil chemical composition was analyzed by GC-MS. M. lucida essential oil showed a high toxicological effect, producing 100% mortality after 72 hours at a dose of 0.20 μg/mL. M. lucida essential oil had a potent insecticidal activity (LC90 = 0.629 μg/mL) compared to both pesticides, Phostoxin (LC90 = 0.652 μg/mL) and Primo-ban-20 (LC90 = 0.726 μg/mL), at 24 h. The main compounds of the essential oil were the oxygenated monoterpenoids, 1,8-cineole (43.4%), and α-terpinyl acetate (14.5%), and the monoterpene hydrocarbons, mostly sabinene (8.2%) and β-pinene (4.0%). Results clearly indicate that M. lucida essential oil can be used as an effective alternative for pulse beetle C. maculatus control, and it could be tested against other pulse beetles affecting Asia and Africa and throughout the world, thereby reducing use of synthetic pesticides.

  2. Comparison of essential oil components and in vitro anticancer activity in wild and cultivated Salvia verbenaca.

    PubMed

    Russo, Alessandra; Cardile, Venera; Graziano, Adriana C E; Formisano, Carmen; Rigano, Daniela; Canzoneri, Marisa; Bruno, Maurizio; Senatore, Felice

    2015-01-01

    The objectives of our research were to study the chemical composition and the in vitro anticancer effect of the essential oil of Salvia verbenaca growing in natural sites in comparison with those of cultivated (Sc) plants. The oil from wild (Sw) S. verbenaca presented hexadecanoic acid (23.1%) as the main constituent, while the oil from Sc plants contained high quantities of hexahydrofarnesyl acetone (9.7%), scarce in the natural oil (0.7%). The growth-inhibitory and proapoptotic effects of the essential oils from Sw and Sc S. verbenaca were evaluated in the human melanoma cell line M14, testing cell vitality, cell membrane integrity, genomic DNA fragmentation and caspase-3 activity. Both the essential oils were able to inhibit the growth of the cancer cells examined inducing also apoptotic cell death, but the essential oil from cultivated samples exhibited the major effects.

  3. Antioxidant and Antibacterial Activities of Crude Extracts and Essential Oils of Syzygium cumini Leaves

    PubMed Central

    Mohamed, Amal A.; Ali, Sami I.; El-Baz, Farouk K.

    2013-01-01

    This research highlights the chemical composition, antioxidant and antibacterial activities of essential oils and various crude extracts (using methanol and methylene chloride) from Syzygium cumini leaves. Essential oils were analyzed by gas chromatography-mass spectrometry (GC-MS).The abundant constituents of the oils were: α-pinene (32.32%), β-pinene (12.44%), trans-caryophyllene (11.19%), 1, 3, 6-octatriene (8.41%), delta-3-carene (5.55%), α-caryophyllene (4.36%), and α-limonene (3.42%).The antioxidant activities of all extracts were examined using two complementary methods, namely diphenylpicrylhydrazyl (DPPH) and ferric reducing power (FRAP). In both methods, the methanol extract exhibited a higher activity than methylene chloride and essential oil extracts. A higher content of both total phenolics and flavonoids were found in the methanolic extract compared with other extracts. Furthermore, the methanol extract had higher antibacterial activity compared to methylene chloride and the essential oil extracts. Due to their antioxidant and antibacterial properties, the leaf extracts from S. cumini may be used as natural preservative ingredients in food and/or pharmaceutical industries. PMID:23593183

  4. Antioxidant and antibacterial activities of crude extracts and essential oils of Syzygium cumini leaves.

    PubMed

    Mohamed, Amal A; Ali, Sami I; El-Baz, Farouk K

    2013-01-01

    This research highlights the chemical composition, antioxidant and antibacterial activities of essential oils and various crude extracts (using methanol and methylene chloride) from Syzygium cumini leaves. Essential oils were analyzed by gas chromatography-mass spectrometry (GC-MS).The abundant constituents of the oils were: α-pinene (32.32%), β-pinene (12.44%), trans-caryophyllene (11.19%), 1, 3, 6-octatriene (8.41%), delta-3-carene (5.55%), α-caryophyllene (4.36%), and α-limonene (3.42%).The antioxidant activities of all extracts were examined using two complementary methods, namely diphenylpicrylhydrazyl (DPPH) and ferric reducing power (FRAP). In both methods, the methanol extract exhibited a higher activity than methylene chloride and essential oil extracts. A higher content of both total phenolics and flavonoids were found in the methanolic extract compared with other extracts. Furthermore, the methanol extract had higher antibacterial activity compared to methylene chloride and the essential oil extracts. Due to their antioxidant and antibacterial properties, the leaf extracts from S. cumini may be used as natural preservative ingredients in food and/or pharmaceutical industries.

  5. Chemical characterization (GC/MS and NMR Fingerprinting) and bioactivities of South-African Pelargonium capitatum (L.) L' Her. (Geraniaceae) essential oil.

    PubMed

    Guerrini, Alessandra; Rossi, Damiano; Paganetto, Guglielmo; Tognolini, Massimiliano; Muzzoli, Mariavittoria; Romagnoli, Carlo; Antognoni, Fabiana; Vertuani, Silvia; Medici, Alessandro; Bruni, Alessandro; Useli, Chiara; Tamburini, Elena; Bruni, Renato; Sacchetti, Gianni

    2011-04-01

    Chemical fingerprinting of commercial Pelargonium capitatum (Geraniaceae) essential oil samples of south African origin was performed by GC, GC/MS, and (13) C- and (1) H-NMR. Thirty-seven compounds were identified, among which citronellol (32.71%) and geraniol (19.58%) were the most abundant. NMR Spectra of characteristic chemicals were provided. Broad-spectrum bioactivity properties of the oil were evaluated and compared with those of commercial Thymus vulgaris essential oil with the aim to obtain a functional profile in terms of efficacy and safety. P. capitatum essential oil provides a good performance as antimicrobial, with particular efficacy against Candida albicans strains. Antifungal activity performed against dermatophyte and phytopathogen strains revealed the latter as more sensitive, while antibacterial activity was not remarkable against both Gram-positive and Gram-negative bacteria. P. capitatum oil provided a lower antioxidant activity (IC(50) ) than that expressed by thyme essential oil, both in the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and β-carotene bleaching tests. Results in photochemiluminescence (PCL) assay were negligible. To test the safety aspects of P. capitatum essential oil, mutagenic and toxicity properties were assayed by Ames test, with and without metabolic activation. Possible efficacy of P. capitatum essential oil as mutagenic protective agent against NaN(3) , 2-nitrofluorene, and 2-aminoanthracene was also assayed, providing interesting and significant antigenotoxic properties. Copyright © 2011 Verlag Helvetica Chimica Acta AG, Zürich.

  6. In-vitro assessment of antioxidant and antimicrobial activities of methanol extracts and essential oil of Thymus hirtus sp. algeriensis.

    PubMed

    Fatma, Guesmi; Mouna, Ben Farhat; Mondher, Mejri; Ahmed, Landoulsi

    2014-07-14

    Owing to the complexity of the antioxidant materials and their mechanism of actions, it is obvious that no single testing method is capable of providing a comprehensive picture of the antioxidant profile. The essential oil of the Thymus specie may still possess other important activities in traditional medicine, it can be used in the treatment of fever and cough. This essential oil may also have an anticancer activity. The essential oils aerial parts hydrodistilled from Thymus hirtus sp. algeriensis, were characterised by GC/MS analysis and the methanolic extracts were chemically characterized by HPLC method. The essence of thyme was evaluated for its antioxidant and antibacterial activity. The Terpinen-4-ol are the principal class of metabolites (33.34%) among which 1.8-cineole (19.96%) and camphor (19.20%) predominate. In this study, quantitative values of antioxidant activity of crude methanolic extracts of Thymus hirtus sp. algeriensis were investigated. The essential oils was screened for their antibacterial activity against six common pathogenic microorganisms (Escherichia coli, Pseudomonas aeruginosa, Salmonella enteridis, Staphylococcus aureus, Bacillus subtilis and Listeria monocytogenes) by well diffusion method and agar dilution method (MIC). All the essences were found to inhibit the growth of both gram (+) and gram (-) bacteria organisms tested. These activities were correlated with the presence of phenolic compounds in active fractions. HPLC confirmed presence of phenolic compounds in methanol extracts. Methanol extracts and essential oils from aerial parts of Thymus hirtus sp. algeriensis, were examined for their potential as antioxidants. The technique for measuring antioxidant activity, which was developed using DPPH, ABTS and β-carotene bleaching, produced results as found in established literatures. The present results indicate clearly that methanol extracts and essential oils from Thymus hirtus sp. algeriensis possess antioxidant properties and could serve as free radical inhibitors or scavengers, acting possibly as primary antioxidants, also their essential oil have an antibacterial effect.

  7. In-vitro assessment of antioxidant and antimicrobial activities of methanol extracts and essential oil of Thymus hirtus sp. algeriensis

    PubMed Central

    2014-01-01

    Background Owing to the complexity of the antioxidant materials and their mechanism of actions, it is obvious that no single testing method is capable of providing a comprehensive picture of the antioxidant profile. The essential oil of the Thymus specie may still possess other important activities in traditional medicine, it can be used in the treatment of fever and cough. This essential oil may also have an anticancer activity. Methods The essential oils aerial parts hydrodistilled from Thymus hirtus sp. algeriensis, were characterised by GC/MS analysis and the methanolic extracts were chemically characterized by HPLC method. The essence of thyme was evaluated for its antioxidant and antibacterial activity. Result The Terpinen-4-ol are the principal class of metabolites (33.34%) among which 1.8-cineole (19.96%) and camphor (19.20%) predominate. In this study, quantitative values of antioxidant activity of crude methanolic extracts of Thymus hirtus sp. algeriensis were investigated. The essential oils was screened for their antibacterial activity against six common pathogenic microorganisms (Escherichia coli, Pseudomonas aeruginosa, Salmonella enteridis, Staphylococcus aureus, Bacillus subtilis and Listeria monocytogenes) by well diffusion method and agar dilution method (MIC). All the essences were found to inhibit the growth of both gram (+) and gram (−) bacteria organisms tested. These activities were correlated with the presence of phenolic compounds in active fractions. HPLC confirmed presence of phenolic compounds in methanol extracts. Conclusion Methanol extracts and essential oils from aerial parts of Thymus hirtus sp. algeriensis, were examined for their potential as antioxidants. The technique for measuring antioxidant activity, which was developed using DPPH, ABTS and β-carotene bleaching, produced results as found in established literatures. The present results indicate clearly that methanol extracts and essential oils from Thymus hirtus sp. algeriensis possess antioxidant properties and could serve as free radical inhibitors or scavengers, acting possibly as primary antioxidants, also their essential oil have an antibacterial effect. PMID:25022197

  8. Composition, antimicrobial, antioxidant, and antiproliferative activity of Origanum dictamnus (dittany) essential oil

    PubMed Central

    Mitropoulou, Gregoria; Fitsiou, Eleni; Stavropoulou, Elisavet; Papavassilopoulou, Eleni; Vamvakias, Manolis; Pappa, Aglaia; Oreopoulou, Antigoni; Kourkoutas, Yiannis

    2015-01-01

    Background Nowadays, there has been an increased interest in essential oils from various plant origins as potential antimicrobial, antioxidant, and antiproliferative agents. This trend can be mainly attributed to the rising number and severity of food poisoning outbreaks worldwide along with the recent negative consumer perception against artificial food additives and the demand for novel functional foods with possible health benefits. Origanum dictamnus (dittany) is an aromatic, tender perennial plant that only grows wild on the mountainsides and gorges of the island of Crete in Greece. Objective The aim of the present study was to investigate the antimicrobial, antioxidant, and antiproliferative properties of O. dictamnus essential oil and its main components and assess its commercial potential in the food industry. Design O. dictamnus essential oil was initially analyzed by gas chromatography–mass spectrometry (GC–MS) to determine semi-quantitative chemical composition of the essential oils. Subsequently, the antimicrobial properties were assayed and the minimum inhibitory and non-inhibitory concentration values were determined. The antioxidant activity and cytotoxic action against the hepatoma adenocarcinoma cell line HepG2 of the essential oil and its main components were further evaluated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and by the sulforhodamine B (SRB) assay, respectively. Results The main constituents of O. dictamnus essential oil identified by GC–MS analysis were carvacrol (52.2%), γ-terpinene (8.4%), p-cymene (6.1%), linalool (1.4%), and caryophyllene (1.3%). O. dictamnus essential oil and its main components were effective against Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Listeria monocytogenes, Salmonella Enteritidis, Salmonella typhimurium, Saccharomyces cerevisiae, and Aspergillus niger. In addition, the estimated IC50 value for the DPPH radical scavenging activity for O. dictamnus essential oil was 0.045±0.0042% (v/v) and was mainly attributed to carvacrol. The EC50 value for the essential oil in the 72h SRB assay in HepG2 cells was estimated to be 0.0069±0.00014% (v/v). Among the individual constituents tested, carvacrol was the most bioactive compound and accounted for the observed antiproliferative activity of the essential oil. Conclusions The results revealed that O. dictamnus essential oil is a noteworthy growth inhibitor against the microbes studied. It also possesses significant antioxidant activity and demonstrated excellent cytotoxicity against HepG2 cells. Taken together, O. dictamnus essential oil may represent an effective and inexpensive source of potent natural antimicrobial agents with health-promoting properties, which may be incorporated in food systems. PMID:25952773

  9. Composition, antimicrobial, antioxidant, and antiproliferative activity of Origanum dictamnus (dittany) essential oil.

    PubMed

    Mitropoulou, Gregoria; Fitsiou, Eleni; Stavropoulou, Elisavet; Papavassilopoulou, Eleni; Vamvakias, Manolis; Pappa, Aglaia; Oreopoulou, Antigoni; Kourkoutas, Yiannis

    2015-01-01

    Nowadays, there has been an increased interest in essential oils from various plant origins as potential antimicrobial, antioxidant, and antiproliferative agents. This trend can be mainly attributed to the rising number and severity of food poisoning outbreaks worldwide along with the recent negative consumer perception against artificial food additives and the demand for novel functional foods with possible health benefits. Origanum dictamnus (dittany) is an aromatic, tender perennial plant that only grows wild on the mountainsides and gorges of the island of Crete in Greece. The aim of the present study was to investigate the antimicrobial, antioxidant, and antiproliferative properties of O. dictamnus essential oil and its main components and assess its commercial potential in the food industry. O. dictamnus essential oil was initially analyzed by gas chromatography-mass spectrometry (GC-MS) to determine semi-quantitative chemical composition of the essential oils. Subsequently, the antimicrobial properties were assayed and the minimum inhibitory and non-inhibitory concentration values were determined. The antioxidant activity and cytotoxic action against the hepatoma adenocarcinoma cell line HepG2 of the essential oil and its main components were further evaluated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and by the sulforhodamine B (SRB) assay, respectively. The main constituents of O. dictamnus essential oil identified by GC-MS analysis were carvacrol (52.2%), γ-terpinene (8.4%), p-cymene (6.1%), linalool (1.4%), and caryophyllene (1.3%). O. dictamnus essential oil and its main components were effective against Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Listeria monocytogenes, Salmonella Enteritidis, Salmonella typhimurium, Saccharomyces cerevisiae, and Aspergillus niger. In addition, the estimated IC50 value for the DPPH radical scavenging activity for O. dictamnus essential oil was 0.045±0.0042% (v/v) and was mainly attributed to carvacrol. The EC50 value for the essential oil in the 72h SRB assay in HepG2 cells was estimated to be 0.0069±0.00014% (v/v). Among the individual constituents tested, carvacrol was the most bioactive compound and accounted for the observed antiproliferative activity of the essential oil. The results revealed that O. dictamnus essential oil is a noteworthy growth inhibitor against the microbes studied. It also possesses significant antioxidant activity and demonstrated excellent cytotoxicity against HepG2 cells. Taken together, O. dictamnus essential oil may represent an effective and inexpensive source of potent natural antimicrobial agents with health-promoting properties, which may be incorporated in food systems.

  10. In vitro antimicrobial activity of five essential oils on multidrug resistant Gram-negative clinical isolates.

    PubMed

    Sakkas, Hercules; Gousia, Panagiota; Economou, Vangelis; Sakkas, Vassilios; Petsios, Stefanos; Papadopoulou, Chrissanthy

    2016-01-01

    The emergence of drug-resistant pathogens has drawn attention on medicinal plants for potential antimicrobial properties. The objective of the present study was the investigation of the antimicrobial activity of five plant essential oils on multidrug resistant Gram-negative bacteria. Basil, chamomile blue, origanum, thyme, and tea tree oil were tested against clinical isolates of Acinetobacter baumannii (n = 6), Escherichia coli (n = 4), Klebsiella pneumoniae (n = 7), and Pseudomonas aeruginosa (n = 5) using the broth macrodilution method. The tested essential oils produced variable antibacterial effect, while Chamomile blue oil demonstrated no antibacterial activity. Origanum, Thyme, and Basil oils were ineffective on P. aeruginosa isolates. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration values ranged from 0.12% to 1.50% (v/v) for tea tree oil, 0.25-4% (v/v) for origanum and thyme oil, 0.50% to >4% for basil oil and >4% for chamomile blue oil. Compared to literature data on reference strains, the reported MIC values were different by 2SD, denoting less successful antimicrobial activity against multidrug resistant isolates. The antimicrobial activities of the essential oils are influenced by the strain origin (wild, reference, drug sensitive, or resistant) and it should be taken into consideration whenever investigating the plants' potential for developing new antimicrobials.

  11. Chemical composition and biological activity of essential oils of Origanum vulgare L. subsp. vulgare L. under different growth conditions.

    PubMed

    De Falco, Enrica; Mancini, Emilia; Roscigno, Graziana; Mignola, Enrico; Taglialatela-Scafati, Orazio; Senatore, Felice

    2013-12-04

    This research was aimed at investigating the essential oil production, chemical composition and biological activity of a crop of pink flowered oregano (Origanum vulgare L. subsp. vulgare L.) under different spatial distribution of the plants (single and binate rows). This plant factor was shown to affect its growth, soil covering, fresh biomass, essential oil amount and composition. In particular, the essential oil percentage was higher for the binate row treatment at the full bloom. The chemical composition of the oils obtained by hydrodistillation was fully characterized by GC and GC-MS. The oil from plants grown in single rows was rich in sabinene, while plants grown in double rows were richer in ocimenes. The essential oils showed antimicrobial action, mainly against Gram-positive pathogens and particularly Bacillus cereus and B. subtilis.

  12. Chemical composition and antimicrobial activity of the essential oils of Pinus peuce (Pinaceae) growing wild in R. Macedonia.

    PubMed

    Karapandzova, Marija; Stefkova, Gjose; Cvetkovikj, Ivana; Trajkovska-Dokik, Elena; Kaftandzieva, Ana; Kulevanova, Svetlana

    2014-11-01

    The chemical composition and antimicrobial activity of the essential oils isolated from twigs with needles (T+N) and from twigs without needles (T-N) from wild Pinus peuce Griseb. (Pinaceae), from three different locations in R. Macedonia, were investigated. Essential oil yields of T+N ranged from 7.5 mL/kg to 12.5 mL/kg and for T-N from 13.8 mL/kg to 17.3 mL/kg. GC/FID/MS analysis of the essential oils revealed eighty-four components, representing 93.7-95.7% and 91.2-92.0% of the T+N and T-N oils, respectively. The major components in T+N and T-N oils were monoterpenes: α-pinene (23.8-39.9%, 21.2-23.3%), camphene (2.2-5.5%, 0.7-2.0%), β-pinene (10.1-17.1%, 8.2-16.4%), myrcene (1.2-1.41%, 1.6-2.5%), limonene+β-phellandrene (6.8-14.0%, 8.8-23.6%) and bornyl acetate (2.3-6.9%, 1.1-3.4%), followed by the sesquiterpenes: trans-(E)-caryophyllene (3.6-4.3%, 3.2-7.3%), germacrene D (7.1-9.5%, 5.0-10.3%) and δ-cadinene (2.1-3.1%, 3.3-4.2%, respectively). Antimicrobial screening of the essential oils was made by disk diffusion and broth dilution methods against 13 bacterial isolates of Gram-positive and Gram-negative bacteria and one strain of Candida albicans. T-N essential oils showed antimicrobial activity toward Streptococcus pneumoniae, Staphylococcus aureus, S. epidermidis and Candida albicans as well as Streptococcus agalactiae, Acinetobacter spp. and Haemophilus influenzae. The antimicrobial activity of T+N essential oils was greater, especially against Streptococcus agalactiae, S. pyogenes, Enterococcus and Candida albicans, followed by Haemophilus influenzae, Acinetobacter spp., Escherichia coli, Salmonella enteritidis, Staphylococcus aureus and S. epidermidis. Minimal inhibitory concentrations (MICs) of all tested essential oils ranged from 15-125 μL/mL. Summarizing the obtained results, the antimicrobial activity of Pinus peuce T+N and T-N essential oils collected from different localities in R. Macedonia varied considerably. These alterations in the antimicrobial activity can be attributed to the differences in the quantitative composition and percentage amounts of the components present in the respective essential oils, although it was evident that there were no differences in the qualitative composition of the essential oils, regardless of the locality of collection, or the type of plant material (T+N or T-N).

  13. Evaluation of extracts and essential oil from Callistemon viminalis leaves: antibacterial and antioxidant activities, total phenolic and flavonoid contents.

    PubMed

    Salem, Mohamed Z M; Ali, Hayssam M; El-Shanhorey, Nader A; Abdel-Megeed, Ahmed

    2013-10-01

    To investigate antioxidant and antibacterial activities of Callistemon viminalis (C. viminalis) leaves. The essential oil of C. viminalis leaves obtained by hydro-distillation was analyzed by GC/MS. Different extracts were tested for total phenolic and flavonoid contents and in vitro antioxidant (DPPH assay) and antibacterial (agar disc diffusion and 96-well micro-plates methods) actives. Fourteen components were identified in the essential oil, representing 98.94% of the total oil. The major components were 1,8-cineole (64.53%) and α-pinene (9.69%). Leaf essential oil exhibited the highest antioxidant activity of (88.60±1.51)% comparable to gallic acid, a standard compound [(80.00±2.12)%]. Additionally, the biggest zone of inhibitions against the studied bacterial strains was observed by the essential oil when compared to the standard antibiotic (tetracycline). The crude methanol extract and ethyl acetate fraction had a significant antibacterial activity against the tested bacterial strains. It can be suggested that C. viminalis is a great potential source of antibacterial and antioxidant compounds useful for new antimicrobial drugs from the natural basis. The present study revealed that the essential oil as well as the methanol extracts and ethyl acetate fraction of C. viminalis leaves exhibited highly significant antibacterial activity against the tested bacterial strains. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  14. Antifungal activity of some essential oils against toxigenic Aspergillus species.

    PubMed

    Alizadeh, Alireza; Zamani, Elham; Sharaifi, Rohollah; Javan-Nikkhah, Mohammad; Nazari, Somayeh

    2010-01-01

    Increasing attentions have been paid on the application of essential oils and plant extracts for control of postharvest pathogens due to their natural origin and less appearance of resistance in fungi pathogens. Some Aspergillus species are toxigenic and responsible for many cases of food and feed contamination. Some Toxins that produce with some Aspergillus species are known to be potent hepatocarcinogens in animals and humans. The present work evaluated the parameters of antifungal activity of the essential oils of Zataria multiflora, Thymus migricus, Satureja hortensis, Foeniculum vulgare, Carum capticum and thiabendazol fungicide on survival and growth of different species of Aspergillus. Aerial part and seeds of plant species were collected then dried and its essential oils isolated by means of hydrodistillation. Antifungal activity was evaluated in vitro by poisonous medium technique with PDA medium at six concentrations. Results showed that all essential oils could inhibit the growth of Aspergillus species. The essential oil with the best effect and lowest EC50 and MIC (Minimum Inhibitory Concentration) was Z. multiflora (223 microl/l and 650 microl/l, respectively). The chemical composition of the Z. multiflora essential oil was analyzed by GC-MS.

  15. Composition and antimicrobial properties of Sardinian Juniperus essential oils against foodborne pathogens and spoilage microorganisms.

    PubMed

    Cosentino, Sofia; Barra, Andrea; Pisano, Barbara; Cabizza, Maddalena; Pirisi, Filippo Maria; Palmas, Francesca

    2003-07-01

    In this work, the chemical compositions and antimicrobial properties of Juniperus essential oils and of their main components were determined. Five berry essential oils obtained from different species of Juniperus growing wild in Sardinia were analyzed. The components of the essential oils were identified by gas chromatography-mass spectrometry (GC-MS) analysis. The antimicrobial activities of the oils and their components against food spoilage and pathogenic microorganisms were determined by a broth microdilution method. The GC-MS analysis showed a certain variability in the concentrations of the main constituents of the oils. Alpha-pinene was largely predominant in the oils of the species J. phoenicea subsp. turbinata and J. oxycedrus. Alpha-pinene and myrcene constituted the bulk (67.56%) of the essential oil of J. communis. Significant quantitative differences were observed for myrcene, delta-3-carene, and D-germacrene. The results of the antimicrobial assay show that the oils of J. communis and J. oxycedrus failed to inhibit any of the microorganisms at the highest concentrations tested (MLC > or = 900 microg/ml), while the oils extracted from J. turbinata specimens were active against fungi, particularly against a strain of Aspergillus flavus (an aflatoxin B1 producer). Of the single compounds tested, delta-3-carene was found to possess the broadest spectrum of activity and appeared to contribute significantly to the antifungal activity observed for J. turbinata oils. This activity may be helpful in the prevention of aflatoxin contamination for many foods.

  16. Transfer of ²¹⁰Po, ²¹⁰Pb and ²³⁸U from some medicinal plants to their essential oils.

    PubMed

    Al-Masri, M S; Amin, Y; Ibrahim, S; Nassri, M

    2015-03-01

    Essential oils were extracted from 35 medicinal plants used by Syrians, organic compounds were determined in these oils and concentrations of (210)Po (210)Pb and (238)U were determined in the original plants and in the essential oils. The results showed that the highest activity concentrations of (210)Po and (210)Pb were found in leaves with large surfaces and in Sage were as high as 73.5 Bq kg(-1) and 73.2 Bq kg(-1), respectively. The activity concentration of (238)U was as high as 4.26 Bq kg(-1) in Aloe. On the other hand, activity concentrations of (210)Po ranged between 0.2 and 71.1 Bq kg(-1) in extracted essential oils for Rosemary and False yellowhead, respectively. The activity concentration of (210)Pb reached 63.7 Bq kg(-1) in Aloe oil. The activity concentrations of (238)U were very low in all extracted oils; the highest value was 0.31 Bq kg(-1) in peel of Orange oil. The transfer of (210)Po and (210)Pb from plant to its oil was the highest for Eugenia; 7.1% and 5.5% for (210)Po and (210)Pb, respectively. A linear relationship was found between the transfer factor of radionuclides from plant to its essential oil and the chemical content of this oil. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. In vitro study of anti-coccidial activity of essential oils from indigenous plants against Eimeria tenella.

    PubMed

    Jitviriyanon, Surapan; Phanthong, Phanida; Lomarat, Pattamapan; Bunyapraphatsara, Nuntavan; Porntrakulpipat, Sarthorn; Paraksa, Nuanchan

    2016-09-15

    This study was designed to evaluate the in vitro anticoccidial properties against Eimeria tenella of different essential oils and their major active components. Efficacy of ten essential oils from different Thai indigenous plants were preliminarily screened and only those with potential were further tested for effective concentrations and identifying their active compounds. Oocysticidal property was evaluated in term of sporulation inhibition of oocysts and the percentage of unsporulated, sporulated and degenerated oocysts, after treatment with 125μg/ml of the selected essential oil, the sample was enumerated by haemocytometer, while coccidiocidal activity was assessed by the inhibition of sporozoite invasion in MDBK cell lines. Results showed that only Boesenbergia pandurata and Ocimum basilicum essential oils had strong sporulation inhibition activity by providing a higher ratio of degenerated oocysts and their IC 50 were 0.134 and 0.101mg/ml, respectively. GC-MS analysis of B. pandurata essential oil found trans-b-ocimene, camphor, 1,8-cineole, geraniol, camphene, methyl cinnamate, l-limonene and linalool as the major components, while methyl chavicol, α-bergamotene, 1,8-cineole and trans-β-ocimene were the main compounds of O. basilicum essential oil. Methyl cinnamate and camphor were the active components of B. pandurata oil, whereas methyl chavicol was the active component of O. basilicum oil by exhibiting the oocysticidal effect against E. tenella with IC 50 values of 0.008, 0.023 and 0.054mg/ml, respectively. Furthermore, B. pandurata and O. basilicum oils also showed a strong cytotoxic property against coccidia with more than 70% inhibition of sporozoite invasion in MDBK cell lines, and their IC 50 were 0.004 and 0.004mg/ml, respectively. Methyl cinnamate as well as camphor from B. pandurata and methyl chavicol from O. basilicum were also effective with IC 50 values of 0.029, 0.023, and 0.022mg/ml, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Antioxidant activity of essential oils from Wedelia chinensis (Osbeck) in vitro and in vivo lung cancer bearing C57BL/6 mice.

    PubMed

    Manjamalai, A; Berlin Grace, V M

    2012-01-01

    The present investigation was to evaluate the effects of essential oils of Wedelia chinensis (Osbeck) on free radicals and in vivo antioxidant properties. Essential oils were extracted using hydro-distillation and compound analysis was performed by GC-MS analysis. Screening for inhibitory activity was conducted by DPPH and OH-scavenging assays. In addition an in vivo study was carried out in cell line implanted cancer bearing mice with assessment of levels of catalase, superoxide dismutase, glutathione peroxidase, lipid peroxidation, nitric oxide and reduced glutathione. Finally, lungs were dissected out for histopathology study of metastasis. GC-MS analysis revealed the presence of carvocrol and trans-caryophyllene as the major compounds with 96% comparison with the Wilily and NBS libraries. The essential oil exhibited significant inhibition in DPPH free radical formation. Whereas reducing power and hydroxyl radical scavenging activity are dose dependent. When compared with the standard, it was found that the essential oil has more or less equal activity in scavenging free radicals produced. In the animal studies, the level of antioxidant enzymes catalase, superoxide dismutase and glutathione peroxidase, as well as glutathione, were found to be increased in treated groups whereas lipid peroxidation and nitric oxide were reduced. Histopathology report also shows that the essential oil has a significant combating effect against cancer development. In all the in vitro assays, a significant correlation existed between the concentrations of the essential oil and percentage inhibition of free radicals. The in vivo studies also has shown a very good antioxidant property for the essential oil during cancer development. From, these results the essential oil can be recommended for treating disease related to free radicals and to prevent cancer development.

  19. Antioxidant and Anticholinesterase Activities of Essential Oils of Cinnamomum griffithii and C. macrocarpum.

    PubMed

    Salleh, Wan Mohd Nuzul Hakimi; Ahmad, Farediah; Yen, Khong Heng

    2015-08-01

    The essential oils of Cinnamomum griffithii and C. macrocarpum were analyzed by GC and GC-MS and evaluated for their antioxidant and anticholinesterase activities. The essential oils of leaf and bark of C. grffithii were characterized by the presence of 30 components, with methyl eugenol (38.5-43.8%) as the major component. A total of 11 components were characterized in.the leaf and bark of C. macrocarpum essential oil with the most abundant component was safrole (54.5-59.5%). The bark oil of C. griffithii demonstrated significant activity on DPPH (IC50 73.4 microg/mL) and a high phenolic content (192.0%), while the leaf oil inhibited oxidation of β-carotene/linoleic acid with an inhibition value of 65.5 μg/mL. Acetylcholinesterase and butyrylcholinesterase inhibition were assessed and the results showed that C. macrocarpun bark oil exhibited significant activity with inhibition values of 55.8% and 66.1%, respectively at a concentration of 1 mg/mL.

  20. Determination of antioxidant capacity and a-amylase inhibitory activity of the essential oils from citronella grass and lemongrass

    USDA-ARS?s Scientific Manuscript database

    The objective of the present study was to determine the antioxidant capacity of and in vitro a-amylase inhibitory activity of the essential oils extracted from citronella grass and lemongrass. The chemical composition of the extracted essential oils was determined by GC-MS. The antioxidant capacity ...

  1. Activity antifungal of the essential oils; aqueous and ethanol extracts from Citrus aurantium L.

    PubMed

    Metoui, N; Gargouri, S; Amri, I; Fezzani, T; Jamoussi, B; Hamrouni, L

    2015-01-01

    Our study is about the essential oil of Citrus aurantium L. in Tunisia and its plant extract. The yield of this essential oil is 0, 56% but the yield of the extract of plant was 17.1% for the aqueous extract ant 18.3% for the ethanolic extract. The analysis of chemical composition by using GC and GC/MS showed the essential oil of C. aurantium L. species to be rich in monoterpenes such as α-terpineol, lianolyl acetate, linalool and limonene. The antifungal activity of this oil showed us an inhibition of the germination of mushrooms, in the same way we could note that the biologic activities are generally assigned to the chemotypes high content in oxygenated monoterpene.

  2. Coriandrum sativum and Lavandula angustifolia Essential Oils: Chemical Composition and Activity on Central Nervous System.

    PubMed

    Caputo, Lucia; Souza, Lucéia Fátima; Alloisio, Susanna; Cornara, Laura; De Feo, Vincenzo

    2016-11-30

    The aims of this study are to determine the chemical composition of Lavandula angustifolia Mill. and Coriandrum sativum L. essential oils, to evaluate their cytotoxic effects in SH-SY5Y human neuroblastoma cells, to investigate whether an alteration of adenylate cyclase 1 (ADCY1) and of extracellular signal-regulated kinase (ERK) expression can take part in the molecular mechanisms of the essential oils, and to study their possible neuronal electrophysiological effects. The essential oils were obtained by hydrodistillation, and studied by GC and GC-MS. In the oils from L. angustifolia and C. sativum , linalool was the main component (33.1% and 67.8%, respectively). SH-SY5Y cells were incubated with different concentrations of essential oils and of linalool. Cell viability and effects on ADCY1 and ERK expression were analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide MTT and Western blotting, respectively. Variation in cellular electrophysiology was studied in primary cultures of rat cortical neurons with a multi-electrode array (MEA)-based approach. The essential oils and linalool revealed different cytotoxic activities. Linalool inhibited ADCY1 and ERK expression. Neuronal networks subjected to L. angustifolia and C. sativum essential oils showed a concentration-dependent inhibition of spontaneous electrical activity.

  3. Coriandrum sativum and Lavandula angustifolia Essential Oils: Chemical Composition and Activity on Central Nervous System

    PubMed Central

    Caputo, Lucia; Souza, Lucéia Fátima; Alloisio, Susanna; Cornara, Laura; De Feo, Vincenzo

    2016-01-01

    The aims of this study are to determine the chemical composition of Lavandula angustifolia Mill. and Coriandrum sativum L. essential oils, to evaluate their cytotoxic effects in SH-SY5Y human neuroblastoma cells, to investigate whether an alteration of adenylate cyclase 1 (ADCY1) and of extracellular signal-regulated kinase (ERK) expression can take part in the molecular mechanisms of the essential oils, and to study their possible neuronal electrophysiological effects. The essential oils were obtained by hydrodistillation, and studied by GC and GC-MS. In the oils from L. angustifolia and C. sativum, linalool was the main component (33.1% and 67.8%, respectively). SH-SY5Y cells were incubated with different concentrations of essential oils and of linalool. Cell viability and effects on ADCY1 and ERK expression were analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide MTT and Western blotting, respectively. Variation in cellular electrophysiology was studied in primary cultures of rat cortical neurons with a multi-electrode array (MEA)-based approach. The essential oils and linalool revealed different cytotoxic activities. Linalool inhibited ADCY1 and ERK expression. Neuronal networks subjected to L. angustifolia and C. sativum essential oils showed a concentration-dependent inhibition of spontaneous electrical activity. PMID:27916876

  4. Chemical composition, antibacterial and antifungal activities of essential oil from Cordia verbenacea DC leaves

    PubMed Central

    Rodrigues, Fabiola F. G.; Oliveira, Liana G. S.; Rodrigues, Fábio F. G.; Saraiva, Manuele E.; Almeida, Sheyla C. X.; Cabral, Mario E. S.; Campos, Adriana R.; Costa, Jose Galberto M.

    2012-01-01

    Background: Cordia verbenacea is a Brazilian coastal shrub popularly known as “erva baleeira”. The essential oil from fresh leaves was obtained by hydrodistillation and analyzed by CG/MS. The main components were identified as β-caryophyllene (25.4%), bicyclogermacrene (11.3%), δ-cadinene (9.%) and α-pinene (9.5%). In this study, the antimicrobial activity of Cordia verbenacea was evaluated. Materials and Methods: The minimal inhibitory concentration (MIC) of the essential oil was obtained using the broth microdilution assay (from 512 to 8 μg/ml). Results: The results showed that the essential oil presented fungistatic activity against Candida albicans and Candida krusei and antibacterial activity against Gram-positive strains (Staphylococcus aureus and Bacillus cereus) and against multiresistant Gram-negative (Escherichia coli 27), in all tests the MIC was 64 μg/ml. When the essential oil was associated to aminoglycosides (subinhibitory concentrations, MIC/8), a synergic and antagonic activity was verified. The synergic effect was observed to the amikacin association (MIC reduction from 256 mlto 64 μg/ml) in all strains tested. Conclusion: The essential oil of Cordia verbenacea influences the activity of antibiotics and may be used as an adjuvant in antibiotic therapy against respiratory tract bacterial pathogens. PMID:22923954

  5. In vitro comparison of three common essential oils mosquito repellents as inhibitors of the Ross River virus

    PubMed Central

    Ralambondrainy, Miora; Belarbi, Essia; Viranaicken, Wildriss; Baranauskienė, Renata; Venskutonis, Petras Rimantas; Desprès, Philippe; El Kalamouni, Chaker; Sélambarom, Jimmy

    2018-01-01

    Background The essential oils of Cymbopogon citratus (CC), Pelargonium graveolens (PG) and Vetiveria zizanioides (VZ) are commonly used topically to prevent mosquito bites and thus the risk of infection by their vectored pathogens such as arboviruses. However, since mosquito bites are not fully prevented, the effect of these products on the level of viral infection remains unknown. Objectives To evaluate in vitro the essentials oils from Reunion Island against one archetypal arbovirus, the Ross River virus (RRV), and investigate the viral cycle step that was impaired by these oils. Methods The essential oils were extracted by hydrodistillation and analyzed by a combination of GC-FID and GC×GC-TOF MS techniques. In vitro studies were performed on HEK293T cells to determine their cytotoxicity, their cytoprotective and virucidal capacities on RRV-T48 strain, and the level of their inhibitory effect on the viral replication and residual infectivity prior, during or following viral adsorption using the reporter virus RRV-renLuc. Results Each essential oil was characterized by an accurate quantification of their terpenoid content. PG yielded the least-toxic extract (CC50 > 1000 μg.mL-1). For the RRV-T48 strain, the monoterpene-rich CC and PG essential oils reduced the cytopathic effect but did not display virucidal activity. The time-of-addition assay using the gene reporter RRV-renLuc showed that the CC and PG essential oils significantly reduced viral replication and infectivity when applied prior, during and early after viral adsorption. Overall, no significant effect was observed for the low monoterpene-containing VZ essential oil. Conclusion The inhibitory profiles of the three essential oils suggest the high value of the monoterpene-rich essential oils from CC and PG against RRV infection. Combined with their repellent activity, the antiviral activity of the essential oils of CC and PG may provide a new option to control arboviral infection. PMID:29771946

  6. Sitophilus granarius L. (Coleoptera) Toxicity and Biological Activities of the Essential Oils of Tanacetum macrophyllum (Waldst. & Kit.) Schultz Bip.

    PubMed

    Polatoğlu, Kaan; Karakoç, Ömer Cem; Demirci, Betül; Gören, Nezhun; Can Başer, Kemal Hüsnü

    2015-01-01

    Insecticides of the natural origin are an important alternative to the synthetic insecticides that are being employed for the preserving stored products. The volatiles obtained from T. cinerariifolium (=Pyrethrum cinerariifolium) is being used for many types of insecticidal applications; however there is a very little information on the insecticidal activity of the essential oils of other Tanacetum species. The main purpose of the present study is to determine the chemical composition of T. macrophyllum (Waldst. & Kit.) Schultz Bip. essential oils and evaluate their insecticidal activity against S. granarius as well as its other beneficial biological activities. Highest contact toxicity was observed in the leaf oil of (88.93%) against S. granarius. The flower oil showed considerable fumigant toxicity against L. minor at 10 mg/mL application concentration (61.86 %) when compared with other samples at the same concentration. The highest DPPH (2,2-Diphenyl-1-picrylhydrazyl) scavenging activity (47.7%) and phosphomolybdenum reducing activity was observed also for the flower oil of T. macrophyllum at 10 mg/mL concentration. The essential oils were analyzed by GC, GC/MS. The flower and leaf oils were characterized with γ-eudesmol 21.5%, (E)-sesquilavandulol 20.3%, copaborneol 8.5% and copaborneol 14.1%, 1,8-cineole 11%, bornyl acetate 9.6%, borneol 6.3% respectively. AHC analysis of the qualitative and quantitative data obtained from the essential oil composition of the T. macrophyllum essential oil from the present research and previous reports pointed out that two different chemotypes could be proposed with current findings which are p-methyl benzyl alcohol/ cadinene and eudesmane chemotypes.

  7. Chemical analysis and biological activity of the essential oils of two valerianaceous species from China: Nardostachys chinensis and Valeriana officinalis.

    PubMed

    Wang, Jihua; Zhao, Jianglin; Liu, Hao; Zhou, Ligang; Liu, Zhilong; Wang, Jingguo; Han, Jianguo; Yu, Zhu; Yang, Fuyu

    2010-09-14

    In order to investigate essential oils with biological activity from local wild plants, two valerianaceous species, Nardostachys chinensis and Valeriana officinalis, were screened for their antimicrobial and antioxidant activity. The essential oils were obtained from the roots and rhizomes of the two plants by hydro-distillation, and were analyzed for their chemical composition by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Calarene (25.31%), aristolone (13.35%), α-selinene (7.32%) and β-maaliene (6.70%) were the major compounds of the 23 identified components which accounted for 92.76% of the total oil of N. chinensis. Patchoulol (16.75%), α-pinene (14.81%), and β-humulene (8.19%) were the major compounds among the 20 identified components, which accounted for 88.11% of the total oil of V. officinalis. Both oils were rich in sesquiterpene hydrocarbons as well as their oxygenated derivatives. Essential oils were shown to have broad spectrum antibacterial activity with MIC values that ranged from 62.5 μg/mL to 400 μg/mL, and IC(50) values from 36.93 μg/mL to 374.72 μg/mL. The oils were also shown to have moderate antifungal activity to Candida albicans growth as well as inhibition of spore germination of Magnaporthe oryzae. Two essential oils were assessed by 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging, β-carotene bleaching and ferrozine-ferrous ions assays, respectively, to show moderate antioxidant activity. Results suggest that the isolated essential oils could be used for future development of antimicrobial and antioxidant agents.

  8. [Effects of low doses of essential oil on the antioxidant state of the erythrocytes, liver, and the brains of mice].

    PubMed

    Misharina, T A; Fatkullina, L D; Alinkina, E S; Kozachenko, A I; Nagler, L G; Medvedeva, I B; Goloshchapov, A N; Burlakova, E B

    2014-01-01

    We studied the effects of essential oil from oregano and clove and a mixture of lemon essential oil and a ginger extract on the antioxidant state of organs in intact and three experimental groups of Bulb mice. We found that the essential oil was an efficient in vivo bioantioxidant when mice were treated with it for 6 months even at very low doses, such as 300 ng/day. All essential oil studied inhibited lipid peroxidation (LPO) in the membranes of erythrocytes that resulted in increased membrane resistance to spontaneous hemolysis, decreased membrane microviscosity, maintenance of their structural integrity, and functional activity. The essential oil substantially decreased the LPO intensity in the liver and the brains of mice and increased the resistance of liver and brain lipids to oxidation and the activity of antioxidant enzymes in the liver. The most expressed bioantioxidant effect on erythrocytes was observed after clove oil treatment, whereas on the liver and brain, after treatment with a mixture of lemon essential oil and a ginger extract.

  9. INVESTIGATION ON CHEMICAL COMPOSITION, ANTIMICROBIAL, ANTIOXIDANT, AND CYTOTOXIC PROPERTIES OF ESSENTIAL OIL FROM DRACOCEPHALUM KOTSCHYI BOISS.

    PubMed

    Ashrafi, Behnam; Ramak, Parvin; Ezatpour, Behrouz; Talei, Gholam Reza

    2017-01-01

    Dracocephalum kotschyi Boiss is a herb with wide-spread applications. Lorestan traditional healers have applied it for the treatment of rheumatoid diseases and stomach disorders. Hydrodistillation process was used for essential oil extraction, the extracted essential oil was then analyzed through combination of capillary GC-FID, GC-MS and RI. The in vitro antimicrobial, antioxidant and cytotoxic activities of this essential oil were examined. Results indicate that the essential oil has a broad range of anti-microbial activity against all of the tested microorganisms. The 50% of cytotoxic concentrations was 26.4 μg/ml and 4266.7 μg/ml for Hela cells and human lymphocytes, respectively. The oil cytotoxicity against the human tumor cell line was far higher than the amount required for human healthy cells. Conversely, the essential oil's IC 50 value of 49.2 μg/ml in the DPPH assay, could be regarded as its strong antioxidant potential. According to the data obtained, it can be concluded that D. kotschyi essential oil could be applied as a safe antibacterial and antioxidant agent for food and pharmaceutical purposes.

  10. Antimicrobial and antiplasmid activities of essential oils.

    PubMed

    Schelz, Zsuzsanna; Molnar, Joseph; Hohmann, Judit

    2006-06-01

    The antimicrobial and antiplasmid activities of essential oils (orange oil, eucalyptus oil, fennel oil, geranium oil, juniper oil, peppermint oil, rosemary oil, purified turpentine oil, thyme oil, Australian tea tree oil) and of menthol, the main component of peppermint oil, were investigated. The antimicrobial activities were determined on the Gram (+) Staphylococcus epidermidis and the Gram (-) Escherichia coli F'lac K12 LE140, and on two yeast Saccharomyces cerevisiae 0425 delta/1 and 0425 52C strains. The antiplasmid activities were investigated on E. coli F'lac bacterial strain. Each of the oils exhibited antimicrobial activity and three of them antiplasmid action. The interaction of peppermint oil and menthol with the antibiotics was studied on the same bacterial strain with the checkerboard method. Peppermint oil and menthol displayed additive synergy with oxytetracycline. A new mechanism of plasmid curing was established for one of the oil components.

  11. Acaricidal activity of pine essential oils and their main components against Tyrophagus putrescentiae, a stored food mite.

    PubMed

    Macchioni, F; Cioni, P L; Flamini, G; Morelli, I; Perrucci, S; Franceschi, A; Macchioni, G; Ceccarini, L

    2002-07-31

    Some essential oils obtained from the branches of four Pinus species (P. pinea L., P. halepensis Mill., P. pinaster Soil in Ait., and P. nigra Arnold) have been evaluated for their acaricidal activity by aerial diffusion against the stored food mite Tyrophagus putrescentiae (L.). All the essential oils showed a good efficacy, but P. pinea oil and its two constituents 1,8-cineole and limonene were the most effective compounds, showing 100% acaricidal activity at 8 microL; 1,8-cineole showed the same activity at 6 microL.

  12. Larvicidal activity of Syzygium aromaticum (L.) Merr and Citrus sinensis (L.) Osbeck essential oils and their antagonistic effects with temephos in resistant populations of Aedes aegypti.

    PubMed

    Araujo, Adriana Faraco de Oliveira; Ribeiro-Paes, João Tadeu; Deus, Juliana Telles de; Cavalcanti, Sócrates Cabral de Holanda; Nunes, Rogéria de Souza; Alves, Péricles Barreto; Macoris, Maria de Lourdes da Graça

    2016-07-04

    Environmentally friendly botanical larvicides are commonly considered as an alternative to synthetic larvicides against Aedes aegypti Linn. In addition, mosquito resistance to currently used larvicides has motivated research to find new compounds acting via different mechanisms of action, with the goal of controlling the spread of mosquitos. Essential oils have been widely studied for this purpose. This work aims to evaluate the larvicidal potential of Syzygium aromaticum and Citrus sinensis essential oils, either alone or in combination with temephos, on Ae. aegypti populations having different levels of organophosphate resistance. The 50% lethal concentration (LC50) of the essential oils alone and in combination with temephos and the influence of essential oils on vector oviposition were evaluated. The results revealed that essential oils exhibited similar larvicidal activity in resistant populations and susceptible populations. However, S. aromaticum and C. sinensis essential oils in combination with temephos did not decrease resistance profiles. The presence of the evaluated essential oils in oviposition sites significantly decreased the number of eggs compared to sites with tap water. Therefore, the evaluated essential oils are suitable for use in mosquito resistance management, whereas their combinations with temephos are not recommended. Additionally, repellency should be considered during formulation development to avoid mosquito deterrence.

  13. Essential oils: from extraction to encapsulation.

    PubMed

    El Asbahani, A; Miladi, K; Badri, W; Sala, M; Aït Addi, E H; Casabianca, H; El Mousadik, A; Hartmann, D; Jilale, A; Renaud, F N R; Elaissari, A

    2015-04-10

    Essential oils are natural products which have many interesting applications. Extraction of essential oils from plants is performed by classical and innovative methods. Numerous encapsulation processes have been developed and reported in the literature in order to encapsulate biomolecules, active molecules, nanocrystals, oils and also essential oils for various applications such as in vitro diagnosis, therapy, cosmetic, textile, food etc. Essential oils encapsulation led to numerous new formulations with new applications. This insures the protection of the fragile oil and controlled release. The most commonly prepared carriers are polymer particles, liposomes and solid lipid nanoparticles. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Screening chemical composition and in vitro antioxidant and antimicrobial activities of the essential oils from Origanum syriacum L. growing in Turkey.

    PubMed

    Alma, Mehmet Hakki; Mavi, Ahmet; Yildirim, Ali; Digrak, Metin; Hirata, Toshifumi

    2003-12-01

    In the present study, essential oil from the leaves of Syrian oreganum [Origanum syriacum L. (Lauraceae)] grown in Turkish state forests of the Dortyol district, Turkey, was obtained by steam distillation. The chemical composition of oil was analysed by GC and GC-MS, and was found to contain 49.02% monoterpenes, 36.60% oxygenated monoterpenes and 12.59% sesquiterpenes. The major components are as follows: gamma-terpinene, carvacrol, p-cymene and beta-caryophyllene. Subsequently, the reducing power, antioxidant and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activities of the essential oil were studied. The reducing power was compared with ascorbic acid, and the other activities were compared with 2,6-di-tert-butyl-4-methyl phenol (BHT, butylated hydroxytoluene). The results showed that the activities were concentration dependent. The antioxidant activities of the oil were slightly lower than those of ascorbic acid or BHT, so the oil can be considered an effective natural antioxidant. Antimicrobial activities of the essential oil from the leaves of Origanum syriacum was also determined on 16 microorganisms tested using the agar-disc diffusion method, and showed antimicrobial activity against 13 of these.

  15. Antifungal and phytotoxic activity of essential oil from root of Senecio amplexicaulis Kunth. (Asteraceae) growing wild in high altitude-Himalayan region.

    PubMed

    Singh, Rajendra; Ahluwalia, Vivek; Singh, Pratap; Kumar, Naresh; Prakash Sati, Om; Sati, Nitin

    2016-08-01

    This work was aimed to evaluate the essential oil from root of medicinally important plant Senecio amplexicaulis for chemical composition, antifungal and phytotoxic activity. The chemical composition analysed by GC/GC-MS showed the presence of monoterpene hydrocarbons in high percentage with marker compounds as α-phellandrene (48.57%), o-cymene (16.80%) and β-ocimene (7.61%). The essential oil exhibited significant antifungal activity against five phytopathogenic fungi, Sclerotium rolfsii, Macrophomina phaseolina, Rhizoctonia solani, Pythium debaryanum and Fusarium oxysporum. The oil demonstrated remarkable phytotoxic activity in tested concentration and significant reduction in seed germination percentage of Phalaris minor and Triticum aestivum at higher concentrations. The roots essential oil showed high yield for one of its marker compound (α-phellandrene) which makes it important natural source of this compound.

  16. Chemical composition and biological activity of the essential oil of Origanum vulgare ssp. hirtum from different areas in the Southern Apennines (Italy).

    PubMed

    Mancini, Emilia; Camele, Ippolito; Elshafie, Hazem S; De Martino, Laura; Pellegrino, Carlo; Grulova, Daniela; De Feo, Vincenzo

    2014-04-01

    The chemical composition of the essential oils of Origanum vulgare ssp. hirtum, growing wild in three different localities in the Southern Apennines, was studied by GC-FID and GC/MS analyses. In total, 103 compounds were identified. The oils were mainly composed of phenolic compounds and all oils belonged to the chemotype carvacrol/thymol. The three essential oils were evaluated for their in vitro phytotoxic activity by determining their influence on the germination and initial radicle elongation of Sinapis arvensis L., Phalaris canariensis L., Lepidium sativum L., and Raphanus sativus L. The seed germination and radicle growth were affected in various degrees. Moreover, the antifungal activity of the three essential oils was assayed against three species causing pre- and postharvest fruit decay (Monilinia laxa, M. fructigena, and M. fructicola). At 1000 ppm, the three oils completely inhibited fungal growth. The hemolytic activity of the oils was assayed and showed no effect on the cell membranes of bovine erythrocytes. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  17. An in vitro antibacterial study of savory essential oil and geraniol in combination with standard antimicrobials.

    PubMed

    Miladinović, Dragoljub L; Ilić, Budimir S; Kocić, Branislava D; Miladinović, Marija D

    2014-11-01

    The chemical composition and antibacterial activity of Satureja kitaibelii Wierzb. ex Heuff. (savory) essential oil were examined, as well as the association between it and standard antimicrobials: tetracycline and chloramphenicol. The antibacterial activities of geraniol, the main constituent of S. kitaibelii oil, individually and in combination with standard antimicrobials were also determined. The interactions of the essential oil and geraniol with antimicrobials toward five selected strains were evaluated using the microdilution checkerboard assay in combination with chemometric methods. Oxygenated monoterpenes were the most abundant compound class in the oil (59.7%), with geraniol (50.4%) as the major compound. The essential oil exhibited in vitro antibacterial activity against all tested bacterial strains, but the activities were lower than those of the standard antimicrobials. The combinations savory oil-chloramphenicol, savory oil-tetracycline and geraniol-chloramphenicol produced predominantly synergistic interactions (FIC indices in the range 0.21-0.87) and substantial reductions in the MIC values of antimicrobials against Gram-negative bacteria, the pharmacological treatment of which is very difficult nowadays. In the PCA and HCA analyses these combinations form a separate group.

  18. Virucidal activity of Colombian Lippia essential oils on dengue virus replication in vitro.

    PubMed

    Ocazionez, Raquel Elvira; Meneses, Rocio; Torres, Flor Angela; Stashenko, Elena

    2010-05-01

    The inhibitory effect of Lippia alba and Lippia citriodora essential oils on dengue virus serotypes replication in vitro was investigated. The cytotoxicity (CC50) was evaluated by the MTT assay and the mode of viral inhibitory effect was investigated with a plaque reduction assay. The virus was treated with the essential oil for 2 h at 37 masculineC before cell adsorption and experiments were conducted to evaluate inhibition of untreated-virus replication in the presence of oil. Antiviral activity was defined as the concentration of essential oil that caused 50% reduction of the virus plaque number (IC50). L. alba oil resulted in less cytotoxicity than L. citriodora oil (CC50: 139.5 vs. 57.6 microg/mL). Virus plaque reduction for all four dengue serotypes was observed by treatment of the virus before adsorption on cell. The IC50 values for L. alba oil were between 0.4-32.6 microg/mL and between 1.9-33.7 microg/mL for L. citriodora oil. No viral inhibitory effect was observed by addition of the essential oil after virus adsorption. The inhibitory effect of the essential oil seems to cause direct virus inactivation before adsorption on host cell.

  19. Fumigant and repellent activities of essential oil extracted from Artemisia dubia and its main compounds against two stored product pests.

    PubMed

    Liang, Jun-Yu; Guo, Shan-Shan; Zhang, Wen-Juan; Geng, Zhu-Feng; Deng, Zhi-Wei; Du, Shu-Shan; Zhang, Ji

    2018-05-01

    The major chemical constituents of the essential oil extracted from Artemisia dubia wall. ex Bess. (Family: Asteraceae) were found as terpinolene (19.02%), limonene (17.40%), 2,5-etheno[4.2.2]propella-3,7,9-triene (11.29%), isoelemicin (11.05%) and p-cymene-8-ol (5.93%). Terpinolene and limonene were separated as main components from the essential oil. The essential oil showed fumigant toxicity against Tribolium castaneum and Liposcelis bostrychophila with LC 50 values of 49.54 and 0.74 mg/L, respectively. The essential oil and isolated compounds of A. dubia showed repellency activities against both insects. Terpinolene and limonene showed the fumigant toxicity against T. castaneum. Terpinolene showed obvious fumigant toxicity against L. bostrychophila. The results indicated that the essential oil of A. dubia had potential to be developed into natural insecticides for controlling stored product pests.

  20. Larvicidal effect of Eucalyptus grandis essential oil and turpentine and their major components on Aedes aegypti larvae.

    PubMed

    Lucia, Alejandro; Gonzalez Audino, Paola; Seccacini, Emilia; Licastro, Susana; Zerba, Eduardo; Masuh, Hector

    2007-09-01

    In the search for new alternatives for the control of Aedes aegypti the larvicidal activity of Eucalyptus grandis essential oil and pine resin essential oil (turpentine) and their major components (alpha- and beta-pinene and 1,8-cineole) was determined. Gas chromatography-mass spectroscopy analysis of E. grandis essential oil revealed that its major components are alpha-pinene and 1,8-cineole. Similar analysis of turpentine obtained by distillation of the resin pitch of conifers showed that alpha- and beta-pinene are the only major components. Third and early 4th instars of the CIPEIN-susceptible strain of Ae. aegypti were exposed to acetonic solutions of E. grandis essential oil, turpentine, and their major components for 24 h. Turpentine, with an LC50 of 14.7 ppm, was more active than the essential oil of E. grandis (LC50: 32.4 ppm). Larvicidal activity of the essential oil components showed that alpha- and beta-pinene present low LC50 values (15.4 and 12.1 ppm, respectively), whereas pure 1,8-cineole showed an LC50 of 57.2 ppm. These results suggest that alpha-pinene in E. grandis and alpha- and beta-pinene in turpentine serve as the principal larvicidal components of both oils. Results obtained on larvicidal effects of essential oil of Eucalyptus grandis and turpentine could be considered a contribution to the search for new biodegradable larvicides of natural origin.

  1. Chemical composition of 8 eucalyptus species' essential oils and the evaluation of their antibacterial, antifungal and antiviral activities

    PubMed Central

    2012-01-01

    Background In 1957, Tunisia introduced 117 species of Eucalyptus; they have been used as fire wood, for the production of mine wood and to fight erosion. Actually, Eucalyptus essential oil is traditionally used to treat respiratory tract disorders such as pharyngitis, bronchitis, and sinusitis. A few investigations were reported on the biological activities of Eucalyptus oils worldwide. In Tunisia, our previous works conducted in 2010 and 2011 had been the first reports to study the antibacterial activities against reference strains. At that time it was not possible to evaluate their antimicrobial activities against clinical bacterial strains and other pathogens such as virus and fungi. Methods The essential oils of eight Eucalyptus species harvested from the Jbel Abderrahman, Korbous (North East Tunisia) and Souinet arboreta (North of Tunisia) were evaluated for their antimicrobial activities by disc diffusion and microbroth dilution methods against seven bacterial isolates: Haemophilus influenzae, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus agalactiae, Streptococcus pneumoniae and Streptococcus pyogenes. In addition, the bactericidal, fungicidal and the antiviral activities of the tested oils were carried out. Results Twenty five components were identified by GC/FID and GC/MS. These components were used to correlate with the biological activities of the tested oils. The chemical principal component analysis identified three groups, each of them constituted a chemotype. According to the values of zone diameter and percentage of the inhibition (zdi, % I, respectively), four groups and subgroups of bacterial strains and three groups of fungal strains were characterized by their sensitivity levels to Eucalyptus oils. The cytotoxic effect and the antiviral activity varied significantly within Eucalyptus species oils. Conclusions E. odorata showed the strongest activity against S. aureus, H. influenzae, S. agalactiae, S. pyogenes, S. pneumoniae and against all the tested fungal strains. In addition, E. odorata oil showed the most cytotoxic effect. However, the best antiviral activity appeared with E. bicostata. Virus pretreatment with E. bicostata essential oil showed better antiviral activity (IC50 = 0.7 mg/ml, SI = 22.8) than cell-pretreatment (IC50 = 4.8 mg/ml, SI = 3.33). The essential oil of E. astringens showed antiviral activity only when incubated with virus prior to cell infection. This activity was dose-dependent and the antiviral activity diminished with the decreasing essential oil concentration. PMID:22742534

  2. Analysis of the main active ingredients and bioactivities of essential oil from Osmanthus fragrans Var. thunbergii using a complex network approach.

    PubMed

    Wang, Le; Tan, Nana; Hu, Jiayao; Wang, Huan; Duan, Dongzhu; Ma, Lin; Xiao, Jian; Wang, Xiaoling

    2017-12-28

    Osmanthus fragrans has been used as folk medicine for thousands of years. The extracts of Osmanthus fragrans flowers were reported to have various bioactivities including free radical scavenging, anti-inflammation, neuroprotection and antitumor effects. However, there is still lack of knowledge about its essential oil. In this work, we analyzed the chemical composition of the essential oil from Osmanthus fragrans var. thunbergii by GC-MS. A complex network approach was applied to investigate the interrelationships between the ingredients, target proteins, and related pathways for the essential oil. Statistical characteristics of the networks were further studied to explore the main active ingredients and potential bioactivities of O. fragrans var. thunbergii essential oil. A total of 44 ingredients were selected from the chemical composition of O. fragrans var. thunbergii essential oil, and that 191 potential target proteins together with 70 pathways were collected for these compounds. An ingredient-target-pathway network was constructed based on these data and showed scale-free property as well as power-law degree distribution. Eugenol and geraniol were screened as main active ingredients with much higher degree values. Potential neuroprotective and anti-tumor effect of the essential oil were also found. A core subnetwork was extracted from the ingredient-target-pathway network, and indicated that eugenol and geraniol contributed most to the neuroprotection of this essential oil. Furthermore, a pathway-based protein association network was built and exhibited small-world property. MAPK1 and MAPK3 were considered as key proteins with highest scores of centrality indices, which might play an important role in the anti-tumor effect of the essential oil. This work predicted the main active ingredients and bioactivities of O. fragrans var. thunbergii essential oil, which would benefit the development and utilization of Osmanthus fragrans flowers. The application of complex network theory was proved to be effective in bioactivities studies of essential oil. Moreover, it provides a novel strategy for exploring the molecular mechanisms of traditional medicines.

  3. MAPK-mediated regulation of growth and essential oil composition in a salt-tolerant peppermint (Mentha piperita L.) under NaCl stress.

    PubMed

    Li, Zhe; Wang, Wenwen; Li, Guilong; Guo, Kai; Harvey, Paul; Chen, Quan; Zhao, Zhongjuan; Wei, Yanli; Li, Jishun; Yang, Hetong

    2016-11-01

    Peppermint (Mentha × piperita L.) is an important and commonly used flavoring agent worldwide, and salinity is a major stress that limits plant growth and reduces crop productivity. This work demonstrated the metabolic responses of essential oil production including the yield and component composition, gene expression, enzyme activity, and protein activation in a salt-tolerant peppermint Keyuan-1 with respect to NaCl stress. Our results showed that Keyuan-1 maintained normal growth and kept higher yield and content of essential oils under NaCl stress than wild-type (WT) peppermint.Gas chromatography-mass spectrometry (GC-MS) and qPCR results showed that compared to WT seedlings, a 150-mM NaCl stress exerted no obvious changes in essential oil composition, transcriptional level of enzymes related to essential oil metabolism, and activity of pulegone reductase (Pr) in Keyuan-1 peppermint which preserved the higher amount of menthol and menthone as well as the lower content of menthofuran upon the 150-mM NaCl stress. Furthermore, it was noticed that a mitogen-activated protein kinase (MAPK) protein exhibited a time-dependent activation in the Keyuan-1 peppermint and primarily involved in the modulation of the essential oil metabolism in the transcript and enzyme levels during the 12-day treatment of 150 mM NaCl. In all, our data elucidated the effect of NaCl on metabolic responses of essential oil production, and demonstrated the MAPK-dependent regulation mechanism of essential oil biosynthesis in the salt-tolerant peppermint, providing scientific basis for the economic and ecological utilization of peppermint in saline land.

  4. Supercritical CO₂ extract and essential oil of aerial part of Ledum palustre L.--Chemical composition and anti-inflammatory activity.

    PubMed

    Baananou, Sameh; Bagdonaite, Edita; Marongiu, Bruno; Piras, Alessandra; Porcedda, Silvia; Falconieri, Danilo; Boughattas, Naceur A

    2015-01-01

    The anti-inflammatory activity of two extracts from the aerial parts of Ledum palustre has been reported. The volatile oil was obtained by supercritical fluid extraction (SFE) and the essential oil by hydrodistillation (HD). The oils were analysed by gas chromatography-mass spectrometry to monitor their composition. Both extracts shared as main compound (41.0-43.4%) ledol (23.3-26.7%) and ascaridole (15.1-4.5%). The anti-inflammatory activity was evaluated by the subcutaneous carrageenan injection-induced hind paw oedema. The treated animals received essential oil (SFE and HD), the reference group received ketoprofen or piroxicam and the control group received NaCl 0.9%. A statistical analysis was performed by the Student t-test. The results show that L. palustre essential oil enhanced a significant inhibition of oedema (50-73%) for HD oil and (52-80%) for SFE oil. These results were similar to those obtained with piroxicam (70%) and ketoprofen (55%).

  5. Chemical Composition and In Vitro Cytotoxic Activity of Essential Oil of Leaves of Malus domestica Growing in Western Himalaya (India)

    PubMed Central

    Walia, Mayanka; Mann, Tavleen S.; Kumar, Dharmesh; Agnihotri, Vijai K.; Singh, Bikram

    2012-01-01

    Light pale-colored volatile oil was obtained from fresh leaves of Malus domestica tree, growing in Dhauladhar range of Himalaya (Himachal Pradesh, India), with characteristic eucalyptol dominant fragrance. The oil was found to be a complex mixture of mono-, sesqui-, di-terpenes, phenolics, and aliphatic hydrocarbons. Seventeen compounds accounting for nearly 95.3% of the oil were characterized with the help of capillary GC, GC-MS, and NMR. Major compounds of the oil were characterized as eucalyptol (43.7%), phytol (11.5%), α-farnesene (9.6%), and pentacosane (7.6%). Cytotoxicity of essential oil of leaves of M. domestica was evaluated by sulforhodamine B (SRB) assays. The essential oil of leaves of M. domestica, tested against three cancer cell lines, namely, C-6 (glioma cells), A549 (human lung carcinoma), CHOK1 (Chinese hamster ovary cells), and THP-1 (human acute monocytic leukemia cell). The highest activity showed by essential oil on C-6 cell lines (98.2%) at concentration of 2000 μg/ml compared to control. It is the first paper in literature to exploit the chemical composition and cytotoxic activity of leaves essential oil of M. domestica. PMID:22619691

  6. Anti-tubercular activity of eleven aromatic and medicinal plants occurring in Colombia.

    PubMed

    Bueno-Sánchez, Juan Gabriel; Martínez-Morales, Jairo René; Stashenko, Elena E; Ribón, Wellman

    2009-03-01

    Human tuberculosis is a contagious-infectious disease mainly caused by Mycobacterium tuberculosis. Although regimens exist for treating tuberculosis, they are far from ideal. Development of effective strategies for treatment of human tuberculosis has posed a challenge, considering the increase in infections associated with the human immunodeficiency virus and immunocompromised patients. Essential oils--volatile, aromatic oil extracts from plants--have been used in traditional treatment of many diseases; however careful investigation of these oils has not been undertaken with respect to treatments of tuberculosis. The in vitro antitubercular activity of essential oils from 11 medicinal plants grown in Colombia were assessed for efficacy as new medications (phytomedicines) for treatment of M. tuberculosis H37Rv. Essential oil extraction and analysis were performed as described Stashenko et al. (2004). Minimal inhibitory concentrations were determined by a colorimetric macrodilution method, following the protocol described by Abate et al. (1998). Isoniazide and rifampin were used as control treatments. Bactericidal and bacteriostatic activity was measured using the method developed by the Clinical and Laboratory Standards Institute consigned in the M26-A protocol. Essential oils from Achyrocline alata and Swinglea glutinosa were the most active with minimal inhibitory concentrations of 62.5 +/- 0.1 and 100 +/- 36 microg ml(-1), respectively. Carvacrol, thymol, p-cymene, 1,8-cineole, limonene, and beta-pinene were the major components, most often identified in the 11 plant extracts of essential oils. Time-kill curve assays demonstrated the bacteriostatic activity of these essential oils. The essential oils from A. alata and S. glutinosa plants, and the components identified therein, are candidates as potential phytotherapeutic agents for human tuberculosis control.

  7. Application of Origanum majorana L. essential oil as an antimicrobial agent in sausage.

    PubMed

    Busatta, C; Vidal, R S; Popiolski, A S; Mossi, A J; Dariva, C; Rodrigues, M R A; Corazza, F C; Corazza, M L; Vladimir Oliveira, J; Cansian, R L

    2008-02-01

    This work reports on the antimicrobial activity in fresh sausage of marjoram (Origanum majorana L.) essential oil against several species of bacteria. The in vitro minimum inhibitory concentration (MIC) was determined for 10 selected aerobic heterotrophic bacterial species. The antimicrobial activity of distinct concentrations of the essential oil based on the highest MIC value was tested in a food system comprising fresh sausage. Batch food samples were also inoculated with a fixed concentration of Escherichia coli and the time course of the product was evaluated with respect to the action of the different concentrations of essential oil. Results showed that addition of marjoram essential oil to fresh sausage exerted a bacteriostatic effect at oil concentrations lower than the MIC, while a bactericidal effect was observed at higher oil concentrations which also caused alterations in the taste of the product.

  8. Anti-inflammatory activity of Pistacia lentiscus essential oil: involvement of IL-6 and TNF-alpha.

    PubMed

    Maxia, Andrea; Sanna, Cinzia; Frau, Maria Assunta; Piras, Alessandra; Karchuli, Manvendra Singh; Kasture, Veena

    2011-10-01

    The topical anti-inflammatory activity of essential oil of Pistacia lentiscus L. was studied using carrageenan induced rat paw edema and cotton pellet induced granuloma. The effect on serum tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) in rats inserted with cotton pellet was also investigated. On topical application, the oil exhibited a significant decrease in paw edema. The oil also inhibited cotton pellet-induced granuloma, and reduced serum TNF-alpha and IL-6. It can be concluded that the essential oil of Pistacia lentiscus reduces leukocyte migration to the damaged tissue and exhibits anti-inflammatory activity.

  9. Biological activity of the essential oils from Cinnamodendron dinisii and Siparuna guianensis

    PubMed Central

    Andrade, Milene Aparecida; Cardoso, Maria das Graças; Gomes, Marcos de Souza; de Azeredo, Camila Maria Oliveira; Batista, Luís Roberto; Soares, Maurilio José; Rodrigues, Leonardo Milani Avelar; Figueiredo, Ana Cristina S.

    2015-01-01

    This study had analyzed the antibacterial, antifungal and trypanocidal activity of the essential oils from Cinnamodendron dinisii Schwacke (Canellaceae) and Siparuna guianensis Aublet (Siparunaceae). The essential oils were obtained from fresh leaves by hydrodistillation, using a modified Clevenger apparatus. Chemical analysis by gas-liquid chromatography coupled to mass spectrometry (GC-MS) showed that these essential oils are rich in monoterpene and sesquiterpene hydrocarbons. Activity against the pathogenic bacteria Escherichia coli , Listeria monocytogenes , Pseudomonas aeruginosa , Salmonella choleraesuis and Staphylococcus aureus was evaluated with the agar cavity diffusion method, while activity on the filamentous fungi Aspergillus flavus , Aspergillus niger , Aspergillus carbonarius and Penicillium commune was evaluated by the disk diffusion technique. Trypanocidal activity was tested against Trypanosoma cruzi epimastigotes, using the Tetrazolium salt (MTT) colorimetric assay. Both essential oils exhibited low inhibitory effect towards bacteria, showing high MIC values (125–500 μg mL −1 ), with Gram positive bacteria being more susceptible. Better inhibitory effect was obtained for the evaluated fungi, with lower MIC values (7.81–250 μg mL −1 ), being A. flavus the most susceptible species. Both essential oils presented low trypanocidal activity, with IC 50 /24 h values of 209.30 μg mL −1 for S. guianensis and 282.93 μg mL −1 for C. dinisii . Thus, the high values observed for the MIC of evaluated bacteria and for IC 50 /24 h of T. cruzi , suggest that the essential oils have a low inhibitory activity against these microorganisms. In addition, the low MIC values observed for the tested fungi species indicate good inhibitory activity on these microorganisms’s growth. PMID:26221107

  10. Structure-activity modelling of essential oils, their components, and key molecular parameters and descriptors.

    PubMed

    Owen, Lucy; Laird, Katie; Wilson, Philippe B

    2018-04-01

    Many essential oil components are known to possess broad spectrum antimicrobial activity, including against antibiotic resistant bacteria. These compounds may be a useful source of new and novel antimicrobials. However, there is limited research on the structure-activity relationship (SAR) of essential oil compounds, which is important for target identification and lead optimization. This study aimed to elucidate SARs of essential oil components from experimental and literature sources. Minimum Inhibitory Concentrations (MICs) of essential oil components were determined against Escherichia coli and Staphylococcus aureus using a microdilution method and then compared to those in published in literature. Of 12 essential oil components tested, carvacrol and cuminaldehyde were most potent with MICs of 1.98 and 2.10 mM, respectively. The activity of 21 compounds obtained from the literature, MICs ranged from 0.004 mM for limonene to 36.18 mM for α-terpineol. A 3D qualitative SAR model was generated from MICs using FORGE software by consideration of electrostatic and steric parameters. An r 2 value of 0.807 for training and cross-validation sets was achieved with the model developed. Ligand efficiency was found to correlate well to the observed activity (r 2  = 0.792), while strongly negative electrostatic regions were present in potent molecules. These descriptors may be useful for target identification of essential oils or their major components in antimicrobial/drug development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Oviposition Deterrent and Larvicidal and Pupaecidal Activity of Seven Essential Oils and their Major Components against Culex quinquefasciatus Say (Diptera: Culicidae): Synergism–antagonism Effects

    PubMed Central

    Andrade-Ochoa, Sergio; Sánchez-Aldana, Daniela; Chacón-Vargas, Karla Fabiola; Rivera-Chavira, Blanca E.; Camacho, Alejandro D.; Nogueda-Torres, Benjamín

    2018-01-01

    The larvicidal activity of essential oils cinnamon (Cinnamomum verum J. Presl), Mexican lime (Citrus aurantifolia Swingle) cumin (Cuminum cyminum Linnaeus), clove (Syzygium aromaticum (L.) Merr. & L.M.Perry), laurel (Laurus nobilis Linnaeus), Mexican oregano (Lippia berlandieri Schauer) and anise (Pimpinella anisum Linnaeus)) and their major components are tested against larvae and pupae of Culex quinquefasciatus Say. Third instar larvae and pupae are used for determination of lethality and mortality. Essential oils with more than 90% mortality after a 30-min treatment are evaluated at different time intervals. Of the essential oils tested, anise and Mexican oregano are effective against larvae, with a median lethal concentration (LC50) of 4.7 and 6.5 µg/mL, respectively. Anise essential oil and t-anethole are effective against pupae, with LC50 values of 102 and 48.7 µg/mL, respectively. Oregano essential oil and carvacrol also have relevant activities. A kinetic analysis of the larvicidal activity, the oviposition deterrent effect and assays of the effects of the binary mixtures of chemical components are undertaken. Results show that anethole has synergistic effects with other constituents. This same effect is observed for carvacrol and thymol. Limonene shows antagonistic effect with β-pinene. The high larvicidal and pupaecidal activities of essential oils and its components demonstrate that they can be potential substitutes for chemical compounds used in mosquitoes control programs. PMID:29443951

  12. Antifungal activity of essential oils extract from Origanum floribundum Munby, Rosmarinus officinalis L. and Thymus ciliatus Desf. against Candida albicans isolated from bovine clinical mastitis.

    PubMed

    Ksouri, S; Djebir, S; Bentorki, A A; Gouri, A; Hadef, Y; Benakhla, A

    2017-06-01

    The aim of this study is to limit the antibiotic use in mastitis treatment and to find other alternatives. The antifungal activity of the essential oils from Origanum floribundum Munby., Rosmarinus officinalis L. and Thymus ciliatus Desf. is studied in the present work against a Candida albicans reference strain and ten C. albicans isolated strains from bovine clinical mastitis. Essential oils were extracted by hydrodistillation technique using Clevenger apparatus. Their chromatographic analysis was performed with a Gas Chromatograph/Mass Spectrometer (GC/MS). Antifungal activities of essential oils were investigated by macrobroth method of dilution in tubes to determine the Minimum Inhibitory Concentrations (MIC 80%). Analysis of the essential oil showed chemical profile dominated by thymol (50.47 and 62.41%) and P-cymene (24.22 and 15.51%) in the oregano and the thyme respectively, 1, 8-cineol (31.50%) and α-pinene (18.33%) in Rosemary. The three essential oils revealed highly effective anticandidal activity, with an MIC of 80% values ranged from 15.02 to 31.08μg/mL. These results suggest that essential oils studied can be real alternatives in the control of mastitis fungi but deserving studies more in-depth and detailed on their application in vivo. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Chemical Constituents and Insecticidal Activities of Ajania fruticulosa Essential Oil.

    PubMed

    Liang, Jun-Yu; Guo, Shan-Shan; You, Chun-Xue; Zhang, Wen-Juan; Wang, Cheng-Fang; Geng, Zhu-Feng; Deng, Zhi-Wei; Du, Shu-Shan; Zhang, Ji

    2016-08-01

    The insecticidal activity and chemical constituents of the essential oil from Ajania fruticulosa were investigated. Twelve constituents representing 91.0% of the essential oil were identified, and the main constituents were 1,8-cineole (41.40%), (+)-camphor (32.10%), and myrtenol (8.15%). The essential oil exhibited contact toxicity against Tribolium castaneum and Liposcelis bostrychophila adults with LD50 values of 105.67 μg/adult and 89.85 μg/cm(2) , respectively. The essential oil also showed fumigant toxicity against two species of insect with LC50 values of 11.52 and 0.65 mg/l, respectively. 1,8-Cineole exhibited excellent fumigant toxicity (LC50  = 5.47 mg/l) against T. castaneum. (+)-Camphor showed obvious fumigant toxicity (LC50  = 0.43 mg/l) against L. bostrychophila. Myrtenol showed contact toxicity (LD50  = 29.40 μg/cm(2) ) and fumigant toxicity (LC50  = 0.50 mg/l) against L. bostrychophila. 1,8-Cineole and (+)-camphor showed strong insecticidal activity to some important insects, and they are main constituents of A. fruticulosa essential oil. The two compounds may be related to insecticidal activity of A. fruticulosa essential oil against T. castaneum and L. bostrychophila. © 2016 Wiley-VHCA AG, Zürich.

  14. Repellent activity of essential oils: a review.

    PubMed

    Nerio, Luz Stella; Olivero-Verbel, Jesus; Stashenko, Elena

    2010-01-01

    Currently, the use of synthetic chemicals to control insects and arthropods raises several concerns related to environment and human health. An alternative is to use natural products that possess good efficacy and are environmentally friendly. Among those chemicals, essential oils from plants belonging to several species have been extensively tested to assess their repellent properties as a valuable natural resource. The essential oils whose repellent activities have been demonstrated, as well as the importance of the synergistic effects among their components are the main focus of this review. Essential oils are volatile mixtures of hydrocarbons with a diversity of functional groups, and their repellent activity has been linked to the presence of monoterpenes and sesquiterpenes. However, in some cases, these chemicals can work synergistically, improving their effectiveness. In addition, the use of other natural products in the mixture, such as vanillin, could increase the protection time, potentiating the repellent effect of some essential oils. Among the plant families with promising essential oils used as repellents, Cymbopogon spp., Ocimum spp. and Eucalyptus spp. are the most cited. Individual compounds present in these mixtures with high repellent activity include alpha-pinene, limonene, citronellol, citronellal, camphor and thymol. Finally, although from an economical point of view synthetic chemicals are still more frequently used as repellents than essential oils, these natural products have the potential to provide efficient, and safer repellents for humans and the environment.

  15. Optimisation of supercritical carbon dioxide extraction of essential oil of flowers of tea (Camellia sinensis L.) plants and its antioxidative activity.

    PubMed

    Chen, Zhenchun; Mei, Xin; Jin, Yuxia; Kim, Eun-Hye; Yang, Ziyin; Tu, Youying

    2014-01-30

    To extract natural volatile compounds from tea (Camellia sinensis) flowers without thermal degradation and residue of organic solvents, supercritical fluid extraction (SFE) using carbon dioxide was employed to prepare essential oil of tea flowers in the present study. Four important parameters--pressure, temperature, static extraction time, and dynamic extraction time--were selected as independent variables in the SFE. The optimum extraction conditions were the pressure of 30 MPa, temperature of 50°C, static time of 10 min, and dynamic time of 90 min. Based on gas chromatography-mass spectrometry analysis, 59 compounds, including alkanes (45.4%), esters (10.5%), ketones (7.1%), aldehydes (3.7%), terpenes (3.7%), acids (2.1%), alcohols (1.6%), ethers (1.3%) and others (10.3%) were identified in the essential oil of tea flowers. Moreover, the essential oil of tea flowers showed relatively stronger DPPH radical scavenging activity than essential oils of geranium and peppermint, although its antioxidative activity was weaker than those of essential oil of clove, ascorbic acid, tert-butylhydroquinone, and butylated hydroxyanisole. Essential oil of tea flowers using SFE contained many types of volatile compounds and showed considerable DPPH scavenging activity. The information will contribute to the future application of tea flowers as raw materials in health-care food and food flavour industries. © 2013 Society of Chemical Industry.

  16. Biological Activities of the Essential Oil from Erigeron floribundus.

    PubMed

    Petrelli, Riccardo; Orsomando, Giuseppe; Sorci, Leonardo; Maggi, Filippo; Ranjbarian, Farahnaz; Biapa Nya, Prosper C; Petrelli, Dezemona; Vitali, Luca A; Lupidi, Giulio; Quassinti, Luana; Bramucci, Massimo; Hofer, Anders; Cappellacci, Loredana

    2016-08-13

    Erigeron floribundus (Asteraceae) is an herbaceous plant widely used in Cameroonian traditional medicine to treat various diseases of microbial and non-microbial origin. In the present study, we evaluated the in vitro biological activities displayed by the essential oil obtained from the aerial parts of E. floribundus, namely the antioxidant, antimicrobial and antiproliferative activities. Moreover, we investigated the inhibitory effects of E. floribundus essential oil on nicotinate mononucleotide adenylyltransferase (NadD), a promising new target for developing novel antibiotics, and Trypanosoma brucei, the protozoan parasite responsible for Human African trypanosomiasis. The essential oil composition was dominated by spathulenol (12.2%), caryophyllene oxide (12.4%) and limonene (8.8%). The E. floribundus oil showed a good activity against Staphylococcus aureus (inhibition zone diameter, IZD of 14 mm, minimum inhibitory concentration, MIC of 512 µg/mL). Interestingly, it inhibited the NadD enzyme from S. aureus (IC50 of 98 µg/mL), with no effects on mammalian orthologue enzymes. In addition, T. brucei proliferation was inhibited with IC50 values of 33.5 µg/mL with the essential oil and 5.6 µg/mL with the active component limonene. The essential oil exhibited strong cytotoxicity on HCT 116 colon carcinoma cells with an IC50 value of 14.89 µg/mL, and remarkable ferric reducing antioxidant power (tocopherol-equivalent antioxidant capacity, TEAC = 411.9 μmol·TE/g).

  17. Repellent activity of five essential oils against Culex pipiens.

    PubMed

    Erler, F; Ulug, I; Yalcinkaya, B

    2006-12-01

    Essential oils extracted from the seeds of anise (Pimpinella anisum), dried fruits of eucalyptus (Eucalyptus camaldulensis), dried foliage of mint (Mentha piperita) and basil (Ocimum basilicum) and fresh foliage of laurel (Laurus nobilis) were tested for their repellency against the adult females of Culex pipiens. All essential oils showed repellency in varying degrees, eucalyptus, basil and anise being the most active.

  18. In Vitro Evaluation of Antioxidant and Antimicrobial Activities of Melaleuca alternifolia Essential Oil

    PubMed Central

    Zhang, Xiaofeng; Guo, Yanjun; Guo, Liying; Jiang, Hui

    2018-01-01

    The in vitro antioxidant and antimicrobial activity of the essential oil from Melaleuca alternifolia (M. alternifolia) was evaluated in this report. The antioxidant potential of the essential oil from M. alternifolia was evaluated by the DPPH (2,2-diphenyl-1-picrylhydrazyl) method, thiobarbituric acid reactive species (TBARS) assay, and the hydroxyl radical scavenging activity method. The essential oil from M. alternifolia was able to reduce DPPH with an EC50 (concentration for 50% of maximal effect) of 48.35 μg/ml, inhibit the lipid peroxidation with an IC50 (50% inhibitory concentration) of 135.9 μg/ml, and eliminate hydroxyl radicals with an EC50 of 43.71 μg/ml. Antimicrobial screening, minimum inhibitory concentration, and minimum bactericidal concentration assays showed that the essential oil from M. alternifolia inhibited strongly the growth of different types of microorganisms, including Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Penicillium italicum Wehmer, and Penicillium digitatum Sacc. Thus, the essential oil of M. alternifolia possesses antioxidant and antimicrobial activity and could be suitable for use as a natural preservative ingredient in food, agriculture, and pharmaceutical industries. PMID:29854733

  19. Essential oil composition and antifungal activity of Melissa officinalis originating from north-Est Morocco, against postharvest phytopathogenic fungi in apples.

    PubMed

    El Ouadi, Y; Manssouri, M; Bouyanzer, A; Majidi, L; Bendaif, H; Elmsellem, H; Shariati, M A; Melhaoui, A; Hammouti, B

    2017-06-01

    To investigate biological control methods against post-harvest phytopathogenic fungi in apples, tests on the antifungal activity of essential oil of Melissa officinalis were carried out. The essential oil, obtained by hydrodistillation, was analyzed by gas chromatography coupled with mass spectrometry (GC-MS). Analysis of the essential oil was able to detect 88.7% of the components. The main components are P-mentha-1,2,3-triol (13.1%), P-menth-3-en-8-ol (8.8%), pulegone (8.8%), piperitynone oxide (8.4%) and 2-piperitone oxide (7.3%). The determination of the antifungal activity of the essential oil of M. officinalisis carried out in vitro using the technique of poison food (PF) and the volatile activity test (VA). To carry out these two tests, three phytopathogens that cause the deterioration of apples have been selected: Botrytis cinerea, Penicillium expansum and Rhizopus stolonifer. The overall results of this study suggest that M. officinalis essential oil has potential as a bio-antifungal preservative for the control of post-harvest diseases of apple. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Chemical composition and antibiofilm activity of Petroselinum crispum and Ocimum basilicum essential oils against Vibrio spp. strains.

    PubMed

    Snoussi, Mejdi; Dehmani, Ameni; Noumi, Emira; Flamini, Guido; Papetti, Adele

    2016-01-01

    In this study, we evaluated the antibacterial activity of parsley and basilic essential oils tested against Vibrio strains and their abilities to inhibit and eradicate the mature biofilm using the XTT assay. Petroselinum crispum essential oil was characterized by 1,3,8-p-menthatriene (24.2%), β-phellandrene (22.8%), apiol (13.2%), myristicin (12.6%) and terpinolene (10.3%) as a major constituents. While, in the basilic oil, linalool (42.1%), (E)-methylcinnamate (16.9%) and 1-8 cineole (7.6%) were the main ones. These two essential oils exhibit high anti-Vibrio spp. activity with varying magnitudes. All microorganisms were strongly affected indicating an appreciable antimicrobial potential of basilic with a diameter of inhibition zones growth ranging from 8.67 to 23.33 mm and MIC and MBC values ranging from (0.023-0.047 mg/ml) and (>3->24 mg/ml), respectively. The two essential oils can inhibit and eradicate the mature biofilm formed on polystyrene surface even at low concentrations, with high magnitude for Ocimum basilicum essential oil. This study gives a better insight into the anti-Vibrio activity of parsley and basilc oils and the possibility of their use to prevent and eradicate contamination of sea products by these strains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. [Research progress of chemical constituents and pharmacological activities of essential oil of Ligusticum chuanxiong].

    PubMed

    Du, Jing-Chang; Xie, Xiao-Fang; Xiong, Liang; Sun, Chen; Peng, Cheng

    2016-12-01

    Essential oil is the low polar and volatile components distilled or extracted from Ligusticum chuanxiong, the dry root of perennial herb L. chuanxiong, which has proven to be one of the main biological active ingredients of L. chuanxiong. Studies suggested that essential oil of L. chuanxiong mainly contains phthalide, terpene alcohols and fatty acids compounds. Different regions or varied extraction technology had influences on the type and contents of compound in essential oil of L. chuanxiong and the total yield efficiency of essential oil, while the differences among the distribution of compounds leads to the variant pharmacological function of essential oil of L. chuanxiong. Researches confirmed that essential oil of L. chuanxiong has kinds of pharmacological activities such as sedation, analgesia, improve function of blood vessels, protected nerve cells and fever-reducing, all these benefits were verified by experiment studies in vivo and some of which were used as therapies in treating migraine, the underlining mechanisms include anti-inflammation, apoptosis pathway and studies found that essential oil of L. chuanxiong possessed very low acute and chronic toxicity at the same time, revealed its great value of development and utilization in clinical applications. Recent studies light some problems such as lack of quality standards and the research of relationship between efficacy and material. The key to apply the usage of essential oil of L. chuanxiong locate in its substantial basis research, the establishment of the quality standards and the joint research institute, more study should work on these fields. Copyright© by the Chinese Pharmaceutical Association.

  2. Chemical composition and antibacterial activity of essential oils from the Tunisian Allium nigrum L.

    PubMed Central

    Rouis-Soussi, Lamia Sakka; Ayeb-Zakhama, Asma El; Mahjoub, Aouni; Flamini, Guido; Jannet, Hichem Ben; Harzallah-Skhiri, Fethia

    2014-01-01

    The chemical composition of the essential oils of different Allium nigrum L. organs and the antibacterial activity were evaluated. The study is particularly interesting because hitherto there are no reports on the antibacterial screening of this species with specific chemical composition. Therefore, essential oils from different organs (flowers, stems, leaves and bulbs) obtained separately by hydrodistillation were analyzed using gas chromatography–mass spectrometry (GC–MS). The antibacterial activity was evaluated using the disc and microdilution assays. In total, 39 compounds, representing 90.8-96.9 % of the total oil composition, were identified. The major component was hexadecanoic acid (synonym: palmitic acid) in all the A. nigrum organs oils (39.1-77.2 %). We also noted the presence of some sesquiterpenes, mainly germacrene D (12.8 %) in leaves oil) and some aliphatic compounds such as n-octadecane (30.5 %) in bulbs oil. Isopentyl isovalerate, 14-oxy-α-muurolene and germacrene D were identified for the first time in the genus Allium L. All the essential oils exhibited antimicrobial activity, especially against Enterococcus faecalis and Staphylococcus aureus. The oil obtained from the leaves exhibited an interesting antibacterial activity, with a Minimum Inhibitory Concentration (MIC) of 62.50 µg/mL against these two latter strains. The findings showed that the studied oils have antibacterial activity, and thus great potential for their application in food preservation and natural health products. PMID:26417280

  3. Antimicrobial activities of essential oil and hexane extract of Florence fennel [Foeniculum vulgare var. azoricum (Mill.) Thell.] against foodborne microorganisms.

    PubMed

    Cetin, Bülent; Ozer, Hakan; Cakir, Ahmet; Polat, Taşkin; Dursun, Atilla; Mete, Ebru; Oztürk, Erdoğan; Ekinci, Melek

    2010-02-01

    The objective of this study was to determine the chemical compositions of the essential oil and hexane extract isolated from the inflorescence, leaf stems, and aerial parts of Florence fennel and the antimicrobial activities of the essential oil, hexane extract, and their major component, anethole, against a large variety of foodborne microorganisms. Gas chromatography and gas chromatography-mass spectrometry analysis showed that the essential oils obtained from inflorescence, leaf stems, and whole aerial parts contained (E)-anethole (59.28-71.69%), limonene (8.30-10.73%), apiole (trace to 9.23%), beta-fenchyl acetate (3.02-4.80%), and perillene (2.16-3.29%) as the main components. Likewise, the hexane extract of the plant sample exhibited a similar chemical composition, and it contained (E)-anethole (53.00%), limonene (27.16%), gamma-terpinene (4.09%), and perillene (3.78%). However, the hexane extract also contained less volatile components such as n-hexadecanoic acid (1.62%), methyl palmitate (1.17%), and linoleic acid (1.15%). The in vitro antimicrobial assays showed that the essential oil, anethole, and hexane extract were effective against most of the foodborne pathogenic, saprophytic, probiotic, and mycotoxigenic microorganisms tested. The results of the present study revealed that (E)-anethole, the main component of Florence fennel essential oil, is responsible for the antimicrobial activity and that the essential oils as well as the hexane extract can be used as a food preservative. This study is the first report showing the antimicrobial activities of essential oil and hexane extract of Florence fennel against probiotic bacteria.

  4. Insecticidal Activity and Chemical Composition of the Morinda lucida Essential Oil against Pulse Beetle Callosobruchus maculatus

    PubMed Central

    Owolabi, Moses S.; Ogundajo, Akintayo L.; Ogunwande, Isiaka A.; Yusuff, Olaniyi K.; Flores-Fernandez, Karen Isabel; Flores-Fernandez, Jose Miguel

    2014-01-01

    Insecticidal activity of essential oil extracted from Morinda lucida was tested on pulse beetle Callosobruchus maculatus, which is a pest that causes serious damage to several pulses. The insecticidal activity was compared with two pesticides, Phostoxin and Primo-ban-20. 120 mixed sex adult C. maculatus were introduced, along with 30 g of cowpeas. Four concentrations (0.40, 0.20, 0.10, and 0.05 μg/mL) of the M. lucida essential oil, Phostoxin, and Primo-ban-20 were tested. Essential oil chemical composition was analyzed by GC-MS. M. lucida essential oil showed a high toxicological effect, producing 100% mortality after 72 hours at a dose of 0.20 μg/mL. M. lucida essential oil had a potent insecticidal activity (LC90 = 0.629 μg/mL) compared to both pesticides, Phostoxin (LC90 = 0.652 μg/mL) and Primo-ban-20 (LC90 = 0.726 μg/mL), at 24 h. The main compounds of the essential oil were the oxygenated monoterpenoids, 1,8-cineole (43.4%), and α-terpinyl acetate (14.5%), and the monoterpene hydrocarbons, mostly sabinene (8.2%) and β-pinene (4.0%). Results clearly indicate that M. lucida essential oil can be used as an effective alternative for pulse beetle C. maculatus control, and it could be tested against other pulse beetles affecting Asia and Africa and throughout the world, thereby reducing use of synthetic pesticides. PMID:25143991

  5. Larvicidal activity of essential oil and methanol extract of Nepeta menthoides against malaria vector Anopheles stephensi.

    PubMed

    Mahnaz, Khanavi; Alireza, Fallah; Hassan, Vatandoost; Mahdi, Sedaghat; Reza, Abai Mohammad; Abbas, Hadjiakhoondi

    2012-12-01

    To investigate the larvicidal activity of essential oil and methanol extract of the Nepeta menthoides (N. menthoides) against main malaria vector, Anopheles stephensi (An. stephensi). The essential oil of plant was obtained by Clevenger type apparatus and the methanol extract was supplied with Percolation method. Larvicidal activity was tested by WHO method. Twenty five fourth-instar larvae of An. stephensi were used in the larvicidal assay and four replicates were tested for each concentration. Five different concentrations of the oil and extract were tested for calculation of LC(50) and LC(90) values. The LC(50) and LC(90) values were determined by probit analysis. LC(50) was 69.5 and 234.3 ppm and LC(90) was 175.5 and 419.9 ppm for the extract and essential oil respectively. According to the results of this study methanolic extract of plant exhibited more larvicidal activity than essential oil. This could be useful for investigation of new natural larvicidal compounds. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  6. Chemical composition and resistance-modifying effect of the essential oil of Lantana camara Linn

    PubMed Central

    Sousa, Erlânio O.; Silva, Natálya F.; Rodrigues, Fabiola F. G.; Campos, Adriana R.; Lima, Sidney G.; Costa, José Galberto M.

    2010-01-01

    In this work, the chemical constituents, antibacterial and modulatory activities of the essential oil of Lantana camara Linn were studied. The essential oil was extracted from the leaves of L. camara by hydrodistillation method using Clevenger's apparatus and its chemical constituents were separated and identified by GC-MS, and the relative content of each constituent was determined by area normalization. Among the 25 identified components, bicyclogermacrene (19.42%), isocaryophyllene (16.70%), valecene (12.94%) and germacrene D (12.34%) were the main constituents. The oil was examined to antibacterial and modulatory activities against the multiresistant strains of Escherichia coli and Staphylococcus aureus by microdilution test. The results show an inhibitory activity to E. coli (MIC 512 μg/ml) and S. aureus (MIC 256 μg/ml). The synergism of the essential oil and aminoglycosides was verified too, with significant reduction of MICs (7 ×, 1250-5 μg/ml) against E. coli. It is suggested that the essential oil of Lantana camara Linn could be used as a source of plant-derived natural products with resistance-modifying activity. PMID:20668570

  7. Artemisia sieberi Besser essential oil and treatment of fungal infections.

    PubMed

    Mahboubi, Mohaddese

    2017-05-01

    A. sieberi essential oil has been used for treatment of hardly curable infectious ulcers in Middle East Medicine and has been famous due to its wormicide effects. In this review, we evaluated the potency of A. sieberi essential oil in treatment of fungal infections. We searched in PubMed Central, Science direct, Wiley, Springer, SID, and accessible books, reports, thesis. There is a lot of mixed information on chemical compositions of A. sieberi essential oil, but most articles reported α, β-thujones as the main components of essential oils. In vitro studies confirmed the antifungal activity of A. sieberi essential oil against saprophytes fungi, dermatophytes, Malassezia sp. and Candida sp. and these results were confirmed in six clinical studies. The clinical studies confirmed the superiority of A. sieberi essential oil (5%) lotion in improvement of clinical signs of fungal superficial diseases, and mycological laboratory examinations of dermatophytosis and pityriasis versicolor diseases than clotrimazole (1%) topical treatment. The recurrence rate of superficial fungal infections with dermatophytosis and pityriasis versicolor was statistically lower in A. sieberi essential oil (5%) lotion than clotrimazole. There are no adverse effects due to the application of A. sieberi essential oil in clinical studies. Despite, the efficacy of A. sieberi essential oil against Candida sp., there is no clinical study about their related infections. Investigation about the effects of A. sieberi essential oil on fungal virulence factors in order to identifying the exact mechanism of antifungal activity and clinical trials on Candida related diseases are recommended. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Activity of Schinus areira (Anacardiaceae) essential oils against the grain storage pest Tribolium castaneum.

    PubMed

    Descamps, Lilian R; Sánchez Chopa, Carolina; Ferrero, Adriana A

    2011-06-01

    Essential oils extracted from leaves and fruits of Schinus areira (Anacardiaceae) were tested for their repellent, toxic and feeding deterrent properties against Tribolium castaneum (Coleoptera: Tenebrionidae) larvae and adults. A topical application assay was employed for the contact toxicity study and filter paper impregnation for the fumigant assay. A treated diet was also used to evaluate the repellent activity and a flour disk bioassay for the feeding deterrent action and nutritional index alteration. The essential oil of the leaves contained mainly monoterpenoids, with alpha-phellandrene, 3-carene and camphene predominant, whereas that from the fruits contained mainly alpha-phellandrene, 3-carene and beta-myrcene. The leaf essential oil showed repellent effects, whereas that from the fruit was an attractant. Both oils produced mortality against larvae in topical and fumigant bioassays, but fumigant toxicity was not found against adults. Moreover, both essential oils produced some alterations in nutritional index. These results show that the essential oils from S. areira could be applicable to the management of populations of Tribolium castaneum.

  9. Chemical composition and anticancer and antioxidant activities of Schinus molle L. and Schinus terebinthifolius Raddi berries essential oils.

    PubMed

    Bendaoud, Houcine; Romdhane, Mehrez; Souchard, Jean Pierre; Cazaux, Sylvie; Bouajila, Jalloul

    2010-08-01

    Essential oils were obtained by steam distillation from berries of Schinus molle L. and Schinus terebinthifolius Raddi originating from southern of Tunisia and analyzed by GC-FID and GC-MS. Among 57 and 62 compounds (%[mg/100 g dry matter]) identified in these oils, the main were alpha-phellandrene (46.52%[1256.15] and 34.38%[859.60]), beta-phellandrene (20.81%[561.74] and 10.61%[265.15]), alpha-terpineol (8.38%[226.26] and 5.60%[140.03]), alpha-pinene (4.34%[117.29] and 6.49%[162.25]), beta-pinene (4.96%[133.81] and 3.09%[77.30]) and p-cymene (2.49%[67.28] and 7.34%[183.40]), respectively. A marked quantity of gamma-cadinene (18.04%[451.05]) was also identified in the S. terebinthifolius essential oil whereas only traces (0.07%[1.81]) were detected in the essential oil of S. molle. The in vitro antioxidant and antiradical scavenging properties of the investigated essential oils were evaluated by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-Azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays. Essential oil of S. terebinthifolius expressed stronger antioxidant activity in the ABTS assay, with an IC(50) of 24 +/- 0.8 mg/L, compared to S. molle (IC(50)= 257 +/- 10.3 mg/L). Essential oils were also evaluated for their anticancer activities against human breast cancer cells (MCF-7). S. terebinthifolius essential oil was more effective against tested cell lines (IC(50)= 47 +/- 9 mg/L) than that from S. molle (IC(50)= 54 +/- 10 mg/L). Suggestions on relationships between chemical composition and biological activities are outlined.

  10. Activity of Six Essential Oils Extracted from Tunisian Plants against Legionella pneumophila.

    PubMed

    Chaftar, Naouel; Girardot, Marion; Quellard, Nathalie; Labanowski, Jérôme; Ghrairi, Tawfik; Hani, Khaled; Frère, Jacques; Imbert, Christine

    2015-10-01

    The aim of this study was to investigate the composition of six essential oils extracted from Tunisian plants, i.e., Artemisia herba-alba Asso, Citrus sinensis (L.) Osbeck, Juniperus phoenicea L., Rosmarinus officinalis L., Ruta graveolens L., and Thymus vulgaris L., and to evaluate their activity against Legionella pneumophila (microdilution assays). Eight Legionella pneumophila strains were studied, including the two well-known serogroup 1 Lens and Paris strains as controls and six environmental strains isolated from Tunisian spas belonging to serogroups 1, 4, 5, 6, and 8. The essential oils were generally active against L. pneumophila. The activities of the A. herba-alba, C. sinensis, and R. officinalis essential oils were strain-dependent, whereas those of the J. phoenicea and T. vulgaris oils, showing the highest anti-Legionella activities, with minimum inhibitory concentrations (MICs) lower than 0.03 and lower than or equal to 0.07 mg/ml, respectively, were independent of the strains' serogroup. Moreover, the microorganisms treated with T. vulgaris essential oil were shorter, swollen, and less electron-dense compared to the untreated controls. Isoborneol (20.91%), (1S)-α-pinene (18.30%) β-phellandrene (8.08%), α-campholenal (7.91%), and α-phellandrene (7.58%) were the major components isolated from the J. phoenicea oil, while carvacrol (88.50%) was the main compound of the T. vulgaris oil, followed by p-cymene (7.86%). This study highlighted the potential interest of some essential oils extracted from Tunisian plants as biocides to prevent the Legionella risk. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  11. Chemical composition and biological activity of the essential oil from leaves of Moringa oleifera Lam. cultivated in Mozambique.

    PubMed

    Marrufo, Tatiana; Nazzaro, Filomena; Mancini, Emilia; Fratianni, Florinda; Coppola, Raffaele; De Martino, Laura; Agostinho, Adelaide Bela; De Feo, Vincenzo

    2013-09-09

    The antioxidant capacity and antimicrobial activity of the essential oil of Moringa oleifera (Moringaceae) grown in Mozambique was investigated. The chemical composition was studied by means of GC and GC-MS analysis. Hexacosane (13.9%), pentacosane (13.3%) and heptacosane (11.4%) were the main components. Ultra High Performance Chromatography-DAD analysis detected the flavonoids quercetin (126 μg/g) and luteolin (6.2 μg/g). The essential oil exhibited a relatively low free radical scavenging capacity. The antimicrobial activity of the essential oil was assayed against two Gram-positive strains (Bacillus cereus, Staphylococcus aureus), two Gram-negative strains (Escherichia coli, Pseudomonas aeruginosa), and five fungal strains of agro-food interest (Penicillium aurantiogriseum, Penicillium expansum, Penicillium citrinum, Penicillium digitatum, and Aspergillus niger spp.). B. cereus and P. aeruginosa, as well as the fungal strains were sensitive to the essential oil.

  12. Frankincense, pine needle and geranium essential oils suppress tumor progression through the regulation of the AMPK/mTOR pathway in breast cancer.

    PubMed

    Ren, Peng; Ren, Xiang; Cheng, Lei; Xu, Lixin

    2018-01-01

    BC (BC), as the most common malignancy in women worldwide, is associated with high morbidity and mortality. However, chemoresistance and toxicity are the main causes that limit the success of treatment in aggressive BC cases. Thus, there is a vital need to identify and develop novel therapeutic agents. Frankincense, pine needle and geranium essential oils have been reported to play critical biological activities in cancer. However, to the best of our knowledge whether frankincense, pine needle and geranium essential oils have any effect on the progression of BC in MCF-7 cells remains unclear. In the present study, we assessed the possible effects of frankincense, pine needle and geranium essential oils on cell viability, proliferation, migration and invasion as well as the possible mechanisms. MCF-7 cells were treated with oils, and associations with BC were investigated. In the present study, we clearly revealed that frankincense, pine needle and geranium essential oils suppressed cell viability, proliferation, migration and invasion in human BC MCF-7 cells. Further data demonstrated that frankincense, pine needle and geranium essential oils induced apoptosis, but did not affect cell cycle progression. Consistent with the in vitro activities, frankincense essential oil was effective in inhibiting tumor growth and inducing tumor cell apoptosis in a human BC mouse model. In addition, these 3 essential oils modulated the activity of the AMPK/mTOR signaling pathway. In conclusion, the present study indicated that frankincense, pine needle and geranium essential oils were involved in the progression of BC cells possibly through the AMPK/mTOR pathway.

  13. Antibacterial activity and mechanism of action of Monarda punctata essential oil and its main components against common bacterial pathogens in respiratory tract.

    PubMed

    Li, Hong; Yang, Tian; Li, Fei-Yan; Yao, Yan; Sun, Zhong-Min

    2014-01-01

    The aim of the current research work was to study the chemical composition of the essential oil of Monarda punctata along with evaluating the essential oil and its major components for their antibacterial effects against some frequently encountered respiratory infection causing pathogens. Gas chromatographic mass spectrometric analysis revealed the presence of 13 chemical constituents with thymol (75.2%), p-cymene (6.7%), limonene (5.4), and carvacrol (3.5%) as the major constituents. The oil composition was dominated by the oxygenated monoterpenes. Antibacterial activity of the essential oil and its major constituents (thymol, p-cymene, limonene) was evaluated against Streptococcus pyogenes, methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus pneumoniae, Haemophilus influenzae and Escherichia coli. The study revealed that the essential oil and its constituents exhibited a broad spectrum and variable degree of antibacterial activity against different strains. Among the tested strains, Streptococcus pyogenes, Escherichia coli and Streptococcus pneumoniae were the most susceptible bacterial strain showing lowest MIC and MBC values. Methicillin-resistant Staphylococcus aureus was the most resistant bacterial strain to the essential oil treatment showing relatively higher MIC and MBC values. Scanning electron microscopy revealed that the essential oil induced potent and dose-dependent membrane damage in S. pyogenes and MRSA bacterial strains. The reactive oxygen species generated by the Monarda punctata essential oil were identified using 2', 7'-dichlorofluorescein diacetate (DCFDA).This study indicated that the Monarda punctata essential oil to a great extent and thymol to a lower extent triggered a substantial increase in the ROS levels in S. pyogenes bacterial cultures which ultimately cause membrane damage as revealed by SEM results.

  14. Antibacterial activity and mechanism of action of Monarda punctata essential oil and its main components against common bacterial pathogens in respiratory tract

    PubMed Central

    Li, Hong; Yang, Tian; Li, Fei-Yan; Yao, Yan; Sun, Zhong-Min

    2014-01-01

    The aim of the current research work was to study the chemical composition of the essential oil of Monarda punctata along with evaluating the essential oil and its major components for their antibacterial effects against some frequently encountered respiratory infection causing pathogens. Gas chromatographic mass spectrometric analysis revealed the presence of 13 chemical constituents with thymol (75.2%), p-cymene (6.7%), limonene (5.4), and carvacrol (3.5%) as the major constituents. The oil composition was dominated by the oxygenated monoterpenes. Antibacterial activity of the essential oil and its major constituents (thymol, p-cymene, limonene) was evaluated against Streptococcus pyogenes, methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus pneumoniae, Haemophilus influenzae and Escherichia coli. The study revealed that the essential oil and its constituents exhibited a broad spectrum and variable degree of antibacterial activity against different strains. Among the tested strains, Streptococcus pyogenes, Escherichia coli and Streptococcus pneumoniae were the most susceptible bacterial strain showing lowest MIC and MBC values. Methicillin-resistant Staphylococcus aureus was the most resistant bacterial strain to the essential oil treatment showing relatively higher MIC and MBC values. Scanning electron microscopy revealed that the essential oil induced potent and dose-dependent membrane damage in S. pyogenes and MRSA bacterial strains. The reactive oxygen species generated by the Monarda punctata essential oil were identified using 2’, 7’-dichlorofluorescein diacetate (DCFDA).This study indicated that the Monarda punctata essential oil to a great extent and thymol to a lower extent triggered a substantial increase in the ROS levels in S. pyogenes bacterial cultures which ultimately cause membrane damage as revealed by SEM results. PMID:25550774

  15. Insecticidal activity of garlic essential oil and their constituents against the mealworm beetle, Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae).

    PubMed

    Plata-Rueda, Angelica; Martínez, Luis Carlos; Santos, Marcelo Henrique Dos; Fernandes, Flávio Lemes; Wilcken, Carlos Frederico; Soares, Marcus Alvarenga; Serrão, José Eduardo; Zanuncio, José Cola

    2017-04-20

    This study evaluated the insecticidal activity of garlic, Allium sativum Linnaeus (Amaryllidaceae) essential oil and their principal constituents on Tenebrio molitor. Garlic essential oil, diallyl disulfide, and diallyl sulfide oil were used to compare the lethal and repellent effects on larvae, pupae and adults of T. molitor. Six concentrations of garlic essential oil and their principal constituents were topically applied onto larvae, pupae and adults of this insect. Repellent effect and respiration rate of each constituent was evaluated. The chemical composition of garlic essential oil was also determined and primary compounds were dimethyl trisulfide (19.86%), diallyl disulfide (18.62%), diallyl sulfide (12.67%), diallyl tetrasulfide (11.34%), and 3-vinyl-[4H]-1,2-dithiin (10.11%). Garlic essential oil was toxic to T. molitor larva, followed by pupa and adult. In toxic compounds, diallyl disulfide was the most toxic than diallyl sulfide for pupa > larva > adult respectively and showing lethal effects at different time points. Garlic essential oil, diallyl disulfide and diallyl sulfide induced symptoms of intoxication and necrosis in larva, pupa, and adult of T. molitor between 20-40 h after exposure. Garlic essential oil and their compounds caused lethal and sublethal effects on T. molitor and, therefore, have the potential for pest control.

  16. Insecticidal activity of garlic essential oil and their constituents against the mealworm beetle, Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae)

    PubMed Central

    Plata-Rueda, Angelica; Martínez, Luis Carlos; Santos, Marcelo Henrique Dos; Fernandes, Flávio Lemes; Wilcken, Carlos Frederico; Soares, Marcus Alvarenga; Serrão, José Eduardo; Zanuncio, José Cola

    2017-01-01

    This study evaluated the insecticidal activity of garlic, Allium sativum Linnaeus (Amaryllidaceae) essential oil and their principal constituents on Tenebrio molitor. Garlic essential oil, diallyl disulfide, and diallyl sulfide oil were used to compare the lethal and repellent effects on larvae, pupae and adults of T. molitor. Six concentrations of garlic essential oil and their principal constituents were topically applied onto larvae, pupae and adults of this insect. Repellent effect and respiration rate of each constituent was evaluated. The chemical composition of garlic essential oil was also determined and primary compounds were dimethyl trisulfide (19.86%), diallyl disulfide (18.62%), diallyl sulfide (12.67%), diallyl tetrasulfide (11.34%), and 3-vinyl-[4H]-1,2-dithiin (10.11%). Garlic essential oil was toxic to T. molitor larva, followed by pupa and adult. In toxic compounds, diallyl disulfide was the most toxic than diallyl sulfide for pupa > larva > adult respectively and showing lethal effects at different time points. Garlic essential oil, diallyl disulfide and diallyl sulfide induced symptoms of intoxication and necrosis in larva, pupa, and adult of T. molitor between 20–40 h after exposure. Garlic essential oil and their compounds caused lethal and sublethal effects on T. molitor and, therefore, have the potential for pest control. PMID:28425475

  17. Antifungal activity of the essential oils from some species of the genus Pinus.

    PubMed

    Krauze-Baranowska, Mirosława; Mardarowicz, Marek; Wiwart, Marian; Pobłocka, Loretta; Dynowska, Maria

    2002-01-01

    The chemical composition of the essential oils from the needles of Pinus ponderosa (north american pine), P. resinosa (red pine) and P. strobus (eastern white pine) has been determined by GC/MS (FID). The essential oils from P. resinosa and P. ponderosa in comparison to P. strobus have been characterized by the higher content of beta-pinene (42.4%, 45.7% and 7.9% respectively). On the other hand, a-pinene (17.7%) and germacrene D (12.2%) were dominant compounds of P strobus. Moreover the essential oil from P. resinosa was more rich in myrcene-15.9%. Estragole and delta-3-carene, each one in amount ca 8% were identified only in P. ponderosa. The content of essential oils in the needles slightly varied--0.65%--P. resinosa, 0.4%--P strobus, 0.3%--P. ponderosa. The antifungal activity has been investigated towards Fusarium culmorum, F solani and F. poae. The strongest activity was observed for the essential oil from P. ponderosa, which fully inhibited the growth of fungi at the following concentrations--F. culmorum, F. solani at 2% and F. poae at 5%.

  18. The Chemical Composition of Essential Oils from Cinnamomum camphora and Their Insecticidal Activity against the Stored Product Pests.

    PubMed

    Guo, Shanshan; Geng, Zhufeng; Zhang, Wenjuan; Liang, Junyu; Wang, Chengfang; Deng, Zhiwei; Du, Shushan

    2016-11-04

    To investigate the chemical composition and insecticidal activity of the essential oils of certain Chinese medicinal herbs and spices, the essential oils were extracted from the stem barks, leaves, and fruits of Cinnamomum camphora (L.) Presl, which were found to possess strong fumigant toxicity against Tribolium castaneum and Lasioderma serricorne adults. The essential oils of the plants were extracted by the method of steam distillation using a Clavenger apparatus. Their composition was determined by gas chromatography/mass spectrometric (GC-MS) analyses (HP-5MS column), and their insecticidal activity was measured by seal-spaced fumigation. D-camphor (51.3%), 1,8-cineole (4.3%), and α-terpineol (3.8%), while D-camphor (28.1%), linalool (22.9%), and 1,8-cineole (5.3%) were the main constituents of its fruits. The essential oils of the C. camphora all showed fumigant and contact toxicity. Other compounds exhibited various levels of bioactivities. The results indicate that the essential oils of C. camphora and its individual compounds can be considered a natural resource for the two stored-product insect management.

  19. Antitumour properties of the leaf essential oil of Xylopia frutescens Aubl. (Annonaceae).

    PubMed

    Ferraz, Rosana P C; Cardoso, Gabriella M B; da Silva, Thanany B; Fontes, José Eraldo do N; Prata, Ana Paula do N; Carvalho, Adriana A; Moraes, Manoel O; Pessoa, Claudia; Costa, Emmanoel V; Bezerra, Daniel P

    2013-11-01

    The aim of this study was to investigate the chemical composition and anticancer effect of the leaf essential oil of Xylopia frutescens in experimental models. The chemical composition of the essential oil was analysed by GC/FID and GC/MS. In vitro cytotoxic activity of the essential oil was determined on cultured tumour cells. In vivo antitumour activity was assessed in Sarcoma 180-bearing mice. The major compounds identified were (E)-caryophyllene (31.48%), bicyclogermacrene (15.13%), germacrene D (9.66%), δ-cadinene (5.44%), viridiflorene (5.09%) and α-copaene (4.35%). In vitro study of the essential oil displayed cytotoxicity on tumour cell lines and showed IC50 values ranging from 24.6 to 40.0 μg/ml for the NCI-H358M and PC-3M cell lines, respectively. In the in vivo antitumour study, tumour growth inhibition rates were 31.0-37.5%. In summary, the essential oil was dominated by sesquiterpene constituents and has some interesting anticancer activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Antibacterial activities of plant-derived compounds and essential oils toward Cronobacter sakazakii and Cronobacter malonaticus.

    PubMed

    Fraňková, Adéla; Marounek, Milan; Mozrová, Věra; Weber, Jaroslav; Klouček, Pavel; Lukešová, Daniela

    2014-10-01

    Cronobacter sakazakii and C. malonaticus are opportunistic pathogens that cause infections in children and immunocompromised adults. In the present study, the antibacterial activity of 19 plant-derived compounds, 5 essential oils, and an extract of propolis were assessed against C. sakazakii and C. malonaticus. The effects of most of these antimicrobials have not been reported previously. Both strains were susceptible to thymol, carvacrol, thymoquinone, p-cymene, linalool, camphor, citral, eugenol, and trans-cinnamaldehyde as well as cinnamon, lemongrass, oregano, clove, and laurel essential oils; their minimum inhibitory concentrations varied between 0.1 and 2.0 mg/mL. As an alternative treatment method, vapors of the volatiles were tested as an indirect treatment. Vapors of trans-cinnamaldehyde, eugenol, oregano, and cinnamon essential oils inhibited both tested strains, while vapors of linalool were only active against C. sakazakii. To our knowledge, this study is the first time that the inhibitory activity of the vapors of these compounds and essential oils has been reported against Cronobacter spp.

  1. Anti-quorum sensing activity of essential oils from Colombian plants.

    PubMed

    Jaramillo-Colorado, Beatriz; Olivero-Verbel, Jesus; Stashenko, Elena E; Wagner-Döbler, Irene; Kunze, Brigitte

    2012-01-01

    Essential oils from Colombian plants were characterised by GC-MS, and assayed for anti-quorum sensing activity in bacteria sensor strains. Two major chemotypes were found for Lippia alba, the limonene-carvone and the citral (geranial-neral). For other species, the main components included α-pinene (Ocotea sp.), β-pinene (Swinglea glutinosa), cineol (Elettaria cardamomun), α-zingiberene (Zingiber officinale) and pulegone (Minthostachys mollis). Several essential oils presented promising inhibitory properties for the short chain AHL quorum sensing (QS) system, in Escherichia coli containing the biosensor plasmid pJBA132, in particular Lippia alba. Moderate activity as anti-QS using the same plasmid, were also found for selected constituents of essential oils studied here, such as citral, carvone and α-pinene, although solely at the highest tested concentration (250 µg mL(-1)). Only citral presented some activity for the long chain AHL QS system, in Pseudomonas putida containing the plasmid pRK-C12. In short, essential oils from Colombian flora have promising properties as QS modulators.

  2. Total antioxidant activity and antimicrobial potency of the essential oil and oleoresin of Zingiber officinale Roscoe

    PubMed Central

    Bellik, Yuva

    2014-01-01

    Objective To compare in vitro antioxidant and antimicrobial activities of the essential oil and oleoresin of Zingiber officinale Roscoe. Methods The antioxidant activity was evaluated based on the ability of the ginger extracts to scavenge ABTS°+ free radical. The antimicrobial activity was studied by the disc diffusion method and minimal inhibitory concentration was determined by using the agar incorporation method. Results Ginger extracts exerted significant antioxidant activity and dose-depend effect. In general, oleoresin showed higher antioxidant activity [IC50=(1.820±0.034) mg/mL] when compared to the essential oil [IC50=(110.14±8.44) mg/mL]. In terms of antimicrobial activity, ginger compounds were more effective against Escherichia coli, Bacillus subtilis and Staphylococcus aureus, and less effective against Bacillus cereus. Aspergillus niger was least, whereas, Penicillium spp. was higher sensitive to the ginger extracts; minimal inhibitory concentrations of the oleoresin and essential oil were 2 mg/mL and 869.2 mg/mL, respectively. Moreover, the studied extracts showed an important antifungal activity against Candida albicans. Conclusions The study confirms the wide application of ginger oleoresin and essential oil in the treatment of many bacterial and fungal diseases.

  3. In vitro antimicrobial activity of five essential oils on multidrug resistant Gram-negative clinical isolates

    PubMed Central

    Sakkas, Hercules; Gousia, Panagiota; Economou, Vangelis; Sakkas, Vassilios; Petsios, Stefanos; Papadopoulou, Chrissanthy

    2016-01-01

    Aim/Background: The emergence of drug-resistant pathogens has drawn attention on medicinal plants for potential antimicrobial properties. The objective of the present study was the investigation of the antimicrobial activity of five plant essential oils on multidrug resistant Gram-negative bacteria. Materials and Methods: Basil, chamomile blue, origanum, thyme, and tea tree oil were tested against clinical isolates of Acinetobacter baumannii (n = 6), Escherichia coli (n = 4), Klebsiella pneumoniae (n = 7), and Pseudomonas aeruginosa (n = 5) using the broth macrodilution method. Results: The tested essential oils produced variable antibacterial effect, while Chamomile blue oil demonstrated no antibacterial activity. Origanum, Thyme, and Basil oils were ineffective on P. aeruginosa isolates. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration values ranged from 0.12% to 1.50% (v/v) for tea tree oil, 0.25-4% (v/v) for origanum and thyme oil, 0.50% to >4% for basil oil and >4% for chamomile blue oil. Compared to literature data on reference strains, the reported MIC values were different by 2SD, denoting less successful antimicrobial activity against multidrug resistant isolates. Conclusions: The antimicrobial activities of the essential oils are influenced by the strain origin (wild, reference, drug sensitive, or resistant) and it should be taken into consideration whenever investigating the plants’ potential for developing new antimicrobials. PMID:27366345

  4. Toxicity of essential oil of Satureja khuzistanica: in vitro cytotoxicity and anti-microbial activity.

    PubMed

    Yousefzadi, Morteza; Riahi-Madvar, Ali; Hadian, Javad; Rezaee, Fatemeh; Rafiee, Roya; Biniaz, Mehdi

    2014-01-01

    In nature, essential oils play an important role in the protection of the plants by exerting anti-bacterial, -viral, -fungal, -oxidative, -genotoxic, and free radical scavenging properties, as well as in some cases acting as insecticides. Several Satureja species are used in traditional medicine due to recognized therapeutic properties, namely anti-microbial and cytotoxic activities. The purpose of the present work was to determine the biologic activity of the essential oil of S. khuzistanica Jamzad (Lamiaceae) against four human cancer cell lines, as well as its inhibitory effects against a wide array (i.e. n = 11) of pathogenic bacteria and fungi. The essential oil was isolated by hydro-distillation and analyzed by GC-FID and GC-MS. Carvacrol (92.87%) and limonene (1.2%) were found to be the main components of the isolated oil. Anti-microbial activity of the essential oil was assessed using a disc diffusion method; an MTT cytotoxicity assay was employed to test effects of the oil on each cancer cell line. The oil exhibited considerable anti-microbial activity against the majority of the tested bacteria and fungi. The test oil also significantly reduced cell viability of Vero, SW480, MCF7, and JET 3 cells in a dose-dependent manner, with the IC50 values calculated for each cell type being, respectively, 31.2, 62.5, 125, and 125 μg/ml. Based on the findings, it is concluded that the essential oil of S. khuzistanica and its major constituents have a potential for further use in anti-bacterial and anti-cancer applications, pending far more extensive testing of toxicities in normal (i.e. primary) cells.

  5. Chemical composition and antimicrobial activity of the essential oils of Lavandula stoechas L. ssp. stoechas growing wild in Turkey.

    PubMed

    Kirmizibekmez, Hasan; Demirci, Betül; Yeşilada, Erdem; Başer, K Hüsnü Can; Demirci, Fatih

    2009-07-01

    The chemical compositions of the essential oils obtained by hydrodistillation from the dried leaves and flowers of Lavandula stoechas L. ssp. stoechas were separately identified by GC-FID and GC-MS analyses. The main components were alpha-fenchone (41.9 +/- 1.2%), 1,8-cineole (15.6 +/- 0.8%), camphor (12.1 +/- 0.5%), and viridiflorol (4.1 +/- 0.4%) in the leaves; and alpha-fenchone (39.2 +/- 0.9%), myrtenyl acetate (9.5 +/- 0.4%), alpha-pinene (6.1 +/- 0.09%), camphor (5.9 +/- 0.05%) and 1,8-cineole (3.8 +/- 0.1%) in the flowers. Overall, 55 and 66 constituents were identified in the leaf and flower essential oils representing more than 90% and 94% of the total, respectively. In addition, the essential oils were evaluated for their antibacterial and anticandidal activities by broth microdilution. The flower essential oil was found to be relatively more active than the leaf oil towards the tested pathogenic microorganisms. Methicillin-resistant Staphylococcus aureus was more susceptible to the flower oil (MIC = 31.2 microg/mL). The oils, evaluated for their free radical scavenging activity using a TLC-DPPH assay, were inactive at a concentration of 2 mg/mL.

  6. [The antibacterial activity of oregano essential oil (Origanum heracleoticum L.) against clinical strains of Escherichia coli and Pseudomonas aeruginosa].

    PubMed

    Sienkiewicz, Monika; Wasiela, Małgorzata; Głowacka, Anna

    2012-01-01

    The aim of this study was to investigate the antibacterial properties of oregano (Origanum heracleoticum L.) essential oil against clinical strains of Escherichia coli and Pseudomonas aeruginosa. The antibacterial activity of oregano essential oil was investigate against 2 tested and 20 clinical bacterial strains of Escherichia coli and 20 clinical strains o Pseudomonas aeruginosa come from patients with different clinical conditions. The agar dilution method was used for microbial growth inhibition at various concentrations ofoil. Susceptibility testing to antibiotics was carried out using disc-diffusion method. The results of experiments showed that the tested oil was active against all of the clinical strains from both genus of bacteria, but strains of Escherichia coli were more sensitive to tested oil. Essential oil from Origanum heracleoticum L. inhibited the growth of Escherichia coli and Pseudomonas aeruginosa clinical strains with different patters of resistance. The obtained outcomes will enable further investigations using oregano essential oil obtained from Origanum heracleoticum L. as alternative antibacterial remedies enhancing healing process in bacterial infections and as an effective means for the prevention of antibiotic-resistant strain development.

  7. Chemical composition of the essential oil from the leaves of Carapa guianensis collected from Venezuelan Guayana and the antimicrobial activity of the oil and crude extracts.

    PubMed

    Meccia, Gina; Quintero, Patricia; Rojas, Luis B; Usubillaga, Alfredo; Velasco, Judith; Diaz, Tulia; Diaz, Clara; Velásquez, Jesús; Toro, Maria

    2013-11-01

    The essential oil obtained by hydrodistillation of Carapa guianensis Aubl. (Meliaceae) leaves was analyzed by GC-FID and GC-MS. Twenty-three components were identified, which made up 93.7% of the oil. The most abundant constituents were bicyclogermacrene (28.5%), alpha-humulene (17.2%), germacrene B (11.9%), and trans-beta-caryophyllene (9.9%). Antimicrobial activity of the essential oil, as well as the crude extracts of the leaves obtained by refluxing the dried leaves with n-hexane, dichloromethane, and methanol, was determined using the disc diffusion assay. Activity against Staphylococcus aureus ATCC 29923 and Enterococcus faecalis ATCC 29212 was only found for the essential oil and the methanolic extract, at minimal inhibitory concentrations (MIC) of 400 microg/mL and 50 microg/mL.

  8. Composition and cytotoxic activity of essential oils from Xylopia aethiopica (Dunal) A. Rich, Xylopia parviflora (A. Rich) Benth.) and Monodora myristica (Gaertn) growing in Chad and Cameroon

    PubMed Central

    2014-01-01

    Background Cancer has become a global public health problem and the search for new control measures is urgent. Investigation of plant products such as essential oils from Monodora myristica, Xylopia aethiopica and Xylopia parviflora might lead to new anticancer therapy. In this study, we have investigated the antineoplastic activity of essential oils from fruits of these plants growing in Chad and Cameroon. Methods The essential oils obtained by hydrodistillation of fruits of Monodora myristica, Xylopia aethiopica and Xylopia parviflora collected in Chad and Cameroon were analyzed by GC-FID and GC-MS and investigated for their antiproliferative activity against the breast cancer cell line (MCF7). Results Overall, monoterpenes were mostly found in the six essential oils. Oils from X. aethiopica and X. parviflora from Chad and Cameroon mainly contain β-pinene at 24.6%, 28.2%, 35.7% and 32.9% respectively. Monodora myristica oils from both origins contain mainly α-phellandrene at 52.7% and 67.1% respectively. The plant origin did not significantly influence the chemical composition of oils. The six essential oils exerted cytotoxic activity against cancer (MCF-7) and normal cell lines (ARPE-19), with more pronounced effect on neoplastic cells in the majority of cases. The highest selectivity was obtained with the essential oils of X. parviflora from Chad and Cameroon (5.87 and 5.54) which were more cytotoxic against MCF-7 than against normal cell line (ARPE-19) with IC50 values of 0.155 μL/mL and 0.166 μL/mL respectively. Conclusions Essential oils from fruits of Monodora myristica, Xylopia aethiopica and Xylopia parviflora have shown acceptable antineoplastic potency, and might be investigated further in this regard. PMID:24708588

  9. Larvicidal activity of essential oils extracted from commonly used herbs in Lebanon against the seaside mosquito, Ochlerotatus caspius.

    PubMed

    Knio, K M; Usta, J; Dagher, S; Zournajian, H; Kreydiyyeh, S

    2008-03-01

    This study investigates the potential of essential oils from commonly used medical and culinary herbs in Lebanon as an environmentally safe measure to control the seaside mosquito, Ochlerotatus caspius. The composition of essential oils extracted from parsley seeds and leaves, alpine thyme inflorescences, anis seeds, and coriander fruits were analyzed by GC-MS, and the major components of these oils were found to be thymol, sabinene, carvacrol, anethole, and linalool, respectively. Mosquito larvicidal assays were conducted to evaluate the LC(50) and LC(90) after 24 and 48h of the essential oils and their major constituents. All of the tested oils proved to have strong larvicidal activity (LC(50): 15-156ppm) against Oc. caspius fourth instars, with the most potent oil being thyme inflorescence extract, followed by parsley seed oil, aniseed oil, and then coriander fruit oil. Toxicity of each oil major constituent was also estimated and compared to a reported larvicidal compound, eugenol.

  10. Effects of Essential Oil from Hinoki Cypress, Chamaecyparis obtusa, on Physiology and Behavior of Flies

    PubMed Central

    Min, Kyung-Jin

    2015-01-01

    Phytoncides, which are volatile substances emitted from plants for protection against plant pathogens and insects, are known to have insecticidal, antimicrobial, and antifungal activities. In contrast to their negative effects on microorganisms and insects, phytoncides have been shown to have beneficial effects on human health. Essential oil from Hinoki cypress (Chamaecyparis obtusa) is mostly used in commercial products such as air purifiers. However, the physiological/behavioral impact of essential oil from C. obtusa on insects is not established. In this study, we tested the effects of essential oil extracted from C. obtusa on the physiologies and behaviors of Drosophila melanogaster and Musca domestica. Exposure to essential oil from C. obtusa decreased the lifespan, fecundity, locomotive activity, and developmental success rate of D. melanogaster. In addition, both fruit flies and house flies showed strong repellent behavioral responses to the essential oil, with duration times of about 5 hours at 70 μg/ml. These results suggest that essential oil from C. obtusa can be used as a ‘human-friendly’ alternative insect repellent. PMID:26624577

  11. Toxic effect of Atalantia monophylla essential oil on Callosobruchus maculatus and Sitophilus oryzae.

    PubMed

    Nattudurai, Gopal; Baskar, Kathirvelu; Paulraj, Micheal Gabrial; Islam, Villianur Ibrahim Hairul; Ignacimuthu, Savarimuthu; Duraipandiyan, Veeramuthu

    2017-01-01

    The hydrodistillated essential oil of Atalantia monophylla was subjected to GC-MS. Forty compounds were presented in the essential oil. Eugenol (19.76 %), sabinene (19.57 %), 1,2-dimethoxy-4-(2-methoxyethenyl) benzene (9.84 %), beta-asarone (7.02 %) and methyl eugenol (5.52 %) were found the predominant compounds. The oil was tested for fumigant toxicity and repellent activity against Callosobruchus maculatus and Sitophilus oryzae. The development stage of C. maculatus fecundity, adult emergence and also ovicidal activities were studied by the treatment of A. monophylla oil. The oil exhibited considerable fumigation toxicity (70.22 %), repellent activity (85.24 %) and ovicidal activity (100 %) against C. maculatus. The oil significantly reduced the protein, esterase, acetylcholinesterase and glutathione S-transferase on C. maculatus and S. oryzae. It can be considered that A. monophylla has a potential insecticide against stored product pests.

  12. Essential oil composition and antimicrobial activity of Santiria trimera bark.

    PubMed

    Martins, A P; Salgueiro, L R; Gonçalves, M J; Proença da Cunha, A; Vila, R; Cañigueral, S

    2003-01-01

    The composition and the antimicrobial activity of the bark oil of Santiria trimera (Oliv.) Aubrév., a plant widely used by the traditional healers in S. Tomé and Príncipe, especially for wound healing, are reported for the first time. The analysis of the essential oil was carried out by GC and GC-MS. The oil contains a high content of monoterpenes, alpha-pinene (66.6 %) being the major constituent, followed by beta-pinene (20.0 %). The essential oil was active against both bacteria and fungi strains, except Staphylococcus epidermidis and Aspergillus niger. It exhibited significant antimicrobial activity against Proteus vulgaris and Cryptococcus neoformans with MICs values of 1.11 microl/ml and lower than 0.71 microl/ml, respectively.

  13. Effects of oregano essential oil with or without feed enzymes on growth performance, digestive enzyme, nutrient digestibility, lipid metabolism and immune response of broilers fed on wheat-soybean meal diets.

    PubMed

    Basmacioğlu Malayoğlu, H; Baysal, S; Misirlioğlu, Z; Polat, M; Yilmaz, H; Turan, N

    2010-02-01

    1. The study was conducted to determine the effects of dietary supplementation of enzyme and oregano essential oil at two levels, alone or together, on performance, digestive enzyme, nutrient digestibility, lipid metabolism and immune response of broilers fed on wheat-soybean meal based diets. 2. The following dietary treatments were used from d 0 to 21. Diet 1 (control, CONT): a commercial diet containing no enzyme or oregano essential oil, diet 2 (ENZY): supplemented with enzyme, diet 3 (EO250): supplemented with essential oil at 250 mg/kg feed, diet 4 (EO500): supplemented with essential oil at 500 mg/kg feed, diet 5 (ENZY + EO250): supplemented with enzyme and essential oil at 250 mg/kg, and diet 6 (ENZY + EO500): supplemented with enzyme and essential oil at 500 mg/kg. 3. Birds fed on diets containing ENZY, EO250 and ENZY + EO250 had significantly higher weight gain than those given CONT diet from d 0 to 7. No significant effects on feed intake, feed conversion ratio, mortality, organ weights except for jejunum weight and intestinal lengths was found with either enzyme or essential oil, alone or in combination, over the 21-d growth period. The supplementation of essential oil together with enzyme decreased jejunum weight compared with essential oil alone. 4. Supplementation with enzyme significantly decreased viscosity and increased dry matter of digesta, but did not alter pH of digesta. There was no effect of essential oil alone at either concentration on viscosity, dry matter or pH of digesta. A significant decrease in viscosity of digesta appeared when essential oil was used with together enzyme. 5. The supplementation of essential oil at both levels with or without enzyme significantly increased chymotrypsin activity in the digestive system, and improved crude protein digestibility. 6. The higher concentration of essential oil with and without enzyme significantly increased serum total cholesterol concentrations. No significant effect on immune response was found with either enzyme or essential oil, alone or together. 7. Enzymes and essential oil had different modes of actions. The supplementation of enzyme with essential oil in diets is likely more effective in view of performance, nutrient digestibility, enzyme activities and immune system.

  14. Insecticidal and Repellent Activity of Siparuna guianensis Aubl. (Negramina) against Aedes aegypti and Culex quinquefasciatus

    PubMed Central

    Aguiar, Raimundo Wagner Souza; dos Santos, Suetonio Fernandes; da Silva Morgado, Fabricio; Ascencio, Sergio Donizeti; de Mendonça Lopes, Magnólia; Viana, Kelvinson Fernandes; Didonet, Julcemar; Ribeiro, Bergmann Morais

    2015-01-01

    This study investigated the toxic effects of essential oils isolated from Siparuna guianensis against Aedes aegypti, Culex quinquefasciatus (eggs, larvae, pupae, and adult) and Aedes albopictus (C6/36) cells. The oviposition-deterring activity, egg viability, and repellence activity in the presence of different essential oils concentrations were determined. The essential oils showed high toxicity to all developmental stages of A. aegypti and C. quinquefasciatus. Furthermore, the oils also showed high repellent activity towards the adult stage of mosquitoes (0.025 to 0.550 μg/cm2 skin conferred 100% repellence up to 120 min) and in contact with cultured insect cells (C6/36) induced death possibly by necrosis. The results presented in this work show the potential of S. guianensis essential oils for the development of an alternative and effective method for the natural control of mosquitoes in homes and urban areas. PMID:25646797

  15. Growth inhibition of pathogenic bacteria and some yeasts by selected essential oils and survival of L. monocytogenes and C. albicans in apple-carrot juice.

    PubMed

    Irkin, Reyhan; Korukluoglu, Mihriban

    2009-04-01

    Food safety is a fundamental concern of both consumers and the food industry. The increasing incidence of foodborne diseases increases the demand of using antimicrobials in foods. Spices and plants are rich in essential oils and show inhibition activity against microorganisms, which are composed of many compounds. In this research, effects of garlic, bay, black pepper, origanum, orange, thyme, tea tree, mint, clove, and cumin essential oils on Listeria monocytogenes AUFE 39237, Escherichia coli ATCC 25922, Salmonella enteritidis ATCC 13076, Proteus mirabilis AUFE 43566, Bacillus cereus AUFE 81154, Saccharomyces uvarum UUFE 16732, Kloeckera apiculata UUFE 10628, Candida albicans ATCC 10231, Candida oleophila UUPP 94365, and Metschnikowia fructicola UUPP 23067 and effects of thyme oil at a concentration of 0.5% on L. monocytogenes and C. albicans in apple-carrot juice during +4 degrees C storage (first to fifth day) were investigated. Strong antibacterial and antifungal activities of some essential oils were found. Thyme, origanum, clove, and orange essential oils were the most inhibitory against bacteria and yeasts. Cumin, tea tree, and mint oils inhibited the yeasts actively. It is concluded that some essential oils could be used as potential biopreservatives capable of controlling foodborne pathogens and food spoilage yeasts.

  16. Antifungal activity of essential oils from Iranian plants against fluconazole-resistant and fluconazole-susceptible Candida albicans

    PubMed Central

    Sharifzadeh, Aghil; Shokri, Hojjatollah

    2016-01-01

    Objective: The purpose of this study was to assay the antifungal activity of selected essential oils obtained from plants against both fluconazole (FLU)-resistant and FLU-susceptible C. albicans strains isolated from HIV positive patients with oropharyngeal candidiasis (OPC). Materials and Methods: The essential oils were obtained by hydrodistillation method from Myrtus communis (My. communis), Zingiber officinale roscoe (Z. officinale roscoe), Matricaria chamomilla (Ma. chamomilla), Trachyspermum ammi (T. ammi) and Origanum vulgare (O. vulgare). The susceptibility test was based on the M27-A2 methodology. The chemical compositions of the essential oils were obtained by gas chromatography- mass spectroscopy (GC-MS). Results: In GC-MS analysis, thymol (63.40%), linalool (42%), α-pinene (27.87%), α-pinene (22.10%), and zingiberene (31.79%) were found to be the major components of T. ammi, O. vulgare, My. communis, Ma. chamomilla and Z. officinale roscoe, respectively. The results showed that essential oils have different levels of antifungal activity. O. vulgare and T. ammi essential oils were found to be the most efficient (P<0.05). The main finding was that the susceptibilities of FLU-resistant C. albicans to essential oils were higher than those of the FLU-susceptible yeasts. Conclusion: Results of this study indicated that the oils from medicinal plants could be used as potential anti FLU-resistant C. albicans agents. PMID:27222835

  17. Chemical Composition of the Essential Oil from the Fresh Fruits of Xylopia laevigata and its Cytotoxic Evaluation.

    PubMed

    Costa, Emmanoel Vilaça; da Silva, Thanany Brasil; Costa, Cinara Oliveira D'Souza; Soares, Milena Botelho Pereira; Bezerra, Daniel Pereira

    2016-03-01

    The essential oil obtained by hydrodistillation from the fresh fruits of Xylopia laevigata was analyzed by gas chromatography using a flame ionization detector (GC-FID) coupled to a mass spectrometer (GC-MS). Monoterpenes predominated, forming 95.0% of the total essential oil. The major constituents identified were limonene (56.2%), α-pinene (28.0%), and β-pinene (5.5%). Cytotoxic activity against tumor cell lines and non-tumor cells was also investigated; however, neither the essential oil nor its major constituents evaluated presented any cytotoxic activity (IC₅₀ > 25.0 µg mL⁻¹).

  18. Helichrysum gymnocephalum essential oil: chemical composition and cytotoxic, antimalarial and antioxidant activities, attribution of the activity origin by correlations.

    PubMed

    Afoulous, Samia; Ferhout, Hicham; Raoelison, Emmanuel Guy; Valentin, Alexis; Moukarzel, Béatrice; Couderc, François; Bouajila, Jalloul

    2011-09-29

    Helichrysum gymnocephalum essential oil (EO) was prepared by hydrodistillation of its leaves and characterized by GC-MS and quantified by GC-FID. Twenty three compounds were identified. 1,8-Cineole (47.4%), bicyclosesquiphellandrene (5.6%), γ-curcumene (5.6%), α-amorphene (5.1%) and bicyclogermacrene (5%) were the main components. Our results confirmed the important chemical variability of H. gymnocephalum. The essential oil was tested in vitro for cytotoxic (on human breast cancer cells MCF-7), antimalarial (Plasmodium falciparum: FcB1-Columbia strain, chloroquine-resistant) and antioxidant (ABTS and DPPH assays) activities. H. gymnocephalum EO was found to be active against MCF-7 cells, with an IC(50) of 16 ± 2 mg/L. The essential oil was active against P. falciparum (IC(50) = 25 ± 1 mg/L). However, the essential oil exhibited a poor antioxidant activity in the DPPH (IC(50) value > 1,000 mg/L) and ABTS (IC(50) value = 1,487.67 ± 47.70 mg/L) assays. We have reviewed the existing results on the anticancer activity of essential oils on MCF-7 cell line and on their antiplasmodial activity against the P. falciparum. The aim was to establish correlations between the identified compounds and their biological activities (antiplasmodial and anticancer). β-Selinene (R² = 0.76), α-terpinolene (R² = 0.88) and aromadendrene (R² = 0.90) presented a higher relationship with the anti-cancer activity. However, only calamenene (R² = 0.70) showed a significant correlation for the antiplasmodial activity.

  19. Sequential Elution of Essential Oil Constituents during Steam Distillation of Hops (Humulus lupulus L.) and Influence on Oil Yield and Antimicrobial Activity.

    PubMed

    Jeliazkova, Ekaterina; Zheljazkov, Valtcho D; Kačániova, Miroslava; Astatkie, Tess; Tekwani, Babu L

    2018-06-07

    The profile and bioactivity of hops (Humulus lupulus L.) essential oil, a complex natural product extracted from cones via steam distillation, depends on genetic and environmental factors, and may also depend on extraction process. We hypothesized that compound mixtures eluted sequentially and captured at different timeframes during the steam distillation process of whole hop cones would have differential chemical and bioactivity profiles. The essential oil was collected sequentially at 8 distillation time (DT) intervals: 0-2, 2-5, 5-10, 10-30, 30-60, 60-120, 120-180, and 180-240 min. The control was a 4-h non-interrupted distillation. Nonlinear regression models described the DT and essential oil compounds relationship. Fractions yielded 0.035 to 0.313% essential oil, while control yielded 1.47%. The oil eluted during the first hour was 83.2%, 9.6% during the second hour, and only 7.2% during the second half of the distillation. Essential oil (EO) fractions had different chemical profile. Monoterpenes were eluted early, while sequiterpenes were eluted late. Myrcene and linalool were the highest in 0-2 min fraction, β-caryophyllene, β-copaene, β-farnesene, and α-humulene were highest in fractions from middle of distillation, whereas α- bergamotene, γ-muurolene, β- and α-selinene, γ- and δ-cadinene, caryophyllene oxide, humulne epoxide II, τ-cadinol, and 6-pentadecen-2-one were highest in 120-180 or 180-240 min fractions. The Gram-negative Escherichia coli was strongly inhibited by essential oil fractions from 2-5 min and 10-30 min, followed by oil fraction from 0-2 min. The strongest inhibition activity against Gram-negative Yersinia enterocolitica, and Gram-positive Clostridium perfringens, Enterococcus faecalis, and Staphylococcus aureus subs. aureus was observed with the control essential oil. This is the first study to describe significant activity of hops essential oils against Trypanosoma brucei, a parasitic protozoan that causes African trypanosomiasis (sleeping sickness in humans and nagana in other animals). Hops essential oil fractions or whole oil may be used as antimicrobial agents or for the development of new drugs.

  20. Larvicidal activity of Syzygium aromaticum (L.) Merr and Citrus sinensis (L.) Osbeck essential oils and their antagonistic effects with temephos in resistant populations of Aedes aegypti

    PubMed Central

    Araujo, Adriana Faraco de Oliveira; Ribeiro-Paes, João Tadeu; de Deus, Juliana Telles; Cavalcanti, Sócrates Cabral de Holanda; Nunes, Rogéria de Souza; Alves, Péricles Barreto; Macoris, Maria de Lourdes da Graça

    2016-01-01

    Environmentally friendly botanical larvicides are commonly considered as an alternative to synthetic larvicides against Aedes aegypti Linn. In addition, mosquito resistance to currently used larvicides has motivated research to find new compounds acting via different mechanisms of action, with the goal of controlling the spread of mosquitos. Essential oils have been widely studied for this purpose. This work aims to evaluate the larvicidal potential of Syzygium aromaticum and Citrus sinensis essential oils, either alone or in combination with temephos, on Ae. aegypti populations having different levels of organophosphate resistance. The 50% lethal concentration (LC50) of the essential oils alone and in combination with temephos and the influence of essential oils on vector oviposition were evaluated. The results revealed that essential oils exhibited similar larvicidal activity in resistant populations and susceptible populations. However, S. aromaticum and C. sinensis essential oils in combination with temephos did not decrease resistance profiles. The presence of the evaluated essential oils in oviposition sites significantly decreased the number of eggs compared to sites with tap water. Therefore, the evaluated essential oils are suitable for use in mosquito resistance management, whereas their combinations with temephos are not recommended. Additionally, repellency should be considered during formulation development to avoid mosquito deterrence. PMID:27384083

  1. Trypanocidal and cytotoxic activities of essential oils from medicinal plants of Northeast of Brazil.

    PubMed

    Borges, Andrezza Raposo; Aires, Juliana Ramos de Albuquerque; Higino, Taciana Mirely Maciel; de Medeiros, Maria das Graças Freire; Citó, Antonia Maria das Graças Lopes; Lopes, José Arimatéia Dantas; de Figueiredo, Regina Celia Bressan Queiroz

    2012-10-01

    Chagas disease, caused by Trypanosoma cruzi, is an important cause of mortality and morbidity in Latin America. There are no vaccines available, the chemotherapy used to treat this illness has serious side effects and its efficacy on the chronic phase of disease is still a matter of debate. In a search for alternative treatment for Chagas disease, essential oils extracted from traditional medicinal plants Lippia sidoides, Lippia origanoides, Chenopodium ambrosioides, Ocimum gratissimum, Justicia pectorales and Vitex agnus-castus were investigated in vitro for trypanocidal and cytotoxic activities. Essential Oils were extracted by hydrodistillation and submitted to chemical analysis by gas chromatography/mass spectrometry. The concentration of essential oils necessary to inhibit 50% of the epimastigotes or amastigotes growth (IC(50)) and to kill 50% of trypomastigote forms (LC(50)) was estimated. The most prevalent chemical constituents of these essential oils were monoterpenes and sesquiterpenes. All essential oils tested demonstrated an inhibitory effect on the parasite growth and survival. L. sidoides and L. origanoides essential oils were the most effective against trypomastigote and amastigote forms respectively. No significant cytotoxic effects were observed in mouse peritoneal macrophages incubated with essential oils which were more selective against the parasites than mammalian cells. Taken together, our results point towards the use of these essential oils as potential chemotherapeutic agent against T. cruzi. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Liquid and vapour-phase antifungal activities of essential oils against Candida albicans and non-albicans Candida.

    PubMed

    Mandras, Narcisa; Nostro, Antonia; Roana, Janira; Scalas, Daniela; Banche, Giuliana; Ghisetti, Valeria; Del Re, Simonetta; Fucale, Giacomo; Cuffini, Anna Maria; Tullio, Vivian

    2016-08-30

    The management of Candida infections faces many problems, such as a limited number of antifungal drugs, toxicity, resistance of Candida to commonly antifungal drugs, relapse of Candida infections, and the high cost of antifungal drugs. Though azole antifungal agents and derivatives continue to dominate as drugs of choice against Candida infections, there are many available data referring to the anticandidal activity of essential oils. Since we have previous observed a good antimicrobial activity of some essential oils against filamentous fungi, the aim of this study was to extend the research to evaluate the activity of the same oils on Candida albicans, C.glabrata and C.tropicalis clinical strains, as well as the effects of related components. Essential oils selection was based both on ethnomedicinal use and on proved antibacterial and/or antifungal activity of some of these oils. Fluconazole and voriconazole were used as reference drugs. The minimum inhibitory concentration (MIC) and the minimal fungicidal concentration (MFC) of essential oils (thyme red, fennel, clove, pine, sage, lemon balm, and lavender) and their major components were investigated by the broth microdilution method (BM) and the vapour contact assay (VC). Using BM, pine oil showed the best activity against all strains tested, though C.albicans was more susceptible than C.glabrata and C.tropicalis (MIC50-MIC90 = 0.06 %, v/v). On the contrary, sage oil displayed a weak activity (MIC50-MIC90 = 1 %, v/v). Thyme red oil (MIC50-MIC90 ≤ 0.0038 %, v/v for C.albicans and C.tropicalis, and 0.0078- < 0.015 %, v/v for C.glabrata), followed by lemon balm, lavender and sage were the most effective by VC. Carvacrol and thymol showed the highest activity, whereas linalyl acetate showed the lowest activity both by two methods. α-pinene displayed a better activity by BM than VC. Results show a good activity of essential oils, mainly thymus red and pine oils, and their components carvacrol, thymol and α-pinene against Candida spp., including fluconazole/voriconazole resistant strains. These data encourage adequately controlled and randomized clinical investigations. The use in vapour phase could have additional advantages without requiring direct contact, resulting in easy of environmental application such as in hospital, and/or in school.

  3. Chemical composition and α-amylase inhibitory activity of the essential oil from Sabina chinensis cv. Kaizuca leaves.

    PubMed

    Gu, Dongyu; Fang, Chen; Yang, Jiao; Li, Minjing; Liu, Hengming; Yang, Yi

    2018-03-01

    Sabina chinensis cv. Kaizuca (SCK) is a variant of S. chinensis L. The essential oil from its leaves exhibited α-amylase inhibitory activity in vitro and the IC 50 value was 187.08 ± 0.56 μg/mL. Nineteen compounds were identified from this essential oil by gas chromatography-mass spectrometry (GC-MS) analysis. The major compounds identified were bornyl acetate (42.6%), elemol (20.5%), β-myrcene (13.7%) and β-linalool (4.0%). In order to study the reason of the α-amylase inhibitory activity of this essential oil, the identified compounds were docked with α-amylase by molecular docking individually. Among these compounds, γ-eudesmol exhibited the lowest binding energy (-6.73 kcal/mol), followed by α-copaen-11-ol (-6.66 kcal/mol), cubedol (-6.39 kcal/mol) and α-acorenol (-6.12 kcal/mol). The results indicated that these compounds were the active ingredients responsible for the α-amylase inhibitory activity of essential oil from SCK.

  4. Clove and rosemary essential oils and encapsuled active principles (eugenol, thymol and vanillin blend) on meat quality of feedlot-finished heifers.

    PubMed

    de Oliveira Monteschio, Jéssica; de Souza, Kennyson Alves; Vital, Ana Carolina Pelaes; Guerrero, Ana; Valero, Maribel Velandia; Kempinski, Emília Maria Barbosa Carvalho; Barcelos, Vinícius Cunha; Nascimento, Karina Favoreto; do Prado, Ivanor Nunes

    2017-08-01

    Forty Nellore heifers were fed (73days) with different diets: with or without essential oils (clove and/or rosemary essential oil) and/or active principle blend (eugenol, thymol and vanillin). The pH, fat thickness, marbling, muscle area and water losses (thawing and drip) were evaluated 24h post mortem on the Longissimus thoracis, and the effects of aging (14days) was evaluated on the meat cooking losses, color, texture and lipid oxidation. Antioxidant activity was also evaluated. Treatments had no effect (P>0.05) on pH, fat thickness, marbling, muscle area, thawing and drip losses. However, treatments affected (P<0.05) cooking losses, color, texture and lipid oxidation. The diets with essential oil and the active principle blend reduced the lipid oxidation and reduced the color losses in relation to control diet. Aging affected (P<0.05) texture and lipid oxidation. The essential oil and active principles or its blend have potential use in animal feed aiming to maintain/improve meat quality during shelf-life. Copyright © 2017. Published by Elsevier Ltd.

  5. In-vitro and in-vivo anti-Trichophyton activity of essential oils by vapour contact.

    PubMed

    Inouye, S; Uchida, K; Yamaguchi, H

    2001-05-01

    The minimum inhibitory doses (MIDs) of essential oils by vapour contact to inhibit the growth of Trichophyton mentagrophytes and Trichophyton rubrum on agar medium were determined using airtight boxes. Among seven essential oils examined, cinnamon bark oil showed the least MID, followed by lemongrass, thyme and perilla oils. Lavender and tea tree oils showed moderate MID, and citron oil showed the highest MID, being 320 times higher than that of cinnamon bark oil. The MID values were less than the minimum inhibitory concentration (MIC) values determined by agar dilution assay. Furthermore, the minimum agar concentration (MAC) of essential oils absorbed from vapour was determined at the time of MID determination as the second antifungal measure. The MAC value by vapour contact was 1.4 to 4.7 times less than the MAC remaining in the agar at the time of MIC determination by agar dilution assay. Using selected essential oils, the anti-Trichophyton activity by vapour contact was examined in more detail. Lemongrass, thyme and perilla oils killed the conidia, inhibited germination and hyphal elongation at 1-4 micrograms ml-1 air, whereas lavender oil was effective at 40-160 micrograms ml-1 air. The in-vivo efficacy of thyme and perilla oils by vapour contact was shown against an experimental tinea pedis in guinea pigs infected with T. mentagrophytes. These results indicated potent anti-Trichophyton action of essential oils by vapour contact.

  6. Chemical constituents and antioxidant and biological activities of the essential oil from leaves of Solanum spirale.

    PubMed

    Keawsa-ard, Sukanya; Liawruangrath, Boonsom; Liawruangrath, Saisunee; Teerawutgulrag, Aphiwat; Pyne, Stephen G

    2012-07-01

    The essential oil of the leaves Solanium spirale Roxb. was isolated by hydrodistillation and analyzed for the first time using GC and GC-MS. Thirty-nine constituents were identified, constituting 73.36% of the total chromatographical oil components. (E)-Phytol (48.10%), n-hexadecanoic acid (7.34%), beta-selinene (3.67%), alpha-selinene (2.74%), octadecanoic acid (2.12%) and hexahydrofarnesyl acetone (2.00%) were the major components of this oil. The antioxidant activity of the essential oil was evaluated by using the DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging assay. The oil exhibited week antioxidant activity with an IC50 of 41.89 mg/mL. The essential oil showed significant antibacterial activity against both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus with MIC values of 43.0 microg/mL and 21.5 microg/mL, respectively. It also showed significant cytotoxicity against KB (oral cancer), MCF-7 (breast cancer) and NCI-H187 (small cell lung cancer) with the IC50 values of 26.42, 19.69, and 24.02 microg/mL, respectively.

  7. Antibacterial activity and composition of the essential oil of Nepeta hormozganica Jamzad from Iran.

    PubMed

    Sonboli, A; Saadat, M H; Arman, M; Kanani, M R

    2017-12-01

    The composition and antibacterial activity of the essential oil of the aerial flowering parts of Nepeta hormozganica Jamzad have been studied. Analysis of the oil was conducted by GC-FID and GC-MS. Thirty-two components were characterized accounting for 99.4% of the total oil. Oxygenated monoterpenes (87.5%) were found to be the predominant group of compounds, of which 18-cineole (65.0%) and 4aα-7α-7aβ-nepetalactone (13.0%) were the main constituents. The antibacterial activity of the essential oil and its main constituents showed that all of the tested microorganisms were highly inhibited by the essential oil with inhibition zones ranged from 12 to 24 mm. The most sensitive bacteria were Staphylococcus aureus and Staphylococcus epidermidis with the lowest MIC values of 0.3 and 0.6 mg/mL, respectively. Considering sensitivity screening it is conceivable that the activity of the oil from N. hormozganica could be attributed mainly to the synergistic property of 18-cineole and nepetalactone.

  8. Role of direct bioautographic method for detection of antistaphylococcal activity of essential oils.

    PubMed

    Horváth, Györgyi; Jámbor, Noémi; Kocsis, Erika; Böszörményi, Andrea; Lemberkovics, Eva; Héthelyi, Eva; Kovács, Krisztina; Kocsis, Béla

    2011-09-01

    The aim of the present study was the chemical characterization of some traditionally used and therapeutically relevant essential oils (thyme, eucalyptus, cinnamon bark, clove, and tea tree) and the optimized microbiological investigation of the effect of these oils on clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible S. aureus (MSSA). The chemical composition of the oils was analyzed by TLC, and controlled by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). The antibacterial effect was investigated using a TLC-bioautographic method. Antibacterial activity of thyme, clove and cinnamon oils, as well as their main components (thymol, carvacrol, eugenol, and cinnamic aldehyde) was observed against all the bacterial strains used in this study. The essential oils of eucalyptus and tea tree showed weak activity in the bioautographic system. On the whole, the antibacterial activity of the essential oils could be related to their most abundant components, but the effect of the minor components should also be taken into consideration. Direct bioautography is more cost-effective and better in comparison with traditional microbiological laboratory methods (e.g. disc-diffusion, agar-plate technique).

  9. Evaluation of anti-oxidant and anti-microbial activity of various essential oils in fresh chicken sausages.

    PubMed

    Sharma, Heena; Mendiratta, S K; Agarwal, Ravi Kant; Kumar, Sudheer; Soni, Arvind

    2017-02-01

    The present study was undertaken to evaluate antimicrobial and antioxidant effect of essential oils on the quality of fresh (raw, ready to cook) chicken sausages. Several preliminary trials were carried out to optimize the level of four essential oils viz., clove oil, holybasil oil, thyme oil and cassia oil and these essential oils were incorporated at 0.25, 0.125, 0.25 and 0.125%, respectively in fresh chicken sausages. Quality evaluation and detailed storage stability studies were carried out for fresh chicken sausages for 20 days at refrigeration temperature (4 ± 1 °C). Refrigerated storage studies revealed that TBARS of control was significantly higher than treatment products whereas, total phenolics and DPPH activity was significantly lower in control. Among treatments, clove oil products had significantly lower TBARS but higher total phenolic content and DPPH activity followed by cassia oil, thyme oil and holybasil oil products. Microbial count of essential oil incorporated products were significantly lower than control and remained well below the permissible limit of fresh meat products (log 10 7 cfu/g). Cassia oil products were observed with better anti-microbial characteristics than clove oil products at 0.25% level of incorporation, whereas, thyme oil products were better than holy basil oil products at 0.125% level. Storage studies revealed that clove oil (0.25%), holy basil oil (0.125%), cassia oil (0.25%) and thyme oil (0.125%) incorporated aerobically packaged and refrigerated fresh chicken sausages had approx. 4-5, 2-3, 5-6 and 2-3 days longer shelf life than control, respectively.

  10. Antifungal activity of the essential oil of Illicium verum fruit and its main component trans-anethole.

    PubMed

    Huang, Yongfu; Zhao, Jianglin; Zhou, Ligang; Wang, Jihua; Gong, Youwen; Chen, Xujun; Guo, Zejian; Wang, Qi; Jiang, Weibo

    2010-10-27

    In order to identify natural products for plant disease control, the essential oil of star anise (Illicium verum Hook. f.) fruit was investigated for its antifungal activity on plant pathogenic fungi. The fruit essential oil obtained by hydro-distillation was analyzed for its chemical composition by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). trans-Anethole (89.5%), 2-(1-cyclopentenyl)-furan (0.9%) and cis-anethole (0.7%) were found to be the main components among 22 identified compounds, which accounted for 94.6% of the total oil. The antifungal activity of the oil and its main component trans-anethole against plant pathogenic fungi were determined. Both the essential oil and trans-anethole exhibited strong inhibitory effect against all test fungi indicating that most of the observed antifungal properties was due to the presence of trans-anethole in the oil, which could be developed as natural fungicides for plant disease control in fruit and vegetable preservation.

  11. Essential oil composition, phytotoxic and antifungal activities of Ruta chalepensis L. leaves from High Atlas Mountains (Morocco).

    PubMed

    Bouajaj, Sana; Romane, Abderrahmane; Benyamna, Abdennaji; Amri, Ismail; Hanana, Mohsen; Hamrouni, Lamia; Romdhane, Mehrez

    2014-01-01

    This study aimed at the determination of chemical composition of essential oil obtained by hydrodistillation, and to evaluate their phytotoxic and antifungal activities. Leaves of Ruta chalepensis L. were collected from the region of Tensift Al Haouz (High Atlas Mountains) Marrakech, Morocco. The essential oil (oil yield is 0.56%) was analysed by GC-FID and GC/MS. Twenty-two compounds were identified and accounted for 92.4% of the total oil composition. The major components were undecan-2-one (49.08%), nonan-2-one (33.15%), limonene (4.19%) and decanone (2.71%). Antifungal ability of essential oils was tested by disc agar diffusion against five plant pathogenic fungi: Fusarium proliferatum, Fusarium pseudograminearum, Fusarium culmorum, Fusarium graminearum and Fusarium polyphialidicum. The oils were also tested in vitro for herbicidal activity by determining their influence on the germination and the shoot and root growth of two weed species, Triticum durum and Phalaris canariensis L.

  12. Chemical Composition and Antioxidant Properties of Juniper Berry (Juniperus communis L.) Essential Oil. Action of the Essential Oil on the Antioxidant Protection of Saccharomyces cerevisiae Model Organism

    PubMed Central

    Höferl, Martina; Stoilova, Ivanka; Schmidt, Erich; Wanner, Jürgen; Jirovetz, Leopold; Trifonova, Dora; Krastev, Lutsian; Krastanov, Albert

    2014-01-01

    The essential oil of juniper berries (Juniperus communis L., Cupressaceae) is traditionally used for medicinal and flavoring purposes. As elucidated by gas chromatography/flame ionization detector (GC/FID) and gas chromatography/mass spectrometry (GC/MS methods), the juniper berry oil from Bulgaria is largely comprised of monoterpene hydrocarbons such as α-pinene (51.4%), myrcene (8.3%), sabinene (5.8%), limonene (5.1%) and β-pinene (5.0%). The antioxidant capacity of the essential oil was evaluated in vitro by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging, 2,2-azino-bis-3-ethylbenzothiazoline-6 sulfonic acid (ABTS) radical cation scavenging, hydroxyl radical (ОН•) scavenging and chelating capacity, superoxide radical (•O2−) scavenging and xanthine oxidase inhibitory effects, hydrogen peroxide scavenging. The antioxidant activity of the oil attributable to electron transfer made juniper berry essential oil a strong antioxidant, whereas the antioxidant activity attributable to hydrogen atom transfer was lower. Lipid peroxidation inhibition by the essential oil in both stages, i.e., hydroperoxide formation and malondialdehyde formation, was less efficient than the inhibition by butylated hydroxytoluene (BHT). In vivo studies confirmed these effects of the oil which created the possibility of blocking the oxidation processes in yeast cells by increasing activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). PMID:26784665

  13. Chemical Composition and Antioxidant Properties of Juniper Berry (Juniperus communis L.) Essential Oil. Action of the Essential Oil on the Antioxidant Protection of Saccharomyces cerevisiae Model Organism.

    PubMed

    Höferl, Martina; Stoilova, Ivanka; Schmidt, Erich; Wanner, Jürgen; Jirovetz, Leopold; Trifonova, Dora; Krastev, Lutsian; Krastanov, Albert

    2014-02-24

    The essential oil of juniper berries (Juniperus communis L., Cupressaceae) is traditionally used for medicinal and flavoring purposes. As elucidated by gas chromatography/flame ionization detector (GC/FID) and gas chromatography/mass spectrometry (GC/MS methods), the juniper berry oil from Bulgaria is largely comprised of monoterpene hydrocarbons such as α-pinene (51.4%), myrcene (8.3%), sabinene (5.8%), limonene (5.1%) and β-pinene (5.0%). The antioxidant capacity of the essential oil was evaluated in vitro by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging, 2,2-azino-bis-3-ethylbenzothiazoline-6 sulfonic acid (ABTS) radical cation scavenging, hydroxyl radical (ОН(•)) scavenging and chelating capacity, superoxide radical ((•)O₂(-)) scavenging and xanthine oxidase inhibitory effects, hydrogen peroxide scavenging. The antioxidant activity of the oil attributable to electron transfer made juniper berry essential oil a strong antioxidant, whereas the antioxidant activity attributable to hydrogen atom transfer was lower. Lipid peroxidation inhibition by the essential oil in both stages, i.e., hydroperoxide formation and malondialdehyde formation, was less efficient than the inhibition by butylated hydroxytoluene (BHT). In vivo studies confirmed these effects of the oil which created the possibility of blocking the oxidation processes in yeast cells by increasing activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx).

  14. Chemical composition of Schinus molle essential oil and its cytotoxic activity on tumour cell lines.

    PubMed

    Díaz, Cecilia; Quesada, Silvia; Brenes, Oscar; Aguilar, Gilda; Cicció, José F

    2008-01-01

    The leaf essential oil hydrodistilled from Schinus molle grown in Costa Rica was characterised in terms of its chemical composition, antioxidant activity, ability to induce cytotoxicity and the mechanism of cell death involved in the process. As a result, 42 constituents, accounting for 97.2% of the total oil, were identified. The major constituents of the oil were beta-pinene and alpha-pinene. The antioxidant activity showed an IC(50) of 36.3 microg mL(-1). The essential oil was cytotoxic in several cell lines, showing that it is more effective on breast carcinoma and leukemic cell lines. The LD(50) for cytotoxicity at 48 h in K562 corresponded to 78.7 microg mL(-1), which was very similar to the LD(50) obtained when apoptosis was measured. The essential oil did not induce significant necrosis up to 200 microg mL(-1), which together with the former results indicate that apoptosis is the main mechanism of toxicity induced by S. molle essential oil in this cell line. In conclusion, the essential oil tested was weak antioxidant and induced cytotoxicity in different cell types by a mechanism related to apoptosis. It would be interesting to elucidate the role that different components of the oil play in the effect observed here, since some of them could have potential anti-tumoural effects, either alone or in combination.

  15. Antibacterial and antifungal effects of essential oils from coniferous trees.

    PubMed

    Hong, Eui-Ju; Na, Ki-Jeung; Choi, In-Gyu; Choi, Kyung-Chul; Jeung, Eui-Bae

    2004-06-01

    Essential oils have potential biological effects, i.e., antibiotic, anticarcinogenic, and sedative effects during stress. In the present study, we investigated the antibacterial and antifungal effects of essential oils extracted from the coniferous species Pinus densiflora, Pinus koraiensis, and Chamaecyparis obtusa, because their biological activities have not been yet elucidated. The essential oils were quantified using gas chromatography and identified in gas chromatography-mass spectrometric analysis. Simultaneously, antibacterial and antifungal assays were performed using the essential oils distilled from the needles of coniferous trees. The major components and the percentage of each essential oil were: 19.33% beta-thujene in P. densiflora; 10.49% alpha-pinene in P. koraiensis; 10.88% bornyl acetate in C. obtusa. The essential oils from P. densiflora and C. obtusa have antibacterial effects, whereas essential oils from P. koraiensis and C. obtusa have antifungal effects. These results indicate that the essential oils from the three coniferous trees, which have mild antimicrobial properties, can inhibit the growth of gram-positive and gram-negative bacteria and fungi.

  16. Essential oils: extraction, bioactivities, and their uses for food preservation.

    PubMed

    Tongnuanchan, Phakawat; Benjakul, Soottawat

    2014-07-01

    Essential oils are concentrated liquids of complex mixtures of volatile compounds and can be extracted from several plant organs. Essential oils are a good source of several bioactive compounds, which possess antioxidative and antimicrobial properties. In addition, some essential oils have been used as medicine. Furthermore, the uses of essential oils have received increasing attention as the natural additives for the shelf-life extension of food products, due to the risk in using synthetic preservatives. Essential oils can be incorporated into packaging, in which they can provide multifunctions termed "active or smart packaging." Those essential oils are able to modify the matrix of packaging materials, thereby rendering the improved properties. This review covers up-to-date literatures on essential oils including sources, chemical composition, extraction methods, bioactivities, and their applications, particularly with the emphasis on preservation and the shelf-life extension of food products. © 2014 Institute of Food Technologists®

  17. Incorporating Zataria multiflora Boiss. essential oil and sodium bentonite nano-clay open a new perspective to use zein films as bioactive packaging materials.

    PubMed

    Kashiri, Mahboobeh; Maghsoudlo, Yahya; Khomeiri, Morteza

    2017-10-01

    Active zein films with different levels of Zataria multiflora Boiss. essential oil were produced successfully. To enhance properties of this biopolymer for food packaging applications, sodium bentonite clay was used at two levels (2 and 4%). The results indicated that the addition of Z. multiflora Boiss. essential oil caused a reduction in tensile strength and Young's modulus and slight increase in the percent of elongation at break of the films. Maximum solubility in water and water vapor permeability was observed by incorporation of 10% Z. multiflora Boiss. essential oil in the zein matrix. Transmission electron microscopy micrographs of zein film were verified by the exfoliation of the layers of sodium bentonite clay in the zein matrix. Stronger films with lower water vapor permeability and water solubility were evident of good distribution of sodium bentonite clay in the zein matrix. According to the results, 2% sodium bentonite clay was selected for evaluation of nano active film properties. Water vapor permeability, UV light barrier, tensile strength, and Young's modulus values of active films were improved by incorporation of 2% sodium bentonite clay. The antibacterial activity of different contents of Z. multiflora Boiss. essential oil in vapor phase demonstrated that use of Z. multiflora Boiss. essential oil in the liquid phase was more effective than in vapor phase. The antibacterial zein-based films showed that active zein film with 5 and 10% Z. multiflora Boiss. essential oil had reductions of 1.68 log and 2.99 log, respectively, against Listeria monocytogenes and 1.39 and 3.07 log against Escherichia coli. Nano active zein film containing 10% Z. multiflora Boiss. essential oil and 2% sodium bentonite clay showed better antibacterial properties against L. monocytogenes (3.23 log) and E. coli (3.17 log).

  18. Chemical composition and antibacterial activity of the essential oil and the gum of Pistacia lentiscus Var. chia.

    PubMed

    Koutsoudaki, Christina; Krsek, Martin; Rodger, Alison

    2005-10-05

    The essential oil and gum of Pistacia lentiscus var. chia, commonly known as the mastic tree, are natural antimicrobial agents that have found extensive uses in medicine in recent years. In this work, the chemical composition of mastic oil and gum was studied by GC-MS, and the majority of their components was identified. alpha-Pinene, beta-myrcene, beta-pinene, limonene, and beta-caryophyllene were found to be the major components. The antibacterial activity of 12 components of mastic oil and the oil itself was evaluated using the disk diffusion method. Furthermore, attempts were made to separate the essential oil into different fractions in order to have a better picture of the components responsible for its antibacterial activity. Several trace components that appear to contribute significantly to the antibacterial activity of mastic oil have been identified: verbenone, alpha-terpineol, and linalool. The sensitivity to these compounds was different for different bacteria tested (Escherichia coli, Staphylococcus aureus, and Bacillus subtilis), which suggests that the antibacterial efficacy of mastic oil is due to a number of its components working synergistically. The establishment of a correlation between the antibacterial activity of mastic oil and its components was the main purpose of this research. Mastic gum was also examined, but it proved to be more difficult to handle compared to the essential oil.

  19. Ocimum basilicum: Antibacterial activity and association study with antibiotics against bacteria of clinical importance.

    PubMed

    Araújo Silva, Viviane; Pereira da Sousa, Janiere; de Luna Freire Pessôa, Hilzeth; Fernanda Ramos de Freitas, Andrea; Douglas Melo Coutinho, Henrique; Beuttenmuller Nogueira Alves, Larissa; Oliveira Lima, Edeltrudes

    2016-01-01

    Ocimum basilicum L. (Lamiaceae), popularly known as basil, is part of a group of medicinal plants widely used in cooking and known for its beneficial health properties, possessing significant antioxidant effects, antinociceptive, and others. The objective of this study is to determine the pharmacological effects produced on the bacterial strains Staphylococcus aureus and Pseudomonas aeruginosa when standard antibiotics and O. basilicum essential oil are combined. The extraction of O. basilicum (leaves) components was done by steam distillation. The Minimum inhibitory concentration (MIC) was calculated using microdilution technique, where the oil concentrations varied from 2 to 1024 μg/mL. The combinations of O. basilicum oil with ciprofloxacin or imipenem were analyzed by the checkerboard method where fractional inhibitory concentration (FIC) indices were calculated. Ocimum basilicum essential oil, imipenem, and ciprofloxacin showed respective MIC antibacterial activities of 1024, 4, and 2 μg/mL, against S. aureus. In S. aureus, the oil with imipenem association showed synergistic effect (FIC = 0.0625), while the oil with ciprofloxacin showed antagonism (FIC value = 4.25). In P. aeruginosa, the imipenem/oil association showed additive effect for ATCC strains, and synergism for the clinical strain (FIC values = 0.75 and 0.0625). The association of O. basilicum essential oil with ciprofloxacin showed synergism for clinical strains (FIC value = 0.09). Ocimum basilicum essential oil associated with existing standard antibiotics may increase their antibacterial activity, resulting in a synergistic activity against bacterial strains of clinical importance. The antibacterial activity of O. basilicum essential oil may be associated with linalool.

  20. Frankincense essential oil prepared from hydrodistillation of Boswellia sacra gum resins induces human pancreatic cancer cell death in cultures and in a xenograft murine model

    PubMed Central

    2012-01-01

    Background Regardless of the availability of therapeutic options, the overall 5-year survival for patients diagnosed with pancreatic cancer remains less than 5%. Gum resins from Boswellia species, also known as frankincense, have been used as a major ingredient in Ayurvedic and Chinese medicine to treat a variety of health-related conditions. Both frankincense chemical extracts and essential oil prepared from Boswellia species gum resins exhibit anti-neoplastic activity, and have been investigated as potential anti-cancer agents. The goals of this study are to identify optimal condition for preparing frankincense essential oil that possesses potent anti-tumor activity, and to evaluate the activity in both cultured human pancreatic cancer cells and a xenograft mouse cancer model. Methods Boswellia sacra gum resins were hydrodistilled at 78°C; and essential oil distillate fractions were collected at different durations (Fraction I at 0–2 h, Fraction II at 8–10 h, and Fraction III at 11–12 h). Hydrodistillation of the second half of gum resins was performed at 100°C; and distillate was collected at 11–12 h (Fraction IV). Chemical compositions were identified by gas chromatography–mass spectrometry (GC-MS); and total boswellic acids contents were quantified by high-performance liquid chromatography (HPLC). Frankincense essential oil-modulated pancreatic tumor cell viability and cytotoxicity were determined by colorimetric assays. Levels of apoptotic markers, signaling molecules, and cell cycle regulators expression were characterized by Western blot analysis. A heterotopic (subcutaneous) human pancreatic cancer xenograft nude mouse model was used to evaluate anti-tumor capability of Fraction IV frankincense essential oil in vivo. Frankincense essential oil-induced tumor cytostatic and cytotoxic activities in animals were assessed by immunohistochemistry. Results Longer duration and higher temperature hydrodistillation produced more abundant high molecular weight compounds, including boswellic acids, in frankincense essential oil fraactions. Human pancreatic cancer cells were sensitive to Fractions III and IV (containing higher molecular weight compounds) treatment with suppressed cell viability and increased cell death. Essential oil activated the caspase-dependent apoptotic pathway, induced a rapid and transient activation of Akt and Erk1/2, and suppressed levels of cyclin D1 cdk4 expression in cultured pancreatic cancer cells. In addition, Boswellia sacra essential oil Fraction IV exhibited anti-proliferative and pro-apoptotic activities against pancreatic tumors in the heterotopic xenograft mouse model. Conclusion All fractions of frankincense essential oil from Boswellia sacra are capable of suppressing viability and inducing apoptosis of a panel of human pancreatic cancer cell lines. Potency of essential oil-suppressed tumor cell viability may be associated with the greater abundance of high molecular weight compounds in Fractions III and IV. Although chemical component(s) responsible for tumor cell cytotoxicity remains undefined, crude essential oil prepared from hydrodistillation of Boswellia sacra gum resins might be a useful alternative therapeutic agent for treating patients with pancreatic adenocarcinoma, an aggressive cancer with poor prognosis. PMID:23237355

  1. Cytoprotective effects of essential oil of Pinus halepensis L. against aspirin-induced toxicity in IEC-6 cells.

    PubMed

    Bouzenna, Hafsia; Hfaiedh, Najla; Bouaziz, Mouhamed; Giroux-Metges, Marie-Agnès; Elfeki, Abdelfattah; Talarmin, Hélène

    2017-12-01

    Essential oils from Pinus species have been reported to have various therapeutic properties. This study was undertaken to identify the chemical composition and cytoprotective effects of the essential oil of Pinus halepensis L. against aspirin-induced damage in cells in vitro. The cytoprotection of the oil against toxicity of aspirin on the small intestine epithelial cells IEC-6 was tested. The obtained results have shown that 35 different compounds were identified. Aspirin induced a decrease in cell viability, and exhibited significant damage to their morphology and an increase in superoxide dismutase (SOD) and catalase (CAT) activities. However, the co-treatment of aspirin with the essential oil of Pinus induced a significant increase in cell viability and a decrease in SOD and CAT activities. Overall, these finding suggest that the essential oil of Pinus halepensis L. has potent cytoprotective effect against aspirin-induced toxicity in IEC-6 cells.

  2. Efficacy of plant essential oils on postharvest control of rots caused by fungi on different stone fruits in vivo.

    PubMed

    Lopez-Reyes, Jorge Giovanny; Spadaro, Davide; Prelle, Ambra; Garibaldi, Angelo; Gullino, Maria Lodovica

    2013-04-01

    The antifungal activity of plant essential oils was evaluated as postharvest treatment on stone fruit against brown rot and grey mold rot of stone fruit caused by Monilinia laxa and Botrytis cinerea, respectively. The essential oils from basil (Ocimum basilicum), fennel (Foeniculum sativum), lavender (Lavandula officinalis), marjoram (Origanum majorana), oregano (Origanum vulgare), peppermint (Mentha piperita), rosemary (Rosmarinus officinalis), sage (Salvia officinalis), savory (Satureja montana), thyme (Thymus vulgaris), and wild mint (Mentha arvensis) were tested at two different concentrations on apricots (cv. Kyoto and cv. Tonda di Costigliole), nectarines (cv. Big Top and cv. Nectaross) and plums (cv. Italia and cv. TC Sun). The volatile composition of the essential oils tested was determined by gas chromatography-mass spectrometry analysis. The treatments containing essential oils from oregano, savory, and thyme at 1% (vol/vol) controlled both B. cinerea and M. laxa growing on apricots cv. Tonda di Costigliole and plums cv. Italia and cv. TC Sun; however, the same treatments were phytotoxic for the carposphere of nectarines cv. Big Top and cv. Nectaross. Treatments with 10% (vol/vol) essential oils were highly phytotoxic, notwithstanding their efficacy against the pathogens tested. The essential oils containing as major components α-pinene, p-cymene, carvacrol, and thymol showed similar results on stone fruit, so their antimicrobial activity and the phytotoxicity produced could be based on the concentration of their principal compounds and their synergistic activity. The efficacy of the essential oil treatments on control of fungal pathogens in postharvest depended on the fruit cultivar, the composition and concentration of the essential oil applied, and the length of storage.

  3. Chemical composition and antibacterial activities of seven Eucalyptus species essential oils leaves.

    PubMed

    Sebei, Khaled; Sakouhi, Fawzi; Herchi, Wahid; Khouja, Mohamed Larbi; Boukhchina, Sadok

    2015-01-19

    In this paper, we have studied the essential oils chemical composition of the leaves of seven Eucalyptus species developed in Tunisia. Eucalyptus leaves were picked from trees growing in different arboretums in Tunisia. Choucha and Mrifeg arboretums located in Sedjnene, region of Bizerte (Choucha: E. maideni, E. astrengens et E. cinerea; Mrifeg : E. leucoxylon), Korbous arboretums located in the region of Nabeul, North East Tunisia with sub-humid bioclimate, (E. lehmani), Souiniet-Ain Drahem arboretum located in region of Jendouba (E. sideroxylon, E. bicostata). Essential oils were individually tested against a large panel of microorganisms including Staphylococcus aureus (ATCC 6539), Escherichia coli (ATCC 25922), Enterococcus faecalis (ATCC29212), Listeria ivanovii (RBL 30), Bacillus cereus (ATCC11778). The yield of essential oils ranged from 1.2% to 3% (w/w) for the different Eucalyptus species. All essential oils contain α-pinene, 1,8-cineol and pinocarveol-trans for all Eucalyptus species studied. The 1,8-cineol was the major compound in all species (49.07 to 83.59%). Diameter of inhibition zone of essential oils of Eucalyptus species varied from 10 to 29 mm. The largest zone of inhibition was obtained for Bacillus cereus (E. astrengens) and the lowest for Staphylococcus aureus (E. cinerea). The essential oils from E. maideni, E. astrengens, E. cinerea (arboretum of Bizerte), E. bicostata (arboretum of Aindraham) showed the highest antibacterial activity against Listeria ivanovii and Bacillus cereus. The major constituents of Eucalyptus leaves essential oils are 1,8-cineol (49.07 to 83.59%) and α-pinene (1.27 to 26.35%). The essential oils from E. maideni, E. astrengens, E. cinerea, E. bicostata showed the highest antibacterial activity against Listeria ivanovii and Bacillus cereus, they may have potential applications in food and pharmaceutical products.

  4. Composition and biological activities of the essential oil of Piper corcovadensis (Miq.) C. DC (Piperaceae).

    PubMed

    da Silva, Marcelo Felipe Rodrigues; Bezerra-Silva, Patrícia Cristina; de Lira, Camila Soledade; de Lima Albuquerque, Bheatriz Nunes; Agra Neto, Afonso Cordeiro; Pontual, Emmanuel Viana; Maciel, Jefferson Rodrigues; Paiva, Patrícia Maria Guedes; Navarro, Daniela Maria do Amaral Ferraz

    2016-06-01

    Essential oil from fresh leaves of the shrub Piper corcovadensis (Miq.) C. DC was obtained in 0.21% (w/w) yield by hydrodistillation in a Clevenger type apparatus. Thirty-one components, accounting for 96.61% of the leaf oil, were identified by gas chromatography-mass spectrometry. The major constituents of the oil were 1-butyl-3,4-methylenedioxybenzene (30.62%), terpinolene (17.44%), trans -caryophyllene (6.27%), α-pinene (5.92%), δ-cadinene (4.92%), and Limonene (4.46%). Bioassays against larvae of the Dengue mosquito (Aedes aegypti) revealed that leaf oil (LC50 = 30.52 ppm), terpinolene (LC50 = 31.16 ppm), and pure 1-butyl-3,4-methylenedioxybenzene (LC50 = 22.1 ppm) possessed larvicidal activities and are able to interfere with the activity of proteases from L4 gut enzymes. Additionally, the essential oil exhibited a strong oviposition deterrent activity at 50 and 5 ppm. This paper constitutes the first report of biological activities associated with the essential oil of leaves of P. corcovadensis. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. GC and GC/MS Analysis of Essential Oil Composition of the Endemic Soqotraen Leucas virgata Balf.f. and Its Antimicrobial and Antioxidant Activities

    PubMed Central

    Mothana, Ramzi A.; Al-Said, Mansour S.; Al-Yahya, Mohammed A.; Al-Rehaily, Adnan J.; Khaled, Jamal M.

    2013-01-01

    Leucas virgata Balf.f. (Lamiaceae) was collected from the Island Soqotra (Yemen) and its essential oil was obtained by hydrodistillation. The chemical composition of the oil was investigated by GC and GC-MS. Moreover, the essential oil was evaluated for its antimicrobial activity against two Gram-positive bacteria, two Gram-negative bacteria, and one yeast species by using broth micro-dilution assay for minimum inhibitory concentrations (MIC) and antioxidant activity by measuring the scavenging activity of the DPPH radical. The investigation led to the identification of 43 constituents, representing 93.9% of the total oil. The essential oil of L. virgata was characterized by a high content of oxygenated monoterpenes (50.8%). Camphor (20.5%) exo-fenchol (3.4%), fenchon (5.4%), and borneol (3.1%) were identified as the main components. Oxygenated sesquiterpenes were found as the second major group of compounds (21.0%). β-Eudesmol (6.1%) and caryophyllene oxide (5.1%) were the major compounds among oxygenated sesquiterpenes. The results of the antimicrobial assay showed that the oil exhibited a great antibacterial activity against the tested S. aureus, B. subtilis, and E. coli. No activity was found against P. aeruginosa and C. albicans. Moreover, the DPPH-radical scavenging assay exhibited only a moderate antioxidant activity (31%) for the oil at the highest concentration tested (1 mg/mL). PMID:24284402

  6. Acaricidal activities of some essential oils and their monoterpenoidal constituents against house dust mite, Dermatophagoides pteronyssinus (Acari: Pyroglyphidae)

    PubMed Central

    Saad, El-Zemity; Hussien, Rezk; Saher, Farok; Ahmed, Zaitoon

    2006-01-01

    The acaricidal activities of fourteen essential oils and fourteen of their major monoterpenoids were tested against house dust mites Dermatophagoides pteronyssinus. Five concentrations were used over two different time intervals 24 and 48 h under laboratory conditions. In general, it was noticed that the acaricidal effect based on LC 50 of either essential oils or monoterpenoids against the mite was time dependant. The LC 50 values were decreased by increasing of exposure time. Clove, matrecary, chenopodium, rosemary, eucalyptus and caraway oils were shown to have high activity. As for the monoterpenoids, cinnamaldehyde and chlorothymol were found to be the most effective followed by citronellol. This study suggests the use of the essential oils and their major constituents as ecofriendly biodegradable agents for the control of house dust mite, D. pteronyssinus. PMID:17111463

  7. Acaricidal activities of some essential oils and their monoterpenoidal constituents against house dust mite, Dermatophagoides pteronyssinus (Acari: Pyroglyphidae).

    PubMed

    Saad, El-Zemity; Hussien, Rezk; Saher, Farok; Ahmed, Zaitoon

    2006-12-01

    The acaricidal activities of fourteen essential oils and fourteen of their major monoterpenoids were tested against house dust mites Dermatophagoides pteronyssinus. Five concentrations were used over two different time intervals 24 and 48 h under laboratory conditions. In general, it was noticed that the acaricidal effect based on LC(50) of either essential oils or monoterpenoids against the mite was time dependant. The LC(50) values were decreased by increasing of exposure time. Clove, matrecary, chenopodium, rosemary, eucalyptus and caraway oils were shown to have high activity. As for the monoterpenoids, cinnamaldehyde and chlorothymol were found to be the most effective followed by citronellol. This study suggests the use of the essential oils and their major constituents as ecofriendly biodegradable agents for the control of house dust mite, D. pteronyssinus.

  8. [Extraction and analysis of the essential oil in Pogostemon cablin by enzymatic hydrolysis and inhibitory activity against Hela cell proliferation].

    PubMed

    Yu, Jing; Qi, Yue; Luo, Gang; Duan, Hong-quan; Zhou, Jing

    2012-05-01

    To optimize the extraction method of essential oil in Pogostemon cablin and analyze its inhibitory activity against Hela cell proliferation. The Pogostemon cablin was treated by hemicellulase before steam distillation. The enzyme dosage, treatment time, treatment temperature, pH were optimized through orthogonal experimental design. The components of essential oil were identified by gas chromatography-mass spectrometry (GC-MS). Inhibitory activity of patchouli oil against Hela cell proliferation was determined by MTP method. The optimum extraction process was as follows: pH 4.5, temperature 45 degrees C, the ratio of hemicellulase to Pogostemon cablin was 1% and enzymatic hydrolysis for 1.0 hour. Extraction ratio of the patchouli oil in steam distillation and hemicellulase extraction method was 2.2220 mg/g, 3.1360 mg/g respectively. Patchouli oil could inhibit Hela cell proliferation. IC50 of the patchouli oil in steam distillation and hemicellulase extraction method was 12.2 +/- 0.46 microg/mL and 0.36 +/- 0.03 microg/mL respectively. In comparison with steam distillation method, extraction ratios of essential oil and the inhibitory activity against Hela cell proliferation can be increased by the hemicellulase extraction method.

  9. Chemical Composition, Antibacterial Properties and Mechanism of Action of Essential Oil from Clove Buds against Staphylococcus aureus.

    PubMed

    Xu, Jian-Guo; Liu, Ting; Hu, Qing-Ping; Cao, Xin-Ming

    2016-09-08

    The essential oil of clove has a wide range of pharmacological and biological activities and is widely used in the medicine, fragrance and flavoring industries. In this work, 22 components of the essential oil obtained from clove buds were identified. Eugenol was the major component (76.23%). The essential oil exhibited strong antibacterial activity against Staphylococcus aureus ATCC 25923 with a minimum inhibitory concentration (MIC) of 0.625 mg/mL, and the antibacterial effects depended on its concentration and action time. Kill-time assays also confirmed the essential oil had a significant effect on the growth rate of surviving S. aureus. We hypothesized that the essential oil may interact with the cell wall and membrane first. On the one hand it destroys cell wall and membranes, next causing the losses of vital intracellular materials, which finally result in the bacterial death. Besides, essential oil penetrates to the cytoplasmic membrane or enters inside the cell after destruction of cell structure, and then inhibits the normal synthesis of DNA and proteins that are required for bacterial growth. These results suggested that the effects of the clove essential oil on the growth inhibition of S. aureus may be at the molecular level rather than only physical damage.

  10. TLC-direct bioautography for determination of antibacterial activity of Artemisia adamsii essential oil.

    PubMed

    Horváth, Györgyi; Acs, Kamilla; Kocsis, Béla

    2013-01-01

    The aim of the present study was the chemical characterization of the essential oil of a Mongolian medicinal plant, Artemisia adamsii Besser, and the investigation of the antibacterial effect of its oil on different human pathogenic bacteria (Staphylococcus aureus, methicillin-resistant S. aureus, and S. epidermidis). The chemical composition of the oil was established by GC and GC/MS. Direct bioautography was used for detecting the antibacterial activity of the essential oil. The result of GC experiments showed that a-thujone was the main component (64.4%) of the oil, while the amount of beta-thujone was 7.1%. 1,8-Cineole seemed to be the other relevant component (15.2%). The antibacterial activity of the A. adamsii essential oil against all three investigated bacteria was observed in the bioautographic system, but this effect was not proportional to the concentrations of a- or beta-thujone; therefore, from a microbiological aspect, thujone content does not determine the medicinal value of this oil. On the whole, the combination of TLC separation with biological detection is an appropriate method for evaluating multicomponent and hydrophobic plant extracts, for instance, essential oils, and it provides more reliable results than traditional microbiological methods (e.g., disc diffusion and agar plate techniques).

  11. Evaluation of Chemical Composition and Antileishmanial and Antituberculosis Activities of Essential Oils of Piper Species.

    PubMed

    Bernuci, Karine Zanoli; Iwanaga, Camila Cristina; Fernadez-Andrade, Carla Maria Mariano; Lorenzetti, Fabiana Brusco; Torres-Santos, Eduardo Caio; Faiões, Viviane Dos Santos; Gonçalves, José Eduardo; do Amaral, Wanderlei; Deschamps, Cícero; Scodro, Regiane Bertin de Lima; Cardoso, Rosilene Fressatti; Baldin, Vanessa Pietrowski; Cortez, Diógenes Aparício Garcia

    2016-12-12

    Essential oils from fresh Piperaceae leaves were obtained by hydrodistillation and analyzed by gas chromatography mass spectrometry (GC-MS), and a total of 68 components were identified. Principal components analysis results showed a chemical variability between species, with sesquiterpene compounds predominating in the majority of species analyzed. The composition of the essential oil of Piper mosenii was described for the first time. The cytotoxicity of the essential oils was evaluated in peritoneal macrophages and the oils of P. rivinoides , P. arboretum , and P. aduncum exhibited the highest values, with cytotoxic concentration at 50% (CC 50 ) > 200 µg/mL. Both P. diospyrifolium and P. aduncum displayed activity against Leishmania amazonensis , and were more selective for the parasite than for the macrophages, with a selectivity index (SI) of 2.35 and >5.52, respectively. These SI values were greater than the 1 for the standard drug pentamidine. The antileishmanial activity of the essential oils of P. diospyrifolium and P. aduncum was described for the first time. P. rivinoides, P. cernuum , and P. diospyrifolium displayed moderate activity against the Mycobacterium tuberculosis H 37 Rv bacillus, with a minimum inhibitory concentration (MIC) of 125 µg/mL. These results are relevant and suggests their potential for therapeutic purposes. Nevertheless, further studies are required to explain the exact mechanism of action of these essential oils.

  12. Essential oils of aromatic Egyptian plants repel nymphs of the tick Ixodes ricinus (Acari: Ixodidae).

    PubMed

    El-Seedi, Hesham R; Azeem, Muhammad; Khalil, Nasr S; Sakr, Hanem H; Khalifa, Shaden A M; Awang, Khalijah; Saeed, Aamer; Farag, Mohamed A; AlAjmi, Mohamed F; Pålsson, Katinka; Borg-Karlson, Anna-Karin

    2017-09-01

    Due to the role of Ixodes ricinus (L.) (Acari: Ixodidae) in the transmission of many serious pathogens, personal protection against bites of this tick is essential. In the present study the essential oils from 11 aromatic Egyptian plants were isolated and their repellent activity against I. ricinus nymphs was evaluated Three oils (i.e. Conyza dioscoridis L., Artemisia herba-alba Asso and Calendula officinalis L.) elicited high repellent activity in vitro of 94, 84.2 and 82%, respectively. The most active essential oil (C. dioscoridis) was applied in the field at a concentration of 6.5 µg/cm 2 and elicited a significant repellent activity against I. ricinus nymphs by 61.1%. The most repellent plants C. dioscoridis, C. officinalis and A. herba-alba yielded essential oils by 0.17, 0.11 and 0.14%, respectively. These oils were further investigated using gas chromatography-mass spectrometry analysis. α-Cadinol (10.7%) and hexadecanoic acid (10.5%) were the major components of C. dioscoridis whereas in C. officinalis, α-cadinol (21.2%) and carvone (18.2%) were major components. Artemisia herba-alba contained piperitone (26.5%), ethyl cinnamate (9.5%), camphor (7.7%) and hexadecanoic acid (6.9%). Essential oils of these three plants have a potential to be used for personal protection against tick bites.

  13. Antimicrobial activity of the essential oil and extracts of Cordia curassavica (Boraginaceae).

    PubMed

    Hernandez, Tzasna; Canales, Margarita; Teran, Barbara; Avila, Olivia; Duran, Angel; Garcia, Ana Maria; Hernandez, Hector; Angeles-Lopez, Omar; Fernandez-Araiza, Mario; Avila, Guillermo

    2007-04-20

    In traditional Mexican medicine Cordia curassavica (Jacq) Roemer & Schultes is used to treat gastrointestinal, respiratory and dermatological disorders in Zapotitlán de las Salinas, Puebla (México). The aim of this work was to investigate antimicrobial activity of the essential oil, obtained by using Clevenger distillation apparatus, and hexane, chloroform and methanol extracts from aerial parts of Cordia curassavica. Antimicrobial activity was evaluated against 13 bacteria and five fungal strains. The oil and extracts exhibited antimicrobial activity against Gram-positive and Gram-negative bacteria and five fungal strains. Sarcina lutea and Vibrio cholerae were the strains more sensitive to the essential oil effect (MIC=62 microg/mL) and Vibrio cholerae for the hexane extract (MIC=125 microg/mL). Rhyzoctonia solani was the strain more sensitive to the essential oil effect (IC(50)=180 microg/mL) and Trichophyton mentagrophytes for the hexane extract (IC(50)=230 microg/mL). The essential oil was examined by GC and GC-MS. A total 11 constituents representing 96.28% of the essential oil were identified: 4-methyl,4-ethenyl-3-(1-methyl ethenyl)-1-(1-methyl methanol)cyclohexane (37.34%), beta-eudesmol (19.21%), spathulenol (11.25%) and cadina 4(5), 10(14) diene (7.93%) were found to be the major components. The present study tends to confirm the use in the folk medicine of Cordia curassavica in gastrointestinal, respiratory and dermatological diseases.

  14. Adulticidal activity of essential oil of Lantana camara leaves against mosquitoes.

    PubMed

    Dua, V K; Pandey, A C; Dash, A P

    2010-03-01

    Development of insect resistance to synthetic pesticides, high operational cost and environmental pollution have created the need for developing alternative approaches to control vector-borne diseases. In the present study we have investigated the insecticidal activity of essential oil isolated from the leaves of Lantana camara against mosquito vectors. Essential oil was isolated from the leaves of L. camara using hydro-distillation method. Bioassay test was carried out by WHO method for determination of adulticidal activity against mosquitoes. Different compounds were identified by gas chromatography-mass spectrometry analysis. LD(50) values of the oil were 0.06, 0.05, 0.05, 0.05 and 0.06 mg/cm(2) while LD(90) values were 0.10, 0.10, 0.09, 0.09 and 0.10 mg/cm(2) against Ae. aegypti, Cx. quinquefasciatus, An. culicifacies, An. fluvialitis and An. stephensi respectively. KDT(50) of the oil were 20, 18, 15, 12, and 14 min and KDT(90) values were 35, 28 25, 18, 23 min against Ae. aegypti, Cx. quinquefasciatus, An. culicifacies, An. fluviatilis and An. stephensi, respectively on 0.208 mg/cm(2) impregnated paper. Studies on persistence of essential oil of L. camara on impregnated paper revealed that it has more adulticidal activity for longer period at low storage temperature. Gas chromatographic-mass spectrometric analysis of essential oil showed 45 peaks. Caryophyllene (16.37%), eucalyptol (10.75%), alpha-humelene (8.22%) and germacrene (7.41%) were present in major amounts and contributed 42.75 per cent of the total constituents. Essential oil from the leaves of L. camara possesses adulticidal activity against different mosquito species that could be utilized for development of oil-based insecticide as supplementary to synthetic insecticides.

  15. Insecticidal activity of plant essential oils against the vine mealybug, Planococcus ficus.

    PubMed

    Karamaouna, Filitsa; Kimbaris, Athanasios; Michaelakis, Alphantonios; Papachristos, Dimitrios; Polissiou, Moschos; Papatsakona, Panagiota; Tsora, Eleanna

    2013-01-01

    The vine mealybug, Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae), is a pest in grape vine growing areas worldwide. The essential oils from the following aromatic plants were tested for their insecticidal activity against P. ficus: peppermint, Mentha piperita L. (Lamiales: Lamiaceae), thyme-leaved savory, Satureja thymbra L., lavender, Lavandula angustifolia Mill, and basil, Ocimum basilicum L. Essential oils from peels of the following fruits were also tested: lemon, Citrus limon L. (Sapindales: Rutaceae), and orange, C. sinensis L. The reference product was paraffin oil. Bioassays were conducted in the laboratory by using spray applications on grape leaves bearing clusters of P. ficus of one size class, which mainly represented either 3rd instar nymphs or pre-ovipositing adult females. The LC50 values for each essential oil varied depending on the P. ficus life stage but did not significantly differ between 3(rd) instar nymphs and adult females. The LC50 values of the citrus, peppermint, and thyme-leaved savory essential oils ranged from 2.7 to 8.1 mg/mL, and the LC50 values of lavender and basil oil ranged from 19.8 to 22.5 and 44.1 to 46.8 mg/mL, respectively. The essential oils from citrus, peppermint and thymeleaved savory were more or equally toxic compared to the reference product, whereas the lavender and basil essential oils were less toxic than the paraffin oil. No phytotoxic symptoms were observed on grape leaves treated with the citrus essential oils, and low phytotoxicity was caused by the essential oils of lavender, thyme-leaved savory, and mint, whereas the highest phytotoxicity was observed when basil oil was used.

  16. Insecticidal Activity of Plant Essential Oils Against the Vine Mealybug, Planococcus ficus

    PubMed Central

    Karamaouna, Filitsa; Kimbaris, Athanasios; Michaelakis, Αntonios; Papachristos, Dimitrios; Polissiou, Moschos

    2013-01-01

    The vine mealybug, Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae), is a pest in grape vine growing areas worldwide. The essential oils from the following aromatic plants were tested for their insecticidal activity against P. ficus: peppermint, Mentha piperita L. (Lamiales: Lamiaceae), thyme-leaved savory, Satureja thymbra L., lavender, Lavandula angustifolia Mill, and basil, Ocimum basilicum L. Essential oils from peels of the following fruits were also tested: lemon, Citrus limon L. (Sapindales: Rutaceae), and orange, C. sinensis L. The reference product was paraffin oil. Bioassays were conducted in the laboratory by using spray applications on grape leaves bearing clusters of P. ficus of one size class, which mainly represented either 3rd instar nymphs or pre-ovipositing adult females. The LC50 values for each essential oil varied depending on the P. ficus life stage but did not significantly differ between 3rd instar nymphs and adult females. The LC50 values of the citrus, peppermint, and thyme-leaved savory essential oils ranged from 2.7 to 8.1 mg/mL, and the LC50 values of lavender and basil oil ranged from 19.8 to 22.5 and 44.1 to 46.8 mg/mL, respectively. The essential oils from citrus, peppermint and thymeleaved savory were more or equally toxic compared to the reference product, whereas the lavender and basil essential oils were less toxic than the paraffin oil. No phytotoxic symptoms were observed on grape leaves treated with the citrus essential oils, and low phytotoxicity was caused by the essential oils of lavender, thyme-leaved savory, and mint, whereas the highest phytotoxicity was observed when basil oil was used. PMID:24766523

  17. Chemical Composition and Antipathogenic Activity of Artemisia annua Essential Oil from Romania.

    PubMed

    Marinas, Ioana C; Oprea, Eliza; Chifiriuc, Mariana Carmen; Badea, Irinel Adriana; Buleandra, Mihaela; Lazar, Veronica

    2015-10-01

    The essential oil extracted by hydrodistillation from Romanian Artemisia annua aerial parts was characterized by GC/MS analysis, which allowed the identification of 94.64% of the total oil composition. The main components were camphor (17.74%), α-pinene (9.66%), germacrene D (7.55%), 1,8-cineole (7.24%), trans-β-caryophyllene (7.02%), and artemisia ketone (6.26%). The antimicrobial activity of this essential oil was evaluated by determining the following parameters: minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC), minimal fungicidal concentration (MFC), and minimal biofilm eradication concentration (MBEC). Moreover, the soluble virulence factors were quantified with different biochemical substrates incorporated in the culture media. The reference and resistant, clinical strains proved to be susceptible to the A. annua oil, with MICs ranging from 0.51 to 16.33 mg/ml. The tested essential oil also showed good antibiofilm activity, inhibiting both the initial stage of the microbial cell adhesion to the inert substratum and the preformed mature biofilm. When used at subinhibitory concentrations, the essential oil proved to inhibit the phenotypic expression of five soluble virulence factors (hemolysins, gelatinase, DNase, lipases, and lecithinases). Briefly, the present results showed that the A. annua essential oil contained antimicrobial compounds with selective activity on Gram-positive and Gram-negative bacterial strains as well as on yeast strains and which also interfere with the expression of cell-associated and soluble virulence factors. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  18. Chemical composition and cytotoxicity evaluation of essential oil from leaves of Casearia sylvestris, its main compound α-zingiberene and derivatives.

    PubMed

    Bou, Diego Dinis; Lago, João Henrique G; Figueiredo, Carlos R; Matsuo, Alisson L; Guadagnin, Rafael C; Soares, Marisi G; Sartorelli, Patricia

    2013-08-08

    Casearia sylvestris (Salicaceae), popularly known as "guaçatonga", is a plant widely used in folk medicine to treat various diseases, including cancer. The present work deals with the chemical composition as well as the cytotoxic evaluation of its essential oil, its main constituent and derivatives. Thus, the crude essential oil from leaves of C. sylvestris was obtained using a Clevenger type apparatus and analyzed by GC/MS. This analysis afforded the identification of 23 substances, 13 of which corresponded to 98.73% of the total oil composition, with sesquiterpene a-zingiberene accounting for 50% of the oil. The essential oil was evaluated for cytotoxic activity against several tumor cell lines, giving IC50 values ranging from 12 to 153 mg/mL. Pure a-zingiberene, isolated from essential oil, was also evaluated against the tumor cell lines showing activity for HeLa, U-87, Siha and HL60 cell lines, but with IC50 values higher than those determined for the crude essential oil. Aiming to evaluate the effect of the double bonds of a-zingiberene on the cytotoxic activity, partially hydrogenated a-zingiberene (PHZ) and fully hydrogenated a-zingiberene (THZ) derivatives were obtained. For the partially hydrogenated derivative only cytotoxic activity to the B16F10-Nex2 cell line (IC50 65 mg/mL) was detected, while totally hydrogenated derivative showed cytotoxic activity for almost all cell lines, with B16F10-Nex2 and MCF-7 as exceptions and with IC50 values ranging from 34 to 65 mg/mL. These results indicate that cytotoxic activity is related with the state of oxidation of compound.

  19. Combined toxicity of three essential oils against Aedes aegypti (Diptera: Culicidae) larvae

    USDA-ARS?s Scientific Manuscript database

    Essential oils are potential alternatives to synthetic insecticides because they have low mammalian toxicity, degrade rapidly in the environment, and possess complex mixtures of bioactive constituents with multi-modal activity against the target insect populations. Twenty one essential oils were ini...

  20. Interference and Mechanism of Dill Seed Essential Oil and Contribution of Carvone and Limonene in Preventing Sclerotinia Rot of Rapeseed.

    PubMed

    Ma, Bingxin; Ban, Xiaoquan; Huang, Bo; He, Jingsheng; Tian, Jun; Zeng, Hong; Chen, Yuxin; Wang, Youwei

    2015-01-01

    This study aimed to evaluate the inhibitory effects of dill (Anethum graveolens L.) seed essential oil against Sclerotinia sclerotiorum and its mechanism of action. The antifungal activities of the two main constituents, namely carvone and limonene, were also measured. Mycelial growth and sclerotial germination were thoroughly inhibited by dill seed essential oil at the 1.00 μL/mL under contact condition and 0.125μL/mL air under vapor condition. Carvone also contributed more than limonene in inhibiting the growth of S. sclerotiorum. Carvone and limonene synergistically inhibited the growth of the fungus. In vivo experiments, the essential oil remarkably suppressed S. sclerotiorum, and considerable morphological alterations were observed in the hyphae and sclerotia. Inhibition of ergosterol synthesis, malate dehydrogenase, succinate dehydrogenase activities, and external medium acidification were investigated to elucidate the antifungal mechanism of the essential oil. The seed essential oil of A. graveolens can be extensively used in agriculture for preventing the oilseed crops fungal disease.

  1. Inhibition of the essential oil from Chenopodium ambrosioides L. and α-terpinene on the NorA efflux-pump of Staphylococcus aureus.

    PubMed

    de Morais Oliveira-Tintino, Cícera Datiane; Tintino, Saulo Relison; Limaverde, Paulo W; Figueredo, Fernando G; Campina, Fábia F; da Cunha, Francisco A B; da Costa, Roger H S; Pereira, Pedro Silvino; Lima, Luciene F; de Matos, Yedda M L S; Coutinho, Henrique Douglas Melo; Siqueira-Júnior, José P; Balbino, Valdir Q; da Silva, Teresinha Gonçalves

    2018-10-01

    This study was carried out to test the essential oil from C. ambrosioides leaves and its main constituent, α-Terpinene, in an antibacterial activity assay. As well, it was evaluated ability reduce resistance to norfloxacin and ethidium bromide was compared the Staphylococcus aureus 1199B whith 1199 wild type strain. The MIC of the C. ambrosioides essential oil and α-Terpinene were determined by microdilution method. The MIC of the essential oil and α-Terpinene presented a value ≥ 1024 μg/mL. However, when associated with antibacterials, the essential oil from C. ambrosioides leaves significantly reduced the MIC of antibiotics and ethidium bromide, characterizing an efflux pump inhibition. The C. ambrosioides essential oil, despite having no direct antibacterial activity against the S. aureus 1199B strain, showed a potentiating action when associated with antibacterial agents, this being attributed to an inhibition of efflux pumps. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. The In Vitro Antimicrobial Effects of Lavandula angustifolia Essential Oil in Combination with Conventional Antimicrobial Agents

    PubMed Central

    de Rapper, Stephanie; Viljoen, Alvaro

    2016-01-01

    The paper focuses on the in vitro antimicrobial activity of Lavandula angustifolia Mill. (lavender) essential oil in combination with four commercial antimicrobial agents. Stock solutions of chloramphenicol, ciprofloxacin, nystatin, and fusidic acid were tested in combination with L. angustifolia essential oil. The antimicrobial activities of the combinations were investigated against the Gram-positive bacterial strain Staphylococcus aureus (ATCC 6538) and Gram-negative Pseudomonas aeruginosa (ATCC 27858) and Candida albicans (ATCC 10231) was selected to represent the yeasts. The antimicrobial effect was performed using the minimum inhibitory concentration (MIC) microdilution assay. Isobolograms were constructed for varying ratios. The most prominent interaction was noted when L. angustifolia essential oil was combined with chloramphenicol and tested against the pathogen P. aeruginosa (ΣFIC of 0.29). Lavendula angustifolia essential oil was shown in most cases to interact synergistically with conventional antimicrobials when combined in ratios where higher volumes of L. angustifolia essential oil were incorporated into the combination. PMID:27891157

  3. Fumigant activity of plant essential oils and components from horseradish (Armoracia rusticana), anise (Pimpinella anisum) and garlic (Allium sativum) oils against Lycoriella ingenua (Diptera: Sciaridae).

    PubMed

    Park, Ii-Kwon; Choi, Kwang-Sik; Kim, Do-Hyung; Choi, In-Ho; Kim, Lee-Sun; Bak, Won-Chull; Choi, Joon-Weon; Shin, Sang-Chul

    2006-08-01

    Plant essential oils from 40 plant species were tested for their insecticidal activities against larvae of Lycoriella ingénue (Dufour) using a fumigation bioassay. Good insecticidal activity against larvae of L. ingenua was achieved with essential oils of Chenopodium ambrosioides L., Eucalyptus globulus Labill, Eucalyptus smithii RT Baker, horseradish, anise and garlic at 10 and 5 microL L(-1) air. Horseradish, anise and garlic oils showed the most potent insecticidal activities among the plant essential oils. At 1.25 microL L(-1), horseradish, anise and garlic oils caused 100, 93.3 and 13.3% mortality, but at 0.625 microL L(-1) air this decreased to 3.3, 0 and 0% respectively. Analysis by gas chromatography-mass spectrometry led to the identification of one major compound from horseradish, and three each from anise and garlic oils. These seven compounds and m-anisaldehyde and o-anisaldehyde, two positional isomers of p-anisaldehyde, were tested individually for their insecticidal activities against larvae of L. ingenua. Allyl isothiocyanate was the most toxic, followed by trans-anethole, diallyl disulfide and p-anisaldehyde with LC(50) values of 0.15, 0.20, 0.87 and 1.47 microL L(-1) respectively.

  4. Essential oil composition and antibacterial activity of Tanacetum argenteum (Lam.) Willd. ssp. argenteum and T. densum (Lab.) Schultz Bip. ssp. amani heywood from Turkey.

    PubMed

    Polatoğlu, Kaan; Demirci, Fatih; Demirci, Betül; Gören, Nezhun; Başer, Kemal Hüsnü Can

    2010-01-01

    Water-distilled essential oils from aerial parts of Tanacetum argenteum ssp. argenteum and T. densum ssp. amani from Turkey were analyzed by GC and GC/MS. The essential oil of T. argenteum ssp. argenteum was characterized with alpha-pinene 36.7%, beta-pinene 27.5% and 1,8-cineole 9.8%. T. densum ssp. amani was characterized with beta-pinene 27.2%, 1,8-cineole 13.1%, alpha-pinene 9.7% and p-cymene 8.9%. Antibacterial activity of the oils were evaluated for five Gram-positive and five Gram-negative bacteria by using a broth microdilution assay. The highest inhibitory activity was observed against Bacillus cereus for T. argenteum ssp. argenteum oil (125 microg/mL) when compared with positive control chloramphenicol it showed the same inhibition potency. However, the same oil showed lower inhibitory activity against B. subtilis when compared. The oil of T. densum ssp. amani did not show significant activity against the tested microorganisms. DPPH radical scavenging activity of the T. argenteum ssp. argenteum oil was investigated for 15 and 10 mg/mL concentrations. However, the oil did not show significant activity when compared to positive control alpha-tocopherol. Both oils showed toxicity to Vibrio fischeri in the TLC-bioluminescence assay.

  5. Antimicrobial, antioxidative, and insect repellent effects of Artemisia absinthium essential oil.

    PubMed

    Mihajilov-Krstev, Tatjana; Jovanović, Boris; Jović, Jovana; Ilić, Budimir; Miladinović, Dragoljub; Matejić, Jelena; Rajković, Jelena; Dorđević, Ljubiša; Cvetković, Vladimir; Zlatković, Bojan

    2014-12-01

    In this paper, the chemical composition and biological activity of the essential oil of Artemisia absinthium was studied. The aim of this study was to investigate the potential of ethnopharmacological uses of this plant species in the treatment of gastrointestinal diseases and wounds, and as an insect repellent. The aerial part of the plant was hydrodistilled, and the chemical composition of the essential oil was analyzed by gas chromatography and gas chromatography/mass spectrometry. Forty-seven compounds, corresponding to 94.65 % of the total oil, were identified, with the main constituents being sabinene (24.49 %), sabinyl acetate (13.64 %), and α-phellandrene (10.29 %). The oil yield was 0.23 % (v/w). The antimicrobial activity of the oil was investigated against ten bacterial isolates (from patients wounds and stools) and seven American Type Culture Collection strains using a microwell dilution assay. The minimal inhibitory/bactericidal concentration of the oil ranged from < 0.08 to 2.43 mg/mL and from 0.08 to 38.80 mg/mL, respectively. The antioxidant activity of the essential oil was evaluated using 2,2-diphenyl-1-picrylhydrazil and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radical-scavenging methods and assessed as significant. Skin irritation potential and acute toxicity of the oil were also investigated. Results of the skin irritant reaction showed that none of the 30 volunteers developed a positive skin irritant reaction to undiluted A. absinthium essential oil. Acute oral exposure to the essential oil did not cause mortality in the treated mice, but it did cause neurological, muscle, and gastrointestinal problems. A subchronic toxicity test on Drosophila melanogaster showed that the essential oil of A. absinthium is toxic for developing insect larvae. Starting with the concentration of 0.38 % of essential oil in medium, significant mortality of larvae exposed to the oil was noted when compared to the control. Probit analysis revealed that the LC50 value of A. absinthium essential oil for D. melanogaster larvae after 15 days of exposure was 6.31 % (49 mg/mL). The essential oil also affected the development of D. melanogaster larvae and significantly delayed achievement of the pupa stadium. Georg Thieme Verlag KG Stuttgart · New York.

  6. Antimicrobial synergism and cytotoxic properties of Citrus limon L., Piper nigrum L. and Melaleuca alternifolia (Maiden and Betche) Cheel essential oils.

    PubMed

    Nikolić, Miloš M; Jovanović, Katarina K; Marković, Tatjana Lj; Marković, Dejan Lj; Gligorijević, Nevenka N; Radulović, Siniša S; Kostić, Marina; Glamočlija, Jasmina M; Soković, Marina D

    2017-11-01

    The chemical composition, antimicrobial and synergistic effect, and cytotoxic activity of Citrus limon (lemon), Piper nigrum (green pepper) and Melaleuca alternifoila (tea tree) essential oils (EOs) were investigated. Chemical analyses of essential oils were tested by GC-FID and GC-MS spectroscopy. The antimicrobial activity assay was conducted using microdilution method against several oral bacteria and Candida spp. originating from the humans with oral disorders. The synergistic antimicrobial activity was evaluated using checkerboard method. The cytotoxicity evaluation of EOs was assessed using MTT test. Limonene (37.5%) and β-pinene (17.9%) were the major compounds in C. limon oil, β-pinene (34.4%), δ-3-carene (19.7%), limonene (18.7%) and α-pinene (10.4%) in P. nigrum oil and terpinen-4-ol (38.6%) and γ-terpinene (21.7%) in M. alternifolia oil. The broad-spectrum antimicrobial activity was achieved by tested three EOs, with C. limon oil being the strongest against bacteria and M. alternifolia oil strongest against fungi. The EOs demonstrated synergism; their combined application revealed an increase in antimicrobial activity. All tested essential oils showed lower cytotoxic activity in comparison with the positive control, and the obtained results confirmed a dose-dependent activity. The results of this study encourage use of tested EOs in development of a novel agent intended for prevention or therapy of corresponding oral disorders. © 2017 Royal Pharmaceutical Society.

  7. Chemical Composition and Antibacterial Activity of Essential Oils of Tagetes minuta (Asteraceae) against Selected Plant Pathogenic Bacteria

    PubMed Central

    Wagacha, John M.; Dossaji, Saifuddin F.

    2016-01-01

    The objective of this study was to determine the chemical composition and antibacterial activity of essential oils (EOs) of Tagetes minuta against three phytopathogenic bacteria Pseudomonas savastanoi pv. phaseolicola, Xanthomonas axonopodis pv. phaseoli, and Xanthomonas axonopodis pv. manihotis. The essential oils were extracted using steam distillation method in a modified Clevenger-type apparatus while antibacterial activity of the EOs was evaluated by disc diffusion method. Gas chromatography coupled to mass spectrometry (GC/MS) was used for analysis of the chemical profile of the EOs. Twenty compounds corresponding to 96% of the total essential oils were identified with 70% and 30% of the identified components being monoterpenes and sesquiterpenes, respectively. The essential oils of T. minuta revealed promising antibacterial activities against the test pathogens with Pseudomonas savastanoi pv. phaseolicola being the most susceptible with mean inhibition zone diameters of 41.83 and 44.83 mm after 24 and 48 hours, respectively. The minimum inhibitory concentrations and minimum bactericidal concentrations of the EOs on the test bacteria were in the ranges of 24–48 mg/mL and 95–190 mg/mL, respectively. These findings provide a scientific basis for the use of T. minuta essential oils as a botanical pesticide for management of phytopathogenic bacteria. PMID:27721831

  8. Bioinformatical and in vitro approaches to essential oil-induced matrix metalloproteinase inhibition.

    PubMed

    Zeidán-Chuliá, Fares; Rybarczyk-Filho, José L; Gursoy, Mervi; Könönen, Eija; Uitto, Veli-Jukka; Gursoy, Orhan V; Cakmakci, Lutfu; Moreira, José C F; Gursoy, Ulvi K

    2012-06-01

    Essential oils carry diverse antimicrobial and anti-enzymatic properties. Matrix metalloproteinase (MMP) inhibition characteristics of Salvia fruticosa Miller (Labiatae), Myrtus communis Linnaeus (Myrtaceae), Juniperus communis Linnaeus (Cupressaceae), and Lavandula stoechas Linnaeus (Labiatae) essential oils were evaluated. Chemical compositions of the essential oils were analyzed by gas chromatography-mass spectrometry (GC-MS). Bioinformatical database analysis was performed by STRING 9.0 and STITCH 2.0 databases, and ViaComplex software. Antibacterial activity of essential oils against periodontopathogens was tested by the disc diffusion assay and the agar dilution method. Cellular proliferation and cytotoxicity were determined by commercial kits. MMP-2 and MMP-9 activities were measured by zymography. Bioinformatical database analyses, under a score of 0.4 (medium) and a prior correction of 0.0, gave rise to a model of protein (MMPs and tissue inhibitors of metalloproteinases) vs. chemical (essential oil components) interaction network; where MMPs and essential oil components interconnected through interaction with hydroxyl radicals, molecular oxygen, and hydrogen peroxide. Components from L. stoechas potentially displayed a higher grade of interaction with MMP-2 and -9. Although antibacterial and growth inhibitory effects of essential oils on the tested periodontopathogens were limited, all of them inhibited MMP-2 in vitro at concentrations of 1 and 5 µL/mL. Moreover, same concentrations of M. communis and L. stoechas also inhibited MMP-9. MMP-inhibiting concentrations of essential oils were not cytotoxic against keratinocytes. We propose essential oils of being useful therapeutic agents as MMP inhibitors through a mechanism possibly based on their antioxidant potential.

  9. Identification of insecticidal constituents of the essential oil of Acorus calamus rhizomes against Liposcelis bostrychophila Badonnel.

    PubMed

    Liu, Xin Chao; Zhou, Li Gang; Liu, Zhi Long; Du, Shu Shan

    2013-05-15

    The aim of this research was to determine the chemical composition of the essential oil of Acorus calamus rhizomes, its insecticidal activity against the booklouse, (Liposcelis bostrychophila) and to isolate any insecticidal constituents from the essential oil. The essential oil of A. calamus rhizomes was obtained by hydrodistillation and analyzed by GC-FID and GC-MS. A total of 32 components of the essential oil of A. calamus rhizomes was identified and the principal compounds in the essential oil were determined to be α-asarone (50.09%), (E)-methylisoeugenol (14.01%), and methyleugenol (8.59%), followed by β-asarone (3.51%), α-cedrene (3.09%) and camphor (2.42%). Based on bioactivity-guided fractionation, the three active constituents were isolated from the essential oil and identified as methyleugenol, (E)-methylisoeugenol and α-asarone. The essential oil exhibited contact toxicity against L. bostrychophila with an LD50 value of 100.21 µg/cm2 while three constituent compounds, α-asarone, methyleugenol, and (E)-methylisoeugenol had LD50 values of 125.73 µg/cm2, 103.22 µg/cm2 and 55.32 µg/cm2, respectively. Methyleugenol and (E)-methylisoeugenol possessed fumigant toxicity against L. bostrychophila adults with LC50 values of 92.21 μg/L air and 143.43 μg/L air, respectively, while the crude essential oil showed an LC50 value of 392.13 μg/L air. The results indicate that the essential oil of A. calamus rhizomes and its constituent compounds have potential for development into natural fumigants/insecticides for control of the booklice.

  10. Chemical composition and antibacterial activity of the essential oils from flower, leaf and stem of Ferula cupularis growing wild in Iran.

    PubMed

    Alipour, Ziba; Taheri, Poroshat; Samadi, Nasrin

    2015-04-01

    Ferula cupularis (Boiss.) Spalik et S. R. Downie (Apiaceae) is a common plant in Iran that grows in the foothills of Dena Mountain. In traditional folk medicine, this plant has different applications, but there are no studies proving their uses. This study is the first attempt to investigate the chemical composition and antibacterial effect of the essential oils of F. cupularis. The essential oils from flower, leaf, and stem of F. cupularis were analyzed by using GC and GC-MS. Antibacterial activity of essential oils was determined by microdilution method against Staphylococcus aureus, Staphylococcus epidermidis, Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The essential oil from flower of F. cupularis contained 15 monoterpene, 13 oxygenated monoterpene, and 2 sesquiterpene hydrocarbons. The leaf essential oil contained 12 monoterpene, 13 oxygenated monoterpene, 2 sesquiterpene, 6 oxygenated sesquiterpene hydrocarbons, and 3 non-terpenoid components. Stem essential oil contained one monoterpene, 23 oxygenated monoterpene, 2 sesquiterpene, and 6 oxygenated sesquiterpene hydrocarbons. The MIC value of stem essential oil was 2.85 mg/mL against both Gram-positive bacteria and Gram-negative bacteria except P. aeruginosa which was inhibited at 22.75 mg/mL. The MIC values of leaf and flower essential oils were higher than 5.69 and 22.75 mg/mL, respectively. This study highlighted the strong antibacterial effect of Ferula cupularis's essential oil which might be due to its high content of oxygenated monoterpene hydrocarbons. Our results suggested that this plant may be a good candidate for further biological and pharmacological investigations.

  11. Chemical and biological characterisation of solvent extracts and essential oils from leaves and fruit of two Australian species of Pittosporum (Pittosporaceae) used in aboriginal medicinal practice.

    PubMed

    Sadgrove, Nicholas John; Jones, Graham Lloyd

    2013-02-13

    Although no known medicinal use for Pittosporum undulatum Vent. (Pittosporaceae) has been recorded, anecdotal evidence suggests that Australian Aboriginal people used Pittosporum angustifolium Lodd., G. Lodd. & W. Lodd. topically for eczema, pruritis or to induce lactation in mothers following child-birth and internally for coughs, colds or cramps. Essential oil composition and bioactivity as well as differential solvent extract antimicrobial activity from Pittosporum angustifolium are investigated here first, to partially describe the composition of volatiles released in traditional applications of Pittosporum angustifolium for colds or as a lactagogue, and second to investigate antibacterial activity related to topical applications. Essential oils were also investigated from Pittosporum undulatum Vent., first to enhance essential oil data produced in previous studies, and second as a comparison to Pittosporum angustifolium. Essential oils were hydrodistilled from fruit and leaves of both species using a modified approach to lessen the negative (frothing) effect of saponins. This was achieved by floating pumice or pearlite obsidian over the mixture to crush the suds formed while boiling. Essential oil extracts were analysed using GC-MS, quantified using GC-FID then screened for antimicrobial activity using a micro-titre plate broth dilution assay (MIC). Using dichloromethane, methanol, hexane and H(2)O as solvents, extracts were produced from leaves and fruit of Pittosporum angustifolium and screened for antimicrobial activity and qualitative phytochemical character. Although the essential oil from leaves and fruit of Pittosporum undulatum demonstrated some component variation, the essential oil from fruits of Pittosporum angustifolium had major constituents that strongly varied according to the geographical location of collection, suggesting the existence of at least two chemotypes; one with high abundance of acetic acid decyl ester. This chemotype had high antimicrobial activity whilst the other chemotype had only moderate antimicrobial activity against the three microbial species investigated here. This result may support the occurrence of geographical specificity with regard to ethnopharmacological use. Antimicrobial activity screening of the solvent extracts from Pittosporum angustifolium revealed the leaves to be superior to fruit, with water being the most suitable extraction solvent. To the best of our knowledge, this study constitutes the first time essential oils, and solvent extracts from the fruits of Pittosporum angustifolium, have been examined employing comprehensive chemical and biological analysis. The essential oil composition presented in this paper, includes components with structural similarity as chemosemiotic compounds involved in mother-infant identification, which may have significance with regard to traditional applications as a lactagogue. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Action of Coriandrum sativum L. Essential Oil upon Oral Candida albicans Biofilm Formation.

    PubMed

    Furletti, V F; Teixeira, I P; Obando-Pereda, G; Mardegan, R C; Sartoratto, A; Figueira, G M; Duarte, R M T; Rehder, V L G; Duarte, M C T; Höfling, J F

    2011-01-01

    The efficacy of extracts and essential oils from Allium tuberosum, Coriandrum sativum, Cymbopogon martini, Cymbopogon winterianus, and Santolina chamaecyparissus was evaluated against Candida spp. isolates from the oral cavity of patients with periodontal disease. The most active oil was fractionated and tested against C. albicans biofilm formation. The oils were obtained by water-distillation and the extracts were prepared with macerated dried plant material. The Minimal Inhibitory Concentration-MIC was determined by the microdilution method. Chemical characterization of oil constituents was performed using Gas Chromatography and Mass Spectrometry (GC-MS). C. sativum activity oil upon cell and biofilm morphology was evaluated by Scanning Electron Microscopy (SEM). The best activities against planktonic Candida spp. were observed for the essential oil and the grouped F(8-10) fractions from C. sativum. The crude oil also affected the biofilm formation in C. albicans causing a decrease in the biofilm growth. Chemical analysis of the F(8-10) fractions detected as major active compounds, 2-hexen-1-ol, 3-hexen-1-ol and cyclodecane. Standards of these compounds tested grouped provided a stronger activity than the oil suggesting a synergistic action from the major oil constituents. The activity of C. sativum oil demonstrates its potential for a new natural antifungal formulation.

  13. Comparison of chemical composition and antibacterial activity of Nigella sativa seed essential oils obtained by different extraction methods.

    PubMed

    Kokoska, L; Havlik, J; Valterova, I; Sovova, H; Sajfrtova, M; Jankovska, I

    2008-12-01

    Nigella sativa L. seed essential oils obtained by hydrodistillation (HD), dry steam distillation (SD), steam distillation of crude oils obtained by solvent extraction (SE-SD), and supercritical fluid extraction (SFE-SD) were tested for their antibacterial activities, using the broth microdilution method and subsequently analyzed by gas chromatography and gas chromatography-mass spectrometry. The results showed that the essential oils tested differed markedly in their chemical compositions and antimicrobial activities. The oils obtained by HD and SD were dominated by p-cymene, whereas the major constituent identified in both volatile fractions obtained by SD of extracted oils was thymoquinone (ranging between 0.36 and 0.38 g/ml, whereas in oils obtained by HD and SD, it constituted only 0.03 and 0.05 g/ml, respectively). Both oils distilled directly from seeds showed lower antimicrobial activity (MICs > or = 256 and 32 microg/ml for HD and SD, respectively) than those obtained by SE-SD and SFE-SD (MICs > or = 4 microg/ml). All oil samples were significantly more active against gram-positive than against gram-negative bacteria. Thymoquinone exhibited potent growth-inhibiting activity against gram-positive bacteria, with MICs ranging from 8 to 64 microg/ml.

  14. Chemical composition and antimicrobial activity of Cymbopogon nardus citronella essential oil against systemic bacteria of aquatic animals.

    PubMed

    Wei, Lee Seong; Wee, Wendy

    2013-06-01

    This paper describes chemical composition and antimicrobial activity of Cymbopogon nardus citronella essential oil against Edwardsiella spp. (n = 21), Vibrio spp. (n = 6), Aeromonas spp. (n = 2), Escherichia coli (n = 2), Salmonella spp. (n = 2), Flavobacterium spp. (n = 1), Pseudomonas spp. (n = 1) and Streptococcus spp. (n = 1) isolated from internal organs of aquatic animals. Due to the ban of antibiotics for aquaculture use, this study was carried out to evaluate the potential of citronella essential oil as alternative to commercial antibiotic use against systemic bacteria in cultured aquatic animals. The essential oil of C. nardus was prepared by using the steam distillation method and the chemical composition of the essential oil was analyzed by gas chromatography-mass spectroscopy (GC-MS). Minimum inhibitory concentration (MIC) of the essential oil tested against bacterial isolates from various aquatic animals and ATCC type strains were determined using two-fold broth micro dilution method with kanamycin and eugenol as positive controls. A total of 22 chemical compounds were detected in C. nardus essential oil with 6-octenal, 3, 7-dimethyl- or citronellal representing the major compounds (29.6%). The MIC values of the citronella oil ranged from 0.244 µg/ml to 0.977 µg/ml when tested against the bacterial isolates. The results of the present study revealed the potential of C. nardus essential oil as alternative to commercial antibiotics for aquaculture use.

  15. The Dual Antimelanogenic and Antioxidant Activities of the Essential Oil Extracted from the Leaves of Acorus macrospadiceus (Yamamoto) F. N. Wei et Y. K. Li

    PubMed Central

    Huang, Huey-Chun; Wang, Hsiao-Fen; Yih, Kuang-Hway; Chang, Long-Zen; Chang, Tsong-Min

    2012-01-01

    The antimelanogenic and antioxidant activities of the essential oil extracted from the leaves of Acorus macrospadiceus (Yamamoto) F. N. Wei et Y. K. Li have never been explored. The essential oil effectively inhibited mushroom tyrosinase activity (EC50 = 1.57 mg/mL) and B16F10 tyrosinase activity (IC50 = 1.01 mg/mL), decreased the melanin content (EC50 = 1.04 mg/mL), and depleted the cellular level of the reactive oxygen species (ROS) (EC50 = 1.87 mg/mL). The essential oil effectively scavenged 2,2-diphenyl-1-picryl-hydrazyl (DPPH) (EC50 = 0.121 mg/mL) and 2,2′-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) ABTS+ radicals (EC50 = 0.122 mg/mL). It also exhibited an apparent reducing power (EC50 = 0.021 mg/mL) and metal-ion chelating activity (EC50 = 0.029 mg/mL). The chemical constituents of the essential oil are ethers (55.73%), ketones (19.57%), monoterpenes (7.82%), alcohols (3.85%), esters (3.77%), sesquiterpenes (3.72%), and aromatic compounds (2.85%). The results confirm that A. macrospadiceus essential oil is a natural antioxidant and inhibitor of melanogenesis. PMID:23304214

  16. Protective properties of Salvia lavandulifolia Vahl. essential oil against oxidative stress-induced neuronal injury.

    PubMed

    Porres-Martínez, María; González-Burgos, Elena; Carretero, M Emilia; Gómez-Serranillos, M Pilar

    2015-06-01

    Salvia lavandulifolia Vahl., known as "Spanish sage", has potential value in dementia for its sedative, antioxidant, anti-inflammatory and anticholinesterase properties. This work aimed to evaluate the in vitro neuroprotective activity of S. lavandulifolia essential oils, obtained from plants at different phenological stages (vegetative and flowering phases) and plants grown at different densities, against H2O2-induced oxidative stress in PC12 cells. The effect on cell viability and morphology, lipid peroxidation, GSH/GSSG ratio, intracellular ROS levels, antioxidant enzymes (CAT, SOD, GR, GPx, HO-1) and apoptotic enzymes was investigated. Comparing with H2O2-treated PC12 cells, pretreatments with essential oil samples attenuated morphological changes and loss of cell viability, decreased MDA levels and intracellular ROS production and increased GSH/GSSG ratio. Moreover, Spanish sage increased antioxidant status as evidenced in an increase of antioxidant enzyme activity and protein expression and inhibited caspase-3 activity. Furthermore, our results suggest that S. lavandulifolia essential oils are able to activate Nrf2 transcription factor. Collectively, the sample of essential oil obtained with the highest densities of planting and at flowering phase exerted the major neuroprotective activity. Our findings demonstrate that S. lavandulifolia essential oils may have therapeutic value for the prevention and treatment of neurodegenerative diseases associated with oxidative stress-induced neuronal injury. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Composition, quality control, and antimicrobial activity of the essential oil of long-time stored dill (Anethum graveolens L.) seeds from Bulgaria.

    PubMed

    Jirovetz, Leopold; Buchbauer, Gerhard; Stoyanova, Albena S; Georgiev, Evgenii V; Damianova, Stanka T

    2003-06-18

    The essential oil of long-time stored seeds of dill (Anethum graveolens L.) from Bulgaria was analyzed by physicochemical methods, gas chromatography (GC), GC-mass spectrometry (MS) (achiral and chiral phases), and olfactometry, and its antimicrobial activity was tested by using different strains of microorganisms. More than 40 constituents of the essential dill oil, obtained from seeds stored for more than 35 years, could be identified as essential volatiles, responsible for the pleasant fresh (D-limonene) and spicy (D-carvone) odor of a high quality. As aroma impact compounds, D-carvone (50.1%) and D-limonene (44.1%) were found. Antimicrobial testings showed high activity of the essential A. graveolens oil against the mold Aspergillus niger and the yeasts Saccharomyces cerevisiae and Candida albicans.

  18. Essential Oils: Sources of Antimicrobials and Food Preservatives

    PubMed Central

    Pandey, Abhay K.; Kumar, Pradeep; Singh, Pooja; Tripathi, Nijendra N.; Bajpai, Vivek K.

    2017-01-01

    Aromatic and medicinal plants produce essential oils in the form of secondary metabolites. These essential oils can be used in diverse applications in food, perfume, and cosmetic industries. The use of essential oils as antimicrobials and food preservative agents is of concern because of several reported side effects of synthetic oils. Essential oils have the potential to be used as a food preservative for cereals, grains, pulses, fruits, and vegetables. In this review, we briefly describe the results in relevant literature and summarize the uses of essential oils with special emphasis on their antibacterial, bactericidal, antifungal, fungicidal, and food preservative properties. Essential oils have pronounced antimicrobial and food preservative properties because they consist of a variety of active constituents (e.g., terpenes, terpenoids, carotenoids, coumarins, curcumins) that have great significance in the food industry. Thus, the various properties of essential oils offer the possibility of using natural, safe, eco-friendly, cost-effective, renewable, and easily biodegradable antimicrobials for food commodity preservation in the near future. PMID:28138324

  19. Composition and Antimicrobial Activity of Euphrasia rostkoviana Hayne Essential Oil

    PubMed Central

    Novy, Pavel; Davidova, Hana; Serrano-Rojero, Cecilia Suqued; Rondevaldova, Johana; Pulkrabek, Josef

    2015-01-01

    Eyebright, Euphrasia rostkoviana Hayne (Scrophulariaceae), is a medicinal plant traditionally used in Europe for the treatment of various health disorders, especially as eyewash to treat eye ailments such as conjunctivitis and blepharitis that can be associated with bacterial infections. Some Euphrasia species have been previously reported to contain essential oil. However, the composition and bioactivity of E. rostkoviana oil are unknown. Therefore, in this study, we investigated the chemical composition and antimicrobial activity of the eyebright essential oil against some organisms associated with eye infections: Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa, and Candida albicans. GC-MS analysis revealed more than 70 constituents, with n-hexadecanoic acid (18.47%) as the main constituent followed by thymol (7.97%), myristic acid (4.71%), linalool (4.65%), and anethole (4.09%). The essential oil showed antimicrobial effect against all organisms tested with the exception of P. aeruginosa. The best activity was observed against all Gram-positive bacteria tested with the minimum inhibitory concentrations of 512 µg/mL. This is the first report on the chemical composition of E. rostkoviana essential oil and its antimicrobial activity. PMID:26000025

  20. Composition and Antimicrobial Activity of Euphrasia rostkoviana Hayne Essential Oil.

    PubMed

    Novy, Pavel; Davidova, Hana; Serrano-Rojero, Cecilia Suqued; Rondevaldova, Johana; Pulkrabek, Josef; Kokoska, Ladislav

    2015-01-01

    Eyebright, Euphrasia rostkoviana Hayne (Scrophulariaceae), is a medicinal plant traditionally used in Europe for the treatment of various health disorders, especially as eyewash to treat eye ailments such as conjunctivitis and blepharitis that can be associated with bacterial infections. Some Euphrasia species have been previously reported to contain essential oil. However, the composition and bioactivity of E. rostkoviana oil are unknown. Therefore, in this study, we investigated the chemical composition and antimicrobial activity of the eyebright essential oil against some organisms associated with eye infections: Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa, and Candida albicans. GC-MS analysis revealed more than 70 constituents, with n-hexadecanoic acid (18.47%) as the main constituent followed by thymol (7.97%), myristic acid (4.71%), linalool (4.65%), and anethole (4.09%). The essential oil showed antimicrobial effect against all organisms tested with the exception of P. aeruginosa. The best activity was observed against all Gram-positive bacteria tested with the minimum inhibitory concentrations of 512 µg/mL. This is the first report on the chemical composition of E. rostkoviana essential oil and its antimicrobial activity.

  1. Validation of models to estimate the fumigant and larvicidal activity of Eucalyptus essential oils against Aedes aegypti (Diptera: Culicidae).

    PubMed

    Lucia, Alejandro; Juan, Laura W; Zerba, Eduardo N; Harrand, Leonel; Marcó, Martín; Masuh, Hector M

    2012-05-01

    The aim of this work is to validate the pre-existing models that relate the larvicidal and adulticidal activities of the Eucalyptus essential oils on Aedes aegypti. Previous works at our laboratory described that the larvicidal activity of Eucalyptus essential oils can be estimated from the relative concentration of two main components (p-cymene and 1,8-cineole) and that the adulticidal effectiveness can be explained, to a great extent, by the presence of large amounts of the component 1,8-cineole in it. In general, the results show that the higher adulticidal effect of essential oils the lower their larvicidal activity. Fresh leaves was harvested and distilled. Once the essential oil was obtained, the chemical composition was analysed, evaluating the biological activity of 15 species of the genus Eucalyptus (Eucalyptus badjensis Beuzev and Welch, Eucalyptus badjensis × nitens, Eucalyptus benthamii var Benthamii Maiden and Cambage, Eucalyptus benthamii var dorrigoensis Maiden and Cambage, Eucalyptus botryoides Smith, Eucalyptus dalrympleana Maiden, Eucalyptus fastigata Deane and Maiden, Eucalyptus nobilis L.A.S. Johnson and K.D.Hill, Eucalyptus polybractea R. Baker, Eucalyptus radiata ssp radiata Sieber ex Spreng, Eucalyptus resinifera Smith, Eucalyptus robertsonii Blakely, Eucalyptus robusta Smith, Eucalyptus rubida Deane and Maiden, Eucalyptus smithii R. Baker). Essential oils of these plant species were used for the validation of equations from preexistent models, in which observed and estimated values of the biological activity were compared. The regression analysis showed a strong validation of the models, re-stating the trends previously observed. The models were expressed as follows: A, fumigant activity [KT(50(min)) = 10.65-0.076 × 1,8-cineole (%)](p < 0.01; F, 397; R (2), 0.79); B, larval mortality (%)((40 ppm)) = 103.85 + 0.482 × p-cymene (%) - 0.363 × α-pinene (%) - 1.07 × 1,8-cineole (%) (p < 0.01; F, 300; R (2), 0.90). These results confirmed the importance of the mayor components in the biological activity of Eucalyptus essential oils on A. aegypti. However, it is worth mentioning that two or three species differ in the data estimated by the models, and these biological activity results coincide with the presence of minor differential components in the essential oils. According to what was previously mentioned, it can be inferred that the model is able to estimate very closely the biological activity of essential oils of Eucalyptus on A. aegypti.

  2. Evaluation of acute toxicity of essential oil of garlic (Allium sativum) and its selected major constituent compounds against overwintering Cacopsylla chinensis (Hemiptera: Psyllidae).

    PubMed

    Zhao, Na Na; Zhang, Hang; Zhang, Xue Chang; Luan, Xiao Bing; Zhou, Cheng; Liu, Qi Zhi; Shi, Wang Peng; Liu, Zhi Long

    2013-06-01

    In our screening program for insecticidal activity of the essential oils/extracts derived from some Chinese medicinal herbs and spices, garlic (Allium sativum L.) essential oil was found to possess strong insecticidal activity against overwintering adults of Cacopsylla chinensis Yang et Li (Hemiptera: Psyllidae). The commercial essential oil of A. sativum was analyzed by gas chromatography-mass spectrometry. Sixteen compounds, accounting for 97.44% of the total oil, were identified, and the main components of the essential oil of A. sativum were diallyl trisulfide (50.43%), diallyl disulfide (25.30%), diallyl sulfide (6.25%), diallyl tetrasulfide (4.03%), 1,2-dithiolane (3.12%), allyl methyl disulfide (3.07%), 1,3-dithiane (2.12%), and allyl methyl trisulfide (2.08%). The essential oil of A. sativum possessed contact toxicity against overwintering C. chinensis, with an LC50 value of 1.42 microg per adult. The two main constituent compounds, diallyl trisulfide and diallyl disulfide, exhibited strong acute toxicity against the overwintering C. chinensis, with LC50 values of 0.64 and 11.04 /g per adult, respectively.

  3. Chemical Composition and Antifungal Activity of Ocimum basilicum L. Essential Oil

    PubMed Central

    El-Soud, Neveen Helmy Abou; Deabes, Mohamed; El-Kassem, Lamia Abou; Khalil, Mona

    2015-01-01

    BACKGROUND: The leaves of Ocimum basilicum L. (basil) are used in traditional cuisine as spices; its essential oil has found a wide application in perfumery, dental products as well as antifungal agents. AIM: To assess the chemical composition as well as the in vitro antifungal activity of O. basilicum L. essential oil against Aspergillus flavus fungal growth and aflatoxin B1 production. MATERIAL AND METHODS: The essential oil of O. basilicum was obtained by hydrodistillation and analysed using gas chromatography (GC) and GC coupled with mass spectrometry (GC/MS). The essential oil was tested for its effects on Aspergillus flavus (A. flavus) mycelial growth and aflatoxin B1 production in Yeast Extract Sucrose (YES) growth media. Aflatoxin B1 production was determined by high performance liquid chromatography (HPLC). RESULTS: Nineteen compounds, representing 96.7% of the total oil were identified. The main components were as follows: linalool (48.4%), 1,8-cineol (12.2%), eugenol (6.6%), methyl cinnamate (6.2%), α-cubebene (5.7%), caryophyllene (2.5%), β-ocimene (2.1%) and α-farnesene (2.0%). The tested oil showed significant antifungal activity that was dependent on the used oil concentration. The complete inhibition of A. flavus growth was observed at 1000 ppm oil concentration, while marked inhibition of aflatoxin B1 production was observed at all oil concentrations tested (500, 750 and 1000 ppm). CONCLUSION: These results confirm the antifungal activities of O. basilicum L. oil and its potential use to cure mycotic infections and act as pharmaceutical preservative against A. flavus growth and aflatoxin B1 production. PMID:27275253

  4. Chemical composition and biological activity of essential oils of Dracocephalum heterophyllum and Hyssopus officinalis from Western Himalaya

    USDA-ARS?s Scientific Manuscript database

    The essential oils of two representatives of the Lamiaceae-family, Dracocephalum heterophyllum Benth. and Hyssopus officinalis L., are described for their antifungal, antibacterial and larvicidal as well as biting deterrent activities. Additionally, the essential oils’ chemical compositions, analyze...

  5. Evaluation of the cytotoxic effect and antibacterial, antifungal, and antiviral activities of Hypericum triquetrifolium Turra essential oils from Tunisia

    PubMed Central

    2013-01-01

    Background A number of bio-active secondary metabolites have been identified and reported for several Hypericum species. Many studies have reported the potential use of the plant extracts against several pathogens. However, Hypericum triquetrifolium is one of the least studied species for its antimicrobial activity. The aim of the present study was to evaluate the cytotoxic effect of the essential oils of Hypericum triquetrifolium as well as their antimicrobial potential against coxsakievirus B3 and a range of bacterial and fungal strains. Methods The essential oils of Hypericum triquetrifolium harvested from five different Tunisian localities (Fondouk DJedid, Bou Arada, Bahra, Fernana and Dhrea Ben Jouder) were evaluated for their antimicrobial activities by micro-broth dilution methods against bacterial and fungal strains. In addition, the cytotoxic effect and the antiviral activity of these oils were carried out using Vero cell lines and coxsakievirus B3. Results The results showed a good antibacterial activities against a wide range of bacterial strains, MIC values ranging between 0.39-12.50 mg/ml and MBC values between 1.56-25.0 mg/ml. In addition, the essential oils showed promising antifungal activity with MIC values ranging between 0.39 μg/mL and 12.50 μg/mL; MFC values ranged between 3.12 μg/mL and 25.00 μg/mL; a significant anticandidal activity was noted (MIC values comprised between 0.39 μg/mL and 12.50 μg/mL). Although their low cytotoxic effect (CC50 ranged between 0.58 mg/mL and 12.00 mg/mL), the essential oils did not show antiviral activity against coxsakievirus B3. Conclusion The essential oils obtained from Hypericum triquetrifolium can be used as antimicrobial agents and could be safe at non cytotoxic doses. As shown for the tested essential oils, comparative analysis need to be undertaken to better characterize also the antimicrobial activities of Hypericum triquetrifolium extracts with different solvents as well as their purified fractions and their pure secondary metabolites. PMID:23360506

  6. Chemical Composition, Cytotoxic and Antibacterial Activities of the Essential Oil from the Tunisian Ononis angustissima L. (Fabaceae).

    PubMed

    Ghribi, Lotfi; Ben Nejma, Aymen; Besbes, Malek; Harzalla-Skhiri, Fethia; Flamini, Guido; Ben Jannet, Hichem

    2016-01-01

    The chemical composition, cytotoxic and antibacterial activities of the hydrodistilled essential oil of the aerial parts of Ononis angustissima from south Tunisia has been evaluated. The oil yield was 0.04% (w/w). The chemical composition, determined by GC and GC-MS is reported for the first time. Forty-five components, accounting for 93.7% of the total oil have been identified. The oil was characterized by a high proportion of oxygenated sesquiterpenes (33.2%), followed by sesquiterpene hydrocarbons (6.3%) and apocarotenoids (10.3%). The main components of the oil were α-eudesmol (22.4%), 2-tridecanone (9.3%) and acetophenone (7.4%). The essential oil was tested for its possible cytotoxic activity towards the human cervical cell line HeLa using the MTT assay and the antibacterial activity against Pseudomonas aeruginosa, Escherichia coli, Enterococcus faecalis, Staphylococcus aureus and the clinical strain Acinetobacter sp. This oil exerted a cytotoxic activity with an IC50 of 0.53 ± 0.02 mg/mL and a significant antibacterial effect against P. aeruginosa and E. faecalis.

  7. Effect of essential oils on Aspergillus spore germination, growth and mycotoxin production: a potential source of botanical food preservative

    PubMed Central

    Gemeda, Negero; Woldeamanuel, Yimtubezinash; Asrat, Daniel; Debella, Asfaw

    2014-01-01

    Objective To investigate effect of essential oils on Aspergillus spore germination, growth and mycotoxin production. Method In vitro antifungal and antiaflatoxigenic activity of essential oils was carried out using poisoned food techniques, spore germination assay, agar dilution assay, and aflatoxin arresting assay on toxigenic strains of Aspergillus species. Results Cymbopogon martinii, Foeniculum vulgare and Trachyspermum ammi (T. ammi) essential oils were tested against toxicogenic isolates of Aspergillus species. T. ammi oil showed highest antifungal activity. Absolute mycelial inhibition was recorded at 1 µl/mL by essential oils of T. ammi. The oil also showed, complete inhibition of spore germination at a concentration of 2 µl/mL. In addition, T. ammi oil showed significant antiaflatoxigenic potency by totally inhibiting aflatoxin production from Aspergillus niger and Aspergillus flavus at 0.5 and 0.75 µl/mL, respectively. Cymbopogon martinii, Foeniculum vulgare and T. ammi oils as antifungal were found superior over synthetic preservative. Moreover, a concentration of 5 336.297 µl/kg body weight was recorded for LC50 on mice indicating the low mammalian toxicity and strengthening its traditional reputations. Conclusions In conclusion, the essential oils from T. ammi can be a potential source of safe natural food preservative for food commodities contamination by storage fungi. PMID:25183114

  8. Chemical Composition and Biological Activities of the Essential Oil from Leaves and Flowers of Pulicaria incisa sub. candolleana (Family Asteraceae).

    PubMed

    Shahat, Esraa A; Bakr, Riham O; Eldahshan, Omayma A; Ayoub, Nahla A

    2017-04-01

    The composition of the essential oil isolated from leaves and flowers of Pulicaria incisa sub. candolleana E. Gamal-Eldin, growing in Egypt, was analysed by GC and GC-MS. Forty-nine and 68 compounds were identified from the oils of the leaves and flowers accounting for 86.69 and 84.29%, respectively of the total detected constituents. Both leaves and flowers oils were characterized by the high content of carvotanacetone with 66.01, 50.87 and chrysanthenone 13.26, 24.3%, respectively. The cytotoxic activity of both essential oils was evaluated against hepatocellular carcinoma cell line HEPG-2, using MTT assay and vinblastine as a reference drug. Leaf oil showed higher activity with IC 50 11.4 μg/ml compared with 37.4 μg/ml for flower oil. The antimicrobial activity of both oils was evaluated using agar well diffusion method towards two representatives for each of Gram positive and Gram negative bacteria as well as four representatives for fungi. The minimum inhibitory concentration of both essential oils against bacterial and fungal strains was obtained in the range of 0.49 - 15.63 μg/ml. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  9. Chemical Composition, Enantiomeric Distribution, and Antifungal Activity of the Oleoresin Essential Oil of Protium amazonicum from Ecuador.

    PubMed

    Satyal, Prabodh; Powers, Chelsea N; Parducci V, Rafael; McFeeters, Robert L; Setzer, William N

    2017-09-23

    Background: Protium species (Burseraceae) have been used in the treatment of various diseases and conditions such as ulcers and wounds. Methods: The essential oil from the oleoresin of Protium amazonicum was obtained by hydrodistillation and analyzed by GC-MS, GC-FID, and chiral GC-MS. P. amazonicum oleoresin oil was screened for antifungal activity against Candida albicans , Aspergillus niger , and Cryptococcus neoformans . Results: A total of 54 components representing 99.6% of the composition were identified in the oil. The essential oil was dominated by δ-3-carene (47.9%) with lesser quantities of other monoterpenoids α-pinene (4.0%), p -cymene (4.1%), limonene (5.1%), α-terpineol (5.5%) and p -cymen-8-ol (4.8%). Chiral GC-MS revealed most of the monoterpenoids to have a majority of levo enantiomers present with the exceptions of limonene and α-terpineol, which showed a dextro majority. P. amazonicum oleoresin oil showed promising activity against Cryptococcus neoformans , with MIC = 156 μg/mL. Conclusions: This account is the first reporting of both the chemical composition and enantiomeric distribution of the oleoresin essential oil of P. amazonicum from Ecuador. The oil was dominated by (-)-δ-3-carene, and this compound, along with other monoterpenoids, likely accounts for the observed antifungal activity of the oil.

  10. Antibacterial activity of the essential oil and main components of two Dracocephalum species from Iran.

    PubMed

    Sonboli, Ali; Gholipour, Abbas; Yousefzadi, Morteza

    2012-01-01

    The antibacterial activity of Dracocephalum polychaetum and D. surmandinum essential oils and two main components were investigated. Essential oils of the plants were analysed by GC and GC-MS. Twenty-three components were characterised in the essential oil of D. polychaetum. The oil was rich in oxygenated (73.1%) and hydrocarbon (25.0%) monoterpenes including perilla aldehyde (63.4 %) and limonene (22.1%) as the major constituents. From 25 identified compounds (97.8%) in the oil of D. surmandinum perilla aldehyde (54.3%) and limonene (30.1%) were the main constituents. The bioassays exhibited that all of the Gram-positive and Gram-negative bacteria tested were highly inhibited in the presence of the oils and main components investigated. The most sensitive microorganism to the oils was found to be Staphylococcus epidermidis with the lowest MIC value of 0.3 mgmL(-1). The resistant Gram-negative Pseudomonas aeruginosa was highly inhibited by the oil of D. polychaetum with MIC value of 2.4 mgmL(-1).

  11. Antioxidant and biocidal activities of Carum nigrum (seed) essential oil, oleoresin, and their selected components.

    PubMed

    Singh, Gurdip; Marimuthu, Palanisamy; de Heluani, Carola S; Catalan, Cesar A N

    2006-01-11

    In the present study, chemical constituents of the essential oil and oleoresin of the seed from Carum nigrum obtained by hydrodistillation and Soxhlet extraction using acetone, respectively, have been studied by GC and GC-MS techniques. The major component was dillapiole (29.9%) followed by germacrene B (21.4%), beta-caryophyllene (7.8%), beta-selinene (7.1%), and nothoapiole (5.8%) along with many other components in minor amounts. Seventeen components were identified in the oleoresin (Table 2) with dillapiole as a major component (30.7%). It also contains thymol (19.1%), nothoapiole (15.2.3%), and gamma-elemene (8.0%). The antioxidant activity of both the essential oil and oleoresin was evaluated in mustard oil by monitoring peroxide, thiobarbituric acid, and total carbonyl and p-anisidine values of the oil substrate. The results showed that both the essential oil and oleoresin were able to reduce the oxidation rate of the mustard oil in the accelerated condition at 60 degrees C in comparison with synthetic antioxidants such as butylated hydroxyanisole and butylated hydroxytoluene at 0.02%. In addition, individual antioxidant assays such as linoleic acid assay, DPPH scavenging activity, reducing power, hydroxyl radical scavenging, and chelating effects have been used. The C. nigrum seed essential oil exhibited complete inhibition against Bacillus cereus and Pseudomonas aeruginosa at 2000 and 3000 ppm, respectively, by agar well diffusion method. Antifungal activity was determined against a panel of foodborne fungi such as Aspergillus niger, Penicillium purpurogenum, Penicillium madriti, Acrophialophora fusispora, Penicillium viridicatum, and Aspergillus flavus. The fruit essential oil showed 100% mycelial zone inhibition against P. purpurogenum and A. fusispora at 3000 ppm in the poison food method. Hence, both oil and oleoresin could be used as an additive in food and pharmaceutical preparations after screening.

  12. The chemical composition and antimicrobial activity of the leaf oil of Cupressus lusitanica from Monteverde, Costa Rica

    PubMed Central

    Hassanzadeh, Sara L.; Tuten, Jessika A.; Vogler, Bernhard; Setzer, William N.

    2010-01-01

    The essential oils from the leaves of three different individuals of Cupressus lusitanica were obtained by hydrodistillation and analyzed by gas chromatography - mass spectrometry. A total of 49 compounds were identified in the leaf oils. The major components of C. lusitanica leaf oil were α-pinene (40%-82%), limonene (4%-18%), isobornyl acetate (up to 10%) and cis-muurola-4(14),5-diene (up to 7%). The essential oil was screened for antimicrobial activity, and it showed antibacterial activity against Bacillus cereus and antifungal activity against Aspergillus niger. PMID:21808533

  13. Antifungal activity of Gallesia integrifolia fruit essential oil.

    PubMed

    Raimundo, Keila Fernanda; Bortolucci, Wanessa de Campos; Glamočlija, Jasmina; Soković, Marina; Gonçalves, José Eduardo; Linde, Giani Andrea; Colauto, Nelson Barros; Gazim, Zilda Cristiani

    2018-04-12

    Gallesia integrifolia (Phytolaccaceae) is native to Brazil and has a strong alliaceous odor. The objective of this study was to identify the chemical composition of G. integrifolia fruit essential oil and evaluate fungicidal activity against the main food-borne diseases and food spoilage fungi. The essential oil was extracted by hydrodistillation and identified by GC-MS. From 35 identified compounds, 68% belonged to the organosulfur class. The major compounds were dimethyl trisulfide (15.49%), 2,8-dithianonane (52.63%) and lenthionine (14.69%). The utilized fungi were Aspergillus fumigatus, Aspergillus niger, Aspergillus ochraceus, Aspergillus versicolor, Penicillium funiculosum, Penicillium ochrochloron, Penicillium verrucosum var. cyclopium, and Trichoderma viride. Minimal fungicidal concentration for the essential oil varied from 0.02 to 0.18mg/mL and bifonazole and ketoconazole controls ranged from 0.20 to 3.50mg/mL. The lower concentration of the essential oil was able to control P. ochrochloron, A. fumigatus, A. versicolor, A. ochraceus and T. viride. This study shows a high fungicidal activity of G. integrifolia fruit essential oil and can support future applications by reducing the use of synthetic fungicides. Copyright © 2018. Published by Elsevier Editora Ltda.

  14. Repellency and Larvicidal Activity of Essential oils from Xylopia laevigata, Xylopia frutescens, Lippia pedunculosa, and Their Individual Compounds against Aedes aegypti Linnaeus.

    PubMed

    Nascimento, A M D; Maia, T D S; Soares, T E S; Menezes, L R A; Scher, R; Costa, E V; Cavalcanti, S C H; La Corte, R

    2017-04-01

    In order to find new alternatives for vector control and personal protection, we evaluated the larvicidal and repellent activity of essentials oils from plants found in the Northeast of Brazil against Aedes aegypti Linnaeus mosquitoes. The plants tested include Xylopia laevigata, Xylopia frutescens, and Lippia pedunculosa and their major compounds, piperitenone oxide, and (R)-limonene. The essential oil of L. pedunculosa and its major volatile compounds were shown to be toxic for Ae. aegypti larvae with a LC 50 lower than 60 ppm. The essential oil of plants from the Xylopia genus, on the other hand, showed no activity against Ae. aegypti, proving to be toxic to mosquito larvae only when concentrations were higher than 1000 ppm. All plants tested provided some degree of protection against mosquitoes landing, but only the essential oil of L. pedunculosa and the volatile compound piperitenone oxide suppressed 100% of mosquitoes landing on human skin, in concentrations lower than 1%. Among the plants studied, the essential oil of L. pedunculosa and its volatiles compounds have shown the potential for the development of safe alternative for mosquito larvae control and protection against Ae. aegypti mosquito bites.

  15. Antimicrobial Activity and Chemical Composition of Essential Oils from Verbenaceae Species Growing in South America.

    PubMed

    Pérez Zamora, Cristina M; Torres, Carola A; Nuñez, María B

    2018-03-01

    The Verbenaceae family includes 2600 species grouped into 100 genera with a pantropical distribution. Many of them are important elements of the floras of warm-temperature and tropical regions of America. This family is known in folk medicine, and its species are used as digestive, carminative, antipyretic, antitussive, antiseptic, and healing agents. This review aims to collect information about the essential oils from the most reported species of the Verbenaceae family growing in South America, focusing on their chemical composition, antimicrobial activity, and synergism with commercial antimicrobials. The information gathered comprises the last twenty years of research within the South American region and is summarized taking into consideration the most representative species in terms of their essential oils. These species belong to Aloysia , Lantana , Lippia , Phyla , and Stachytarpheta genera, and the main essential oils they contain are monoterpenes and sesquiterpenes, such as β-caryophyllene, thymol, citral, 1,8-cineole, carvone, and limonene. These compounds have been found to possess antimicrobial activities. The synergism of these essential oils with antibiotics is being studied by several research groups. It constitutes a resource of interest for the potential use of combinations of essential oils and antibiotics in infection treatments.

  16. Origanum vulgare subsp. hirtum essential oil prevented biofilm formation and showed antibacterial activity against planktonic and sessile bacterial cells.

    PubMed

    Schillaci, Domenico; Napoli, Edoardo Marco; Cusimano, Maria Grazia; Vitale, Maria; Ruberto, Andgiuseppe

    2013-10-01

    Essential oils from six different populations of Origanum vulgare subsp. hirtum were compared for their antibiofilm properties. The six essential oils (A to F) were characterized by a combination of gas chromatography with flame ionization detector and gas chromatography with mass spectrometer detector analyses. All oils showed weak activity against the planktonic form of a group of Staphylococcus aureus strains and against a Pseudomonas aeruginosa ATCC 15442 reference strain. The ability to inhibit biofilm formation was investigated at sub-MIC levels of 200, 100, and 50 m g/ml by staining sessile cells with safranin. Sample E showed the highest average effectiveness against all tested strains at 50 m g/ml and had inhibition percentages ranging from 30 to 52%. In the screening that used preformed biofilm from the reference strain P. aeruginosa, essential oils A through E were inactive at 200 m g/ml; F was active with a percentage of inhibition equal to 53.2%. Oregano essential oil can inhibit the formation of biofilms of various food pathogens and food spoilage organisms.

  17. Rhamnolipids as emulsifying agents for essential oil formulations: antimicrobial effect against Candida albicans and methicillin-resistant Staphylococcus aureus.

    PubMed

    Haba, Ester; Bouhdid, Samira; Torrego-Solana, Noelia; Marqués, A M; Espuny, M José; García-Celma, M José; Manresa, Angeles

    2014-12-10

    This work examines the influence of essential oil composition on emulsification with rhamnolipids and their use as therapeutic antimicrobial agents against two opportunistic pathogens, methicillin-resistant Staphylococcus aureus (MRSA) and Candida albicans. Rhamnolipids, produced by Pseudomonas aeruginosa, with waste frying oil as the carbon source, were composed of eight rhamnolipid homologues. The rhamnolipid mixture was used to produce emulsions containing essential oils (EOs) of Melaleuca alternifolia, Cinnamomum verum, Origanum compactum and Lavandula angustifolia using the titration method. Ternary phase diagrams were designed to evaluate emulsion stability, which differed depending on the essential oil. The in vitro antimicrobial activity of the EOs alone and the emulsions was evaluated. The antimicrobial activity presented by the essential oils alone increased with emulsification. The surface properties of rhamnolipids contribute to the positive dispersion of EOs and thus increase their availability and antimicrobial activity against C. albicans and S. aureus. Therefore, rhamnolipid-based emulsions represent a promising approach to the development of EO delivery systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Chemical composition and in vitro antifungal and antioxidant activity of the essential oil and methanolic extract of Teucrium sauvagei Le Houerou.

    PubMed

    Salah, K Bel Hadj; Mahjoub, M A; Chaumont, J P; Michel, L; Millet-Clerc, J; Chraeif, I; Ammar, S; Mighri, Z; Aouni, M

    2006-10-01

    The chemical composition and the in vitro antifungal and antioxidant activity of the essential oil and the methanolic leaf extracts of Teucrium sauvagei Le Houerou, an endemic medicinal plant growing in Tunisia, have been studied. More than 35 constituents having an abundance >or=0.2% were identified in the oil. beta-Eudesmol, T-cadinol, alpha-thujene, gamma-cadinene, and sabinene were the prevalent constituents. Results of the antifungal activity tests indicated that the methanolic extract inhibited the in vitro growth of seven dermatophytes, whereas the essential oil showed average inhibition against only three dermatophytes. In vitro antioxidant properties of the essential oil and the methanolic extract were determined by DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azinobis(3-ethylbenzothiazoline-6-sulphonic acid)) assays and compared to those of the synthetic antioxidant Trolox. Due to their antifungal and antioxidant properties, the essential oil and the methanolic extract of T. sauvagei may be of use as natural preservative ingredients in food and/or pharmaceutical industries.

  19. Analysis of Insect toxicity and repellent activity of Phytochemicals from "Skimmia laureola, Nair" against "Black garden ant, Lasius niger" of Pakistan.

    PubMed

    Mehmood, Ferhat; Khan, Zaheer-ud-Din; Manzoor, Farkhanda; Jamil, Muhammad

    2016-05-01

    A study was conducted to evaluate the toxicity and repellency of essential oils from root, stem and leaves of Nazar panra, Skimmia laureola (DC.) Zucc. Ex Walp. of family (Sapindales: Rutaceae) ver. Nair of Pakistan. The oils were tested at three concentrations i.e. 1, 5 and 10%. Black garden ant, Lasius niger L. (Hymenoptera: Formicidae) of Pakistan were selected and exposed to essential oils at room temperature. All essential oils showed Insecticidal activity with LC(50)=10.15, while dose dependant effect was significant with R(2)=0.98. It can be concluded that the three Essential oils in this study have both Insecticidal as well as repellent effect.

  20. Enantiomeric distribution of some linalool containing essential oils and their biological activities

    USDA-ARS?s Scientific Manuscript database

    The enantiomeric composition of linalool was determined in 42 essential oils using chiral columns. Essential oils were analyzed by multidimentional gas chromatography-mass spectrometry using a non-chiral and chiral FSC column combination with modified '-cyclodextrine (Lipodex E) as the chiral statio...

  1. Chemical Composition and Insecticidal Activity of Essential Oils from Zanthoxylum dissitum Leaves and Roots against Three Species of Storage Pests.

    PubMed

    Wang, Cheng-Fang; Yang, Kai; You, Chun-Xue; Zhang, Wen-Juan; Guo, Shan-Shan; Geng, Zhu-Feng; Du, Shu-Shan; Wang, Yong-Yan

    2015-05-04

    This work aimed to investigate chemical composition of essential oils obtained from Zanthoxylum dissitum leaves and roots and their insecticidal activities against several stored product pests, namely the cigarette beetle (Lasioderma serricorne), red flour beetle (Tribolium castaneum) and black carpet beetle (Attagenus piceus). The analysis by GC-MS of the essential oils allowed the identification of 28 and 22 components, respectively. It was found that sesquiterpenoids comprised a fairly high portion of the two essential oils, with percentages of 74.0% and 80.9% in the leaves and roots, respectively. The main constituents identified in the essential oil of Z. dissitum leaves were δ-cadinol (12.8%), caryophyllene (12.7%), β-cubebene (7.9%), 4-terpineol (7.5%) and germacrene D-4-ol (5.7%), while humulene epoxide II (29.4%), caryophyllene oxide (24.0%), diepicedrene-1-oxide (10.7%) and Z,Z,Z-1,5,9,9-tetramethyl-1,4,7-cycloundecatriene (8.7%) were the major components in the essential oil of Z. dissitum roots. The insecticidal activity results indicated that the essential oil of Z. dissitum roots exhibited moderate contact toxicity against three species of storage pests, L. serricorne,T. castaneum and A. piceus, with LD50 values of 13.8, 43.7 and 96.8 µg/adult, respectively.

  2. Antiparasitic Activity and Essential Oil Chemical Analysis of the Piper Tuberculatum Jacq Fruit

    PubMed Central

    dos Santos Sales, Valterlúcio; Monteiro, Álefe Brito; Delmondes, Gyllyandeson de Araújo; do Nascimento, Emmily Petícia; Sobreira Dantas Nóbrega de Figuêiredo, Francisco Rodolpho; de Souza Rodrigues, Cristina Kelly; Evangelista de Lacerda, Josefa Fernanda; Fernandes, Cícera Norma; Barbosa, Maysa de Oliveira; Brasil, Adamo Xenofonte; Tintino, Saulo Relison; Vega Gomez, Maria Celeste; Coronel, Cathia; Melo Coutinho, Henrique Douglas; Martins da Costa, José Galberto; Bezerra Felipe, Cícero Francisco; Alencar de Menezes, Irwin Rose; Kerntopf, Marta Regina

    2018-01-01

    With the increase of neglected diseases such as leishmaniasis and Chagas disease, there was a need for the search for new therapeutic alternatives that reduce the harm caused by medicine available for treatment. Thus, this study was performed to investigate the antiparasitic activity of the essential oil from the fruits of Piper tuberculatum Jacq, against lines of Leishmania braziliensis (MHOM/CO/88/UA301), Leishmania infantum (MHOM/ES/92/BCN83) and Trypanosoma cruzi (LC-B5 clone). Before running protocols, an analysis of the chemical composition of essential oil was conducted, which presented monoterpenes and sesquiterpenes. As major constituents, β-pinene and α-pinene were identified. Regarding to antiparasitic activity, the essential oil had an EC50 values of 133.97 µg/mL and 143.59 µg/mL against variations promastigotes of L. infantum and L. braziliensis, respectively. As for trypanocidal activity, the oil showed EC50 value of 140.31 µg/mL against epimastigote form of T. cruzi. Moreover, it showed moderate cytotoxicity in fibroblasts with LC50 value of 204.71 µg/mL. The observed effect may be related to the presence of terpenes contained in the essential oil, since it has its antiparasitic activity proven in the literature.

  3. Combined Toxicity of Three Essential Oils Against Aedes aegypti (Diptera: Culicidae) Larvae.

    PubMed

    Muturi, Ephantus J; Ramirez, Jose L; Doll, Kenneth M; Bowman, Michael J

    2017-11-07

    Essential oils are potential alternatives to synthetic insecticides because they have low mammalian toxicity, degrade rapidly in the environment, and possess complex mixtures of bioactive constituents with multi-modal activity against the target insect populations. Twenty-one essential oils were initially screened for their toxicity against Aedes aegypti (L.) larvae and three out of the seven most toxic essential oils (Manuka, oregano, and clove bud essential oils) were examined for their chemical composition and combined toxicity against Ae. aegypti larvae. Manuka essential oil interacted synergistically with oregano essential oil and antagonistically with clove bud essential oil. GC-MS analysis revealed the presence of 21 components in Manuka essential oil and three components each in oregano and clove bud essential oils. Eugenol (84.9%) and eugenol acetate (9.6%) were the principal constituents in clove bud essential oil while carvacrol (75.8%) and m-isopropyltoluene (15.5%) were the major constituents in oregano essential oil. The major constituents in Manuka essential oil were calamenene (20%) and 3-dodecyl-furandione (11.4%). Manuka essential oil interacted synergistically with eugenol acetate and antagonistically with eugenol, suggesting that eugenol was a major contributor to the antagonistic interaction between Manuka and clove bud essential oils. In addition, Manuka interacted synergistically with carvacrol suggesting its contribution to the synergistic interaction between Manuka and oregano essential oils. These findings provide novel insights that can be used to develop new and safer alternatives to synthetic insecticides. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  4. Essential Oil Extraction, Chemical Analysis and Anti-Candida Activity of Calamintha nepeta (L.) Savi subsp. glandulosa (Req.) Ball-New Approaches.

    PubMed

    Božović, Mijat; Garzoli, Stefania; Sabatino, Manuela; Pepi, Federico; Baldisserotto, Anna; Andreotti, Elisa; Romagnoli, Carlo; Mai, Antonello; Manfredini, Stefano; Ragno, Rino

    2017-01-26

    A comprehensive study on essential oils extracted from different Calamintha nepeta (L.) Savi subsp. glandulosa (Req.) Ball samples from Tarquinia (Italy) is reported. In this study, the 24-h steam distillation procedure for essential oil preparation, in terms of different harvesting and extraction times, was applied. The Gas chromatography-mass spectrometry (GC/MS) analysis showed that C. nepeta (L.) Savi subsp. glandulosa (Req.) Ball essential oils from Tarquinia belong to the pulegone-rich chemotype. The analysis of 44 samples revealed that along with pulegone, some other chemicals may participate in exerting the related antifungal activity. The results indicated that for higher activity, the essential oils should be produced with at least a 6-h steam distillation process. Even though it is not so dependent on the period of harvesting, it could be recommended not to harvest the plant in the fruiting stage, since no significant antifungal effect was shown. The maximum essential oil yield was obtained in August, with the highest pulegone percentage. To obtain the oil with a higher content of menthone, September and October should be considered as the optimal periods. Regarding the extraction duration, vegetative stage material gives the oil in the first 3 h, while material from the reproductive phase should be extracted at least at 6 or even 12 h.

  5. Essential oil based polymeric patch development and evaluating its repellent activity against mosquitoes.

    PubMed

    Chattopadhyay, Pronobesh; Dhiman, Sunil; Borah, Somi; Rabha, Bipul; Chaurasia, Aashwin Kumar; Veer, Vijay

    2015-07-01

    Essential oil based insect repellents are environment friendly and provide dependable personal protection against the bites of mosquitoes and other blood-sucking insects. In the present study, optimized mixture of three essential oils was embedded into the ethylcellulose (EC) and polyvinylpyrrolidone (PVP K-30) polymers to develop essential oils based patch type mosquito repellent formulation. The developed formulation was characterized for various physico-chemical properties, oil release efficiency and essential oil-polymer interaction. Repellent activity of the formulation was evaluated against Ae. (S) albopictus mosquitoes and compared with commercially available synthetic insecticide based mosquito repellent cream Odomos(®) in the laboratory. The developed patches were 100% flat and there was no interaction between oil components and the excipients. Patches were smooth, homogenous and provided excellent mosquito repellent activity comparable to Odomos(®) under laboratory condition. Morphological and physico-chemical characterization indicated that the formulation was stable and suitable with the polymeric combination. The patch formulation did not show any inhalation toxicity in experimental Wistar rat. The repellent patches developed and evaluated currently, may provide a suitable, eco-friendly, acceptable and safe alternative to the existing synthetic repellent formulations for achieving protection against mosquitoes. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Variation of the chemical composition and antimicrobial activity of the essential oils of natural populations of Tunisian Daucus carota L. (Apiaceae).

    PubMed

    Rokbeni, Nesrine; M'rabet, Yassine; Dziri, Salma; Chaabane, Hedia; Jemli, Marwa; Fernandez, Xavier; Boulila, Abdennacer

    2013-12-01

    The essential oils of Daucus carota L. (Apiaceae) seeds sampled from ten wild populations spread over northern Tunisia were characterized by GC-FID and GC/MS analyses. In total, 36 compounds were identified in the D. carota seed essential oils, with a predominance of sesquiterpene hydrocarbons in most samples (22.63-89.93% of the total oil composition). The main volatile compounds identified were β-bisabolene (mean content of 39.33%), sabinene (8.53%), geranyl acetate (7.12%), and elemicin (6.26%). The volatile composition varied significantly across the populations, even for oils of populations harvested in similar areas. The chemometric principal component analysis and the hierarchical clustering identified four groups, each corresponding to a composition-specific chemotype. The in vitro antimicrobial activity of the isolated essential oils was preliminarily evaluated, using the disk-diffusion method, against one Gram-positive (Staphylococcus aureus) and two Gram-negative bacteria (Escherichia coli and Salmonella typhimurium), as well as against a pathogenic yeast (Candida albicans). All tested essential oils exhibited interesting antibacterial and antifungal activities against the assayed microorganisms. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  7. Differential Cytotoxic Activity of Essential Oil of Lippia citriodora from Different Regions in Morocco.

    PubMed

    Oukerrou, Moulay Ali; Tilaoui, Mounir; Mouse, Hassan Ait; Bouchmaa, Najat; Zyad, Abdelmajid

    2017-07-01

    The aim of this work was to investigate the cytotoxic effect of the essential oil of dried leaves of Lippia citriodora (H.B. & K.) harvested in different regions of Morocco. This effect was evaluated against the P815 murine mastocytoma cell line using the MTT assay. Interestingly, this work demonstrated for the first time that these essential oils exhibited a strong cytotoxic activity against the P815 cell line, with IC 50 values ranging from 7.75 to 13.25 μg/ml. This cytotoxicity began early and increased in a dose- and time-dependent manner. The chemical profile of these essential oils was analyzed by gas chromatography coupled to mass spectrometry. Importantly, the difference in terms of major components' contents was not significant suggesting probably that the differential cytotoxicity between these essential oils could be attributed to the difference in the content of these essential oils in minor compounds, which could interact with each other or with the main molecules. Finally, this study demonstrated for the first time that essential oils of L. citriodora from different regions in Morocco induced apoptosis against P815 tumor cell line. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  8. Biopreservation of hamburgers by essential oil of Zataria multiflora.

    PubMed

    Samadi, N; Sharifan, A; Emam-Djomeh, Z; Sormaghi, M H Salehi

    2012-01-01

    Hamburgers with high nutrient supply and a loosely-packed structure present favourable conditions for microbial growth. In this study, the chemical composition and antimicrobial activity of the essential oil of Zataria multiflora and its potential application as a natural preservative in reducing the indigenous microbial population of hamburgers were investigated. Carvacrol, thymol and linalool were found to be the most abundant constituents of the essential oil using GC-MS analysis. The essential oil exhibited strong antibacterial activity against Gram-positive and Gram-negative bacteria. Addition of Z. multiflora essential oil in concentrations higher than MIC values influenced the microbial population of hamburgers stored at 25°C, 4°C and -12°C. The significant results of this study are our observations that the use of Z. multiflora essential oil at 0.05% v/w increases the time needed for the natural microflora of hamburgers to reach concentrations able to produce a perceivable spoilage at refrigerator and room temperatures without any inverse effect on their sensory attributes. Freezing of essential oil-treated hamburgers may also reduce the risk of diseases associated with consumption of under-cooked hamburgers through significant microbial reduction by more than 3 log.

  9. Essential Oils and Antifungal Activity

    PubMed Central

    Coppola, Raffaele; De Feo, Vincenzo

    2017-01-01

    Since ancient times, folk medicine and agro-food science have benefitted from the use of plant derivatives, such as essential oils, to combat different diseases, as well as to preserve food. In Nature, essential oils play a fundamental role in protecting the plant from biotic and abiotic attacks to which it may be subjected. Many researchers have analyzed in detail the modes of action of essential oils and most of their components. The purpose of this brief review is to describe the properties of essential oils, principally as antifungal agents, and their role in blocking cell communication mechanisms, fungal biofilm formation, and mycotoxin production. PMID:29099084

  10. Evaluation of Contact Toxicity and Repellency of the Essential Oil of Pogostemon cablin Leaves and Its Constituents Against Blattella germanica (Blattodae: Blattelidae).

    PubMed

    Liu, Xin Chao; Liu, Qiyong; Chen, Han; Liu, Qi Zhi; Jiang, Shi Yao; Liu, Zhi Long

    2015-01-01

    The aim of this research was to evaluate contact toxicity and repellency of the essential oil of Pogostemon cablin (Blanco) Bentham leaves against German cockroaches (Blattella germanica) (L.) and to isolate any active constituents. Essential oil of P. cablin leaves was obtained by hydrodistillation and analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Twenty-three components were identified in the essential oil, and the main constituents were patchoulol (41.31%), pogostone (18.06%), α-bulnesene (6.56%), caryophyllene (5.96%), and seychellene (4.32%). Bioactivity-directed chromatographic separation of the essential oil led to the isolation of pogostone, patchoulol, and caryophyllene as active compounds. The essential oil of P. cablin leaves exhibited acute toxicity against male B. germanica adults with an LC50 value of 23.45 μg per adult. The constituent compound, pogostone (LC50 = 8.51 μg per adult) showed stronger acute toxicity than patchoulol (LC50 = 207.62 μg per adult) and caryophyllene (LC50 = 339.90 μg per adult) against the male German cockroaches. The essential oil of P. cablin leaves and the three isolated constituents exhibited strong repellent activity against German cockroaches at a concentration of 5 ppm. The results indicated that the essential oil of P. cablin leaves and its major constituents have good potential as a source for natural insecticides and repellents. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Variability of composition and effects of essential oils from Rhanterium adpressum Coss. & Durieu against mycotoxinogenic Fusarium strains.

    PubMed

    Elhouiti, Fatiha; Tahri, Djilali; Takhi, Djalila; Ouinten, Mohamed; Barreau, Christian; Verdal-Bonnin, Marie-Noëlle; Bombarda, Isabelle; Yousfi, Mohamed

    2017-12-01

    The antifungal potency of the essential oils of Rhanterium adpressum was evaluated against four mycotoxigenic strains of the genus Fusarium. The essential oils were obtained, separately, by hydro-distillation of the aerial parts of R. adpressum (leaves and flowers). The parts were collected during the period of bloom (3 months) for 3 years. The GC-MS analysis revealed thirty-six compounds for the essential oils, divided into four classes of chemical compounds, with variable percentages according to the month of extraction. The monoterpene hydrocarbons form the main class in these oils. On the other hand, the highest percentages of the oxygenated compounds are observed in the samples collected during the month of May. The direct contact method was used to evaluate the antifungal activity of the essential oils. The activity can be attributed to their relatively high composition of oxygenated monoterpenes. Flowers extract showed strong inhibitory activity, with very interesting concentrations of IC50 and MIC for both tests on solid and liquid medium. The effect of these oils on the production of type B trichothecenes (TCTBs) was evaluated, showing a significant inhibitory effect on TCTBs production, for both extracts (leaves and flowers). The rates of inhibition were 66-97 and 76-100% of FX, 3-ADON and 15-ADON, respectively. The inhibition of fungal biomass and the production of TCTBs depended on the used concentration of the essential oils. These results suggest that the essential oils from R. adpressum are able to control the growth of the tested strains and their subsequent production of TCTB mycotoxins.

  12. Control of Colletotrichum gloeosporioides (penz.) Sacc. In yellow passion fruit using Cymbopogon citratus essential oil

    PubMed Central

    Anaruma, Nina Duarte; Schmidt, Flávio Luís; Duarte, Marta Cristina Teixeira; Figueira, Glyn Mara; Delarmelina, Camila; Benato, liane Aparecida; Sartoratto, Adilson

    2010-01-01

    The use of antibiotics in agriculture is limited when compared to their applications in human and veterinary medicine. On the other hand, the use of antimicrobials in agriculture contributes to the drug resistance of human pathogens and has stimulated the search for new antibiotics from natural products. Essential oils have been shown to exert several biological activities including antibacterial and antifungal actions. The aim of this study was to determine the activity of 28 essential oils from medicinal plants cultivated at CPMA (Medicinal and Aromatic Plants Collection), CPQBA/UNICAMP, against Colletotrichum gloeosporioides (Penz.) Sacc., the anthracnose agent in yellow passion fruit (Passiflora edulis Sims f. flavicarpa Deg), as well as evaluating their effect in the control of post-harvest decay. The oils were obtained by water-distillation using a Clevenger-type system and their minimal inhibitory concentrations (MIC) determined by the micro-dilution method. According to the results, 15 of the 28 essential oils presented activity against Colletotrichum gloeosporioides, and the following four oils presented MIC values between 0.25 and 0.3 mg/mL: Coriandrum sativum, Cymbopogon citratus, Cymbopogon flexuosus and Lippia alba. The evaluation of Cymbopogon citratus essential oil in the control of post-harvest decay in yellow passion fruit showed that the disease index of the samples treated with the essential oil did not differ (P ≤ 0.05) from that of the samples treated with fungicide. The present study shows the potential of Cymbopogon citratus essential oil in the control of the anthracnose agent in yellow passion fruit. PMID:24031465

  13. Control of Colletotrichum gloeosporioides (penz.) Sacc. In yellow passion fruit using Cymbopogon citratus essential oil.

    PubMed

    Anaruma, Nina Duarte; Schmidt, Flávio Luís; Duarte, Marta Cristina Teixeira; Figueira, Glyn Mara; Delarmelina, Camila; Benato, Liane Aparecida; Sartoratto, Adilson

    2010-01-01

    The use of antibiotics in agriculture is limited when compared to their applications in human and veterinary medicine. On the other hand, the use of antimicrobials in agriculture contributes to the drug resistance of human pathogens and has stimulated the search for new antibiotics from natural products. Essential oils have been shown to exert several biological activities including antibacterial and antifungal actions. The aim of this study was to determine the activity of 28 essential oils from medicinal plants cultivated at CPMA (Medicinal and Aromatic Plants Collection), CPQBA/UNICAMP, against Colletotrichum gloeosporioides (Penz.) Sacc., the anthracnose agent in yellow passion fruit (Passiflora edulis Sims f. flavicarpa Deg), as well as evaluating their effect in the control of post-harvest decay. The oils were obtained by water-distillation using a Clevenger-type system and their minimal inhibitory concentrations (MIC) determined by the micro-dilution method. According to the results, 15 of the 28 essential oils presented activity against Colletotrichum gloeosporioides, and the following four oils presented MIC values between 0.25 and 0.3 mg/mL: Coriandrum sativum, Cymbopogon citratus, Cymbopogon flexuosus and Lippia alba. The evaluation of Cymbopogon citratus essential oil in the control of post-harvest decay in yellow passion fruit showed that the disease index of the samples treated with the essential oil did not differ (P ≤ 0.05) from that of the samples treated with fungicide. The present study shows the potential of Cymbopogon citratus essential oil in the control of the anthracnose agent in yellow passion fruit.

  14. Chemical Compositions of the Peel Essential Oil of Citrus aurantium and Its Natural Larvicidal Activity against the Malaria Vector Anopheles stephensi (Diptera: Culicidae) in Comparison with Citrus paradisi

    PubMed Central

    Sanei-Dehkordi, Alireza; Sedaghat, Mohammad Mehdi; Vatandoost, Hassan; Abai, Mohammad Reza

    2016-01-01

    Background: Recently, essential oils and extracts derived from plants have received much interest as potential bio-active agents against mosquito vectors. Methods: The essential oils extract from fresh peel of ripe fruit of Citrus aurantium and Citrus paradisi were tested against mosquito vector Anopheles stephensi (Diptera: Culicidae) under laboratory condition. Then chemical composition of the essential oil of C. aurantium was analyzed using gas chromatography-mass spectrometry (GC–MS). Results: The essential oils obtained from C. aurantium, and C. paradisi showed good larviciding effect against An. stephensi with LC50 values 31.20 ppm and 35.71 ppm respectively. Clear dose response relationships were established with the highest dose of 80 ppm plant extract evoking almost 100% mortality. Twenty-one (98.62%) constituents in the leaf oil were identified. The main constituent of the leaf oil was Dl-limonene (94.81). Conclusion: The results obtained from this study suggest that the limonene of peel essential oil of C. aurantium is promising as larvicide against An. stephensi larvae and could be useful in the search for new natural larvicidal compounds. PMID:28032110

  15. Chemical Compositions of the Peel Essential Oil of Citrus aurantium and Its Natural Larvicidal Activity against the Malaria Vector Anopheles stephensi (Diptera: Culicidae) in Comparison with Citrus paradisi.

    PubMed

    Sanei-Dehkordi, Alireza; Sedaghat, Mohammad Mehdi; Vatandoost, Hassan; Abai, Mohammad Reza

    2016-12-01

    Recently, essential oils and extracts derived from plants have received much interest as potential bio-active agents against mosquito vectors. The essential oils extract from fresh peel of ripe fruit of Citrus aurantium and Citrus paradisi were tested against mosquito vector Anopheles stephensi (Diptera: Culicidae) under laboratory condition. Then chemical composition of the essential oil of C. aurantium was analyzed using gas chromatography-mass spectrometry (GC-MS). The essential oils obtained from C. aurantium , and C. paradisi showed good larviciding effect against An. stephensi with LC 50 values 31.20 ppm and 35.71 ppm respectively. Clear dose response relationships were established with the highest dose of 80 ppm plant extract evoking almost 100% mortality. Twenty-one (98.62%) constituents in the leaf oil were identified. The main constituent of the leaf oil was Dl-limonene (94.81). The results obtained from this study suggest that the limonene of peel essential oil of C. aurantium is promising as larvicide against An. stephensi larvae and could be useful in the search for new natural larvicidal compounds.

  16. Antihyperalgesic and antidepressive actions of (R)-(+)-limonene, α-phellandrene, and essential oil from Schinus terebinthifolius fruits in a neuropathic pain model.

    PubMed

    Piccinelli, Ana Claudia; Santos, Joyce Alencar; Konkiewitz, Elisabete Castelon; Oesterreich, Silvia Aparecida; Formagio, Anelise Samara Nazari; Croda, Julio; Ziff, Edward Benjamim; Kassuya, Cândida Aparecida Leite

    2015-07-01

    Previous studies have shown that essential oil containing (R)-(+)-limonene and α-phellandrene, extracted from fruits of Schinus terebinthifolius Raddi, exhibit anti-inflammatory activity. This work aimed to verify the antihyperalgesic and antidepressive actions of (R)-(+)-limonene, α-phellandrene, and essential oil from S. terebinthifolius fruits in spared nerve injury (SNI) model of neuropathic pain in rats. In the present work, essential oil from fruits of S. terebinthifolius, as well as the pure (R)-(+)-limonene and α-phellandrene compounds, were assayed for their effects on SNI-induced mechanical and cold hyperalgesia, and depressive-like behavior (immobility in forced swim test) in rats. The locomotor activity was evaluated in open-field test. Oral administration for up to 15 days of essential oil of S. terebinthifolius (100 mg/kg), (R)-(+)-limonene (10 mg/kg), α-phellandrene (10 mg/kg), and also subcutaneous 10 mg/kg dose of ketamine (positive control) significantly inhibited SNI-induced mechanical hyperalgesia and increased immobility in the forced swim test. On the 15th day of oral treatment, α-phellandrene, but neither the essential oil from S. terebinthifolius nor (R)-(+)-limonene, prevented the SNI-induced increase in sensitivity to a cold stimulus. The oral treatment with essential oil (100 mg/kg) or with compounds (10 mg/kg) did not interfere on locomotor activity. Together, the results of the present work show that essential oil of S. terebinthifolius and compounds present in this oil, including (R)-(+)-limonene and α-phellandrene, exhibit antihyperalgesic effects against mechanical hyperalgesia, and are antidepressive, while only α-phellandrene inhibited cold hyperalgesia in SNI rats.

  17. Chemical composition profiling and antifungal activity of the essential oil and plant extracts of Mesembryanthemum edule (L.) bolus leaves.

    PubMed

    Omoruyi, Beauty Etinosa; Afolayan, Anthony Jide; Bradley, Graeme

    2014-01-01

    Essential oil from Mesembryanthemum edule leaves have been used by the Eastern Cape traditional healers for the treatment of respiratory tract infections, tuberculosis, dysentery, diabetic mellitus, laryngitis and vaginal infections. The investigation of bioactive compounds in the essential oil of this plant could help to verify the efficacy of the plant in the management or treatment of these illnesses. Various concentrations of the hydro-distilled essential oil, ranging from 0.005-5 mg/ml, were tested against some fungal strains, using the micro-dilution method. Minimum inhibitory activity was compared with four other different crude extracts of hexane, acetone, ethanol and aqueous samples from the same plant. The chemical composition of the essential oil, hexane, acetone and ethanol extracts was determined using GC-MS. GC/MS analysis of the essential oil resulted in the identification of 28 compounds, representing 99.99% of the total oil. Phytoconstituents of hexane, acetone and ethanol extracts yielded a total peak chromatogram of fifty nine compounds. A total amount of 10.6% and 36.61% of the constituents were obtained as monoterpenes and oxygenated monoterpenes. Sesquiterpene hydrocarbons (3.58%) were relatively low compared to the oxygenated sesquiterpenes (9.28%), while the major concentrated diterpenes and oxygenated diterpenes were 1.43% and 19.24 %, respectively and phytol 12.41%. Total amount of fatty acids and their methyl esters content, present in the oil extract, were found to be 19.25 %. Antifungal activity of the oil extract and four solvent extracts were tested against five pathogenic fungal strains. The oil extract showed antifungal activity against Candida albican, Candida krusei, Candida rugosa, Candida glabrata and Cryptococcus neoformans with MIC ranges of 0.02 0.31 mg/ml. Hexane extract was active against the five fungal strains with MICs ranging between 0.02-1.25 mg/ml. Acetone extracts were active against C. krusei only at 0.04mg/ml. No appreciable antifungal activity was found in either ethanol or water extracts when compared with commercial antibiotics. The profile of chemical constituents found in M. edule essential oil and its antifungal properties support the use of M. edule by traditional healers as well as in the pharmaceutical and food industries as a natural antibiotic and food preservative.

  18. Chemical composition and antibacterial activity of selected essential oils and some of their main compounds.

    PubMed

    Wanner, Juergen; Schmidt, Erich; Bail, Stefanie; Jirovetz, Leopold; Buchbauer, Gerhard; Gochev, Velizar; Girova, Tanya; Atanasova, Teodora; Stoyanova, Albena

    2010-09-01

    The chemical composition of essential oils of cabreuva (Myrocarpus fastigiatus Allemao, Fabaceae) from Brazil, cedarwood (Juniperus ashei, Cupressaceae) from Texas, Juniper berries (Juniperus communis L., Cupressaceae) and myrrh (Commiphora myrrha (Nees) Engl., Burseraceae) were analyzed using GC/FID and GC/MS. The antimicrobial activity of these essential oils and some of their main compounds were tested against eleven different strains of Gram-positive and Gram-negative bacteria by using agar diffusion and agar serial dilution methods. Animal and plant pathogens, food poisoning and spoilage bacteria were selected. The volatile oils exhibited considerable inhibitory effects against all tested organisms, except Pseudomonas, using both test methods. Higher activity was observed against Gram-positive strains in comparison with Gram-negative bacteria. Cabreuva oil from Brazil showed similar results, but in comparison with the other oils tested, only when higher concentrations of oil were used.

  19. Chemical composition and antimicrobial activity of the essential oil of Mentha mozaffarianii Jamzad growing wild and cultivated in Iran.

    PubMed

    Teymouri, Mehdi; Alizadeh, Ardalan

    2018-06-01

    The aerial parts of wild and cultivated Mentha mozaffarianii Jamzad were collected at full flowering stage from two provinces (Hormozgan and Fars) of Iran. The essential oils were extracted by a Clevenger approach and analysed using GC and GC-MS. The main components in wild plants were piperitenone (33.85%), piperitone (21.18%), linalool (6.89%), pulegone (5.93%), 1, 8.cineole (5.49%), piperitenone oxide (5.17%) and menthone (4.69%) and in cultivated plants, cis-piperitone epoxide (28.89%), linalool (15.36%), piperitone (11.57%), piperitenone oxide (10.14%), piperitenone (8.42%),1,8-cineole (3.60%) were the main constituents in essential oil. The in vitro antimicrobial activity of the essential oil of M. mozaffarianii was studied against Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli and Candida albicans. The results of the bioassays showed that the oil exhibited high antimicrobial activity against all the tested pathogens.

  20. Essential Oils as Components of a Diet-Based Approach to Management of Helicobacter Infection

    PubMed Central

    Bergonzelli, G. E.; Donnicola, D.; Porta, N.; Corthésy-Theulaz, I. E.

    2003-01-01

    An increased density of Helicobacter pylori in the gastric mucosa can be associated with more severe gastritis and an increased incidence of peptic ulcers. Therefore, people with asymptomatic gastritis would certainly benefit from a nutritional approach to help them manage the infection and therefore decrease the risk of development of associated pathologies. We analyzed the activities of 60 essential oils against H. pylori P1 and identified 30 oils that affected growth, with in vitro inhibition zones ranging between 0.7 and 6.3 cm in diameter. We further analyzed the effects of 16 oils with different activities on H. pylori P1 viability. Fifteen showed strong bactericidal activities, with minimal bactericidal concentrations after 24 h ranging from 0.02 to 0.1 g/liter at pH 7.4. Even though slight variations in activities were observed, the essential oils that displayed the strongest bactericidal potentials against H. pylori P1 were also active against other Helicobacter strains tested. Among the pure constituents of different essential oils tested, carvacrol, isoeugenol, nerol, citral, and sabinene exhibited the strongest anti-H. pylori activities. Although oral treatment of H. pylori SS1-infected mice with carrot seed oil did not result in significant decreases in the bacterial loads in the treated animals compared to those in the control animals, in all experiments performed, the infection was cleared in 20 to 30% of carrot seed oil-treated animals. Our results indicate that essential oils are unlikely to be efficient anti-Helicobacter agents in vivo. However, their effects may not be irrelevant if one plans to use them as food additives to complement present therapies. PMID:14506036

Top