Science.gov

Sample records for active external rotation

  1. Influence of hip position and gender on active hip internal and external rotation.

    PubMed

    Simoneau, G G; Hoenig, K J; Lepley, J E; Papanek, P E

    1998-09-01

    A general lack of descriptive details exists for measurements of hip rotation range of motion. This study was designed to establish the influence of gender and hip flexion position on active range of motion of the hip in external and internal rotation. Sixty (39 females and 21 males) healthy college-age (21.8 +/- 1.7 years) subjects were studied. Hip rotation of the dominant leg of each subject was measured in the prone (hip near 0 degree of flexion) and seated (hip near 90 degrees of flexion) positions using a standard goniometer. Data were analyzed using an analysis of variance model. Pearson's r statistics were used to determine the degree of association between measurements of hip rotation made seated vs. prone. A statistically significant difference (p < 0.05) was found between mean hip external rotation (ER) measured seated (36 +/- 7 degrees) and mean hip ER measured prone (45 +/- 10 degrees). Conversely, mean hip internal rotation (IR) measured seated (33 +/- 7 degrees) was not statistically different than mean hip IR measured prone (36 +/- 9 degrees). Females had statistically more active hip internal and external rotation than males (p < 0.05). A moderate degree of association existed between measurements of hip ER taken in the prone vs. seated position (r = 0.57, p < 0.05). For IR, the degree of association between the two measurement positions was slightly higher (r = 0.72, p < 0.05). Unlike the amount of active hip internal rotation which showed little difference between measurements made prone vs. seated, our data indicate that measurement position had a significant effect on the amount of active range of motion of the hip in ER. These findings are clinically significant for they stress the importance of documenting measurement position. They also stress the need for representative norms to be established for each hip position and gender.

  2. Strength and muscle activity of shoulder external rotation of subjects with and without scapular dyskinesis

    PubMed Central

    Uga, Daisuke; Nakazawa, Rie; Sakamoto, Masaaki

    2016-01-01

    [Purpose] This study aimed to clarify the relationship between scapular dyskinesis and shoulder external rotation strength and muscle activity. [Subjects and Methods] Both shoulders of 20 healthy males were evaluated. They were classified into 19 normal, 8 subtly abnormal, and 13 obviously abnormal shoulders using the scapular dyskinesis test. Subtly abnormal shoulders were subsequently excluded from the analysis. Shoulder external rotation strength and muscle activity (infraspinatus, serratus anterior, upper, middle, and lower trapezius) were measured in 2 positions using a handheld dynamometer and surface electromyography while sitting in a chair with shoulder 0° abduction and flexion (1st position), and while lying prone on the elbows with the shoulders elevated in the zero position (zero position). The strength ratio was calculated to quantify the change in strength between the positions (zero position / 1st position). [Results] In the obviously abnormal shoulder group, the strength in the 1st position was significantly stronger, the strength ratio was significantly smaller, and the serratus anterior in the zero position showed significantly lower activity than the normal shoulder group. [Conclusion] In shoulder external rotation in the zero position, in obviously abnormal shoulders, the serratus anterior is poorly recruited, weakening the shoulder external rotation strength. PMID:27190434

  3. The effects of hip external rotator exercises and toe-spread exercises on lower extremity muscle activities during stair-walking in subjects with pronated foot

    PubMed Central

    Goo, Young-Mi; Kim, Da-Yeon; Kim, Tae-Ho

    2016-01-01

    [Purpose] The purpose of the present study was to examine the effects of toe-spread (TS) exercises and hip external rotator strengthening exercises for pronated feet on lower extremity muscle activities during stair-walking. [Subjects and Methods] The participants were 20 healthy adults with no present or previous pain, no past history of surgery on the foot or the ankle, and no foot deformities. Ten subjects performed hip external rotator strengthening exercises and TS exercises and the remaining ten subjects performed only TS exercises five times per week for four weeks. [Results] Less change in navicular drop height occurred in the group that performed hip external rotator exercises than in the group that performed only TS exercises. The group that performed only TS exercises showed increased abductor hallucis muscle activity during both stair-climbing and -descending, and the group that performed hip external rotator exercises showed increased muscle activities of the vastus medialis and abductor hallucis during stair-climbing and increased muscle activity of only the abductor hallucis during stair-descending after exercise. [Conclusion] Stair-walking can be more effectively performed if the hip external rotator muscle is strengthened when TS exercises are performed for the pronated foot. PMID:27134364

  4. Effects of a shoulder injury prevention strength training program on eccentric external rotator muscle strength and glenohumeral joint imbalance in female overhead activity athletes.

    PubMed

    Niederbracht, Yvonne; Shim, Andrew L; Sloniger, Mark A; Paternostro-Bayles, Madeline; Short, Thomas H

    2008-01-01

    Imbalance of the eccentrically-activated external rotator cuff muscles versus the concentrically-activated internal rotator cuff muscles is a primary risk factor for glenohumeral joint injuries in overhead activity athletes. Nonisokinetic dynamometer based strength training studies, however, have focused exclusively on resulting concentric instead of applicable eccentric strength gains of the external rotator cuff muscles. Furthermore, previous strength training studies did not result in a reduction in glenoumeral joint muscle imbalance, thereby suggesting that currently used shoulder strength training programs do not effectively reduce the risk of shoulder injury to the overhead activity athlete. Two collegiate women tennis teams, consisting of 12 women, participated in this study throughout their preseason training. One team (n = 6) participated in a 5-week, 4 times a week, external shoulder rotator muscle strength training program next to their preseason tennis training. The other team (n = 6) participated in a comparable preseason tennis training program, but did not conduct any upper body strength training. Effects of this strength training program were evaluated by comparing pre- and posttraining data of 5 maximal eccentric external immediately followed by concentric internal contractions on a Kin-Com isokinetic dynamometer (Chattecx Corp., Hixson, Tennessee). Overall, the shoulder strength training program significantly increased eccentric external total work without significant effects on concentric internal total work, concentric internal mean peak force, or eccentric external mean peak force. In conclusion, by increasing the eccentric external total exercise capacity without a subsequent increase in the concentric internal total exercise capacity, this strength training program potentially decreases shoulder rotator muscle imbalances and the risk for shoulder injuries to overhead activity athletes.

  5. The Hillman Rotation: An External Clinic Model.

    ERIC Educational Resources Information Center

    Sears, Joan M.; Veith, Jack

    2000-01-01

    Describes the external optometric education program at the Sidney Hillman Health Centre (Chicago, Illinois). Discusses the history of the clinic, its administrative and educational philosophy, and its affiliation with two prominent hospitals and the Illinois College of Optometry. (DB)

  6. The Influence of External Loads on Movement Precision During Active Shoulder Internal Rotation Movements as Measured by 3 Indices of Accuracy

    PubMed Central

    Brindle, Timothy J; Uhl, Timothy L; Nitz, Arthur J; Shapiro, Robert

    2006-01-01

    Context: Using constant, variable, and absolute error to measure movement accuracy might provide a more complete description of joint position sense than any of these values alone. Objective: To determine the effect of loaded movements and type of feedback on shoulder joint position sense and movement velocity. Design: Applied study with repeated measures comparing type of feedback and the presence of a load. Setting: Laboratory. Patients or Other Participants: Twenty healthy subjects (age = 27.2 ± 3.3 years, height = 173.2 ± 18.1 cm, mass = 70.8 ± 14.5 kg) were seated with their arms in a custom shoulder wheel. Intervention(s): Subjects internally rotated 27° in the plane of the scapula, with either visual feedback provided by a video monitor or proprioceptive feedback provided by prior passive positioning, to a target at 48° of external rotation. Subjects performed the internal rotation movements with video feedback and proprioceptive feedback and with and without load (5% of body weight). Main Outcome Measure(s): High-speed motion analysis recorded peak rotational velocity and accuracy. Constant, variable, and absolute error for joint position sense was calculated from the final position. Results: Unloaded movements demonstrated significantly greater variable error than for loaded movements (2.0 ± 0.7° and 1.5 ± 0.4°, respectively) (P < .05), but there were no differences in constant or absolute error. Peak velocity was greater for movements with proprioceptive feedback (45.6 ± 2.9°/s) than visual feedback (39.1 ± 2.1°/s) and for unloaded (47.8 ± 3.6°/s) than loaded (36.9 ± 1.0°/s) movements (P < .05). Conclusions: Shoulder joint position sense demonstrated greater variable error unloaded versus loaded movements. Both visual feedback and additional loads decreased peak rotational velocity. PMID:16619096

  7. Compensation to whole body active rotation perturbation.

    PubMed

    Rossi, S; Gazzellini, S; Petrarca, M; Patanè, F; Salfa, I; Castelli, E; Cappa, P

    2014-01-01

    The aim of the present study is the exploration of the compensation mechanisms in healthy adults elicited by superimposing a horizontal perturbation, through a rotation of the support base, during a whole body active rotation around the participant's own vertical body axis. Eight healthy participants stood on a rotating platform while executing 90° whole body rotations under three conditions: no concurrent platform rotation (NP), support surface rotation of ± 45° in the same (45-S) and opposite (45-O) directions. Participants' kinematics and CoP displacements were analyzed with an optoelectronic system and a force platform. In both 45-S and 45-O conditions, there was a tendency for the head to be affected by the external perturbation and to be the last and least perturbed segment while the pelvis was the most perturbed. The observed reduced head perturbation in 45-S and 45-O trials is consistent with a goal-oriented strategy mediated by vision and vestibular information, whereas the tuning of lumbar rotation is consistent with control mechanisms mediated by somato-sensory information.

  8. Measurement of external rotation of the shoulder in patients with obstetric brachial plexus palsy

    PubMed Central

    2012-01-01

    A discussion is presented concerning scoring while assessing shoulder function. Divergence in observation and in interpretation of what is observed may give rise to serious disagreement about indications for surgery. Agreement regarding starting points of measurement is essential. One must realize that the number of degrees, obtained using a scoring system, may not reflect the real amount of motion per se, it may solely indicate the limit of the motion in relation to the neutral zero point of the measurement. This realization may improve the justification of and the indication for surgical treatment. It is worthy of mention that this paper deals in particular with active external rotation. Indications for secondary surgery to prevent gleno-humeral deformation if passive external rotation is diminishing progressively, is a separate topic. We wish to point out that the insidious problem of fixed deformity, even to a minor degree, will contribute to the problem of loss of active functional movement. PMID:23068322

  9. Rotational stiffness of football shoes influences talus motion during external rotation of the foot.

    PubMed

    Wei, Feng; Meyer, Eric G; Braman, Jerrod E; Powell, John W; Haut, Roger C

    2012-04-01

    Shoe-surface interface characteristics have been implicated in the high incidence of ankle injuries suffered by athletes. Yet, the differences in rotational stiffness among shoes may also influence injury risk. It was hypothesized that shoes with different rotational stiffness will generate different patterns of ankle ligament strain. Four football shoe designs were tested and compared in terms of rotational stiffness. Twelve (six pairs) male cadaveric lower extremity limbs were externally rotated 30 deg using two selected football shoe designs, i.e., a flexible shoe and a rigid shoe. Motion capture was performed to track the movement of the talus with a reflective marker array screwed into the bone. A computational ankle model was utilized to input talus motions for the estimation of ankle ligament strains. At 30 deg of rotation, the rigid shoe generated higher ankle joint torque at 46.2 ± 9.3 Nm than the flexible shoe at 35.4 ± 5.7 Nm. While talus rotation was greater in the rigid shoe (15.9 ± 1.6 deg versus 12.1 ± 1.0 deg), the flexible shoe generated more talus eversion (5.6 ± 1.5 deg versus 1.2± 0.8 deg). While these talus motions resulted in the same level of anterior deltoid ligament strain (approxiamtely 5%) between shoes, there was a significant increase of anterior tibiofibular ligament strain (4.5± 0.4% versus 2.3 ± 0.3%) for the flexible versus more rigid shoe design. The flexible shoe may provide less restraint to the subtalar and transverse tarsal joints, resulting in more eversion but less axial rotation of the talus during foot∕shoe rotation. The increase of strain in the anterior tibiofibular ligament may have been largely due to the increased level of talus eversion documented for the flexible shoe. There may be a direct correlation of ankle joint torque with axial talus rotation, and an inverse relationship between torque and talus eversion. The study may provide some insight into relationships between shoe

  10. Feedback suppression of rotating external kink instabilities in the presence of noise

    SciTech Connect

    Hanson, Jeremy M.; De Bono, Bryan; James, Royce W.; Levesque, Jeffrey P.; Mauel, Michael E.; Maurer, David A.; Navratil, Gerald A.; Pedersen, Thomas Sunn; Shiraki, Daisuke

    2008-08-15

    The authors report on the first experimental demonstration of active feedback suppression of rotating external kink modes near the ideal wall limit in a tokamak using Kalman filtering to discriminate the n=1 kink mode from background noise. The Kalman filter contains an internal model that captures the dynamics of a rotating, growing n=1 mode. Suppression of the external kink mode is demonstrated over a broad range of phase angles between the sensed mode and applied control field, and performance is robust at noise levels that render proportional gain feedback ineffective. Suppression of the kink mode is accomplished without excitation of higher frequencies as was observed in previous experiments using lead-lag loop compensation [A. J. Klein et al., Phys Plasmas 12, 040703 (2005)].

  11. Lower extremity control during turns initiated with and without hip external rotation.

    PubMed

    Zaferiou, Antonia M; Flashner, Henryk; Wilcox, Rand R; McNitt-Gray, Jill L

    2017-02-08

    The pirouette turn is often initiated in neutral and externally rotated hip positions by dancers. This provides an opportunity to investigate how dancers satisfy the same mechanical objectives at the whole-body level when using different leg kinematics. The purpose of this study was to compare lower extremity control strategies during the turn initiation phase of pirouettes performed with and without hip external rotation. Skilled dancers (n=5) performed pirouette turns with and without hip external rotation. Joint kinetics during turn initiation were determined for both legs using ground reaction forces (GRFs) and segment kinematics. Hip muscle activations were monitored using electromyography. Using probability-based statistical methods, variables were compared across turn conditions as a group and within-dancer. Despite differences in GRFs and impulse generation between turn conditions, at least 90% of each GRF was aligned with the respective leg plane. A majority of the net joint moments at the ankle, knee, and hip acted about an axis perpendicular to the leg plane. However, differences in shank alignment relative to the leg plane affected the distribution of the knee net joint moment when represented with respect to the shank versus the thigh. During the initiation of both turns, most participants used ankle plantar flexor moments, knee extensor moments, flexor and abductor moments at the push leg׳s hip, and extensor and abductor moments at the turn leg׳s hip. Representation of joint kinetics using multiple reference systems assisted in understanding control priorities.

  12. Reliability of a New Clinical Instrument for Measuring Internal and External Glenohumeral Rotation

    PubMed Central

    Lindenfeld, Thomas N.; Fleckenstein, Cassie M.; Levy, Martin S.; Grood, Edward S.; Frush, Todd J.; Parameswaran, A. Dushi

    2015-01-01

    Background: The shoulder plays a critical role in many overhead athletic activities. Several studies have shown alterations in shoulder range of motion (ROM) in the dominant shoulder of overhead athletes and correlation with significantly increased risk of injury to the shoulder and elbow. The purpose of this study was to measure isolated glenohumeral joint internal/external rotation (IR/ER) to determine inter- and intraobserver reliability of a new clinical device. Hypothesis: (1) Inter- and intraobserver reliability would exceed 90% for measures of glenohumeral joint IR, ER, and total arc of motion; (2) the dominant arm would exhibit significantly increased ER, significantly decreased IR, and no difference in total arc of motion compared with the nondominant shoulder; and (3) a significant difference exists in total arc between male and female patients. Study Design: Case series. Level of Evidence: Level 4. Methods: Thirty-seven subjects (mean age, 23 years; range, 13-54 years) were tested by 2 orthopaedic surgeons. A single test consisted of 1 arc of motion from neutral to external rotation to internal rotation and back to neutral within preset torque limits. Each examiner performed 3 tests on the dominant and nondominant shoulders. Each examiner completed 2 installations. Results: Testing reliability demonstrated that neither trial, installation, nor observer were significant sources of variation. The maximum standard deviation was 1.3° for total arc of motion and less than 2° for most other measurements. Dominant arm ER was significantly greater than nondominant arm ER (P = 0.02), and dominant arm IR was significantly less than nondominant arm IR (P = 0.00). Mean total rotation was 162°, with no significant differences in total rotation between dominant and nondominant arms (P = 0.34). Mean total arc of motion was 45° greater in female subjects. Differences in total arc of motion between male and female subjects was statistically significant (P < 0

  13. Electromyographic analysis of the infraspinatus and scapular stabilizing muscles during isometric shoulder external rotation at various shoulder elevation angles

    PubMed Central

    Uga, Daisuke; Endo, Yasuhiro; Nakazawa, Rie; Sakamoto, Masaaki

    2016-01-01

    [Purpose] This study aimed to clarify activation of the infraspinatus and scapular stabilizing muscles during shoulder external rotation at various shoulder elevation angles. [Subjects] Twenty subjects participated in this study and all measurements were performed on the right shoulder. [Methods] Isometric shoulder external rotation strength and surface electromyographic data were measured with the shoulder at 0°, 45°, 90°, and 135° elevation in the scapular plane. The electromyographic data were collected from the infraspinatus, upper trapezius, middle trapezius, lower trapezius, and serratus anterior muscles. These measurements were compared across the various shoulder elevation angles. [Results] The strength measurements did not differ significantly by angulation. The infraspinatus activity was 92%, 75%, 68%, and 57% of the maximum voluntary contraction, which significantly decreased as shoulder elevation increased. The serratus anterior activity was 24%, 48%, 53%, and 62% of the maximum voluntary contraction, which significantly increased as shoulder elevation increased. [Conclusion] Shoulder external rotation torque was maintained regardless of shoulder elevation angle. The shoulder approximated to the zero position as the shoulder elevation increased so that infraspinatus activity decreased and the scapular posterior tilting by the serratus anterior might generate shoulder external rotation torque. PMID:26957748

  14. Elbow joint stability in relation to forced external rotation: An experimental study of the osseous constraint.

    PubMed

    Deutch, Søren R; Jensen, Steen L; Olsen, Bo S; Sneppen, Otto

    2003-01-01

    The objective of this study was to evaluate the osseous constraint related to forced forearm external rotation as the initial stage in a posterior elbow dislocation. Six joint specimens without soft tissues were examined in a joint analysis system developed for simulation of dislocation. The osseous stability, expressed as the maximal torque needed for pathologic external forearm rotation, increased from varus to valgus stress (P =.0001) and from 10 degrees to 90 degrees of elbow flexion (P =.012) and also tended to increase from forearm supination to pronation. The work of pathologic external forearm rotation until the point of maximal torque decreased from a maximum in full extension to a minimum at 30 degrees of elbow flexion (P =.03). The elbow in a slightly flexed position, varus stress, and forearm external rotation trauma might be the important biomechanical factors in the posterior elbow dislocation, and they might serve as guidelines during clinical investigation for posterolateral instability.

  15. Numerical Study of Rotating Turbulence with External Forcing

    NASA Technical Reports Server (NTRS)

    Yeung, P. K.; Zhou, Ye

    1998-01-01

    Direct numerical simulation at 256(exp 3) resolution have been carried out to study the response of isotropic turbulence to the concurrent effects of solid-body rotation and numerical forcing at the large scales. Because energy transfer to the smaller scales is weakened by rotation, energy input from forcing gradually builds up at the large scales, causing the overall kinetic energy to increase. At intermediate wavenumbers the energy spectrum undergoes a transition from a limited k(exp -5/3) inertial range to k(exp -2) scaling recently predicted in the literature. Although the Reynolds stress tensor remains approximately isotropic and three-components, evidence for anisotropy and quasi- two-dimensionality in length scales and spectra in different velocity components and directions is strong. The small scales are found to deviate from local isotropy, primarily as a result of anisotropic transfer to the high wavenumbers. To understand the spectral dynamics of this flow we study the detailed behavior of nonlinear triadic interactions in wavenumber space. Spectral transfer in the velocity component parallel to the axis of rotation is qualitatively similar to that in non-rotating turbulence; however the perpendicular component is characterized by a greatly suppressed energy cascade at high wavenumber and a local reverse transfer at the largest scales. The broader implications of this work are briefly addressed.

  16. The effect of external boundary conditions on condensation heat transfer in rotating heat pipes

    NASA Technical Reports Server (NTRS)

    Daniels, T. C.; Williams, R. J.

    1979-01-01

    Experimental evidence shows the importance of external boundary conditions on the overall performance of a rotating heat pipe condenser. Data are presented for the boundary conditions of constant heat flux and constant wall temperature for rotating heat pipes containing either pure vapor or a mixture of vapor and noncondensable gas as working fluid.

  17. Reliability of Measurement of Glenohumeral Internal Rotation, External Rotation, and Total Arc of Motion in 3 Test Positions

    PubMed Central

    Kevern, Mark A.; Beecher, Michael; Rao, Smita

    2014-01-01

    Context: Athletes who participate in throwing and racket sports consistently demonstrate adaptive changes in glenohumeral-joint internal and external rotation in the dominant arm. Measurements of these motions have demonstrated excellent intrarater and poor interrater reliability. Objective: To determine intrarater reliability, interrater reliability, and standard error of measurement for shoulder internal rotation, external rotation, and total arc of motion using an inclinometer in 3 testing procedures in National Collegiate Athletic Association Division I baseball and softball athletes. Design: Cross-sectional study. Setting: Athletic department. Patients or Other Participants Thirty-eight players participated in the study. Shoulder internal rotation, external rotation, and total arc of motion were measured by 2 investigators in 3 test positions. The standard supine position was compared with a side-lying test position, as well as a supine test position without examiner overpressure. Results: Excellent intrarater reliability was noted for all 3 test positions and ranges of motion, with intraclass correlation coefficient values ranging from 0.93 to 0.99. Results for interrater reliability were less favorable. Reliability for internal rotation was highest in the side-lying position (0.68) and reliability for external rotation and total arc was highest in the supine-without-overpressure position (0.774 and 0.713, respectively). The supine-with-overpressure position yielded the lowest interrater reliability results in all positions. The side-lying position had the most consistent results, with very little variation among intraclass correlation coefficient values for the various test positions. Conclusions: The results of our study clearly indicate that the side-lying test procedure is of equal or greater value than the traditional supine-with-overpressure method. PMID:25188316

  18. Effects of humeral head compression taping on the isokinetic strength of the shoulder external rotator muscle in patients with rotator cuff tendinitis

    PubMed Central

    Kim, Moon-Hwan; Oh, Jae-Seop

    2015-01-01

    [Purpose] The purpose of this study was to examine the effects of humeral head compression taping (HHCT) on the strength of the shoulder external rotator muscle in patients with rotator cuff tendinitis. [Subjects and Methods] Twenty patients with rotator cuff tendinitis were recruited. The shoulder external rotator strength was measured using a Biodex isokinetic dynamometer system. A paired t-test was performed to evaluate within-group differences in the strength of the shoulder external rotator muscle. [Results] Significantly higher shoulder external rotator peak torque and peak torque per body weight were found in the HHCT condition than in the no-taping condition. [Conclusion] HHCT may effectively increase the shoulder external rotator muscle strength in patients with rotator cuff tendinitis. PMID:25642053

  19. Rotation, differential rotation, and gyrochronology of active Kepler stars

    NASA Astrophysics Data System (ADS)

    Reinhold, Timo; Gizon, Laurent

    2015-11-01

    Context. In addition to the discovery of hundreds of exoplanets, the high-precision photometry from the CoRoT and Kepler satellites has led to measurements of surface rotation periods for tens of thousands of stars, which can potentially be used to infer stellar ages via gyrochronology. Aims: Our main goal is to derive ages of thousands of field stars using consistent rotation period measurements derived by different methods. Multiple rotation periods are interpreted as surface differential rotation (DR). We study the dependence of DR with rotation period and effective temperature. Methods: We reanalyze a previously studied sample of 24 124 Kepler stars using different approaches based on the Lomb-Scargle periodogram. Each quarter (Q1-Q14) is treated individually using a prewhitening approach. Additionally, the full time series and their different segments are analyzed. Results: For more than 18 500 stars our results are consistent with the rotation periods from McQuillan et al. (2014, ApJS, 211, 24). Of these, more than 12 300 stars show multiple significant peaks, which we interpret as DR. Dependencies of the DR with rotation period and effective temperature could be confirmed, e.g., the relative DR increases with rotation period. Gyrochronology ages between 100 Myr and 10 Gyr were derived for more than 17 000 stars using different gyrochronology relations, most of them with uncertainties dominated by period variations. We find a bimodal age distribution for Teff between 3200-4700 K. The derived ages reveal an empirical activity-age relation using photometric variability as stellar activity proxy. Additionally, we found 1079 stars with extremely stable (mostly short) periods. Half of these periods may be associated with rotation stabilized by non-eclipsing companions, the other half might be due to pulsations. Conclusions: The derived gyrochronology ages are well constrained since more than ~93.0% of the stars seem to be younger than the Sun where calibration is

  20. A Kalman filter for feedback control of rotating external kink instabilities in the presence of noise

    SciTech Connect

    Hanson, Jeremy M.; De Bono, Bryan; Levesque, Jeffrey P.; Mauel, Michael E.; Maurer, David A.; Navratil, Gerald A.; Pedersen, Thomas Sunn; Shiraki, Daisuke; James, Royce W.

    2009-05-15

    The simulation and experimental optimization of a Kalman filter feedback control algorithm for n=1 tokamak external kink modes are reported. In order to achieve the highest plasma pressure limits in ITER, resistive wall mode stabilization is required [T. C. Hender et al., Nucl. Fusion 47, S128 (2007)] and feedback algorithms will need to distinguish the mode from noise due to other magnetohydrodynamic activity. The Kalman filter contains an internal model that captures the dynamics of a rotating, growing n=1 mode. This model is actively compared with real-time measurements to produce an optimal estimate for the mode's amplitude and phase. On the High Beta Tokamak-Extended Pulse experiment [T. H. Ivers et al., Phys. Plasmas 3, 1926 (1996)], the Kalman filter algorithm is implemented using a set of digital, field-programmable gate array controllers with 10 {mu}s latencies. Signals from an array of 20 poloidal sensor coils are used to measure the n=1 mode, and the feedback control is applied using 40 poloidally and toroidally localized control coils. The feedback system with the Kalman filter is able to suppress the external kink mode over a broad range of phase angles between the sensed mode and applied control field. Scans of filter parameters show good agreement between simulation and experiment, and feedback suppression and excitation of the kink mode are enhanced in experiments when a filter made using optimal parameters from the scans is used.

  1. Rotation and differential rotation of active Kepler stars

    NASA Astrophysics Data System (ADS)

    Reinhold, Timo; Reiners, Ansgar; Basri, Gibor

    2013-12-01

    Context. The Kepler space telescope monitors more than 160 000 stars with an unprecedented precision providing the opportunity to study the rotation of thousands of stars. Aims: We present rotation periods for thousands of active stars in the Kepler field derived from Q3 data. In most cases a second period close to the rotation period was detected that we interpreted as surface differential rotation (DR). We show how the absolute and relative shear (ΔΩ and α = ΔΩ/Ω, respectively) correlate with rotation period and effective temperature. Methods: Active stars were selected from the whole sample using the range of the variability amplitude. To detect different periods in the light curves we used the Lomb-Scargle periodogram in a pre-whitening approach to achieve parameters for a global sine fit. The most dominant periods from the fit were associated to different surface rotation periods. Our purely mathematical approach is capable of detecting different periods but cannot distinguish between the physical origins of periodicity. We ascribe the existence of different periods to DR, but spot evolution could also play a role. Because of the large number of stars the period errors are estimated statistically. We thus cannot exclude the existence of false positives among our periods. Results: In our sample of 40 661 active stars we found 24 124 rotation periods P1 between 0.5 and 45 days, with a mean of ⟨P1⟩ = 16.3 days. The distribution of stars with 0.5 < B - V < 1.0 and ages derived from angular momentum evolution that are younger than 300 Myr is consistent with a constant star-formation rate; the detection among older stars is incomplete probably because of our active sample selection. A second period P2 within ±30% of the rotation period P1 was found in 18 616 stars (77.2%). Attributing these two periods to DR we found that for active stars other than the Sun the relative shear α increases with rotation period, and slightly decreases with effective

  2. Multigrid Computations of 3-D Incompressible Internal and External Viscous Rotating Flows

    NASA Technical Reports Server (NTRS)

    Sheng, Chunhua; Taylor, Lafayette K.; Chen, Jen-Ping; Jiang, Min-Yee; Whitfield, David L.

    1996-01-01

    This report presents multigrid methods for solving the 3-D incompressible viscous rotating flows in a NASA low-speed centrifugal compressor and a marine propeller 4119. Numerical formulations are given in both the rotating reference frame and the absolute frame. Comparisons are made for the accuracy, efficiency, and robustness between the steady-state scheme and the time-accurate scheme for simulating viscous rotating flows for complex internal and external flow applications. Prospects for further increase in efficiency and accuracy of unsteady time-accurate computations are discussed.

  3. A Bizarre, Unexplained, and Progressive External Rotation of the Shoulder as a Presentation of a Metastatic Deposit in the Rotator Cuff

    PubMed Central

    El-Tawil, Sherif; Prinja, Aditya; Stanton, Jeremy

    2015-01-01

    We describe the first reported case of a tumour deposit within the rotator cuff presenting as a bizarre, progressive, and fixed external rotation deformity of the shoulder. It is also the first reported case to our knowledge of an oesophageal primary metastasising to the rotator cuff. PMID:26543658

  4. A Bizarre, Unexplained, and Progressive External Rotation of the Shoulder as a Presentation of a Metastatic Deposit in the Rotator Cuff.

    PubMed

    El-Tawil, Sherif; Prinja, Aditya; Stanton, Jeremy

    2015-01-01

    We describe the first reported case of a tumour deposit within the rotator cuff presenting as a bizarre, progressive, and fixed external rotation deformity of the shoulder. It is also the first reported case to our knowledge of an oesophageal primary metastasising to the rotator cuff.

  5. Job rotation: Effects on muscular activity variability.

    PubMed

    Rodriguez, Andres C; Barrero, Lope H

    2017-04-01

    Job rotation strategies have been used for years as an administrative intervention to reduce the risk of musculoskeletal disorders. The benefits of job rotation have been hypothesized to occur via changes in muscular activity variability (MAV). However, the effect of job rotation on MAV has not been fully analyzed in a literature review. A wide search was conducted to identify studies testing the effect of different job rotation strategies on MAV. Twenty-six studies of acceptable quality were included. Several studies on different types of tasks supported the view that job rotation can increase muscular activity variability, particularly with strategies such as alternating tasks and pace changes. However, it remains uncertain whether such variability changes immediately translate into benefits for the worker because little evidence was found that showed simultaneous changes in different muscular groups. Additionally, variability was occasionally achieved at the expense of average activity in the assessed muscles.

  6. The effect of fatigued internal rotator and external rotator muscles of the shoulder on the shoulder position sense.

    PubMed

    Iida, Naoya; Kaneko, Fuminari; Aoki, Nobuhiro; Shibata, Eriko

    2014-02-01

    The purpose of this study was to investigate which muscle group, the agonist or antagonist, contributes most to the shoulder position sense (SPS). The SPS was tested under 2 conditions: fatigued shoulder internal rotator (IR) muscles (pectoralis major and latissimus dorsi) and fatigued external rotator (ER) muscles (infraspinatus). In each condition, the SPS was measured before and after a fatiguing task involving the IR or ER muscles by repeating shoulder joint rotation. SPS was measured using a method in which subjects reproduced a memorized shoulder joint rotation angle. The position error values in all conditions (fatigued IR and ER muscles) and measurement periods (before- and after-fatigue task) were compared using 2-way analysis of variance with repeated measures (IR/ER×before/after). Position error increased significantly after both fatigue tasks (before- vs. after-fatigue: IR muscle, 2.68° vs. 4.19°; ER muscle, 2.32° vs. 4.05°). In other words, SPS accuracy decreased when either the agonist or antagonist muscle was fatigued. This finding indicated that SPS may be affected by an integrated information of the afferent signals in the agonist and antagonist muscles.

  7. A NEW CLINICAL MUSCLE FUNCTION TEST FOR ASSESSMENT OF HIP EXTERNAL ROTATION STRENGTH: AUGUSTSSON STRENGTH TEST

    PubMed Central

    2016-01-01

    ABSTRACT Introduction Dynamic clinical tests of hip strength applicable on patients, non–athletes and athletes alike, are lacking. The aim of this study was therefore to develop and evaluate the reliability of a dynamic muscle function test of hip external rotation strength, using a novel device. A second aim was to determine if gender differences exist in absolute and relative hip strength using the new test. Methods Fifty–three healthy sport science students (34 women and 19 men) were tested for hip external rotation strength using a device that consisted of a strap connected in series with an elastic resistance band loop, and a measuring tape connected in parallel with the elastic resistance band. The test was carried out with the subject side lying, positioned in 45 ° of hip flexion and the knees flexed to 90 ° with the device firmly fastened proximally across the knees. The subject then exerted maximal concentric hip external rotation force against the device thereby extending the elastic resistance band. The displacement achieved by the subject was documented by the tape measure and the corresponding force production was calculated. Both right and left hip strength was measured. Fifteen of the subjects were tested on repeated occasions to evaluate test–retest reliability. Results No significant test–retest differences were observed. Intra–class correlation coefficients ranged 0.93–0.94 and coefficients of variation 2.76–4.60%. In absolute values, men were significantly stronger in hip external rotation than women (right side 13.2 vs 11.0 kg, p = 0.001, left side 13.2 vs 11.5 kg, p = 0.002). There were no significant differences in hip external rotation strength normalized for body weight (BW) between men and women (right side 0.17 kg/BW vs 0.17 kg/BW, p = 0.675, left side 0.17 kg/BW vs 0.18 kg/BW, p = 0.156). Conclusions The new muscle function test showed high reliability and thus could be useful for measuring dynamic hip

  8. Active Vibration Dampers For Rotating Machinery

    NASA Technical Reports Server (NTRS)

    Kascack, Albert F.; Ropchock, John J.; Lakatos, Tomas F.; Montague, Gerald T.; Palazzolo, Alan; Lin, Reng Rong

    1994-01-01

    Active dampers developed to suppress vibrations in rotating machinery. Essentially feedback control systems and reciprocating piezoelectric actuators. Similar active damper containing different actuators described in LEW-14488. Concept also applicable to suppression of vibrations in stationary structures subject to winds and earthquakes. Active damper offers adjustable suppression of vibrations. Small and lightweight and responds faster to transients.

  9. Study on a magnetic spiral-type wireless capsule endoscope controlled by rotational external permanent magnet

    NASA Astrophysics Data System (ADS)

    Ye, Bo; Zhang, Wei; Sun, Zhen-jun; Guo, Lin; Deng, Chao; Chen, Ya-qi; Zhang, Hong-hai; Liu, Sheng

    2015-12-01

    In this paper, the authors propose rotating an external permanent magnet (EPM) to manipulate the synchronous rotation of a magnetic spiral-type wireless capsule endoscope (WCE), and the synchronous rotation of the WCE is converted to its translational motion in intestinal tract. In order to preliminarily verify the feasibility of this method, a handheld actuator (HA) controlled by micro controller unit, a magnetic spiral-type WCE and a bracket were fabricated, theoretical analysis and simulations about the control distance of this method were performed, and in ex-vivo tests were examined in porcine small intestine to verify the control distance and control performances of this method. It was demonstrated that this method showed good performances in controlling the translational motion of the magnetic spiral-type WCE, and this method has great potential to be used in clinical application.

  10. Laminar Magnetohydrodynamic Boundary Layer on a Disk in the Presence of External Rotating Flow and Suction

    NASA Astrophysics Data System (ADS)

    Borisevich, V. D.; Potanin, E. P.

    2016-11-01

    The rotation of a conducting viscous medium near a dielectric disk in a homogeneous magnetic field in the presence of an external flow and a suction is considered. On the basis of the Dorodnitsyn transformation, an analytical solution of the system of boundary-layer and heat-conduction equations has been obtained. It is shown that the direction of the radial flow in the boundary layer of the disk can be changed by changing the ratio between the angular velocities of the external flow and the disk and the ratio between the temperatures in the external flow and on the disk as well as by varying the hydrodynamic Prandtl number. The influence of the magnetic field on the intensity of circulation of the viscous medium was investigated.

  11. Flexibility of internal and external glenohumeral rotation of junior female tennis players and its correlation with performance ranking

    PubMed Central

    Chiang, Ching-Cheng; Hsu, Chih-Chia; Chiang, Jinn-Yen; Chang, Weng-Cheng; Tsai, Jong-Chang

    2016-01-01

    [Purpose] The purpose of this study was to compare the internal and external rotation of the dominant and nondominant shoulders of adolescent female tennis players. The correlation between the shoulder rotation range of motion and the player’s ranking was also analyzed. [Subjects and Methods] Twenty-one female junior tennis players who were 13 to 18 years old participated in this study. A standard goniometer was used to measure the internal and external rotation of both glenohumeral joints. The difference in internal and external rotation was calculated as the glenohumeral rotation deficit. The year-end ranking of each player was obtained from the Chinese Taipei Tennis Association. [Results] The internal rotation of the dominant shoulder was significantly smaller than that of the nondominant shoulder. Moreover, player ranking was significantly and negatively correlated with the internal rotation range of motion of both shoulders. On the other hand, the correlations of the internal and external rotation ranges of motion with the age, height, and weight were not significant. [Conclusion] The flexibility of the glenohumeral internal rotation is smaller in the dominant shoulder than of the nondominant shoulder in these junior female tennis players. Flexibility of the glenohumeral internal rotation may be a factor affecting performance in junior female tennis players. PMID:28174438

  12. Activity and Rotation of Kepler-17

    NASA Astrophysics Data System (ADS)

    Valio, Adriana; Estrela, Raissa; Netto, Yuri; Bravo, J. P.; de Medeiros, J. R.

    2017-02-01

    Magnetic activity on stars manifests itself in the form of dark spots on the stellar surface, which cause modulations of a few percent in the light curve of the star as it rotates. When a planet eclipses its host star, it might cross in front of one of these spots, creating a “bump” in the transit light curve. By modeling these spot signatures, it is possible to determine the physical properties of the spots such as size, temperature, and location. In turn, monitoring of the spots’ longitude provides estimates of the stellar rotation and differential rotation. This technique was applied to the star Kepler-17, a solar–type star orbited by a hot Jupiter. The model yields the following spot characteristics: average radius of 49 ± 10 Mm, temperatures of 5100 ± 300 K, and surface area coverage of 6 ± 4%. The rotation period at the transit latitude, -5^\\circ , occulted by the planet was found to be 11.92 ± 0.05 day, slightly smaller than the out-of-transit average period of 12.4 ± 0.1 day. Adopting a solar-like differential rotation, we estimated the differential rotation of Kepler-17 to be {{Δ }}{{Ω }}=0.041+/- 0.005 rd day‑1, which is close to the solar value of 0.050 rd day‑1, and a relative differential rotation of {{Δ }}{{Ω }}/{{Ω }}=8.0+/- 0.9 % . Because Kepler-17 is much more active than our Sun, it appears that, for this star, larger rotation rate is more effective in the generation of magnetic fields than shear.

  13. Electromyographic Analysis of the Shoulder Girdle Musculature During External Rotation Exercises

    PubMed Central

    Alizadehkhaiyat, Omid; Hawkes, David H.; Kemp, Graham J.; Frostick, Simon P.

    2015-01-01

    Background: Implementation of overhead activity, a key component of many professional sports, requires an effective and balanced activation of the shoulder girdle muscles, particularly during forceful external rotation (ER) motions. Purpose: To identify activation strategies of 16 shoulder girdle muscles/muscle segments during common shoulder ER exercises. Study Design: Descriptive laboratory study. Method: Thirty healthy subjects were included in this study, and 16 shoulder girdle muscles/muscle segments were investigated (surface electrode: anterior, middle, and posterior deltoid; upper, middle, and lower trapezius; serratus anterior; teres major; upper and lower latissimus dorsi; and upper and lower pectoralis major; fine wire electrodes: supraspinatus, infraspinatus, subscapularis, and rhomboid major) using a telemetric electromyography (EMG) system. Five ER exercises (standing ER at 0° and 90° of abduction, with underarm towel roll, prone ER at 90° of abduction, side-lying ER with underarm towel) were studied. Exercise EMG amplitudes were normalized to EMG at maximum ER force in a standard position. Univariate analysis of variance and post hoc analysis applied on EMG activity of each muscle were used to assess the main effect of the exercise condition. Results: Muscular activity differed significantly among the ER exercises (P < .05 to P < .001). The greatest activation for anterior and middle deltoid, supraspinatus, upper trapezius, and serratus anterior occurred during standing ER at 90° of abduction; for posterior deltoid, middle trapezius, and rhomboid during side-lying ER with underarm towel; for lower trapezius, upper and lower latissimus dorsi, subscapularis, and teres major during prone ER at 90° of abduction; and for the clavicular and sternal part of the pectoralis major during standing ER with underarm towel. Conclusion: Key glenohumeral and scapular muscles can be optimally activated during specific ER exercises, particularly in positions that

  14. Stability of vortex rotation around a mesoscopic square superconducting ring under radially injected current and an external magnetic field

    NASA Astrophysics Data System (ADS)

    Xue, Cun; He, An; Li, Chun; Zhou, Youhe

    2017-04-01

    We present the stability of vortex rotation around a mesoscopic square superconducting ring under radially injected currents and external magnetic fields based on time-dependent Ginzburg–Landau equations. We demonstrate that the vortex rotation around a square ring can lead to voltage oscillations as the vortices periodically pass by the corners. The amplitude of the time evolution of the voltage oscillations as a function of external current is studied at different magnetic fields, and the effect of thermal noise on the voltage oscillations is discussed. The rotation frequency depends linearly on external current at lower magnetic fields, whereas it is a nonlinear function of external current at higher magnetic fields. The stable vortex rotation appears in a certain range of injected currents under magnetic fields, but it is unstable at high injected currents. It is found that such a transition from stability to instability can lead to an abrupt jump in current–voltage characteristics.

  15. Stability of vortex rotation around a mesoscopic square superconducting ring under radially injected current and an external magnetic field.

    PubMed

    Xue, Cun; He, An; Li, Chun; Zhou, Youhe

    2017-04-05

    We present the stability of vortex rotation around a mesoscopic square superconducting ring under radially injected currents and external magnetic fields based on time-dependent Ginzburg-Landau equations. We demonstrate that the vortex rotation around a square ring can lead to voltage oscillations as the vortices periodically pass by the corners. The amplitude of the time evolution of the voltage oscillations as a function of external current is studied at different magnetic fields, and the effect of thermal noise on the voltage oscillations is discussed. The rotation frequency depends linearly on external current at lower magnetic fields, whereas it is a nonlinear function of external current at higher magnetic fields. The stable vortex rotation appears in a certain range of injected currents under magnetic fields, but it is unstable at high injected currents. It is found that such a transition from stability to instability can lead to an abrupt jump in current-voltage characteristics.

  16. Clinical assessment of external rotation for the diagnosis of anterior shoulder hyperlaxity.

    PubMed

    Ropars, M; Fournier, A; Campillo, B; Bonan, I; Delamarche, P; Crétual, A; Thomazeau, H

    2010-12-01

    The aim of this study was to evaluate two methods of clinical assessment for external rotation of the shoulder to optimise the diagnosis of hyperlaxity in patients being selected for surgery for stabilisation of chronic anterior instability. External rotation was evaluated in 70 healthy student volunteers by two examiners (intertester study) using two methods of assessment at 15-day intervals (intratester study). The first method used was the protocol described for the Instability Severity Index Score (ISIS). In this case, the subject was evaluated in the sitting position, bilaterally with passive range of motion movements. The shoulder was considered hyperlax if ER1 was greater than 85°. With the second, so-called "elbow on the table" (EOT) method, the subject was evaluated in the decubitus dorsal position, unilaterally with passive range of motion. The subject was considered to be hyperlax if ER1 was greater than 90°. Kappa values for intra- and intertester agreement with the ISIS method were average, while they were satisfactory with the intraclass coefficient (ICC). Kappa values for inter- and intratester agreement with the EOT method were average and good, respectively. This tendency was confirmed by the ICC which went from good to excellent for the two examiners in both series of measurements using the EOT method, showing better reproducibility with this method. Our study confirms that the most reproducible method for assessing external rotation is obtained by unilateral assessment of the patient in the decubitus dorsal position, with passive range of motion. An ER1 of 90° is the necessary threshold for hyperlaxity because of elbow retropulsion with this method, which provides immediate and visual evaluation and eliminates the necessity of goniometry.

  17. The role of shoulder maximum external rotation during throwing for elbow injury prevention in baseball players.

    PubMed

    Miyashita, Koji; Urabe, Yukio; Kobayashi, Hirokazu; Yokoe, Kiyoshi; Koshida, Sentaro; Kawamura, Morio; Ida, Kunio

    2008-01-01

    The objective of the present study was to examine whether the passive range of shoulder external rotation (ER), the maximum shoulder external rotation angle (MER) during throwing, and the ratio of MER to ER are related to the incidence of the elbow injury. A mixed design with one between-factor (a history of the elbow injury) and two within-factors (ER and MER) was used to analyze the difference between baseball players with and without a history of medial elbow pain. Twenty high school baseball players who had experienced the medial elbow pain within the previous month but who were not experiencing the pain on the day of the experiment were recruited (elbow-injured group). Another twenty baseball players who had never experienced the medial elbow pain were also used for testing (control group). MER during throwing, ER, and the ratio of MER to ER were obtained in both of the group. A Mann-Whitney test was used for the group comparison (p < 0.05). The ratio of MER to ER was significantly greater in the elbow-injured group (1.52 ± 0.19) than that in the control group (1.33 ± 0.23) (p = 0.008). On the other hand, there was no statistical significance in MER and ER between two groups. The findings of the study indicate that MER/ER relation could be associated with the incidence of the elbow injury in baseball players. Key pointsIt is accepted that the greatest elbow valgus stress appears at the position of shoulder maximum external rotation (MER) in the acceleration phase of the throwing movement. As a consequence, shoulders with restricted range of motion of external rotation (ER) compensate with a valgus stress on their elbow joints.In this study, we evaluated the relation between MER and ER of shoulder in players with/without elbow injuries.The result of this study demonstrated that the elbow injured group showed significantly greater MER/ER relation than the control group.The current finding suggests that great MER combined with the ROM restriction may be one of

  18. Relationship Between Maximum Shoulder External Rotation Angle During Throwing and Physical Variables

    PubMed Central

    Miyashita, Koji; Urabe, Yukio; Kobayashi, Hirokazu; Yokoe, Kiyoshi; Koshida, Sentaro; Kawamura, Morio; Ida, Kunio

    2008-01-01

    The amount of stress imposed on shoulder and elbow appears to be directly correlated with the degree of maximum shoulder external rotation (MER) during throwing motions. Therefore, identifying risk factors contributing to the increase of MER angle may help to decrease the throwing injuries occurrence in baseball players. The purpose of the present study was to demonstrate the correlation between MER and the kinematic variables at stride foot contact (SFC) during the early cocking phase, the passive range of motion (ROM), and the shoulder strength. The subjects were 40 high school baseball players. Each subject carried out five throwing tasks with his maximum effort. A three-dimensional analysis was performed to obtain the MER, and the shoulder angles of external rotation (ER), extension and abduction at SFC in the early cocking phase. The ROM and muscle strength of the shoulder ER and internal rotation (IR) were also measured. Significant moderate linear correlations were found between the MER and the ER (r = -0.32, p = 0.04) at SFC, extension angle ( r= 0.35, p = 0.03) at SFC, IR strength (r = -0.30, p = 0.04) and passive ROM of ER (r = 0.46, p = 0.01). The shoulder IR and extension angles at SFC may determine the degree of the MER angle. Furthermore, weak IR muscle strength and excessive ROM of ER might be risk factors for shoulder and elbow injuries. The finding will enable us to establish better prevention and rehabilitation strategies for throwing injuries in baseball players. Key pointsIt has been reported that the amount of stress imposed on shoulder and elbow joints is correlated with the degree of maximum shoulder external rotation angle (MER) during throwing. Therefore, controlling MER within a normal range plays a key role in the prevention for throwing-related injuries in baseball players.Physical and biomechanical factors related to the degree of MER must be addressed to advance the current prevention and rehabilitation strategies for the shoulder and

  19. Kilovoltage Rotational External Beam Radiotherapy on a Breast Computed Tomography Platform: A Feasibility Study

    SciTech Connect

    Prionas, Nicolas D.; McKenney, Sarah E.; Stern, Robin L.; Boone, John M.

    2012-10-01

    Purpose: To demonstrate the feasibility of a dedicated breast computed tomography (bCT) platform to deliver rotational kilovoltage (kV) external beam radiotherapy (RT) for partial breast irradiation, whole breast irradiation, and dose painting. Methods and Materials: Rotational kV-external beam RT using the geometry of a prototype bCT platform was evaluated using a Monte Carlo simulator. A point source emitting 178 keV photons (approximating a 320-kVp spectrum with 4-mm copper filtration) was rotated around a 14-cm voxelized polyethylene disk (0.1 cm tall) or cylinder (9 cm tall) to simulate primary and primary plus scattered photon interactions, respectively. Simulations were also performed using voxelized bCT patient images. Beam collimation was varied in the x-y plane (1-14 cm) and in the z-direction (0.1-10 cm). Dose painting for multiple foci, line, and ring distributions was demonstrated using multiple rotations with varying beam collimation. Simulations using the scanner's native hardware (120 kVp filtered by 0.2-mm copper) were validated experimentally. Results: As the x-y collimator was narrowed, the two-dimensional dose profiles shifted from a cupped profile with a high edge dose to an increasingly peaked central dose distribution with a sharp dose falloff. Using a 1-cm beam, the cylinder edge dose was <7% of the dose deposition at the cylinder center. Simulations using 120-kVp X-rays showed distributions similar to the experimental measurements. A homogeneous dose distribution (<2.5% dose fluctuation) with a 20% decrease in dose deposition at the cylinder edge (i.e., skin sparing) was demonstrated by weighted summation of four dose profiles using different collimation widths. Simulations using patient bCT images demonstrated the potential for treatment planning and image-guided RT. Conclusions: Rotational kV-external beam RT for partial breast irradiation, dose painting, and whole breast irradiation with skin sparing is feasible on a bCT platform with

  20. Hip external rotator strength is associated with better dynamic control of the lower extremity during landing tasks

    PubMed Central

    Malloy, Philip; Morgan, Alexander; Meinerz, Carolyn; Geiser, Christopher F.; Kipp, Kristof

    2016-01-01

    The purpose of this study was to determine the association between hip strength and lower extremity kinematics and kinetics during unanticipated single leg landing and cutting tasks in collegiate female soccer players. Twenty-three NCAA division I female soccer players were recruited for strength testing and biomechanical analysis. Maximal isometric hip abduction and external rotation strength were measured using a hand held dynamometer and expressed as muscle torque (force × femoral length) and normalized to body weight. Three-dimensional lower extremity kinematics and kinetics were assessed with motion analysis and force plates, and an inverse dynamics approach was used to calculate net internal joint moments that were normalized to body weight. Greater hip external rotator strength was significantly associated with greater peak hip external rotation moments (r = .47; p = 0.021), greater peak knee internal rotation moments (r = .41; p = 0.048), greater hip frontal plane excursion (r = .49; p = 0.017), and less knee transverse plane excursion (r = −.56; p = .004) during unanticipated single-leg landing and cutting tasks. In addition a statistical trend was detected between hip external rotator strength and peak hip frontal plane moments (r = .39; p = .06). The results suggest that females with greater hip external rotator strength demonstrate better dynamic control of the lower extremity during unanticipated single leg landing and cutting tasks and provide further support for the link between hip strength and lower extremity landing mechanics. PMID:26110347

  1. Rotating bacteria aggregate into active crystals

    NASA Astrophysics Data System (ADS)

    Petroff, Alexander; Wu, Xiao-Lun; Libchaber, Albert

    2014-11-01

    The dynamics of many microbial ecosystems are determined not only by the response of individual bacteria to their chemical and physical environments but also the dynamics that emerge from interactions between cells. Here we investigate the collective dynamics displayed by communities of Thiovulum majus, one of the fastest known bacteria. We observe that when these bacteria swim close to a microscope cover slip, the cells spontaneously aggregate into a visually-striking two-dimensional hexagonal lattice of rotating cells. Each cell in an aggregate rotates its flagella, exerting a force that pushes the cell into the cover slip and a torque that causes the cell to rotate. As cells rotate against their neighbors, they exert forces and torques on the aggregate that cause the crystal to move and cells to hop to new positions in the lattice. We show how these dynamics arises from hydrodynamic and surface forces between cells. We derive the equations of motion for an aggregate, show that this model reproduces many aspects of the observed dynamics, and discuss the stability of these and similar active crystals. Finally, we discuss the ecological significance of this behavior to understand how the ability to aggregate into these communities may have evolved.

  2. Rotating Bacteria Aggregate into Active Crystals

    NASA Astrophysics Data System (ADS)

    Petroff, A. P.; Wu, X. L.; Libchaber, A.

    2014-12-01

    The dynamics of many microbial ecosystems are determined not only by the response of individual bacteria to their chemical and physical environments but also the dynamics that emerge from interactions between cells. Here we investigate collective dynamics displayed by communities of Thiovulum majus, one of the fastest known bacteria. We observe that when these bacteria swim close to a microscope cover slip, the cells spontaneously aggregate into a visually-striking, two-dimensional hexagonal lattice of rotating cells. Each cell in an aggregate rotates its flagella, exerting a force that pushes the cell into the cover slip and a torque that causes the cell to rotate. As cells rotate against their neighbors, they exert forces and torques on the aggregate that cause the crystal to move and cells to hop to new positions in the lattice. We show how these dynamics arise from hydrodynamic and surface forces between cells. We derive the equations of motion for an aggregate, show that this model reproduces many aspects of the observed dynamics, and discuss the stability of these and similar active crystals. Finally, we discuss the ecological significance of this behavior to understand how the ability to aggregate into these communities may have evolved.

  3. Actively suspended counter-rotating machine

    NASA Technical Reports Server (NTRS)

    Studer, Philip A. (Inventor)

    1983-01-01

    A counter-rotating machine, such as a positive displacement pump having a pair of meshed, non-contacting helical screws (10,12), subjects its rotating members to axial and radial thrust forces when used for such purposes as compression of liquid or gaseous phase fluids while transporting them through a pump cavity (11,13). Each helical screw (10,12) has a shaft (17,17') which is actively suspended at opposite ends (11a,11b) of the pump cavity by a servo-controlled magnetic bearing assembly (19) and a servo-controlled rotary drive motor (20). Both bearing assemblies and drive motors are mounted on the outside of the pump cavity (11,13). Opto-electric angular position sensors (250) provide synchronization between radial orientation of the drive motors. The bearing assemblies and drive motors conjugately provide axial stabilization and radial centering of the helical screws during volumetric compression of aspirated liquid or gaseous phase fluids.

  4. Effect of the Push-up Plus (PUP) Exercise at Different Shoulder Rotation Angles on Shoulder Muscle Activities

    PubMed Central

    Cho, Sung-Hak; Baek, Il-Hun; Cheon, Ju Young; Cho, Min Jung; Choi, Mi Young; Jung, Da Hye

    2014-01-01

    [Purpose] Although the Push-Up Plus is a useful exercise method for shoulder stabilization, few studies have examined its effects at different angles of shoulder rotation. Therefore, the present study investigated the most effective exercise method for shoulder stabilization by analyzing muscle activities of the rotator cuff muscles at different angles of shoulder rotation. [Subjects] Fifteen healthy university students in their 20s were the subjects of this study. [Methods] Changes in muscle EMG related to shoulder stabilization were analyzed by performing the Push-Up Plus in shoulder positions of neutral, internal and external rotation. [Results] The highest muscle activity was found in external rotation, and in internal rotation the pectoralis major and levator scapula showed significantly lower activities than the other positions. [Conclusion] Selectively changing the rotation angle of the shoulder for different purposes of the shoulder exercise would be an effective exercise method. PMID:25435689

  5. Effect of the Push-up Plus (PUP) Exercise at Different Shoulder Rotation Angles on Shoulder Muscle Activities.

    PubMed

    Cho, Sung-Hak; Baek, Il-Hun; Cheon, Ju Young; Cho, Min Jung; Choi, Mi Young; Jung, Da Hye

    2014-11-01

    [Purpose] Although the Push-Up Plus is a useful exercise method for shoulder stabilization, few studies have examined its effects at different angles of shoulder rotation. Therefore, the present study investigated the most effective exercise method for shoulder stabilization by analyzing muscle activities of the rotator cuff muscles at different angles of shoulder rotation. [Subjects] Fifteen healthy university students in their 20s were the subjects of this study. [Methods] Changes in muscle EMG related to shoulder stabilization were analyzed by performing the Push-Up Plus in shoulder positions of neutral, internal and external rotation. [Results] The highest muscle activity was found in external rotation, and in internal rotation the pectoralis major and levator scapula showed significantly lower activities than the other positions. [Conclusion] Selectively changing the rotation angle of the shoulder for different purposes of the shoulder exercise would be an effective exercise method.

  6. Corrective supramalleolar osteotomy for malunited pronation-external rotation fractures of the ankle.

    PubMed

    Hintermann, B; Barg, A; Knupp, M

    2011-10-01

    We undertook a prospective study to analyse the outcome of 48 malunited pronation-external rotation fractures of the ankle in 48 patients (25 females and 23 males) with a mean age of 45 years (21 to 69), treated by realignment osteotomies. The interval between the injury and reconstruction was a mean of 20.2 months (3 to 98). In all patients, valgus malalignment of the distal tibia and malunion of the fibula were corrected. In some patients, additional osteotomies were performed. Patients were reviewed regularly, and the mean follow-up was 7.1 years (2 to 15). Good or excellent results were obtained in 42 patients (87.5%) with the benefit being maintained over time. Congruent ankles without a tilted talus (Takakura stage 0 and 1) were obtained in all but five cases. One patient required total ankle replacement.

  7. Long-term outcome after supination-external rotation type-4 fractures of the ankle.

    PubMed

    Stufkens, S A S; Knupp, M; Lampert, C; van Dijk, C N; Hintermann, B

    2009-12-01

    We have compared the results at a mean follow-up of 13 years (11 to 14) of two groups of supination-external rotation type-4 fractures of the ankle, in one of which there was a fracture of the medial malleolus and in the other the medial deltoid ligament had been partially or completely ruptured. Of 66 patients treated operatively between 1993 and 1997, 36 were available for follow-up. Arthroscopy had been performed in all patients pre-operatively to assess the extent of the intra-articular lesions. The American Orthopaedic Foot and Ankle Society hind-foot score was used for clinical evaluation and showed a significant difference in both the total and the functional scores (p < 0.05), but not in those for pain or alignment, in favour of the group with a damaged deltoid ligament (p < 0.05). The only significant difference between the groups on the short-form 36 quality-of-life score was for bodily pain, again in favour of the group with a damaged deltoid ligament. There was no significant difference between the groups in the subjective visual analogue scores or in the modified Kannus radiological score. Arthroscopically, there was a significant difference with an increased risk of loose bodies in the group with an intact deltoid ligament (p < 0.005), although there was no significant increased risk of deep cartilage lesions in the two groups. At a mean follow-up of 13 years after operative treatment of a supination-external rotation type-4 ankle fracture patients with partial or complete rupture of the medial deltoid ligament tended to have a better result than those with a medial malleolar fracture.

  8. A method for the estimate of the wall diffusion for non-axisymmetric fields using rotating external fields

    NASA Astrophysics Data System (ADS)

    Frassinetti, L.; Olofsson, K. E. J.; Fridström, R.; Setiadi, A. C.; Brunsell, P. R.; Volpe, F. A.; Drake, J.

    2013-08-01

    A new method for the estimate of the wall diffusion time of non-axisymmetric fields is developed. The method based on rotating external fields and on the measurement of the wall frequency response is developed and tested in EXTRAP T2R. The method allows the experimental estimate of the wall diffusion time for each Fourier harmonic and the estimate of the wall diffusion toroidal asymmetries. The method intrinsically considers the effects of three-dimensional structures and of the shell gaps. Far from the gaps, experimental results are in good agreement with the diffusion time estimated with a simple cylindrical model that assumes a homogeneous wall. The method is also applied with non-standard configurations of the coil array, in order to mimic tokamak-relevant settings with a partial wall coverage and active coils of large toroidal extent. The comparison with the full coverage results shows good agreement if the effects of the relevant sidebands are considered.

  9. Humeral external rotation handling by using the Bobath concept approach affects trunk extensor muscles electromyography in children with cerebral palsy.

    PubMed

    Grazziotin Dos Santos, C; Pagnussat, Aline S; Simon, A S; Py, Rodrigo; Pinho, Alexandre Severo do; Wagner, Mário B

    2014-10-20

    This study aimed to investigate the electromyographic activity of cervical and trunk extensors muscles in children with cerebral palsy during two handlings according to the Bobath concept. A crossover trial involving 40 spastic diplegic children was conducted. Electromyography (EMG) was used to measure muscular activity at sitting position (SP), during shoulder internal rotation (IR) and shoulder external rotation (ER) handlings, which were performed using the elbow joint as key point of control. Muscle recordings were performed at the fourth cervical (C4) and at the tenth thoracic (T10) vertebral levels. The Gross Motor Function Classification System (GMFCS) was used to assess whether muscle activity would vary according to different levels of severity. Humeral ER handling induced an increase on EMG signal of trunk extensor muscles at the C4 (P=0.007) and T10 (P<0.001) vertebral levels. No significant effects were observed between SP and humeral IR handling at C4 level; However at T10 region, humeral IR handling induced an increase of EMG signal (P=0.019). Humeral ER resulted in an increase of EMG signal at both levels, suggesting increase of extensor muscle activation. Furthermore, the humeral ER handling caused different responses on EMG signal at T10 vertebra level, according to the GMFCS classification (P=0.017). In summary, an increase of EMG signal was observed during ER handling in both evaluated levels, suggesting an increase of muscle activation. These results indicate that humeral ER handling can be used for diplegic CP children rehabilitation to facilitate cervical and trunk extensor muscles activity in a GMFCS level-dependent manner.

  10. Optimal rotation sequences for active perception

    NASA Astrophysics Data System (ADS)

    Nakath, David; Rachuy, Carsten; Clemens, Joachim; Schill, Kerstin

    2016-05-01

    One major objective of autonomous systems navigating in dynamic environments is gathering information needed for self localization, decision making, and path planning. To account for this, such systems are usually equipped with multiple types of sensors. As these sensors often have a limited field of view and a fixed orientation, the task of active perception breaks down to the problem of calculating alignment sequences which maximize the information gain regarding expected measurements. Action sequences that rotate the system according to the calculated optimal patterns then have to be generated. In this paper we present an approach for calculating these sequences for an autonomous system equipped with multiple sensors. We use a particle filter for multi- sensor fusion and state estimation. The planning task is modeled as a Markov decision process (MDP), where the system decides in each step, what actions to perform next. The optimal control policy, which provides the best action depending on the current estimated state, maximizes the expected cumulative reward. The latter is computed from the expected information gain of all sensors over time using value iteration. The algorithm is applied to a manifold representation of the joint space of rotation and time. We show the performance of the approach in a spacecraft navigation scenario where the information gain is changing over time, caused by the dynamic environment and the continuous movement of the spacecraft

  11. Maximality of shoulder external rotation effort in patients presenting with work related injury: the clinical applicability of the DEC parameter.

    PubMed

    Chaler, Joaquim; Pujol, Eduard; Unyó, Carme; Quintana, Salvador; Müller, Bertram; Garreta, Roser; Javierre, Casimiro; Dvir, Zeevi

    2013-08-01

    The aim of the present study is to examine the applicability of the isokinetic DEC parameter for identifying submaximal effort in workers with potential weakness of the shoulder external rotators. A previous study indicated that the DEC was a powerful identifier of submaximal effort of shoulder external rotation in normal volunteers. Its applicability in shoulder injury patients is of specific interest. Thus, a retrospective study of 74 (33 female and 41 male) patients who claimed compensation for work-related shoulder injury was designed. 52 patients had their injured side DEC values within the normal range and were thus labeled as maximal performers. Ten patients had higher than cutoff DEC values, indicating submaximal effort whereas 12 patients had exceedingly low DEC values. Gender comparison showed a significantly different proportion of maximal performers. Strength deficits registered in patients demonstrating maximal performance correlated with the final outcome. The findings support the application of the DEC for determination of the extent of weakness of shoulder external rotators in male patients. In terms of shoulder external rotators status in male worker injury, the results support the application of isokinetic tests both in the clinical and medicolegal sense. However, the gender discrepancy warrants further research.

  12. Centrifugally activated bearing for high-speed rotating machinery

    DOEpatents

    Post, R.F.

    1994-02-15

    A centrifugally activated bearing is disclosed. The bearing includes an annular member that extends laterally and radially from a central axis. A rotating member that rotates about the central axis relative to the annular member is also included. The rotating member has an interior chamber that surrounds the central axis and in which the annular member is suspended. Furthermore, the interior chamber has a concave shape for retaining a lubricant therein while the rotating member is at rest and for retaining a lubricant therein while the rotating member is rotating. The concave shape is such that while the rotating member is rotating a centrifugal force causes a lubricant to be forced away from the central axis to form a cylindrical surface having an axis collinear with the central axis. This centrifugally displaced lubricant provides restoring forces to counteract lateral displacement during operation. 4 figures.

  13. Centrifugally activated bearing for high-speed rotating machinery

    DOEpatents

    Post, Richard F.

    1994-01-01

    A centrifugally activated bearing is disclosed. The bearing includes an annular member that extends laterally and radially from a central axis. A rotating member that rotates about the central axis relative to the annular member is also included. The rotating member has an interior chamber that surrounds the central axis and in which the annular member is suspended. Furthermore, the interior chamber has a concave shape for retaining a lubricant therein while the rotating member is at rest and for retaining a lubricant therein while the rotating member is rotating. The concave shape is such that while the rotating member is rotating a centrifugal force causes a lubricant to be forced away from the central axis to form a cylindrical surface having an axis collinear with the central axis. This centrifugally displaced lubricant provides restoring forces to counteract lateral displacement during operation.

  14. The Dosimetric Impact of Prostate Rotations During Electromagnetically Guided External-Beam Radiation Therapy

    SciTech Connect

    Amro, Hanan; Hamstra, Daniel A.; Mcshan, Daniel L.; Sandler, Howard; Vineberg, Karen; Hadley, Scott; Litzenberg, Dale

    2013-01-01

    Purpose: To study the impact of daily rotations and translations of the prostate on dosimetric coverage during radiation therapy (RT). Methods and Materials: Real-time tracking data for 26 patients were obtained during RT. Intensity modulated radiation therapy plans meeting RTOG 0126 dosimetric criteria were created with 0-, 2-, 3-, and 5-mm planning target volume (PTV) margins. Daily translations and rotations were used to reconstruct prostate delivered dose from the planned dose. D{sub 95} and V{sub 79} were computed from the delivered dose to evaluate target coverage and the adequacy of PTV margins. Prostate equivalent rotation is a new metric introduced in this study to quantify prostate rotations by accounting for prostate shape and length of rotational lever arm. Results: Large variations in prostate delivered dose were seen among patients. Adequate target coverage was met in 39%, 65%, and 84% of the patients for plans with 2-, 3-, and 5-mm PTV margins, respectively. Although no correlations between prostate delivered dose and daily rotations were seen, the data showed a clear correlation with prostate equivalent rotation. Conclusions: Prostate rotations during RT could cause significant underdosing even if daily translations were managed. These rotations should be managed with rotational tolerances based on prostate equivalent rotations.

  15. The QBO and weak external forcing by solar activity: A three dimensional model study

    NASA Technical Reports Server (NTRS)

    Dameris, M.; Ebel, A.

    1989-01-01

    A better understanding is attempted of the physical mechanisms leading to significant correlations between oscillations in the lower and middle stratosphere and solar variability associated with the sun's rotation. A global 3-d mechanistic model of the middle atmosphere is employed to investigate the effects of minor artificially induced perturbations. The aim is to explore the physical mechanisms of the dynamical response especially of the stratosphere to weak external forcing as it may result from UV flux changes due to solar rotation. First results of numerical experiments dealing about the external forcing of the middle atmosphere by solar activity were presented elsewhere. Different numerical studies regarding the excitation and propagation of weak perturbations have been continued since then. The model calculations presented are made to investigate the influence of the quasi-biennial oscillation (QBO) on the dynamical response of the middle atmosphere to weak perturbations by employing different initial wind fields which represent the west and east phase of the QBO.

  16. Error field assessment from driven rotation of stable external kinks at EXTRAP-T2R reversed field pinch

    NASA Astrophysics Data System (ADS)

    Volpe, F. A.; Frassinetti, L.; Brunsell, P. R.; Drake, J. R.; Olofsson, K. E. J.

    2013-04-01

    A new non-disruptive error field (EF) assessment technique not restricted to low density and thus low beta was demonstrated at the EXTRAP-T2R reversed field pinch. Stable and marginally stable external kink modes of toroidal mode number n = 10 and n = 8, respectively, were generated, and their rotation sustained, by means of rotating magnetic perturbations of the same n. Due to finite EFs, and in spite of the applied perturbations rotating uniformly and having constant amplitude, the kink modes were observed to rotate non-uniformly and be modulated in amplitude. This behaviour was used to precisely infer the amplitude and approximately estimate the toroidal phase of the EF. A subsequent scan permitted to optimize the toroidal phase. The technique was tested against deliberately applied as well as intrinsic EFs of n = 8 and 10. Corrections equal and opposite to the estimated error fields were applied. The efficacy of the error compensation was indicated by the increased discharge duration and more uniform mode rotation in response to a uniformly rotating perturbation. The results are in good agreement with theory, and the extension to lower n, to tearing modes and to tokamaks, including ITER, is discussed.

  17. External rotation elastic bands at the lower limb decrease rearfoot eversion during walking: a preliminary proof of concept

    PubMed Central

    Souza, Thales R.; Araújo, Vanessa L.; Silva, Paula L.; Carvalhais, Viviane O. C.; Resende, Renan A.; Fonseca, Sérgio T.

    2016-01-01

    ABSTRACT Background Reducing rearfoot eversion is a commonly desired effect in clinical practice to prevent or treat musculoskeletal dysfunction. Interventions that pull the lower limb into external rotation may reduce rearfoot eversion. Objective This study investigated whether the use of external rotation elastic bands, of different levels of stiffness, will decrease rearfoot eversion during walking. We hypothesized that the use of elastic bands would decrease rearfoot eversion and that the greater the band stiffness, the greater the eversion reduction. Method Seventeen healthy participants underwent three-dimensional kinematic analysis of the rearfoot and shank. The participants walked on a treadmill with and without high- and low-stiffness bands. Frontal-plane kinematics of the rearfoot-shank joint complex was obtained during the stance phase of walking. Repeated-measures ANOVAs were used to compare discrete variables that described rearfoot eversion-inversion: mean eversion-inversion; eversion peak; and eversion-inversion range of motion. Results The low-stiffness and high-stiffness bands significantly decreased eversion and increased mean eversion-inversion (p≤0.037) and eversion peak (p≤0.006) compared with the control condition. Both bands also decreased eversion-inversion range of motion (p≤0.047) compared with control by reducing eversion. The high-stiffness band condition was not significantly different from the low-stiffness band condition for any variables (p≥0.479). Conclusion The results indicated that the external rotation bands decreased rearfoot eversion during walking. This constitutes preliminary experimental evidence suggesting that increasing external rotation moments at the lower limb may reduce rearfoot eversion, which needs further testing. PMID:27849289

  18. Magnetic island and plasma rotation under external resonant magnetic perturbation in the T-10 tokamak

    SciTech Connect

    Eliseev, L. G.; Ivanov, N. V. Kakurin, A. M.; Perfilov, S. V.; Melnikov, A. V.

    2015-05-15

    Experimental comparison of the m = 2, n = 1 mode and plasma rotation velocities at q = 2 magnetic surface in a wide range of the mode amplitudes is presented. Phase velocity of the mode rotation is measured with a set of poloidal magnetic field sensors located at the inner side of the vacuum vessel wall. Plasma rotation velocity at the q = 2 magnetic surface in the direction of the mode phase velocity is measured with the heavy ion beam probe diagnostics. In the presence of a static Resonant Magnetic Perturbation (RMP), the rotation is irregular that appears as cyclical variations of the mode and plasma instantaneous velocities. The period of these variations is equal to the period of the mode oscillations. In the case of high mode amplitude, the rotation irregularity of the mode is consistent with the rotation irregularity of the resonant plasma layer. On the contrary, the observed rise of the mode rotation irregularity in the case of low mode amplitude occurs without an increase of the rotation irregularity of the resonant plasma layer. The experimental results are simulated and analyzed with the TEAR code based on the two-fluid MHD approximation. Calculated irregularities of the mode and plasma rotation depend on the mode amplitude similar to the experimental data. For large islands, the rotation irregularity is attributed to oscillations of the electromagnetic torque applied to the resonant plasma layer. For small islands, the deviation of the mode rotation velocity from the plasma velocity occurs due to the effect of finite plasma resistivity.

  19. Activity-rotation relations for lower main sequence stars

    NASA Astrophysics Data System (ADS)

    Dobson-Hockey, Andrea Kay

    It was known for some time that stellar rotation and activity are related, both for chromospheric activity and control activity. Younger, more rapidly rotating stars of a given spectral type generally show higher levels of activity than do older, more slowly rotating stars. On the Sun acitivity is distinctly related to magnetic fields. This leads to the suggestion that activity, at least in solar-type stars, is traceable to a magnetic dynamo which results from the interaction of rotation and differential rotation with convection. The more efficient the coriolis forces are at introducing helicity into convective motions, the more the magnetic field will be amplified and the more activity that is expected. The precise nature of the relationship between magnetic fields, rotation, and activity remains to be well-defined. It is the purpose to examine the relationship between activity and rotation in order to better define and express such a relation (or relations). To meet this goal, a comprehensive sample of stars was collected from the published literature having two or more of the following: chromospheric Ca II, H, and K emission indices; coronal soft X-ray illumination; rotation rates; and where possible, ages. It is seen that the use of normalized activity units and Rossby number generally improves the correlation between activity and rotation. The use of the convective turnover time further permits a possible explanation for the distribution of stars in an activity-color diagram. A large and homogeneous data set permits better definition of previously examined functional dependencies such as the time decay of activity and the relationship between chromospheric and coronal activity indicators.

  20. Coarsening dynamics of binary liquids with active rotation.

    PubMed

    Sabrina, Syeda; Spellings, Matthew; Glotzer, Sharon C; Bishop, Kyle J M

    2015-11-21

    Active matter comprised of many self-driven units can exhibit emergent collective behaviors such as pattern formation and phase separation in both biological (e.g., mussel beds) and synthetic (e.g., colloidal swimmers) systems. While these behaviors are increasingly well understood for ensembles of linearly self-propelled "particles", less is known about the collective behaviors of active rotating particles where energy input at the particle level gives rise to rotational particle motion. A recent simulation study revealed that active rotation can induce phase separation in mixtures of counter-rotating particles in 2D. In contrast to that of linearly self-propelled particles, the phase separation of counter-rotating fluids is accompanied by steady convective flows that originate at the fluid-fluid interface. Here, we investigate the influence of these flows on the coarsening dynamics of actively rotating binary liquids using a phenomenological, hydrodynamic model that combines a Cahn-Hilliard equation for the fluid composition with a Navier-Stokes equation for the fluid velocity. The effect of active rotation is introduced though an additional force within the Navier-Stokes equations that arises due to gradients in the concentrations of clockwise and counter-clockwise rotating particles. Depending on the strength of active rotation and that of frictional interactions with the stationary surroundings, we observe and explain new dynamical behaviors such as "active coarsening" via self-generated flows as well as the emergence of self-propelled "vortex doublets". We confirm that many of the qualitative behaviors identified by the continuum model can also be found in discrete, particle-based simulations of actively rotating liquids. Our results highlight further opportunities for achieving complex dissipative structures in active materials subject to distributed actuation.

  1. Activity-rotation relations for lower main-sequence stars

    SciTech Connect

    Dobson-Hockey, A.K.

    1987-01-01

    It has been known for some time that stellar rotation and activity are related, both for chromospheric activity (e.g., Noyes et al. 1984) and coronal activity (e.g., Pallavicini et al. 1981; Maggio et al. 1987). Younger, more rapidly rotating stars of a given spectral type generally show higher levels of activity than do older, more slowly rotating stars. On the Sun, activity is distinctly related to magnetic fields. This leads to the suggestion that activity, at least in solar-type stars, is traceable to a magnetic dynamo which results from the interaction of rotation and differential rotation with convection. The more efficient the coriolis forces are at introducing helicity into convective motions, the more the magnetic field will be amplified and the more activity we may expect to see. The precise nature of the relationship between magnetic fields, rotation, and activity remains to be well-defined. This thesis examines the relationship between activity (both chromospheric and coronal) and rotation in order to better define and express such a relation (or relations).

  2. Deferred action battery activated by rotation

    SciTech Connect

    Hruden, W.R.

    1988-02-16

    A deferred action battery is described comprising: a rotor having a longitudinal axis therethrough and having an outer circumference that is capable of being gripped by hand, and a stator adjacent the rotor and being rotatably mounted with respect to the rotor about the longitudinal axis.

  3. Effect of Resistance Training Maintaining the Joint Angle-torque Profile Using a Haptic-based Machine on Shoulder Internal and External Rotation

    PubMed Central

    Kim, Yeonghun; Lee, Kunwoo; Moon, Jeheon; Koo, Dohoon; Park, Jaewoo; Kim, Kyengnam; Hong, Daehie; Shin, Inshik

    2014-01-01

    [Purpose] The aim of this study was to present an individualized resistance training method to enable exercise while maintaining an exercise load that is set according to an individual’s joint angle-torque using a haptic-based resistance training machine. [Methods] Five participants (machine group) performed individualized shoulder internal and external rotation training with a haptic resistance training machine, while another five participants performed general dumbbell-based shoulder internal and external rotation training for eight weeks. Internal and external rotation powers of subjects were measured using an isokinetic machine before and after training. [Results] The average powers of both shoulder internal and external rotation has been improved after training (25.72%, 13.62%). The improvement in power of external rotation in the machine group was significantly higher than that in the control group. [Conclusion] This study proposes a haptic-based individualized rotator cuff muscle training method. The training protocol maintaining the joint angle-torque profile showed better improvement of shoulder internal/external rotation than dumbbell training. PMID:24764626

  4. The rotation-activity relation in M dwarfs

    NASA Astrophysics Data System (ADS)

    Newton, Elisabeth R.; Irwin, Jonathan; Charbonneau, David; Berlind, Perry L.; Calkins, Michael L.; Mink, Jessica D.

    2017-01-01

    Main sequence stars with masses below approximately 0.35 solar masses are fully-convective, and are expected to have a different type of magnetic dynamo than solar-type stars. Observationally, the dynamo mechanism can be probed through the relationship between rotation and magnetic activity, and the evolution of these properties. Though M dwarfs are the most common type of star in the galaxy, a lack of observational constraints at ages beyond 1 Gyr has hampered studies of the rotation-activity relation. To address this, we have made new measurements of rotation and magnetic activity in nearby, field-age M dwarfs. Combining our 386 rotation period measurements and 247 new optical spectra with data from the literature, we are able to probe the rotation-activity in M dwarfs with masses from 0.1 to 0.6 solar masses. We observe a threshold in the mass--period plane that separates active and inactive M dwarfs. The threshold coincides with the fast-period edge of the slowly rotating population, at approximately the rotation period at which an era of rapid rotational evolution appears to cease. We confirm that the activity of rapidly rotating M dwarfs maintains a saturated value. We have measured rotation periods as long as 140 days, allowing us to probe the unsaturated regime in detail. Our data show a clear power-law decay in relative H-alpha luminosity as a function Rossby number. We discuss implications for the magnetic dynamo mechanism.We acknowledge funding from the National Science Foundation, the David and Lucile Packard Foundation Fellowship for Science and Engineering, and the John Templeton Foundation. E.R.N. acknowledges support from the NSF through a Graduate Research Fellowship and an Astronomy and Astrophysics Postdoctoral Fellowship.

  5. The ultimate arc: Differential displacement, oroclinal bending, and vertical axis rotation in the External Betic-Rif arc

    NASA Astrophysics Data System (ADS)

    Platt, J. P.; Allerton, S.; Kirker, A.; Mandeville, C.; Mayfield, A.; Platzman, E. S.; Rimi, A.

    2003-06-01

    The External Betic-Rif arc, which lies between the converging African and Iberian plates, is one of the tightest orogenic arcs on Earth. It is a thin-skinned fold and thrust belt formed in Miocene time around the periphery of the Alborán Domain, an older contractional orogen that underwent extensional collapse coevally with the formation of the thrust belt. Restoration of four sections across the thrust belt, together with kinematic and paleomagnetic analysis, allows a reconstruction of the prethrusting geometry of the Alborán Domain, and the identification of the following processes that contributed to the formation of the arc: (1) The Alborán Domain moved some 250 km westward relative to Iberia and Africa during the Miocene. This initiated the two limbs of the arc on its NW and SW margins, closing to the WSW in the region of Cherafat in northern Morocco. The overall convergence direction on the Iberian side of the arc was between 310° and 295°, and on the African side it was between 235° and 215°. The difference in convergence direction between the two sectors was primarily a result of the relative motion between Africa and Iberia. (2) Extensional collapse of the Alborán Domain during the Miocene modified the geometry of the western end of the arc: the Internal Rif rotated anticlockwise to form the present north trending sector of the arc, and additional components of displacement produced by extension were transferred into the external thrust belt along a series of strike-slip faults and shear zones. These allowed the limbs of the arc to rotate and extend, tightening the arc, and creating variations in the amounts and directions of shortening around the arc. The Betic sector of the arc rotated clockwise by 25° during this process, and the southern Rif rotated anticlockwise by ˜55°. (3) Oblique convergence on the two limbs of the arc, dextral in the Betics and sinistral in the southern Rif, resulted in strongly noncoaxial deformation. This had three

  6. Gender Difference Does Not Mean Genetic Difference: Externalizing Improves Performance in Mental Rotation

    ERIC Educational Resources Information Center

    Moe, Angelica

    2012-01-01

    The fear of underperforming owing to stereotype threat affects women's performance in tasks such as mathematics, chess, and spatial reasoning. The present research considered mental rotation and explored effects on performance and on regulatory focus of instructions pointing to different explanations for gender differences. Two hundred and one…

  7. A Profile of Glenohumeral Internal and External Rotation Motion in the Uninjured High School Baseball Pitcher, Part I: Motion

    PubMed Central

    Hurd, Wendy J.; Kaplan, Kevin M.; ElAttrache, Neal S.; Jobe, Frank W.; Morrey, Bernard F.; Kaufman, Kenton R.

    2011-01-01

    Context: The magnitude of motion that is normal for the throwing shoulder in uninjured baseball pitchers has not been established. Chronologic factors contributing to adaptations in motion present in the thrower's shoulder also have not been established. Objectives: To develop a normative profile of glenohumeral rotation motion in uninjured high school baseball pitchers and to evaluate the effect of chronologic characteristics on the development of adaptations in shoulder rotation motion. Design: Cohort study. Setting: Baseball playing field. Patients or Other Participants: A total of 210 uninjured male high school baseball pitchers (age = 16±1.1 years, height = 1.8 + 0.1 m, mass = 77.5±11.2 kg, pitching experience = 6±2.3 years). Intervention(s): Using standard goniometric techniques, we measured passive rotational glenohumeral range of motion bilaterally with participants in the supine position. Main Outcome Measure(s): Paired t tests were performed to identify differences in motion between limbs for the group. Analysis of variance and post hoc Tukey tests were conducted to identify differences in motion by age. Linear regressions were performed to determine the influence of chronologic factors on limb motion. Results: Rotation motion characteristics for the population were established. We found no difference between sides for external rotation (ER) at 0° of abduction (t209 = 0.658, P = .51), but we found side-to-side differences in ER (t209 = −13.012, P<.001) and internal rotation (t209 = 15.304, P<.001) at 90° of abduction. Age at the time of testing was a significant negative predictor of ER motion for the dominant shoulder (R2 = 0.019, P = .049) because less ER motion occurred at the dominant shoulder with advancing age. We found no differences in rotation motion in the dominant shoulder across ages (F4,205 range, 0.451–1.730, P>.05). Conclusions: This range-of-motion profile might be used to assist with the interpretation of normal and atypical

  8. Standard and Short RoM Isokinetic Testing: Comparative Analysis in Identifying Submaximal Shoulder External Rotator Effort.

    PubMed

    Pujol, Eduard; Chaler, Joaquim; Sucarrats, Laura; López, Inés; Zeballos, Blanca; Garreta, Roser; Dvir, Zeevi

    2017-01-31

    An isokinetic-related parameter termed the difference between eccentric-concentric strength ratios at two distinct test velocities (DEC) based on 60° (standard) range of motion (RoM) has been proven to be highly efficient detecting feigned muscular efforts. This study aimed to verify whether a DEC derived from a much shorter test RoM (20°) was equally useful than a long RoM-derived one. Eighteen healthy men (32.4 ± 6.4 years old) took part in a study focusing on shoulder external rotation isokinetic strength. Participants performed a genuine shoulder external rotator maximal effort (eight pairs of concentric and eccentric contractions at high and low velocities at short and long RoM) and then instructed to feign maximal effort. Contraction velocities were adjusted accordingly by applying a 1:4 gradient and peak moments registered. Both condition DEC was then calculated by subtracting the eccentric and concentric strength ratios at low velocities from those at high velocities. DEC scores in the feigned effort were significantly higher than maximal effort ones in both conditions in men. It enabled the setting of specific cutoff levels for separating the efforts. Both approaches revealed a coincident sensitivity (78%) whereas short RoM showed an even higher specificity: 88% versus 78%. Thus, the short RoM protocol provides clinically acceptable detection power.

  9. Rehabilitation of the Overhead Throwing Athlete: There Is More to It Than Just External Rotation/Internal Rotation Strengthening.

    PubMed

    Wilk, Kevin E; Arrigo, Christopher A; Hooks, Todd R; Andrews, James R

    2016-03-01

    The repetitive nature of throwing manifests characteristic adaptive changes to the shoulder, scapulothoracic, and hip/pelvis complexes that result in a set of unique physical traits in the overhead throwing athlete. An effective rehabilitation program is dependent upon an accurate evaluation and differential diagnosis to determine the causative factors for the athlete's pathologic features. The treatment program should be individualized with specific strengthening and flexibility exercises to achieve the dynamic stability that is required for overhead function. In this article we describe the characteristics of the throwing shoulder, along with a multiphased rehabilitation program that allows for the restoration of strength, mobility, endurance, and power and is aimed toward a return to unrestricted sporting activity. We also describe exercises that link the upper and lower extremities because of the importance of core control and leg strength in the development of power during the act of throwing. Additionally, proper throwing mechanics, utilization of pitch counts, appropriate rest, and proper off-season conditioning will help decrease overall injury risk in the overhead throwing athlete.

  10. Generalized investigation of the rotation-activity relation: favoring rotation period instead of Rossby number

    SciTech Connect

    Reiners, A.; Passegger, V. M.; Schüssler, M.

    2014-10-20

    Magnetic activity in Sun-like and low-mass stars causes X-ray coronal emission which is stronger for more rapidly rotating stars. This relation is often interpreted in terms of the Rossby number, i.e., the ratio of rotation period to convective overturn time. We reconsider this interpretation on the basis of the observed X-ray emission and rotation periods of 821 stars with masses below 1.4 M {sub ☉}. A generalized analysis of the relation between X-ray luminosity normalized by bolometric luminosity, L {sub X}/L {sub bol}, and combinations of rotational period, P, and stellar radius, R, shows that the Rossby formulation does not provide the solution with minimal scatter. Instead, we find that the relation L {sub X}/L {sub bol}∝P {sup –2} R {sup –4} optimally describes the non-saturated fraction of the stars. This relation is equivalent to L {sub X}∝P {sup –2}, indicating that the rotation period alone determines the total X-ray emission. Since L {sub X} is directly related to the magnetic flux at the stellar surface, this means that the surface flux is determined solely by the star's rotation and is independent of other stellar parameters. While a formulation in terms of a Rossby number would be consistent with these results if the convective overturn time scales exactly as L{sub bol}{sup −1/2}, our generalized approach emphasizes the need to test a broader range of mechanisms for dynamo action in cool stars.

  11. About the Solar Activity Rotation Periods

    NASA Astrophysics Data System (ADS)

    Mouradian, Zadig

    2007-03-01

    The purpose of this paper is to evidence, from a statistical point of view, the different periods of solar activity. The well known period is that of 150-160 days, but many others were detected between 9 and 4750 days (length of solar cycle). We tabulated 49 articles revealing 231 periods. In order to explain them, different hypotheses were suggested.

  12. Influence of external magnetic fields on the freezing temperature Tf of Ni 79Mn 21 alloys: Evidence for anisotropy rotation

    NASA Astrophysics Data System (ADS)

    Öner, Y.; Firat, T.; Ercan, İ.; Aktaş, B.

    1988-04-01

    DC magnetization measurements have been performed for Ni 79Mn 21 alloys in the temperature range of 4.2 to 50 K. Taking the demagnetizing field into account, the influence of an external magnetic field, Hext, on the re-entrant spin-glass transition temperature Tf of this alloy has been investigated. It has been observed that Tf is independent of Hext if Hext is sma ller than the demagnetizing field HD ( = NMs) where N is the demagnetizing factor; Ms is the value of the saturation magnetization. However, for higher fields, Tf is displaced towards lower temperatures. These results are interpreted in terms of anisotropy rotation based on the "domain-anisotropy" model.

  13. Analysis of the classical phase space and energy transfer for two rotating dipoles with and without external electric field

    NASA Astrophysics Data System (ADS)

    González-Férez, Rosario; Iñarrea, Manuel; Salas, J. Pablo; Schmelcher, Peter

    2017-01-01

    We explore the classical dynamics of two interacting rotating dipoles that are fixed in the space and exposed to an external homogeneous electric field. Kinetic energy transfer mechanisms between the dipoles are investigated by varying both the amount of initial excess kinetic energy of one of them and the strength of the electric field. In the field-free case, and depending on the initial excess energy, an abrupt transition between equipartition and nonequipartition regimes is encountered. The study of the phase space structure of the system as well as the formulation of the Hamiltonian in an appropriate coordinate frame provide a thorough understanding of this sharp transition. When the electric field is turned on, the kinetic energy transfer mechanism is significantly more complex and the system goes through different regimes of equipartition and nonequipartition of the energy including chaotic behavior.

  14. Incidence of Peroneal Tendinopathy After Application of a Posterior Antiglide Plate for Repair of Supination External Rotation Lateral Malleolar Fractures.

    PubMed

    Ahn, Jungtae; Kim, Sehun; Lee, Jung-Soo; Woo, Kyungjei; Sung, Ki-Sun

    2016-01-01

    Posterior antiglide plating is widely used to treat lateral malleolar fractures caused by supination-external rotation injuries. Despite its widespread use, this technique can be associated with postoperative peroneal tendinopathy. The purpose of the present observational review was to report the incidence of peroneal tendinopathy after the use of posterior antiglide plating to treat lateral malleolar fractures caused by a supination-external rotation injury. A total of 70 patients were followed up for a minimum of 12 (mean 55, range 12 to 109) months. Bony union was obtained in all cases after a mean of 57 (range 37 to 81) days. The median number of screw holes in the plate was 4.9 (range 4 to 7), and the median number of screws used to fixate the fibula was 6.58 (range 5 to 10). The mean American Orthopaedic Foot and Ankle Society hindfoot-ankle score at the final follow-up examination was 90.8 (range 55 to 100). Clinically, 3 (4.29%) of the 70 patients had lateral or posterolateral ankle pain indicative of peroneal tendinopathy after the index surgery, without any objective evidence. Of the 70 patients, 41 (58.57%) underwent surgical removal of the fibular hardware, 2 (4.87%) because of lateral ankle discomfort. At removal, inspection of the peroneal tendon sheath and/or tendons showed no gross evidence of tendinopathy in any of the patients. We concluded that the incidence of clinically evident peroneal tendon symptoms associated with posterior antiglide plating is low (4.3%), and direct operative inspection revealed no gross evidence of tendinopathy.

  15. Manual Stress Ankle Radiography Has Poor Ability to Predict Deep Deltoid Ligament Integrity in a Supination External Rotation Fracture Cohort.

    PubMed

    Schottel, Patrick C; Fabricant, Peter D; Berkes, Marschall B; Garner, Matthew R; Little, Milton T M; Hentel, Keith D; Mintz, Douglas N; Helfet, David L; Lorich, Dean G

    2015-01-01

    Stress ankle radiographs are routinely performed to determine deep deltoid ligament integrity in supination external rotation (SER) ankle fractures. However, variability is present in the published data regarding what medial clear space (MCS) value constitutes a positive result. The purposes of the present study were to evaluate the diagnostic accuracy of different MCS cutoff values and determine whether this clinical test could accurately discriminate between patients with and without a deep deltoid ligament disruption. MCS measurements were recorded for stress ankle injury radiographs in an SER ankle fracture cohort. Preoperative ankle magnetic resonance imaging studies, obtained for all patients, were then read independently by 2 musculoskeletal attending radiologists to determine deep deltoid ligament integrity. The MCS measurements were compared with the magnetic resonance imaging diagnosis using receiver operating characteristic analyses to determine the sensitivity, specificity, and optimal data-driven cutoff values. SER II-III patients demonstrated a mean stress MCS distance of 4.3 ± 0.98 mm compared with 5.8 ± 1.76 mm in the SER IV cohort (p < .001). An analysis of differing MCS positive cutoff thresholds revealed that a stress MCS of 5.0 mm maximized the combined sensitivity and specificity of the external rotation test: 65.8% sensitive and 76.5% specific. Using the receiver operating characteristic curve analysis of the MCS measurement, the calculated area under the curve was 0.77, indicating inadequate discriminative ability for diagnosing SER pattern fractures with or without a deep deltoid ligament tear. Judicious use of additional diagnostic testing in patients with a stress MCS result between 4.0 mm and 5.5 mm is warranted.

  16. Ultrasensitive detection of nitric oxide at 5.33 μm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy

    PubMed Central

    Lewicki, Rafał; Doty, James H.; Curl, Robert F.; Tittel, Frank K.; Wysocki, Gerard

    2009-01-01

    A transportable prototype Faraday rotation spectroscopic system based on a tunable external cavity quantum cascade laser has been developed for ultrasensitive detection of nitric oxide (NO). A broadly tunable laser source allows targeting the optimum Q3/2(3/2) molecular transition at 1875.81 cm−1 of the NO fundamental band. For an active optical path of 44 cm and 1-s lock-in time constant minimum NO detection limits (1σ) of 4.3 parts per billion by volume (ppbv) and 0.38 ppbv are obtained by using a thermoelectrically cooled mercury–cadmium–telluride photodetector and liquid nitrogen-cooled indium–antimonide photodetector, respectively. Laboratory performance evaluation and results of continuous, unattended monitoring of atmospheric NO concentration levels are reported. PMID:19625625

  17. Response of a partial wall to an external perturbation of rotating plasma

    SciTech Connect

    Atanasiu, C. V.; Zakharov, L. E.

    2013-09-15

    In this paper, we present the response of a 3D thin multiply connected wall to an external kink mode perturbation in axisymmetric tokamak configurations. To calculate the contribution of the plasma perturbed magnetic field in the vacuum region, we have made use of the concept of surface currents [following C. V. Atanasiu, A. H. Boozer, L. E. Zakharov, and A. A. Subbotin, Phys. Plasmas 6, 2781 (1999)]. The wall response is expressed in terms of a stream function of the wall surface currents, which are obtained by solving a diffusion type equation, taking into account the contribution of the wall currents themselves iteratively. The use of stream function makes the approach applicable for both well-studied earlier Resistive Wall Modes and for Wall Touching Kink Modes, which were discovered recently as a key phenomenon in disruptions [L. E. Zakharov, S. A. Galkin, and S. N. Gerasimov, Phys. Plasmas 19, 055703 (2012)]. New analytical expressions, suitable for numerical calculations of toroidal harmonics of the vacuum magnetic fields from the surface currents on axisymmetric shells, are derived.

  18. Activity and Rotation in the young cluster h Per

    NASA Astrophysics Data System (ADS)

    Argiroffi, Costanza; Caramazza, Marilena; Micela, Giusi; Moraux, Estelle; Bouvier, Jerome

    2013-07-01

    We study the stellar rotation-activity relation in the crucial age at which stars reach the fastest rotation. To this aim we have analyzed data of the young cluster h Per, very rich and compact, located at 2300 pc, that at an age of 13 Myr should be mainly composed of stars that have ended their contraction phase and that have not lost significant angular momentum viamagnetic breaking. To constrain the activity level of h Per members we have analyzed a deep Chandra/ACIS-I observation. Rotational periods of h Per members have been derived by Moraux et al. (2013) in the framework of the MONITOR project (Aigrain et al. 2007; Irwin et al. 2007). In the Chandra observation we have detected 1010 X-ray sources located in the central field of h Persei. Assuming a distance of 2300 pc their X-ray luminosity ranges between 2x10^29 and 6x10^31 erg/s. Among the 1010 x-ray sources ~600 have as optical counterpart candidate members of the cluster with masses ranging down to 0.3 solar mass, and ˜150 have also measured rotational period. For this sample of ˜150 h Per members we have compared X-ray luminosity and rotational periods for different mass ranges. We have found that solar type stars (~1.3 solar mass) show evidence of supersaturation for short periods. This phenomenon is unobserved for lower mass stars.

  19. Rapid rotation and mixing in active OB stars - Physical processes

    NASA Astrophysics Data System (ADS)

    Zahn, Jean-Paul

    2011-07-01

    In the standard description of stellar interiors, O and B stars possess a thoroughly mixed convective core surrounded by a stable radiative envelope in which no mixing occurs. But as is well known, this model disagrees strongly with the spectroscopic diagnostic of these stars, which reveals the presence at their surface of chemical elements that have been synthesized in the core. Hence the radiation zone must be the seat of some mild mixing mechanisms. The most likely to operate there are linked with the rotation: these are the shear instabilites triggered by the differential rotation, and the meridional circulation caused by the changes in the rotation profile accompanying the non-homologous evolution of the star. In addition to these hydrodynamical processes, magnetic stresses may play an important role in active stars, which host a magnetic field. These physical processes will be critically examined, together with some others that have been suggested.

  20. Rotation and activity at 3 Gyr with Ruprecht 147

    NASA Astrophysics Data System (ADS)

    Curtis, Jason L.; Wright, J.

    2014-01-01

    Stellar rotation slows and magnetic activity wanes over time, making these properties useful diagnostics to determine the ages of stars. While gyrochronology and Skumanich-type activity relations have been empirically calibrated for younger stars using nearby open clusters, few benchmark clusters older than 1 Gyr exist that are close enough to have activity levels measured for their main sequence stars. Pace (2013) claims that magnetic activity can no longer be used as an age indicator after ~1 Gyr (from NGC 752), but no open cluster has been available to substantiate this claim until now. We have recently demonstrated that Ruprecht 147 is the oldest nearby open cluster, with an age of 3 Gyr and a distance of ~300 pc, which bridges the age gap between NGC 752 at 1 Gyr and M67 and the Sun at 4 Gyr (Curtis et al. 2013). We have measured projected rotational velocities (vsini) and magnetic activity indices (Calcium H&K) for >50 FGK dwarfs with high signal-to-noise spectra taken with the MMT Hectochelle, Magellan MIKE, Keck HIRES, and Tillinghast 1.5-m FAST spectrographs. We will discuss how our rotation and activity measurements for this 3 Gyr open cluster shed light on the rotation- and activity- age relations for old and late-type stars. We will also present new cluster members from our ongoing M dwarf survey with SALT RSS, discuss stellar multiplicity in light of our recently acquired Robo-AO imaging, and review our efforts to locate and characterize the white dwarf population.

  1. Deriving stellar inclination of slow rotators using stellar activity

    SciTech Connect

    Dumusque, X.

    2014-12-01

    Stellar inclination is an important parameter for many astrophysical studies. Although different techniques allow us to estimate stellar inclination for fast rotators, it becomes much more difficult when stars are rotating slower than ∼2-2.5 km s{sup –1}. By using the new activity simulation SOAP 2.0 which can reproduce the photometric and spectroscopic variations induced by stellar activity, we are able to fit observations of solar-type stars and derive their inclination. For HD 189733, we estimate the stellar inclination to be i=84{sub −20}{sup +6} deg, which implies a star-planet obliquity of ψ=4{sub −4}{sup +18} considering previous measurements of the spin-orbit angle. For α Cen B, we derive an inclination of i=45{sub −19}{sup +9}, which implies that the rotational spin of the star is not aligned with the orbital spin of the α Cen binary system. In addition, assuming that α Cen Bb is aligned with its host star, no transit would occur. The inclination of α Cen B can be measured using 40 radial-velocity measurements, which is remarkable given that the projected rotational velocity of the star is smaller than 1.15 km s{sup –1}.

  2. Elements of active vibration control for rotating machinery

    NASA Technical Reports Server (NTRS)

    Ulbrich, Heinz

    1990-01-01

    The success or failure of active vibration control is determined by the availability of suitable actuators, modeling of the entire system including all active elements, positioning of the actuators and sensors, and implementation of problem-adapted control concepts. All of these topics are outlined and their special problems are discussed in detail. Special attention is given to efficient modeling of systems, especially for considering the active elements. Finally, design methods for and the application of active vibration control on rotating machinery are demonstrated by several real applications.

  3. Development and validation of a computational model to study the effect of foot constraint on ankle injury due to external rotation.

    PubMed

    Wei, Feng; Hunley, Stanley C; Powell, John W; Haut, Roger C

    2011-02-01

    Recent studies, using two different manners of foot constraint, potted and taped, document altered failure characteristics in the human cadaver ankle under controlled external rotation of the foot. The posterior talofibular ligament (PTaFL) was commonly injured when the foot was constrained in potting material, while the frequency of deltoid ligament injury was higher for the taped foot. In this study an existing multibody computational modeling approach was validated to include the influence of foot constraint, determine the kinematics of the joint under external foot rotation, and consequently obtain strains in various ligaments. It was hypothesized that the location of ankle injury due to excessive levels of external foot rotation is a function of foot constraint. The results from this model simulation supported this hypothesis and helped to explain the mechanisms of injury in the cadaver experiments. An excessive external foot rotation might generate a PTaFL injury for a rigid foot constraint, and an anterior deltoid ligament injury for a pliant foot constraint. The computational models may be further developed and modified to simulate the human response for different shoe designs, as well as on various athletic shoe-surface interfaces, so as to provide a computational basis for optimizing athletic performance with minimal injury risk.

  4. Perceiving a stable world during active rotational and translational head movements.

    PubMed

    Jaekl, P M; Jenkin, M R; Harris, Laurence R

    2005-06-01

    When a person moves through the world, the associated visual displacement of the environment in the opposite direction is not usually seen as external movement but rather as a changing view of a stable world. We measured the amount of visual motion that can be tolerated as compatible with the perception of moving within a stable world during active, sinusoidal, translational and rotational head movement. Head movements were monitored by means of a low-latency, mechanical head tracker and the information was used to update a helmet-mounted visual display. A variable gain was introduced between the head tracker and the display. Ten subjects adjusted this gain until the visual display appeared stable during sinusoidal yaw, pitch and roll head rotations and naso-occipital, inter-aural and dorso-ventral translations at 0.5 Hz. Each head movement was tested with movement either orthogonal to or parallel with gravity. A wide spread of gains was accepted as stable (0.8 to 1.4 for rotation and 1.1 to 1.8 for translation). The gain most likely to be perceived as stable was greater than that required by the geometry (1.2 for rotation; 1.4 for translation). For rotational motion, the mean gains were the same for all axes. For translation there was no effect of whether the movement was inter-aural (mean gain 1.6) or dorso-ventral (mean gain 1.5) and no effect of the relative orientation of the translation direction relative to gravity. However translation in the naso-occipital direction was associated with more closely veridical settings (mean gain 1.1) and narrower standard deviations than in other directions. These findings are discussed in terms of visual and non-visual contributions to the perception of an earth-stable environment during active head movement.

  5. Nerve–muscle activation by rotating permanent magnet configurations

    PubMed Central

    Nicholson, Graham M.

    2016-01-01

    Key points The standard method of magnetic nerve activation using pulses of high current in coils has drawbacks of high cost, high electrical power (of order 1 kW), and limited repetition rate without liquid cooling.Here we report a new technique for nerve activation using high speed rotation of permanent magnet configurations, generating a sustained sinusoidal electric field using very low power (of order 10 W).A high ratio of the electric field gradient divided by frequency is shown to be the key indicator for nerve activation at high frequencies.Activation of the cane toad sciatic nerve and attached gastrocnemius muscle was observed at frequencies as low as 180 Hz for activation of the muscle directly and 230 Hz for curved nerves, but probably not in straight sections of nerve.These results, employing the first prototype device, suggest the opportunity for a new class of small low‐cost magnetic nerve and/or muscle stimulators. Abstract Conventional pulsed current systems for magnetic neurostimulation are large and expensive and have limited repetition rate because of overheating. Here we report a new technique for nerve activation, namely high‐speed rotation of a configuration of permanent magnets. Analytical solutions of the cable equation are derived for the oscillating electric field generated, which has amplitude proportional to the rotation speed. The prototype device built comprised a configuration of two cylindrical magnets with antiparallel magnetisations, made to rotate by interaction between the magnets’ own magnetic field and three‐phase currents in coils mounted on one side of the device. The electric field in a rectangular bath placed on top of the device was both numerically evaluated and measured. The ratio of the electric field gradient on frequency was approximately 1 V m−2 Hz−1 near the device. An exploratory series of physiological tests was conducted on the sciatic nerve and attached gastrocnemius muscle of the cane toad

  6. Deriving stellar inclination of slow rotators using stellar activity signal

    NASA Astrophysics Data System (ADS)

    Dumusque, Xavier

    2015-01-01

    Stellar inclination is an important parameter for many astrophysical studies. In the context of exoplanets, this allows us to derive the true obliquity of a system if the projected stellar spin-planetary orbit angle can measured via the Rossiter-Mclaughlin effect. Although different techniques allow us to estimate stellar inclination for fast rotators, it becomes much more difficult when stars are rotating slower than 2-2.5 km.s-1. By using the new activity simulation SOAP 2.0 that can reproduce the photometric and spectroscopic variations induced by stellar activity, we are able to fit the activity variation of solar-type stars and derive their inclination. The case of the equator-on star HD189733 will be presented, as well as the case of Alpha Centauri B, which present an inclination of 45+9-19 degrees, implying that the earth-mass orbiting planet is not transiting if aligned with its host star. Other exemples will also demonstrate the power of the technique, that can infer a stellar inclination, even for slow rotators like Alpha Centauri B, that present a projected rotational velocity smaller than 1.15 km.s-1. In addition, the SOAP 2.0 simulation can be used to correct for the effect of activity when one major active region is dominating the RV signal. This could enhance the detection of small mass exoplanets orbiting slightly active stars.This project is funded by ETAEARTH (European Union Seventh Framework Programme (FP7/2007-2013) under Grant Agreement n. 313014), a transnational collaboration between European countries and the US (the Swiss Space Office, the Harvard Origin of Life Initiative, the Scottish Universities Physics Alliance, the University of Geneva, the Smithsonian Astrophysical Observatory, the Italian National Astrophysical Institute, the University of St. Andrews, Queens University Belfast, and the University of Edinburgh) setup to optimize the synergy between space-and ground-based data whose scientific potential for the characterization of

  7. Parsec-scale Faraday rotation and polarization of 20 active galactic nuclei jets

    NASA Astrophysics Data System (ADS)

    Kravchenko, E. V.; Kovalev, Y. Y.; Sokolovsky, K. V.

    2017-01-01

    We perform polarimetry analysis of 20 active galactic nuclei (AGN) jets using the Very Long Baseline Array (VLBA) at 1.4, 1.6, 2.2, 2.4, 4.6, 5.0, 8.1, 8.4, and 15.4 GHz. The study allowed us to investigate linearly polarized properties of the jets at parsec-scales: distribution of the Faraday rotation measure (RM) and fractional polarization along the jets, Faraday effects and structure of Faraday-corrected polarization images. Wavelength-dependence of the fractional polarization and polarization angle is consistent with external Faraday rotation, while some sources show internal rotation. The RM changes along the jets, systematically increasing its value towards synchrotron self-absorbed cores at shorter wavelengths. The highest core RM reaches 16,900 rad m-2 in the source rest frame for the quasar 0952+179, suggesting the presence of highly magnetized, dense media in these regions. The typical RM of transparent jet regions has values of an order of a hundred rad m-2 . Significant transverse rotation measure gradients are observed in seven sources. The magnetic field in the Faraday screen has no preferred orientation, and is observed to be random or regular from source to source. Half of the sources show evidence for the helical magnetic fields in their rotating magnetoionic media. At the same time jets themselves contain large-scale, ordered magnetic fields and tend to align its direction with the jet flow. The observed variety of polarized signatures can be explained by a model of spine-sheath jet structure.

  8. SOLAR ROTATION RATE DURING THE CYCLE 24 MINIMUM IN ACTIVITY

    SciTech Connect

    Antia, H. M.; Basu, Sarbani E-mail: sarbani.basu@yale.ed

    2010-09-01

    The minimum of solar cycle 24 is significantly different from most other minima in terms of its duration as well as its abnormally low levels of activity. Using available helioseismic data that cover epochs from the minimum of cycle 23 to now, we study the differences in the nature of the solar rotation between the minima of cycles 23 and 24. We find that there are significant differences between the rotation rates during the two minima. There are differences in the zonal-flow pattern too. We find that the band of fast rotating region close to the equator bifurcated around 2005 and recombined by 2008. This behavior is different from that during the cycle 23 minimum. By autocorrelating the zonal-flow pattern with a time shift, we find that in terms of solar dynamics, solar cycle 23 lasted for a period of 11.7 years, consistent with the result of Howe et al. (2009). The autocorrelation coefficient also confirms that the zonal-flow pattern penetrates through the convection zone.

  9. Determination of the Rotation Periods of Solar Active Longitudes

    NASA Astrophysics Data System (ADS)

    Plyusnina, L. A.

    2010-02-01

    There are two types of active longitudes (ALs) in terms of the distribution of sunspot areas: long-lived and intra-cyclic ALs. The rotation period of the long-lived ALs has been determined by a new method in this paper. The method is based on the property of ALs to be maintained over several cycles of solar activity. The daily values of sunspot areas for 1878 - 2005 are analyzed. It is shown that the AL positions remain almost constant over a period of about ten cycles, from cycle 13 to cycle 22. The rotation period was found to be 27.965 days during this period. The dispersion in AL positions is about 26° from cycle to cycle, which is half of the dispersion observed in the Carrington system. The ALs in the growth phase of the activity cycle are more stable and pronounced. The excess in solar activity in the ALs over adjacent longitudinal intervals is about 12 - 14%. It is shown that only one long-lived AL can be observed at one time on the Sun, as a rule.

  10. The Influence of Dual Pressure Biofeedback Units on Pelvic Rotation and Abdominal Muscle Activity during the Active Straight Leg Raise in Women with Chronic Lower Back Pain.

    PubMed

    Noh, Kyung-Hee; Kim, Ji-Won; Kim, Gyoung-Mo; Ha, Sung-Min; Oh, Jae-Seop

    2014-05-01

    [Purpose] This study was performed to assess the influence of applying dual pressure biofeedback units (DPBUs) on the angle of pelvic rotation and abdominal muscle activity during the active straight leg raise (ASLR). [Subjects] Seventeen patients with low-back pain (LBP) participated in this study. [Methods] The subjects were asked to perform an active straight leg raise (ASLR) without a PBU, with a single PBU, and with DPBUs. The angles of pelvic rotation were measured using a three-dimensional motion-analysis system, and the muscle activity of the bilateral internal oblique abdominis (IO), external oblique abdominis (EO), and rectus abdominis (RA) was recorded using surface electromyography (EMG). One-way repeated-measures ANOVA was performed to determine the rotation angles and muscle activity under the three conditions. [Results] The EMG activity of the ipsilateral IO, contralateral EO, and bilateral RA was greater and pelvic rotation was lower with the DPBUs than with no PBU or a single PBU. [Conclusion] The results of this study suggest that applying DPBUs during ASLR is effective in decreasing unwanted pelvic rotation and increasing abdominal muscle activity in women with chronic low back pain.

  11. A note on the application of the Prigogine theorem to rotation of tokamak-plasmas in absence of external torques

    SciTech Connect

    Sonnino, Giorgio; Cardinali, Alessandro; Zonca, Fulvio; Sonnino, Alberto; Nardone, Pasquale; Steinbrecher, György

    2014-03-15

    Rotation of tokamak-plasmas, not at the mechanical equilibrium, is investigated using the Prigogine thermodynamic theorem. This theorem establishes that, for systems confined in rectangular boxes, the global motion of the system with barycentric velocity does not contribute to dissipation. This result, suitably applied to toroidally confined plasmas, suggests that the global barycentric rotations of the plasma, in the toroidal and poloidal directions, are pure reversible processes. In case of negligible viscosity and by supposing the validity of the balance equation for the internal forces, we show that the plasma, even not in the mechanical equilibrium, may freely rotate in the toroidal direction with an angular frequency, which may be higher than the neoclassical estimation. In addition, its toroidal rotation may cause the plasma to rotate globally in the poloidal direction at a speed faster than the expression found by the neoclassical theory. The eventual configuration is attained when the toroidal and poloidal angular frequencies reaches the values that minimize dissipation. The physical interpretation able to explain the reason why some layers of plasma may freely rotate in one direction while, at the same time, others may freely rotate in the opposite direction, is also provided. Invariance properties, herein studied, suggest that the dynamic phase equation might be of the second order in time. We then conclude that a deep and exhaustive study of the invariance properties of the dynamical and thermodynamic equations is the most correct and appropriate way for understanding the triggering mechanism leading to intrinsic plasma-rotation in toroidal magnetic configurations.

  12. A note on the application of the Prigogine theorem to rotation of tokamak-plasmas in absence of external torques.

    PubMed

    Sonnino, Giorgio; Cardinali, Alessandro; Sonnino, Alberto; Nardone, Pasquale; Steinbrecher, György; Zonca, Fulvio

    2014-03-01

    Rotation of tokamak-plasmas, not at the mechanical equilibrium, is investigated using the Prigogine thermodynamic theorem. This theorem establishes that, for systems confined in rectangular boxes, the global motion of the system with barycentric velocity does not contribute to dissipation. This result, suitably applied to toroidally confined plasmas, suggests that the global barycentric rotations of the plasma, in the toroidal and poloidal directions, are pure reversible processes. In case of negligible viscosity and by supposing the validity of the balance equation for the internal forces, we show that the plasma, even not in the mechanical equilibrium, may freely rotate in the toroidal direction with an angular frequency, which may be higher than the neoclassical estimation. In addition, its toroidal rotation may cause the plasma to rotate globally in the poloidal direction at a speed faster than the expression found by the neoclassical theory. The eventual configuration is attained when the toroidal and poloidal angular frequencies reaches the values that minimize dissipation. The physical interpretation able to explain the reason why some layers of plasma may freely rotate in one direction while, at the same time, others may freely rotate in the opposite direction, is also provided. Invariance properties, herein studied, suggest that the dynamic phase equation might be of the second order in time. We then conclude that a deep and exhaustive study of the invariance properties of the dynamical and thermodynamic equations is the most correct and appropriate way for understanding the triggering mechanism leading to intrinsic plasma-rotation in toroidal magnetic configurations.

  13. Incentive-Elicited Mesolimbic Activation and Externalizing Symptomatology in Adolescents

    ERIC Educational Resources Information Center

    Bjork, James M.; Chen, Gang; Smith, Ashley R.; Hommer, Daniel W.

    2010-01-01

    Background: Opponent-process theories of externalizing disorders (ExD) attribute them to some combination of overactive reward processing systems and/or underactive behavior inhibition systems. Reward processing has been indexed by recruitment of incentive-motivational neurocircuitry of the ventral striatum (VS), including nucleus accumbens…

  14. 48 CFR 9903.201-8 - Compliant accounting changes due to external restructuring activities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... changes due to external restructuring activities. 9903.201-8 Section 9903.201-8 Federal Acquisition... Requirements 9903.201-8 Compliant accounting changes due to external restructuring activities. The contract price and cost adjustment requirements of this part 9903 are not applicable to compliant cost...

  15. Stacking transition in bilayer graphene caused by thermally activated rotation

    NASA Astrophysics Data System (ADS)

    Zhu, Mengjian; Ghazaryan, Davit; Son, Seok-Kyun; Woods, Colin R.; Misra, Abhishek; He, Lin; Taniguchi, Takashi; Watanabe, Kenji; Novoselov, Kostya S.; Cao, Yang; Mishchenko, Artem

    2017-03-01

    Crystallographic alignment between two-dimensional crystals in van der Waals heterostructures brought a number of profound physical phenomena, including observation of Hofstadter butterfly and topological currents, and promising novel applications, such as resonant tunnelling transistors. Here, by probing the electronic density of states in graphene using graphene-hexagonal boron nitride-graphene tunnelling transistors, we demonstrate a structural transition of bilayer graphene from incommensurate twisted stacking state into a commensurate AB stacking due to a macroscopic graphene self-rotation. This structural transition is accompanied by a topological transition in the reciprocal space and by pseudospin texturing. The stacking transition is driven by van der Waals interaction energy of the two graphene layers and is thermally activated by unpinning the microscopic chemical adsorbents which are then removed by the self-cleaning of graphene.

  16. Forced Magnetic Reconnection and Field Penetration of an Externally Applied Rotating Helical Magnetic Field in the TEXTOR Tokamak

    SciTech Connect

    Kikuchi, Y.; Finken, K. H.; Jakubowski, M.; Koslowski, H. R.; Kraemer-Flecken, A.; Lehnen, M.; Liang, Y.; Reiser, D.; Wolf, R. C.; Zimmermann, O.; Bock, M. F. M. de; Jaspers, R.; Matsunaga, G.

    2006-08-25

    The magnetic field penetration process into a magnetized plasma is of basic interest both for plasma physics and astrophysics. In this context special measurements on the field penetration and field amplification are performed by a Hall probe on the dynamic ergodic divertor (DED) on the TEXTOR tokamak and the data are interpreted by a two-fluid plasma model. It is observed that the growth of the forced magnetic reconnection by the rotating DED field is accompanied by a change of the plasma fluid rotation. The differential rotation frequency between the DED field and the plasma plays an important role in the process of the excitation of tearing modes. The momentum input from the rotating DED field to the plasma is interpreted by both a ponderomotive force at the rational surface and a radial electric field modified by an edge ergodization.

  17. Differential rotation of cool active stars: the case of intermediate rotators

    NASA Astrophysics Data System (ADS)

    Petit, P.; Donati, J.-F.; Collier Cameron, A.

    2002-08-01

    In this paper, we present a new method for measuring the surface differential rotation of cool stars with rotation periods of a few days, for which the sparse phase coverage achievable from single-site observations generally prevents the use of more conventional techniques. The basic idea underlying this new analysis is to obtain the surface differential rotation pattern that minimizes the information content of the reconstructed Doppler image through a simultaneous fit of all available data. Simulations demonstrate that the performance of this new method in the case of cool stars is satisfactory for a variety of observing strategies. Differential rotation parameters can be recovered reliably as long as the total data set spans at least 4 per cent of the time for the equator to lap the pole by approximately one complete cycle. We find in particular that these results hold for potentially complex spot distributions (as long as they include a mixture of low- and high-latitude features), and for various stellar inclination angles and rotation velocities. Such measurements can be obtained from either unpolarized or polarized data sets, provided their signal-to-noise ratio is larger than approximately 500 and 5000 per 2kms-1 spectral bin, respectively. This method should therefore be very useful for investigating differential rotation in a much larger sample of objects than what has been possible up to now, and should hence give us the opportunity of studying how differential rotation reacts to various phenomena operating in stellar convective zones, such as tidal effects or dynamo magnetic field generation.

  18. Evaluation of Hip Internal and External Rotation Range of Motion as an Injury Risk Factor for Hip, Abdominal and Groin Injuries in Professional Baseball Players

    PubMed Central

    Ma, Richard; Zhou, Hanbing; Thompson, Matthew; Dawson, Courtney; Nguyen, Joseph; Coleman, Struan

    2015-01-01

    Normal hip range of motion (ROM) is essential in running and transfer of energy from lower to upper extremities during overhead throwing. Dysfunctional hip ROM may alter lower extremity kinematics and predispose athletes to hip and groin injuries. The purpose of this study is characterize hip internal/external ROM (Arc) and its effect on the risk of hip, hamstring, and groin injuries in professional baseball players. Bilateral hip internal and external ROM was measured on all baseball players (N=201) in one professional organization (major and minor league) during spring training. Players were organized according to their respective positions. All injuries were documented prospectively for an entire MLB season (2010 to 2011). Data was analyzed according to position and injuries during the season. Total number of players (N=201) with an average age of 24±3.6 (range=17-37). Both pitchers (N=93) and catchers (N=22) had significantly decreased mean hip internal rotation and overall hip arc of motion compared to the positional players (N=86). Players with hip, groin, and hamstring injury also had decreased hip rotation arc when compared to the normal group. Overall, there is a correlation between decreased hip internal rotation and total arc of motion with hip, hamstring, and groin injuries. PMID:26793294

  19. Stellar activity and the rotation of Hyades stars

    SciTech Connect

    Radick, R.R.; Baliunas, S.L.

    1987-12-01

    New measurements of rotation periods for Hyades stars, which were obtained from re-analysis of Mount Wilson Observatory Ca II H-K emission flux measurements, are reported. The existence of systematic, color-dependent discrepancies between the measured rotation periods for Hyades stars and those predicted by the Rossby relation as originally calibrated by Noyes et al. 1984 has led to a re-examination of the form of the relationship between chromospheric emission, rotation, and color.

  20. Activation of protein kinase C by phorbol ester increases red blood cell scramblase activity and external phosphatidylserine.

    PubMed

    Barber, Latorya A; Palascak, Mary B; Qi, Xiaoyang; Joiner, Clinton H; Franco, Robert S

    2015-11-01

    Externalization of phosphatidylserine (PS) is thought to contribute to sickle cell disease (SCD) pathophysiology. The red blood cell (RBC) aminophospholipid translocase (APLT) mediates the transport of PS from the outer to the inner RBC membrane leaflet to maintain an asymmetric distribution of PL, while phospholipid scramblase (PLSCR) equilibrates PL across the RBC membrane, promoting PS externalization. We previously identified an association between PS externalization level and PLSCR activity in sickle RBC under basal conditions. Other studies showed that activation of protein kinase C (PKC) by PMA (phorbol-12-myristate-13-acetate) causes increased external PS on RBC. Therefore, we hypothesized that PMA-activated PKC stimulates PLSCR activity in RBC and thereby contributes to increased PS externalization. In the current studies, we show that PMA treatment causes immediate and variable PLSCR activation and subsequent PS externalization in control and sickle RBC. While TfR+ sickle reticulocytes display some endogenous PLSCR activity, we observed a robust activation of PLSCR in sickle reticulocytes treated with PMA. The PKC inhibitor, chelerythrine (Chel), significantly inhibited PMA-dependent PLSCR activation and PS externalization. Chel also inhibited endogenous PLSCR activity in sickle reticulocytes. These data provide evidence that PKC mediates PS externalization in RBC through activation of PLSCR.

  1. Internalism, Active Externalism, and Nonconceptual Content: The Ins and Outs of Cognition

    ERIC Educational Resources Information Center

    Dartnall, Terry

    2007-01-01

    Active externalism (also known as the extended mind hypothesis) says that we use objects and situations in the world as external memory stores that we consult as needs dictate. This gives us economies of storage: We do not need to remember that Bill has blue eyes and wavy hair if we can acquire this information by looking at Bill. I argue for a…

  2. Sports Management Faculty External Grant-Writing Activities in the United States

    ERIC Educational Resources Information Center

    DeVinney, Timothy P.

    2012-01-01

    This study was conducted to fill a void in information, provide relevant, current data for faculty members related to external grant-writing activities related to the academic field of sport management and serve as a tool that may aid in the advancement of external grant-writing efforts within the field of sport management. All data is specific to…

  3. Rotating single cycle two-phase thermally activated heat pump

    SciTech Connect

    Fabris, G.

    1993-06-08

    A thermally activated heat pump is described which utilizes single working fluid which as a whole passes consecutively through all parts of the apparatus in a closed loop series; the working fluid in low temperature saturated liquid state at condensation is pumped to higher pressure with a pump; subsequently heat is added to the liquid of increased pressure, the liquid via the heating is brought to a high temperature saturated liquid state; the high temperature liquid passes and flashes subsequently in form of two-phase flow through a rotating two-phase flow turbine; in such a way the working fluid performs work on the two-phase turbine which in turn powers the liquid pump and a lower compressor; two-phase flow exiting the two-phase turbine separated by impinging tangentially on housing of the turbine; low temperature heat is added to the housing in such a way evaporating the separated liquid on the housing; in such a way the liquid is fully vaporized the vapor then enters a compressor, the compressor compresses the vapor to a higher condensation pressure and corresponding increased temperature, the vapor at the condensation pressure enters a condenser whereby heat is rejected and the vapor is fully condensed into state of saturated liquid, mid saturated liquid enters the pump and repeats the cycle.

  4. An Activity-Rotation Relationship and Kinematic Analysis of Nearby M Dwarfs

    NASA Astrophysics Data System (ADS)

    Weisenburger, Kolby; West, A. A.; Irwin, J.; Charbonneau, D.; Berta, Z. K.; Dittmann, J.; Newton, E. R.

    2013-01-01

    Using spectroscopic observations and photometric light curves of 298 nearby M dwarfs from the MEarth transit survey, we examine the relationships between magnetic activity (quantified by H-alpha emission), rotation period, and stellar age (derived from three-dimensional space velocities). Although we have known for decades that a large fraction of mid-late-type M dwarfs are magnetically active, it was not clear what role rotation played in the magnetic field generation (and subsequent chromospheric heating). Previous attempts to investigate the relationship between magnetic activity and rotation in mid-late-type M dwarfs were hampered by the limited number of M dwarfs with measured rotation periods (and the fact that vsini measurements only probe rapid rotation). However, the photometric data from the MEarth survey allows us to probe a wide range of rotation periods for M dwarf stars (<1-150 days). Over all M spectral types we find that magnetic activity decreases with longer rotation periods. We note the most magnetically active (and hence, most rapidly rotating) stars to be consistent with a kinematically young population, while slow-rotators are less active or inactive and appear to belong to an older, dynamically heated stellar population. We acknowledge MEarth funding from the Packard Fellowship for Science and Engineering, the NSF (AST-0807690 and AST-1109273) and the Boston University UROP Program.

  5. Diagnostic accuracy of the gravity stress test and clinical signs in cases of isolated supination-external rotation-type lateral malleolar fractures.

    PubMed

    Nortunen, S; Flinkkilä, T; Lantto, I; Kortekangas, T; Niinimäki, J; Ohtonen, P; Pakarinen, H

    2015-08-01

    We prospectively assessed the diagnostic accuracy of the gravity stress test and clinical findings to evaluate the stability of the ankle mortise in patients with supination-external rotation-type fractures of the lateral malleolus without widening of the medial clear space. The cohort included 79 patients with a mean age of 44 years (16 to 82). Two surgeons assessed medial tenderness, swelling and ecchymosis and performed the external rotation (ER) stress test (a reference standard). A diagnostic radiographer performed the gravity stress test. For the gravity stress test, the positive likelihood ratio (LR) was 5.80 with a 95% confidence interval (CI) of 2.75 to 12.27, and the negative LR was 0.15 (95% CI 0.07 to 0.35), suggesting a moderate change from the pre-test probability. Medial tenderness, both alone and in combination with swelling and/or ecchymosis, indicated a small change (positive LR, 2.74 to 3.25; negative LR, 0.38 to 0.47), whereas swelling and ecchymosis indicated only minimal changes (positive LR, 1.41 to 1.65; negative LR, 0.38 to 0.47). In conclusion, when gravity stress test results are in agreement with clinical findings, the result is likely to predict stability of the ankle mortise with an accuracy equivalent to ER stress test results. When clinical examination suggests a medial-side injury, however, the gravity stress test may give a false negative result.

  6. Hip Rotations Influence Electromyographic Activity of Gluteus Medius Muscle During Pelvic Drop Exercise.

    PubMed

    Monteiro, Renan Lima; Facchini, Joana Hoverter; de Freitas, Diego Galace; Callegaric, Bianca; Amado João, Sílvia Maria

    2016-08-24

    Pelvic drop exercises are often used to strengthen the gluteus medius muscle with the aim of increasing or prioritizing its recruitment. However, the effect of hip rotation on the performance of the action of the gluteus medius is unknown. The aim of the study was to evaluate the effect of hip rotation on the recruitment of the gluteus medius muscle, tensor fasciae latae and quadratus lumborum. Seventeen healthy subjects performed two sets of four repetitions of pelvic drop exercise in random order with lateral (PDLR), medial (PDMR) and neutral (PDN) rotation of the hip. The electromyographic activity of the gluteus medius muscle (GM), tensor fasciae latae (TFL) and quadratus lumborum (QL) were evaluated using surface electromyography (sEMG). The results showed significant increases in activation of the GM with medial and neutral rotation compared with lateral rotation (p = 0.03, p = 0.01, respectively) and there was no difference between medial and neutral rotation (p=1.00). There was no difference in electromyographic activity of the tensor fasciae latae and quadratus lumborum in any of the positions. The GM:TFL ratio was the same in all analyzed positions. Regarding the GM:QL ratio, there was a significant increase with medial rotation compared with lateral rotation (p=0.02). Pelvic drop exercises are more efficient for activating the gluteus medius when the hip is in medial rotation and neutral position.

  7. Experimental study on active structural acoustic control of rotating machinery using rotating piezo-based inertial actuators

    NASA Astrophysics Data System (ADS)

    Zhao, G.; Alujević, N.; Depraetere, B.; Pinte, G.; Swevers, J.; Sas, P.

    2015-07-01

    In this paper, two Piezo-Based Rotating Inertial Actuators (PBRIAs) are considered for the suppression of the structure-borne noise radiated from rotating machinery. As add-on devices, they can be directly mounted on a rotational shaft, in order to intervene as early as possible in the transfer path between disturbance and the noise radiating surfaces. A MIMO (Multi-Input-Multi-Output) form of the FxLMS control algorithm is employed to generate the appropriate actuation signals, relying on a linear interpolation scheme to approximate time varying secondary plants. The proposed active vibration control approach is tested on an experimental test bed comprising a rotating shaft mounted in a frame to which a noise-radiating plate is attached. The disturbance force is introduced by an electro-dynamic shaker. The experimental results show that when the shaft spins below 180 rpm, more than a 7 dB reduction can be achieved in terms of plate vibrations, along with a reduction in the same order of magnitude in terms of noise radiation.

  8. Framing: Supporting Change for a System as an External Activity

    DTIC Science & Technology

    1998-03-01

    a division of labour that specifies how the motive is transformed into the outcome. 21 DSTO-RR-0127 Tools _J Motive J C Individual...Cnr Transformation Outcome ^ Process Rules nmunit) Division of Labour VL ^ Figure 2.3 Incorporating the social aspects in Activity Theory...these capabilities, creates roles by the division of labour , allocates tasks to roles, creates an organisational structure and formal management

  9. Buckling delamination of the circular sandwich plate with piezoelectric face and elastic core layers under rotationally symmetric external pressure

    NASA Astrophysics Data System (ADS)

    Akbarov, Surkay D.; Cafarova, Fazile I.; Yahnioglu, Nazmiye

    2017-02-01

    The axisymmetric buckling delamination of the piezoelectric circular sandwich plate with piezoelectric face and elastic (metal) core layers around the interface penny-shaped cracks is investigated. The case is considered where short-circuit conditions with respect to the electrical potential on the upper and lower and also lateral surfaces of face layers are satisfied. It is assumed that the edge surfaces of the cracks have an infinitesimal rotationally symmetric initial imperfection and the development of this imperfection with rotationally symmetric compressive forces acting on the lateral surface of the plate is studied by employing the exact geometrically non-linear field equations and relations of electro-elasticity for piezoelectric materials. Solution to the considered nonlinear problem is reduced to solution of the series boundary value problems derived by applying the linearization procedure with respect to small imperfection of the sought values. Numerical results reveal the effect of piezoelectricity as well as geometrical and material parameters on the critical values are determined numerically by employing finite element method (FEM).

  10. Musculoskeletal modelling of muscle activation and applied external forces for the correction of scoliosis

    PubMed Central

    2014-01-01

    Background This study uses biomechanical modelling and computational optimization to investigate muscle activation in combination with applied external forces as a treatment for scoliosis. Bracing, which incorporates applied external forces, is the most popular non surgical treatment for scoliosis. Non surgical treatments which make use of muscle activation include electrical stimulation, postural control, and therapeutic exercises. Electrical stimulation has been largely dismissed as a viable treatment for scoliosis, although previous studies have suggested that it can potentially deliver similarly effective corrective forces to the spine as bracing. Methods The potential of muscle activation for scoliosis correction was investigated over different curvatures both with and without the addition of externally applied forces. The five King’s classifications of scoliosis were investigated over a range of Cobb angles. A biomechanical model of the spine was used to represent various scoliotic curvatures. Optimization was applied to the model to reduce the curves using combinations of both deep and superficial muscle activation and applied external forces. Results Simulating applied external forces in combination with muscle activation at low Cobb angles (< 20 degrees) over the 5 King’s classifications, it was possible to reduce the magnitude of the curve by up to 85% for classification 4, 75% for classifications 3 and 5, 65% for classification 2, and 60% for classification 1. The reduction in curvature was less at larger Cobb angles. For King’s classifications 1 and 2, the serratus, latissimus dorsi, and trapezius muscles were consistently recruited by the optimization algorithm for activation across all Cobb angles. When muscle activation and external forces were applied in combination, lower levels of muscle activation or less external force was required to reduce the curvature of the spine, when compared with either muscle activation or external force applied

  11. Cat vestibular neurons that exhibit different responses to active and passive yaw head rotations

    NASA Technical Reports Server (NTRS)

    Robinson, F. R.; Tomko, D. L.

    1987-01-01

    Neurons in the vestibular nuclei were recorded in alert cats during voluntary yaw rotations of the head and during the same rotations delivered with a turntable driven from a record of previous voluntary movements. During both voluntary and passive rotations, 35 percent (6/17) of neurons tested responded at higher rates or for a larger part of the movement during voluntary movements than during the same rotations delivered with the turntable. Neck sensory input was evaluated separately in many of these cells and can account qualitatively for the extra firing present during active movement.

  12. Induction of rotational behaviour by intranigral baclofen suggests possible GABA-agonist activity.

    PubMed

    Waddington, J L

    1977-10-15

    In rats, unilateral injections of the GABA-derivative baclofen into the zona reticulata of the substantia nigra produced a contralateral rotation that was translated to ipsilateral rotation under the influence of amphetamine. These results mimic those following unilateral elevation of GABA levels in the substantia nigra and suggest that baclofen may have some GABA agonist activity following intracerebral injection.

  13. Rotation, activity, and stellar obliquities in a large uniform sample of Kepler solar analogs

    NASA Astrophysics Data System (ADS)

    Buzasi, Derek; Lezcano, Andy; Preston, Heather L.

    2016-10-01

    In this study, we undertook a deep photometric examination of a narrowly-defined sample of solar analogs in the Kepler field, with the goals of producing a uniform and statistically meaningful sample of such stars, comparing the properties of planet hosts to those of the general stellar population, and examining the behavior of rotation and photometric activity among stars with similar overall physical parameters. We successfully derived photometric activity indicators and rotation periods for 95 planet hosts (Kepler objects of interest [KOIs]) and 954 solar analogs without detected planets; 573 of these rotation periods are reported here for the first time. Rotation periods average roughly 20 d, but the distribution has a wide dispersion, with a tail extending to P > 35 d which appears to be inconsistent with published gyrochronological relations. We observed a weak rotation-activity relation for stars with rotation periods less than about 12 d; for slower rotators, the relation is dominated by scatter. However, we are able to state that the solar activity level derived from Virgo data is consistent with the majority of stars with similar rotation periods in our sample. Finally, our KOI sample is consistently approximately 0.3 dex more variable than our non-KOIs; we ascribe the difference to a selection effect due to low orbital obliquity in the planet-hosting stars and derive a mean obliquity for our sample of χ = 6+5°-6, similar to that seen in the solar system.

  14. Sex Differences in Mental Rotation and Cortical Activation Patterns: Can Training Change Them?

    ERIC Educational Resources Information Center

    Jausovec, Norbert; Jausovec, Ksenija

    2012-01-01

    In two experiments the neuronal mechanisms of sex differences in mental rotation were investigated. In Experiment 1 cortical activation was studied in women and men with similar levels of mental rotation ability (high, and average to low), who were equalized with respect to general intelligence. Sex difference in neuroelectric patterns of brain…

  15. Marital Conflict and Children's Externalizing Behavior: Interactions between Parasympathetic and Sympathetic Nervous System Activity

    ERIC Educational Resources Information Center

    El-Sheikh, Mona; Kouros, Chrystyna D.; Erath, Stephen; Cummings, E. Mark; Keller, Peggy; Staton, Lori

    2009-01-01

    Toward greater specificity in the prediction of externalizing problems in the context of interparental conflict, interactions between children's parasympathetic and sympathetic nervous system (PNS and SNS) activity were examined as moderators. PNS activity was indexed by respiratory sinus arrhythmia (RSA) and RSA reactivity (RSA-R) to lab…

  16. Frontal electroencephalogram activation asymmetry, emotional intelligence, and externalizing behaviors in 10-year-old children.

    PubMed

    Santesso, Diane L; Reker, Dana L; Schmidt, Louis A; Segalowitz, Sidney J

    2006-01-01

    The purpose of the present study was to examine the relations among resting frontal brain electrical activity (EEG) (hypothesized to reflect a predisposition to positive versusnegative affect and ability to regulate emotions), emotional intelligence, and externalizing behaviors in a sample of non-clinical 10-year-old children. We found that boys had significantly lower emotional intelligence than girls, and low emotional intelligence was associated with significantly more externalizing behaviors (i.e., aggression and delinquency), replicating previous work. We also found that children with higher reported externalizing behaviors exhibited significantly greater relative right frontal EEG activity at rest compared with children with little to no externalizing behavioral problems. There was, however, no relation between emotional intelligence and the pattern of resting frontal EEG activity. Thus, emotional intelligence and the pattern of frontal EEG activation at rest are independent predictors of externalizing behaviors in children. Findings also suggest that individual differences in emotional intelligence may not be based on differences in levels of emotional regulation or the generation of positive affect as reflected in frontal EEG asymmetries, but rather other social and cognitive competencies required for adaptive behavior.

  17. Neck kinematics and sternocleidomastoid muscle activation during neck rotation in subjects with forward head posture.

    PubMed

    Kim, Man-Sig

    2015-11-01

    [Purpose] The present study investigated differences in the kinematics of the neck and activation of the sternocleidomastoid (SCM) muscle during neck rotation between subjects with and without forward head posture (FHP). [Subjects and Methods] Twenty-eight subjects participated in the study (14 with FHP, 14 without FHP). Subjects performed neck rotation in two directions, left and right. The kinematics of rotation-lateral flexion movement patterns were recorded using motion analysis. Activity in the bilateral SCM muscles was measured using surface electromyography. Differences in neck kinematics and activation of SCM between the groups were analyzed by independent t-tests. [Results] Maintaining FHP increased the rotation-lateral flexion ratio significantly in both directions. The FHP group had significantly faster onset time for lateral flexion movement in both directions during neck rotation. Regarding the electromyography of the SCM muscles during neck rotation in both directions, the activity values of subjects with FHP were greater than those of subjects without FHP for the contralateral SCM muscles. [Conclusion] FHP can induce changes in movement in the frontal plane and SCM muscle activation during neck rotation. Thus, clinicians should consider movement in the frontal plane as well as in the sagittal plane when assessing and treating patients with forward head posture.

  18. Neck kinematics and sternocleidomastoid muscle activation during neck rotation in subjects with forward head posture

    PubMed Central

    Kim, Man-Sig

    2015-01-01

    [Purpose] The present study investigated differences in the kinematics of the neck and activation of the sternocleidomastoid (SCM) muscle during neck rotation between subjects with and without forward head posture (FHP). [Subjects and Methods] Twenty-eight subjects participated in the study (14 with FHP, 14 without FHP). Subjects performed neck rotation in two directions, left and right. The kinematics of rotation-lateral flexion movement patterns were recorded using motion analysis. Activity in the bilateral SCM muscles was measured using surface electromyography. Differences in neck kinematics and activation of SCM between the groups were analyzed by independent t-tests. [Results] Maintaining FHP increased the rotation-lateral flexion ratio significantly in both directions. The FHP group had significantly faster onset time for lateral flexion movement in both directions during neck rotation. Regarding the electromyography of the SCM muscles during neck rotation in both directions, the activity values of subjects with FHP were greater than those of subjects without FHP for the contralateral SCM muscles. [Conclusion] FHP can induce changes in movement in the frontal plane and SCM muscle activation during neck rotation. Thus, clinicians should consider movement in the frontal plane as well as in the sagittal plane when assessing and treating patients with forward head posture. PMID:26696712

  19. External cardiac compression may be harmful in some scenarios of pulseless electrical activity.

    PubMed

    Hogan, T S

    2012-10-01

    Pulseless electrical activity occurs when organised or semi-organised electrical activity of the heart persists but the product of systemic vascular resistance and the increase in systemic arterial flow generated by the ejection of the left venticular stroke volume is not sufficient to produce a clinically detectable pulse. Pulseless electrical activity encompasses a very heterogeneous variety of severe circulatory shock states ranging in severity from pseudo-cardiac arrest to effective cardiac arrest. Outcomes of cardiopulmonary resuscitation for pulseless electrical activity are generally poor. Impairment of cardiac filling is the limiting factor to cardiac output in many scenarios of pulseless electrical activity, including extreme vasodilatory shock states. There is no evidence that external cardiac compression can increase cardiac output when impaired cardiac filling is the limiting factor to cardiac output. If impaired cardiac filling is the limiting factor to cardiac output and the heart is effectively ejecting all the blood returning to it, then external cardiac compression can only increase cardiac output if it increases venous return and cardiac filling. Repeated cardiac compression asynchronous with the patient's cardiac cycle and raised mean intrathoracic pressure due to chest compression can be expected to reduce rather than to increase cardiac filling and therefore to reduce rather than to increase cardiac output in such circumstances. The hypothesis is proposed that the performance of external cardiac compression will have zero or negative effect on cardiac output in pulseless electrical activity when impaired cardiac filling is the limiting factor to cardiac output. External cardiac compression may be both directly and indirectly harmful to significant sub-groups of patients with pulseless electrical activity. We have neither evidence nor theory to provide comfort that external cardiac compression is not harmful in many scenarios of pulseless

  20. Detection of parity violation in chiral molecules by external tuning of electroweak optical activity

    SciTech Connect

    Bargueno, Pedro; Gonzalo, Isabel; Perez de Tudela, Ricardo

    2009-07-15

    A proposal is made to measure the parity-violating energy difference between enantiomers of chiral molecules by modifying the dynamics of the two-state system using an external chiral field, in particular, circularly polarized light. The intrinsic molecular parity-violating energy could be compensated by this external chiral field, with the subsequent change in the optical activity. From the observation of changes in the time-averaged optical activity of a sample with initial chiral purity and minimized environment effects, the value of the intrinsic parity-violating energy could be extracted. A discussion is made on the feasibility of this measurement.

  1. Electromechanical simulation and test of rotating systems with magnetic bearing or piezoelectric actuator active vibration control

    NASA Technical Reports Server (NTRS)

    Palazzolo, Alan B.; Tang, Punan; Kim, Chaesil; Manchala, Daniel; Barrett, Tim; Kascak, Albert F.; Brown, Gerald; Montague, Gerald; Dirusso, Eliseo; Klusman, Steve

    1994-01-01

    This paper contains a summary of the experience of the authors in the field of electromechanical modeling for rotating machinery - active vibration control. Piezoelectric and magnetic bearing actuator based control are discussed.

  2. Stellar Activity and the Rotation of Hyades Stars

    DTIC Science & Technology

    1987-12-01

    emnission (RH~t ) Is plotted ag.,rr-t Ros-sb% numiber -- the rotation period scaled by the convective turnover time scale The solid curve is the riresir...also be relieved by a moudification to the shape ot thre scaling funiction r,) as shown in Fig Ic The solid curve is the meant irlation obitained by...pre’dicted period, scaled by observed period) for -22 Hyvades stars (b,) Normalized Call H-K emision ass a f nction or Rossby number The solid curve is. the

  3. Prediction of active control of subsonic centrifugal compressor rotating stall

    NASA Technical Reports Server (NTRS)

    Lawless, Patrick B.; Fleeter, Sanford

    1993-01-01

    A mathematical model is developed to predict the suppression of rotating stall in a centrifugal compressor with a vaned diffuser. This model is based on the employment of a control vortical waveform generated upstream of the impeller inlet to damp weak potential disturbances that are the early stages of rotating stall. The control system is analyzed by matching the perturbation pressure in the compressor inlet and exit flow fields with a model for the unsteady behavior of the compressor. The model was effective at predicting the stalling behavior of the Purdue Low Speed Centrifugal Compressor for two distinctly different stall patterns. Predictions made for the effect of a controlled inlet vorticity wave on the stability of the compressor show that for minimum control wave magnitudes, on the order of the total inlet disturbance magnitude, significant damping of the instability can be achieved. For control waves of sufficient amplitude, the control phase angle appears to be the most important factor in maintaining a stable condition in the compressor.

  4. Frontal Electroencephalogram Activation Asymmetry, Emotional Intelligence, and Externalizing Behaviors in 10-Year-Old Children

    ERIC Educational Resources Information Center

    Santesso, L. Diane; Dana, L. Reker; Schmidt, Louis A.; Segalowitz, Sidney J.

    2006-01-01

    The purpose of the present study was to examine the relations among resting frontal brain electrical activity (EEG) (hypothesized to reflect a predisposition to positive versus negative affect and ability to regulate emotions), emotional intelligence, and externalizing behaviors in a sample of non-clinical 10-year-old children. We found that boys…

  5. A multiwavelength campaign of active stars with intermediate rotation rates

    NASA Technical Reports Server (NTRS)

    Dempsey, Robert C.; Neff, James E.; ONeal, Douglas; Olah, Katalin

    1995-01-01

    Near-to-simultaneous ultraviolet and visual spectroscopy of two moderate nu(sin i) RS CVn systems, V815 Herculis (nu(sin i) = 27 km s(exp -1)) and LM Pegasi (nu(sin i) = 24 km s(exp -1)), are presented along with contemporaneous UBV (RI)(sub c) - band photometry. These data were used to probe inhomogeneities in the chromospheres and photospheres, and the possible relationship between them. Both systems show evidence for rotationally modulated chromospheric emission, generally varying in antiphase to the photospheric brightness. A weak flare was observed at Mg II for V815 Her. In the case of IM Peg, we use photometry and spectra to estimate temperatures, sizes, and locations of photospheric spots. Further constraints on the spot temperature is provided by TiO observations. For IM Peg, the anticorrelation between chromospheric emission and brightness is discussed in the context of a possible solar-like spot cycle.

  6. A two-in-one Faraday rotator mirror exempt of active optical alignment.

    PubMed

    Wan, Qiong; Wan, Zhujun; Liu, Hai; Liu, Deming

    2014-02-10

    A two-in-one Faraday rotator mirror was presented, which functions as two independent Faraday rotation mirrors with a single device. With the introduction of a reflection lens as substitution of the mirror in traditional structure, this device is characterized by exemption of active optical alignment for the designers and manufacturers of Faraday rotator mirrors. A sample was fabricated by passive mechanical assembly. The insertion loss was measured as 0.46 dB/0.50 dB for the two independent ports, respectively.

  7. MOJAVE: MONITORING OF JETS IN ACTIVE GALACTIC NUCLEI WITH VLBA EXPERIMENTS. VIII. FARADAY ROTATION IN PARSEC-SCALE AGN JETS

    SciTech Connect

    Hovatta, Talvikki; Lister, Matthew L.; Aller, Margo F.; Aller, Hugh D.; Homan, Daniel C.; Kovalev, Yuri Y.

    2012-10-01

    We report observations of Faraday rotation measures for a sample of 191 extragalactic radio jets observed within the MOJAVE program. Multifrequency Very Long Baseline Array observations were carried out over 12 epochs in 2006 at four frequencies between 8 and 15 GHz. We detect parsec-scale Faraday rotation measures in 149 sources and find the quasars to have larger rotation measures on average than BL Lac objects. The median core rotation measures are significantly higher than in the jet components. This is especially true for quasars where we detect a significant negative correlation between the magnitude of the rotation measure and the de-projected distance from the core. We perform detailed simulations of the observational errors of total intensity, polarization, and Faraday rotation, and concentrate on the errors of transverse Faraday rotation measure gradients in unresolved jets. Our simulations show that the finite image restoring beam size has a significant effect on the observed rotation measure gradients, and spurious gradients can occur due to noise in the data if the jet is less than two beams wide in polarization. We detect significant transverse rotation measure gradients in four sources (0923+392, 1226+023, 2230+114, and 2251+158). In 1226+023 the rotation measure is for the first time seen to change sign from positive to negative over the transverse cuts, which supports the presence of a helical magnetic field in the jet. In this source we also detect variations in the jet rotation measure over a timescale of three months, which are difficult to explain with external Faraday screens and suggest internal Faraday rotation. By comparing fractional polarization changes in jet components between the four frequency bands to depolarization models, we find that an external purely random Faraday screen viewed through only a few lines of sight can explain most of our polarization observations, but in some sources, such as 1226+023 and 2251+158, internal

  8. External locus of control contributes to racial disparities in memory and reasoning training gains in ACTIVE

    PubMed Central

    Zahodne, Laura B.; Meyer, Oanh L.; Choi, Eunhee; Thomas, Michael L.; Willis, Sherry L.; Marsiske, Michael; Gross, Alden L.; Rebok, George W.; Parisi, Jeanine M.

    2015-01-01

    Racial disparities in cognitive outcomes may be partly explained by differences in locus of control. African Americans report more external locus of control than non-Hispanic Whites, and external locus of control is associated with poorer health and cognition. The aims of this study were to compare cognitive training gains between African American and non-Hispanic White participants in the Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) study and determine whether racial differences in training gains are mediated by locus of control. The sample comprised 2,062 (26% African American) adults aged 65 and older who participated in memory, reasoning, or speed training. Latent growth curve models evaluated predictors of 10-year cognitive trajectories separately by training group. Multiple group modeling examined associations between training gains and locus of control across racial groups. Compared to non-Hispanic Whites, African Americans evidenced less improvement in memory and reasoning performance after training. These effects were partially mediated by locus of control, controlling for age, sex, education, health, depression, testing site, and initial cognitive ability. African Americans reported more external locus of control, which was associated with smaller training gains. External locus of control also had a stronger negative association with reasoning training gain for African Americans than for Whites. No racial difference in training gain was identified for speed training. Future intervention research with African Americans should test whether explicitly targeting external locus of control leads to greater cognitive improvement following cognitive training. PMID:26237116

  9. External locus of control contributes to racial disparities in memory and reasoning training gains in ACTIVE.

    PubMed

    Zahodne, Laura B; Meyer, Oanh L; Choi, Eunhee; Thomas, Michael L; Willis, Sherry L; Marsiske, Michael; Gross, Alden L; Rebok, George W; Parisi, Jeanine M

    2015-09-01

    Racial disparities in cognitive outcomes may be partly explained by differences in locus of control. African Americans report more external locus of control than non-Hispanic Whites, and external locus of control is associated with poorer health and cognition. The aims of this study were to compare cognitive training gains between African American and non-Hispanic White participants in the Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) study and determine whether racial differences in training gains are mediated by locus of control. The sample comprised 2,062 (26% African American) adults aged 65 and older who participated in memory, reasoning, or speed training. Latent growth curve models evaluated predictors of 10-year cognitive trajectories separately by training group. Multiple group modeling examined associations between training gains and locus of control across racial groups. Compared to non-Hispanic Whites, African Americans evidenced less improvement in memory and reasoning performance after training. These effects were partially mediated by locus of control, controlling for age, sex, education, health, depression, testing site, and initial cognitive ability. African Americans reported more external locus of control, which was associated with smaller training gains. External locus of control also had a stronger negative association with reasoning training gain for African Americans than for Whites. No racial difference in training gain was identified for speed training. Future intervention research with African Americans should test whether explicitly targeting external locus of control leads to greater cognitive improvement following cognitive training.

  10. Rotation-Activity-Age Relations For Solar-Type And Cooler Stars

    NASA Astrophysics Data System (ADS)

    Basri, Gibor

    2016-08-01

    The fact that stellar rotation and chromospheric emission are correlated with age was explicitly noted by Wilson (1963) and reinforced by Kraft (1967). Wilson knew that Ca II emission was correlated with surface magnetic field in the Sun. Skumanich (1972) suggested a simple functional for the age-activity relation, and suggested that magnetic braking was the likely reason for the decline in activity. A theory for the rotation-activity connection was elucidated by Noyes et al. (1984), who invoked the Rossby number as important to the stellar dynamo. This calibrated the relation by convection zone depth and turnover time, although it was noted early and recently confirmed that it is not clear whether Rossby number is empirically superior to the rotation period itself in producing a clear rotation-activity relation. In fact, turnover times are hard to properly define, and the Rossby number is itself calibrated to tighten the relations. The number of stars in samples used to study this has increased dramatically, as have the diagnostics available to assess magnetic activity. It remains clear is that there is a strong relationship between magnetic activity and stellar rotation, and that magnetic braking forces both activity and rotation to decrease with age. These relations are also subject to modification as a function of stellar mass. There has recently been a great increase in the number of measured stellar rotation periods, and in the calibration of these relations using star clusters (whose ages can be independently assessed). I will summarize some of the ongoing progress on this topic.

  11. External validation and prediction employing the predictive squared correlation coefficient test set activity mean vs training set activity mean.

    PubMed

    Schüürmann, Gerrit; Ebert, Ralf-Uwe; Chen, Jingwen; Wang, Bin; Kühne, Ralph

    2008-11-01

    The external prediction capability of quantitative structure-activity relationship (QSAR) models is often quantified using the predictive squared correlation coefficient, q (2). This index relates the predictive residual sum of squares, PRESS, to the activity sum of squares, SS, without postprocessing of the model output, the latter of which is automatically done when calculating the conventional squared correlation coefficient, r (2). According to the current OECD guidelines, q (2) for external validation should be calculated with SS referring to the training set activity mean. Our present findings including a mathematical proof demonstrate that this approach yields a systematic overestimation of the prediction capability that is triggered by the difference between the training and test set activity means. Example calculations with three regression models and data sets taken from literature show further that for external test sets, q (2) based on the training set activity mean may become even larger than r (2). As a consequence, we suggest to always use the test set activity mean when quantifying the external prediction capability through q (2) and to revise the respective OECD guidance document accordingly. The discussion includes a comparison between r (2) and q (2) value ranges and the q (2) statistics for cross-validation.

  12. Thermal Noise Reduction of Mechanical Oscillators by Actively Controlled External Dissipative Forces

    NASA Technical Reports Server (NTRS)

    Liang, Shoudan; Medich, David; Czajkowsky, Daniel M.; Sheng, Sitong; Yuan, Jian-Yang; Shao, Zhifeng

    1999-01-01

    We show that the thermal fluctuations of very soft mechanical oscillators, such as the cantilever in an atomic force microscope (AFM), can be reduced without changing the stiffness of the spring or having to lower the environment temperature. We derive a theoretical relationship between the thermal fluctuations of an oscillator and an actively external-dissipative force. This relationship is verified by experiments with an AFM cantilever where the external active force is coupled through a magnetic field. With simple instrumentation, we have reduced the thermal noise amplitude of the cantilever by a factor of 3.4, achieving an apparent temperature of 25 K with the environment at 295K. This active noise reduction approach can significantly improve the accuracy of static position or static force measurements in a number of practical applications.

  13. Malleolar fractures and their ligamentous injury equivalents have similar outcomes in supination-external rotation type IV fractures of the ankle treated by anatomical internal fixation.

    PubMed

    Berkes, M B; Little, M T M; Lazaro, L E; Sculco, P K; Cymerman, R M; Daigl, M; Helfet, D L; Lorich, D G

    2012-11-01

    It has previously been suggested that among unstable ankle fractures, the presence of a malleolar fracture is associated with a worse outcome than a corresponding ligamentous injury. However, previous studies have included heterogeneous groups of injury. The purpose of this study was to determine whether any specific pattern of bony and/or ligamentous injury among a series of supination-external rotation type IV (SER IV) ankle fractures treated with anatomical fixation was associated with a worse outcome. We analysed a prospective cohort of 108 SER IV ankle fractures with a follow-up of one year. Pre-operative radiographs and MRIs were undertaken to characterise precisely the pattern of injury. Operative treatment included fixation of all malleolar fractures. Post-operative CT was used to assess reduction. The primary and secondary outcome measures were the Foot and Ankle Outcome Score (FAOS) and the range of movement of the ankle. There were no clinically relevant differences between the four possible SER IV fracture pattern groups with regard to the FAOS or range of movement. In this population of strictly defined SER IV ankle injuries, the presence of a malleolar fracture was not associated with a significantly worse clinical outcome than its ligamentous injury counterpart. Other factors inherent to the injury and treatment may play a more important role in predicting outcome.

  14. Fast Rotation and Trailing Fragments of the Active Asteroid P/2012 F5 (Gibbs)

    NASA Astrophysics Data System (ADS)

    Drahus, Michał; Waniak, Wacław; Tendulkar, Shriharsh; Agarwal, Jessica; Jewitt, David; Sheppard, Scott S.

    2015-03-01

    While having a comet-like appearance, P/2012 F5 (Gibbs) has an orbit native to the Main Asteroid Belt, and physically is a km-sized asteroid which recently (mid 2011) experienced an impulsive mass ejection event. Here we report new observations of this object obtained with the Keck II telescope on UT 2014 August 26. The data show previously undetected 200 m scale fragments of the main nucleus, and reveal a rapid nucleus spin with a rotation period of 3.24 ± 0.01 hr. The existence of large fragments and the fast nucleus spin are both consistent with rotational instability and partial disruption of the object. To date, many fast rotators have been identified among the minor bodies, which, however, do not eject detectable fragments at the present-day epoch, and also fragmentation events have been observed, but with no rotation period measured. P/2012 F5 is unique in that for the first time we detected fragments and quantified the rotation rate of one and the same object. The rapid spin rate of P/2012 F5 is very close to the spin rates of two other active asteroids in the Main Belt, 133P/Elst-Pizarro and (62412), confirming the existence of a population of fast rotators among these objects. But while P/2012 F5 shows impulsive ejection of dust and fragments, the mass loss from 133P is prolonged and recurrent. We believe that these two types of activity observed in the rapidly rotating active asteroids have a common origin in the rotational instability of the nucleus. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  15. FAST ROTATION AND TRAILING FRAGMENTS OF THE ACTIVE ASTEROID P/2012 F5 (GIBBS)

    SciTech Connect

    Drahus, Michał; Waniak, Wacław; Tendulkar, Shriharsh; Agarwal, Jessica; Jewitt, David; Sheppard, Scott S.

    2015-03-20

    While having a comet-like appearance, P/2012 F5 (Gibbs) has an orbit native to the Main Asteroid Belt, and physically is a km-sized asteroid which recently (mid 2011) experienced an impulsive mass ejection event. Here we report new observations of this object obtained with the Keck II telescope on UT 2014 August 26. The data show previously undetected 200 m scale fragments of the main nucleus, and reveal a rapid nucleus spin with a rotation period of 3.24 ± 0.01 hr. The existence of large fragments and the fast nucleus spin are both consistent with rotational instability and partial disruption of the object. To date, many fast rotators have been identified among the minor bodies, which, however, do not eject detectable fragments at the present-day epoch, and also fragmentation events have been observed, but with no rotation period measured. P/2012 F5 is unique in that for the first time we detected fragments and quantified the rotation rate of one and the same object. The rapid spin rate of P/2012 F5 is very close to the spin rates of two other active asteroids in the Main Belt, 133P/Elst-Pizarro and (62412), confirming the existence of a population of fast rotators among these objects. But while P/2012 F5 shows impulsive ejection of dust and fragments, the mass loss from 133P is prolonged and recurrent. We believe that these two types of activity observed in the rapidly rotating active asteroids have a common origin in the rotational instability of the nucleus.

  16. Activity of an enzyme immobilized on superparamagnetic particles in a rotational magnetic field

    SciTech Connect

    Mizuki, Toru; Watanabe, Noriyuki; Nagaoka, Yutaka; Fukushima, Tadamasa; Morimoto, Hisao; Usami, Ron; Maekawa, Toru

    2010-03-19

    We immobilize {alpha}-amylase extracted from Bacillus Iicheniformis on the surfaces of superparamagnetic particles and investigate the effect of a rotational magnetic field on the enzyme's activity. We find that the activity of the enzyme molecules immobilized on superparamagnetic particles increases in the rotational magnetic field and reaches maximum at a certain frequency. We clarify the effect of the cluster structures formed by the superparamagnetic particles on the activity. Enzyme reactions are enhanced even in a tiny volume of solution using the present method, which is very important for the development of efficient micro reactors and micro total analysis systems ({mu}-TAS).

  17. Crop rotation of flooded rice with upland maize impacts the resident and active methanogenic microbial community.

    PubMed

    Breidenbach, Björn; Blaser, Martin B; Klose, Melanie; Conrad, Ralf

    2016-09-01

    Crop rotation of flooded rice with upland crops is a common management scheme allowing the reduction of water consumption along with the reduction of methane emission. The introduction of an upland crop into the paddy rice ecosystem leads to dramatic changes in field conditions (oxygen availability, redox conditions). However, the impact of this practice on the archaeal and bacterial communities has scarcely been studied. Here, we provide a comprehensive study focusing on the crop rotation between flooded rice in the wet season and upland maize (RM) in the dry season in comparison with flooded rice (RR) in both seasons. The composition of the resident and active microbial communities was assessed by 454 pyrosequencing targeting the archaeal and bacterial 16S rRNA gene and 16S rRNA. The archaeal community composition changed dramatically in the rotational fields indicated by a decrease of anaerobic methanogenic lineages and an increase of aerobic Thaumarchaeota. Members of Methanomicrobiales, Methanosarcinaceae, Methanosaetaceae and Methanocellaceae were equally suppressed in the rotational fields indicating influence on both acetoclastic and hydrogenotrophic methanogens. On the contrary, members of soil crenarchaeotic group, mainly Candidatus Nitrososphaera, were higher in the rotational fields, possibly indicating increasing importance of ammonia oxidation during drainage. In contrast, minor effects on the bacterial community were observed. Acidobacteria and Anaeromyxobacter spp. were enriched in the rotational fields, whereas members of anaerobic Chloroflexi and sulfate-reducing members of Deltaproteobacteria were found in higher abundance in the rice fields. Combining quantitative polymerase chain reaction and pyrosequencing data revealed increased ribosomal numbers per cell for methanogenic species during crop rotation. This stress response, however, did not allow the methanogenic community to recover in the rotational fields during re-flooding and rice

  18. Fast-Moving Bacteria Self-Organize into Active Two-Dimensional Crystals of Rotating Cells

    NASA Astrophysics Data System (ADS)

    Petroff, Alexander P.; Wu, Xiao-Lun; Libchaber, Albert

    2015-04-01

    We investigate a new form of collective dynamics displayed by Thiovulum majus, one of the fastest-swimming bacteria known. Cells spontaneously organize on a surface into a visually striking two-dimensional hexagonal lattice of rotating cells. As each constituent cell rotates its flagella, it creates a tornadolike flow that pulls neighboring cells towards and around it. As cells rotate against their neighbors, they exert forces on one another, causing the crystal to rotate and cells to reorganize. We show how these dynamics arise from hydrodynamic and steric interactions between cells. We derive the equations of motion for a crystal, show that this model explains several aspects of the observed dynamics, and discuss the stability of these active crystals.

  19. Enhancing Potato System Sustainability: Crop Rotation Impacts on Soil Phosphatase Activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato is a species with a low efficiency of acquiring soil P. Rotation crops may potentially influence P uptake by potato by increasing soil organic acids, phosphatase activity, and microbial biomass. However, this kind of information is very limited. We measured the activities of acid phosphatase,...

  20. Spatial Rotation and Recognizing Emotions: Gender Related Differences in Brain Activity

    ERIC Educational Resources Information Center

    Jausovec, Norbert; Jausovec, Ksenija

    2008-01-01

    In three experiments, gender and ability (performance and emotional intelligence) related differences in brain activity--assessed with EEG methodology--while respondents were solving a spatial rotation tasks and identifying emotions in faces were investigated. The most robust gender related difference in brain activity was observed in the lower-2…

  1. Rotation in a reversed field pinch with active feedback stabilization of resistive wall modes

    NASA Astrophysics Data System (ADS)

    Cecconello, M.; Menmuir, S.; Brunsell, P. R.; Kuldkepp, M.

    2006-09-01

    Active feedback stabilization of multiple resistive wall modes (RWMs) has been successfully proven in the EXTRAP T2R reversed field pinch. One of the features of plasma discharges operated with active feedback stabilization, in addition to the prolongation of the plasma discharge, is the sustainment of the plasma rotation. Sustained rotation is observed both for the internally resonant tearing modes (TMs) and the intrinsic impurity oxygen ions. Good quantitative agreement between the toroidal rotation velocities of both is found: the toroidal rotation is characterized by an acceleration phase followed, after one wall time, by a deceleration phase that is slower than in standard discharges. The TMs and the impurity ions rotate in the same poloidal direction with also similar velocities. Poloidal and toroidal velocities have comparable amplitudes and a simple model of their radial profile reproduces the main features of the helical angular phase velocity. RWMs feedback does not qualitatively change the TMs behaviour and typical phenomena such as the dynamo and the 'slinky' are still observed. The improved sustainment of the plasma and TMs rotation occurs also when feedback only acts on internally non-resonant RWMs. This may be due to an indirect positive effect, through non-linear coupling between TMs and RWMs, of feedback on the TMs or to a reduced plasma-wall interaction affecting the plasma flow rotation. Electromagnetic torque calculations show that with active feedback stabilization the TMs amplitude remains well below the locking threshold condition for a thick shell. Finally, it is suggested that active feedback stabilization of RWMs and current profile control techniques can be employed simultaneously thus improving both the plasma duration and its confinement properties.

  2. Periodicity Signatures of Lightcurves of Active Comets in Non-Principal-Axis Rotational States

    NASA Astrophysics Data System (ADS)

    Samarasinha, Nalin H.; Mueller, Beatrice E. A.; Barrera, Jose G.

    2016-10-01

    There are two comets (1P/Halley, 103P/Hartley 2) that are unambiguously in non-principal-axis (NPA) rotational states in addition to a few more comets that are candidates for NPA rotation. Considering this fact, and the ambiguities associated with how to accurately interpret the periodicity signatures seen in lightcurves of active comets, we have started an investigation to identify and characterize the periodicity signatures present in simulated lightcurves of active comets. We carried out aperture photometry of simulated cometary comae to generate model lightcurves and analyzed them with Fourier techniques to identify their periodicity signatures. These signatures were then compared with the input component periods of the respective NPA rotational states facilitating the identification of how these periodicity signatures are related to different component periods of the NPA rotation. Ultimately, we also expect this study to shed light on why only a small fraction of periodic comets is in NPA rotational states, whereas theory indicates a large fraction of them should be in NPA states (e.g., Jewitt 1999, EMP, 79, 35). We explore the parameter space with respect to different rotational states, different orientations for the total rotational angular momentum vector, and different locations on the nucleus for the source region(s). As for special cases, we also investigate potential NPA rotational states representative of comet 103P/Hartley2, the cometary target of the EPOXI mission. The initial results from our investigation will be presented at the meeting. The NASA DDAP Program supports this work through grant NNX15AL66G.

  3. Manifestation of solar and geodynamic activity in the dynamics of the Earth's rotation

    NASA Astrophysics Data System (ADS)

    Gorshkov, V. L.; Miller, N. O.; Vorotkov, M. V.

    2012-12-01

    The relationships between different manifestations of solar and geomagnetic activity and the structural peculiarities of the dynamics of the pole wobble and irregularities in the Earth's rotation are studied using singular spectrum analysis. There are two close major peaks and several lower ones in the same frequency range (1.1-1.3 years) in the Chandler wobble (CW) spectrum. Components in the geomagnetic activity were distinguished in the same frequency band (by the Dst and Ap indices). Six- to seven-year oscillations in the Earth's rotation rate with a complex dynamics of amplitude variations are shown in variations in geomagnetic activity. It is revealed that secular (decade) variations in the Earth's rotation rate on average repeat global variations in the secular trend of the Earth's geomagnetic field with a delay of eight years during the whole observation period.

  4. External kink modes as a model for MHD activity associated with ELMs

    SciTech Connect

    Manickam, J.

    1992-01-01

    Tokamak plasmas in the high confinement mode of operation are known to exhibit edge localized activity referred to as ELMs. A model is proposed for the underlying cause in terms of the external kink mode. The build up of the current density near the plasma edge is shown to decrease the shear in the safety-factor, q, profile and lead to destabilization of the kink mode. The role of the plasma geometry and equilibrium profiles is discussed.

  5. Analyzing Age-Rotation-Activity Relationships in Wide Binary Systems

    NASA Astrophysics Data System (ADS)

    Walton Clarke, Riley; Davenport, James R. A.

    2017-01-01

    We present an analysis of flare activity among equal mass wide binary pairs using a combination of value-added data sets from the NASA Kepler mission. Wide binary twins form from the same molecular cloud and are therefore coeval, making them ideal benchmarks for stellar evolution and formation studies. This implies that their magnetic activity should decay at the same rate, causing a similar decrease in flare activity over time. The first data set is the list of known wide binary candidates in the Kepler field, and contains pairs of stars that have similar proper motions. We then crossmatch these systems with data on relative flare luminosity for ~200,000 stars in the original Kepler field, provided by an automated flare-finding algorithm. This combined data set allows us to compare flare activity, mass, and pair separation between stars in binary pairs. We preliminarily find that the flare rates for these stars do not show strong correlation, indicating either a large intrinsic scatter in the flare rate as these stars age, or that the formation mechanism of wide binaries somehow affects their dynamo evolution. As a goal for future development of this work, we hope to compare flare rates with gyrochronology in these key systems.

  6. Gemini and Keck Observations of Slowly Rotating, Bilobate Active Asteroid (300163)

    NASA Astrophysics Data System (ADS)

    Waniak, Waclaw; Drahus, Michal

    2016-10-01

    One of the most puzzling questions regarding Active Asteroids is the mechanism of their activation. While some Active Asteroids show protracted and often recurrent mass loss, consistent with seasonal ice sublimation, some other eject dust impulsively as a result of a catastrophic disruption (e.g. Jewitt et al. 2015, Asteroids IV, 221). It has been suggested that ice can be excavated from the cold near-surface interior by an impact (Hsieh & Jewitt 2006, Science 312, 561) or, for small objects susceptible to YORP torques, by near-critical spin rate (Sheppard & Trujillo 2014, AJ 149, 44). But impact and rapid spin can also cause a catastrophic disruption (e.g. Jewitt et al. 2015, Asteroids IV, 221). It therefore becomes apparent that the different types of mass loss observed in Active Asteroids can be best classified and understood based on the nucleus spin rates (Drahus et al. 2015, ApJL 802, L8), but unfortunately the rotation periods have been measured for a very limited number of these objects. With this in mind we have initiated a survey of light curves of small Active Asteroids on the largest ground-based optical telescopes. Here we present the results for (300163), also known as 288P and 2006 VW139, which is a small 2.6-km sized asteroid that exhibited a comet-like activity over 100 days in the second half of 2011 (Hsieh et al. 2012, ApJL 748, L15; Licandro et al. 2013, A&A 550, A17; Agarwal et al. 2016, AJ 151, 12). Using Keck/DEIMOS and Gemini/GMOS-S working in tandem on UT 2015 May 21-22 we have detected an inactive nucleus and measured a complete, dense, high-S/N rotational light curve. The light curve has a double-peaked period of 16 hours, an amplitude of 0.4 mag, and moderately narrow minima suggesting a bilobate or contact-binary shape. The long rotation period clearly demonstrates a non-rotational origin of activity of this object, consistent with an impact. Furthermore, among the five small Active Asteroids with known rotation periods (300163) is only

  7. Reliability of forced internal rotation and active internal rotation to assess lateral instability of the biceps pulley

    PubMed Central

    ARRIGONI, PAOLO; ROSE, GIACOMO DELLE; D’AMBROSI, RICCARDO; ROTUNDO, GIORGIO; CAMPAGNA, VINCENZO; PIRANI, PIERGIORGIO; PANASCÌ, MANLIO; PETRICCIOLI, DARIO; BERTONE, CELESTE; GRASSO, ANDREA; LATTE, CARMINE; COSTA, ALBERTO; VIOLA, GINO; DE GIORGI, SILVANA; PANELLA, ANTONELLO; PADUA, ROBERTO; BECCARINI, ALESSANDRO; SALCHER, BARBARA; OLIVIERI, MATTEO; MUGNAINI, MARCO; PANNONE, ANTONELLO; CEOLDO, CHIARA; LONGO, UMILE GIUSEPPE; DENARO, VINCENZO; CERCIELLO, SIMONE; PANNI, ALFREDO SCHIAVONE; AVANZI, PAOLO; ZORZI, CLAUDIO; RAGONE, VINCENZA; CASTAGNA, ALESSANDRO; RANDELLI, PIETRO

    2015-01-01

    Purpose the aim of this study was to investigate the relationship between positive painful forced internal rotation (FIR) and lateral pulley instability in the presence of a pre-diagnosed posterosuperior cuff tear. The same investigation was conducted for painful active internal rotation (AIR). Methods a multicenter prospective study was conducted in a series of patients scheduled to undergo arthroscopic posterosuperior cuff repair. Pain was assessed using a visual analog scale (VAS) and the Disabilities of the Arm, Shoulder and Hand questionnaire (DASH) was administered. The VAS score at rest, DASH score, and presence/absence of pain on FIR and AIR were recorded and their relationships with lesions of the lateral pulley, cuff tear patterns and shape of lesions were analyzed. Results the study population consisted of 115 patients (mean age: 55.1 years) recruited from 12 centers. The dominant arm was affected in 72 cases (62.6%). The average anteroposterior extension of the lesion was 1.61 cm. The mean preoperative VAS and DASH scores were 6.1 and 41.8, respectively. FIR and AIR were positive in 94 (81.7%) and 85 (73.9%) cases, respectively. The lateral pulley was compromised in 50 cases (43.4%). Cuff tears were partial articular in 35 patients (30.4%), complete in 61 (53%), and partial bursal in 19 (16.5%). No statistical correlation between positive FIR or AIR and lateral pulley lesions was detected. Positive FIR and AIR were statistically associated with complete lesions. Negative FIR was associated with the presence of partial articular tears. Conclusions painful FIR in the presence of a postero-superior cuff tear does not indicate lateral pulley instability. When a cuff tear is suspected, positive FIR and AIR are suggestive of full-thickness tear patterns while a negative FIR suggests a partial articular lesion. Level of evidence: level I, validating cohort study with good reference standards. PMID:26151035

  8. Piezoelectric pushers for active vibration control of rotating machinery

    NASA Technical Reports Server (NTRS)

    Palazzolo, A. B.; Kascak, A. F.; Lin, R. R.; Montague, J.; Alexander, R. M.

    1989-01-01

    The active control of rotordynamic vibrations and stability by magnetic bearings and electromagnetic shakers was discussed extensively in the literature. These devices, though effective, are usually large in volume and add significant weight to the stator. The use of piezoelectric pushers may provide similar degrees of effectiveness in light, compact packages. Analyses are contained which extend quadratic regulator, pole placement and derivative feedback control methods to the prescribed displacement character of piezoelectric pushers. The structural stiffness of the pusher is also included in the theory. Tests are currently being conducted at NASA Lewis Research Center with piezoelectric pusher-based active vibration control. Results performed on the NASA test rig as preliminary verification of the related theory are presented.

  9. Interactive modeling activities in the classroom—rotational motion and smartphone gyroscopes

    NASA Astrophysics Data System (ADS)

    Pörn, Ray; Braskén, Mats

    2016-11-01

    The wide-spread availability of smartphones makes them a valuable addition to the measurement equipment in both the physics classroom and the instructional laboratory, encouraging an active interaction between measurements and modeling activities. In this paper we illustrate this interaction by making use of the internal gyroscope of a smartphone to study and measure the rotational dynamics of objects rotating about a fixed axis. The workflow described in this paper has been tested in a classroom setting and found to encourage an exploratory approach to both data collecting and modeling.

  10. Dynamical quorum sensing and clustering dynamics in a population of spatially distributed active rotators

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Hidetsugu; Maeyama, Satomi

    2013-02-01

    A model of clustering dynamics is proposed for a population of spatially distributed active rotators. A transition from excitable to oscillatory dynamics is induced by the increase of the local density of active rotators. It is interpreted as dynamical quorum sensing. In the oscillation regime, phase waves propagate without decay, which generates an effectively long-range interaction in the clustering dynamics. The clustering process becomes facilitated and only one dominant cluster appears rapidly as a result of the dynamical quorum sensing. An exact localized solution is found to a simplified model equation, and the competitive dynamics between two localized states is studied numerically.

  11. Spectral characterization and differential rotation study of active CoRoT stars

    NASA Astrophysics Data System (ADS)

    Nagel, E.; Czesla, S.; Schmitt, J. H. M. M.

    2016-05-01

    The CoRoT space telescope observed nearly 160 000 light curves. Among the most outstanding is that of the young, active planet host star CoRoT-2A. In addition to deep planetary transits, the light curve of CoRoT-2A shows strong rotational variability and a superimposed beating pattern. To study the stars that produce such an intriguing pattern of photometric variability, we identified a sample of eight stars with rotation periods between 0.8 and 11 days and photometric variability amplitudes of up to 7.5%, showing a similar CoRoT light curve. We also obtained high-resolution follow-up spectroscopy with TNG/SARG and carried out a spectral analysis with SME and MOOG. We find that the color dependence of the light curves is consistent with rotational modulation due to starspots and that latitudinal differential rotation provides a viable explanation for the light curves, although starspot evolution is also expected to play an important role. Our MOOG and SME spectral analyses provide consistent results, showing that the targets are dwarf stars with spectral types between F and mid-K. Detectable Li i absorption in four of the targets confirms a low age of 100-400 Myr also deduced from gyrochronology. Our study indicates that the photometric beating phenomenon is likely attributable to differential rotation in fast-rotating stars with outer convection zones.

  12. Controlled Activation of Protein Rotational Dynamics Using Smart Hydrogel Tethering

    SciTech Connect

    Beech, Brenda M.; Xiong, Yijia; Boschek, Curt B.; Baird, Cheryl L.; Bigelow, Diana J.; Mcateer, Kathleen; Squier, Thomas C.

    2014-09-05

    Stimulus-responsive hydrogel materials that stabilize and control protein dynamics have the potential to enable a range of applications to take advantage of the inherent specificity and catalytic efficiencies of proteins. Here we describe the modular construction of a hydrogel using an engineered calmodulin (CaM) within a polyethylene glycol (PEG) matrix that involves the reversible tethering of proteins through an engineered CaM-binding sequence. For these measurements, maltose binding protein (MBP) was isotopically labeled with [13C] and [15N], permitting dynamic structural measurements using TROSY-HSQC NMR spectroscopy. Upon initial formation of hydrogels protein dynamics are suppressed, with concomitant increases in protein stability. Relaxation of the hydrogel matrix following transient heating results in the activation of protein dynamics and restoration of substrate-induced large-amplitude domain motions necessary for substrate binding.

  13. Assessment of the Antimicrobial Activity of Algae Extracts on Bacteria Responsible of External Otitis.

    PubMed

    Pane, Gianluca; Cacciola, Gabriele; Giacco, Elisabetta; Mariottini, Gian Luigi; Coppo, Erika

    2015-10-20

    External otitis is a diffuse inflammation around the external auditory canal and auricle, which is often occurred by microbial infection. This disease is generally treated using antibiotics, but the frequent occurrence of antibiotic resistance requires the development of new antibiotic agents. In this context, unexplored bioactive natural candidates could be a chance for the production of targeted drugs provided with antimicrobial activity. In this paper, microbial pathogens were isolated from patients with external otitis using ear swabs for over one year, and the antimicrobial activity of the two methanol extracts from selected marine (Dunaliella salina) and freshwater (Pseudokirchneriella subcapitata) microalgae was tested on the isolated pathogens. Totally, 114 bacterial and 11 fungal strains were isolated, of which Staphylococcus spp. (28.8%) and Pseudomonas aeruginosa (P. aeruginosa) (24.8%) were the major pathogens. Only three Staphylococcus aureus (S. aureus) strains and 11 coagulase-negative Staphylococci showed resistance to methicillin. The two algal extracts showed interesting antimicrobial properties, which mostly inhibited the growth of isolated S. aureus, P. aeruginosa, Escherichia coli, and Klebsiella spp. with MICs range of 1.4 × 10⁸ to 2.2 × 10(10) cells/mL. These results suggest that the two algae have potential as resources for the development of antimicrobial agents.

  14. Assessment of the Antimicrobial Activity of Algae Extracts on Bacteria Responsible of External Otitis

    PubMed Central

    Pane, Gianluca; Cacciola, Gabriele; Giacco, Elisabetta; Mariottini, Gian Luigi; Coppo, Erika

    2015-01-01

    External otitis is a diffuse inflammation around the external auditory canal and auricle, which is often occurred by microbial infection. This disease is generally treated using antibiotics, but the frequent occurrence of antibiotic resistance requires the development of new antibiotic agents. In this context, unexplored bioactive natural candidates could be a chance for the production of targeted drugs provided with antimicrobial activity. In this paper, microbial pathogens were isolated from patients with external otitis using ear swabs for over one year, and the antimicrobial activity of the two methanol extracts from selected marine (Dunaliella salina) and freshwater (Pseudokirchneriella subcapitata) microalgae was tested on the isolated pathogens. Totally, 114 bacterial and 11 fungal strains were isolated, of which Staphylococcus spp. (28.8%) and Pseudomonas aeruginosa (P. aeruginosa) (24.8%) were the major pathogens. Only three Staphylococcus aureus (S. aureus) strains and 11 coagulase-negative Staphylococci showed resistance to methicillin. The two algal extracts showed interesting antimicrobial properties, which mostly inhibited the growth of isolated S. aureus, P. aeruginosa, Escherichia coli, and Klebsiella spp. with MICs range of 1.4 × 109 to 2.2 × 1010 cells/mL. These results suggest that the two algae have potential as resources for the development of antimicrobial agents. PMID:26492256

  15. External coxa saltans (snapping hip) treated with active release techniques®: a case report

    PubMed Central

    Spina, Andreo A.

    2007-01-01

    Background The presence of painful coxa saltans (snapping hip) can be a debilitating injury for a competitive athlete, hindering both training, and performance. Considering the various potential etiologies, it often poses a diagnostic and management dilemma for health care practitioners and the success of treatment is often dependent on the practitioner’s precise understanding of the cause. Although it is suggested by various authors that conservative therapy should be attempted before considering surgical management, little is known in terms of the most effective modes of manual therapy that should be attempted. Case Presentation A case of chronic, external coxa saltans in a 16 year old competitive dancer treated with Active Release Techniques® is presented. The clinical presentation, differential diagnosis, management and rehabilitation of the case are discussed. Conclusion Active Release Techniques®, or ART, is a soft tissue treatment method that focuses on relieving tissue tension via the removal of fibrosis/adhesion that develops in tissue that is overloaded with repetitive use. In this case of external coxa saltans, the underlying cause of the condition was increased tissue tension leading to increased friction of the proximal Iliotibial band (ITB) complex over the greater trochanter. Utilizing ART resulted in a complete resolution of this athlete’s symptoms and may be a good treatment option for external coax saltans. PMID:17657288

  16. Active control of counter-rotating open rotor interior noise in a Dornier 728 experimental aircraft

    NASA Astrophysics Data System (ADS)

    Haase, Thomas; Unruh, Oliver; Algermissen, Stephan; Pohl, Martin

    2016-08-01

    The fuel consumption of future civil aircraft needs to be reduced because of the CO2 restrictions declared by the European Union. A consequent lightweight design and a new engine concept called counter-rotating open rotor are seen as key technologies in the attempt to reach this ambitious goals. Bearing in mind that counter-rotating open rotor engines emit very high sound pressures at low frequencies and that lightweight structures have a poor transmission loss in the lower frequency range, these key technologies raise new questions in regard to acoustic passenger comfort. One of the promising solutions for the reduction of sound pressure levels inside the aircraft cabin are active sound and vibration systems. So far, active concepts have rarely been investigated for a counter-rotating open rotor pressure excitation on complex airframe structures. Hence, the state of the art is augmented by the preliminary study presented in this paper. The study shows how an active vibration control system can influence the sound transmission of counter-rotating open rotor noise through a complex airframe structure into the cabin. Furthermore, open questions on the way towards the realisation of an active control system are addressed. In this phase, an active feedforward control system is investigated in a fully equipped Dornier 728 experimental prototype aircraft. In particular, the sound transmission through the airframe, the coupling of classical actuators (inertial and piezoelectric patch actuators) into the structure and the performance of the active vibration control system with different error sensors are investigated. It can be shown that the active control system achieves a reduction up to 5 dB at several counter-rotating open rotor frequencies but also that a better performance could be achieved through further optimisations.

  17. Model for growth hormone receptor activation based on subunit rotation within a receptor dimer

    SciTech Connect

    Brown, Richard J.; Adams, Julian J.; Pelekanos, Rebecca A.; Wan, Yu; McKinstry, William J.; Palethorpe, Kathryn; Seeber, Ruth M.; Monks, Thea A.; Eidne, Karin A.; Parker, Michael W.; Waters, Michael J.

    2010-07-13

    Growth hormone is believed to activate the growth hormone receptor (GHR) by dimerizing two identical receptor subunits, leading to activation of JAK2 kinase associated with the cytoplasmic domain. However, we have reported previously that dimerization alone is insufficient to activate full-length GHR. By comparing the crystal structure of the liganded and unliganded human GHR extracellular domain, we show here that there is no substantial change in its conformation on ligand binding. However, the receptor can be activated by rotation without ligand by inserting a defined number of alanine residues within the transmembrane domain. Fluorescence resonance energy transfer (FRET), bioluminescence resonance energy transfer (BRET) and coimmunoprecipitation studies suggest that receptor subunits undergo specific transmembrane interactions independent of hormone binding. We propose an activation mechanism involving a relative rotation of subunits within a dimeric receptor as a result of asymmetric placement of the receptor-binding sites on the ligand.

  18. Variation in human cancer cell external phosphatidylserine is regulated by flippase activity and intracellular calcium.

    PubMed

    Vallabhapurapu, Subrahmanya D; Blanco, Víctor M; Sulaiman, Mahaboob K; Vallabhapurapu, Swarajya Lakshmi; Chu, Zhengtao; Franco, Robert S; Qi, Xiaoyang

    2015-10-27

    Viable cancer cells expose elevated levels of phosphatidylserine (PS) on the exoplasmic face of the plasma membrane. However, the mechanisms leading to elevated PS exposure in viable cancer cells have not been defined. We previously showed that externalized PS may be used to monitor, target and kill tumor cells. In addition, PS on tumor cells is recognized by macrophages and has implications in antitumor immunity. Therefore, it is important to understand the molecular details of PS exposure on cancer cells in order to improve therapeutic targeting. Here we explored the mechanisms regulating the surface PS exposure in human cancer cells and found that differential flippase activity and intracellular calcium are the major regulators of surface PS exposure in viable human cancer cells. In general, cancer cell lines with high surface PS exhibited low flippase activity and high intracellular calcium, whereas cancer cells with low surface PS exhibited high flippase activity and low intracellular calcium. High surface PS cancer cells also had higher total cellular PS than low surface PS cells. Together, our results indicate that the amount of external PS in cancer cells is regulated by calcium dependent flippase activity and may also be influenced by total cellular PS.

  19. 21 CFR 310.527 - Drug products containing active ingredients offered over-the-counter (OTC) for external use as...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... offered over-the-counter (OTC) for external use as hair growers or for hair loss prevention. 310.527... products containing active ingredients offered over-the-counter (OTC) for external use as hair growers or for hair loss prevention. (a) Amino acids, aminobenzoic acid, ascorbic acid, benzoic acid, biotin...

  20. 21 CFR 310.527 - Drug products containing active ingredients offered over-the-counter (OTC) for external use as...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... offered over-the-counter (OTC) for external use as hair growers or for hair loss prevention. 310.527... products containing active ingredients offered over-the-counter (OTC) for external use as hair growers or for hair loss prevention. (a) Amino acids, aminobenzoic acid, ascorbic acid, benzoic acid, biotin...

  1. Active site coupling in Plasmodium falciparum GMP synthetase is triggered by domain rotation

    PubMed Central

    Ballut, Lionel; Violot, Sébastien; Shivakumaraswamy, Santosh; Thota, Lakshmi Prasoona; Sathya, Manu; Kunala, Jyothirmai; Dijkstra, Bauke W.; Terreux, Raphaël; Haser, Richard; Balaram, Hemalatha; Aghajari, Nushin

    2015-01-01

    GMP synthetase (GMPS), a key enzyme in the purine biosynthetic pathway performs catalysis through a coordinated process across two catalytic pockets for which the mechanism remains unclear. Crystal structures of Plasmodium falciparum GMPS in conjunction with mutational and enzyme kinetic studies reported here provide evidence that an 85° rotation of the GATase domain is required for ammonia channelling and thus for the catalytic activity of this two-domain enzyme. We suggest that conformational changes in helix 371–375 holding catalytic residues and in loop 376–401 along the rotation trajectory trigger the different steps of catalysis, and establish the central role of Glu374 in allostery and inter-domain crosstalk. These studies reveal the mechanism of domain rotation and inter-domain communication, providing a molecular framework for the function of all single polypeptide GMPSs and form a solid basis for rational drug design targeting this therapeutically important enzyme. PMID:26592566

  2. Differential rotation as a model for starspots in magnetically active stars

    NASA Astrophysics Data System (ADS)

    Agostino, Christopher James; Basri, Gibor S.

    2017-01-01

    The Kepler mission has provided an opportunity to significantly expand our understanding of starspots. We have implemented a MCMC method to determine spot parameters of input light curves using a differential rotation spot model. We generated model light curves and explored parameter space in order to test the reliability of our method in retrieving input parameters and to investigate what constraints on spot parameters can be determined from photometric data. We also applied our method to light curves of magnetically active Kepler stars, using only a few spots. One interesting initial conclusion is that it is often possible to replicate complicated light curves over many rotation periods without the need for any spot evolution on stars with rotation periods less than 20 days. We have also begun investigating to what extent spot evolution is preferred as the alternative model for stellar variability. Of course, it is very likely that real stars exhibit both phenomena.

  3. Examination into the maximum rotational frequency for an in-plane switched active waveplate device

    NASA Astrophysics Data System (ADS)

    Davidson, A. J.; Elston, S. J.; Raynes, E. P.

    2005-05-01

    An examination of an active waveplate device using a one-dimensional model, giving numerical and analytical results, is presented. The model calculates the director and twist configuration by minimizing the free energy of the system with simple homeotropic boundary conditions. The effect of varying the in-plane electric field in both magnitude and direction is examined, and it is shown that the twist through the cell is constant in time as the field is rotated. As the electric field is rotated, the director field lags behind by an angle which increases as the frequency of the electric field rotation increases. When this angle reaches approximately π/4 the director field no longer follows the electric field in a uniform way. Using mathematical analysis it is shown that the conditions on which the director profile will fail to follow the rotating electric field depend on the frequency of electric field rotation, the magnitude of the electric field, the dielectric anisotropy and the viscosity of the liquid crystal.

  4. Relationships between spatial activities and scores on the mental rotation test as a function of sex.

    PubMed

    Ginn, Sheryl R; Pickens, Stefanie J

    2005-06-01

    Previous results suggested that female college students' scores on the Mental Rotations Test might be related to their prior experience with spatial tasks. For example, women who played video games scored better on the test than their non-game-playing peers, whereas playing video games was not related to men's scores. The present study examined whether participation in different types of spatial activities would be related to women's performance on the Mental Rotations Test. 31 men and 59 women enrolled at a small, private church-affiliated university and majoring in art or music as well as students who participated in intercollegiate athletics completed the Mental Rotations Test. Women's scores on the Mental Rotations Test benefitted from experience with spatial activities; the more types of experience the women had, the better their scores. Thus women who were athletes, musicians, or artists scored better than those women who had no experience with these activities. The opposite results were found for the men. Efforts are currently underway to assess how length of experience and which types of experience are related to scores.

  5. Advanced fault management for the Space Station External Active Thermal Control System

    NASA Astrophysics Data System (ADS)

    Morris, William S.; Hill, Timothy; Robertson, Charles

    1992-07-01

    The Thermal Control System Automation Project is developing three related software systems. The first is a high-fidelity simulator of the Space Station Freedom (SSF) External Active Thermal Control System (EATCS), which provides heating, cooling, and control necessary to maintain elements, systems, and components within their required temperature range. The second is an SSF run-time object data base. The third is a knowledge-based system (KBS) to monitor, control, and perform fault detection, isolation, and recovery on the SSF EATCS. The paper describes the EATCS hardware, the KBS design, the model-based sensor validation, the rule-based diagnosis, human interface issues, and future plans for the KBS.

  6. Minimalist coupled evolution model for stellar X-ray activity, rotation, mass loss, and magnetic field

    NASA Astrophysics Data System (ADS)

    Blackman, Eric G.; Owen, James E.

    2016-05-01

    Late-type main-sequence stars exhibit an X-ray to bolometric flux ratio that depends on {tilde{R}o}, the ratio of rotation period to convective turnover time, as {tilde{R}o}^{-ζ } with 2 ≤ ζ ≤ 3 for {tilde{R}o} > 0.13, but saturates with |ζ| < 0.2 for {tilde{R}o} < 0.13. Saturated stars are younger than unsaturated stars and show a broader spread of rotation rates and X-ray activity. The unsaturated stars have magnetic fields and rotation speeds that scale roughly with the square root of their age, though possibly flattening for stars older than the Sun. The connection between faster rotators, stronger fields, and higher activity has been established observationally, but a theory for the unified time-evolution of X-ray luminosity, rotation, magnetic field and mass loss that captures the above trends has been lacking. Here we derive a minimalist holistic framework for the time evolution of these quantities built from combining a Parker wind with new ingredients: (1) explicit sourcing of both the thermal energy launching the wind and the X-ray luminosity via dynamo produced magnetic fields; (2) explicit coupling of X-ray activity and mass-loss saturation to dynamo saturation (via magnetic helicity build-up and convection eddy shredding); (3) use of coronal equilibrium to determine how magnetic energy is divided into wind and X-ray contributions. For solar-type stars younger than the Sun, we infer conduction to be a subdominant power loss compared to X-rays and wind. For older stars, conduction is more important, possibly quenching the wind and reducing angular momentum loss. We focus on the time evolution for stars younger than the Sun, highlighting what is possible for further generalizations. Overall, the approach shows promise towards a unified explanation of all of the aforementioned observational trends.

  7. Subunit rotation models activation of serotonin 5-HT3AB receptors by agonists

    NASA Astrophysics Data System (ADS)

    Maksay, Gábor; Simonyi, Miklós; Bikádi, Zsolt

    2004-10-01

    The N-terminal extracellular regions of heterooligomeric 3AB-type human 5-hydroxytryptamine receptors (5-HT 3ABR) were modelled based on the crystal structure of snail acetylcholine binding protein AChBP. Stepwise rotation of subunit A by 5° was performed between -10° and 15° to mimic agonist binding and receptor activation. Anticlockwise rotation reduced the size of the binding cavity in interface AB and reorganised the network of hydrogen bonds along the interface. AB subunit dimers with different rotations were applied for docking of ligands with different efficacies: 5-HT, m-chlorophenylbiguanide, SR 57227, quinolinyl piperazine and lerisetron derivatives. All ligands were docked into the dimer with -10° rotation representing ligand-free, open binding cavities similarly, without pharmacological discrimination. Their ammonium ions were in hydrogen bonding distance to the backbone carbonyl of W183. Anticlockwise rotation and contraction of the binding cavity led to distinctive docking interactions of agonists with E129 and cation-π interactions of their ammonium ions. Side chains of several further amino acids participating in docking (Y143, Y153, Y234 and E236) are in agreement with the effects of point mutations in the binding loops. Our model postulates that 5-HT binds to W183 in a hydrophobic cleft as well as to E236 in a hydrophilic vestibule. Then it elicits anticlockwise rotation to draw in loop C via π-cation-π interactions of␣its ammonium ion with W183 and Y234. Finally, closure of the binding cavity might end in rebinding of 5-HT to E129 in the hydrophilic vestibule.

  8. Dynamic Three-Dimensional Shoulder Mri during Active Motion for Investigation of Rotator Cuff Diseases

    PubMed Central

    Tempelaere, Christine; Pierrart, Jérome; Lefèvre-Colau, Marie-Martine; Vuillemin, Valérie; Cuénod, Charles-André; Hansen, Ulrich; Mir, Olivier; Skalli, Wafa; Gregory, Thomas

    2016-01-01

    Background MRI is the standard methodology in diagnosis of rotator cuff diseases. However, many patients continue to have pain despite treatment, and MRI of a static unloaded shoulder seems insufficient for best diagnosis and treatment. This study evaluated if Dynamic MRI provides novel kinematic data that can be used to improve the understanding, diagnosis and best treatment of rotator cuff diseases. Methods Dynamic MRI provided real-time 3D image series and was used to measure changes in the width of subacromial space, superior-inferior translation and anterior-posterior translation of the humeral head relative to the glenoid during active abduction. These measures were investigated for consistency with the rotator cuff diseases classifications from standard MRI. Results The study included: 4 shoulders with massive rotator cuff tears, 5 shoulders with an isolated full-thickness supraspinatus tear, 5 shoulders with tendinopathy and 6 normal shoulders. A change in the width of subacromial space greater than 4mm differentiated between rotator cuff diseases with tendon tears (massive cuff tears and supraspinatus tear) and without tears (tendinopathy) (p = 0.012). The range of the superior-inferior translation was higher in the massive cuff tears group (6.4mm) than in normals (3.4mm) (p = 0.02). The range of the anterior-posterior translation was higher in the massive cuff tears (9.2 mm) and supraspinatus tear (9.3 mm) shoulders compared to normals (3.5mm) and tendinopathy (4.8mm) shoulders (p = 0.05). Conclusion The Dynamic MRI enabled a novel measure; ‘Looseness’, i.e. the translation of the humeral head on the glenoid during an abduction cycle. Looseness was better able at differentiating different forms of rotator cuff disease than a simple static measure of relative glenohumeral position. PMID:27434235

  9. Sunspot Rotation as a Driver of Major Solar Eruptions in the NOAA Active Region 12158

    NASA Astrophysics Data System (ADS)

    Vemareddy, P.; Cheng, X.; Ravindra, B.

    2016-09-01

    We studied the development conditions of sigmoid structure under the influence of the magnetic non-potential characteristics of a rotating sunspot in the active region (AR) 12158. Vector magnetic field measurements from the Helioseismic Magnetic Imager and coronal EUV observations from the Atmospheric Imaging Assembly reveal that the erupting inverse-S sigmoid had roots at the location of the rotating sunspot. The sunspot rotates at a rate of 0°-5° h-1 with increasing trend in the first half followed by a decrease. The time evolution of many non-potential parameters had a good correspondence with the sunspot rotation. The evolution of the AR magnetic structure is approximated by a time series of force-free equilibria. The non-linear force-free field magnetic structure around the sunspot manifests the observed sigmoid structure. Field lines from the sunspot periphery constitute the body of the sigmoid and those from the interior overlie the sigmoid, similar to a flux rope structure. While the sunspot was rotating, two major coronal mass ejection eruptions occurred in the AR. During the first (second) event, the coronal current concentrations were enhanced (degraded), consistent with the photospheric net vertical current; however, magnetic energy was released during both cases. The analysis results suggest that the magnetic connections of the sigmoid are driven by the slow motion of sunspot rotation, which transforms to a highly twisted flux rope structure in a dynamical scenario. Exceeding the critical twist in the flux rope probably leads to the loss of equilibrium, thus triggering the onset of the two eruptions.

  10. Stability-based classification for ankle fracture management and the syndesmosis injury in ankle fractures due to a supination external rotation mechanism of injury.

    PubMed

    Pakarinen, Harri

    2012-12-01

    sensitivity and specificity of both clinical tests were calculated using the standard 7.5-Nm external rotation stress test as reference. Outcome was assessed after a minimum of one year of follow-up. Olerud-Molander (OM) scoring system, RAND 36-Item Health Survey, and VAS to measure pain and function were used as outcome measures in all studies. In study 1, 85 (53%) fractures were treated operatively using the stability based fracture classification. Non-operatively treated patients reported less pain and better OM (good or excellent 89% vs. 71%) and VAS functional scores compared to operatively treated patients although they experienced more displacement of the distal fibula (0 mm 30% vs. 69%; 0-2 mm 65% vs. 25%) after treatment. No non-operatively treated patients required operative fracture fixation during follow-up. In study 2, AITFL exploration and suture lead to equal functional outcome (OM mean, 77 vs. 73) to no exploration or fixation. In study 3, the hook test had a sensitivity of 0.25 and a specificity of 0.98. The external rotation stress test had a sensitivity of 0.58 and a specificity of 0.9. Both tests had excellent interobserver reliability; the agreement was 99% for the hook test and 98% for the stress test. There was no statistically significant difference in functional scores (OM mean, 79.6 vs. 83.6) or pain between syndesmosis transfixation and no fixation groups (Study 4). Our results suggest that a simple stability-based fracture classification is useful in choosing between non-operative and operative treatment of ankle fractures; approximately half of the ankle fractures can be treated non-operatively with success. Our observations also suggest that relevant syndesmosis injuries are rare in ankle fractures due to an SER mechanism of injury. According to our research, syndesmotic repair or fixation in SER ankle fracture has no influence on functional outcome or pain after minimum one year compared with no fixation.

  11. Muscle Activation Differs Between Partial And Full Back Squat Exercise With External Load Equated.

    PubMed

    Jarbas da Silva, Josinaldo; Schoenfeld, Brad Jon; Marchetti, Priscyla Nardi; Pecoraro, Silvio Luis; D'Andréa Greve, Julia Maria; Marchetti, Paulo Henrique

    2017-02-13

    Changes in range of motion affect the magnitude of the load during the squat exercise and, consequently may influence muscle activation. The purpose of this study was to evaluate muscle activation between the partial and full back squat exercise with external load equated on a relative basis between conditions. Fifteen young, healthy, resistance trained men (age: 26±5 years, height: 173±6 cm) performed a back squat at their 10 repetition maximum using two different ranges of motion (partial and full) in a randomized, counterbalanced fashion. Surface electromyography was used to measure muscle activation of the vastus lateralis (VL), vastus medialis (VM), rectus femoris (RF), biceps femoris (BF), semitendinosus (ST), erector spinae (ES), soleus (SL), and gluteus maximus (GM). In general, muscle activity was highest during the partial back squat for GM (P=0.004), BF (P=0.009), and SL (P=0.031) when compared to full. There was no significant difference for RPE between partial and full back squat exercise at 10RM (8±1 and 9±1, respectively). In conclusion, the range of motion in the back squat alters muscle activation of the prime mover (gluteus maximus), and stabilizers (soleus and biceps femoris) when performed with the load equated on a relative basis. Thus, the partial back squat maximizes the level of muscle activation of the gluteus maximus and associated stabilizer muscles.

  12. High dispersion spectroscopy of solar-type superflare stars. II. Stellar rotation, starspots, and chromospheric activities

    NASA Astrophysics Data System (ADS)

    Notsu, Yuta; Honda, Satoshi; Maehara, Hiroyuki; Notsu, Shota; Shibayama, Takuya; Nogami, Daisaku; Shibata, Kazunari

    2015-06-01

    We conducted high dispersion spectroscopic observations of 50 superflare stars with Subaru/HDS. These 50 stars were selected from the solar-type superflare stars that we had discovered from the Kepler data. More than half (34 stars) of these 50 target superflare stars show no evidence of binarity, and we estimated stellar parameters of these 34 stars in our previous study (Notsu et al. 2015, PASJ, 67, 32). According to our previous studies using Kepler data, superflare stars show quasi-periodic brightness variations whose amplitude (0.1%-10%) is much larger than that of the solar brightness variations (0.01%-0.1%) caused by the existence of sunspots on the rotating solar surface. In this study, we investigated whether these quasi-periodic brightness variations of superflare stars are explained by the rotation of a star with fairly large starspots, by using stellar parameters derived in Paper I. First, we confirmed that the value of the projected rotational velocity, v sin i, is consistent with the rotational velocity estimated from the period of the brightness variation. Next, we measured the intensity of Ca II infrared triplet lines and Hα line, good indicators of the stellar chromospheric activity, and compared them with other stellar properties. The intensity of Ca II infrared triplet lines indicates that the mean magnetic field strength () of the target superflare stars can be higher than that of the Sun. A correlation between the amplitude of the brightness variation and the intensity of Ca II triplet line was found. All the targets expected to have large starspots because of their large amplitude of the brightness variation show high chromospheric activities compared to the Sun. These results support the idea that the brightness variation of superflare stars is due to the rotation with large starspots.

  13. Temperature and Abundance Variations of an Active Region in Three Solar Rotations

    NASA Astrophysics Data System (ADS)

    Ko, Y.; Fludra, A.; Raymond, J. C.

    2002-12-01

    Active region 9718 (AR 9718) appeared at the east limb on November 26, 2001 which was newly formed when it was at the backside of the Sun. It survives through three solar rotations -- AR 9755 and AR 9798 for subsequent rotations. AR 9798 decayed to no visible sunspot before it reached the west limb. SOHO/UVCS observed this region four times, as part of SOHO JOP 151, when it was at the limbs (AR 9718 at the west limb, AR 9755 at both the east and west limbs, and AR 9798 at the west limb). SOHO/CDS made observations when AR 9718 and AR 9755 were at the west limb. We investigate the temperature and abundance variations of this active region during its lifetime, and look for possible correlations between these physical parameters and its magnetic characteristics.

  14. No tillage combined with crop rotation improves soil microbial community composition and metabolic activity.

    PubMed

    Sun, Bingjie; Jia, Shuxia; Zhang, Shixiu; McLaughlin, Neil B; Liang, Aizhen; Chen, Xuewen; Liu, Siyi; Zhang, Xiaoping

    2016-04-01

    Soil microbial community can vary with different agricultural managements, which in turn can affect soil quality. The objective of this work was to evaluate the effects of long-term tillage practice (no tillage (NT) and conventional tillage (CT)) and crop rotation (maize-soybean (MS) rotation and monoculture maize (MM)) on soil microbial community composition and metabolic capacity in different soil layers. Long-term NT increased the soil organic carbon (SOC) and total nitrogen (TN) mainly at the 0-5 cm depth which was accompanied with a greater microbial abundance. The greater fungi-to-bacteria (F/B) ratio was found in NTMS at the 0-5 cm depth. Both tillage and crop rotation had a significant effect on the metabolic activity, with the greatest average well color development (AWCD) value in NTMS soil at all three soil depths. Redundancy analysis (RDA) showed that the shift in microbial community composition was accompanied with the changes in capacity of utilizing different carbon substrates. Therefore, no tillage combined with crop rotation could improve soil biological quality and make agricultural systems more sustainable.

  15. External protons destabilize the activated voltage sensor in hERG channels.

    PubMed

    Shi, Yu Patrick; Cheng, Yen May; Van Slyke, Aaron C; Claydon, Tom W

    2014-03-01

    Extracellular acidosis shifts hERG channel activation to more depolarized potentials and accelerates channel deactivation; however, the mechanisms underlying these effects are unclear. External divalent cations, e.g., Ca(2+) and Cd(2+), mimic these effects and coordinate within a metal ion binding pocket composed of three acidic residues in hERG: D456 and D460 in S2 and D509 in S3. A common mechanism may underlie divalent cation and proton effects on hERG gating. Using two-electrode voltage clamp, we show proton sensitivity of hERG channel activation (pKa = 5.6), but not deactivation, was greatly reduced in the presence of Cd(2+) (0.1 mM), suggesting a common binding site for the Cd(2+) and proton effect on activation and separable effects of protons on activation and deactivation. Mutational analysis confirmed that D509 plays a critical role in the pH dependence of activation, as shown previously, and that cooperative actions involving D456 and D460 are also required. Importantly, neutralization of all three acidic residues abolished the proton-induced shift of activation, suggesting that the metal ion binding pocket alone accounts for the effects of protons on hERG channel activation. Voltage-clamp fluorimetry measurements demonstrated that protons shifted the voltage dependence of S4 movement to more depolarized potentials. The data indicate a site and mechanism of action for protons on hERG activation gating; protonation of D456, D460 and D509 disrupts interactions between these residues and S4 gating charges to destabilize the activated configuration of S4.

  16. Effects of cycle duration of an external electrostatic field on anammox biomass activity

    PubMed Central

    Yin, Xin; Qiao, Sen; Zhou, Jiti

    2016-01-01

    In this study, the effects of different cycle durations of an external electrostatic field on an anammox biomass were investigated. The total application time per day was 12 h at 2 V/cm for different cycle durations (i.e., continuous application-resting time) of 3 h-3 h, 6 h-6 h, and 12 h-12 h. Compared with the control reactor, the nitrogen removal rates (NRRs) increased by 18.7%, 27.4% and 8.50% using an external electrostatic field application with a continuous application time of 3 h, 6 h and 12 h. Moreover, after the reactor was running smoothly for approximately 215 days under the optimal electrostatic field condition (mode 2, continuous application-rest time: 6 h-6 h), the total nitrogen (TN) removal rate reached a peak value of approximately 6468 g-N/m3/d, which was 44.7% higher than the control. The increase in 16S rRNA gene copy numbers, heme c content and enzyme activities were demonstrated to be the main reasons for enhancement of the NRR of the anammox process. Additionally, transmission electron microscope observations proved that a morphological change in the anammox biomass occurred under an electrostatic field application. PMID:26794647

  17. Four-week exercise program does not change rotator cuff muscle activation and scapular kinematics in healthy subjects

    PubMed Central

    Lin, Yin-Liang; Karduna, Andrew

    2016-01-01

    Rotator cuff and scapular muscle strengthening exercises are an essential part of shoulder rehabilitation and sports training. Although the effect of exercise training on pain and function have been widely investigated, few studies have focused on the changes in shoulder kinematics and muscle activity after exercise training. Therefore, the purpose of the present study was to investigate the effect of rotator cuff and scapular strengthening exercises on shoulder kinematics and the activation of rotator cuff and scapular muscles in healthy subjects. Thirty-six healthy subjects were recruited and randomly assigned into either a training or control group. Subjects in the training group were trained with rotator cuff and scapular strengthening exercises for four weeks. Scapular kinematics and shoulder muscle activity during arm elevation were measured before and after exercise training. After the four-week training protocol, there was an increase in strength and a decrease in upper trapezius activation in the training group, which is consistent with previous studies. However, no difference was found in scapular kinematics and activation of rotator cuff muscles between the control and training groups after the training protocol. Although the exercise protocol resulted in strength gains for the rotator cuff, these gains did not transfer to an increase in muscle activation during motion. These results demonstrate the difficulty in changing activation patterns of the rotator cuff muscles. PMID:26996811

  18. Magnetic activity in the HARPS M dwarf sample. The rotation-activity relationship for very low-mass stars through

    NASA Astrophysics Data System (ADS)

    Astudillo-Defru, N.; Delfosse, X.; Bonfils, X.; Forveille, T.; Lovis, C.; Rameau, J.

    2017-03-01

    Context. Atmospheric magnetic fields in stars with convective envelopes heat stellar chromospheres, and thus increase the observed flux in the Ca ii H and K doublet. Starting with the historical Mount Wilson monitoring program, these two spectral lines have been widely used to trace stellar magnetic activity, and as a proxy for rotation period (Prot) and consequently for stellar age. Monitoring stellar activity has also become essential in filtering out false-positives due to magnetic activity in extra-solar planet surveys. The Ca ii emission is traditionally quantified through the -index, which compares the chromospheric flux in the doublet to the overall bolometric flux of the star. Much work has been done to characterize this index for FGK-dwarfs, but M dwarfs - the most numerous stars of the Galaxy - were left out of these analyses and no calibration of their Ca ii H and K emission to an exists to date. Aims: We set out to characterize the magnetic activity of the low- and very-low-mass stars by providing a calibration of the -index that extends to the realm of M dwarfs, and by evaluating the relationship between and the rotation period. Methods: We calibrated the bolometric and photospheric factors for M dwarfs to properly transform the S-index (which compares the flux in the Ca ii H and K lines to a close spectral continuum) into the . We monitored magnetic activity through the Ca ii H and K emission lines in the HARPS M dwarf sample. Results: The index, like the fractional X-ray luminosity LX/Lbol, shows a saturated correlation with rotation, with saturation setting in around a ten days rotation period. Above that period, slower rotators show weaker Ca ii activity, as expected. Under that period, the index saturates to approximately 10-4. Stellar mass modulates the Ca ii activity, with showing a constant basal activity above 0.6 M⊙ and then decreasing with mass between 0.6 M⊙ and the fully-convective limit of 0.35 M⊙. Short-term variability of the

  19. Gamma-Ray Spectrometers Using Superconducting Transition Edge Sensors with External Active Feedback Bias

    SciTech Connect

    Chow, D.T.; van den Berg, M.L.; Loshak, A.; Frank, M.; Barbee, T.W.; Labov, S.E.

    2000-09-22

    The authors are developing x-ray and gamma-ray spectrometers with high absorption efficiency and high energy-resolution for x-ray and gamma-ray spectroscopy. They are microcalorimeters consisting of a bulk Sn absorber coupled to a Mo/Cu multilayer superconducting transition edge sensor (TES). The authors have measured an energy resolution of 70 eV FWHM for 60 keV incident gamma-rays using electrothermal feedback. They have also operated these microcalorimeters with an external active feedback bias to linearize the detector response, improve the count rate performance, and extend the detection energy range. They present x-ray and gamma-ray results operation of this detector design in both bias modes.

  20. Active mode locking of quantum cascade lasers in an external ring cavity

    PubMed Central

    Revin, D. G.; Hemingway, M.; Wang, Y.; Cockburn, J. W.; Belyanin, A.

    2016-01-01

    Stable ultrashort light pulses and frequency combs generated by mode-locked lasers have many important applications including high-resolution spectroscopy, fast chemical detection and identification, studies of ultrafast processes, and laser metrology. While compact mode-locked lasers emitting in the visible and near infrared range have revolutionized photonic technologies, the systems operating in the mid-infrared range where most gases have their strong absorption lines, are bulky and expensive and rely on nonlinear frequency down-conversion. Quantum cascade lasers are the most powerful and versatile compact light sources in the mid-infrared range, yet achieving their mode-locked operation remains a challenge, despite dedicated effort. Here we report the demonstration of active mode locking of an external-cavity quantum cascade laser. The laser operates in the mode-locked regime at room temperature and over the full dynamic range of injection currents. PMID:27147409

  1. Mechanisms of Earth activity forsed by external celestial bodies:energy budjet and nature of cyclicity

    NASA Astrophysics Data System (ADS)

    Barkin, Yu. V.; Ferrandiz, J. M.

    2003-04-01

    In given report we discuss tidal and non-tidal mechanisms of forced tectonic (endogenous) activity of the Earth caused by gravitational attraction of the Moon, Sun and the planets. On the base of the classical solution of the problem of elasticity for model of the Earth with concentric mass distribution the evaluations of the tidal energy and power of Earth lunar-solar deformations, including their joint effect, were obtained. Important role of the joint energetic effect of rotational deformation of the Earth with lunar and solar tides was illustrated. Gravitational interaction of the Moon and Sun with non-spherical, non-homogeneous shells of the Earth generates big additional mechanical forces and moments of the interaction of the neighboring shells (rigid core, liquid core, mantle, lithosphere and separate plates). Acting of these forces and moments in the different time scales on the corresponding sells generates cyclic perturbations of the tensional state of the shells, their deformations, small relative translational displacements and small relative rotational oscillations of the shells. In geological period of time it leads to a fundamental tectonic reconstruction of the Earth. These additional forces and moments of the cyclic celestial-mechanical nature produce cyclic deformations of the all layers of the body and organize and control practically all natural processes. The additional force between mantle and core is cyclic and characterized by the wide basis of frequencies typical for orbital motions (of the Sun, Moon and planets), for rotational motion of the Earth, Moon and Sun and for many from observed natural processes. The problem about small relative translatory-rotary motion of the two shells separated by the thin viscous-elastic layer is studied. The differential equations of motion were obtained and have been studied in particular cases (plane motion of system; case of two axisymmetrical interacting shells and oth.) by approximate methods of small

  2. The study of external dose rate and retained body activity of patients receiving 131I therapy for differentiated thyroid carcinoma.

    PubMed

    Zhang, Haiying; Jiao, Ling; Cui, Songye; Wang, Liang; Tan, Jian; Zhang, Guizhi; He, Yajing; Ruan, Shuzhou; Fan, Saijun; Zhang, Wenyi

    2014-10-21

    Radiation safety is an integral part of targeted radionuclide therapy. The aim of this work was to study the external dose rate and retained body activity as functions of time in differentiated thyroid carcinoma patients receiving 131I therapy. Seventy patients were stratified into two groups: the ablation group (A) and the follow-up group (FU). The patients' external dose rate was measured, and simultaneously, their retained body radiation activity was monitored at various time points. The equations of the external dose rate and the retained body activity, described as a function of hours post administration, were fitted. Additionally, the release time for patients was calculated. The reduction in activity in the group receiving a second or subsequent treatment was more rapid than the group receiving only the initial treatment. Most important, an expeditious method was established to indirectly evaluate the retained body activity of patients by measuring the external dose rate with a portable radiation survey meter. By this method, the calculated external dose rate limits are 19.2, 8.85, 5.08 and 2.32 μSv·h-1 at 1, 1.5, 2 and 3 m, respectively, according to a patient's released threshold level of retained body activity <400 MBq. This study is beneficial for radiation safety decision-making.

  3. Timing Behavior of the Magnetically Active Rotation-Powered Pulsar in the Supernova Remnant Kesteven 75

    NASA Technical Reports Server (NTRS)

    Livingstone, Margaret A.; Gavriil, Fotis P.; Kaspi, Victoria M.

    2009-01-01

    We report a large spin-up glitch in PSR J1846-0258 which coincided with the onset of magnetar-like behavior on 2006 May 31. We show that the pulsar experienced an unusually large glitch recovery, with a recovery fraction of Q = 5.9+/-0.3, resulting in a net decrease of the pulse frequency. Such a glitch recovery has never before been observed in a rotation-powered pulsar, however, similar but smaller glitch over-recovery has been recently reported in the magnetar AXP 4U 0142+61 and may have occurred in the SGR 1900+14. We discuss the implications of the unusual timing behavior in PSR J1846-0258 on its status as the first identified magnetically active rotation-powered pulsar.

  4. Active Resistive Wall Mode Stabilization in Low Rotation, High Beta NSTX Plasmas

    NASA Astrophysics Data System (ADS)

    Sabbagh, S. A.

    2006-10-01

    An active feedback system to stabilize the resistive wall mode (RWM) in the National Spherical Torus Experiment (NSTX) is used to maintain plasma stability for greater than 90 RWM growth times. These experiments are the first to demonstrate RWM active stabilization in high beta, low aspect ratio tokamak plasmas with toroidal plasma rotation significantly below the critical rotation profile for passive stability and in the range predicted for ITER. Actively stabilized, low rotation plasmas reached normalized beta of 5.6, and the ratio of normalized beta to the toroidal mode number, n = 1 and 2 ideal no-wall stability limits reached 1.2 and 1.15 respectively, determined by DCON stability analysis of the time-evolving reconstructed experimental equilibria. The significant, controlled reduction of the plasma rotation to less than one percent of the Alfven speed was produced by non-resonant magnetic braking by an applied n = 3 field. The observed plasma rotation damping is in quantitative agreement with neoclassical toroidal viscosity theory including trapped particle effects [1]. The active stabilization system employs a mode control algorithm using RWM sensor input analyzed to distinguish the amplitude and phase of the n = 1 mode. During n = 1 stabilization, the n = 2 mode amplitude increases and surpasses the n = 1 amplitude, but the mode remains stable. By varying the system gain, and relative phase between the measured n = 1 RWM phase and the applied control field, both positive and negative feedback were demonstrated. Contrary to past experience in moderate aspect ratio tokamaks with poloidally continuous stabilizing structure, the RWM can become unstable in certain cases by deforming poloidally, an important consideration for feedback system sensor and control coil design in future devices such as ITER and KSTAR. **In collaboration with R.E. Bell, J.E. Menard, D.A. Gates, A.C. Sontag, J.M. Bialek, B.P. LeBlanc, F.M. Levinton, K. Tritz, H. Yuh. [1] W. Zhu, S

  5. Temperature Dependence of the Rotation and Hydrolysis Activities of F1-ATPase

    PubMed Central

    Furuike, Shou; Adachi, Kengo; Sakaki, Naoyoshi; Shimo-Kon, Rieko; Itoh, Hiroyasu; Muneyuki, Eiro; Yoshida, Masasuke; Kinosita, Kazuhiko

    2008-01-01

    F1-ATPase, a water-soluble portion of the enzyme ATP synthase, is a rotary molecular motor driven by ATP hydrolysis. To learn how the kinetics of rotation are regulated, we have investigated the rotational characteristics of a thermophilic F1-ATPase over the temperature range 4–50°C by attaching a polystyrene bead (or bead duplex) to the rotor subunit and observing its rotation under a microscope. The apparent rate of ATP binding estimated at low ATP concentrations increased from 1.2 × 106 M−1 s−1 at 4°C to 4.3 × 107 M−1 s−1 at 40°C, whereas the torque estimated at 2 mM ATP remained around 40 pN·nm over 4–50°C. The rotation was stepwise at 4°C, even at the saturating ATP concentration of 2 mM, indicating the presence of a hitherto unresolved rate-limiting reaction that occurs at ATP-waiting angles. We also measured the ATP hydrolysis activity in bulk solution at 4–65°C. F1-ATPase tends to be inactivated by binding ADP tightly. Both the inactivation and reactivation rates were found to rise sharply with temperature, and above 30°C, equilibrium between the active and inactive forms was reached within 2 s, the majority being inactive. Rapid inactivation at high temperatures is consistent with the physiological role of this enzyme, ATP synthesis, in the thermophile. PMID:18375515

  6. Effects of replica running shoes upon external forces and muscle activity during running.

    PubMed

    Azevedo, Ana Paula Da Silva; Brandina, Kátia; Bianco, Roberto; Oliveira, Vitor Henrique De; Souza, Juliana Roque De; Mezencio, Bruno; Amadio, Alberto Carlos; Serrão, Júlio Cerca

    2012-05-01

    Twelve participants ran (9 km · h(-1)) to test two types of running shoes: replica and original shoes. Ground reaction force, plantar pressure and electromyographic activity were recorded. The shoes were tested randomly and on different days. Comparisons between the two experimental conditions were made by analysis of variance (ANOVA) test (P ≤ 0.05). The time to first peak, loading rate of the first peak and impulse of the first 75 ms of stance were significantly different between the shoes (P ≤ 0.05), revealing an increase of impact forces for the replica shoes. The peak plantar pressure values were significantly higher (P ≤ 0.05) when wearing replica shoes. During running, the contact area was significantly smaller (P ≤ 0.05) for the replica shoe. The electromyographic activity of the analysed muscles did not show changes between the two shoes in running. These findings suggest that the use of replica running shoes can increase the external load applied to the human body, but may not change the muscle activity pattern during locomotion. This new mechanical situation may increase the risk of injuries in these movements.

  7. Iterative weighted average diffusion as a novel external force in the active contour model

    NASA Astrophysics Data System (ADS)

    Mirov, Ilya S.; Nakhmani, Arie

    2016-03-01

    The active contour model has good performance in boundary extraction for medical images; particularly, Gradient Vector Flow (GVF) active contour model shows good performance at concavity convergence and insensitivity to initialization, yet it is susceptible to edge leaking, deep and narrow concavities, and has some issues handling noisy images. This paper proposes a novel external force, called Iterative Weighted Average Diffusion (IWAD), which used in tandem with parametric active contours, provides superior performance in images with high values of concavity. The image gradient is first turned into an edge image, smoothed, and modified with enhanced corner detection, then the IWAD algorithm diffuses the force at a given pixel based on its 3x3 pixel neighborhood. A forgetting factor, φ, is employed to ensure that forces being spread away from the boundary of the image will attenuate. The experimental results show better behavior in high curvature regions, faster convergence, and less edge leaking than GVF when both are compared to expert manual segmentation of the images.

  8. Redefining the Standard Stellar Model: Using Seismology to Develop Physical Models of Stellar Activity and Rotation and Exploring Their Consequences.

    NASA Astrophysics Data System (ADS)

    Pinsonneault, Marc

    Stellar coronal and chromospheric activity is intimately connected to rotation and depends strongly on mass. The decay of rotation and activity have sparked interest as age diagnostics which can now be obtained for bulk field populations. There are numerous and interesting connections between activity and the study of planets, ranging from the impact on habitability to the possible connection between the presence of planets and rotational mixing. Activity-induced jitter is also a major background for radial velocity studies. Activity and rotation can also impact stellar structure, induce mixing, and affect topics ranging from the nature of supernova explosions to BBN and near-field cosmology. However, our theoretical understanding of these phenomena have been limited, in no small part because of weak observational constraints on the theory. Asteroseismology and precise space-based time series photometry are providing new and powerful diagnostics of stellar structure and evolution. Seismology will provide mass, radius, age, and granulation properties reliably for field star samples, enabling much more precise experiments than possible with the limited data available heretofore. Internal diagnostics (such as convection zone depth, surface helium, and internal rotation) may also be obtained. The Kepler mission will provide an enormous database of variability data, with up to 150,000 rotation periods, spot filling factors, and surface differential rotation measurements. We propose a multi-faceted theoretical investigation aimed at using these newly available tools to enhance our understanding of physical processes typically neglected (or drastically simplified) in standard stellar models. We will investigate the seismic signatures of gravitational settling, metallicity, and internal differential rotation predicted by stellar spin down models. New models of angular momentum loss from magnetized solar-like winds and internal angular momentum transport will be developed

  9. The Factory and the Beehive. II. Activity and Rotation in Praesepe and the Hyades

    NASA Astrophysics Data System (ADS)

    Douglas, S. T.; Agüeros, M. A.; Covey, K. R.; Bowsher, E. C.; Bochanski, J. J.; Cargile, P. A.; Kraus, A.; Law, N. M.; Lemonias, J. J.; Arce, H. G.; Fierroz, D. F.; Kundert, A.

    2014-11-01

    Open clusters are collections of stars with a single, well-determined age, and can be used to investigate the connections between angular-momentum evolution and magnetic activity over a star's lifetime. We present the results of a comparative study of the relationship between stellar rotation and activity in two benchmark open clusters: Praesepe and the Hyades. As they have the same age and roughly solar metallicity, these clusters serve as an ideal laboratory for testing the agreement between theoretical and empirical rotation-activity relations at ≈600 Myr. We have compiled a sample of 720 spectra—more than half of which are new observations—for 516 high-confidence members of Praesepe; we have also obtained 139 new spectra for 130 high-confidence Hyads. We have also collected rotation periods (P rot) for 135 Praesepe members and 87 Hyads. To compare Hα emission, an indicator of chromospheric activity, as a function of color, mass, and Rossby number Ro , we first calculate an expanded set of χ values, with which we can obtain the Hα to bolometric luminosity ratio, L Hα/L bol, even when spectra are not flux-calibrated and/or stars lack reliable distances. Our χ values cover a broader range of stellar masses and colors (roughly equivalent to spectral types from K0 to M9), and exhibit better agreement between independent calculations, than existing values. Unlike previous authors, we find no difference between the two clusters in their Hα equivalent width or L Hα/L bol distributions, and therefore take the merged Hα and P rot data to be representative of 600 Myr old stars. Our analysis shows that Hα activity in these stars is saturated for {R_o}≤ 0.11+0.02-0.03. Above that value activity declines as a power-law with slope β =-0.73+0.16-0.12, before dropping off rapidly at Ro ≈ 0.4. These data provide a useful anchor for calibrating the age-activity-rotation relation beyond 600 Myr.

  10. Human gaze stabilization during natural activities: translation, rotation, magnification, and target distance effects.

    PubMed

    Crane, B T; Demer, J L

    1997-10-01

    Stability of images on the retina was determined in 14 normal humans in response to rotational and translational perturbations during self-generated pitch and yaw, standing, walking, and running on a treadmill. The effects on image stability of target distance, vision, and spectacle magnification were examined. During locomotion the horizontal and vertical velocity of images on the retina was <4 degrees /s for a visible target located beyond 4 m. Image velocity significantly increased to >4 degrees /s during self-generated motion. For all conditions of standing and locomotion, angular vestibulo-ocular reflex (AVOR) gain was less than unity and varied significantly by activity, by target distance, and among subjects. There was no significant correlation(P > 0.05) between AVOR gain and image stability during standing and walking despite significant variation among subjects. This lack of correlation is likely due to translation of the orbit. The degree of orbital translation and rotation varied significantly with activity and viewing condition in a manner suggesting an active role in gaze stabilization. Orbital translation was consistently antiphase with rotation at predominant frequencies <4 Hz. When orbital translation was neglected in computing gaze, computed image velocities increased. The compensatory effect of orbital translation allows gaze stabilization despite subunity AVOR gain during natural activities. Orbital translation decreased during close target viewing, whereas orbital rotation decreased while wearing telescopic spectacles. As the earth fixed target was moved closer, image velocity on the retina significantly increased (P < 0.05) for all activities except standing. Latency of the AVOR increased slightly with decreasing target distance but remained <10 ms for even the closest target. This latency was similar in darkness or light, indicating that the visual pursuit tracking is probably not important in gaze stabilization. Trials with a distant target

  11. Anti-solar differential rotation on the active sub-giant HU Virginis

    NASA Astrophysics Data System (ADS)

    Harutyunyan, G.; Strassmeier, K. G.; Künstler, A.; Carroll, T. A.; Weber, M.

    2016-08-01

    Context. Measuring surface differential rotation (DR) on different types of stars is important when characterizing the underlying stellar dynamo. It has been suggested that anti-solar DR laws can occur when strong meridional flows exist. Aims: We aim to investigate the differential surface rotation on the primary star of the RS CVn binary, HU Vir, by tracking its starspot distribution as a function of time. We also aim to recompute and update the values for several system parameters of the triple system HU Vir (close and wide orbits). Methods: Time-series high-resolution spectroscopy for four continuous months was obtained with the 1.2-m robotic STELLA telescope. Nine consecutive Doppler images were reconstructed from these data, using our line-profile inversion code iMap. An image cross-correlation method was applied to derive the surface differential-rotation law for HU Vir. New orbital elements for the close and the wide orbits were computed using our new STELLA radial velocities (RVs) combined with the RV data available in the literature. Photometric observations were performed with the Amadeus Automatic Photoelectric Telescope (APT), providing contemporaneous Johnson-Cousins V and I data for approximately 20 yrs. This data was used to determine the stellar rotation period and the active longitudes. Results: We confirm anti-solar DR with a surface shear parameter α of -0.029 ± 0.005 and -0.026 ± 0.009, using single-term and double-term differential rotation laws, respectively. These values are in good agreement with previously claimed results. The best fit is achieved assuming a solar-like double-term law with a lap time of ≈400 d. Our orbital solutions result in a period of 10.387678 ± 0.000003 days for the close orbit and 2726 ± 7 d (≈7.5 yr) for the wide orbit. A Lomb-Scarge (L-S) periodogram of the pre-whitened V-band data reveals a strong single peak providing a rotation period of 10.391 ± 0.008 d, well synchronized to the short orbit. Based on

  12. Report of activities of the IAU/IAG Joint Working Group on Theory of Earth rotation

    NASA Astrophysics Data System (ADS)

    Ferrandiz, Jose M.; Gross, Richard S.; Getino, Juan; Brzezinski, Aleksander; Heinkelmann, Robert

    2014-05-01

    Earth rotation has been considered as one of the three pillars of geodesy. In April 2013 the International Association of Geodesy (IAG) and the International Astronomical Union (IAU) set up a Joint WG on Theory of the Earth Rotation to promote the development of improved theories of Earth rotation meeting the needs of accuracy of the near future as recommended by, e.g. GGOS, the Global Geodetic Observing System of the IAG. That JWG is chaired by the first two authors. Its structure comprises three Sub-WGs addressing Precession/Nutation, Polar Motion and UT1 and Numerical Solutions and Validation, which are chaired by the last three authors, respectively. Those SWG should work in parallel, for the sake of efficiency, but keeping consistency as an overall issue. This presentation intends to report about the initial activities carried out by the JWG and the work under development. A main task is to catalogue and to go in depth into the potential sources of inconsistency, at the level of precision given by the measurements of the space geodetic techniques.

  13. Magnetic activity and differential rotation in the very young star KIC 8429280

    NASA Astrophysics Data System (ADS)

    Frasca, A.; Fröhlich, H.-E.; Bonanno, A.; Catanzaro, G.; Biazzo, K.; Molenda-Żakowicz, J.

    2011-08-01

    Aims: We present a spectroscopic and photometric analysis of the rapid rotator KIC 8429280, discovered by ourselves as a very young star and observed by the NASA Kepler mission, designed to determine its activity level, spot distribution, and differential rotation. Methods: We use ground-based data, such as high-resolution spectroscopy and multicolor broad-band photometry, to derive stellar parameters (vsini, spectral type, Teff, log g, and [Fe/H]), and we adopt a spectral subtraction technique to highlight the strong chromospheric emission in the cores of hydrogen Hα and Ca ii H&K and infrared triplet (IRT) lines. We then fit a robust spot model to the high-precision Kepler photometry spanning 138 days. Model selection and parameter estimation is performed in a Bayesian manner using a Markov chain Monte Carlo method. Results: We find that KIC 8429280 is a cool (K2 V) star with an age of about 50 Myr, based on its lithium content, that has passed its T Tau phase and is spinning up approaching the ZAMS on its radiative track. Its high level of chromospheric activity is clearly indicated by the strong radiative losses in Ca ii H&K and IRT, Hα, and Hβ lines. Furthermore, its Balmer decrement and the flux ratio of Ca ii IRT lines imply that these lines are mainly formed in optically-thick regions similar to solar plages. The analysis of the Kepler data uncovers evidence of at least seven enduring spots. Since the star's inclination is rather high - nearly 70° - the assignment of the spots to either the northern or southern hemisphere is not unambiguous. We find at least three solutions with nearly the same level of residuals. Even in the case of seven spots, the fit is far from being perfect. Owing to the exceptional precision of the Kepler photometry, it is not possible to reach the noise floor without strongly enhancing the degrees of freedom and, consequently, the non-uniqueness of the solution. The distribution of the active regions is such that the spots are

  14. Perception of active head rotation in patients with severe left unilateral spatial neglect.

    PubMed

    Kaibe, Shinobu; Okita, Manabu; Kaba, Hideto

    2017-02-09

    Unilateral spatial neglect is a common neurological syndrome following predominantly right hemisphere damage, and is characterized by a failure to perceive and report stimuli in the contralesional side of space. To test the reference shift hypothesis that contralesional spatial neglect in right-brain-damaged patients is attributed to a rightward deviation of the egocentric reference frame, we measured the final angular position to which controls and left-side neglect patients actively turned their head toward the left in response to a verbal instruction given from each of three locations-right, left, and front-in two conditions, with and without visual feedback. When neglect patients were asked to "look straight ahead", they deviated about 30° toward the right in the eyes-open condition. However, the rightward deviation was markedly reduced in the eyes-closed condition. Regardless of visual feedback, there was no significant difference between controls and neglect patients in the final angular position of active head rotation when the verbal instruction came from the subject's left or front side; however, the final angular position was significantly smaller in the neglect patients than in the controls when the verbal instruction was given from the right. These results support the contention that cervico-vestibular stimulation during active head rotation restores spatial remapping and sensori-motor correlations and so improves neglect without affecting the position of the egocentric reference; however, once left-side neglect patients respond to verbal instruction from the right side, they are unable to disengage attention from the hemispace, and the performance of head rotation is disturbed.

  15. Impacts of stellar evolution and dynamics on the habitable zone: The role of rotation and magnetic activity

    NASA Astrophysics Data System (ADS)

    Gallet, F.; Charbonnel, C.; Amard, L.; Brun, S.; Palacios, A.; Mathis, S.

    2017-01-01

    Context. With the ever growing number of detected and confirmed exoplanets, the probability of finding a planet that looks like the Earth increases continuously. While it is clear that the presence of a planet in the habitable zone does not imply the planet is habitable, a systematic study of the evolution of the habitable zone is required to account for its dependence on stellar parameters. Aims: In this article, we aim to provide the community with the dependence of the habitable zone upon the stellar mass, metallicity, rotation, and for various prescriptions of the limits of the habitable zone. Methods: We use stellar evolution models computed with the code STAREVOL, which includes the most current physical mechanisms of internal transport of angular momentum and external wind braking, to study the evolution of the habitable zone and the continuously habitable zone limits. Results: The stellar parameters mass and metallicity affect the habitable zone limits most dramatically. Conversely, for a given stellar mass and metallicity, stellar rotation has only a marginal effect on these limits and does not modify the width of the habitable zone. Moreover, and as expected in the main-sequence phase and for a given stellar mass and metallicity, the habitable zone limits remain almost constant, and this confirms the usual assumptions of a relative constancy of these limits during that phase. The evolution of the habitable zone limits is also correlated to the evolution of the stellar activity (through the Rossby number), which depends on the stellar mass considered. While the magnetic activity has negligible consequence in the case of more massive stars, these effects may have a strong impact on the habitability of a planet around M-dwarf stars. Thus, stellar activity cannot be neglected and may have a strong impact on the development of life during the early stage of the continuously habitable zone phase of low-mass stars. Using observed trends of stellar magnetic field

  16. Test and theory for piezoelectric actuator-active vibration control of rotating machinery

    NASA Technical Reports Server (NTRS)

    Palazzolo, A. B.; Lin, R. R.; Alexander, R. M.; Kascak, A. F.; Montague, J.

    1989-01-01

    The application of piezoelectric actuators for active vibration control (AVC) of rotating machinery is examined. Theory is derived and the resulting predictions are shown to agree closely with results of tests performed on an air turbine driven-overhung rotor. The test results show significant reduction in unbalance, transient and sub-synchronous responses. Results from a 30-hour endurance test support the AVD system reliability. Various aspects of the electro-mechanical stability of the control system are also discussed and illustrated. Finally, application of the AVC system to an actual jet engine is discussed.

  17. Heat and Mass Transfer in Unsteady Rotating Fluid Flow with Binary Chemical Reaction and Activation Energy

    PubMed Central

    Awad, Faiz G.; Motsa, Sandile; Khumalo, Melusi

    2014-01-01

    In this study, the Spectral Relaxation Method (SRM) is used to solve the coupled highly nonlinear system of partial differential equations due to an unsteady flow over a stretching surface in an incompressible rotating viscous fluid in presence of binary chemical reaction and Arrhenius activation energy. The velocity, temperature and concentration distributions as well as the skin-friction, heat and mass transfer coefficients have been obtained and discussed for various physical parametric values. The numerical results obtained by (SRM) are then presented graphically and discussed to highlight the physical implications of the simulations. PMID:25250830

  18. STIM1 activates CRAC channels through rotation of the pore helix to open a hydrophobic gate

    PubMed Central

    Yamashita, Megumi; Yeung, Priscilla S.-W.; Ing, Christopher E.; McNally, Beth A.; Pomès, Régis; Prakriya, Murali

    2017-01-01

    Store-operated Ca2+ release-activated Ca2+ (CRAC) channels constitute a major pathway for Ca2+ influx and mediate many essential signalling functions in animal cells, yet how they open remains elusive. Here, we investigate the gating mechanism of the human CRAC channel Orai1 by its activator, stromal interacting molecule 1 (STIM1). We find that two rings of pore-lining residues, V102 and F99, work together to form a hydrophobic gate. Mutations of these residues to polar amino acids produce channels with leaky gates that conduct ions in the resting state. STIM1-mediated channel activation occurs through rotation of the pore helix, which displaces the F99 residues away from the pore axis to increase pore hydration, allowing ions to flow through the V102-F99 hydrophobic band. Pore helix rotation by STIM1 also explains the dynamic coupling between CRAC channel gating and ion selectivity. This hydrophobic gating mechanism has implications for CRAC channel function, pharmacology and disease-causing mutations. PMID:28220789

  19. STIM1 activates CRAC channels through rotation of the pore helix to open a hydrophobic gate

    NASA Astrophysics Data System (ADS)

    Yamashita, Megumi; Yeung, Priscilla S.-W.; Ing, Christopher E.; McNally, Beth A.; Pomès, Régis; Prakriya, Murali

    2017-02-01

    Store-operated Ca2+ release-activated Ca2+ (CRAC) channels constitute a major pathway for Ca2+ influx and mediate many essential signalling functions in animal cells, yet how they open remains elusive. Here, we investigate the gating mechanism of the human CRAC channel Orai1 by its activator, stromal interacting molecule 1 (STIM1). We find that two rings of pore-lining residues, V102 and F99, work together to form a hydrophobic gate. Mutations of these residues to polar amino acids produce channels with leaky gates that conduct ions in the resting state. STIM1-mediated channel activation occurs through rotation of the pore helix, which displaces the F99 residues away from the pore axis to increase pore hydration, allowing ions to flow through the V102-F99 hydrophobic band. Pore helix rotation by STIM1 also explains the dynamic coupling between CRAC channel gating and ion selectivity. This hydrophobic gating mechanism has implications for CRAC channel function, pharmacology and disease-causing mutations.

  20. External carbonic anhydrase in three Caribbean corals: quantification of activity and role in CO2 uptake

    NASA Astrophysics Data System (ADS)

    Tansik, Anna L.; Fitt, William K.; Hopkinson, Brian M.

    2015-09-01

    Scleractinian corals have complicated inorganic carbon ( C i) transport pathways to support both photosynthesis, by their symbiotic dinoflagellates, and calcification. The first step in C i acquisition, uptake into the coral, is critical as the diffusive boundary layer limits the supply of CO2 to the surface and HCO3 - uptake is energy intensive. An external carbonic anhydrase (eCA) on the oral surface of corals is thought to facilitate CO2 uptake by converting HCO3 - into CO2, helping to overcome the limitation imposed by the boundary layer. However, this enzyme has not yet been identified or detected in corals, nor has its activity been quantified. We have developed a method to quantify eCA activity using a reaction-diffusion model to analyze data on 18O removal from labeled C i. Applying this technique to three species of Caribbean corals ( Orbicella faveolata, Porites astreoides, and Siderastrea radians) showed that all species have eCA and that the potential rates of CO2 generation by eCA greatly exceed photosynthetic rates. This demonstrates that eCA activity is sufficient to support its hypothesized role in CO2 supply. Inhibition of eCA severely reduces net photosynthesis in all species (on average by 46 ± 27 %), implying that CO2 generated by eCA is a major carbon source for photosynthesis. Because of the high permeability of membranes to CO2, CO2 uptake is likely driven by a concentration gradient across the cytoplasmic membrane. The ubiquity of eCA in corals from diverse genera and environments suggests that it is fundamental for photosynthetic CO2 supply.

  1. RELATING CHANGES IN COMETARY ROTATION TO ACTIVITY: CURRENT STATUS AND APPLICATIONS TO COMET C/2012 S1 (ISON)

    SciTech Connect

    Samarasinha, Nalin H.; Mueller, Béatrice E. A.

    2013-09-20

    We introduce a parameter, X, to predict the changes in the rotational period of a comet in terms of the rotational period itself, the nuclear radius, and the orbital characteristics. We show that X should be a constant if the bulk densities and shapes of nuclei are nearly identical and the activity patterns are similar for all comets. For four nuclei for which rotational changes are well documented, despite the nearly factor 30 variation observed among the effective active fractions of these comets, X is constant to within a factor two. We present an analysis for the sungrazing comet C/2012 S1 (ISON) to explore what rotational changes it could undergo during the upcoming perihelion passage where its perihelion distance will be ∼2.7 solar radii. When close to the Sun, barring a catastrophic disruption of the nucleus, the activity of ISON will be sufficiently strong to put the nucleus into a non-principal-axis rotational state and observable changes to the rotational period should also occur. Additional causes for rotational state changes near perihelion for ISON are tidal torques caused by the Sun and the significant mass loss due to a number of mechanisms resulting in alterations to the moments of inertia of the nucleus.

  2. An underwater superoleophobic surface that can be activated/deactivated via external triggers.

    PubMed

    Dunderdale, Gary J; Urata, Chihiro; Hozumi, Atsushi

    2014-11-11

    Poly[(2-dimethylamino)ethyl methacrylate] (pDMAEMA) brush surfaces were prepared using a facile aqueous Activators ReGenerated by Electron Transfer Atom Transfer Radical Polymerization (ARGET-ATRP) protocol at ambient temperature without any need to purge reaction solutions of oxygen. This produced underwater superoleophobic surfaces, which exhibited high advancing (θA, 164-166°) and receding (θR, 153-165°) contact angles (CAs) and low CA hysteresis (1-11°) with a variety of oils. Both in situ spectroscopic ellipsometry and dynamic CA measurements confirmed that pDMAEMA brush surfaces responded to three different external stimuli (pH, ionic strength, and temperature) by changing their thicknesses, degree of hydration, or their chemical composition. Increasing pH resulted in the largest decrease in hydration, followed by increasing temperature, and increasing ionic strength gave the smallest change in hydration. Coincident with these structural changes, stimulus-responsive dynamic dewetting behavior with various oils was observed. Increasing pH or ionic strength drastically reduced the θR values of oil drops and increased CA hysteresis, resulting in a sticky surface on which oil drops were pinned. No noticeable changes in dynamic oleophobicity were observed with increasing temperature. In addition, when oil drops impacted onto the brush surface instead of being gently placed, surfaces did not exhibit stimulus-responsive dewetting properties, being oleophobic under all conditions.

  3. Hebbian Plasticity Realigns Grid Cell Activity with External Sensory Cues in Continuous Attractor Models

    PubMed Central

    Mulas, Marcello; Waniek, Nicolai; Conradt, Jörg

    2016-01-01

    After the discovery of grid cells, which are an essential component to understand how the mammalian brain encodes spatial information, three main classes of computational models were proposed in order to explain their working principles. Amongst them, the one based on continuous attractor networks (CAN), is promising in terms of biological plausibility and suitable for robotic applications. However, in its current formulation, it is unable to reproduce important electrophysiological findings and cannot be used to perform path integration for long periods of time. In fact, in absence of an appropriate resetting mechanism, the accumulation of errors over time due to the noise intrinsic in velocity estimation and neural computation prevents CAN models to reproduce stable spatial grid patterns. In this paper, we propose an extension of the CAN model using Hebbian plasticity to anchor grid cell activity to environmental landmarks. To validate our approach we used as input to the neural simulations both artificial data and real data recorded from a robotic setup. The additional neural mechanism can not only anchor grid patterns to external sensory cues but also recall grid patterns generated in previously explored environments. These results might be instrumental for next generation bio-inspired robotic navigation algorithms that take advantage of neural computation in order to cope with complex and dynamic environments. PMID:26924979

  4. Hebbian Plasticity Realigns Grid Cell Activity with External Sensory Cues in Continuous Attractor Models.

    PubMed

    Mulas, Marcello; Waniek, Nicolai; Conradt, Jörg

    2016-01-01

    After the discovery of grid cells, which are an essential component to understand how the mammalian brain encodes spatial information, three main classes of computational models were proposed in order to explain their working principles. Amongst them, the one based on continuous attractor networks (CAN), is promising in terms of biological plausibility and suitable for robotic applications. However, in its current formulation, it is unable to reproduce important electrophysiological findings and cannot be used to perform path integration for long periods of time. In fact, in absence of an appropriate resetting mechanism, the accumulation of errors over time due to the noise intrinsic in velocity estimation and neural computation prevents CAN models to reproduce stable spatial grid patterns. In this paper, we propose an extension of the CAN model using Hebbian plasticity to anchor grid cell activity to environmental landmarks. To validate our approach we used as input to the neural simulations both artificial data and real data recorded from a robotic setup. The additional neural mechanism can not only anchor grid patterns to external sensory cues but also recall grid patterns generated in previously explored environments. These results might be instrumental for next generation bio-inspired robotic navigation algorithms that take advantage of neural computation in order to cope with complex and dynamic environments.

  5. Intrinsic conductances actively shape excitatory and inhibitory postsynaptic responses in olfactory bulb external tufted cells.

    PubMed

    Liu, Shaolin; Shipley, Michael T

    2008-10-08

    The initial synapse in the olfactory system is from olfactory nerve (ON) terminals to postsynaptic targets in olfactory bulb glomeruli. Recent studies have disclosed multiple presynaptic factors that regulate this important linkage, but less is known about the contribution of postsynaptic intrinsic conductances to integration at these synapses. The present study demonstrates voltage-dependent amplification of EPSPs in external tufted (ET) cells in response to monosynaptic (ON) inputs. This amplification is mainly exerted by persistent Na(+) conductance. Larger EPSPs, which bring the membrane potential to a relatively depolarized level, are further boosted by the low-voltage-activated Ca(2+) conductance. In contrast, the hyperpolarization-activated nonselective cation conductance (I(h)) attenuates EPSPs mainly by reducing EPSP duration; this also reduces temporal summation of multiple EPSPs. Regulation of EPSPs by these subthreshold, voltage-dependent conductances can enhance both the signal-to-noise ratio and the temporal summation of multiple synaptic inputs and thus help ET cells differentiate high- and low-frequency synaptic inputs. I(h) can also transform inhibitory inputs to postsynaptic excitation. When the ET cell membrane potential is relatively depolarized, as during a burst of action potentials, IPSPs produce classic inhibition. However, near resting membrane potentials where I(h) is engaged, IPSPs produce rebound bursts of action potentials. ET cells excite GABAergic PG cells. Thus, the transformation of inhibitory inputs to postsynaptic excitation in ET cells may enhance intraglomerular inhibition of mitral/tufted cells, the main output neurons in the olfactory bulb, and hence shape signaling to olfactory cortex.

  6. Long-term recording of external urethral sphincter EMG activity in unanesthetized, unrestrained rats

    PubMed Central

    LaPallo, Brandon K.; Wolpaw, Jonathan R.; Chen, Xiang Yang

    2014-01-01

    The external urethral sphincter muscle (EUS) plays an important role in urinary function and often contributes to urinary dysfunction. EUS study would benefit from methodology for longitudinal recording of electromyographic activity (EMG) in unanesthetized animals, but this muscle is a poor substrate for chronic intramuscular electrodes, and thus the required methodology has not been available. We describe a method for long-term recording of EUS EMG by implantation of fine wires adjacent to the EUS that are secured to the pubic bone. Wires pass subcutaneously to a skull-mounted plug and connect to the recording apparatus by a flexible cable attached to a commutator. A force transducer-mounted cup under a metabolic cage collected urine, allowing recording of EUS EMG and voided urine weight without anesthesia or restraint. Implant durability permitted EUS EMG recording during repeated (up to 3 times weekly) 24-h sessions for more than 8 wk. EMG and voiding properties were stable over weeks 2–8. The degree of EUS phasic activity (bursting) during voiding was highly variable, with an average of 25% of voids not exhibiting bursting. Electrode implantation adjacent to the EUS yielded stable EMG recordings over extended periods and eliminated the confounding effects of anesthesia, physical restraint, and the potential for dislodgment of the chronically implanted intramuscular electrodes. These results show that micturition in unanesthetized, unrestrained rats is usually, but not always, associated with EUS bursting. This methodology is applicable to studying EUS behavior during progression of gradually evolving disease and injury models and in response to therapeutic interventions. PMID:24990895

  7. Long-term recording of external urethral sphincter EMG activity in unanesthetized, unrestrained rats.

    PubMed

    LaPallo, Brandon K; Wolpaw, Jonathan R; Chen, Xiang Yang; Carp, Jonathan S

    2014-08-15

    The external urethral sphincter muscle (EUS) plays an important role in urinary function and often contributes to urinary dysfunction. EUS study would benefit from methodology for longitudinal recording of electromyographic activity (EMG) in unanesthetized animals, but this muscle is a poor substrate for chronic intramuscular electrodes, and thus the required methodology has not been available. We describe a method for long-term recording of EUS EMG by implantation of fine wires adjacent to the EUS that are secured to the pubic bone. Wires pass subcutaneously to a skull-mounted plug and connect to the recording apparatus by a flexible cable attached to a commutator. A force transducer-mounted cup under a metabolic cage collected urine, allowing recording of EUS EMG and voided urine weight without anesthesia or restraint. Implant durability permitted EUS EMG recording during repeated (up to 3 times weekly) 24-h sessions for more than 8 wk. EMG and voiding properties were stable over weeks 2-8. The degree of EUS phasic activity (bursting) during voiding was highly variable, with an average of 25% of voids not exhibiting bursting. Electrode implantation adjacent to the EUS yielded stable EMG recordings over extended periods and eliminated the confounding effects of anesthesia, physical restraint, and the potential for dislodgment of the chronically implanted intramuscular electrodes. These results show that micturition in unanesthetized, unrestrained rats is usually, but not always, associated with EUS bursting. This methodology is applicable to studying EUS behavior during progression of gradually evolving disease and injury models and in response to therapeutic interventions.

  8. THE EFFECTS OF CLOSE COMPANIONS (AND ROTATION) ON THE MAGNETIC ACTIVITY OF M DWARFS

    SciTech Connect

    Morgan, Dylan P.; West, Andrew A.; Dhital, Saurav; Fuchs, Miriam; Garces, Ane; Catalan, Silvia; Silvestri, Nicole M.

    2012-10-01

    We present a study of close white dwarf and M dwarf (WD+dM) binary systems and examine the effect that a close companion has on the magnetic field generation in M dwarfs. We use a base sample of 1602 white dwarf main-sequence binaries from Rebassa-Mansergas et al. to develop a set of color cuts in GALEX, SDSS, UKIDSS, and 2MASS color space. Then using the SDSS Data Release 8 spectroscopic database, we construct a sample of 1756 WD+dM high-quality pairs from our color cuts and previous catalogs. We separate the individual WD and dM from each spectrum using an iterative technique that compares the WD and dM components to best-fit templates. Using the absolute height above the Galactic plane as a proxy for age, and the H{alpha} emission line as an indicator for magnetic activity, we investigate the age-activity relation for our sample for spectral types {<=} M7. Our results show that early-type M dwarfs ({<=}M4) in close binary systems are more likely to be active and have longer activity lifetimes compared to their field counterparts. However, at a spectral type of M5 (just past the onset of full convection in M dwarfs), the activity fraction and lifetimes of WD+dM binary systems become more comparable to that of the field M dwarfs. One of the implications of having a close binary companion is presumed to be increased stellar rotation through disk disruption, tidal effects, or angular momentum exchange. Thus, we interpret the similarity in activity behavior between late-type dMs in WD+dM pairs and late-type field dMs to be due to a decrease in sensitivity in close binary companions (or stellar rotation), which has implications for the nature of magnetic activity in fully convective stars. Using the WD components of the pairs, we find WD cooling ages to use as an additional constraint on the age-activity relation for our sample. We find that, on average, active early-type dMs tend to be younger and that active late-type dMs span a much broader age regime making them

  9. The Effects of Close Companions (and Rotation) on the Magnetic Activity of M Dwarfs

    NASA Astrophysics Data System (ADS)

    Morgan, Dylan P.; West, Andrew A.; Garcés, Ane; Catalán, Silvia; Dhital, Saurav; Fuchs, Miriam; Silvestri, Nicole M.

    2012-10-01

    We present a study of close white dwarf and M dwarf (WD+dM) binary systems and examine the effect that a close companion has on the magnetic field generation in M dwarfs. We use a base sample of 1602 white dwarf main-sequence binaries from Rebassa-Mansergas et al. to develop a set of color cuts in GALEX, SDSS, UKIDSS, and 2MASS color space. Then using the SDSS Data Release 8 spectroscopic database, we construct a sample of 1756 WD+dM high-quality pairs from our color cuts and previous catalogs. We separate the individual WD and dM from each spectrum using an iterative technique that compares the WD and dM components to best-fit templates. Using the absolute height above the Galactic plane as a proxy for age, and the Hα emission line as an indicator for magnetic activity, we investigate the age-activity relation for our sample for spectral types <= M7. Our results show that early-type M dwarfs (<=M4) in close binary systems are more likely to be active and have longer activity lifetimes compared to their field counterparts. However, at a spectral type of M5 (just past the onset of full convection in M dwarfs), the activity fraction and lifetimes of WD+dM binary systems become more comparable to that of the field M dwarfs. One of the implications of having a close binary companion is presumed to be increased stellar rotation through disk disruption, tidal effects, or angular momentum exchange. Thus, we interpret the similarity in activity behavior between late-type dMs in WD+dM pairs and late-type field dMs to be due to a decrease in sensitivity in close binary companions (or stellar rotation), which has implications for the nature of magnetic activity in fully convective stars. Using the WD components of the pairs, we find WD cooling ages to use as an additional constraint on the age-activity relation for our sample. We find that, on average, active early-type dMs tend to be younger and that active late-type dMs span a much broader age regime making them

  10. The Effects of Hamstring Stretching on Leg Rotation during Knee Extension.

    PubMed

    Kimura, Atsushi

    2013-06-01

    [Purpose] This study investigated the effects of hamstring stretching on leg rotation during active knee extension. [Subjects] Subjects were 100 bilateral legs of 50 healthy women without articular disease. [Methods] Hamstring hardness, leg rotation and muscle activities of the knee extensors during active knee extension were measured before and after hamstring stretching. [Results] Hamstring hardness was significantly decreased after hamstring stretching. The leg rotation angle, variation in leg rotation angle, variation in leg external rotation angle, and muscle activities of the vastus lateralis and rectus femoris were significantly increased after hamstring stretching. A moderate positive correlation was found between variation in leg rotation and variation in muscle hardness in hamstring. [Conclusion] Leg rotation during active knee extension was increased by hamstring stretching. Hamstring stretching would be effective as a pretreatment for restoring proper leg rotation when knee extension is conducted as a therapeutic exercise.

  11. Rotation sensing with Er3+-doped active ring resonator slow light structure

    NASA Astrophysics Data System (ADS)

    Gu, Hong; Liu, Xiaoqin

    2016-10-01

    An optical gyroscope, which is constituted by Er3+-doped active ring resonator (EDARR) slow light structure, is presented for the first time. The principle of improving the sensitivity of the detection of angular velocity is analysed in detail. The expression of the rotation phase difference of EDARR between the counter-propagating waves is derived and discussed. At the resonant frequency, the phase shift difference has the maximum value when the light power in the cavity is far greater than the input light power. We designed an experimental scheme of Er3+-doped active ring resonator slow light system. Two additional bias phases ϕb = ±π/2 were introduced in the optical path, by recording the light intensity difference ? and I0 at the resonant frequency ?, the input angular velocity can be obtained. The slow light structure based on EDARR can enhance the sensitivity of the detection of the angular velocity by three orders of magnitude.

  12. Thermally activated delayed fluorescence OLEDs with fully solution processed organic layers exhibiting nearly 10% external quantum efficiency.

    PubMed

    Albrecht, Ken; Matsuoka, Kenichi; Yokoyama, Daisuke; Sakai, Yoshiya; Nakayama, Akira; Fujita, Katsuhiko; Yamamoto, Kimihisa

    2017-02-21

    New solution processable and laminatable terminally modified carbazole-triazine thermally activated delayed fluorescence (TADF) dendrimers are reported. An OLED device with fully solution processed organic layers exhibited an external quantum efficiency of up to 9.4% at 100 cd m(-2).

  13. Shoulder rotators electro-mechanical properties change with intensive volleyball practice: a pilot study.

    PubMed

    Cornu, C; Nordez, A; Bideau, B

    2009-12-01

    This pilot study was designed to assess the incidence of high-level volleyball practice on muscle strength production and muscle activation during internal and external shoulder rotations. Seven professional and seven French amateur league volleyball players performed maximal isometric at three forearm angles, concentric and eccentric isokinetic internal and external shoulder rotations. The torque production and muscle activation levels of PECTORALIS MAJOR and INFRASPINATUS were determined. Few significant differences were found for muscle activation and co-activation between amateur and professional volleyball players during both internal and external rotations. No significant difference in torque production was observed for shoulder internal rotation between professional and amateur volleyball players. Torque production was significantly higher during shoulder external rotation for amateur (46.58+/-2.62 N . m) compared to professional (35.35+/-1.17 N . m) volleyball players relative to isometric contractions, but it was not different during isokinetic efforts. The torque ratios for external/internal rotations were always significantly lower for professional (0.42+/-0.03 pooling isometric and concentric conditions) compared to amateur volleyball players (0.56+/-0.03 pooling isometric and concentric conditions). Those results emphasize that a high level of volleyball practice induces a strong external rotators deficit compared to sports such as swimming, baseball or tennis.

  14. Chromospheric activity and rotational modulation on the young, single K2 dwarf LQ Hya

    SciTech Connect

    Cao, Dong-tao; Gu, Sheng-hong

    2014-02-01

    High-resolution echelle spectra of LQ Hya, obtained during several observing runs from 2006 to 2012, have been analyzed to study its chromospheric activity. Using the spectral subtraction technique, we derived information about chromospheric activity of LQ Hya from several optical chromospheric activity indicators (including the H{sub β}, He I D{sub 3}, Na I D{sub 1}, D{sub 2}, H{sub α}, and Ca II infrared triplet (IRT) lines). No optical flares were found during our observations. The equivalent widths (EWs) of the excess emissions in the chromospheric activity lines have been measured. The ratios of EW{sub 8542}/EW{sub 8498} are generally small, which indicates that the Ca II IRT emission arises from plage-like regions, while the E {sub Hα}/E {sub Hβ} values suggest that the emission of the Balmer lines is due to both plage and prominence structures for the observations in 2012. We find that clear rotational modulation of chromospheric emission exists, which suggests the presence and change of chromospheric active regions over the surface of LQ Hya. Moreover, the active regions were associated with the photospheric spots in spatial structure.

  15. Rotationally induced surface slope-instabilities and the activation of CO2 activity on comet 103P/Hartley 2

    NASA Astrophysics Data System (ADS)

    Steckloff, Jordan K.; Graves, Kevin; Hirabayashi, Masatoshi; Melosh, H. Jay; Richardson, James E.

    2016-07-01

    Comet 103P/Hartley 2 has diurnally controlled, CO2-driven activity on the tip of the small lobe of its bilobate nucleus. Such activity is unique among the comet nuclei visited by spacecraft, and suggests that CO2 ice is very near the surface, which is inconsistent with our expectations of an object that thermophysically evolved for ∼45 million years prior to entering the Jupiter Family of comets. Here we explain this pattern of activity by showing that a very plausible recent episode of rapid rotation (rotation period of ∼11 [10-13] h) would have induced avalanches in Hartley 2's currently active regions that excavated down to CO2-rich ices and activated the small lobe of the nucleus. At Hartley 2's current rate of spindown about its principal axis, the nucleus would have been spinning fast enough to induce avalanches ∼3-4 orbits prior to the DIXI flyby (∼1984-1991). This coincides with Hartley 2's discovery in 1986, and implies that the initiation of CO2 activity facilitated the comet's discovery. During the avalanches, the sliding material would either be lofted off the surface by gas activity, or possibly gained enough momentum moving downhill (toward the tip of the small lobe) to slide off the tip of the small lobe. Much of this material would have failed to reach escape velocity, and would reimpact the nucleus, forming debris deposits. The similar size frequency distribution of the mounds observed on the surface of Hartley 2 and chunks of material in its inner coma suggest that the 20-40 m mounds observed by the DIXI mission on the surface of Hartley 2 are potentially these fallback debris deposits. As the nucleus spun down (rotation period increased) from a period of ∼11-18.34 h at the time of the DIXI flyby, the location of potential minima, where materials preferentially settle, migrated about the surface, allowing us to place relative ages on most of the terrains on the imaged portion of the nucleus.

  16. Large-deflection statics analysis of active cardiac catheters through co-rotational modelling.

    PubMed

    Peng Qi; Chen Qiu; Mehndiratta, Aadarsh; I-Ming Chen; Haoyong Yu

    2016-08-01

    This paper presents a co-rotational concept for large-deflection formulation of cardiac catheters. Using this approach, the catheter is first discretized with a number of equal length beam elements and nodes, and the rigid body motions of an individual beam element are separated from its deformations. Therefore, it is adequate for modelling arbitrarily large deflections of a catheter with linear elastic analysis at the local element level. A novel design of active cardiac catheter of 9 Fr in diameter at the beginning of the paper is proposed, which is based on the contra-rotating double helix patterns and is improved from the previous prototypes. The modelling section is followed by MATLAB simulations of various deflections when the catheter is exerted different types of loads. This proves the feasibility of the presented modelling approach. To the best knowledge of the authors, it is the first to utilize this methodology for large-deflection static analysis of the catheter, which will enable more accurate control of robot-assisted cardiac catheterization procedures. Future work would include further experimental validations.

  17. Control of seismic and operational vibrations of rotating machines using semi-active mounts

    NASA Astrophysics Data System (ADS)

    Rana, R.; Soong, T. T.

    2004-06-01

    A dual isolation problem for rotating machines consists of isolation of housing structures from the machine vibrations and protection of machines during an earthquake to maintain their functionality. Desirable characteristics of machine mounts for the above two purposes can differ significantly due to difference in nature of the excitation and performance criteria in the two situations. In this paper, relevant response quantities are identified that may be used to quantify performance and simplified models of rotating machines are presented using which these relevant response quantities may be calculated. Using random vibration approach with a stationary excitation, it is shown that significant improvement in seismic performance is achievable by proper mount design. Results of shaking table experiments performed with a realistic setup using a centrifugal pump are presented. It is concluded that a solution to this dual isolation problem lies in a semi-active mount capable switching its properties from ‘operation-optimum’ to ‘seismic-optimum’ at the onset of a seismic event.

  18. Arylsulphatase activity and sulphate content in relation to crop rotation and fertilization of soil

    NASA Astrophysics Data System (ADS)

    Siwik-Ziomek, Anetta; Lemanowicz, Joanna; Koper, Jan

    2016-07-01

    The aim of the study was to investigate the effect of varying rates of FYM (0, 20, 40, 60 Mg ha-1) and nitrogen N0, N1, N2, and N3 on the content of sulphate sulphur (VI) and the activity of arylsulphatase, which participates in the transformations of this element in Haplic Luvisol. The study report is based on a long-term field experiment with two different crop rotations: A - recognized as exhausting the humus from soil and B - recognized as enriching the soil with humus. During the cultivation of the plants, the soil was sampled four times from corn and a red clover cultivar and grass. The FYM fertilization rate for which the highest arylsulphatase activity and the content of sulphates were identified was 60 Mg ha-1. An inhibitory effect of high rates (90 and 135 kg N ha-1) of ammonium nitrate on the arylsulphatase activity was also observed. A significant correlation between the content of carbon, nitrogen, and sulphates and the arylsulphatase activity was recorded. The investigation on the effect of combined application of farmyard manure and mineral nitrogen fertilization on the activity of arylsulphatase participating in the sulphur cycling was launched to examine the problem in detail.

  19. Effect of an 8-week practice of externally triggered speech on basal ganglia activity of stuttering and fluent speakers.

    PubMed

    Toyomura, Akira; Fujii, Tetsunoshin; Kuriki, Shinya

    2015-04-01

    The neural mechanisms underlying stuttering are not well understood. It is known that stuttering appears when persons who stutter speak in a self-paced manner, but speech fluency is temporarily increased when they speak in unison with external trigger such as a metronome. This phenomenon is very similar to the behavioral improvement by external pacing in patients with Parkinson's disease. Recent imaging studies have also suggested that the basal ganglia are involved in the etiology of stuttering. In addition, previous studies have shown that the basal ganglia are involved in self-paced movement. Then, the present study focused on the basal ganglia and explored whether long-term speech-practice using external triggers can induce modification of the basal ganglia activity of stuttering speakers. Our study of functional magnetic resonance imaging revealed that stuttering speakers possessed significantly lower activity in the basal ganglia than fluent speakers before practice, especially when their speech was self-paced. After an 8-week speech practice of externally triggered speech using a metronome, the significant difference in activity between the two groups disappeared. The cerebellar vermis of stuttering speakers showed significantly decreased activity during the self-paced speech in the second compared to the first experiment. The speech fluency and naturalness of the stuttering speakers were also improved. These results suggest that stuttering is associated with defective motor control during self-paced speech, and that the basal ganglia and the cerebellum are involved in an improvement of speech fluency of stuttering by the use of external trigger.

  20. Use of piezoelectric actuators in active vibration control of rotating machinery

    NASA Technical Reports Server (NTRS)

    Lin, Reng Rong; Palazzolo, Alan B.; Kascak, Albert F.; Montague, Gerald

    1990-01-01

    Theoretical and test results for the development of piezoelectric-actuator-based active vibration control (AVC) are presented. The evolution of this technology starts with an ideal model of the actuator and progresses to a more sophisticated model where the pushers force the squirrel cage ball bearing supports of a rotating shaft. The piezoelectric pushers consist of a stack of piezoelectric ceramic disks that are arranged on top of one another and connected in parallel electrically. This model consists of a prescribed displacement that is proportional to the input voltage and a spring that represents the stiffness of the stack of piezoelectric disks. System tests were carried out to stabilize the AVC system, verify its effectiveness in controlling vibration, and confirm the theory presented.

  1. The host stars of Kepler's habitable exoplanets: superflares, rotation and activity

    NASA Astrophysics Data System (ADS)

    Armstrong, D. J.; Pugh, C. E.; Broomhall, A.-M.; Brown, D. J. A.; Lund, M. N.; Osborn, H. P.; Pollacco, D. L.

    2016-01-01

    We embark on a detailed study of the light curves of Kepler's most Earth-like exoplanet host stars using the full length of Kepler data. We derive rotation periods, photometric activity indices, flaring energies, mass-loss rates, gyrochronological ages, X-ray luminosities and consider implications for the planetary magnetospheres and habitability. Furthermore, we present the detection of superflares in the light curve of Kepler-438, the exoplanet with the highest Earth Similarity Index to date. Kepler-438b orbits at a distance of 0.166 au to its host star, and hence may be susceptible to atmospheric stripping. Our sample is taken from the Habitable Exoplanet Catalogue, and consists of the stars Kepler-22, Kepler-61, Kepler-62, Kepler-174, Kepler-186, Kepler-283, Kepler-296, Kepler-298, Kepler-438, Kepler-440, Kepler-442, Kepler-443 and KOI-4427, between them hosting 15 of the most habitable transiting planets known to date from Kepler.

  2. Ca II activity and rotation in F-K evolved stars

    NASA Astrophysics Data System (ADS)

    Pasquini, L.; de Medeiros, J. R.; Girardi, L.

    2000-09-01

    Ca II H and K high resolution observations for 60 evolved stars in the field and in 5 open clusters are presented. From these spectra chromospheric fluxes are derived, and a homogeneous sample of more than 100 giants is built adding data from the literature. In addition, for most stars, rotational velocities were derived from CORAVEL observations. By comparing chromospheric emission in the cluster stars we confirm the results of Pasquini & Brocato (1992): chromospheric activity depends on the stellar effective temperature, and mass, when intermediate mass stars (M ~ 4 Msun) are considered. The Hyades and the Praesepe clump giants show the same level of activity, as expected from stars with similar masses and effective temperatures. A difference of up to 0.4 dex in the chromospheric fluxes among the Hyades giants is recorded and this sets a clear limit to the intrinsic spread of stellar activity in evolved giants. These differences in otherwise very similar stars are likely due to stellar cycles and/or differences in the stellar initial angular momentum. Among the field stars none of the giants with (V-R)o < 0.4 and Ia supergiants observed shows a signature of Ca II activity; this can be due either to the real absence of a chromosphere, but also to other causes which preclude the appearance of Ca II reversal. By analyzing the whole sample we find that chromospheric activity scales linearly with stellar rotational velocity and a high power of stellar effective temperature: F'k ~ Teff7.7 (Vsini)0.9. This result can be interpreted as the effect of two chromospheric components of different nature: one mechanical and one magnetic. Alternatively, by using the Hipparcos parallaxes and evolutionary tracks, we divide the sample according to the stellar masses, and we follow the objects along an evolutionary track. For each range of masses activity can simply be expressed as a function of only one parameter: either the Teff or the angular rotation Omega , with laws F

  3. Time-series Doppler imaging of the red giant HD 208472. Active longitudes and differential rotation

    NASA Astrophysics Data System (ADS)

    Özdarcan, O.; Carroll, T. A.; Künstler, A.; Strassmeier, K. G.; Evren, S.; Weber, M.; Granzer, T.

    2016-10-01

    Context. HD 208472 is among the most active RS CVn binaries with cool starspots. Decade-long photometry has shown that the spots seem to change their longitudinal appearance with a period of about six years, coherent with brightness variations. Aims: Our aim is to spatially resolve the stellar surface of HD 208472 and relate the photometric results to the true longitudinal and latitudinal spot appearance. Furthermore, we investigate the surface differential rotation pattern of the star. Methods: We employed three years of high-resolution spectroscopic data with a high signal-to-noise ratio (S/N) from the STELLA robotic observatory and determined new and more precise stellar physical parameters. Precalculated synthetic spectra were fit to each of these spectra, and we provide new spot-corrected orbital elements. A sample of 34 absorption lines per spectrum was used to calculate mean line profiles with a S/N of several hundred. A total of 13 temperature Doppler images were reconstructed from these line profiles with the inversion code iMap. Differential rotation was investigated by cross-correlating successive Doppler images in each observing season. Results: Spots on HD 208472 are distributed preferably at high latitudes and less frequently around mid-to-low latitudes. No polar-cap like structure is seen at any epoch. We observed a flip-flop event between 2009 and 2010, manifested as a flip of the spot activity from phase 0.0 to phase 0.5, while the overall brightness of the star continued to increase and reached an all-time maximum in 2014. Cross-correlation of successive Doppler images suggests a solar-like differential rotation that is ≈15 times weaker than that of the Sun. Based on data obtained with the STELLA robotic telescope in Tenerife, an AIP facility jointly operated by AIP and IAC, and the Potsdam Automatic Photoelectric Telescopes (APT) in Arizona, jointly operated by AIP and Fairborn Observatory.Radial velocity measurements are only available at the

  4. Sub-soil microbial activity under rotational cotton crops in Australia

    NASA Astrophysics Data System (ADS)

    Polain, Katherine; Knox, Oliver; Wilson, Brian; Pereg, Lily

    2016-04-01

    Soil microbial communities contribute significantly to soil organic matter formation, stabilisation and destabilisation, through nutrient cycling and biodegradation. The majority of soil microbial research examines the processes occurring in the top 0 cm to 30 cm of the soil, where organic nutrients are easily accessible. In soils such as Vertosols, the high clay content causes swelling and cracking. When soil cracking is coupled with rain or an irrigation event, a flush of organic nutrients can move down the soil profile, becoming available for subsoil microbial community use and potentially making a significant contribution to nutrient cycling and biodegradation in soils. At present, the mechanisms and rates of soil nutrient turnover (such as carbon and nitrogen) at depth under cotton rotations are mostly speculative and the process-response relationships remain unclear, although they are undoubtedly underpinned by microbial activity. Our research aims to determine the contribution and role of soil microbiota to the accumulation, cycling and mineralisation of carbon and nitrogen through the whole root profile under continuous cotton (Gossypium hirsutum) and cotton-maize rotations in regional New South Wales, Australia. Through seasonal work, we have established both baseline and potential microbial activity rates from 0 cm to 100 cm down the Vertosol profile, using respiration and colourimetric methods. Further whole soil profile analyses will include determination of microbial biomass and isotopic carbon signatures using phospholipid fatty acid (PLFA) methodology, identification of microbial communities (sequencing) and novel experiments to investigate potential rates of nitrogen mineralisation and quantification of associated genes. Our preliminary observations and the hypotheses tested in this three-year study will be presented.

  5. Modeling the Effect of External Carbon Source Addition under Different Electron Acceptor Conditions in Biological Nutrient Removal Activated Sludge Systems.

    PubMed

    Hu, Xiang; Wisniewski, Kamil; Czerwionka, Krzysztof; Zhou, Qi; Xie, Li; Makinia, Jacek

    2016-02-16

    The aim of this study was to expand the International Water Association Activated Sludge Model No. 2d (ASM2d) to predict the aerobic/anoxic behavior of polyphosphate accumulating organisms (PAOs) and "ordinary" heterotrophs in the presence of different external carbon sources and electron acceptors. The following new aspects were considered: (1) a new type of the readily biodegradable substrate, not available for the anaerobic activity of PAOs, (2) nitrite as an electron acceptor, and (3) acclimation of "ordinary" heterotrophs to the new external substrate via enzyme synthesis. The expanded model incorporated 30 new or modified process rate equations. The model was evaluated against data from several, especially designed laboratory experiments which focused on the combined effects of different types of external carbon sources (acetate, ethanol and fusel oil) and electron acceptors (dissolved oxygen, nitrate and nitrite) on the behavior of PAOs and "ordinary" heterotrophs. With the proposed expansions, it was possible to improve some deficiencies of the ASM2d in predicting the behavior of biological nutrient removal (BNR) systems with the addition of external carbon sources, including the effect of acclimation to the new carbon source.

  6. Dysregulated Coherence of Subjective and Cardiac Emotional Activation in Adolescents with Internalizing and Externalizing Problems

    ERIC Educational Resources Information Center

    Hastings, Paul D.; Nuselovici, Jacob N.; Klimes-Dougan, Bonnie; Kendziora, Kimberly T.; Usher, Barbara A.; Ho, Moon-Ho R.; Zahn-Waxler, Carolyn

    2009-01-01

    Background: Effective emotion regulation should be reflected in greater coherence between physiological and subjective aspects of emotional responses. Method: Youths with normative to clinical levels of internalizing problems (IP) and externalizing problems (EP) watched emotionally evocative film-clips while having heart rate (HR) recorded, and…

  7. 42 CFR 438.358 - Activities related to external quality review.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS MANAGED CARE External Quality Review § 438.358... quality of care. (3) Calculation of performance measures in addition to those reported by an MCO or PIHP... conducted by an MCO or PIHP and validated by an EQRO. (5) Conduct of studies on quality that focus on...

  8. Light intensity exposure, sleep duration, physical activity, and biomarkers of melatonin among rotating shift nurses.

    PubMed

    Grundy, Anne; Sanchez, Maria; Richardson, Harriet; Tranmer, Joan; Borugian, Marilyn; Graham, Charles H; Aronson, Kristan J

    2009-10-01

    Long-term, night shiftwork has been identified as a potential carcinogenic risk factor. It is hypothesized that increased light at night exposure during shiftwork reduces melatonin production, which is associated with increased cancer risk. Sleep duration has been hypothesized to influence both melatonin levels and cancer risk, and it has been suggested that sleep duration could be used as a proxy for melatonin production. Finally, physical activity has been shown to reduce cancer risk, and laboratory studies indicate it may influence melatonin levels. A cross-sectional study of light exposure, sleep duration, physical activity, and melatonin levels was conducted among 61 female rotating shift nurses (work schedule: two 12 h days, two 12 h nights, five days off). Light intensity was measured using a light-intensity data logger, and sleep duration and physical activity were self-reported in a study diary and questionnaire. Melatonin concentrations were measured from urine and saliva samples. The characteristics of nurses working day and night shifts were similar. Light intensity was significantly higher during sleep for those working at night (p< 0.0001), while urinary melatonin levels following sleep were significantly higher among those working days (p = 0.0003). Mean sleep duration for nurses working during the day (8.27 h) was significantly longer than for those working at night (4.78 h, p< 0.0001). An inverse association (p = 0.002) between light exposure and urinary melatonin levels was observed; however, this was not significant when stratified by shift group. There was no significant correlation between sleep duration and melatonin, and no consistent relationship between physical activity and melatonin. Analysis of salivary melatonin levels indicated that the circadian rhythms of night workers were not altered, meaning peak melatonin production occurred at night. This study indicates that two nights of rotating shift work may not change the timing of

  9. Cortical activation during mental rotation in male-to-female and female-to-male transsexuals under hormonal treatment.

    PubMed

    Carrillo, Beatriz; Gómez-Gil, Esther; Rametti, Giuseppina; Junque, Carme; Gomez, Angel; Karadi, Kazmer; Segovia, Santiago; Guillamon, Antonio

    2010-09-01

    There is strong evidence of sex differences in mental rotation tasks. Transsexualism is an extreme gender identity disorder in which individuals seek cross-gender treatment to change their sex. The aim of our study was to investigate if male-to-female (MF) and female-to-male (FM) transsexuals receiving cross-sex hormonal treatment have different patterns of cortical activation during a three-dimensional (3D) mental rotation task. An fMRI study was performed using a 3-T scan in a sample of 18 MF and 19 FM under chronic cross-sex hormonal treatment. Twenty-three males and 19 females served as controls. The general pattern of cerebral activation seen while visualizing the rotated and non-rotated figures was similar for all four groups showing strong occipito-parieto-frontal brain activation. However, compared to control males, the activation of MF transsexuals during the task was lower in the superior parietal lobe. Compared to control females, MF transsexuals showed higher activation in orbital and right dorsolateral prefrontal regions and lower activation in the left prefrontal gyrus. FM transsexuals did not differ from either the MF transsexual or control groups. Regression analyses between cerebral activation and the number of months of hormonal treatment showed a significant negative correlation in parietal, occipital and temporal regions in the MF transsexuals. No significant correlations with time were seen in the FM transsexuals. In conclusion, although we did not find a specific pattern of cerebral activation in the FM transsexuals, we have identified a specific pattern of cerebral activation during a mental 3D rotation task in MF transsexuals under cross-sex hormonal treatment that differed from control males in the parietal region and from control females in the orbital prefrontal region. The hypoactivation in MF transsexuals in the parietal region could be due to the hormonal treatment or could reflect a priori cerebral differences between MF transsexual

  10. Adsorption behavior of pesticide methomyl on activated carbon in a high gravity rotating packed bed reactor.

    PubMed

    Chang, Chiung-Fen; Lee, Shu-Chi

    2012-06-01

    High gravity rotating packed bed (HGRPB) reactor possesses the property of high mass transfer rate, which is expected to promote the adsorption rate for the process. In this study, HGRPB has been applied on adsorption removal of methomyl from solution, adopting the adsorbent of activated carbon F400. The influence of operating parameters of HGRPB on mass transfer such as the rotating speed (N(R)), the flow rate of solution (F(L)) and initial concentration of methomyl (C(b0)) were examined. The traditionally internal mass transfer models combined with Freundlich isotherm were used to predict the surface and effective diffusion coefficients. In addition, the results have also been compared with those obtained from the traditional basket stirred batch reactor (BBR). The results showed that the larger values of N(R) and F(L) enhanced the effective intraparticle diffusion and provided more accessible adsorption sites so as to result in lower equilibrium concentration in HGRPB system when compared to SBR system. The results of adsorption kinetics demonstrated that surface and effective diffusions were both significantly greater in HGRPB system instead of BBR system. Furthermore, the values of Bi(S) also manifested less internal mass transfer resistance in HGRPB system. The contribution ratio (R(F)) of the surface to pore diffusion mass transport showed that the larger contribution resulted from the surface diffusion in HGRPB system. Therefore, the results reasonably led to the conclusion that when the HGRPB system applied on the adsorption of methomyl on F400, the lower equilibrium concentration and faster internal mass transfer can be obtained so as to highly possess great potential to match the gradually stricter environmental standard.

  11. The seven sisters DANCe. II. Proper motions and the lithium rotation-activity connection for G and K Pleiades

    NASA Astrophysics Data System (ADS)

    Barrado, D.; Bouy, H.; Bouvier, J.; Moraux, E.; Sarro, L. M.; Bertin, E.; Cuillandre, J.-C.; Stauffer, J. R.; Lillo-Box, J.; Pollock, A.

    2016-12-01

    Context. Stellar clusters open the window to understanding stellar evolution and, in particular, the change with time and the dependence on mass of different stellar properties. As such, stellar clusters act as laboratories where different theories can be tested. Aims: We try to understand the origin of the connection between lithium depletion in F, G, and K stars, rotation and activity in the Pleiades open cluster. Methods: We have collected all the relevant data in the literature, including information regarding rotation period, binarity, and activity, and cross-matched this data with proper motions, multiwavelength photometry, and membership probability from the DANCe database. To avoid biases, we only included single members of the Pleiades with probabilities larger than 75% in the discussion. Results: The analysis confirms that there is a strong link between activity, rotation, and the lithium equivalent width excess, especially for the range Lum(bol) = 0.5-0.2L⊙ (about K2-K7 spectral types or 0.75-0.95 M⊙). Conclusions: It is not possible to disentangle these effects, but we cannot exclude that the observed lithium overabundance is partially an observational effect from enhanced activity owing to a large coverage by stellar spots induced by high rotation rates. Since a bona fide lithium enhancement is present in young, fast rotators, both activity and rotation should play a role in the lithium problem. Tables 1-3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/596/A113

  12. Experimental study on the hemostatc activity of Pollen Typhae: a traditional folk medicine used by external and oral application.

    PubMed

    Ohkura, Naoki; Tamura, Koichiro; Tanaka, Ayako; Matsuda, Juzo; Atsumi, Gen-ichi

    2011-12-01

    Pollen Typhae is the traditional Chinese herbal medicine widely used to treat the hemorrhagic diseases both by external and oral application. The present study examines the hemostatic properties and its components of Pollen Typhae. Pollen extract significantly reduced prothrombin time (PT), activated partial prothrombin time (APTT) and recalcification time. Pollen extract directly activated factor XII in the coagulation cascade. Acidic polysaccharide in the pollen that adsorbed to the diethylaminoethyl (DEAE) column was the causative agent of factor XII activation. These results suggested that an electronegative charge attributed to an acidic polysaccharide in the pollen extract contributed to the hemostatic activity. We then examined the hemostatic activity of administered pollen extract in the mouse tail bleeding model. Tail bleeding was significantly decreased after oral administration of the pollen extract, whereas the acidic polysaccharide fraction did not affect the duration of tail bleeding. These results suggest that the oral anticoagulant effect of Pollen Typhae is attributed to compounds other than acidic polysaccharides. We concluded that the activation of the intrinsic coagulation pathway by the acidic polysaccharide contributes to the external hemostatic property of Pollen Typhae, and the action of components such as flavonoids that possess anticoagulant activity are causative agent when orally administered.

  13. Active Graphene-Based Terahertz Dual-Band Modulator Implemented in the Presence of External Fields

    NASA Astrophysics Data System (ADS)

    Hu, Xiang; Huang, Qiuping; Zhao, Yi; Cai, Honglei; Lu, Yalin

    2017-01-01

    In this work, we numerically demonstrate a dynamic graphene-based dual-band metamaterial modulator (gDMM) in the presence of an external magnetic field and gate electric field. With the objective of modulating terahertz waves at two separate channels, we utilize the proposed dual-field control method to dynamically modulate the optical conductivity of graphene, and thus the working frequencies of the gDMM. An interpretation for such dependence on the external fields is presented based on a quantum understanding of the energy structure of graphene, and a numerical method based on the finite element method (FEM) is employed to investigate the optical responses of our proposed gDMM. Our results show that, by varying the strength of external fields, one can switch the operation status of the two working channels located at 3.18 THz and 9.04 THz, with modulation depths exceeding 84.4%. Only 30 meV of energy is required for shifting the Fermi level to accomplish the switch, which is extremely low compared with methods in previous works using gate electric control alone. Simultaneous ON/OFF statuses are also realized. Such great tunability and controllability of our proposed gDMM over a wide frequency range may give rise to a new class of dynamic devices for terahertz and microwave applications.

  14. Ruthenium-based olefin metathesis catalysts bearing pH-responsive ligands: External control of catalyst solubility and activity

    NASA Astrophysics Data System (ADS)

    Balof, Shawna Lynn

    2011-12-01

    Sixteen novel, Ru-based olefin metathesis catalysts bearing pH responsive ligands were synthesized. The pH-responsive groups employed with these catalysts included dimethylamino (NMe2) modified NHC ligands as well as N-donor dimethylaminopyridine (DMAP) and 3-(o-pyridyl)propylidene ligands. These pH-responsive ligands provided the means by which the solubility and/or activity profiles of the catalysts produced could be controlled via acid addition. The main goal of this dissertation was to design catalyst systems capable of performing ring opening metathesis (ROMP) and ring closing metathesis (RCM) reactions in both organic and aqueous media. In an effort to quickly gain access to new catalyst structures, a template synthesis for functionalized NHC ligand precursors was designed, in addition to other strategies, to obtain ligand precursors with ancillary NMe2 groups. Kinetic studies for the catalysts produced from these precursors showed external control of catalyst solubility was afforded via protonation of the NMe2 groups of their NHC ligands. Additionally, this protonation afforded external control of catalyst propagation rates for several catalysts. This is the first known independent external control for the propagation rates of ROMP catalysts. The incorporation of pH-responsive N-donor ligands into catalyst structures also provided the means for the external control of metathesis activity, as the protonation of these ligands resulted in an increased initiation rate based on their fast and irreversible dissociation from the metal center. The enhanced external control makes these catalysts applicable to a wide range of applications, some of which have been explored by us and/or through collaboration. Three of the catalysts designed showed remarkable metathesis activity in aqueous media. These catalysts displayed comparable RCM activity in aqueous media to a class of water-soluble catalysts reported by Grubbs et al., considered to be the most active catalyst for

  15. Efficacy and safety of active silicone oil removal through a 23-gauge transconjunctival cannula using an external vacuum pump

    PubMed Central

    Oh, Hyun Ju; Chang, Woohyok; Sagong, Min

    2015-01-01

    AIM To evaluate the efficacy and safety of active removal of silicone oil with low and high viscosity through a 23-gauge transconjunctival cannula using an external vacuum pump. METHODS This study was conducted as a prospective, interventional case series. A total of 22 eyes of 21 patients [1000 centistokes (cSt): 17 eyes, 5700 cSt: 5 eyes] were included in this study. All patients underwent active silicone oil removal via the entire lumen of a 23-gauge microcannula with suction pressure of a 650-700 mm Hg vacuum using an external vacuum pump. A tubing adaptor from the Total Plus Pak® (Alcon, Fort Worth, USA) was used to join the microcannula and silicone vacuum tube connected to an external vacuum pump. Main outcome measures were mean removal time, changes of intraocular pressure (IOP) and visual acuity, and intraoperative and postoperative complications. RESULTS Mean removal time (min) was 1.49±0.43 for 1000 cSt and 7.12±1.27 for 5700 cSt. The IOP was 18.57±7.48 mm Hg at baseline, 11.68±4.55 mm Hg at day 1 postoperatively (P<0.001), and 15.95±4.92, 16.82±3.81, 17.41±3.50, and 17.09±3.01 mm Hg after one week, one month, three months, and six months, respectively. All patients showed improved or stabilized visual acuity. There was no occurrence of intraoperative or postoperative complications during the follow up period. CONCLUSION This technique for active removal of silicone oil through a 23-gauge cannula using an external vacuum pump is fast, effective, and safe as well as economical for silicone oil with both low and high viscosity in all eyes with pseudophakia, aphakia, or phakia. PMID:25938054

  16. Integrating Structured Learning and Scholarly Activities into Clerkship Rotations: A Win-Win for Students and Preceptors.

    PubMed

    Miller, Stephannie; Fulton, Judith; Mostow, Eliot

    2014-05-01

    Objective: To merge scholarly activity into the curriculum developed for medical students electing a rotation in wound care and/or dermatology. Approach: The authors adapted the unique wound care curriculum developed for medical student rotators and residents to incorporate structured scholarly projects, opportunities for mentorship, and feedback for continued improvement. Results: Benefits have been observed to both students and to the clinic, as reflected by online survey results, increased productivity in the form of posters and manuscripts, and opportunities for professional networking. Discussion: Rotations and clerkships can be transformed from haphazard, bystander observational experiences to active participation that enhances comprehension and retention, while also providing benefits to preceptors. Innovation: Integration between research, education, and clinical activities in a structured way can provide opportunity for enhanced learning experiences and promote the concept of evidence-based practice. Conclusion: With observed benefits to students, researchers, and staff in this clinical setting, other clerkship rotation settings should consider an integrated and structured approach to learning, which includes scholarly activities. Further rigorous program evaluation is necessary to further quantify preliminary positive feedback regarding this approach.

  17. Effect of Modeling-Based Activities Developed Using Virtual Environments and Concrete Objects on Spatial Thinking and Mental Rotation Skills

    ERIC Educational Resources Information Center

    Yurt, Eyup; Sunbul, Ali Murat

    2012-01-01

    In this study, the effect of modeling based activities using virtual environments and concrete objects on spatial thinking and mental rotation skills was investigated. The study was designed as a pretest-posttest model with a control group, which is one of the experimental research models. The study was carried out on sixth grade students…

  18. Rotation of nucleotide sites is not required for the enzymatic activity of chloroplast coupling factor

    SciTech Connect

    Musier, K.M.; Hammes, G.G.

    1987-09-22

    New heterobifunctional photoaffinity cross-linking reagents, 6-maleimido-N-(4-benzoylphenyl)hexanamide, 12-maleimido-N-(4-benzoylphenyl)dodecanamide, and 12-(/sup 14/C)maleimido-N-(4-benzoylphenyo)dodecanamide, were synthesized to investigate the mechanism of ATP hydrolysis by chloroplast coupling factor 1. These reagents react with sulfhydryl groups on the ..gamma..-polypeptide. Subsequent photolysis cross-links the ..gamma..-polypeptide covalently to ..cap alpha..- and ..beta..-polypeptides. The cross-linkers prevent major movements of the ..gamma..-polypeptide with respect to the ..cap alpha..- and ..beta..-polypeptides but are sufficiently long to permit some flexibility in the enzyme structure. When approx. 50% of the ..gamma..-polypeptide was cross-linked to a ..cap alpha..- and ..beta..-polypeptides, a 7% loss in ATPase activity was observed for the longer cross-linker and a 12% loss for the shorter. These results indicate that large movements of ..cap alpha..- and ..beta..-polypeptides with respect to the ..gamma..-polypeptide are not essential for catalysis. In particular, rotation of the polypeptide chains to crease structurally equivalent sites during catalysis is not a required feature of the enzyme mechanism.

  19. Rotational-modulation mapping of the active atmosphere of the RS Canum Venaticorum binary HD 106225

    NASA Astrophysics Data System (ADS)

    Strassmeier, K. G.

    1994-01-01

    Observations of rotational modulation of photospheric absorption lines, chromospheric emission lines, and the continuum brightness of the RS CVn binary HD 106225 Pord = 10.4 days) are reported. From Doppler imaging of four photosperic lines we obtain the surface temperatures distribution at two observing epochs in 1991. Spot temperatures on HD 106225 were determined from three different proxy indicators (photometric broad-band colors, line-depth ratios, and line-profile shapes) and yield values between 1000-1500 K. Simultaneous Ca II H and K and H-alpha line-profile variations provide some clues on the spatial relation between the temperature distribution of the photosphere and the location of active regions in the chromosphere and we present, for the first time, a crude three-dimensional picture of a stellar atmosphere. Simultaneous and contemporaneous UBV photometry is used to trace the evolution of spotted regions in 1991. We applied a time-series spot modeling code and found a fairly stable spot configuration with two major spots. Only small and sporadic spot-area changes were present in 1991, which likely are unrelated to a long-term cycle.

  20. A dynamo model of magnetic activity in solar-like stars with different rotational velocities

    SciTech Connect

    Karak, Bidya Binay; Choudhuri, Arnab Rai; Kitchatinov, Leonid L.

    2014-08-10

    We attempt to provide a quantitative theoretical explanation for the observations that Ca II H/K emission and X-ray emission from solar-like stars increase with decreasing Rossby number (i.e., with faster rotation). Assuming that these emissions are caused by magnetic cycles similar to the sunspot cycle, we construct flux transport dynamo models of 1 M{sub ☉} stars rotating with different rotation periods. We first compute the differential rotation and the meridional circulation inside these stars from a mean-field hydrodynamics model. Then these are substituted in our dynamo code to produce periodic solutions. We find that the dimensionless amplitude f{sub m} of the toroidal flux through the star increases with decreasing rotation period. The observational data can be matched if we assume the emissions to go as the power 3-4 of f{sub m}. Assuming that the Babcock-Leighton mechanism saturates with increasing rotation, we can provide an explanation for the observed saturation of emission at low Rossby numbers. The main failure of our model is that it predicts an increase of the magnetic cycle period with increasing rotation rate, which is the opposite of what is found observationally. Much of our calculations are based on the assumption that the magnetic buoyancy makes the magnetic flux tubes rise radially from the bottom of the convection zone. Taking into account the fact that the Coriolis force diverts the magnetic flux tubes to rise parallel to the rotation axis in rapidly rotating stars, the results do not change qualitatively.

  1. The flexion–rotation test performed actively and passively: a comparison of range of motion in patients with cervicogenic headache

    PubMed Central

    Bravo Petersen, Shannon M.; Vardaxis, Vassilios G.

    2015-01-01

    Limitation in cervical spine range of motion (ROM) is one criterion for diagnosis of cervicogenic headaches (CHs). The flexion–rotation test, when performed passively (FRT-P), has been shown to be a useful test in diagnosis of CH. Few investigations have examined the flexion-rotation test when performed actively (FRT-A) by the individual, and no studies have examined the FRT-A in a symptomatic population. The purpose of this study was to compare ROM during the FRT-A and FRT-P in patients with CH and asymptomatic individuals and to compare ROM between sides for these two versions of the test. Twelve patients with CH and 10 asymptomatic participants were included in the study. An eight-camera Motion Analysis system was used to measure head motion relative to the trunk during the FRT-P and the FRT-A. Cervical rotation ROM was measured in a position of full cervical flexion for both tests. No significant difference was observed between right and left sides for cervical rotation ROM during the FRT-P nor the FRT-A when performed by asymptomatic participants. In patients with CH, a significant difference was observed between sides for the FRT-P (P = 0.014); however, the FRT-A failed to reveal bilateral descrepancy in rotation ROM. PMID:26109826

  2. M Dwarf Activity in the Pan-STARRS1 Medium-Deep Survey: First Catalog and Rotation Periods

    NASA Astrophysics Data System (ADS)

    Kado-Fong, E.; Williams, P. K. G.; Mann, A. W.; Berger, E.; Burgett, W. S.; Chambers, K. C.; Huber, M. E.; Kaiser, N.; Kudritzki, R.-P.; Magnier, E. A.; Rest, A.; Wainscoat, R. J.; Waters, C.

    2016-12-01

    We report on an ongoing project to investigate activity in the M dwarf stellar population observed by the Pan-STARRS1 Medium-Deep Survey (PS1-MDS). Using a custom-built pipeline, we refine an initial sample of ˜4 million sources in PS1-MDS to a sample of 184,148 candidate cool stars using color cuts. Motivated by the well-known relationship between rotation and stellar activity, we use a multiband periodogram analysis and visual vetting to identify 270 sources that are likely rotating M dwarfs. We derive a new set of polynomials relating M dwarf PS1 colors to fundamental stellar parameters and use them to estimate the masses, distances, effective temperatures, and bolometric luminosities of our sample. We present a catalog containing these values, our measured rotation periods, and cross-matches to other surveys. Our final sample spans periods of ≲1-130 days in stars with estimated effective temperatures of ˜2700-4000 K. Twenty-two of our sources have X-ray cross-matches, and they are found to be relatively X-ray bright as would be expected from selection effects. Our data set provides evidence that Kepler-based searches have not been sensitive to very slowly rotating stars (P rot ≳ 70 day), implying that the observed emergence of very slow rotators in studies of low-mass stars may be a systematic effect. We also see a lack of low-amplitude (<2%) variability in objects with intermediate (10-40 day) rotation periods, which, considered in conjunction with other observational results, may be a signpost of a loss of magnetic complexity associated with a phase of rapid spin-down in intermediate-age M dwarfs. This work represents just a first step in exploring stellar variability in data from the PS1-MDS and, in the farther future, Large Synoptic Survey Telescope.

  3. External copper inhibits the activity of the large-conductance calcium- and voltage-sensitive potassium channel from skeletal muscle.

    PubMed

    Morera, F J; Wolff, D; Vergara, C

    2003-03-01

    We have characterized the effect of external copper on the gating properties of the large-conductance calcium- and voltage-sensitive potassium channel from skeletal muscle, incorporated into artificial bilayers. The effect of Cu2+ was evaluated as changes in the gating kinetic properties of the channel after the addition of this ion. We found that, from concentrations of 20 microM and up, copper induced a concentration- and time-dependent decrease in channel open probability. The inhibition of channel activity by Cu2+ could not be reversed by washing or by addition of the copper chelator, bathocuproinedisulfonic acid. However, channel activity was appreciably restored by the sulfhydryl reducing agent dithiothreitol. The effect of copper was specific since other transition metal divalent cations such as Ni2+, Zn2+ or Cd2+ did not affect BK(Ca) channel activity in the same concentration range. These results suggest that external Cu2+-induced inhibition of channel activity was due to direct or indirect oxidation of key amino-acid sulfhydryl groups that might have a role in channel gating.

  4. Thrombus imaging in a primate model with antibodies specific for an external membrane protein of activated platelets

    SciTech Connect

    Palabrica, T.M.; Furie, B.C.; Konstam, M.A.; Aronovitz, M.J.; Connolly, R.; Brockway, B.A.; Ramberg, K.L.; Furie, B.

    1989-02-01

    The activated platelet is a potential target for the localization of thrombi in vivo since, after stimulation and secretion of granule contents, activated platelets are concentrated at sites of blood clot formation. In this study, we used antibodies specific for a membrane protein of activated platelets to detect experimental thrombi in an animal model. PADGEM (platelet activation-dependent granule-external membrane protein), a platelet alpha-granule membrane protein, is translocated to the plasma membrane during platelet activation and granule secretion. Since PADGEM is internal in unstimulated platelets, polyclonal anti-PADGEM and monoclonal KC4 antibodies do not bind to circulating resting platelets but do interact with activated platelets. Dacron graft material incubated with radiolabeled KC4 or anti-PADGEM antibodies in the presence of thrombin-activated platelet-rich plasma bound most of the antibody. Imaging experiments with 123I-labeled anti-PADGEM in baboons with an external arterial-venous Dacron shunt revealed rapid uptake in the thrombus induced by the Dacron graft; control experiments with 123I-labeled nonimmune IgG exhibited minimal uptake. Deep venous thrombi, formed by using percutaneous balloon catheters to stop blood flow in the femoral vein of baboons, were visualized with 123I-labeled anti-PADGEM. Thrombi were discernible against blood pool background activity without subtraction techniques within 1 hr. No target enhancement was seen with 123I-labeled nonimmune IgG. 123I-labeled anti-PADGEM cleared the blood pool with an initial half-disappearance time of 6 min and did not interfere with hemostasis. These results indicate that radioimmunoscintigraphy with anti-PADGEM antibodies can visualize thrombi in baboon models and is a promising technique for clinical thrombus detection in humans.

  5. External corrosion of line pipe -- A summary of research activities performed since 1983

    SciTech Connect

    Jack, T.R.; Wilmott, M.J.; Sutherby, R.L.; Worthington, R.G.

    1995-11-01

    External corrosion is a major threat to the integrity of gas transmission systems. This paper reviews corrosion and environmental cracking problems and their control based on more than twelve years of field and laboratory research work performed by a major Canadian gas transmission company. To protect against corrosion the company uses a dual system consisting of protective coatings and cathodic protection. Either of these systems operating properly can provide the protection necessary to prevent leaks and ruptures in line pipe. In some situations however coatings can fail in such a way as to shield a corrosion cell on the pipe surface under degraded coating from cathodic protection. Where the protective systems are thwarted, a variety of corrosion and cracking scenarios can lead to leaks and ruptures. These scenarios will be identified and assessed in terms of where they occur as well as their frequency and seriousness.

  6. Cells as Active Particles in Asymmetric Potentials: Motility under External Gradients

    PubMed Central

    Comelles, Jordi; Caballero, David; Voituriez, Raphaël; Hortigüela, Verónica; Wollrab, Viktoria; Godeau, Amélie Luise; Samitier, Josep; Martínez, Elena; Riveline, Daniel

    2014-01-01

    Cell migration is a crucial event during development and in disease. Mechanical constraints and chemical gradients can contribute to the establishment of cell direction, but their respective roles remain poorly understood. Using a microfabricated topographical ratchet, we show that the nucleus dictates the direction of cell movement through mechanical guidance by its environment. We demonstrate that this direction can be tuned by combining the topographical ratchet with a biochemical gradient of fibronectin adhesion. We report competition and cooperation between the two external cues. We also quantitatively compare the measurements associated with the trajectory of a model that treats cells as fluctuating particles trapped in a periodic asymmetric potential. We show that the cell nucleus contributes to the strength of the trap, whereas cell protrusions guided by the adhesive gradients add a constant tunable bias to the direction of cell motion. PMID:25296303

  7. Rotating gravity gradiometer study

    NASA Technical Reports Server (NTRS)

    Forward, R. L.

    1982-01-01

    Two rotating gravity gradiometer (RGG) sensors, along with all the external electronics needed to operate them, and the fixtures and special test equipment needed to fill and align the bearings, were assembled in a laboratory, and inspected. The thermal noise threshold of the RGG can be lowered by replacing a damping resistor in the first stage electronics by an active artificial resistor that generates less random voltage noise per unit bandwidth than the Johnson noise from the resistor it replaces. The artificial resistor circuit consists of an operational amplifier, three resistors, and a small DC to DC floating power supply. These are small enough to be retrofitted to the present circuit boards inside the RGG rotor in place of the 3 Megohm resistor. Using the artificial resistor, the thermal noise of the RGG-2 sensor can be lowered from 0.3 Eotvos to 0.15 Eotvos for a 10 sec integration time.

  8. Calibrating the Age-Rotation-Activity Relation in Low-Mass Stars: Chromospheric and Coronal Activity in the 500 Myr-old M37 Open Cluster

    NASA Astrophysics Data System (ADS)

    Núñez, Alejandro; Agueros, Marcel A.

    2017-01-01

    In low-mass stars, the strength of the magnetic dynamo decreases over time as stars spin down through the loss of angular momentum via magnetized winds. Both coronal X-ray emission and chromospheric Hα emission trace the strength of the changing dynamo and, when combined with rotation periods in a single-aged population, can therefore be used to examine the dependence of magnetic activity on rotation across a range of masses. We observed the 500-Myr-old open cluster M37 with Chandra and Hectospec on the MMT to obtain X-ray and Hα measurements for its low-mass stars. We obtained a sample of ≈280 cluster members with X-ray detections, ≈290 with Hα measurements, and ≈80 with both. This is the largest sample available for analyzing the dependence of coronal and chromospheric emission on rotation for a single-aged population. We used published rotation periods (Prot) to calculate Rossby numbers, Ro = Prot / τ, where τ is the convective turnover time, for all of the known rotators. We also determined the ratios of X-ray and Hα luminosities to bolometric luminosities to minimize mass dependencies when characterizing the rotation-activity relation at 500 Myr. With these data we explored how X-ray and Hα luminosity depend on Ro, and whether the behavior in the unsaturated regime (i.e., when increasing or decreasing Ro changes the measured activity) differ for these two tracers of magnetic activity. Finally, we examine the age-activity relation as measured in the X ray using seven open clusters spanning the age range 6-600 Myr.

  9. Solar-stellar connection : A solar analogous behaviour by an active ultra fast rotator

    NASA Astrophysics Data System (ADS)

    Sairam, Lalitha; Schmitt, Juergen; Pal Singh, Kulinder

    2015-08-01

    AB Dor is an ultra-fast rotating (Prot ~ 0.51 d) active young K dwarf with an age of ~40-50 Myr. Located as a foreground star towards large magellanic cloud (LMC), AB Dor has the advantage of being observed at all times by most of the X-ray satellites making it a favourite calibration target. AB Dor has been repeatedly observed for calibration by reflection grating spectrometer (RGS) on board XMM- Newton over last decade. This gives an ideal opportunity to perform a detailed analysis of the coronal emission, and to compare the flare characteristics with the Sun, since the Sun is usually considered as a prototype of low mass stars. Flares are frequent in low mass active stars across the electromagnetic spectrum similar to the Sun. We will for the first time, present an analysis of 30 intense X-ray flares observed from AB Dor. These flares detected in XMM-Newton data show a rapid rise (500-3000 s) and a slow decay (1000-6000 s). The derived X-ray luminosity during the flares ranges between 30.20 ≤ log(Lx) ≤ 30.83 erg/s; the flare peak temperature lies between 30-80 MK and the emission measures for these flares are in the range of 52.3 ≤ log(EM) ≤ 53.5 cm^-3. Our studies suggest that the scaling law between the flare peak emission measure and the flare peak temperature for all the flares observed on AB Dor is very similar to the relationship followed by solar flares, despite the fact that the AB Dor flare emission is ~250 times higher than the solar flare emission. We also carried out a homogenous study of flare frequencies, energetics and its occurrence in AB Dor. The frequency distribution of flare energies is a crucial diagnostic to calculate the overall energy residing in a flare. Our results of this study indicate that the large flare (33 ≤ log(E) ≤ 34 erg) may not contribute to the heating of the corona. We will show the presence of a possible long-term cycle in AB Dor both from a photospheric and coronal point of view, similar to the 11-year

  10. Validity and reliability of isometric muscle strength measurements of hip abduction and abduction with external hip rotation in a bent-hip position using a handheld dynamometer with a belt.

    PubMed

    Aramaki, Hidefumi; Katoh, Munenori; Hiiragi, Yukinobu; Kawasaki, Tsubasa; Kurihara, Tomohisa; Ohmi, Yorikatsu

    2016-07-01

    [Purpose] This study aimed to investigate the relatedness, reliability, and validity of isometric muscle strength measurements of hip abduction and abduction with an external hip rotation in a bent-hip position using a handheld dynamometer with a belt. [Subjects and Methods] Twenty healthy young adults, with a mean age of 21.5 ± 0.6 years were included. Isometric hip muscle strength in the subjects' right legs was measured under two posture positions using two devices: a handheld dynamometer with a belt and an isokinetic dynamometer. Reliability was evaluated using an intra-class correlation coefficient (ICC); relatedness and validity were evaluated using Pearson's product moment correlation coefficient. Differences in measurements of devices were assessed by two-way ANOVA. [Results] ICC (1, 1) was ≥0.9; significant positive correlations in measurements were found between the two devices under both conditions. No main effect was found between the measurement values. [Conclusion] Our findings revealed that there was relatedness, reliability, and validity of this method for isometric muscle strength measurements using a handheld dynamometer with a belt.

  11. Cylindrical rotating triboelectric nanogenerator.

    PubMed

    Bai, Peng; Zhu, Guang; Liu, Ying; Chen, Jun; Jing, Qingshen; Yang, Weiqing; Ma, Jusheng; Zhang, Gong; Wang, Zhong Lin

    2013-07-23

    We demonstrate a cylindrical rotating triboelectric nanogenerator (TENG) based on sliding electrification for harvesting mechanical energy from rotational motion. The rotating TENG is based on a core-shell structure that is made of distinctly different triboelectric materials with alternative strip structures on the surface. The charge transfer is strengthened with the formation of polymer nanoparticles on surfaces. During coaxial rotation, a contact-induced electrification and the relative sliding between the contact surfaces of the core and the shell result in an "in-plane" lateral polarization, which drives the flow of electrons in the external load. A power density of 36.9 W/m(2) (short-circuit current of 90 μA and open-circuit voltage of 410 V) has been achieved by a rotating TENG with 8 strip units at a linear rotational velocity of 1.33 m/s (a rotation rate of 1000 r/min). The output can be further enhanced by integrating more strip units and/or applying larger linear rotational velocity. This rotating TENG can be used as a direct power source to drive small electronics, such as LED bulbs. This study proves the possibility to harvest mechanical energy by TENGs from rotational motion, demonstrating its potential for harvesting the flow energy of air or water for applications such as self-powered environmental sensors and wildlife tracking devices.

  12. Horizontal rotation of the local stress field in response to magmatic activity: Evidence from case studies and modeling

    NASA Astrophysics Data System (ADS)

    Roman, D. C.

    2003-12-01

    A complete understanding of the initiation, evolution, and termination of volcanic eruptions requires reliable monitoring techniques to detect changes in the conduit system during periods of activity, as well as corresponding knowledge of conduit structure and of magma physical properties. Case studies of stress field orientation prior to, during, and after magmatic activity can be used to relate changes in stress field orientation to the state of the magmatic conduit system. These relationships may be tested through modeling of induced stresses. Here I present evidence from case studies and modeling that horizontal rotation of the axis of maximum compressive stress at an active volcano indicates pressurization of a magmatic conduit, and that this rotation, when observed, may also be indicative of the physical properties of the ascending magma. Changes in the local stress field orientation during the 1992 eruption sequence at Crater Peak (Mt. Spurr), Alaska were analyzed by calculating and inverting subsets of over 150 fault-plane solutions. Local stress tensors for four time periods, corresponding approximately to changes in activity at the volcano, were calculated based on the misfit of individual fault-plane solutions to a regional stress tensor. Results indicate that for nine months prior to the eruption, local maximum compressive stress was oriented perpendicular to regional maximum compressive stress. A similar horizontal rotation was observed beginning in November of 1992, coincident with an episode of elevated earthquake and tremor activity indicating intrusion of magma into the conduit. During periods of quiescence the local stress field was similar to the regional stress field. Similar horizontal rotations have been observed at Mt. Ruapehu, New Zealand (Miller and Savage 2001, Gerst 2003), Usu Volcano, Japan (Fukuyama et al. 2001), Unzen Volcano, Japan (Umakoshi et al. 2001), and Mt. St. Helens Volcano, USA (Moran 1994) in conjunction with eruptive

  13. Noninvasive measurement of radiopharmaceutical time–activity data using external thermoluminescent dosimeters (TLDs)

    NASA Astrophysics Data System (ADS)

    Lu, Cheng-Chang; Dong, Shang-Lung; Lin, Hsin-Hon; Ni, Yu-Ching; Jan, Meei-Ling; Chuang, Keh-Shih

    2017-02-01

    In this study, we present a new method for estimating the time–activity data using serial timely measurements of thermoluminescent dosimeters (TLDs). The approach is based on the combination of the measurement of surface dose using TLD and Monte Carlo (MC) simulation to estimate the radiopharmaceutical time–activity data. It involves four steps: (1) identify the source organs and outline their contours in computed tomography images; (2) compute the S values on the body surface for each source organ using a MC code; (3) obtain a serial measurement of the dose with numerous TLDs placed on the body surface; (4) solve the dose–activity equation to generate organ cumulative activity for each period of measurement. The activity of each organ at the time of measurement is simply the cumulative activity divided by the timespan between measurements. The usefulness of this method was studied using a MC simulation based on an Oak Ridge National Laboratory mathematical phantom with 18F-FDG filled in six source organs. Numerous TLDs were placed on different locations of the surface and were repeatedly read and replaced. The time–activity curves (TACs) of all organs were successfully reconstructed. Experiments on a physical phantom were also performed. Preliminary results indicate that it is an effective, robust, and simple method for assessing the TAC. The proposed method holds great potential for a range of applications in areas such as targeted radionuclide therapy, pharmaceutical research, and patient-specific dose estimation.

  14. Resting-state EEG power predicts conflict-related brain activity in internally guided but not in externally guided decision-making.

    PubMed

    Nakao, Takashi; Bai, Yu; Nashiwa, Hitomi; Northoff, Georg

    2013-02-01

    Most experimental studies of decision-making have specifically examined situations in which a single correct answer exists (externally guided decision-making). Along with such externally guided decision-making, there are instances of decision-making in which no correct answer based on external circumstances is available for the subject (internally guided decision-making, e.g. preference judgment). We compared these two different types of decision-making in terms of conflict-monitoring and their relation with resting-state brain activity. Current electroencephalography (EEG) data demonstrated that conflict-related N2 amplitudes (i.e., difference between large-conflict and small-conflict conditions) in externally guided decision-making were modulated by the type of external stimulus (i.e., large-conflict stimulus pair or small-conflict stimulus pair) but were not found to be correlated with resting-state brain activity (i.e. resting-state EEG power). In contrast, conflict-related N2 amplitudes in internally guided decision-making were found to be correlated with resting-state brain activity, but were not found to be modulated by the type of stimulus itself: the degree to which the type of external stimulus modulates the conflict during stimulus encoding varies according to individual differences in intrinsic brain activity. Considering those results comprehensively, we demonstrate for the first time resting-state and stimulus-related differences between externally and internally guided decision-making.

  15. Enzymatic activities in limb muscles subjected to external fixation with ring-hybrid frames.

    PubMed

    Reznick, Abraham Z; Coleman, Raymond; Stein, Haim

    2007-04-01

    Enzymatic activities, which originate in the muscle envelope of tibiae with an experimental segmental bone loss, provide additional evidence for the intimate bone-muscle interrelationships in new bone formation.

  16. Pausing and activating thread state upon pin assertion by external logic monitoring polling loop exit time condition

    DOEpatents

    Chen, Dong; Giampapa, Mark; Heidelberger, Philip; Ohmacht, Martin; Satterfield, David L; Steinmacher-Burow, Burkhard; Sugavanam, Krishnan

    2013-05-21

    A system and method for enhancing performance of a computer which includes a computer system including a data storage device. The computer system includes a program stored in the data storage device and steps of the program are executed by a processer. The processor processes instructions from the program. A wait state in the processor waits for receiving specified data. A thread in the processor has a pause state wherein the processor waits for specified data. A pin in the processor initiates a return to an active state from the pause state for the thread. A logic circuit is external to the processor, and the logic circuit is configured to detect a specified condition. The pin initiates a return to the active state of the thread when the specified condition is detected using the logic circuit.

  17. Neural Activation During Mental Rotation in Complete Androgen Insensitivity Syndrome: The Influence of Sex Hormones and Sex Chromosomes.

    PubMed

    van Hemmen, Judy; Veltman, Dick J; Hoekzema, Elseline; Cohen-Kettenis, Peggy T; Dessens, Arianne B; Bakker, Julie

    2016-03-01

    Sex hormones, androgens in particular, are hypothesized to play a key role in the sexual differentiation of the human brain. However, possible direct effects of the sex chromosomes, that is, XX or XY, have not been well studied in humans. Individuals with complete androgen insensitivity syndrome (CAIS), who have a 46,XY karyotype but a female phenotype due to a complete androgen resistance, enable us to study the separate effects of gonadal hormones versus sex chromosomes on neural sex differences. Therefore, in the present study, we compared 46,XY men (n = 30) and 46,XX women (n = 29) to 46,XY individuals with CAIS (n = 21) on a mental rotation task using functional magnetic resonance imaging. Previously reported sex differences in neural activation during mental rotation were replicated in the control groups, with control men showing more activation in the inferior parietal lobe than control women. Individuals with CAIS showed a female-like neural activation pattern in the parietal lobe, indicating feminization of the brain in CAIS. Furthermore, this first neuroimaging study in individuals with CAIS provides evidence that sex differences in regional brain function during mental rotation are most likely not directly driven by genetic sex, but rather reflect gonadal hormone exposure.

  18. Active unsteady aerodynamic suppression of rotating stall in an incompressible flow centrifugal compressor with vaned diffuser

    NASA Technical Reports Server (NTRS)

    Lawless, Patrick B.; Fleeter, Sanford

    1991-01-01

    A mathematical model is developed to analyze the suppression of rotating stall in an incompressible flow centrifugal compressor with a vaned diffuser, thereby addressing the important need for centrifugal compressor rotating stall and surge control. In this model, the precursor to to instability is a weak rotating potential velocity perturbation in the inlet flow field that eventually develops into a finite disturbance. To suppress the growth of this potential disturbance, a rotating control vortical velocity disturbance is introduced into the impeller inlet flow. The effectiveness of this control is analyzed by matching the perturbation pressure in the compressor inlet and exit flow fields with a model for the unsteady behavior of the compressor. To demonstrate instability control, this model is then used to predict the control effectiveness for centrifugal compressor geometries based on a low speed research centrifugal compressor. These results indicate that reductions of 10 to 15 percent in the mean inlet flow coefficient at instability are possible with control waveforms of half the magnitude of the total disturbance at the inlet.

  19. Ecto-phosphatase activity on the external surface of Rhodnius prolixus salivary glands: modulation by carbohydrates and Trypanosoma rangeli.

    PubMed

    Gomes, Suzete A O; Fonseca de Souza, André L; Kiffer-Moreira, Tina; Dick, Claudia F; dos Santos, André L A; Meyer-Fernandes, José R

    2008-05-01

    The salivary glands of insect's vectors are target organs to study the vectors-pathogens interactions. Rhodnius prolixus an important vector of Trypanosoma cruzi can also transmit Trypanosoma rangeli by bite. In the present study we have investigated ecto-phosphatase activity on the surface of R. prolixus salivary glands. Ecto-phosphatases are able to hydrolyze phosphorylated substrates in the extracellular medium. We characterized these ecto-enzyme activities on the salivary glands external surface and employed it to investigate R. prolixus-T. rangeli interaction. Salivary glands present a low level of hydrolytic activity (4.30+/-0.35 nmol p-nitrophenol (p-NP)xh(-1)xgland pair(-1)). The salivary glands ecto-phosphatase activity was not affected by pH variation; and it was insensitive to alkaline inhibitor levamisole and inhibited approximately 50% by inorganic phosphate (Pi). MgCl2, CaCl2 and SrCl2 enhanced significantly the ecto-phosphatase activity detected on the surface of salivary glands. The ecto-phosphatase from salivary glands surface efficiently releases phosphate groups from different phosphorylated amino acids, giving a higher rate of phosphate release when phospho-tyrosine is used as a substrate. This ecto-phosphatase activity was inhibited by carbohydrates as d-galactose and d-mannose. Living short epimastigotes of T. rangeli inhibited salivary glands ecto-phosphatase activity at 75%, while boiled parasites did not. Living long epimastigote forms induced a lower, but significant inhibitory effect on the salivary glands phosphatase activity. Interestingly, boiled long epimastigote forms did not loose the ability to modulate salivary glands phosphatase activity. Taken together, these data suggest a possible role for ecto-phosphatase on the R. prolixus salivary glands-T. rangeli interaction.

  20. A new way towards high-efficiency thermally activated delayed fluorescence devices via external heavy-atom effect

    NASA Astrophysics Data System (ADS)

    Zhang, Wenzhi; Jin, Jiangjiang; Huang, Zhi; Zhuang, Shaoqing; Wang, Lei

    2016-07-01

    Thermally activated delayed fluorescence (TADF) mechanism is a significant method that enables the harvesting of both triplet and singlet excitons for emission. However, up to now most efforts have been devoted to dealing with the relation between singlet-triplet splitting (ΔEST) and fluorescence efficiency, while the significance of spin-orbit coupling (SOC) is usually ignored. In this contribution, a new method is developed to realize high-efficiency TADF-based devices through simple device-structure optimizations. By inserting an ultrathin external heavy-atom (EHA) perturber layer in a desired manner, it provides useful means of accelerating the T1 → S1 reverse intersystem crossing (RISC) in TADF molecules without affecting the corresponding S1 → T1 process heavily. Furthermore, this strategy also promotes the utilization of host triplets through Förster mechanism during host → guest energy transfer (ET) processes, which helps to get rid of the solely dependence upon Dexter mechanism. Based on this strategy, we have successfully raised the external quantum efficiency (EQE) in 4CzPN-based devices by nearly 38% in comparison to control devices. These findings provide keen insights into the role of EHA played in TADF-based devices, offering valuable guidelines for utilizing certain TADF dyes which possess high radiative transition rate but relatively inefficient RISC.

  1. The Influence of External Perturbations on Running Kinematics and Muscle Activity Before and After Accommodation

    PubMed Central

    Haudum, Anita; Birklbauer, Jürgen; Müller, Erich

    2012-01-01

    In the current study, the running pattern of the lower extremity was examined while being perturbed through tubes attached between the ankles and the lower back to analyze influences on the running pattern variability before and after a varied running intervention. 3D-kinematics, joint coupling and electromyography (EMG), as well as their variability, were analyzed in ten healthy male participants during treadmill running (10.5 km·h-1). Pre- and post-tests each consisted of 2 x 30 min treadmill running (one with and one without tubes). The results showed major acute effects on EMG and kinematics, as well as joint coordination variability, due to the constraints (p < 0.05). After the intervention, a process of normalization of most kinematic and EMG parameters occurred; however, EMG variability, kinematic variability and joint coordination variability were reduced during tube running below normal running level (p < 0.05). The findings further indicate rapid kinematic adaptations while muscle activity appears to require longer practice to adapt. The constraint serves to acutely increase variability, but may lead to reduced variability when applied for a longer period of time. Key points Normalization of the EMG variability after the training intervention during running with the dynamic constraint Joint coupling variability was reduced after practice intervention during constrained running Kinematic adaptations happen fast while muscle activity requires longer practice Sublevels (i.e., EMGs) were more influenced by the constraint than the macroscopic kinematics. PMID:24150066

  2. Discovery and characteristics of the rapidly rotating active asteroid (62412) 2000 SY178 in the main belt

    SciTech Connect

    Sheppard, Scott S.; Trujillo, Chadwick

    2015-02-01

    We report a new active asteroid in the main belt of asteroids between Mars and Jupiter. Object (62412) 2000 SY178 exhibited a tail in images collected during our survey for objects beyond the Kuiper Belt using the Dark Energy Camera on the CTIO 4 m telescope. We obtained broadband colors of 62412 at the Magellan Telescope, which, along with 62412's low albedo, suggests it is a C-type asteroid. 62412's orbital dynamics and color strongly correlate with the Hygiea family in the outer main belt, making it the first active asteroid known in this heavily populated family. We also find 62412 to have a very short rotation period of 3.33 ± 0.01 hours from a double-peaked light curve with a maximum peak-to-peak amplitude of 0.45 ± 0.01 mag. We identify 62412 as the fastest known rotator of the Hygiea family and the nearby Themis family of similar composition, which contains several known main belt comets. The activity on 62412 was seen over one year after perihelion passage in its 5.6 year orbit. 62412 has the highest perihelion and one of the most circular orbits known for any active asteroid. The observed activity is probably linked to 62412's rapid rotation, which is near the critical period for break-up. The fast spin rate may also change the shape and shift material around 62412's surface, possibly exposing buried ice. Assuming 62412 is a strengthless rubble pile, we find the density of 62412 to be around 1500 kg m{sup −3}.

  3. The effect of exercise types for rotator cuff repair patients on activities of shoulder muscles and upper limb disability

    PubMed Central

    Kang, Jeong-Il; Moon, Young-Jun; Choi, Hyun; Jeong, Dae-Keun; Kwon, Hye-Min; Park, Jun-Su

    2016-01-01

    [Purpose] This study investigated the effect on activities, shoulder muscle fatigue, upper limb disability of two exercise types performed by patients in the post- immobilization period of rotator cuff repair. [Subjects and Methods] The intervention program was performed by 20 patients from 6 weeks after rotator cuff repair. Ten subjects each were randomly allocated to a group performing open kinetic chain exercise and a group preforming closed kinetic chain exercise. Muscle activity and median frequency were measured by using sEMG and the Upper Extremity Function Assessment before and after conducting the intervention and changes in the results were compared. [Results] There was a significant within group increases in the activities of the shoulder muscles, except for the posterior deltoid. The median power frequencies (MFD) of the supraspinatus, infraspinatus and anterior deltoid significantly increased in the open kinetic chain exercise group, but that of the posterior deltoid decreased. There were significant differences in the changes in the upper limb disability scores of the two groups, in the shoulder muscle activities, except for that of the posterior deltoid, in the comparison of the change in the muscle activities of the two groups, and in the MDFs of all shoulder muscles. [Conclusion] The Median power frequencies of all these muscles after closed kinetic chain exercise increased indicating that muscle fatigue decreased. Therefore, research into exercise programs using closed kinetic chain exercises will be needed to establish exercise methods for reducing muscle fatigue. PMID:27821933

  4. A path towards understanding the rotation-activity relation of M dwarfs with K2 mission, X-ray and UV data

    NASA Astrophysics Data System (ADS)

    Stelzer, B.; Damasso, M.; Scholz, A.; Matt, S. P.

    2016-12-01

    We study the relation between stellar rotation and magnetic activity for a sample of 134 bright, nearby M dwarfs observed in the Kepler Two-Wheel (K2) mission during campaigns C0-C4. The K2 light curves yield photometrically derived rotation periods for 97 stars (79 of which without previous period measurement), as well as various measures for activity related to cool spots and flares. We find a clear difference between fast and slow rotators with a dividing line at a period of ˜10 d at which the activity level changes abruptly. All photometric diagnostics of activity (spot cycle amplitude, flare peak amplitude and residual variability after subtraction of spot and flare variations) display the same dichotomy, pointing to a quick transition between a high-activity mode for fast rotators and a low-activity mode for slow rotators. This unexplained behaviour is reminiscent of a dynamo mode-change seen in numerical simulations that separates a dipolar from a multipolar regime. A substantial number of the fast rotators are visual binaries. A tentative explanation is accelerated disc evolution in binaries leading to higher initial rotation rates on the main sequence and associated longer spin-down and activity lifetimes. We combine the K2 rotation periods with archival X-ray and UV data. X-ray, FUV and NUV detections are found for 26, 41, and 11 stars from our sample, respectively. Separating the fast from the slow rotators, we determine for the first time the X-ray saturation level separately for early- and for mid-M stars.

  5. Chromospheric activity and rotation of FGK stars in the solar vicinity. An estimation of the radial velocity jitter

    NASA Astrophysics Data System (ADS)

    Martínez-Arnáiz, R.; Maldonado, J.; Montes, D.; Eiroa, C.; Montesinos, B.

    2010-09-01

    Context. Chromospheric activity produces both photometric and spectroscopic variations that can be mistaken as planets. Large spots crossing the stellar disc can produce planet-like periodic variations in the light curve of a star. These spots clearly affect the spectral line profiles, and their perturbations alter the line centroids creating a radial velocity jitter that might “contaminate” the variations induced by a planet. Precise chromospheric activity measurements are needed to estimate the activity-induced noise that should be expected for a given star. Aims: We obtain precise chromospheric activity measurements and projected rotational velocities for nearby (d ≤ 25 pc) cool (spectral types F to K) stars, to estimate their expected activity-related jitter. As a complementary objective, we attempt to obtain relationships between fluxes in different activity indicator lines, that permit a transformation of traditional activity indicators, i.e., Ca ii H & K lines, to others that hold noteworthy advantages. Methods: We used high resolution (~50 000) echelle optical spectra. Standard data reduction was performed using the IRAF echelle package. To determine the chromospheric emission of the stars in the sample, we used the spectral subtraction technique. We measured the equivalent widths of the chromospheric emission lines in the subtracted spectrum and transformed them into fluxes by applying empirical equivalent width and flux relationships. Rotational velocities were determined using the cross-correlation technique. To infer activity-related radial velocity (RV) jitter, we used empirical relationships between this jitter and the R'_HK index. Results: We measured chromospheric activity, as given by different indicators throughout the optical spectra, and projected rotational velocities for 371 nearby cool stars. We have built empirical relationships among the most important chromospheric emission lines. Finally, we used the measured chromospheric activity

  6. Multi-objective optimization of an active constrained layer damping treatment for vibration control of a rotating flexible arm

    NASA Astrophysics Data System (ADS)

    Hau, L. C.; Fung, E. H. K.; Yau, D. T. W.

    2006-12-01

    This paper describes the use of the multi-objective genetic algorithm (MOGA) to solve an integrated optimization problem of a rotating flexible arm with active constrained layer damping (ACLD) treatment. The arm is rotating in a horizontal plane with triangular velocity profiles. The ACLD patch is placed at the clamped end of the arm. The design objectives are to minimize the total treatment weight, the control voltage and the tip displacement of the arm, as well as to maximize the passive damping characteristic of the arm. Design variables include the control gains, the maximum angular velocity, the shear modulus of the viscoelastic layer, the thickness of the piezoelectric constraining and viscoelastic layers, and the length of the ACLD patch. In order to evaluate the effect of different combinations of design variables on the system, the finite element method, in conjunction with the Golla-Hughes-McTavish (GHM) method, is employed to model the flexible arm with ACLD treatment to predict its dynamic behavior, in which the effects of centrifugal stiffening due to the rotation of flexible arm are taken into account. As a result of optimization, reasonable Pareto solutions are successfully obtained. It is shown that the MOGA is applicable to the present integrated optimization problem.

  7. Simultaneous reconstruction of emission activity and attenuation coefficient distribution from TOF data, acquired with external transmission source.

    PubMed

    Panin, V Y; Aykac, M; Casey, M E

    2013-06-07

    The simultaneous PET data reconstruction of emission activity and attenuation coefficient distribution is presented, where the attenuation image is constrained by exploiting an external transmission source. Data are acquired in time-of-flight (TOF) mode, allowing in principle for separation of emission and transmission data. Nevertheless, here all data are reconstructed at once, eliminating the need to trace the position of the transmission source in sinogram space. Contamination of emission data by the transmission source and vice versa is naturally modeled. Attenuated emission activity data also provide additional information about object attenuation coefficient values. The algorithm alternates between attenuation and emission activity image updates. We also proposed a method of estimation of spatial scatter distribution from the transmission source by incorporating knowledge about the expected range of attenuation map values. The reconstruction of experimental data from the Siemens mCT scanner suggests that simultaneous reconstruction improves attenuation map image quality, as compared to when data are separated. In the presented example, the attenuation map image noise was reduced and non-uniformity artifacts that occurred due to scatter estimation were suppressed. On the other hand, the use of transmission data stabilizes attenuation coefficient distribution reconstruction from TOF emission data alone. The example of improving emission images by refining a CT-based patient attenuation map is presented, revealing potential benefits of simultaneous CT and PET data reconstruction.

  8. Physical activity promotion in Latin American populations: a systematic review on issues of internal and external validity

    PubMed Central

    2014-01-01

    The purpose of this review was to determine the degree to which physical activity interventions for Latin American populations reported on internal and external validity factors using the RE-AIM framework (reach & representativeness, effectiveness, adoption, implementation, maintenance). We systematically identified English (PubMed; EbscoHost) and Spanish (SCIELO; Biblioteca Virtual en Salud) language studies published between 2001 and 2012 that tested physical activity, exercise, or fitness promotion interventions in Latin American populations. Cross-sectional/descriptive studies, conducted in Brazil or Spain, published in Portuguese, not including a physical activity/fitness/exercise outcome, and with one time point assessment were excluded. We reviewed 192 abstracts and identified 46 studies that met the eligibility criteria (34 in English, 12 in Spanish). A validated 21-item RE-AIM abstraction tool was used to determine the quality of reporting across studies (0-7 = low, 8-14 = moderate, and 15-21 = high). The number of indicators reported ranged from 3–14 (mean = 8.1 ± 2.6), with the majority of studies falling in the moderate quality reporting category. English and Spanish language articles did not differ on the number of indicators reported (8.1 vs. 8.3, respectively). However, Spanish articles reported more across reach indicators (62% vs. 43% of indicators), while English articles reported more across effectiveness indicators (69% vs 62%). Across RE-AIM dimensions, indicators for reach (48%), efficacy/effectiveness (67%), and implementation (41%) were reported more often than indicators of adoption (25%) and maintenance (10%). Few studies reported on the representativeness of participants, staff that delivered interventions, or the settings where interventions were adopted. Only 13% of the studies reported on quality of life and/or potential negative outcomes, 20% reported on intervention fidelity, and 11% on cost of implementation

  9. Physical activity promotion in Latin American populations: a systematic review on issues of internal and external validity.

    PubMed

    Galaviz, Karla I; Harden, Samantha M; Smith, Erin; Blackman, Kacie Ca; Berrey, Leanna M; Mama, Scherezade K; Almeida, Fabio A; Lee, Rebecca E; Estabrooks, Paul A

    2014-06-17

    The purpose of this review was to determine the degree to which physical activity interventions for Latin American populations reported on internal and external validity factors using the RE-AIM framework (reach & representativeness, effectiveness, adoption, implementation, maintenance). We systematically identified English (PubMed; EbscoHost) and Spanish (SCIELO; Biblioteca Virtual en Salud) language studies published between 2001 and 2012 that tested physical activity, exercise, or fitness promotion interventions in Latin American populations. Cross-sectional/descriptive studies, conducted in Brazil or Spain, published in Portuguese, not including a physical activity/fitness/exercise outcome, and with one time point assessment were excluded. We reviewed 192 abstracts and identified 46 studies that met the eligibility criteria (34 in English, 12 in Spanish). A validated 21-item RE-AIM abstraction tool was used to determine the quality of reporting across studies (0-7 = low, 8-14 = moderate, and 15-21 = high). The number of indicators reported ranged from 3-14 (mean = 8.1 ± 2.6), with the majority of studies falling in the moderate quality reporting category. English and Spanish language articles did not differ on the number of indicators reported (8.1 vs. 8.3, respectively). However, Spanish articles reported more across reach indicators (62% vs. 43% of indicators), while English articles reported more across effectiveness indicators (69% vs 62%). Across RE-AIM dimensions, indicators for reach (48%), efficacy/effectiveness (67%), and implementation (41%) were reported more often than indicators of adoption (25%) and maintenance (10%). Few studies reported on the representativeness of participants, staff that delivered interventions, or the settings where interventions were adopted. Only 13% of the studies reported on quality of life and/or potential negative outcomes, 20% reported on intervention fidelity, and 11% on cost of implementation

  10. Chromospheric activity and rotation of FGK stars in the solar neighbourhood: characterizing possible exoplanetary system host stars

    NASA Astrophysics Data System (ADS)

    Martínez-Arnáiz, Raquel M.

    2011-06-01

    This dissertation has investigated the chromospheric activity and rotation of nearby cool stars, which can potentially host exoplanetary systems. 1. High-resolution echelle spectra have been obtained for 565 nearby (d ≤ 25 pc) cool (spectral types F to M) stars. The observations were taken using high resolution echelle optical spectrographs. The observations were designed to ensure a spectral coverage including all the optical magnetic activity indicator lines: from the Ca II H & K lines to the Ca II IRT, including all the Balmer lines Hα, Hβ, Hγ, Hδ, and H?. This fact has ensured a simultaneous analysis of the magnetic activity using different diagnostics. The spectral coverage of the spectra has also permitted a precise analysis of the stellar properties as well as rotational and radial velocities. 2. The suitability of the stars as targets in exoplanetary search surveys has been analysed using the results obtained in the spectroscopic survey. Using the measured chromospheric activity in the optical spectrum, activity-induced RV jitter has been calculated for the active stars in the sample. Although the intrinsic variability of stellar activity makes it impossible to directly subtract the computed values from the RV signal, it provides an estimation of the activity-related noise. Therefore, this values can be used to set the minimum detectable mass for a planet orbiting the star or to determine the minimal amplitude variation that could indicate the existence of a planet. The compilation of the activity, rotation and predicted activity-induced RV jitter build up into a catalogue that determines the suitability of the stars as targets in exoplanet search surveys. 3. The relationship between pairs of excess surface flux in different activity diagnostics has been analysed using the results from the spectroscopic survey. The results show a clear correlation between the activity measured in different optical indicators. This fact confirms previous findings and

  11. Modulation of the Relationship Between External Knee Adduction Moments and Medial Joint Contact Forces Across Subjects and Activities

    PubMed Central

    Trepczynski, Adam; Kutzner, Ines; Bergmann, Georg; Taylor, William R; Heller, Markus O

    2014-01-01

    Objective The external knee adduction moment (EAM) is often considered a surrogate measure of the distribution of loads across the tibiofemoral joint during walking. This study was undertaken to quantify the relationship between the EAM and directly measured medial tibiofemoral contact forces (Fmed) in a sample of subjects across a spectrum of activities. Methods The EAM for 9 patients who underwent total knee replacement was calculated using inverse dynamics analysis, while telemetric implants provided Fmed for multiple repetitions of 10 activities, including walking, stair negotiation, sit-to-stand activities, and squatting. The effects of the factors “subject” and “activity” on the relationships between Fmed and EAM were quantified using mixed-effects regression analyses in terms of the root mean square error (RMSE) and the slope of the regression. Results Across subjects and activities a good correlation between peak EAM and Fmed values was observed, with an overall R2 value of 0.88. However, the slope of the linear regressions varied between subjects by up to a factor of 2. At peak EAM and Fmed, the RMSE of the regression across all subjects was 35% body weight (%BW), while the maximum error was 127 %BW. Conclusion The relationship between EAM and Fmed is generally good but varies considerably across subjects and activities. These findings emphasize the limitation of relying solely on the EAM to infer medial joint loading when excessive directed cocontraction of muscles exists and call for further investigations into the soft tissue–related mechanisms that modulate the internal forces at the knee. PMID:24470261

  12. A self-tunable Titanium Sapphire laser by rotating a set of parallel plates of active material.

    PubMed

    Iparraguirre, Ignacio; Azkargorta, Jon; Fernandez, Joaquín; Balda, Rolindes; Del Río Gaztelurrutia, Teresa; Illarramendi, M Asunción; Aramburu, Ibon

    2009-03-02

    In a recent work, the authors reported the experimental demonstration of wavelength tuning in a single birefringent plate of Ti:sapphire crystal based on its own birefringence properties. In that device, the thickness of the active plate, limited by the width of the single order tuning spectral region, imposed a strong constraint in the power performance of the laser. The aim of this work is to overcome this limitation by using a set of several identical birefringent plates so that the wavelength tuning of the laser is obtained by synchronously rotating the plates in their own plane. A discussion about the laser performance is presented.

  13. Magnetic activity and differential rotation in the young Sun-like stars KIC 7985370 and KIC 7765135

    NASA Astrophysics Data System (ADS)

    Fröhlich, H.-E.; Frasca, A.; Catanzaro, G.; Bonanno, A.; Corsaro, E.; Molenda-Żakowicz, J.; Klutsch, A.; Montes, D.

    2012-07-01

    Aims: We present a detailed study of the two Sun-like stars KIC 7985370 and KIC 7765135, to determine their activity level, spot distribution, and differential rotation. Both stars were previously discovered by us to be young stars and were observed by the NASA Kepler mission. Methods: The fundamental stellar parameters (vsini, spectral type, Teff, log g, and [Fe/H]) were derived from optical spectroscopy by comparison with both standard-star and synthetic spectra. The spectra of the targets allowed us to study the chromospheric activity based on the emission in the core of hydrogen Hα and Ca ii infrared triplet (IRT) lines, which was revealed by the subtraction of inactive templates. The high-precision Kepler photometric data spanning over 229 days were then fitted with a robust spot model. Model selection and parameter estimation were performed in a Bayesian manner, using a Markov chain Monte Carlo method. Results: We find that both stars are Sun-like (of G1.5 V spectral type) and have an age of about 100-200 Myr, based on their lithium content and kinematics. Their youth is confirmed by their high level of chromospheric activity, which is comparable to that displayed by the early G-type stars in the Pleiades cluster. The Balmer decrement and flux ratio of their Ca ii-IRT lines suggest that the formation of the core of these lines occurs mainly in optically thick regions that are analogous to solar plages. The spot model applied to the Kepler photometry requires at least seven persistent spots in the case of KIC 7985370 and nine spots in the case of KIC 7765135 to provide a satisfactory fit to the data. The assumption of the longevity of the star spots, whose area is allowed to evolve with time, is at the heart of our spot-modelling approach. On both stars, the surface differential rotation is Sun-like, with the high-latitude spots rotating slower than the low-latitude ones. We found, for both stars, a rather high value of the equator-to-pole differential

  14. Trends in ultracool dwarf magnetism. II. The inverse correlation between X-ray activity and rotation as evidence for a bimodal dynamo

    SciTech Connect

    Cook, B. A.; Williams, P. K. G.; Berger, E.

    2014-04-10

    Observations of magnetic activity indicators in solar-type stars exhibit a relationship with rotation with an increase until a 'saturation' level and a moderate decrease in activity in the very fastest rotators ('supersaturation'). While X-ray data have suggested that this relationship is strongly violated in ultracool dwarfs (UCDs; spectral type ≳M7), the limited number of X-ray detections has prevented firm conclusions. In this paper, we analyze the X-ray activity-rotation relation in 38 UCDs. Our sample represents the largest catalog of X-ray active UCDs to date, including seven new and four previously unpublished Chandra observations presented in a companion paper. We identify a substantial number of rapidly rotating UCDs with X-ray activity extending two orders of magnitude below the expected saturation level and measure a 'supersaturation'-type anticorrelation between rotation and X-ray activity. The scatter in UCD X-ray activity at a fixed rotation is ∼3 times larger than that in earlier-type stars. We discuss several mechanisms that have been proposed to explain the data, including centrifugal stripping of the corona, and find them to be inconsistent with the observed trends. Instead, we suggest that an additional parameter correlated with both X-ray activity and rotation is responsible for the observed effects. Building on the results of Zeeman-Doppler imaging of UCD magnetic fields and our companion study of radio/X-ray flux ratios, we argue that this parameter is the magnetic field topology, and that the large scatter in UCD X-ray fluxes reflects the presence of two dynamo modes that produce distinct topologies.

  15. Nitrogen removal from wastewater and external waste activated sludge reutilization/reduction by simultaneous sludge fermentation, denitrification and anammox (SFDA).

    PubMed

    Wang, Bo; Peng, Yongzhen; Guo, Yuanyuan; Zhao, Mengyue; Wang, Shuying

    2016-08-01

    This work demonstrates the feasibility of simultaneous nitrogen removal and external waste activated sludge (WAS) reutilization/reduction by using the synergy of sludge fermentation, denitrification and anammox processes in up-flow reactors (SFDA). Pre-treated domestic wastewater and synthetic wastewater (containing nitrite ∼20mg/L, ammonium ∼10mg/L in both) were fed to 1# and 2# SFDA, respectively. Long-term operation of 1# SFDA was investigated with achieving the peak ammonium removal rate of 0.021 and nitrite removal rate of 0.081kgN/(m(3)d) as nitrogen loading rate elevated from 0.075 to 0.106kgN/(m(3)d). Negative effect of dissolved oxygen on anammox or fermentation in the 2# SFDA was demonstrated negligible due to rapid depletion by microorganisms. Furthermore, a "net" sludge reduction of 38.8% was obtained due to sludge decay and organics consumption by denitrification. The SFDA process was expected to potentially be used for nitrogen removal and WAS reutilization/reduction in full-scale application.

  16. Blue organic light-emitting diodes realizing external quantum efficiency over 25% using thermally activated delayed fluorescence emitters.

    PubMed

    Miwa, Takuya; Kubo, Shosei; Shizu, Katsuyuki; Komino, Takeshi; Adachi, Chihaya; Kaji, Hironori

    2017-03-21

    Improving the performance of blue organic light-emitting diodes (OLEDs) is needed for full-colour flat-panel displays and solid-state lighting sources. The use of thermally activated delayed fluorescence (TADF) is a promising approach to efficient blue electroluminescence. However, the difficulty of developing efficient blue TADF emitters lies in finding a molecular structure that simultaneously incorporates (i) a small energy difference between the lowest excited singlet state (S1) and the lowest triplet state (T1), ΔE ST, (ii) a large oscillator strength, f, between S1 and the ground state (S0), and (iii) S1 energy sufficiently high for blue emission. In this study, we develop TADF emitters named CCX-I and CCX-II satisfying the above requirements. They show blue photoluminescence and high triplet-to-singlet up-conversion yield. In addition, their transition dipole moments are horizontally oriented, resulting in further increase of their electroluminescence efficiency. Using CCX-II as an emitting dopant, we achieve a blue OLED showing a high external quantum efficiency of 25.9%, which is one of the highest EQEs in blue OLEDs reported previously.

  17. Comparable fMRI activity with differential behavioural performance on mental rotation and overt verbal fluency tasks in healthy men and women.

    PubMed

    Halari, Rozmin; Sharma, Tonmoy; Hines, Melissa; Andrew, Chris; Simmons, Andy; Kumari, Veena

    2006-02-01

    To explicate the neural correlates of sex differences in visuospatial and verbal fluency tasks, we examined behavioural performance and blood-oxygenation-level-dependent (BOLD) regional brain activity, using functional magnetic resonance imaging, during a three-dimensional (3D) mental rotation task and a compressed sequence overt verbal fluency task in a group of healthy men (n=9) and women (n=10; tested during the low-oestrogen phase of the menstrual cycle). Men outperformed women on the mental rotation task, and women outperformed men on the verbal fluency task. For the mental rotation task, men and women activated areas in the right superior parietal lobe and the bilateral middle occipital gyrus in association with the rotation condition. In addition, men activated the left middle temporal gyrus and the right angular gyrus. For verbal fluency, men activated areas in the bilateral superior frontal gyrus, right cingulate gyrus, left precentral gyrus, left medial frontal gyrus, left inferior frontal gyrus, thalamus, left parahippocampal gyrus and bilateral lingual gyrus, and women activated areas in the bilateral inferior frontal gyrus and left caudate. Despite observing task related activation in the hypothesised areas in men and women, no areas significantly differentiated the two sexes. Our results demonstrate comparable brain activation in men and women in association with mental rotation and verbal fluency function with differential performance, and provide support for sex differences in brain-behaviour relationships.

  18. Rotating Vesta

    NASA Video Gallery

    Astronomers combined 146 exposures taken by NASA's Hubble SpaceTelescope to make this 73-frame movie of the asteroid Vesta's rotation.Vesta completes a rotation every 5.34 hours.› Asteroid and...

  19. Modeling external carbon addition in biological nutrient removal processes with an extension of the international water association activated sludge model.

    PubMed

    Swinarski, M; Makinia, J; Stensel, H D; Czerwionka, K; Drewnowski, J

    2012-08-01

    The aim of this study was to expand the International Water Association Activated Sludge Model No. 2d (ASM2d) to account for a newly defined readily biodegradable substrate that can be consumed by polyphosphate-accumulating organisms (PAOs) under anoxic and aerobic conditions, but not under anaerobic conditions. The model change was to add a new substrate component and process terms for its use by PAOs and other heterotrophic bacteria under anoxic and aerobic conditions. The Gdansk (Poland) wastewater treatment plant (WWTP), which has a modified University of Cape Town (MUCT) process for nutrient removal, provided field data and mixed liquor for batch tests for model evaluation. The original ASM2d was first calibrated under dynamic conditions with the results of batch tests with settled wastewater and mixed liquor, in which nitrate-uptake rates, phosphorus-release rates, and anoxic phosphorus uptake rates were followed. Model validation was conducted with data from a 96-hour measurement campaign in the full-scale WWTP. The results of similar batch tests with ethanol and fusel oil as the external carbon sources were used to adjust kinetic and stoichiometric coefficients in the expanded ASM2d. Both models were compared based on their predictions of the effect of adding supplemental carbon to the anoxic zone of an MUCT process. In comparison with the ASM2d, the new model better predicted the anoxic behaviors of carbonaceous oxygen demand, nitrate-nitrogen (NO3-N), and phosphorous (PO4-P) in batch experiments with ethanol and fusel oil. However, when simulating ethanol addition to the anoxic zone of a full-scale biological nutrient removal facility, both models predicted similar effluent NO3-N concentrations (6.6 to 6.9 g N/m3). For the particular application, effective enhanced biological phosphorus removal was predicted by both models with external carbon addition but, for the new model, the effluent PO4-P concentration was approximately one-half of that found from

  20. The evaluation of upper body muscle activity during the performance of external chest compressions in simulated hypogravity

    NASA Astrophysics Data System (ADS)

    Krygiel, Rebecca G.; Waye, Abigail B.; Baptista, Rafael Reimann; Heidner, Gustavo Sandri; Rehnberg, Lucas; Russomano, Thais

    2014-04-01

    BACKGROUND: This original study evaluated the electromyograph (EMG) activity of four upper body muscles: triceps brachii, erector spinae, upper rectus abdominis, and pectoralis major, while external chest compressions (ECCs) were performed in simulated Martian hypogravity using a Body Suspension Device, counterweight system, and standard full body cardiopulmonary resuscitation (CPR) mannequin. METHOD: 20 young, healthy male subjects were recruited. One hundred compressions divided into four sets, with roughly six seconds between each set to indicate 'ventilation', were performed within approximately a 1.5 minute protocol. Chest compression rate, depth and number were measured along with the subject's heart rate (HR) and rating of perceived exertion (RPE). RESULTS: All mean values were used in two-tailed t-tests using SPSS to compare +1 Gz values (control) versus simulated hypogravity values. The AHA (2005) compression standards were maintained in hypogravity. RPE and HR increased by 32% (p < 0.001) and 44% (p = 0.002), respectively, when ECCs were performed during Mars simulation, in comparison to +1 Gz. In hypogravity, the triceps brachii showed significantly less activity (p < 0.001) when compared with the other three muscles studied. The comparison of all the other muscles showed no difference at +1 Gz or in hypogravity. CONCLUSIONS: This study was among the first of its kind, however several limitations were faced which hopefully will not exist in future studies. Evaluation of a great number of muscles will allow space crews to focus on specific strengthening exercises within their current training regimes in case of a serious cardiac event in hypogravity.

  1. Experimental and modeling study on removal of pharmaceutically active compounds in rotating biological contactors.

    PubMed

    Vasiliadou, I A; Molina, R; Martínez, F; Melero, J A

    2014-06-15

    The aim of this work was to study the biological removal of pharmaceutical compounds in rotating biological contactors (RBCs) under continuous operation. A two-stage RBC was used, providing a total surface area of 1.41 m(2). Four pharmaceuticals of different therapeutic classes; caffeine, sulfamethoxazole, ranitidine and carbamazepine, were studied. Six experimental scenarios were applied to the RBC-system by varying substrates' loadings (12-54 gCOD/d), volumetric flow rate (2-5L/d), and pharmaceuticals' concentration (20-50 μg/L). The different conditions resulted to different solid retention times (SRT: 7-21 d) in each scenario. The increase of SRT due to variations of the operating conditions seemed to have a positive effect on pharmaceuticals' removal. Likewise, a negative correlation was observed between substrates' loading and pharmaceuticals' removal. An increase of initial pharmaceuticals' concentration resulted to decrease of SRT and pharmaceuticals' removal, suggesting a toxic effect to the biofilm. The maximum removals achieved were greater than 85% for all pharmaceuticals. Finally, a mathematical model which includes biofilm growth, substrates' utilization and pharmaceuticals' elimination was developed. The model predicts the contribution of sorption and biodegradation on pharmaceuticals' elimination taking into account the diffusion of pharmaceuticals inside biofilm.

  2. Existence of Corotating and Counter-Rotating Vortex Pairs for Active Scalar Equations

    NASA Astrophysics Data System (ADS)

    Hmidi, Taoufik; Mateu, Joan

    2017-03-01

    In this paper, we study the existence of corotating and counter-rotating pairs of simply connected patches for Euler equations and the {(SQG)_{α}} equations with {α in (0,1)}. From the numerical experiments implemented for Euler equations in Deem and Zabusky (Phys Rev Lett 40(13):859-862, 1978), Pierrehumbert (J Fluid Mech 99:129-144, 1980), Saffman and Szeto (Phys Fluids 23(12):2339-2342, 1980) it is conjectured the existence of a curve of steady vortex pairs passing through the point vortex pairs. There are some analytical proofs based on variational principle (Keady in J Aust Math Soc Ser B 26:487-502, 1985; Turkington in Nonlinear Anal Theory Methods Appl 9(4):351-369, 1985); however, they do not give enough information about the pairs, such as the uniqueness or the topological structure of each single vortex. We intend in this paper to give direct proofs confirming the numerical experiments and extend these results for the {(SQG)_{α}} equation when {α in (0,1)}. The proofs rely on the contour dynamics equations combined with a desingularization of the point vortex pairs and the application of the implicit function theorem.

  3. Asters, Vortices, and Rotating Spirals in Active Gels of Polar Filaments

    NASA Astrophysics Data System (ADS)

    Kruse, K.; Joanny, J. F.; Jülicher, F.; Prost, J.; Sekimoto, K.

    2004-02-01

    We develop a general theory for active viscoelastic materials made of polar filaments. This theory is motivated by the dynamics of the cytoskeleton. The continuous consumption of a fuel generates a nonequilibrium state characterized by the generation of flows and stresses. Our theory applies to any polar system with internal energy consumption such as active chemical gels and cytoskeletal networks which are set in motion by active processes at work in cells.

  4. On the Use of Sensor Fusion to Reduce the Impact of Rotational and Additive Noise in Human Activity Recognition

    PubMed Central

    Banos, Oresti; Damas, Miguel; Pomares, Hector; Rojas, Ignacio

    2012-01-01

    The main objective of fusion mechanisms is to increase the individual reliability of the systems through the use of the collectivity knowledge. Moreover, fusion models are also intended to guarantee a certain level of robustness. This is particularly required for problems such as human activity recognition where runtime changes in the sensor setup seriously disturb the reliability of the initial deployed systems. For commonly used recognition systems based on inertial sensors, these changes are primarily characterized as sensor rotations, displacements or faults related to the batteries or calibration. In this work we show the robustness capabilities of a sensor-weighted fusion model when dealing with such disturbances under different circumstances. Using the proposed method, up to 60% outperformance is obtained when a minority of the sensors are artificially rotated or degraded, independent of the level of disturbance (noise) imposed. These robustness capabilities also apply for any number of sensors affected by a low to moderate noise level. The presented fusion mechanism compensates the poor performance that otherwise would be obtained when just a single sensor is considered. PMID:22969386

  5. Control of Rhagoletis indifferents using Thiamethoxam and Spinosad baits under external fly pressure and its relation to rapidity of kill and residual bait activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Control of western cherry fruit fly (Rhagoletis indifferens Curran) using thiamethoxam in sucrose bait and spinosad bait in cherry orchards under external fly pressure and its relation to rapidity of kill and residual bait activity were studied in Washington and Utah in 2010 and 2011. Thiamethoxam ...

  6. Sky-Blue Organic Light Emitting Diode with 37% External Quantum Efficiency Using Thermally Activated Delayed Fluorescence from Spiroacridine-Triazine Hybrid.

    PubMed

    Lin, Ting-An; Chatterjee, Tanmay; Tsai, Wei-Lung; Lee, Wei-Kai; Wu, Meng-Jung; Jiao, Min; Pan, Kuan-Chung; Yi, Chih-Lung; Chung, Chin-Lung; Wong, Ken-Tsung; Wu, Chung-Chih

    2016-08-01

    Extremely efficient sky-blue organic electroluminescence with external quantum efficiency of ≈37% is achieved in a conventional planar device structure, using a highly efficient thermally activated delayed fluorescence emitter based on the spiroacridine-triazine hybrid and simultaneously possessing nearly unitary (100%) photoluminescence quantum yield, excellent thermal stability, and strongly horizontally oriented emitting dipoles (with a horizontal dipole ratio of 83%).

  7. The 27 day solar rotational effect on mesospheric nighttime OH and O3 observations induced by geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Fytterer, T.; Santee, M. L.; Sinnhuber, M.; Wang, S.

    2015-09-01

    Observations performed by the Earth Observing System Microwave Limb Sounder instrument on board the Aura satellite from 2004 to 2009 (2004 to 2014) were used to investigate the 27 day solar rotational cycle in mesospheric OH (O3) and the physical connection to geomagnetic activity. Data analysis was focused on nighttime measurements at geomagnetic latitudes connected to the outer radiation belts (55°N/S-75°N/S). The applied superposed epoch analysis reveals a distinct 27 day solar rotational signal in OH and O3 during winter in both hemispheres at altitudes >70 km. The OH response is positive and in-phase with the respective geomagnetic activity signal, lasting for 1-2 days. In contrast, the O3 feedback is negative, delayed by 1 day, and is present up to 4 days afterward. Largest OH (O3) peaks are found at ~75 km, exceeding the 95% significance level and the measurement noise of <2% (<0.5%), while reaching variations of +14% (-7%) with respect to their corresponding background. OH at 75 km is observed to respond to particle precipitation only after a certain threshold of geomagnetic activity is exceeded, depending on the respective OH background. The relation between OH and O3 at 75 km in both hemispheres is found to be nonlinear. In particular, OH has a strong impact on O3 for relatively weak geomagnetic disturbances and accompanying small absolute OH variations (<0.04 ppb). In contrast, catalytic O3 depletion is seen to slow down for stronger geomagnetic variations and OH anomalies (0.04-0.13 ppb), revealing small variations around -0.11 ppm.

  8. The 27 day solar rotational effect on mesospheric nighttime OH and O3 observations induced by geomagnetic activity.

    PubMed

    Fytterer, T; Santee, M L; Sinnhuber, M; Wang, S

    2015-09-01

    Observations performed by the Earth Observing System Microwave Limb Sounder instrument on board the Aura satellite from 2004 to 2009 (2004 to 2014) were used to investigate the 27 day solar rotational cycle in mesospheric OH (O3) and the physical connection to geomagnetic activity. Data analysis was focused on nighttime measurements at geomagnetic latitudes connected to the outer radiation belts (55°N/S-75°N/S). The applied superposed epoch analysis reveals a distinct 27 day solar rotational signal in OH and O3 during winter in both hemispheres at altitudes >70 km. The OH response is positive and in-phase with the respective geomagnetic activity signal, lasting for 1-2 days. In contrast, the O3 feedback is negative, delayed by 1 day, and is present up to 4 days afterward. Largest OH (O3) peaks are found at ~75 km, exceeding the 95% significance level and the measurement noise of <2% (<0.5%), while reaching variations of +14% (-7%) with respect to their corresponding background. OH at 75 km is observed to respond to particle precipitation only after a certain threshold of geomagnetic activity is exceeded, depending on the respective OH background. The relation between OH and O3 at 75 km in both hemispheres is found to be nonlinear. In particular, OH has a strong impact on O3 for relatively weak geomagnetic disturbances and accompanying small absolute OH variations (<0.04 ppb). In contrast, catalytic O3 depletion is seen to slow down for stronger geomagnetic variations and OH anomalies (0.04-0.13 ppb), revealing small variations around -0.11 ppm.

  9. A Spectral Analysis of Rotator Cuff Musculature Electromyographic Activity: Surface and Indwelling

    PubMed Central

    Tomlinson, Daniel P.; Vanadurongwan, Bavornrat; Lenhoff, Mark W.; Cordasco, Frank A.; Chehab, Eric L.; Adler, Ronald S.; Henn, R. Frank; Hillstrom, Howard J.

    2010-01-01

    Electromyography (EMG) of the shoulder girdle is commonly performed; however, EMG spectral properties of shoulder muscles have not been clearly defined. The purpose of this study was to determine the maximum power frequency, Nyquist rate, and minimum sampling rate for indwelling and surface EMG of the normal shoulder girdle musculature. EMG signals were recorded using indwelling electrodes for the rotator cuff muscles and surface electrodes for ten additional shoulder muscles in ten healthy volunteers. A fast Fourier transform was performed on the raw EMG signal collected during maximal isometric contractions to derive the power spectral density. The 95% power frequency was calculated during the ramp and plateau subphase of each contraction. Data were analyzed with analysis of variance (ANOVA) and paired t tests. Indwelling EMG signals had more than twice the frequency content of surface EMG signals (p < .001). Mean 95% power frequencies ranged from 495 to 560 Hz for indwelling electrodes and from 152 to 260 Hz for surface electrodes. Significant differences in the mean 95% power frequencies existed among muscles monitored with surface electrodes (p = .002), but not among muscles monitored with indwelling electrodes (p = .961). No significant differences in the 95% power frequencies existed among contraction subphases for any of the muscle–electrode combinations. Maximum Nyquist rate was 893 Hz for surface electrodes and 1,764 Hz for indwelling electrodes. Our results suggest that when recording EMG of shoulder muscles, the minimum sampling frequency is 1,340 Hz for surface electrodes and 2,650 Hz for indwelling electrodes. The minimum sampling recommendations are higher than the 1,000 Hz reported in many studies involving EMG of the shoulder. PMID:22294954

  10. Relationship between Individual External Doses, Ambient Dose Rates and Individuals' Activity-Patterns in Affected Areas in Fukushima following the Fukushima Daiichi Nuclear Power Plant Accident.

    PubMed

    Naito, Wataru; Uesaka, Motoki; Yamada, Chie; Kurosawa, Tadahiro; Yasutaka, Tetsuo; Ishii, Hideki

    2016-01-01

    The accident at Fukushima Daiichi Nuclear Power Plant on March 11, 2011, released radioactive material into the atmosphere and contaminated the land in Fukushima and several neighboring prefectures. Five years after the nuclear disaster, the radiation levels have greatly decreased due to physical decay, weathering, and decontamination operations in Fukushima. The populations of 12 communities were forced to evacuate after the accident; as of March 2016, the evacuation order has been lifted in only a limited area, and permanent habitation is still prohibited in most of the areas. In order for the government to lift the evacuation order and for individuals to return to their original residential areas, it is important to assess current and future realistic individual external doses. Here, we used personal dosimeters along with the Global Positioning System and Geographic Information System to understand realistic individual external doses and to relate individual external doses, ambient doses, and activity-patterns of individuals in the affected areas in Fukushima. The results showed that the additional individual external doses were well correlated to the additional ambient doses based on the airborne monitoring survey. The results of linear regression analysis suggested that the additional individual external doses were on average about one-fifth that of the additional ambient doses. The reduction factors, which are defined as the ratios of the additional individual external doses to the additional ambient doses, were calculated to be on average 0.14 and 0.32 for time spent at home and outdoors, respectively. Analysis of the contribution of various activity patterns to the total individual external dose demonstrated good agreement with the average fraction of time spent daily in each activity, but the contribution due to being outdoors varied widely. These results are a valuable contribution to understanding realistic individual external doses and the corresponding

  11. Relationship between Individual External Doses, Ambient Dose Rates and Individuals’ Activity-Patterns in Affected Areas in Fukushima following the Fukushima Daiichi Nuclear Power Plant Accident

    PubMed Central

    Kurosawa, Tadahiro; Yasutaka, Tetsuo; Ishii, Hideki

    2016-01-01

    The accident at Fukushima Daiichi Nuclear Power Plant on March 11, 2011, released radioactive material into the atmosphere and contaminated the land in Fukushima and several neighboring prefectures. Five years after the nuclear disaster, the radiation levels have greatly decreased due to physical decay, weathering, and decontamination operations in Fukushima. The populations of 12 communities were forced to evacuate after the accident; as of March 2016, the evacuation order has been lifted in only a limited area, and permanent habitation is still prohibited in most of the areas. In order for the government to lift the evacuation order and for individuals to return to their original residential areas, it is important to assess current and future realistic individual external doses. Here, we used personal dosimeters along with the Global Positioning System and Geographic Information System to understand realistic individual external doses and to relate individual external doses, ambient doses, and activity-patterns of individuals in the affected areas in Fukushima. The results showed that the additional individual external doses were well correlated to the additional ambient doses based on the airborne monitoring survey. The results of linear regression analysis suggested that the additional individual external doses were on average about one-fifth that of the additional ambient doses. The reduction factors, which are defined as the ratios of the additional individual external doses to the additional ambient doses, were calculated to be on average 0.14 and 0.32 for time spent at home and outdoors, respectively. Analysis of the contribution of various activity patterns to the total individual external dose demonstrated good agreement with the average fraction of time spent daily in each activity, but the contribution due to being outdoors varied widely. These results are a valuable contribution to understanding realistic individual external doses and the corresponding

  12. Context-Dependent Neural Activation: Internally and Externally Guided Rhythmic Lower Limb Movement in Individuals With and Without Neurodegenerative Disease.

    PubMed

    Hackney, Madeleine E; Lee, Ho Lim; Battisto, Jessica; Crosson, Bruce; McGregor, Keith M

    2015-01-01

    Parkinson's disease is a neurodegenerative disorder that has received considerable attention in allopathic medicine over the past decades. However, it is clear that, to date, pharmacological and surgical interventions do not fully address symptoms of PD and patients' quality of life. As both an alternative therapy and as an adjuvant to conventional approaches, several types of rhythmic movement (e.g., movement strategies, dance, tandem biking, and Tai Chi) have shown improvements to motor symptoms, lower limb control, and postural stability in people with PD (1-6). However, while these programs are increasing in number, still little is known about the neural mechanisms underlying motor improvements attained with such interventions. Studying limb motor control under task-specific contexts can help determine the mechanisms of rehabilitation effectiveness. Both internally guided (IG) and externally guided (EG) movement strategies have evidence to support their use in rehabilitative programs. However, there appears to be a degree of differentiation in the neural substrates involved in IG vs. EG designs. Because of the potential task-specific benefits of rhythmic training within a rehabilitative context, this report will consider the use of IG and EG movement strategies, and observations produced by functional magnetic resonance imaging and other imaging techniques. This review will present findings from lower limb imaging studies, under IG and EG conditions for populations with and without movement disorders. We will discuss how these studies might inform movement disorders rehabilitation (in the form of rhythmic, music-based movement training) and highlight research gaps. We believe better understanding of lower limb neural activity with respect to PD impairment during rhythmic IG and EG movement will facilitate the development of novel and effective therapeutic approaches to mobility limitations and postural instability.

  13. Ribavirin-induced externalization of phosphatidylserine in erythrocytes is predominantly caused by inhibition of aminophospholipid translocase activity.

    PubMed

    Kleinegris, Marie-Claire; Koek, Ger H; Mast, Kelly; Mestrom, Eveline H C; Wolfs, Jef L N; Bevers, Edouard M

    2012-10-15

    Ribavirin in combination with interferon-α is the standard treatment for chronic hepatitis C, but often induces severe anemia forcing discontinuation of the therapy. Whereas suppression of bone marrow by interferon may impact on the production of erythrocytes, it has been suggested that accumulation of ribavirin in erythrocytes induces alterations causing an early removal of these cells by the mononuclear phagocytic system. Externalization of phosphatidylserine, which is exclusively present in the cytoplasmic leaflet of the plasma membrane, is a recognition signal for phagocytosis in particular of apoptotic cells. Here, we demonstrate that surface exposure of phosphatidylserine upon prolonged treatment of erythrocytes with ribavirin results mainly from inactivation of the aminophospholipid translocase, an ATP-dependent lipid pump, which specifically transports phosphatidylserine from the outer to the inner leaflet of the plasma membrane. Inactivation is due to severe ATP depletion, although competitive inhibition by ribavirin or its phosphorylated derivatives cannot be excluded. Phospholipid scramblase, responsible for collapse of lipid asymmetry, appears to be of minor importance as erythrocytes of patients with the Scott syndrome, lacking Ca(2+)-induced lipid scrambling, are equally sensitive to ribavirin treatment. Neither the antioxidant N-acetylcysteine nor the pan-caspase inhibitor Q-VD-OPH did affect ribavirin-induced phosphatidylserine exposure, suggesting that oxidative stress or apoptotic-related mechanisms are not involved in this process. In conclusion, we propose that spontaneous loss of lipid asymmetry, not corrected by aminophospholipid translocase activity, is the mechanism for ribavirin-induced phosphatidylserine exposure that may contribute to ribavirin-induced anemia.

  14. Context-Dependent Neural Activation: Internally and Externally Guided Rhythmic Lower Limb Movement in Individuals With and Without Neurodegenerative Disease

    PubMed Central

    Hackney, Madeleine E.; Lee, Ho Lim; Battisto, Jessica; Crosson, Bruce; McGregor, Keith M.

    2015-01-01

    Parkinson’s disease is a neurodegenerative disorder that has received considerable attention in allopathic medicine over the past decades. However, it is clear that, to date, pharmacological and surgical interventions do not fully address symptoms of PD and patients’ quality of life. As both an alternative therapy and as an adjuvant to conventional approaches, several types of rhythmic movement (e.g., movement strategies, dance, tandem biking, and Tai Chi) have shown improvements to motor symptoms, lower limb control, and postural stability in people with PD (1–6). However, while these programs are increasing in number, still little is known about the neural mechanisms underlying motor improvements attained with such interventions. Studying limb motor control under task-specific contexts can help determine the mechanisms of rehabilitation effectiveness. Both internally guided (IG) and externally guided (EG) movement strategies have evidence to support their use in rehabilitative programs. However, there appears to be a degree of differentiation in the neural substrates involved in IG vs. EG designs. Because of the potential task-specific benefits of rhythmic training within a rehabilitative context, this report will consider the use of IG and EG movement strategies, and observations produced by functional magnetic resonance imaging and other imaging techniques. This review will present findings from lower limb imaging studies, under IG and EG conditions for populations with and without movement disorders. We will discuss how these studies might inform movement disorders rehabilitation (in the form of rhythmic, music-based movement training) and highlight research gaps. We believe better understanding of lower limb neural activity with respect to PD impairment during rhythmic IG and EG movement will facilitate the development of novel and effective therapeutic approaches to mobility limitations and postural instability. PMID:26696952

  15. Temporal and spatial strategies in an active place avoidance task on Carousel: a study of effects of stability of arena rotation speed in rats.

    PubMed

    Bahník, Štěpán; Stuchlík, Aleš

    2015-01-01

    The active place avoidance task is a dry-arena task used to assess spatial navigation and memory in rodents. In this task, a subject is put on a rotating circular arena and avoids an invisible sector that is stable in relation to the room. Rotation of the arena means that the subject's avoidance must be active, otherwise the subject will be moved in the to-be-avoided sector by the rotation of the arena and a slight electric shock will be administered. The present experiment explored the effect of variable arena rotation speed on the ability to avoid the to-be-avoided sector. Subjects in a group with variable arena rotation speed learned to avoid the sector with the same speed and attained the same avoidance ability as rats in a group with a stable arena rotation speed. Only a slight difference in preferred position within the room was found between the two groups. No difference was found between the two groups in the dark phase, where subjects could not use orientation cues in the room. Only one rat was able to learn the avoidance of the to-be-avoided sector in this phase. The results of the experiment suggest that idiothetic orientation and interval timing are not crucial for learning avoidance of the to-be-avoided sector. However, idiothetic orientation might be sufficient for avoiding the sector in the dark.

  16. Evaluation of oxygen reduction activity by the thin-film rotating disk electrode methodology: The effects of potentiodynamic parameters

    SciTech Connect

    Chen, Guangyu; Li, Meng; Kuttiyiel, Kurian A.; Sasaki, Kotaro; Kong, Fanpeng; Du, Chunyu; Gao, Yunzhi; Yin, Geping; Adzic, Radoslav R.

    2016-04-11

    Here, an accurate and efficient assessment of activity is critical for the research and development of electrocatalysts for oxygen reduction reaction (ORR). Currently, the methodology combining the thin-film rotating disk electrode (TF-RDE) and potentiodynamic polarization is the most commonly used to pre-evaluate ORR activity, acquire kinetic data (i.e., kinetic current, Tafel slope, etc.), and gain understanding of the ORR mechanism. However, it is often neglected that appropriate potentiodynamic parameters have to be chosen to obtain reliable results. We first evaluate the potentiodynamic and potentiostatic polarization measurements with TF-RDE to examine the ORR activity of Pt nanoelectrocatalyst. Furthermore, our results demonstrate that besides depending on the nature of electrocatalyst, the apparent ORR kinetics also strongly depends on the associated potentiodynamic parameters, such as scan rate and scan region, which have a great effect on the coverage of adsorbed OHad/Oad on Pt surface, thereby affecting the ORR activities of both nanosized and bulk Pt. However, the apparent Tafel slopes remained nearly the same, indicating that the ORR mechanism in all the measurements was not affected by different potentiodynamic parameters.

  17. Evaluation of oxygen reduction activity by the thin-film rotating disk electrode methodology: The effects of potentiodynamic parameters

    DOE PAGES

    Chen, Guangyu; Li, Meng; Kuttiyiel, Kurian A.; ...

    2016-04-11

    Here, an accurate and efficient assessment of activity is critical for the research and development of electrocatalysts for oxygen reduction reaction (ORR). Currently, the methodology combining the thin-film rotating disk electrode (TF-RDE) and potentiodynamic polarization is the most commonly used to pre-evaluate ORR activity, acquire kinetic data (i.e., kinetic current, Tafel slope, etc.), and gain understanding of the ORR mechanism. However, it is often neglected that appropriate potentiodynamic parameters have to be chosen to obtain reliable results. We first evaluate the potentiodynamic and potentiostatic polarization measurements with TF-RDE to examine the ORR activity of Pt nanoelectrocatalyst. Furthermore, our results demonstratemore » that besides depending on the nature of electrocatalyst, the apparent ORR kinetics also strongly depends on the associated potentiodynamic parameters, such as scan rate and scan region, which have a great effect on the coverage of adsorbed OHad/Oad on Pt surface, thereby affecting the ORR activities of both nanosized and bulk Pt. However, the apparent Tafel slopes remained nearly the same, indicating that the ORR mechanism in all the measurements was not affected by different potentiodynamic parameters.« less

  18. Rotational testing.

    PubMed

    Furman, J M

    2016-01-01

    The natural stimulus for the semicircular canals is rotation of the head, which also might stimulate the otolith organs. Vestibular stimulation usually induces eye movements via the vestibulo-ocular reflex (VOR). The orientation of the subject with respect to the axis of rotation and the orientation of the axis of rotation with respect to gravity together determine which labyrinthine receptors are stimulated for particular motion trajectories. Rotational testing usually includes the measurement of eye movements via a video system but might use a subject's perception of motion. The most common types of rotational testing are whole-body computer-controlled sinusoidal or trapezoidal stimuli during earth-vertical axis rotation (EVAR), which stimulates primarily the horizontal semicircular canals bilaterally. Recently, manual impulsive rotations, known as head impulse testing (HIT), have been developed to assess individual horizontal semicircular canals. Most types of rotational stimuli are not used routinely in the clinical setting but may be used in selected research environments. This chapter will discuss clinically relevant rotational stimuli and several types of rotational testing that are used primarily in research settings.

  19. Control of External Kink Instability

    NASA Astrophysics Data System (ADS)

    Navratil, Gerald

    2004-11-01

    A fundamental pressure and current limiting phenomenon in magnetically confined plasmas for fusion energy is the long wavelength ideal-MHD kink mode. These modes have been extensively studied in tokamak and reversed field pinch (RFP) devices. They are characterized by significant amplitude on the boundary of the confined plasma and can therefore be controlled by manipulation of the external boundary conditions. In the past ten years, the theoretically predicted stabilizing effect of a nearby conducting wall has been documented in experiments, which opens the possibility of a significant increase in maximum stable plasma pressure. While these modes are predicted to remain unstable when the stabilizing wall is resistive, their growth rates are greatly reduced from the hydrodynamic time scale to the time scale of magnetic diffusion through the resistive wall. These resistive wall slowed kink modes have been identified as limiting phenomena in tokamak (DIII-D, PBX-M, HBT-EP, JT-60U, JET, NSTX) and RFP (HBTX, Extrap, T2R) devices. The theoretical prediction of stabilization to nearly the ideal wall pressure limit by toroidal plasma rotation and/or active feedback control using coils has recently been realized experimentally. Sustained, stable operation at double the no-wall pressure limit has been achieved. Discovery of the phenomenon of resonant field amplification by marginally stable kink modes and its role in the momentum balance of rotationally stabilized plasmas has emerged as a key feature. A theoretical framework, based on an extension of the very successful treatment of the n=0 axisymmetric mode developed in the early 1990's, to understand the stabilization mechanisms and model the performance of active feedback control systems is now established. This allows design of kink control systems for burning plasma experiments like ITER.

  20. Influence of crop rotation, intermediate crops, and organic fertilizers on the soil enzymatic activity and humus content in organic farming systems

    NASA Astrophysics Data System (ADS)

    Marcinkeviciene, A.; Boguzas, V.; Balnyte, S.; Pupaliene, R.; Velicka, R.

    2013-02-01

    The influence of crop rotation systems with different portions of nitrogen-fixing crops, intermediate crops, and organic fertilizers on the enzymatic activity and humus content of soils in organic farming was studied. The highest activity of the urease and invertase enzymes was determined in the soil under the crop rotation with 43% nitrogen-fixing crops and with perennial grasses applied twice per rotation. The application of manure and the growing of intermediate crops for green fertilizers did not provide any significant increase in the content of humus. The activity of urease slightly correlated with the humus content ( r = 0.30 at the significance level of 0.05 and r = 0.39 at the significance level of 0.01).

  1. Piezo activated mode tracking system for widely tunable mode-hop-free external cavity mid-IR semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Wysocki, Gerard (Inventor); Tittel, Frank K. (Inventor); Curl, Robert F. (Inventor)

    2010-01-01

    A widely tunable, mode-hop-free semiconductor laser operating in the mid-IR comprises a QCL laser chip having an effective QCL cavity length, a diffraction grating defining a grating angle and an external cavity length with respect to said chip, and means for controlling the QCL cavity length, the external cavity length, and the grating angle. The laser of claim 1 wherein said chip may be tuned over a range of frequencies even in the absence of an anti-reflective coating. The diffraction grating is controllably pivotable and translatable relative to said chip and the effective QCL cavity length can be adjusted by varying the injection current to the chip. The laser can be used for high resolution spectroscopic applications and multi species trace-gas detection. Mode-hopping is avoided by controlling the effective QCL cavity length, the external cavity length, and the grating angle so as to replicate a virtual pivot point.

  2. Wave-Driven Rotation In Centrifugal Mirrors

    SciTech Connect

    Abraham J. Fetterman and Nathaniel J. Fisch

    2011-03-28

    Centrifugal mirrors use supersonic rotation to provide axial confinement and enhanced stability. Usually the rotation is produced using electrodes, but these electrodes have limited the rotation to the Alfven critical ionization velocity, which is too slow to be useful for fusion. Instead, the rotation could be produced using radio frequency waves. A fixed azimuthal ripple is a simple and efficient wave that could produce rotation by harnessing alpha particle energy. This is an extension of the alpha channeling effect. The alpha particle power and efficiency in a simulated devices is sufficient to produce rotation without external energy input. By eliminating the need for electrodes, this opens new opportunities for centrifugal traps.

  3. On the similarity of 239Pu α-activity histograms when the angular velocities of the Earth diurnal rotation, orbital movement and rotation of collimators are equalized

    NASA Astrophysics Data System (ADS)

    Shnoll, S. E.; Rubinstein, I. A.; Shapovalov, S. N.; Tolokonnikova, A. A.; Shlektaryov, V. A.; Kolombet, V. A.; Kondrashova, M. N.

    2016-01-01

    It was shown earlier that the persistent "scatter" of results of measurements of any nature is determined by the diurnal and orbital movement of the Earth. The movement is accompanied by "macroscopic fluctuations" (MF)—regular, periodic changes in the shape of histograms, spectra of fluctuation amplitudes of the measured parameters. There are two near-daily periods ("sidereal", 1436 min; and "solar", 1440 min) and three yearly ones ("calendar", 365 average solar days; "tropical", 365 days 5 h and 48 min; and "sidereal", 365 days 6 h and 9 min). This periodicity was explained by the objects whose parameters are measured passing through the same spatial-temporal heterogeneities as the Earth rotates and shifts along its orbit.

  4. Continued activity in P/2013 P5 PANSTARRS. Unexpected comet, rotational break-up, or rubbing binary asteroid?

    NASA Astrophysics Data System (ADS)

    Hainaut, O. R.; Boehnhardt, H.; Snodgrass, C.; Meech, K. J.; Deller, J.; Gillon, M.; Jehin, E.; Kuehrt, E.; Lowry, S. C.; Manfroid, J.; Micheli, M.; Mottola, S.; Opitom, C.; Vincent, J.-B.; Wainscoat, R.

    2014-03-01

    The object P/2013 P5 PANSTARRS was discovered in August 2013, displaying a cometary tail, but its orbital elements indicated that it was a typical member of the inner asteroid main belt. We monitored the object from 2013 August 30 until 2013 October 05 using the CFHT 3.6 m telescope (Mauna Kea, HI), the NTT (ESO, La Silla), the CA 1.23 m telescope (Calar Alto), the Perkins 1.8m (Lowell) and the 0.6 m TRAPPIST telescope (La Silla). We measured its nuclear radius to be r ≲ 0.25-0.29 km, and its colours g' - r' = 0.58 ± 0.05 and r' - i' = 0.23 ± 0.06, typical for an S-class asteroid, as expected for an object in the inner asteroid belt and in the vicinity of the Flora collisional family. We failed to detect any rotational light curve with an amplitude <0.05 mag and a double-peaked rotation period <20 h. The evolution of the tail during the observations was as expected from a dust tail. A detailed Finson-Probstein analysis of deep images acquired with the NTT in early September and with the CFHT in late September indicated that the object was active since at least late January 2013 until the time of the latest observations in 2013 September, with at least two peaks of activity around 2013 June 14 ± 10 d and 2013 July 22 ± 3 d. The changes of activity level and the activity peaks were extremely sharp and short, shorter than the temporal resolution of our observations (~1 d). The dust distribution was similar during these two events, with dust grains covering at least the 1-1000 μm range. The total mass ejected in grains <1 mm was estimated to be 3.0 × 106 kg and 2.6 × 107 kg around the two activity peaks. Rotational disruption cannot be ruled out as the cause of the dust ejection. We also propose that the components of a contact binary might gently rub and produce the observed emission. Volatile sublimation might also explain what appears as cometary activity over a period of 8 months. However, while main belt comets best explained by ice sublimation are found

  5. Management with willow short rotation coppice increase the functional gene diversity and functional activity of a heavy metal polluted soil.

    PubMed

    Xue, K; van Nostrand, J D; Vangronsveld, J; Witters, N; Janssen, J O; Kumpiene, J; Siebielec, G; Galazka, R; Giagnoni, L; Arenella, M; Zhou, J-Z; Renella, G

    2015-11-01

    We studied the microbial functional diversity, biochemical activity, heavy metals (HM) availability and soil toxicity of Cd, Pb and Zn contaminated soils, kept under grassland or short rotation coppice (SRC) to attenuate the risks associated with HM contamination and restore the soil ecological functions. Soil microbial functional diversity was analyzed by the GeoChip, a functional gene microarray containing probes for genes involved in nutrient cycling, metal resistance and stress response. Soil under SRC showed a higher abundance of microbial genes involved in C, N, P and S cycles and resistance to various HM, higher microbial biomass, respiration and enzyme activity rates, and lower HM availability than the grassland soil. The linkages between functional genes of soil microbial communities and soil chemical properties, HM availability and biochemical activity were also investigated. Soil toxicity and N, P and Pb availability were important factors in shaping the microbial functional diversity, as determined by CCA. We concluded that in HM contaminated soils the microbial functional diversity was positively influenced by SRC management through the reduction of HM availability and soil toxicity increase of nutrient cycling. The presented results can be important in predicting the long term environmental sustainability of plant-based soil remediation.

  6. Active vibration control of rotating machinery with a hybrid piezohydraulic actuator system

    SciTech Connect

    Tang, P.; Palazzolo, A.B.; Kascak, A.F.; Montague, G.T.

    1995-10-01

    An integrated, compact piezohydraulic actuator system for active vibration control was designed and developed with a primary application for gas turbine aircraft engines. Copper tube was chosen as the transmission line material for ease of assembly. Liquid plastic, which meets incompressibility and low-viscosity requirements, was adjusted to provide optimal actuator performance. Variants of the liquid plastic have been prepared with desired properties between {minus}40 F and 400 F. The effectiveness of this hybrid actuator for active vibration control (AVC) was demonstrated for suppressing critical speed vibration through two critical speeds for various levels of intentionally placed imbalance. A high-accuracy closed-loop simulation, which combines both finite element and state space methods, was applied for the closed-loop unbalance response simulation with/without AVC. Good correlation between the simulation and test results was achieved.

  7. Optimal external laryngeal manipulation versus McCoy blade in active position in patients with poor view of glottis on direct laryngoscopy

    PubMed Central

    Vasudevan, Arumugam; Venkat, Ranjani; Badhe, Ashok Shankar

    2010-01-01

    Successful endotracheal intubation requires a clear view of glottis. Optimal external laryngeal manipulation may improve the view of glottis on direct laryngoscopy with Macintosh blade, but it requires another trained hand. Alternatively, McCoy laryngoscope with elevated tip may be useful. This study has been designed to compare the two techniques in patients with poor view of glottis. Two hundred patients with ‘Grade 2 or more’ view of glottis on direct laryngoscopy with Macintosh blade are included in the study. Optimal external laryngeal manipulation was applied, followed by laryngoscopy with McCoy blade in activated position; and the view was noted in both situations. The two interventions were compared using Chi-square test. The overall changes, in the views, were analyzed with Wilcoxon signed rank test. Both the techniques improved the view of glottis significantly (P<0.05). Optimal external laryngeal manipulation was significantly better than McCoy laryngoscope in active position, especially in patients with Grade 3 or 4 baseline view, poor oropharyngeal class, decreased head extension and decreased submandibular space (odds ratio = 2.36, 3.17, 3.22 and 26.48 respectively). To conclude, optimal external laryngeal manipulation is a better technique than McCoy laryngoscope in patients with poor view of glottis on direct laryngoscopy with Macintosh blade. PMID:20532072

  8. Bridging the gap between research and practice: an assessment of external validity of community-based physical activity programs in Bogotá, Colombia, and Recife, Brazil.

    PubMed

    Paez, Diana C; Reis, Rodrigo S; Parra, Diana C; Hoehner, Christine M; Sarmiento, Olga L; Barros, Mauro; Brownson, Ross C

    2015-03-01

    For more than a decade, physical activity classes have been offered in public places at no cost to the participants in some Latin American cities, however, internal and external validity evidence of these programs is limited. The goals of this study were to assess, report, and compare the external validity of the Recreovia program (RCP) in Colombia, and the Academia da Cidade program (ACP) in Brazil. Interviews to assess external validity of the RCP and ACP were conducted in 2012. The interview guide was developed based on the RE-AIM framework. Seventeen key informants were selected to participate in the study. Interviews were recorded and transcribed verbatim. Transcripts were analyzed using a constant comparative qualitative method and experts validated common themes. RCP and ACP key informants reported that both programs reach underserved population. There is no information available about effectiveness. Both programs take place in public spaces (e.g., parks and plazas), which are selected for adoption mainly based on community demand. RCP and ACP offer free physical activity classes with educational and cultural components, have a strong organizational structure for implementation, and differ on schedule and content of classes. Funding sources were reported to play an important role on long-term maintenance. Facilitators and barriers were identified. Programs are similar in the reach and adoption elements; the main differences were found on implementation and maintenance, whereas information on effectiveness was not found. Reporting external validity of these programs is useful to bridge the gap between research and practice.

  9. Minimal model for spontaneous cell polarization and edge activity in oscillating, rotating and migrating cells

    NASA Astrophysics Data System (ADS)

    Raynaud, Franck; Ambühl, Mark E.; Gabella, Chiara; Bornert, Alicia; Sbalzarini, Ivo F.; Meister, Jean-Jacques; Verkhovsky, Alexander B.

    2016-04-01

    How cells break symmetry and organize activity at their edges to move directionally is a fundamental question in cell biology. Physical models of cell motility commonly incorporate gradients of regulatory proteins and/or feedback from the motion itself to describe the polarization of this edge activity. These approaches, however, fail to explain cell behaviour before the onset of polarization. We use polarizing and moving fish epidermal cells as a model system to bridge the gap between cell behaviours before and after polarization. Our analysis suggests a novel and simple principle of self-organizing cell activity, in which local cell-edge dynamics depends on the distance from the cell centre, but not on the orientation with respect to the front-back axis. We validate this principle with a stochastic model that faithfully reproduces a range of cell-migration behaviours. Our findings indicate that spontaneous polarization, persistent motion and cell shape are emergent properties of the local cell-edge dynamics controlled by the distance from the cell centre.

  10. Ampakines reduce methamphetamine-driven rotation and activate neocortex in a regionally selective fashion.

    PubMed

    Hess, U S; Whalen, S P; Sandoval, L M; Lynch, G; Gall, C M

    2003-01-01

    It has been proposed that glutamatergic and dopaminergic systems are functionally opposed in their regulation of striatal output. The present study tested the effects of drugs that enhance AMPA-receptor-mediated glutamatergic transmission (ampakines) for their effects on dopamine-related alterations in cortical activity and locomotor behavior. Rats with unilateral 6-hydroxydopamine lesions of the ascending nigro-striatal dopamine system were sensitized to methamphetamine and then tested for methamphetamine-induced circling behavior in the presence and absence of ampakines CX546 and CX614. Both ampakines produced rapid, dose-dependent reductions in circling that were evident within 15 min and sustained through 1 h of behavioral testing. In situ hybridization maps of c-fos mRNA expression showed that in the intact hemisphere, ampakine cotreatment markedly increased c-fos expression in parietal, sensori-motor neocortex above that found in rats treated with methamphetamine alone. Ampakine cotreatment did not augment c-fos expression in frontal, sensori-motor cortex or striatum. Still larger ampakine-elicited effects were obtained in parietal cortex of the dopamine-depleted hemisphere where labeling densities were increased by approximately 60% above values found in methamphetamine-alone rats. With these effects, the hemispheric asymmetry of cortical activation was less pronounced in the ampakine-cotreatment group as compared with the methamphetamine-alone group. These results indicate that positive modulation of AMPA-type glutamate receptors 1) can offset behavioral disturbances arising from sensitized dopamine receptors and 2) increases aggregate neuronal activity in a regionally selective manner that is probably dependent upon behavioral demands.

  11. Revisiting a possible relationship between solar activity and Earth rotation variability

    NASA Astrophysics Data System (ADS)

    Abarca del Rio, R.; Gambis, D.

    2011-10-01

    A variety of studies have searched to establish a possible relationship between the solar activity and earth variations (Danjon, 1958-1962; Challinor, 1971; Currie, 1980, Gambis, 1990). We are revisiting previous studies (Bourget et al, 1992, Abarca del Rio et al, 2003, Marris et al, 2004) concerning the possible relationship between solar activity variability and length of day (LOD) variations at decadal time scales. Assuming that changes in AAM for the entire atmosphere are accompanied by equal, but opposite, changes in the angular momentum of the earth it is possible to infer changes in LOD from global AAM time series, through the relation : delta (LOD) (ms) = 1.68 10^29 delta(AAM) (kgm2/s) (Rosen and Salstein, 1983), where δ(LOD) is given in milliseconds. Given the close relationship at seasonal to interannual time's scales between LOD and the Atmospheric Angular Momentum (AAM) (see Abarca del Rio et al., 2003) it is possible to infer from century long atmospheric simulations what may have been the variability in the associated LOD variability throughout the last century. In the absence of a homogeneous century long LOD time series, we take advantage of the recent atmospheric reanalyzes extending since 1871 (Compo, Whitaker and Sardeshmukh, 2006). The atmospheric data (winds) of these reanalyzes allow computing AAM up to the top of the atmosphere; though here only troposphere data (up to 100 hPa) was taken into account.

  12. On the coronae of rapidly rotating stars. IV - Coronal activity in F dwarfs and implications for the onset of the dynamo

    NASA Technical Reports Server (NTRS)

    Walter, F. M.

    1983-01-01

    X-ray observations of 14 early F dwarfs are reported and these stars are used, together with a complete sample from the literature, to examine how the characteristics of coronal X-ray emission vary from dwarfs of spectral type A through G. Evidence for a rotation-activity relation in stars redder than B - V = 0.45 is found. Stellar duplicity and age, except insofar as they influence the rotation rate, do not appear to be important in determining the coronal X-ray flux level in F dwarfs. It is suggested that the appearance of a relation between rotation and activity at B - V = 0.45 indicates the turn-on of a solar-like dynamo. The high X-ray surface fluxes and small variance thereof for dwarfs with B - V = 0.3-0.45 are also discussed.

  13. Rotating Wavepackets

    ERIC Educational Resources Information Center

    Lekner, John

    2008-01-01

    Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…

  14. The effect of external magnetic fields on the catalytic activity of Pd nanoparticles in Suzuki cross-coupling reactions

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Wang, Changlai; Li, Ren; Li, Ran; Chen, Qianwang

    2016-04-01

    Pd nanoparticles supported on Co3[Co(CN)6]2 nanoparticles (marked as Pd@Co3[Co(CN)6]2 nanoparticles) were prepared as catalysts for the Suzuki cross-coupling reaction under external magnetic fields (MFs). It is shown that a weak external MF can increase the rate of the Suzuki cross-coupling reaction at room temperature, and with the increase of the strength of external MFs the reaction rate also increased. At 30 °C, the yield was increased by nearly 50% under a 0.5 T external MF after 24 hours compared to that without a MF applied. Theoretical calculations revealed that the adsorption energy changed from -1.07 to -1.12 eV in the presence of MFs, which increased by 5% compared with the absence of MFs, leading to a lower total energy of the adsorption system, which is beneficial to the reaction. From the analysis of the partial density states, it could be seen that the 2p orbital of the carbon atom in bromobenzene and the 4d orbital of the Pd atom overlap more closely in the presence of MFs, which is beneficial for the electron transfer from the Pd substrate to the bromobenzene molecule. This study is helpful in understanding the interaction between MFs and catalysts and regulating the process of catalytic reactions via MFs.Pd nanoparticles supported on Co3[Co(CN)6]2 nanoparticles (marked as Pd@Co3[Co(CN)6]2 nanoparticles) were prepared as catalysts for the Suzuki cross-coupling reaction under external magnetic fields (MFs). It is shown that a weak external MF can increase the rate of the Suzuki cross-coupling reaction at room temperature, and with the increase of the strength of external MFs the reaction rate also increased. At 30 °C, the yield was increased by nearly 50% under a 0.5 T external MF after 24 hours compared to that without a MF applied. Theoretical calculations revealed that the adsorption energy changed from -1.07 to -1.12 eV in the presence of MFs, which increased by 5% compared with the absence of MFs, leading to a lower total energy of the

  15. A Path Towards Understanding the Rotation-Activity-Age Relation of M Dwarfs with K2 Mission, X-Ray And Uv Data

    NASA Astrophysics Data System (ADS)

    Stelzer, Beate; Damasso, Mario; Scholz, Aleks; Matt, Sean P.

    2016-07-01

    We present an updated view of the rotation-activity-age relation for (old) field M dwarfs based on K2 rotation periods and flares,archival X-ray and UV data,and dedicated Chandra and XMM-Newton observations.The rotation-activity-age relation can be used as a proxy for magnetic fields- which are difficult to measure in M dwarfs -and is, therefore, key to studies of(i) the predicted dynamo transition at the fully convective boundary(SpT M3),(ii) differences in angular momentum loss through magnetized windswith respect to solar-type stars,and (iii) the evaporation of planet atmospheres,especially relevant for M dwarfs because ofthe small separation of their planets' habitable zones wherethey are strongly exposed to the stellar high-energy emission.We use a two-fold approach to obtain tight observational constraints:(1) In our study of the activity-rotation relation of nearby,proper-motion selected M dwarfs using photometric time-series from theK2 mission combined with X-ray and UV data we find strong evidencefor an abrupt change of optical photometric activity (flares, rotationcycle amplitude and residual variability)at P_rot 10d, and an unexpectedly steep decline ofX-ray activity in the unsaturated regime of slow rotators.(2) The age-activity relation is investigated through deep X-ray observationsof a sample of M dwarfs in wide binaries with white dwarfs. Here thewhite dwarf serves as a chronometer for the age of the M dwarf.Our results provide important input foraccurate angular momentum evolution models and planet atmosphere escapecalculations for M dwarfs.

  16. Changes in the biological activity of chestnut soils upon the long-term application of fertilizers in a rotation with oil-bearing crops

    NASA Astrophysics Data System (ADS)

    Eleshev, R. E.; Bakenova, Z. B.

    2012-11-01

    Experimental studies showed that irrigated chestnut soils on the piedmont of the Zailiiskiy Alatau Range are characterized by the moderate activity of the hydrolytic and redox enzymes. The use of these soils in the crop rotation system increases the hydrolytic activity of the enzymes (invertase, urease, and ATP synthase) by 30% in comparison with the monoculture; at the same time, it does not have a significant impact on the changes in the biological activity of the redox enzymes (catalase and dehydrogenase). The hydrolytic activity of the soils is activated to a greater extent in the crop rotation and in the monoculture against the background application of organic fertilizers. In this case, the recommended rates of mineral fertilizers do not inhibit the activity of the hydrolytic and redox enzymes. An increase in the hydrolytic activity of the enzymes directly affects the yield of oilseed flax. Therefore, indices of the hydrolytic activity of soils can be used as a test for the diagnostics of the efficiency of fertilizers both in crop rotation and monoculture systems.

  17. Supergranulation rotation

    NASA Astrophysics Data System (ADS)

    Schou, Jesper; Beck, John G.

    2001-01-01

    Simple convection models estimate the depth of supergranulation at approximately 15,000 km which suggests that supergranules should rotate at the rate of the plasma in the outer 2% of the Sun by radius. Previous measurements (Snodgrass & Ulrich, 1990; Beck & Schou, 2000) found that supergranules rotate significantly faster than this, with a size-dependent rotation rate. We expand on previous work and show that the torsional oscillation signal seen in the supergranules tracks that obtained for normal modes. We also find that the amplitudes and lifetimes of the supergranulation are size dependent.

  18. External tibial torsion and the effectiveness of the solid ankle-foot orthoses.

    PubMed

    Vankoski, S J; Michaud, S; Dias, L

    2000-01-01

    The aims of this study were to determine the influence of external tibial torsion on the effectiveness of the ankle-foot orthoses (AFO) in children with lumbosacral myelomeningocele. Forty patients with normal tibial rotation and 18 patients with excessive external tibial torsion were evaluated with three-dimensional gait analysis at their comfortable walking speed. The group with normal tibial rotation showed significantly greater knee extension and lower mean extension moment compared with the group with external tibial torsion (p < 0.05). The posteriorly and laterally deviated ground-reaction force relative to the knee-flexion axis compromises the ability of this force to facilitate knee extension. Patients with torsional magnitudes >20 degrees demand close inspection as candidates for derotation osteotomy. The AFO will continue to stabilize the ankle-foot complex, but improved knee motion, knee-extensor activity, and ultimately walking efficiency may be compromised.

  19. Space Station: Improving NASA's planning for external maintenance. Report to the Chair, Government Activities and Transportation Subcommittee, Committee on Government Operations, and House of Representatives

    NASA Astrophysics Data System (ADS)

    1992-07-01

    In 1996, NASA plans to begin assembly of the international Space Station Freedom in low earth orbit. One of the greatest challenges facing NASA will be maintaining the Space Station's external components throughout the assembly period and over its anticipated 30-year life using astronauts to perform extravehicular activity (EVA). The amount of EVA that can be performed is limited, and the activity is inherently risky, given the harsh environment of space. The United States General Accounting Office (GAO) review of NASA's efforts to determine the Space Station's EVA maintenance requirements and its plans to meet those requirements is presented.

  20. Rotational Energy.

    ERIC Educational Resources Information Center

    Lockett, Keith

    1988-01-01

    Demonstrates several objects rolling down a slope to explain the energy transition among potential energy, translational kinetic energy, and rotational kinetic energy. Contains a problem from Galileo's rolling ball experiment. (YP)

  1. Solar rotation.

    NASA Astrophysics Data System (ADS)

    Dziembowski, W.

    Sunspot observations made by Johannes Hevelius in 1642 - 1644 are the first ones providing significant information about the solar differential rotation. In modern astronomy the determination of the rotation rate is done in a routine way by measuring positions of various structures on the solar surface as well as by studying the Doppler shifts of spectral lines. In recent years a progress in helioseismology enabled determination of the rotation rate in the layers inaccessible for direct observations. There are still uncertainties concerning, especially, the temporal variations of the rotation rate and its behaviour in the radiative interior. We are far from understanding the observations. Theoretical works have not yet resulted in a satisfactory model for the angular momentum transport in the convective zone.

  2. Atrophy, inducible satellite cell activation, and possible denervation of supraspinatus muscle in injured human rotator-cuff muscle.

    PubMed

    Gigliotti, Deanna; Leiter, Jeff R S; Macek, Bryce; Davidson, Michael J; MacDonald, Peter B; Anderson, Judy E

    2015-09-15

    The high frequency of poor outcome and chronic pain after surgical repair of shoulder rotator-cuff injury (RCI) prompted this study to explore the potential to amplify muscle regeneration using nitric oxide (NO)-based treatment. After preoperative magnetic resonance imaging (MRI), biopsies of supraspinatus and ipsilateral deltoid (as a control) were collected during reparative surgery for RCI. Muscle fiber diameter, the pattern of neuromuscular junctions observed with alpha-bungarotoxin staining, and the γ:ε subunit ratio of acetylcholine receptors in Western blots were examined in tandem with experiments to determine the in vitro responsiveness of muscle satellite cells to activation (indicated by uptake of bromodeoxyuridine, BrdU) by the NO-donor drug, isosorbide dinitrate (ISDN). Consistent with MRI findings of supraspinatus atrophy (reduced occupation ratio and tangent sign), fiber diameter was lower in supraspinatus than in deltoid. ISDN induced a significant increase over baseline (up to 1.8-fold), in the proportion of BrdU+ (activated) Pax7+ satellite cells in supraspinatus, but not in deltoid, after 40 h in culture. The novel application of denervation indices revealed a trend for supraspinatus muscle to have a higher γ:ε subunit ratio than deltoid (P = 0.13); this ratio inversely with both occupancy ratio (P < 0.05) and the proportion of clusters at neuromuscular junctions (P = 0.05). Results implicate possible supraspinatus denervation in RCI and suggest NO-donor treatment has potential to promote growth in atrophic supraspinatus muscle after RCI and improve functional outcome.

  3. Giant Faraday Rotation of High-Order Plasmonic Modes in Graphene-Covered Nanowires.

    PubMed

    Kuzmin, Dmitry A; Bychkov, Igor V; Shavrov, Vladimir G; Temnov, Vasily V

    2016-07-13

    Plasmonic Faraday rotation in nanowires manifests itself in the rotation of the spatial intensity distribution of high-order surface plasmon polariton (SPP) modes around the nanowire axis. Here we predict theoretically the giant Faraday rotation for SPPs propagating on graphene-coated magneto-optically active nanowires. Upon the reversal of the external magnetic field pointing along the nanowire axis some high-order plasmonic modes may be rotated by up to ∼100° on the length scale of about 500 nm at mid-infrared frequencies. Tuning the carrier concentration in graphene by chemical doping or gate voltage allows for controlling SPP-properties and notably the rotation angle of high-order azimuthal modes. Our results open the door to novel plasmonic applications ranging from nanowire-based Faraday isolators to the magnetic control in quantum-optical applications.

  4. Externally heated thermal battery

    NASA Astrophysics Data System (ADS)

    Pracchia, Louis; Vetter, Ronald F.; Rosenlof, Darwin

    1991-04-01

    A thermal battery activated by external heat comprising an anode (e.g., composed of a lithium-aluminum alloy), a cathode (e.g., composed of iron disulfide), and an electrolyte (e.g., a lithium chloride-potassium chloride eutectic) with the electrolyte inactive at ambient temperature but activated by melting at a predetermined temperature when exposed to external heating is presented. The battery can be used as a sensor or to ignite pyrotechnic and power electronic devices in a system for reducing the hazard of ordnance exposed to detrimental heating. A particular application is the use of the battery to activate a squib to function in conjunction with one or more other components to vent an ordnance case in order to prevent its explosion in a fire.

  5. Comparison of vibration amplitude supression vs. dynamic bearing load suppression in active vibration control of rotating machinery

    NASA Astrophysics Data System (ADS)

    Clark, William W.; Kim, J. H.; Marangoni, Roy D.

    1993-04-01

    This paper presents two optimal control methods for attenuating steady-state vibrations in rotating machinery. One method minimizes shaft displacements while the other minimizes dynamic bearing reaction forces. The two methods are applied to a model of a typical rotating machinery system, and their results are compared. It is found that displacement minimization can increase bearing loads, while bearing load minimization, on the other hand, decreases bearing loads without significant change in shaft displacements.

  6. The role of rotational excitation in the activated dissociative chemisorption of vibrationally excited methane on Ni(100).

    PubMed

    Juurlink, L B; Smith, R R; Utz, A L

    2000-01-01

    We have measured the sticking probability of methane excited to v = 1 of the v3 antisymmetric C-H stretching vibration on a clean Ni(100) surface as a function of rotational state (J = 0, 1, 2 and 3) and have investigated the effect of Coriolis-mixing on reactivity. The data span a wide range of kinetic energies (9-49 kJ mol-1) and indicate that rotational excitation does not alter reactivity by more than a factor of two, even at low molecular speeds that allow for considerable rotation of the molecule during the interaction with the surface. In addition, rotation-induced Coriolis-splitting of the v3 mode into F+, F0 and F- states does not significantly affect the reactivity for J = 1 at 49 kJ mol-1 translational energy, even though the nuclear motions of these states differ. The lack of a pronounced rotational energy effect in methane dissociation on Ni(100) suggests that our previous results for (v = 1, v3, J = 2) are representative of all rovibrational sublevels of this vibrational mode. These experiments shed light on the relative importance of rotational hindering and dynamical steering mechanisms in the dissociative chemisorption on Ni(100) and guide future attempts to accurately model methane dissociation on nickel surfaces.

  7. Glenohumeral joint rotation range of motion in competitive swimmers.

    PubMed

    Riemann, Bryan L; Witt, Joe; Davies, George J

    2011-08-01

    Much research has examined shoulder range of motion adaptations in overhead-unilateral athletes. Based on the void examining overhead-bilateral athletes, especially competitive swimmers, we examined shoulder external rotation, isolated internal rotation, composite internal rotation, and total arc of motion range of motion of competitive swimmers. The range of motion of registered competitive swimmers (n = 144, age = 12-61 years) was compared by limb (dominant, non-dominant), sex, and age group (youth, high school, college, masters). Significantly (P < 0.05) greater dominant external rotation was observed for both men and women high school and college swimmers, youth women swimmers, and men masters swimmers compared with the non-dominant limb. The isolated internal rotation (glenohumeral rotation), composite internal rotation (glenohumeral rotation plus scapulothoracic protraction), and total arc of motion (external rotation plus composite internal rotation) of the non-dominant limb was significantly greater than that of the dominant limb by sex and age group. Youth and high school swimmers demonstrated significantly greater composite internal rotation than college and masters swimmers. Youth swimmers displayed significantly greater total arc of motion than all other age groups. These data will aid in the interpretation of shoulder range of motion values in competitive swimmers during preseason screenings, injury evaluations and post-rehabilitation programmes, with the results suggesting that differences exist in bilateral external rotation, isolated internal rotation, composite internal rotation, and total arc of motion range of motion.

  8. The effect of combined exercise with slings and a flexi-bar on muscle activity and pain in rotator cuff repair patients

    PubMed Central

    Kim, Jae-Woon; Kim, Yong-Nam; Lee, Dong-Kyu

    2016-01-01

    [Purpose] The purpose of this research was to determine the effect of combined exercise with slings and a Flexi-Bar on muscle activity and pain in rotator cuff repair patients. [Subjects and Methods] This research evaluated 20 rotator cuff repair patients divided randomly into groups of 10 as the control group and the experimental group. The experimental group performed combined exercise with slings and a Flexi-Bar. Both the experimental and control groups were treated with a transcutaneous electrical nerve stimulator and continuous passive motion. Muscle activity was measured with surface electromyography. Pain was measured with the visual analogue scale. The paired t-test was used to compare groups before and after the experiment. The independent t-test was used to assess the differences in the degree of change between the two groups before and after the experiment. [Results] Subjects of both the experimental group and control group showed significant differences in muscle activity and pain. However, as compared with the control group, there was significant differences in the muscle activity and pain in the experimental group. [Conclusion] These results indicate that combined exercise with slings and a Flexi-Bar is effective in improving muscle activity and decreasing pain in rotator cuff repair patients. PMID:27821956

  9. Effects of augmented trunk stabilization with external compression support on shoulder and scapular muscle activity and maximum strength during isometric shoulder abduction.

    PubMed

    Jang, Hyun-jeong; Kim, Suhn-yeop; Oh, Duck-won

    2015-04-01

    The aim of the present study was to investigate the effects of augmented trunk stabilization with external compression support (ECS) on the electromyography (EMG) activity of shoulder and scapular muscles and shoulder abductor strength during isometric shoulder abduction. Twenty-six women volunteered for the study. Surface EMG was used to monitor the activity of the upper trapezius (UT), lower trapezius (LT), serratus anterior (SA), and middle deltoid (MD), and shoulder abductor strength was measured using a dynamometer during three experimental conditions: (1) no external support (condition-1), (2) pelvic support (condition-2), and (3) pelvic and thoracic supports (condition-3) in an active therapeutic movement device. EMG activities were significantly lower for UT and higher for MD during condition 3 than during condition 1 (p < 0.05). The MD/UT ratio was significantly higher during condition 3 than during conditions 1 and 2, and higher during condition 2 than during condition 1 (p < 0.05). Shoulder abductor strength was significantly higher during condition 3 than during condition 1 (p < 0.05). These findings suggest that augmented trunk stabilization with the ECS may be advantageous with regard to reducing the compensatory muscle effort of the UT during isometric shoulder abduction and increasing shoulder abductor strength.

  10. The effects of a rotator cuff tear on activities of daily living in older adults: A kinematic analysis.

    PubMed

    Vidt, Meghan E; Santago, Anthony C; Marsh, Anthony P; Hegedus, Eric J; Tuohy, Christopher J; Poehling, Gary G; Freehill, Michael T; Miller, Michael E; Saul, Katherine R

    2016-02-29

    Rotator cuff tears (RCT) in older individuals may compound age-associated physiological changes and impact their ability to perform daily functional tasks. Our objective was to quantify thoracohumeral kinematics for functional tasks in 18 older adults (mean age=63.3±2.2), and compare findings from nine with a RCT to nine matched controls. Motion capture was used to record kinematics for 7 tasks (axilla wash, forward reach, functional pull, hair comb, perineal care, upward reach to 90°, upward reach to 105°) spanning the upper limb workspace. Maximum and minimum joint angles and motion excursion for the three thoracohumeral degrees of freedom (elevation plane, elevation, axial rotation) were identified for each task and compared between groups. The RCT group used greater minimum elevation angles for axilla wash and functional pull (p≤0.0124) and a smaller motion excursion for functional pull (p=0.0032) compared to the control group. The RCT group also used a more internally rotated maximum axial rotation angle than controls for functional reach, functional pull, hair comb, and upward reach to 105° (p≤0.0494). The most differences between groups were observed for axial rotation, with the RCT group using greater internal rotation to complete functional tasks, and significant differences between groups were identified for all three thoracohumeral degrees of freedom for functional pull. We conclude that older adults with RCT used more internal rotation to perform functional tasks than controls. The kinematic differences identified in this study may have consequences for progression of shoulder damage and further functional impairment in older adults with RCT.

  11. Cosmic Rays trajectory reconstruction in the Earth Magnetosphere: External Field models importance during the last solar active period (from 2011 to 2013)

    NASA Astrophysics Data System (ADS)

    Grandi, Davide; Della Torre, Stefano; Pensotti, Simonetta; Bobik, Pavol; Kudela, Karel; Rancoita, Pier Giorgio; Gervasi, Massimo; Jeroen Boschini, Matteo; Rozza, Davide; La vacca, Giuseppe; Tacconi, Mauro

    Geomagsphere is a backtracing code for Cosmic Rays trajectory reconstruction in the Earth Magnetosphere that has been developed with last models of Internal (IGRF-11) and External (Tsyganenko 1996 and 2005) field components. This backtracing technique was used to separate Primary Cosmic Rays Particles, in case of allowed trajectory, from Secondary particles, in case of forbidden trajectory. We compared Magnetic Field measurements with and without the external field model with satellite data in past periods, in particular GOES (1998) and CLUSTER (2004) data. For both periods TS05 reproduces the magnetc field components with good accuracy. The specificity of the TS05 model, designed for solar storms, was tested comparing it with data taken by CLUSTER during the last solar active period (from 2011 to 2013) During Solar Flares (occurred march and May 2012), the usage of such an external field has a relevavant impact on fraction of AMS-02 cosmic rays identified as trapped and secondary particles, especially in high geomagnetic latitudes, as was expecte by some previous simulations, in comparison with the Internal Field only.

  12. Trunk muscle activation and associated lumbar spine joint shear forces under different levels of external forward force applied to the trunk.

    PubMed

    Kingma, Idsart; Staudenmann, Didier; van Dieën, Jaap H

    2007-02-01

    High anterior intervertebral shear loads could cause low back injuries and therefore the neuromuscular system may actively counteract these forces. This study investigated whether, under constant moment loading relative to L3L4, an increased externally applied forward force on the trunk results in a shift in muscle activation towards the use of muscles with more backward directed lines of action, thereby reducing the increase in total joint shear force. Twelve participants isometrically resisted forward forces, applied at several locations on the trunk, while moments were held constant relative to L3L4. Surface EMG and lumbar curvature were measured, and an EMG-driven muscle model was used to calculate compression and shear forces at all lumbar intervertebral joints. Larger externally applied forward forces resulted in a flattening of the lumbar lordosis and a slightly more backward directed muscle force. Furthermore, the overall muscle activation increased. At the T12L1 to L3L4 joint, resulting joint shear forces remained small (less than 200N) because the average muscle force pulled backward relative to those joints. However, at the L5S1 joint the average muscle force pulled the trunk forward so that the increase in muscle force with increasing externally applied forward force caused a further rise in shear force (by 102.1N, SD=104.0N), resulting in a joint shear force of 1080.1N (SD=150.4N) at 50Nm moment loading. It is concluded that the response of the neuromuscular system to shear force challenges tends to increase rather than reduce the shear loading at the lumbar joint that is subjected to the highest shear forces.

  13. Earth Rotation

    NASA Technical Reports Server (NTRS)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  14. Effect of breeding activity on the microflora of the external genitalia and in the semen of stallions, and the relationship between micro-organisms on the skin and on the external genitalia.

    PubMed

    Guimarães, T; Miranda, C; Pinto, M; Silva, E; Damásio, L; Costa, A L; Correia, M J; Duarte, J C; Cosinha, C; Lopes, G; Thompson, G; Rocha, A

    2014-12-01

    A possible role of breeding activities in the composition of the microbial population in stallions' external genitalia (EG) and the relationship between micro-organisms colonizing the skin of the abdomen and the ones colonizing the EG have not been studied. In experiment 1, EG microbiological samples were collected from 41 stallions used for both natural cover and semen collection (BST) and from 18 non-breeding stallions (NBST). A higher (p < 0.05) frequency of isolation of potentially pathogenic species was found for BST. Age did not influence number of micro-organism species isolated both in BST and NBST. In experiment 2, the microbial content of the EG and semen was compared in 23 BST. Most micro-organisms isolated from the EG were present in semen, albeit with a numerically lower prevalence. In 7 stallions, six microbial species isolated from semen were absent from the EG cultures, suggesting contamination by the operator. In experiment 3, a numerically higher number of micro-organism species was isolated from the EG of 31 stallions, than from their skin of the ventral abdomen in contact with the penis or from the skin of the thorax. With the sole exception of Escherichia coli, potentially pathogenic bacteria were only isolated from the EG but not from the skin. Results suggest that breeding activity increased the number of species colonizing the EG; most species isolated from the EG were also found in semen even if with a lower frequency, and additional semen contamination seemed to occur during its manipulation. Many micro-organism species of the skin were also isolated from the penis, but independently of being or not in contact with the penis, skin did not seem to provide an adequate environment for the growth of potentially pathogenic bacteria that were isolated from EG, with the sole exception for E. coli.

  15. Motion sickness and gastric myoelectric activity as a function of speed of rotation of a circular vection drum

    NASA Technical Reports Server (NTRS)

    Hu, Senqi; Stern, Robert M.; Vasey, Michael W.; Koch, Kenneth L.

    1989-01-01

    Motion sickness symptoms and electrogastrograms (EGGs) were obtained from 60 healthy subjects while they viewed an optokinetic drum rotated at one of four speeds: 15, 30, 60 or 90 deg/s. All subjects experienced vection, illusory self-motion. Motion sickness symptoms increased as drums speed increased up to 60 deg/s. Power, spectral intensity, of the EGG at the tachygastria frequencies (4-9 cpm) was calculated at each drum rotation speed. The correlation between the motion sickness symptoms and the power at 4-9 cpm was significant. Thus, drum rotation speed influenced the spectral power of the EGG at 4-9 cpm, tachygastria, and the intensity of motion sickness symptoms.

  16. Differentially Rotating White Dwarfs I: Regimes of Internal Rotation

    NASA Astrophysics Data System (ADS)

    Ghosh, Pranab; Wheeler, J. Craig

    2017-01-01

    Most viable models of Type Ia supernovae (SNe Ia) require the thermonuclear explosion of a carbon/oxygen white dwarf that has evolved in a binary system. Rotation could be an important aspect of any model for SNe Ia, whether single or double degenerate, with the white dwarf mass at, below, or above the Chandrasekhar limit. Differential rotation is specifically invoked in attempts to account for the apparent excess mass in the super-Chandrasekhar events. Some earlier work has suggested that only uniform rotation is consistent with the expected mechanisms of angular momentum transport in white dwarfs, while others have found pronounced differential rotation. We show that if the baroclinic instability is active in degenerate matter and the effects of magnetic fields are neglected, both nearly uniform rotation and strongly differential rotation are possible. We classify rotation regimes in terms of the Richardson number, Ri. At small values of Ri ≤slant 0.1, we find both the low-viscosity Zahn regime with a nonmonotonic angular velocity profile and a new differential rotation regime for which the viscosity is high and scales linearly with the shear, σ. Employment of Kelvin–Helmholtz viscosity alone yields differential rotation. Large values of Ri ≫ 1 produce a regime of nearly uniform rotation for which the baroclinic viscosity is of intermediate value and scales as {σ }3. We discuss the gap in understanding of the behavior at intermediate values of Ri and how observations may constrain the rotation regimes attained by nature.

  17. Effect of Externally Applied Perturbation Fields on Alfvénic MHD Activity in the NSTX Tokamak

    NASA Astrophysics Data System (ADS)

    Bortolon, Alessandro

    2014-10-01

    Observations from NSTX demonstrate that externally applied magnetic perturbations (MP) can alter the dynamic of beam driven Alfvén modes. Bursting Global Alfvén Eigenmodes (GAE, n = 7-9, 400-700 kHz) respond to pulses of static n = 3 fields (δB/B ~ 0.01 at the plasma edge) reducing mode amplitude, bursting period and frequency sweep by a factor of 2-3 [Bortolon et al., Phys. Rev. Lett. 110, 265008 (2013)]. Similar MP attenuate the amplitude of continuous Toroidal Alfvén Eigenmodes (TAE, n = 2-3, 50-90 kHz). Calculations of the perturbed beam-ion distribution function, considering MP from ideal or resistive plasma response, confirm an enhanced fast-ion transport consistent with a reduced drive for the GAE. At the same time, MP can also affect the Alfvén stability by altering the structure of Alfvén continua through modification of the kinetic profiles or introducing toroidal coupling as result of the broken axisymmetry. Computations of the n = 2 Alfvén continuum for NSTX equilibria with n = 3 MP show strong modification of the TAE continuum near the plasma edge, where coupling between n = 2 and n = 5 continuum modes reduces the gap, providing an additional damping for TAE modes extending in this region. DOE Contracts No. DE-FG02-06ER54867, DE-AC02-09CH11466.

  18. A Mg(2+)-dependent ecto-phosphatase activity on the external surface of Trypanosoma rangeli modulated by exogenous inorganic phosphate.

    PubMed

    Fonseca-de-Souza, André L; Dick, Claudia Fernanda; Dos Santos, André Luiz Araújo; Meyer-Fernandes, José Roberto

    2008-08-01

    In this work, we characterized a Mg(2+)-dependent ecto-phosphatase activity present in live Trypanosoma rangeli epimastigotes. This enzyme showed capacity to hydrolyze the artificial substrate for phosphatases, p-nitrophenylphosphate (p-NPP). At saturating concentration of p-NPP, half-maximal p-NPP hydrolysis was obtained with 0.23mM Mg(2+). Ca(2+) had no effect on the basal phosphatase activity, could not substitute Mg(2+) as an activator and in contrast inhibited the p-NPP hydrolysis stimulated by Mg(2+). The dependence on p-NPP concentration showed a normal Michaelis-Menten kinetics for this phosphatase activity with values of V(max) of 8.94+/-0.36 nmol p-NP x h(-1) x 10(-7) cells and apparent K(m) of 1.04+/-0.16 mM p-NPP. Mg(2+)-dependent ecto-phosphatase activity was stimulated by the alkaline pH range. Experiments using inhibitors, such as, sodium fluoride, sodium orthovanadate and ammonium molybdate, inhibited the Mg(2+)-dependent ecto-phosphatase activity. Inorganic phosphate (Pi), a product of phosphatases, inhibited reversibly in 50% this activity. Okadaic acid and microcystin-LR, specific phosphoserine/threonine phosphatase inhibitors, inhibited significantly the Mg(2+)-dependent ecto-phosphatase activity. In addition, this phosphatase activity was able to recognize as substrates only o-phosphoserine and o-phosphothreonine, while o-phosphotyrosine was not a good substrate for this phosphatase. Epimastigote forms of T. rangeli exhibit a typical growth curve, achieving the stationary phase around fifth or sixth day and the Mg(2+)-dependent ecto-phosphatase activity decreased around 10-fold with the cell growth progression. Cells maintained at Pi-deprived medium (2 mM Pi) present Mg(2+)-dependent ecto-phosphatase activity approximately threefold higher than that maintained at Pi-supplemented medium (50 mM Pi).

  19. The external amino acid signaling pathway promotes activation of Stp1 and Uga35/Dal81 transcription factors for induction of the AGP1 gene in Saccharomyces cerevisiae.

    PubMed Central

    Abdel-Sater, Fadi; Iraqui, Ismaïl; Urrestarazu, Antonio; André, Bruno

    2004-01-01

    Yeast cells respond to the presence of amino acids in their environment by inducing transcription of several amino acid permease genes including AGP1, BAP2, and BAP3. The signaling pathway responsible for this induction involves Ssy1, a permease-like sensor of external amino acids, and culminates with proteolytic cleavage and translocation to the nucleus of the zinc-finger proteins Stp1 and Stp2, the lack of which abolishes induction of BAP2 and BAP3. Here we show that Stp1-but not Stp2-plays an important role in AGP1 induction, although significant induction of AGP1 by amino acids persists in stp1 and stp1 stp2 mutants. This residual induction depends on the Uga35/Dal81 transcription factor, indicating that the external amino acid signaling pathway activates not only Stp1 and Stp2, but also another Uga35/Dal81-dependent transcriptional circuit. Analysis of the AGP1 gene's upstream region revealed that Stp1 and Uga35/Dal81 act synergistically through a 21-bp cis-acting sequence similar to the UAS(AA) element previously found in the BAP2 and BAP3 upstream regions. Although cells growing under poor nitrogen-supply conditions display much higher induction of AGP1 expression than cells growing under good nitrogen-supply conditions, the UAS(AA) itself is totally insensitive to nitrogen availability. Nitrogen-source control of AGP1 induction is mediated by the GATA factor Gln3, likely acting through adjacent 5'-GATA-3' sequences, to amplify the positive effect of UAS(AA). Our data indicate that Stp1 may act in combination with distinct sets of transcription factors, according to the gene context, to promote induction of transcription in response to external amino acids. The data also suggest that Uga35/Dal81 is yet another transcription factor under the control of the external amino acid sensing pathway. Finally, the data show that the TOR pathway mediating global nitrogen control of transcription does not interfere with the external amino acid signaling pathway. PMID

  20. [The effect of long-term external ionizing radiation on the functional activity of rat thyroid under enhanced potassium iodide consumption].

    PubMed

    Lupachik, S V; Nadol'nik, L I

    2008-01-01

    The study was devoted to the effect of long-term (20 days) external ionizing radiation at a dose of 0.5 Gy on the iodide metabolism in the rat thyroid under supplementation of high iodine doses (10 daily KI doses). It was found that the potassium iodide administration partially prevented the effects of a post radiation decrease of serum thyroid hormone levels (the level of T4 was normal and that of T3 was 77.4% of the controls). After the supplementation of 10 daily iodide doses, the rat thyroid tissue showed the most pronounced increase in the levels of total, free and protein-bound iodide compared to the groups of animals consuming normal and elevated KI doses. Pronounced inhibition of thyroid peroxidase activity (3.1-fold) was noted in the same group. The data obtained indicate a radiation-induced activation of iodide uptake during its enhanced supplementation and disturbed iodide enzymatic oxidation and organification.

  1. EMG activity of selected rotator cuff musculature during grade III distraction and posterior glide glenohumeral mobilization: results of a pilot trial comparing painful and non-painful shoulders

    PubMed Central

    Swanson, Brian T.; Holst, Brian; Infante, John; Poenitzsch, James; Ortiz, Alexis

    2016-01-01

    Objectives The objectives of this pilot study were to investigate rotator cuff activity that may be present during grade III distraction and posterior glide mobilization of the glenohumeral (GH) joint, as well as to examine any differences in response between painful and non-painful shoulders utilizing these techniques. Methods EMG data were collected using Delsys EMGworks® software and Trigno® mini-wireless electrodes for the supraspinatus, infraspinatus and upper trapezius musculature during grade III GH distraction and posterior glide mobilization. A total of 20 shoulders (10 painful, 10 non-painful) were recruited from a sample of convenience. Submaximal voluntary dynamic contraction against gravity was used as reference for each of the three selected muscles. Participants underwent two trials of each mobilization, and the mean results for each group were assessed using descriptive statistics (mean, standard deviation) and effect size. Results Both the painful and non-painful groups exhibited considerable levels of rotator cuff activity during each test parameter, with the painful group consistently generating higher supraspinatus and infraspinatus RMS and peak force activity. Analysis of the peak combined rotator cuff activity during distraction (d = 0.58) and posterior glides (d = 0.64) suggests moderate-to-high practical significance of the results. Discussion GH distraction and posterior glide mobilizations have traditionally been thought of as passive treatment procedures. The results of this pilot study indicate that the supraspinatus and infraspinatus are significantly active during these techniques. Findings suggest that during these techniques, the total infra/supraspinatus EMG activity approaches the level produced while raising the arm against gravity. Level of evidence: 2b PMID:27252577

  2. Regimes of Internal Rotation in Differentially Rotating White Dwarfs

    NASA Astrophysics Data System (ADS)

    Wheeler, J. Craig; Ghosh, Pranab

    2017-01-01

    Most viable models of Type Ia supernovae (SN Ia) require the thermonuclear explosion of a carbon/oxygen white dwarf that has evolved in a binary system. Rotation could be an important aspect of any model for SN Ia, whether single or double degenerate, with the white dwarf mass at, below, or above the Chandrasekhar limit. Differential rotation is specifically invoked in attempts to account for the apparent excess mass in the super--Chandrasekhar events. Some earlier work has suggested that only uniform rotation is consistent with the expected mechanisms of angular momentum transport in white dwarfs, while others have found pronounced differential rotation. We show that if the baroclinic instability is active in degenerate matter and the effects of magnetic fields are neglected, both nearly-uniform and strongly-differential rotation are possible. We classify rotation regimes in terms of the Richardson number, Ri. At small values of Ri < 0.1, we find both the low-viscosity Zahn regime with a non-monotonic angular velocity profile and a new differential rotation regime for which the viscosity is high and scales linearly with the shear, σ. Employment of Kelvin-Helmholtz viscosity alone yields differential rotation. Large values of Ri >> 1 produce a regime of nearly-uniform rotation for which the baroclinic viscosity is of intermediate value and scales as σ3. We discuss the gap in understanding of the behavior at intermediate values of Ri and how observations may constrain the rotation regimes attained by nature.

  3. Integration of crop rotation and arbuscular mycorrhiza (AM) inoculum application for enhancing AM activity to improve phosphorus nutrition and yield of upland rice (Oryza sativa L.).

    PubMed

    Maiti, Dipankar; Toppo, Neha Nancy; Variar, Mukund

    2011-11-01

    Upland rice (Oryza sativa L.) is a major crop of Eastern India grown during the wet season (June/July to September/October). Aerobic soils of the upland rice system, which are acidic and inherently phosphorus (P) limiting, support native arbuscular mycorrhizal (AM) activity. Attempts were made to improve P nutrition of upland rice by exploiting this natural situation through different crop rotations and application of AM fungal (AMF) inoculum. The effect of a 2-year crop rotation of maize (Zea mays L.) followed by horse gram (Dolichos biflorus L.) in the first year and upland rice in the second year on native AM activity was compared to three existing systems, with and without application of a soil-root-based inoculum. Integration of AM fungal inoculation with the maize-horse gram rotation had synergistic/additive effects in terms of AMF colonization (+22.7 to +42.7%), plant P acquisition (+11.2 to +23.7%), and grain yield of rice variety Vandana (+25.7 to +34.3%).

  4. The Impact of External Employment on 12th Grade Student Participation in Extracurricular Activities as a Function of School Size

    ERIC Educational Resources Information Center

    Garcia, Miguel A.

    2012-01-01

    Data from the Educational Longitudinal Study of 2002 were used to compare 11,000 high school students on school size, time spent participating in extracurricular activities (ECA), and hours spent in employment. Findings indicated that students from small schools spent more time participating in ECA than students from larger schools for equivalent…

  5. Rotational Periods and Starspot Activity of Young Solar-Type Dwarfs in the Open Cluster IC 4665

    NASA Technical Reports Server (NTRS)

    Allain, S.; Bouvier, J.; Prosser, C.; Marschall, L. A.; Laaksonen, B. D.

    1995-01-01

    We present the results of a V-band photometric monitoring survey of 15 late-type dwarfs in the young open cluster IC 4665. Low-amplitude periodic light variations are found for 8 stars and ascribed to the modulation by starspots that cover typically a few percent of the stellar disk. Periods range from 0.6 to 3.7 d, translating to equatorial velocities between 13 and 93 km/s. That no period longer than 4 d was detected suggests a relative paucity of extremely slow rotators (V(sub eq) much less than 10 km/s) among late-type dwarfs in IC 4665. The fractional number of slow rotators in IC 4665 is similar to that of Alpha Per cluster, suggesting that IC 4665 is close in age to Alpha Per (approx. 50 Myr).

  6. CHROMOSPHERIC MASS MOTIONS AND INTRINSIC SUNSPOT ROTATIONS FOR NOAA ACTIVE REGIONS 10484, 10486, AND 10488 USING ISOON DATA

    SciTech Connect

    Hardersen, Paul S.; Balasubramaniam, K. S.; Shkolyar, Svetlana

    2013-08-10

    This work utilizes Improved Solar Observing Optical Network continuum (630.2 nm) and H{alpha} (656.2 nm) data to: (1) detect and measure intrinsic sunspot rotations occurring in the photosphere and chromosphere, (2) identify and measure chromospheric filament mass motions, and (3) assess any large-scale photospheric and chromospheric mass couplings. Significant results from 2003 October 27-29, using the techniques of Brown et al., indicate significant counter-rotation between the two large sunspots in NOAA AR 10486 on October 29, as well as discrete filament mass motions in NOAA AR 10484 on October 27 that appear to be associated with at least one C-class solar flare.

  7. Estimating location without external cues.

    PubMed

    Cheung, Allen

    2014-10-01

    The ability to determine one's location is fundamental to spatial navigation. Here, it is shown that localization is theoretically possible without the use of external cues, and without knowledge of initial position or orientation. With only error-prone self-motion estimates as input, a fully disoriented agent can, in principle, determine its location in familiar spaces with 1-fold rotational symmetry. Surprisingly, localization does not require the sensing of any external cue, including the boundary. The combination of self-motion estimates and an internal map of the arena provide enough information for localization. This stands in conflict with the supposition that 2D arenas are analogous to open fields. Using a rodent error model, it is shown that the localization performance which can be achieved is enough to initiate and maintain stable firing patterns like those of grid cells, starting from full disorientation. Successful localization was achieved when the rotational asymmetry was due to the external boundary, an interior barrier or a void space within an arena. Optimal localization performance was found to depend on arena shape, arena size, local and global rotational asymmetry, and the structure of the path taken during localization. Since allothetic cues including visual and boundary contact cues were not present, localization necessarily relied on the fusion of idiothetic self-motion cues and memory of the boundary. Implications for spatial navigation mechanisms are discussed, including possible relationships with place field overdispersion and hippocampal reverse replay. Based on these results, experiments are suggested to identify if and where information fusion occurs in the mammalian spatial memory system.

  8. International Space Station External Contamination Status

    NASA Technical Reports Server (NTRS)

    Mikatarian, Ron; Soares, Carlos

    2000-01-01

    PResentation slides examine external contamination requirements; International Space Station (ISS) external contamination sources; ISS external contamination sensitive surfaces; external contamination control; external contamination control for pre-launch verification; flight experiments and observations; the Space Shuttle Orbiter waste water dump, materials outgassing, active vacuum vents; example of molecular column density profile, modeling and analysis tools; sources of outgassing induced contamination analyzed to date, quiescent sources, observations on optical degradation due to induced external contamination in LEO; examples of typical contaminant and depth profiles; and status of the ISS system, material outgassing, thruster plumes, and optical degradation.

  9. RWM Critical Rotation Frequency and Beta Dependence in NSTX

    NASA Astrophysics Data System (ADS)

    Sontag, Aaron; Sabbagh, S. A.; Menard, J. E.; Battaglia, D. J.

    2005-10-01

    The resistive wall mode (RWM) can be stabilized by maintaining the plasma toroidal rotation frequency (φφ) above a critical rotation frequency (φcrit). Recent experiments on NSTX seek to determine φcrit and rotation profile effects through actively braking plasma rotation by the application of external magnetic fields. Results from these experiments indicate that maintaining φφ at the q = 2 surface above φA/4q^2 is a necessary condition for RWM stability where φA is the local Alfven frequency. This result is in agreement with a theoretical model derived from a drift-kinetic energy principle. Similarity experiments with DIII-D are being performed to examine the aspect ratio dependence of the φcrit scaling. When φφ at the q = 2 surface drops below φcrit, the growth of internal kink/ballooning modes can prevent the RWM from terminating the discharge. A small beta collapse which drops φcrit, accompanies this mode growth allowing a recovery of RWM rotational stabilization while maintaining βN> βN^no-wall.

  10. IO Rotation Movie

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During its 1979 flyby, Voyager 2 observed Io only from a distance. However, the volcanic activity discovered by Voyager 1 months earlier was readily visible. This sequence of nine color images was collected using the Blue, Green and Orange filters from about 1.2 million kilometers. A 2.5 hour period is covered during which Io rotates 7 degrees.

    Rotating into view over the limb of Io are the plumes of the volcanoes Amirani (top) and Maui (lower). These plumes are very distinct against the black sky because they are being illuminated from behind. Notice that as Io rotates, the proportion of Io which is sunlit decreases greatly. This changing phase angle is because Io is moving between the spacecraft and the Sun.

    This time-lapse movie was produced at JPL by the Image Processing Laboratory in 1985.

  11. Chiral rotational spectroscopy

    NASA Astrophysics Data System (ADS)

    Cameron, Robert P.; Götte, Jörg B.; Barnett, Stephen M.

    2016-09-01

    We introduce chiral rotational spectroscopy, a technique that enables the determination of the orientated optical activity pseudotensor components BX X, BY Y, and BZ Z of chiral molecules, in a manner that reveals the enantiomeric constitution of a sample and provides an incisive signal even for a racemate. Chiral rotational spectroscopy could find particular use in the analysis of molecules that are chiral solely by virtue of their isotopic constitution and molecules with multiple chiral centers. A basic design for a chiral rotational spectrometer together with a model of its functionality is given. Our proposed technique offers the more familiar polarizability components αX X, αY Y, and αZ Z as by-products, which could see it find use even for achiral molecules.

  12. Effect of external sodium on intracellular chloride activity in the surface cells of frog gastric mucosa. Microelectrode studies.

    PubMed

    Curci, S; Schettino, T

    1984-06-01

    The intracellular chloride activity and its dependence on ionic substitutions in the bathing media was studied in individual surface cells of resting gastric mucosa using conventional and Cl- selective microelectrodes. When the tissue was perfused with control NaCl-Ringer the cell membrane p.d.'s, cell-lumen (psi cm) and cell-serosa (psi cs) were -40.9 +/- 0.6 mV and -66.8 +/- 0.5 mV (n = 175) respectively and the p.d. measured by the Cl- selective microelectrodes across the serosal membrane (psi csCl-) averaged -32.4 +/- 0.7 mV (n = 138). From these values an intracellular Cl- activity (acCl-) of 15.3 mmol/l can be estimated. The data indicate that chloride ion is distributed close to equilibrium at the luminal membrane while it is accumulated by an energy requiring step at the serosal membrane. Reduction (2 mmol/l) or absence of chloride from the luminal bath did not result in any detectable change of acCl-; on the other hand, after removal of Cl- from the serosal bath the intracellular Cl- activity fell to 7.1 mmol/l. When the tissue was exposed to serosal Na+-free Ringer (Na+ replaced by choline or TMA), although the acCl- remained unaffected, a marked reduction of the electrochemical gradient for Cl- at the serosal membrane was observed. These data indicate that: chloride is accumulated in the surface cells against its electrochemical potential difference at the serosal membrane; the luminal membrane has a negligible conductance to Cl-, while the serosal membrane represents a conductive pathway to chloride; the uphill entry of chloride at the serosal membrane seems to be, at least partially, Na+-dependent.

  13. Computationally efficient simulation of electrical activity at cell membranes interacting with self-generated and externally imposed electric fields

    NASA Astrophysics Data System (ADS)

    Agudelo-Toro, Andres; Neef, Andreas

    2013-04-01

    Objective. We present a computational method that implements a reduced set of Maxwell's equations to allow simulation of cells under realistic conditions: sub-micron cell morphology, a conductive non-homogeneous space and various ion channel properties and distributions. Approach. While a reduced set of Maxwell's equations can be used to couple membrane currents to extra- and intracellular potentials, this approach is rarely taken, most likely because adequate computational tools are missing. By using these equations, and introducing an implicit solver, numerical stability is attained even with large time steps. The time steps are limited only by the time development of the membrane potentials. Main results. This method allows simulation times of tens of minutes instead of weeks, even for complex problems. The extracellular fields are accurately represented, including secondary fields, which originate at inhomogeneities of the extracellular space and can reach several millivolts. We present a set of instructive examples that show how this method can be used to obtain reference solutions for problems, which might not be accurately captured by the traditional approaches. This includes the simulation of realistic magnitudes of extracellular action potential signals in restricted extracellular space. Significance. The electric activity of neurons creates extracellular potentials. Recent findings show that these endogenous fields act back onto the neurons, contributing to the synchronization of population activity. The influence of endogenous fields is also relevant for understanding therapeutic approaches such as transcranial direct current, transcranial magnetic and deep brain stimulation. The mutual interaction between fields and membrane currents is not captured by today's concepts of cellular electrophysiology, including the commonly used activation function, as those concepts are based on isolated membranes in an infinite, isopotential extracellular space. The

  14. Hip rotation range of motion in sitting and prone positions in healthy Japanese adults

    PubMed Central

    Han, Heonsoo; Kubo, Akira; Kurosawa, Kazuo; Maruichi, Shizuka; Maruyama, Hitoshi

    2015-01-01

    [Purpose] The aim of this study was to elucidate the difference in hip external and internal rotation ranges of motion (ROM) between the prone and sitting positions. [Subjects] The subjects included 151 students. [Methods] Hip rotational ROM was measured with the subjects in the prone and sitting positions. Two-way repeated measures analysis of variance (ANOVA) was used to analyze ipsilateral hip rotation ROM in the prone and sitting positions in males and females. The total ipsilateral hip rotation ROM was calculated by adding the measured values for external and internal rotations. [Results] Ipsilateral hip rotation ROM revealed significant differences between two positions for both left and right internal and external rotations. Hip rotation ROM was significantly higher in the prone position than in the sitting position. Hip rotation ROM significantly differed between the men and women. Hip external rotation ROM was significantly higher in both positions in men; conversely, hip internal rotation ROM was significantly higher in both positions in women. [Conclusion] Hip rotation ROM significantly differed between the sexes and between the sitting and prone positions. Total ipsilateral hip rotation ROM, total angle of external rotation, and total angle of internal rotation of the left and right hips greatly varied, suggesting that hip joint rotational ROM is widely distributed. PMID:25729186

  15. Vertical-axis rotations and deformation along the active strike-slip El Tigre Fault (Precordillera of San Juan, Argentina) assessed through palaeomagnetism and anisotropy of magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Fazzito, Sabrina Y.; Rapalini, Augusto E.; Cortés, José M.; Terrizzano, Carla M.

    2017-03-01

    Palaeomagnetic data from poorly consolidated to non-consolidated late Cenozoic sediments along the central segment of the active El Tigre Fault (Central-Western Precordillera of the San Juan Province, Argentina) demonstrate broad cumulative deformation up to 450 m from the fault trace and reveal clockwise and anticlockwise vertical-axis rotations of variable magnitude. This deformation has affected in different amounts Miocene to late Pleistocene samples and indicates a complex kinematic pattern. Several inherited linear structures in the shear zone that are oblique to the El Tigre Fault may have acted as block boundary faults. Displacement along these faults may have resulted in a complex pattern of rotations. The maximum magnitude of rotation is a function of the age of the sediments sampled, with largest values corresponding to middle Miocene-lower Pliocene deposits and minimum values obtained from late Pleistocene deposits. The kinematic study is complemented by low-field anisotropy of magnetic susceptibility data to show that the local strain regime suggests a N-S stretching direction, subparallel to the strike of the main fault.

  16. Vertical-axis rotations and deformation along the active strike-slip El Tigre Fault (Precordillera of San Juan, Argentina) assessed through palaeomagnetism and anisotropy of magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Fazzito, Sabrina Y.; Rapalini, Augusto E.; Cortés, José M.; Terrizzano, Carla M.

    2016-05-01

    Palaeomagnetic data from poorly consolidated to non-consolidated late Cenozoic sediments along the central segment of the active El Tigre Fault (Central-Western Precordillera of the San Juan Province, Argentina) demonstrate broad cumulative deformation up to ~450 m from the fault trace and reveal clockwise and anticlockwise vertical-axis rotations of variable magnitude. This deformation has affected in different amounts Miocene to late Pleistocene samples and indicates a complex kinematic pattern. Several inherited linear structures in the shear zone that are oblique to the El Tigre Fault may have acted as block boundary faults. Displacement along these faults may have resulted in a complex pattern of rotations. The maximum magnitude of rotation is a function of the age of the sediments sampled, with largest values corresponding to middle Miocene-lower Pliocene deposits and minimum values obtained from late Pleistocene deposits. The kinematic study is complemented by low-field anisotropy of magnetic susceptibility data to show that the local strain regime suggests a N-S stretching direction, subparallel to the strike of the main fault.

  17. The External Degree.

    ERIC Educational Resources Information Center

    Houle, Cyril O.

    This book examines the external degree in relation to the extremes of attitudes, myths, and data. Emphasis is placed on the emergence of the American external degree, foreign external-degree programs, the purpose of the external degree, the current scene, institutional issues, and problems of general policy. (MJM)

  18. Anatomical glenohumeral internal rotation deficit and symmetric rotational strength in male and female young beach volleyball players.

    PubMed

    Saccol, Michele Forgiarini; Almeida, Gabriel Peixoto Leão; de Souza, Vivian Lima

    2016-08-01

    Beach volleyball is a sport with a high demand of shoulder structures that may lead to adaptations in range of motion (ROM) and strength like in other overhead sports. Despite of these possible alterations, no study evaluated the shoulder adaptations in young beach volleyball athletes. The aim of this study was to compare the bilateral ROM and rotation strength in the shoulders of young beach volleyball players. Goniometric passive shoulder ROM of motion and isometric rotational strength were evaluated in 19 male and 14 female asymptomatic athletes. External and internal ROM, total rotation motion, glenohumeral internal rotation deficit (GIRD), external rotation and internal rotation strength, bilateral deficits and external rotation to internal rotation ratio were measured. The statistical analysis included paired Student's t-test and analysis of variance with repeated measures. Significantly lower dominant GIRD was found in both groups (p<0.05), but only 6 athletes presented pathological GIRD. For strength variables, no significant differences for external or internal rotation were evident. Young beach volleyball athletes present symmetric rotational strength and shoulder ROM rotational adaptations that can be considered as anatomical. These results indicate that young practitioners of beach volleyball are subject to moderate adaptations compared to those reported for other overhead sports.

  19. Control of the hyperpolarization-activated cation current by external anions in rabbit sino-atrial node cells.

    PubMed Central

    Frace, A M; Maruoka, F; Noma, A

    1992-01-01

    1. Effects of varying concentrations of anions on the hyperpolarization-activated current (I(f)) were studied in myocytes isolated from the rabbit sino-atrial node. Substituting Cs+ for the intracellular K+ clearly separated I(f) from the delayed rectifier K+ current. Control properties, including gating kinetics and ion selectivity, similar to previous studies were obtained. 2. Substitution of extracellular Cl- with larger anions including isethionate, glutamate, acetate, and aspartate, reduced the amplitude of I(f) without changing the reversal potential. Substitution with small anions such as iodide or nitrate supported an intact I(f). These effects were reproduced in the excised outside-out patch conformation. 3. The conductance for I(f) was a saturating function of the extracellular Cl- concentration ([Cl-]o) with an equilibrium binding constant (K1/2) of 11 mM and a slope factor of about 1 when substituted with large anions. Total removal of small anions completely abolished I(f). 4. The voltage-dependent gating of I(f) was not affected by changing ([Cl-]o), suggesting that Cl- modulates conductance properties of I(f). 5. The results indicate that I(f) conductance is unique in that it is dependent on an extracellular anion (Cl-), yet it is carried exclusively by cations, K+ and Na+. These effects are independent of any measurable voltage-dependent gating parameters. PMID:1281504

  20. In-line rotating capacitive torque sensor

    DOEpatents

    Kronberg, J.W.

    1991-09-10

    Disclosed are a method and apparatus for measuring torques developed along a rotating mechanical assembly comprising a rotating inner portion and a stationary outer portion. The rotating portion has an electrically-conductive flexing section fitted between two coaxial shafts in a configuration which varies radially in accordance with applied torque. The stationary portion comprises a plurality of conductive plates forming a surface concentric with and having a diameter slightly larger than the diameter of the rotating portion. The capacitance between the outer, nonrotating and inner, rotating portion varies with changes in the radial configuration of the rotating portion. Signal output varies approximately linearly with torque for small torques, nonlinearly for larger torques. The sensor is preferably surrounded by a conductive shell to minimize electrical interference from external sources. 18 figures.

  1. In-line rotating capacitive torque sensor

    DOEpatents

    Kronberg, James W.

    1991-01-01

    A method and apparatus for measuring torques developed along a rotating mechanical assembly comprising a rotating inner portion and a stationary outer portion. The rotating portion has an electrically-conductive flexing section fitted between two coaxial shafts in a configuration which varies radially in accordance with applied torque. The stationary portion comprises a plurality of conductive plates forming a surface concentric with and having a diameter slightly larger than the diameter of the rotating portion. The capacitance between the outer, nonrotating and inner, rotating portion varies with changes in the radial configuration of the rotating portion. Signal output varies approximately linearly with torque for small torques, nonlinearly for larger torques. The sensor is preferably surrounded by a conductive shell to minimize electrical interference from external sources.

  2. Intracellular ion activities in frog skin in relation to external sodium and effects of amiloride and/or ouabain.

    PubMed Central

    Harvey, B J; Kernan, R P

    1984-01-01

    Intracellular activities of sodium, potassium and chloride ions, aiNa, aiK, and aiCl were measured with ion-selective single-, double- and triple-barrelled micro-electrodes in skin and isolated epithelia of Rana temporaria bathed on both sides with normal or modified physiological saline. Apical and basolateral membrane potentials, psi ac and psi cs and resistance Ra and Rb respectively were also measured and from the latter the fractional resistance of the apical membrane, F(Ra) and voltage divider ratio, delta psi ac/delta psi cs were measured as criteria of satisfactory membrane penetration by the micro-electrodes. Under control conditions, aiNa was 12.3 +/- 0.8 mM, aiK was 70.3 +/- 22 mM and aiCl was 20.3 +/- 1.6 mM with psi ac averaging -38.0 +/- 3.2 mV. When 10(-4) M-amiloride was added to the apical bathing fluid aiNa fell within 10 min to 1.18 +/- 0.1 mM and aiCl to 5.2 +/- 0.9 mM, while aiK increased to 86.2 +/- 3.8 mM as measured from the basolateral border of isolated epithelia. The sodium transport pool of the skin was measured from the fall in aiNa in the presence of amiloride and could be expressed as 33 X 10(-9) mol cm-2 of epithelium. The mean rate of fall of aiNa under these conditions corresponded to an efflux rate at the basolateral border of 30.1 X 10(-9) mol cm-2 min-1 (48 microA cm-2) giving a half-time for turnover of the sodium transport pool of 33 s. Reduction of sodium concentration in the apical fluid from the normal 79 mM-Na to 10, 1 and 0.1 mM caused aiNa to fall in stages to 2 mM. Because psi ac increased in negativity to -101 mV in the process, this driving force for passive sodium accumulation, more than offset the increased sodium gradient opposing sodium influx across the apical border. PMID:6610743

  3. Swimming in external fields

    NASA Astrophysics Data System (ADS)

    Stark, Holger

    2016-11-01

    Microswimmers move autonomously but are subject to external fields, which influence their swimming path and their collective dynamics. With three concrete examples we illustrate swimming in external fields and explain the methodology to treat it. First, an active Brownian particle shows a conventional sedimentation profile in a gravitational field but with increased sedimentation length and some polar order along the vertical. Bottom-heavy swimmers are able to invert the sedimentation profile. Second, active Brownian particles interacting by hydrodynamic flow fields in a three-dimensional harmonic trap can spontaneously break the isotropic symmetry. They develop polar order, which one can describe by mean-field theory reminiscent to Weiss theory of ferromagnetism, and thereby pump fluid. Third, a single microswimmer shows interesting non-linear dynamics in Poiseuille flow including swinging and tumbling trajectories. For pushers, hydrodynamic interactions with bounding surfaces stabilize either straight swimming against the flow or tumbling close to the channel wall, while pushers always move on a swinging trajectory with a specific amplitude as limit cycle.

  4. Distinctive translational and self-rotational motion of lymphoma cells in an optically induced non-rotational alternating current electric field

    PubMed Central

    Zhang, Ke; Yang, Xieliu; Liu, Lianqing; Yu, Haibo; Zhang, Weijing

    2015-01-01

    In this paper, the translational motion and self-rotational behaviors of the Raji cells, a type of B-cell lymphoma cell, in an optically induced, non-rotational, electric field have been characterized by utilizing a digitally programmable and optically activated microfluidics chip with the assistance of an externally applied AC bias potential. The crossover frequency spectrum of the Raji cells was studied by observing the different linear translation responses of these cells to the positive and negative optically induced dielectrophoresis force generated by a projected light pattern. This digitally projected spot served as the virtual electrode to generate an axisymmetric and non-uniform electric field. Then, the membrane capacitance of the Raji cells could be directly measured. Furthermore, Raji cells under this condition also exhibited a self-rotation behavior. The repeatable and controlled self-rotation speeds of the Raji cells to the externally applied frequency and voltage were systematically investigated and characterized via computer-vision algorithms. The self-rotational speed of the Raji cells reached a maximum value at 60 kHz and demonstrated a quadratic relationship with respect to the applied voltage. Furthermore, optically projected patterns of four orthogonal electrodes were also employed as the virtual electrodes to manipulate the Raji cells. These results demonstrated that Raji cells located at the center of the four electrode pattern could not be self-rotated. Instead any Raji cells that deviated from this center area would also self-rotate. Most importantly, the Raji cells did not exhibit the self-rotational behavior after translating and rotating with respect to the center of any two adjacent electrodes. The spatial distributions of the electric field generated by the optically projected spot and the pattern of four electrodes were also modeled using a finite element numerical simulation. These simulations validated that the electric field

  5. Distinctive translational and self-rotational motion of lymphoma cells in an optically induced non-rotational alternating current electric field.

    PubMed

    Liang, Wenfeng; Zhang, Ke; Yang, Xieliu; Liu, Lianqing; Yu, Haibo; Zhang, Weijing

    2015-01-01

    In this paper, the translational motion and self-rotational behaviors of the Raji cells, a type of B-cell lymphoma cell, in an optically induced, non-rotational, electric field have been characterized by utilizing a digitally programmable and optically activated microfluidics chip with the assistance of an externally applied AC bias potential. The crossover frequency spectrum of the Raji cells was studied by observing the different linear translation responses of these cells to the positive and negative optically induced dielectrophoresis force generated by a projected light pattern. This digitally projected spot served as the virtual electrode to generate an axisymmetric and non-uniform electric field. Then, the membrane capacitance of the Raji cells could be directly measured. Furthermore, Raji cells under this condition also exhibited a self-rotation behavior. The repeatable and controlled self-rotation speeds of the Raji cells to the externally applied frequency and voltage were systematically investigated and characterized via computer-vision algorithms. The self-rotational speed of the Raji cells reached a maximum value at 60 kHz and demonstrated a quadratic relationship with respect to the applied voltage. Furthermore, optically projected patterns of four orthogonal electrodes were also employed as the virtual electrodes to manipulate the Raji cells. These results demonstrated that Raji cells located at the center of the four electrode pattern could not be self-rotated. Instead any Raji cells that deviated from this center area would also self-rotate. Most importantly, the Raji cells did not exhibit the self-rotational behavior after translating and rotating with respect to the center of any two adjacent electrodes. The spatial distributions of the electric field generated by the optically projected spot and the pattern of four electrodes were also modeled using a finite element numerical simulation. These simulations validated that the electric field

  6. Effects of preincubation of eggs and activation medium on the percentage of eyed embryos in ide (Leuciscus idus), an externally fertilizing fish.

    PubMed

    Siddique, Mohammad Abdul Momin; Linhart, Otomar; Krejszeff, Sławomir; Żarski, Daniel; Król, Jarosław; Butts, Ian Anthony Ernest

    2016-03-15

    Standardization of fertilization protocols is crucial for improving reproductive techniques for externally fertilizing fish in captive breeding. Therefore, the objectives of this study were to determine the effects of preincubation of eggs and activation medium on the percentage of eyed embryos for ide (Leuciscus idus). Pooled eggs from five females were preincubated in three different activating media for 0, 30, 60, 90, and 120 seconds and then fertilized by pooled sperm from five males. At the eyed-egg stage, the percentage of viable embryos was later calculated. Results showed that preincubation time was significant for the freshwater activation medium (P < 0.001), such that the percentage of eyed embryos declined across the preincubation time gradient. Additionally, there was an effect on the percentage of eyed embryos when eggs were incubated with Woynarovich solution (P < 0.001), such that a decline was detected at 90 seconds, whereas no effect was detected for the saline water medium. Activating medium had a significant effect on the percentage of eyed embryos for each preincubation time (P < 0.05). More precisely, freshwater produced the lowest percentage of eyed embryos at all preincubation times (ranged from 1.9% at 120 seconds to 43.6% at 0 seconds), whereas saline water and Woynarovich solution produced the highest percentage of eyed embryos at 0 seconds and 30 seconds before incubation. Woynarovich solution produced the highest percentage of eyed embryos at 60 seconds (65.26%), whereas saline water produced the highest percentage at 90 seconds (68.37%). No difference was detected between saline water and Woynarovich solution at 120 seconds. Examination of sperm traits showed no impact of activating medium on computer assisted sperm analysis parameters. Together, these results suggest that saline water or Woynarovich solution improve fertilization rate in ide during IVF; thus, these media are useful for standardizing fertilization protocols and

  7. Rotating Bioreactor

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators.

  8. Active vibration control of a ring-stiffened cylindrical shell in contact with unbounded external fluid and subjected to harmonic disturbance by piezoelectric sensor and actuator

    NASA Astrophysics Data System (ADS)

    Kwak, Moon K.; Yang, Dong-Ho

    2013-09-01

    This paper is concerned with the suppression of vibrations and radiated sound of a ring-stiffened circular cylindrical shell in contact with unbounded external fluid by means of piezoelectric sensors and actuators. The dynamic model of a circular cylindrical shell based on the Sanders shell theory was considered together with a ring stiffener model. The mass and stiffness matrices for a ring stiffener were newly derived in this study and added to the mass and stiffness matrices of the cylindrical shell, respectively. The fluid-added mass matrix, which was derived by using the baffled shell theory, was also added to the mass matrix. Finally, the equations representing the piezoelectric sensor measurement and piezoelectric actuation complete the theoretical model for the addressed problem. The natural vibration characteristics of the ring-stiffened cylindrical shell both in air and in water were investigated both theoretically and experimentally. The theoretical predictions were in good agreement with the experimental results. An active vibration controller which can cope with a harmonic disturbance was designed by considering the modified higher harmonic control, which is, in fact, a band rejection filter. An active vibration control experiment on the submerged cylindrical shell was carried out in a water tank and the digital control system was used. The experimental results showed that both vibrations and radiation sound of the submerged cylindrical shell were suppressed by a pair of piezoelectric sensor and actuator.

  9. Activation of group I metabotropic glutamate receptors enhances persistent sodium current and rhythmic bursting in main olfactory bulb external tufted cells

    PubMed Central

    Ennis, Matthew

    2013-01-01

    Rhythmically bursting olfactory bulb external tufted (ET) cells are thought to play a key role in synchronizing glomerular network activity to respiratory-driven sensory input. Whereas spontaneous bursting in these cells is intrinsically generated by interplay of several voltage-dependent currents, bursting strength and frequency can be modified by local intrinsic and centrifugal synaptic input. Activation of metabotropic glutamate receptors (mGluRs) engages a calcium-dependent cation current (ICAN) that increases rhythmic bursting, but mGluRs may also modulate intrinsic mechanisms involved in bursting. Here, we used patch-clamp electrophysiology in rat olfactory bulb slices to investigate whether mGluRs modulate two key intrinsic currents involved in ET cell burst initiation: persistent sodium (INaP) and hyperpolarization-activated cation (Ih) currents. Using a BAPTA-based internal solution to block ICAN, we found that the mGluR1/5 agonist DHPG enhanced INaP but did not alter Ih. INaP enhancement consisted of increased current at membrane potentials between −60 and −50 mV and a hyperpolarizing shift in activation threshold. Both effects would be predicted to shorten the interburst interval. In agreement, DHPG modestly depolarized (∼3.5 mV) ET cells and increased burst frequency without effect on other major burst parameters. This increase was inversely proportional to the basal burst rate such that slower ET cells exhibited the largest increases. This may enable ET cells with slow intrinsic burst rates to pace with faster sniff rates. Taken with other findings, these results indicate that multiple neurotransmitter mechanisms are engaged to fine-tune rhythmic ET cell bursting to context- and state-dependent changes in sniffing frequency. PMID:24225539

  10. Measurement of Small Optical Polarization Rotations

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2009-01-01

    When data with and without an optically active sample are acquired simultaneously while one manually rotates the analyser, the graph of the first signal versus the second one is an ellipse whose shape shows the phase shift between the two signals; this shift is twice the optical rotation. There is no need to measure the rotation of the analyser or…

  11. Motor Processes in Children's Mental Rotation

    ERIC Educational Resources Information Center

    Frick, Andrea; Daum, Moritz M.; Walser, Simone; Mast, Fred W.

    2009-01-01

    Previous studies with adult human participants revealed that motor activities can influence mental rotation of body parts and abstract shapes. In this study, we investigated the influence of a rotational hand movement on mental rotation performance from a developmental perspective. Children at the age of 5, 8, and 11 years and adults performed a…

  12. HADES RV Programme with HARPS-N at TNG . III. Flux-flux and activity-rotation relationships of early-M dwarfs

    NASA Astrophysics Data System (ADS)

    Maldonado, J.; Scandariato, G.; Stelzer, B.; Biazzo, K.; Lanza, A. F.; Maggio, A.; Micela, G.; González-Álvarez, E.; Affer, L.; Claudi, R. U.; Cosentino, R.; Damasso, M.; Desidera, S.; González Hernández, J. I.; Gratton, R.; Leto, G.; Messina, S.; Molinari, E.; Pagano, I.; Perger, M.; Piotto, G.; Rebolo, R.; Ribas, I.; Sozzetti, A.; Suárez Mascareño, A.; Zanmar Sanchez, R.

    2017-01-01

    Context. Understanding stellar activity in M dwarfs is crucial for the physics of stellar atmospheres and for ongoing radial velocity exoplanet programmes. Despite the increasing interest in M dwarfs, our knowledge of the chromospheres of these stars is far from being complete. Aims: We test whether the relations between activity, rotation, and stellar parameters and flux-flux relationships previously investigated for main-sequence FGK stars and for pre-main-sequence M stars also hold for early-M dwarfs on the main-sequence. Although several attempts have been made so far, here we analyse a large sample of stars undergoing relatively low activity. Methods: We analyse in a homogeneous and coherent way a well-defined sample of 71 late-K/early-M dwarfs that are currently being observed in the framework of the HArps-N red Dwarf Exoplanet Survey (HADES). Rotational velocities are derived using the cross-correlation technique, while emission flux excesses in the Ca ii H & K and Balmer lines from Hα up to Hɛ are obtained by using the spectral subtraction technique. The relationships between the emission excesses and the stellar parameters (projected rotational velocity, effective temperature, kinematics, and age) are studied. Relations between pairs of fluxes of different chromospheric lines (flux-flux relationships) are also studied and compared with the literature results for other samples of stars. Results: We find that the strength of the chromospheric emission in the Ca ii H & K and Balmer lines is roughly constant for stars in the M0-M3 spectral range. Although our sample is likely to be biased towards inactive stars, our data suggest that a moderate but significant correlation between activity and rotation might be present, as well as a hint of kinematically selected young stars showing higher levels of emission in the calcium line and in most of the Balmer lines. We find our sample of M dwarfs to be complementary in terms of chromospheric and X-ray fluxes with

  13. X-RAY, FUV, AND UV OBSERVATIONS OF {alpha} CENTAURI B: DETERMINATION OF LONG-TERM MAGNETIC ACTIVITY CYCLE AND ROTATION PERIOD

    SciTech Connect

    DeWarf, L. E.; Guinan, E. F.; Datin, K. M.

    2010-10-10

    cycle of P{sub cycle} = 8.84 {+-} 0.4 years. In addition, analysis of the short-term rotational modulation of mean light due to the effects of magnetically active regions has yielded a well-determined rotation period of P{sub rotation} = 36.2 {+-} 1.4 days. {alpha} Cen B is the only old main-sequence K star with a reliably determined age and rotation period, and for early K stars, as in the case of the Sun for G2 V stars, is an important calibrator for stellar age/rotation/activity relations.

  14. Asymmetric Hip Rotation in Professional Baseball Pitchers

    PubMed Central

    McCulloch, Patrick C.; Patel, Jayesh K.; Ramkumar, Prem N.; Noble, Philip C.; Lintner, David M.

    2014-01-01

    Background: There is a renewed interest in examining the association between hip range of motion and injury in athletes, and the data on baseball players are conflicting. Understanding whether asymmetrical hip rotation is a normal adaptation or a risk factor for injury will help therapists, trainers, and physicians develop rehabilitation programs to improve kinetic energy transfer and prevent injury. As our knowledge of hip pathology among baseball pitchers improves, establishing baselines for hip motion is critical in the further assessment of injury. Hypothesis: Because of the repetitive nature of throwing sports and the adaptive changes documented in the shoulder, elite baseball pitchers would have characteristic patterns of hip internal and external rotations on their dominant throwing side (stance) and their nondominant side (stride) in extension. Study Design: Cross-sectional study; Level of evidence, 3. Methods: Computer software was used to measure passive internal and external rotations on digital photographs of 111 professional baseball pitchers. Results: In right-handed pitchers, there was significantly more internal rotation in the stance hip than the stride hip (32.2° ± 8.2° vs 30.8° ± 8.4°; P = .0349) and significantly more external rotation in the stride hip than the stance hip (36.3° ± 7.7° vs 30.8° ± 9.7°; P < .0001). While the mean difference in external rotation was 4.7°, 32% of the subjects had a >10° increase in external rotation on the stride hip relative to the stance hip. This population was statistically different from the remaining group for older age (P = .0053), lower body mass index (P = .0379), and more years in professional baseball (P = .0328). In the smaller number of left-handed pitchers, side-to-side differences in hip rotation were found but were not statistically significant. Conclusion: Pitchers showed more internal rotation on their stance hip and more external rotation on their stride hip. Although the mean

  15. Motion of the shoulder complex in individuals with isolated acromioclavicular osteoarthritis and associated with rotator cuff dysfunction: part 2 - muscle activity.

    PubMed

    Sousa, Catarina de Oliveira; Michener, Lori Ann; Ribeiro, Ivana Leão; Reiff, Rodrigo Bezerra de Menezes; Camargo, Paula Rezende; Salvini, Tania Fátima

    2015-02-01

    This study aimed to compare muscle activity in individuals with isolated acromioclavicular osteoarthritis (ACO), ACO associated with rotator cuff disease (ACO+RCD), and controls. Seventy-four participants (23 isolated ACO, 25 ACO+RCD, 26 controls) took part in this study. Disability was assessed with the Disabilities of the Arm, Shoulder and Hand (DASH) questionnaire. Muscle activity of the upper trapezius (UT), lower trapezius (LT), serratus anterior (SA), and anterior deltoid (AD) was collected during arm elevation in the sagittal and scapular planes. Pain during motion was assessed with the numerical pain rating scale. Analysis of the DASH, pain and kinematics were reported in part 1 of this study. For each muscle, separate 2-way linear mixed-model ANOVAs were performed to compare groups. ACO+RCD group had more UT and AD activity than the the isolated ACO and control other groups, more AD activity than the isolated ACO group during the ascending phase, and more AD activity than the ACO and control groups during the descending phase in both planes. Isolated ACO group had less SA activity than the control group only in the sagittal plane. Alterations in shoulder muscle activity are present in individuals with isolated ACO and with ACO+RCD and should be considered in rehabilitation.

  16. Wear-simulation analysis of rotating-platform mobile-bearing knees.

    PubMed

    Fisher, John; McEwen, Hannah; Tipper, Joanne; Jennings, Louise; Farrar, Richard; Stone, Martin; Ingham, Eileen

    2006-09-01

    The wear and wear debris from rotating-platform mobile-bearing knees and fixed-bearing knees were compared in knee joint-simulator studies. The wear rate of the fixed-bearing knees was found to increase as the kinematics were increased because of an increase in internal-external rotation and an increase in anterorposterior (AP) translation. The wear rate of the rotating-platform mobile-bearing knees was found to be significantly lower than that of the fixed-bearing knees. The rotating-platform mobile-bearing knee was able to decouple the complex kinematics to pure rotation at the inferior tibial articulating surface and linear flexion-extension and AP sliding at the superior femoral articulating interface, substantially reducing cross-shear and wear. No difference was found in the wear debris between the rotating-platform and fixed-bearing knees. This resulted in a substantially reduced functional biological activity or osteolytic potential for the rotating-platform mobile-bearing knees due to the lower wear rates.

  17. Assessing the Internal and External Validity of Mobile Health Physical Activity Promotion Interventions: A Systematic Literature Review Using the RE-AIM Framework

    PubMed Central

    Zoellner, Jamie; Berrey, Leanna M; Alexander, Ramine; Fanning, Jason; Hill, Jennie L; Estabrooks, Paul A

    2013-01-01

    Background Mobile health (mHealth) interventions are effective in promoting physical activity (PA); however, the degree to which external validity indicators are reported is unclear. Objective The purpose of this systematic review was to use the RE-AIM (reach, effectiveness, adoption, implementation, and maintenance) framework to determine the extent to which mHealth intervention research for promoting PA reports on factors that inform generalizability across settings and populations and to provide recommendations for investigators planning to conduct this type of research. Methods Twenty articles reflecting 15 trials published between 2000 and 2012 were identified through a systematic review process (ie, queries of three online databases and reference lists of eligible articles) and met inclusion criteria (ie, implementation of mobile technologies, target physical activity, and provide original data). Two researchers coded each article using a validated RE-AIM data extraction tool (reach, efficacy/effectiveness, adoption, implementation, maintenance). Two members of the study team independently abstracted information from each article (inter-rater reliability >90%) and group meetings were used to gain consensus on discrepancies. Results The majority of studies were randomized controlled trials (n=14). The average reporting across RE-AIM indicators varied by dimension (reach=53.3%, 2.67/5; effectiveness/efficacy=60.0%, 2.4/4; adoption=11.1%, 0.7/6; implementation=24.4%, 0.7/3; maintenance=0%, 0/3). While most studies described changes in the primary outcome (effectiveness), few addressed the representativeness of participants (reach) or settings (adoption) and few reported on issues related to maintenance and degree of implementation fidelity. Conclusions This review suggests that more focus is needed on research designs that highlight and report on both internal and external validity indicators. Specific recommendations are provided to encourage future m

  18. Probing the Interaction between a DNA Nucleotide (Adenosine-5'-Monophosphate Disodium) and Surface Active Ionic Liquids by Rotational Relaxation Measurement and Fluorescence Correlation Spectroscopy.

    PubMed

    Roy, Arpita; Banerjee, Pavel; Dutta, Rupam; Kundu, Sangita; Sarkar, Nilmoni

    2016-10-02

    This article demonstrates the interaction of a deoxyribonucleic acid (DNA) nucleotide, adenosine-5'-monophosphate disodium (AMP) with a cationic surface active ionic liquid (SAIL) 1-dodecyl-3-methylimidazoium chloride (C12mimCl) and an anionic SAIL, 1-butyl-3-methylimidazolium n-octylsulfate ([C4mim][C8SO4]). Dynamic light scattering (DLS) measurements and 1H NMR (nuclear magnetic resonance) studies indicate that substantial interaction is taking place among the DNA nucleotide, AMP and the SAILs. Moreover, cryogenic transmission electron microscopy (cryo-TEM) suggests that SAILs containing micellar assemblies are transformed into larger micellar assemblies in presence of DNA nucleotide. Additionally, the rotational motion of two oppositely charged molecules, Rhodamine 6G perchlorate (R6G) and Fluorescein sodium salt (Fl-Na) have been monitored in these aggregates. The rotational motion of R6G and Fl-Na differs significantly between SAILs micelles, and SAILs-AMP containing larger micellar aggregates. The effect of negatively charged DNA nucleotide (AMP) addition into the cationic and anionic SAILs is more prominent for the cationic charged molecule R6G than that of anionic probe Fl-Na due to the favourable electrostatic interaction between the AMP and cationic R6G. Moreover, the influence of the anionic DNA nucleotide on the cationic and anionic SAIL micelles is monitored through the variation of the lateral diffusion motion of oppositely charged probe molecules (R6G and Fl-Na) inside these aggregates. This variation in diffusion coefficient values also suggests that interaction pattern of these oppositely charged probes are different within the SAILs-nucleotide containing aggregates. Therefore, both rotational and translational diffusion measurements confirm that the DNA nucleotide (AMP) renders more rigid microenvironment within the micellar solution of SAILs.

  19. Assigning the Vibration-Rotation Spectra Using the Lww Program Package

    NASA Astrophysics Data System (ADS)

    Lodyga, Wieslaw; Kreglewski, Marek

    2016-06-01

    The LWW program package is based on traditional methods used in assigning rotationally resolved IR molecular spectra. The Loomis-Wood diagrams, which are used to visualize spectral branches and facilitate their identification, are combined with the power of interactive lower state combination difference (LSCD) checking, which provides immediate verification of correct assignments of quantum numbers to spectral lines. The traditional Giessen/Cologne type Loomis-Wood algorithm is also implemented. Predictions of vibration-rotation wavenumbers are calculated from a table of vibration-rotation energies, which can be imported from any external fitting program. Program includes many additional tools like simulation of a spectrum from a catalog file (list of transitions with intensities), build-up of a vibration-rotation band from individual branches and simultaneous displaying of two IR spectra - active one used for assignments and a reference one, both with full link to their peak-list files. Importing energies as well as exporting assigned data for fitting in an external program is made easy and flexible by a user-programmed import/export interface, which facilitates iterative refining of energy levels and gives a possibility of using directly exact vibration-rotation energies. Program is available in tree versions: for symmetric top, asymmetric top and molecules with large amplitude motions. The program is designed for the Windows operating systems and is available with full documentation on www.lww.amu.edu.pl .

  20. Acute Effects of Foot Rotation in Healthy Adults during Running on Knee Moments and Lateral-Medial Shear Force

    PubMed Central

    Valenzuela, Kevin A.; Lynn, Scott K.; Noffal, Guillermo J.; Brown, Lee E.

    2016-01-01

    As runners age, the likelihood of developing osteoarthritis (OA) significantly increases as 10% of people 55+ have symptomatic knee OA while 70% of people 65+ have radiographic signs of knee OA. The lateral-medial shear force (LMF) and knee adduction moment (KAM) during gait have been associated with cartilage loading which can lead to OA. Foot rotation during gait has been shown to alter the LMF and KAM, however it has not been investigated in running. The purpose of this study was to investigate changes in the KAM and LMF with foot rotation during running. Twenty participants volunteered and performed five running trials in three randomized conditions (normal foot position [NORM], external rotation [EXT], and internal rotation [INT]) at a running speed of 3.35m·s-1 on a 20 meter runway. Kinematic and kinetic data were gathered using a 9-camera motion capture system and a force plate, respectively. Repeated measures ANOVAs determined differences between conditions. The KAM and LMF were lower in both EXT and INT conditions compared to the NORM, but there were no differences between EXT and INT conditions. The decreases in KAM and LMF in the EXT condition were expected and concur with past research in other activities. The reductions in the INT condition were unexpected and contradict the literature. This may indicate that participants are making mechanical compensations at other joints to reduce the KAM and LMF in this abnormal internal foot rotation condition. Key points External rotation of the foot during running reduced the loads on the medial compartment of the knee Internal rotation of the foot also reduced the medial loads, but is a more unnatural intervention External and internal rotation reduced the shear forces on the knee, which may help slow the degeneration of knee joint cartilage PMID:26957926

  1. Singing-related neural activity distinguishes two putative pallidal cell types in the songbird basal ganglia: comparison to the primate internal and external pallidal segments

    PubMed Central

    Goldberg, Jesse H.; Adler, Avital; Bergman, Hagai; Fee, Michale S.

    2010-01-01

    The songbird area X is a basal ganglia homologue that contains two pallidal cell types—local neurons that project within the basal ganglia and output neurons that project to the thalamus. Based on these projections, it has been proposed that these classes are structurally homologous to the primate external (GPe) and internal (GPi) pallidal segments. To test the hypothesis that the two area X pallidal types are functionally homologous to GPe and GPi neurons, we recorded from neurons in area X of singing juvenile male zebra finches, and directly compare their firing patterns to neurons recorded in the primate pallidus. In area X, we find two cell classes that exhibited high firing (HF) rates (>60Hz) characteristic of pallidal neurons. HF-1 neurons, like most GPe neurons we examined, exhibited large firing rate modulations, including bursts and long pauses. In contrast, HF-2 neurons, like GPi neurons, discharged continuously without bursts or long pauses. To test if HF-2 neurons were the output neurons that project to the thalamus, we next recorded directly from pallidal axon terminals in thalamic nucleus DLM, and found that all terminals exhibited singing-related firing patterns indistinguishable from HF-2 neurons. Our data show that singing-related neural activity distinguishes two putative pallidal cell types in area X: thalamus-projecting neurons that exhibit activity similar to the primate GPi, and non-thalamus-projecting neurons that exhibit activity similar to the primate GPe. These results suggest that song learning in birds and motor learning in mammals employ conserved basal ganglia signaling strategies. PMID:20484651

  2. External tank project new technology plan. [development of space shuttle external tank system

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A production plan for the space shuttle external tank configuration is presented. The subjects discussed are: (1) the thermal protection system, (2) thermal coating application techniques, (3) manufacturing and tooling, (4) propulsion system configurations and components, (5) low temperature rotating and sliding joint seals, (6) lightning protection, and (7) nondestructive testing technology.

  3. Measuring both Rotational and Translational Ground-Motions from Explosions and Local Earthquakes in Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, B.; Lee, W.; Lin, C.; Liu, C.; Shin, T.; Teng, T.; Wu, C.

    2008-12-01

    Since rotational motions can "contaminate" translational ground-motion measurements due to the induced perturbation of the Earth's gravitational field, we started a program to measure rotational ground motions near Hualien (Taiwan) in December, 2000. However, no useful data were obtained after 3 years, until a rotational sensor of much higher sensitivity was deployed at the HGSD station in eastern Taiwan in December, 2004. Rotational and translational seismograms were obtained from several hundred local earthquakes. As noted by several authors before, we found a linear relationship between peak rotational rate (PRR in mrad/s) and peak ground acceleration (PGA in m/s2) from local earthquakes in Taiwan: PRR = 0.002 + 1.301 PGA, with a correlation coefficient of 0.988. Taking advantage of two large explosions of the TAIGER Active Seismic Experiment, we deployed 13 accelerometers and 8 rotational sensors within 600 m from the N3 shot points and obtained some interesting results, which will be presented by Langston et al. in this Session. In December, 2007, we began an instrument array deployment along the Meishan fault in southwestern Taiwan, where a major earthquake occurred in 1906 with surface rupture of more than 12 km long. The deployed instruments are: (1) a 32-element seismic array in free-field, (2) a 32-element accelerometer array in a building, (3) a six-channel unit with a low-gain broadband seismometer and an accelerometer, and (4) two six-channel units with an accelerometer and an external rotational senor. We have 8 rotational sensors now deployed in Taiwan and seven new rotational sensors are scheduled for deployment soon in a program to assess the effect of ground rotation on traditional measurements of translational strong ground motions.

  4. External artery heat pipe

    NASA Technical Reports Server (NTRS)

    Gernert, Nelson J. (Inventor); Ernst, Donald M. (Inventor); Shaubach, Robert M. (Inventor)

    1989-01-01

    An improved heat pipe with an external artery. The longitudinal slot in the heat pipe wall which interconnects the heat pipe vapor space with the external artery is completely filled with sintered wick material and the wall of the external artery is also covered with sintered wick material. This added wick structure assures that the external artery will continue to feed liquid to the heat pipe evaporator even if a vapor bubble forms within and would otherwise block the liquid transport function of the external artery.

  5. Differential rotation in rapidly rotating early-type stars. I. Motivations for combined spectroscopic and interferometric studies

    NASA Astrophysics Data System (ADS)

    Zorec, J.; Frémat, Y.; Domiciano de Souza, A.; Delaa, O.; Stee, P.; Mourard, D.; Cidale, L.; Martayan, C.; Georgy, C.; Ekström, S.

    2011-02-01

    Context. Since the external regions of the envelopes of rapidly rotating early-type stars are unstable to convection, a coupling may exist between the convection and the internal rotation. Aims: We explore what can be learned from spectroscopic and interferometric observations about the properties of the rotation law in the external layers of these objects. Methods: Using simple relations between the entropy and specific rotational quantities, some of which are found to be efficient at accounting for the solar differential rotation in the convective region, we derived analytical solutions that represent possible differential rotations in the envelope of early-type stars. A surface latitudinal differential rotation may not only be an external imprint of the inner rotation, but induces changes in the stellar geometry, the gravitational darkening, the aspect of spectral line profiles, and the emitted spectral energy distribution. Results: By studying the equation of the surface of stars with non-conservative rotation laws, we conclude that objects undergo geometrical deformations that are a function of the latitudinal differential rotation able to be scrutinized both spectroscopically and by interferometry. The combination of Fourier analysis of spectral lines with model atmospheres provides independent estimates of the surface latitudinal differential rotation and the inclination angle. Models of stars at different evolutionary stages rotating with internal conservative rotation laws were calculated to show that the Roche approximation can be safely used to account for the gravitational potential. The surface temperature gradient in rapid rotators induce an acceleration to the surface angular velocity. Although a non-zero differential rotation parameter may indicate that the rotation is neither rigid nor shellular underneath the stellar surface, still further information, perhaps non-radial pulsations, is needed to determine its characteristics as a function of depth

  6. Starspot evolution, differential rotation, and magnetic cycles in the chromospherically active binaries lambda andromedae, sigma Geminorum, II Pegasi, and V711 Tauri

    NASA Technical Reports Server (NTRS)

    Henry, Gregory W.; Eaton, Joel A.; Hamer, Jamesia; Hall, Douglas S.

    1995-01-01

    We have analyzed 15-19 yr of photoelectric photometry, obtained manually and with automated telescopes, of the chromospherically active binaries lambda And, sigma Gem, II Peg, and V711 Tau. These observations let us identify individual dark starspots on the stellar surfaces from periodic dimming of the starlight, follow the evolution of these spots, and search for long-term cyclic changes in the properties of these starspots that might reveal magnetic cycles analogous to the Sun's 11 yr sunspot cycle. We developed a computer code to fit a simple two-spot model to our observed light curves that allows us to extract the most easily determinable and most reliable spot parameters from the light curves, i.e., spot longitudes and radii. We then used these measured properties to identify individual spots and to chart their life histories by constructing migration and amplitude curves. We identified and followed 11 spots in lambda And, 16 in sigma Gem, 12 in II Peg, and 15 in V711 Tau. Lifetimes of individual spots ranged from a few months to longer than 6 yr. Differential rotation coefficients, estimated from the observed range of spot rotation periods for each star and defined by equation (2), were 0.04 for lambda And, 0.038 for sigma Gem, 0.005 for II Peg, and 0.006 for V711 Tau, versus 0.19 for the Sun. We searched for cyclic changes in mean brightness, B-V color index, and spot rotation period as evidence for long-term cycles. Of these, long-term variability in mean brightness appears to offer the best evidence for such cycles in these four stars. Cycles of 11.1 yr for lambda And, 8.5 yr for sigma Gem, 11 yr for II Peg, and 16 yr V711 Tau are implied by these mean brightness changes. Cyclic changes in spot rotation period were found in lambda And and possibly II Peg. Errors in B-V were too large for any long-term changes to be detectable.

  7. Feasibility of externally activated self-repairing concrete with epoxy injection network and Cu-Al-Mn superelastic alloy reinforcing bars

    NASA Astrophysics Data System (ADS)

    Pareek, Sanjay; Shrestha, Kshitij C.; Suzuki, Yusuke; Omori, Toshihiro; Kainuma, Ryosuke; Araki, Yoshikazu

    2014-10-01

    This paper studies the effectiveness of an externally activated self-repairing technique for concrete members with epoxy injection network and Cu-Al-Mn superelastic alloy (SEA) reinforcing bars (rebars). Compared to existing crack self-repairing and self-healing techniques, the epoxy injection network has the following strengths: (1) Different from the self-repairing methods using brittle containers or tubes for adhesives, the proposed self-repair process can be performed repeatedly and is feasible for onsite concrete casting. (2) Different from the autogenic self-healing techniques, full strength recovery can be achieved in a shorter time period without the necessity of water. This paper attempts to enhance the self-repairing capability of the epoxy injection network by reducing residual cracks by using cost-effective Cu-based SEA bars. The effectiveness of the present technique is examined using concrete beam specimens reinforced by 3 types of bars. The first specimen is reinforced by steel deformed bars, the second by steel threaded bars, and finally by SEA threaded rebars. The tests were performed with a 3 point cyclic loading with increasing amplitude. From the test results, effective self-repairing was confirmed for small deformation levels irrespective of the reinforcement types. Effective self-repairing was observed in the SEA reinforced specimen even under much larger deformations. Nonlinear finite element analysis was performed to confirm the experimental findings.

  8. Early GABAergic transmission defects in the external globus pallidus and rest/activity rhythm alteration in a mouse model of Huntington's disease.

    PubMed

    Du, Zhuowei; Chazalon, Marine; Bestaven, Emma; Leste-Lasserre, Thierry; Baufreton, Jérôme; Cazalets, Jean-René; Cho, Yoon H; Garret, Maurice

    2016-08-04

    Huntington's disease (HD) is characterized by progressive motor symptoms preceded by cognitive deficits and is regarded as a disorder that primarily affects the basal ganglia. The external globus pallidus (GPe) has a central role in the basal ganglia, projects directly to the cortex, and is majorly modulated by GABA. To gain a better understanding of the time course of HD progression and gain insight into the underlying mechanisms, we analyzed GABAergic neurotransmission in the GPe of the R6/1 mouse model at purportedly asymptomatic and symptomatic stages (i.e., 2 and 6months). Western blot and quantitative polymerase chain reaction (PCR) analyses revealed alterations in the GPe of male R6/1 mice compared with wild-type littermates. Expression of proteins involved in pre- and post-synaptic GABAergic compartments as well as synapse number were severely decreased at 2 and 6months. At both ages, patch-clamp electrophysiological recordings showed a decrease of spontaneous and miniature inhibitory post-synaptic currents (IPSCs) suggesting that HD mutation has an early effect on the GABA signaling in the brain. Therefore, we performed continuous locomotor activity recordings from 2 to 4months of age. Actigraphy analyses revealed rest/activity fragmentation alterations that parallel GABAergic system impairment at 2months, while the locomotor deficit is evident only at 3months in R6/1 mice. Our results reveal early deficits in HD and support growing evidence for a critical role played by the GPe in physiological and pathophysiological states. We suggest that actimetry may be used as a non-invasive tool to monitor early disease progression.

  9. Macroscopic response of particle-reinforced elastomers subjected to prescribed torques or rotations on the particles

    NASA Astrophysics Data System (ADS)

    Siboni, Morteza H.; Ponte Castañeda, Pedro

    2016-06-01

    Particle-reinforced rubbers are composite materials consisting of randomly distributed, stiff fibers/particles in a soft elastomeric material. Since the particles are stiff compared to the embedding rubber, their deformation can be ignored for all practical purposes. However, due to the softness of the rubber, they can undergo rigid body translations and rotations. Constitutive models accounting for the effect of such particle motions on the macroscopic response under prescribed deformations on the boundary have been developed recently. But, in some applications (e.g., magneto-active elastomers), the particles may experience additional torques as a consequence of an externally applied (magnetic) field, which, in turn, can affect the overall rotation of the particles in the rubber, and therefore also the macroscopic response of the composite. This paper is concerned with the development of constitutive models for particle-reinforced elastomers, which are designed to account for externally applied torques on the internally distributed particles, in addition to the externally applied deformation on the boundary of the composite. For this purpose, we propose a new variational framework involving suitably prescribed eigenstresses on the particles. For simplicity, the framework is applied to an elastomer reinforced by aligned, rigid, cylindrical fibers of elliptical cross section, which can undergo finite rotations in the context of a finite-deformation, plane strain problem for the composite. In particular, expressions are derived for the average in-plane rotation of the fibers as a function of the torques that are applied on them, both under vanishing and prescribed strain on the boundary. The results of this work will make possible the development of improved constitutive models for magneto-active elastomers, and other types of smart composite materials that are susceptible to externally applied torques.

  10. Workshop Physics Activity Guide, Module 2: Mechanics II, Momentum, Energy, Rotational and Harmonic Motion, and Chaos (Units 8 - 15)

    NASA Astrophysics Data System (ADS)

    Laws, Priscilla W.

    2004-05-01

    The Workshop Physics Activity Guide is a set of student workbooks designed to serve as the foundation for a two-semester calculus-based introductory physics course. It consists of 28 units that interweave text materials with activities that include prediction, qualitative observation, explanation, equation derivation, mathematical modeling, quantitative experiments, and problem solving. Students use a powerful set of computer tools to record, display, and analyze data, as well as to develop mathematical models of physical phenomena. The design of many of the activities is based on the outcomes of physics education research. The Workshop Physics Activity Guide is supported by an Instructor's Website that: (1) describes the history and philosophy of the Workshop Physics Project; (2) provides advice on how to integrate the Guide into a variety of educational settings; (3) provides information on computer tools (hardware and software) and apparatus; and (4) includes suggested homework assignments for each unit. Log on to the Workshop Physics Project website at http://physics.dickinson.edu/ Workshop Physics is a component of the Physics Suite--a collection of materials created by a group of educational reformers known as the Activity Based Physics Group. The Physics Suite contains a broad array of curricular materials that are based on physics education research, including:

      Understanding Physics, by Cummings, Laws, Redish and Cooney (an introductory textbook based on the best-selling text by Halliday/Resnick/Walker) RealTime Physics Laboratory Modules Physics by Inquiry (intended for use in a workshop setting) Interactive Lecture Demonstration Tutorials in Introductory Physics Activity Based Tutorials (designed primarily for use in recitations)

    • External radiation surveillance

      SciTech Connect

      Antonio, E.J.

      1995-06-01

      This section of the 1994 Hanford Site Environmental Report describes how external radiation was measured, how surveys were performed, and the results of these measurements and surveys. External radiation exposure rates were measured at locations on and off the Hanford Site using thermoluminescent dosimeters (TLD). External radiation and contamination surveys were also performed with portable radiation survey instruments at locations on and around the Hanford Site.

    • Rotating samples in FT-RAMAN spectrometers

      NASA Astrophysics Data System (ADS)

      De Paepe, A. T. G.; Dyke, J. M.; Hendra, P. J.; Langkilde, F. W.

      1997-11-01

      It is customary to rotate samples in Raman spectroscopy to avoid absorption or sample heating. In FT-Raman experiments the rotation is always shown (typically 30-60 rpm) because higher speeds are thought to generate noise in the spectra. In this article we show that more rapid rotation is possible. A tablet containing maleic acid and one made up of sub-millimetre silica particles with metoprolol succinate as active ingredient were rotated at different speeds, up to 6760 rpm. The FT-Raman spectra were recorded and studied. We conclude that it is perfectly acceptable to rotate samples up to 1500 rpm.

    • Rotating samples in FT-RAMAN spectrometers.

      PubMed

      De Paepe, A T; Dyke, J M; Hendra, P J; Langkilde, F W

      1997-11-01

      It is customary to rotate samples in Raman spectroscopy to avoid absorption or sample heating. In FT-Raman experiments the rotation is always shown (typically 30-60 rpm) because higher speeds are thought to generate noise in the spectra. In this article we show that more rapid rotation is possible. A tablet containing maleic acid and one made up of sub-millimetre silica particles with metoprolol succinate as active ingredient were rotated at different speeds, up to 6760 rpm. The FT-Raman spectra were recorded and studied. We conclude that it is perfectly acceptable to rotate samples up to 1500 rpm.

    • Shoulder Retractor Strengthening Exercise to Minimize Rhomboid Muscle Activity and Subacromial Impingement

      PubMed Central

      Fennell, Jeremy; Mochizuki, George; Ismail, Farooq; Boulias, Chris

      2016-01-01

      Purpose: We investigated the best position for shoulder retractor strengthening exercise to maximize middle trapezius activity and minimize rhomboid major activity. Although both trapezius and rhomboids are scapular retractors, rhomboids also act as downward rotators of the scapula, which can worsen subacromial impingement. Methods: Twelve healthy participants (age 30 [SD 6] y) with no history of shoulder pain were recruited for this study, which used fine-wire electromyography to examine maximal muscle activation of the middle trapezius and rhomboid major muscle fibres in four different positions: with the shoulder in 90° abduction with elbow completely extended and (1) shoulder internal rotation, (2) shoulder neutral rotation, (3) shoulder external rotation, and (4) rowing (shoulder neutral rotation and elbow flexed 90°). The ratio of trapezius to rhomboid muscles was compared with Wilcoxon signed-rank tests. Results: Muscle activation ratio during shoulder retraction exercise was significantly lower by 22% (i.e., rhomboid was more active than middle trapezius) when performed with the shoulder in rowing position (elbow flexed) than with the shoulder in external rotation (elbow extended) position (p=0.031). All four positions produced coactivation of trapezius and rhomboids. Discussion: Rowing position may not be the best position for shoulder retractor strengthening in patients with impingement syndrome. The preferable position for maximizing middle trapezius activity and minimizing rhomboid activity may be shoulder external rotation with elbow extended. PMID:27504044

    • Voluntary activation deficits of the infraspinatus present as a consequence of pitching-induced fatigue

      PubMed Central

      Gandhi, Jaipal; ElAttrache, Neal S.; Kaufman, Kenton R.; Hurd, Wendy J.

      2014-01-01

      Hypothesis Neuromuscular inhibition of the infraspinatus would be greater and external rotation muscle force would be lower after a simulated game compared with pregame values. Materials and methods The sample included 21 uninjured, asymptomatic high school–aged baseball pitchers. Maximum volitional shoulder external rotation strength was assessed before and after a simulated game with a clinical dynamometer. Voluntary activation of the infraspinatus was assessed during strength testing by a modified burst superimposition technique. Performance-related fatigue was assessed by monitoring pitch velocity, and global fatigue was assessed by subject self-report before and after the game. Statistical testing included paired and independent t tests, with α ≤ 05. Results There was no difference between throwing and non-throwing shoulder external rotation strength (P = .12) or voluntary infraspinatus activation (P = .27) before the game. After the game, voluntary activation was significantly lower in the throwing limb compared with pregame activation levels (P = .01). Lower external rotation strength after the game approached statistical significance (P =.06). Pitch velocity was lower in the final inning compared with first-inning velocity (P = .01), and fatigue was significantly greater after the game (P = .01). Conclusions Voluntary infraspinatus muscle activation is a mechanism contributing to external rotation muscle weakness in the fatigued pitcher. Understanding mechanisms contributing to muscle weakness is necessary to develop effective injury prevention and rehabilitation programs. Treatment techniques that enhance neuromuscular activation may be a useful strategy for enhancing strength in this population. Level of evidence Basic Science Study, Kinesiology Study. PMID:21831667

    • Actuator assembly including a single axis of rotation locking member

      DOEpatents

      Quitmeyer, James N.; Benson, Dwayne M.; Geck, Kellan P.

      2009-12-08

      An actuator assembly including an actuator housing assembly and a single axis of rotation locking member fixedly attached to a portion of the actuator housing assembly and an external mounting structure. The single axis of rotation locking member restricting rotational movement of the actuator housing assembly about at least one axis. The single axis of rotation locking member is coupled at a first end to the actuator housing assembly about a Y axis and at a 90.degree. angle to an X and Z axis providing rotation of the actuator housing assembly about the Y axis. The single axis of rotation locking member is coupled at a second end to a mounting structure, and more particularly a mounting pin, about an X axis and at a 90.degree. angle to a Y and Z axis providing rotation of the actuator housing assembly about the X axis. The actuator assembly is thereby restricted from rotation about the Z axis.

    • As the World Turns: Everything You Wanted to Know about Earth's Rotation

      NASA Technical Reports Server (NTRS)

      Chao, Benjamin F.

      1998-01-01

      Earth's rotation vector is not a constant in space. Rather, it varies slightly with time on all temporal scales in a very complex, but interesting way. Phenomenologically, the variation can be considered separately in terms of (1) variations in the rotational speed (which translates into the length of day); and (2) variations in the orientation of the rotation axis (called the polar motion relative to the Earth reference frame, and the nutations relative to the inertial space). From the dynamics point of view, these changes can be separated into two types: astronomical (due to external torques mostly exerted by Moon and Sun), and geophysical (due to mass transport in the geophysical fluids of the Earth system under the conservation of angular momentum). Interesting and significant phenomena result. Decades of advancing measurements and active research have yielded fascinating stories.

    • Accurate Assessment of the Oxygen Reduction Electrocatalytic Activity of Mn/Polypyrrole Nanocomposites Based on Rotating Disk Electrode Measurements, Complemented with Multitechnique Structural Characterizations.

      PubMed

      Bocchetta, Patrizia; Sánchez, Carolina Ramírez; Taurino, Antonietta; Bozzini, Benedetto

      2016-01-01

      This paper reports on the quantitative assessment of the oxygen reduction reaction (ORR) electrocatalytic activity of electrodeposited Mn/polypyrrole (PPy) nanocomposites for alkaline aqueous solutions, based on the Rotating Disk Electrode (RDE) method and accompanied by structural characterizations relevant to the establishment of structure-function relationships. The characterization of Mn/PPy films is addressed to the following: (i) morphology, as assessed by Field-Emission Scanning Electron Microscopy (FE-SEM) and Atomic Force Microscope (AFM); (ii) local electrical conductivity, as measured by Scanning Probe Microscopy (SPM); and (iii) molecular structure, accessed by Raman Spectroscopy; these data provide the background against which the electrocatalytic activity can be rationalised. For comparison, the properties of Mn/PPy are gauged against those of graphite, PPy, and polycrystalline-Pt (poly-Pt). Due to the literature lack of accepted protocols for precise catalytic activity measurement at poly-Pt electrode in alkaline solution using the RDE methodology, we have also worked on the obtainment of an intralaboratory benchmark by evidencing some of the time-consuming parameters which drastically affect the reliability and repeatability of the measurement.

    • Accurate Assessment of the Oxygen Reduction Electrocatalytic Activity of Mn/Polypyrrole Nanocomposites Based on Rotating Disk Electrode Measurements, Complemented with Multitechnique Structural Characterizations

      PubMed Central

      Sánchez, Carolina Ramírez; Taurino, Antonietta; Bozzini, Benedetto

      2016-01-01

      This paper reports on the quantitative assessment of the oxygen reduction reaction (ORR) electrocatalytic activity of electrodeposited Mn/polypyrrole (PPy) nanocomposites for alkaline aqueous solutions, based on the Rotating Disk Electrode (RDE) method and accompanied by structural characterizations relevant to the establishment of structure-function relationships. The characterization of Mn/PPy films is addressed to the following: (i) morphology, as assessed by Field-Emission Scanning Electron Microscopy (FE-SEM) and Atomic Force Microscope (AFM); (ii) local electrical conductivity, as measured by Scanning Probe Microscopy (SPM); and (iii) molecular structure, accessed by Raman Spectroscopy; these data provide the background against which the electrocatalytic activity can be rationalised. For comparison, the properties of Mn/PPy are gauged against those of graphite, PPy, and polycrystalline-Pt (poly-Pt). Due to the literature lack of accepted protocols for precise catalytic activity measurement at poly-Pt electrode in alkaline solution using the RDE methodology, we have also worked on the obtainment of an intralaboratory benchmark by evidencing some of the time-consuming parameters which drastically affect the reliability and repeatability of the measurement. PMID:28042491

    • Rotating waves during human sleep spindles organize global patterns of activity that repeat precisely through the night.

      PubMed

      Muller, Lyle; Piantoni, Giovanni; Koller, Dominik; Cash, Sydney S; Halgren, Eric; Sejnowski, Terrence J

      2016-11-15

      During sleep, the thalamus generates a characteristic pattern of transient, 11-15 Hz sleep spindle oscillations, which synchronize the cortex through large-scale thalamocortical loops. Spindles have been increasingly demonstrated to be critical for sleep-dependent consolidation of memory, but the specific neural mechanism for this process remains unclear. We show here that cortical spindles are spatiotemporally organized into circular wave-like patterns, organizing neuronal activity over tens of milliseconds, within the timescale for storing memories in large-scale networks across the cortex via spike-time dependent plasticity. These circular patterns repeat over hours of sleep with millisecond temporal precision, allowing reinforcement of the activity patterns through hundreds of reverberations. These results provide a novel mechanistic account for how global sleep oscillations and synaptic plasticity could strengthen networks distributed across the cortex to store coherent and integrated memories.

  1. Rotating waves during human sleep spindles organize global patterns of activity that repeat precisely through the night

    PubMed Central

    Muller, Lyle; Piantoni, Giovanni; Koller, Dominik; Cash, Sydney S; Halgren, Eric; Sejnowski, Terrence J

    2016-01-01

    During sleep, the thalamus generates a characteristic pattern of transient, 11-15 Hz sleep spindle oscillations, which synchronize the cortex through large-scale thalamocortical loops. Spindles have been increasingly demonstrated to be critical for sleep-dependent consolidation of memory, but the specific neural mechanism for this process remains unclear. We show here that cortical spindles are spatiotemporally organized into circular wave-like patterns, organizing neuronal activity over tens of milliseconds, within the timescale for storing memories in large-scale networks across the cortex via spike-time dependent plasticity. These circular patterns repeat over hours of sleep with millisecond temporal precision, allowing reinforcement of the activity patterns through hundreds of reverberations. These results provide a novel mechanistic account for how global sleep oscillations and synaptic plasticity could strengthen networks distributed across the cortex to store coherent and integrated memories. DOI: http://dx.doi.org/10.7554/eLife.17267.001 PMID:27855061

  2. [Rotational stability of angiography catheters].

    PubMed

    Schröder, J; Weber, M

    1992-10-01

    Rotatory stability is a parameter that reflects the ability of a catheter to transmit a rotation applied at the outer end to the catheter tip for the purpose of selective probing. A method for measuring the rotatory stability is described, and the results of rotatory stability measurements of 70 different commercially available catheters are reported. There is an almost linear correlation between the rotatory stability and the difference between the respective fourth power of the external and internal diameter or, approximately, to the fourth power of the external diameter for catheters without wire reinforcement. With the same cross-sectional dimensions, the rotatory stability of teflon, polyethylene, and nylon catheters has an approximate ratio of 1:2:4. Wire reinforcement increases rotatory stability by an average factor of about 3. For catheters of calibers 5 F and 6 F, a correlation between the rotatory stability and the weight of the reinforcing wire mesh is apparent.

  3. Chromospheric Mass Motions and Intrinsic Sunspot Rotations for NOAA Active Regions 10484, 10486, and 10488 Using ISOON Data (Postprint)

    DTIC Science & Technology

    2013-08-10

    understand the broader magnetic field context in each active region through the time of the data set. 3 . RESULTS 3.1. NOAA AR 10484 NOAA AR 10484...negative and positive magnetic field areas, respectively, prior to October 27, and the leveling off of the magnetic field areas early on October 28... Magnetic field areas of both polarities remain constant through the rest of the data set with the negative magnetic field area ∼1.3 times larger than the

  4. Equilibrium, multistability, and chiral asymmetry in rotated mirror plasmas

    SciTech Connect

    Valanju, P.M.; Mahajan, S.M.; Quevedo, H.J.

    2006-06-15

    The Hall term in two-fluid magnetohydrodynamics is shown to be necessary to balance the curl of the ion inertial force in a rotating plasma with spatially nonuniform crossed electric and magnetic fields. Two-fluid solutions are obtained that qualitatively explain the multistable rotational response observed in magneto-Bernoulli experiment, imply chiral symmetry breaking, i.e., handedness, and yield new dynamo-like electromotive terms in the effective circuit equation for externally rotated mirror plasma equilibria.

  5. Tilt stability of rotating current rings with passive conductors

    SciTech Connect

    Zweibel, E.G.; Pomphrey, N.

    1984-12-01

    We study the combined effects of rotation and resistive passive conductors on the stability of a rigid current in an external magnetic field. We present numerical and approximate analytical solutions to the equations of motion, which show that the ring is always tilt unstable on the resistive decay timescale of the conductors, although rotation and eddy currents may stabilize it over short times. Possible applications of our model include spheromaks which rotate or which are encircled by energetic particle rings.

  6. Shoot the Stars--Focus on Earth's Rotation.

    ERIC Educational Resources Information Center

    Russo, Richard

    1988-01-01

    Provides background information on the equipment and knowledge necessary to do an astronomy activity on the earth's rotation. Details an activity in which students can measure the rotation of the earth using a camera and the stars. (CW)

  7. A novel neural network based image reconstruction model with scale and rotation invariance for target identification and classification for Active millimetre wave imaging

    NASA Astrophysics Data System (ADS)

    Agarwal, Smriti; Bisht, Amit Singh; Singh, Dharmendra; Pathak, Nagendra Prasad

    2014-12-01

    Millimetre wave imaging (MMW) is gaining tremendous interest among researchers, which has potential applications for security check, standoff personal screening, automotive collision-avoidance, and lot more. Current state-of-art imaging techniques viz. microwave and X-ray imaging suffers from lower resolution and harmful ionizing radiation, respectively. In contrast, MMW imaging operates at lower power and is non-ionizing, hence, medically safe. Despite these favourable attributes, MMW imaging encounters various challenges as; still it is very less explored area and lacks suitable imaging methodology for extracting complete target information. Keeping in view of these challenges, a MMW active imaging radar system at 60 GHz was designed for standoff imaging application. A C-scan (horizontal and vertical scanning) methodology was developed that provides cross-range resolution of 8.59 mm. The paper further details a suitable target identification and classification methodology. For identification of regular shape targets: mean-standard deviation based segmentation technique was formulated and further validated using a different target shape. For classification: probability density function based target material discrimination methodology was proposed and further validated on different dataset. Lastly, a novel artificial neural network based scale and rotation invariant, image reconstruction methodology has been proposed to counter the distortions in the image caused due to noise, rotation or scale variations. The designed neural network once trained with sample images, automatically takes care of these deformations and successfully reconstructs the corrected image for the test targets. Techniques developed in this paper are tested and validated using four different regular shapes viz. rectangle, square, triangle and circle.

  8. The transportation external coordination working group

    SciTech Connect

    1995-10-01

    In an effort to improve coordinated interactions between the United States Department of Energy (DOE) and external groups interested in transportation activities, DOE established the Transportation External Coordination Working Group (TEC/WG). Membership includes representatives from State, Tribal and local governments, industry, and professional organizations. All DOE programs with significant transportation programs participate.

  9. External approach to rhinoplasty.

    PubMed

    Goodman, Wilfred S; Charbonneau, Paul A

    2015-07-01

    The technique of external rhinoplasty is outlined. Having reviewed 74 cases, its advantages and disadvantages are discussed. Reluctance to use this external approach seems to be based on emotional rather than radical grounds, for its seems to be the procedure of choice for many problems.

  10. Martian external magnetic field proxies

    NASA Astrophysics Data System (ADS)

    Langlais, Benoit; Civet, Francois

    2015-04-01

    Mars possesses no dynamic magnetic field of internal origin as it is the case for the Earth or for Mercury. Instead Mars is characterized by an intense and localized magnetic field of crustal origin. This field is the result of past magnetization and demagnetization processes, and reflects its evolution. The Interplanetary Magnetic Field (IMF) interacts with Mars' ionized environment to create an external magnetic field. This external field is weak compared to lithospheric one but very dynamic, and may hamper the detailed analysis of the internal magnetic field at some places or times. Because there are currently no magnetic field measurements made at Mars' surface, it is not possible to directly monitor the external field temporal variability as it is done in Earth's ground magnetic observatories. In this study we examine to indirect ways of quantifying this external field. First we use the Advanced Composition Explorer (ACE) mission which measures the solar wind about one hour upstream of the bow-shock resulting from the interaction between the solar wind and the Earth's internal magnetic field. These measurements are extrapolated to Mars' position taking into account the orbital configurations of the Mars-Earth system and the velocity of particles carrying the IMF. Second we directly use Mars Global Surveyor magnetic field measurements to quantify the level of variability of the external field. We subtract from the measurements the internal field which is otherwise modeled, and bin the residuals first on a spatial and then on a temporal mesh. This allows to compute daily or semi daily index. We present a comparison of these two proxies and demonstrate their complementarity. We also illustrate our analysis by comparing our Martian external field proxies to terrestrial index at epochs of known strong activity. These proxies will especially be useful for upcoming magnetic field measurements made around or at the surface of Mars.

  11. Calcium Activation of Mougeotia Potassium Channels 1

    PubMed Central

    Lew, Roger R.; Serlin, Bruce S.; Schauf, Charles L.; Stockton, Marsha E.

    1990-01-01

    Phytochrome mediates chloroplast movement in the alga Mougeotia, possibly via changes in cytosolic calcium. It is known to regulate a calcium-activated potassium channel in the algal plasma membrane. As part of a characterization of the potassium channel, we examined the properties of calcium activation. The calcium ionophore A23187 activates the channel at external [Ca2+] as low as 20 micromolar. However, external [Ca2+] is not required for activation of the channel by photoactivated phytochrome. Furthermore, when an inhibitor of calcium release from internal stores, 8-(diethylamino)-octyl-3,4,5-trimethoxybenzoate, hydrochloride (TMB-8), is present, red light no longer stimulates channel activity. We conclude that phytochrome activates the plasma membrane potassium channel by releasing calcium from intracellular calcium vesicles; the elevated cytosolic calcium then stimulates channel activity by an unknown mechanism. In the presence of TMB-8, red light does induce chloroplast rotation; thus, potassium channel activation may not be coupled to chloroplast rotation. PMID:16667356

  12. Conservative treatment of rotator cuff injuries.

    PubMed

    Bytomski, Jeffrey R; Black, Douglass

    2006-01-01

    Across all ages and activity levels, rotator cuff injuries are one of the most common causes of shoulder pain. The anatomy and biomechanics of the shoulder guide the history and physical exam toward the appropriate treatment of rotator cuff injuries. Rotator cuff tears are rare under the age of 40 unless accompanied by acute trauma. Throwing athletes are prone to rotator cuff injury from various causes of impingement (subacromial, internal, or secondary) and flexibility deficits, strength deficits, or both along the kinetic chain. Most rotator cuff injuries may be treated conservatively by using regimens of nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroid injections, and functional rehabilitation therapy. Injury prevention programs are essential for the long-term care of patients with rotator cuff disease, for primary prevention, and for prevention of recurrent injuries, unless a traumatically torn rotator cuff is present. Surgical management is reserved for refractory cases that have exhausted conservative measures.

  13. Continuous-flow/stopped-flow system incorporating two rotating bioreactors in tandem: application to the determination of alkaline phosphatase activity in serum.

    PubMed

    Raba, J; Mottola, H A

    1994-05-01

    Two rotating bioreactors in tandem have been incorporated into a continuous-flow/stopped-flow sample/reagent processing setup for the determination of alkaline phosphatase (EC3.1.3.1) activity in serum samples. The strategy circumvents incompatibility of buffer systems as well as that of the immobilized enzymes utilized in the bioreactors (alkaline phosphatase and alcohol oxidase, EC 1.1.3.13). The determination is indirect in nature although recorded responses are directly related to the enzyme activity in the sample. It couples the following enzyme-catalyzed reactions: (1) hydrolysis of p-nitrophenyl dihydrogen phosphate catalyzed by alkaline phosphatase, (2) enzymatic reaction between unreacted p-nitrophenyl dihydrogen phosphate with methanol, and (3) conversion of the residual methanol to the corresponding aldehyde and H2O2, catalyzed by alcohol oxidase. The H2O2 is amperometrically determined at a stationary Pt-ring electrode (applied potential + 0.600 V vs a Ag/AgCl, 3.0 M NaCl reference).

  14. Two- vs. Three-Dimensional Presentation of Mental Rotation Tasks: Sex Differences and Effects of Training on Performance and Brain Activation

    ERIC Educational Resources Information Center

    Neubauer, Aljoscha C.; Bergner, Sabine; Schatz, Martina

    2010-01-01

    The well-documented sex difference in mental rotation favoring males has been shown to emerge only for 2-dimensional presentations of 3-dimensional objects, but not with actual 3-dimensional objects or with virtual reality presentations of 3-dimensional objects. Training studies using computer games with mental rotation-related content have…

  15. NUMERICAL SIMULATIONS OF Z-PINCH EXPERIMENTS TO CREATE SUPERSONIC DIFFERENTIALLY ROTATING PLASMA FLOWS

    SciTech Connect

    Bocchi, M.; Ummels, B.; Chittenden, J. P.; Lebedev, S. V.; Frank, A.; Blackman, E. G.

    2013-04-10

    The physics of accretion disks is of fundamental importance for understanding of a wide variety of astrophysical sources that includes protostars, X-ray binaries, and active galactic nuclei. The interplay between hydrodynamic flows and magnetic fields and the potential for turbulence-producing instabilities is a topic of active research that would benefit from the support of dedicated experimental studies. Such efforts are in their infancy, but in an effort to push the enterprise forward we propose an experimental configuration which employs a modified cylindrical wire array Z-pinch to produce a rotating plasma flow relevant to accretion disks. We present three-dimensional resistive magnetohydrodynamic simulations which show how this approach can be implemented. In the simulations, a rotating plasma cylinder or ring is formed, with typical rotation velocity {approx}30 km s{sup -1}, Mach number {approx}4, and Reynolds number in excess of 10{sup 7}. The plasma is also differentially rotating. Implementation of different external magnetic field configurations is discussed. It is found that a modest uniform vertical field of 1 T can affect the dynamics of the system and could be used to study magnetic field entrainment and amplification through differential rotation. A dipolar field potentially relevant to the study of accretion columns is also considered.

  16. Neck rotation modulates flexion synergy torques, indicating an ipsilateral reticulospinal source for impairment in stroke.

    PubMed

    Ellis, Michael D; Drogos, Justin; Carmona, Carolina; Keller, Thierry; Dewald, Julius P A

    2012-12-01

    The effect of reticular formation excitability on maximum voluntary torque (MVT) generation and associated muscle activation at the shoulder and elbow was investigated through natural elicitation (active head rotation) of the asymmetric tonic neck reflex (ATNR) in 26 individuals with stroke and 9 age-range-matched controls. Isometric MVT generation at the shoulder and elbow was quantified with the head rotated (face pointing) contralateral and ipsilateral to the paretic (stroke) and dominant (control) arm. Given the dominance of abnormal torque coupling of elbow flexion with shoulder abduction (flexion synergy) in stroke and well-developed animal models demonstrating a linkage between reticular formation and ipsilateral elbow flexors and shoulder abductors, we hypothesized that constituent torques of flexion synergy, specifically elbow flexion and shoulder abduction, would increase with contralateral head rotation. The findings of this investigation support this hypothesis. Increases in MVT for three of four flexion synergy constituents (elbow flexion, shoulder abduction, and shoulder external rotation) were observed during contralateral head rotation only in individuals with stroke. Electromyographic data of the associated muscle coactivations were nonsignificant but are presented for consideration in light of a likely underpowered statistical design for this specific variable. This study not only provides evidence for the reemergence of ATNR following stroke but also indicates a common neuroanatomical link, namely, an increased reliance on ipsilateral reticulospinal pathways, as the likely mechanism underlying the expression of both ATNR and flexion synergy that results in the loss of independent joint control.

  17. Limited rotation of the mobile-bearing in a rotating platform total knee prosthesis.

    PubMed

    Garling, E H; Kaptein, B L; Nelissen, R G H H; Valstar, E R

    2007-01-01

    The hypothesis of this study was that the polyethylene bearing in a rotating platform total knee prosthesis shows axial rotation during a step-up motion, thereby facilitating the theoretical advantages of mobile-bearing knee prostheses. We examined 10 patients with rheumatoid arthritis who had a rotating platform total knee arthroplasty (NexGen LPS mobile, Zimmer Inc. Warsaw, USA). Fluoroscopic data was collected during a step-up motion six months postoperatively. A 3D-2D model fitting technique was used to reconstruct the in vivo 3D kinematics. The femoral component showed more axial rotation than the polyethylene mobile-bearing insert compared to the tibia during extension. In eight knees, the femoral component rotated internally with respect to the tibia during extension. In the other two knees the femoral component rotated externally with respect to the tibia. In all 10 patients, the femur showed more axial rotation than the mobile-bearing insert indicating the femoral component was sliding on the polyethylene of the rotating platform during the step-up motion. Possible explanations are a too limited conformity between femoral component and insert, the anterior located pivot location of the investigated rotating platform design, polyethylene on metal impingement and fibrous tissue formation between the mobile-bearing insert and the tibial plateau.

  18. Shoulder Impingement/Rotator Cuff Tendinitis

    MedlinePlus

    ... Rest. Your doctor may suggest rest and activity modification, such as avoiding overhead activities. Non-steroidal anti- ... on a strengthening program for the rotator cuff muscles. Steroid injection. If rest, medications, and physical therapy ...

  19. A platelet alpha granule membrane protein that is associated with the plasma membrane after activation. Characterization and subcellular localization of platelet activation-dependent granule-external membrane protein.

    PubMed Central

    Berman, C L; Yeo, E L; Wencel-Drake, J D; Furie, B C; Ginsberg, M H; Furie, B

    1986-01-01

    We have identified and purified a platelet integral membrane protein (140,000 mol wt), using the KC4 monoclonal antibody specific for activated platelets, that is internal in resting platelets but exposed on activated platelets (Hsu-Lin S.-C., C.L. Berman, B.C. Furie, D. August, and B. Furie, 1984, J. Biol. Chem. 259: 9121-9126.). The expression of the protein on the platelet surface is secretion-dependent. This protein has been named platelet activation-dependent granule-external membrane (PADGEM) protein. PADGEM protein is distinct from the surface glycoproteins of resting platelets, but identical to the S12 antigen, GMP-140. Using immunofluorescent staining, resting platelets failed to stain for PADGEM protein with the KC4 antibody, but after permeabilization showed a punctate staining of the cell interior. Thrombin-stimulated intact platelets stained with a peripheral rim pattern thus demonstrating the translocation of PADGEM protein from an internal location to the cell surface. PADGEM protein expression on the platelet surface at varying thrombin concentrations correlated with alpha granule release, as measured by the secretion of platelet factor 4. Further evidence for an alpha granule localization of PADGEM protein was provided by nitrogen cavitation of resting platelets followed by metrizamide density gradient centrifugation; PADGEM protein codistributed with platelet factor 4. Using immunoelectron microscopy, the protein was localized to the alpha granule in frozen ultrathin sections of resting platelets labeled using rabbit anti-PADGEM protein antibodies, whereas in thrombin-activated platelets, the plasma membrane was labeled. These studies indicate that PADGEM protein is a component of the alpha granule membrane of resting platelets and is incorporated into the plasma membrane upon activation and secretion. Images PMID:2941452

  20. Reverse shoulder arthroplasty using an implant with a lateral center of rotation: outcomes, complications, and the influence of experience.

    PubMed

    Hasan, Samer S; Gordon, Matthew P; Ramsey, Jason A; Levy, Martin S

    2014-09-01

    Reverse shoulder arthroplasty (RSA) has revolutionized treatment of arthritis and rotator cuff insufficiency and is performed using implants with either a medial or a lateral center of rotation. We conducted a study of the outcomes and the effect of surgeon learning after the first 60 consecutive lateral-center-of-rotation RSAs implanted by a single surgeon unaffiliated with the design team for this particular reverse shoulder prosthesis. At minimum 2-year followup, mean improvements in active forward elevation, abduction, and external rotation were 69°, 55°, and 23°, respectively; mean active internal rotation improved significantly as well (P < .001 for all). Mean Simple Shoulder Test (SST) scores improved from 1.8 (range, 0-6) to 6.9 (range, 0-12) (P < .0001), and mean final American Shoulder and Elbow Surgeons score was 72 (range, 27-100). Final radiographs showed scapular notching in 5 shoulders (11%). Gains in SST scores, active forward elevation, and active abduction were lower for the first 15 cases than for the next 45 cases, and 5 of the 8 reoperations were performed after the first 15 cases. Overall improvements in active motion and self-assessed shoulder function in this series are comparable to those previously reported by the design team. Experience with RSA appears to influence efficacy, but the learning curve may not be as steep as previously reported.

  1. Influence of pelvis rotation styles on baseball pitching mechanics.

    PubMed

    Wight, Jeff; Richards, James; Hall, Susan

    2004-01-01

    Efficient, sequential timing is essential for upper level pitching. Interestingly, pitchers vary considerably in timing related elements of pitching style including pelvis rotation, arm cocking, stride leg behaviour, and pitch delivery time. The purpose of this study was to determine whether relationships exist among these elements by examining the overall style of pitchers exhibiting different pelvis rotation patterns. Pitching styles were defined by pelvis orientation at the instant of stride foot contact. Pitchers demonstrating a pelvis orientation greater than 30 degrees were designated as 'early rotators', while pitchers demonstrating a pelvis orientation less than 30 degrees were designated as 'late rotators'. Kinematic and temporal differences were associated with the two styles. During the arm cocking phase, early rotators showed significantly greater shoulder external rotation at the instant of stride foot contact, earlier occurrence of maximum pelvis rotation angular velocity, and shorter time taken to complete the phase. However, by the instant of maximum shoulder external rotation, early and late rotators appeared remarkably similar as no significant difference occurred in pelvis and arm orientations. Therefore, it appears that early and late rotators used different methods to achieve similar results, including throwing velocity. Significant differences in throwing arm kinetics were also found for 10 of the 11 measures in the study. As the pelvis assumed a more open position at stride foot contact, maximum kinetic values were found to both decrease in magnitude and occur at an earlier time within the pitch.

  2. Future of External Reporting

    ERIC Educational Resources Information Center

    Powers, Kristina

    2015-01-01

    This chapter builds on prior chapters and focuses on higher education trends on the horizon and the resulting impact on external reporting for institutional researchers. Three practical recommendations and examples for institutional researchers are also presented.

  3. A reliable method for assessing rotational power.

    PubMed

    Andre, Matthew J; Fry, Andrew C; Heyrman, Melissa A; Hudy, Andrea; Holt, Brady; Roberts, Cody; Vardiman, J Phillip; Gallagher, Philip M

    2012-03-01

    Rotational core training is said to be beneficial for rotational power athletes. Currently, there has been no method proposed for the reliable assessment of rotational power. Therefore, our purpose was to determine the test-retest reliability of kinetic and kinematic rotational characteristics of a pulley system when performing a rotational exercise of the axial skeleton in the transverse plane to find out if this would be a reliable tool for evaluating rotational power. Healthy, college-aged men (n = 8) and women (n = 15) reported for 3 testing sessions. The participants were seated on a box, and they held the handle with both arms extended in front of their body, starting their motion with their torso rotated toward the machine. All the participants rotated their torso forcefully until they reached 180° of rotation, and they then slowly returned to the starting position, 3 times per trial, with 3 loads: 9% body weight (BW), 12% BW, and 15% BW. The repetition with the greatest power for each trial for each load was analyzed. The mean peak power repetition (watts) for all the subjects was 20.09 ± 7.16 (9% BW), 26.17 ± 8.6 (12% BW), and 30.74 ± 11.022 (15% BW) in the first training session and 22.3 ± 8.087 (9% BW), 28.7 ± 11.295 (12% BW), and 33.52 ± 12.965 (15% BW) in the second training session with intraclass correlation coefficients of 0.97 (9%BW), 0.94 (12%BW), and 0.95 (15%BW). When the participants were separated by sex, there were no significant differences between groups. Based on these results, it was found that a pulley system and an external dynamometer can be used together as a reliable research tool to assess rotational power.

  4. Analysis of scapular kinematics during active and passive arm elevation

    PubMed Central

    Kai, Yoshihiro; Gotoh, Masafumi; Takei, Kazuto; Madokoro, Kazuya; Imura, Takeshi; Murata, Shin; Morihara, Toru; Shiba, Naoto

    2016-01-01

    [Purpose] Early postoperative passive motion exercise after arthroscopic rotator cuff repair remains controversial. To better understand this issue, this study was aimed at evaluating scapular kinematics and muscle activities during passive arm elevation in healthy subjects. [Subjects and Methods] The dominant shoulders of 27 healthy subjects were examined. Electromagnetic sensors attached to the scapula, thorax, and humerus were used to determine three-dimensional scapular kinematics during active arm elevation with or without external loads and passive arm elevation. Simultaneously, the activities of seven shoulder muscles were recorded with surface and intramuscular fine-wire electrodes. [Results] Compared with active arm elevation, passive elevation between 30° and 100° significantly decreased the scapular upward rotation and increased the glenohumeral elevation angle. However, no significant differences in scapular posterior tilt and external rotation were observed between active and passive arm elevation, and scapular plane kinematics were not affected by muscle activity. [Conclusion] Unlike active motion with or without an external load, passive arm elevation significantly decreased the scapular upward rotation and significantly increased the mid-range glenohumeral elevation. These data, which suggest that passive arm elevation should be avoided during the early postoperative period, may expand the understanding of rehabilitation after arthroscopic rotator cuff repair. PMID:27390438

  5. Externally modulated theranostic nanoparticles.

    PubMed

    Urban, Cordula; Urban, Alexander S; Charron, Heather; Joshi, Amit

    2013-08-01

    Externally modulated nanoparticles comprise a rapidly advancing class of cancer nanotherapeutics, which combine the favorable tumor accumulation of nanoparticles, with external spatio-temporal control on therapy delivery via optical, magnetic, or ultrasound modalities. The local control on therapy enables higher tumor treatment efficacy, while simultaneously reducing off-target effects. The nanoparticle interactions with external fields have an additional advantage of frequently generating an imaging signal, and thus such agents provide theranostic (both diagnostic and therapeutic) capabilities. In this review, we classify the emerging externally modulated theranostic nanoparticles according to the mode of external control and describe the physiochemical mechanisms underlying the external control of therapy, and illustrate the major embodiments of nanoparticles in each class with proven biological efficacy: (I) electromagnetic radiation in visible and near-infrared range is being exploited for gold based and carbon nanostructures with tunable surface plasmon resonance (SPR) for imaging and photothermal therapy (PTT) of cancer, photochemistry based manipulations are employed for light sensitive liposomes and porphyrin based nanoparticles; (II) Magnetic field based manipulations are being developed for iron-oxide based nanostructures for magnetic resonance imaging (MRI) and magnetothermal therapy; (III) ultrasound based methods are primarily being employed to increase delivery of conventional drugs and nanotherapeutics to tumor sites.

  6. Externally modulated theranostic nanoparticles

    PubMed Central

    Urban, Cordula; Urban, Alexander S.; Charron, Heather; Joshi, Amit

    2013-01-01

    Externally modulated nanoparticles comprise a rapidly advancing class of cancer nanotherapeutics, which combine the favorable tumor accumulation of nanoparticles, with external spatio-temporal control on therapy delivery via optical, magnetic, or ultrasound modalities. The local control on therapy enables higher tumor treatment efficacy, while simultaneously reducing off-target effects. The nanoparticle interactions with external fields have an additional advantage of frequently generating an imaging signal, and thus such agents provide theranostic (both diagnostic and therapeutic) capabilities. In this review, we classify the emerging externally modulated theranostic nanoparticles according to the mode of external control and describe the physiochemical mechanisms underlying the external control of therapy, and illustrate the major embodiments of nanoparticles in each class with proven biological efficacy: (I) electromagnetic radiation in visible and near-infrared range is being exploited for gold based and carbon nanostructures with tunable surface plasmon resonance (SPR) for imaging and photothermal therapy (PTT) of cancer, photochemistry based manipulations are employed for light sensitive liposomes and porphyrin based nanoparticles; (II) Magnetic field based manipulations are being developed for iron-oxide based nanostructures for magnetic resonance imaging (MRI) and magnetothermal therapy; (III) ultrasound based methods are primarily being employed to increase delivery of conventional drugs and nanotherapeutics to tumor sites. PMID:24834381

  7. Polarization-induced phase noise in fiber optic Michelson interferometer with Faraday rotator mirrors

    NASA Astrophysics Data System (ADS)

    Wu, Yuefeng; Li, Fang; Zhang, Wentao; Xiao, Hao; Liu, Yuliang

    2008-11-01

    Polarization-induced phase noise in Michelson interferometer with imperfect Faraday rotator mirrors was investigated. This kind of noise generates from the rotation angle errors of Faraday rotator mirrors and external polarization perturbation. The conversion factor κ, representing the magnitude conversion ability from polarization-noise to polarization induced phase-noise, have been theoretically evaluated and experimentally investigated.

  8. Hip Rotational Velocities During the Full Golf Swing

    PubMed Central

    Gulgin, Heather; Armstrong, Charles; Gribble, Phillip

    2009-01-01

    Since labral pathology in professional golfers has been reported, and such pathology has been associated with internal/external hip rotation, quantifying the rotational velocity of the hips during the golf swing may be helpful in understanding the mechanism involved in labral injury. Thus, the purpose of this study was to determine the peak internal/external rotational velocities of the thigh relative to the pelvis during the golf swing. Fifteen female, collegiate golfers participated in the study. Data were acquired through high-speed three dimensional (3-D) videography using a multi-segment bilateral marker set to define the segments, while the subjects completed multiple repetitions of a drive. The results indicated that the lead hip peak internal rotational velocity was significantly greater than that of the trail hip external rotational velocity (p = 0.003). It appears that the lead hip of a golfer experiences much higher rotational velocities during the downswing than that of the trail hip. In other structures, such as the shoulder, an increased risk of soft tissue injury has been associated with high levels of rotational velocity. This may indicate that, in golfers, the lead hip may be more susceptible to injury such as labral tears than that of the trailing hip. Key points Lead hip of golfer experiences significantly higher rotational velocities than the trail hip. Golfers may be more susceptible to injuries on the lead hip. Clubhead velocities were consistent with elite female golfers. PMID:24149541

  9. Hip rotational velocities during the full golf swing.

    PubMed

    Gulgin, Heather; Armstrong, Charles; Gribble, Phillip

    2009-01-01

    Since labral pathology in professional golfers has been reported, and such pathology has been associated with internal/external hip rotation, quantifying the rotational velocity of the hips during the golf swing may be helpful in understanding the mechanism involved in labral injury. Thus, the purpose of this study was to determine the peak internal/external rotational velocities of the thigh relative to the pelvis during the golf swing. Fifteen female, collegiate golfers participated in the study. Data were acquired through high-speed three dimensional (3-D) videography using a multi-segment bilateral marker set to define the segments, while the subjects completed multiple repetitions of a drive. The results indicated that the lead hip peak internal rotational velocity was significantly greater than that of the trail hip external rotational velocity (p = 0.003). It appears that the lead hip of a golfer experiences much higher rotational velocities during the downswing than that of the trail hip. In other structures, such as the shoulder, an increased risk of soft tissue injury has been associated with high levels of rotational velocity. This may indicate that, in golfers, the lead hip may be more susceptible to injury such as labral tears than that of the trailing hip. Key pointsLead hip of golfer experiences significantly higher rotational velocities than the trail hip.Golfers may be more susceptible to injuries on the lead hip.Clubhead velocities were consistent with elite female golfers.

  10. Shear rotation numbers

    NASA Astrophysics Data System (ADS)

    Doeff, E.; Misiurewicz, M.

    1997-11-01

    This paper presents results on rotation numbers for orientation-preserving torus homeomorphisms homotopic to a Dehn twist. Rotation numbers and the rotation set for such homeomorphisms have been defined and initially investigated by the first author in a previous paper. Here we prove that each rotation number 0951-7715/10/6/017/img5 in the interior of the rotation set is realized by some compact invariant set, and that there is an ergodic measure on that set with mean rotation number 0951-7715/10/6/017/img5. It is also proved that the function which assigns its rotation set to such a homeomorphism is continuous. Finally, a counterexample is presented that shows that rational extremal points of the shear rotation set do not necessarily correspond to any periodic orbits.

  11. Power Harvesting from Rotation?

    ERIC Educational Resources Information Center

    Chicone, Carmen; Feng, Z. C.

    2008-01-01

    We show the impossibility of harvesting power from rotational motions by devices attached to the rotating object. The presentation is suitable for students who have studied Lagrangian mechanics. (Contains 2 figures.)

  12. Rotator cuff exercises

    MedlinePlus

    ... to these tendons may result in: Rotator cuff tendinitis, which is irritation and swelling of these tendons ... Brien MJ, Leggin BG, Williams GR. Rotator cuff tendinopathies and tears: surgery and therapy. In: Skirven TM, ...

  13. Shaft-Rotation Detector

    NASA Technical Reports Server (NTRS)

    Randall, Richard L.

    1990-01-01

    Signal-processing subsystem generates signal indicative of rotation of shaft from output of accelerometer mounted on housing of bearing supporting shaft. Output of subsystem binary signal at frequency of rotation of shaft. Part of assembly of electronic equipment measuring vibrations in rotating machinery. Accelerometer mounted in such way sensitive to vibrations of shaft perpendicular to axis. Output of accelerometer includes noise and components of vibration at frequencies higher than rotational frequency of shaft.

  14. Rotations with Rodrigues' Vector

    ERIC Educational Resources Information Center

    Pina, E.

    2011-01-01

    The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears…

  15. Rotating electric machine with fluid supported parts

    DOEpatents

    Smith, Jr., Joseph L.; Kirtley, Jr., James L.

    1981-01-01

    A rotating electric machine in which the armature winding thereof and other parts are supported by a liquid to withstand the mechanical stresses applied during transient overloads and the like. In particular, a narrow gap is provided between the armature winding and the stator which supports it and this gap is filled with an externally pressurized viscous liquid. The liquid is externally pressurized sufficiently to balance the static loads on the armature winding. Transient mechanical loads which deform the armature winding alter the gap dimensions and thereby additionally pressurize the viscous liquid to oppose the armature winding deformation and more nearly uniformly to distribute the resulting mechanical stresses.

  16. Galaxy cluster's rotation

    NASA Astrophysics Data System (ADS)

    Manolopoulou, M.; Plionis, M.

    2017-03-01

    We study the possible rotation of cluster galaxies, developing, testing, and applying a novel algorithm which identifies rotation, if such does exist, as well as its rotational centre, its axis orientation, rotational velocity amplitude, and, finally, the clockwise or counterclockwise direction of rotation on the plane of the sky. To validate our algorithms we construct realistic Monte Carlo mock rotating clusters and confirm that our method provides robust indications of rotation. We then apply our methodology on a sample of Abell clusters with z ≲ 0.1 with member galaxies selected from the Sloan Digital Sky Survey DR10 spectroscopic data base. After excluding a number of substructured clusters, which could provide erroneous indications of rotation, and taking into account the expected fraction of misidentified coherent substructure velocities for rotation, provided by our Monte Carlo simulation analysis, we find that ∼23 per cent of our clusters are rotating under a set of strict criteria. Loosening the strictness of the criteria, on the expense of introducing spurious rotation indications, we find this fraction increasing to ∼28 per cent. We correlate our rotation indicators with the cluster dynamical state, provided either by their Bautz-Morgan type or by their X-ray isophotal shape and find for those clusters showing rotation within 1.5 h^{-1}_{70} Mpc that the significance of their rotation is related to the dynamically younger phases of cluster formation but after the initial anisotropic accretion and merging has been completed. Finally, finding rotational modes in galaxy clusters could lead to the necessity of correcting the dynamical cluster mass calculations.

  17. Evaluation and treatment of rotator cuff tears.

    PubMed

    Lansdown, Drew A; Feeley, Brian T

    2012-05-01

    Rotator cuff injuries are common problems and a frequent reason for patients to present to primary care physicians. These injuries are seen more frequently now with the aging population. These muscles allow for movement of the arm in overhead activities and controlled movements through space. A thorough physical examination can lead to the diagnosis of rotator cuff pathology. Radiographic imaging may offer some insight into the underlying pathology, and magnetic resonance imaging provides for excellent visualization of the rotator cuff. Many rotator cuff tears, especially partial tears, will symptomatically improve with conservative management. Surgical treatment may offer improved pain relief and function in those patients for whom nonoperative care is insufficient. In cases in which rotator cuff repair is not possible, the reverse total shoulder arthroplasty is a possibility. New technologies are also under investigation that allow for biological augmentation of rotator cuff tears.

  18. Modeling of prosthetic limb rotation control by sensing rotation of residual arm bone.

    PubMed

    Li, Guanglin; Kuiken, Todd A

    2008-09-01

    We proposed a new approach to improve the control of prosthetic arm rotation in amputees. Arm rotation is sensed by implanting a small permanent magnet into the distal end of the residual bone, which produces a magnetic field. The position of the bone rotation can be derived from magnetic field distribution detected with magnetic sensors on the arm surface, and then conveyed to the prosthesis controller to manipulate the rotation of the prosthesis. Proprioception remains intact for residual limb skeletal structures; thus, this control system should be natural and easy-to-use. In this study, simulations have been conducted in an upper arm model to assess the feasibility and performance of sensing the voluntary rotation of residual humerus with an implanted magnet. A sensitivity analysis of the magnet size and arm size was presented. The influence of relative position of the magnet to the magnetic sensors, orientation of the magnet relative to the limb axis, and displacement of the magnetic sensors on the magnetic field was evaluated. The performance of shielding external magnetostatic interference was also investigated. The simulation results suggest that the direction and angle of rotation of residual humerus could be obtained by decoding the magnetic field signals with magnetic sensors built into a prosthetic socket. This pilot study provides important guidelines for developing a practical interface between the residual bone rotation and the prosthesis for control of prosthetic rotation.

  19. Modeling of Prosthetic Limb Rotation Control by Sensing Rotation of Residual Arm Bone

    PubMed Central

    Kuiken, Todd A.

    2011-01-01

    We proposed a new approach to improve the control of prosthetic arm rotation in amputees. Arm rotation is sensed by implanting a small permanent magnet into the distal end of the residual bone, which produces a magnetic field. The position of the bone rotation can be derived from magnetic field distribution detected with magnetic sensors on the arm surface, and then conveyed to the prosthesis controller to manipulate the rotation of the prosthesis. Proprioception remains intact for residual limb skeletal structures; thus, this control system should be natural and easy-to-use. In this study, simulations have been conducted in an upper arm model to assess the feasibility and performance of sensing the voluntary rotation of residual humerus with an implanted magnet. A sensitivity analysis of the magnet size and arm size was presented. The influence of relative position of the magnet to the magnetic sensors, orientation of the magnet relative to the limb axis, and displacement of the magnetic sensors on the magnetic field was evaluated. The performance of shielding external magnetostatic interference was also investigated. The simulation results suggest that the direction and angle of rotation of residual humerus could be obtained by decoding the magnetic field signals with magnetic sensors built into a prosthetic socket. This pilot study provides important guidelines for developing a practical interface between the residual bone rotation and the prosthesis for control of prosthetic rotation. PMID:18713682

  20. SEAL FOR ROTATING SHAFT

    DOEpatents

    Coffman, R.T.

    1957-12-10

    A seal is described for a rotatable shaft that must highly effective when the shaft is not rotating but may be less effective while the shaft is rotating. Weights distributed about a sealing disk secured to the shaft press the sealing disk against a tubular section into which the shiilt extends, and whem the shaft rotates, the centrifugal forces on the weights relieve the pressurc of the sealing disk against the tubular section. This action has the very desirible result of minimizing the wear of the rotating disk due to contact with the tubular section, while affording maximum sealing action when it is needed.

  1. Visualizing molecular unidirectional rotation

    NASA Astrophysics Data System (ADS)

    Lin, Kang; Song, Qiying; Gong, Xiaochun; Ji, Qinying; Pan, Haifeng; Ding, Jingxin; Zeng, Heping; Wu, Jian

    2015-07-01

    We directly visualize the spatiotemporal evolution of a unidirectional rotating molecular rotational wave packet. Excited by two time-delayed polarization-skewed ultrashort laser pulses, the cigar- or disk-shaped rotational wave packet is impulsively kicked to unidirectionally rotate as a quantum rotor which afterwards disperses and exhibits field-free revivals. The rich dynamics can be coherently controlled by varying the timing or polarization of the excitation laser pulses. The numerical simulations very well reproduce the experimental observations and intuitively revivify the thoroughgoing evolution of the molecular rotational wave packet of unidirectional spin.

  2. Metasurface external cavity laser

    SciTech Connect

    Xu, Luyao Curwen, Christopher A.; Williams, Benjamin S.; Hon, Philip W. C.; Itoh, Tatsuo; Chen, Qi-Sheng

    2015-11-30

    A vertical-external-cavity surface-emitting-laser is demonstrated in the terahertz range, which is based upon an amplifying metasurface reflector composed of a sub-wavelength array of antenna-coupled quantum-cascade sub-cavities. Lasing is possible when the metasurface reflector is placed into a low-loss external cavity such that the external cavity—not the sub-cavities—determines the beam properties. A near-Gaussian beam of 4.3° × 5.1° divergence is observed and an output power level >5 mW is achieved. The polarized response of the metasurface allows the use of a wire-grid polarizer as an output coupler that is continuously tunable.

  3. Predictors of human rotation.

    PubMed

    Stochl, Jan; Croudace, Tim

    2013-01-01

    Why some humans prefer to rotate clockwise rather than anticlockwise is not well understood. This study aims to identify the predictors of the preferred rotation direction in humans. The variables hypothesised to influence rotation preference include handedness, footedness, sex, brain hemisphere lateralisation, and the Coriolis effect (which results from geospatial location on the Earth). An online questionnaire allowed us to analyse data from 1526 respondents in 97 countries. Factor analysis showed that the direction of rotation should be studied separately for local and global movements. Handedness, footedness, and the item hypothesised to measure brain hemisphere lateralisation are predictors of rotation direction for both global and local movements. Sex is a predictor of the direction of global rotation movements but not local ones, and both sexes tend to rotate clockwise. Geospatial location does not predict the preferred direction of rotation. Our study confirms previous findings concerning the influence of handedness, footedness, and sex on human rotation; our study also provides new insight into the underlying structure of human rotation movements and excludes the Coriolis effect as a predictor of rotation.

  4. Neural correlates of sound externalization.

    PubMed

    Callan, Akiko; Callan, Daniel E; Ando, Hiroshi

    2013-02-01

    When we listen to sounds through headphones without utilizing special transforms, sound sources seem to be located inside our heads. The sound sources are said to be lateralized to one side or the other to varying degree. This internal lateralization is different than sound source localization in the natural environment in which the sound is localized distal to the head. We used fMRI to investigate difference in neural responses between lateralization and localization. Individualized binaural recordings were used as externalized auditory stimuli and stereo recordings were used as internalized auditory stimuli. Brain activity was measured while 14 participants performed an active auditory localization task and while 12 participants performed a stimulus type identification task. Irrespective of the task condition, we observed enhanced activity in the bilateral posterior temporal gyri (pSTG) for the externalized stimuli relative to the internalized stimuli. Region of interest analysis indicated that both left and right pSTG were more sensitive to sound sources in contra- than ipsilateral hemifields. Moreover, greater back than front activity was also found in the left pSTG. Compared to impoverished spatial auditory stimuli, realistic spatial auditory stimuli enhance neural responses in the pSTG. This may be why we could observe contralateral hemifield preference in bilateral pSTG that many previous studies have failed to observe. Overall, the results indicate the importance of using ecologically valid stimuli for investigating neural processes in human cortex.

  5. Fluorescence spectra and biological activity of aerosolized bacillus spores and MS2 bacteriophage exposed to ozone at different relative humidities in a rotating drum

    NASA Astrophysics Data System (ADS)

    Ratnesar-Shumate, Shanna; Pan, Yong-Le; Hill, Steven C.; Kinahan, Sean; Corson, Elizabeth; Eshbaugh, Jonathan; Santarpia, Joshua L.

    2015-03-01

    Biological aerosols (bioaerosols) released into the environment may undergo physical and chemical transformations when exposed to atmospheric constituents such as solar irradiation, reactive oxygenated species, ozone, free radicals, water vapor and pollutants. Aging experiments were performed in a rotating drum chamber subjecting bioaerosols, Bacillus thuringiensis Al Hakam (BtAH) spores and MS2 bacteriophages to ozone at 0 and 150 ppb, and relative humidities (RH) at 10%, 50%, and 80+%. Fluorescence spectra and intensities of the aerosols as a function of time in the reaction chamber were measured with a single particle fluorescence spectrometer (SPFS) and an Ultra-Violet Aerodynamic Particle Sizer® Spectrometer (UV-APS). Losses in biological activity were measured by culture and quantitative polymerase chain reaction (q-PCR) assay. For both types of aerosols the largest change in fluorescence emission was between 280 and 400 nm when excited at 263 nm followed by fluorescence emission between 380 and 700 nm when excited at 351 nm. The fluorescence for both BtAH and MS2 were observed to decrease significantly at high ozone concentration and high RH when excited at 263 nm excitation. The decreases in 263 nm excited fluorescence are indicative of hydrolysis and oxidation of tryptophan in the aerosols. Fluorescence measured with the UV-APS (355-nm excitation) increased with time for both BtAH and MS2 aerosols. A two log loss of MS2 bacteriophage infectivity was observed in the presence of ozone at ~50% and 80% RH when measured by culture and normalized for physical losses by q-PCR. Viability of BtAH spores after exposure could not be measured due to the loss of genomic material during experiments, suggesting degradation of extracelluar DNA attributable to oxidation. The results of these studies indicate that the physical and biological properties of bioaerosols change significantly after exposure to ozone and water vapor.

  6. Fluorescence spectra and biological activity of aerosolized bacillus spores and MS2 bacteriophage exposed to ozone at different relative humidities in a rotating drum

    SciTech Connect

    Ratnesar-Shumate, Shanna; Pan, Yong-Le; Hill, Steven C.; Kinahan, Sean; Corson, Elizabeth; Eshbaugh, Jonathan; Santarpia, Joshua L.

    2015-10-14

    Biological aerosols (bioaerosols) released into the environment may undergo physical and chemical transformations when exposed to atmospheric constituents such as solar irradiation, reactive oxygenated species, ozone, free radicals, water vapor and pollutants. Aging experiments were performed in a rotating drum chamber subjecting bioaerosols, Bacillus thuringiensis Al Hakam (BtAH) spores and MS2 bacteriophages to ozone at 0 and 150 ppb, and relative humidities (RH) at 10%, 50%, and 80+%. Fluorescence spectra and intensities of the aerosols as a function of time in the reaction chamber were measured with a single particle fluorescence spectrometer (SPFS) and an Ultra-Violet Aerodynamic Particle Sizer® Spectrometer (UV-APS). Losses in biological activity were measured by culture and quantitative polymerase chain reaction (q-PCR) assay. For both types of aerosols the largest change in fluorescence emission was between 280 and 400 nm when excited at 263 nm followed by fluorescence emission between 380 and 700 nm when excited at 351 nm. The fluorescence for both BtAH and MS2 were observed to decrease significantly at high ozone concentration and high RH when excited at 263 nm excitation. The decreases in 263 nm excited fluorescence are indicative of hydrolysis and oxidation of tryptophan in the aerosols. Fluorescence measured with the UV-APS (355-nm excitation) increased with time for both BtAH and MS2 aerosols. A two log loss of MS2 bacteriophage infectivity was observed in the presence of ozone at ~50% and 80% RH when measured by culture and normalized for physical losses by q-PCR. Viability of BtAH spores after exposure could not be measured due to the loss of genomic material during experiments, suggesting degradation of extracelluar DNA attributable to oxidation. The results of these studies indicate that the physical and biological properties of bioaerosols change significantly after exposure to ozone and water vapor.

  7. Fluorescence spectra and biological activity of aerosolized bacillus spores and MS2 bacteriophage exposed to ozone at different relative humidities in a rotating drum

    DOE PAGES

    Ratnesar-Shumate, Shanna; Pan, Yong-Le; Hill, Steven C.; ...

    2015-10-14

    Biological aerosols (bioaerosols) released into the environment may undergo physical and chemical transformations when exposed to atmospheric constituents such as solar irradiation, reactive oxygenated species, ozone, free radicals, water vapor and pollutants. Aging experiments were performed in a rotating drum chamber subjecting bioaerosols, Bacillus thuringiensis Al Hakam (BtAH) spores and MS2 bacteriophages to ozone at 0 and 150 ppb, and relative humidities (RH) at 10%, 50%, and 80+%. Fluorescence spectra and intensities of the aerosols as a function of time in the reaction chamber were measured with a single particle fluorescence spectrometer (SPFS) and an Ultra-Violet Aerodynamic Particle Sizer® Spectrometermore » (UV-APS). Losses in biological activity were measured by culture and quantitative polymerase chain reaction (q-PCR) assay. For both types of aerosols the largest change in fluorescence emission was between 280 and 400 nm when excited at 263 nm followed by fluorescence emission between 380 and 700 nm when excited at 351 nm. The fluorescence for both BtAH and MS2 were observed to decrease significantly at high ozone concentration and high RH when excited at 263 nm excitation. The decreases in 263 nm excited fluorescence are indicative of hydrolysis and oxidation of tryptophan in the aerosols. Fluorescence measured with the UV-APS (355-nm excitation) increased with time for both BtAH and MS2 aerosols. A two log loss of MS2 bacteriophage infectivity was observed in the presence of ozone at ~50% and 80% RH when measured by culture and normalized for physical losses by q-PCR. Viability of BtAH spores after exposure could not be measured due to the loss of genomic material during experiments, suggesting degradation of extracelluar DNA attributable to oxidation. The results of these studies indicate that the physical and biological properties of bioaerosols change significantly after exposure to ozone and water vapor.« less

  8. Ascorbate-apatite composite and ascorbate-FGF-2-apatite composite layers formed on external fixation rods and their effects on cell activity in vitro.

    PubMed

    Wang, Xiupeng; Ito, Atsuo; Sogo, Yu; Li, Xia; Tsurushima, Hideo; Oyane, Ayako

    2009-09-01

    Ascorbate-apatite and ascorbate-fibroblast growth factor-2 (FGF-2)-apatite composite layers were successfully formed on anodically oxidized Ti rods clinically used for external fixation by a one-step procedure at 25 degrees C, using a metastable supersaturated calcium phosphate solution supplemented with l-ascorbic acid phosphate magnesium salt n-hydrate (AsMg) and FGF-2. The AsMg-apatite and AsMg-FGF-2-apatite composite layers were evaluated in vitro using fibroblastic NIH3T3 and osteoblastic MC3T3-E1 cells. The AsMg-FGF-2-apatite composite layer markedly enhanced the NIH3T3 cell proliferation and procollagen type capital I, Ukrainian gene expression. Without FGF-2, the AsMg-apatite composite layer whose ascorbate content was 3.64+/-1.27microgcm(-2) obviously enhanced osteoblastic proliferation and differentiation. However, the AsMg-FGF-2-apatite composite layers whose FGF-2 contents were from 0.15+/-0.03 to 0.31+/-0.04microgcm(-2) inhibited osteoblastic differentiation in vitro. Thus, the AsMg-FGF-2-apatite composite layer should be precipitated on the surface of external fixators attached to skin and soft tissue. On the other hand, the AsMg-apatite composite layer should be precipitated at the part attached to bone tissue.

  9. Drag reduction by rotation in granular media

    NASA Astrophysics Data System (ADS)

    Jung, Wonjong; Choi, Sung Mok; Kim, Wonjung; Kim, Ho-Young

    2016-11-01

    We present quantitative measurements and mathematical analysis of the granular drag reduction by rotation inspired by some self-burrowing seeds whose morphologies respond to environmental changes in humidity. The seeds create a motion to dig into soil using their moisture-responsive awns, which are basically helical shaped in a dry environment but reversibly deform to a linear shape in a humid environment. When the tip of the awn is fixed by an external support, the hygroscopic deformation of the awn gives the seed a thrust with rotation against the soil. By measuring the granular drag of vertically penetrating intruders with rotation, we find the drag to decrease with its rotation speed. Noting that the relative motions of the grains in contact with the intruder induce the collapse of the force chains in the granular bulk, we develop a general correlation for the drag reduction by rotation in terms of the relative slip velocity of the grains, which successfully explains the drag reduction of the rotating intruders including self-burrowing rotary seeds.

  10. Lower ionosphere response to external forcing: A brief review

    NASA Astrophysics Data System (ADS)

    Laštovička, Jan

    2009-01-01

    There are two ways of external forcing of the lower ionosphere, the region below an altitude of about 100 km: (1) From above, which is directly or indirectly of solar origin. (2) From below, which is directly or indirectly of atmospheric origin. The external forcing of solar origin consists of two general factors solar ionizing radiation variability and space weather. The solar ionization variability consist mainly from the 11-year solar cycle, the 27-day solar rotation and solar flares, strong flares being very important phenomenon in the daytime lower ionosphere due to the enormous increase of the solar X-ray flux resulting in temporal terminating of MF and partly LF and HF radio wave propagation due to heavy absorption of radio waves. Monitoring of the sudden ionospheric disturbances (SIDs effects of solar flares in the lower ionosphere) served in the past as an important tool of monitoring the solar activity and its impacts on the ionosphere. Space weather effects on the lower ionosphere consist of many different but often inter-related phenomena, which govern the lower ionosphere variability at high latitudes, particularly at night. The most important space weather phenomenon for the lower ionosphere is strong geomagnetic storms, which affect substantially both the high- and mid-latitude lower ionosphere. As for forcing from below, it is caused mainly by waves in the neutral atmosphere, i.e. planetary, tidal, gravity and infrasonic waves. The most important and most studied waves are planetary and gravity waves. Another channel of the troposphere coupling to the lower ionosphere is through lightning-related processes leading to sprites, blue jets etc. and their ionospheric counterparts. These phenomena occur on very short time scales. The external forcing of the lower ionosphere has observationally been studied using predominantly ground-based methods exploiting in various ways the radio wave propagation, and by sporadic rocket soundings. All the above

  11. Lower ionosphere response to external forcing: A review

    NASA Astrophysics Data System (ADS)

    Lastovicka, Jan

    There are two ways of external forcing of the lower ionosphere, the region below an altitude of about 100 km: (1) From above, which is directly or indirectly of solar origin. (2) From below, which is directly or indirectly of atmospheric origin (this will only very briefly be mentioned).. The external forcing of solar origin consists of two general factors - solar ionizing radiation variability and space weather. The solar ionization variability consist mainly from the 11-year solar cycle, the 27-day solar rotation and solar flares, strong flares being the most important phenomenon in the lower ionosphere due to the enormous increase of the solar X-ray flux resulting in temporal terminating of MF and partly LF and HF radio wave propagation due to heavy absorption of radio waves. The sudden ionospheric disturbance (SID) monitoring served in the past as an important tool of monitoring the solar activity and its impacts on the ionosphere. Space weather (main focus of the paper) consists of many different but often interrelated phenomena, which govern the lower ionosphere variability at high latitudes, particularly at night. The most important space weather phenomenon for the lower is strong geomagnetic storms, which affect both the highand mid-latitude lower ionosphere. As for forcing from below, it is caused mainly by waves in the neutral atmosphere, i.e. planetary, tidal, gravity and infrasonic waves. The most important and most studied waves are planetary and gravity waves. Another channel of the troposphere coupling to the lower ionosphere is through lightning-related processes leading to sprites, blue jets etc. These phenomena occur on very short time scales. The external forcing of the lower ionosphere has observationally been studied using predominantly ground-based methods exploiting in various ways the radio wave propagation, and by sporadic rocket soundings. All the above phenomena will briefly be mentioned and some of them will be treated in more detail.

  12. Working with External Evaluators

    ERIC Educational Resources Information Center

    Silver, Lauren; Burg, Scott

    2015-01-01

    Hiring an external evaluator is not right for every museum or every project. Evaluations are highly situational, grounded in specific times and places; each one is unique. The museum and the evaluator share equal responsibility in an evaluation's success, so it is worth investing time and effort to ensure that both are clear about the goals,…

  13. [Internal and external haemorrhoids].

    PubMed

    Schuurman, J P; Go, P M N Y H

    2011-01-01

    In this article, we present 3 cases of patients with different types of haemorrhoidal disease. The first patient is a 27-year-old woman who had been experiencing incidental rectal blood loss without pain during defecation for 3 months. The second patient is a 76-year-old woman who had been bothered by varying degrees of pain from a swelling nearby the anus for 1 year. The third case involves a 31-year-old man who had had continuous severe pain in the anal area for 3 consecutive days. The first patient appeared to have internal hemorrhoids, whereas different forms of external hemorrhoids affected the patients in the other 2 cases. Internal haemorrhoids develop from the intraluminal corpus cavernosum recti; external haemorrhoids from the perianal marginal veins. Patients with internal haemorrhoids present with symptoms that include blood loss and prolaps feeling during defecation. In patients with external haemorrhoids pain is the prominent symptom. Internal haemorrhoids are treated either conservatively or surgically, depending upon their severity. Considering external haemorrhoidal disease surgical treatment provides the most rapid and persistent relief of symptoms.

  14. External College Survey.

    ERIC Educational Resources Information Center

    Gold, Ben K.

    This report presents the results of a community survey which attempted to determine the demand for another college in the Los Angeles Community College District. The function of this "community campus" or "external college" would be to serve members of the community who are not already served by the eight existing colleges. Questionnaires received…

  15. External Interest Group Impingements.

    ERIC Educational Resources Information Center

    Millard, Richard M.

    The history of the interrelation among state approval, accreditation, and institutional eligibility is considered. It is suggested that faculty and college administrators can be either an internal or external group in relationship to the planning process. The federal government, or the state government, passes legislation that may have both…

  16. Enhanced External Counterpulsation (EECP)

    PubMed Central

    2006-01-01

    techniques have refractory angina pectoris. It has been estimated that greater than 100,000 patients each year in the US may be diagnosed as having this condition. (3) Patients with refractory angina have marked limitation of ordinary physical activity or are unable to perform any ordinary physical activity without discomfort (CCS functional class III/IV). Also, there must be some objective evidence of ischemia as demonstrated by exercise treadmill testing, stress imaging studies or coronary physiologic studies. (1) Dejongste et al. (4)estimated that the prevalence of chronic refractory angina is about 100,000 patients in the United States. This would correspond to approximately 3,800 (100,000 x 3.8% [Ontario is approximately 3.8% of the population of the United States]) patients in Ontario having chronic refractory angina. Heart Failure Heart failure results from any structural or functional cardiac disorder that impairs the ability of the heart to act as a pump. A recent study (5) revealed 28,702 patients were hospitalized for first-time HF in Ontario between April 1994 and March 1997. Women comprised 51% of the cohort. Eighty-five percent were aged 65 years or older, and 58% were aged 75 years or older. Patients with chronic HF experience shortness of breath, a limited capacity for exercise, high rates of hospitalization and rehospitalization, and die prematurely. (6) The New York Heart Association (NYHA) has provided a commonly used functional classification for the severity of HF (7): Class I: No limitation of physical activity. No symptoms with ordinary exertion. Class II: Slight limitations of physical activity. Ordinary activity causes symptoms. Class III: Marked limitation of physical activity. Less than ordinary activity causes symptoms. Asymptomatic at rest. Class IV: Inability to carry out any physical activity without discomfort. Symptoms at rest. The National Heart, Lung, and Blood Institute (7) estimates that 35% of patients with HF are in functional NYHA

  17. Ergonomics and biology of spinal rotation.

    PubMed

    Kumar, Shrawan

    2004-03-15

    Spinal rotation, though being a very common motion of the body, is poorly understood. Furthermore, this motion and the extent of its development is unique to the human. Beyond the extent of its need in common activities, spinal rotation is a destabilizating motion for an inherently unstable structure. Spinal rotation has been argued to be an essential feature for an efficient bipedal gait. Also, it provides leverage to the upper extremities in delivering a forceful impact. An artificial restriction/elimination of spinal rotation resulted in significantly shorter stride length, slower walking velocity, and higher energy consumption in walking (p < 0.05). Spinal rotation also decreases the amount of force the spinal muscles can generate (to 25% of spinal extension). However, its extensive employment in industrial activities has been associated with 60.4% of back injuries. It is further stated that the amount of scientific information currently available is inadequate to biomechanically model the spinal response in a working environment. For example, when the spine is pre-rotated, a further rotation in the direction of pre-rotation decreases the force production significantly (p < 0.01) and increases the EMG activity significantly (p < 0.01) but the pattern changes with effort in the opposite direction. This and other properties (described in the paper) render biomechanical models inadequate. Muscle activation pattern and neuromotor behaviour of spinal muscles in flexion/extension and rotation of the spine are significantly different from each other (p < 0.01). The localized fatigue in different spinal muscles in the same contraction is significantly different and has been called differential fatigue. Finally, the trunk rotation, being pivotal for bipedal locomotion has brought many back problems to the human race.

  18. Balance in a rotating artificial gravity environment

    NASA Technical Reports Server (NTRS)

    Soeda, Kazuhiro; DiZio, Paul; Lackner, James R.

    2003-01-01

    When subjects stand at the center of a fully enclosed room that is rotating at constant velocity, their natural postural sway generates Coriolis forces that destabilize their center of mass and head. We quantitatively assessed how exposure to constant velocity rotation at 10 rpm affected postural control. Twelve subjects stood in a heel-to-toe stance in the rotating room. Each test session involved three phases: (1) pre-rotation, (2) per-rotation, and (3) post-rotation. In each phase, subjects were tested in both eyes open and eyes closed conditions. Four measures were used to characterize center of mass movement and head movement: mean sway amplitude, total power, mean power frequency, and frequency of maximum power. Each measure was computed for anterior-posterior and medial-lateral sway. Both anterior-posterior and medial-lateral head and center of mass sway during rotation had significantly greater mean sway amplitude and total power compared with pre- and post-rotation values. Mean power frequency and frequency of maximum power were little affected. Eyes open conditions were significantly more stable in all test phases than eyes-closed, but vision did not completely suppress the effects of rotation. The greatest effect of rotation was in the eyes-closed condition with mean sway amplitude and total power increasing more than twofold. Inverted pendulum sway was maintained in all phases of both test conditions. No aftereffects of rotation were present after the four 25-s exposures each subject received. We expect that with longer exposure periods and with active generation of body sway subjects would both adapt to rotation and exhibit post-rotary aftereffects.

  19. Anomalous Ion Heating, Intrinsic and Induced Rotation in the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Burke, M. G.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Perry, J. M.; Redd, A. J.; Thome, K. E.

    2014-10-01

    Pegasus plasmas are initiated through either standard, MHD stable, inductive current drive or non-solenoidal local helicity injection (LHI) current drive with strong reconnection activity, providing a rich environment to study ion dynamics. During LHI discharges, a large amount of anomalous impurity ion heating has been observed, with Ti ~ 800 eV but Te < 100 eV. The ion heating is hypothesized to be a result of large-scale magnetic reconnection activity, as the amount of heating scales with increasing fluctuation amplitude of the dominant, edge localized, n = 1 MHD mode. Chordal Ti spatial profiles indicate centrally peaked temperatures, suggesting a region of good confinement near the plasma core surrounded by a stochastic region. LHI plasmas are observed to rotate, perhaps due to an inward radial current generated by the stochastization of the plasma edge by the injected current streams. H-mode plasmas are initiated using a combination of high-field side fueling and Ohmic current drive. This regime shows a significant increase in rotation shear compared to L-mode plasmas. In addition, these plasmas have been observed to rotate in the counter-Ip direction without any external momentum sources. The intrinsic rotation direction is consistent with predictions from the saturated Ohmic confinement regime. Work supported by US DOE Grant DE-FG02-96ER54375.

  20. Combined Solar system and rotation curve constraints on MOND

    NASA Astrophysics Data System (ADS)

    Hees, Aurélien; Famaey, Benoit; Angus, Garry W.; Gentile, Gianfranco

    2016-01-01

    The Modified Newtonian Dynamics (MOND) paradigm generically predicts that the external gravitational field in which a system is embedded can produce effects on its internal dynamics. In this communication, we first show that this external field effect (EFE) can significantly improve some galactic rotation curves fits by decreasing the predicted velocities of the external part of the rotation curves. In modified gravity versions of MOND, this EFE also appears in the Solar system and leads to a very good way to constrain the transition function of the theory. A combined analysis of the galactic rotation curves and Solar system constraints (provided by the Cassini spacecraft) rules out several classes of popular MOND transition functions, but leaves others viable. Moreover, we show that Laser Interferometer Space Antenna Pathfinder will not be able to improve the current constraints on these still viable transition functions.

  1. Role of the diaphragm in trunk rotation in humans.

    PubMed

    Hudson, Anna L; Butler, Jane E; Gandevia, Simon C; De Troyer, Andre

    2011-10-01

    The objectives of the present study were to test the hypothesis that the costal diaphragm contracts during ipsilateral rotation of the trunk and that such trunk rotation increases the motor output of the muscle during inspiration. Monopolar electrodes were inserted in the right costal hemidiaphragm in six subjects, and electromyographic (EMG) recordings were made during isometric rotation efforts of the trunk to the right ("ipsilateral rotation") and to the left ("contralateral rotation"). EMG activity was simultaneously recorded from the parasternal intercostal muscles on the right side. The parasternal intercostals were consistently active during ipsilateral rotation but silent during contralateral rotation. In contrast, the diaphragm was silent in the majority of rotations in either direction, and whenever diaphragm activity was recorded, it involved very few motor units. In addition, whereas parasternal inspiratory activity substantially increased during ipsilateral rotation and decreased during contralateral rotation, inspiratory activity in the diaphragm was essentially unaltered and the discharge frequency of single motor units in the muscle remained at 13-14 Hz in the different postures. It is concluded that 1) the diaphragm makes no significant contribution to trunk rotation and 2) even though the diaphragm and parasternal intercostals contract in a coordinated manner during resting breathing, the inspiratory output of the two muscles is affected differently by voluntary drive during trunk rotation.

  2. Rotating cooloing flows

    NASA Technical Reports Server (NTRS)

    Kley, Wilhelm; Mathews, William G.

    1995-01-01

    We describe the evolution of the hot interstellar medium in a large, slowly rotating elliptical galaxy. Although the rotation assumed is a small fraction of the circular velocity, in accordance with recent observations, it is sufficient to have a profound influence on the X-ray emission and cooling geometry of the interstellar gas. The hot gas cools into a disk that extends out to approximately 10 kpc. The cool, dusty disks observed in the majority of elliptical galaxies may arise naturally from internal cooling rather than from mergers with gas-rich companions. As a result of angular momentum conservation in the cooling flow, the soft X-ray isophotes are quite noticeably flatter than those of the stellar image. The gas temperature is higer along the rotation axis. The rotational velocity of the gas several kiloparcsecs above the central disk far exceeds the local stellar rotation and approaches the local circular velocity as it flows toward the galactic core. The detailed appearance of the X-ray image and velocity field of the X-ray gas provide information about the global rotational properties of giant ellipticals at radii too distant for optical observations. The overall pattern of rotation in these galaxies retains information about the origin of ellipticals, particularly of their merging history. In ellipticals having radio jets, if the jets are aligned with the rotation axis of the inner cooling flow, rotation within the jet could be sustained by the rotating environment. Since most large ellipticals have modest rotation, the X-ray observations at low spatial resolution, when interpreted with spherical theoretical models, give the impression that hot gas undergoes localized cooling to very low temperatures many kiloparcsecs from the galactic core. We suggest that such apparent cooling can result in a natural way as gas cools onto a rotating disk.

  3. Externally triggered microcapsules

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)

    2011-01-01

    Disclosed are microcapsules comprising a polymer shell enclosing one or more immiscible liquid phases in which a drug or drug precursor are contained in a liquid phase. The microparticles also contain magnetic particles that can be heated by application of an external magnetic field and thus heated to a predetermined Curie temperature. Heating of the particles melts the polymer shell and releases the drug without causing heating of surrounding tissues.

  4. Getting drowned in a swirl: Deformable bead-spring model microswimmers in external flow fields

    NASA Astrophysics Data System (ADS)

    Küchler, Niklas; Löwen, Hartmut; Menzel, Andreas M.

    2016-02-01

    Deformability is a central feature of many types of microswimmers, e.g., for artificially generated self-propelled droplets. Here, we analyze deformable bead-spring microswimmers in an externally imposed solvent flow field as simple theoretical model systems. We focus on their behavior in a circular swirl flow in two spatial dimensions. Linear (straight) two-bead swimmers are found to circle around the swirl with a slight drift to the outside with increasing activity. In contrast to that, we observe for triangular three-bead or squarelike four-bead swimmers a tendency of being drawn into the swirl and finally getting drowned, although a radial inward component is absent in the flow field. During one cycle around the swirl, the self-propulsion direction of an active triangular or squarelike swimmer remains almost constant, while their orbits become deformed exhibiting an "egglike" shape. Over time, the swirl flow induces slight net rotations of these swimmer types, which leads to net rotations of the egg-shaped orbits. Interestingly, in certain cases, the orbital rotation changes sense when the swimmer approaches the flow singularity. Our predictions can be verified in real-space experiments on artificial microswimmers.

  5. Role of Pressure Gradient on Intrinsic Toroidal Rotation in Tokamak Plasmas

    SciTech Connect

    Yoshida, M.; Kamada, Y.; Takenaga, H.; Sakamoto, Y.; Urano, H.; Oyama, N.; Matsunaga, G.

    2008-03-14

    The toroidal plasma rotation generated by the external momentum input and by the plasma itself (intrinsic rotation) has been separated through a novel momentum transport analysis in the JT-60U tokamak device. The toroidal rotation, which is not determined by the momentum transport coefficients and the external momentum input, has been observed. It is found that this intrinsic rotation is locally determined by the local pressure gradient and increases with increasing pressure gradient. This trend is almost the same for various plasmas: low and high confinement mode, co and counterrotating plasmas.

  6. Effect of carbon taxes and subsidies on optim