Sample records for active fault isolation

  1. NASA ground terminal communication equipment automated fault isolation expert systems

    NASA Technical Reports Server (NTRS)

    Tang, Y. K.; Wetzel, C. R.

    1990-01-01

    The prototype expert systems are described that diagnose the Distribution and Switching System I and II (DSS1 and DSS2), Statistical Multiplexers (SM), and Multiplexer and Demultiplexer systems (MDM) at the NASA Ground Terminal (NGT). A system level fault isolation expert system monitors the activities of a selected data stream, verifies that the fault exists in the NGT and identifies the faulty equipment. Equipment level fault isolation expert systems are invoked to isolate the fault to a Line Replaceable Unit (LRU) level. Input and sometimes output data stream activities for the equipment are available. The system level fault isolation expert system compares the equipment input and output status for a data stream and performs loopback tests (if necessary) to isolate the faulty equipment. The equipment level fault isolation system utilizes the process of elimination and/or the maintenance personnel's fault isolation experience stored in its knowledge base. The DSS1, DSS2 and SM fault isolation systems, using the knowledge of the current equipment configuration and the equipment circuitry issues a set of test connections according to the predefined rules. The faulty component or board can be identified by the expert system by analyzing the test results. The MDM fault isolation system correlates the failure symptoms with the faulty component based on maintenance personnel experience. The faulty component can be determined by knowing the failure symptoms. The DSS1, DSS2, SM, and MDM equipment simulators are implemented in PASCAL. The DSS1 fault isolation expert system was converted to C language from VP-Expert and integrated into the NGT automation software for offline switch diagnoses. Potentially, the NGT fault isolation algorithms can be used for the DSS1, SM, amd MDM located at Goddard Space Flight Center (GSFC).

  2. Model-based fault detection and isolation for intermittently active faults with application to motion-based thruster fault detection and isolation for spacecraft

    NASA Technical Reports Server (NTRS)

    Wilson, Edward (Inventor)

    2008-01-01

    The present invention is a method for detecting and isolating fault modes in a system having a model describing its behavior and regularly sampled measurements. The models are used to calculate past and present deviations from measurements that would result with no faults present, as well as with one or more potential fault modes present. Algorithms that calculate and store these deviations, along with memory of when said faults, if present, would have an effect on the said actual measurements, are used to detect when a fault is present. Related algorithms are used to exonerate false fault modes and finally to isolate the true fault mode. This invention is presented with application to detection and isolation of thruster faults for a thruster-controlled spacecraft. As a supporting aspect of the invention, a novel, effective, and efficient filtering method for estimating the derivative of a noisy signal is presented.

  3. Multi-thresholds for fault isolation in the presence of uncertainties.

    PubMed

    Touati, Youcef; Mellal, Mohamed Arezki; Benazzouz, Djamel

    2016-05-01

    Monitoring of the faults is an important task in mechatronics. It involves the detection and isolation of faults which are performed by using the residuals. These residuals represent numerical values that define certain intervals called thresholds. In fact, the fault is detected if the residuals exceed the thresholds. In addition, each considered fault must activate a unique set of residuals to be isolated. However, in the presence of uncertainties, false decisions can occur due to the low sensitivity of certain residuals towards faults. In this paper, an efficient approach to make decision on fault isolation in the presence of uncertainties is proposed. Based on the bond graph tool, the approach is developed in order to generate systematically the relations between residuals and faults. The generated relations allow the estimation of the minimum detectable and isolable fault values. The latter is used to calculate the thresholds of isolation for each residual. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Flight experience with a fail-operational digital fly-by-wire control system

    NASA Technical Reports Server (NTRS)

    Brown, S. R.; Szalai, K. J.

    1977-01-01

    The NASA Dryden Flight Research Center is flight testing a triply redundant digital fly-by-wire (DFBW) control system installed in an F-8 aircraft. The full-time, full-authority system performs three-axis flight control computations, including stability and command augmentation, autopilot functions, failure detection and isolation, and self-test functions. Advanced control law experiments include an active flap mode for ride smoothing and maneuver drag reduction. This paper discusses research being conducted on computer synchronization, fault detection, fault isolation, and recovery from transient faults. The F-8 DFBW system has demonstrated immunity from nuisance fault declarations while quickly identifying truly faulty components.

  5. Fault detection and isolation in motion monitoring system.

    PubMed

    Kim, Duk-Jin; Suk, Myoung Hoon; Prabhakaran, B

    2012-01-01

    Pervasive computing becomes very active research field these days. A watch that can trace human movement to record motion boundary as well as to study of finding social life pattern by one's localized visiting area. Pervasive computing also helps patient monitoring. A daily monitoring system helps longitudinal study of patient monitoring such as Alzheimer's and Parkinson's or obesity monitoring. Due to the nature of monitoring sensor (on-body wireless sensor), however, signal noise or faulty sensors errors can be present at any time. Many research works have addressed these problems any with a large amount of sensor deployment. In this paper, we present the faulty sensor detection and isolation using only two on-body sensors. We have been investigating three different types of sensor errors: the SHORT error, the CONSTANT error, and the NOISY SENSOR error (see more details on section V). Our experimental results show that the success rate of isolating faulty signals are an average of over 91.5% on fault type 1, over 92% on fault type 2, and over 99% on fault type 3 with the fault prior of 30% sensor errors.

  6. A Unified Nonlinear Adaptive Approach for Detection and Isolation of Engine Faults

    NASA Technical Reports Server (NTRS)

    Tang, Liang; DeCastro, Jonathan A.; Zhang, Xiaodong; Farfan-Ramos, Luis; Simon, Donald L.

    2010-01-01

    A challenging problem in aircraft engine health management (EHM) system development is to detect and isolate faults in system components (i.e., compressor, turbine), actuators, and sensors. Existing nonlinear EHM methods often deal with component faults, actuator faults, and sensor faults separately, which may potentially lead to incorrect diagnostic decisions and unnecessary maintenance. Therefore, it would be ideal to address sensor faults, actuator faults, and component faults under one unified framework. This paper presents a systematic and unified nonlinear adaptive framework for detecting and isolating sensor faults, actuator faults, and component faults for aircraft engines. The fault detection and isolation (FDI) architecture consists of a parallel bank of nonlinear adaptive estimators. Adaptive thresholds are appropriately designed such that, in the presence of a particular fault, all components of the residual generated by the adaptive estimator corresponding to the actual fault type remain below their thresholds. If the faults are sufficiently different, then at least one component of the residual generated by each remaining adaptive estimator should exceed its threshold. Therefore, based on the specific response of the residuals, sensor faults, actuator faults, and component faults can be isolated. The effectiveness of the approach was evaluated using the NASA C-MAPSS turbofan engine model, and simulation results are presented.

  7. ASCS online fault detection and isolation based on an improved MPCA

    NASA Astrophysics Data System (ADS)

    Peng, Jianxin; Liu, Haiou; Hu, Yuhui; Xi, Junqiang; Chen, Huiyan

    2014-09-01

    Multi-way principal component analysis (MPCA) has received considerable attention and been widely used in process monitoring. A traditional MPCA algorithm unfolds multiple batches of historical data into a two-dimensional matrix and cut the matrix along the time axis to form subspaces. However, low efficiency of subspaces and difficult fault isolation are the common disadvantages for the principal component model. This paper presents a new subspace construction method based on kernel density estimation function that can effectively reduce the storage amount of the subspace information. The MPCA model and the knowledge base are built based on the new subspace. Then, fault detection and isolation with the squared prediction error (SPE) statistic and the Hotelling ( T 2) statistic are also realized in process monitoring. When a fault occurs, fault isolation based on the SPE statistic is achieved by residual contribution analysis of different variables. For fault isolation of subspace based on the T 2 statistic, the relationship between the statistic indicator and state variables is constructed, and the constraint conditions are presented to check the validity of fault isolation. Then, to improve the robustness of fault isolation to unexpected disturbances, the statistic method is adopted to set the relation between single subspace and multiple subspaces to increase the corrective rate of fault isolation. Finally fault detection and isolation based on the improved MPCA is used to monitor the automatic shift control system (ASCS) to prove the correctness and effectiveness of the algorithm. The research proposes a new subspace construction method to reduce the required storage capacity and to prove the robustness of the principal component model, and sets the relationship between the state variables and fault detection indicators for fault isolation.

  8. AGSM Functional Fault Models for Fault Isolation Project

    NASA Technical Reports Server (NTRS)

    Harp, Janicce Leshay

    2014-01-01

    This project implements functional fault models to automate the isolation of failures during ground systems operations. FFMs will also be used to recommend sensor placement to improve fault isolation capabilities. The project enables the delivery of system health advisories to ground system operators.

  9. Robust Fault Detection and Isolation for Stochastic Systems

    NASA Technical Reports Server (NTRS)

    George, Jemin; Gregory, Irene M.

    2010-01-01

    This paper outlines the formulation of a robust fault detection and isolation scheme that can precisely detect and isolate simultaneous actuator and sensor faults for uncertain linear stochastic systems. The given robust fault detection scheme based on the discontinuous robust observer approach would be able to distinguish between model uncertainties and actuator failures and therefore eliminate the problem of false alarms. Since the proposed approach involves precise reconstruction of sensor faults, it can also be used for sensor fault identification and the reconstruction of true outputs from faulty sensor outputs. Simulation results presented here validate the effectiveness of the robust fault detection and isolation system.

  10. Fault detection and isolation for complex system

    NASA Astrophysics Data System (ADS)

    Jing, Chan Shi; Bayuaji, Luhur; Samad, R.; Mustafa, M.; Abdullah, N. R. H.; Zain, Z. M.; Pebrianti, Dwi

    2017-07-01

    Fault Detection and Isolation (FDI) is a method to monitor, identify, and pinpoint the type and location of system fault in a complex multiple input multiple output (MIMO) non-linear system. A two wheel robot is used as a complex system in this study. The aim of the research is to construct and design a Fault Detection and Isolation algorithm. The proposed method for the fault identification is using hybrid technique that combines Kalman filter and Artificial Neural Network (ANN). The Kalman filter is able to recognize the data from the sensors of the system and indicate the fault of the system in the sensor reading. Error prediction is based on the fault magnitude and the time occurrence of fault. Additionally, Artificial Neural Network (ANN) is another algorithm used to determine the type of fault and isolate the fault in the system.

  11. A fault isolation method based on the incidence matrix of an augmented system

    NASA Astrophysics Data System (ADS)

    Chen, Changxiong; Chen, Liping; Ding, Jianwan; Wu, Yizhong

    2018-03-01

    A new approach is proposed for isolating faults and fast identifying the redundant sensors of a system in this paper. By introducing fault signal as additional state variable, an augmented system model is constructed by the original system model, fault signals and sensor measurement equations. The structural properties of an augmented system model are provided in this paper. From the viewpoint of evaluating fault variables, the calculating correlations of the fault variables in the system can be found, which imply the fault isolation properties of the system. Compared with previous isolation approaches, the highlights of the new approach are that it can quickly find the faults which can be isolated using exclusive residuals, at the same time, and can identify the redundant sensors in the system, which are useful for the design of diagnosis system. The simulation of a four-tank system is reported to validate the proposed method.

  12. Advanced Ground Systems Maintenance Functional Fault Models For Fault Isolation Project

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M. (Compiler)

    2014-01-01

    This project implements functional fault models (FFM) to automate the isolation of failures during ground systems operations. FFMs will also be used to recommend sensor placement to improve fault isolation capabilities. The project enables the delivery of system health advisories to ground system operators.

  13. How Do Normal Faults Grow?

    NASA Astrophysics Data System (ADS)

    Jackson, C. A. L.; Bell, R. E.; Rotevatn, A.; Tvedt, A. B. M.

    2015-12-01

    Normal faulting accommodates stretching of the Earth's crust and is one of the fundamental controls on landscape evolution and sediment dispersal in rift basins. Displacement-length scaling relationships compiled from global datasets suggest normal faults grow via a sympathetic increase in these two parameters (the 'isolated fault model'). This model has dominated the structural geology literature for >20 years and underpins the structural and tectono-stratigraphic models developed for active rifts. However, relatively recent analysis of high-quality 3D seismic reflection data suggests faults may grow by rapid establishment of their near-final length prior to significant displacement accumulation (the 'coherent fault model'). The isolated and coherent fault models make very different predictions regarding the tectono-stratigraphic evolution of rift basin, thus assessing their applicability is important. To-date, however, very few studies have explicitly set out to critically test the coherent fault model thus, it may be argued, it has yet to be widely accepted in the structural geology community. Displacement backstripping is a simple graphical technique typically used to determine how faults lengthen and accumulate displacement; this technique should therefore allow us to test the competing fault models. However, in this talk we use several subsurface case studies to show that the most commonly used backstripping methods (the 'original' and 'modified' methods) are, however, of limited value, because application of one over the other requires an a priori assumption of the model most applicable to any given fault; we argue this is illogical given that the style of growth is exactly what the analysis is attempting to determine. We then revisit our case studies and demonstrate that, in the case of seismic-scale growth faults, growth strata thickness patterns and relay zone kinematics, rather than displacement backstripping, should be assessed to directly constrain fault length and thus tip behaviour through time. We conclude that rapid length establishment prior to displacement accumulation may be more common than is typically assumed, thus challenging the well-established, widely cited and perhaps overused, isolated fault model.

  14. Seismic response evaluation of base-isolated reinforced concrete buildings under bidirectional excitation

    NASA Astrophysics Data System (ADS)

    Bhagat, Satish; Wijeyewickrema, Anil C.

    2017-04-01

    This paper reports on an investigation of the seismic response of base-isolated reinforced concrete buildings, which considers various isolation system parameters under bidirectional near-fault and far-fault motions. Three-dimensional models of 4-, 8-, and 12-story base-isolated buildings with nonlinear effects in the isolation system and the superstructure are investigated, and nonlinear response history analysis is carried out. The bounding values of isolation system properties that incorporate the aging effect of isolators are also taken into account, as is the current state of practice in the design and analysis of base-isolated buildings. The response indicators of the buildings are studied for near-fault and far-fault motions weight-scaled to represent the design earthquake (DE) level and the risk-targeted maximum considered earthquake (MCER) level. Results of the nonlinear response history analyses indicate no structural damage under DE-level motions for near-fault and far-fault motions and for MCER-level far-fault motions, whereas minor structural damage is observed under MCER-level near-fault motions. Results of the base-isolated buildings are compared with their fixed-base counterparts. Significant reduction of the superstructure response of the 12-story base-isolated building compared to the fixed-base condition indicates that base isolation can be effectively used in taller buildings to enhance performance. Additionally, the applicability of a rigid superstructure to predict the isolator displacement demand is also investigated. It is found that the isolator displacements can be estimated accurately using a rigid body model for the superstructure for the buildings considered.

  15. Onboard Nonlinear Engine Sensor and Component Fault Diagnosis and Isolation Scheme

    NASA Technical Reports Server (NTRS)

    Tang, Liang; DeCastro, Jonathan A.; Zhang, Xiaodong

    2011-01-01

    A method detects and isolates in-flight sensor, actuator, and component faults for advanced propulsion systems. In sharp contrast to many conventional methods, which deal with either sensor fault or component fault, but not both, this method considers sensor fault, actuator fault, and component fault under one systemic and unified framework. The proposed solution consists of two main components: a bank of real-time, nonlinear adaptive fault diagnostic estimators for residual generation, and a residual evaluation module that includes adaptive thresholds and a Transferable Belief Model (TBM)-based residual evaluation scheme. By employing a nonlinear adaptive learning architecture, the developed approach is capable of directly dealing with nonlinear engine models and nonlinear faults without the need of linearization. Software modules have been developed and evaluated with the NASA C-MAPSS engine model. Several typical engine-fault modes, including a subset of sensor/actuator/components faults, were tested with a mild transient operation scenario. The simulation results demonstrated that the algorithm was able to successfully detect and isolate all simulated faults as long as the fault magnitudes were larger than the minimum detectable/isolable sizes, and no misdiagnosis occurred

  16. Pseudo-fault signal assisted EMD for fault detection and isolation in rotating machines

    NASA Astrophysics Data System (ADS)

    Singh, Dheeraj Sharan; Zhao, Qing

    2016-12-01

    This paper presents a novel data driven technique for the detection and isolation of faults, which generate impacts in a rotating equipment. The technique is built upon the principles of empirical mode decomposition (EMD), envelope analysis and pseudo-fault signal for fault separation. Firstly, the most dominant intrinsic mode function (IMF) is identified using EMD of a raw signal, which contains all the necessary information about the faults. The envelope of this IMF is often modulated with multiple vibration sources and noise. A second level decomposition is performed by applying pseudo-fault signal (PFS) assisted EMD on the envelope. A pseudo-fault signal is constructed based on the known fault characteristic frequency of the particular machine. The objective of using external (pseudo-fault) signal is to isolate different fault frequencies, present in the envelope . The pseudo-fault signal serves dual purposes: (i) it solves the mode mixing problem inherent in EMD, (ii) it isolates and quantifies a particular fault frequency component. The proposed technique is suitable for real-time implementation, which has also been validated on simulated fault and experimental data corresponding to a bearing and a gear-box set-up, respectively.

  17. Machine learning techniques for fault isolation and sensor placement

    NASA Technical Reports Server (NTRS)

    Carnes, James R.; Fisher, Douglas H.

    1993-01-01

    Fault isolation and sensor placement are vital for monitoring and diagnosis. A sensor conveys information about a system's state that guides troubleshooting if problems arise. We are using machine learning methods to uncover behavioral patterns over snapshots of system simulations that will aid fault isolation and sensor placement, with an eye towards minimality, fault coverage, and noise tolerance.

  18. Reports on work in support of NASA's tracking and communication division

    NASA Technical Reports Server (NTRS)

    Feagin, Terry; Lekkos, Anthony

    1991-01-01

    This is a report on the research conducted during the period October 1, 1991 through December 31, 1991. The research is divided into two primary areas: (1) generalization of the Fault Isolation using Bit Strings (FIBS) technique to permit fuzzy information to be used to isolate faults in the tracking and communications system of the Space Station; and (2) a study of the activity that should occur in the on board systems in order to attempt to recover from failures that are external to the Space Station.

  19. Avionic Air Data Sensors Fault Detection and Isolation by means of Singular Perturbation and Geometric Approach

    PubMed Central

    2017-01-01

    Singular Perturbations represent an advantageous theory to deal with systems characterized by a two-time scale separation, such as the longitudinal dynamics of aircraft which are called phugoid and short period. In this work, the combination of the NonLinear Geometric Approach and the Singular Perturbations leads to an innovative Fault Detection and Isolation system dedicated to the isolation of faults affecting the air data system of a general aviation aircraft. The isolation capabilities, obtained by means of the approach proposed in this work, allow for the solution of a fault isolation problem otherwise not solvable by means of standard geometric techniques. Extensive Monte-Carlo simulations, exploiting a high fidelity aircraft simulator, show the effectiveness of the proposed Fault Detection and Isolation system. PMID:28946673

  20. How do normal faults grow?

    NASA Astrophysics Data System (ADS)

    Jackson, Christopher; Bell, Rebecca; Rotevatn, Atle; Tvedt, Anette

    2016-04-01

    Normal faulting accommodates stretching of the Earth's crust, and it is arguably the most fundamental tectonic process leading to continent rupture and oceanic crust emplacement. Furthermore, the incremental and finite geometries associated with normal faulting dictate landscape evolution, sediment dispersal and hydrocarbon systems development in rifts. Displacement-length scaling relationships compiled from global datasets suggest normal faults grow via a sympathetic increase in these two parameters (the 'isolated fault model'). This model has dominated the structural geology literature for >20 years and underpins the structural and tectono-stratigraphic models developed for active rifts. However, relatively recent analysis of high-quality 3D seismic reflection data suggests faults may grow by rapid establishment of their near-final length prior to significant displacement accumulation (the 'coherent fault model'). The isolated and coherent fault models make very different predictions regarding the tectono-stratigraphic evolution of rift basin, thus assessing their applicability is important. To-date, however, very few studies have explicitly set out to critically test the coherent fault model thus, it may be argued, it has yet to be widely accepted in the structural geology community. Displacement backstripping is a simple graphical technique typically used to determine how faults lengthen and accumulate displacement; this technique should therefore allow us to test the competing fault models. However, in this talk we use several subsurface case studies to show that the most commonly used backstripping methods (the 'original' and 'modified' methods) are, however, of limited value, because application of one over the other requires an a priori assumption of the model most applicable to any given fault; we argue this is illogical given that the style of growth is exactly what the analysis is attempting to determine. We then revisit our case studies and demonstrate that, in the case of seismic-scale growth faults, growth strata thickness patterns and relay zone kinematics, rather than displacement backstripping, should be assessed to directly constrain fault length and thus tip behaviour through time. We conclude that rapid length establishment prior to displacement accumulation may be more common than is typically assumed, thus challenging the well-established, widely cited and perhaps overused, isolated fault model.

  1. Fault detection and isolation

    NASA Technical Reports Server (NTRS)

    Bernath, Greg

    1994-01-01

    In order for a current satellite-based navigation system (such as the Global Positioning System, GPS) to meet integrity requirements, there must be a way of detecting erroneous measurements, without help from outside the system. This process is called Fault Detection and Isolation (FDI). Fault detection requires at least one redundant measurement, and can be done with a parity space algorithm. The best way around the fault isolation problem is not necessarily isolating the bad measurement, but finding a new combination of measurements which excludes it.

  2. Qualitative Event-Based Diagnosis: Case Study on the Second International Diagnostic Competition

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Roychoudhury, Indranil

    2010-01-01

    We describe a diagnosis algorithm entered into the Second International Diagnostic Competition. We focus on the first diagnostic problem of the industrial track of the competition in which a diagnosis algorithm must detect, isolate, and identify faults in an electrical power distribution testbed and provide corresponding recovery recommendations. The diagnosis algorithm embodies a model-based approach, centered around qualitative event-based fault isolation. Faults produce deviations in measured values from model-predicted values. The sequence of these deviations is matched to those predicted by the model in order to isolate faults. We augment this approach with model-based fault identification, which determines fault parameters and helps to further isolate faults. We describe the diagnosis approach, provide diagnosis results from running the algorithm on provided example scenarios, and discuss the issues faced, and lessons learned, from implementing the approach

  3. Characteristics of the recent seismic activity on a near-shore fault south of Malta, Central Mediterranean

    NASA Astrophysics Data System (ADS)

    Bozionelos, George; Galea, Pauline; D'Amico, Sebastiano; Agius, Matthew

    2017-04-01

    The tectonic setting of the Maltese islands is mainly influenced by two dominant rift systems belonging to different ages and having different trends. The first and older rift created the horst and graben structure in northern Malta. The second rift generation, in the south, including the Maghlaq Fault, is associated with the Pantelleria Rift. The Maghlaq Fault is a spectacular NW - SE trending and left-stepping normal fault running along the southern coastline of the Maltese islands, cutting the Oligo-Miocene pre to syn-rift carbonates. Its surface expression is traceable along 4 km of the coastline, where vertical displacements of the island's Tertiary stratigraphic sequence are clearly visible and exceed 210m. These displacements have given rise to sheer, slickensided fault scarps, as well as isolating the small island of Filfla 4km offshore the southern coast. Identification and assessment of the seismic activity related with Maghlaq fault, for the recent years, is performed, re-evaluating and redetermining the hypocentral locations and the source parameters of both recent and older events. The earthquakes that have affected the Maltese islands in the historical past, have occurred mainly at the Sicily Channel, at eastern Sicily, even as far away as the Hellenic arc. Some of these earthquakes also have caused considerable damage to buildings. The Maghlaq fault is believed to be one of the master faults of the Sicily Channel Rift, being parallel to the Malta graben, which passes around 20km south of Malta and shows continuous seismic activity. Despite the relationship of this fault with the graben system, no seismic activity on the Maghlaq fault had been documented previous to 2015. On the July 30nth 2015, an earthquake was widely felt in the southern half of Malta and was approximately located just offshore the southern coast. Since then, a swarm of seismic events lasting several days, as well as other isolated events have occurred, indicating the fault to be seismically active. Investigation of the nature of the seismic events and other previous activity that may have been misclassified due to poor location capability, is performed. Such results are of utmost importance in order to reveal the implication of this newly-discovered activity on the seismic hazard to the Maltese islands and also to improve understanding of the local geodynamics, highlighting the mechanisms that contribute to both the crustal deformation and the tectonics of the upper crust. The investigation is carried out using the stations of the recently extended Malta Seismic Network and regional stations. The results are evaluated in the context of the role of the Maghlaq fault in the extensional tectonics associated with the Sicily Channel Rift and the African continental margin.

  4. Sequential Test Strategies for Multiple Fault Isolation

    NASA Technical Reports Server (NTRS)

    Shakeri, M.; Pattipati, Krishna R.; Raghavan, V.; Patterson-Hine, Ann; Kell, T.

    1997-01-01

    In this paper, we consider the problem of constructing near optimal test sequencing algorithms for diagnosing multiple faults in redundant (fault-tolerant) systems. The computational complexity of solving the optimal multiple-fault isolation problem is super-exponential, that is, it is much more difficult than the single-fault isolation problem, which, by itself, is NP-hard. By employing concepts from information theory and Lagrangian relaxation, we present several static and dynamic (on-line or interactive) test sequencing algorithms for the multiple fault isolation problem that provide a trade-off between the degree of suboptimality and computational complexity. Furthermore, we present novel diagnostic strategies that generate a static diagnostic directed graph (digraph), instead of a static diagnostic tree, for multiple fault diagnosis. Using this approach, the storage complexity of the overall diagnostic strategy reduces substantially. Computational results based on real-world systems indicate that the size of a static multiple fault strategy is strictly related to the structure of the system, and that the use of an on-line multiple fault strategy can diagnose faults in systems with as many as 10,000 failure sources.

  5. Multiple Fault Isolation in Redundant Systems

    NASA Technical Reports Server (NTRS)

    Pattipati, Krishna R.; Patterson-Hine, Ann; Iverson, David

    1997-01-01

    Fault diagnosis in large-scale systems that are products of modern technology present formidable challenges to manufacturers and users. This is due to large number of failure sources in such systems and the need to quickly isolate and rectify failures with minimal down time. In addition, for fault-tolerant systems and systems with infrequent opportunity for maintenance (e.g., Hubble telescope, space station), the assumption of at most a single fault in the system is unrealistic. In this project, we have developed novel block and sequential diagnostic strategies to isolate multiple faults in the shortest possible time without making the unrealistic single fault assumption.

  6. Multiple Fault Isolation in Redundant Systems

    NASA Technical Reports Server (NTRS)

    Pattipati, Krishna R.

    1997-01-01

    Fault diagnosis in large-scale systems that are products of modem technology present formidable challenges to manufacturers and users. This is due to large number of failure sources in such systems and the need to quickly isolate and rectify failures with minimal down time. In addition, for fault-tolerant systems and systems with infrequent opportunity for maintenance (e.g., Hubble telescope, space station), the assumption of at most a single fault in the system is unrealistic. In this project, we have developed novel block and sequential diagnostic strategies to isolate multiple faults in the shortest possible time without making the unrealistic single fault assumption.

  7. 78 FR 31592 - T-Mobile Usa, Inc., Core Fault Isolation Team, Engineering Division, Bethlehem, Pennsylvania...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-24

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-82,371] T-Mobile Usa, Inc., Core Fault Isolation Team, Engineering Division, Bethlehem, Pennsylvania; Notice of Affirmative Determination...., Core Fault Isolation Team, Engineering Division, Bethlehem, Pennsylvania (subject firm). The...

  8. Effect of a Near Fault on the Seismic Response of a Base-Isolated Structure with a Soft Storey

    NASA Astrophysics Data System (ADS)

    Athamnia, B.; Ounis, A.; Abdeddaim, M.

    2017-12-01

    This study focuses on the soft-storey behavior of RC structures with lead core rubber bearing (LRB) isolation systems under near and far-fault motions. Under near-fault ground motions, seismic isolation devices might perform poorly because of large isolator displacements caused by large velocity and displacement pulses associated with such strong motions. In this study, four different structural models have been designed to study the effect of soft-storey behavior under near-fault and far-fault motions. The seismic analysis for isolated reinforced concrete buildings is carried out using a nonlinear time history analysis method. Inter-story drifts, absolute acceleration, displacement, base shear forces, hysteretic loops and the distribution of plastic hinges are examined as a result of the analysis. These results show that the performance of a base isolated RC structure is more affected by increasing the height of a story under nearfault motion than under far-fault motion.

  9. An autonomous fault detection, isolation, and recovery system for a 20-kHz electric power distribution test bed

    NASA Technical Reports Server (NTRS)

    Quinn, Todd M.; Walters, Jerry L.

    1991-01-01

    Future space explorations will require long term human presence in space. Space environments that provide working and living quarters for manned missions are becoming increasingly larger and more sophisticated. Monitor and control of the space environment subsystems by expert system software, which emulate human reasoning processes, could maintain the health of the subsystems and help reduce the human workload. The autonomous power expert (APEX) system was developed to emulate a human expert's reasoning processes used to diagnose fault conditions in the domain of space power distribution. APEX is a fault detection, isolation, and recovery (FDIR) system, capable of autonomous monitoring and control of the power distribution system. APEX consists of a knowledge base, a data base, an inference engine, and various support and interface software. APEX provides the user with an easy-to-use interactive interface. When a fault is detected, APEX will inform the user of the detection. The user can direct APEX to isolate the probable cause of the fault. Once a fault has been isolated, the user can ask APEX to justify its fault isolation and to recommend actions to correct the fault. APEX implementation and capabilities are discussed.

  10. PV Systems Reliability Final Technical Report: Ground Fault Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavrova, Olga; Flicker, Jack David; Johnson, Jay

    We have examined ground faults in PhotoVoltaic (PV) arrays and the efficacy of fuse, current detection (RCD), current sense monitoring/relays (CSM), isolation/insulation (Riso) monitoring, and Ground Fault Detection and Isolation (GFID) using simulations based on a Simulation Program with Integrated Circuit Emphasis SPICE ground fault circuit model, experimental ground faults installed on real arrays, and theoretical equations.

  11. Improving Multiple Fault Diagnosability using Possible Conflicts

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew J.; Bregon, Anibal; Biswas, Gautam; Koutsoukos, Xenofon; Pulido, Belarmino

    2012-01-01

    Multiple fault diagnosis is a difficult problem for dynamic systems. Due to fault masking, compensation, and relative time of fault occurrence, multiple faults can manifest in many different ways as observable fault signature sequences. This decreases diagnosability of multiple faults, and therefore leads to a loss in effectiveness of the fault isolation step. We develop a qualitative, event-based, multiple fault isolation framework, and derive several notions of multiple fault diagnosability. We show that using Possible Conflicts, a model decomposition technique that decouples faults from residuals, we can significantly improve the diagnosability of multiple faults compared to an approach using a single global model. We demonstrate these concepts and provide results using a multi-tank system as a case study.

  12. In-flight Fault Detection and Isolation in Aircraft Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Azam, Mohammad; Pattipati, Krishna; Allanach, Jeffrey; Poll, Scott; Patterson-Hine, Ann

    2005-01-01

    In this paper we consider the problem of test design for real-time fault detection and isolation (FDI) in the flight control system of fixed-wing aircraft. We focus on the faults that are manifested in the control surface elements (e.g., aileron, elevator, rudder and stabilizer) of an aircraft. For demonstration purposes, we restrict our focus on the faults belonging to nine basic fault classes. The diagnostic tests are performed on the features extracted from fifty monitored system parameters. The proposed tests are able to uniquely isolate each of the faults at almost all severity levels. A neural network-based flight control simulator, FLTZ(Registered TradeMark), is used for the simulation of various faults in fixed-wing aircraft flight control systems for the purpose of FDI.

  13. Model-based diagnosis through Structural Analysis and Causal Computation for automotive Polymer Electrolyte Membrane Fuel Cell systems

    NASA Astrophysics Data System (ADS)

    Polverino, Pierpaolo; Frisk, Erik; Jung, Daniel; Krysander, Mattias; Pianese, Cesare

    2017-07-01

    The present paper proposes an advanced approach for Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems fault detection and isolation through a model-based diagnostic algorithm. The considered algorithm is developed upon a lumped parameter model simulating a whole PEMFC system oriented towards automotive applications. This model is inspired by other models available in the literature, with further attention to stack thermal dynamics and water management. The developed model is analysed by means of Structural Analysis, to identify the correlations among involved physical variables, defined equations and a set of faults which may occur in the system (related to both auxiliary components malfunctions and stack degradation phenomena). Residual generators are designed by means of Causal Computation analysis and the maximum theoretical fault isolability, achievable with a minimal number of installed sensors, is investigated. The achieved results proved the capability of the algorithm to theoretically detect and isolate almost all faults with the only use of stack voltage and temperature sensors, with significant advantages from an industrial point of view. The effective fault isolability is proved through fault simulations at a specific fault magnitude with an advanced residual evaluation technique, to consider quantitative residual deviations from normal conditions and achieve univocal fault isolation.

  14. Application of a Bank of Kalman Filters for Aircraft Engine Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2003-01-01

    In this paper, a bank of Kalman filters is applied to aircraft gas turbine engine sensor and actuator fault detection and isolation (FDI) in conjunction with the detection of component faults. This approach uses multiple Kalman filters, each of which is designed for detecting a specific sensor or actuator fault. In the event that a fault does occur, all filters except the one using the correct hypothesis will produce large estimation errors, thereby isolating the specific fault. In the meantime, a set of parameters that indicate engine component performance is estimated for the detection of abrupt degradation. The proposed FDI approach is applied to a nonlinear engine simulation at nominal and aged conditions, and the evaluation results for various engine faults at cruise operating conditions are given. The ability of the proposed approach to reliably detect and isolate sensor and actuator faults is demonstrated.

  15. Widespread active detachment faulting and core complex formation near 13 degrees N on the Mid-Atlantic Ridge.

    PubMed

    Smith, Deborah K; Cann, Johnson R; Escartín, Javier

    2006-07-27

    Oceanic core complexes are massifs in which lower-crustal and upper-mantle rocks are exposed at the sea floor. They form at mid-ocean ridges through slip on detachment faults rooted below the spreading axis. To date, most studies of core complexes have been based on isolated inactive massifs that have spread away from ridge axes. Here we present a survey of the Mid-Atlantic Ridge near 13 degrees N containing a segment in which a number of linked detachment faults extend for 75 km along one flank of the spreading axis. The detachment faults are apparently all currently active and at various stages of development. A field of extinct core complexes extends away from the axis for at least 100 km. Our observations reveal the topographic characteristics of actively forming core complexes and their evolution from initiation within the axial valley floor to maturity and eventual inactivity. Within the surrounding region there is a strong correlation between detachment fault morphology at the ridge axis and high rates of hydroacoustically recorded earthquake seismicity. Preliminary examination of seismicity and seafloor morphology farther north along the Mid-Atlantic Ridge suggests that active detachment faulting is occurring in many segments and that detachment faulting is more important in the generation of ocean crust at this slow-spreading ridge than previously suspected.

  16. Model-based design and experimental verification of a monitoring concept for an active-active electromechanical aileron actuation system

    NASA Astrophysics Data System (ADS)

    Arriola, David; Thielecke, Frank

    2017-09-01

    Electromechanical actuators have become a key technology for the onset of power-by-wire flight control systems in the next generation of commercial aircraft. The design of robust control and monitoring functions for these devices capable to mitigate the effects of safety-critical faults is essential in order to achieve the required level of fault tolerance. A primary flight control system comprising two electromechanical actuators nominally operating in active-active mode is considered. A set of five signal-based monitoring functions are designed using a detailed model of the system under consideration which includes non-linear parasitic effects, measurement and data acquisition effects, and actuator faults. Robust detection thresholds are determined based on the analysis of parametric and input uncertainties. The designed monitoring functions are verified experimentally and by simulation through the injection of faults in the validated model and in a test-rig suited to the actuation system under consideration, respectively. They guarantee a robust and efficient fault detection and isolation with a low risk of false alarms, additionally enabling the correct reconfiguration of the system for an enhanced operational availability. In 98% of the performed experiments and simulations, the correct faults were detected and confirmed within the time objectives set.

  17. Fault Isolation Filter for Networked Control System with Event-Triggered Sampling Scheme

    PubMed Central

    Li, Shanbin; Sauter, Dominique; Xu, Bugong

    2011-01-01

    In this paper, the sensor data is transmitted only when the absolute value of difference between the current sensor value and the previously transmitted one is greater than the given threshold value. Based on this send-on-delta scheme which is one of the event-triggered sampling strategies, a modified fault isolation filter for a discrete-time networked control system with multiple faults is then implemented by a particular form of the Kalman filter. The proposed fault isolation filter improves the resource utilization with graceful fault estimation performance degradation. An illustrative example is given to show the efficiency of the proposed method. PMID:22346590

  18. Distributed Fault-Tolerant Control of Networked Uncertain Euler-Lagrange Systems Under Actuator Faults.

    PubMed

    Chen, Gang; Song, Yongduan; Lewis, Frank L

    2016-05-03

    This paper investigates the distributed fault-tolerant control problem of networked Euler-Lagrange systems with actuator and communication link faults. An adaptive fault-tolerant cooperative control scheme is proposed to achieve the coordinated tracking control of networked uncertain Lagrange systems on a general directed communication topology, which contains a spanning tree with the root node being the active target system. The proposed algorithm is capable of compensating for the actuator bias fault, the partial loss of effectiveness actuation fault, the communication link fault, the model uncertainty, and the external disturbance simultaneously. The control scheme does not use any fault detection and isolation mechanism to detect, separate, and identify the actuator faults online, which largely reduces the online computation and expedites the responsiveness of the controller. To validate the effectiveness of the proposed method, a test-bed of multiple robot-arm cooperative control system is developed for real-time verification. Experiments on the networked robot-arms are conduced and the results confirm the benefits and the effectiveness of the proposed distributed fault-tolerant control algorithms.

  19. A Negative Selection Immune System Inspired Methodology for Fault Diagnosis of Wind Turbines.

    PubMed

    Alizadeh, Esmaeil; Meskin, Nader; Khorasani, Khashayar

    2017-11-01

    High operational and maintenance costs represent as major economic constraints in the wind turbine (WT) industry. These concerns have made investigation into fault diagnosis of WT systems an extremely important and active area of research. In this paper, an immune system (IS) inspired methodology for performing fault detection and isolation (FDI) of a WT system is proposed and developed. The proposed scheme is based on a self nonself discrimination paradigm of a biological IS. Specifically, the negative selection mechanism [negative selection algorithm (NSA)] of the human body is utilized. In this paper, a hierarchical bank of NSAs are designed to detect and isolate both individual as well as simultaneously occurring faults common to the WTs. A smoothing moving window filter is then utilized to further improve the reliability and performance of the FDI scheme. Moreover, the performance of our proposed scheme is compared with another state-of-the-art data-driven technique, namely the support vector machines (SVMs) to demonstrate and illustrate the superiority and advantages of our proposed NSA-based FDI scheme. Finally, a nonparametric statistical comparison test is implemented to evaluate our proposed methodology with that of the SVM under various fault severities.

  20. Structural changes and shallow geological structure of the isolated basins in the forearc slope of the Japan Trench

    NASA Astrophysics Data System (ADS)

    Misawa, A.; Arai, K.; Fujiwara, T.; Sato, M.; Shin'ichiro, Y.; Hirata, K.; Kanamatsu, T.

    2017-12-01

    On the forearc slope of the Japan Trench is a typical subsidence region associated with the subduction erosion in the Japan Trench. Arai et al. (2014) reported the existence of the isolated basins with widths of up to several tens of kilometers using the seismic profiles that acquired before the 2011 Tohoku earthquake (Mw 9.0) in the forearc slope. The isolated basin probably formed due to subsidence accompanying the regional activity of normal fault systems in the forearc slope. Arai et al. (2014) suggested that the geological structures of the forearc slope along the Japan Trench are typical of those resulting from subduction erosion and proposed that the episodic subsidence accompanied by normal faulting is the most recent deformation. During the 2011 large earthquake, seafloor on the landward slope of the Japan Trench moved 50 m east-southeast toward trench (Fujiwara et al., 2011). In addition, aftershock activity after the 2011 large earthquake have predominated in the activity of the normal fault system. Therefore, there have a possibility that new isolated basin is formed after the 2011 large earthquake in the forearc slope of the Japan Trench. In order to capture the structural change in the isolated basins, we compared the seismic profiles acquired before (Multi-Channel Seismic (MCS) data acquired with KR07-05 cruise) and after (Single-Channel Seismic (SCS) data acquired with NT15-07 cruise) the 2011 large earthquake. However, the large-scale structural changes are not identified around the isolated basin. In order to capture the small-scale structural change in the shallow part of the isolated basins using high-resolution data, we make an attempt at the marine geological and geophysical survey in the offshore Tohoku region using R/V Shinsei-Maru of JAMSTEC (KS-17-8 cruise) in August 2017. In this cruise, we plan to carry out the following surveys; (1) swath bathymetric survey, (2) high-resolution parametric subbottom profiler (SBP) survey, (3) geomagnetic survey. In this presentation, we will show the latest results about the shallow structure of the isolated basin in the forearc slope.

  1. A distributed fault-tolerant signal processor /FTSP/

    NASA Astrophysics Data System (ADS)

    Bonneau, R. J.; Evett, R. C.; Young, M. J.

    1980-01-01

    A digital fault-tolerant signal processor (FTSP), an example of a self-repairing programmable system is analyzed. The design configuration is discussed in terms of fault tolerance, system-level fault detection, isolation and common memory. Special attention is given to the FDIR (fault detection isolation and reconfiguration) logic, noting that the reconfiguration decisions are based on configuration, summary status, end-around tests, and north marker/synchro data. Several mechanisms of fault detection are described which initiate reconfiguration at different levels. It is concluded that the reliability of a signal processor can be significantly enhanced by the use of fault-tolerant techniques.

  2. Sensor Fault Detection and Diagnosis Simulation of a Helicopter Engine in an Intelligent Control Framework

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan; Kurtkaya, Mehmet; Duyar, Ahmet

    1994-01-01

    This paper presents an application of a fault detection and diagnosis scheme for the sensor faults of a helicopter engine. The scheme utilizes a model-based approach with real time identification and hypothesis testing which can provide early detection, isolation, and diagnosis of failures. It is an integral part of a proposed intelligent control system with health monitoring capabilities. The intelligent control system will allow for accommodation of faults, reduce maintenance cost, and increase system availability. The scheme compares the measured outputs of the engine with the expected outputs of an engine whose sensor suite is functioning normally. If the differences between the real and expected outputs exceed threshold values, a fault is detected. The isolation of sensor failures is accomplished through a fault parameter isolation technique where parameters which model the faulty process are calculated on-line with a real-time multivariable parameter estimation algorithm. The fault parameters and their patterns can then be analyzed for diagnostic and accommodation purposes. The scheme is applied to the detection and diagnosis of sensor faults of a T700 turboshaft engine. Sensor failures are induced in a T700 nonlinear performance simulation and data obtained are used with the scheme to detect, isolate, and estimate the magnitude of the faults.

  3. Fault Detection, Isolation and Recovery (FDIR) Portable Liquid Oxygen Hardware Demonstrator

    NASA Technical Reports Server (NTRS)

    Oostdyk, Rebecca L.; Perotti, Jose M.

    2011-01-01

    The Fault Detection, Isolation and Recovery (FDIR) hardware demonstration will highlight the effort being conducted by Constellation's Ground Operations (GO) to provide the Launch Control System (LCS) with system-level health management during vehicle processing and countdown activities. A proof-of-concept demonstration of the FDIR prototype established the capability of the software to provide real-time fault detection and isolation using generated Liquid Hydrogen data. The FDIR portable testbed unit (presented here) aims to enhance FDIR by providing a dynamic simulation of Constellation subsystems that feed the FDIR software live data based on Liquid Oxygen system properties. The LO2 cryogenic ground system has key properties that are analogous to the properties of an electronic circuit. The LO2 system is modeled using electrical components and an equivalent circuit is designed on a printed circuit board to simulate the live data. The portable testbed is also be equipped with data acquisition and communication hardware to relay the measurements to the FDIR application running on a PC. This portable testbed is an ideal capability to perform FDIR software testing, troubleshooting, training among others.

  4. Functional Fault Modeling Conventions and Practices for Real-Time Fault Isolation

    NASA Technical Reports Server (NTRS)

    Ferrell, Bob; Lewis, Mark; Perotti, Jose; Oostdyk, Rebecca; Brown, Barbara

    2010-01-01

    The purpose of this paper is to present the conventions, best practices, and processes that were established based on the prototype development of a Functional Fault Model (FFM) for a Cryogenic System that would be used for real-time Fault Isolation in a Fault Detection, Isolation, and Recovery (FDIR) system. The FDIR system is envisioned to perform health management functions for both a launch vehicle and the ground systems that support the vehicle during checkout and launch countdown by using a suite of complimentary software tools that alert operators to anomalies and failures in real-time. The FFMs were created offline but would eventually be used by a real-time reasoner to isolate faults in a Cryogenic System. Through their development and review, a set of modeling conventions and best practices were established. The prototype FFM development also provided a pathfinder for future FFM development processes. This paper documents the rationale and considerations for robust FFMs that can easily be transitioned to a real-time operating environment.

  5. A hierarchically distributed architecture for fault isolation expert systems on the space station

    NASA Technical Reports Server (NTRS)

    Miksell, Steve; Coffer, Sue

    1987-01-01

    The Space Station Axiomatic Fault Isolating Expert Systems (SAFTIES) system deals with the hierarchical distribution of control and knowledge among independent expert systems doing fault isolation and scheduling of Space Station subsystems. On its lower level, fault isolation is performed on individual subsystems. These fault isolation expert systems contain knowledge about the performance requirements of their particular subsystem and corrective procedures which may be involved in repsonse to certain performance errors. They can control the functions of equipment in their system and coordinate system task schedules. On a higher level, the Executive contains knowledge of all resources, task schedules for all systems, and the relative priority of all resources and tasks. The executive can override any subsystem task schedule in order to resolve use conflicts or resolve errors that require resources from multiple subsystems. Interprocessor communication is implemented using the SAFTIES Communications Interface (SCI). The SCI is an application layer protocol which supports the SAFTIES distributed multi-level architecture.

  6. Multivariate fault isolation of batch processes via variable selection in partial least squares discriminant analysis.

    PubMed

    Yan, Zhengbing; Kuang, Te-Hui; Yao, Yuan

    2017-09-01

    In recent years, multivariate statistical monitoring of batch processes has become a popular research topic, wherein multivariate fault isolation is an important step aiming at the identification of the faulty variables contributing most to the detected process abnormality. Although contribution plots have been commonly used in statistical fault isolation, such methods suffer from the smearing effect between correlated variables. In particular, in batch process monitoring, the high autocorrelations and cross-correlations that exist in variable trajectories make the smearing effect unavoidable. To address such a problem, a variable selection-based fault isolation method is proposed in this research, which transforms the fault isolation problem into a variable selection problem in partial least squares discriminant analysis and solves it by calculating a sparse partial least squares model. As different from the traditional methods, the proposed method emphasizes the relative importance of each process variable. Such information may help process engineers in conducting root-cause diagnosis. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Development of the self-learning machine for creating models of microprocessor of single-phase earth fault protection devices in networks with isolated neutral voltage above 1000 V

    NASA Astrophysics Data System (ADS)

    Utegulov, B. B.; Utegulov, A. B.; Meiramova, S.

    2018-02-01

    The paper proposes the development of a self-learning machine for creating models of microprocessor-based single-phase ground fault protection devices in networks with an isolated neutral voltage higher than 1000 V. Development of a self-learning machine for creating models of microprocessor-based single-phase earth fault protection devices in networks with an isolated neutral voltage higher than 1000 V. allows to effectively implement mathematical models of automatic change of protection settings. Single-phase earth fault protection devices.

  8. Optimization of seismic isolation systems via harmony search

    NASA Astrophysics Data System (ADS)

    Melih Nigdeli, Sinan; Bekdaş, Gebrail; Alhan, Cenk

    2014-11-01

    In this article, the optimization of isolation system parameters via the harmony search (HS) optimization method is proposed for seismically isolated buildings subjected to both near-fault and far-fault earthquakes. To obtain optimum values of isolation system parameters, an optimization program was developed in Matlab/Simulink employing the HS algorithm. The objective was to obtain a set of isolation system parameters within a defined range that minimizes the acceleration response of a seismically isolated structure subjected to various earthquakes without exceeding a peak isolation system displacement limit. Several cases were investigated for different isolation system damping ratios and peak displacement limitations of seismic isolation devices. Time history analyses were repeated for the neighbouring parameters of optimum values and the results proved that the parameters determined via HS were true optima. The performance of the optimum isolation system was tested under a second set of earthquakes that was different from the first set used in the optimization process. The proposed optimization approach is applicable to linear isolation systems. Isolation systems composed of isolation elements that are inherently nonlinear are the subject of a future study. Investigation of the optimum isolation system parameters has been considered in parametric studies. However, obtaining the best performance of a seismic isolation system requires a true optimization by taking the possibility of both near-fault and far-fault earthquakes into account. HS optimization is proposed here as a viable solution to this problem.

  9. Functional Fault Modeling of a Cryogenic System for Real-Time Fault Detection and Isolation

    NASA Technical Reports Server (NTRS)

    Ferrell, Bob; Lewis, Mark; Perotti, Jose; Oostdyk, Rebecca; Brown, Barbara

    2010-01-01

    The purpose of this paper is to present the model development process used to create a Functional Fault Model (FFM) of a liquid hydrogen (L H2) system that will be used for realtime fault isolation in a Fault Detection, Isolation and Recover (FDIR) system. The paper explains th e steps in the model development process and the data products required at each step, including examples of how the steps were performed fo r the LH2 system. It also shows the relationship between the FDIR req uirements and steps in the model development process. The paper concl udes with a description of a demonstration of the LH2 model developed using the process and future steps for integrating the model in a live operational environment.

  10. Development, Interaction and Linkage of Normal Fault Segments along the 100-km Bilila-Mtakataka Fault, Malawi

    NASA Astrophysics Data System (ADS)

    Fagereng, A.; Hodge, M.; Biggs, J.; Mdala, H. S.; Goda, K.

    2016-12-01

    Faults grow through the interaction and linkage of isolated fault segments. Continuous fault systems are those where segments interact, link and may slip synchronously, whereas non-continuous fault systems comprise isolated faults. As seismic moment is related to fault length (Wells and Coppersmith, 1994), understanding whether a fault system is continuous or not is critical in evaluating seismic hazard. Maturity may be a control on fault continuity: immature, low displacement faults are typically assumed to be non-continuous. Here, we study two overlapping, 20 km long, normal fault segments of the N-S striking Bilila-Mtakataka fault, Malawi, in the southern section of the East African Rift System. Despite its relative immaturity, previous studies concluded the Bilila-Mtakataka fault is continuous for its entire 100 km length, with the most recent event equating to an Mw8.0 earthquake (Jackson and Blenkinsop, 1997). We explore whether segment geometry and relationship to pre-existing high-grade metamorphic foliation has influenced segment interaction and fault development. Fault geometry and scarp height is constrained by DEMs derived from SRTM, Pleiades and `Structure from Motion' photogrammetry using a UAV, alongside direct field observations. The segment strikes differ on average by 10°, but up to 55° at their adjacent tips. The southern segment is sub-parallel to the foliation, whereas the northern segment is highly oblique to the foliation. Geometrical surface discontinuities suggest two isolated faults; however, displacement-length profiles and Coulomb stress change models suggest segment interaction, with potential for linkage at depth. Further work must be undertaken on other segments to assess the continuity of the entire fault, concluding whether an earthquake greater than that of the maximum instrumentally recorded (1910 M7.4 Rukwa) is possible.

  11. New constraints on the active tectonic deformation of the Aegean

    USGS Publications Warehouse

    Nyst, M.; Thatcher, W.

    2004-01-01

    Site velocities from six separate Global Positioning System (GPS) networks comprising 374 stations have been referred to a single common Eurasia-fixed reference frame to map the velocity distribution over the entire Aegean. We use the GPS velocity field to identify deforming regions, rigid elements, and potential microplate boundaries, and build upon previous work by others to initially specify rigid elements in central Greece, the South Aegean, Anatolia, and the Sea of Marmara. We apply an iterative approach, tentatively defining microplate boundaries, determining best fit rigid rotations, examining misfit patterns, and revising the boundaries to achieve a better match between model and data. Short-term seismic cycle effects are minor contaminants of the data that we remove when necessary to isolate the long-term kinematics. We find that present day Aegean deformation is due to the relative motions of four microplates and straining in several isolated zones internal to them. The RMS misfit of model to data is about 2-sigma, very good when compared to the typical match between coseismic fault models and GPS data. The simplicity of the microplate description of the deformation and its good fit to the GPS data are surprising and were not anticipated by previous work, which had suggested either many rigid elements or broad deforming zones that comprise much of the Aegean region. The isolated deforming zones are also unexpected and cannot be explained by the kinematics of the microplate motions. Strain rates within internally deforming zones are extensional and range from 30 to 50 nanostrain/year (nstrain/year, 10-9/year), 1 to 2 orders of magnitude lower than rates observed across the major microplate boundaries. Lower strain rates may exist elsewhere withi the microplates but are only resolved in Anatolia, where extension of 13 ?? 4 nstrain/ year is required by the data. Our results suggest that despite the detailed complexity of active continental deformation revealed by seismicity, active faulting, fault geomorphology, and earthquake fault plane solutions, continental tectonics, at least in the Aegean, is to first order very similar to global plate tectonics and obeys the same simple kinematic rules. Although the widespread distribution of Aegean seismicity and active faulting might suggest a rather spatially homogeneous seismic hazard, the focusing of deformation near microplate boundaries implies the highest hazard is comparably localized.

  12. Fault Diagnosis of Power Systems Using Intelligent Systems

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Oliver, Walter E. , Jr.

    1996-01-01

    The power system operator's need for a reliable power delivery system calls for a real-time or near-real-time Al-based fault diagnosis tool. Such a tool will allow NASA ground controllers to re-establish a normal or near-normal degraded operating state of the EPS (a DC power system) for Space Station Alpha by isolating the faulted branches and loads of the system. And after isolation, re-energizing those branches and loads that have been found not to have any faults in them. A proposed solution involves using the Fault Diagnosis Intelligent System (FDIS) to perform near-real time fault diagnosis of Alpha's EPS by downloading power transient telemetry at fault-time from onboard data loggers. The FDIS uses an ANN clustering algorithm augmented with a wavelet transform feature extractor. This combination enables this system to perform pattern recognition of the power transient signatures to diagnose the fault type and its location down to the orbital replaceable unit. FDIS has been tested using a simulation of the LeRC Testbed Space Station Freedom configuration including the topology from the DDCU's to the electrical loads attached to the TPDU's. FDIS will work in conjunction with the Power Management Load Scheduler to determine what the state of the system was at the time of the fault condition. This information is used to activate the appropriate diagnostic section, and to refine if necessary the solution obtained. In the latter case, if the FDIS reports back that it is equally likely that the faulty device as 'start tracker #1' and 'time generation unit,' then based on a priori knowledge of the system's state, the refined solution would be 'star tracker #1' located in cabinet ITAS2. It is concluded from the present studies that artificial intelligence diagnostic abilities are improved with the addition of the wavelet transform, and that when such a system such as FDIS is coupled to the Power Management Load Scheduler, a faulty device can be located and isolated from the rest of the system. The benefit of these studies provides NASA with the ability to quickly restore the operating status of a space station from a critical state to a safe degraded mode, thereby saving costs in experimentation rescheduling, fault diagnostics, and prevention of loss-of-life.

  13. Fault detection and isolation in the challenging Tennessee Eastman process by using image processing techniques.

    PubMed

    Hajihosseini, Payman; Anzehaee, Mohammad Mousavi; Behnam, Behzad

    2018-05-22

    The early fault detection and isolation in industrial systems is a critical factor in preventing equipment damage. In the proposed method, instead of using the time signals of sensors, the 2D image obtained by placing these signals next to each other in a matrix has been used; and then a novel fault detection and isolation procedure has been carried out based on image processing techniques. Different features including texture, wavelet transform, mean and standard deviation of the image accompanied with MLP and RBF neural networks based classifiers have been used for this purpose. Obtained results indicate the notable efficacy and success of the proposed method in detecting and isolating faults of the Tennessee Eastman benchmark process and its superiority over previous techniques. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Usage of Fault Detection Isolation & Recovery (FDIR) in Constellation (CxP) Launch Operations

    NASA Technical Reports Server (NTRS)

    Ferrell, Rob; Lewis, Mark; Perotti, Jose; Oostdyk, Rebecca; Spirkovska, Lilly; Hall, David; Brown, Barbara

    2010-01-01

    This paper will explore the usage of Fault Detection Isolation & Recovery (FDIR) in the Constellation Exploration Program (CxP), in particular Launch Operations at Kennedy Space Center (KSC). NASA's Exploration Technology Development Program (ETDP) is currently funding a project that is developing a prototype FDIR to demonstrate the feasibility of incorporating FDIR into the CxP Ground Operations Launch Control System (LCS). An architecture that supports multiple FDIR tools has been formulated that will support integration into the CxP Ground Operation's Launch Control System (LCS). In addition, tools have been selected that provide fault detection, fault isolation, and anomaly detection along with integration between Flight and Ground elements.

  15. Magma-tectonic Interaction at Laguna del Maule, Chile

    NASA Astrophysics Data System (ADS)

    Keranen, K. M.; Peterson, D. E.; Miller, C. A.; Garibaldi, N.; Tikoff, B.; Williams-Jones, G.

    2016-12-01

    The Laguna del Maule Volcanic Field (LdM), Chile, the largest concentration of rhyolite <20 kyr globally, exhibits crustal deformation at rates higher than any non-erupting volcano. The interaction of large magmatic systems with faulting is poorly understood, however, the Chaitén rhyolitic system demonstrated that faults can serve as magma pathways during an eruption. We present a complex fault system at LdM in close proximity to the magma reservoir. In March 2016, 18 CHIRP seismic reflection lines were acquired at LdM to identify faults and analyze potential spatial and temporal impacts of the fault system on volcanic activity. We mapped three key horizons on each line, bounding sediment packages between Holocene onset, 870 ybp, and the present date. Faults were mapped on each line and offset was calculated across key horizons. Our results indicate a system of normal-component faults in the northern lake sector, striking subparallel to the mapped Troncoso Fault SW of the lake. These faults correlate to prominent magnetic lineations mapped by boat magnetic data acquired February 2016 which are interpreted as dykes intruding along faults. We also imaged a vertical fault, interpreted as a strike-slip fault, and a series of normal faults in the SW lake sector near the center of magmatic inflation. Isochron and fault offset maps illuminate areas of growth strata and indicate migration and increase of fault activity from south to north through time. We identify a domal structure in the SW lake sector, coincident with an area of low magnetization, in the region of maximum deformation from InSAR results. The dome experienced 10 ms TWT ( 10 meters) of uplift throughout the past 16 kybp, which we interpret as magmatic inflation in a shallow magma reservoir. This inflation is isolated to a 1.5 km diameter region in the hanging wall of the primary normal fault system, indicating possible fault-facilitated inflation.

  16. Autonomous power expert system advanced development

    NASA Technical Reports Server (NTRS)

    Quinn, Todd M.; Walters, Jerry L.

    1991-01-01

    The autonomous power expert (APEX) system is being developed at Lewis Research Center to function as a fault diagnosis advisor for a space power distribution test bed. APEX is a rule-based system capable of detecting faults and isolating the probable causes. APEX also has a justification facility to provide natural language explanations about conclusions reached during fault isolation. To help maintain the health of the power distribution system, additional capabilities were added to APEX. These capabilities allow detection and isolation of incipient faults and enable the expert system to recommend actions/procedure to correct the suspected fault conditions. New capabilities for incipient fault detection consist of storage and analysis of historical data and new user interface displays. After the cause of a fault is determined, appropriate recommended actions are selected by rule-based inferencing which provides corrective/extended test procedures. Color graphics displays and improved mouse-selectable menus were also added to provide a friendlier user interface. A discussion of APEX in general and a more detailed description of the incipient detection, recommended actions, and user interface developments during the last year are presented.

  17. Fault detection, isolation, and diagnosis of self-validating multifunctional sensors.

    PubMed

    Yang, Jing-Li; Chen, Yin-Sheng; Zhang, Li-Li; Sun, Zhen

    2016-06-01

    A novel fault detection, isolation, and diagnosis (FDID) strategy for self-validating multifunctional sensors is presented in this paper. The sparse non-negative matrix factorization-based method can effectively detect faults by using the squared prediction error (SPE) statistic, and the variables contribution plots based on SPE statistic can help to locate and isolate the faulty sensitive units. The complete ensemble empirical mode decomposition is employed to decompose the fault signals to a series of intrinsic mode functions (IMFs) and a residual. The sample entropy (SampEn)-weighted energy values of each IMFs and the residual are estimated to represent the characteristics of the fault signals. Multi-class support vector machine is introduced to identify the fault mode with the purpose of diagnosing status of the faulty sensitive units. The performance of the proposed strategy is compared with other fault detection strategies such as principal component analysis, independent component analysis, and fault diagnosis strategies such as empirical mode decomposition coupled with support vector machine. The proposed strategy is fully evaluated in a real self-validating multifunctional sensors experimental system, and the experimental results demonstrate that the proposed strategy provides an excellent solution to the FDID research topic of self-validating multifunctional sensors.

  18. Model-Based Diagnostics for Propellant Loading Systems

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew John; Foygel, Michael; Smelyanskiy, Vadim N.

    2011-01-01

    The loading of spacecraft propellants is a complex, risky operation. Therefore, diagnostic solutions are necessary to quickly identify when a fault occurs, so that recovery actions can be taken or an abort procedure can be initiated. Model-based diagnosis solutions, established using an in-depth analysis and understanding of the underlying physical processes, offer the advanced capability to quickly detect and isolate faults, identify their severity, and predict their effects on system performance. We develop a physics-based model of a cryogenic propellant loading system, which describes the complex dynamics of liquid hydrogen filling from a storage tank to an external vehicle tank, as well as the influence of different faults on this process. The model takes into account the main physical processes such as highly nonequilibrium condensation and evaporation of the hydrogen vapor, pressurization, and also the dynamics of liquid hydrogen and vapor flows inside the system in the presence of helium gas. Since the model incorporates multiple faults in the system, it provides a suitable framework for model-based diagnostics and prognostics algorithms. Using this model, we analyze the effects of faults on the system, derive symbolic fault signatures for the purposes of fault isolation, and perform fault identification using a particle filter approach. We demonstrate the detection, isolation, and identification of a number of faults using simulation-based experiments.

  19. Multiple incipient sensor faults diagnosis with application to high-speed railway traction devices.

    PubMed

    Wu, Yunkai; Jiang, Bin; Lu, Ningyun; Yang, Hao; Zhou, Yang

    2017-03-01

    This paper deals with the problem of incipient fault diagnosis for a class of Lipschitz nonlinear systems with sensor biases and explores further results of total measurable fault information residual (ToMFIR). Firstly, state and output transformations are introduced to transform the original system into two subsystems. The first subsystem is subject to system disturbances and free from sensor faults, while the second subsystem contains sensor faults but without any system disturbances. Sensor faults in the second subsystem are then formed as actuator faults by using a pseudo-actuator based approach. Since the effects of system disturbances on the residual are completely decoupled, multiple incipient sensor faults can be detected by constructing ToMFIR, and the fault detectability condition is then derived for discriminating the detectable incipient sensor faults. Further, a sliding-mode observers (SMOs) based fault isolation scheme is designed to guarantee accurate isolation of multiple sensor faults. Finally, simulation results conducted on a CRH2 high-speed railway traction device are given to demonstrate the effectiveness of the proposed approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Analytic Confusion Matrix Bounds for Fault Detection and Isolation Using a Sum-of-Squared- Residuals Approach

    NASA Technical Reports Server (NTRS)

    Simon, Dan; Simon, Donald L.

    2009-01-01

    Given a system which can fail in 1 or n different ways, a fault detection and isolation (FDI) algorithm uses sensor data in order to determine which fault is the most likely to have occurred. The effectiveness of an FDI algorithm can be quantified by a confusion matrix, which i ndicates the probability that each fault is isolated given that each fault has occurred. Confusion matrices are often generated with simulation data, particularly for complex systems. In this paper we perform FDI using sums of squares of sensor residuals (SSRs). We assume that the sensor residuals are Gaussian, which gives the SSRs a chi-squared distribution. We then generate analytic lower and upper bounds on the confusion matrix elements. This allows for the generation of optimal sensor sets without numerical simulations. The confusion matrix bound s are verified with simulated aircraft engine data.

  1. Qualitative Fault Isolation of Hybrid Systems: A Structural Model Decomposition-Based Approach

    NASA Technical Reports Server (NTRS)

    Bregon, Anibal; Daigle, Matthew; Roychoudhury, Indranil

    2016-01-01

    Quick and robust fault diagnosis is critical to ensuring safe operation of complex engineering systems. A large number of techniques are available to provide fault diagnosis in systems with continuous dynamics. However, many systems in aerospace and industrial environments are best represented as hybrid systems that consist of discrete behavioral modes, each with its own continuous dynamics. These hybrid dynamics make the on-line fault diagnosis task computationally more complex due to the large number of possible system modes and the existence of autonomous mode transitions. This paper presents a qualitative fault isolation framework for hybrid systems based on structural model decomposition. The fault isolation is performed by analyzing the qualitative information of the residual deviations. However, in hybrid systems this process becomes complex due to possible existence of observation delays, which can cause observed deviations to be inconsistent with the expected deviations for the current mode in the system. The great advantage of structural model decomposition is that (i) it allows to design residuals that respond to only a subset of the faults, and (ii) every time a mode change occurs, only a subset of the residuals will need to be reconfigured, thus reducing the complexity of the reasoning process for isolation purposes. To demonstrate and test the validity of our approach, we use an electric circuit simulation as the case study.

  2. An Integrated Architecture for Aircraft Engine Performance Monitoring and Fault Diagnostics: Engine Test Results

    NASA Technical Reports Server (NTRS)

    Rinehart, Aidan W.; Simon, Donald L.

    2015-01-01

    This paper presents a model-based architecture for performance trend monitoring and gas path fault diagnostics designed for analyzing streaming transient aircraft engine measurement data. The technique analyzes residuals between sensed engine outputs and model predicted outputs for fault detection and isolation purposes. Diagnostic results from the application of the approach to test data acquired from an aircraft turbofan engine are presented. The approach is found to avoid false alarms when presented nominal fault-free data. Additionally, the approach is found to successfully detect and isolate gas path seeded-faults under steady-state operating scenarios although some fault misclassifications are noted during engine transients. Recommendations for follow-on maturation and evaluation of the technique are also presented.

  3. An Integrated Architecture for Aircraft Engine Performance Monitoring and Fault Diagnostics: Engine Test Results

    NASA Technical Reports Server (NTRS)

    Rinehart, Aidan W.; Simon, Donald L.

    2014-01-01

    This paper presents a model-based architecture for performance trend monitoring and gas path fault diagnostics designed for analyzing streaming transient aircraft engine measurement data. The technique analyzes residuals between sensed engine outputs and model predicted outputs for fault detection and isolation purposes. Diagnostic results from the application of the approach to test data acquired from an aircraft turbofan engine are presented. The approach is found to avoid false alarms when presented nominal fault-free data. Additionally, the approach is found to successfully detect and isolate gas path seeded-faults under steady-state operating scenarios although some fault misclassifications are noted during engine transients. Recommendations for follow-on maturation and evaluation of the technique are also presented.

  4. Fault isolation techniques

    NASA Technical Reports Server (NTRS)

    Dumas, A.

    1981-01-01

    Three major areas that are considered in the development of an overall maintenance scheme of computer equipment are described. The areas of concern related to fault isolation techniques are: the programmer (or user), company and its policies, and the manufacturer of the equipment.

  5. An Integrated Approach for Aircraft Engine Performance Estimation and Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    imon, Donald L.; Armstrong, Jeffrey B.

    2012-01-01

    A Kalman filter-based approach for integrated on-line aircraft engine performance estimation and gas path fault diagnostics is presented. This technique is specifically designed for underdetermined estimation problems where there are more unknown system parameters representing deterioration and faults than available sensor measurements. A previously developed methodology is applied to optimally design a Kalman filter to estimate a vector of tuning parameters, appropriately sized to enable estimation. The estimated tuning parameters can then be transformed into a larger vector of health parameters representing system performance deterioration and fault effects. The results of this study show that basing fault isolation decisions solely on the estimated health parameter vector does not provide ideal results. Furthermore, expanding the number of the health parameters to address additional gas path faults causes a decrease in the estimation accuracy of those health parameters representative of turbomachinery performance deterioration. However, improved fault isolation performance is demonstrated through direct analysis of the estimated tuning parameters produced by the Kalman filter. This was found to provide equivalent or superior accuracy compared to the conventional fault isolation approach based on the analysis of sensed engine outputs, while simplifying online implementation requirements. Results from the application of these techniques to an aircraft engine simulation are presented and discussed.

  6. Automatic Detection of Electric Power Troubles (ADEPT)

    NASA Technical Reports Server (NTRS)

    Wang, Caroline; Zeanah, Hugh; Anderson, Audie; Patrick, Clint; Brady, Mike; Ford, Donnie

    1988-01-01

    ADEPT is an expert system that integrates knowledge from three different suppliers to offer an advanced fault-detection system, and is designed for two modes of operation: real-time fault isolation and simulated modeling. Real time fault isolation of components is accomplished on a power system breadboard through the Fault Isolation Expert System (FIES II) interface with a rule system developed in-house. Faults are quickly detected and displayed and the rules and chain of reasoning optionally provided on a Laser printer. This system consists of a simulated Space Station power module using direct-current power supplies for Solar arrays on three power busses. For tests of the system's ability to locate faults inserted via switches, loads are configured by an INTEL microcomputer and the Symbolics artificial intelligence development system. As these loads are resistive in nature, Ohm's Law is used as the basis for rules by which faults are located. The three-bus system can correct faults automatically where there is a surplus of power available on any of the three busses. Techniques developed and used can be applied readily to other control systems requiring rapid intelligent decisions. Simulated modelling, used for theoretical studies, is implemented using a modified version of Kennedy Space Center's KATE (Knowledge-Based Automatic Test Equipment), FIES II windowing, and an ADEPT knowledge base. A load scheduler and a fault recovery system are currently under development to support both modes of operation.

  7. Integral Sensor Fault Detection and Isolation for Railway Traction Drive.

    PubMed

    Garramiola, Fernando; Del Olmo, Jon; Poza, Javier; Madina, Patxi; Almandoz, Gaizka

    2018-05-13

    Due to the increasing importance of reliability and availability of electric traction drives in Railway applications, early detection of faults has become an important key for Railway traction drive manufacturers. Sensor faults are important sources of failures. Among the different fault diagnosis approaches, in this article an integral diagnosis strategy for sensors in traction drives is presented. Such strategy is composed of an observer-based approach for direct current (DC)-link voltage and catenary current sensors, a frequency analysis approach for motor current phase sensors and a hardware redundancy solution for speed sensors. None of them requires any hardware change requirement in the actual traction drive. All the fault detection and isolation approaches have been validated in a Hardware-in-the-loop platform comprising a Real Time Simulator and a commercial Traction Control Unit for a tram. In comparison to safety-critical systems in Aerospace applications, Railway applications do not need instantaneous detection, and the diagnosis is validated in a short time period for reliable decision. Combining the different approaches and existing hardware redundancy, an integral fault diagnosis solution is provided, to detect and isolate faults in all the sensors installed in the traction drive.

  8. Integral Sensor Fault Detection and Isolation for Railway Traction Drive

    PubMed Central

    del Olmo, Jon; Poza, Javier; Madina, Patxi; Almandoz, Gaizka

    2018-01-01

    Due to the increasing importance of reliability and availability of electric traction drives in Railway applications, early detection of faults has become an important key for Railway traction drive manufacturers. Sensor faults are important sources of failures. Among the different fault diagnosis approaches, in this article an integral diagnosis strategy for sensors in traction drives is presented. Such strategy is composed of an observer-based approach for direct current (DC)-link voltage and catenary current sensors, a frequency analysis approach for motor current phase sensors and a hardware redundancy solution for speed sensors. None of them requires any hardware change requirement in the actual traction drive. All the fault detection and isolation approaches have been validated in a Hardware-in-the-loop platform comprising a Real Time Simulator and a commercial Traction Control Unit for a tram. In comparison to safety-critical systems in Aerospace applications, Railway applications do not need instantaneous detection, and the diagnosis is validated in a short time period for reliable decision. Combining the different approaches and existing hardware redundancy, an integral fault diagnosis solution is provided, to detect and isolate faults in all the sensors installed in the traction drive. PMID:29757251

  9. System and method for bearing fault detection using stator current noise cancellation

    DOEpatents

    Zhou, Wei; Lu, Bin; Habetler, Thomas G.; Harley, Ronald G.; Theisen, Peter J.

    2010-08-17

    A system and method for detecting incipient mechanical motor faults by way of current noise cancellation is disclosed. The system includes a controller configured to detect indicia of incipient mechanical motor faults. The controller further includes a processor programmed to receive a baseline set of current data from an operating motor and define a noise component in the baseline set of current data. The processor is also programmed to repeatedly receive real-time operating current data from the operating motor and remove the noise component from the operating current data in real-time to isolate any fault components present in the operating current data. The processor is then programmed to generate a fault index for the operating current data based on any isolated fault components.

  10. San Andreas tremor cascades define deep fault zone complexity

    USGS Publications Warehouse

    Shelly, David R.

    2015-01-01

    Weak seismic vibrations - tectonic tremor - can be used to delineate some plate boundary faults. Tremor on the deep San Andreas Fault, located at the boundary between the Pacific and North American plates, is thought to be a passive indicator of slow fault slip. San Andreas Fault tremor migrates at up to 30 m s-1, but the processes regulating tremor migration are unclear. Here I use a 12-year catalogue of more than 850,000 low-frequency earthquakes to systematically analyse the high-speed migration of tremor along the San Andreas Fault. I find that tremor migrates most effectively through regions of greatest tremor production and does not propagate through regions with gaps in tremor production. I interpret the rapid tremor migration as a self-regulating cascade of seismic ruptures along the fault, which implies that tremor may be an active, rather than passive participant in the slip propagation. I also identify an isolated group of tremor sources that are offset eastwards beneath the San Andreas Fault, possibly indicative of the interface between the Monterey Microplate, a hypothesized remnant of the subducted Farallon Plate, and the North American Plate. These observations illustrate a possible link between the central San Andreas Fault and tremor-producing subduction zones.

  11. Lessons Learned on Implementing Fault Detection, Isolation, and Recovery (FDIR) in a Ground Launch Environment

    NASA Technical Reports Server (NTRS)

    Ferell, Bob; Lewis, Mark; Perotti, Jose; Oostdyk, Rebecca; Goerz, Jesse; Brown, Barbara

    2010-01-01

    This paper's main purpose is to detail issues and lessons learned regarding designing, integrating, and implementing Fault Detection Isolation and Recovery (FDIR) for Constellation Exploration Program (CxP) Ground Operations at Kennedy Space Center (KSC).

  12. Detecting and isolating abrupt changes in linear switching systems

    NASA Astrophysics Data System (ADS)

    Nazari, Sohail; Zhao, Qing; Huang, Biao

    2015-04-01

    In this paper, a novel fault detection and isolation (FDI) method for switching linear systems is developed. All input and output signals are assumed to be corrupted with measurement noises. In the proposed method, a 'lifted' linear model named as stochastic hybrid decoupling polynomial (SHDP) is introduced. The SHDP model governs the dynamics of the switching linear system with all different modes, and is independent of the switching sequence. The error-in-variable (EIV) representation of SHDP is derived, and is used for the fault residual generation and isolation following the well-adopted local approach. The proposed FDI method can detect and isolate the fault-induced abrupt changes in switching models' parameters without estimating the switching modes. Furthermore, in this paper, the analytical expressions of the gradient vector and Hessian matrix are obtained based on the EIV SHDP formulation, so that they can be used to implement the online fault detection scheme. The performance of the proposed method is then illustrated by simulation examples.

  13. Multiple sensor fault diagnosis for dynamic processes.

    PubMed

    Li, Cheng-Chih; Jeng, Jyh-Cheng

    2010-10-01

    Modern industrial plants are usually large scaled and contain a great amount of sensors. Sensor fault diagnosis is crucial and necessary to process safety and optimal operation. This paper proposes a systematic approach to detect, isolate and identify multiple sensor faults for multivariate dynamic systems. The current work first defines deviation vectors for sensor observations, and further defines and derives the basic sensor fault matrix (BSFM), consisting of the normalized basic fault vectors, by several different methods. By projecting a process deviation vector to the space spanned by BSFM, this research uses a vector with the resulted weights on each direction for multiple sensor fault diagnosis. This study also proposes a novel monitoring index and derives corresponding sensor fault detectability. The study also utilizes that vector to isolate and identify multiple sensor faults, and discusses the isolatability and identifiability. Simulation examples and comparison with two conventional PCA-based contribution plots are presented to demonstrate the effectiveness of the proposed methodology. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  14. A comparative study of sensor fault diagnosis methods based on observer for ECAS system

    NASA Astrophysics Data System (ADS)

    Xu, Xing; Wang, Wei; Zou, Nannan; Chen, Long; Cui, Xiaoli

    2017-03-01

    The performance and practicality of electronically controlled air suspension (ECAS) system are highly dependent on the state information supplied by kinds of sensors, but faults of sensors occur frequently. Based on a non-linearized 3-DOF 1/4 vehicle model, different methods of fault detection and isolation (FDI) are used to diagnose the sensor faults for ECAS system. The considered approaches include an extended Kalman filter (EKF) with concise algorithm, a strong tracking filter (STF) with robust tracking ability, and the cubature Kalman filter (CKF) with numerical precision. We propose three filters of EKF, STF, and CKF to design a state observer of ECAS system under typical sensor faults and noise. Results show that three approaches can successfully detect and isolate faults respectively despite of the existence of environmental noise, FDI time delay and fault sensitivity of different algorithms are different, meanwhile, compared with EKF and STF, CKF method has best performing FDI of sensor faults for ECAS system.

  15. Towards an operational fault isolation expert system for French telecommunication satellite Telecom 2

    NASA Astrophysics Data System (ADS)

    Haziza, M.

    1990-10-01

    The DIAMS satellite fault isolation expert system shell concept is described. The project, initiated in 1985, has led to the development of a prototype Expert System (ES) dedicated to the Telecom 1 attitude and orbit control system. The prototype ES has been installed in the Telecom 1 satellite control center and evaluated by Telecom 1 operations. The development of a fault isolation ES covering a whole spacecraft (the French telecommunication satellite Telecom 2) is currently being undertaken. Full scale industrial applications raise stringent requirements in terms of knowledge management and software development methodology. The approach used by MATRA ESPACE to face this challenge is outlined.

  16. Automatic Detection of Electric Power Troubles (ADEPT)

    NASA Technical Reports Server (NTRS)

    Wang, Caroline; Zeanah, Hugh; Anderson, Audie; Patrick, Clint; Brady, Mike; Ford, Donnie

    1988-01-01

    Automatic Detection of Electric Power Troubles (A DEPT) is an expert system that integrates knowledge from three different suppliers to offer an advanced fault-detection system. It is designed for two modes of operation: real time fault isolation and simulated modeling. Real time fault isolation of components is accomplished on a power system breadboard through the Fault Isolation Expert System (FIES II) interface with a rule system developed in-house. Faults are quickly detected and displayed and the rules and chain of reasoning optionally provided on a laser printer. This system consists of a simulated space station power module using direct-current power supplies for solar arrays on three power buses. For tests of the system's ablilty to locate faults inserted via switches, loads are configured by an INTEL microcomputer and the Symbolics artificial intelligence development system. As these loads are resistive in nature, Ohm's Law is used as the basis for rules by which faults are located. The three-bus system can correct faults automatically where there is a surplus of power available on any of the three buses. Techniques developed and used can be applied readily to other control systems requiring rapid intelligent decisions. Simulated modeling, used for theoretical studies, is implemented using a modified version of Kennedy Space Center's KATE (Knowledge-Based Automatic Test Equipment), FIES II windowing, and an ADEPT knowledge base.

  17. Automatic Detection of Electric Power Troubles (ADEPT)

    NASA Astrophysics Data System (ADS)

    Wang, Caroline; Zeanah, Hugh; Anderson, Audie; Patrick, Clint; Brady, Mike; Ford, Donnie

    1988-11-01

    Automatic Detection of Electric Power Troubles (A DEPT) is an expert system that integrates knowledge from three different suppliers to offer an advanced fault-detection system. It is designed for two modes of operation: real time fault isolation and simulated modeling. Real time fault isolation of components is accomplished on a power system breadboard through the Fault Isolation Expert System (FIES II) interface with a rule system developed in-house. Faults are quickly detected and displayed and the rules and chain of reasoning optionally provided on a laser printer. This system consists of a simulated space station power module using direct-current power supplies for solar arrays on three power buses. For tests of the system's ablilty to locate faults inserted via switches, loads are configured by an INTEL microcomputer and the Symbolics artificial intelligence development system. As these loads are resistive in nature, Ohm's Law is used as the basis for rules by which faults are located. The three-bus system can correct faults automatically where there is a surplus of power available on any of the three buses. Techniques developed and used can be applied readily to other control systems requiring rapid intelligent decisions. Simulated modeling, used for theoretical studies, is implemented using a modified version of Kennedy Space Center's KATE (Knowledge-Based Automatic Test Equipment), FIES II windowing, and an ADEPT knowledge base.

  18. A single dynamic observer-based module for design of simultaneous fault detection, isolation and tracking control scheme

    NASA Astrophysics Data System (ADS)

    Davoodi, M.; Meskin, N.; Khorasani, K.

    2018-03-01

    The problem of simultaneous fault detection, isolation and tracking (SFDIT) control design for linear systems subject to both bounded energy and bounded peak disturbances is considered in this work. A dynamic observer is proposed and implemented by using the H∞/H-/L1 formulation of the SFDIT problem. A single dynamic observer module is designed that generates the residuals as well as the control signals. The objective of the SFDIT module is to ensure that simultaneously the effects of disturbances and control signals on the residual signals are minimised (in order to accomplish the fault detection goal) subject to the constraint that the transfer matrix from the faults to the residuals is equal to a pre-assigned diagonal transfer matrix (in order to accomplish the fault isolation goal), while the effects of disturbances, reference inputs and faults on the specified control outputs are minimised (in order to accomplish the fault-tolerant and tracking control goals). A set of linear matrix inequality (LMI) feasibility conditions are derived to ensure solvability of the problem. In order to illustrate and demonstrate the effectiveness of our proposed design methodology, the developed and proposed schemes are applied to an autonomous unmanned underwater vehicle (AUV).

  19. Fault detection and isolation of high temperature proton exchange membrane fuel cell stack under the influence of degradation

    NASA Astrophysics Data System (ADS)

    Jeppesen, Christian; Araya, Samuel Simon; Sahlin, Simon Lennart; Thomas, Sobi; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2017-08-01

    This study proposes a data-drive impedance-based methodology for fault detection and isolation of low and high cathode stoichiometry, high CO concentration in the anode gas, high methanol vapour concentrations in the anode gas and low anode stoichiometry, for high temperature PEM fuel cells. The fault detection and isolation algorithm is based on an artificial neural network classifier, which uses three extracted features as input. Two of the proposed features are based on angles in the impedance spectrum, and are therefore relative to specific points, and shown to be independent of degradation, contrary to other available feature extraction methods in the literature. The experimental data is based on a 35 day experiment, where 2010 unique electrochemical impedance spectroscopy measurements were recorded. The test of the algorithm resulted in a good detectability of the faults, except for high methanol vapour concentration in the anode gas fault, which was found to be difficult to distinguish from a normal operational data. The achieved accuracy for faults related to CO pollution, anode- and cathode stoichiometry is 100% success rate. Overall global accuracy on the test data is 94.6%.

  20. Fault Identification by Unsupervised Learning Algorithm

    NASA Astrophysics Data System (ADS)

    Nandan, S.; Mannu, U.

    2012-12-01

    Contemporary fault identification techniques predominantly rely on the surface expression of the fault. This biased observation is inadequate to yield detailed fault structures in areas with surface cover like cities deserts vegetation etc and the changes in fault patterns with depth. Furthermore it is difficult to estimate faults structure which do not generate any surface rupture. Many disastrous events have been attributed to these blind faults. Faults and earthquakes are very closely related as earthquakes occur on faults and faults grow by accumulation of coseismic rupture. For a better seismic risk evaluation it is imperative to recognize and map these faults. We implement a novel approach to identify seismically active fault planes from three dimensional hypocenter distribution by making use of unsupervised learning algorithms. We employ K-means clustering algorithm and Expectation Maximization (EM) algorithm modified to identify planar structures in spatial distribution of hypocenter after filtering out isolated events. We examine difference in the faults reconstructed by deterministic assignment in K- means and probabilistic assignment in EM algorithm. The method is conceptually identical to methodologies developed by Ouillion et al (2008, 2010) and has been extensively tested on synthetic data. We determined the sensitivity of the methodology to uncertainties in hypocenter location, density of clustering and cross cutting fault structures. The method has been applied to datasets from two contrasting regions. While Kumaon Himalaya is a convergent plate boundary, Koyna-Warna lies in middle of the Indian Plate but has a history of triggered seismicity. The reconstructed faults were validated by examining the fault orientation of mapped faults and the focal mechanism of these events determined through waveform inversion. The reconstructed faults could be used to solve the fault plane ambiguity in focal mechanism determination and constrain the fault orientations for finite source inversions. The faults produced by the method exhibited good correlation with the fault planes obtained by focal mechanism solutions and previously mapped faults.

  1. Optimal Sensor Allocation for Fault Detection and Isolation

    NASA Technical Reports Server (NTRS)

    Azam, Mohammad; Pattipati, Krishna; Patterson-Hine, Ann

    2004-01-01

    Automatic fault diagnostic schemes rely on various types of sensors (e.g., temperature, pressure, vibration, etc) to measure the system parameters. Efficacy of a diagnostic scheme is largely dependent on the amount and quality of information available from these sensors. The reliability of sensors, as well as the weight, volume, power, and cost constraints, often makes it impractical to monitor a large number of system parameters. An optimized sensor allocation that maximizes the fault diagnosibility, subject to specified weight, volume, power, and cost constraints is required. Use of optimal sensor allocation strategies during the design phase can ensure better diagnostics at a reduced cost for a system incorporating a high degree of built-in testing. In this paper, we propose an approach that employs multiple fault diagnosis (MFD) and optimization techniques for optimal sensor placement for fault detection and isolation (FDI) in complex systems. Keywords: sensor allocation, multiple fault diagnosis, Lagrangian relaxation, approximate belief revision, multidimensional knapsack problem.

  2. System and method for motor fault detection using stator current noise cancellation

    DOEpatents

    Zhou, Wei; Lu, Bin; Nowak, Michael P.; Dimino, Steven A.

    2010-12-07

    A system and method for detecting incipient mechanical motor faults by way of current noise cancellation is disclosed. The system includes a controller configured to detect indicia of incipient mechanical motor faults. The controller further includes a processor programmed to receive a baseline set of current data from an operating motor and define a noise component in the baseline set of current data. The processor is also programmed to acquire at least on additional set of real-time operating current data from the motor during operation, redefine the noise component present in each additional set of real-time operating current data, and remove the noise component from the operating current data in real-time to isolate any fault components present in the operating current data. The processor is then programmed to generate a fault index for the operating current data based on any isolated fault components.

  3. Methods and apparatus using commutative error detection values for fault isolation in multiple node computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almasi, Gheorghe; Blumrich, Matthias Augustin; Chen, Dong

    Methods and apparatus perform fault isolation in multiple node computing systems using commutative error detection values for--example, checksums--to identify and to isolate faulty nodes. When information associated with a reproducible portion of a computer program is injected into a network by a node, a commutative error detection value is calculated. At intervals, node fault detection apparatus associated with the multiple node computer system retrieve commutative error detection values associated with the node and stores them in memory. When the computer program is executed again by the multiple node computer system, new commutative error detection values are created and stored inmore » memory. The node fault detection apparatus identifies faulty nodes by comparing commutative error detection values associated with reproducible portions of the application program generated by a particular node from different runs of the application program. Differences in values indicate a possible faulty node.« less

  4. NASA Space Flight Vehicle Fault Isolation Challenges

    NASA Technical Reports Server (NTRS)

    Bramon, Christopher; Inman, Sharon K.; Neeley, James R.; Jones, James V.; Tuttle, Loraine

    2016-01-01

    The Space Launch System (SLS) is the new NASA heavy lift launch vehicle and is scheduled for its first mission in 2017. The goal of the first mission, which will be uncrewed, is to demonstrate the integrated system performance of the SLS rocket and spacecraft before a crewed flight in 2021. SLS has many of the same logistics challenges as any other large scale program. Common logistics concerns for SLS include integration of discrete programs geographically separated, multiple prime contractors with distinct and different goals, schedule pressures and funding constraints. However, SLS also faces unique challenges. The new program is a confluence of new hardware and heritage, with heritage hardware constituting seventy-five percent of the program. This unique approach to design makes logistics concerns such as testability of the integrated flight vehicle especially problematic. The cost of fully automated diagnostics can be completely justified for a large fleet, but not so for a single flight vehicle. Fault detection is mandatory to assure the vehicle is capable of a safe launch, but fault isolation is another issue. SLS has considered various methods for fault isolation which can provide a reasonable balance between adequacy, timeliness and cost. This paper will address the analyses and decisions the NASA Logistics engineers are making to mitigate risk while providing a reasonable testability solution for fault isolation.

  5. Improved Sensor Fault Detection, Isolation, and Mitigation Using Multiple Observers Approach

    PubMed Central

    Wang, Zheng; Anand, D. M.; Moyne, J.; Tilbury, D. M.

    2017-01-01

    Traditional Fault Detection and Isolation (FDI) methods analyze a residual signal to detect and isolate sensor faults. The residual signal is the difference between the sensor measurements and the estimated outputs of the system based on an observer. The traditional residual-based FDI methods, however, have some limitations. First, they require that the observer has reached its steady state. In addition, residual-based methods may not detect some sensor faults, such as faults on critical sensors that result in an unobservable system. Furthermore, the system may be in jeopardy if actions required for mitigating the impact of the faulty sensors are not taken before the faulty sensors are identified. The contribution of this paper is to propose three new methods to address these limitations. Faults that occur during the observers' transient state can be detected by analyzing the convergence rate of the estimation error. Open-loop observers, which do not rely on sensor information, are used to detect faults on critical sensors. By switching among different observers, we can potentially mitigate the impact of the faulty sensor during the FDI process. These three methods are systematically integrated with a previously developed residual-based method to provide an improved FDI and mitigation capability framework. The overall approach is validated mathematically, and the effectiveness of the overall approach is demonstrated through simulation on a 5-state suspension system. PMID:28924303

  6. Methanogenic archaea isolated from Taiwan's Chelungpu fault.

    PubMed

    Wu, Sue-Yao; Lai, Mei-Chin

    2011-02-01

    Terrestrial rocks, petroleum reservoirs, faults, coal seams, and subseafloor gas hydrates contain an abundance of diverse methanoarchaea. However, reports on the isolation, purification, and characterization of methanoarchaea in the subsurface environment are rare. Currently, no studies investigating methanoarchaea within fault environments exist. In this report, we succeeded in obtaining two new methanogen isolates, St545Mb(T) of newly proposed species Methanolobus chelungpuianus and Methanobacterium palustre FG694aF, from the Chelungpu fault, which is the fault that caused a devastating earthquake in central Taiwan in 1999. Strain FG694aF was isolated from a fault gouge sample obtained at 694 m below land surface (mbls) and is an autotrophic, mesophilic, nonmotile, thin, filamentous-rod-shaped organism capable of using H(2)-CO(2) and formate as substrates for methanogenesis. The morphological, biochemical, and physiological characteristics and 16S rRNA gene sequence analysis revealed that this isolate belongs to Methanobacterium palustre. The mesophilic strain St545Mb(T), isolated from a sandstone sample at 545 mbls, is a nonmotile, irregular, coccoid organism that uses methanol and trimethylamine as substrates for methanogenesis. The 16S rRNA gene sequence of strain St545Mb(T) was 99.0% similar to that of Methanolobus psychrophilus strain R15 and was 96 to 97.5% similar to the those of other Methanolobus species. However, the optimal growth temperature and total cell protein profile of strain St545Mb(T) were different from those of M. psychrophilus strain R15, and whole-genome DNA-DNA hybridization revealed less than 20% relatedness between these two strains. On the basis of these observations, we propose that strain St545Mb(T) (DSM 19953(T); BCRC AR10030; JCM 15159) be named Methanolobus chelungpuianus sp. nov. Moreover, the environmental DNA database survey indicates that both Methanolobus chelungpuianus and Methanobacterium palustre are widespread in the subsurface environment.

  7. Effects of Caribbean oceanic plateau shallow subduction on topographic uplift and exhumation of the northwestern Maracaibo block, Colombia

    NASA Astrophysics Data System (ADS)

    Sanchez, J.; Mann, P.

    2013-12-01

    The Maracaibo block in the northwestern South America is a triangular lithotectonic terrane bounded on its western edge by the Santa Marta-Bucaramanga left-lateral strike-slip fault and the Oca-Ancon right-lateral strike-slip fault on its northern edge. These faults bound two isolated Andean ranges within the Maracaibo block: the Sierra de Santa Marta massif (SSM) in the east whose highest point is 5700 m ASL, and the Serrania del Perija (SP) to the west, whose highest point is 3600 m ASL. The two ranges are separated by an elongate, NNE-trending sedimentary basin, the Cesar-Rancheria basin (CRB). Previous thermochronological studies in the region have shown three discrete exhumation pulses from Paleocene to Miocene that are attributed to various collisional and strike events along the Caribbean margin. However the tectonic origin of the late Neogene deformation that produced the isolated, high topography of the SSM and SP has remained unclear. To establish patterns of recent uplift and associate them with a specific tectonic mechanism affecting the area, we integrated the following results: 1) analysis of stream profiles using channel normalized steepness indices and identification of slope-break knickpoints as indicators of rock uplift; 2) integration of observations from geological maps; 3) interpretation of 2D onland seismic profiles; 4) analysis of published thermochronological data; and 5) analysis of 1D/2D basin model based on well subsidence analysis from the CRB. Our results from the extraction of 550 long stream profiles from different watersheds for the SSM and SP reveal: 1) undisturbed profiles at western flank of the northern SP characterized by a few vertical-step knickpoints associated with lithology changes; in contrast the eastern flank of the northern SP shows slope-break knickpoints and changes in steepness indices increasing by a factor of ~2, all indicative of active fault control affecting this area; 2) disturbed profiles in the elevated central SP show several slope-break knickpoints and changes in steepness indices by factor of ~1.9, all indicative of fault control in this area; 3) perturbations in stream profiles with change in steepness indices by a factor of ~1.6 occur in the southern SP are interpreted as the expression of the active Santa-Marta Bucaramanga fault system, 4) although most of the knickpoints in SSM profiles seem to be associated with changes in bedrock lithology, the alignments, slope-breaking character, and change in steepness indices by factor of ~1.8-2.2 indicate active ENE-WSW fault control along the south-southeastern edge of the SSM, 5) generally undisturbed profiles at northern SSM suggest current quiescence in rock uplift in this area; and 6) basin modeling of the CRB constrain the most recent uplift event as Mio-Pliocene at rates of 0.15-0.18 mm/yr. We propose that the most likely tectonic mechanism to explain widespread active fault activity and uplift within the SSM and SP is oblique, low-angle (20 degrees), southeastward subduction of the Caribbean plate beneath the area. The present rate of subduction and length of slab would have initiated uplift and fault activity at Early Miocene.

  8. Orion GN&C Fault Management System Verification: Scope And Methodology

    NASA Technical Reports Server (NTRS)

    Brown, Denise; Weiler, David; Flanary, Ronald

    2016-01-01

    In order to ensure long-term ability to meet mission goals and to provide for the safety of the public, ground personnel, and any crew members, nearly all spacecraft include a fault management (FM) system. For a manned vehicle such as Orion, the safety of the crew is of paramount importance. The goal of the Orion Guidance, Navigation and Control (GN&C) fault management system is to detect, isolate, and respond to faults before they can result in harm to the human crew or loss of the spacecraft. Verification of fault management/fault protection capability is challenging due to the large number of possible faults in a complex spacecraft, the inherent unpredictability of faults, the complexity of interactions among the various spacecraft components, and the inability to easily quantify human reactions to failure scenarios. The Orion GN&C Fault Detection, Isolation, and Recovery (FDIR) team has developed a methodology for bounding the scope of FM system verification while ensuring sufficient coverage of the failure space and providing high confidence that the fault management system meets all safety requirements. The methodology utilizes a swarm search algorithm to identify failure cases that can result in catastrophic loss of the crew or the vehicle and rare event sequential Monte Carlo to verify safety and FDIR performance requirements.

  9. Evaluation of an Enhanced Bank of Kalman Filters for In-Flight Aircraft Engine Sensor Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2004-01-01

    In this paper, an approach for in-flight fault detection and isolation (FDI) of aircraft engine sensors based on a bank of Kalman filters is developed. This approach utilizes multiple Kalman filters, each of which is designed based on a specific fault hypothesis. When the propulsion system experiences a fault, only one Kalman filter with the correct hypothesis is able to maintain the nominal estimation performance. Based on this knowledge, the isolation of faults is achieved. Since the propulsion system may experience component and actuator faults as well, a sensor FDI system must be robust in terms of avoiding misclassifications of any anomalies. The proposed approach utilizes a bank of (m+1) Kalman filters where m is the number of sensors being monitored. One Kalman filter is used for the detection of component and actuator faults while each of the other m filters detects a fault in a specific sensor. With this setup, the overall robustness of the sensor FDI system to anomalies is enhanced. Moreover, numerous component fault events can be accounted for by the FDI system. The sensor FDI system is applied to a commercial aircraft engine simulation, and its performance is evaluated at multiple power settings at a cruise operating point using various fault scenarios.

  10. A PC based time domain reflectometer for space station cable fault isolation

    NASA Technical Reports Server (NTRS)

    Pham, Michael; McClean, Marty; Hossain, Sabbir; Vo, Peter; Kouns, Ken

    1994-01-01

    Significant problems are faced by astronauts on orbit in the Space Station when trying to locate electrical faults in multi-segment avionics and communication cables. These problems necessitate the development of an automated portable device that will detect and locate cable faults using the pulse-echo technique known as Time Domain Reflectometry. A breadboard time domain reflectometer (TDR) circuit board was designed and developed at the NASA-JSC. The TDR board works in conjunction with a GRiD lap-top computer to automate the fault detection and isolation process. A software program was written to automatically display the nature and location of any possible faults. The breadboard system can isolate open circuit and short circuit faults within two feet in a typical space station cable configuration. Follow-on efforts planned for 1994 will produce a compact, portable prototype Space Station TDR capable of automated switching in multi-conductor cables for high fidelity evaluation. This device has many possible commercial applications, including commercial and military aircraft avionics, cable TV, telephone, communication, information and computer network systems. This paper describes the principle of time domain reflectometry and the methodology for on-orbit avionics utility distribution system repair, utilizing the newly developed device called the Space Station Time Domain Reflectometer (SSTDR).

  11. The Tjellefonna fault system of Western Norway: Linking late-Caledonian extension, post-Caledonian normal faulting, and Tertiary rock column uplift with the landslide-generated tsunami event of 1756

    NASA Astrophysics Data System (ADS)

    Redfield, T. F.; Osmundsen, P. T.

    2009-09-01

    On February 22, 1756, approximately 15.7 million cubic meters of bedrock were catastrophically released as a giant rockslide into the Langfjorden. Subsequently, three ˜ 40 meter high tsunami waves overwhelmed the village of Tjelle and several other local communities. Inherited structures had isolated a compartment in the hanging wall damage zone of the fjord-dwelling Tjellefonna fault. Because the region is seismically active in oblique-normal mode, and in accordance with scant historical sources, we speculate that an earthquake on a nearby fault may have caused the already-weakened Tjelle hillside to fail. From interpretation of structural, geomorphic, and thermo-chronological data we suggest that today's escarpment topography of Møre og Trøndelag is controlled to a first order by post-rift reactivation of faults parallel to the Mesozoic passive margin. In turn, a number of these faults reactivated Late Caledonian or early post-Caledonian fabrics. Normal-sense reactivation of inherited structures along much of coastal Norway suggests that a structural link exists between the processes that destroy today's mountains and those that created them. The Paleozoic Møre-Trøndelag Fault Complex was reactivated as a normal fault during the Mesozoic and, probably, throughout the Cenozoic until the present day. Its NE-SW trending strands crop out between the coast and the base of a c. 1.7 km high NW-facing topographic 'Great Escarpment.' Well-preserved kinematic indicators and multiple generations of fault products are exposed along the Tjellefonna fault, a well-defined structural and topographic lineament parallel to both the Langfjorden and the Great Escarpment. The slope instability that was formerly present at Tjelle, and additional instabilities currently present throughout the region, may be viewed as the direct product of past and ongoing development of tectonic topography in Møre og Trøndelag county. In the Langfjorden region in particular, structural geometry suggests additional unreleased rock compartments may be isolated and under normal fault control. Although post-glacial rebound and topographically-derived horizontal spreading stresses might in part help drive present-day oblique normal seismicity, the normal-fault-controlled escarpments of Norway were at least partly erected in pre-glacial times. Cretaceous to Early Tertiary post-rift subsidence was interrupted by normal faulting at the innermost portion of the passive margin, imposing a strong tectonic empreinte on the developing landscape.

  12. Numerical modelling of fault reactivation in carbonate rocks under fluid depletion conditions - 2D generic models with a small isolated fault

    NASA Astrophysics Data System (ADS)

    Zhang, Yanhua; Clennell, Michael B.; Delle Piane, Claudio; Ahmed, Shakil; Sarout, Joel

    2016-12-01

    This generic 2D elastic-plastic modelling investigated the reactivation of a small isolated and critically-stressed fault in carbonate rocks at a reservoir depth level for fluid depletion and normal-faulting stress conditions. The model properties and boundary conditions are based on field and laboratory experimental data from a carbonate reservoir. The results show that a pore pressure perturbation of -25 MPa by depletion can lead to the reactivation of the fault and parts of the surrounding damage zones, producing normal-faulting downthrows and strain localization. The mechanism triggering fault reactivation in a carbonate field is the increase of shear stresses with pore-pressure reduction, due to the decrease of the absolute horizontal stress, which leads to an expanded Mohr's circle and mechanical failure, consistent with the predictions of previous poroelastic models. Two scenarios for fault and damage-zone permeability development are explored: (1) large permeability enhancement of a sealing fault upon reactivation, and (2) fault and damage zone permeability development governed by effective mean stress. In the first scenario, the fault becomes highly permeable to across- and along-fault fluid transport, removing local pore pressure highs/lows arising from the presence of the initially sealing fault. In the second scenario, reactivation induces small permeability enhancement in the fault and parts of damage zones, followed by small post-reactivation permeability reduction. Such permeability changes do not appear to change the original flow capacity of the fault or modify the fluid flow velocity fields dramatically.

  13. A Solid-State Fault Current Limiting Device for VSC-HVDC Systems

    NASA Astrophysics Data System (ADS)

    Larruskain, D. Marene; Zamora, Inmaculada; Abarrategui, , Oihane; Iturregi, Araitz

    2013-08-01

    Faults in the DC circuit constitute one of the main limitations of voltage source converter VSC-HVDC systems, as the high fault currents can damage seriously the converters. In this article, a new design for a fault current limiter (FCL) is proposed, which is capable of limiting the fault current as well as interrupting it, isolating the DC grid. The operation of the proposed FCL is analysed and verified with the most usual faults that can occur in overhead lines.

  14. Parameter Transient Behavior Analysis on Fault Tolerant Control System

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine (Technical Monitor); Shin, Jong-Yeob

    2003-01-01

    In a fault tolerant control (FTC) system, a parameter varying FTC law is reconfigured based on fault parameters estimated by fault detection and isolation (FDI) modules. FDI modules require some time to detect fault occurrences in aero-vehicle dynamics. This paper illustrates analysis of a FTC system based on estimated fault parameter transient behavior which may include false fault detections during a short time interval. Using Lyapunov function analysis, the upper bound of an induced-L2 norm of the FTC system performance is calculated as a function of a fault detection time and the exponential decay rate of the Lyapunov function.

  15. Quasi-3-D Seismic Reflection Imaging and Wide-Angle Velocity Structure of Nearly Amagmatic Oceanic Lithosphere at the Ultraslow-Spreading Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Momoh, Ekeabino; Cannat, Mathilde; Watremez, Louise; Leroy, Sylvie; Singh, Satish C.

    2017-12-01

    We present results from 3-D processing of 2-D seismic data shot along 100 m spaced profiles in a 1.8 km wide by 24 km long box during the SISMOSMOOTH 2014 cruise. The study is aimed at understanding the oceanic crust formed at an end-member mid-ocean ridge environment of nearly zero melt supply. Three distinct packages of reflectors are imaged: (1) south facing reflectors, which we propose correspond to the damage zone induced by the active axial detachment fault: reflectors in the damage zone have dips up to 60° and are visible down to 5 km below the seafloor; (2) series of north dipping reflectors in the hanging wall of the detachment fault: these reflectors may correspond to damage zone inherited from a previous, north dipping detachment fault, or small offset recent faults, conjugate from the active detachment fault, that served as conduits for isolated magmatic dykes; and (3) discontinuous but coherent flat-lying reflectors at shallow depths (<1.5 km below the seafloor), and at depths between 4 and 5 km below the seafloor. Comparing these deeper flat-lying reflectors with the wide-angle velocity model obtained from ocean-bottom seismometers data next to the 3-D box shows that they correspond to parts of the model with P wave velocity of 6.5-8 km/s, suggesting that they occur in the transition between lower crust and upper mantle. The 4-5 km layer with crustal P wave velocities is interpreted as primarily due to serpentinization and fracturation of the exhumed mantle-derived peridotites in the footwall of active and past detachment faults.

  16. Neural networks and fault probability evaluation for diagnosis issues.

    PubMed

    Kourd, Yahia; Lefebvre, Dimitri; Guersi, Noureddine

    2014-01-01

    This paper presents a new FDI technique for fault detection and isolation in unknown nonlinear systems. The objective of the research is to construct and analyze residuals by means of artificial intelligence and probabilistic methods. Artificial neural networks are first used for modeling issues. Neural networks models are designed for learning the fault-free and the faulty behaviors of the considered systems. Once the residuals generated, an evaluation using probabilistic criteria is applied to them to determine what is the most likely fault among a set of candidate faults. The study also includes a comparison between the contributions of these tools and their limitations, particularly through the establishment of quantitative indicators to assess their performance. According to the computation of a confidence factor, the proposed method is suitable to evaluate the reliability of the FDI decision. The approach is applied to detect and isolate 19 fault candidates in the DAMADICS benchmark. The results obtained with the proposed scheme are compared with the results obtained according to a usual thresholding method.

  17. Aircraft Engine On-Line Diagnostics Through Dual-Channel Sensor Measurements: Development of a Baseline System

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2008-01-01

    In this paper, a baseline system which utilizes dual-channel sensor measurements for aircraft engine on-line diagnostics is developed. This system is composed of a linear on-board engine model (LOBEM) and fault detection and isolation (FDI) logic. The LOBEM provides the analytical third channel against which the dual-channel measurements are compared. When the discrepancy among the triplex channels exceeds a tolerance level, the FDI logic determines the cause of the discrepancy. Through this approach, the baseline system achieves the following objectives: (1) anomaly detection, (2) component fault detection, and (3) sensor fault detection and isolation. The performance of the baseline system is evaluated in a simulation environment using faults in sensors and components.

  18. Operations management system advanced automation: Fault detection isolation and recovery prototyping

    NASA Technical Reports Server (NTRS)

    Hanson, Matt

    1990-01-01

    The purpose of this project is to address the global fault detection, isolation and recovery (FDIR) requirements for Operation's Management System (OMS) automation within the Space Station Freedom program. This shall be accomplished by developing a selected FDIR prototype for the Space Station Freedom distributed processing systems. The prototype shall be based on advanced automation methodologies in addition to traditional software methods to meet the requirements for automation. A secondary objective is to expand the scope of the prototyping to encompass multiple aspects of station-wide fault management (SWFM) as discussed in OMS requirements documentation.

  19. Control and protection system for paralleled modular static inverter-converter systems

    NASA Technical Reports Server (NTRS)

    Birchenough, A. G.; Gourash, F.

    1973-01-01

    A control and protection system was developed for use with a paralleled 2.5-kWe-per-module static inverter-converter system. The control and protection system senses internal and external fault parameters such as voltage, frequency, current, and paralleling current unbalance. A logic system controls contactors to isolate defective power conditioners or loads. The system sequences contactor operation to automatically control parallel operation, startup, and fault isolation. Transient overload protection and fault checking sequences are included. The operation and performance of a control and protection system, with detailed circuit descriptions, are presented.

  20. Simultaneous Sensor and Process Fault Diagnostics for Propellant Feed System

    NASA Technical Reports Server (NTRS)

    Cao, J.; Kwan, C.; Figueroa, F.; Xu, R.

    2006-01-01

    The main objective of this research is to extract fault features from sensor faults and process faults by using advanced fault detection and isolation (FDI) algorithms. A tank system that has some common characteristics to a NASA testbed at Stennis Space Center was used to verify our proposed algorithms. First, a generic tank system was modeled. Second, a mathematical model suitable for FDI has been derived for the tank system. Third, a new and general FDI procedure has been designed to distinguish process faults and sensor faults. Extensive simulations clearly demonstrated the advantages of the new design.

  1. Verification of an IGBT Fusing Switch for Over-current Protection of the SNS HVCM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benwell, Andrew; Kemp, Mark; Burkhart, Craig

    2010-06-11

    An IGBT based over-current protection system has been developed to detect faults and limit the damage caused by faults in high voltage converter modulators. During normal operation, an IGBT enables energy to be transferred from storage capacitors to a H-bridge. When a fault occurs, the over-current protection system detects the fault, limits the fault current and opens the IGBT to isolate the remaining stored energy from the fault. This paper presents an experimental verification of the over-current protection system under applicable conditions.

  2. NASA Space Flight Vehicle Fault Isolation Challenges

    NASA Technical Reports Server (NTRS)

    Neeley, James R.; Jones, James V.; Bramon, Christopher J.; Inman, Sharon K.; Tuttle, Loraine

    2016-01-01

    The Space Launch System (SLS) is the new NASA heavy lift launch vehicle in development and is scheduled for its first mission in 2018.SLS has many of the same logistics challenges as any other large scale program. However, SLS also faces unique challenges related to testability. This presentation will address the SLS challenges for diagnostics and fault isolation, along with the analyses and decisions to mitigate risk..

  3. Fault kinematics and depocenter evolution of oil-bearing, continental successions of the Mina del Carmen Formation (Albian) in the Golfo San Jorge basin, Argentina

    NASA Astrophysics Data System (ADS)

    Paredes, José Matildo; Plazibat, Silvana; Crovetto, Carolina; Stein, Julián; Cayo, Eric; Schiuma, Ariel

    2013-10-01

    Up to 10% of the liquid hydrocarbons of the Golfo San Jorge basin come from the Mina del Carmen Formation (Albian), an ash-dominated fluvial succession preserved in a variably integrated channel network that evolved coeval to an extensional tectonic event, poorly analyzed up to date. Fault orientation, throw distribution and kinematics of fault populations affecting the Mina del Carmen Formation were investigated using a 3D seismic dataset in the Cerro Dragón field (Eastern Sector of the Golfo San Jorge basin). Thickness maps of the seismic sub-units that integrate the Mina del Carmen Formation, named MEC-A-MEC-C in ascending order, and mapping of fluvial channels performed applying geophysical tools of visualization were integrated to the kinematical analysis of 20 main normal faults of the field. The study provides examples of changes in fault throw patterns with time, associated with faults of different orientations. The "main synrift phase" is characterized by NE-SW striking (mean Az = 49°), basement-involved normal faults that attains its maximum throw on top of the volcanic basement; this set of faults was active during deposition of the Las Heras Group and Pozo D-129 formation. A "second synrift phase" is recognized by E-W striking normal faults (mean Az = 91°) that nucleated and propagated from the Albian Mina del Carmen Formation. Fault activity was localized during deposition of the MEC-A sub-unit, but generalized during deposition of MEC-B sub-unit, producing centripetal and partially isolated depocenters. Upward decreasing in fault activity is inferred by more gradual thickness variation of MEC-C and the overlying Lower Member of Bajo Barreal Formation, evidencing passive infilling of relief associated to fault boundaries, and conformation of wider depocenters with well integrated networks of channels of larger dimensions but random orientation. Lately, the Mina del Carmen Formation was affected by the downward propagation of E-W to ESE-WNW striking normal faults (mean Az = 98°) formed during the "third rifting phase", which occurs coeval with the deposition of the Upper Member of the Bajo Barreal Formation. The fault characteristics indicate a counterclockwise rotation of the stress field during the deposition of the Chubut Group of the Golfo San Jorge basin, likely associated to the rotation of Southern South America during the fragmentation of the Gondwana paleocontinent. Understanding the evolution of fault-controlled topography in continental basins allow to infer location and orientation of coeval fluvial systems, providing a more reliable scenario for location of producing oil wells.

  4. Development of monitoring and diagnostic methods for robots used in remediation of waste sites. 1997 annual progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tecza, J.

    1998-06-01

    'Safe and efficient clean up of hazardous and radioactive waste sites throughout the DOE complex will require extensive use of robots. This research effort focuses on developing Monitoring and Diagnostic (M and D) methods for robots that will provide early detection, isolation, and tracking of impending faults before they result in serious failure. The utility and effectiveness of applying M and D methods to hydraulic robots has never been proven. The present research program is utilizing seeded faults in a laboratory test rig that is representative of an existing hydraulically-powered remediation robot. This report summarizes activity conducted in the firstmore » 9 months of the project. The research team has analyzed the Rosie Mobile Worksystem as a representative hydraulic robot, developed a test rig for implanted fault testing, developed a test plan and agenda, and established methods for acquiring and analyzing the test data.'« less

  5. Sensor fault detection and isolation system for a condensation process.

    PubMed

    Castro, M A López; Escobar, R F; Torres, L; Aguilar, J F Gómez; Hernández, J A; Olivares-Peregrino, V H

    2016-11-01

    This article presents the design of a sensor Fault Detection and Isolation (FDI) system for a condensation process based on a nonlinear model. The condenser is modeled by dynamic and thermodynamic equations. For this work, the dynamic equations are described by three pairs of differential equations which represent the energy balance between the fluids. The thermodynamic equations consist in algebraic heat transfer equations and empirical equations, that allow for the estimation of heat transfer coefficients. The FDI system consists of a bank of two nonlinear high-gain observers, in order to detect, estimate and to isolate the fault in any of both outlet temperature sensors. The main contributions of this work were the experimental validation of the condenser nonlinear model and the FDI system. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Analysis of Space Shuttle Ground Support System Fault Detection, Isolation, and Recovery Processes and Resources

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.; Gerald-Yamasaki, Michael; Trent, Robert P.

    2009-01-01

    As part of the FDIR (Fault Detection, Isolation, and Recovery) Project for the Constellation Program, a task was designed within the context of the Constellation Program FDIR project called the Legacy Benchmarking Task to document as accurately as possible the FDIR processes and resources that were used by the Space Shuttle ground support equipment (GSE) during the Shuttle flight program. These results served as a comparison with results obtained from the new FDIR capability. The task team assessed Shuttle and EELV (Evolved Expendable Launch Vehicle) historical data for GSE-related launch delays to identify expected benefits and impact. This analysis included a study of complex fault isolation situations that required a lengthy troubleshooting process. Specifically, four elements of that system were considered: LH2 (liquid hydrogen), LO2 (liquid oxygen), hydraulic test, and ground special power.

  7. Intelligent fault isolation and diagnosis for communication satellite systems

    NASA Technical Reports Server (NTRS)

    Tallo, Donald P.; Durkin, John; Petrik, Edward J.

    1992-01-01

    Discussed here is a prototype diagnosis expert system to provide the Advanced Communication Technology Satellite (ACTS) System with autonomous diagnosis capability. The system, the Fault Isolation and Diagnosis EXpert (FIDEX) system, is a frame-based system that uses hierarchical structures to represent such items as the satellite's subsystems, components, sensors, and fault states. This overall frame architecture integrates the hierarchical structures into a lattice that provides a flexible representation scheme and facilitates system maintenance. FIDEX uses an inexact reasoning technique based on the incrementally acquired evidence approach developed by Shortliffe. The system is designed with a primitive learning ability through which it maintains a record of past diagnosis studies.

  8. Modeling and Performance Considerations for Automated Fault Isolation in Complex Systems

    NASA Technical Reports Server (NTRS)

    Ferrell, Bob; Oostdyk, Rebecca

    2010-01-01

    The purpose of this paper is to document the modeling considerations and performance metrics that were examined in the development of a large-scale Fault Detection, Isolation and Recovery (FDIR) system. The FDIR system is envisioned to perform health management functions for both a launch vehicle and the ground systems that support the vehicle during checkout and launch countdown by using suite of complimentary software tools that alert operators to anomalies and failures in real-time. The FDIR team members developed a set of operational requirements for the models that would be used for fault isolation and worked closely with the vendor of the software tools selected for fault isolation to ensure that the software was able to meet the requirements. Once the requirements were established, example models of sufficient complexity were used to test the performance of the software. The results of the performance testing demonstrated the need for enhancements to the software in order to meet the demands of the full-scale ground and vehicle FDIR system. The paper highlights the importance of the development of operational requirements and preliminary performance testing as a strategy for identifying deficiencies in highly scalable systems and rectifying those deficiencies before they imperil the success of the project

  9. Data-driven fault detection, isolation and estimation of aircraft gas turbine engine actuator and sensors

    NASA Astrophysics Data System (ADS)

    Naderi, E.; Khorasani, K.

    2018-02-01

    In this work, a data-driven fault detection, isolation, and estimation (FDI&E) methodology is proposed and developed specifically for monitoring the aircraft gas turbine engine actuator and sensors. The proposed FDI&E filters are directly constructed by using only the available system I/O data at each operating point of the engine. The healthy gas turbine engine is stimulated by a sinusoidal input containing a limited number of frequencies. First, the associated system Markov parameters are estimated by using the FFT of the input and output signals to obtain the frequency response of the gas turbine engine. These data are then used for direct design and realization of the fault detection, isolation and estimation filters. Our proposed scheme therefore does not require any a priori knowledge of the system linear model or its number of poles and zeros at each operating point. We have investigated the effects of the size of the frequency response data on the performance of our proposed schemes. We have shown through comprehensive case studies simulations that desirable fault detection, isolation and estimation performance metrics defined in terms of the confusion matrix criterion can be achieved by having access to only the frequency response of the system at only a limited number of frequencies.

  10. Nonlinear analysis of r.c. framed buildings retrofitted with elastomeric and friction bearings under near-fault earthquakes

    NASA Astrophysics Data System (ADS)

    Mazza, Mirko

    2015-12-01

    Reinforced concrete (r.c.) framed buildings designed in compliance with inadequate seismic classifications and code provisions present in many cases a high vulnerability and need to be retrofitted. To this end, the insertion of a base isolation system allows a considerable reduction of the seismic loads transmitted to the superstructure. However, strong near-fault ground motions, which are characterised by long-duration horizontal pulses, may amplify the inelastic response of the superstructure and induce a failure of the isolation system. The above considerations point out the importance of checking the effectiveness of different isolation systems for retrofitting a r.c. framed structure. For this purpose, a numerical investigation is carried out with reference to a six-storey r.c. framed building, which, primarily designed (as to be a fixed-base one) in compliance with the previous Italian code (DM96) for a medium-risk seismic zone, has to be retrofitted by insertion of an isolation system at the base for attaining performance levels imposed by the current Italian code (NTC08) in a high-risk seismic zone. Besides the (fixed-base) original structure, three cases of base isolation are studied: elastomeric bearings acting alone (e.g. HDLRBs); in-parallel combination of elastomeric and friction bearings (e.g. high-damping-laminated-rubber bearings, HDLRBs and steel-PTFE sliding bearings, SBs); friction bearings acting alone (e.g. friction pendulum bearings, FPBs). The nonlinear analysis of the fixed-base and base-isolated structures subjected to horizontal components of near-fault ground motions is performed for checking plastic conditions at the potential critical (end) sections of the girders and columns as well as critical conditions of the isolation systems. Unexpected high values of ductility demand are highlighted at the lower floors of all base-isolated structures, while re-centring problems of the base isolation systems under near-fault earthquakes are expected in case of friction bearings acting alone (i.e. FPBs) or that in combination (i.e. SBs) with HDLRBs.

  11. GTEX: An expert system for diagnosing faults in satellite ground stations

    NASA Technical Reports Server (NTRS)

    Schlegelmilch, Richard F.; Durkin, John; Petrik, Edward J.

    1991-01-01

    A proof of concept expert system called Ground Terminal Expert (GTEX) was developed at The University of Akron in collaboration with NASA Lewis Research Center. The objective of GTEX is to aid in diagnosing data faults occurring with a digital ground terminal. This strategy can also be applied to the Very Small Aperture Terminal (VSAT) technology. An expert system which detects and diagnoses faults would enhance the performance of the VSAT by improving reliability and reducing maintenance time. GTEX is capable of detecting faults, isolating the cause and recommending appropriate actions. Isolation of faults is completed to board-level modules. A graphical user interface provides control and a medium where data can be requested and cryptic information logically displayed. Interaction with GTEX consists of user responses and input from data files. The use of data files provides a method of simulating dynamic interaction between the digital ground terminal and the expert system. GTEX as described is capable of both improving reliability and reducing the time required for necessary maintenance.

  12. GTEX: An expert system for diagnosing faults in satellite ground stations

    NASA Astrophysics Data System (ADS)

    Schlegelmilch, Richard F.; Durkin, John; Petrik, Edward J.

    1991-11-01

    A proof of concept expert system called Ground Terminal Expert (GTEX) was developed at The University of Akron in collaboration with NASA Lewis Research Center. The objective of GTEX is to aid in diagnosing data faults occurring with a digital ground terminal. This strategy can also be applied to the Very Small Aperture Terminal (VSAT) technology. An expert system which detects and diagnoses faults would enhance the performance of the VSAT by improving reliability and reducing maintenance time. GTEX is capable of detecting faults, isolating the cause and recommending appropriate actions. Isolation of faults is completed to board-level modules. A graphical user interface provides control and a medium where data can be requested and cryptic information logically displayed. Interaction with GTEX consists of user responses and input from data files. The use of data files provides a method of simulating dynamic interaction between the digital ground terminal and the expert system. GTEX as described is capable of both improving reliability and reducing the time required for necessary maintenance.

  13. Seismotectonic significance of the 2008–2010 Walloon Brabant seismic swarm in the Brabant Massif, Belgium

    USGS Publications Warehouse

    Van Noten, Koen; Lecocq, Thomas; Shah, Anjana K.; Camelbeeck, Thierry

    2015-01-01

    Between 12 July 2008 and 18 January 2010 a seismic swarm occurred close to the town of Court-Saint-Etienne, 20 km SE of Brussels (Belgium). The Belgian network and a temporary seismic network covering the epicentral area established a seismic catalogue in which magnitude varies between ML -0.7 and ML 3.2. Based on waveform cross-correlation of co-located earthquakes, the spatial distribution of the hypocentre locations was improved considerably and shows a dense cluster displaying a 200 m-wide, 1.5-km long, NW-SE oriented fault structure at a depth range between 5 and 7 km, located in the Cambrian basement rocks of the Lower Palaeozoic Anglo-Brabant Massif. Waveform comparison of the largest events of the 2008–2010 swarm with an ML 4.0 event that occurred during swarm activity between 1953 and 1957 in the same region shows similar P- and S-wave arrivals at the Belgian Uccle seismic station. The geometry depicted by the hypocentral distribution is consistent with a nearly vertical, left-lateral strike-slip fault taking place in a current local WNW–ESE oriented local maximum horizontal stress field. To determine a relevant tectonic structure, a systematic matched filtering approach of aeromagnetic data, which can approximately locate isolated anomalies associated with hypocentral depths, has been applied. Matched filtering shows that the 2008–2010 seismic swarm occurred along a limited-sized fault which is situated in slaty, low-magnetic rocks of the Mousty Formation. The fault is bordered at both ends with obliquely oriented magnetic gradients. Whereas the NW end of the fault is structurally controlled, its SE end is controlled by a magnetic gradient representing an early-orogenic detachment fault separating the low-magnetic slaty Mousty Formation from the high-magnetic Tubize Formation. The seismic swarm is therefore interpreted as a sinistral reactivation of an inherited NW–SE oriented isolated fault in a weakened crust within the Cambrian core of the Brabant Massif.

  14. Fault Tree Analysis: Its Implications for Use in Education.

    ERIC Educational Resources Information Center

    Barker, Bruce O.

    This study introduces the concept of Fault Tree Analysis as a systems tool and examines the implications of Fault Tree Analysis (FTA) as a technique for isolating failure modes in educational systems. A definition of FTA and discussion of its history, as it relates to education, are provided. The step by step process for implementation and use of…

  15. Auto-Calibration and Fault Detection and Isolation of Skewed Redundant Accelerometers in Measurement While Drilling Systems.

    PubMed

    Seyed Moosavi, Seyed Mohsen; Moaveni, Bijan; Moshiri, Behzad; Arvan, Mohammad Reza

    2018-02-27

    The present study designed skewed redundant accelerometers for a Measurement While Drilling (MWD) tool and executed auto-calibration, fault diagnosis and isolation of accelerometers in this tool. The optimal structure includes four accelerometers was selected and designed precisely in accordance with the physical shape of the existing MWD tool. A new four-accelerometer structure was designed, implemented and installed on the current system, replacing the conventional orthogonal structure. Auto-calibration operation of skewed redundant accelerometers and all combinations of three accelerometers have been done. Consequently, biases, scale factors, and misalignment factors of accelerometers have been successfully estimated. By defecting the sensors in the new optimal skewed redundant structure, the fault was detected using the proposed FDI method and the faulty sensor was diagnosed and isolated. The results indicate that the system can continue to operate with at least three correct sensors.

  16. Auto-Calibration and Fault Detection and Isolation of Skewed Redundant Accelerometers in Measurement While Drilling Systems

    PubMed Central

    Seyed Moosavi, Seyed Mohsen; Moshiri, Behzad; Arvan, Mohammad Reza

    2018-01-01

    The present study designed skewed redundant accelerometers for a Measurement While Drilling (MWD) tool and executed auto-calibration, fault diagnosis and isolation of accelerometers in this tool. The optimal structure includes four accelerometers was selected and designed precisely in accordance with the physical shape of the existing MWD tool. A new four-accelerometer structure was designed, implemented and installed on the current system, replacing the conventional orthogonal structure. Auto-calibration operation of skewed redundant accelerometers and all combinations of three accelerometers have been done. Consequently, biases, scale factors, and misalignment factors of accelerometers have been successfully estimated. By defecting the sensors in the new optimal skewed redundant structure, the fault was detected using the proposed FDI method and the faulty sensor was diagnosed and isolated. The results indicate that the system can continue to operate with at least three correct sensors. PMID:29495434

  17. Spacecraft fault tolerance: The Magellan experience

    NASA Technical Reports Server (NTRS)

    Kasuda, Rick; Packard, Donna Sexton

    1993-01-01

    Interplanetary and earth orbiting missions are now imposing unique fault tolerant requirements upon spacecraft design. Mission success is the prime motivator for building spacecraft with fault tolerant systems. The Magellan spacecraft had many such requirements imposed upon its design. Magellan met these requirements by building redundancy into all the major subsystem components and designing the onboard hardware and software with the capability to detect a fault, isolate it to a component, and issue commands to achieve a back-up configuration. This discussion is limited to fault protection, which is the autonomous capability to respond to a fault. The Magellan fault protection design is discussed, as well as the developmental and flight experiences and a summary of the lessons learned.

  18. Smoothing of Fault Slip Surfaces by Scale Invariant Wear

    NASA Astrophysics Data System (ADS)

    Dascher-Cousineau, K.; Kirkpatrick, J. D.

    2017-12-01

    Fault slip surface roughness plays a determining role in the overall strength, friction, and dynamic behavior of fault systems. Previous wear models and field observations suggest that roughness decreases with increasing displacement. However, measurements have yet to isolate the effect of displacement from other possible controls, such as lithology or tectonic setting. In an effort to understand the effect of displacement, we present comprehensive qualitative and quantitative description of the evolution of fault slip surfaces in and around the San-Rafael Desert, S.E. Utah, United States. In the study area, faults accommodated regional extension at shallow (1 to 3 km) depth and are hosted in the massive, well-sorted, high-porosity Navajo and Entrada sandstones. Existing displacement profiles along with tight displacement controls readily measureable in the field, combined with uniform lithology and tectonic history, allowed us to isolate for the effect of displacement during the embryonic stages of faulting (0 to 60 m in displacement). Our field observations indicate a clear compositional and morphological progression from isolated joints or deformation bands towards smooth, continuous, and mirror-like fault slip surfaces with increasing displacement. We scanned pristine slip surfaces with a white light interferometer, a laser scanner, and a ground-based LiDAR. We produce and analyses more than 120 individual scans of fault slip surfaces. Results for the surfaces with the best displacement constraints indicate that roughness as defined by the power spectral density at any given length scale decreases with displacement according to a power law with an exponent of -1. Roughness measurements associated with only maximum constraints on displacements corroborate this result. Moreover, maximum roughness for any given fault is bounded by a primordial roughness corresponding to that of joint surfaces and deformation band edges. Building upon these results, we propose a multi-scale wear model to explain the evolution of faults with displacement. We suggest that together, asperity failure as a scale invariant process, and the stochastic strength of host rocks are consistent with qualitative and quantitative observational constraints made in this study.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aurelio, Mario; Taguibao, Kristine Joy; Vargas, Edmundo

    In the selection of sites for disposal facilities involving low- and intermediate-level radioactive waste (LILW), International Atomic Energy Agency (IAEA) recommendations require that 'the region in which the site is located shall be such that significant tectonic and surface processes are not expected to occur with an intensity that would compromise the required isolation capability of the repository'. Evaluating the appropriateness of a site therefore requires a deep understanding of the geological and tectonic setting of the area. The Philippines sits in a tectonically active region frequented by earthquakes and volcanic activity. Its highly variable morphology coupled with its locationmore » along the typhoon corridor in the west Pacific region subjects the country to surface processes often manifested in the form of landslides. The Philippine LILW near surface repository project site is located on the north eastern sector of the Island of Luzon in northern Philippines. This island is surrounded by active subduction trenches; to the east by the East Luzon Trough and to the west by the Manila Trench. The island is also traversed by several branches of the Philippine Fault System. The Philippine LILW repository project is located more than 100 km away from any of these major active fault systems. In the near field, the project site is located less than 10 km from a minor fault (Dummon River Fault) and more than 40 km away from a volcanic edifice (Mt. Caguas). This paper presents an analysis of the potential hazards that these active tectonic features may pose to the project site. The assessment of such geologic hazards is imperative in the characterization of the site and a crucial input in the design and safety assessment of the repository. (authors)« less

  20. Implementing a real time reasoning system for robust diagnosis

    NASA Technical Reports Server (NTRS)

    Hill, Tim; Morris, William; Robertson, Charlie

    1993-01-01

    The objective of the Thermal Control System Automation Project (TCSAP) is to develop an advanced fault detection, isolation, and recovery (FDIR) capability for use on the Space Station Freedom (SSF) External Active Thermal Control System (EATCS). Real-time monitoring, control, and diagnosis of the EATCS will be performed with a knowledge based system (KBS). Implementation issues for the current version of the KBS are discussed.

  1. Enhanced data validation strategy of air quality monitoring network.

    PubMed

    Harkat, Mohamed-Faouzi; Mansouri, Majdi; Nounou, Mohamed; Nounou, Hazem

    2018-01-01

    Quick validation and detection of faults in measured air quality data is a crucial step towards achieving the objectives of air quality networks. Therefore, the objectives of this paper are threefold: (i) to develop a modeling technique that can be used to predict the normal behavior of air quality variables and help provide accurate reference for monitoring purposes; (ii) to develop fault detection method that can effectively and quickly detect any anomalies in measured air quality data. For this purpose, a new fault detection method that is based on the combination of generalized likelihood ratio test (GLRT) and exponentially weighted moving average (EWMA) will be developed. GLRT is a well-known statistical fault detection method that relies on maximizing the detection probability for a given false alarm rate. In this paper, we propose to develop GLRT-based EWMA fault detection method that will be able to detect the changes in the values of certain air quality variables; (iii) to develop fault isolation and identification method that allows defining the fault source(s) in order to properly apply appropriate corrective actions. In this paper, reconstruction approach that is based on Midpoint-Radii Principal Component Analysis (MRPCA) model will be developed to handle the types of data and models associated with air quality monitoring networks. All air quality modeling, fault detection, fault isolation and reconstruction methods developed in this paper will be validated using real air quality data (such as particulate matter, ozone, nitrogen and carbon oxides measurement). Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Voltage Based Detection Method for High Impedance Fault in a Distribution System

    NASA Astrophysics Data System (ADS)

    Thomas, Mini Shaji; Bhaskar, Namrata; Prakash, Anupama

    2016-09-01

    High-impedance faults (HIFs) on distribution feeders cannot be detected by conventional protection schemes, as HIFs are characterized by their low fault current level and waveform distortion due to the nonlinearity of the ground return path. This paper proposes a method to identify the HIFs in distribution system and isolate the faulty section, to reduce downtime. This method is based on voltage measurements along the distribution feeder and utilizes the sequence components of the voltages. Three models of high impedance faults have been considered and source side and load side breaking of the conductor have been studied in this work to capture a wide range of scenarios. The effect of neutral grounding of the source side transformer is also accounted in this study. The results show that the algorithm detects the HIFs accurately and rapidly. Thus, the faulty section can be isolated and service can be restored to the rest of the consumers.

  3. An update of Quaternary faults of central and eastern Oregon

    USGS Publications Warehouse

    Weldon, Ray J.; Fletcher, D.K.; Weldon, E.M.; Scharer, K.M.; McCrory, P.A.

    2002-01-01

    This is the online version of a CD-ROM publication. We have updated the eastern portion of our previous active fault map of Oregon (Pezzopane, Nakata, and Weldon, 1992) as a contribution to the larger USGS effort to produce digital maps of active faults in the Pacific Northwest region. The 1992 fault map has seen wide distribution and has been reproduced in essentially all subsequent compilations of active faults of Oregon. The new map provides a substantial update of known active or suspected active faults east of the Cascades. Improvements in the new map include (1) many newly recognized active faults, (2) a linked ArcInfo map and reference database, (3) more precise locations for previously recognized faults on shaded relief quadrangles generated from USGS 30-m digital elevations models (DEM), (4) more uniform coverage resulting in more consistent grouping of the ages of active faults, and (5) a new category of 'possibly' active faults that share characteristics with known active faults, but have not been studied adequately to assess their activity. The distribution of active faults has not changed substantially from the original Pezzopane, Nakata and Weldon map. Most faults occur in the south-central Basin and Range tectonic province that is located in the backarc portion of the Cascadia subduction margin. These faults occur in zones consisting of numerous short faults with similar rates, ages, and styles of movement. Many active faults strongly correlate with the most active volcanic centers of Oregon, including Newberry Craters and Crater Lake.

  4. Fault Tree Analysis: An Operations Research Tool for Identifying and Reducing Undesired Events in Training.

    ERIC Educational Resources Information Center

    Barker, Bruce O.; Petersen, Paul D.

    This paper explores the fault-tree analysis approach to isolating failure modes within a system. Fault tree investigates potentially undesirable events and then looks for failures in sequence that would lead to their occurring. Relationships among these events are symbolized by AND or OR logic gates, AND used when single events must coexist to…

  5. A residual based adaptive unscented Kalman filter for fault recovery in attitude determination system of microsatellites

    NASA Astrophysics Data System (ADS)

    Le, Huy Xuan; Matunaga, Saburo

    2014-12-01

    This paper presents an adaptive unscented Kalman filter (AUKF) to recover the satellite attitude in a fault detection and diagnosis (FDD) subsystem of microsatellites. The FDD subsystem includes a filter and an estimator with residual generators, hypothesis tests for fault detections and a reference logic table for fault isolations and fault recovery. The recovery process is based on the monitoring of mean and variance values of each attitude sensor behaviors from residual vectors. In the case of normal work, the residual vectors should be in the form of Gaussian white noise with zero mean and fixed variance. When the hypothesis tests for the residual vectors detect something unusual by comparing the mean and variance values with dynamic thresholds, the AUKF with real-time updated measurement noise covariance matrix will be used to recover the sensor faults. The scheme developed in this paper resolves the problem of the heavy and complex calculations during residual generations and therefore the delay in the isolation process is reduced. The numerical simulations for TSUBAME, a demonstration microsatellite of Tokyo Institute of Technology, are conducted and analyzed to demonstrate the working of the AUKF and FDD subsystem.

  6. The Generic Spacecraft Analyst Assistant (GenSAA): A tool for automating spacecraft monitoring with expert systems

    NASA Technical Reports Server (NTRS)

    Hughes, Peter M.; Luczak, Edward C.

    1991-01-01

    Flight Operations Analysts (FOAs) in the Payload Operations Control Center (POCC) are responsible for monitoring a satellite's health and safety. As satellites become more complex and data rates increase, FOAs are quickly approaching a level of information saturation. The FOAs in the spacecraft control center for the COBE (Cosmic Background Explorer) satellite are currently using a fault isolation expert system named the Communications Link Expert Assistance Resource (CLEAR), to assist in isolating and correcting communications link faults. Due to the success of CLEAR and several other systems in the control center domain, many other monitoring and fault isolation expert systems will likely be developed to support control center operations during the early 1990s. To facilitate the development of these systems, a project was initiated to develop a domain specific tool, named the Generic Spacecraft Analyst Assistant (GenSAA). GenSAA will enable spacecraft analysts to easily build simple real-time expert systems that perform spacecraft monitoring and fault isolation functions. Lessons learned during the development of several expert systems at Goddard, thereby establishing the foundation of GenSAA's objectives and offering insights in how problems may be avoided in future project, are described. This is followed by a description of the capabilities, architecture, and usage of GenSAA along with a discussion of its application to future NASA missions.

  7. Optimization of Second Fault Detection Thresholds to Maximize Mission POS

    NASA Technical Reports Server (NTRS)

    Anzalone, Evan

    2018-01-01

    In order to support manned spaceflight safety requirements, the Space Launch System (SLS) has defined program-level requirements for key systems to ensure successful operation under single fault conditions. To accommodate this with regards to Navigation, the SLS utilizes an internally redundant Inertial Navigation System (INS) with built-in capability to detect, isolate, and recover from first failure conditions and still maintain adherence to performance requirements. The unit utilizes multiple hardware- and software-level techniques to enable detection, isolation, and recovery from these events in terms of its built-in Fault Detection, Isolation, and Recovery (FDIR) algorithms. Successful operation is defined in terms of sufficient navigation accuracy at insertion while operating under worst case single sensor outages (gyroscope and accelerometer faults at launch). In addition to first fault detection and recovery, the SLS program has also levied requirements relating to the capability of the INS to detect a second fault, tracking any unacceptable uncertainty in knowledge of the vehicle's state. This detection functionality is required in order to feed abort analysis and ensure crew safety. Increases in navigation state error and sensor faults can drive the vehicle outside of its operational as-designed environments and outside of its performance envelope causing loss of mission, or worse, loss of crew. The criteria for operation under second faults allows for a larger set of achievable missions in terms of potential fault conditions, due to the INS operating at the edge of its capability. As this performance is defined and controlled at the vehicle level, it allows for the use of system level margins to increase probability of mission success on the operational edges of the design space. Due to the implications of the vehicle response to abort conditions (such as a potentially failed INS), it is important to consider a wide range of failure scenarios in terms of both magnitude and time. As such, the Navigation team is taking advantage of the INS's capability to schedule and change fault detection thresholds in flight. These values are optimized along a nominal trajectory in order to maximize probability of mission success, and reducing the probability of false positives (defined as when the INS would report a second fault condition resulting in loss of mission, but the vehicle would still meet insertion requirements within system-level margins). This paper will describe an optimization approach using Genetic Algorithms to tune the threshold parameters to maximize vehicle resilience to second fault events as a function of potential fault magnitude and time of fault over an ascent mission profile. The analysis approach, and performance assessment of the results will be presented to demonstrate the applicability of this process to second fault detection to maximize mission probability of success.

  8. Earthquake behavior along the Levant fault from paleoseismology (Invited)

    NASA Astrophysics Data System (ADS)

    Klinger, Y.; Le Beon, M.; Wechsler, N.; Rockwell, T. K.

    2013-12-01

    The Levant fault is a major continental structure 1200 km-long that bounds the Arabian plate to the west. The finite offset of this left-lateral strike-slip fault is estimated to be 105 km for the section located south of the restraining bend corresponding roughly to Lebanon. Along this southern section the slip-rate has been estimated over a large range of time scales, from few years to few hundreds thousands of years. Over these different time scales, studies agree for the slip-rate to be 5mm/yr × 2 mm/yr. The southern section of the Levant fault is particularly attractive to study earthquake behavior through time for several reasons: 1/ The fault geometry is simple and well constrained. 2/ The fault system is isolated and does not interact with obvious neighbor fault systems. 3/ The Middle-East, where the Levant fault is located, is the region in the world where one finds the longest and most complete historical record of past earthquakes. About 30 km north of the city of Aqaba, we opened a trench in the southern part of the Yotvata playa, along the Wadi Araba fault segment. The stratigraphy presents silty sand playa units alternating with coarser sand sediments from alluvial fans flowing westwards from the Jordan plateau. Two fault zones can be recognized in the trench and a minimum of 8 earthquakes can be identified, based on upward terminations of ground ruptures. Dense 14C dating through the entire exposure allows matching the 4 most recent events with historical events in AD1458, AD1212, AD1068 and AD748. Size of the ground rupture suggests a bi-modal distribution of earthquakes with earthquakes rupturing the entire Wadi Araba segment and earthquakes ending in the extensional jog forming the playa. Timing of earthquakes shows that no earthquakes occurred at this site since about 600 years, suggesting earthquake clustering along this section of the fault and potential for a large earthquake in the near future. 3D paleoseismological trenches at the Beteiha site, north of the lake Tiberias, show that there the earthquake activity varies significantly through time, with periods of intense seismic activity associated to small horizontal offsets and periods of bigger earthquakes with larger offsets. Hence, earthquake clustering also seems to govern earthquake occurrence along this segment of the Levant fault. On the contrary, further north, where the fault bends and deformation is spread between several parallel faults, paleoseismological trenches at the Yammouneh site show that earthquakes seem to be fairly regular every 800 years. Such difference in behavior along different sections of the fault suggests that the fault geometry might play an important role in the way earthquakes are distributed through time.

  9. Integrated geophysical and hydrothermal models of flank degassing and fluid flow at Masaya Volcano, Nicaragua

    USGS Publications Warehouse

    Sanford, Ward E.; Pearson, S.C.P.; Kiyosugi, K.; Lehto, H.L.; Saballos, J.A.; Connor, C.B.

    2012-01-01

    We investigate geologic controls on circulation in the shallow hydrothermal system of Masaya volcano, Nicaragua, and their relationship to surface diffuse degassing. On a local scale (~250 m), relatively impermeable normal faults dipping at ~60° control the flowpath of water vapor and other gases in the vadose zone. These shallow normal faults are identified by modeling of a NE-SW trending magnetic anomaly of up to 2300 nT that corresponds to a topographic offset. Elevated SP and CO2 to the NW of the faults and an absence of CO2 to the SE suggest that these faults are barriers to flow. TOUGH2 numerical models of fluid circulation show enhanced flow through the footwalls of the faults, and corresponding increased mass flow and temperature at the surface (diffuse degassing zones). On a larger scale, TOUGH2 modeling suggests that groundwater convection may be occurring in a 3-4 km radial fracture zone transecting the entire flank of the volcano. Hot water rising uniformly into the base of the model at 1 x 10-5 kg/m2s results in convection that focuses heat and fluid and can explain the three distinct diffuse degassing zones distributed along the fracture. Our data and models suggest that the unusually active surface degassing zones at Masaya volcano can result purely from uniform heat and fluid flux at depth that is complicated by groundwater convection and permeability variations in the upper few km. Therefore isolating the effects of subsurface geology is vital when trying to interpret diffuse degassing in light of volcanic activity.

  10. The Active Fault Parameters for Time-Dependent Earthquake Hazard Assessment in Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Cheng, C.; Lin, P.; Shao, K.; Wu, Y.; Shih, C.

    2011-12-01

    Taiwan is located at the boundary between the Philippine Sea Plate and the Eurasian Plate, with a convergence rate of ~ 80 mm/yr in a ~N118E direction. The plate motion is so active that earthquake is very frequent. In the Taiwan area, disaster-inducing earthquakes often result from active faults. For this reason, it's an important subject to understand the activity and hazard of active faults. The active faults in Taiwan are mainly located in the Western Foothills and the Eastern longitudinal valley. Active fault distribution map published by the Central Geological Survey (CGS) in 2010 shows that there are 31 active faults in the island of Taiwan and some of which are related to earthquake. Many researchers have investigated these active faults and continuously update new data and results, but few people have integrated them for time-dependent earthquake hazard assessment. In this study, we want to gather previous researches and field work results and then integrate these data as an active fault parameters table for time-dependent earthquake hazard assessment. We are going to gather the seismic profiles or earthquake relocation of a fault and then combine the fault trace on land to establish the 3D fault geometry model in GIS system. We collect the researches of fault source scaling in Taiwan and estimate the maximum magnitude from fault length or fault area. We use the characteristic earthquake model to evaluate the active fault earthquake recurrence interval. In the other parameters, we will collect previous studies or historical references and complete our parameter table of active faults in Taiwan. The WG08 have done the time-dependent earthquake hazard assessment of active faults in California. They established the fault models, deformation models, earthquake rate models, and probability models and then compute the probability of faults in California. Following these steps, we have the preliminary evaluated probability of earthquake-related hazards in certain faults in Taiwan. By accomplishing active fault parameters table in Taiwan, we would apply it in time-dependent earthquake hazard assessment. The result can also give engineers a reference for design. Furthermore, it can be applied in the seismic hazard map to mitigate disasters.

  11. Interface Supports Multiple Broadcast Transceivers for Flight Applications

    NASA Technical Reports Server (NTRS)

    Block, Gary L.; Whitaker, William D.; Dillon, James W.; Lux, James P.; Ahmad, Mohammad

    2011-01-01

    A wireless avionics interface provides a mechanism for managing multiple broadcast transceivers. This interface isolates the control logic required to support multiple transceivers so that the flight application does not have to manage wireless transceivers. All of the logic to select transceivers, detect transmitter and receiver faults, and take autonomous recovery action is contained in the interface, which is not restricted to using wireless transceivers. Wired, wireless, and mixed transceiver technologies are supported. This design s use of broadcast data technology provides inherent cross strapping of data links. This greatly simplifies the design of redundant flight subsystems. The interface fully exploits the broadcast data link to determine the health of other transceivers used to detect and isolate faults for fault recovery. The interface uses simplified control logic, which can be implemented as an intellectual-property (IP) core in a field-programmable gate array (FPGA). The interface arbitrates the reception of inbound data traffic appearing on multiple receivers. It arbitrates the transmission of outbound traffic. This system also monitors broadcast data traffic to determine the health of transmitters in the network, and then uses this health information to make autonomous decisions for routing traffic through transceivers. Multiple selection strategies are supported, like having an active transceiver with the secondary transceiver powered off except to send periodic health status reports. Transceivers can operate in round-robin for load-sharing and graceful degradation.

  12. Fault detection and diagnosis in a spacecraft attitude determination system

    NASA Astrophysics Data System (ADS)

    Pirmoradi, F. N.; Sassani, F.; de Silva, C. W.

    2009-09-01

    This paper presents a new scheme for fault detection and diagnosis (FDD) in spacecraft attitude determination (AD) sensors. An integrated attitude determination system, which includes measurements of rate and angular position using rate gyros and vector sensors, is developed. Measurement data from all sensors are fused by a linearized Kalman filter, which is designed based on the system kinematics, to provide attitude estimation and the values of the gyro bias. Using this information the erroneous sensor measurements are corrected, and unbounded sensor measurement errors are avoided. The resulting bias-free data are used in the FDD scheme. The FDD algorithm uses model-based state estimation, combining the information from the rotational dynamics and kinematics of a spacecraft with the sensor measurements to predict the future sensor outputs. Fault isolation is performed through extended Kalman filters (EKFs). The innovation sequences of EKFs are monitored by several statistical tests to detect the presence of a failure and to localize the failures in all AD sensors. The isolation procedure is developed in two phases. In the first phase, two EKFs are designed, which use subsets of measurements to provide state estimates and form residuals, which are used to verify the source of the fault. In the second phase of isolation, testing of multiple hypotheses is performed. The generalized likelihood ratio test is utilized to identify the faulty components. In the scheme developed in this paper a relatively small number of hypotheses is used, which results in faster isolation and highly distinguishable fault signatures. An important feature of the developed FDD scheme is that it can provide attitude estimations even if only one type of sensors is functioning properly.

  13. On-board fault management for autonomous spacecraft

    NASA Technical Reports Server (NTRS)

    Fesq, Lorraine M.; Stephan, Amy; Doyle, Susan C.; Martin, Eric; Sellers, Suzanne

    1991-01-01

    The dynamic nature of the Cargo Transfer Vehicle's (CTV) mission and the high level of autonomy required mandate a complete fault management system capable of operating under uncertain conditions. Such a fault management system must take into account the current mission phase and the environment (including the target vehicle), as well as the CTV's state of health. This level of capability is beyond the scope of current on-board fault management systems. This presentation will discuss work in progress at TRW to apply artificial intelligence to the problem of on-board fault management. The goal of this work is to develop fault management systems. This presentation will discuss work in progress at TRW to apply artificial intelligence to the problem of on-board fault management. The goal of this work is to develop fault management systems that can meet the needs of spacecraft that have long-range autonomy requirements. We have implemented a model-based approach to fault detection and isolation that does not require explicit characterization of failures prior to launch. It is thus able to detect failures that were not considered in the failure and effects analysis. We have applied this technique to several different subsystems and tested our approach against both simulations and an electrical power system hardware testbed. We present findings from simulation and hardware tests which demonstrate the ability of our model-based system to detect and isolate failures, and describe our work in porting the Ada version of this system to a flight-qualified processor. We also discuss current research aimed at expanding our system to monitor the entire spacecraft.

  14. Thermal Expert System (TEXSYS): Systems autonomy demonstration project, volume 2. Results

    NASA Technical Reports Server (NTRS)

    Glass, B. J. (Editor)

    1992-01-01

    The Systems Autonomy Demonstration Project (SADP) produced a knowledge-based real-time control system for control and fault detection, isolation, and recovery (FDIR) of a prototype two-phase Space Station Freedom external active thermal control system (EATCS). The Thermal Expert System (TEXSYS) was demonstrated in recent tests to be capable of reliable fault anticipation and detection, as well as ordinary control of the thermal bus. Performance requirements were addressed by adopting a hierarchical symbolic control approach-layering model-based expert system software on a conventional, numerical data acquisition and control system. The model-based reasoning capabilities of TEXSYS were shown to be advantageous over typical rule-based expert systems, particularly for detection of unforeseen faults and sensor failures. Volume 1 gives a project overview and testing highlights. Volume 2 provides detail on the EATCS testbed, test operations, and online test results. Appendix A is a test archive, while Appendix B is a compendium of design and user manuals for the TEXSYS software.

  15. Thermal Expert System (TEXSYS): Systems automony demonstration project, volume 1. Overview

    NASA Technical Reports Server (NTRS)

    Glass, B. J. (Editor)

    1992-01-01

    The Systems Autonomy Demonstration Project (SADP) produced a knowledge-based real-time control system for control and fault detection, isolation, and recovery (FDIR) of a prototype two-phase Space Station Freedom external active thermal control system (EATCS). The Thermal Expert System (TEXSYS) was demonstrated in recent tests to be capable of reliable fault anticipation and detection, as well as ordinary control of the thermal bus. Performance requirements were addressed by adopting a hierarchical symbolic control approach-layering model-based expert system software on a conventional, numerical data acquisition and control system. The model-based reasoning capabilities of TEXSYS were shown to be advantageous over typical rule-based expert systems, particularly for detection of unforeseen faults and sensor failures. Volume 1 gives a project overview and testing highlights. Volume 2 provides detail on the EATCS test bed, test operations, and online test results. Appendix A is a test archive, while Appendix B is a compendium of design and user manuals for the TEXSYS software.

  16. Mobility and coalescence of stacking fault tetrahedra in Cu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez, Enrique; Uberuaga, Blas P.

    Stacking fault tetrahedra (SFTs) are ubiquitous defects in face-centered cubic metals. They are produced during cold work plastic deformation, quenching experiments or under irradiation. From a dislocation point of view, the SFTs are comprised of a set of stair-rod dislocations at the (110) edges of a tetrahedron bounding triangular stacking faults. These defects are extremely stable, increasing their energetic stability as they grow in size. At the sizes visible within transmission electron microscope they appear nearly immobile. Contrary to common belief, we show in this report, using a combination of molecular dynamics and temperature accelerated dynamics, how small SFTs canmore » diffuse by temporarily disrupting their structure through activated thermal events. More over, we demonstrate that the diffusivity of defective SFTs is several orders of magnitude higher than perfect SFTs, and can be even higher than isolated vacancies. Finally, we show how SFTs can coalesce, forming a larger defect in what is a new mechanism for the growth of these omnipresent defects.« less

  17. Mobility and coalescence of stacking fault tetrahedra in Cu

    DOE PAGES

    Martínez, Enrique; Uberuaga, Blas P.

    2015-03-13

    Stacking fault tetrahedra (SFTs) are ubiquitous defects in face-centered cubic metals. They are produced during cold work plastic deformation, quenching experiments or under irradiation. From a dislocation point of view, the SFTs are comprised of a set of stair-rod dislocations at the (110) edges of a tetrahedron bounding triangular stacking faults. These defects are extremely stable, increasing their energetic stability as they grow in size. At the sizes visible within transmission electron microscope they appear nearly immobile. Contrary to common belief, we show in this report, using a combination of molecular dynamics and temperature accelerated dynamics, how small SFTs canmore » diffuse by temporarily disrupting their structure through activated thermal events. More over, we demonstrate that the diffusivity of defective SFTs is several orders of magnitude higher than perfect SFTs, and can be even higher than isolated vacancies. Finally, we show how SFTs can coalesce, forming a larger defect in what is a new mechanism for the growth of these omnipresent defects.« less

  18. Mobility and coalescence of stacking fault tetrahedra in Cu

    PubMed Central

    Martínez, Enrique; Uberuaga, Blas P.

    2015-01-01

    Stacking fault tetrahedra (SFTs) are ubiquitous defects in face-centered cubic metals. They are produced during cold work plastic deformation, quenching experiments or under irradiation. From a dislocation point of view, the SFTs are comprised of a set of stair-rod dislocations at the (110) edges of a tetrahedron bounding triangular stacking faults. These defects are extremely stable, increasing their energetic stability as they grow in size. At the sizes visible within transmission electron microscope they appear nearly immobile. Contrary to common belief, we show in this report, using a combination of molecular dynamics and temperature accelerated dynamics, how small SFTs can diffuse by temporarily disrupting their structure through activated thermal events. More over, we demonstrate that the diffusivity of defective SFTs is several orders of magnitude higher than perfect SFTs, and can be even higher than isolated vacancies. Finally, we show how SFTs can coalesce, forming a larger defect in what is a new mechanism for the growth of these omnipresent defects. PMID:25765711

  19. Propulsion Health Monitoring for Enhanced Safety

    NASA Technical Reports Server (NTRS)

    Butz, Mark G.; Rodriguez, Hector M.

    2003-01-01

    This report presents the results of the NASA contract Propulsion System Health Management for Enhanced Safety performed by General Electric Aircraft Engines (GE AE), General Electric Global Research (GE GR), and Pennsylvania State University Applied Research Laboratory (PSU ARL) under the NASA Aviation Safety Program. This activity supports the overall goal of enhanced civil aviation safety through a reduction in the occurrence of safety-significant propulsion system malfunctions. Specific objectives are to develop and demonstrate vibration diagnostics techniques for the on-line detection of turbine rotor disk cracks, and model-based fault tolerant control techniques for the prevention and mitigation of in-flight engine shutdown, surge/stall, and flameout events. The disk crack detection work was performed by GE GR which focused on a radial-mode vibration monitoring technique, and PSU ARL which focused on a torsional-mode vibration monitoring technique. GE AE performed the Model-Based Fault Tolerant Control work which focused on the development of analytical techniques for detecting, isolating, and accommodating gas-path faults.

  20. Thermal Expert System (TEXSYS): Systems autonomy demonstration project, volume 2. Results

    NASA Astrophysics Data System (ADS)

    Glass, B. J.

    1992-10-01

    The Systems Autonomy Demonstration Project (SADP) produced a knowledge-based real-time control system for control and fault detection, isolation, and recovery (FDIR) of a prototype two-phase Space Station Freedom external active thermal control system (EATCS). The Thermal Expert System (TEXSYS) was demonstrated in recent tests to be capable of reliable fault anticipation and detection, as well as ordinary control of the thermal bus. Performance requirements were addressed by adopting a hierarchical symbolic control approach-layering model-based expert system software on a conventional, numerical data acquisition and control system. The model-based reasoning capabilities of TEXSYS were shown to be advantageous over typical rule-based expert systems, particularly for detection of unforeseen faults and sensor failures. Volume 1 gives a project overview and testing highlights. Volume 2 provides detail on the EATCS testbed, test operations, and online test results. Appendix A is a test archive, while Appendix B is a compendium of design and user manuals for the TEXSYS software.

  1. Fault-tolerant cooperative output regulation for multi-vehicle systems with sensor faults

    NASA Astrophysics Data System (ADS)

    Qin, Liguo; He, Xiao; Zhou, D. H.

    2017-10-01

    This paper presents a unified framework of fault diagnosis and fault-tolerant cooperative output regulation (FTCOR) for a linear discrete-time multi-vehicle system with sensor faults. The FTCOR control law is designed through three steps. A cooperative output regulation (COR) controller is designed based on the internal mode principle when there are no sensor faults. A sufficient condition on the existence of the COR controller is given based on the discrete-time algebraic Riccati equation (DARE). Then, a decentralised fault diagnosis scheme is designed to cope with sensor faults occurring in followers. A residual generator is developed to detect sensor faults of each follower, and a bank of fault-matching estimators are proposed to isolate and estimate sensor faults of each follower. Unlike the current distributed fault diagnosis for multi-vehicle systems, the presented decentralised fault diagnosis scheme in each vehicle reduces the communication and computation load by only using the information of the vehicle. By combing the sensor fault estimation and the COR control law, an FTCOR controller is proposed. Finally, the simulation results demonstrate the effectiveness of the FTCOR controller.

  2. Flight elements: Fault detection and fault management

    NASA Technical Reports Server (NTRS)

    Lum, H.; Patterson-Hine, A.; Edge, J. T.; Lawler, D.

    1990-01-01

    Fault management for an intelligent computational system must be developed using a top down integrated engineering approach. An approach proposed includes integrating the overall environment involving sensors and their associated data; design knowledge capture; operations; fault detection, identification, and reconfiguration; testability; causal models including digraph matrix analysis; and overall performance impacts on the hardware and software architecture. Implementation of the concept to achieve a real time intelligent fault detection and management system will be accomplished via the implementation of several objectives, which are: Development of fault tolerant/FDIR requirement and specification from a systems level which will carry through from conceptual design through implementation and mission operations; Implementation of monitoring, diagnosis, and reconfiguration at all system levels providing fault isolation and system integration; Optimize system operations to manage degraded system performance through system integration; and Lower development and operations costs through the implementation of an intelligent real time fault detection and fault management system and an information management system.

  3. Enhanced Bank of Kalman Filters Developed and Demonstrated for In-Flight Aircraft Engine Sensor Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2005-01-01

    In-flight sensor fault detection and isolation (FDI) is critical to maintaining reliable engine operation during flight. The aircraft engine control system, which computes control commands on the basis of sensor measurements, operates the propulsion systems at the demanded conditions. Any undetected sensor faults, therefore, may cause the control system to drive the engine into an undesirable operating condition. It is critical to detect and isolate failed sensors as soon as possible so that such scenarios can be avoided. A challenging issue in developing reliable sensor FDI systems is to make them robust to changes in engine operating characteristics due to degradation with usage and other faults that can occur during flight. A sensor FDI system that cannot appropriately account for such scenarios may result in false alarms, missed detections, or misclassifications when such faults do occur. To address this issue, an enhanced bank of Kalman filters was developed, and its performance and robustness were demonstrated in a simulation environment. The bank of filters is composed of m + 1 Kalman filters, where m is the number of sensors being used by the control system and, thus, in need of monitoring. Each Kalman filter is designed on the basis of a unique fault hypothesis so that it will be able to maintain its performance if a particular fault scenario, hypothesized by that particular filter, takes place.

  4. Meeting the Challenges of Exploration Systems: Health Management Technologies for Aerospace Systems With Emphasis on Propulsion

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.; Sowers, T. Shane; Maul, William A.

    2005-01-01

    The constraints of future Exploration Missions will require unique Integrated System Health Management (ISHM) capabilities throughout the mission. An ambitious launch schedule, human-rating requirements, long quiescent periods, limited human access for repair or replacement, and long communication delays all require an ISHM system that can span distinct yet interdependent vehicle subsystems, anticipate failure states, provide autonomous remediation, and support the Exploration Mission from beginning to end. NASA Glenn Research Center has developed and applied health management system technologies to aerospace propulsion systems for almost two decades. Lessons learned from past activities help define the approach to proper ISHM development: sensor selection- identifies sensor sets required for accurate health assessment; data qualification and validation-ensures the integrity of measurement data from sensor to data system; fault detection and isolation-uses measurements in a component/subsystem context to detect faults and identify their point of origin; information fusion and diagnostic decision criteria-aligns data from similar and disparate sources in time and use that data to perform higher-level system diagnosis; and verification and validation-uses data, real or simulated, to provide variable exposure to the diagnostic system for faults that may only manifest themselves in actual implementation, as well as faults that are detectable via hardware testing. This presentation describes a framework for developing health management systems and highlights the health management research activities performed by the Controls and Dynamics Branch at the NASA Glenn Research Center. It illustrates how those activities contribute to the development of solutions for Integrated System Health Management.

  5. Geomorphic indices indicated differential active tectonics of the Longmen Shan

    NASA Astrophysics Data System (ADS)

    Gao, M.; Xu, X.; Tan, X.

    2012-12-01

    The Longmen Shan thrust belt is located at the eastern margin of the Tibetan Plateau. It is a region of rapid active tectonics with high erosion rates and dense vegetation. The structure of the Longmen Shan region is dominated by northeast-trending thrusts and overturned folds that verge to the east and southeast (Burchfiel et al. 1995, Chen and Wilson 1996). The Longmen Shan thrust belt consists of three major faults from west to east: back-range fault, central fault, and frontal-range fault. The Mw 7.9 Wenchuan earthquake ruptured two large thrust faults along the Longmen Shan thrust belt (Xiwei et al., 2009). In this paper, we focus on investigating the spatial variance of tectonic activeness from the back-range fault to the frontal-range fault, particular emphasis on the differential recent tectonic activeness reflected by the hypsometry and the asymmetric factor of the drainage. Results from asymmetric factor indicate the back-rannge thrust fault on the south of the Maoxian caused drainage basins tilted on the hanging wall. For the north of the Maoxian, the strike-slip fault controlled the shapes of the drainage basins. Constantly river capture caused the expansion of the drainage basins which traversed by the fault. The drainages on the central fault and the frontal-range fault are also controlled by the fault slip. The drainage asymmetric factor suggested the central and southern segments of the Longmen Shan are more active than the northern segment, which is coherence with results of Huiping et al. (2010). The results from hypsometry show the back-range fault is the most active fault among the three major faults. Central fault is less active than the back-range fault but more active than the frontal-range fault. Beichuan is identified as the most active area along the central fault. Our geomorphic indices reflect an overall eastward decreasing of tectonic activeness of the Longmen Shan thrust belt.

  6. Method and apparatus for in-situ detection and isolation of aircraft engine faults

    NASA Technical Reports Server (NTRS)

    Bonanni, Pierino Gianni (Inventor); Brunell, Brent Jerome (Inventor)

    2007-01-01

    A method for performing a fault estimation based on residuals of detected signals includes determining an operating regime based on a plurality of parameters, extracting predetermined noise standard deviations of the residuals corresponding to the operating regime and scaling the residuals, calculating a magnitude of a measurement vector of the scaled residuals and comparing the magnitude to a decision threshold value, extracting an average, or mean direction and a fault level mapping for each of a plurality of fault types, based on the operating regime, calculating a projection of the measurement vector onto the average direction of each of the plurality of fault types, determining a fault type based on which projection is maximum, and mapping the projection to a continuous-valued fault level using a lookup table.

  7. Advanced information processing system: Fault injection study and results

    NASA Technical Reports Server (NTRS)

    Burkhardt, Laura F.; Masotto, Thomas K.; Lala, Jaynarayan H.

    1992-01-01

    The objective of the AIPS program is to achieve a validated fault tolerant distributed computer system. The goals of the AIPS fault injection study were: (1) to present the fault injection study components addressing the AIPS validation objective; (2) to obtain feedback for fault removal from the design implementation; (3) to obtain statistical data regarding fault detection, isolation, and reconfiguration responses; and (4) to obtain data regarding the effects of faults on system performance. The parameters are described that must be varied to create a comprehensive set of fault injection tests, the subset of test cases selected, the test case measurements, and the test case execution. Both pin level hardware faults using a hardware fault injector and software injected memory mutations were used to test the system. An overview is provided of the hardware fault injector and the associated software used to carry out the experiments. Detailed specifications are given of fault and test results for the I/O Network and the AIPS Fault Tolerant Processor, respectively. The results are summarized and conclusions are given.

  8. Sedimentary record of relay zone evolution, Central Corinth Rift (Greece): Role of fault propagation and structural inheritance.

    NASA Astrophysics Data System (ADS)

    Hemelsdaël, Romain; Ford, Mary; Meyer, Nicolas

    2013-04-01

    Relay zones along rift border fault systems form topographic lows that are considered to allow the transfer of sediment from the footwall into hanging wall depocentres. Present knowledge focuses on the modifications of drainage patterns and sediment pathways across relay zones, however their vertical motion during growth and interaction of faults segments is not well documented. 3D models of fault growth and linkage are also under debate. The Corinth rift (Greece) is an ideal natural laboratory for the study of fault system evolution. Fault activity and rift depocentres migrated northward during Pliocene to Recent N-S extension. We report on the evolution of a relay zone in the currently active southern rift margin fault system from Pleistocene to present-day. The relay zone lies between the E-W East Helike (EHF) and Derveni faults (DF) that lie just offshore and around the town of Akrata. During its evolution the relay zone captured the antecedent Krathis river which continued to deposit Gilbert-type deltas across the relay zone during fault interaction, breaching and post linkage phases. Moreover our work underlines the role that pre-existing structure in the location of the transfer zone. Offshore fault geometry and kinematics, and sediment distribution were defined by interpretation and depth conversion of high resolution seismic profiles (from Maurice Ewing 2001 geophysical survey). Early lateral propagation of the EHF is recorded by synsedimentary fault propagation folds while the DF records tilted block geometries since initiation. Within the relay zone beds are gradually tilted toward the basin before breaching. These different styles of deformation highlight mechanical contrasts and upper crustal partition associated with the development of the Akrata relay zone. Onshore detailed lithostratigraphy, structure and geomorphological features record sedimentation across the subsiding relay ramp and subsequent footwall uplift after breaching. The area is characterised by the successive deposition of the northward prograding Platanos Gilbert-type delta (Middle group; deposited in hangingwall of the Pirgaki-Mamoussia fault) and the NE to E prograding Akrata Gilbert-type delta (Upper group). The Akrata Gilbert-type delta records progressive rotation and lengthening of the relay ramp as the East Helike fault and Derveni fault propagated laterally (from around 0.8 Ma) and started to overlap. The relay ramp was then breached by the Krathis fault (around 0.45 Ma) and the latter reactivated a NW-SE oriented inherited structure. Onshore-offshore correlation and profile restoration of the Upper group demonstrate the presence of this pre-existing structure (detachment fault?) below the Akrata relay zone that was responsible for significant eastward thickening in early rift sediments (Lower to Middle group). Our evolution model is consistent with the 'isolated fault' model where a fault array initially develops from growth of kinematically independent fault segments and fault displacement gradually accumulates during pre- and post-linkage stages. Despite the prominent control of pre-existing fabrics on the location of the transfer zone, lateral fault propagation and interaction can be well documented.

  9. A recurrent neural-network-based sensor and actuator fault detection and isolation for nonlinear systems with application to the satellite's attitude control subsystem.

    PubMed

    Talebi, H A; Khorasani, K; Tafazoli, S

    2009-01-01

    This paper presents a robust fault detection and isolation (FDI) scheme for a general class of nonlinear systems using a neural-network-based observer strategy. Both actuator and sensor faults are considered. The nonlinear system considered is subject to both state and sensor uncertainties and disturbances. Two recurrent neural networks are employed to identify general unknown actuator and sensor faults, respectively. The neural network weights are updated according to a modified backpropagation scheme. Unlike many previous methods developed in the literature, our proposed FDI scheme does not rely on availability of full state measurements. The stability of the overall FDI scheme in presence of unknown sensor and actuator faults as well as plant and sensor noise and uncertainties is shown by using the Lyapunov's direct method. The stability analysis developed requires no restrictive assumptions on the system and/or the FDI algorithm. Magnetorquer-type actuators and magnetometer-type sensors that are commonly employed in the attitude control subsystem (ACS) of low-Earth orbit (LEO) satellites for attitude determination and control are considered in our case studies. The effectiveness and capabilities of our proposed fault diagnosis strategy are demonstrated and validated through extensive simulation studies.

  10. FIESTA: An operational decision aid for space network fault isolation

    NASA Technical Reports Server (NTRS)

    Lowe, Dawn; Quillin, Bob; Matteson, Nadine; Wilkinson, Bill; Miksell, Steve

    1987-01-01

    The Fault Tolerance Expert System for Tracking and Data Relay Satellite System (TDRSS) Applications (FIESTA) is a fault detection and fault diagnosis expert system being developed as a decision aid to support operations in the Network Control Center (NCC) for NASA's Space Network. The operational objectives which influenced FIESTA development are presented and an overview of the architecture used to achieve these goals are provided. The approach to the knowledge engineering effort and the methodology employed are also presented and illustrated with examples drawn from the FIESTA domain.

  11. Recent tectonic stress field, active faults and geothermal fields (hot-water type) in China

    NASA Astrophysics Data System (ADS)

    Wan, Tianfeng

    1984-10-01

    It is quite probable that geothermal fields of the hot-water type in China do not develop in the absence of recently active faults. Such active faults are all controlled by tectonic stress fields. Using the data of earthquake fault-plane solutions, active faults, and surface thermal manifestations, a map showing the recent tectonic stress field, and the location of active faults and geothermal fields in China is presented. Data collected from 89 investigated prospects with geothermal manifestations indicate that the locations of geothermal fields are controlled by active faults and the recent tectonic stress field. About 68% of the prospects are controlled by tensional or tensional-shear faults. The angle between these faults and the direction of maximum compressive stress is less than 45°, and both tend to be parallel. About 15% of the prospects are controlled by conjugate faults. Another 14% are controlled by compressive-shear faults where the angle between these faults and the direction maximum compressive stress is greater than 45°.

  12. Design of isolated buildings with S-FBI system subjected to near-fault earthquakes using NSGA-II algorithm

    NASA Astrophysics Data System (ADS)

    Ozbulut, O. E.; Silwal, B.

    2014-04-01

    This study investigates the optimum design parameters of a superelastic friction base isolator (S-FBI) system through a multi-objective genetic algorithm and performance-based evaluation approach. The S-FBI system consists of a flat steel- PTFE sliding bearing and a superelastic NiTi shape memory alloy (SMA) device. Sliding bearing limits the transfer of shear across the isolation interface and provides damping from sliding friction. SMA device provides restoring force capability to the isolation system together with additional damping characteristics. A three-story building is modeled with S-FBI isolation system. Multiple-objective numerical optimization that simultaneously minimizes isolation-level displacements and superstructure response is carried out with a genetic algorithm (GA) in order to optimize S-FBI system. Nonlinear time history analyses of the building with S-FBI system are performed. A set of 20 near-field ground motion records are used in numerical simulations. Results show that S-FBI system successfully control response of the buildings against near-fault earthquakes without sacrificing in isolation efficacy and producing large isolation-level deformations.

  13. Aircraft Engine On-Line Diagnostics Through Dual-Channel Sensor Measurements: Development of an Enhanced System

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2008-01-01

    In this paper, an enhanced on-line diagnostic system which utilizes dual-channel sensor measurements is developed for the aircraft engine application. The enhanced system is composed of a nonlinear on-board engine model (NOBEM), the hybrid Kalman filter (HKF) algorithm, and fault detection and isolation (FDI) logic. The NOBEM provides the analytical third channel against which the dual-channel measurements are compared. The NOBEM is further utilized as part of the HKF algorithm which estimates measured engine parameters. Engine parameters obtained from the dual-channel measurements, the NOBEM, and the HKF are compared against each other. When the discrepancy among the signals exceeds a tolerance level, the FDI logic determines the cause of discrepancy. Through this approach, the enhanced system achieves the following objectives: 1) anomaly detection, 2) component fault detection, and 3) sensor fault detection and isolation. The performance of the enhanced system is evaluated in a simulation environment using faults in sensors and components, and it is compared to an existing baseline system.

  14. Fault diagnosis of sensor networked structures with multiple faults using a virtual beam based approach

    NASA Astrophysics Data System (ADS)

    Wang, H.; Jing, X. J.

    2017-07-01

    This paper presents a virtual beam based approach suitable for conducting diagnosis of multiple faults in complex structures with limited prior knowledge of the faults involved. The "virtual beam", a recently-proposed concept for fault detection in complex structures, is applied, which consists of a chain of sensors representing a vibration energy transmission path embedded in the complex structure. Statistical tests and adaptive threshold are particularly adopted for fault detection due to limited prior knowledge of normal operational conditions and fault conditions. To isolate the multiple faults within a specific structure or substructure of a more complex one, a 'biased running' strategy is developed and embedded within the bacterial-based optimization method to construct effective virtual beams and thus to improve the accuracy of localization. The proposed method is easy and efficient to implement for multiple fault localization with limited prior knowledge of normal conditions and faults. With extensive experimental results, it is validated that the proposed method can localize both single fault and multiple faults more effectively than the classical trust index subtract on negative add on positive (TI-SNAP) method.

  15. Geometry of the 1954 Fairview Peak-Dixie Valley earthquake sequence from a joint inversion of leveling and triangulation data

    USGS Publications Warehouse

    Hodgkinson, K.M.; Stein, R.S.; Marshall, G.

    1996-01-01

    In 1954, four earthquakes greater than Ms=6.0 occurred within a 30-km radius and in a period of 6 months. Elevation and angle changes calculated from repeated leveling and triangulation surveys which span the coseismic period provide constraints on the fault geometries and coseismic slip of the faults which were activated. The quality of the coseismic geodetic data is assessed. Corrections are applied to the leveling data for subsidence due to groundwater withdrawal in the Fallon area, and a rod miscalibration error of 150??30 ppm is isolated in leveling surveys made in 1967. The leveling and triangulation observations are then simultaneously inverted using the single value decomposition (SVD) inversion method to determine fault geometries and coseismic slip. Using SVD, it is possible to determine on which faults slip is resolvable given the data distribution. The faults are found to dip between 50?? and 80?? and extend to depths of 5 to 14 km. The geodetically derived slip values are generally equal to, or greater than, the maximum observed displacement along the surface scarps. Where slip is resolvable the geodetic data indicates the 1954 sequence contained a significant component of right-lateral slip. This is consistent with the N15??W trending shear zone which geodetic surveys have detected in western Nevada. Copyright 1996 by the American Geophysical Union.

  16. Expert systems applied to fault isolation and energy storage management, phase 2

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A user's guide for the Fault Isolation and Energy Storage (FIES) II system is provided. Included are a brief discussion of the background and scope of this project, a discussion of basic and advanced operating installation and problem determination procedures for the FIES II system and information on hardware and software design and implementation. A number of appendices are provided including a detailed specification for the microprocessor software, a detailed description of the expert system rule base and a description and listings of the LISP interface software.

  17. Automatic detection of electric power troubles (AI application)

    NASA Technical Reports Server (NTRS)

    Wang, Caroline; Zeanah, Hugh; Anderson, Audie; Patrick, Clint

    1987-01-01

    The design goals for the Automatic Detection of Electric Power Troubles (ADEPT) were to enhance Fault Diagnosis Techniques in a very efficient way. ADEPT system was designed in two modes of operation: (1) Real time fault isolation, and (2) a local simulator which simulates the models theoretically.

  18. Numerical modeling of mountain formation on Io

    NASA Astrophysics Data System (ADS)

    Turtle, E. P.; Jaeger, W. L.; McEwen, A. S.; Keszthelyi, L.

    2000-10-01

    Io has ~ 100 mountains [1] that, although often associated with patera [2], do not appear to be volcanic structures. The mountains are up to 16 km high [3] and are generally isolated from each other. We have performed finite-element simulations of the formation of these mountains, investigating several mountain building scenarios: (1) a volcanic construct due to heterogeneous resurfacing on a coherent, homogeneous lithosphere; (2) a volcanic construct on a faulted, homogeneous lithosphere; (3) a volcanic construct on a faulted, homogeneous lithosphere under compression induced by subsidence due to Io's high resurfacing rate; (4) a faulted, homogeneous lithosphere under subsidence-induced compression; (5) a faulted, heterogeneous lithosphere under subsidence-induced compression; and (6) a mantle upwelling beneath a coherent, homogeneous lithosphere under subsidence-induced compression. The models of volcanic constructs do not produce mountains similar to those observed on Io. Neither do those of pervasively faulted lithospheres under compression; these predict a series of tilted lithospheric blocks or plateaus, as opposed to the isolated structures that are observed. Our models show that rising mantle material impinging on the base of the lithosphere can focus the compressional stresses to localize thrust faulting and mountain building. Such faults could also provide conduits along which magma could reach the surface as is observed near several mountains. [1] Carr et al., Icarus 135, pp. 146-165, 1998. [2] McEwen et al., Science 288, pp. 1193-1198, 2000. [3] Schenk and Bulmer, Science 279, pp. 1514-1517, 1998.

  19. Impact of tectonic and volcanism on the Neogene evolution of isolated carbonate platforms (SW Indian Ocean)

    NASA Astrophysics Data System (ADS)

    Courgeon, S.; Jorry, S. J.; Jouet, G.; Camoin, G.; BouDagher-Fadel, M. K.; Bachèlery, P.; Caline, B.; Boichard, R.; Révillon, S.; Thomas, Y.; Thereau, E.; Guérin, C.

    2017-06-01

    Understanding the impact of tectonic activity and volcanism on long-term (i.e. millions years) evolution of shallow-water carbonate platforms represents a major issue for both industrial and academic perspectives. The southern central Mozambique Channel is characterized by a 100 km-long volcanic ridge hosting two guyots (the Hall and Jaguar banks) and a modern atoll (Bassas da India) fringed by a large terrace. Dredge sampling, geophysical acquisitions and submarines videos carried out during recent oceanographic cruises revealed that submarine flat-top seamounts correspond to karstified and drowned shallow-water carbonate platforms largely covered by volcanic material and structured by a dense network of normal faults. Microfacies and well-constrained stratigraphic data indicate that these carbonate platforms developed in shallow-water tropical environments during Miocene times and were characterized by biological assemblages dominated by corals, larger benthic foraminifera, red and green algae. The drowning of these isolated carbonate platforms is revealed by the deposition of outer shelf sediments during the Early Pliocene and seems closely linked to (1) volcanic activity typified by the establishment of wide lava flow complexes, and (2) to extensional tectonic deformation associated with high-offset normal faults dividing the flat-top seamounts into distinctive structural blocks. Explosive volcanic activity also affected platform carbonates and was responsible for the formation of crater(s) and the deposition of tuff layers including carbonate fragments. Shallow-water carbonate sedimentation resumed during Late Neogene time with the colonization of topographic highs inherited from tectonic deformation and volcanic accretion. Latest carbonate developments ultimately led to the formation of the Bassas da India modern atoll. The geological history of isolated carbonate platforms from the southern Mozambique Channel represents a new case illustrating the major impact of tectonic and volcanic activity on the long-term evolution of shallow-water carbonate platforms.

  20. Fault detection monitor circuit provides ''self-heal capability'' in electronic modules - A concept

    NASA Technical Reports Server (NTRS)

    Kennedy, J. J.

    1970-01-01

    Self-checking technique detects defective solid state modules used in electronic test and checkout instrumentation. A ten bit register provides failure monitor and indication for 1023 comparator circuits, and the automatic fault-isolation capability permits the electronic subsystems to be repaired by replacing the defective module.

  1. Fuzzy model-based fault detection and diagnosis for a pilot heat exchanger

    NASA Astrophysics Data System (ADS)

    Habbi, Hacene; Kidouche, Madjid; Kinnaert, Michel; Zelmat, Mimoun

    2011-04-01

    This article addresses the design and real-time implementation of a fuzzy model-based fault detection and diagnosis (FDD) system for a pilot co-current heat exchanger. The design method is based on a three-step procedure which involves the identification of data-driven fuzzy rule-based models, the design of a fuzzy residual generator and the evaluation of the residuals for fault diagnosis using statistical tests. The fuzzy FDD mechanism has been implemented and validated on the real co-current heat exchanger, and has been proven to be efficient in detecting and isolating process, sensor and actuator faults.

  2. Real-Time Diagnosis of Faults Using a Bank of Kalman Filters

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2006-01-01

    A new robust method of automated real-time diagnosis of faults in an aircraft engine or a similar complex system involves the use of a bank of Kalman filters. In order to be highly reliable, a diagnostic system must be designed to account for the numerous failure conditions that an aircraft engine may encounter in operation. The method achieves this objective though the utilization of multiple Kalman filters, each of which is uniquely designed based on a specific failure hypothesis. A fault-detection-and-isolation (FDI) system, developed based on this method, is able to isolate faults in sensors and actuators while detecting component faults (abrupt degradation in engine component performance). By affording a capability for real-time identification of minor faults before they grow into major ones, the method promises to enhance safety and reduce operating costs. The robustness of this method is further enhanced by incorporating information regarding the aging condition of an engine. In general, real-time fault diagnostic methods use the nominal performance of a "healthy" new engine as a reference condition in the diagnostic process. Such an approach does not account for gradual changes in performance associated with aging of an otherwise healthy engine. By incorporating information on gradual, aging-related changes, the new method makes it possible to retain at least some of the sensitivity and accuracy needed to detect incipient faults while preventing false alarms that could result from erroneous interpretation of symptoms of aging as symptoms of failures. The figure schematically depicts an FDI system according to the new method. The FDI system is integrated with an engine, from which it accepts two sets of input signals: sensor readings and actuator commands. Two main parts of the FDI system are a bank of Kalman filters and a subsystem that implements FDI decision rules. Each Kalman filter is designed to detect a specific sensor or actuator fault. When a sensor or actuator fault occurs, large estimation errors are generated by all filters except the one using the correct hypothesis. By monitoring the residual output of each filter, the specific fault that has occurred can be detected and isolated on the basis of the decision rules. A set of parameters that indicate the performance of the engine components is estimated by the "correct" Kalman filter for use in detecting component faults. To reduce the loss of diagnostic accuracy and sensitivity in the face of aging, the FDI system accepts information from a steady-state-condition-monitoring system. This information is used to update the Kalman filters and a data bank of trim values representative of the current aging condition.

  3. Response: Discussion of 'Morphotectonic records of neotectonic activity in the vicinity of North Almora Thrust Zone, Central Kumaun Himalaya' by Kothyari et al. (2017), Geomorphology (285), 272-286

    NASA Astrophysics Data System (ADS)

    Kothyari, Girish Ch.; Kandregula, Raj Sunil; Luirei, Khayingshing

    2018-01-01

    Rana and Sharma (2017) dispute our tectonic interpretation mainly on the basis of what they believe (climate?). However, we welcome their comments, as this gives us a chance to highlight the ambiguity inherent in discriminating the climate-tectonic imprints in morphotectonic records that are prevalent in current research. We should note that the paper published by Kothyari et al. (2017) was reviewed by national/international reviewers. We would like to emphasize the fact that the paper does not rule out the role of climate. However, most importantly, it presents significant features and observations that collection/assemblage points toward the dominant role of tectonics in their shaping, and not solely climate, as postulated by Rana and Sharma (2017). The objective of this paper is to identify tectonic signatures (geomorphology) in a monsoon - dominated, tectonically active terrain like the North Almora Thrust (NAT). These faults are marked by previous workers based on field evidence such as folding and faulting of lithological units; presence of slickensides parallel to the fault; offset of NAT owing to a transverse fault; and offset of drainage, drainage basin analysis, strath terraces, fluviolacustrine terraces, development of scarp, narrow river course, and deeply incised valleys. However, we disagree with the comments raised by Rana and Sharma (2017), because they are highly skewed toward the climate school of thought, and did not perceive the setting as a collection of landforms. Instead, they attempted to view them in isolation. Because these comments are important, we will try to further our research incorporating issues related to isolation of climate and tectonics imprints in the immediate future. We would like to thank Rana and Sharma (2017) for raising some basic questions on our work as this gave us an excellent opportunity to summarize and present the dominance of various processes and related landforms as earlier reported by Kothyari et al. (2017). A point-by-point detailed rebuttal/explanation of their queries is provided below.

  4. Using Seismic Interferometry to Investigate Seismic Swarms

    NASA Astrophysics Data System (ADS)

    Matzel, E.; Morency, C.; Templeton, D. C.

    2017-12-01

    Seismicity provides a direct means of measuring the physical characteristics of active tectonic features such as fault zones. Hundreds of small earthquakes often occur along a fault during a seismic swarm. This seismicity helps define the tectonically active region. When processed using novel geophysical techniques, we can isolate the energy sensitive to the fault, itself. Here we focus on two methods of seismic interferometry, ambient noise correlation (ANC) and the virtual seismometer method (VSM). ANC is based on the observation that the Earth's background noise includes coherent energy, which can be recovered by observing over long time periods and allowing the incoherent energy to cancel out. The cross correlation of ambient noise between a pair of stations results in a waveform that is identical to the seismogram that would result if an impulsive source located at one of the stations was recorded at the other, the Green function (GF). The calculation of the GF is often stable after a few weeks of continuous data correlation, any perturbations to the GF after that point are directly related to changes in the subsurface and can be used for 4D monitoring.VSM is a style of seismic interferometry that provides fast, precise, high frequency estimates of the Green's function (GF) between earthquakes. VSM illuminates the subsurface precisely where the pressures are changing and has the potential to image the evolution of seismicity over time, including changes in the style of faulting. With hundreds of earthquakes, we can calculate thousands of waveforms. At the same time, VSM collapses the computational domain, often by 2-3 orders of magnitude. This allows us to do high frequency 3D modeling in the fault region. Using data from a swarm of earthquakes near the Salton Sea, we demonstrate the power of these techniques, illustrating our ability to scale from the far field, where sources are well separated, to the near field where their locations fall within each other's uncertainty ellipse. We use ANC to create a 3D model of the crust in the region. VSM provides better illumination of the active fault zone. Measures of amplitude and shape are used to refine source properties and locations in space and waveform modeling allows us to estimate near-fault seismic structure.

  5. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Test act system validation

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The primary objective of the Test Active Control Technology (ACT) System laboratory tests was to verify and validate the system concept, hardware, and software. The initial lab tests were open loop hardware tests of the Test ACT System as designed and built. During the course of the testing, minor problems were uncovered and corrected. Major software tests were run. The initial software testing was also open loop. These tests examined pitch control laws, wing load alleviation, signal selection/fault detection (SSFD), and output management. The Test ACT System was modified to interface with the direct drive valve (DDV) modules. The initial testing identified problem areas with DDV nonlinearities, valve friction induced limit cycling, DDV control loop instability, and channel command mismatch. The other DDV issue investigated was the ability to detect and isolate failures. Some simple schemes for failure detection were tested but were not completely satisfactory. The Test ACT System architecture continues to appear promising for ACT/FBW applications in systems that must be immune to worst case generic digital faults, and be able to tolerate two sequential nongeneric faults with no reduction in performance. The challenge in such an implementation would be to keep the analog element sufficiently simple to achieve the necessary reliability.

  6. Model-Based Diagnosis and Prognosis of a Water Recycling System

    NASA Technical Reports Server (NTRS)

    Roychoudhury, Indranil; Hafiychuk, Vasyl; Goebel, Kai Frank

    2013-01-01

    A water recycling system (WRS) deployed at NASA Ames Research Center s Sustainability Base (an energy efficient office building that integrates some novel technologies developed for space applications) will serve as a testbed for long duration testing of next generation spacecraft water recycling systems for future human spaceflight missions. This system cleans graywater (waste water collected from sinks and showers) and recycles it into clean water. Like all engineered systems, the WRS is prone to standard degradation due to regular use, as well as other faults. Diagnostic and prognostic applications will be deployed on the WRS to ensure its safe, efficient, and correct operation. The diagnostic and prognostic results can be used to enable condition-based maintenance to avoid unplanned outages, and perhaps extend the useful life of the WRS. Diagnosis involves detecting when a fault occurs, isolating the root cause of the fault, and identifying the extent of damage. Prognosis involves predicting when the system will reach its end of life irrespective of whether an abnormal condition is present or not. In this paper, first, we develop a physics model of both nominal and faulty system behavior of the WRS. Then, we apply an integrated model-based diagnosis and prognosis framework to the simulation model of the WRS for several different fault scenarios to detect, isolate, and identify faults, and predict the end of life in each fault scenario, and present the experimental results.

  7. Examining Relay Ramp Evolution Through Paleo-shoreline Deformation Analysis, Warner Valley Fault, Oregon

    NASA Astrophysics Data System (ADS)

    Young, C. S.; Dawers, N. H.

    2017-12-01

    Fault growth is often accomplished by linking a series of en echelon faults through relay ramps. A relay ramp is the area between two overlapping fault segments that tilts and deforms as the faults accrue displacement. The structural evolution of breached normal fault relay ramps remains poorly understood because of the difficulty in defining how slip is partitioned between the most basinward fault (known as the outboard fault), the overlapping fault (inboard fault), and any ramp-breaching linking faults. Along the Warner Valley fault in south-central Oregon, two relay ramps displaying different fault linkage geometries are lined with a series of paleo-lacustrine shorelines that record a Pleistocene paleolake regression. The inner edges of these shorelines act as paleo-horizontal datums that have been deformed by fault activity, and are used to measure relative slip variations across the relay ramp bounding faults. By measuring the elevation changes using a 10m digital elevation model (DEM) of shoreline inner edges, we estimate the amount of slip partitioned between the inboard, outboard and ramp-breaching linking faults. In order to attribute shoreline deformation to fault activity we identify shoreline elevation anomalies, where deformation exceeds a ± 3.34 m window, which encompass our conservative estimates of natural variability in the shoreline geomorphology and the error associated with the data collection. Fault activity along the main length of the fault for each ramp-breaching style is concentrated near the intersection of the linking fault and the outboard portion of the main fault segment. However, fault activity along the outboard fault tip varies according to breaching style. At a footwall breach the entire outboard fault tip appears relatively inactive. At a mid-ramp breach the outboard fault tip remains relatively active because of the proximity of the linking fault to this fault tip.

  8. Using graphics and expert system technologies to support satellite monitoring at the NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Hughes, Peter M.; Shirah, Gregory W.; Luczak, Edward C.

    1994-01-01

    At NASA's Goddard Space Flight Center, fault-isolation expert systems have been developed to support data monitoring and fault detection tasks in satellite control centers. Based on the lessons learned during these efforts in expert system automation, a new domain-specific expert system development tool named the Generic Spacecraft Analysts Assistant (GenSAA), was developed to facilitate the rapid development and reuse of real-time expert systems to serve as fault-isolation assistants for spacecraft analysts. This paper describes GenSAA's capabilities and how it is supporting monitoring functions of current and future NASA missions for a variety of satellite monitoring applications ranging from subsystem health and safety to spacecraft attitude. Finally, this paper addresses efforts to generalize GenSAA's data interface for more widespread usage throughout the space and commercial industry.

  9. Investigation of Aceh Segment and Seulimeum Fault by using seismological data; A preliminary result

    NASA Astrophysics Data System (ADS)

    Muksin, U.; Irwandi; Rusydy, I.; Muzli; Erbas, K.; Marwan; Asrillah; Muzakir; Ismail, N.

    2018-04-01

    The Seulimeum Fault has not generated large earthquake after last large earthquake with magnitude of M 7.3 occured in 1936. The Seulimeum Fault is accompanied by the Seulawah volcano that reported to be active in 1839, 1975 and 2010. The activity of the Seulimeum Fault could be related with the existence of the Seulawah volcano and the Seulawah volcano activity could also triggered by the Seulumeum Fault activity. The objective of the longterm research is to investigate the relation between the Seulimeum Fault and the Seulawah Volcano. The aim of this paper is to present the first result of the investigation of the Seulimeum Fault based on the seismicity and geomorphology. A seismic network consisting of 17 seismometers (Trilium Compact) and data logger (DSS Cube) were deployed in Aceh Besar. The seismic network was installed for 3 months to record earthquakes along the Seulimeum and the Aceh Faults. The Seulimeum Fault is considered to be active as several local earthquakes were recorded. The Seulimeum Fault is much more active in the region of the bifurcation of the The Aceh Segment and the Seulimeum Fault. The mechanisms of earthquakes along the Seulimeum Fault were mostly strike slip following similar to the Sumatran Fault characteristics.

  10. Study on Fault Diagnostics of a Turboprop Engine Using Inverse Performance Model and Artificial Intelligent Methods

    NASA Astrophysics Data System (ADS)

    Kong, Changduk; Lim, Semyeong

    2011-12-01

    Recently, the health monitoring system of major gas path components of gas turbine uses mostly the model based method like the Gas Path Analysis (GPA). This method is to find quantity changes of component performance characteristic parameters such as isentropic efficiency and mass flow parameter by comparing between measured engine performance parameters such as temperatures, pressures, rotational speeds, fuel consumption, etc. and clean engine performance parameters without any engine faults which are calculated by the base engine performance model. Currently, the expert engine diagnostic systems using the artificial intelligent methods such as Neural Networks (NNs), Fuzzy Logic and Genetic Algorithms (GAs) have been studied to improve the model based method. Among them the NNs are mostly used to the engine fault diagnostic system due to its good learning performance, but it has a drawback due to low accuracy and long learning time to build learning data base if there are large amount of learning data. In addition, it has a very complex structure for finding effectively single type faults or multiple type faults of gas path components. This work builds inversely a base performance model of a turboprop engine to be used for a high altitude operation UAV using measured performance data, and proposes a fault diagnostic system using the base engine performance model and the artificial intelligent methods such as Fuzzy logic and Neural Network. The proposed diagnostic system isolates firstly the faulted components using Fuzzy Logic, then quantifies faults of the identified components using the NN leaned by fault learning data base, which are obtained from the developed base performance model. In leaning the NN, the Feed Forward Back Propagation (FFBP) method is used. Finally, it is verified through several test examples that the component faults implanted arbitrarily in the engine are well isolated and quantified by the proposed diagnostic system.

  11. A signal-based fault detection and classification method for heavy haul wagons

    NASA Astrophysics Data System (ADS)

    Li, Chunsheng; Luo, Shihui; Cole, Colin; Spiryagin, Maksym; Sun, Yanquan

    2017-12-01

    This paper proposes a signal-based fault detection and isolation (FDI) system for heavy haul wagons considering the special requirements of low cost and robustness. The sensor network of the proposed system consists of just two accelerometers mounted on the front left and rear right of the carbody. Seven fault indicators (FIs) are proposed based on the cross-correlation analyses of the sensor-collected acceleration signals. Bolster spring fault conditions are focused on in this paper, including two different levels (small faults and moderate faults) and two locations (faults in the left and right bolster springs of the first bogie). A fully detailed dynamic model of a typical 40t axle load heavy haul wagon is developed to evaluate the deterioration of dynamic behaviour under proposed fault conditions and demonstrate the detectability of the proposed FDI method. Even though the fault conditions considered in this paper did not deteriorate the wagon dynamic behaviour dramatically, the proposed FIs show great sensitivity to the bolster spring faults. The most effective and efficient FIs are chosen for fault detection and classification. Analysis results indicate that it is possible to detect changes in bolster stiffness of ±25% and identify the fault location.

  12. Active faults in Africa: a review

    NASA Astrophysics Data System (ADS)

    Skobelev, S. F.; Hanon, M.; Klerkx, J.; Govorova, N. N.; Lukina, N. V.; Kazmin, V. G.

    2004-03-01

    The active fault database and Map of active faults in Africa, in scale of 1:5,000,000, were compiled according to the ILP Project II-2 "World Map of Major Active Faults". The data were collected in the Royal Museum of Central Africa, Tervuren, Belgium, and in the Geological Institute, Moscow, where the final edition was carried out. Active faults of Africa form three groups. The first group is represented by thrusts and reverse faults associated with compressed folds in the northwest Africa. They belong to the western part of the Alpine-Central Asian collision belt. The faults disturb only the Earth's crust and some of them do not penetrate deeper than the sedimentary cover. The second group comprises the faults of the Great African rift system. The faults form the known Western and Eastern branches, which are rifts with abnormal mantle below. The deep-seated mantle "hot" anomaly probably relates to the eastern volcanic branch. In the north, it joins with the Aden-Red Sea rift zone. Active faults in Egypt, Libya and Tunis may represent a link between the East African rift system and Pantellerian rift zone in the Mediterranean. The third group included rare faults in the west of Equatorial Africa. The data were scarce, so that most of the faults of this group were identified solely by interpretation of space imageries and seismicity. Some longer faults of the group may continue the transverse faults of the Atlantic and thus can penetrate into the mantle. This seems evident for the Cameron fault line.

  13. Real-Time Model-Based Leak-Through Detection within Cryogenic Flow Systems

    NASA Technical Reports Server (NTRS)

    Walker, M.; Figueroa, F.

    2015-01-01

    The timely detection of leaks within cryogenic fuel replenishment systems is of significant importance to operators on account of the safety and economic impacts associated with material loss and operational inefficiencies. Associated loss in control of pressure also effects the stability and ability to control the phase of cryogenic fluids during replenishment operations. Current research dedicated to providing Prognostics and Health Management (PHM) coverage of such cryogenic replenishment systems has focused on the detection of leaks to atmosphere involving relatively simple model-based diagnostic approaches that, while effective, are unable to isolate the fault to specific piping system components. The authors have extended this research to focus on the detection of leaks through closed valves that are intended to isolate sections of the piping system from the flow and pressurization of cryogenic fluids. The described approach employs model-based detection of leak-through conditions based on correlations of pressure changes across isolation valves and attempts to isolate the faults to specific valves. Implementation of this capability is enabled by knowledge and information embedded in the domain model of the system. The approach has been used effectively to detect such leak-through faults during cryogenic operational testing at the Cryogenic Testbed at NASA's Kennedy Space Center.

  14. On-line experimental validation of a model-based diagnostic algorithm dedicated to a solid oxide fuel cell system

    NASA Astrophysics Data System (ADS)

    Polverino, Pierpaolo; Esposito, Angelo; Pianese, Cesare; Ludwig, Bastian; Iwanschitz, Boris; Mai, Andreas

    2016-02-01

    In the current energetic scenario, Solid Oxide Fuel Cells (SOFCs) exhibit appealing features which make them suitable for environmental-friendly power production, especially for stationary applications. An example is represented by micro-combined heat and power (μ-CHP) generation units based on SOFC stacks, which are able to produce electric and thermal power with high efficiency and low pollutant and greenhouse gases emissions. However, the main limitations to their diffusion into the mass market consist in high maintenance and production costs and short lifetime. To improve these aspects, the current research activity focuses on the development of robust and generalizable diagnostic techniques, aimed at detecting and isolating faults within the entire system (i.e. SOFC stack and balance of plant). Coupled with appropriate recovery strategies, diagnosis can prevent undesired system shutdowns during faulty conditions, with consequent lifetime increase and maintenance costs reduction. This paper deals with the on-line experimental validation of a model-based diagnostic algorithm applied to a pre-commercial SOFC system. The proposed algorithm exploits a Fault Signature Matrix based on a Fault Tree Analysis and improved through fault simulations. The algorithm is characterized on the considered system and it is validated by means of experimental induction of faulty states in controlled conditions.

  15. Towards Certification of a Space System Application of Fault Detection and Isolation

    NASA Technical Reports Server (NTRS)

    Feather, Martin S.; Markosian, Lawrence Z.

    2008-01-01

    Advanced fault detection, isolation and recovery (FDIR) software is being investigated at NASA as a means to the improve reliability and availability of its space systems. Certification is a critical step in the acceptance of such software. Its attainment hinges on performing the necessary verification and validation to show that the software will fulfill its requirements in the intended setting. Presented herein is our ongoing work to plan for the certification of a pilot application of advanced FDIR software in a NASA setting. We describe the application, and the key challenges and opportunities it offers for certification.

  16. Task Identification and Evaluation System (TIES)

    DTIC Science & Technology

    1991-08-01

    Caliorate A N/AVh-11A- iUD -test -sets 127. Calibrate AN/AWII1-55 ASCU test setsI - 128. Calibrate 5001L11 tally punched tape readersI- 129. Perform...11AKHbD test sets -- 132. ?erform fault isolation of U4/AWN-55 ASCU -test sets -- 133. Perform fault isolation of 500 R.M tally punched tape I...AIN/AVM1-11A HfLM test sets- 137. Perf-orm self-tests of AL%/AWL-S5 ASCU test sets G. !MAI.T.T!ING A-7D_ ANUAL TEST SETS 138. Adjust SM-661/AS-388air

  17. Advanced instrumentation concepts for environmental control subsystems

    NASA Technical Reports Server (NTRS)

    Yang, P. Y.; Schubert, F. H.; Gyorki, J. R.; Wynveen, R. A.

    1978-01-01

    Design, evaluation and demonstration of advanced instrumentation concepts for improving performance of manned spacecraft environmental control and life support systems were successfully completed. Concepts to aid maintenance following fault detection and isolation were defined. A computer-guided fault correction instruction program was developed and demonstrated in a packaged unit which also contains the operator/system interface.

  18. Galileo spacecraft power distribution and autonomous fault recovery

    NASA Technical Reports Server (NTRS)

    Detwiler, R. C.

    1982-01-01

    There is a trend in current spacecraft design to achieve greater fault tolerance through the implemenation of on-board software dedicated to detecting and isolating failures. A combination of hardware and software is utilized in the Galileo power system for autonomous fault recovery. Galileo is a dual-spun spacecraft designed to carry a number of scientific instruments into a series of orbits around the planet Jupiter. In addition to its self-contained scientific payload, it will also carry a probe system which will be separated from the spacecraft some 150 days prior to Jupiter encounter. The Galileo spacecraft is scheduled to be launched in 1985. Attention is given to the power system, the fault protection requirements, and the power fault recovery implementation.

  19. An architecture for the development of real-time fault diagnosis systems using model-based reasoning

    NASA Technical Reports Server (NTRS)

    Hall, Gardiner A.; Schuetzle, James; Lavallee, David; Gupta, Uday

    1992-01-01

    Presented here is an architecture for implementing real-time telemetry based diagnostic systems using model-based reasoning. First, we describe Paragon, a knowledge acquisition tool for offline entry and validation of physical system models. Paragon provides domain experts with a structured editing capability to capture the physical component's structure, behavior, and causal relationships. We next describe the architecture of the run time diagnostic system. The diagnostic system, written entirely in Ada, uses the behavioral model developed offline by Paragon to simulate expected component states as reflected in the telemetry stream. The diagnostic algorithm traces causal relationships contained within the model to isolate system faults. Since the diagnostic process relies exclusively on the behavioral model and is implemented without the use of heuristic rules, it can be used to isolate unpredicted faults in a wide variety of systems. Finally, we discuss the implementation of a prototype system constructed using this technique for diagnosing faults in a science instrument. The prototype demonstrates the use of model-based reasoning to develop maintainable systems with greater diagnostic capabilities at a lower cost.

  20. A structural model decomposition framework for systems health management

    NASA Astrophysics Data System (ADS)

    Roychoudhury, I.; Daigle, M.; Bregon, A.; Pulido, B.

    Systems health management (SHM) is an important set of technologies aimed at increasing system safety and reliability by detecting, isolating, and identifying faults; and predicting when the system reaches end of life (EOL), so that appropriate fault mitigation and recovery actions can be taken. Model-based SHM approaches typically make use of global, monolithic system models for online analysis, which results in a loss of scalability and efficiency for large-scale systems. Improvement in scalability and efficiency can be achieved by decomposing the system model into smaller local submodels and operating on these submodels instead. In this paper, the global system model is analyzed offline and structurally decomposed into local submodels. We define a common model decomposition framework for extracting submodels from the global model. This framework is then used to develop algorithms for solving model decomposition problems for the design of three separate SHM technologies, namely, estimation (which is useful for fault detection and identification), fault isolation, and EOL prediction. We solve these model decomposition problems using a three-tank system as a case study.

  1. A Structural Model Decomposition Framework for Systems Health Management

    NASA Technical Reports Server (NTRS)

    Roychoudhury, Indranil; Daigle, Matthew J.; Bregon, Anibal; Pulido, Belamino

    2013-01-01

    Systems health management (SHM) is an important set of technologies aimed at increasing system safety and reliability by detecting, isolating, and identifying faults; and predicting when the system reaches end of life (EOL), so that appropriate fault mitigation and recovery actions can be taken. Model-based SHM approaches typically make use of global, monolithic system models for online analysis, which results in a loss of scalability and efficiency for large-scale systems. Improvement in scalability and efficiency can be achieved by decomposing the system model into smaller local submodels and operating on these submodels instead. In this paper, the global system model is analyzed offline and structurally decomposed into local submodels. We define a common model decomposition framework for extracting submodels from the global model. This framework is then used to develop algorithms for solving model decomposition problems for the design of three separate SHM technologies, namely, estimation (which is useful for fault detection and identification), fault isolation, and EOL prediction. We solve these model decomposition problems using a three-tank system as a case study.

  2. Aircraft Engine Sensor/Actuator/Component Fault Diagnosis Using a Bank of Kalman Filters

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L. (Technical Monitor)

    2003-01-01

    In this report, a fault detection and isolation (FDI) system which utilizes a bank of Kalman filters is developed for aircraft engine sensor and actuator FDI in conjunction with the detection of component faults. This FDI approach uses multiple Kalman filters, each of which is designed based on a specific hypothesis for detecting a specific sensor or actuator fault. In the event that a fault does occur, all filters except the one using the correct hypothesis will produce large estimation errors, from which a specific fault is isolated. In the meantime, a set of parameters that indicate engine component performance is estimated for the detection of abrupt degradation. The performance of the FDI system is evaluated against a nonlinear engine simulation for various engine faults at cruise operating conditions. In order to mimic the real engine environment, the nonlinear simulation is executed not only at the nominal, or healthy, condition but also at aged conditions. When the FDI system designed at the healthy condition is applied to an aged engine, the effectiveness of the FDI system is impacted by the mismatch in the engine health condition. Depending on its severity, this mismatch can cause the FDI system to generate incorrect diagnostic results, such as false alarms and missed detections. To partially recover the nominal performance, two approaches, which incorporate information regarding the engine s aging condition in the FDI system, will be discussed and evaluated. The results indicate that the proposed FDI system is promising for reliable diagnostics of aircraft engines.

  3. Active Structures as Deduced from Geomorphic Features: A case in Hsinchu Area, northwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Shyu, J.; Ota, Y.; Chen, W.; Hu, J.; Tsai, B.; Wang, Y.

    2002-12-01

    Hsinchu area is located in the northwestern Taiwan, the fold-and thrust belt created by arc-continent collision between Eurasian and Philippine. Since the collision event is still ongoing, the island is tectonically active and full of active faults. According to the historical records, some of the faults are seismically acting. In Hsinchuarea two active faults, the Hsinchu and Hsincheng, have been previously mapped. To evaluate the recent activities, we studied the related geomorphic features by using newly developed Digital Elevation Model (DEM), the aerial photos and field investigation. Geologically, both of the faults are coupled with a hanging wall anticline. The anticlines are recently active due to the deformation of the geomorphic surfaces. The Hsinchu fault system shows complicate corresponding scarps, distributed sub-parallel to the fault trace previously suggested by projection of subsurface geology. This is probably caused by its strike-slip component tearing the surrounding area along the main trace. The scarps associated with the Hsincheng fault system are rather simple and unique. It offsets a flight of terraces all the way down to recent flood plain, indicating its long lasting activity. One to two kilometers to east of main trace a back-thrust is found, showing coupled vertical surface offsets with the main fault. The striking discovery in this study is that the surface deformation is only distributed in the southern bank of Touchien river, also suddenly decreasing when crossing another tear fault system, which is originated from Hsincheng fault in the west and extending southeastward parallel to the Touchien river. The strike-slip fault system mentioned above not only bisects the Hsinchu fault, but also divides the Hsincheng fault into segments. The supporting evidence found in this study includes pressure ridges and depressions. As a whole, the study area is tectonically dominated by three active fault systems and two actively growing anticlines. The interactions between active structural systems formed the complicate geomorphic features presented in this paper.

  4. Automatic generation of smart earthquake-resistant building system: Hybrid system of base-isolation and building-connection.

    PubMed

    Kasagi, M; Fujita, K; Tsuji, M; Takewaki, I

    2016-02-01

    A base-isolated building may sometimes exhibit an undesirable large response to a long-duration, long-period earthquake ground motion and a connected building system without base-isolation may show a large response to a near-fault (rather high-frequency) earthquake ground motion. To overcome both deficiencies, a new hybrid control system of base-isolation and building-connection is proposed and investigated. In this new hybrid building system, a base-isolated building is connected to a stiffer free wall with oil dampers. It has been demonstrated in a preliminary research that the proposed hybrid system is effective both for near-fault (rather high-frequency) and long-duration, long-period earthquake ground motions and has sufficient redundancy and robustness for a broad range of earthquake ground motions.An automatic generation algorithm of this kind of smart structures of base-isolation and building-connection hybrid systems is presented in this paper. It is shown that, while the proposed algorithm does not work well in a building without the connecting-damper system, it works well in the proposed smart hybrid system with the connecting damper system.

  5. Experimental Evaluation of a Structure-Based Connectionist Network for Fault Diagnosis of Helicopter Gearboxes

    NASA Technical Reports Server (NTRS)

    Jammu, V. B.; Danai, K.; Lewicki, D. G.

    1998-01-01

    This paper presents the experimental evaluation of the Structure-Based Connectionist Network (SBCN) fault diagnostic system introduced in the preceding article. For this vibration data from two different helicopter gearboxes: OH-58A and S-61, are used. A salient feature of SBCN is its reliance on the knowledge of the gearbox structure and the type of features obtained from processed vibration signals as a substitute to training. To formulate this knowledge, approximate vibration transfer models are developed for the two gearboxes and utilized to derive the connection weights representing the influence of component faults on vibration features. The validity of the structural influences is evaluated by comparing them with those obtained from experimental RMS values. These influences are also evaluated ba comparing them with the weights of a connectionist network trained though supervised learning. The results indicate general agreement between the modeled and experimentally obtained influences. The vibration data from the two gearboxes are also used to evaluate the performance of SBCN in fault diagnosis. The diagnostic results indicate that the SBCN is effective in directing the presence of faults and isolating them within gearbox subsystems based on structural influences, but its performance is not as good in isolating faulty components, mainly due to lack of appropriate vibration features.

  6. Model-Based Fault Diagnosis for Turboshaft Engines

    NASA Technical Reports Server (NTRS)

    Green, Michael D.; Duyar, Ahmet; Litt, Jonathan S.

    1998-01-01

    Tests are described which, when used to augment the existing periodic maintenance and pre-flight checks of T700 engines, can greatly improve the chances of uncovering a problem compared to the current practice. These test signals can be used to expose and differentiate between faults in various components by comparing the responses of particular engine variables to the expected. The responses can be processed on-line in a variety of ways which have been shown to reveal and identify faults. The combination of specific test signals and on-line processing methods provides an ad hoc approach to the isolation of faults which might not otherwise be detected during pre-flight checkout.

  7. Mesozoic fault reactivation along the St. Lawrence Rift System as constrained by (U-Th/He) thermochronology

    NASA Astrophysics Data System (ADS)

    Bouvier, L.; Pinti, D. L.; Tremblay, A.; Minarik, W. G.; Roden-Tice, M. K.; Pik, R.

    2011-12-01

    The Saint Lawrence Rift System (SLRS) is a half-graben, extending for 1000 km along St. Lawrence River valley. Late Proterozoic-Early Paleozoic faults of the graben form the contact with the metamorphic Grenvillian basement to the northwest and extend under the Paleozoic sedimentary sequences of the St. Lawrence Lowlands to the southeast. The SLRS is the second most seismically active area in Canada, but the causes of this activity remain unclear. Reactivation of the SLRS is believed to have occurred along Late Proterozoic to Early Paleozoic normal faults related to the opening of the Iapetus Ocean. The absence of strata younger than the Ordovician makes difficult to determine when the faults reactivated after the Ordovician. Field relations between the normal faults bordering the SLRS and those produced by the Charlevoix impact crater suggest a reactivation of the rift younger than the Devonian, the estimated age of the impact. Apatite (U-Th)/He thermochronology is an adequate tool to recognize thermal events related to fault movements. A thermochronology study was then started along three transects across the SLRS, from Québec up to Charlevoix. Apatites were extracted and separated from five granitic to charnockitic gneisses and an amphibolite of Grenvillian age. The samples were exposed on hanging wall and footwall of the Montmorency and Saint-Laurent faults at three different locations along the SLRS. For precision and accuracy, each of the six samples was analyzed for radiogenic 4He and U-Th contents at least twice. Apatite grains were isolated by heavy liquids and magnetic separation. For each sample, ten apatite grains were selected under optical microscope and inserted into Pt capsules. Particular care was taken to isolate apatite free of mineral and fluid inclusions. Indeed, SEM investigations showed that some inclusions are U-rich monazite, which is a supplementary source of 4He to be avoided. The 4He content was determined by using a static noble gas mass spectrometer in CRPG-Nancy and duplicates using a quadrupole mass spectrometer at GEOTOP-UQAM. 4He was measured against internal He gas standards and Durango apatite, with the reference U-Th/He age of 31.13 ± 1.01 Ma. U and Th contents were determined at CRPG-Nancy and duplicated at McGill University by ICP-MS. Preliminary results of U-Th/He on St.-Laurent fault yield an age of 137±12 Ma for the hanging wall, at Sault-au-Cochon and 118±10 Ma for a sample from the footwall, at Cap-aux-oies. Previous Apatite Fission Track (AFT) performed for the two locations gave expected older ages at 149±16 Ma and 196±19 Ma for the hanging wall and the footwall, respectively. These preliminary U-Th/He results are consistent with AFT ages of the area (i.e. as expected, U-Th/He ages are younger than AFT ages) but do not yet provide new constraints for the structural evolution of the St. Lawrence rift system. We are determining further U-Th/He ages and these ages will constrain an exhumation model of the region.

  8. Creep avalanches on San Andreas Fault and their underlying mechanism from 19 years of InSAR and seismicity

    NASA Astrophysics Data System (ADS)

    Khoshmanesh, M.; Shirzaei, M.

    2017-12-01

    Recent seismic and geodetic observations indicate that interseismic creep rate varies in both time and space. The spatial extent of creep determines the earthquake potential, while its temporal evolution, known as slow slip events (SSE), may trigger earthquakes. Although the conditions promoting fault creep are well-established, the mechanism for initiating self-sustaining and sometimes cyclic creep events is enigmatic. Here we investigate a time series of 19 years of surface deformation measured by radar interferometry between 1992 and 2011 along the Central San Andreas Fault (CSAF) to constrain the temporal evolution of creep. We show that the creep rate along the CSAF has a sporadic behavior, quantified with a Gumbel-like probability distribution characterized by longer tail toward the extreme positive rates, which is signature of burst-like creep dynamics. Defining creep avalanches as clusters of isolated creep with rates exceeding the shearing rate of tectonic plates, we investigate the statistical properties of their size and length. We show that, similar to the frequency-magnitude distribution of seismic events, the distribution of potency estimated for creep avalanches along the CSAF follows a power law, dictated by the distribution of their along-strike lengths. We further show that an ensemble of concurrent creep avalanches which aseismically rupture isolated fault compartments form the semi-periodic SSEs observed along the CSAF. Using a rate and state friction model, we show that normal stress is temporally variable on the fault, and support this using seismic observations. We propose that, through a self-sustaining fault-valve behavior, compaction induced elevation of pore pressure within hydraulically isolated fault compartments, and subsequent frictional dilation is the cause for the observed episodic SSEs. We further suggest that the 2004 Parkfield Mw6 earthquake may have been triggered by the SSE on adjacent creeping segment, which increased Coulomb failure stress up to 0.45 bar/yr. While creeping segments are suggested to act as barriers and arrest rupture, our study implies that SSEs on these zones may trigger seismic events on adjacent locked parts.

  9. Active Faulting, Earthquakes and Geomorphological Changes from Archaeoseismic Data and High-Resolution Topography: Effects on the Urban Evolution of the Roman Town of Sybaris, Ionian Sea (Southern Italy).

    NASA Astrophysics Data System (ADS)

    Alfonsi, L.; Brunori, C. A.; Cinti, F. R.

    2014-12-01

    The Sybaris town was founded by the Greeks in 720 B.C and its life went on up to the late Roman time (VI-VII century A.D.). The town was located within the Sibari Plain near the Crati River mouth (Ionian northern Calabria, southern Italy). Sybaris occurs in area repeatedly affected by natural damaging phenomena, as frequent flooding, high local subsidence, marine storms, and earthquakes. The 2700 year long record of history of Sybaris stores the traces of these natural events and their influence on the human ancient environment through time. Among the natural disasters, we recognize two Roman age earthquakes striking the town. We isolate the damaging of these seismic events, set their time of occurrence, and map a shear zone crossing the site. These results were obtained through i) survey of coseismic features on the ruins, ii) geoarchaeological stratigraphy analysis, and TL and C14 dating, iii) analysis of high-resolution topographic data (1m pixel LiDAR DEM). The Sybaris town showed a persistent resilience to the earthquakes, and following their occurrences the site was not abandoned but underwent remodeling of the urban topography. The interaction of the different approaches reveals the presence of a previously unknown fault crossing the archeological site, the Sybaris fault. The high-resolution topography allows the characterization of subtle geomorphological features and hydrological anomalies, tracing the fault extension, whose Holocene activity is controlling the local morphology and the present Crati river course.

  10. A distributed fault-detection and diagnosis system using on-line parameter estimation

    NASA Technical Reports Server (NTRS)

    Guo, T.-H.; Merrill, W.; Duyar, A.

    1991-01-01

    The development of a model-based fault-detection and diagnosis system (FDD) is reviewed. The system can be used as an integral part of an intelligent control system. It determines the faults of a system from comparison of the measurements of the system with a priori information represented by the model of the system. The method of modeling a complex system is described and a description of diagnosis models which include process faults is presented. There are three distinct classes of fault modes covered by the system performance model equation: actuator faults, sensor faults, and performance degradation. A system equation for a complete model that describes all three classes of faults is given. The strategy for detecting the fault and estimating the fault parameters using a distributed on-line parameter identification scheme is presented. A two-step approach is proposed. The first step is composed of a group of hypothesis testing modules, (HTM) in parallel processing to test each class of faults. The second step is the fault diagnosis module which checks all the information obtained from the HTM level, isolates the fault, and determines its magnitude. The proposed FDD system was demonstrated by applying it to detect actuator and sensor faults added to a simulation of the Space Shuttle Main Engine. The simulation results show that the proposed FDD system can adequately detect the faults and estimate their magnitudes.

  11. Hybrid Neural-Network: Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics Developed and Demonstrated

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2002-01-01

    As part of the NASA Aviation Safety Program, a unique model-based diagnostics method that employs neural networks and genetic algorithms for aircraft engine performance diagnostics has been developed and demonstrated at the NASA Glenn Research Center against a nonlinear gas turbine engine model. Neural networks are applied to estimate the internal health condition of the engine, and genetic algorithms are used for sensor fault detection, isolation, and quantification. This hybrid architecture combines the excellent nonlinear estimation capabilities of neural networks with the capability to rank the likelihood of various faults given a specific sensor suite signature. The method requires a significantly smaller data training set than a neural network approach alone does, and it performs the combined engine health monitoring objectives of performance diagnostics and sensor fault detection and isolation in the presence of nominal and degraded engine health conditions.

  12. Mountain front migration and drainage captures related to fault segment linkage and growth: The Polopos transpressive fault zone (southeastern Betics, SE Spain)

    NASA Astrophysics Data System (ADS)

    Giaconia, Flavio; Booth-Rea, Guillermo; Martínez-Martínez, José Miguel; Azañón, José Miguel; Pérez-Romero, Joaquín; Villegas, Irene

    2013-01-01

    The Polopos E-W- to ESE-WNW-oriented dextral-reverse fault zone is formed by the North Alhamilla reverse fault and the North and South Gafarillos dextral faults. It is a conjugate fault system of the sinistral NNE-SSW Palomares fault zone, active from the late most Tortonian (≈7 Ma) up to the late Pleistocene (≥70 ky) in the southeastern Betics. The helicoidal geometry of the fault zone permits to shift SE-directed movement along the South Cabrera reverse fault to NW-directed shortening along the North Alhamilla reverse fault via vertical Gafarillos fault segments, in between. Since the Messinian, fault activity migrated southwards forming the South Gafarillos fault and displacing the active fault-related mountain-front from the north to the south of Sierra de Polopos; whilst recent activity of the North Alhamilla reverse fault migrated westwards. The Polopos fault zone determined the differential uplift between the Sierra Alhamilla and the Tabernas-Sorbas basin promoting the middle Pleistocene capture that occurred in the southern margin of the Sorbas basin. Continued tectonic uplift of the Sierra Alhamilla-Polopos and Cabrera anticlinoria and local subsidence associated to the Palomares fault zone in the Vera basin promoted the headward erosion of the Aguas river drainage that captured the Sorbas basin during the late Pleistocene.

  13. Extended Testability Analysis Tool

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin; Maul, William A.; Fulton, Christopher

    2012-01-01

    The Extended Testability Analysis (ETA) Tool is a software application that supports fault management (FM) by performing testability analyses on the fault propagation model of a given system. Fault management includes the prevention of faults through robust design margins and quality assurance methods, or the mitigation of system failures. Fault management requires an understanding of the system design and operation, potential failure mechanisms within the system, and the propagation of those potential failures through the system. The purpose of the ETA Tool software is to process the testability analysis results from a commercial software program called TEAMS Designer in order to provide a detailed set of diagnostic assessment reports. The ETA Tool is a command-line process with several user-selectable report output options. The ETA Tool also extends the COTS testability analysis and enables variation studies with sensor sensitivity impacts on system diagnostics and component isolation using a single testability output. The ETA Tool can also provide extended analyses from a single set of testability output files. The following analysis reports are available to the user: (1) the Detectability Report provides a breakdown of how each tested failure mode was detected, (2) the Test Utilization Report identifies all the failure modes that each test detects, (3) the Failure Mode Isolation Report demonstrates the system s ability to discriminate between failure modes, (4) the Component Isolation Report demonstrates the system s ability to discriminate between failure modes relative to the components containing the failure modes, (5) the Sensor Sensor Sensitivity Analysis Report shows the diagnostic impact due to loss of sensor information, and (6) the Effect Mapping Report identifies failure modes that result in specified system-level effects.

  14. A study of Quaternary structures in the Qom region, West Central Iran

    NASA Astrophysics Data System (ADS)

    Babaahmadi, A.; Safaei, H.; Yassaghi, A.; Vafa, H.; Naeimi, A.; Madanipour, S.; Ahmadi, M.

    2010-12-01

    West Central Iran comprises numerous Quaternary faults. Having either strike-slip or thrust mechanisms, these faults are potentially active and therefore capable of creating destructive earthquakes. In this paper, we use satellite images as well as field trips to identify these active faults in the Qom region. The Qom and Indes faults are the main NW-trending faults along which a Quaternary restraining step-over zone has formed. Kamarkuh, Mohsen Abad, and Ferdows anticlines are potentially active structures that formed in this restraining step-over zone. There are some thrusts and anticlines, such as the Alborz anticline and Alborz fault, which are parallel to strike-slip faults such as the Qom fault, indicating deformation partitioning in the area. In addition to NW-trending structures, there is an important NE-trending fault known as the Qomrud fault that has deformed Quaternary deposits and affected Kushk-e-Nosrat fault, Alborz anticline, and Qomrud River. The results of this study imply that the major Quaternary faults of West Central Iran and their restraining step-over zones are potentially active.

  15. Fault healing and earthquake spectra from stick slip sequences in the laboratory and on active faults

    NASA Astrophysics Data System (ADS)

    McLaskey, G. C.; Glaser, S. D.; Thomas, A.; Burgmann, R.

    2011-12-01

    Repeating earthquake sequences (RES) are thought to occur on isolated patches of a fault that fail in repeated stick-slip fashion. RES enable researchers to study the effect of variations in earthquake recurrence time and the relationship between fault healing and earthquake generation. Fault healing is thought to be the physical process responsible for the 'state' variable in widely used rate- and state-dependent friction equations. We analyze RES created in laboratory stick slip experiments on a direct shear apparatus instrumented with an array of very high frequency (1KHz - 1MHz) displacement sensors. Tests are conducted on the model material polymethylmethacrylate (PMMA). While frictional properties of this glassy polymer can be characterized with the rate- and state- dependent friction laws, the rate of healing in PMMA is higher than room temperature rock. Our experiments show that in addition to a modest increase in fault strength and stress drop with increasing healing time, there are distinct spectral changes in the recorded laboratory earthquakes. Using the impact of a tiny sphere on the surface of the test specimen as a known source calibration function, we are able to remove the instrument and apparatus response from recorded signals so that the source spectrum of the laboratory earthquakes can be accurately estimated. The rupture of a fault that was allowed to heal produces a laboratory earthquake with increased high frequency content compared to one produced by a fault which has had less time to heal. These laboratory results are supported by observations of RES on the Calaveras and San Andreas faults, which show similar spectral changes when recurrence time is perturbed by a nearby large earthquake. Healing is typically attributed to a creep-like relaxation of the material which causes the true area of contact of interacting asperity populations to increase with time in a quasi-logarithmic way. The increase in high frequency seismicity shown here suggests that fault healing produces an increase in fault strength heterogeneity on a small spatial scale. A fault which has healed may possess an asperity population which will allow less slip to be accumulated aseismically, will rupture faster and more violently, and produce more high frequency seismic waves than one which has not healed.

  16. Active, capable, and potentially active faults - a paleoseismic perspective

    USGS Publications Warehouse

    Machette, M.N.

    2000-01-01

    Maps of faults (geologically defined source zones) may portray seismic hazards in a wide range of completeness depending on which types of faults are shown. Three fault terms - active, capable, and potential - are used in a variety of ways for different reasons or applications. Nevertheless, to be useful for seismic-hazards analysis, fault maps should encompass a time interval that includes several earthquake cycles. For example, if the common recurrence in an area is 20,000-50,000 years, then maps should include faults that are 50,000-100,000 years old (two to five typical earthquake cycles), thus allowing for temporal variability in slip rate and recurrence intervals. Conversely, in more active areas such as plate boundaries, maps showing faults that are <10,000 years old should include those with at least 2 to as many as 20 paleoearthquakes. For the International Lithosphere Programs' Task Group II-2 Project on Major Active Faults of the World our maps and database will show five age categories and four slip rate categories that allow one to select differing time spans and activity rates for seismic-hazard analysis depending on tectonic regime. The maps are accompanied by a database that describes evidence for Quaternary faulting, geomorphic expression, and paleoseismic parameters (slip rate, recurrence interval and time of most recent surface faulting). These maps and databases provide an inventory of faults that would be defined as active, capable, and potentially active for seismic-hazard assessments.

  17. Seismic Response Control Of Structures Using Semi-Active and Passive Variable Stiffness Devices

    NASA Astrophysics Data System (ADS)

    Salem, Mohamed M. A.

    Controllable devices such as Magneto-Rheological Fluid Dampers, Electro-Rheological Dampers, and controllable friction devices have been studied extensively with limited implementation in real structures. Such devices have shown great potential in reducing seismic demands, either as smart base isolation systems, or as smart devices for multistory structures. Although variable stiffness devices can be used for seismic control of structures, the vast majority of research effort has been given to the control of damping. The primary focus of this dissertation is to evaluate the seismic control of structures using semi-active and passive variable stiffness characteristics. Smart base isolation systems employing variable stiffness devices have been studied, and two semi-active control strategies are proposed. The control algorithms were designed to reduce the superstructure and base accelerations of seismically isolated structures subject to near-fault and far-field ground motions. Computational simulations of the proposed control algorithms on the benchmark structure have shown that excessive base displacements associated with the near-fault ground motions may be better mitigated with the use of variable stiffness devices. However, the device properties must be controllable to produce a wide range of stiffness changes for an effective control of the base displacements. The potential of controllable stiffness devices in limiting the base displacement due to near-fault excitation without compromising the performance of conventionally isolated structures, is illustrated. The application of passive variable stiffness devices for seismic response mitigation of multistory structures is also investigated. A stiffening bracing system (SBS) is proposed to replace the conventional bracing systems of braced frames. An optimization process for the SBS parameters has been developed. The main objective of the design process is to maintain a uniform inter-story drift angle over the building's height, which in turn would evenly distribute the seismic demand over the building. This behavior is particularly essential so that any possible damage is not concentrated in a single story. Furthermore, the proposed design ensures that additional damping devices distributed over the building's height work efficiently with their maximum design capacity, leading to a cost efficient design. An integrated and comprehensive design procedure that can be readily adopted by the current seismic design codes is proposed. An equivalent lateral force distribution is developed that shows a good agreement with the response history analyses in terms of seismic performance and demand prediction. This lateral force pattern explicitly accounts for the higher mode effect, the dynamic characteristics of the structure, the supplemental damping, and the site specific seismic hazard. Therefore, the proposed design procedure is considered as a standalone method for the design of SBS equipped buildings.

  18. The buried active faults in southeastern China as revealed by the relocated background seismicity and fault plane solutions

    NASA Astrophysics Data System (ADS)

    Zhu, A.; Wang, P.; Liu, F.

    2017-12-01

    The southeastern China in the mainland corresponds to the south China block, which is characterized by moderate historical seismicity and low stain rate. Most faults are buried under thick Quaternary deposits, so it is difficult to detect and locate them using the routine geological methods. Only a few have been identified to be active in late Quaternary, which leads to relatively high potentially seismic risk to this region due to the unexpected locations of the earthquakes. We performed both hypoDD and tomoDD for the background seismicity from 2000 to 2016 to investigate the buried faults. Some buried active faults are revealed by the relocated seismicity and the velocity structure, no geologically known faults corresponding to them and no surface active evidence ever observed. The geometries of the faults are obtained by analyzing the hypocentral distribution pattern and focal mechanism. The focal mechanism solutions indicate that all the revealed faults are dominated in strike-slip mechanisms, or with some thrust components. While the previous fault investigation and detection results show that most of the Quaternary faults in southeastern China are dominated by normal movement. It suggests that there may exist two fault systems in deep and shallow tectonic regimes. The revealed faults may construct the deep one that act as the seismogenic faults, and the normal faults at shallow cannot generate the destructive earthquakes. The variation in the Curie-point depths agrees well with the structure plane of the revealed active faults, suggesting that the faults may have changed the deep structure.

  19. Detection of arcing location on photovoltaic systems using filters

    DOEpatents

    Johnson, Jay

    2018-02-20

    The present invention relates to photovoltaic systems capable of identifying the location of an arc-fault. In particular, such systems include a unique filter connected to each photovoltaic (PV) string, thereby providing a unique filtered noise profile associated with a particular PV string. Also described herein are methods for identifying and isolating such arc-faults.

  20. PDSS/IMC requirements and functional specifications

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The system (software and hardware) requirements for the Payload Development Support System (PDSS)/Image Motion Compensator (IMC) are provided. The PDSS/IMC system provides the capability for performing Image Motion Compensator Electronics (IMCE) flight software test, checkout, and verification and provides the capability for monitoring the IMC flight computer system during qualification testing for fault detection and fault isolation.

  1. A High Power Solid State Circuit Breaker for Military Hybrid Electric Vehicle Applications

    DTIC Science & Technology

    2012-08-01

    the SSCB to isolate a fault, breaker opening is latched and can be reset to reclose the breaker via remote logic input. SSCB state and health...rated load current (125 A). Figure 10 shows that after the SSCB detects a fault and opens, it can also be repeatedly reclosed remotely to attempt to

  2. Deformation Record Associated To The Valdoviño Fault (Variscan Orogeny, NW Iberia)

    NASA Astrophysics Data System (ADS)

    Llana-Funez, S.; Fernández, F. J.

    2013-12-01

    The Valdoviño Fault is a subvertical left-lateral strike-slip fault that exceeding a hundred kms in length formed in the late stages of the Variscan orogeny in NW Iberia. The fault cuts through the pile of allochthonous thrust sheets that conform the suture zone of the orogen and constitutes the eastern boundary of one of them, the Ordenes complex. In the section along the Atlantic coast, the fault core has a thickness of about 100 m in width with foliated rocks showing a subvertical attitude. It is formed by several rock types, beginning from the west these are: coarse grained foliated granitoids, tectonic breccia with fragments of high grade mafic rocks, fine-grained gneiss, serpentinites, fine-grained amphibolites and two-mica granites. The fault zone samples some of the lithologies found to the base of the Ordenes complex, emplaced and deformed prior to the nucleation of the Valdoviño Fault. Intense deformation produces extreme grain comminution particularly in felsic and basic rocks. Planolinear fabrics are predominant, with a subhorizontal lineation. The intensity of the deformation and the reduction in thickness of the various lithotypes is interpreted as indicative of the amount of strain accumulated during its tectonic history. Two types of tectonites stand out along the trace of the fault: the tectonic breccias at the coastal section (nucleated in basic rocks and in serpentinites) and the SC fabrics in syntectonic granitoids. Both evidence different deformation conditions during the activity of the fault. The band of tectonic breccias developed in basic rocks is a few meters thick and has a number of mm-thick ultracataclasites cutting sharply the breccia. The ultracataclasites show one straight side that cuts through the various components of the breccias (either earlier fault rocks as fragments of metabasites). The slipping surfaces all have a subvertical attitude consistent to the current orientation of the major fault. Earlier ultracataclastic bands are fractured and deformed prior to be overprinted by late ultracataclastic bands, indicating that the fracturing process that produces the extreme grain comminution was recurrent and repeated in time. These slipping surfaces show no clear indication about the sense of shear during fast movements, although more distributed cataclastic deformation in between single slip events seem compatible in places with left-lateral movement. The Valdoviño fault is intruded by two types of granitoids: granodiorites and two-mica granites. Courrieux (1984) showed the distribution in map view of sinistral SC fabrics, predominantly in the granitoid to the east of the Valdoviño Fault. Towards the core of the fault zone strain intensity increases to the point of obliterating the S fabric, developing thicker shear zones with extreme grain size reduction. Isolated mica fish and porphyroclasts of feldspar indicate clearly a left-lateral sense of shear. Work in progress aims to relate the timing of the slip events in the basic breccias with respect to the development of ultramilonitic SC fabrics in the granitoids. Ultimately we aim to establish the nature and conditions of tectonic activity along the Valdoviño Fault.

  3. Distributed reconfigurable control strategies for switching topology networked multi-agent systems.

    PubMed

    Gallehdari, Z; Meskin, N; Khorasani, K

    2017-11-01

    In this paper, distributed control reconfiguration strategies for directed switching topology networked multi-agent systems are developed and investigated. The proposed control strategies are invoked when the agents are subject to actuator faults and while the available fault detection and isolation (FDI) modules provide inaccurate and unreliable information on the estimation of faults severities. Our proposed strategies will ensure that the agents reach a consensus while an upper bound on the team performance index is ensured and satisfied. Three types of actuator faults are considered, namely: the loss of effectiveness fault, the outage fault, and the stuck fault. By utilizing quadratic and convex hull (composite) Lyapunov functions, two cooperative and distributed recovery strategies are designed and provided to select the gains of the proposed control laws such that the team objectives are guaranteed. Our proposed reconfigurable control laws are applied to a team of autonomous underwater vehicles (AUVs) under directed switching topologies and subject to simultaneous actuator faults. Simulation results demonstrate the effectiveness of our proposed distributed reconfiguration control laws in compensating for the effects of sudden actuator faults and subject to fault diagnosis module uncertainties and unreliabilities. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Fault zone structure and inferences on past activities of the active Shanchiao Fault in the Taipei metropolis, northern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, C.; Lee, J.; Chan, Y.; Lu, C.

    2010-12-01

    The Taipei Metropolis, home to around 10 million people, is subject to seismic hazard originated from not only distant faults or sources scattered throughout the Taiwan region, but also active fault lain directly underneath. Northern Taiwan including the Taipei region is currently affected by post-orogenic (Penglai arc-continent collision) processes related to backarc extension of the Ryukyu subduction system. The Shanchiao Fault, an active normal fault outcropping along the western boundary of the Taipei Basin and dipping to the east, is investigated here for its subsurface structure and activities. Boreholes records in the central portion of the fault were analyzed to document the stacking of post- Last Glacial Maximum growth sediments, and a tulip flower structure is illuminated with averaged vertical slip rate of about 3 mm/yr. Similar fault zone architecture and post-LGM tectonic subsidence rate is also found in the northern portion of the fault. A correlation between geomorphology and structural geology in the Shanchiao Fault zone demonstrates an array of subtle geomorphic scarps corresponds to the branch fault while the surface trace of the main fault seems to be completely erased by erosion and sedimentation. Such constraints and knowledge are crucial in earthquake hazard evaluation and mitigation in the Taipei Metropolis, and in understanding the kinematics of transtensional tectonics in northern Taiwan. Schematic 3D diagram of the fault zone in the central portion of the Shanchiao Fault, displaying regional subsurface geology and its relation to topographic features.

  5. Ice-load induced tectonics controlled tunnel valley evolution - instances from the southwestern Baltic Sea

    NASA Astrophysics Data System (ADS)

    Al Hseinat, M.; Hübscher, C.

    2014-08-01

    Advancing ice sheets have a strong impact on the earth's topography. For example, they leave behind an erosional unconformity, bulldozer the underlying strata and form tunnel valleys, primarily by subglacial melt-water erosion and secondarily by direct glacial erosion. The conceptual models of the reactivation of faults within the upper crust, due to the ice sheets' load, are also established. However, this phenomenon is also rather under-explored. Here, we propose a causal link between ice-load induced tectonics, the generation of near-vertical faults in the upper crust above an inherited deep-rooted fault and the evolution of tunnel valleys. The Kossau tunnel valley in the southeastern Bay of Kiel has been surveyed by means of high-resolution multi-channel seismic and echosounder data. It strikes almost south to north and can be mapped over a distance of ca 50 km. It is 1200-8000 m wide with a valley of up to 200 m deep. Quaternary deposits fill the valley and cover the adjacent glaciogenic unconformity. A near-vertical fault system with an apparent dip angle of >80°, which reaches from the top Zechstein upwards into the Quaternary, underlies the valley. The fault partially pierces the seafloor and growth is observed within the uppermost Quaternary strata only. Consequently, the fault evolved in the Late Quaternary. The fault is associated with an anticline that is between 700 and 3000 m wide and about 20-40 m high. The fault-anticline assemblage neither resembles any typical extensional, compressional or strike-slip deformation pattern, nor is it related to salt tectonics. Based on the observed position and deformation pattern of the fault-anticline assemblage, we suggest that these structures formed as a consequence of the differential ice-load induced tectonics above an inherited deep-rooted sub-salt fault related to the Glückstadt Graben. Lateral variations in the ice-load during the ice sheet's advance caused differential subsidence, thus rejuvenating the deep-rooted fault. As a result, the inherited fault propagated upwards across the Zechstein and post-Permian overburden and further grew during the ice sheet's retreat. The developing fault and anticline system under the ice sheet created a weakness zone that facilitated erosion by pressurized glacial and subglacial melt-water, as well as by the glaciers themselves. Near-vertical faults cutting through the post-Permian are abundant in the southwestern Baltic realm, which implies that the ice-load induced tectonic activity described above was not an isolated incident.

  6. Dynamics of delayed triggering in multi-segmented foreshock sequence: Evidence from the 2016 Kumamoto, Japan, earthquake

    NASA Astrophysics Data System (ADS)

    Arai, H.; Ando, R.; Aoki, Y.

    2017-12-01

    The 2016 Kumamoto earthquake sequence hit the SW Japan, from April 14th to 16th and its sequence includes two M6-class foreshocks and the main shock (Mw 7.0). Importantly, the detailed surface displacement caused solely by the two foreshocks could be captured by a SAR observation isolated from the mainshock deformation. The foreshocks ruptured the previously mapped Hinagu fault and their hypocentral locations and the aftershock distribution indicates the involvement of two different subparallel faults. Therefore we assumed that the 1st and the 2nd foreshocks respectively ruptured each of the subparallel faults (faults A and B). One of the interesting points of this earthquake is that the two major foreshocks had a temporal gap of 2.5 hours even though the fault A and B are quite close by each other. This suggests that the stress perturbation due to the 1st foreshock is not large enough to trigger the 2nd one right away but that it's large enough to bring about the following earthquake after a delay time.We aim to reproduce the foreshock sequence such as rupture jumping over the subparallel faults by using dynamic rupture simulations. We employed a spatiotemporal-boundary integral equation method accelerated by the Fast Domain Partitioning Method (Ando, 2016, GJI) since this method allows us to construct a complex fault geometry in 3D media. Our model has two faults and a free ground surface. We conducted rupture simulation with various sets of parameters to identify the optimal condition describing the observation.Our simulation results are roughly categorized into 3 cases with regard to the criticality for the rupture jumping. The case 1 (supercritical case) shows the fault A and B ruptured consecutively without any temporal gap. In the case 2 (nearly critical), the rupture on the fault B started with a temporal gap after the fault A finished rupturing, which is what we expected as a reproduction. In the case 3 (subcritical), only the fault A ruptured and its rupture did not transfer to the fault B. We succeed in reproducing rupture jumping over two faults with a temporal gap due to the nucleation by taking account of a velocity strengthening (direct) effect. With a detailed analysis of the case 2, we can constrain ranges of parameters strictly, and this gives us deeper insights into the physics underlying the delayed foreshock activity.

  7. Communications and tracking expert systems study

    NASA Technical Reports Server (NTRS)

    Leibfried, T. F.; Feagin, Terry; Overland, David

    1987-01-01

    The original objectives of the study consisted of five broad areas of investigation: criteria and issues for explanation of communication and tracking system anomaly detection, isolation, and recovery; data storage simplification issues for fault detection expert systems; data selection procedures for decision tree pruning and optimization to enhance the abstraction of pertinent information for clear explanation; criteria for establishing levels of explanation suited to needs; and analysis of expert system interaction and modularization. Progress was made in all areas, but to a lesser extent in the criteria for establishing levels of explanation suited to needs. Among the types of expert systems studied were those related to anomaly or fault detection, isolation, and recovery.

  8. 14 CFR 25.1707 - System separation: EWIS.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... installed to ensure adequate physical separation and electrical isolation so that damage to circuits... ensure adequate physical separation and electrical isolation so that a fault in any one airplane power... minimize potential for abrasion/chafing, vibration damage, and other types of mechanical damage. ...

  9. 14 CFR 25.1707 - System separation: EWIS.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... installed to ensure adequate physical separation and electrical isolation so that damage to circuits... ensure adequate physical separation and electrical isolation so that a fault in any one airplane power... minimize potential for abrasion/chafing, vibration damage, and other types of mechanical damage. ...

  10. 14 CFR 25.1707 - System separation: EWIS.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... installed to ensure adequate physical separation and electrical isolation so that damage to circuits... ensure adequate physical separation and electrical isolation so that a fault in any one airplane power... minimize potential for abrasion/chafing, vibration damage, and other types of mechanical damage. ...

  11. 14 CFR 25.1707 - System separation: EWIS.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... installed to ensure adequate physical separation and electrical isolation so that damage to circuits... ensure adequate physical separation and electrical isolation so that a fault in any one airplane power... minimize potential for abrasion/chafing, vibration damage, and other types of mechanical damage. ...

  12. 14 CFR 25.1707 - System separation: EWIS.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... installed to ensure adequate physical separation and electrical isolation so that damage to circuits... ensure adequate physical separation and electrical isolation so that a fault in any one airplane power... minimize potential for abrasion/chafing, vibration damage, and other types of mechanical damage. ...

  13. Detection, isolation and diagnosability analysis of intermittent faults in stochastic systems

    NASA Astrophysics Data System (ADS)

    Yan, Rongyi; He, Xiao; Wang, Zidong; Zhou, D. H.

    2018-02-01

    Intermittent faults (IFs) have the properties of unpredictability, non-determinacy, inconsistency and repeatability, switching systems between faulty and healthy status. In this paper, the fault detection and isolation (FDI) problem of IFs in a class of linear stochastic systems is investigated. For the detection and isolation of IFs, it includes: (1) to detect all the appearing time and the disappearing time of an IF; (2) to detect each appearing (disappearing) time of the IF before the subsequent disappearing (appearing) time; (3) to determine where the IFs happen. Based on the outputs of the observers we designed, a novel set of residuals is constructed by using the sliding-time window technique, and two hypothesis tests are proposed to detect all the appearing time and disappearing time of IFs. The isolation problem of IFs is also considered. Furthermore, within a statistical framework, the definition of the diagnosability of IFs is proposed, and a sufficient condition is brought forward for the diagnosability of IFs. Quantitative performance analysis results for the false alarm rate and missing detection rate are discussed, and the influences of some key parameters of the proposed scheme on performance indices such as the false alarm rate and missing detection rate are analysed rigorously. The effectiveness of the proposed scheme is illustrated via a simulation example of an unmanned helicopter longitudinal control system.

  14. Unbalance detection in rotor systems with active bearings using self-sensing piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Ambur, Ramakrishnan; Rinderknecht, Stephan

    2018-03-01

    Machines which are developed today are highly automated due to increased use of mechatronic systems. To ensure their reliable operation, fault detection and isolation (FDI) is an important feature along with a better control. This research work aims to achieve and integrate both these functions with minimum number of components in a mechatronic system. This article investigates a rotating machine with active bearings equipped with piezoelectric actuators. There is an inherent coupling between their electrical and mechanical properties because of which they can also be used as sensors. Mechanical deflection can be reconstructed from these self-sensing actuators from measured voltage and current signals. These virtual sensor signals are utilised to detect unbalance in a rotor system. Parameters of unbalance such as its magnitude and phase are detected by parametric estimation method in frequency domain. Unbalance location has been identified using hypothesis of localization of faults. Robustness of the estimates against outliers in measurements is improved using weighted least squares method. Unbalances are detected in a real test bench apart from simulation using its model. Experiments are performed in stationary as well as in transient case. As a further step unbalances are estimated during simultaneous actuation of actuators in closed loop with an adaptive algorithm for vibration minimisation. This strategy could be used in systems which aim for both fault detection and control action.

  15. Development and evaluation of a Fault-Tolerant Multiprocessor (FTMP) computer. Volume 3: FTMP test and evaluation

    NASA Technical Reports Server (NTRS)

    Lala, J. H.; Smith, T. B., III

    1983-01-01

    The experimental test and evaluation of the Fault-Tolerant Multiprocessor (FTMP) is described. Major objectives of this exercise include expanding validation envelope, building confidence in the system, revealing any weaknesses in the architectural concepts and in their execution in hardware and software, and in general, stressing the hardware and software. To this end, pin-level faults were injected into one LRU of the FTMP and the FTMP response was measured in terms of fault detection, isolation, and recovery times. A total of 21,055 stuck-at-0, stuck-at-1 and invert-signal faults were injected in the CPU, memory, bus interface circuits, Bus Guardian Units, and voters and error latches. Of these, 17,418 were detected. At least 80 percent of undetected faults are estimated to be on unused pins. The multiprocessor identified all detected faults correctly and recovered successfully in each case. Total recovery time for all faults averaged a little over one second. This can be reduced to half a second by including appropriate self-tests.

  16. Fault Management Metrics

    NASA Technical Reports Server (NTRS)

    Johnson, Stephen B.; Ghoshal, Sudipto; Haste, Deepak; Moore, Craig

    2017-01-01

    This paper describes the theory and considerations in the application of metrics to measure the effectiveness of fault management. Fault management refers here to the operational aspect of system health management, and as such is considered as a meta-control loop that operates to preserve or maximize the system's ability to achieve its goals in the face of current or prospective failure. As a suite of control loops, the metrics to estimate and measure the effectiveness of fault management are similar to those of classical control loops in being divided into two major classes: state estimation, and state control. State estimation metrics can be classified into lower-level subdivisions for detection coverage, detection effectiveness, fault isolation and fault identification (diagnostics), and failure prognosis. State control metrics can be classified into response determination effectiveness and response effectiveness. These metrics are applied to each and every fault management control loop in the system, for each failure to which they apply, and probabilistically summed to determine the effectiveness of these fault management control loops to preserve the relevant system goals that they are intended to protect.

  17. The hazard education model in the high school science-club activities above active huge fault

    NASA Astrophysics Data System (ADS)

    Nakamura, R.

    2017-12-01

    Along the west coast of pacific ocean, includes Japan, there are huge numerous volcanoes and earthquakes. The biggest cause is their location on the border of plates. The pressure among the plates cause strains and cracks. By the island arc lines, strains make long and enormous faults. More than huge 150 faults are reported (the head quarters for earthquake research promotion, Japan, 2017). Below my working school, it is laying one of the biggest faults Nagamachi-Rifu line which is also laying under 1 million population city Sendai. Before 2011 Tohoku earthquake, one of the hugest earthquake was predicted because of the fault activities. Investigating the fault activity with our school student who live in the closest area is one of the most important hazard education. Therefore, now we are constructing the science club activity with make attention for (1) seeking fault line(s) with topographic land maps and on foot search (2) investigate boling core sample soils that was brought in our school founded. (1) Estimate of displacement of the faults on foot observation In order to seek the unknown fault line in Rifu area, at first it was needed to estimate on the maps(1:25,000 Scale Topographic Maps and Active Faults in Urban Area of Map(Sendai), Geographical Survey Institute of Japan). After that estimation, walked over the region with club students to observe slopes which was occurred by the faults activation and recorded on the maps. By observant slope gaps, there has a possibilities to have 3 or 4 fault lines that are located parallel to the known activate faults. (2) Investigate of the boling core samples above the fault. We investigated 6 columnar-shaped boling core samples which were excavated when the school has been built. The maximum depth of the samples are over 20m, some are new filled sands over original ash tephra and pumice from old volcanoes located west direction. In the club activities, we described column diagram of sediments and discussed the sediment circumstances by the sediments grain observation, however, it was impossible to describe the sediments origin of exact volcano(es).

  18. Advancing Autonomous Operations for Deep Space Vehicles

    NASA Technical Reports Server (NTRS)

    Haddock, Angie T.; Stetson, Howard K.

    2014-01-01

    Starting in Jan 2012, the Advanced Exploration Systems (AES) Autonomous Mission Operations (AMO) Project began to investigate the ability to create and execute "single button" crew initiated autonomous activities [1]. NASA Marshall Space Flight Center (MSFC) designed and built a fluid transfer hardware test-bed to use as a sub-system target for the investigations of intelligent procedures that would command and control a fluid transfer test-bed, would perform self-monitoring during fluid transfers, detect anomalies and faults, isolate the fault and recover the procedures function that was being executed, all without operator intervention. In addition to the development of intelligent procedures, the team is also exploring various methods for autonomous activity execution where a planned timeline of activities are executed autonomously and also the initial analysis of crew procedure development. This paper will detail the development of intelligent procedures for the NASA MSFC Autonomous Fluid Transfer System (AFTS) as well as the autonomous plan execution capabilities being investigated. Manned deep space missions, with extreme communication delays with Earth based assets, presents significant challenges for what the on-board procedure content will encompass as well as the planned execution of the procedures.

  19. Fault Analysis in Solar Photovoltaic Arrays

    NASA Astrophysics Data System (ADS)

    Zhao, Ye

    Fault analysis in solar photovoltaic (PV) arrays is a fundamental task to increase reliability, efficiency and safety in PV systems. Conventional fault protection methods usually add fuses or circuit breakers in series with PV components. But these protection devices are only able to clear faults and isolate faulty circuits if they carry a large fault current. However, this research shows that faults in PV arrays may not be cleared by fuses under some fault scenarios, due to the current-limiting nature and non-linear output characteristics of PV arrays. First, this thesis introduces new simulation and analytic models that are suitable for fault analysis in PV arrays. Based on the simulation environment, this thesis studies a variety of typical faults in PV arrays, such as ground faults, line-line faults, and mismatch faults. The effect of a maximum power point tracker on fault current is discussed and shown to, at times, prevent the fault current protection devices to trip. A small-scale experimental PV benchmark system has been developed in Northeastern University to further validate the simulation conclusions. Additionally, this thesis examines two types of unique faults found in a PV array that have not been studied in the literature. One is a fault that occurs under low irradiance condition. The other is a fault evolution in a PV array during night-to-day transition. Our simulation and experimental results show that overcurrent protection devices are unable to clear the fault under "low irradiance" and "night-to-day transition". However, the overcurrent protection devices may work properly when the same PV fault occurs in daylight. As a result, a fault under "low irradiance" and "night-to-day transition" might be hidden in the PV array and become a potential hazard for system efficiency and reliability.

  20. Structural superposition in fault systems bounding Santa Clara Valley, California

    USGS Publications Warehouse

    Graymer, Russell W.; Stanley, Richard G.; Ponce, David A.; Jachens, Robert C.; Simpson, Robert W.; Wentworth, Carl M.

    2015-01-01

    Santa Clara Valley is bounded on the southwest and northeast by active strike-slip and reverse-oblique faults of the San Andreas fault system. On both sides of the valley, these faults are superposed on older normal and/or right-lateral normal oblique faults. The older faults comprised early components of the San Andreas fault system as it formed in the wake of the northward passage of the Mendocino Triple Junction. On the east side of the valley, the great majority of fault displacement was accommodated by the older faults, which were almost entirely abandoned when the presently active faults became active after ca. 2.5 Ma. On the west side of the valley, the older faults were abandoned earlier, before ca. 8 Ma and probably accumulated only a small amount, if any, of the total right-lateral offset accommodated by the fault zone as a whole. Apparent contradictions in observations of fault offset and the relation of the gravity field to the distribution of dense rocks at the surface are explained by recognition of superposed structures in the Santa Clara Valley region.

  1. Quaternary Geology and Surface Faulting Hazard: Active and Capable Faults in Central Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Falcucci, E.; Gori, S.

    2015-12-01

    The 2009 L'Aquila earthquake (Mw 6.1), in central Italy, raised the issue of surface faulting hazard in Italy, since large urban areas were affected by surface displacement along the causative structure, the Paganica fault. Since then, guidelines for microzonation were drew up that take into consideration the problem of surface faulting in Italy, and laying the bases for future regulations about related hazard, similarly to other countries (e.g. USA). More specific guidelines on the management of areas affected by active and capable faults (i.e. able to produce surface faulting) are going to be released by National Department of Civil Protection; these would define zonation of areas affected by active and capable faults, with prescriptions for land use planning. As such, the guidelines arise the problem of the time interval and general operational criteria to asses fault capability for the Italian territory. As for the chronology, the review of the international literature and regulatory allowed Galadini et al. (2012) to propose different time intervals depending on the ongoing tectonic regime - compressive or extensional - which encompass the Quaternary. As for the operational criteria, the detailed analysis of the large amount of works dealing with active faulting in Italy shows that investigations exclusively based on surface morphological features (e.g. fault planes exposition) or on indirect investigations (geophysical data), are not sufficient or even unreliable to define the presence of an active and capable fault; instead, more accurate geological information on the Quaternary space-time evolution of the areas affected by such tectonic structures is needed. A test area for which active and capable faults can be first mapped based on such a classical but still effective methodological approach can be the central Apennines. Reference Galadini F., Falcucci E., Galli P., Giaccio B., Gori S., Messina P., Moro M., Saroli M., Scardia G., Sposato A. (2012). Time intervals to assess active and capable faults for engineering practices in Italy. Eng. Geol., 139/140, 50-65.

  2. Autonomous power expert fault diagnostic system for Space Station Freedom electrical power system testbed

    NASA Technical Reports Server (NTRS)

    Truong, Long V.; Walters, Jerry L.; Roth, Mary Ellen; Quinn, Todd M.; Krawczonek, Walter M.

    1990-01-01

    The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control to the Space Station Freedom Electrical Power System (SSF/EPS) testbed being developed and demonstrated at NASA Lewis Research Center. The objectives of the program are to establish artificial intelligence technology paths, to craft knowledge-based tools with advanced human-operator interfaces for power systems, and to interface and integrate knowledge-based systems with conventional controllers. The Autonomous Power EXpert (APEX) portion of the APS program will integrate a knowledge-based fault diagnostic system and a power resource planner-scheduler. Then APEX will interface on-line with the SSF/EPS testbed and its Power Management Controller (PMC). The key tasks include establishing knowledge bases for system diagnostics, fault detection and isolation analysis, on-line information accessing through PMC, enhanced data management, and multiple-level, object-oriented operator displays. The first prototype of the diagnostic expert system for fault detection and isolation has been developed. The knowledge bases and the rule-based model that were developed for the Power Distribution Control Unit subsystem of the SSF/EPS testbed are described. A corresponding troubleshooting technique is also described.

  3. Levelling Profiles and a GPS Network to Monitor the Active Folding and Faulting Deformation in the Campo de Dalias (Betic Cordillera, Southeastern Spain)

    PubMed Central

    Marín-Lechado, Carlos; Galindo-Zaldívar, Jesús; Gil, Antonio José; Borque, María Jesús; de Lacy, María Clara; Pedrera, Antonio; López-Garrido, Angel Carlos; Alfaro, Pedro; García-Tortosa, Francisco; Ramos, Maria Isabel; Rodríguez-Caderot, Gracia; Rodríguez-Fernández, José; Ruiz-Constán, Ana; de Galdeano-Equiza, Carlos Sanz

    2010-01-01

    The Campo de Dalias is an area with relevant seismicity associated to the active tectonic deformations of the southern boundary of the Betic Cordillera. A non-permanent GPS network was installed to monitor, for the first time, the fault- and fold-related activity. In addition, two high precision levelling profiles were measured twice over a one-year period across the Balanegra Fault, one of the most active faults recognized in the area. The absence of significant movement of the main fault surface suggests seismogenic behaviour. The possible recurrence interval may be between 100 and 300 y. The repetitive GPS and high precision levelling monitoring of the fault surface during a long time period may help us to determine future fault behaviour with regard to the existence (or not) of a creep component, the accumulation of elastic deformation before faulting, and implications of the fold-fault relationship. PMID:22319309

  4. Faults in parts of north-central and western Houston metropolitan area, Texas

    USGS Publications Warehouse

    Verbeek, Earl R.; Ratzlaff, Karl W.; Clanton, Uel S.

    1979-01-01

    Hundreds of residential, commercial, and industrial structures in the Houston metropolitan area have sustained moderate to severe damage owing to their locations on or near active faults. Paved roads have been offset by faults at hundreds of locations, butted pipelines have been distorted by fault movements, and fault-induced gradient changes in drainage lines have raised concern among flood control engineers. Over 150 faults, many of them moving at rates of 0.5 to 2 cm/yr, have been mapped in the Houston area; the number of faults probably far exceeds this figure.This report includes a map of eight faults, in north-central and western Houston, at a scale useful for land-use planning. Seven of the faults, are known, to be active and have caused considerable damage to structures built on or near them. If the eighth fault is active, it may be of concern to new developments on the west side of Houston. A ninth feature shown on the map is regarded only as a possible fault, as an origin by faulting has not been firmly established.Seismic and drill-hold data for some 40 faults, studied in detail by various investigators have verified connections between scarps at the land surface and growth faults in the shallow subsurface. Some scarps, then, are known to be the surface manifestations of faults that have geologically long histories of movement. The degree to which natural geologic processes contribute to current fault movement, however, is unclear, for some of man’s activities may play a role in faulting as well.Evidence that current rates of fault movement far exceed average prehistoric rates and that most offset of the land surface in the Houston area has occurred only within the last 50 years indirectly suggest that fluid withdrawal may be accelerating or reinitiating movement on pre-existing faults. This conclusion, however, is based only on a coincidence in time between increased fault activity and increased rates of withdrawal of water, oil, and gas from subsurface sediments; no cause-and-effect relationship has been demonstrated. An alternative hypothesis is that natural fault movements are characterized by short—term episodicity and that Houston is experiencing the effects of a brief period of accelerated natural fault movement. Available data from monitored faults are insufficient to weigh the relative importance of natural vs. induced fault movements.

  5. Maturity of nearby faults influences seismic hazard from hydraulic fracturing.

    PubMed

    Kozłowska, Maria; Brudzinski, Michael R; Friberg, Paul; Skoumal, Robert J; Baxter, Nicholas D; Currie, Brian S

    2018-02-20

    Understanding the causes of human-induced earthquakes is paramount to reducing societal risk. We investigated five cases of seismicity associated with hydraulic fracturing (HF) in Ohio since 2013 that, because of their isolation from other injection activities, provide an ideal setting for studying the relations between high-pressure injection and earthquakes. Our analysis revealed two distinct groups: ( i ) deeper earthquakes in the Precambrian basement, with larger magnitudes (M > 2), b-values < 1, and many post-shut-in earthquakes, versus ( ii ) shallower earthquakes in Paleozoic rocks ∼400 m below HF, with smaller magnitudes (M < 1), b-values > 1.5, and few post-shut-in earthquakes. Based on geologic history, laboratory experiments, and fault modeling, we interpret the deep seismicity as slip on more mature faults in older crystalline rocks and the shallow seismicity as slip on immature faults in younger sedimentary rocks. This suggests that HF inducing deeper seismicity may pose higher seismic hazards. Wells inducing deeper seismicity produced more water than wells with shallow seismicity, indicating more extensive hydrologic connections outside the target formation, consistent with pore pressure diffusion influencing seismicity. However, for both groups, the 2 to 3 h between onset of HF and seismicity is too short for typical fluid pressure diffusion rates across distances of ∼1 km and argues for poroelastic stress transfer also having a primary influence on seismicity.

  6. Maturity of nearby faults influences seismic hazard from hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Kozłowska, Maria; Brudzinski, Michael R.; Friberg, Paul; Skoumal, Robert J.; Baxter, Nicholas D.; Currie, Brian S.

    2018-02-01

    Understanding the causes of human-induced earthquakes is paramount to reducing societal risk. We investigated five cases of seismicity associated with hydraulic fracturing (HF) in Ohio since 2013 that, because of their isolation from other injection activities, provide an ideal setting for studying the relations between high-pressure injection and earthquakes. Our analysis revealed two distinct groups: (i) deeper earthquakes in the Precambrian basement, with larger magnitudes (M > 2), b-values < 1, and many post–shut-in earthquakes, versus (ii) shallower earthquakes in Paleozoic rocks ˜400 m below HF, with smaller magnitudes (M < 1), b-values > 1.5, and few post–shut-in earthquakes. Based on geologic history, laboratory experiments, and fault modeling, we interpret the deep seismicity as slip on more mature faults in older crystalline rocks and the shallow seismicity as slip on immature faults in younger sedimentary rocks. This suggests that HF inducing deeper seismicity may pose higher seismic hazards. Wells inducing deeper seismicity produced more water than wells with shallow seismicity, indicating more extensive hydrologic connections outside the target formation, consistent with pore pressure diffusion influencing seismicity. However, for both groups, the 2 to 3 h between onset of HF and seismicity is too short for typical fluid pressure diffusion rates across distances of ˜1 km and argues for poroelastic stress transfer also having a primary influence on seismicity.

  7. System for detecting and limiting electrical ground faults within electrical devices

    DOEpatents

    Gaubatz, Donald C.

    1990-01-01

    An electrical ground fault detection and limitation system for employment with a nuclear reactor utilizing a liquid metal coolant. Elongate electromagnetic pumps submerged within the liquid metal coolant and electrical support equipment experiencing an insulation breakdown occasion the development of electrical ground fault current. Without some form of detection and control, these currents may build to damaging power levels to expose the pump drive components to liquid metal coolant such as sodium with resultant undesirable secondary effects. Such electrical ground fault currents are detected and controlled through the employment of an isolated power input to the pumps and with the use of a ground fault control conductor providing a direct return path from the affected components to the power source. By incorporating a resistance arrangement with the ground fault control conductor, the amount of fault current permitted to flow may be regulated to the extent that the reactor may remain in operation until maintenance may be performed, notwithstanding the existence of the fault. Monitors such as synchronous demodulators may be employed to identify and evaluate fault currents for each phase of a polyphase power, and control input to the submerged pump and associated support equipment.

  8. Recent deformation along the offshore Malibu Coast, Dume, and related faults west of Point Dume, southern California

    USGS Publications Warehouse

    Fisher, M.A.; Langenheim, V.E.; Sorlien, C.C.; Dartnell, P.; Sliter, R.W.; Cochrane, G.R.; Wong, F.L.

    2005-01-01

    Offshore faults west of Point Dume, southern California, are part of an important regional fault system that extends for about 206 km, from near the city of Los Angeles westward along the south flank of the Santa Monica Mountains and through the northern Channel Islands. This boundary fault system separates the western Transverse Ranges, on the north, from the California Continental Borderland, on the south. Previous research showed that the fault system includes many active fault strands; consequently, the entire system is considered a serious potential earthquake hazard to nearby Los Angeles. We present an integrated analysis of multichannel seismic- and high-resolution seismic-reflection data and multibeam-bathymetric information to focus on the central part of the fault system that lies west of Point Dume. We show that some of the main offshore faults have cumulative displacements of 3-5 km, and many faults are currently active because they deform the seafloor or very shallow sediment layers. The main offshore fault is the Dume fault, a large north-dipping reverse fault. In the eastern part of the study area, this fault offsets the seafloor, showing Holocene displacement. Onshore, the Malibu Coast fault dips steeply north, is active, and shows left-oblique slip. The probable offshore extension of this fault is a large fault that dips steeply in its upper part but flattens at depth. High-resolution seismic data show that this fault deforms shallow sediment making up the Hueneme fan complex, indicating Holocene activity. A structure near Sycamore knoll strikes transversely to the main faults and could be important to the analysis of the regional earthquake hazard because the structure might form a boundary between earthquake-rupture segments.

  9. Activation of preexisting transverse structures in an evolving magmatic rift in East Africa

    NASA Astrophysics Data System (ADS)

    Muirhead, J. D.; Kattenhorn, S. A.

    2018-01-01

    Inherited crustal weaknesses have long been recognized as important factors in strain localization and basin development in the East African Rift System (EARS). However, the timing and kinematics (e.g., sense of slip) of transverse (rift-oblique) faults that exploit these weaknesses are debated, and thus the roles of inherited weaknesses at different stages of rift basin evolution are often overlooked. The mechanics of transverse faulting were addressed through an analysis of the Kordjya fault of the Magadi basin (Kenya Rift). Fault kinematics were investigated from field and remote-sensing data collected on fault and joint systems. Our analysis indicates that the Kordjya fault consists of a complex system of predominantly NNE-striking, rift-parallel fault segments that collectively form a NNW-trending array of en echelon faults. The transverse Kordjya fault therefore reactivated existing rift-parallel faults in ∼1 Ma lavas as oblique-normal faults with a component of sinistral shear. In all, these fault motions accommodate dip-slip on an underlying transverse structure that exploits the Aswa basement shear zone. This study shows that transverse faults may be activated through a complex interplay among magma-assisted strain localization, preexisting structures, and local stress rotations. Rather than forming during rift initiation, transverse structures can develop after the establishment of pervasive rift-parallel fault systems, and may exhibit dip-slip kinematics when activated from local stress rotations. The Kordjya fault is shown here to form a kinematic linkage that transfers strain to a newly developing center of concentrated magmatism and normal faulting. It is concluded that recently activated transverse faults not only reveal the effects of inherited basement weaknesses on fault development, but also provide important clues regarding developing magmatic and tectonic systems as young continental rift basins evolve.

  10. Interactions between Polygonal Normal Faults and Larger Normal Faults, Offshore Nova Scotia, Canada

    NASA Astrophysics Data System (ADS)

    Pham, T. Q. H.; Withjack, M. O.; Hanafi, B. R.

    2017-12-01

    Polygonal faults, small normal faults with polygonal arrangements that form in fine-grained sedimentary rocks, can influence ground-water flow and hydrocarbon migration. Using well and 3D seismic-reflection data, we have examined the interactions between polygonal faults and larger normal faults on the passive margin of offshore Nova Scotia, Canada. The larger normal faults strike approximately E-W to NE-SW. Growth strata indicate that the larger normal faults were active in the Late Cretaceous (i.e., during the deposition of the Wyandot Formation) and during the Cenozoic. The polygonal faults were also active during the Cenozoic because they affect the top of the Wyandot Formation, a fine-grained carbonate sedimentary rock, and the overlying Cenozoic strata. Thus, the larger normal faults and the polygonal faults were both active during the Cenozoic. The polygonal faults far from the larger normal faults have a wide range of orientations. Near the larger normal faults, however, most polygonal faults have preferred orientations, either striking parallel or perpendicular to the larger normal faults. Some polygonal faults nucleated at the tip of a larger normal fault, propagated outward, and linked with a second larger normal fault. The strike of these polygonal faults changed as they propagated outward, ranging from parallel to the strike of the original larger normal fault to orthogonal to the strike of the second larger normal fault. These polygonal faults hard-linked the larger normal faults at and above the level of the Wyandot Formation but not below it. We argue that the larger normal faults created stress-enhancement and stress-reorientation zones for the polygonal faults. Numerous small, polygonal faults formed in the stress-enhancement zones near the tips of larger normal faults. Stress-reorientation zones surrounded the larger normal faults far from their tips. Fewer polygonal faults are present in these zones, and, more importantly, most polygonal faults in these zones were either parallel or perpendicular to the larger faults.

  11. The mechanism of post-rift fault activities in Baiyun sag, Pearl River Mouth basin

    NASA Astrophysics Data System (ADS)

    Sun, Zhen; Xu, Ziying; Sun, Longtao; Pang, Xiong; Yan, Chengzhi; Li, Yuanping; Zhao, Zhongxian; Wang, Zhangwen; Zhang, Cuimei

    2014-08-01

    Post-rift fault activities were often observed in deepwater basins, which have great contributions to oil and gas migration and accumulation. The main causes for post-rift fault activities include tectonic events, mud or salt diapirs, and gravitational collapse. In the South China Sea continental margin, post-rift fault activities are widely distributed, especially in Baiyun sag, one of the largest deepwater sag with its main body located beneath present continental slope. During the post-rift stage, large population of faults kept active for a long time from 32 Ma (T70) till 5.5 Ma (T10). Seismic interpretation, fault analysis and analogue modeling experiments indicate that the post-rift fault activities in Baiyun sag between 32 Ma (T70) and 13.8 Ma (T30) was mainly controlled by gravity pointing to the Main Baiyun sag, which caused the faults extensive on the side facing Main Baiyun sag and the back side compressive. Around 32 Ma (T70), the breakup of the continental margin and the spreading of the South China Sea shed a combined effect of weak compression toward Baiyun sag. The gravity during post-rift stage might be caused by discrepant subsidence and sedimentation between strongly thinned sag center and wing areas. This is supported by positive relationship between sedimentation rate and fault growth index. After 13.8 Ma (T30), fault activity shows negative relationship with sedimentation rate. Compressive uplift and erosion in seismic profiles as well as negative tectonic subsiding rates suggest that the fault activity from 13.8 Ma (T30) to 5.5 Ma (T10) might be controlled by the subductive compression from the Philippine plate in the east.

  12. Fault Activity in the Terrebonne Trough, Southeastern Louisiana: A Continuation of Salt-Withdrawal Fault Activity from the Miocene into the late Quaternary and Implication for Subsidence Hot-Spots

    NASA Astrophysics Data System (ADS)

    Akintomide, A. O.; Dawers, N. H.

    2017-12-01

    The observed displacement along faults in southeastern Louisiana has raised questions about the kinematic history of faults during the Quaternary. The Terrebonne Trough, a Miocene salt withdrawal basin, is bounded by the Golden Meadow fault zone on its northern boundary; north dipping, so-called counter-regional faults, together with a subsurface salt ridge, define its southern boundary. To date, there are relatively few published studies on fault architecture and kinematics in the onshore area of southeastern Louisiana. The only publically accessible studies, based on 2d seismic reflection profiles, interpreted faults as mainly striking east-west. Our interpretation of a 3-D seismic reflection volume, located in the northwestern Terrebonne Trough, as well as industry well log correlations define a more complex and highly-segmented fault architecture. The northwest striking Lake Boudreaux fault bounds a marsh on the upthrown block from Lake Boudreaux on the downthrown block. To the east, east-west striking faults are located at the Montegut marsh break and north of Isle de Jean Charles. Portions of the Lake Boudreaux and Isle de Jean Charles faults serve as the northern boundary of the Madison Bay subsidence hot-spot. All three major faults extend to the top of the 3d seismic volume, which is inferred to image latest Pleistocene stratigraphy. Well log correlation using 11+ shallow markers across these faults and kinematic techniques such as stratigraphic expansion indices indicate that all three faults were active in the middle(?) and late Pleistocene. Based on expansion indices, both the Montegut and Isle de Jean Charles faults were active simultaneously at various times, but with different slip rates. There are also time intervals when the Lake Boudreaux fault was slipping at a faster rate compared to the east-west striking faults. Smaller faults near the margins of the 3d volume appear to relate to nearby salt stocks, Bully Camp and Lake Barre. Our work to date suggests both salt and fault activity continued at least into the latest Pleistocene.

  13. Fault Detection and Isolation for Hydraulic Control

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Pressure sensors and isolation valves act to shut down defective servochannel. Redundant hydraulic system indirectly senses failure in any of its electrical control channels and mechanically isolates hydraulic channel controlled by faulty electrical channel so flat it cannot participate in operating system. With failure-detection and isolation technique, system can sustains two failed channels and still functions at full performance levels. Scheme useful on aircraft or other systems with hydraulic servovalves where failure cannot be tolerated.

  14. Shear concentration in a collision zone: kinematics of the Chihshang Fault as revealed by outcrop-scale quantification of active faulting, Longitudinal Valley, eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Angelier, J.; Chu, H.-T.; Lee, J.-C.

    1997-06-01

    Repeated measurements of active deformation were carried out at three sites along the active Chihshang Fault, a segment of the Longitudinal Valley Fault zone of eastern Taiwan (the present-day plate boundary between the Philippine Sea Plate and Eurasia). Reliable annual records of displacement along an active fault, were obtained based on detailed surveys of faulted concrete structures. Along the active Chihshang Fault striking N18°E, we determined average motion vectors trending N37°W with an average shortening of 2.2 cm/yr. Thus, the transverse component of motion related to westward thrusting is 1.8 cm/yr, whereas the left-lateral strike-slip component of motion is 1.3 cm/yr. The fault dips 39-45° to the east, so that the vertical displacement is 1.5-3 cm/yr and the actual oblique offset of the fault increases at a rate of 2.7-3.7 cm/yr. This is in good agreement with the results of regional geodetic and tectonic analyses in Taiwan, and consistent with the N54°W trend of convergence between the northernmost Luzon Arc and South China revealed by GPS studies. Our study provides an example of extreme shear concentration in an oblique collision zone. At Chihshang, the whole horizontal shortening of the Longitudinal Valley Fault, 2.2 cm/yr on average, occurs across a single, narrow fault zone, so that the whole reverse slip (about 2.7-3.7 cm/yr depending on fault dip) was entirely recorded by walls 20-200 m long where faults are tightly localized. This active faulting accounts for more than one fourth (27%) of the total shortening between the Luzon Arc and South China recorded through GPS analyses. Further surveys should indicate whether the decreasing shortening velocity across the fault is significant (revealing increasing earthquake risk due to stress accumulation) or not (revealing continuing fault creep and 'weak' behaviour of the Chihshang Fault).

  15. Late Quaternary activity of the Grote Brogel fault, NE Belgium

    NASA Astrophysics Data System (ADS)

    Vanneste, Kris; Deckers, Jef; Van Noten, Koen; Schiltz, Marco; Lecocq, Thomas

    2017-04-01

    The Grote Brogel fault (GBF) is a WNW-ESE striking normal fault that is part of the western border fault system of the Roer Valley Graben in NE Belgium. It is one of three faults branching NW-ward from the main border fault (Geleen fault) near Bree, but its orientation diverges 22° from the general NW-SE orientation of the graben, causing a wide left step. Unlike the Geleen fault, the surface expression of the GBF has not been investigated in detail so far. We studied the Quaternary activity of the GBF and its effects on the local hydrology based on a high-resolution LiDAR digital terrain model (DTM), and geophysical and geological surveying at two sites, combining Electrical Resistivity Tomography (ERT), Cone Penetration Tests (CPTs) and boreholes. The GBF defines the northern edge of the Campine Plateau, an elevated area covered by the late Early to Middle Pleistocene Main Terrace of the Meuse River. Cumulative vertical offset since deposition of this terrace has resulted in a distinct 10-km-long fault scarp, the height of which decreases from 11 m near Bree in the east to less than 5 m near Grote Brogel in the west. The along-strike evolution of offset suggests that the GBF does not define an individual rupture segment, but is likely contiguous with the Geleen fault. DTM analysis indicates that scarps are only preserved in a few isolated places, and that the surface trace is rather complex, consisting of a series of short, relatively straight sections with strikes varying between 255° and 310°, arranged in a generally left-stepping pattern. At both investigated sites, ERT profiles clearly demonstrate the presence of fault splays in the shallow subsurface (< 50 m) underneath the identified scarps evidenced by a sudden increase in depth and thickness of a high-resistivity unit on top of a lower-resistivity unit. Boreholes and CPTs allow correlating the high-resistivity unit with the medium to coarse gravel-bearing sands of the Meuse Group, and the lower-resistivity unit below with the finer sands of the Pliocene Mol Formation. From the ERT profiles, we estimate vertical offsets of the base of the Meuse deposits of 13 m at the eastern site, and 6 m in the west. These are only slightly larger than the topographic offsets, indicating that most of the offset post-dates deposition of the Meuse Group. Earlier fault activity is attested by a change in facies (and related resistivity values on the ERT-profiles) in the Mol Fm, but cannot be quantified. Water level measurements in the boreholes and CPT holes indicate that the GBF acts as a hydrologic boundary that prevents groundwater flow from the elevated footwall towards the hanging wall, resulting in hydraulic heads of up to 12.7 m. At both investigated sites, the hydraulic head correlates with the topographic offset. At the eastern site, the shallow groundwater table in the footwall has given rise to a wet zone that is indicated on soil moisture maps and is also expressed by darker tones on aerial maps. The extent of this wet zone appears largely influenced by a local stepover that we could image in pseudo-3D using a series of closely spaced ERT profiles.

  16. Seismicity and source spectra analysis in Salton Sea Geothermal Field

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Chen, X.

    2016-12-01

    The surge of "man-made" earthquakes in recent years has led to considerable concerns about the associated hazards. Improved monitoring of small earthquakes would significantly help understand such phenomena and the underlying physical mechanisms. In the Salton Sea Geothermal field in southern California, open access of a local borehole network provides a unique opportunity to better understand the seismicity characteristics, the related earthquake hazards, and the relationship with the geothermal system, tectonic faulting and other physical conditions. We obtain high-resolution earthquake locations in the Salton Sea Geothermal Field, analyze characteristics of spatiotemporal isolated earthquake clusters, magnitude-frequency distributions and spatial variation of stress drops. The analysis reveals spatial coherent distributions of different types of clustering, b-value distributions, and stress drop distribution. The mixture type clusters (short-duration rapid bursts with high aftershock productivity) are predominately located within active geothermal field that correlate with high b-value, low stress drop microearthquake clouds, while regular aftershock sequences and swarms are distributed throughout the study area. The differences between earthquakes inside and outside of geothermal operation field suggest a possible way to distinguish directly induced seismicity due to energy operation versus typical seismic slip driven sequences. The spatial coherent b-value distribution enables in-situ estimation of probabilities for M≥3 earthquakes, and shows that the high large-magnitude-event (LME) probability zones with high stress drop are likely associated with tectonic faulting. The high stress drop in shallow (1-3 km) depth indicates the existence of active faults, while low stress drops near injection wells likely corresponds to the seismic response to fluid injection. I interpret the spatial variation of seismicity and source characteristics as the result of fluid circulation, the fracture network, and tectonic faulting.

  17. Intelligent fault management for the Space Station active thermal control system

    NASA Technical Reports Server (NTRS)

    Hill, Tim; Faltisco, Robert M.

    1992-01-01

    The Thermal Advanced Automation Project (TAAP) approach and architecture is described for automating the Space Station Freedom (SSF) Active Thermal Control System (ATCS). The baseline functionally and advanced automation techniques for Fault Detection, Isolation, and Recovery (FDIR) will be compared and contrasted. Advanced automation techniques such as rule-based systems and model-based reasoning should be utilized to efficiently control, monitor, and diagnose this extremely complex physical system. TAAP is developing advanced FDIR software for use on the SSF thermal control system. The goal of TAAP is to join Knowledge-Based System (KBS) technology, using a combination of rules and model-based reasoning, with conventional monitoring and control software in order to maximize autonomy of the ATCS. TAAP's predecessor was NASA's Thermal Expert System (TEXSYS) project which was the first large real-time expert system to use both extensive rules and model-based reasoning to control and perform FDIR on a large, complex physical system. TEXSYS showed that a method is needed for safely and inexpensively testing all possible faults of the ATCS, particularly those potentially damaging to the hardware, in order to develop a fully capable FDIR system. TAAP therefore includes the development of a high-fidelity simulation of the thermal control system. The simulation provides realistic, dynamic ATCS behavior and fault insertion capability for software testing without hardware related risks or expense. In addition, thermal engineers will gain greater confidence in the KBS FDIR software than was possible prior to this kind of simulation testing. The TAAP KBS will initially be a ground-based extension of the baseline ATCS monitoring and control software and could be migrated on-board as additional computation resources are made available.

  18. [X-ray diffraction and infrared spectrum analysis of fault gouge in Wenchuan seismic belt].

    PubMed

    Wang, Zheng-Yang; Cao, Jian-Jin; Luo, Song-Ying; Liao, Yi-Peng

    2014-05-01

    Wenchuan earthquake produced a series of co-seismic surface ruptures in Leigu and Zhaojiagou, and we collected samples of co-seismic fault gouge in the surface ruptures as well as the old gouge in the fault of Nanba. Testing The new and old fault gouge was tested with X-ray diffraction and infrared absorption spectra, and its characteristics such as mineral compositions, clay mineral contents and combinations were comprehensively analyzed. The results display obvious differences between the new and old fault gouge, showing that the old fault gouge is mainly composed of wall rock debris or milled powders, while the main components of new fault gouge are clay minerals. The assemblage of clay minerals composition shows that the environment of the fault activity was mainly warm and humid, and the clay minerals were mainly transformed by low temperature and low pressure dynamic metamorphism. And this also partly indicates that the latest way of the fault activity in this area may be a creeping. However the previous researches on the fault gouge of Wenchuan earthquake fault zone are mainly focused on its mechanical properties as well as its texture and structure, the research in this paper is to determine the physical and chemical environment of fault activity through the mineral compositions and clay mineral contents in the fault gouge characteristics, and this research has important scientific significance to the researches on the evolution of the fault environment and the activity mechanism of the earthquake.

  19. Active Fault Near-Source Zones Within and Bordering the State of California for the 1997 Uniform Building Code

    USGS Publications Warehouse

    Petersen, M.D.; Toppozada, Tousson R.; Cao, T.; Cramer, C.H.; Reichle, M.S.; Bryant, W.A.

    2000-01-01

    The fault sources in the Project 97 probabilistic seismic hazard maps for the state of California were used to construct maps for defining near-source seismic coefficients, Na and Nv, incorporated in the 1997 Uniform Building Code (ICBO 1997). The near-source factors are based on the distance from a known active fault that is classified as either Type A or Type B. To determine the near-source factor, four pieces of geologic information are required: (1) recognizing a fault and determining whether or not the fault has been active during the Holocene, (2) identifying the location of the fault at or beneath the ground surface, (3) estimating the slip rate of the fault, and (4) estimating the maximum earthquake magnitude for each fault segment. This paper describes the information used to produce the fault classifications and distances.

  20. Active fault databases: building a bridge between earthquake geologists and seismic hazard practitioners, the case of the QAFI v.3 database

    NASA Astrophysics Data System (ADS)

    García-Mayordomo, Julián; Martín-Banda, Raquel; Insua-Arévalo, Juan M.; Álvarez-Gómez, José A.; Martínez-Díaz, José J.; Cabral, João

    2017-08-01

    Active fault databases are a very powerful and useful tool in seismic hazard assessment, particularly when singular faults are considered seismogenic sources. Active fault databases are also a very relevant source of information for earth scientists, earthquake engineers and even teachers or journalists. Hence, active fault databases should be updated and thoroughly reviewed on a regular basis in order to keep a standard quality and uniformed criteria. Desirably, active fault databases should somehow indicate the quality of the geological data and, particularly, the reliability attributed to crucial fault-seismic parameters, such as maximum magnitude and recurrence interval. In this paper we explain how we tackled these issues during the process of updating and reviewing the Quaternary Active Fault Database of Iberia (QAFI) to its current version 3. We devote particular attention to describing the scheme devised for classifying the quality and representativeness of the geological evidence of Quaternary activity and the accuracy of the slip rate estimation in the database. Subsequently, we use this information as input for a straightforward rating of the level of reliability of maximum magnitude and recurrence interval fault seismic parameters. We conclude that QAFI v.3 is a much better database than version 2 either for proper use in seismic hazard applications or as an informative source for non-specialized users. However, we already envision new improvements for a future update.

  1. Combining Particle Filters and Consistency-Based Approaches for Monitoring and Diagnosis of Stochastic Hybrid Systems

    NASA Technical Reports Server (NTRS)

    Narasimhan, Sriram; Dearden, Richard; Benazera, Emmanuel

    2004-01-01

    Fault detection and isolation are critical tasks to ensure correct operation of systems. When we consider stochastic hybrid systems, diagnosis algorithms need to track both the discrete mode and the continuous state of the system in the presence of noise. Deterministic techniques like Livingstone cannot deal with the stochasticity in the system and models. Conversely Bayesian belief update techniques such as particle filters may require many computational resources to get a good approximation of the true belief state. In this paper we propose a fault detection and isolation architecture for stochastic hybrid systems that combines look-ahead Rao-Blackwellized Particle Filters (RBPF) with the Livingstone 3 (L3) diagnosis engine. In this approach RBPF is used to track the nominal behavior, a novel n-step prediction scheme is used for fault detection and L3 is used to generate a set of candidates that are consistent with the discrepant observations which then continue to be tracked by the RBPF scheme.

  2. GenSAA: A tool for advancing satellite monitoring with graphical expert systems

    NASA Technical Reports Server (NTRS)

    Hughes, Peter M.; Luczak, Edward C.

    1993-01-01

    During numerous contacts with a satellite each day, spacecraft analysts must closely monitor real time data for combinations of telemetry parameter values, trends, and other indications that may signify a problem or failure. As satellites become more complex and the number of data items increases, this task is becoming increasingly difficult for humans to perform at acceptable performance levels. At the NASA Goddard Space Flight Center, fault-isolation expert systems have been developed to support data monitoring and fault detection tasks in satellite control centers. Based on the lessons learned during these initial efforts in expert system automation, a new domain-specific expert system development tool named the Generic Spacecraft Analyst Assistant (GenSAA) is being developed to facilitate the rapid development and reuse of real-time expert systems to serve as fault-isolation assistants for spacecraft analysts. Although initially domain-specific in nature, this powerful tool will support the development of highly graphical expert systems for data monitoring purposes throughout the space and commercial industry.

  3. 3-D GPR data analysis for high-resolution imaging of shallow subsurface faults: the Mt Vettore case study (Central Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Ercoli, Maurizio; Pauselli, Cristina; Frigeri, Alessandro; Forte, Emanuele; Federico, Costanzo

    2014-07-01

    The activation of Late Quaternary faults in the Central Apennines (Italy) could generate earthquakes with magnitude of about 6.5, and the Monte Vettore fault system probably belongs to the same category of seismogenetic faults. Such structure has been defined `silent', because of its geological and geomorphological evidences of past activation, but the absence of historical records in the seismic catalogues to be associated with its activation. The `Piano di Castelluccio' intramountain basin, resulting from the Quaternary activity of normal faults, is characterized by a secondary fault strand highlighted by a NW-SE fault scarp: it has been already studied through palaeoseismological trenches, which highlighted evidences of Quaternary shallow faulting due to strong earthquakes, and through a 2-D ground penetrating radar (GPR) survey, showing the first geophysical signature of faulting for this site. Within the same place, a 3-D GPR volume over a 20 × 20 m area has been collected. The collection of radar echoes in three dimensions allows to map both the vertical and lateral continuity of shallow geometries of the fault zone (Fz), imaging features with high resolution, ranging from few metres to centimetres and therefore imaging also local variations at the microscale. Several geophysical markers of faulting, already highlighted on this site, have been taken as reference to plan the 3-D survey. In this paper, we provide the first 3-D subsurface imaging of an active shallow fault belonging to the Umbria-Marche Apennine highlighting the subsurface fault geometry and the stratigraphic sequence up to a depth of about 5 m. From our data, geophysical faulting signatures are clearly visible in three dimensions: diffraction hyperbolas, truncations of layers, local attenuated zones and varying dip of the layers have been detected within the Fz. The interpretation of the 3-D data set provided qualitative and quantitative geological information in addition to the fault location, like its geometry, boundaries and an estimation of the fault throw.

  4. Implementation of an Integrated On-Board Aircraft Engine Diagnostic Architecture

    NASA Technical Reports Server (NTRS)

    Armstrong, Jeffrey B.; Simon, Donald L.

    2012-01-01

    An on-board diagnostic architecture for aircraft turbofan engine performance trending, parameter estimation, and gas-path fault detection and isolation has been developed and evaluated in a simulation environment. The architecture incorporates two independent models: a realtime self-tuning performance model providing parameter estimates and a performance baseline model for diagnostic purposes reflecting long-term engine degradation trends. This architecture was evaluated using flight profiles generated from a nonlinear model with realistic fleet engine health degradation distributions and sensor noise. The architecture was found to produce acceptable estimates of engine health and unmeasured parameters, and the integrated diagnostic algorithms were able to perform correct fault isolation in approximately 70 percent of the tested cases

  5. Ground Software Maintenance Facility (GSMF) system manual

    NASA Technical Reports Server (NTRS)

    Derrig, D.; Griffith, G.

    1986-01-01

    The Ground Software Maintenance Facility (GSMF) is designed to support development and maintenance of spacelab ground support software. THE GSMF consists of a Perkin Elmer 3250 (Host computer) and a MITRA 125s (ATE computer), with appropriate interface devices and software to simulate the Electrical Ground Support Equipment (EGSE). This document is presented in three sections: (1) GSMF Overview; (2) Software Structure; and (3) Fault Isolation Capability. The overview contains information on hardware and software organization along with their corresponding block diagrams. The Software Structure section describes the modes of software structure including source files, link information, and database files. The Fault Isolation section describes the capabilities of the Ground Computer Interface Device, Perkin Elmer host, and MITRA ATE.

  6. Up-dip partitioning of displacement components on the oblique-slip Clarence Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Nicol, Andrew; Van Dissen, Russell

    2002-09-01

    Active strike-slip faults in New Zealand occur within an obliquely-convergent plate boundary zone. Although the traces of these faults commonly delineate the base of mountain ranges, they do not always accommodate significant shortening at the free surface. Along the active trace of Clarence Fault in northeastern South Island, New Zealand, displaced landforms and slickenside striations indicate predominantly horizontal displacements at the ground surface, and a right-lateral slip rate of ca. 3.5-5 mm/year during the Holocene. The Inland Kaikoura mountain range occupies the hanging wall of the fault and rises steeply from the active trace to altitudes of ca. 3 km. The geomorphology of the range indicates active uplift and mountain building, which is interpreted to result, in part, from a vertical component of fault slip at depth. These data are consistent with the fault accommodating oblique-slip at depth aligned parallel to the plate-motion vector and compatible with regional geodetic data and earthquake focal-mechanisms. Oblique-slip on the Clarence Fault at depth is partitioned at the free surface into: (1) right-lateral displacement on the fault, and (2) hanging wall uplift produced by distributed displacement on small-scale faults parallel to the main fault. Decoupling of slip components reflects an up-dip transfer of fault throw to an off-fault zone of distributed uplift. Such zones are common in the hanging walls of thrusts and reverse faults, and support the idea that the dip of the oblique-slip Clarence Fault steepens towards the free surface.

  7. Intelligent fault-tolerant controllers

    NASA Technical Reports Server (NTRS)

    Huang, Chien Y.

    1987-01-01

    A system with fault tolerant controls is one that can detect, isolate, and estimate failures and perform necessary control reconfiguration based on this new information. Artificial intelligence (AI) is concerned with semantic processing, and it has evolved to include the topics of expert systems and machine learning. This research represents an attempt to apply AI to fault tolerant controls, hence, the name intelligent fault tolerant control (IFTC). A generic solution to the problem is sought, providing a system based on logic in addition to analytical tools, and offering machine learning capabilities. The advantages are that redundant system specific algorithms are no longer needed, that reasonableness is used to quickly choose the correct control strategy, and that the system can adapt to new situations by learning about its effects on system dynamics.

  8. An Integrated Framework for Model-Based Distributed Diagnosis and Prognosis

    NASA Technical Reports Server (NTRS)

    Bregon, Anibal; Daigle, Matthew J.; Roychoudhury, Indranil

    2012-01-01

    Diagnosis and prognosis are necessary tasks for system reconfiguration and fault-adaptive control in complex systems. Diagnosis consists of detection, isolation and identification of faults, while prognosis consists of prediction of the remaining useful life of systems. This paper presents a novel integrated framework for model-based distributed diagnosis and prognosis, where system decomposition is used to enable the diagnosis and prognosis tasks to be performed in a distributed way. We show how different submodels can be automatically constructed to solve the local diagnosis and prognosis problems. We illustrate our approach using a simulated four-wheeled rover for different fault scenarios. Our experiments show that our approach correctly performs distributed fault diagnosis and prognosis in an efficient and robust manner.

  9. Fail-safe designs for large capacity battery systems

    DOEpatents

    Kim, Gi-Heon; Smith, Kandler; Ireland, John; Pesaran, Ahmad A.; Neubauer, Jeremy

    2016-05-17

    Fail-safe systems and design methodologies for large capacity battery systems are disclosed. The disclosed systems and methodologies serve to locate a faulty cell in a large capacity battery, such as a cell having an internal short circuit, determine whether the fault is evolving, and electrically isolate the faulty cell from the rest of the battery, preventing further electrical energy from feeding into the fault.

  10. Preservation of amorphous ultrafine material: A proposed proxy for slip during recent earthquakes on active faults

    NASA Astrophysics Data System (ADS)

    Hirono, Tetsuro; Asayama, Satoru; Kaneki, Shunya; Ito, Akihiro

    2016-11-01

    The criteria for designating an “Active Fault” not only are important for understanding regional tectonics, but also are a paramount issue for assessing the earthquake risk of faults that are near important structures such as nuclear power plants. Here we propose a proxy, based on the preservation of amorphous ultrafine particles, to assess fault activity within the last millennium. X-ray diffraction data and electron microscope observations of samples from an active fault demonstrated the preservation of large amounts of amorphous ultrafine particles in two slip zones that last ruptured in 1596 and 1999, respectively. A chemical kinetic evaluation of the dissolution process indicated that such particles could survive for centuries, which is consistent with the observations. Thus, preservation of amorphous ultrafine particles in a fault may be valuable for assessing the fault’s latest activity, aiding efforts to evaluate faults that may damage critical facilities in tectonically active zones.

  11. Along-strike variations of geometry and kinematics on the border fault of Nanpu sag, Bohai Bay Basin

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Ren, J.; Liu, X.; Sun, Z.; Su, M.

    2010-12-01

    Nanpu sag is located in the north-eastern portion of the Huanghua depression, covering an area of approximately 1900km2, and comprises one of the most important petroliferous basins of the Bohai Bay Basin. The Nanpu sag is bordered by two master faults with long-term activity: the Xi’nanzhuang (XNZ) and Bogezhuang (BGZ) fault. By analysis of horizontal slices, gravity anomaly map and seismic reflection sections, we found there is no cutting relationship, and thus considered the XNZ and BGZ fault as a same one. However it showed striking differences between the XNZ and BGZ segment in fault occurrence, fault throw and residual formation thickness and so on. The BGZ fault was NW trending fault with a steep inclination. Taken section across the northern region in Nanpu sag for example, its controlling depocenter is located in eastern subsag (Fig.1); the XNZ fault was a NE fault and displayed a Shovel-shaped to plate-like geometry, with its controlling depocenter located in western subsag. We qualitify the fault throw, showing that the XNZ fault strongly acted during the sedimentary period of Es3-Es2, while the BGZ fault presented weak activity, and especially during Es31 submember-Es2 member, the XNZ fault acted so strongly that the hanging wall of BGZ fault was tilt-lifted and suffered erosion (Fig.1), which created Es1 uncomformity; The BGZ fault acted strongly during the sedimentary period of Es1-Ed, which led the hanging wall of XNZ fault to be tilt-lifted. Controlled by such segmented activity of the whole border fault, which we suggested a "seesaw" model for its evolution, the northern part in the Nanpu sag experienced an alternative variation between a deposition center and an erosion region after tilt-lifting. Combination of the sediment stacking patterns, we further classified the history of "seesaw" activities into four stages: 1) Early double-break stage (Es35-Es31), both of the XNZ and BGZ fault acted; 2) Middle the XNZ segment throw and the BGZ tilting (Es2); 3) Late the XNZ segment tilting and BGZ throw (Es1-Ed3); 4) End weak double-break stage (Ed2-Present), the whole fault acted weakly and were superposed by neotectonic movement. Fig.1 Seesaw activity of the whole border fault

  12. Gently dipping normal faults identified with Space Shuttle radar topography data in central Sulawesi, Indonesia, and some implications for fault mechanics

    USGS Publications Warehouse

    Spencer, J.E.

    2011-01-01

    Space-shuttle radar topography data from central Sulawesi, Indonesia, reveal two corrugated, domal landforms, covering hundreds to thousands of square kilometers, that are bounded to the north by an abrupt transition to typical hilly to mountainous topography. These domal landforms are readily interpreted as metamorphic core complexes, an interpretation consistent with a single previous field study, and the abrupt northward transition in topographic style is interpreted as marking the trace of two extensional detachment faults that are active or were recently active. Fault dip, as determined by the slope of exhumed fault footwalls, ranges from 4?? to 18??. Application of critical-taper theory to fault dip and hanging-wall surface slope, and to similar data from several other active or recently active core complexes, suggests a theoretical limit of three degrees for detachment-fault dip. This result appears to conflict with the dearth of seismological evidence for slip on faults dipping less than ~. 30??. The convex-upward form of the gently dipping fault footwalls, however, allows for greater fault dip at depths of earthquake initiation and dominant energy release. Thus, there may be no conflict between seismological and mapping studies for this class of faults. ?? 2011 Elsevier B.V.

  13. Expert systems for automated maintenance of a Mars oxygen production system

    NASA Technical Reports Server (NTRS)

    Ash, Robert L.; Huang, Jen-Kuang; Ho, Ming-Tsang

    1989-01-01

    A prototype expert system was developed for maintaining autonomous operation of a Mars oxygen production system. Normal operation conditions and failure modes according to certain desired criteria are tested and identified. Several schemes for failure detection and isolation using forward chaining, backward chaining, knowledge-based and rule-based are devised to perform several housekeeping functions. These functions include self-health checkout, an emergency shut down program, fault detection and conventional control activities. An effort was made to derive the dynamic model of the system using Bond-Graph technique in order to develop the model-based failure detection and isolation scheme by estimation method. Finally, computer simulations and experimental results demonstrated the feasibility of the expert system and a preliminary reliability analysis for the oxygen production system is also provided.

  14. Testability analysis on a hydraulic system in a certain equipment based on simulation model

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Cong, Hua; Liu, Yuanhong; Feng, Fuzhou

    2018-03-01

    Aiming at the problem that the complicated structure and the shortage of fault statistics information in hydraulic systems, a multi value testability analysis method based on simulation model is proposed. Based on the simulation model of AMESim, this method injects the simulated faults and records variation of test parameters ,such as pressure, flow rate, at each test point compared with those under normal conditions .Thus a multi-value fault-test dependency matrix is established. Then the fault detection rate (FDR) and fault isolation rate (FIR) are calculated based on the dependency matrix. Finally the system of testability and fault diagnosis capability are analyzed and evaluated, which can only reach a lower 54%(FDR) and 23%(FIR). In order to improve testability performance of the system,. number and position of the test points are optimized on the system. Results show the proposed test placement scheme can be used to solve the problems that difficulty, inefficiency and high cost in the system maintenance.

  15. A review of fault tolerant control strategies applied to proton exchange membrane fuel cell systems

    NASA Astrophysics Data System (ADS)

    Dijoux, Etienne; Steiner, Nadia Yousfi; Benne, Michel; Péra, Marie-Cécile; Pérez, Brigitte Grondin

    2017-08-01

    Fuel cells are powerful systems for power generation. They have a good efficiency and do not generate greenhouse gases. This technology involves a lot of scientific fields, which leads to the appearance of strongly inter-dependent parameters. This makes the system particularly hard to control and increases fault's occurrence frequency. These two issues call for the necessity to maintain the system performance at the expected level, even in faulty operating conditions. It is called "fault tolerant control" (FTC). The present paper aims to give the state of the art of FTC applied to the proton exchange membrane fuel cell (PEMFC). The FTC approach is composed of two parts. First, a diagnosis part allows the identification and the isolation of a fault; it requires a good a priori knowledge of all the possible faults. Then, a control part allows an optimal control strategy to find the best operating point to recover/mitigate the fault; it requires the knowledge of the degradation phenomena and their mitigation strategies.

  16. Passive fault current limiting device

    DOEpatents

    Evans, Daniel J.; Cha, Yung S.

    1999-01-01

    A passive current limiting device and isolator is particularly adapted for use at high power levels for limiting excessive currents in a circuit in a fault condition such as an electrical short. The current limiting device comprises a magnetic core wound with two magnetically opposed, parallel connected coils of copper, a high temperature superconductor or other electrically conducting material, and a fault element connected in series with one of the coils. Under normal operating conditions, the magnetic flux density produced by the two coils cancel each other. Under a fault condition, the fault element is triggered to cause an imbalance in the magnetic flux density between the two coils which results in an increase in the impedance in the coils. While the fault element may be a separate current limiter, switch, fuse, bimetal strip or the like, it preferably is a superconductor current limiter conducting one-half of the current load compared to the same limiter wired to carry the total current of the circuit. The major voltage during a fault condition is in the coils wound on the common core in a preferred embodiment.

  17. Passive fault current limiting device

    DOEpatents

    Evans, D.J.; Cha, Y.S.

    1999-04-06

    A passive current limiting device and isolator is particularly adapted for use at high power levels for limiting excessive currents in a circuit in a fault condition such as an electrical short. The current limiting device comprises a magnetic core wound with two magnetically opposed, parallel connected coils of copper, a high temperature superconductor or other electrically conducting material, and a fault element connected in series with one of the coils. Under normal operating conditions, the magnetic flux density produced by the two coils cancel each other. Under a fault condition, the fault element is triggered to cause an imbalance in the magnetic flux density between the two coils which results in an increase in the impedance in the coils. While the fault element may be a separate current limiter, switch, fuse, bimetal strip or the like, it preferably is a superconductor current limiter conducting one-half of the current load compared to the same limiter wired to carry the total current of the circuit. The major voltage during a fault condition is in the coils wound on the common core in a preferred embodiment. 6 figs.

  18. Earthquake disaster mitigation of Lembang Fault West Java with electromagnetic method

    NASA Astrophysics Data System (ADS)

    Widodo

    2015-04-01

    The Lembang fault is located around eight kilometers from Bandung City, West Java, Indonesia. The existence of this fault runs through densely populated settlement and tourism area. It is an active fault structure with increasing seismic activity where the 28 August 2011 earthquake occurred. The seismic response at the site is strongly influenced by local geological conditions. The ambient noise measurements from the western part of this fault give strong implication for a complex 3-D tectonic setting. Hence, near surface Electromagnetic (EM) measurements are carried out to understand the location of the local active fault of the research area. Hence, near surface EM measurements are carried out to understand the location of the local active fault and the top of the basement structure of the research area. The Transientelectromagnetic (TEM) measurements are carried out along three profiles, which include 35 TEM soundings. The results indicate that TEM data give detailed conductivity distribution of fault structure in the study area.

  19. Earthquake disaster mitigation of Lembang Fault West Java with electromagnetic method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widodo, E-mail: widodo@gf.itb.ac.id

    The Lembang fault is located around eight kilometers from Bandung City, West Java, Indonesia. The existence of this fault runs through densely populated settlement and tourism area. It is an active fault structure with increasing seismic activity where the 28 August 2011 earthquake occurred. The seismic response at the site is strongly influenced by local geological conditions. The ambient noise measurements from the western part of this fault give strong implication for a complex 3-D tectonic setting. Hence, near surface Electromagnetic (EM) measurements are carried out to understand the location of the local active fault of the research area. Hence,more » near surface EM measurements are carried out to understand the location of the local active fault and the top of the basement structure of the research area. The Transientelectromagnetic (TEM) measurements are carried out along three profiles, which include 35 TEM soundings. The results indicate that TEM data give detailed conductivity distribution of fault structure in the study area.« less

  20. Simplified Interval Observer Scheme: A New Approach for Fault Diagnosis in Instruments

    PubMed Central

    Martínez-Sibaja, Albino; Astorga-Zaragoza, Carlos M.; Alvarado-Lassman, Alejandro; Posada-Gómez, Rubén; Aguila-Rodríguez, Gerardo; Rodríguez-Jarquin, José P.; Adam-Medina, Manuel

    2011-01-01

    There are different schemes based on observers to detect and isolate faults in dynamic processes. In the case of fault diagnosis in instruments (FDI) there are different diagnosis schemes based on the number of observers: the Simplified Observer Scheme (SOS) only requires one observer, uses all the inputs and only one output, detecting faults in one detector; the Dedicated Observer Scheme (DOS), which again uses all the inputs and just one output, but this time there is a bank of observers capable of locating multiple faults in sensors, and the Generalized Observer Scheme (GOS) which involves a reduced bank of observers, where each observer uses all the inputs and m-1 outputs, and allows the localization of unique faults. This work proposes a new scheme named Simplified Interval Observer SIOS-FDI, which does not requires the measurement of any input and just with just one output allows the detection of unique faults in sensors and because it does not require any input, it simplifies in an important way the diagnosis of faults in processes in which it is difficult to measure all the inputs, as in the case of biologic reactors. PMID:22346593

  1. E-W strike slip shearing of Kinwat granitoid at South East Deccan Volcanic Province, Kinwat, Maharashtra, India

    NASA Astrophysics Data System (ADS)

    Kaplay, R. D.; Kumar, T. Vijay; Mukherjee, Soumyajit; Wesanekar, P. R.; Babar, Md; Chavan, Sumeet

    2017-07-01

    We study the margin of South East Deccan Volcanic Province around Kinwat lineament, Maharashtra, India, which is NW extension of the Kaddam Fault. Structural field studies document ˜ E-W strike-slip mostly brittle faults from the basement granite. We designate this as `Western boundary East Dharwar Craton Strike-slip Zone' (WBEDCSZ). At local level, the deformation regime from Kinwat, Kaddam Fault, micro-seismically active Nanded and seismically active Killari corroborate with the nearby lineaments. Morphometric analyses suggest that the region is moderately tectonically active. The region of intense strike-slip deformation lies between seismically active fault along Tapi in NW and Bhadrachalam in the SE part of the Kaddam Fault/lineament. The WBEDCSZ with the surface evidences of faulting, presence of a major lineaments and intersection of faults could be a zone of intraplate earthquake.

  2. Development and analysis of the Software Implemented Fault-Tolerance (SIFT) computer

    NASA Technical Reports Server (NTRS)

    Goldberg, J.; Kautz, W. H.; Melliar-Smith, P. M.; Green, M. W.; Levitt, K. N.; Schwartz, R. L.; Weinstock, C. B.

    1984-01-01

    SIFT (Software Implemented Fault Tolerance) is an experimental, fault-tolerant computer system designed to meet the extreme reliability requirements for safety-critical functions in advanced aircraft. Errors are masked by performing a majority voting operation over the results of identical computations, and faulty processors are removed from service by reassigning computations to the nonfaulty processors. This scheme has been implemented in a special architecture using a set of standard Bendix BDX930 processors, augmented by a special asynchronous-broadcast communication interface that provides direct, processor to processor communication among all processors. Fault isolation is accomplished in hardware; all other fault-tolerance functions, together with scheduling and synchronization are implemented exclusively by executive system software. The system reliability is predicted by a Markov model. Mathematical consistency of the system software with respect to the reliability model has been partially verified, using recently developed tools for machine-aided proof of program correctness.

  3. Imaging the complexity of an active normal fault system: The 1997 Colfiorito (central Italy) case study

    USGS Publications Warehouse

    Chiaraluce, L.; Ellsworth, W.L.; Chiarabba, C.; Cocco, M.

    2003-01-01

    Six moderate magnitude earthquakes (5 < Mw < 6) ruptured normal fault segments of the southern sector of the North Apennine belt (central Italy) in the 1997 Colfiorito earthquake sequence. We study the progressive activation of adjacent and nearby parallel faults of this complex normal fault system using ???1650 earthquake locations obtained by applying a double-difference location method, using travel time picks and waveform cross-correlation measurements. The lateral extent of the fault segments range from 5 to 10 km and make up a broad, ???45 km long, NW trending fault system. The geometry of each segment is quite simple and consists of planar faults gently dipping toward SW with an average dip of 40??-45??. The fault planes are not listric but maintain a constant dip through the entire seismogenic volume, down to 8 km depth. We observe the activation of faults on the hanging wall and the absence of seismicity in the footwall of the structure. The observed fault segmentation appears to be due to the lateral heterogeneity of the upper crust: preexisting thrusts inherited from Neogene's compressional tectonic intersect the active normal faults and control their maximum length. The stress tensor obtained by inverting the six main shock focal mechanisms of the sequence is in agreement with the tectonic stress active in the inner chain of the Apennine, revealing a clear NE trending extension direction. Aftershock focal mechanisms show a consistent extensional kinematics, 70% of which are mechanically consistent with the main shock stress field.

  4. Fracture zone drilling through Atotsugawa fault in central Japan - geological and geophysical structure -

    NASA Astrophysics Data System (ADS)

    Omura, K.; Yamashita, F.; Yamada, R.; Matsuda, T.; Fukuyama, E.; Kubo, A.; Takai, K.; Ikeda, R.; Mizuochi, Y.

    2004-12-01

    Drilling is an effective method to investigate the structure and physical state in and around the active fault zone, such as, stress and strength distribution, geological structure and materials properties. In particular, the structure in the fault zone is important to understand where and how the stress accumulates during the earthquake cycle. In previous studies, we did integrate investigation on active faults in central Japan by drilling and geophysical prospecting. Those faults are estimated to be at different stage in the earthquake cycle, i.e., Nojima fault which appeared on the surface by the 1995 Great Kobe earthquake (M=7.2), the Neodani fault which appeared by the 1891 Nobi earth-quake (M=8.0), the Atera fault, of which some parts have seemed to be dislocated by the 1586 Tensyo earthquake (M=7.9), and Gofukuji Fault that is considered to have activated about 1200 years ago. Each faults showed characteristic features of fracture zone structure according to their geological and geophysical situations. In a present study, we did core recovery and down hole measurements at the Atotsugawa fault, central Japan, that is considered to have activated at 1858 Hida earthquake (M=7.0). The Atotsugawa fault is characterized by active seismicity along the fault. But, at the same time, the shallow region in the central segment of the fault seems to have low seismicity. The high seismicity segment and low seismicity segments may have different mechanical, physical and material properties. A 350m depth borehole was drilled vertically beside the surface trace of the fault in the low seismicity segment. Recovered cores were overall heavily fractured and altered rocks. In the cores, we observed many shear planes holding fault gouge. Logging data showed that the apparent resistance was about 100 - 600 ohm-m, density was about 2.0 - 2.5g/cm3, P wave velocity was approximately 3.0 - 4.0 km/sec, neutron porosity was 20 - 40 %. Results of physical logging show features of fault fracture zone that were the same as the fault fracture zones of other active faults that we have drilled previously. By the BHTV logging, we detected many fractures of which the strikes are not only parallel to the fault trace bur also oblique to the fault trace. The observations of cores and logging data indicate that the borehole passed in the fracture zone down to the bottom, and that the fracture zone has complicate internal structure including foliation not parallel to the fault trace. The core samples are significant for further investigation on material properties in the fracture zone. And we need data of geophysical prospecting to infer the deeper structure of the fracture zone.

  5. Crestal fault geometries reveal late halokinesis and collapse of the Samson Dome, Northern Norway: Implications for petroleum systems in the Barents Sea

    NASA Astrophysics Data System (ADS)

    Mattos, Nathalia H.; Alves, Tiago M.; Omosanya, Kamaldeen O.

    2016-10-01

    This paper uses 2D and high-quality 3D seismic reflection data to assess the geometry and kinematics of the Samson Dome, offshore Norway, revising the implications of the new data to hydrocarbon exploration in the Barents Sea. The study area was divided into three (3) zones in terms of fault geometries and predominant strikes. Displacement-length (D-x) and Throw-depth (T-z) plots showed faults to consist of several segments that were later dip-linked. Interpreted faults were categorised into three families, with Type A comprising crestal faults, Type B representing large E-W faults, and Type C consisting of polygonal faults. The Samson Dome was formed in three major stages: a) a first stage recording buckling of the post-salt overburden and generation of radial faults; b) a second stage involving dissolution and collapse of the dome, causing subsidence of the overburden and linkage of initially isolated fault segments; and c) a final stage in which large fault segments were developed. Late Cretaceous faults strike predominantly to the NW, whereas NE-trending faults comprise Triassic structures that were reactivated in a later stage. Our work provides scarce evidence for the escape of hydrocarbons in the Samson Dome. In addition, fault analyses based on present-day stress distributions indicate a tendency for 'locking' of faults at depth, with the largest leakage factors occurring close to the surface. The Samson Dome is an analogue to salt structures in the Barents Sea where oil and gas exploration has occurred with varied degrees of success.

  6. Fluid-rock interaction during a large earthquake recorded in fault gouge: A case study of the Nojima fault, Japan

    NASA Astrophysics Data System (ADS)

    Bian, D.; Lin, A.

    2016-12-01

    Distinguishing the seismic ruptures during the earthquake from a lot of fractures in borehole core is very important to understand rupture processes and seismic efficiency. In particular, a great earthquake like the 1995 Mw 7.2 Kobe earthquake, but again, evidence has been limited to the grain size analysis and the color of fault gouge. In the past two decades, increasing geological evidence has emerged that seismic faults and shear zones within the middle to upper crust play a crucial role in controlling the architectures of crustal fluid migration. Rock-fluid interactions along seismogenic faults give us a chance to find the seismic ruptures from the same event. Recently, a new project of "Drilling into Fault Damage Zone" has being conducted by Kyoto University on the Nojima Fault again after 20 years of the 1995 Kobe earthquake for an integrated multidisciplinary study on the assessment of activity of active faults involving active tectonics, geochemistry and geochronology of active fault zones. In this work, we report on the signature of slip plane inside the Nojima Fault associated with individual earthquakes on the basis of trace element and isotope analyses. Trace element concentrations and 87Sr/86Sr ratios of fault gouge and host rocks were determined by an inductively coupled plasma mass spectrometer (ICP-MS) and thermal ionization mass spectrometry (TIMS). Samples were collected from two trenches and an outcrop of Nojima Fault which. Based on the geochemical result, we interpret these geochemical results in terms of fluid-rock interactions recorded in fault friction during earthquake. The trace-element enrichment pattern of the slip plane can be explained by fluid-rock interactions at high temperature. It also can help us find the main coseismic fault slipping plane inside the thick fault gouge zone.

  7. Identifying buried segments of active faults in the northern Rio Grande Rift using aeromagnetic, LiDAR,and gravity data, south-central Colorado, USA

    USGS Publications Warehouse

    Grauch, V.J.S.; Ruleman, Chester A.

    2013-01-01

    Combined interpretation of aeromagnetic and LiDAR data builds on the strength of the aeromagnetic method to locate normal faults with significant offset under cover and the strength of LiDAR interpretation to identify the age and sense of motion of faults. Each data set helps resolve ambiguities in interpreting the other. In addition, gravity data can be used to infer the sense of motion for totally buried faults inferred solely from aeromagnetic data. Combined interpretation to identify active faults at the northern end of the San Luis Basin of the northern Rio Grande rift has confirmed general aspects of previous geologic mapping but has also provided significant improvements. The interpretation revises and extends mapped fault traces, confirms tectonic versus fluvial origins of steep stream banks, and gains additional information on the nature of active and potentially active partially and totally buried faults. Detailed morphology of surfaces mapped from the LiDAR data helps constrain ages of the faults that displace the deposits. The aeromagnetic data provide additional information about their extents in between discontinuous scarps and suggest that several totally buried, potentially active faults are present on both sides of the valley.

  8. Millennial strain partitioning revealed by 36Cl cosmogenic data on active bedrock fault scarps from Abruzzo, Italy

    NASA Astrophysics Data System (ADS)

    Gregory, Laura; Roberts, Gerald; Cowie, Patience; Wedmore, Luke; McCaffrey, Ken; Shanks, Richard; Zijerveld, Leo; Phillips, Richard

    2017-04-01

    In zones of distributed continental faulting, it is critical to understand how slip is partitioned onto brittle structures over both long-term millennial time scales and shorter-term individual earthquake cycles. Measuring earthquake slip histories on different timescales is challenging due to earthquake repeat-times being longer or similar to historical earthquake records, and a paucity of data on fault activity covering millennial to Quaternary scales in detail. Cosmogenic isotope analyses from bedrock fault scarps have the potential to bridge the gap, as these datasets track the exposure of fault planes due to earthquakes with millennial resolution. In this presentation, we present new 36Cl data combined with historical earthquake records to document orogen-wide changes in the distribution of seismicity on millennial timescales in Abruzzo, central Italy. Seismic activity due to extensional faulting was concentrated on the northwest side of the mountain range during the historical period, or since approximately the 14th century. Seismicity is more limited on the southwest side of Abruzzo during historical times. This pattern has led some to suggest that faults on the southwest side of Abruzzo are not active, however clear fault scarps cutting Holocene-aged slopes are well preserved across the whole of the orogen. These scarps preserve an excellent record of Late Pleistocene to Holocene earthquake activity, which can be quantified using cosmogenic isotopes that track the exposure of the bedrock fault scarps. 36Cl accumulates in the fault scarps as the plane is progressively exhumed by earthquakes and the concentration of 36Cl measured up the fault plane reflects the rate and patterns of slip. We utilise Bayesian modelling techniques to estimate slip histories based on the cosmogenic data. Each sampling site is carefully characterised using LiDAR and GPR to ensure that fault plane exposure is due to slip during earthquakes and not sediment transport processes. In this presentation we will focus on new data from faults located across-strike in Abruzzo. Many faults in Abruzzo demonstrate slip rate variability on millennial timescales, with relatively fast slip interspersed between quiescent periods. We show that heightened activity is co-located and spatially migrates across Abruzzo over time. We highlight the importance of understanding this dynamic fault behaviour of migrating seismic activity, and in particular how our research is relevant to the 2016 Amatrice-Vettore seismic sequence in central Italy.

  9. Flight test results of the Strapdown hexad Inertial Reference Unit (SIRU). Volume 1: Flight test summary

    NASA Technical Reports Server (NTRS)

    Hruby, R. J.; Bjorkman, W. S.

    1977-01-01

    Flight test results of the strapdown inertial reference unit (SIRU) navigation system are presented. The fault-tolerant SIRU navigation system features a redundant inertial sensor unit and dual computers. System software provides for detection and isolation of inertial sensor failures and continued operation in the event of failures. Flight test results include assessments of the system's navigational performance and fault tolerance.

  10. Aircraft applications of fault detection and isolation techniques

    NASA Astrophysics Data System (ADS)

    Marcos Esteban, Andres

    In this thesis the problems of fault detection & isolation and fault tolerant systems are studied from the perspective of LTI frequency-domain, model-based techniques. Emphasis is placed on the applicability of these LTI techniques to nonlinear models, especially to aerospace systems. Two applications of Hinfinity LTI fault diagnosis are given using an open-loop (no controller) design approach: one for the longitudinal motion of a Boeing 747-100/200 aircraft, the other for a turbofan jet engine. An algorithm formalizing a robust identification approach based on model validation ideas is also given and applied to the previous jet engine. A general linear fractional transformation formulation is given in terms of the Youla and Dual Youla parameterizations for the integrated (control and diagnosis filter) approach. This formulation provides better insight into the trade-off between the control and the diagnosis objectives. It also provides the basic groundwork towards the development of nested schemes for the integrated approach. These nested structures allow iterative improvements on the control/filter Youla parameters based on successive identification of the system uncertainty (as given by the Dual Youla parameter). The thesis concludes with an application of Hinfinity LTI techniques to the integrated design for the longitudinal motion of the previous Boeing 747-100/200 model.

  11. Fault detection and identification in missile system guidance and control: a filtering approach

    NASA Astrophysics Data System (ADS)

    Padgett, Mary Lou; Evers, Johnny; Karplus, Walter J.

    1996-03-01

    Real-world applications of computational intelligence can enhance the fault detection and identification capabilities of a missile guidance and control system. A simulation of a bank-to- turn missile demonstrates that actuator failure may cause the missile to roll and miss the target. Failure of one fin actuator can be detected using a filter and depicting the filter output as fuzzy numbers. The properties and limitations of artificial neural networks fed by these fuzzy numbers are explored. A suite of networks is constructed to (1) detect a fault and (2) determine which fin (if any) failed. Both the zero order moment term and the fin rate term show changes during actuator failure. Simulations address the following questions: (1) How bad does the actuator failure have to be for detection to occur, (2) How bad does the actuator failure have to be for fault detection and isolation to occur, (3) are both zero order moment and fine rate terms needed. A suite of target trajectories are simulated, and properties and limitations of the approach reported. In some cases, detection of the failed actuator occurs within 0.1 second, and isolation of the failure occurs 0.1 after that. Suggestions for further research are offered.

  12. Ares I-X Ground Diagnostic Prototype

    NASA Technical Reports Server (NTRS)

    Schwabacher, Mark A.; Martin, Rodney Alexander; Waterman, Robert D.; Oostdyk, Rebecca Lynn; Ossenfort, John P.; Matthews, Bryan

    2010-01-01

    The automation of pre-launch diagnostics for launch vehicles offers three potential benefits: improving safety, reducing cost, and reducing launch delays. The Ares I-X Ground Diagnostic Prototype demonstrated anomaly detection, fault detection, fault isolation, and diagnostics for the Ares I-X first-stage Thrust Vector Control and for the associated ground hydraulics while the vehicle was in the Vehicle Assembly Building at Kennedy Space Center (KSC) and while it was on the launch pad. The prototype combines three existing tools. The first tool, TEAMS (Testability Engineering and Maintenance System), is a model-based tool from Qualtech Systems Inc. for fault isolation and diagnostics. The second tool, SHINE (Spacecraft Health Inference Engine), is a rule-based expert system that was developed at the NASA Jet Propulsion Laboratory. We developed SHINE rules for fault detection and mode identification, and used the outputs of SHINE as inputs to TEAMS. The third tool, IMS (Inductive Monitoring System), is an anomaly detection tool that was developed at NASA Ames Research Center. The three tools were integrated and deployed to KSC, where they were interfaced with live data. This paper describes how the prototype performed during the period of time before the launch, including accuracy and computer resource usage. The paper concludes with some of the lessons that we learned from the experience of developing and deploying the prototype.

  13. Identification of active fault using analysis of derivatives with vertical second based on gravity anomaly data (Case study: Seulimeum fault in Sumatera fault system)

    NASA Astrophysics Data System (ADS)

    Hududillah, Teuku Hafid; Simanjuntak, Andrean V. H.; Husni, Muhammad

    2017-07-01

    Gravity is a non-destructive geophysical technique that has numerous application in engineering and environmental field like locating a fault zone. The purpose of this study is to spot the Seulimeum fault system in Iejue, Aceh Besar (Indonesia) by using a gravity technique and correlate the result with geologic map and conjointly to grasp a trend pattern of fault system. An estimation of subsurface geological structure of Seulimeum fault has been done by using gravity field anomaly data. Gravity anomaly data which used in this study is from Topex that is processed up to Free Air Correction. The step in the Next data processing is applying Bouger correction and Terrin Correction to obtain complete Bouger anomaly that is topographically dependent. Subsurface modeling is done using the Gav2DC for windows software. The result showed a low residual gravity value at a north half compared to south a part of study space that indicated a pattern of fault zone. Gravity residual was successfully correlate with the geologic map that show the existence of the Seulimeum fault in this study space. The study of earthquake records can be used for differentiating the active and non active fault elements, this gives an indication that the delineated fault elements are active.

  14. Antecedent rivers and early rifting: a case study from the Plio-Pleistocene Corinth rift, Greece

    NASA Astrophysics Data System (ADS)

    Hemelsdaël, Romain; Ford, Mary; Malartre, Fabrice

    2016-04-01

    Models of early rifting present syn-rift sedimentation as the direct response to the development of normal fault systems where footwall-derived drainage supplies alluvial to lacustrine sediments into hangingwall depocentres. These models often include antecedent rivers, diverted into active depocentres and with little impact on facies distributions. However, antecedent rivers can supply a high volume of sediment from the onset of rifting. What are the interactions between major antecedent rivers and a growing normal fault system? What are the implications for alluvial stratigraphy and facies distributions in early rifts? These questions are investigated by studying a Plio-Pleistocene fluvial succession on the southern margin of the Corinth rift (Greece). In the northern Peloponnese, early syn-rift deposits are preserved in a series of uplifted E-W normal fault blocks (10-15 km long, 3-7 km wide). Detailed sedimentary logging and high resolution mapping of the syn-rift succession (400 to 1300 m thick) define the architecture of the early rift alluvial system. Magnetostratigraphy and biostratigraphic markers are used to date and correlate the fluvial succession within and between fault blocks. The age of the succession is between 4.0 and 1.8 Ma. We present a new tectonostratigraphic model for early rift basins based on our reconstructions. The early rift depositional system was established across a series of narrow normal fault blocks. Palaeocurrent data show that the alluvial basin was supplied by one major sediment entry point. A low sinuosity braided river system flowed over 15 to 30 km to the NE. Facies evolved downstream from coarse conglomerates to fined-grained fluvial deposits. Other minor sediment entry points supply linked and isolated depocentres. The main river system terminated eastward where it built stacked small deltas into a shallow lake (5 to 15 m deep) that occupied the central Corinth rift. The main fluvial axis remained constant and controlled facies distribution throughout the early rift evolution. We show that the length scale of fluvial facies transitions is greater than and therefore not related to fault spacing. First order facies variations instead occur at the scale of the full antecedent fluvial system. Strike-parallel subsidence variations in individual fault blocks represent a second order controlling factor on stratigraphic architecture. As depocentres enlarged through time, sediments progressively filled palaeorelief, and formed a continuous alluvial plain above active faults. There was limited creation of footwall relief and thus no significant consequent drainage system developed. Here, instead of being diverted toward subsiding zones, the drainage system overfilled the whole rift from the onset of faulting. Moreover, the zones of maximum subsidence on individual faults are aligned across strike parallel to the persistent fluvial axis. This implies that long-term sediment loading influenced the growth of normal faults. We conclude that a major antecedent drainage system inherited from the Hellenide mountain belt supplied high volumes of coarse sediment from the onset of faulting in the western Corinth rift (around 4 Ma). These observations demonstrate that antecedent drainage systems can be important in the tectono-sedimentary evolution of rift basins.

  15. Miocene stratigraphy and structure of Sabine Pass, West Cameron, and East Cameron outer continental shelf areas, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, S.Y.; Watkins, J.S.

    Mapping of Miocene stratigraphy and structure of the Sabine Pass, West Cameron, and East Cameron areas of the western Louisiana outer continental shelf - based on over 1300 mi of seismic data on a 4-mi grid, paleotops from 60 wells, and logs from 35 wells - resulted in time-structure and isochron maps at six intervals from the upper Pliocene to lower Miocene. The most pronounced structural features are the fault systems, which trend east-northeast to east along the Miocene stratigraphic trend. Isolated normal faults with small displacements characterize the inner inner shelf, whereas interconnected faults with greater displacements characterize themore » outer inner shelf. The inner inner shelf faults exhibit little growth, but expansion across the interconnected outer inner shelf fault ranges up to 1 sec two-way traveltime. The interconnected faults belong to two structurally independent fault families. The innermost shelf faults appear to root in the sediment column. A third set of faults located in the Sabine Pass area trends north-south. This fault set is thought to be related to basement movement and/or basement structure. Very little salt is evident in the area. A single diapir is located in West Cameron Block 110 and vicinity. There is little evidence of deep salt. Overall sediment thickness probably exceeds 20,000 ft, with the middle Miocene accounting for 8000 ft.« less

  16. Earthquake geology along the North Anatoli Fault Zone in the Marmara Sea

    NASA Astrophysics Data System (ADS)

    McHugh, C. M.; Cormier, M.-H.; Seeber, L.; Cagatay, M. N.; Capotondi, L.; Polonia, A.; Lozefski, G.

    2003-04-01

    The feasibility of conducting submarine earthquake geology along the North Anatolia Fault Zone (NAFZ) was evaluated from sediment cores and geophysical data (multibeam bathymetry and high-resolution CHIRP) recently collected from the Marmara Sea. We have successfully begun to characterize the Holocene earthquake record of the NAFZ in a small basin along the Ganos fault east of the Gelibolu peninsula, and in Izmit Gulf (west of the Hersek promontory and in the Karamürsel basin). Evidence for seismic activity was derived from mass-wasting and gravity flow deposits including homogenites (deposits >10cm thick containing turbidites with resuspended sediment above) identified from core x-rays, grain size, organic carbon, and mineralogical analyses. Deposits were correlated to the historical earthquake record of the Marmara Sea region by chronology derived from 14C, 210Pb and 137Cs. The basin near Ganos is ideal for the study of earthquake-related activity. It is deep (>50m), bisected by the fault, and isolated from other basins and distal from fluvial and alluvial fan input that may include weather-related events. Yet, its sedimentation rates are very high (>2m/1000 years). Homogenites, have been tentatively correlated to the 1912 Ganos earthquake and to the mid-1960's and mid-1800's Saros Gulf earthquakes. The Ganos earthquake ruptured the entire 50km long segment across the Gelibolu peninsula plus submarine portions on either side. If the timing of these events is correct, it suggests frequent seismic activity for this region. On the Gulf of Izmit, west of Hersek, sandy-mass flows containing soft sediment deformation such as recumbent folds and sand injections have been linked to the 1509 earthquake. Historical records indicate that the segment of the NAFZ in the Hersek Peninsula ruptured during this earthquake and our findings suggest that the rupture may have continued beneath the Izmit Gulf. In the eastern portion of the Karamürsel basin, sandy turbidites have been tentatively correlated to the 17 August 1999 mainshock. The western part of the basin contains several turbidites that have been correlated to large earthquakes that occurred near Izmit in 145, 269, 478 and 740 AD. Mass-wasting and gravity flow deposits are not directly revealing surface ruptures but they can indicate earthquake activity providing a tool to better characterize individual fault strands and assess the long-term record of seismic activity of the NAFZ.

  17. Database and Map of Quaternary Faults and Folds in Peru and its Offshore Region

    USGS Publications Warehouse

    Machare, Jose; Fenton, Clark H.; Machette, Michael N.; Lavenu, Alain; Costa, Carlos; Dart, Richard L.

    2003-01-01

    This publication consists of a main map of Quaternary faults and fiolds of Peru, a table of Quaternary fault data, a region inset map showing relative plate motion, and a second inset map of an enlarged area of interest in southern Peru. These maps and data compilation show evidence for activity of Quaternary faults and folds in Peru and its offshore regions of the Pacific Ocean. The maps show the locations, ages, and activity rates of major earthquake-related features such as faults and fault-related folds. These data are accompanied by text databases that describe these features and document current information on their activity in the Quaternary.

  18. Active tectonic deformation of the western Indian plate boundary: A case study from the Chaman Fault System

    NASA Astrophysics Data System (ADS)

    Crupa, Wanda E.; Khan, Shuhab D.; Huang, Jingqiu; Khan, Abdul S.; Kasi, Aimal

    2017-10-01

    Collision of the Eurasian and Indian plates has resulted in two spatially offset subduction zones, the Makran subduction zone to the south and the Himalayan convergent margin to the north. These zones are linked by a system of left-lateral strike-slip faults known as the Chaman Fault System, ∼1200 km, which spans along western Pakistan. Although this is one of the greatest strike-slip faults, yet temporal and spatial variation in displacement has not been adequately defined along this fault system. This study conducted geomorphic and geodetic investigations along the Chaman Fault in a search for evidence of spatial variations in motion. Four study areas were selected over the span of the Chaman Fault: (1) Tarnak-Rud area over the Tarnak-Rud valley, (2) Spinatizha area over the Spinatizha Mountain Range, (3) Nushki area over the Nushki basin, and (4) Kharan area over the northern tip of the Central Makran Mountains. Remote sensing data allowed for in depth mapping of different components and faults within the Kohjak group. Wind and water gap pairs along with offset rivers were identified using high-resolution imagery and digital-elevation models to show displacement for the four study areas. The mountain-front-sinuosity ratio, valley height-to-width-ratio, and the stream-length-gradient index were calculated and used to determine the relative tectonic activity of each area. These geomorphic indices suggest that the Kharan area is the most active and the Tarnak-Rud area is the least active. GPS data were processed into a stable Indian plate reference frame and analyzed. Fault parallel velocity versus fault normal distance yielded a ∼8-10 mm/yr displacement rate along the Chaman Fault just north of the Spinatizha area. InSAR data were also integrated to assess displacement rates along the fault system. Geodetic data support that ultra-slow earthquakes similar to those that strike along other major strike-slip faults, such as the San Andreas Fault System, are possible along the northern segments of the Chaman Fault zone. Geomorphic data suggest that the Chaman Fault along southern part is not very active now but may have gone through high tectonic activity in the past.

  19. Towards a Fault-based SHA in the Southern Upper Rhine Graben

    NASA Astrophysics Data System (ADS)

    Baize, Stéphane; Reicherter, Klaus; Thomas, Jessica; Chartier, Thomas; Cushing, Edward Marc

    2016-04-01

    A brief overview at a seismic map of the Upper Rhine Graben area (say between Strasbourg and Basel) reveals that the region is seismically active. The area has been hit recently by shallow and moderate quakes but, historically, strong quakes damaged and devastated populated zones. Several authors previously suggested, through preliminary geomorphological and geophysical studies, that active faults could be traced along the eastern margin of the graben. Thus, fault-based PSHA (probabilistic seismic hazard assessment) studies should be developed. Nevertheless, most of the input data in fault-based PSHA models are highly uncertain, based upon sparse or hypothetical data. Geophysical and geological data document the presence of post-Tertiary westward dipping faults in the area. However, our first investigations suggest that the available surface fault map do not provide a reliable document of Quaternary fault traces. Slip rate values that can be currently used in fault-PSHA models are based on regional stratigraphic data, but these include neither detailed datings nor clear base surface contours. Several hints on fault activity do exist and we have now relevant tools and techniques to figure out the activity of the faults of concern. Our preliminary analyses suggest that the LiDAR topography can adequately image the fault segments and, thanks to detailed geomorphological analysis, these data allow tracking cumulative fault offsets. Because the fault models can therefore be considered highly uncertain, our coming project for the next 3 years is to acquire and analyze these accurate topographical data, to trace the active faults and to determine slip rates through relevant features dating. Eventually, we plan to find a key site to perform a paleoseismological trench because this approach has been proved to be worth in the Graben, both to the North (Wörms and Strasbourg) and to the South (Basel). This would be done in order to definitely prove whether the faults ruptured the ground surface during the Quaternary, and in order to determine key fault parameters such as magnitude and age of large events.

  20. A satellite-based digital data system for low-frequency geophysical data

    USGS Publications Warehouse

    Silverman, S.; Mortensen, C.; Johnston, M.

    1989-01-01

    A reliable method for collection, display, and analysis of low-frequency geophysical data from isolated sites, which can be throughout North and South America and the Pacific Rim, has been developed for use with the Geostationary Operational Environmental Satellite (GEOS) system. This system provides real-time monitoring of crustal deformation parameters such as tilt, strain, fault displacement, local magnetic field, crustal geochemistry, and water levels, as well as meteorological and other parameters, along faults in California and Alsaka, and in volcanic regions in the western United States, Rabaul, and other locations in the New Britain region of the South pacific. Various mathematical, statistical, and graphical algorithms process the incoming data to detect changes in crustal deformation and fault slip that may indicate the first stages of catastrophic fault failure. -from Authors

  1. A Voyager attitude control perspective on fault tolerant systems

    NASA Technical Reports Server (NTRS)

    Rasmussen, R. D.; Litty, E. C.

    1981-01-01

    In current spacecraft design, a trend can be observed to achieve greater fault tolerance through the application of on-board software dedicated to detecting and isolating failures. Whether fault tolerance through software can meet the desired objectives depends on very careful consideration and control of the system in which the software is imbedded. The considered investigation has the objective to provide some of the insight needed for the required analysis of the system. A description is given of the techniques which have been developed in this connection during the development of the Voyager spacecraft. The Voyager Galileo Attitude and Articulation Control Subsystem (AACS) fault tolerant design is discussed to emphasize basic lessons learned from this experience. The central driver of hardware redundancy implementation on Voyager was known as the 'single point failure criterion'.

  2. Seismicity and Seismotectonic Properties of The Sultandağı Fault Zone (Afyonkarahisar-Konya): Western Anatolia,Turkey

    NASA Astrophysics Data System (ADS)

    Kalafat, D.; Gunes, Y.; Kekovali, K.; Kara, M.; Gorgun, E.

    2017-12-01

    n this study we investigated seismicity and source characteristics of the Sultandağı Fault Zone (SFZ). As known Western Anatolia is one of the most important seismically active region in Turkey. The relative movement of the African-Arabian plates, it causes the Anatolian Plate to movement to the west-Southwest direction 2.5 cm per year and this result provides N-S direction with extensional regime in the recent tectonic. In this study, especially with the assessment of seismic activity occurring in Afyon and around between 200-2002 years, we have been evaluated to date with seismic activity as well as fault mechanism solution. We analyzed recent seismicity and distribution of earthquakes in this region. In the last century, 3 important earthquakes occurred in the Sultandağı Fault zone (Afyon-Akşehir Graben), this result shown it was seismic active and broken fault segments caused stress balance in the region and it caused to occur with short intervals of earthquakes in 2000 and 2002, triggering each other. The scope of this tudy, we installed new BB stations in the region and we have been done of the fault plane solutions for important earthquakes. The focal mechanisms clearly exhibit the activation of a NE-SW trending normal faulting system along the SFZ region. The results of stress analysis showed that the effective current tectonic evolution of normal faulting in this region. This study is supported by Bogazici University Research Projects Commission under SRP/BAP project No. 12280. Key Words: Sultandağı fault zone, normal faulting, seismicity, fault mechanism

  3. Central Japan's Atera Active Fault's Wide-Fractured Zone: An Examination of the Structure and In-situ Crustal Stress

    NASA Astrophysics Data System (ADS)

    Ikeda, R.; Omura, K.; Matsuda, T.; Mizuochi, Y.; Uehara, D.; Chiba, A.; Kikuchi, A.; Yamamoto, T.

    2001-12-01

    In-situ downhole measurements and coring within and around an active fault zone are needed to better understand the structure and material properties of fault rocks as well as the physical state of active faults and intra-plate crust. Particularly, the relationship between the stress concentration state and the heterogeneous strength of an earthquake fault zone is important to estimate earthquake occurrence mechanisms which correspond to the prediction of an earthquake. It is necessary to compare some active faults in different conditions of the chrysalis stage and their relation to subsequent earthquake occurrence. To better understand such conditions, "Active Fault Zone Drilling Project" has been conducted in the central part of Japan by the National Research Institute for Earth Science and Disaster Prevention. The Nojima fault which appeared on the surface by the 1995 Great Kobe earthquake (M=7.2) and the Neodani fault created by the 1981 Nobi earthquake, the greatest inland earthquake M=8.0 in Japan, have been drilled through the fault fracture zones. During these past four years, a similar experiment and research at the Atera fault, of which some parts seem to have been dislocated by the 1586 Tensyo earthquake, has been undertaken. The features of the Atera fault are as follows: (1) total length is about 70 km, (2) general trend is NW45_Kwith a left-lateral strike slip, (3) slip rate is estimated as 3-5 m/1000 yrs. and the average recurrence time as 1700 yrs., (4) seismicity is very low at present, and (5) lithologies around the fault are basically granitic rocks and rhyolite. We have conducted integrated investigations by surface geophysical survey and drilling around the Atera fault. Six boreholes have been drilled from the depth of 400 m to 630 m. Four of these boreholes are located on a line crossing the fracture zone of the Atera fault. Resistivity and gravity structures inferred from surface geophysical surveys were compared with the physical properties determined from the borehole logging data and core samples. These results were also compared with in situ stress data by the hydraulic fracturing stress measurements in the boreholes. We obtained characteristic states on crustal stress and strength of the fault from these investigations. Our findings are as follows: (1) The fracture zone around the Atera fault shows a very wide and complex fracture structure, from approximately 1 km to 4 km wide. The average slip rate was estimated to be 5.3 m /1000 yrs. by the distribution of basalt in age of 1.5 Ma by radioactive dating. We inferred that the Atera fault has been repeatedly active in recent geologic time; however, it is in a very weak state at present. (2) The stress magnitude decreases in the area closer to the center of the fracture zone. Furthermore the orientation of the maximum horizontal compressive stress was almost in a North-South direction, just reverse of the fault moving direction. These are important results to evaluate fault activity. We argue that the stress state observed in these sites exists only when the faults are quite "weak," and thus does not reach to a critical level of fault activation in the present situation.

  4. Preservation of amorphous ultrafine material: A proposed proxy for slip during recent earthquakes on active faults

    PubMed Central

    Hirono, Tetsuro; Asayama, Satoru; Kaneki, Shunya; Ito, Akihiro

    2016-01-01

    The criteria for designating an “Active Fault” not only are important for understanding regional tectonics, but also are a paramount issue for assessing the earthquake risk of faults that are near important structures such as nuclear power plants. Here we propose a proxy, based on the preservation of amorphous ultrafine particles, to assess fault activity within the last millennium. X-ray diffraction data and electron microscope observations of samples from an active fault demonstrated the preservation of large amounts of amorphous ultrafine particles in two slip zones that last ruptured in 1596 and 1999, respectively. A chemical kinetic evaluation of the dissolution process indicated that such particles could survive for centuries, which is consistent with the observations. Thus, preservation of amorphous ultrafine particles in a fault may be valuable for assessing the fault’s latest activity, aiding efforts to evaluate faults that may damage critical facilities in tectonically active zones. PMID:27827413

  5. Using shadow page cache to improve isolated drivers performance.

    PubMed

    Zheng, Hao; Dong, Xiaoshe; Wang, Endong; Chen, Baoke; Zhu, Zhengdong; Liu, Chengzhe

    2015-01-01

    With the advantage of the reusability property of the virtualization technology, users can reuse various types and versions of existing operating systems and drivers in a virtual machine, so as to customize their application environment. In order to prevent users' virtualization environments being impacted by driver faults in virtual machine, Chariot examines the correctness of driver's write operations by the method of combining a driver's write operation capture and a driver's private access control table. However, this method needs to keep the write permission of shadow page table as read-only, so as to capture isolated driver's write operations through page faults, which adversely affect the performance of the driver. Based on delaying setting frequently used shadow pages' write permissions to read-only, this paper proposes an algorithm using shadow page cache to improve the performance of isolated drivers and carefully study the relationship between the performance of drivers and the size of shadow page cache. Experimental results show that, through the shadow page cache, the performance of isolated drivers can be greatly improved without impacting Chariot's reliability too much.

  6. Using Shadow Page Cache to Improve Isolated Drivers Performance

    PubMed Central

    Dong, Xiaoshe; Wang, Endong; Chen, Baoke; Zhu, Zhengdong; Liu, Chengzhe

    2015-01-01

    With the advantage of the reusability property of the virtualization technology, users can reuse various types and versions of existing operating systems and drivers in a virtual machine, so as to customize their application environment. In order to prevent users' virtualization environments being impacted by driver faults in virtual machine, Chariot examines the correctness of driver's write operations by the method of combining a driver's write operation capture and a driver's private access control table. However, this method needs to keep the write permission of shadow page table as read-only, so as to capture isolated driver's write operations through page faults, which adversely affect the performance of the driver. Based on delaying setting frequently used shadow pages' write permissions to read-only, this paper proposes an algorithm using shadow page cache to improve the performance of isolated drivers and carefully study the relationship between the performance of drivers and the size of shadow page cache. Experimental results show that, through the shadow page cache, the performance of isolated drivers can be greatly improved without impacting Chariot's reliability too much. PMID:25815373

  7. Preliminary atlas of active shallow tectonic deformation in the Puget Lowland, Washington

    USGS Publications Warehouse

    Barnett, Elizabeth A.; Haugerud, Ralph A.; Sherrod, Brian L.; Weaver, Craig S.; Pratt, Thomas L.; Blakely, Richard J.

    2010-01-01

    This atlas presents an up-to-date map compilation of the geological and geophysical observations that underpin interpretations of active, surface-deforming faults in the Puget Lowland, Washington. Shallow lowland faults are mapped where observations of deformation from paleoseismic, seismic-reflection, and potential-field investigations converge. Together, results from these studies strengthen the identification and characterization of regional faults and show that as many as a dozen shallow faults have been active during the Holocene. The suite of maps presented in our atlas identifies sites that have evidence of deformation attributed to these shallow faults. For example, the paleoseismic-investigations map shows where coseismic surface rupture and deformation produced geomorphic scarps and deformed shorelines. Other maps compile results of seismic-reflection and potential-field studies that demonstrate evidence of deformation along suspected fault structures in the subsurface. Summary maps show the fault traces derived from, and draped over, the datasets presented in the preceding maps. Overall, the atlas provides map users with a visual overview of the observations and interpretations that support the existence of active, shallow faults beneath the densely populated Puget Lowland.

  8. Fault-Tolerant Local-Area Network

    NASA Technical Reports Server (NTRS)

    Morales, Sergio; Friedman, Gary L.

    1988-01-01

    Local-area network (LAN) for computers prevents single-point failure from interrupting communication between nodes of network. Includes two complete cables, LAN 1 and LAN 2. Microprocessor-based slave switches link cables to network-node devices as work stations, print servers, and file servers. Slave switches respond to commands from master switch, connecting nodes to two cable networks or disconnecting them so they are completely isolated. System monitor and control computer (SMC) acts as gateway, allowing nodes on either cable to communicate with each other and ensuring that LAN 1 and LAN 2 are fully used when functioning properly. Network monitors and controls itself, automatically routes traffic for efficient use of resources, and isolates and corrects its own faults, with potential dramatic reduction in time out of service.

  9. A remote sensing study of active folding and faulting in southern Kerman province, S.E. Iran

    NASA Astrophysics Data System (ADS)

    Walker, Richard Thomas

    2006-04-01

    Geomorphological observations reveal a major oblique fold-and-thrust belt in Kerman province, S.E. Iran. The active faults appear to link the Sabzevaran right-lateral strike-slip fault in southeast Iran to other strike-slip faults within the interior of the country and may provide the means of distributing right-lateral shear between the Zagros and Makran mountains over a wider region of central Iran. The Rafsanjan fault is manifest at the Earth's surface as right-lateral strike-slip fault scarps and folding in alluvial sediments. Height changes across the anticlines, and widespread incision of rivers, are likely to result from hanging-wall uplift above thrust faults at depth. Scarps in recent alluvium along the northern margins of the folds suggest that the thrusts reach the surface and are active at the present-day. The observations from Rafsanjan are used to identify similar late Quaternary faulting elsewhere in Kerman province near the towns of Mahan and Rayen. No instrumentally recorded destructive earthquakes have occurred in the study region and only one historical earthquake (Lalehzar, 1923) is recorded. In addition GPS studies show that present-day rates of deformation are low. However, fault structures in southern Kerman province do appear to be active in the late Quaternary and may be capable of producing destructive earthquakes in the future. This study shows how widely available remote sensing data can be used to provide information on the distribution of active faulting across large areas of deformation.

  10. Earthquake Archaeology: a case study from Ancient Cnidus

    NASA Astrophysics Data System (ADS)

    Stewart, I. S.; Altunel, E.; Piccardi, L.

    2003-04-01

    Ancient earthquakes can leave their mark in the mythical practices and literary accounts of ancient peoples, the stratigraphy of their site histories, and the structural integrity of their constructions. The ancient Greek/Roman city of Cnidus in southwestern Turkey records all three. A spectacular exposed fault plane cliff bordering the northern edge of the city appears to have been an important revered site, bearing votive niches carved into the near-vertical slip plane and associated with a Sanctuary of Demeter that implies a connection to the underworld. Stratigraphic evidence for earthquake faulting can be found in the form of a destruction horizon of contorted soil, relics and human remains exposed in the original excavations of the Sanctuary of Demeter by Sir Charles Newton (1857-58) and in a destruction horizon of burnt soil and bone uncovered by the ongoing excavation of a colonnaded street. Structural damage to constructions is widespread across the site, with warped and offset walls in the Sanctuary of Demeter, collapsed buildings in several places, and a parallel arrangement of fallen columns in the colonnaded street. The most remarkable structural evidence for fault activity, however, is the rupture of the ancient city's famous Round Temple of Aphrodite, whose podium reveals a history of damage and which is unambiguously displaced across a bedrock fault. While these phenomena are equivocal when viewed in isolation, collectively they imply at least two damaging earthquakes at the site, one (possibly both) of which ruptured along the fault on which the city is found. The Cnidus case study highlights how reliable identification of archaeoseismic damage relies on compiling an assemblage of indicators rather than the discovery of a diagnostic "smoking gun".

  11. Response of deformation patterns to reorganizations of the southern San Andreas fault system since ca. 1.5 Ma

    NASA Astrophysics Data System (ADS)

    Cooke, M. L.; Fattaruso, L.; Dorsey, R. J.; Housen, B. A.

    2015-12-01

    Between ~1.5 and 1.1 Ma, the southern San Andreas fault system underwent a major reorganization that included initiation of the San Jacinto fault and termination of slip on the extensional West Salton detachment fault. The southern San Andreas fault itself has also evolved since this time, with several shifts in activity among fault strands within San Gorgonio Pass. We use three-dimensional mechanical Boundary Element Method models to investigate the impact of these changes to the fault network on deformation patterns. A series of snapshot models of the succession of active fault geometries explore the role of fault interaction and tectonic loading in abandonment of the West Salton detachment fault, initiation of the San Jacinto fault, and shifts in activity of the San Andreas fault. Interpreted changes to uplift patterns are well matched by model results. These results support the idea that growth of the San Jacinto fault led to increased uplift rates in the San Gabriel Mountains and decreased uplift rates in the San Bernardino Mountains. Comparison of model results for vertical axis rotation to data from paleomagnetic studies reveals a good match to local rotation patterns in the Mecca Hills and Borrego Badlands. We explore the mechanical efficiency at each step in the evolution, and find an overall trend toward increased efficiency through time. Strain energy density patterns are used to identify regions of off-fault deformation and potential incipient faulting. These patterns support the notion of north-to-south propagation of the San Jacinto fault during its initiation. The results of the present-day model are compared with microseismicity focal mechanisms to provide additional insight into the patterns of off-fault deformation within the southern San Andreas fault system.

  12. GeoBioScience: Red Wood Ants as Bioindicators for Active Tectonic Fault Systems in the West Eifel (Germany)

    PubMed Central

    Berberich, Gabriele; Schreiber, Ulrich

    2013-01-01

    Simple Summary In a 1.140 km² study area of the volcanic West Eifel, approx. 3,000 Red Wood Ant (RWA; Formica rufa-group) mounds had been identified and correlated with tectonically active gas-permeable faults, mostly strike-slip faults. Linear alignment of RWA mounds and soil gas anomalies distinctly indicate the course of these faults, while clusters of mounds indicate crosscut zones of fault systems, which can be correlated with voids caused by crustal block rotation. This demonstrates that RWA are bioindicators for identifying active fault systems and useful where information on the active regime is incomplete or the resolution by technical means is insufficient. Abstract In a 1.140 km² study area of the volcanic West Eifel, a comprehensive investigation established the correlation between red wood ant mound (RWA; Formica rufa-group) sites and active tectonic faults. The current stress field with a NW-SE-trending main stress direction opens pathways for geogenic gases and potential magmas following the same orientation. At the same time, Variscan and Mesozoic fault zones are reactivated. The results showed linear alignments and clusters of approx. 3,000 RWA mounds. While linear mound distribution correlate with strike-slip fault systems documented by quartz and ore veins and fault planes with slickensides, the clusters represent crosscut zones of dominant fault systems. Latter can be correlated with voids caused by crustal block rotation. Gas analyses from soil air, mineral springs and mofettes (CO2, Helium, Radon and H2S) reveal limiting concentrations for the spatial distribution of mounds and colonization. Striking is further the almost complete absence of RWA mounds in the core area of the Quaternary volcanic field. A possible cause can be found in occasionally occurring H2S in the fault systems, which is toxic at miniscule concentrations to the ants. Viewed overall, there is a strong relationship between RWA mounds and active tectonics in the West Eifel. PMID:26487413

  13. Structural control on the CO2 release west of Mt. Epomeo resurgent block (Ischia, Italy)

    NASA Astrophysics Data System (ADS)

    de Vita, S.; Marotta, E.; Ventura, G.; Chiodini, G.

    2003-04-01

    Volcanism at Ischia started more than 150 ka B.P. and continued until the last eruption occurred in 1302 A.D. Ischia is dominated by the caldera forming eruption of Mt. Epomeo Green Tuff (55 ka), which was followed by block resurgence inside the caldera from 33 ka B.P. Resurgence influenced the volcanic activity determining the conditions for magma ascent mainly along the eastern edge of the resurgent block. The resurgent area has a poligonal shape resulting from reactivation of regional faults and by activation of faults related to volcanotectonism. The western sector is bordered by inward dipping, high angle strike-slip/reverse faults testifying a compressional stress regime in this area. These features are cut by late outward dipping normal faults due to gravitational stress. The activity of the volcanic system is testified by seismicity and thermal manifestations. Fumarolic activity concentrates along the faults that borders westward the Mt. Epomeo resurgent block, where the Green Tuff overlies fractured lavas. The structural data show that, outside the most active degassing zone, fractures show a NNW-SSE strike and dip toward Mt. Epomeo. These fractures delimit the northern sector of Mt. Epomeo and show strike and dip consistent with the inward dipping reverse faults. Inside the degassing area fractures show a NW-SE strike and dip outward Mt. Epomeo. These gravity-related faults cut the lavas where the hydrothermal circulation is active. The dip direction of the NW-SE striking fractures within the degassing zone is not consistent with that of the strike-slip/reverse faults (i.e. towards NE) but agrees well with that of the gravity-induced faults (dip direction towards SW). Inside the degassing zone, NW-SE striking faults with lengths not exceeding the hydrothermalized extension occur. This arrangement indicate that the syn-resurgence faults act as permeability barriers, whereas the youngest faults act as the main fluid pathway.

  14. Deep heterogeneous structure of active faults in the Kinki region, southwest Japan: Inversion analysis of coda envelopes

    NASA Astrophysics Data System (ADS)

    Nishigami, K.

    2006-12-01

    It is essential to estimate the deep structure of active faults related to the earthquake rupture process as well as the crustal structure related to the propagation of seismic waves, in order to improve the accuracy of estimating strong ground motion caused by future large inland earthquakes. In the Kinki region, southwest Japan, there are several active fault zones near large cities such as Osaka and Kyoto, and the evaluation of realistic strong ground motion is an important subject. We have been carrying out the Special Project for Earthquake Disaster Mitigation in Urban Areas, in the Kinki region for these purposes. In this presentation we will show the result of estimating the fault structure model of the Biwako-seigan, Hanaore, and Arima- Takatsuki fault zones. We estimated a 3-D distribution of relative scattering coefficients in the Kinki region, also in the vicinity of each active fault zone, by inversion of coda envelopes from local earthquakes. We analyzed 758 seismograms from 52 events which occurred in 2003, recorded at 50 stations of Kyoto Univ., Hi- net, and JMA. The preliminary result shows that active fault zones can be imaged as higher scattering than the surroundings. Based on previous studies of scattering properties in the crust, we consider that the relatively weaker scattering (namely more homogeneous) part on the fault plane may act as an asperity during future large earthquakes, and also that the part with relatively stronger scattering (namely more heterogeneous part) may become an initiation point of rupture. We are also studying the detailed distribution of microearthquakes, b-values, and velocity anomalies along these active fault zones. Combining these results, we will construct a possible fault model for each of the active fault zones. This study is sponsored by the Special Project for Earthquake Disaster Mitigation in Urban Areas from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

  15. Tectonics earthquake distribution pattern analysis based focal mechanisms (Case study Sulawesi Island, 1993–2012)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismullah M, Muh. Fawzy, E-mail: mallaniung@gmail.com; Lantu,; Aswad, Sabrianto

    Indonesia is the meeting zone between three world main plates: Eurasian Plate, Pacific Plate, and Indo – Australia Plate. Therefore, Indonesia has a high seismicity degree. Sulawesi is one of whose high seismicity level. The earthquake centre lies in fault zone so the earthquake data gives tectonic visualization in a certain place. This research purpose is to identify Sulawesi tectonic model by using earthquake data from 1993 to 2012. Data used in this research is the earthquake data which consist of: the origin time, the epicenter coordinate, the depth, the magnitude and the fault parameter (strike, dip and slip). Themore » result of research shows that there are a lot of active structures as a reason of the earthquake in Sulawesi. The active structures are Walannae Fault, Lawanopo Fault, Matano Fault, Palu – Koro Fault, Batui Fault and Moluccas Sea Double Subduction. The focal mechanism also shows that Walannae Fault, Batui Fault and Moluccas Sea Double Subduction are kind of reverse fault. While Lawanopo Fault, Matano Fault and Palu – Koro Fault are kind of strike slip fault.« less

  16. Health management and controls for earth to orbit propulsion systems

    NASA Technical Reports Server (NTRS)

    Bickford, R. L.

    1992-01-01

    Fault detection and isolation for advanced rocket engine controllers are discussed focusing on advanced sensing systems and software which significantly improve component failure detection for engine safety and health management. Aerojet's Space Transportation Main Engine controller for the National Launch System is the state of the art in fault tolerant engine avionics. Health management systems provide high levels of automated fault coverage and significantly improve vehicle delivered reliability and lower preflight operations costs. Key technologies, including the sensor data validation algorithms and flight capable spectrometers, have been demonstrated in ground applications and are found to be suitable for bridging programs into flight applications.

  17. Response of deformation patterns to reorganization of the southern San Andreas fault system since ca. 1.5 Ma

    NASA Astrophysics Data System (ADS)

    Fattaruso, Laura A.; Cooke, Michele L.; Dorsey, Rebecca J.; Housen, Bernard A.

    2016-12-01

    Between 1.5 and 1.1 Ma, the southern San Andreas fault system underwent a major reorganization that included initiation of the San Jacinto fault zone and termination of slip on the extensional West Salton detachment fault. The southern San Andreas fault itself has also evolved since this time, with several shifts in activity among fault strands within San Gorgonio Pass. We use three-dimensional mechanical Boundary Element Method models to investigate the impact of these changes to the fault network on deformation patterns. A series of snapshot models of the succession of active fault geometries explore the role of fault interaction and tectonic loading in abandonment of the West Salton detachment fault, initiation of the San Jacinto fault zone, and shifts in activity of the San Andreas fault. Interpreted changes to uplift patterns are well matched by model results. These results support the idea that initiation and growth of the San Jacinto fault zone led to increased uplift rates in the San Gabriel Mountains and decreased uplift rates in the San Bernardino Mountains. Comparison of model results for vertical-axis rotation to data from paleomagnetic studies reveals a good match to local rotation patterns in the Mecca Hills and Borrego Badlands. We explore the mechanical efficiency at each step in the modeled fault evolution, and find an overall trend toward increased efficiency through time. Strain energy density patterns are used to identify regions of incipient faulting, and support the notion of north-to-south propagation of the San Jacinto fault during its initiation.

  18. Active faulting in apparently stable peninsular India: Rift inversion and a Holocene-age great earthquake on the Tapti Fault

    NASA Astrophysics Data System (ADS)

    Copley, Alex; Mitra, Supriyo; Sloan, R. Alastair; Gaonkar, Sharad; Reynolds, Kirsty

    2014-08-01

    We present observations of active faulting within peninsular India, far from the surrounding plate boundaries. Offset alluvial fan surfaces indicate one or more magnitude 7.6-8.4 thrust-faulting earthquakes on the Tapti Fault (Maharashtra, western India) during the Holocene. The high ratio of fault displacement to length on the alluvial fan offsets implies high stress-drop faulting, as has been observed elsewhere in the peninsula. The along-strike extent of the fan offsets is similar to the thickness of the seismogenic layer, suggesting a roughly equidimensional fault rupture. The subsiding footwall of the fault is likely to have been responsible for altering the continental-scale drainage pattern in central India and creating the large west flowing catchment of the Tapti river. A preexisting sedimentary basin in the uplifting hanging wall implies that the Tapti Fault was active as a normal fault during the Mesozoic and has been reactivated as a thrust, highlighting the role of preexisting structures in determining the rheology and deformation of the lithosphere. The slip sense of faults and earthquakes in India suggests that deformation south of the Ganges foreland basin is driven by the compressive force transmitted between India and the Tibetan Plateau. The along-strike continuation of faulting to the east of the Holocene ruptures we have studied represents a significant seismic hazard in central India.

  19. Active Fault Topography and Fault Outcrops in the Central Part of the Nukumi fault, the 1891 Nobi Earthquake Fault System, Central Japan

    NASA Astrophysics Data System (ADS)

    Sasaki, T.; Ueta, K.; Inoue, D.; Aoyagi, Y.; Yanagida, M.; Ichikawa, K.; Goto, N.

    2010-12-01

    It is important to evaluate the magnitude of earthquake caused by multiple active faults, taking into account the simultaneous effects. The simultaneity of adjacent active faults are often decided on the basis of geometric distances except for known these paleoseismic records. We have been studied the step area between the Nukumi fault and the Neodani fault, which appeared as consecutive ruptures in the 1891 Nobi earthquake, since 2009. The purpose of this study is to establish innovation in valuation technique of the simultaneity of adjacent active faults in addition to the paleoseismic record and the geometric distance. Geomorphological, geological and reconnaissance microearthquake surveys are concluded. The present work is intended to clarify the distribution of tectonic geomorphology along the Nukumi fault and the Neodani fault by high-resolution interpretations of airborne LiDAR DEM and aerial photograph, and the field survey of outcrops and location survey. The study area of this work is the southeastern Nukumi fault and the northwestern Neodani fault. We interpret DEM using shaded relief map and stereoscopic bird's-eye view made from 2m mesh DEM data which is obtained by airborne laser scanner of Kokusai Kogyo Co., Ltd. Aerial photographic survey is for confirmation of DEM interpretation using 1/16,000 scale photo. As a result of topographic survey, we found consecutive tectonic topography which is left lateral displacement of ridge and valley lines and reverse scarplets along the Nukumi fault and the Neodani fault . From Ogotani 2km southeastern of Nukumi pass which is located at the southeastern end of surface rupture along the Nukumi fault by previous study to Neooppa 9km southeastern of Nukumi pass, we can interpret left lateral topographies and small uphill-facing fault scarps on the terrace surface by detail DEM investigation. These topographies are unrecognized by aerial photographic survey because of heavy vegetation. We have found several new outcrops in this area where the surface ruptures of the 1891 Nobi earthquake have not been known. These outcrops have active fault which cut the layer of terrace deposit and slope deposit to the bottom of present soil layer in common. At the locality of Ogotani outcrop, the humic layer which age is from14th century to 15th century by 14C age dating is deformed by the active fault. The vertical displacement of the humic layer is 0.8-0.9m and the terrace deposit layer below the humic layer is ca. 1.3m. For this reason and the existence of fain grain deposit including AT tephra (28ka) in the footwall of the fault, this fault movement occurred more than once since the last glacial age. We conclude that the surface rupture of Nukumi fault in the 1891 Nobi earthquake is continuous to 9km southeast of Nukumi pass. In other words, these findings indicate that there is 10km parallel overlap zone between the surface rupture of the southeastern end of Nukumi fault and the northwestern end of Neodani fault.

  20. The study of active tectonic based on hyperspectral remote sensing

    NASA Astrophysics Data System (ADS)

    Cui, J.; Zhang, S.; Zhang, J.; Shen, X.; Ding, R.; Xu, S.

    2017-12-01

    As of the latest technical methods, hyperspectral remote sensing technology has been widely used in each brach of the geosciences. However, it is still a blank for using the hyperspectral remote sensing to study the active structrure. Hyperspectral remote sensing, with high spectral resolution, continuous spectrum, continuous spatial data, low cost, etc, has great potentialities in the areas of stratum division and fault identification. Blind fault identification in plains and invisible fault discrimination in loess strata are the two hot problems in the current active fault research. Thus, the study of active fault based on the hyperspectral technology has great theoretical significance and practical value. Magnetic susceptibility (MS) records could reflect the rhythm alteration of the formation. Previous study shown that MS has correlation with spectral feature. In this study, the Emaokou section, located to the northwest of the town of Huairen, in Shanxi Province, has been chosen for invisible fault study. We collected data from the Emaokou section, including spectral data, hyperspectral image, MS data. MS models based on spectral features were established and applied to the UHD185 image for MS mapping. The results shown that MS map corresponded well to the loess sequences. It can recognize the stratum which can not identity by naked eyes. Invisible fault has been found in this section, which is useful for paleoearthquake analysis. The faults act as the conduit for migration of terrestrial gases, the fault zones, especially the structurally weak zones such as inrtersections or bends of fault, may has different material composition. We take Xiadian fault for study. Several samples cross-fault were collected and these samples were measured by ASD Field Spec 3 spectrometer. Spectral classification method has been used for spectral analysis, we found that the spectrum of the fault zone have four special spectral region(550-580nm, 600-700nm, 700-800nm and 800-900nm), which different with the spectrum of the none-fault zone. It could help us welly located the fault zone. The located result correspond well to the physical prospecting method result. The above study shown that Hypersepctral remote sensing technology provide a new method for active study.

  1. Map showing recently active breaks along the San Andreas Fault between Pt. Delgada and Bolinas Bay, California

    USGS Publications Warehouse

    Brown, Robert D.; Wolfe, Edward W.

    1970-01-01

    This strip map is one of a series of maps showing recently active fault breaks along the San Andreas and other active faults in California. It is designed to inform persons who are concerned with land use near the fault of the location of those fault breaks that have moved recently. The lines on the map are lines of rupture and creep that can be identified by field evidence and that clearly affect the present surface of the land. Map users should keep in mind that these lines are intended primarily as guides to help locate the fault; the mapped lines are not necessarily shown with the precision demanded by some engineering or land utilization needs.

  2. Geometry and active tectonics of the Los Osos-Hosgri Fault Intersection in Estero Bay, CA: Reconciling seismicity patterns with near-surface geology

    NASA Astrophysics Data System (ADS)

    Watt, J. T.; Hardebeck, J.; Johnson, S. Y.; Kluesner, J.

    2016-12-01

    Characterizing active structures within structurally complex fault intersections is essential for unraveling the deformational history and for assessing the importance of fault intersections in regional earthquake hazard assessments. We employ an integrative, multi-scale geophysical approach to describe the 3D geometry and active tectonics of the offshore Los Osos fault (LOF) in Estero Bay, California. The shallow structure of the LOF, as imaged with multibeam and high-resolution seismic-reflection data, reveals a complex west-diverging zone of active faulting that bends into and joins the Hosgri fault. The down-dip geometry of the LOF as revealed by gravity, magnetic, and industry multi-channel seismic data, is vertical to steeply-dipping and varies along strike. As the LOF extends offshore, it is characterized by SW-side-up motion on a series of W-NW trending, steeply SW-dipping reverse faults. The LOF bends to the north ( 23°) as it approaches the Hosgri fault and dips steeply to the NE along a magnetic basement block. Inversion of earthquake focal mechanisms within Estero Bay yields maximum compressive stress axes that are near-horizontal and trend approximately N15E. This trend is consistent with dextral strike-slip faulting along NW-SE trending structures such as the Hosgri fault and northern LOF, and oblique dip-slip motion along the W-NW trending section of the LOF. Notably, NW-SE trending structures illuminated by seismicity in Estero Bay coincide with, but also appear to cross-cut, LOF structures imaged in the near-surface. We suggest this apparent disconnect reflects ongoing fault reorganization at a dynamic and inherently unstable fault intersection, in which the seismicity reflects active deformation at depth that is not clearly expressed in the near-surface geology. Direct connectivity between the Hosgri and Los Osos faults suggests a combined earthquake rupture is possible; however, the geometrical complexity along the offshore LOF may limit the extent of rupture.

  3. Characterization of Seismogenic Faults of Central Japan by Geophysical Survey and Drilling

    NASA Astrophysics Data System (ADS)

    Ikeda, R.; Omura, K.; Matsuda, T.

    2004-12-01

    Integrated investigations on seismogenic faults by geophysical survey and drilling are indispensable to better understand deep structure and physical properties of a fault fracture zone. In central Japan, three large active faults, Neodani, Atotsugawa and Atera faults, exist and are remarkable for research because of the potentiality of a scale of magnitude 7 to 8 class earthquake and the different characteristics of the seismogenic activities in these faults. Each individual fault shows its own characteristic features, which may reflect different stages in an earthquake cycle. High seismicity is concentrated with a clear lineation on and around the Atotsugawa fault, which is recognized as aftershocks from the latest event of the 1858 Hida earthquake (M=7.0). On the other hand, extremely low seismicity is found around the Atera fault, of which some parts seemed to be dislocated by the 1586 Tensyo earthquake (M=7.9). As an example of the results of study at the Atera fault, we obtained a wide variety of fault structures, composed materials, states of crustal stress and strengths of the fault from the geophysical survey (resistivity and gravity) and in-situ borehole experiments. Our findings are as follows: (1) The fracture zone around the Atera fault shows a very wide and complex fracture structure, from approximately 1 km to 4 km wide. (2) The average slip rate was estimated to be 5.3 m /1000 yr by the distribution of basalt in the age of 1.5 Ma as determined by radioactive dating. We inferred that the Atera fault has been repeatedly active in recent geologic time; however, it is in a very weak state at present. (3) Stress magnitude decreases in the area closer to the center of the fracture zone. These are important results to evaluate fault activity. Recent in-situ downhole measurements and coring through active faults have provided us with new insights into the physical properties of fault zones. In the vicinity of the epicenter of the 1995 Hyogo-ken Nanbu (Kobe) earthquake, we have conducted an integrated study by using 1,000 m to 1,800 m deep drilling wells. In particular, the Nojima-Hirabayashi borehole was drilled to a depth of 1,838 m and directly intersected the Nojima fault. Three possible fault strands were detected at depths of 1,140 m, 1,313 m and 1,800 m. Major results obtained from this study include the following: (1) Shear stress around the fault zone is very small, and the orientation of the maximum horizontal compression is perpendicular to the surface trace of faults. (2) From the results of a heat flow study, the lower cut-off depth of the aftershocks was estimated to be roughly 300 _E#8249;C. (3) Cores were classified into several types of fault rocks, and an asymmetric distribution pattern of these fault rocks in the fracture zones was identified. (4) Country rock is characterized by very low permeability and high strength. (5) Resistivity structure can be explained by a model of a fault extending to greater depths but with low resistivity. The integrated study by geophysical survey, drilling and core analyses, downhole measurements and long-term monitoring directly within these fault zones, provide us with characteristic features and dynamics of active faults.

  4. Geometry and slip rates of active blind thrusts in a reactivated back-arc rift using shallow seismic imaging: Toyama basin, central Japan

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tatsuya; Kato, Naoko; Sato, Hiroshi; Koshiya, Shin; Toda, Shigeru; Kobayashi, Kenta

    2017-10-01

    Active blind thrust faults, which can be a major seismic hazard in urbanized areas, are commonly difficult to image with seismic reflection surveys. To address these challenges in coastal plains, we collected about 8 km-long onshore high-resolution two-dimensional (2D) seismic reflection data using a dense array of 800 geophones across compressionally reactivated normal faults within a failed rift system located along the southwestern extension of the Toyama trough in the Sea of Japan. The processing of the seismic reflection data illuminated their detailed subsurface structures to depths of about 3 km. The interpreted depth-converted section, correlated with nearby Neogene stratigraphy, indicated the presence of and along-strike variation of previously unrecognized complex thrust-related structures composed of active fault-bend folds coupled with pairs of flexural slip faults within the forelimb and newly identified frontal active blind thrusts beneath the alluvial plain. In addition, growth strata and fold scarps that deform lower to upper Pleistocene units record the recent history of their structural growth and fault activity. This case shows that shallow seismic reflection imaging with densely spaced seismic recorders is a useful tool in defining locations, recent fault activity, and complex geometry of otherwise inaccessible active blind thrust faults.

  5. Current state of active-fault monitoring in Taiwan

    NASA Astrophysics Data System (ADS)

    Hou, C.; Lin, C.; Chen, Y.; Liu, H.; Chen, C.; Lin, Y.; Chen, C.

    2008-12-01

    The earthquake is one of the major hazard sources in Taiwan where an arc-continent collision is on-going. For the purpose of seismic hazard mitigation, to understand current situation of each already-known active fault is urgently needed. After the 1999 Chi-chi earthquake shocked Taiwan, the Central Geological Survey (CGS) of Taiwan aggressively promoted the tasks on studying the activities of active faults. One of them is the deployment of miscellaneous monitoring networks to cover all the target areas, where the earthquake occurrence potentials on active faults are eager to be answered. Up to the end of 2007, CGS has already deployed over 1000 GPS campaign sites, 44 GPS stations in continuous mode, and 42 leveling transects across the major active faults with a total ground distance of 974 km. The campaign sites and leveling tasks have to be measured once a year. The resulted crustal deformation will be relied on to derive the fault slip model. The time series analysis on continuous mode of GPS can further help understand the details of the fault behavior. In addition, 12 down-hole strain meters, five stations for liquid flux and geochemical proxies, and two for water table monitoring have been also installed to seek possible anomalies related to the earthquake activities. It may help discover reliable earthquake precursors.

  6. Flight test results of the strapdown hexad inertial reference unit (SIRU). Volume 2: Test report

    NASA Technical Reports Server (NTRS)

    Hruby, R. J.; Bjorkman, W. S.

    1977-01-01

    Results of flight tests of the Strapdown Inertial Reference Unit (SIRU) navigation system are presented. The fault tolerant SIRU navigation system features a redundant inertial sensor unit and dual computers. System software provides for detection and isolation of inertial sensor failures and continued operation in the event of failures. Flight test results include assessments of the system's navigational performance and fault tolerance. Performance shortcomings are analyzed.

  7. TES: A modular systems approach to expert system development for real time space applications

    NASA Technical Reports Server (NTRS)

    England, Brenda; Cacace, Ralph

    1987-01-01

    A major goal of the space station era is to reduce reliance on support from ground based experts. The TIMES Expert System (TES) is an application that monitors and evaluates real time data to perform fault detection and fault isolation as it would otherwise be carried out by a knowledgeable designer. The development process and primary features of the TES, the modular system and the lessons learned are discussed.

  8. Anatomy of an Active Seismic Source: the Interplay between Present-Day Seismic Activity and Inherited Fault Zone Architecture (Central Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Fondriest, M.; Demurtas, M.; Bistacchi, A.; Fabrizio, B.; Storti, F.; Valoroso, L.; Di Toro, G.

    2017-12-01

    The mechanics and seismogenic behaviour of fault zones are strongly influenced by their internal structure, in terms of both fault geometry and fault rock constitutive properties. In recent years high-resolution seismological techniques yielded new constraints on the geometry and velocity structure of seismogenic faults down to 10s meters length scales. This reduced the gap between geophysical imaging of active seismic sources and field observations of exhumed fault zones. Nevertheless fundamental questions such as the origin of geometrical and kinematic complexities associated to seismic faulting remain open. We addressed these topics by characterizing the internal structure of the Vado di Corno Fault Zone, an active seismogenic normal fault cutting carbonates in the Central Apennines of Italy and comparing it with the present-day seismicity of the area. The fault footwall block, which was exhumed from < 2 km depth, was mapped with high detail (< 1 m spatial resolution) for 2 km of exposure along strike, combining field structural data and photogrammetric surveys in a three dimensional structural model. Three main structural units separated by principal fault strands were recognized: (i) cataclastic unit (20-100 m thick), (ii) damage zone (≤ 300 m thick), (iii) breccia unit ( 20 thick). The cataclastic unit lines the master fault and represents the core of the normal fault zone. In-situ shattering together with evidence of extreme (possibly coseismic) shear strain localization (e.g., mirror-like faults with truncated clasts, ultrafine-grained sheared veins) was recognized. The breccia unit is an inherited thrust zone affected by pervasive veining and secondary dolomitization. It strikes subparallel to the active normal fault and is characterized by a non-cylindrical geometry with 10-100 m long frontal and lateral ramps. The cataclastic unit cuts through thrust flats within the breccia unit, whereas normal to oblique inversion occur on frontal and lateral ramps. A comparable structural setting was imaged South-West of the study area, during the 2009 L'Aquila seismic sequence. Here at 2 km depth, the master normal fault cross-cuts a 10 km long flat structure and clear lateral ramps are illuminated, suggesting the superposition of normal seismic faulting on inherited compressional structures.

  9. Neotectonics and geomorphic evolution of the northwestern arm of the Yellowstone Tectonic Parabola: Controls on intra-cratonic extensional regimes, southwest Montana

    USGS Publications Warehouse

    Ruleman, Chester A.; Larsen, Mort; Stickney, Michael C.

    2014-01-01

    The catastrophic Hebgen Lake earthquake of 18 August 1959 (MW 7.3) led many geoscientists to develop new methods to better understand active tectonics in extensional tectonic regimes that address seismic hazards. The Madison Range fault system and adjacent Hebgen Lake–Red Canyon fault system provide an intermountain active tectonic analog for regional analyses of extensional crustal deformation. The Madison Range fault system comprises fault zones (~100 km in length) that have multiple salients and embayments marked by preexisting structures exposed in the footwall. Quaternary tectonic activity rates differ along the length of the fault system, with less displacement to the north. Within the Hebgen Lake basin, the 1959 earthquake is the latest slip event in the Hebgen Lake–Red Canyon fault system and southern Madison Range fault system. Geomorphic and paleoseismic investigations indicate previous faulting events on both fault systems. Surficial geologic mapping and historic seismicity support a coseismic structural linkage between the Madison Range and Hebgen Lake–Red Canyon fault systems. On this trip, we will look at Quaternary surface ruptures that characterize prehistoric earthquake magnitudes. The one-day field trip begins and ends in Bozeman, and includes an overview of the active tectonics within the Madison Valley and Hebgen Lake basin, southwestern Montana. We will also review geologic evidence, which includes new geologic maps and geomorphic analyses that demonstrate preexisting structural controls on surface rupture patterns along the Madison Range and Hebgen Lake–Red Canyon fault systems.

  10. Evolution of wear and friction along experimental faults

    USGS Publications Warehouse

    Boneh, Yeval; Chang, Jefferson C.; Lockner, David A.; Reches, Zeev

    2014-01-01

    We investigate the evolution of wear and friction along experimental faults composed of solid rock blocks. This evolution is analyzed through shear experiments along five rock types, and the experiments were conducted in a rotary apparatus at slip velocities of 0.002–0.97 m/s, slip distances from a few millimeters to tens of meters, and normal stress of 0.25–6.9 MPa. The wear and friction measurements and fault surface observations revealed three evolution phases: A) An initial stage (slip distances <50 mm) of wear by failure of isolated asperities associated with roughening of the fault surface; B) a running-in stage of slip distances of 1–3 m with intense wear-rate, failure of many asperities, and simultaneous reduction of the friction coefficient and wear-rate; and C) a steady-state stage that initiates when the fault surface is covered by a gouge layer, and during which both wear-rate and friction coefficient maintain quasi-constant, low levels. While these evolution stages are clearly recognizable for experimental faults made from bare rock blocks, our analysis suggests that natural faults “bypass” the first two stages and slip at gouge-controlled steady-state conditions.

  11. Active tectonics of the Binalud Mountains, a key puzzle segment to describe Quaternary deformations at the northeastern boundary of the Arabia-Eurasia collision

    NASA Astrophysics Data System (ADS)

    Shabanian, Esmaeil; Bellier, Olivier; Siame, Lionel L.; Abbassi, Mohammad R.; Leanni, Laetitia; Braucher, Régis; Farbod, Yassaman; Bourlès, Didier L.

    2010-05-01

    In northeast Iran, the Binalud Mountains accommodate part of active convergence between the Arabian and Eurasian plates. This fault-bounded mountain range has been considered a key region to describe Quaternary deformations at the northeastern boundary of the Arabia-Eurasia collision. But, the lack of knowledge on active faulting hampered evaluating the geological reliability of tectonic models describing the kinematics of deformation in northeast Iran. Morphotectonic investigations along both sides of the Binalud Mountains allowed us to characterize the structural and active faulting patterns along the Neyshabur and Mashhad fault systems on the southwest and northeast sides of the mountain range, respectively. We applied combined approaches of morphotectonic analyses based on satellite imageries (SPOT5 and Landsat ETM+), STRM and site-scale digital topographic data, and field surveys complemented with in situ-produced 10Be exposure dating to determine the kinematics and rate of active faulting. Three regional episodes of alluvial surface abandonments were dated at 5.3±1.1 kyr (Q1), 94±5 kyr (Q3), and 200±14 kyr (S3). The geomorphic reconstruction of both vertical and right-lateral fault offsets postdating these surface abandonment episodes yielded Quaternary fault slip rates on both sides of the Binalud Mountains. On the Neyshabur Fault System, thanks to geomorphic reconstructions of cumulative offsets recorded by Q3 fan surfaces, slip rates of 2.7±0.8 mm/yr and 2.4±0.2 mm/yr are estimated for right-lateral and reverse components of active faulting, respectively. Those indicate a total slip rate of 3.6±1.2 mm/yr for the late Quaternary deformation on the southwest flank of the Binalud Mountains. Reconstructing the cumulative right-lateral offset recorded by S3 surfaces, a middle-late Quaternary slip rate of 1.6±0.1 mm/yr is determined for the Mashhad Fault System. Altogether, our geomorphic observations reveal that, on both sides of the Binalud Mountains, the relative motion between central Iran and Eurasia is partly taken-up by dextral-reverse oblique-slip faulting along the Neyshabur and Mashhad fault systems. This faulting mechanism implies a long-term rate of ~4 mm/yr for the range-parallel strike-slip faulting, and an uplift rate of ~2.4 mm/yr due to the range-normal shortening during late Quaternary. Our data provide the first geological constraints on the rate of active faulting on both sides of the Binalud Mountains, and allow us to examine the geological reliability of preexisting tectonic models proposed to describe the kinematics of active deformation at the northeastern boundary of the Arabia-Eurasia collision. Our results favor the northward translation of central Iran with respect to Eurasia through strike-slip faulting localized along distinct crustal scale fault systems rather than systematic block rotations around vertical axes.

  12. Lateral-torsional response of base-isolated buildings with curved surface sliding system subjected to near-fault earthquakes

    NASA Astrophysics Data System (ADS)

    Mazza, Fabio

    2017-08-01

    The curved surface sliding (CSS) system is one of the most in-demand techniques for the seismic isolation of buildings; yet there are still important aspects of its behaviour that need further attention. The CSS system presents variation of friction coefficient, depending on the sliding velocity of the CSS bearings, while friction force and lateral stiffness during the sliding phase are proportional to the axial load. Lateral-torsional response needs to be better understood for base-isolated structures located in near-fault areas, where fling-step and forward-directivity effects can produce long-period (horizontal) velocity pulses. To analyse these aspects, a six-storey reinforced concrete (r.c.) office framed building, with an L-shaped plan and setbacks in elevation, is designed assuming three values of the radius of curvature for the CSS system. Seven in-plan distributions of dynamic-fast friction coefficient for the CSS bearings, ranging from a constant value for all isolators to a different value for each, are considered in the case of low- and medium-type friction properties. The seismic analysis of the test structures is carried out considering an elastic-linear behaviour of the superstructure, while a nonlinear force-displacement law of the CSS bearings is considered in the horizontal direction, depending on sliding velocity and axial load. Given the lack of knowledge of the horizontal direction at which near-fault ground motions occur, the maximum torsional effects and residual displacements are evaluated with reference to different incidence angles, while the orientation of the strongest observed pulses is considered to obtain average values.

  13. Model-based development of a fault signature matrix to improve solid oxide fuel cell systems on-site diagnosis

    NASA Astrophysics Data System (ADS)

    Polverino, Pierpaolo; Pianese, Cesare; Sorrentino, Marco; Marra, Dario

    2015-04-01

    The paper focuses on the design of a procedure for the development of an on-field diagnostic algorithm for solid oxide fuel cell (SOFC) systems. The diagnosis design phase relies on an in-deep analysis of the mutual interactions among all system components by exploiting the physical knowledge of the SOFC system as a whole. This phase consists of the Fault Tree Analysis (FTA), which identifies the correlations among possible faults and their corresponding symptoms at system components level. The main outcome of the FTA is an inferential isolation tool (Fault Signature Matrix - FSM), which univocally links the faults to the symptoms detected during the system monitoring. In this work the FTA is considered as a starting point to develop an improved FSM. Making use of a model-based investigation, a fault-to-symptoms dependency study is performed. To this purpose a dynamic model, previously developed by the authors, is exploited to simulate the system under faulty conditions. Five faults are simulated, one for the stack and four occurring at BOP level. Moreover, the robustness of the FSM design is increased by exploiting symptom thresholds defined for the investigation of the quantitative effects of the simulated faults on the affected variables.

  14. Hydrogeochemistry Characteristics and Daily Variation of Geothermal Water in the Moxi Fault,Southwest of China

    NASA Astrophysics Data System (ADS)

    Qi, Jihong; Xu, Mo; An, Chenjiao; Zhang, Yunhui; Zhang, Qiang

    2017-04-01

    The Xianshuihe Fault with frequent earthquakes activities is the regional deep fault in China. The Moxi Fault is the southern part of the Xianshuihe Fault, where the strong activities of geothermal water could bring abundant information of deep crust. In this article, some typical geothermal springs were collected along the Moxi fault from Kangding to Shimian. Using the the Na-K-Mg equilibrium diagram, it explains the state of water-rock equilibrium, and estimates the reservoir temperature basing appropriate geothermometers. Basing on the relationship between the enthalpy and chlorine concentration of geothermal water, it analyze the mixing progress of thermal water with shallow groundwater. Moreover, the responses of variation of geothermal water to the solid tides are considered to study the hydrothermal activities of this fault. The Guanding in Kangding are considered as the center of the geothermal system, and the hydrothermal activities decrease southward extending. Geothermal water maybe is heated by the deep heat source of the Himalayan granites, while the springs in the south area perform the mixture with thermal water in the sub-reservoir of the Permian crystalline limestone. It improves the research of hydrothermal activities in the Moxi Fault, meanwhile using the variation of geothermal water maybe become a important method to study the environment of deep earth in the future.

  15. Deformation of ``Villafranchian'' lacustrine sediments in the Chisone Valley (Western Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Collo, Giovanni; Giardino, Marco

    1997-09-01

    The Chisone Valley is located in the internal NW Alps, in the Pinerolese District, an area characterized by present low to medium seismicity. Fine-grained sediments (sand, silt and clay with interbedded gravel) crop out in the lower Chisone Valley: they were first interpreted as glaciolacustrine deposits, and then as a lacustrine infilling of the valley floor probably due to differential uplifting of the valley mouth. Review of this data, together with new field and palynological observations, lead us to refer the lacustrine deposits to approximately the Lower Pleistocene (Villafranchian). In many outcrops, the lacustrine deposits show strong soft-sediment deformation such as convolute laminations, water-escape structures and disrupted beds, some of them associated with folds and faults (cm to dm in size); only two sites show metric to decametric folds and faults trending E-W and N-S. Detailed structural analysis conducted along a recently exposed section (Rio Gran Dubbione site) shows several soft-sediment deformation features on the limbs of mesoscale folds. Because of their intimate structural association, the origin of these minor structures seems to be connected to synsedimentary activity on reverse and normal faults (m to dm in size) affecting the lacustrine deposits in the same locality. Soft-sediment deformation features can be interpreted as possible paleoseismites. If so, the present seismicity of the Pinerolese District, which is the major area of such activity in NW Italy, cannot be considered an isolated episode in the geological evolution of the region; even if there is no supporting evidence for continuous seismicity, the deformations in the lacustrine sediments of the Chisone Valley testify to Early Pleistocene seismic activity, probably related to the recent tectonic evolution of the internal side of the NW Alps.

  16. The Devils Mountain Fault zone: An active Cascadia upper plate zone of deformation, Pacific Northwest of North America

    NASA Astrophysics Data System (ADS)

    Barrie, J. Vaughn; Greene, H. Gary

    2018-02-01

    The Devils Mountain Fault Zone (DMFZ) extends east to west from Washington State to just south of Victoria, British Columbia, in the northern Strait of Juan de Fuca of Canada and the USA. Recently collected geophysical data were used to map this fault zone in detail, which show the main fault trace, and associated primary and secondary (conjugate) strands, and extensive northeast-southwest oriented folding that occurs within a 6 km wide deformation zone. The fault zone has been active in the Holocene as seen in the offset and disrupted upper Quaternary strata, seafloor displacement, and deformation within sediment cores taken close to the seafloor expression of the faults. Data suggest that the present DMFZ and the re-activated Leech River Fault may be part of the same fault system. Based on the length and previously estimated slip rates of the fault zone in Washington State, the DMFZ appears to have the potential of producing a strong earthquake, perhaps as large as magnitude 7.5 or greater, within 2 km of the city of Victoria.

  17. Modelling of hydrothermal fluid flow and structural architecture in an extensional basin, Ngakuru Graben, Taupo Rift, New Zealand

    NASA Astrophysics Data System (ADS)

    Kissling, W. M.; Villamor, P.; Ellis, S. M.; Rae, A.

    2018-05-01

    Present-day geothermal activity on the margins of the Ngakuru graben and evidence of fossil hydrothermal activity in the central graben suggest that a graben-wide system of permeable intersecting faults acts as the principal conduit for fluid flow to the surface. We have developed numerical models of fluid and heat flow in a regional-scale 2-D cross-section of the Ngakuru Graben. The models incorporate simplified representations of two 'end-member' fault architectures (one symmetric at depth, the other highly asymmetric) which are consistent with the surface locations and dips of the Ngakuru graben faults. The models are used to explore controls on buoyancy-driven convective fluid flow which could explain the differences between the past and present hydrothermal systems associated with these faults. The models show that the surface flows from the faults are strongly controlled by the fault permeability, the fault system architecture and the location of the heat source with respect to the faults in the graben. In particular, fault intersections at depth allow exchange of fluid between faults, and the location of the heat source on the footwall of normal faults can facilitate upflow along those faults. These controls give rise to two distinct fluid flow regimes in the fault network. The first, a regular flow regime, is characterised by a nearly unchanging pattern of fluid flow vectors within the fault network as the fault permeability evolves. In the second, complex flow regime, the surface flows depend strongly on fault permeability, and can fluctuate in an erratic manner. The direction of flow within faults can reverse in both regimes as fault permeability changes. Both flow regimes provide insights into the differences between the present-day and fossil geothermal systems in the Ngakuru graben. Hydrothermal upflow along the Paeroa fault seems to have occurred, possibly continuously, for tens of thousands of years, while upflow in other faults in the graben has switched on and off during the same period. An asymmetric graben architecture with the Paeroa being the major boundary fault will facilitate the predominant upflow along this fault. Upflow on the axial faults is more difficult to explain with this modelling. It occurs most easily with an asymmetric graben architecture and heat sources close to the graben axis (which could be associated with remnant heat from recent eruptions from Okataina Volcanic Centre). Temporal changes in upflow can also be associated with acceleration and deceleration of fault activity if this is considered a proxy for fault permeability. Other explanations for temporal variations in hydrothermal activity not explored here are different permeability on different faults, and different permeability along fault strike.

  18. Fault tectonics and earthquake hazards in parts of southern California. [penninsular ranges, Garlock fault, Salton Trough area, and western Mojave Desert

    NASA Technical Reports Server (NTRS)

    Merifield, P. M. (Principal Investigator); Lamar, D. L.; Gazley, C., Jr.; Lamar, J. V.; Stratton, R. H.

    1976-01-01

    The author has identified the following significant results. Four previously unknown faults were discovered in basement terrane of the Peninsular Ranges. These have been named the San Ysidro Creek fault, Thing Valley fault, Canyon City fault, and Warren Canyon fault. In addition fault gouge and breccia were recognized along the San Diego River fault. Study of features on Skylab imagery and review of geologic and seismic data suggest that the risk of a damaging earthquake is greater along the northwestern portion of the Elsinore fault than along the southeastern portion. Physiographic indicators of active faulting along the Garlock fault identifiable in Skylab imagery include scarps, linear ridges, shutter ridges, faceted ridges, linear valleys, undrained depressions and offset drainage. The following previously unrecognized fault segments are postulated for the Salton Trough Area: (1) An extension of a previously known fault in the San Andreas fault set located southeast of the Salton Sea; (2) An extension of the active San Jacinto fault zone along a tonal change in cultivated fields across Mexicali Valley ( the tonal change may represent different soil conditions along opposite sides of a fault). For the Skylab and LANDSAT images studied, pseudocolor transformations offer no advantages over the original images in the recognition of faults in Skylab and LANDSAT images. Alluvial deposits of different ages, a marble unit and iron oxide gossans of the Mojave Mining District are more readily differentiated on images prepared from ratios of individual bands of the S-192 multispectral scanner data. The San Andreas fault was also made more distinct in the 8/2 and 9/2 band ratios by enhancement of vegetation differences on opposite sides of the fault. Preliminary analysis indicates a significant earth resources potential for the discrimination of soil and rock types, including mineral alteration zones. This application should be actively pursued.

  19. Rocket Engine Health Management: Early Definition of Critical Flight Measurements

    NASA Technical Reports Server (NTRS)

    Christenson, Rick L.; Nelson, Michael A.; Butas, John P.

    2003-01-01

    The NASA led Space Launch Initiative (SLI) program has established key requirements related to safety, reliability, launch availability and operations cost to be met by the next generation of reusable launch vehicles. Key to meeting these requirements will be an integrated vehicle health management ( M) system that includes sensors, harnesses, software, memory, and processors. Such a system must be integrated across all the vehicle subsystems and meet component, subsystem, and system requirements relative to fault detection, fault isolation, and false alarm rate. The purpose of this activity is to evolve techniques for defining critical flight engine system measurements-early within the definition of an engine health management system (EHMS). Two approaches, performance-based and failure mode-based, are integrated to provide a proposed set of measurements to be collected. This integrated approach is applied to MSFC s MC-1 engine. Early identification of measurements supports early identification of candidate sensor systems whose design and impacts to the engine components must be considered in engine design.

  20. Temporal evolution of fault systems in the Upper Jurassic of the Central German Molasse Basin: case study Unterhaching

    NASA Astrophysics Data System (ADS)

    Budach, Ingmar; Moeck, Inga; Lüschen, Ewald; Wolfgramm, Markus

    2018-03-01

    The structural evolution of faults in foreland basins is linked to a complex basin history ranging from extension to contraction and inversion tectonics. Faults in the Upper Jurassic of the German Molasse Basin, a Cenozoic Alpine foreland basin, play a significant role for geothermal exploration and are therefore imaged, interpreted and studied by 3D seismic reflection data. Beyond this applied aspect, the analysis of these seismic data help to better understand the temporal evolution of faults and respective stress fields. In 2009, a 27 km2 3D seismic reflection survey was conducted around the Unterhaching Gt 2 well, south of Munich. The main focus of this study is an in-depth analysis of a prominent v-shaped fault block structure located at the center of the 3D seismic survey. Two methods were used to study the periodic fault activity and its relative age of the detected faults: (1) horizon flattening and (2) analysis of incremental fault throws. Slip and dilation tendency analyses were conducted afterwards to determine the stresses resolved on the faults in the current stress field. Two possible kinematic models explain the structural evolution: One model assumes a left-lateral strike slip fault in a transpressional regime resulting in a positive flower structure. The other model incorporates crossing conjugate normal faults within a transtensional regime. The interpreted successive fault formation prefers the latter model. The episodic fault activity may enhance fault zone permeability hence reservoir productivity implying that the analysis of periodically active faults represents an important part in successfully targeting geothermal wells.

  1. Shallow seismic imaging of folds above the Puente Hills blind-thrust fault, Los Angeles, California

    USGS Publications Warehouse

    Pratt, T.L.; Shaw, J.H.; Dolan, J.F.; Christofferson, S.A.; Williams, R.A.; Odum, J.K.; Plesch, A.

    2002-01-01

    High-resolution seismic reflection profiles image discrete folds in the shallow subsurface (<600 m) above two segments of the Puente Hills blind-thrust fault system, Los Angeles basin, California. The profiles demonstrate late Quaternary activity at the fault tip, precisely locate the axial surfaces of folds within the upper 100 m, and constrain the geometry and kinematics of recent folding. The Santa Fe Springs segment of the Puente Hills fault zone shows an upward-narrowing kink band with an active anticlinal axial surface, consistent with fault-bend folding above an active thrust ramp. The Coyote Hills segment shows an active synclinal axial surface that coincides with the base of a 9-m-high scarp, consistent with tip-line folding or the presence of a backthrust. The seismic profiles pinpoint targets for future geologic work to constrain slip rates and ages of past events on this important fault system.

  2. Sensor fault detection and isolation via high-gain observers: application to a double-pipe heat exchanger.

    PubMed

    Escobar, R F; Astorga-Zaragoza, C M; Téllez-Anguiano, A C; Juárez-Romero, D; Hernández, J A; Guerrero-Ramírez, G V

    2011-07-01

    This paper deals with fault detection and isolation (FDI) in sensors applied to a concentric-pipe counter-flow heat exchanger. The proposed FDI is based on the analytical redundancy implementing nonlinear high-gain observers which are used to generate residuals when a sensor fault is presented (as software sensors). By evaluating the generated residual, it is possible to switch between the sensor and the observer when a failure is detected. Experiments in a heat exchanger pilot validate the effectiveness of the approach. The FDI technique is easy to implement allowing the industries to have an excellent alternative tool to keep their heat transfer process under supervision. The main contribution of this work is based on a dynamic model with heat transfer coefficients which depend on temperature and flow used to estimate the output temperatures of a heat exchanger. This model provides a satisfactory approximation of the states of the heat exchanger in order to allow its implementation in a FDI system used to perform supervision tasks. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  3. The Buffer Diagnostic Prototype: A fault isolation application using CLIPS

    NASA Technical Reports Server (NTRS)

    Porter, Ken

    1994-01-01

    This paper describes problem domain characteristics and development experiences from using CLIPS 6.0 in a proof-of-concept troubleshooting application called the Buffer Diagnostic Prototype. The problem domain is a large digital communications subsystems called the real-time network (RTN), which was designed to upgrade the launch processing system used for shuttle support at KSC. The RTN enables up to 255 computers to share 50,000 data points with millisecond response times. The RTN's extensive built-in test capability but lack of any automatic fault isolation capability presents a unique opportunity for a diagnostic expert system application. The Buffer Diagnostic Prototype addresses RTN diagnosis with a multiple strategy approach. A novel technique called 'faulty causality' employs inexact qualitative models to process test results. Experimental knowledge provides a capability to recognize symptom-fault associations. The implementation utilizes rule-based and procedural programming techniques, including a goal-directed control structure and simple text-based generic user interface that may be reusable for other rapid prototyping applications. Although limited in scope, this project demonstrates a diagnostic approach that may be adapted to troubleshoot a broad range of equipment.

  4. A Diagnostic Approach for Electro-Mechanical Actuators in Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Balaban, Edward; Saxena, Abhinav; Bansal, Prasun; Goebel, Kai Frank; Stoelting, Paul; Curran, Simon

    2009-01-01

    Electro-mechanical actuators (EMA) are finding increasing use in aerospace applications, especially with the trend towards all all-electric aircraft and spacecraft designs. However, electro-mechanical actuators still lack the knowledge base accumulated for other fielded actuator types, particularly with regard to fault detection and characterization. This paper presents a thorough analysis of some of the critical failure modes documented for EMAs and describes experiments conducted on detecting and isolating a subset of them. The list of failures has been prepared through an extensive Failure Modes and Criticality Analysis (FMECA) reference, literature review, and accessible industry experience. Methods for data acquisition and validation of algorithms on EMA test stands are described. A variety of condition indicators were developed that enabled detection, identification, and isolation among the various fault modes. A diagnostic algorithm based on an artificial neural network is shown to operate successfully using these condition indicators and furthermore, robustness of these diagnostic routines to sensor faults is demonstrated by showing their ability to distinguish between them and component failures. The paper concludes with a roadmap leading from this effort towards developing successful prognostic algorithms for electromechanical actuators.

  5. Robust sensor fault detection and isolation of gas turbine engines subjected to time-varying parameter uncertainties

    NASA Astrophysics Data System (ADS)

    Pourbabaee, Bahareh; Meskin, Nader; Khorasani, Khashayar

    2016-08-01

    In this paper, a novel robust sensor fault detection and isolation (FDI) strategy using the multiple model-based (MM) approach is proposed that remains robust with respect to both time-varying parameter uncertainties and process and measurement noise in all the channels. The scheme is composed of robust Kalman filters (RKF) that are constructed for multiple piecewise linear (PWL) models that are constructed at various operating points of an uncertain nonlinear system. The parameter uncertainty is modeled by using a time-varying norm bounded admissible structure that affects all the PWL state space matrices. The robust Kalman filter gain matrices are designed by solving two algebraic Riccati equations (AREs) that are expressed as two linear matrix inequality (LMI) feasibility conditions. The proposed multiple RKF-based FDI scheme is simulated for a single spool gas turbine engine to diagnose various sensor faults despite the presence of parameter uncertainties, process and measurement noise. Our comparative studies confirm the superiority of our proposed FDI method when compared to the methods that are available in the literature.

  6. Identification and interpretation of tectonic features from Skylab imagery. [California to Arizona

    NASA Technical Reports Server (NTRS)

    Abdel-Gawad, M. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. S190-B imagery confirmed previous conclusions from S190-A that the Garlock fault does not extend eastward beyond its known termination near the southern end of Death Valley. In the Avawatz Mountains, California, two faults related to the Garlock fault zone (Mule Spring fault and Leach Spring fault) show evidence of recent activity. There is evidence that faulting related to Death Valley fault zone extends southeastward across the Old Dad Mountains. There, the Old Dad fault shows evidence of recent activity. A significant fault lineament has been identified from McCullough Range, California southeastward to Eagle Tail Mountains in southwestern Arizona. The lineament appears to control tertiary and possible cretaceous intrusives. Considerable right lateral shear is suspected to have taken place along parts of this lineament.

  7. Late Quaternary Faulting along the San Juan de los Planes Fault Zone, Baja California Sur, Mexico

    NASA Astrophysics Data System (ADS)

    Busch, M. M.; Coyan, J. A.; Arrowsmith, J.; Maloney, S. J.; Gutierrez, G.; Umhoefer, P. J.

    2007-12-01

    As a result of continued distributed deformation in the Gulf Extensional Province along an oblique-divergent plate margin, active normal faulting is well manifest in southeastern Baja California. By characterizing normal-fault related deformation along the San Juan de los Planes fault zone (SJPFZ) southwest of La Paz, Baja California Sur we contribute to understanding the patterns and rates of faulting along the southwest gulf-margin fault system. The geometry, history, and rate of faulting provide constraints on the relative significance of gulf-margin deformation as compared to axial system deformation. The SJPFZ is a major north-trending structure in the southern Baja margin along which we focused our field efforts. These investigations included: a detailed strip map of the active fault zone, including delineation of active scarp traces and geomorphic surfaces on the hanging wall and footwall; fault scarp profiles; analysis of bedrock structures to better understand how the pattern and rate of strain varied during the development of this fault zone; and a gravity survey across the San Juan de los Planes basin to determine basin geometry and fault behavior. The map covers a N-S swath from the Gulf of California in the north to San Antonio in the south, an area ~45km long and ~1-4km wide. Bedrock along the SJPFZ varies from Cretaceous Las Cruces Granite in the north to Cretaceous Buena Mujer Tonalite in the south and is scarred by shear zones and brittle faults. The active scarp-forming fault juxtaposes bedrock in the footwall against Late Quaternary sandstone-conglomerate. This ~20m wide zone is highly fractured bedrock infused with carbonate. The northern ~12km of the SJPFZ, trending 200°, preserves discontinuous scarps 1-2km long and 1-3m high in Quaternary units. The scarps are separated by stretches of bedrock embayed by hundreds of meters-wide tongues of Quaternary sandstone-conglomerate, implying low Quaternary slip rate. Further south, ~2 km north of the Los Planes highway, the fault steps to the right 2km with no overlap. The fault is inactive until ~3km south of the Los Planes highway where scarp heights in the Quaternary sediments rise to ~3-11m for ~11km with an average trend of 160°, implying increasing slip rate. The fault then steps left 2km with no overlap, trending 145°. Scarp heights range from 3-6m in the step. The southernmost 9km of the fault zone, trending 200°, is marked by discontinuous scarps and embayed bedrock, reflecting diminished fault activity. The footwall landscape in this area is characterized by a broad, gently-sloping, low-relief pediment surface with thin Quaternary cover, disrupted by inselberg-like hills. The young scarp-forming fault appears to have reactivated older faults to rupture this pediment, reflecting the episodic nature of slip along this fault zone. Preliminary OSL ages of the youngest faulted deposit imply a Late Pleistocene-Holocene slip rate of 0.1-1mm/yr. The SJPFZ is thus characterized by reactivation of pre-existing faults to rupture a pre-existing low relief erosional landscape. Whereas the entire region might have experienced the quiescent period that allowed for development of the low- relief, stable surface along the SJPFZ, we speculate that while the SJPFZ was dormant, other faults within the gulf-margin system were actively accommodating strain.

  8. Diagnosing a Strong-Fault Model by Conflict and Consistency

    PubMed Central

    Zhou, Gan; Feng, Wenquan

    2018-01-01

    The diagnosis method for a weak-fault model with only normal behaviors of each component has evolved over decades. However, many systems now demand a strong-fault models, the fault modes of which have specific behaviors as well. It is difficult to diagnose a strong-fault model due to its non-monotonicity. Currently, diagnosis methods usually employ conflicts to isolate possible fault and the process can be expedited when some observed output is consistent with the model’s prediction where the consistency indicates probably normal components. This paper solves the problem of efficiently diagnosing a strong-fault model by proposing a novel Logic-based Truth Maintenance System (LTMS) with two search approaches based on conflict and consistency. At the beginning, the original a strong-fault model is encoded by Boolean variables and converted into Conjunctive Normal Form (CNF). Then the proposed LTMS is employed to reason over CNF and find multiple minimal conflicts and maximal consistencies when there exists fault. The search approaches offer the best candidate efficiency based on the reasoning result until the diagnosis results are obtained. The completeness, coverage, correctness and complexity of the proposals are analyzed theoretically to show their strength and weakness. Finally, the proposed approaches are demonstrated by applying them to a real-world domain—the heat control unit of a spacecraft—where the proposed methods are significantly better than best first and conflict directly with A* search methods. PMID:29596302

  9. Recently active traces of the Bartlett Springs Fault, California: a digital database

    USGS Publications Warehouse

    Lienkaemper, James J.

    2010-01-01

    The purpose of this map is to show the location of and evidence for recent movement on active fault traces within the Bartlett Springs Fault Zone, California. The location and recency of the mapped traces is primarily based on geomorphic expression of the fault as interpreted from large-scale aerial photography. In a few places, evidence of fault creep and offset Holocene strata in trenches and natural exposures have confirmed the activity of some of these traces. This publication is formatted both as a digital database for use within a geographic information system (GIS) and for broader public access as map images that may be browsed on-line or download a summary map. The report text describes the types of scientific observations used to make the map, gives references pertaining to the fault and the evidence of faulting, and provides guidance for use of and limitations of the map.

  10. Creep deformation mechanism mapping in nickel base disk superalloys

    DOE PAGES

    Smith, Timothy M.; Unocic, Raymond R.; Deutchman, Hallee; ...

    2016-05-10

    We investigated the creep deformation mechanisms at intermediate temperature in ME3, a modern Ni-based disk superalloy, using diffraction contrast imaging. Both conventional transmission electron microscopy (TEM) and scanning TEM were utilised. Distinctly different deformation mechanisms become operative during creep at temperatures between 677-815 °C and at stresses ranging from 274 to 724 MPa. Both polycrystalline and single-crystal creep tests were conducted. The single-crystal tests provide new insight into grain orientation effects on creep response and deformation mechanisms. Creep at lower temperatures (≤760 °C) resulted in the thermally activated shearing modes such as microtwinning, stacking fault ribbons and isolated superlattice extrinsicmore » stacking faults. In contrast, these faulting modes occurred much less frequently during creep at 815 °C under lower applied stresses. Instead, the principal deformation mode was dislocation climb bypass. In addition to the difference in creep behaviour and creep deformation mechanisms as a function of stress and temperature, it was also observed that microstructural evolution occurs during creep at 760 °C and above, where the secondary coarsened and the tertiary precipitates dissolved. Based on this work, a creep deformation mechanism map is proposed, emphasising the influence of stress and temperature on the underlying creep mechanisms.« less

  11. Volcanic passive margins: another way to break up continents

    PubMed Central

    Geoffroy, L.; Burov, E. B.; Werner, P.

    2015-01-01

    Two major types of passive margins are recognized, i.e. volcanic and non-volcanic, without proposing distinctive mechanisms for their formation. Volcanic passive margins are associated with the extrusion and intrusion of large volumes of magma, predominantly mafic, and represent distinctive features of Larges Igneous Provinces, in which regional fissural volcanism predates localized syn-magmatic break-up of the lithosphere. In contrast with non-volcanic margins, continentward-dipping detachment faults accommodate crustal necking at both conjugate volcanic margins. These faults root on a two-layer deformed ductile crust that appears to be partly of igneous nature. This lower crust is exhumed up to the bottom of the syn-extension extrusives at the outer parts of the margin. Our numerical modelling suggests that strengthening of deep continental crust during early magmatic stages provokes a divergent flow of the ductile lithosphere away from a central continental block, which becomes thinner with time due to the flow-induced mechanical erosion acting at its base. Crustal-scale faults dipping continentward are rooted over this flowing material, thus isolating micro-continents within the future oceanic domain. Pure-shear type deformation affects the bulk lithosphere at VPMs until continental breakup, and the geometry of the margin is closely related to the dynamics of an active and melting mantle. PMID:26442807

  12. Volcanic passive margins: another way to break up continents.

    PubMed

    Geoffroy, L; Burov, E B; Werner, P

    2015-10-07

    Two major types of passive margins are recognized, i.e. volcanic and non-volcanic, without proposing distinctive mechanisms for their formation. Volcanic passive margins are associated with the extrusion and intrusion of large volumes of magma, predominantly mafic, and represent distinctive features of Larges Igneous Provinces, in which regional fissural volcanism predates localized syn-magmatic break-up of the lithosphere. In contrast with non-volcanic margins, continentward-dipping detachment faults accommodate crustal necking at both conjugate volcanic margins. These faults root on a two-layer deformed ductile crust that appears to be partly of igneous nature. This lower crust is exhumed up to the bottom of the syn-extension extrusives at the outer parts of the margin. Our numerical modelling suggests that strengthening of deep continental crust during early magmatic stages provokes a divergent flow of the ductile lithosphere away from a central continental block, which becomes thinner with time due to the flow-induced mechanical erosion acting at its base. Crustal-scale faults dipping continentward are rooted over this flowing material, thus isolating micro-continents within the future oceanic domain. Pure-shear type deformation affects the bulk lithosphere at VPMs until continental breakup, and the geometry of the margin is closely related to the dynamics of an active and melting mantle.

  13. Multifaulting in a tectonic syntaxis revealed by InSAR: The case of the Ziarat earthquake sequence (Pakistan)

    NASA Astrophysics Data System (ADS)

    Pinel-Puysségur, B.; Grandin, R.; Bollinger, L.; Baudry, C.

    2014-07-01

    On 28-29 October 2008, within 12 h, two similar Mw = 6.4 strike-slip earthquakes struck Baluchistan (Pakistan), as part of a complex seismic sequence. Interferometric Synthetic Aperture Radar (InSAR) data reveal that the peak of surface displacement is near the Ziarat anticline, a large active fold affected by Quaternary strike-slip faulting. All coseismic interferograms integrate the deformation due to both earthquakes. As their causative faults ruptured close to each other, the individual signals cannot be separated. According to their focal mechanisms, each earthquake may have activated a NE-SW sinistral or a NW-SE dextral fault segment, which leads to four possible scenarios of fault orientations. A nonlinear inversion of the InSAR data set allows rejecting two scenarios. The best slip distributions on the two fault segments for the two remaining scenarios are determined by linear inversion. Stress-change modeling favors a scenario involving two abutting conjugate strike-slip faults. Two other fault segments accommodated left-lateral strike slip during the seismic sequence. The activated fault system includes multiple fault segments with different orientations and little surface expression. This may highlight, at a smaller scale, the distributed, possibly transient character of deformation within a broader right-lateral shear zone. It suggests that the activated faults delineate a small tectonic block extruding and subtly rotating within the shear zone. It occurs in the vicinity of the local tectonic syntaxis where orogenic structures sharply turn around a vertical axis. These mechanisms could participate in the long-term migration of active tectonic structures within this kinematically unstable tectonic syntaxis.

  14. Seismicity and Tectonics of the West Kaibab Fault Zone, AZ

    NASA Astrophysics Data System (ADS)

    Wilgus, J. T.; Brumbaugh, D. S.

    2014-12-01

    The West Kaibab Fault Zone (WKFZ) is the westernmost bounding structure of the Kaibab Plateau of northern Arizona. The WKFZ is a branching complex of high angle, normal faults downthrown to the west. There are three main faults within the WKFZ, the Big Springs fault with a maximum of 165 m offset, the Muav fault with 350 m of displacement, and the North Road fault having a maximum throw of approximately 90 m. Mapping of geologically recent surface deposits at or crossing the fault contacts indicates that the faults are likely Quaternary with the most recent offsets occurring <1.6 Ma. Slip rates are estimated to be less than 0.2 mm/yr. No historic fault slip has been documented. The WKFZ is one of the most seismically active areas in Arizona and lies within the Northern Arizona Seismic Belt (NASB), which stretches across northern Arizona trending NW-SE. The data set for this study includes 156 well documented events with the largest being a M5.75 in 1959 and including a swarm of seven earthquakes in 2012. The seismic data set (1934-2014) reveals that seismic activity clusters in two regions within the study area, the Fredonia cluster located in the NW corner of the study area and the Kaibab cluster located in the south central portion of the study area. The fault plane solutions to date indicate NE-SW to EW extension is occurring in the study area. Source relationships between earthquakes and faults within the WKFZ have not previously been studied in detail. The goal of this study is to use the seismic data set, the available data on faults, and the regional physiography to search for source relationships for the seismicity. Analysis includes source parameters of the earthquake data (location, depth, and fault plane solutions), and comparison of this output to the known faults and areal physiographic framework to indicate any active faults of the WKFZ, or suggested active unmapped faults. This research contributes to a better understanding of the present nature of the WKFZ and the NASB as well.

  15. 49 CFR 195.575 - Which facilities must I electrically isolate and what inspections, tests, and safeguards are...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... reasonable to foresee fault currents or an unusual risk of lightning, you must protect the pipeline against... metallic structures, unless you electrically interconnect and cathodically protect the pipeline and the... isolation of a portion of a pipeline is necessary to facilitate the application of corrosion control. (c...

  16. 49 CFR 195.575 - Which facilities must I electrically isolate and what inspections, tests, and safeguards are...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... reasonable to foresee fault currents or an unusual risk of lightning, you must protect the pipeline against... metallic structures, unless you electrically interconnect and cathodically protect the pipeline and the... isolation of a portion of a pipeline is necessary to facilitate the application of corrosion control. (c...

  17. 49 CFR 195.575 - Which facilities must I electrically isolate and what inspections, tests, and safeguards are...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... reasonable to foresee fault currents or an unusual risk of lightning, you must protect the pipeline against... metallic structures, unless you electrically interconnect and cathodically protect the pipeline and the... isolation of a portion of a pipeline is necessary to facilitate the application of corrosion control. (c...

  18. Subsurface Resistivity Structures in and Around Strike-Slip Faults - Electromagnetic Surveys and Drillings Across Active Faults in Central Japan -

    NASA Astrophysics Data System (ADS)

    Omura, K.; Ikeda, R.; Iio, Y.; Matsuda, T.

    2005-12-01

    Electrical resistivity is important property to investigate the structure of active faults. Pore fluid affect seriously the electrical properties of rocks, subsurface electrical resistivity can be an indicator of the existence of fluid and distribution of pores. Fracture zone of fault is expected to have low resistivity due to high porosity and small gain size. Especially, strike-slip type fault has nearly vertical fracture zone and the fracture zone would be detected by an electrical survey across the fault. We performed electromagnetic survey across the strike-slip active faults in central Japan. At the same faults, we also drilled borehole into the fault and did downhole logging in the borehole. We applied MT or CSAMT methods onto 5 faults: Nojima fault which appeared on the surface by the 1995 Great Kobe earthquake (M=7.2), western Nagano Ohtaki area(1984 Nagano-ken seibu earthquake (M=6.8), the fault did not appeared on the surface), Neodani fault which appeared by the 1891 Nobi earthquake (M=8.0), Atera fault which seemed to be dislocated by the 1586 Tensyo earthquake (M=7.9), Gofukuji fault that is considered to have activated about 1200 years ago. The sampling frequencies of electrical and magnetic field were 2 - 1024Hz (10 frequencies) for CSAMT survey and 0.00055 - 384Hz (40 frequencies) for MT survey. The electromagnetic data were processed by standard method and inverted to 2-D resistivity structure along transects of the faults. Results of the survey were compared with downhole electrical logging data and observational descriptions of drilled cores. Fault plane of each fault were recognized as low resistivity region or boundary between relatively low and high resistivity region, except for Gofukuji fault. As for Gofukuji fault, fault was located in relatively high resistivity region. During very long elapsed time from the last earthquake, the properties of fracture zone of Gofukuji fault might changed from low resistivity properties as observed for other faults. Downhole electrical logging data were consistent to values of resistivity estimated by electromagnetic survey for each fault. The existence of relatively low and high resistivity regions in 2-D structure from electromagnetic survey was observed again by downhole logging at the correspondent portion in the borehole. Cores recovered from depthes where the electrical logging showed low resistivity were hardly fractured and altered from host rock which showed high resistivity. Results of electromagnetic survey, downhole electrical logging and observation of drilled cores were consistent to each other. In present case, electromagnetic survey is useful to explore the properties of fault fracture zone. In the further investigations, it is important to explore relationships among features of resistivity structure and geological and geophysical situations of the faults.

  19. Do mesoscale faults near the tip of an active strike-slip fault indicate regional or local stress?

    NASA Astrophysics Data System (ADS)

    Yamaji, Atsushi

    2017-04-01

    Fault-slip analysis is used in Japan after the Great Tohoku Earthquake (2011) to judge the stability of fractures in the foundations of nuclear power plants. In case a fault-slip datum from a fracture surface is explained by the present stress condition, the fracture is thought to have a risk to be activated as a fault. So, it is important to understand the relative significance of regional and local stresses. To answer the question whether mesoscale faults indicate regional or local stress, fault-slip data were collected from the walls of a trenching site of the Nojima Fault in central Japan—an active, dextral, strike-slip fault. The fault gave rise to the 1995 Kobe earthquake, which killed more than 6000 people. The trench was placed near the fault tip, which produced compressional and extensional local stress conditions on the sides of the fault near the tip. A segment of the fault, which ruptured the surface in 1995, bounded Cretaceous granite and latest Pliocene sediments in the trench. As a result, the stress inversion of the data from the mesoscale faults observed in the trench showed both the local stresses. The present WNW-ESE regional compression was found from the compressive side, but was not in the extensional side, probably because local extension surpassed the regional compression. Instead, the regional N-S compression of the Early Pleistocene was found from the extensional side. From this project, we got the lesson that fault-slip analysis reveals regional and local stresses, and that local stress sometimes masks regional one. This work was supported by a science project of "Drilling into Fault Damage Zone" (awarded to A. Lin) of the Secretariat of Nuclear Regulation Authority (Japan).

  20. Tutoring electronic troubleshooting in a simulated maintenance work environment

    NASA Technical Reports Server (NTRS)

    Gott, Sherrie P.

    1987-01-01

    A series of intelligent tutoring systems, or intelligent maintenance simulators, is being developed based on expert and novice problem solving data. A graded series of authentic troubleshooting problems provides the curriculum, and adaptive instructional treatments foster active learning in trainees who engage in extensive fault isolation practice and thus in conditionalizing what they know. A proof of concept training study involving human tutoring was conducted as a precursor to the computer tutors to assess this integrated, problem based approach to task analysis and instruction. Statistically significant improvements in apprentice technicians' troubleshooting efficiency were achieved after approximately six hours of training.

  1. Mantle fault zone beneath Kilauea Volcano, Hawaii.

    PubMed

    Wolfe, Cecily J; Okubo, Paul G; Shearer, Peter M

    2003-04-18

    Relocations and focal mechanism analyses of deep earthquakes (>/=13 kilometers) at Kilauea volcano demonstrate that seismicity is focused on an active fault zone at 30-kilometer depth, with seaward slip on a low-angle plane, and other smaller, distinct fault zones. The earthquakes we have analyzed predominantly reflect tectonic faulting in the brittle lithosphere rather than magma movement associated with volcanic activity. The tectonic earthquakes may be induced on preexisting faults by stresses of magmatic origin, although background stresses from volcano loading and lithospheric flexure may also contribute.

  2. Mantle fault zone beneath Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Wolfe, C.J.; Okubo, P.G.; Shearer, P.M.

    2003-01-01

    Relocations and focal mechanism analyses of deep earthquakes (???13 kilometers) at Kilauea volcano demonstrate that seismicity is focused on an active fault zone at 30-kilometer depth, with seaward slip on a low-angle plane, and other smaller, distinct fault zones. The earthquakes we have analyzed predominantly reflect tectonic faulting in the brittle lithosphere rather than magma movement associated with volcanic activity. The tectonic earthquakes may be induced on preexisting faults by stresses of magmatic origin, although background stresses from volcano loading and lithospheric flexure may also contribute.

  3. Frictional and hydraulic behaviour of carbonate fault gouge during fault reactivation - An experimental study

    NASA Astrophysics Data System (ADS)

    Delle Piane, Claudio; Giwelli, Ausama; Clennell, M. Ben; Esteban, Lionel; Nogueira Kiewiet, Melissa Cristina D.; Kiewiet, Leigh; Kager, Shane; Raimon, John

    2016-10-01

    We present a novel experimental approach devised to test the hydro-mechanical behaviour of different structural elements of carbonate fault rocks during experimental re-activation. Experimentally faulted core plugs were subject to triaxial tests under water saturated conditions simulating depletion processes in reservoirs. Different fault zone structural elements were created by shearing initially intact travertine blocks (nominal size: 240 × 110 × 150 mm) to a maximum displacement of 20 and 120 mm under different normal stresses. Meso-and microstructural features of these sample and the thickness to displacement ratio characteristics of their deformation zones allowed to classify them as experimentally created damage zones (displacement of 20 mm) and fault cores (displacement of 120 mm). Following direct shear testing, cylindrical plugs with diameter of 38 mm were drilled across the slip surface to be re-activated in a conventional triaxial configuration monitoring the permeability and frictional behaviour of the samples as a function of applied stress. All re-activation experiments on faulted plugs showed consistent frictional response consisting of an initial fast hardening followed by apparent yield up to a friction coefficient of approximately 0.6 attained at around 2 mm of displacement. Permeability in the re-activation experiments shows exponential decay with increasing mean effective stress. The rate of permeability decline with mean effective stress is higher in the fault core plugs than in the simulated damage zone ones. It can be concluded that the presence of gouge in un-cemented carbonate faults results in their sealing character and that leakage cannot be achieved by renewed movement on the fault plane alone, at least not within the range of slip measureable with our apparatus (i.e. approximately 7 mm of cumulative displacement). Additionally, it is shown that under sub seismic slip rates re-activated carbonate faults remain strong and no frictional weakening was observed during re-activation.

  4. Care 3 phase 2 report, maintenance manual

    NASA Technical Reports Server (NTRS)

    Bryant, L. A.; Stiffler, J. J.

    1982-01-01

    CARE 3 (Computer-Aided Reliability Estimation, version three) is a computer program designed to help estimate the reliability of complex, redundant systems. Although the program can model a wide variety of redundant structures, it was developed specifically for fault-tolerant avionics systems--systems distinguished by the need for extremely reliable performance since a system failure could well result in the loss of human life. It substantially generalizes the class of redundant configurations that could be accommodated, and includes a coverage model to determine the various coverage probabilities as a function of the applicable fault recovery mechanisms (detection delay, diagnostic scheduling interval, isolation and recovery delay, etc.). CARE 3 further generalizes the class of system structures that can be modeled and greatly expands the coverage model to take into account such effects as intermittent and transient faults, latent faults, error propagation, etc.

  5. Multiscale Dynamics of Aseismic Slip on Central San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Khoshmanesh, M.; Shirzaei, M.

    2018-03-01

    Understanding the evolution of aseismic slip enables constraining the fault's seismic budget and provides insight into dynamics of creep. Inverting the time series of surface deformation measured along the Central San Andreas Fault obtained from interferometric synthetic aperture radar in combination with measurements of repeating earthquakes, we constrain the spatiotemporal distribution of creep during 1992-2010. We identify a new class of intermediate-term creep rate variations that evolve over decadal scale, releasing stress on the accelerating zone and loading adjacent decelerating patches. We further show that in short-term (<2 year period), creep avalanches, that is, isolated clusters of accelerated aseismic slip with velocities exceeding the long-term rate, govern the dynamics of creep. The statistical properties of these avalanches suggest existence of elevated pore pressure in the fault zone, consistent with laboratory experiments.

  6. Dynamic test input generation for multiple-fault isolation

    NASA Technical Reports Server (NTRS)

    Schaefer, Phil

    1990-01-01

    Recent work is Causal Reasoning has provided practical techniques for multiple fault diagnosis. These techniques provide a hypothesis/measurement diagnosis cycle. Using probabilistic methods, they choose the best measurements to make, then update fault hypotheses in response. For many applications such as computers and spacecraft, few measurement points may be accessible, or values may change quickly as the system under diagnosis operates. In these cases, a hypothesis/measurement cycle is insufficient. A technique is presented for a hypothesis/test-input/measurement diagnosis cycle. In contrast to generating tests a priori for determining device functionality, it dynamically generates tests in response to current knowledge about fault probabilities. It is shown how the mathematics previously used for measurement specification can be applied to the test input generation process. An example from an efficient implementation called Multi-Purpose Causal (MPC) is presented.

  7. Path Searching Based Fault Automated Recovery Scheme for Distribution Grid with DG

    NASA Astrophysics Data System (ADS)

    Xia, Lin; Qun, Wang; Hui, Xue; Simeng, Zhu

    2016-12-01

    Applying the method of path searching based on distribution network topology in setting software has a good effect, and the path searching method containing DG power source is also applicable to the automatic generation and division of planned islands after the fault. This paper applies path searching algorithm in the automatic division of planned islands after faults: starting from the switch of fault isolation, ending in each power source, and according to the line load that the searching path traverses and the load integrated by important optimized searching path, forming optimized division scheme of planned islands that uses each DG as power source and is balanced to local important load. Finally, COBASE software and distribution network automation software applied are used to illustrate the effectiveness of the realization of such automatic restoration program.

  8. Low Insertion HVDC Circuit Breaker: Magnetically Pulsed Hybrid Breaker for HVDC Power Distribution Protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2012-01-09

    GENI Project: General Atomics is developing a direct current (DC) circuit breaker that could protect the grid from faults 100 times faster than its alternating current (AC) counterparts. Circuit breakers are critical elements in any electrical system. At the grid level, their main function is to isolate parts of the grid where a fault has occurred—such as a downed power line or a transformer explosion—from the rest of the system. DC circuit breakers must interrupt the system during a fault much faster than AC circuit breakers to prevent possible damage to cables, converters and other grid-level components. General Atomics’ high-voltagemore » DC circuit breaker would react in less than 1/1,000th of a second to interrupt current during a fault, preventing potential hazards to people and equipment.« less

  9. Role of the offshore Pedro Banks left-lateral strike-slip fault zone in the plate tectonic evolution of the northern Caribbean

    NASA Astrophysics Data System (ADS)

    Ott, B.; Mann, P.; Saunders, M.

    2013-12-01

    Previous workers, mainly mapping onland active faults on Caribbean islands, defined the northern Caribbean plate boundary zone as a 200-km-wide bounded by two active and parallel strike-slip faults: the Oriente fault along the northern edge of the Cayman trough with a GPS rate of 14 mm/yr, and and the Enriquillo-Plaintain Garden fault zone (EPGFZ) with a rate of 5-7 mm/yr. In this study we use 5,000 km of industry and academic data from the Nicaraguan Rise south and southwest of the EPGFZ in the maritime areas of Jamaica, Honduras, and Colombia to define an offshore, 700-km-long, active, left-lateral strike-slip fault in what has previously been considered the stable interior of the Caribbean plate as determined from plate-wide GPS studies. The fault was named by previous workers as the Pedro Banks fault zone because a 100-km-long segment of the fault forms an escarpment along the Pedro carbonate bank of the Nicaraguan Rise. Two fault segments of the PBFZ are defined: the 400-km-long eastern segment that exhibits large negative flower structures 10-50 km in width, with faults segments rupturing the sea floor as defined by high resolution 2D seismic data, and a 300-km-long western segment that is defined by a narrow zone of anomalous seismicity first observed by previous workers. The western end of the PBFZ terminates on a Quaternary rift structure, the San Andres rift, associated with Plio-Pleistocene volcanism and thickening trends indicating initial rifting in the Late Miocene. The southern end of the San Andreas rift terminates on the western Hess fault which also exhibits active strands consistent with left-lateral, strike-slip faults. The total length of the PBFZ-San Andres rift-Southern Hess escarpment fault is 1,200 km and traverses the entire western end of the Caribbean plate. Our interpretation is similar to previous models that have proposed the "stable" western Caribbean plate is broken by this fault whose rate of displacement is less than the threshold recognizable from the current GPS network (~3 mm/yr). The Late Miocene age of the fault indicates it may have activated during the Late Miocene to recent Hispaniola-Bahamas oblique collision event.

  10. Fault zone structure from topography: signatures of en echelon fault slip at Mustang Ridge on the San Andreas Fault, Monterey County, California

    USGS Publications Warehouse

    DeLong, Stephen B.; Hilley, George E.; Rymer, Michael J.; Prentice, Carol

    2010-01-01

    We used high-resolution topography to quantify the spatial distribution of scarps, linear valleys, topographic sinks, and oversteepened stream channels formed along an extensional step over on the San Andreas Fault (SAF) at Mustang Ridge, California. This location provides detail of both creeping fault landform development and complex fault zone kinematics. Here, the SAF creeps 10–14 mm/yr slower than at locations ∼20 km along the fault in either direction. This spatial change in creep rate is coincident with a series of en echelon oblique-normal faults that strike obliquely to the SAF and may accommodate the missing deformation. This study presents a suite of analyses that are helpful for proper mapping of faults in locations where high-resolution topographic data are available. Furthermore, our analyses indicate that two large subsidiary faults near the center of the step over zone appear to carry significant distributed deformation based on their large apparent vertical offsets, the presence of associated sag ponds and fluvial knickpoints, and the observation that they are rotating a segment of the main SAF. Several subsidiary faults in the southeastern portion of Mustang Ridge are likely less active; they have few associated sag ponds and have older scarp morphologic ages and subdued channel knickpoints. Several faults in the northwestern part of Mustang Ridge, though relatively small, are likely also actively accommodating active fault slip based on their young morphologic ages and the presence of associated sag ponds.

  11. The relationship of near-surface active faulting to megathrust splay fault geometry in Prince William Sound, Alaska

    NASA Astrophysics Data System (ADS)

    Finn, S.; Liberty, L. M.; Haeussler, P. J.; Northrup, C.; Pratt, T. L.

    2010-12-01

    We interpret regionally extensive, active faults beneath Prince William Sound (PWS), Alaska, to be structurally linked to deeper megathrust splay faults, such as the one that ruptured in the 1964 M9.2 earthquake. Western PWS in particular is unique; the locations of active faulting offer insights into the transition at the southern terminus of the previously subducted Yakutat slab to Pacific plate subduction. Newly acquired high-resolution, marine seismic data show three seismic facies related to Holocene and older Quaternary to Tertiary strata. These sediments are cut by numerous high angle normal faults in the hanging wall of megathrust splay. Crustal-scale seismic reflection profiles show splay faults emerging from 20 km depth between the Yakutat block and North American crust and surfacing as the Hanning Bay and Patton Bay faults. A distinct boundary coinciding beneath the Hinchinbrook Entrance causes a systematic fault trend change from N30E in southwestern PWS to N70E in northeastern PWS. The fault trend change underneath Hinchinbrook Entrance may occur gradually or abruptly and there is evidence for similar deformation near the Montague Strait Entrance. Landward of surface expressions of the splay fault, we observe subsidence, faulting, and landslides that record deformation associated with the 1964 and older megathrust earthquakes. Surface exposures of Tertiary rocks throughout PWS along with new apatite-helium dates suggest long-term and regional uplift with localized, fault-controlled subsidence.

  12. Active faults system and related potential seismic events near Ulaanbaatar, capital of Mongolia.

    NASA Astrophysics Data System (ADS)

    Schlupp, Antoine; Ferry, Matthieu; Munkhuu, Ulziibat; Sodnomsambuu, Demberel; Al-Ashkar, Abeer

    2013-04-01

    The region of Ulaanbaatar lies several hundred kilometers from large known active faults that produced magnitude 6 to 8+ earthquakes during the last century. Beside the Hustai fault, which displays a clear morphological expression, no active fault was previously described less than 100 km from the city. In addition, no large historical (i.e. more recent than the 16th c.) earthquakes are known in this region. However, since 2005 a very dense seismic activity has developed over the Emeelt Township area, a mere 10 km from Ulaanbaatar. The activity is characterized by numerous low magnitude events (M<2.8), which are distributed linearly along several tens of kilometers where no active fault has been identified. This raises several questions: Is this seismicity associated to a -yet- unknown active fault? If so, are there other unknown active faults near Ulaanbaatar? Hence, we deployed a multi-disciplinary approach including morpho-tectonic, near-surface geophysical and paleoseismological investigations. We describe four large active faults west and south of Ulaanbaatar, three of them are newly discovered (Emeelt, Sharai, Avdar), one was previously known (Hustai) but without precise study on its seismic potential. The Emeelt seismicity can be mapped over 35 km along N150 and corresponds in the field to a smoothed, but clear, active fault morphology that can be mapped along a 10-km-long section. The fault dips at ~30° NE (GPR and surface morphology observations) and uplifts the eastern block. The age of the last surface rupture observed in trenches is about 10 ka (preliminary OSL dating). Considering a rupture length of 35 km, a full segment rupture would be comparable to the 1967 Mogod earthquake with a magnitude as large as Mw 7. It has to be considered today as a possible scenario for the seismic risk of Ulaanbaatar. The 90-km-long Hustai Range Fault System, oriented WSW-ENE and located about 10 km west of Ulaanbaatar, displays continuous microseismicity with five light to moderate (M 4 - 5.4) earthquakes over the last 40 years. The last surface-rupturing earthquake occurred about 1000 years ago (OSL dating). Alluvial fans affected by the fault suggest the rate of deformation (left lateral with normal component) along the main segment ranges from 0.3 to 0.4 mm/year for the last 120 000 years. Hence, the average recurrence interval for a full-segment M 7-7.5 is likely in the order of 10 ky. However, if the Hustai fault also releases strain during partial ruptures along its strongly segmented trace, a Mw 6.5 event may be expected anytime. However, only the main central fault segment has been investigated in terms of paleoseismicity. The Sharai and Avdar faults, oriented NNE-SSW, were mapped along ~50-km-long sections. Each of these faults was the site of earthquakes of magnitude 6 and more in the past as suggested by morphology and trench observations. Full-segment-ruptures could produce events as large as M 7.2. The precise relationship and interactions between these faults as well as associated earthquakes have to be clarified by collecting more data. They are the key of the seismic hazard and risk of Ulaanbaatar.

  13. Combinatorial Optimization Algorithms for Dynamic Multiple Fault Diagnosis in Automotive and Aerospace Applications

    NASA Astrophysics Data System (ADS)

    Kodali, Anuradha

    In this thesis, we develop dynamic multiple fault diagnosis (DMFD) algorithms to diagnose faults that are sporadic and coupled. Firstly, we formulate a coupled factorial hidden Markov model-based (CFHMM) framework to diagnose dependent faults occurring over time (dynamic case). Here, we implement a mixed memory Markov coupling model to determine the most likely sequence of (dependent) fault states, the one that best explains the observed test outcomes over time. An iterative Gauss-Seidel coordinate ascent optimization method is proposed for solving the problem. A soft Viterbi algorithm is also implemented within the framework for decoding dependent fault states over time. We demonstrate the algorithm on simulated and real-world systems with coupled faults; the results show that this approach improves the correct isolation rate as compared to the formulation where independent fault states are assumed. Secondly, we formulate a generalization of set-covering, termed dynamic set-covering (DSC), which involves a series of coupled set-covering problems over time. The objective of the DSC problem is to infer the most probable time sequence of a parsimonious set of failure sources that explains the observed test outcomes over time. The DSC problem is NP-hard and intractable due to the fault-test dependency matrix that couples the failed tests and faults via the constraint matrix, and the temporal dependence of failure sources over time. Here, the DSC problem is motivated from the viewpoint of a dynamic multiple fault diagnosis problem, but it has wide applications in operations research, for e.g., facility location problem. Thus, we also formulated the DSC problem in the context of a dynamically evolving facility location problem. Here, a facility can be opened, closed, or can be temporarily unavailable at any time for a given requirement of demand points. These activities are associated with costs or penalties, viz., phase-in or phase-out for the opening or closing of a facility, respectively. The set-covering matrix encapsulates the relationship among the rows (tests or demand points) and columns (faults or locations) of the system at each time. By relaxing the coupling constraints using Lagrange multipliers, the DSC problem can be decoupled into independent subproblems, one for each column. Each subproblem is solved using the Viterbi decoding algorithm, and a primal feasible solution is constructed by modifying the Viterbi solutions via a heuristic. The proposed Viterbi-Lagrangian relaxation algorithm (VLRA) provides a measure of suboptimality via an approximate duality gap. As a major practical extension of the above problem, we also consider the problem of diagnosing faults with delayed test outcomes, termed delay-dynamic set-covering (DDSC), and experiment with real-world problems that exhibit masking faults. Also, we present simulation results on OR-library datasets (set-covering formulations are predominantly validated on these matrices in the literature), posed as facility location problems. Finally, we implement these algorithms to solve problems in aerospace and automotive applications. Firstly, we address the diagnostic ambiguity problem in aerospace and automotive applications by developing a dynamic fusion framework that includes dynamic multiple fault diagnosis algorithms. This improves the correct fault isolation rate, while minimizing the false alarm rates, by considering multiple faults instead of the traditional data-driven techniques based on single fault (class)-single epoch (static) assumption. The dynamic fusion problem is formulated as a maximum a posteriori decision problem of inferring the fault sequence based on uncertain outcomes of multiple binary classifiers over time. The fusion process involves three steps: the first step transforms the multi-class problem into dichotomies using error correcting output codes (ECOC), thereby solving the concomitant binary classification problems; the second step fuses the outcomes of multiple binary classifiers over time using a sliding window or block dynamic fusion method that exploits temporal data correlations over time. We solve this NP-hard optimization problem via a Lagrangian relaxation (variational) technique. The third step optimizes the classifier parameters, viz., probabilities of detection and false alarm, using a genetic algorithm. The proposed algorithm is demonstrated by computing the diagnostic performance metrics on a twin-spool commercial jet engine, an automotive engine, and UCI datasets (problems with high classification error are specifically chosen for experimentation). We show that the primal-dual optimization framework performed consistently better than any traditional fusion technique, even when it is forced to give a single fault decision across a range of classification problems. Secondly, we implement the inference algorithms to diagnose faults in vehicle systems that are controlled by a network of electronic control units (ECUs). The faults, originating from various interactions and especially between hardware and software, are particularly challenging to address. Our basic strategy is to divide the fault universe of such cyber-physical systems in a hierarchical manner, and monitor the critical variables/signals that have impact at different levels of interactions. The proposed diagnostic strategy is validated on an electrical power generation and storage system (EPGS) controlled by two ECUs in an environment with CANoe/MATLAB co-simulation. Eleven faults are injected with the failures originating in actuator hardware, sensor, controller hardware and software components. Diagnostic matrix is established to represent the relationship between the faults and the test outcomes (also known as fault signatures) via simulations. The results show that the proposed diagnostic strategy is effective in addressing the interaction-caused faults.

  14. FTAPE: A fault injection tool to measure fault tolerance

    NASA Technical Reports Server (NTRS)

    Tsai, Timothy K.; Iyer, Ravishankar K.

    1995-01-01

    The paper introduces FTAPE (Fault Tolerance And Performance Evaluator), a tool that can be used to compare fault-tolerant computers. The tool combines system-wide fault injection with a controllable workload. A workload generator is used to create high stress conditions for the machine. Faults are injected based on this workload activity in order to ensure a high level of fault propagation. The errors/fault ratio and performance degradation are presented as measures of fault tolerance.

  15. Two types of seismicity accompanying hydraulic fracturing in Harrison County, Ohio - implications for seismic hazard and seismogenic mechanism

    NASA Astrophysics Data System (ADS)

    Kozlowska, M.; Brudzinski, M.; Friberg, P. A.; Skoumal, R.; Baxter, N. D.; Currie, B.

    2017-12-01

    While induced seismicity in the United States has mainly been attributed to wastewater disposal, Eastern Ohio has provided cases of seismicity induced by both hydraulic fracturing (HF) and wastewater disposal. In this study, we investigate five cases of seismicity associated with HF in Harrison County, OH. Because of their temporal and spatial isolation from other injection activities, this provide an ideal setting for studying the relationships between high pressure injection and earthquakes. Our analysis reveals two distinct groups of seismicity. Deeper earthquakes occur in the Precambrian crystalline basement, reach larger magnitudes (M>2), have lower b-values (<1), and continue for weeks following stimulation shut down. Shallower earthquakes, on the other hand, occur in Paleozoic sedimentary rocks 400 m below HF, are limited to smaller magnitudes (M<1), have higher b-values (>1.5), and lack post-stimulation activity. We seek the physical explanation of observed difference in earthquakes character and hypothesize that the maturity of faults is the main factor determining sequences b-values. Based on published results of laboratory experiments and fault modeling, we interpret the deep seismicity as slip on more mature faults in the older crystalline rocks and the shallow seismicity as slip on immature faults in the younger, lower viscosity sedimentary rocks. This suggests that HF inducing seismicity on deeper, more mature faults poses higher seismic hazards. The analysis of water and gas production data from these wells suggests that wells inducing deeper seismicity produced more water than wells with shallow seismicity. This indicates more extensive hydrologic connections outside the target reservoir, which may explain why gas production drops more quickly for wells with deeper seismicity. Despite these indications that hydraulic pressure fluctuations induce seismicity, we also find only 2-3 hours between onset of stimulation of HF wells and seismicity that is too short for typical fluid pressure diffusion rates across distances of 1 km. We conclude that a combination of pore fluid pressure changes and poroelastic stress changes are responsible for inducing shear slip during HF.

  16. Latest Rate, Extent, and Temporal Evolution of Growth Faulting over Greater Houston Region Revealed by Multi- Band InSAR Time-Series Analysis

    NASA Astrophysics Data System (ADS)

    Qu, F.; Lu, Z.; Kim, J. W.

    2017-12-01

    Growth faults are common and continue to evolve throughout the unconsolidated sediments of Greater Houston (GH) region in Texas. Presence of faults can induce localized surface displacements, aggravate localized subsidence, and discontinue the integrity of ground water flow. Property damages due to fault creep have become more evident during the past few years over the GH area, portraying the necessity of further study of these faults. Interferometric synthetic aperture radar (InSAR) has been proven to be effective in mapping creep along and/or across faults. However, extracting a short wavelength, as well as small amplitude of the creep signal (about 10-20 mm/year) from long time span interferograms is extremely difficult, especially in agricultural or vegetated areas. This paper aims to map and monitor the latest rate, extent, and temporal evolution of faulting at a highest spatial density over GH region using an improved Multi-temporal InSAR (MTI) technique. The method, with maximized usable signal and correlation, has the ability to identify and monitor the active faults to provide an accurate and elaborate image of the faults. In this study, two neighboring ALOS tracks and Sentinel-1A datasets are used. Many zones of steep phase gradients and/or discontinuities have been recognized from the long term velocity maps by both ALOS (2007-2011) and Sentinei-1A (2015-2017) imagery. Not only those previously known faults position but also the new fault traces that have not been mapped by other techniques are imaged by our MTI technique. Fault damage and visible cracking of ground were evident at most locations through our field survey. The discovery of new fault activation, or faults moved from earlier locations is a part of the Big Barn Fault and Conroe fault system, trending from southwest to northeast between Hockley and Conroe. The location of area of subsidence over GH is also shrinking and migrating toward the northeast (Montgomery County) after 2000. The continuous mining of ground water from the Jasper aquifer formed a new water-level decline cones over Montgomery County, exactly reflects the intensity of new fault activity. The discovery of new fault activation, or faults moved from earlier locations appear to be related to excessive water exploitation from Montgomery County aquifers.

  17. Geomorphic Proxies to Test Strain Accommodation in Southwestern Puerto Rico from Digital Elevation Models

    NASA Astrophysics Data System (ADS)

    Barrios Galindez, I. M.; Xue, L.; Laó-Dávila, D. A.

    2017-12-01

    The Puerto Rico and the Virgin Island microplate is located in at the northeastern corner of the Caribbean plate boundary with North America is placed within an oblique subduction zone in which strain patterns remain unresolved. Seismic hazard is a major concern in the region as seen from the seismic history of the Caribbean-North America plate boundary zone. Most of the tectonic models of the microplate show the accommodation of strain occurring offshore, despite evidence from seismic activity, trench studies, and geodetic studies suggesting the existence of strain accomodation in southwest Puerto Rico. These studies also suggest active faulting specially in the western part of the island, but limited work has been done regarding their mechanism. Therefore, this work aims to define and map these active faults in western Puerto Rico by integrating data from analysis of fluvial terrains, and detailed mapping using digital elevation model (DEM) extracted from Shuttle Radar Topography Mission (SRTM) and LIDAR data. The goal is to (1) identify structural features such as surface lineaments and fault scarps for the Cerro Goden fault, South Lajas fault, and other active faults in the western of Puerto Rico, (2) correlate these information with the distribution pattern and values of the geomorphic proxies, including Chi integral (χ), normalized steepness (ksn) and Asymmetric factor (AF). Our preliminary results from geomorphic proxies and Lidar data provide some insight of the displacement and stage of activities of these faults (e.g. Boqueron-Punta Malva Fault and Cerro Goden fault). Also, the anomaly of the geomorphic proxies generally correlate with the locations of the landslides in the southwestern Puerto Rico. The geomorphic model of this work include new information of active faulting fundamental to produce better seismic hazards maps. Additionally, active tectonics studies are vital to issue and adjust construction buildings codes and zonification codes.

  18. Aeromagnetic Study of the Nortern Acambay Graben and Amealco Caldera, Central Mexican Volcanic Belt

    NASA Astrophysics Data System (ADS)

    Gonzalez, T.

    2011-12-01

    The Mexican Volcanic Belt (MVB) is characterized by E-W striking faults which form a series of en echelon graben along its length. In the central region of the MVB is located the Acambay graben an intra-arc tectonic depression structure, of apparent Quaternary age, which gives rise to pronounced scarps over a distance of about 80 Km. and 15 to 35 Km wide. The general arrangement of the faults that constitute the Acambay graben shows E-W trend which defines the fronts of the graben exhibits a major fault discontinuity. The graben is limited of the north by the Acambay- Tixmadeje and Epitafio Huerta faults and in the south by the Pastores and Venta de Bravo faults.. In the northern wall in the graben is located the Amealco caldera. This volcanic center (approximately 10 km in diameter) was formed by several discrete volcanic events, which produced an ignimbrite which covers the area. It is partially cut by a regional fault and the southern portion of the Amealco Caldera was displaced by a normal faulting along a segment of the Epitafio Huerta system. Continued tectonic activity in the Acambay area is confirmed by recent seismic episodes The Amealco tuff is the most important volcanic unit because of its volume and distribution. Aeromagnetic data was obtained and analyzed the anomalies. The anomaly map was compared with the surface geology and larger anomalies were correlated with major volcanic features. Since our main interest was in mapping the subsurface intrusive and volcanic bodies, the total field magnetic anomalies were reduced to the pole by using the double integral Fourier method. The reduced to the pole anomaly map results in a simplified pattern of isolated positive and negative anomalies, which show an improved correlation with all major volcanic structures. For the analysis and interpretation of the anomalies, the reduced to the pole anomalies were continued upward at various reference levels. These operations result in smoothing of the anomaly field by the filtering of high frequency anomalies that may be related to shallow sources.

  19. Integration of high-resolution seismic and aeromagnetic data for earthquake hazards evaluations: An example from the Willamette Valley, Oregon

    USGS Publications Warehouse

    Liberty, L.M.; Trehu, A.M.; Blakely, R.J.; Dougherty, M.E.

    1999-01-01

    Aeromagnetic and high-resolution seismic reflection data were integrated to place constraints on the history of seismic activity and to determine the continuity of the possibly active, yet largely concealed Mount Angel fault in the Willamette Valley, Oregon. Recent seismic activity possibly related to the 20-km-long fault includes a swarm of small earthquakes near Woodburn in 1990 and the magnitude 5.6 Scotts Mills earthquake in 1993. Newly acquired aeromagnetic data show several large northwest-trending anomalies, including one associated with the Mount Angel fault. The magnetic signature indicates that the fault may actually extend 70 km across the Willamette Valley to join the Newberg and Gales Creek faults in the Oregon Coast Range. We collected 24-fold high-resolution seismic reflection data along two transects near Woodburn, Oregon, to image the offset of the Miocene-age Columbia River Basalts (CRB) and overlying sediments at and northwest of the known mapped extent of the Mount Angel fault. The seismic data show a 100-200-m offset in the CRB reflector at depths from 300 to 700 m. Folded or offset sediments appear above the CRB with decreasing amplitude to depths as shallow as were imaged (approximately 40 m). Modeling experiments based on the magnetic data indicate, however, that the anomaly associated with the Mount Angel fault is not caused solely by an offset of the CRB and overlying sediments. Underlying magnetic sources, which we presume to be volcanic rocks of the Siletz terrane, must have vertical offsets of at least 500 m to fit the observed data. We conclude that the Mount Angel fault appears to have been active since Eocene age and that the Gales Creek, Newberg, and Mount Angel faults should be considered a single potentially active fault system. This fault, as well as other parallel northwest-trending faults in the Willamette Valley, should be considered as risks for future potentially damaging earthquakes.

  20. Earthquake Resilient Tall Reinforced Concrete Buildings at Near-Fault Sites Using Base Isolation and Rocking Core Walls

    NASA Astrophysics Data System (ADS)

    Calugaru, Vladimir

    This dissertation pursues three main objectives: (1) to investigate the seismic response of tall reinforced concrete core wall buildings, designed following current building codes, subjected to pulse type near-fault ground motion, with special focus on the relation between the characteristics of the ground motion and the higher-modes of response; (2) to determine the characteristics of a base isolation system that results in nominally elastic response of the superstructure of a tall reinforced concrete core wall building at the maximum considered earthquake level of shaking; and (3) to demonstrate that the seismic performance, cost, and constructability of a base-isolated tall reinforced concrete core wall building can be significantly improved by incorporating a rocking core-wall in the design. First, this dissertation investigates the seismic response of tall cantilever wall buildings subjected to pulse type ground motion, with special focus on the relation between the characteristics of ground motion and the higher-modes of response. Buildings 10, 20, and 40 stories high were designed such that inelastic deformation was concentrated at a single flexural plastic hinge at their base. Using nonlinear response history analysis, the buildings were subjected to near-fault seismic ground motions as well as simple close-form pulses, which represented distinct pulses within the ground motions. Euler-Bernoulli beam models with lumped mass and lumped plasticity were used to model the buildings. Next, this dissertation investigates numerically the seismic response of six seismically base-isolated (BI) 20-story reinforced concrete buildings and compares their response to that of a fixed-base (FB) building with a similar structural system above ground. Located in Berkeley, California, 2 km from the Hayward fault, the buildings are designed with a core wall that provides most of the lateral force resistance above ground. For the BI buildings, the following are investigated: two isolation systems (both implemented below a three-story basement), isolation periods equal to 4, 5, and 6 s, and two levels of flexural strength of the wall. The first isolation system combines tension-resistant friction pendulum bearings and nonlinear fluid viscous dampers (NFVDs); the second combines low-friction tension-resistant cross-linear bearings, lead-rubber bearings, and NFVDs. Finally, this dissertation investigates the seismic response of four 20-story buildings hypothetically located in the San Francisco Bay Area, 0.5 km from the San Andreas fault. One of the four studied buildings is fixed-base (FB), two are base-isolated (BI), and one uses a combination of base isolation and a rocking core wall (BIRW). Above the ground level, a reinforced concrete core wall provides the majority of the lateral force resistance in all four buildings. The FB and BI buildings satisfy requirements of ASCE 7-10. The BI and BIRW buildings use the same isolation system, which combines tension-resistant friction pendulum bearings and nonlinear fluid viscous dampers. The rocking core-wall includes post-tensioning steel, buckling-restrained devices, and at its base is encased in a steel shell to maximize confinement of the concrete core. The total amount of longitudinal steel in the wall of the BIRW building is 0.71 to 0.87 times that used in the BI buildings. Response history two-dimensional analysis is performed, including the vertical components of excitation, for a set of ground motions scaled to the design earthquake and to the maximum considered earthquake (MCE). While the FB building at MCE level of shaking develops inelastic deformations and shear stresses in the wall that may correspond to irreparable damage, the BI and the BIRW buildings experience nominally elastic response of the wall, with floor accelerations and shear forces which are 0.36 to 0.55 times those experienced by the FB building. The response of the four buildings to two historical and two simulated near-fault ground motions is also studied, demonstrating that the BIRW building has the largest deformation capacity at the onset of structural damage. (Abstract shortened by UMI.).

  1. Implications of river morphology response to Dien Bien Phu fault in NW Vietnam

    NASA Astrophysics Data System (ADS)

    Lai, K.; Chen, Y.; Lam, D.

    2007-12-01

    In northern Vietnam, most rivers are flowing southeastward sub- or parallel to the valley of Red River and characterized by long but narrow catchments. The Dien Bien Phu fault is associated with the most seismically active zone in Vietnam and situated in the potential eastern boundary of the rotating southeastern Tibetan block. It cuts the Da River, the largest tributary of Red River in northwest Vietnam and has distorted the drainage basin resulting in complex river patterns. To assess the river morphology response to active Dien Bien Phu fault, we use 1/50,000 topographic data and ASTER images to map the precise river courses and digital elevation model data of SRTM to retrieve and analyze the river profiles. From the mapping results, the N-S striking fault results in three conspicuous north-trending river valleys coincided with the different fault segments to facilitate the measurement and reconstruction of the offsets along the fault. Further combining the longitudinal profile analysis we obtain ca. 10 km offsets by deflected river as the largest left-lateral displacement recorded along the active fault. The restored results show the downstream paleochannel of the Da River had been abandoned and becomes two small tributaries in opposite flow directions at present due to differential crustal uplift. Also the present crisscross valley at the junction of the Da River and the fault is resulted from the capture by another river which has been also deflected by the neotectonics. Based on our observations on river response, the Dien Bien Phu fault is a sinistral dominant fault with an uplift occurring in its eastern block. Furthermore the active Dien Bien Phu fault does not cut through the Red River northward indicating the western block of the fault can not be regarded as a single rigid block. There should be possible to find NW-SE trending faults paralleling to Red River to accommodate the deformation of the western block of the fault.

  2. Implications of river morphology response to Dien Bien Phu fault in NW Vietnam

    NASA Astrophysics Data System (ADS)

    Lai, K.; Chen, Y.; Lam, D.

    2004-12-01

    In northern Vietnam, most rivers are flowing southeastward sub- or parallel to the valley of Red River and characterized by long but narrow catchments. The Dien Bien Phu fault is associated with the most seismically active zone in Vietnam and situated in the potential eastern boundary of the rotating southeastern Tibetan block. It cuts the Da River, the largest tributary of Red River in northwest Vietnam and has distorted the drainage basin resulting in complex river patterns. To assess the river morphology response to active Dien Bien Phu fault, we use 1/50,000 topographic data and ASTER images to map the precise river courses and digital elevation model data of SRTM to retrieve and analyze the river profiles. From the mapping results, the N-S striking fault results in three conspicuous north-trending river valleys coincided with the different fault segments to facilitate the measurement and reconstruction of the offsets along the fault. Further combining the longitudinal profile analysis we obtain ca. 10 km offsets by deflected river as the largest left-lateral displacement recorded along the active fault. The restored results show the downstream paleochannel of the Da River had been abandoned and becomes two small tributaries in opposite flow directions at present due to differential crustal uplift. Also the present crisscross valley at the junction of the Da River and the fault is resulted from the capture by another river which has been also deflected by the neotectonics. Based on our observations on river response, the Dien Bien Phu fault is a sinistral dominant fault with an uplift occurring in its eastern block. Furthermore the active Dien Bien Phu fault does not cut through the Red River northward indicating the western block of the fault can not be regarded as a single rigid block. There should be possible to find NW-SE trending faults paralleling to Red River to accommodate the deformation of the western block of the fault.

  3. Cold seeps and splay faults on Nankai margin

    NASA Astrophysics Data System (ADS)

    Henry, P.; Ashi, J.; Tsunogai, U.; Toki, T.; Kuramoto, S.; Kinoshita, M.; Lallemant, S. J.

    2003-04-01

    Cold seeps (bacterial mats, specific fauna, authigenic carbonates) are common on the Nankai margin and considered as evidence for seepage of methane bearing fluids. Camera and submersible surveys performed over the years have shown that cold seeps are generally associated with active faults. One question is whether part of the fluids expelled originate from the seismogenic zone and migrate along splay faults to the seafloor. The localisation of most cold seeps on the hanging wall of major thrusts may, however, be interpreted in various ways: (a) footwall compaction and diffuse flow (b) fluid channelling along the fault zone at depths and diffuse flow near the seafloor (c) erosion and channelling along permeable strata. In 2002, new observations and sampling were performed with submersible and ROV (1) on major thrusts along the boundary between the Kumano forearc basin domain and the accretionary wedge domain, (2) on a fault affecting the forearc (Kodaiba fault), (3) on mud volcanoes in the Kumano basin. In area (1) tsunami and seismic inversions indicate that the targeted thrusts are in the slip zone of the To-Nankai 1944 earthquakes. In this area, the largest seep zone, continuous over at least 2 km, coincides with the termination of a thrust trace, indicating local fluid channelling along the edge of the fault zone. Kodaiba fault is part of another splay fault system, which has both thrusting and strike-slip components and terminates westward into an en-echelon fold system. Strong seepage activity with abundant carbonates was found on a fold at the fault termination. One mud volcano, rooted in one of the en-echelon fold, has exceptionally high seepage activity compared with the others and thick carbonate crusts. These observations suggest that fluid expulsion along fault zones is most active at fault terminations and may be enhanced during fault initiation. Preliminary geochemical results indicate signatures differ between seep sites and suggests that the two fault systems tap in different sources.

  4. Active faults and minor plates in NE Asia

    NASA Astrophysics Data System (ADS)

    Kozhurin, Andrey I.; Zelenin, Egor A.

    2014-05-01

    Stated nearly 40 yr ago the uncertainty with plate boundaries location in NE Asia (Chapman, Solomon, 1976) still remains unresolved. Based on the prepositions that a plate boundary must, first, reveal itself in linear sets of active structures, and, second, be continuous and closed, we have undertaken interpretation of medium-resolution KH-9 Hexagon satellite imageries, mostly in stereoscopic regime, for nearly the entire region of NE Asia. Main findings are as follows. There are two major active fault zones in the region north of the Bering Sea. One of them, the Khatyrka-Vyvenka zone, stretches NE to ENE skirting the Bering Sea from the Kamchatka isthmus to the Navarin Cape. Judging by the kinematics of the Olyutorsky 2006 earthquake fault, the fault zones move both right-laterally and reversely. The second active fault zone, the Lankovaya-Omolon zone, starts close to the NE margin of the Okhotsk Sea and extends NE up to nearly the margin of the Chukcha Sea. The fault zone is mostly right-lateral, with topographically expressed cumulative horizontal offsets amounting to 2.5-2.6 km. There may be a third NE-SW zone between the major two coinciding with the Penzhina Range as several active faults found in the southern termination of the Range indicate. The two active fault zones divide the NE Asia area into two large domains, which both could be parts of the Bering Sea plate internally broken and with uncertain western limit. Another variant implies the Khatyrka-Vyvenka zone as the Bering Sea plate northern limit, and the Lankovaya-Omolon zone as separating an additional minor plate from the North-American plate. The choice is actually not crucial, and more important is that both variants leave the question of where the Bering Sea plate boundary is in Alaska. The Lankovaya-Omolon zone stretches just across the proposed northern boundary of the Okhorsk Sea plate. NW of the zone, there is a prominent left-lateral Ulakhan fault, which is commonly interpreted to be a portion of the plate northern boundary. With this, we have discovered no active faults or fault zones of the Ulakhan fault strike, which could be the portion of the boundary between the Lankovaya-Omolon zone and either the western margin of the Komandor basin or the westernmost Aleutians. We conclude that there is a certain disagreement between active faulting pattern and plate models for NE Asia, relating to the extent of the plates and missing portions of the plate boundaries. The research was supported by grant # 110500136-a from the Russian Foundation for Basic Research.

  5. Quantitative Assessment of Potentially Active Faults in Oklahoma Utilizing Detailed Information on In Situ Stress Orientation and Relative Magnitude

    NASA Astrophysics Data System (ADS)

    Walsh, R.; Zoback, M. D.

    2015-12-01

    Over the past six years, the earthquake rate in the central and eastern U.S. has increased markedly, and is related to fluid injection. Nowhere has seismicity increased more than in Oklahoma, where large volumes of saline pore water are co-produced with oil and gas, then injected into deeper sedimentary formations. These deeper formations appear to be in hydraulic communication with potentially active faults in crystalline basement, where nearly all the earthquakes are occurring. Although the majority of the recent earthquakes have posed little danger to the public, the possibility of triggering damaging earthquakes on potentially active basement faults cannot be discounted. To understand probability of slip on a given fault, we invert for stresses from the hundreds of M4+ events in Oklahoma for which moment tensors have been made. We then resolve these stresses, while incorporating uncertainties, on the faults from the preliminary Oklahoma fault map. The result is a probabilistic understanding of which faults are most likely active and best avoided.

  6. Fault isolation detection expert (FIDEX). Part 1: Expert system diagnostics for a 30/20 Gigahertz satellite transponder

    NASA Technical Reports Server (NTRS)

    Durkin, John; Schlegelmilch, Richard; Tallo, Donald

    1992-01-01

    LeRC has recently completed the design of a Ka-band satellite transponder system, as part of the Advanced Communication Technology Satellite (ACTS) System. To enhance the reliability of this satellite, NASA funded the University of Akron to explore the application of an expert system to provide the transponder with an autonomous diagnosis capability. The results of this research was the development of a prototype diagnosis expert system called FIDEX (fault-isolation and diagnosis expert). FIDEX is a frame-based expert system that was developed in the NEXPERT Object development environment by Neuron Data, Inc. It is a MicroSoft Windows version 3.0 application, and was designed to operate on an Intel i80386 based personal computer system.

  7. Mission Management Computer and Sequencing Hardware for RLV-TD HEX-01 Mission

    NASA Astrophysics Data System (ADS)

    Gupta, Sukrat; Raj, Remya; Mathew, Asha Mary; Koshy, Anna Priya; Paramasivam, R.; Mookiah, T.

    2017-12-01

    Reusable Launch Vehicle-Technology Demonstrator Hypersonic Experiment (RLV-TD HEX-01) mission posed some unique challenges in the design and development of avionics hardware. This work presents the details of mission critical avionics hardware mainly Mission Management Computer (MMC) and sequencing hardware. The Navigation, Guidance and Control (NGC) chain for RLV-TD is dual redundant with cross-strapped Remote Terminals (RTs) interfaced through MIL-STD-1553B bus. MMC is Bus Controller on the 1553 bus, which does the function of GPS aided navigation, guidance, digital autopilot and sequencing for the RLV-TD launch vehicle in different periodicities (10, 20, 500 ms). Digital autopilot execution in MMC with a periodicity of 10 ms (in ascent phase) is introduced for the first time and successfully demonstrated in the flight. MMC is built around Intel i960 processor and has inbuilt fault tolerance features like ECC for memories. Fault Detection and Isolation schemes are implemented to isolate the failed MMC. The sequencing hardware comprises Stage Processing System (SPS) and Command Execution Module (CEM). SPS is `RT' on the 1553 bus which receives the sequencing and control related commands from MMCs and posts to downstream modules after proper error handling for final execution. SPS is designed as a high reliability system by incorporating various fault tolerance and fault detection features. CEM is a relay based module for sequence command execution.

  8. Late Quaternary strike-slip along the Taohuala Shan-Ayouqi fault zone and its tectonic implications in the Hexi Corridor and the southern Gobi Alashan, China

    NASA Astrophysics Data System (ADS)

    Yu, Jing-xing; Zheng, Wen-jun; Zhang, Pei-zhen; Lei, Qi-yun; Wang, Xu-long; Wang, Wei-tao; Li, Xin-nan; Zhang, Ning

    2017-11-01

    The Hexi Corridor and the southern Gobi Alashan are composed of discontinuous a set of active faults with various strikes and slip motions that are located to the north of the northern Tibetan Plateau. Despite growing understanding of the geometry and kinematics of these active faults, the late Quaternary deformation pattern in the Hexi Corridor and the southern Gobi Alashan remains controversial. The active E-W trending Taohuala Shan-Ayouqi fault zone is located in the southern Gobi Alashan. Study of the geometry and nature of slip along this fault zone holds crucial value for better understanding the regional deformation pattern. Field investigations combined with high-resolution imagery show that the Taohuala Shan fault and the E-W trending faults within the Ayouqi fault zone (F2 and F5) are left-lateral strike-slip faults, whereas the NW or WNW-trending faults within the Ayouqi fault zone (F1 and F3) are reverse faults. We collected Optically Stimulated Luminescence (OSL) and cosmogenic exposure age dating samples from offset alluvial fan surfaces, and estimated a vertical slip rate of 0.1-0.3 mm/yr, and a strike-slip rate of 0.14-0.93 mm/yr for the Taohuala Shan fault. Strata revealed in a trench excavated across the major fault (F5) in the Ayouqi fault zone and OSL dating results indicate that the most recent earthquake occurred between ca. 11.05 ± 0.52 ka and ca. 4.06 ± 0.29 ka. The geometry and kinematics of the Taohuala Shan-Ayouqi fault zone enable us to build a deformation pattern for the entire Hexi Corridor and the southern Gobi Alashan, which suggest that this region experiences northeastward oblique extrusion of the northern Tibetan Plateau. These left-lateral strike-slip faults in the region are driven by oblique compression but not associated with the northeastward extension of the Altyn Tagh fault.

  9. Active tectonics of the northern Mojave Desert: The 2017 Desert Symposium field trip road log

    USGS Publications Warehouse

    Miller, David; Reynolds, R.E.; Phelps, Geoffrey; Honke, Jeff; Cyr, Andrew J.; Buesch, David C.; Schmidt, Kevin M.; Losson, G.

    2017-01-01

    The 2017 Desert Symposium field trip will highlight recent work by the U.S. Geological Survey geologists and geophysicists, who have been mapping young sediment and geomorphology associated with active tectonic features in the least well-known part of the eastern California Shear Zone (ECSZ). This area, stretching from Barstow eastward in a giant arc to end near the Granite Mountains on the south and the Avawatz Mountains on the north (Fig. 1-1), encompasses the two major structural components of the ECSZ—east-striking sinistral faults and northwest-striking dextral faults—as well as reverseoblique and normal-oblique faults that are associated with topographic highs and sags, respectively. In addition, folds and stepovers (both restraining stepovers that form pop-up structures and releasing stepovers that create narrow basins) have been identified. The ECSZ is a segment in the ‘soft’ distributed deformation of the North American plate east of the San Andreas fault (Fig. 1-1), where it takes up approximately 20-25% of plate motion in a broad zone of right-lateral shear (Sauber et al., 1994) The ECSZ (sensu strictu) begins in the Joshua Tree area and passes north through the Mojave Desert, past the Owens Valley-to-Death Valley swath and northward, where it is termed the Walker Lane. It has been defined as the locus of active faulting (Dokka and Travis, 1990), but when the full history from about 10 Ma forward is considered, it lies in a broader zone of right shear that passes westward in the Mojave Desert to the San Andreas fault (Mojave strike-slip province of Miller and Yount, 2002) and passes eastward to the Nevada state line or beyond (Miller, this volume).We will visit several accessible highlights for newly studied faults, signs of young deformation, and packages of syntectonic sediments. These pieces of a complex active tectonic puzzle have yielded some answers to longstanding questions such as: How is fault slip transfer in this area accommodated between northwest-striking dextral faults and eaststriking sinistral faults?How is active deformation on the Ludlow fault transferred northward, presumably to connect to the southern Death Valley fault zone?When were faults in this area of the central Mojave Desert initiated?Are faults in this area more or less active than faults in the ECSZ to the west?What is the role of NNW-striking faults and when did they form?How has fault slip changed over time? Locations and fault names are provided in figure 1-2. Important turns and locations are identified with locations in the projection: UTM, zone 11; datum NAD 83: (578530 3917335).

  10. Project DAFNE - Drilling Active Faults in Northern Europe

    NASA Astrophysics Data System (ADS)

    Kukkonen, I. T.; Ask, M. S. V.; Olesen, O.

    2012-04-01

    We are currently developing a new ICDP project 'Drillling Active Faults in Northern Europe' (DAFNE) which aims at investigating, via scientific drilling, the tectonic and structural characteristics of postglacial (PG) faults in northern Fennoscandia, including their hydrogeology and associated deep biosphere [1, 2]. During the last stages of the Weichselian glaciation (ca. 9,000 - 15,000 years B.P.), reduced ice load and glacially affected stress field resulted in active faulting in Fennoscandia with fault scarps up to 160 km long and 30 m high. These postglacial (PG) faults are usually SE dipping, SW-NE oriented thrusts, and represent reactivated, pre-existing crustal discontinuities. Postglacial faulting indicates that the glacio-isostatic compensation is not only a gradual viscoelastic phenomenon, but includes also unexpected violent earthquakes, suggestively larger than other known earthquakes in stable continental regions. The research is anticipated to advance science in neotectonics, hydrogeology and deep biosphere studies, and provide important information for nuclear waste and CO2 disposal, petroleum exploration on the Norwegian continental shelf and studies of mineral resources in PG fault areas. We expect that multidisciplinary research applying shallow and deep drilling of postglacial faults would provide significant scientific results through generating new data and models, namely: (1) Understanding PG fault genesis and controls of their locations; (2) Deep structure and depth extent of PG faults; (3) Textural, mineralogical and physical alteration of rocks in the PG faults; (4) State of stress and estimates of paleostress of PG faults; (5) Hydrogeology, hydrochemistry and hydraulic properties of PG faults; (6) Dating of tectonic reactivation(s) and temporal evolution of tectonic systems hosting PG faults; (7) Existence/non-existence of deep biosphere in PG faults; (8) Data useful for planning radioactive waste disposal in crystalline bedrock; (9) Data on rock stress changes in the periphery of the inland ice; (10) Stress pattern along the Norwegian continental margin in relation to the bending spreading ridge and Plio-Pleistocene erosion, uplift and sedimentation with implications for fluid migration and sealing properties of petroleum reservoirs. (11) Data useful in predicting future seismic activity in areas of current deglaciation due to ongoing climatic warming.

  11. The Quaternary thrust system of the northern Alaska Range

    USGS Publications Warehouse

    Bemis, Sean P.; Carver, Gary A.; Koehler, Richard D.

    2012-01-01

    The framework of Quaternary faults in Alaska remains poorly constrained. Recent studies in the Alaska Range north of the Denali fault add significantly to the recognition of Quaternary deformation in this active orogen. Faults and folds active during the Quaternary occur over a length of ∼500 km along the northern flank of the Alaska Range, extending from Mount McKinley (Denali) eastward to the Tok River valley. These faults exist as a continuous system of active structures, but we divide the system into four regions based on east-west changes in structural style. At the western end, the Kantishna Hills have only two known faults but the highest rate of shallow crustal seismicity. The western northern foothills fold-thrust belt consists of a 50-km-wide zone of subparallel thrust and reverse faults. This broad zone of deformation narrows to the east in a transition zone where the range-bounding fault of the western northern foothills fold-thrust belt terminates and displacement occurs on thrust and/or reverse faults closer to the Denali fault. The eastern northern foothills fold-thrust belt is characterized by ∼40-km-long thrust fault segments separated across left-steps by NNE-trending left-lateral faults. Altogether, these faults accommodate much of the topographic growth of the northern flank of the Alaska Range.Recognition of this thrust fault system represents a significant concern in addition to the Denali fault for infrastructure adjacent to and transecting the Alaska Range. Although additional work is required to characterize these faults sufficiently for seismic hazard analysis, the regional extent and structural character should require the consideration of the northern Alaska Range thrust system in regional tectonic models.

  12. Geometry and kinematics of adhesive wear in brittle strike-slip fault zones

    NASA Astrophysics Data System (ADS)

    Swanson, Mark T.

    2005-05-01

    Detailed outcrop surface mapping in Late Paleozoic cataclastic strike-slip faults of coastal Maine shows that asymmetric sidewall ripouts, 0.1-200 m in length, are a significant component of many mapped faults and an important wall rock deformation mechanism during faulting. The geometry of these structures ranges from simple lenses to elongate slabs cut out of the sidewalls of strike-slip faults by a lateral jump of the active zone of slip during adhesion along a section of the main fault. The new irregular trace of the active fault after this jump creates an indenting asperity that is forced to plow through the adjoining wall rock during continued adhesion or be cut off by renewed motion along the main section of the fault. Ripout translation during adhesion sets up the structural asymmetry with trailing extensional and leading contractional ends to the ripout block. The inactive section of the main fault trace at the trailing end can develop a 'sag' or 'half-graben' type geometry due to block movement along the scallop-shaped connecting ramp to the flanking ripout fault. Leading contractional ramps can develop 'thrust' type imbrication and forces the 'humpback' geometry to the ripout slab due to distortion of the inactive main fault surface by ripout translation. Similar asymmetric ripout geometries are recognized in many other major crustal scale strike-slip fault zones worldwide. Ripout structures in the 5-500 km length range can be found on the Atacama fault system of northern Chile, the Qujiang and Xiaojiang fault zones in western China, the Yalakom-Hozameen fault zone in British Columbia and the San Andreas fault system in southern California. For active crustal-scale faults the surface expression of ripout translation includes a coupled system of extensional trailing ramps as normal oblique-slip faults with pull-apart basin sedimentation and contractional leading ramps as oblique thrust or high angle reverse faults with associated uplift and erosion. The sidewall ripout model, as a mechanism for adhesive wear during fault zone deformation, can be useful in studies of fault zone geometry, kinematics and evolution from outcrop- to crustal-scales.

  13. Active transfer fault zone linking a segmented extensional system (Betics, southern Spain): Insight into heterogeneous extension driven by edge delamination

    NASA Astrophysics Data System (ADS)

    Martínez-Martínez, José Miguel; Booth-Rea, Guillermo; Azañón, José Miguel; Torcal, Federico

    2006-08-01

    Pliocene and Quaternary tectonic structures mainly consisting of segmented northwest-southeast normal faults, and associated seismicity in the central Betics do not agree with the transpressive tectonic nature of the Africa-Eurasia plate boundary in the Ibero-Maghrebian region. Active extensional deformation here is heterogeneous, individual segmented normal faults being linked by relay ramps and transfer faults, including oblique-slip and both dextral and sinistral strike-slip faults. Normal faults extend the hanging wall of an extensional detachment that is the active segment of a complex system of successive WSW-directed extensional detachments which have thinned the Betic upper crust since middle Miocene. Two areas, which are connected by an active 40-km long dextral strike-slip transfer fault zone, concentrate present-day extension. Both the seismicity distribution and focal mechanisms agree with the position and regime of the observed faults. The activity of the transfer zone during middle Miocene to present implies a mode of extension which must have remained substantially the same over the entire period. Thus, the mechanisms driving extension should still be operating. Both the westward migration of the extensional loci and the high asymmetry of the extensional systems can be related to edge delamination below the south Iberian margin coupled with roll-back under the Alborán Sea; involving the asymmetric westward inflow of asthenospheric material under the margins.

  14. Criteria for Seismic Splay Fault Activation During Subduction Earthquakes

    NASA Astrophysics Data System (ADS)

    Dedontney, N.; Templeton, E.; Bhat, H.; Dmowska, R.; Rice, J. R.

    2008-12-01

    As sediment is added to the accretionary prism or removed from the forearc, the material overlying the plate interface must deform to maintain a wedge structure. One of the ways this internal deformation is achieved is by slip on splay faults branching from the main detachment, which are possibly activated as part of a major seismic event. As a rupture propagates updip along the plate interface, it will reach a series of junctions between the shallowly dipping detachment and more steeply dipping splay faults. The amount and distribution of slip on these splay faults and the detachment determines the seafloor deformation and the tsunami waveform. Numerical studies by Kame et al. [JGR, 2003] of fault branching during dynamic slip-weakening rupture in 2D plane strain showed that branch activation depends on the initial stress state, rupture velocity at the branching junction, and branch angle. They found that for a constant initial stress state, with the maximum principal stress at shallow angles to the main fault, branch activation is favored on the compressional side of the fault for a range of branch angles. By extending the part of their work on modeling the branching behavior in the context of subduction zones, where critical taper wedge concepts suggest the angle that the principal stress makes with the main fault is shallow, but not horizontal, we hope to better understand the conditions for splay fault activation and the criteria for significant moment release on the splay. Our aim is to determine the range of initial stresses and relative frictional strengths of the detachment and splay fault that would result in seismic splay fault activation. In aid of that, we conduct similar dynamic rupture analyses to those of Kame et al., but use explicit finite element methods, and take fuller account of overall structure of the zone (rather than focusing just on the branching junction). Critical taper theory requires that the basal fault be weaker than the overlying material, so we build on previous work by incorporating the effect of strength contrasts between the basal and splay faults. The relative weakness of the basal fault is often attributed to high pore pressures, which lowers the effective normal stress and brings the basal fault closer to failure. We vary the initial stress state, while maintaining a constant principal stress orientation, to see how the closeness to failure affects the branching behavior for a variety of branch step-up angles.

  15. FDI and Accommodation Using NN Based Techniques

    NASA Astrophysics Data System (ADS)

    Garcia, Ramon Ferreiro; de Miguel Catoira, Alberto; Sanz, Beatriz Ferreiro

    Massive application of dynamic backpropagation neural networks is used on closed loop control FDI (fault detection and isolation) tasks. The process dynamics is mapped by means of a trained backpropagation NN to be applied on residual generation. Process supervision is then applied to discriminate faults on process sensors, and process plant parameters. A rule based expert system is used to implement the decision making task and the corresponding solution in terms of faults accommodation and/or reconfiguration. Results show an efficient and robust FDI system which could be used as the core of an SCADA or alternatively as a complement supervision tool operating in parallel with the SCADA when applied on a heat exchanger.

  16. Faults on Skylab imagery of the Salton Trough area, Southern California

    NASA Technical Reports Server (NTRS)

    Merifield, P. M.; Lamar, D. L. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Large segments of the major high angle faults in the Salton Trough area are readily identifiable in Skylab images. Along active faults, distinctive topographic features such as scarps and offset drainage, and vegetation differences due to ground water blockage in alluvium are visible. Other fault-controlled features along inactive as well as active faults visible in Skylab photography include straight mountain fronts, linear valleys, and lithologic differences producing contrasting tone, color or texture. A northwestern extension of a fault in the San Andreas set, is postulated by the regional alignment of possible fault-controlled features. The suspected fault is covered by Holocene deposits, principally windblown sand. A northwest trending tonal change in cultivated fields across Mexicali Valley is visible on Skylab photos. Surface evidence for faulting was not observed; however, the linear may be caused by differences in soil conditions along an extension of a segment of the San Jacinto fault zone. No evidence of faulting could be found along linears which appear as possible extensions of the Substation and Victory Pass faults, demonstrating that the interpretation of linears as faults in small scale photography must be corroborated by field investigations.

  17. Orogen-scale uplift in the central Italian Apennines drives episodic behaviour of earthquake faults

    PubMed Central

    Cowie, P. A.; Phillips, R. J.; Roberts, G. P.; McCaffrey, K.; Zijerveld, L. J. J.; Gregory, L. C.; Faure Walker, J.; Wedmore, L. N. J.; Dunai, T. J.; Binnie, S. A.; Freeman, S. P. H. T.; Wilcken, K.; Shanks, R. P.; Huismans, R. S.; Papanikolaou, I.; Michetti, A. M.; Wilkinson, M.

    2017-01-01

    Many areas of the Earth’s crust deform by distributed extensional faulting and complex fault interactions are often observed. Geodetic data generally indicate a simpler picture of continuum deformation over decades but relating this behaviour to earthquake occurrence over centuries, given numerous potentially active faults, remains a global problem in hazard assessment. We address this challenge for an array of seismogenic faults in the central Italian Apennines, where crustal extension and devastating earthquakes occur in response to regional surface uplift. We constrain fault slip-rates since ~18 ka using variations in cosmogenic 36Cl measured on bedrock scarps, mapped using LiDAR and ground penetrating radar, and compare these rates to those inferred from geodesy. The 36Cl data reveal that individual faults typically accumulate meters of displacement relatively rapidly over several thousand years, separated by similar length time intervals when slip-rates are much lower, and activity shifts between faults across strike. Our rates agree with continuum deformation rates when averaged over long spatial or temporal scales (104 yr; 102 km) but over shorter timescales most of the deformation may be accommodated by <30% of the across-strike fault array. We attribute the shifts in activity to temporal variations in the mechanical work of faulting. PMID:28322311

  18. Orogen-scale uplift in the central Italian Apennines drives episodic behaviour of earthquake faults.

    PubMed

    Cowie, P A; Phillips, R J; Roberts, G P; McCaffrey, K; Zijerveld, L J J; Gregory, L C; Faure Walker, J; Wedmore, L N J; Dunai, T J; Binnie, S A; Freeman, S P H T; Wilcken, K; Shanks, R P; Huismans, R S; Papanikolaou, I; Michetti, A M; Wilkinson, M

    2017-03-21

    Many areas of the Earth's crust deform by distributed extensional faulting and complex fault interactions are often observed. Geodetic data generally indicate a simpler picture of continuum deformation over decades but relating this behaviour to earthquake occurrence over centuries, given numerous potentially active faults, remains a global problem in hazard assessment. We address this challenge for an array of seismogenic faults in the central Italian Apennines, where crustal extension and devastating earthquakes occur in response to regional surface uplift. We constrain fault slip-rates since ~18 ka using variations in cosmogenic 36 Cl measured on bedrock scarps, mapped using LiDAR and ground penetrating radar, and compare these rates to those inferred from geodesy. The 36 Cl data reveal that individual faults typically accumulate meters of displacement relatively rapidly over several thousand years, separated by similar length time intervals when slip-rates are much lower, and activity shifts between faults across strike. Our rates agree with continuum deformation rates when averaged over long spatial or temporal scales (10 4  yr; 10 2  km) but over shorter timescales most of the deformation may be accommodated by <30% of the across-strike fault array. We attribute the shifts in activity to temporal variations in the mechanical work of faulting.

  19. Assessing active faulting by hydrogeological modeling and superconducting gravimetry: A case study for Hsinchu Fault, Taiwan

    NASA Astrophysics Data System (ADS)

    Lien, Tzuyi; Cheng, Ching-Chung; Hwang, Cheinway; Crossley, David

    2014-09-01

    We develop a new hydrology and gravimetry-based method to assess whether or not a local fault may be active. We take advantage of an existing superconducting gravimeter (SG) station and a comprehensive groundwater network in Hsinchu to apply the method to the Hsinchu Fault (HF) across the Hsinchu Science Park, whose industrial output accounts for 10% of Taiwan's gross domestic product. The HF is suspected to pose seismic hazards to the park, but its existence and structure are not clear. The a priori geometry of the HF is translated into boundary conditions imposed in the hydrodynamic model. By varying the fault's location, depth, and including a secondary wrench fault, we construct five hydrodynamic models to estimate groundwater variations, which are evaluated by comparing groundwater levels and SG observations. The results reveal that the HF contains a low hydraulic conductivity core and significantly impacts groundwater flows in the aquifers. Imposing the fault boundary conditions leads to about 63-77% reduction in the differences between modeled and observed values (both water level and gravity). The test with fault depth shows that the HF's most recent slip occurred in the beginning of Holocene, supplying a necessary (but not sufficient) condition that the HF is currently active. A portable SG can act as a virtual borehole well for model assessment at critical locations of a suspected active fault.

  20. Spatial Distribution of the Coefficient of Variation and Bayesian Forecast for the Paleo-Earthquakes in Japan

    NASA Astrophysics Data System (ADS)

    Nomura, Shunichi; Ogata, Yosihiko

    2016-04-01

    We propose a Bayesian method of probability forecasting for recurrent earthquakes of inland active faults in Japan. Renewal processes with the Brownian Passage Time (BPT) distribution are applied for over a half of active faults in Japan by the Headquarters for Earthquake Research Promotion (HERP) of Japan. Long-term forecast with the BPT distribution needs two parameters; the mean and coefficient of variation (COV) for recurrence intervals. The HERP applies a common COV parameter for all of these faults because most of them have very few specified paleoseismic events, which is not enough to estimate reliable COV values for respective faults. However, different COV estimates are proposed for the same paleoseismic catalog by some related works. It can make critical difference in forecast to apply different COV estimates and so COV should be carefully selected for individual faults. Recurrence intervals on a fault are, on the average, determined by the long-term slip rate caused by the tectonic motion but fluctuated by nearby seismicities which influence surrounding stress field. The COVs of recurrence intervals depend on such stress perturbation and so have spatial trends due to the heterogeneity of tectonic motion and seismicity. Thus we introduce a spatial structure on its COV parameter by Bayesian modeling with a Gaussian process prior. The COVs on active faults are correlated and take similar values for closely located faults. It is found that the spatial trends in the estimated COV values coincide with the density of active faults in Japan. We also show Bayesian forecasts by the proposed model using Markov chain Monte Carlo method. Our forecasts are different from HERP's forecast especially on the active faults where HERP's forecasts are very high or low.

  1. Advanced Ground Systems Maintenance Enterprise Architecture Project

    NASA Technical Reports Server (NTRS)

    Harp, Janicce Leshay

    2014-01-01

    The project implements an architecture for delivery of integrated health management capabilities for the 21st Century launch complex. Capabilities include anomaly detection, fault isolation, prognostics and physics-based diagnostics.

  2. A study of microseismicity in northern Baja California, Mexico

    NASA Technical Reports Server (NTRS)

    Johnson, T. L.; Koczynski, T.; Madrid, J.

    1976-01-01

    Five microearthquake instruments were operated for 2 months in 1974 in a small mobile array deployed at various sites near the Agua Blanca and San Miguel faults. An 80-km-long section of the San Miguel fault zone is presently active seismically, producing the vast majority of recorded earthquakes. Very low activity was recorded on the Agua Blanca fault. Events were also located near normal faults forming the eastern edge of the Sierra Juarez suggesting that these faults are active. Hypocenters on the San Miguel fault range in depth from 0 to 20 km although two-thirds are in the upper 10 km. A composite focal mechanism showing a mixture of right-lateral and dip slip, east side up, is similar to a solution obtained for the 1956 San Miguel earthquake which proved consistent with observed surface deformation.

  3. The temporal and spatial distribution of upper crustal faulting and magmatism in the south Lake Turkana rift, East Africa

    NASA Astrophysics Data System (ADS)

    Muirhead, J.; Scholz, C. A.

    2017-12-01

    During continental breakup extension is accommodated in the upper crust largely through dike intrusion and normal faulting. The Eastern branch of the East African Rift arguably represents the premier example of active continental breakup in the presence magma. Constraining how faulting is distributed in both time and space in these regions is challenging, yet can elucidate how extensional strain localizes within basins as rifting progresses to sea-floor spreading. Studies of active rifts, such as the Turkana Rift, reveal important links between faulting and active magmatic processes. We utilized over 1100 km of high-resolution Compressed High Intensity Radar Pulse (CHIRP) 2D seismic reflection data, integrated with a suite of radiocarbon-dated sediment cores (3 in total), to constrain a 17,000 year history of fault activity in south Lake Turkana. Here, a set of N-S-striking intra-rift faults exhibit time-averaged slip-rates as high as 1.6 mm/yr, with the highest slip-rates occurring along faults within 3 km of the rift axis. Results show that strain has localized into a zone of intra-rift faults along the rift axis, forming an approximately 20 km-wide graben in central parts of the basin. Subsurface structural mapping and fault throw profile analyses reveal increasing basin subsidence and fault-related strain as this faulted graben approaches a volcanic island in the center of the basin (South Island). The long-axis of this island trends north-south, and it contains a number of elongate cones that support recent emplacement of N-S-striking dike intrusions, which parallel recently active intra-rift faults. Overall, these observations suggest strain localization into intra-rift faults in the rift center is likely a product of both volcanic loading and the mechanical and thermal effects of diking along the rift axis. These results support the establishment of magmatic segmentation in southern Lake Turkana, and highlight the importance of magmatism for focusing upper crustal strain as rifts evolve to sea-floor spreading.

  4. Lessons Learned on Implementing Fault Detection, Isolation, and Recovery (FDIR) in a Ground Launch Environment

    NASA Technical Reports Server (NTRS)

    Ferrell, Bob A.; Lewis, Mark E.; Perotti, Jose M.; Brown, Barbara L.; Oostdyk, Rebecca L.; Goetz, Jesse W.

    2010-01-01

    This paper's main purpose is to detail issues and lessons learned regarding designing, integrating, and implementing Fault Detection Isolation and Recovery (FDIR) for Constellation Exploration Program (CxP) Ground Operations at Kennedy Space Center (KSC). Part of the0 overall implementation of National Aeronautics and Space Administration's (NASA's) CxP, FDIR is being implemented in three main components of the program (Ares, Orion, and Ground Operations/Processing). While not initially part of the design baseline for the CxP Ground Operations, NASA felt that FDIR is important enough to develop, that NASA's Exploration Systems Mission Directorate's (ESMD's) Exploration Technology Development Program (ETDP) initiated a task for it under their Integrated System Health Management (ISHM) research area. This task, referred to as the FDIIR project, is a multi-year multi-center effort. The primary purpose of the FDIR project is to develop a prototype and pathway upon which Fault Detection and Isolation (FDI) may be transitioned into the Ground Operations baseline. Currently, Qualtech Systems Inc (QSI) Commercial Off The Shelf (COTS) software products Testability Engineering and Maintenance System (TEAMS) Designer and TEAMS RDS/RT are being utilized in the implementation of FDI within the FDIR project. The TEAMS Designer COTS software product is being utilized to model the system with Functional Fault Models (FFMs). A limited set of systems in Ground Operations are being modeled by the FDIR project, and the entire Ares Launch Vehicle is being modeled under the Functional Fault Analysis (FFA) project at Marshall Space Flight Center (MSFC). Integration of the Ares FFMs and the Ground Processing FFMs is being done under the FDIR project also utilizing the TEAMS Designer COTS software product. One of the most significant challenges related to integration is to ensure that FFMs developed by different organizations can be integrated easily and without errors. Software Interface Control Documents (ICDs) for the FFMs and their usage will be addressed as the solution to this issue. In particular, the advantages and disadvantages of these ICDs across physically separate development groups will be delineated.

  5. Subsurface geometry and evolution of the Seattle fault zone and the Seattle Basin, Washington

    USGS Publications Warehouse

    ten Brink, Uri S.; Molzer, P.C.; Fisher, M.A.; Blakely, R.J.; Bucknam, R.C.; Parsons, T.; Crosson, R.S.; Creager, K.C.

    2002-01-01

    The Seattle fault, a large, seismically active, east-west-striking fault zone under Seattle, is the best-studied fault within the tectonically active Puget Lowland in western Washington, yet its subsurface geometry and evolution are not well constrained. We combine several analysis and modeling approaches to study the fault geometry and evolution, including depth-converted, deep-seismic-reflection images, P-wave-velocity field, gravity data, elastic modeling of shoreline uplift from a late Holocene earthquake, and kinematic fault restoration. We propose that the Seattle thrust or reverse fault is accompanied by a shallow, antithetic reverse fault that emerges south of the main fault. The wedge enclosed by the two faults is subject to an enhanced uplift, as indicated by the boxcar shape of the shoreline uplift from the last major earthquake on the fault zone. The Seattle Basin is interpreted as a flexural basin at the footwall of the Seattle fault zone. Basin stratigraphy and the regional tectonic history lead us to suggest that the Seattle fault zone initiated as a reverse fault during the middle Miocene, concurrently with changes in the regional stress field, to absorb some of the north-south shortening of the Cascadia forearc. Kingston Arch, 30 km north of the Seattle fault zone, is interpreted as a more recent disruption arising within the basin, probably due to the development of a blind reverse fault.

  6. Active tectonics and strain partitioning along dextral fault system in Central Iran: Analysis of geomorphological observations and geophysical data in the Kashan region

    NASA Astrophysics Data System (ADS)

    Jamali, Farshad; Hessami, Khaled; Ghorashi, Manoochehr

    2011-03-01

    This paper uses high-resolution images and field investigations, in conjunction with seismic reflection data, to constrain active structural deformation in the Kashan region of Central Iran. Offset stream beds and Qanats indicate right-lateral strike slip motion at a rate of about 2 mm/yr along the NW-SE trending Qom-Zefreh fault zone which has long been recognized as one of the major faults in Central Iran. However, the pattern of drainage systems across the active growing folds including deep incision of stream beds and deflected streams indicate uplift at depth on thrust faults dipping SW beneath the anticlines. Therefore, our studies in the Kashan region indicate that deformation occurs within Central Iran which is often considered to behave as a non-deforming block within the Arabia-Eurasia collision zone. The fact that the active Qom-Zefreh strike-slip fault runs parallel to the active folds, which overlie blind thrust faults, suggests that oblique motion of Arabia with respect to Eurasia is partitioned in this part of Central Iran.

  7. Topographic expression of active faults in the foothills of the Northern Apennines

    NASA Astrophysics Data System (ADS)

    Picotti, Vincenzo; Ponza, Alessio; Pazzaglia, Frank J.

    2009-09-01

    Active faults that rupture the earth's surface leave an imprint on the topography that is recognized using a combination of geomorphic and geologic metrics including triangular facets, the shape of mountain fronts, the drainage network, and incised river valleys with inset terraces. We document the presence of a network of active, high-angle extensional faults, collectively embedded in the actively shortening mountain front of the Northern Apennines, that possess unique geomorphic expressions. We measure the strain rate for these structures and find that they have a constant throw-to-length ratio. We demonstrate the necessary and sufficient conditions for triangular facet development in the footwalls of these faults and argue that rock-type exerts the strongest control. The slip rates of these faults range from 0.1 to 0.3 mm/yr, which is similar to the average rate of river incision and mountain front unroofing determined by corollary studies. The faults are a near-surface manifestation of deeper crustal processes that are actively uplifting rocks and growing topography at a rate commensurate with surface processes that are eroding the mountain front to base level.

  8. HiRISE Observations of the Polar Regions of Mars

    NASA Astrophysics Data System (ADS)

    Herkenhoff, K. E.; Byrne, S.; Fishbaugh, K.; Russell, P.; Fortezzo, C.; McEwen, A.

    2008-12-01

    Digital elevation models (DEMs) derived from MRO HiRISE stereo images allow meter-scale topographic measurements in the north polar layered deposits (NPLD) and distinction of slope vs. albedo effects on apparent brightness of individual layers. HiRISE images do not show thin layers at the limit of resolution. Rather, fine layering, if it exists, appears to have been obscured by a more dust-rich mantling deposit which shows signs of eolian erosion and slumping. Stratigraphic sequences within the NPLD appear to be repeated within exposures observed by HiRISE, indicative of a record of periodic climate changes. Granular flows sourced from within the dark, basal unit are suggestive of, but do not require, the presence of water during their formation. Active mass wasting of frost and dust has been observed on steep NPLD scarps in early spring, similar to dry, loose snow avalanches on terrestrial slopes. Bright and dark streaks are seen to evolve during the northern summer, evidence for active eolian redistribution of frost and perhaps dark (non- volatile) material. Relatively dark reddish patches observed within the north polar residual cap during the summer indicate that the cap is very thin (<1 m) or more transparent in places. HiRISE images of exposures of the south polar layered deposits (SPLD) show rectilinear fractures that are continuous across several layers and whose orientation is not affected by the topography of the exposure, suggesting that they were formed before erosion of the SPLD. They appear to extend laterally and vertically through the SPLD, like a joint set. While NPLD tectonism appears limited to isolated grabens, several faults have been observed by HiRISE in the SPLD, showing structural details including reverse fault splays that merge into bedding planes and possible evidence for thrust duplication. The faults may be the result of basal sliding (decollements) ramping into thrust faults near the margin of the SPLD.

  9. Right-lateral shear across Iran and kinematic change in the Arabia-Eurasia collision zone

    NASA Astrophysics Data System (ADS)

    Allen, M. B.; Kheirkhah, M.; Emami, M.

    2009-04-01

    New offset determinations for right-lateral strike-slip faults in Iran redefine the kinematics of the Arabia-Eurasia collision. A series of right-lateral strike-slip faults is present across Iran between 48° and 57° E. Fault strikes vary between NW-SE and NNW-SSE. Individual faults west of ~53° E were active in the late Tertiary, but have limited evidence of activity. Faults east of ~53° E are seismically active and/or have geomorphic evidence for Holocene slip. None of the faults affects the GPS-derived regional velocity field, indicating active slip rates are ≤2 mm/yr. We estimate overall slip on these faults from offset geological and geomorphic markers, based on observations from satellite imagery, digital topography, geology maps and our own fieldwork observations, and combine these results with published estimates for fault slip in the east of the study area. Total offset of the Takab, Soltanieh, Indes, Bid Hand, Qom, Kashan, Deh Shir, Anar, Daviran, Kuh Banan and Dehu faults is at least 270 km and possibly higher. Other faults (e.g. Rafsanjan) have unknown amounts of right-lateral slip. Collectively, these faults are inferred to have accommodated part of the Arabia-Eurasia convergence by two mechanisms: (1) anti-clockwise, vertical axis rotations; (2) strain partitioning with coeval NE-SW crustal thickening in the Turkish-Iranian plateau to produce ~350 km of north-south plate convergence. The strike-slip faulting across Iran requires along-strike lengthening of the deformation zone. This was possible until the Pliocene, when the Afghan crust collided with the western margin of the Indian plate, thereby sealing off a free face at the eastern side of the Arabia-Eurasia collision zone. Continuing Arabia-Eurasia plate convergence had to be accommodated in new ways and new areas, leading to the present pattern of faulting from eastern Iran to western Turkey.

  10. Combined Application of Shallow Seismic Reflection and High-resolution Refraction Exploration Approach to Active Fault Survey, Central Orogenic Belt, China

    NASA Astrophysics Data System (ADS)

    Lin, S.; Luo, D.; Yanlin, F.; Li, Y.

    2016-12-01

    Shallow Seismic Reflection (SSR) is a major geophysical exploration method with its exploration depth range, high-resolution in urban active fault exploration. In this paper, we carried out (SSR) and High-resolution refraction (HRR) test in the Liangyun Basin to explore a buried fault. We used NZ distributed 64 channel seismic instrument, 60HZ high sensitivity detector, Geode multi-channel portable acquisition system and hammer source. We selected single side hammer hit multiple overlay, 48 channels received and 12 times of coverage. As there are some coincidence measuring lines of SSR and HRR, we chose multi chase and encounter observation system. Based on the satellite positioning, we arranged 11 survey lines in our study area with total length for 8132 meters. GEOGIGA seismic reflection data processing software was used to deal with the SSR data. After repeated tests from the aspects of single shot record compilation, interference wave pressing, static correction, velocity parameter extraction, dynamic correction, eventually got the shallow seismic reflection profile images. Meanwhile, we used Canadian technology company good refraction and tomographic imaging software to deal with HRR seismic data, which is based on nonlinear first arrival wave travel time tomography. Combined with drilling geological profiles, we explained 11 measured seismic profiles. Results show 18 obvious fault feature breakpoints, including 4 normal faults of south-west, 7 reverse faults of south-west, one normal fault of north-east and 6 reverse faults of north-east. Breakpoints buried depth is 15-18 meters, and the inferred fault distance is 3-12 meters. Comprehensive analysis shows that the fault property is reverse fault with northeast incline section, and fewer branch normal faults presenting southwest incline section. Since good corresponding relationship between the seismic interpretation results, drilling data and SEM results on the property, occurrence, broken length of the fault, we considered the Liangyun fault to be an active fault which has strong activity during the Neogene Pliocene and early Pleistocene, Middle Pleistocene period. The combined application of SSR and HRR can provide more parameters to explain the seismic results, and improve the accuracy of the interpretation.

  11. Characterizing the structural maturity of fault zones using high-resolution earthquake locations.

    NASA Astrophysics Data System (ADS)

    Perrin, C.; Waldhauser, F.; Scholz, C. H.

    2017-12-01

    We use high-resolution earthquake locations to characterize the three-dimensional structure of active faults in California and how it evolves with fault structural maturity. We investigate the distribution of aftershocks of several recent large earthquakes that occurred on immature faults (i.e., slow moving and small cumulative displacement), such as the 1992 (Mw7.3) Landers and 1999 (Mw7.1) Hector Mine events, and earthquakes that occurred on mature faults, such as the 1984 (Mw6.2) Morgan Hill and 2004 (Mw6.0) Parkfield events. Unlike previous studies which typically estimated the width of fault zones from the distribution of earthquakes perpendicular to the surface fault trace, we resolve fault zone widths with respect to the 3D fault surface estimated from principal component analysis of local seismicity. We find that the zone of brittle deformation around the fault core is narrower along mature faults compared to immature faults. We observe a rapid fall off of the number of events at a distance range of 70 - 100 m from the main fault surface of mature faults (140-200 m fault zone width), and 200-300 m from the fault surface of immature faults (400-600 m fault zone width). These observations are in good agreement with fault zone widths estimated from guided waves trapped in low velocity damage zones. The total width of the active zone of deformation surrounding the main fault plane reach 1.2 km and 2-4 km for mature and immature faults, respectively. The wider zone of deformation presumably reflects the increased heterogeneity in the stress field along complex and discontinuous faults strands that make up immature faults. In contrast, narrower deformation zones tend to align with well-defined fault planes of mature faults where most of the deformation is concentrated. Our results are in line with previous studies suggesting that surface fault traces become smoother, and thus fault zones simpler, as cumulative fault slip increases.

  12. Lacustrine Paleoseismology Reveals Earthquake Segmentation of the Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Howarth, J. D.; Fitzsimons, S.; Norris, R.; Langridge, R. M.

    2013-12-01

    Transform plate boundary faults accommodate high rates of strain and are capable of producing large (Mw>7.0) to great (Mw>8.0) earthquakes that pose significant seismic hazard. The Alpine Fault in New Zealand is one of the longest, straightest and fastest slipping plate boundary transform faults on Earth and produces earthquakes at quasi-periodic intervals. Theoretically, the fault's linearity, isolation from other faults and quasi-periodicity should promote the generation of earthquakes that have similar magnitudes over multiple seismic cycles. We test the hypothesis that the Alpine Fault produces quasi-regular earthquakes that contiguously rupture the southern and central fault segments, using a novel lacustrine paleoseismic proxy to reconstruct spatial and temporal patterns of fault rupture over the last 2000 years. In three lakes located close to the Alpine Fault the last nine earthquakes are recorded as megaturbidites formed by co-seismic subaqueous slope failures, which occur when shaking exceeds Modified Mercalli (MM) VII. When the fault ruptures adjacent to a lake the co-seismic megaturbidites are overlain by stacks of turbidites produced by enhanced fluvial sediment fluxes from earthquake-induced landslides. The turbidite stacks record shaking intensities of MM>IX in the lake catchments and can be used to map the spatial location of fault rupture. The lake records can be dated precisely, facilitating meaningful along strike correlations, and the continuous records allow earthquakes closely spaced in time on adjacent fault segments to be distinguished. The results show that while multi-segment ruptures of the Alpine Fault occurred during most seismic cycles, sequential earthquakes on adjacent segments and single segment ruptures have also occurred. The complexity of the fault rupture pattern suggests that the subtle variations in fault geometry, sense of motion and slip rate that have been used to distinguish the central and southern segments of the Alpine Fault can inhibit rupture propagation, producing a soft earthquake segment boundary. The study demonstrates the utility of lakes as paleoseismometers that can be used to reconstruct the spatial and temporal patterns of earthquakes on a fault.

  13. Neocrystallization, fabrics and age of clay minerals from an exposure of the Moab Fault, Utah

    USGS Publications Warehouse

    Solum, J.G.; van der Pluijm, B.A.; Peacor, D.R.

    2005-01-01

    Pronounced changes in clay mineral assemblages are preserved along the Moab Fault (Utah). Gouge is enriched up to ???40% in 1Md illite relative to protolith, whereas altered protolith in the damage zone is enriched ???40% in illite-smectite relative to gouge and up to ???50% relative to protolith. These mineralogical changes indicate that clay gouge is formed not solely through mechanical incorporation of protolith, but also through fault-related authigenesis. The timing of mineralization is determined using 40Ar/39Ar dating of size fractions of fault rocks with varying detrital and authigenic clay content. We applied Ar dating of illite-smectite samples, as well as a newer approach that uses illite polytypes. Our analysis yields overlapping, early Paleocene ages for neoformed (1Md) gouge illite (63??2 Ma) and illite-smectite in the damage zone (60??2 Ma), which are compatible with results elsewhere. These ages represent the latest period of major fault motion, and demonstrate that the fault fabrics are not the result of recent alteration. The clay fabrics in fault rocks are poorly developed, indicating that fluids were not confined to the fault zone by preferentially oriented clays; rather we propose that fluids in the illite-rich gouge were isolated by adjacent lower permeability, illite-smectite-bearing rocks in the damage zone. ?? 2005 Elsevier Ltd. All rights reserved.

  14. Handling glacially induced faults in the assessment of the long term safety of a repository for spent nuclear fuel at Forsmark, Sweden

    NASA Astrophysics Data System (ADS)

    Munier, R.

    2011-12-01

    Located deep into the Baltic shield, far from active plate boundaries and volcanism, Swedish bedrock is characterised by a low frequency of earthquakes of small magnitudes. Yet, faults, predominantly in the Lapland region, offsetting the quarternary regolith ten meters or more, reveal that Swedish bedrock suffered from substantial earthquake activity in connection to the retreat of the latest continental glacier, Weichsel. Storage of nuclear wastes, hazardous for hundreds of thousand years, requires, firstly, isolation of radionuclides and, secondly, retardation of the nuclides should the barriers fail. Swedish regulations require that safety is demonstrated for a period of a million years. Consequently, the repository must be designed to resist the impact of several continental glaciers. Large, glacially induced, earthquakes near the repository have the potential of triggering slip along fractures across the canisters containing the nuclear wastes, thereby simultaneously jeopardising isolation, retardation and, hence, long term safety. It has therefore been crucial to assess the impact of such intraplate earthquake upon the primary functions of the repository. We conclude that, by appropriate design of the repository, the negative impact of earthquakes on long term safety can be considerably lessened. We were, additionally, able to demonstrate compliance with Swedish regulations in our safety assessment, SR-Site, submitted to the authorities earlier this year. However, the assessment required a number of critical assumptions, e.g. concerning the strain rate and the fracture properties of the rock, many of which are subject of current research in the geoscientific community. By a conservative approach, though, we judge to have adequately propagated critical uncertainties through the assessment and bound the uncertainty space.

  15. Investigation of late Pleistocene and Holocene activity in the San Gregorio fault zone on the continental slope north of Monterey Canyon, offshore central California

    USGS Publications Warehouse

    Maier, Katherine L.; Paull, Charles K.; Brothers, Daniel; Caress, David W.; McGann, Mary; Lundsten, Eve M.; Anderson, Krystle; Gwiazda, Roberto

    2017-01-01

    We provide an extensive high‐resolution geophysical, sediment core, and radiocarbon dataset to address late Pleistocene and Holocene fault activity of the San Gregorio fault zone (SGFZ), offshore central California. The SGFZ occurs primarily offshore in the San Andreas fault system and has been accommodating dextral strike‐slip motion between the Pacific and North American plates since the mid‐Miocene. Our study focuses on the SGFZ where it has been mapped through the continental slope north of Monterey Canyon. From 2009 to 2015, the Monterey Bay Aquarium Research Institute collected high‐resolution multibeam bathymetry and chirp sub‐bottom profiles using an autonomous underwater vehicle (AUV). Targeted samples were collected using a remotely operated vehicle (ROV) to provide radiocarbon age constraints. We integrate the high‐resolution geophysical data with radiocarbon dates to reveal Pleistocene seismic horizons vertically offset less than 5 m on nearly vertical faults. These faults are buried by continuous reflections deposited after ∼17.5  ka and likely following erosion during the last sea‐level lowstand ∼21  ka, bracketing the age of faulting to ∼32–21  ka. Clearly faulted horizons are only detected in a small area where mass wasting exhumed older strata to within ∼25  m of the seafloor. The lack of clearly faulted Holocene deposits and possible highly distributed faulting in the study area are consistent with previous interpretations that late Pleistocene and Holocene activity along the SGFZ may decrease to the south. This study illustrates the complexity of the SGFZ, offshore central California, and demonstrates the utility of very high‐resolution data from combined AUV (geophysical)–ROV (seabed sampling) surveys in offshore studies of fault activity.

  16. Petrophysical, Geochemical, and Hydrological Evidence for Extensive Fracture-Mediated Fluid and Heat Transport in the Alpine Fault's Hanging-Wall Damage Zone

    NASA Astrophysics Data System (ADS)

    Townend, John; Sutherland, Rupert; Toy, Virginia G.; Doan, Mai-Linh; Célérier, Bernard; Massiot, Cécile; Coussens, Jamie; Jeppson, Tamara; Janku-Capova, Lucie; Remaud, Léa.; Upton, Phaedra; Schmitt, Douglas R.; Pezard, Philippe; Williams, Jack; Allen, Michael John; Baratin, Laura-May; Barth, Nicolas; Becroft, Leeza; Boese, Carolin M.; Boulton, Carolyn; Broderick, Neil; Carpenter, Brett; Chamberlain, Calum J.; Cooper, Alan; Coutts, Ashley; Cox, Simon C.; Craw, Lisa; Eccles, Jennifer D.; Faulkner, Dan; Grieve, Jason; Grochowski, Julia; Gulley, Anton; Hartog, Arthur; Henry, Gilles; Howarth, Jamie; Jacobs, Katrina; Kato, Naoki; Keys, Steven; Kirilova, Martina; Kometani, Yusuke; Langridge, Rob; Lin, Weiren; Little, Tim; Lukacs, Adrienn; Mallyon, Deirdre; Mariani, Elisabetta; Mathewson, Loren; Melosh, Ben; Menzies, Catriona; Moore, Jo; Morales, Luis; Mori, Hiroshi; Niemeijer, André; Nishikawa, Osamu; Nitsch, Olivier; Paris, Jehanne; Prior, David J.; Sauer, Katrina; Savage, Martha K.; Schleicher, Anja; Shigematsu, Norio; Taylor-Offord, Sam; Teagle, Damon; Tobin, Harold; Valdez, Robert; Weaver, Konrad; Wiersberg, Thomas; Zimmer, Martin

    2017-12-01

    Fault rock assemblages reflect interaction between deformation, stress, temperature, fluid, and chemical regimes on distinct spatial and temporal scales at various positions in the crust. Here we interpret measurements made in the hanging-wall of the Alpine Fault during the second stage of the Deep Fault Drilling Project (DFDP-2). We present observational evidence for extensive fracturing and high hanging-wall hydraulic conductivity (˜10-9 to 10-7 m/s, corresponding to permeability of ˜10-16 to 10-14 m2) extending several hundred meters from the fault's principal slip zone. Mud losses, gas chemistry anomalies, and petrophysical data indicate that a subset of fractures intersected by the borehole are capable of transmitting fluid volumes of several cubic meters on time scales of hours. DFDP-2 observations and other data suggest that this hydrogeologically active portion of the fault zone in the hanging-wall is several kilometers wide in the uppermost crust. This finding is consistent with numerical models of earthquake rupture and off-fault damage. We conclude that the mechanically and hydrogeologically active part of the Alpine Fault is a more dynamic and extensive feature than commonly described in models based on exhumed faults. We propose that the hydrogeologically active damage zone of the Alpine Fault and other large active faults in areas of high topographic relief can be subdivided into an inner zone in which damage is controlled principally by earthquake rupture processes and an outer zone in which damage reflects coseismic shaking, strain accumulation and release on interseismic timescales, and inherited fracturing related to exhumation.

  17. Tectonic constraints on the development and individualization of the intermontane Ronda basin (external Betics, southern Spain): a structural and geomorphologic approach.

    NASA Astrophysics Data System (ADS)

    Jiménez-Bonilla, Alejandro; Balanyá, Juan Carlos; Expósito, Inmaculada; Díaz-Azpiroz, Manuel; Barcos, Leticia

    2014-05-01

    As a result of progressive shortening and orogenic wedge thickening, marine foreland basins tend to emerge and divide. We have analyzed possible recent tectonic activity within the late evolution stage of the Ronda basin, an intermontane basin located in the external wedge of the Gibraltar Arc, formerly connected with the Betic foreland basin and infilled by marine Upper-Miocene sediments. We analyze (1) the structures responsible for the basinward relief drop along the arc strike and the different topography of their boundaries; (2) qualitative and quantitative geomorphologic indices to asses which structures could present recent activity; and 3) the structures causing the division of the former Betic foreland basin and the isolation of the Ronda basin. Within the deformational history of the Ronda basin, late structures that control high topographic gradients and generate remarkable fault scarps group into three main types: (a) Extensional structures represented by NW-SE striking normal faults, clustered close to the current SW and NE boundaries of the basin. They usually dip towards the basin and their vertical displacement is maximum up to 1,5 km. These structures partially affect the basal unconformity of the Upper Miocene basin infill and are scarcely developed inside the basin infill. (b) Shortening structures developed both in the basin infill and in the outcropping basement near the Northeastern and Southwestern basin boundaries. They are represented by NE-SW directed plurikilometric box-folds and reverse faults, responsible for the alternation of sierras (altitudes 1000-1500 m) and valleys. (c) Strike-slip dominated structural associations where WSW-ENE lateral faults combined with folds and normal and reverse faults defined a NE-SW directed deformation band constituting the NW basin boundary. This band includes some sierras up to 1.100 m. Regarding the relief of the Ronda basin area, the abrupt slopes of the outcropping basement (heights between 500-1500 m) contrast with the relief inside the basin, a relative low-lying relief varying between 400 and 700 m. The drainage network is dendritic, although some 2nd-3rd order streams show a significant deviation to NW-SE , probably controlled by normal faults. The calculated geomorphologic indices (SLk, Vf, Smf) show anomaly zones in the footwall of normal faults, reaching their highest values in the Northeastern basin boundary (SlK > 6, Vf = 0-0.5, Smf = 1-1.15), where, additionally, the hypsometric curves display convex trajectories with HI > 0.5. Anomalous values of geomorphologic indices (SlK > 10, Vf 0-0.75, Smf 1-1.25) together with convex hypsometric curves with HI > 0.5 have also been obtained for shortening structures, such as hanging wall of reverse faults and folds. Structural criteria show that extensional and shortening structures in the Ronda basin are coetaneous and active since the Upper Miocene. Geomorphologic analyses suggest that some of these structures could continue active up to the Quaternary with low-to-medium deformation rates. Our results, together with previous sedimentological data suggest that, from the Messinian on, the Ronda basin became disconnected from the Betic foreland basin as the result of the tectonic uplift of its NW boundary.

  18. The Design of a Fault-Tolerant COTS-Based Bus Architecture

    NASA Technical Reports Server (NTRS)

    Chau, Savio N.; Alkalai, Leon; Burt, John B.; Tai, Ann T.

    1999-01-01

    In this paper, we report our experiences and findings on the design of a fault-tolerant bus architecture comprised of two COTS buses, the IEEE 1394 and the 12C. This fault-tolerant bus is the backbone system bus for the avionics architecture of the X2000 program at the Jet Propulsion Laboratory. COTS buses are attractive because of the availability of low cost commercial products. However, they are not specifically designed for highly reliable applications such as long-life deep-space missions. The X2000 design team has devised a multi-level fault tolerance approach to compensate for this shortcoming of COTS buses. First, the approach enhances the fault tolerance capabilities of the IEEE 1394 and 12 C buses by adding a layer of fault handling hardware and software. Second, algorithms are developed to enable the IEEE 1394 and the 12 C buses assist each other to isolate and recovery from faults. Third, the set of IEEE 1394 and 12 C buses is duplicated to further enhance system reliability. The X2000 design team has paid special attention to guarantee that all fault tolerance provisions will not cause the bus design to deviate from the commercial standard specifications. Otherwise, the economic attractiveness of using COTS will be diminished. The hardware and software design of the X2000 fault-tolerant bus are being implemented and flight hardware will be delivered to the ST4 and Europa Orbiter missions.

  19. Performance analysis of microcomputer based differential protection of UHV lines under selective phase switching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatti, A.A.

    1990-04-01

    This paper examines the effects of primary and secondary fault quantities as well s of mutual couplings of neighboring circuits on the sensitivity of operation and threshold settings of a microcomputer based differential protection of UHV lines under selective phase switching. Microcomputer based selective phase switching allows the disconnection of minimum number of phases involved in a fault and requires the autoreclosing of these phases immediately after the extinction of secondary arc. During a primary fault a heavy current contribution to the healthy phases tends to cause an unwanted tripping. Faulty phases physically disconnected constitute an isolated fault which beingmore » coupled to the system affects the current and voltage levels of the healthy phases still retained in the system and may cause an unwanted tripping. The microcomputer based differential protection, appears to have poor performance when applied to uncompensated lines employing selective pole switching.« less

  20. Autonomous power expert system

    NASA Technical Reports Server (NTRS)

    Walters, Jerry L.; Petrik, Edward J.; Roth, Mary Ellen; Truong, Long Van; Quinn, Todd; Krawczonek, Walter M.

    1990-01-01

    The Autonomous Power Expert (APEX) system was designed to monitor and diagnose fault conditions that occur within the Space Station Freedom Electrical Power System (SSF/EPS) Testbed. APEX is designed to interface with SSF/EPS testbed power management controllers to provide enhanced autonomous operation and control capability. The APEX architecture consists of three components: (1) a rule-based expert system, (2) a testbed data acquisition interface, and (3) a power scheduler interface. Fault detection, fault isolation, justification of probable causes, recommended actions, and incipient fault analysis are the main functions of the expert system component. The data acquisition component requests and receives pertinent parametric values from the EPS testbed and asserts the values into a knowledge base. Power load profile information is obtained from a remote scheduler through the power scheduler interface component. The current APEX design and development work is discussed. Operation and use of APEX by way of the user interface screens is also covered.

  1. Fail-Safe Design for Large Capacity Lithium-Ion Battery Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, G. H.; Smith, K.; Ireland, J.

    2012-07-15

    A fault leading to a thermal runaway in a lithium-ion battery is believed to grow over time from a latent defect. Significant efforts have been made to detect lithium-ion battery safety faults to proactively facilitate actions minimizing subsequent losses. Scaling up a battery greatly changes the thermal and electrical signals of a system developing a defect and its consequent behaviors during fault evolution. In a large-capacity system such as a battery for an electric vehicle, detecting a fault signal and confining the fault locally in the system are extremely challenging. This paper introduces a fail-safe design methodology for large-capacity lithium-ionmore » battery systems. Analysis using an internal short circuit response model for multi-cell packs is presented that demonstrates the viability of the proposed concept for various design parameters and operating conditions. Locating a faulty cell in a multiple-cell module and determining the status of the fault's evolution can be achieved using signals easily measured from the electric terminals of the module. A methodology is introduced for electrical isolation of a faulty cell from the healthy cells in a system to prevent further electrical energy feed into the fault. Experimental demonstration is presented supporting the model results.« less

  2. Kinematic Evolution of the North-Tehran Fault (NTF), Alborz Mountains, Iran

    NASA Astrophysics Data System (ADS)

    Landgraf, A.; Ballato, P.; Strecker, M. R.; Shahpasandzadeh, M.; Friedrich, A.; Tabatabaei, S. H.

    2007-12-01

    The ENE-to NW-striking NTF is an active frontal thrust that delimits the Alborz Mountain range to the south with an up to 2000 m topographic break with respect to the adjacent Tehran plain. Eocene rocks of the Alborz range are thrusted over Neogene and Quaternary sediments of the alluvial Tehran embayment. The fault consists of right- stepping segments and merges to the east with the active Mosha-Fasham strike-slip fault (MFF). The complex tectonic history, involving changes in the direction of SHmax, has resulted in a composite tectonic landscape with inherited topographic and fault-kinematic fingerprints along the NTF. We therefore used a combination of fault-kinematic measurements and geomorphic observations to unravel the temporal tectonic evolution of this fault. Presently, the NTF is virtually inactive, although the tectonically overprinted landforms reflect tectonic activity on longer time scales during the Quaternary. Being located adjacent north of the Tehran megacity, there is thus considerable interest to decipher its youngest tectonic evolution and to better understand the relation with other fault systems. Our fault kinematic study has revealed an early dextral kinematic history for the NTF. Dextral strike-slip and oblique reverse faulting took place during NW-oriented shortening. The overall fault-geometry of the NTF suggests that it has evolved in relation to dextral transpression along the MFF. This early kinematic regime was superseded by NE-oriented shortening, associated with sinistral-oblique thrusting along the fault segments. Fault linkage between the semi-independent ENE-striking NTF-segments and NW-striking thrusts (Emamzadeh Davud Fault [EDF], Purkan Vardij Thrust [PVT], NTF-prolongation) point towards an evolution into a nascent transpressional duplex. In this scenario the NTF segments constitute lateral ramps and the NW-striking faults act as frontal ramps. Topographic residuals, as an expression of high-uplift zones, indicate that the central segment of the NTF, incorporating the EDF was most effective in accommodating oblique convergence during this time. However, subtle knickpoints in the longitudinal river profiles crossing the PVT may indicate a relatively recent transfer of deformation onto this block. The youngest manifestations of deformation along the NTF, however, are left-lateral and normal faulting. This youngest phase of activity is documented by numerous striated and rotated conglomeratic clasts, meter-scale fault gouge zones with shear-sense indicators of oblique normal faulting, and multiple colluvial wedges with drag phenomena. Rupture traces and filled extensional cracks reaching the surface also document the seismogenic nature of these features. Since recent left-lateral transtension is also known from neighboring faults, e.g., the eastern MFF, our observations suggest that this youngest phase of tectonic activity of the NTF is a regional phenomenon, rather than the result of locally-determined geometries.

  3. The Gabbs Valley, Nevada, geothermal prospect: Exploring for a potential blind geothermal resource

    NASA Astrophysics Data System (ADS)

    Payne, J.; Bell, J. W.; Calvin, W. M.

    2012-12-01

    The Gabbs Valley prospect in west-central Nevada is a potential blind geothermal resource system. Possible structural controls on this system were investigated using high-resolution LiDAR, low sun-angle aerial (LSA) photography, exploratory fault trenching and a shallow temperature survey. Active Holocene faults have previously been identified at 37 geothermal systems with indication of temperatures greater than 100° C in the western Nevada region. Active fault controls in Gabbs Valley include both Holocene and historical structures. Two historical earthquakes occurring in 1932 and 1954 have overlapping surface rupture patterns in Gabbs Valley. Three active fault systems identified through LSA and LiDAR mapping have characteristics of Basin and Range normal faulting and Walker Lane oblique dextral faulting. The East Monte Cristo Mountains fault zone is an 8.5 km long continuous NNE striking, discrete fault with roughly 0.5 m right-normal historic motion and 3 m vertical Quaternary separation. The Phillips Wash fault zone is an 8.2 km long distributed fault system striking NE to N, with Quaternary fault scarps of 1-3 m vertical separation and a 500 m wide graben adjacent to the Cobble Cuesta anticline. This fault displays ponded drainages, an offset terrace riser and right stepping en echelon fault patterns suggestive of left lateral offset, and fault trenching exposed non-matching stratigraphy typical of a significant component of lateral offset. The unnamed faults of Gabbs Valley are a 10.6 km long system of normal faults striking NNE and Quaternary scarps are up to 4 m high. These normal faults largely do not have historic surface rupture, but a small segment of 1932 rupture has been identified. A shallow (2 m deep) temperature survey of 80 points covering roughly 65 square kilometers was completed. Data were collected over approximately 2 months, and continual base station temperature measurements were used to seasonally correct temperature measurements. A 2.5 km long temperature anomaly greater than 3° C above background temperatures forms west-northwest trending zone between terminations of the Phillips Wash fault zone and unnamed faults of Gabbs Valley to the south. Rupture segments of two young active faults bracket the temperature anomaly. The temperature anomaly may be due to several possible causes. 1. Increases in stress near the rupture segments or tip-lines of these faults, or where multiple fault splays exist, can increase fault permeability. The un-ruptured segments of these faults may be controlling the location of the Gabbs Valley thermal anomaly between ruptured segments of the 1932 Cedar Mountain and 1954 Fairview Peak earthquakes. 2. Numerous unnamed normal faults may interact and the hanging wall of these faults is hosting the thermal anomaly. The size and extent of the anomaly may be due to its proximity to a flat playa and not the direct location of the shallow heat anomaly. 3. The linear northwest nature of the thermal anomaly may reflect a hydrologic barrier in the subsurface controlling where heated fluids rise. A concealed NW- striking fault is possible, but has not been identified in previous studies or in the LiDAR or LSA fault mapping.

  4. The West Beverly Hills Lineament and Beverly Hills High School: Ethical Issues in Geo-Hazard Communication

    NASA Astrophysics Data System (ADS)

    Gath, Eldon; Gonzalez, Tania; Roe, Joe; Buchiarelli, Philip; Kenny, Miles

    2014-05-01

    Results of geotechnical studies for the Westside Subway were disclosed in a public hearing on Oct. 19, 2011, showing new "active faults" of the Santa Monica fault and the West Beverly Hills Lineament (WBHL), identified as a northern extension of the Newport-Inglewood fault. Presentations made spoke of the danger posed by these faults, the possibility of killing people, and how it was good news that these faults had been discovered now instead of later. The presentations were live and are now memorialized as YouTube videos, (http://www.youtube.com/watch?v=Omx2BTIpzAk and others). No faults had been physically exposed or observed by the study; the faults were all interpreted from cone penetrometer probes, supplemented by core borings and geophysical transects. Several of the WBHL faults traversed buildings of the Beverly Hills High School (BHHS), triggering the school district to geologically map and characterize these faults for future planning efforts, and to quantify risk to the students in the 1920's high school building. 5 exploratory trenches were excavated within the high school property, 12 cone penetrometers were pushed, and 26-cored borings were drilled. Geologic logging of the trenches and borings and interpretation of the CPT data failed to confirm the presence of the mapped WBHL faults, instead showing an unfaulted, 3° NE dipping sequence of mid-Pleistocene alluvial fan deposits conformably overlying an ~1 Ma marine sand. Using 14C, OSL, and soil pedology for stratigraphic dating, the BHHS site was cleared from fault rupture hazards and the WBHL was shown to be an erosional margin of Benedict Canyon, partially buttressed by 40-200 ka alluvial deposits from Benedict Wash. The consequence of the Westside Subway's active fault maps has been the unexpected expenditure of millions of dollars for emergency fault investigations at BHHS and several other private properties within a densely developed urban highrise environment. None of these studies have found any active faults where they had been interpreted, mapped, and published by the subway's consultants. Litigation is underway by the affected parties to recoup their geological expenditures and recover costs for lost business revenues. Even had the active fault map been correct, its public release was poorly managed. That the released active fault map has now been found to be badly in error poses more significant ethical issues about hazard communication and likely legal consequences.

  5. Shallow subsurface imaging of the Piano di Pezza active normal fault (central Italy) by high-resolution refraction and electrical resistivity tomography coupled with time-domain electromagnetic data

    NASA Astrophysics Data System (ADS)

    Villani, Fabio; Tulliani, Valerio; Sapia, Vincenzo; Fierro, Elisa; Civico, Riccardo; Pantosti, Daniela

    2015-12-01

    The Piano di Pezza fault is the central section of the 35 km long L'Aquila-Celano active normal fault-system in the central Apennines of Italy. Although palaeoseismic data document high Holocene vertical slip rates (˜1 mm yr-1) and a remarkable seismogenic potential of this fault, its subsurface setting and Pleistocene cumulative displacement are still poorly known. We investigated for the first time the shallow subsurface of a key section of the main Piano di Pezza fault splay by means of high-resolution seismic and electrical resistivity tomography coupled with time-domain electromagnetic soundings (TDEM). Our surveys cross a ˜5-m-high fault scarp that was generated by repeated surface-rupturing earthquakes displacing Holocene alluvial fans. We provide 2-D Vp and resistivity images, which show significant details of the fault structure and the geometry of the shallow basin infill material down to 50 m depth. Our data indicate that the upper fault termination has a sub-vertical attitude, in agreement with palaeoseismological trench evidence, whereas it dips ˜50° to the southwest in the deeper part. We recognize some low-velocity/low-resistivity regions in the fault hangingwall that we relate to packages of colluvial wedges derived from scarp degradation, which may represent the record of some Holocene palaeo-earthquakes. We estimate a ˜13-15 m throw of this fault splay since the end of the Last Glacial Maximum (˜18 ka), leading to a 0.7-0.8 mm yr-1 throw rate that is quite in accordance with previous palaeoseismic estimation of Holocene vertical slip rates. The 1-D resistivity models from TDEM soundings collected along the trace of the electrical profile significantly match with 2-D resistivity images. Moreover, they indicate that in the fault hangingwall, ˜200 m away from the surface fault trace, the pre-Quaternary carbonate basement is at ˜90-100 m depth. We therefore provide a minimal ˜150-160 m estimate of the cumulative throw of the Piano di Pezza fault system in the investigated section. We further hypothesize that the onset of the Piano di Pezza fault activity may date back to the Middle Pleistocene (˜0.5 Ma), so this is a quite young active normal fault if compared to other mature normal fault systems active since 2-3 Ma in this portion of the central Apennines.

  6. Insurance Applications of Active Fault Maps Showing Epistemic Uncertainty

    NASA Astrophysics Data System (ADS)

    Woo, G.

    2005-12-01

    Insurance loss modeling for earthquakes utilizes available maps of active faulting produced by geoscientists. All such maps are subject to uncertainty, arising from lack of knowledge of fault geometry and rupture history. Field work to undertake geological fault investigations drains human and monetary resources, and this inevitably limits the resolution of fault parameters. Some areas are more accessible than others; some may be of greater social or economic importance than others; some areas may be investigated more rapidly or diligently than others; or funding restrictions may have curtailed the extent of the fault mapping program. In contrast with the aleatory uncertainty associated with the inherent variability in the dynamics of earthquake fault rupture, uncertainty associated with lack of knowledge of fault geometry and rupture history is epistemic. The extent of this epistemic uncertainty may vary substantially from one regional or national fault map to another. However aware the local cartographer may be, this uncertainty is generally not conveyed in detail to the international map user. For example, an area may be left blank for a variety of reasons, ranging from lack of sufficient investigation of a fault to lack of convincing evidence of activity. Epistemic uncertainty in fault parameters is of concern in any probabilistic assessment of seismic hazard, not least in insurance earthquake risk applications. A logic-tree framework is appropriate for incorporating epistemic uncertainty. Some insurance contracts cover specific high-value properties or transport infrastructure, and therefore are extremely sensitive to the geometry of active faulting. Alternative Risk Transfer (ART) to the capital markets may also be considered. In order for such insurance or ART contracts to be properly priced, uncertainty should be taken into account. Accordingly, an estimate is needed for the likelihood of surface rupture capable of causing severe damage. Especially where a high deductible is in force, this requires estimation of the epistemic uncertainty on fault geometry and activity. Transport infrastructure insurance is of practical interest in seismic countries. On the North Anatolian Fault in Turkey, there is uncertainty over an unbroken segment between the eastern end of the Dazce Fault and Bolu. This may have ruptured during the 1944 earthquake. Existing hazard maps may simply use a question mark to flag uncertainty. However, a far more informative type of hazard map might express spatial variations in the confidence level associated with a fault map. Through such visual guidance, an insurance risk analyst would be better placed to price earthquake cover, allowing for epistemic uncertainty.

  7. Transfer fault earthquake in compressionally reactivated back-arc failed rift: 1948 Fukui earthquake (M7.1), Japan

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tatsuya; Kato, Naoko; Sato, Hiroshi; Koshiya, Shin

    2017-04-01

    Back-arc rift structures in many subduction zones are recognized as mechanically and thermally weak zones that possibly play important roles in strain accommodation at later post-rift stages within the overriding plates. In case of Miocene back-arc failed rift structures in the Sea of Japan in the Eurasian-Pacific subduction system, the mechanical contrasts between the crustal thrust wedges of the pre-rift continental crust and high velocity lower crust have fundamentally controlled the styles of post-rift, Quaternary active deformation (Ishiyama et al. 2016). In this study, we show a possibility that strike-slip M>7 devastating earthquakes in this region have been gregion enerated by reactivation of transfer faults highly oblique to the rift axes. The 1948 Fukui earthquake (M7.1), onshore shallow seismic event with a strike-slip faulting mechanism (Kanamori, 1973), resulted in more than 3,500 causalities and destructive damages on the infrastructures. While geophysical analyses on geodetic measurements based on leveling and triangulation networks clearly show coseismic left-lateral fault slip on a NNW striking vertical fault plane beneath the Fukui plain (Sagiya, 1999), no evidence for coseismic surface rupture has been identified based on both post-earthquake intensive fieldwork and recent reexamination of stereopair interpretations using 1/3,000 aerial photographs taken in 1948 (Togo et al., 2000). To find recognizable fault-related structures that deform Neogene basin fill sediments, we collected new 9.6-km-long high-resolution seismic reflection data across the geodetically estimated fault plane and adjacent subparallel active strike slip faults, using 925 offline recorders and Envirovib truck as a seismic source. A depth-converted section to 1.5 km depth contains discontinuous seismic reflectors correlated to Miocene volcaniclastic deposits and depression of the overlying Plio-Pleistocene sediments above the geodetically determined fault plane. We interpreted these structural features as negative flower structures related to the strike-slip fault activated during the 1948 seismic event. Locations of these strike-slip faults are consistent with Miocene transfer faults that offset syn- and post-rift sediments and underlying crustal wedges, suggesting that reactivation of transfer faults resulted in active strike-slip faulting including the 1948 seismic event. These findings demonstrate that not only rift-related normal faults but also transfer faults have strong structural inheritances and played essential roles on their active reactivation and seismicity during the post-rift stress regime.

  8. Fix-Forward: A Comparison of the Army’s Requirements and Capabilities for Forward Support Maintenance,

    DTIC Science & Technology

    1983-04-01

    tolerances or spaci - able assets diagnostic/fault ness float fications isolation devices Operation of cannibalL- zation point Why Sustain materiel...with diagnostic software based on "fault tree " representation of the M65 ThS) to bridge the gap in diagnostics capability was demonstrated in 1980 and... identification friend or foe) which has much lower reliability than TSQ-73 peculiar hardware). Thus, as in other examples, reported readiness does not reflect

  9. Strategy Developed for Selecting Optimal Sensors for Monitoring Engine Health

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Sensor indications during rocket engine operation are the primary means of assessing engine performance and health. Effective selection and location of sensors in the operating engine environment enables accurate real-time condition monitoring and rapid engine controller response to mitigate critical fault conditions. These capabilities are crucial to ensure crew safety and mission success. Effective sensor selection also facilitates postflight condition assessment, which contributes to efficient engine maintenance and reduced operating costs. Under the Next Generation Launch Technology program, the NASA Glenn Research Center, in partnership with Rocketdyne Propulsion and Power, has developed a model-based procedure for systematically selecting an optimal sensor suite for assessing rocket engine system health. This optimization process is termed the systematic sensor selection strategy. Engine health management (EHM) systems generally employ multiple diagnostic procedures including data validation, anomaly detection, fault-isolation, and information fusion. The effectiveness of each diagnostic component is affected by the quality, availability, and compatibility of sensor data. Therefore systematic sensor selection is an enabling technology for EHM. Information in three categories is required by the systematic sensor selection strategy. The first category consists of targeted engine fault information; including the description and estimated risk-reduction factor for each identified fault. Risk-reduction factors are used to define and rank the potential merit of timely fault diagnoses. The second category is composed of candidate sensor information; including type, location, and estimated variance in normal operation. The final category includes the definition of fault scenarios characteristic of each targeted engine fault. These scenarios are defined in terms of engine model hardware parameters. Values of these parameters define engine simulations that generate expected sensor values for targeted fault scenarios. Taken together, this information provides an efficient condensation of the engineering experience and engine flow physics needed for sensor selection. The systematic sensor selection strategy is composed of three primary algorithms. The core of the selection process is a genetic algorithm that iteratively improves a defined quality measure of selected sensor suites. A merit algorithm is employed to compute the quality measure for each test sensor suite presented by the selection process. The quality measure is based on the fidelity of fault detection and the level of fault source discrimination provided by the test sensor suite. An inverse engine model, whose function is to derive hardware performance parameters from sensor data, is an integral part of the merit algorithm. The final component is a statistical evaluation algorithm that characterizes the impact of interference effects, such as control-induced sensor variation and sensor noise, on the probability of fault detection and isolation for optimal and near-optimal sensor suites.

  10. Strike-slip faulting in the Inner California Borderlands, offshore Southern California.

    NASA Astrophysics Data System (ADS)

    Bormann, J. M.; Kent, G. M.; Driscoll, N. W.; Harding, A. J.; Sahakian, V. J.; Holmes, J. J.; Klotsko, S.; Kell, A. M.; Wesnousky, S. G.

    2015-12-01

    In the Inner California Borderlands (ICB), offshore of Southern California, modern dextral strike-slip faulting overprints a prominent system of basins and ridges formed during plate boundary reorganization 30-15 Ma. Geodetic data indicate faults in the ICB accommodate 6-8 mm/yr of Pacific-North American plate boundary deformation; however, the hazard posed by the ICB faults is poorly understood due to unknown fault geometry and loosely constrained slip rates. We present observations from high-resolution and reprocessed legacy 2D multichannel seismic (MCS) reflection datasets and multibeam bathymetry to constrain the modern fault architecture and tectonic evolution of the ICB. We use a sequence stratigraphy approach to identify discrete episodes of deformation in the MCS data and present the results of our mapping in a regional fault model that distinguishes active faults from relict structures. Significant differences exist between our model of modern ICB deformation and existing models. From east to west, the major active faults are the Newport-Inglewood/Rose Canyon, Palos Verdes, San Diego Trough, and San Clemente fault zones. Localized deformation on the continental slope along the San Mateo, San Onofre, and Carlsbad trends results from geometrical complexities in the dextral fault system. Undeformed early to mid-Pleistocene age sediments onlap and overlie deformation associated with the northern Coronado Bank fault (CBF) and the breakaway zone of the purported Oceanside Blind Thrust. Therefore, we interpret the northern CBF to be inactive, and slip rate estimates based on linkage with the Holocene active Palos Verdes fault are unwarranted. In the western ICB, the San Diego Trough fault (SDTF) and San Clemente fault have robust linear geomorphic expression, which suggests that these faults may accommodate a significant portion of modern ICB slip in a westward temporal migration of slip. The SDTF offsets young sediments between the US/Mexico border and the eastern margin of Avalon Knoll, where the fault is spatially coincident and potentially linked with the San Pedro Basin fault (SPBF). Kinematic linkage between the SDTF and the SPBF increases the potential rupture length for earthquakes on either fault and may allow events nucleating on the SDTF to propagate much closer to the LA Basin.

  11. An architecture for object-oriented intelligent control of power systems in space

    NASA Technical Reports Server (NTRS)

    Holmquist, Sven G.; Jayaram, Prakash; Jansen, Ben H.

    1993-01-01

    A control system for autonomous distribution and control of electrical power during space missions is being developed. This system should free the astronauts from localizing faults and reconfiguring loads if problems with the power distribution and generation components occur. The control system uses an object-oriented simulation model of the power system and first principle knowledge to detect, identify, and isolate faults. Each power system component is represented as a separate object with knowledge of its normal behavior. The reasoning process takes place at three different levels of abstraction: the Physical Component Model (PCM) level, the Electrical Equivalent Model (EEM) level, and the Functional System Model (FSM) level, with the PCM the lowest level of abstraction and the FSM the highest. At the EEM level the power system components are reasoned about as their electrical equivalents, e.g, a resistive load is thought of as a resistor. However, at the PCM level detailed knowledge about the component's specific characteristics is taken into account. The FSM level models the system at the subsystem level, a level appropriate for reconfiguration and scheduling. The control system operates in two modes, a reactive and a proactive mode, simultaneously. In the reactive mode the control system receives measurement data from the power system and compares these values with values determined through simulation to detect the existence of a fault. The nature of the fault is then identified through a model-based reasoning process using mainly the EEM. Compound component models are constructed at the EEM level and used in the fault identification process. In the proactive mode the reasoning takes place at the PCM level. Individual components determine their future health status using a physical model and measured historical data. In case changes in the health status seem imminent the component warns the control system about its impending failure. The fault isolation process uses the FSM level for its reasoning base.

  12. Influence of the Saros Fault on the Periodicity of Earthquake Activity (Gelibolu Peninsula, NW Turkey)

    NASA Astrophysics Data System (ADS)

    İpek Gültekin, Derya; Karakoç, Okan; Şahin, Murat; Elitez, İrem; Yaltırak, Cenk

    2017-04-01

    Active faults are vital in terms of settlement and socio-economic aspects of a region. For this reason, it is important to determine the characteristics and impact areas of active faults correctly. The Marmara region is a tectonically active region located in the northwestern Anatolia. The northern part of the North Anatolian Fault, which was named the Saros Fault, passes through the westernmost part of this region. The Saros Fault is a 52 km-long and NE-SW-trending right-lateral strike-slip fault. In this study, the seismicity of the Gelibolu Peninsula has been examined in the light of historical records. When considering the historical records, 545, 986, 1354 and 1756 earthquakes led to damage on the settlements close to the Saros Fault. The dates of historical earthquakes were calculated by integration of previously published empirical formulas, year difference between events and velocity of GPS vectors. The acceleration map (PGA MAPS) of the region has been produced by taking into account these earthquake magnitudes, fault geometry and geology of the region, and consequently, it was seen that these maps overlap quite well with the damage records of historical earthquakes. Considering the periodicity of the Saros Fault, which majorly controls the seismicity in the region, it is aimed to find an answer to the question "how does a recent earthquake affect the region?" by the help of historical earthquake records and PGA modelling. In conclusion, our data showed that PGA values are dominant in the northern side of the Gelibolu Peninsula and this region may be affected by a magnitude 7.3 earthquake.

  13. Numerical modeling of fluid flow in a fault zone: a case of study from Majella Mountain (Italy).

    NASA Astrophysics Data System (ADS)

    Romano, Valentina; Battaglia, Maurizio; Bigi, Sabina; De'Haven Hyman, Jeffrey; Valocchi, Albert J.

    2017-04-01

    The study of fluid flow in fractured rocks plays a key role in reservoir management, including CO2 sequestration and waste isolation. We present a numerical model of fluid flow in a fault zone, based on field data acquired in Majella Mountain, in the Central Apennines (Italy). This fault zone is considered a good analogue for the massive presence of fluid migration in the form of tar. Faults are mechanical features and cause permeability heterogeneities in the upper crust, so they strongly influence fluid flow. The distribution of the main components (core, damage zone) can lead the fault zone to act as a conduit, a barrier, or a combined conduit-barrier system. We integrated existing information and our own structural surveys of the area to better identify the major fault features (e.g., type of fractures, statistical properties, geometrical and petro-physical characteristics). In our model the damage zones of the fault are described as discretely fractured medium, while the core of the fault as a porous one. Our model utilizes the dfnWorks code, a parallelized computational suite, developed at Los Alamos National Laboratory (LANL), that generates three dimensional Discrete Fracture Network (DFN) of the damage zones of the fault and characterizes its hydraulic parameters. The challenge of the study is the coupling between the discrete domain of the damage zones and the continuum one of the core. The field investigations and the basic computational workflow will be described, along with preliminary results of fluid flow simulation at the scale of the fault.

  14. Advanced Ground Systems Maintenance Enterprise Architecture Project

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M. (Compiler)

    2015-01-01

    The project implements an architecture for delivery of integrated health management capabilities for the 21st Century launch complex. The delivered capabilities include anomaly detection, fault isolation, prognostics and physics based diagnostics.

  15. Is there a "blind" strike-slip fault at the southern end of the San Jacinto Fault system?

    NASA Astrophysics Data System (ADS)

    Tymofyeyeva, E.; Fialko, Y. A.

    2015-12-01

    We have studied the interseismic deformation at the southern end of the San Jacinto fault system using Interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System (GPS) data. To complement the continuous GPS measurements from the PBO network, we have conducted campaign-style GPS surveys of 19 benchmarks along Highway 78 in the years 2012, 2013, and 2014. We processed the campaign GPS data using GAMIT to obtain horizontal velocities. The data show high velocity gradients East of the surface trace of the Coyote Creek Fault. We also processed InSAR data from the ascending and descending tracks of the ENVISAT mission between the years 2003 and 2010. The InSAR data were corrected for atmospheric artifacts using an iterative common point stacking method. We combined average velocities from different look angles to isolate the fault-parallel velocity field, and used fault-parallel velocities to compute strain rate. We filtered the data over a range of wavelengths prior to numerical differentiation, to reduce the effects of noise and to investigate both shallow and deep sources of deformation. At spatial wavelengths less than 2km the strain rate data show prominent anomalies along the San Andreas and Superstition Hills faults, where shallow creep has been documented by previous studies. Similar anomalies are also observed along parts of the Coyote Creek Fault, San Felipe Fault, and an unmapped southern continuation of the Clark strand of the San Jacinto Fault. At wavelengths on the order of 20km, we observe elevated strain rates concentrated east of the Coyote Creek Fault. The long-wavelength strain anomaly east of the Coyote Creek Fault, and the localized shallow creep observed in the short-wavelength strain rate data over the same area suggest that there may be a "blind" segment of the Clark Fault that accommodates a significant portion of the deformation on the southern end of the San Jacinto Fault.

  16. Active tectonics of the Seattle fault and central Puget sound, Washington - Implications for earthquake hazards

    USGS Publications Warehouse

    Johnson, S.Y.; Dadisman, S.V.; Childs, J. R.; Stanley, W.D.

    1999-01-01

    We use an extensive network of marine high-resolution and conventional industry seismic-reflection data to constrain the location, shallow structure, and displacement rates of the Seattle fault zone and crosscutting high-angle faults in the Puget Lowland of western Washington. Analysis of seismic profiles extending 50 km across the Puget Lowland from Lake Washington to Hood Canal indicates that the west-trending Seattle fault comprises a broad (4-6 km) zone of three or more south-dipping reverse faults. Quaternary sediment has been folded and faulted along all faults in the zone but is clearly most pronounced along fault A, the northernmost fault, which forms the boundary between the Seattle uplift and Seattle basin. Analysis of growth strata deposited across fault A indicate minimum Quaternary slip rates of about 0.6 mm/yr. Slip rates across the entire zone are estimated to be 0.7-1.1 mm/yr. The Seattle fault is cut into two main segments by an active, north-trending, high-angle, strike-slip fault zone with cumulative dextral displacement of about 2.4 km. Faults in this zone truncate and warp reflections in Tertiary and Quaternary strata and locally coincide with bathymetric lineaments. Cumulative slip rates on these faults may exceed 0.2 mm/yr. Assuming no other crosscutting faults, this north-trending fault zone divides the Seattle fault into 30-40-km-long western and eastern segments. Although this geometry could limit the area ruptured in some Seattle fault earthquakes, a large event ca. A.D. 900 appears to have involved both segments. Regional seismic-hazard assessments must (1) incorporate new information on fault length, geometry, and displacement rates on the Seattle fault, and (2) consider the hazard presented by the previously unrecognized, north-trending fault zone.

  17. Steep-dip seismic imaging of the shallow San Andreas Fault near Parkfield

    USGS Publications Warehouse

    Hole, J.A.; Catchings, R.D.; St. Clair, K.C.; Rymer, M.J.; Okaya, D.A.; Carney, B.J.

    2001-01-01

    Seismic reflection and refraction images illuminate the San Andreas Fault to a depth of 1 kilometer. The prestack depth-migrated reflection image contains near-vertical reflections aligned with the active fault trace. The fault is vertical in the upper 0.5 kilometer, then dips about 70° to the southwest to at least 1 kilometer subsurface. This dip reconciles the difference between the computed locations of earthquakes and the surface fault trace. The seismic velocity cross section shows strong lateral variations. Relatively low velocity (10 to 30%), high electrical conductivity, and low density indicate a 1-kilometer-wide vertical wedge of porous sediment or fractured rock immediately southwest of the active fault trace.

  18. Learning in the model space for cognitive fault diagnosis.

    PubMed

    Chen, Huanhuan; Tino, Peter; Rodan, Ali; Yao, Xin

    2014-01-01

    The emergence of large sensor networks has facilitated the collection of large amounts of real-time data to monitor and control complex engineering systems. However, in many cases the collected data may be incomplete or inconsistent, while the underlying environment may be time-varying or unformulated. In this paper, we develop an innovative cognitive fault diagnosis framework that tackles the above challenges. This framework investigates fault diagnosis in the model space instead of the signal space. Learning in the model space is implemented by fitting a series of models using a series of signal segments selected with a sliding window. By investigating the learning techniques in the fitted model space, faulty models can be discriminated from healthy models using a one-class learning algorithm. The framework enables us to construct a fault library when unknown faults occur, which can be regarded as cognitive fault isolation. This paper also theoretically investigates how to measure the pairwise distance between two models in the model space and incorporates the model distance into the learning algorithm in the model space. The results on three benchmark applications and one simulated model for the Barcelona water distribution network confirm the effectiveness of the proposed framework.

  19. Map and database of Quaternary faults and folds in Colombia and its offshore regions

    USGS Publications Warehouse

    Paris, Gabriel; Machette, Michael N.; Dart, Richard L.; Haller, Kathleen M.

    2000-01-01

    As part of the International Lithosphere Program’s “World Map of Major Active Faults,” the U.S. Geological Survey (USGS) is assisting in the compilation of a series of digital maps of Quaternary faults and folds in Western Hemisphere countries. The maps show the locations, ages, and activity rates of major earthquake-related features such as faults and fault-related folds. They are accompanied by databases that describe these features and document current information on their activity in the Quaternary. Top date, the project has published fault and fold maps for Costa Rica (Montero and others, 1998), Panama (Cowan and others, 1998), Venezuela (Audemard and others, 2000), Bolovia/Chile (Lavenu, and others, 2000), and Argentina (Costa and others, 2000). The project is a key part of the Global Seismic Hazards Assessment Program (ILP Project II-0) for the International Decade for Natural Hazard Disaster Reduction.

  20. Coulomb stress analysis of the 21 February 2008 Mw= 6.0 Wells, Nevada, earthquake

    USGS Publications Warehouse

    Sevilgen, Volkan

    2011-01-01

    Static Coulomb stress changes imparted by the February 21, 2008 Wells, Nevada earthquake are calculated, using an 8 x 6 km rectangular patch with a uniform slip as a source fault. Stress changes are resolved on nearby active faults using their rake, dip, and strike direction, assuming a fault friction of 0.4. The largest Coulomb stress increase (0.2 bars) imparted to surrounding major active faults from the Wells earthquake occurs on the Clover Hill fault, which may be the southern continuation of the ruptured fault. A 0.1 bar Coulomb stress increase is calculated on the western Snake Mountains fault. Coulomb stress decreases of 0.5 bars are calculated for the northern parts of the Independence and Ruby Mountains faults. The Coulomb stress change is calculated on relocated aftershocks assuming that they have the same strike, dip, and rake, as the source fault. Under this assumption, 75% of the aftershocks received a Coulomb stress increase.

  1. Kinematic vicissitudes and the spatial distribution of the alteration zone related to the Byobuyama fault, central Japan. (Implication; Influence of another faults.)

    NASA Astrophysics Data System (ADS)

    Katori, T.; Kobayashi, K.

    2015-12-01

    The central Japan is one of the most concentrated area of active faults (Quaternary fault). These are roughly classified into two orthogonally-oriented fault sets of NE-SW and NW-SE strikes. The study area is located in Gifu prefecture, central Japan. In there, the basement rocks are composed mainly of Triassic-Jurassic accretionary prism (Mino belt), Cretaceous Nohi Rhyolite and Cretaceous granitic rocks. Miocene Mizunami G. and Pliocene-Pleistocene Toki Sand and Gravel F. unconformably cover the basement rocks. The Byobuyama fault, 32 km in length, is NE-SW strike and displaces perpendicularly the Toki Sand and Gravel F. by 500 m. The northeastern terminal of the fault has contact with the southern terminal of the Atera fault of NW-SE strike and offset their displacements each other. It is clear that the activity of the Byobuyama fault plays a role of the development of the complicated fault geometry system in the central Japan. In this study, we performed a broad-based investigation along the Byobuyama fault and collected samples. Actually, we observed 400 faults and analyzed 200 fault rocks. Based on these results, we obtained the following new opinion. 1. The Byobuyama fault has experienced following activities that can be divided to 3 stages at least under different stress field. 1) Movement with the sinisterly sense (preserved in cataclasite zone). 2) Dextral movement (preserved in fault gouge zone). 3) Reverse fault movement (due to the aggressive rise of mountains). In addition, the change from Stage 2 to Stage 3 is a continuous. 2. There is a relationship between the distance from the trace of the Byobuyama fault and the combination of alteration minerals included in the fault rocks. 3. In the central part of the Byobuyama fault (CPBF), fault plane trend and combination of alteration minerals shows specific features. The continuous change is considered to mean the presence of factors that interfere with the dextral movement of the Byobuyama fault. What is considered as one of the factors is the effect of the fault zone adjacent, especially the Atera fault. CPBF is located just southeast extension of the Akou fault, NW-SE strike. We think that this extension reaches up to CPBF. Based on the above, we make a presentation about interaction of two faults from the point of view of kinematic vicissitudes and alteration process.

  2. Detecting Taiwan's Shanchiao Active Fault Using AMT and Gravity Methods

    NASA Astrophysics Data System (ADS)

    Liu, H.-C.; Yang, C.-H.

    2009-04-01

    Taiwan's Shanchiao normal fault runs in a northeast-southwest direction and is located on the western edge of the Taipei Basin in northern Taiwan. The overburden of the fault is late Quaternary sediment with a thickness of approximately a few tenth of a meter to several hundred meters. No detailed studies of the western side of the Shanchiao fault are available. As Taiwan is located on the Neotectonic Belt in the western Pacific, detecting active faults near the Taipei metropolitan area will provide necessary information for further disaster prevention. It is the responsibility of geologists and geophysicists in Taiwan to perform this task. Examination of the resistivity and density contrasts of subsurface layers permits a mapping of the Shanchiao fault and the deformed Tertiary strata of the Taipei Basin. The audio-frequency magnetotelluric (AMT) method and gravity method were chosen for this study. Significant resistivity and gravity anomalies were observed in the suspected fault zone. The interpretation reveals a good correlation between the features of the Shanchiao fault and resistivity and density distribution at depth. In this observation, AMT and gravity methods provides a viable means for mapping the Shanchiao fault position and studying its features associated with the subsidence of the western side of the Taipei Basin. This study indicates the AMT and gravity methods' considerable potential for accurately mapping an active fault.

  3. Active tectonics of the onshore Hengchun Fault using UAS DSM combined with ALOS PS-InSAR time series (Southern Taiwan)

    NASA Astrophysics Data System (ADS)

    Deffontaines, Benoit; Chang, Kuo-Jen; Champenois, Johann; Lin, Kuan-Chuan; Lee, Chyi-Tyi; Chen, Rou-Fei; Hu, Jyr-Ching; Magalhaes, Samuel

    2018-03-01

    Characterizing active faults and quantifying their activity are major concerns in Taiwan, especially following the major Chichi earthquake on 21 September 1999. Among the targets that still remain poorly understood in terms of active tectonics are the Hengchun and Kenting faults (Southern Taiwan). From a geodynamic point of view, the faults affect the outcropping top of the Manila accretionary prism of the Manila subduction zone that runs from Luzon (northern Philippines) to Taiwan. In order to better locate and quantify the location and quantify the activity of the Hengchun Fault, we start from existing geological maps, which we update thanks to the use of two products derived from unmanned aircraft system acquisitions: (1) a very high precision (< 50 cm) and resolution (< 10 cm) digital surface model (DSM) and (2) a georeferenced aerial photograph mosaic of the studied area. Moreover, the superimposition of the resulting structural sketch map with new Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) results obtained from PALSAR ALOS images, validated by Global Positioning System (GPS) and leveling data, allows the characterization and quantification of the surface displacements during the monitoring period (2007-2011). We confirm herein the geometry, characterization and quantification of the active Hengchun Fault deformation, which acts as an active left-lateral transpressive fault. As the Hengchun ridge was the location of one of the last major earthquakes in Taiwan (26 December 2006, depth: 44 km, ML = 7.0), Hengchun Peninsula active tectonics must be better constrained in order if possible to prevent major destructions in the near future.

  4. Geomorphology and Kinematics of the Nobi-Ise Active Fault Zone, Central Japan: Implications for the kinematic growth of tectonic landforms within an active thrust belt

    NASA Astrophysics Data System (ADS)

    Ishiyama, T.; Mueller, K. J.; Togo, M.; Takemura, K.; Okada, A.

    2002-12-01

    We present structural models constrained by tectonic geomorphology, surface geologic mapping and high-resolution seismic reflection profiles to define the kinematic evolution and geometry of active fault-related folds along the Nobi-Ise active fault zone (NAFZ). The NAFZ is an active intraplate fault system in central Japan, and consists of a 110-km-long array of active, east-verging reverse faults. We focus on the northern half of the NAFZ, where we use the kinematic evolution of active fault-related folds to constrain rates of slip on underlying blind thrusts and the rate of contraction across the belt since early Quaternary time. Fluvial terraces folded across the east-dipping forelimb, and west-dipping backlimb of the frontal Kuwana anticline suggest that it grows above a stacked sequence of thin-skinned wedge thrusts. Numerous secondary, bedding-parallel thrusts also deform the terraces and are interpreted to form by flexural slip folding that acts to consume slip on the primary blind thrusts across synclinal axial surfaces. Late Holocene fold scarps formed in the floodplain of the Ibi River east of Kuwana anticline coincide with the projected surface trace of the east-vergent wedge thrust tip and indicate the structure has accommodated coseismic (?) kink-band migration of a fault-bend fold during a historic blind thrust earthquake in 1586. A topographic cross-section based on a detailed photogrammetric map suggests 111 m of uplift of ca. 50-80 ka fluvial terraces deposited across the forelimb. For a 35° thrust, this yields the minimum slip rate of 2.7-4.8 mm/yr on the deepest wedge thrust beneath Kuwana anticline. Kinematic analysis for the much larger thrust defined to the west (the Fumotomura fault) suggests that folding of fluvial terraces occurred by trishear fault-propagation folding above a more steeply-dipping (54°), basement-involved blind thrust that propagated upward from the base of the seismogenic crust (about 12 km). Pleistocene growth strata defined by tephra (ca. 1.6 Ma) suggest the Fumotomura fault slips at a rate of 0.7-0.9 mm/yr.

  5. Improved alignment of the Hengchun Fault (southern Taiwan) based on fieldwork, structure-from-motion, shallow drilling, and levelling data

    NASA Astrophysics Data System (ADS)

    Giletycz, Slawomir Jack; Chang, Chung-Pai; Lin, Andrew Tien-Shun; Ching, Kuo-En; Shyu, J. Bruce H.

    2017-11-01

    The fault systems of Taiwan have been repeatedly studied over many decades. Still, new surveys consistently bring fresh insights into their mechanisms, activity and geological characteristics. The neotectonic map of Taiwan is under constant development. Although the most active areas manifest at the on-land boundary of the Philippine Sea Plate and Eurasia (a suture zone known as the Longitudinal Valley), and at the southwestern area of the Western Foothills, the fault systems affect the entire island. The Hengchun Peninsula represents the most recently emerged part of the Taiwan orogen. This narrow 20-25 km peninsula appears relatively aseismic. However, at the western flank the peninsula manifests tectonic activity along the Hengchun Fault. In this study, we surveyed the tectonic characteristics of the Hengchun Fault. Based on fieldwork, four years of monitoring fault displacement in conjunction with levelling data, core analysis, UAV surveys and mapping, we have re-evaluated the fault mechanisms as well as the geological formations of the hanging and footwall. We surveyed features that allowed us to modify the existing model of the fault in two ways: 1) correcting the location of the fault line in the southern area of the peninsula by moving it westwards about 800 m; 2) defining the lithostratigraphy of the hanging and footwall of the fault. A bathymetric map of the southern area of the Hengchun Peninsula obtained from the Atomic Energy Council that extends the fault trace offshore to the south distinctively matches our proposed fault line. These insights, coupled with crust-scale tomographic data from across the Manila accretionary system, form the basis of our opinion that the Hengchun Fault may play a major role in the tectonic evolution of the southern part of the Taiwan orogen.

  6. Shallow Vs Structure Accross Hayward Fault Zone Inferred from Multichannel Analysis of Surface Waves (MASW)

    NASA Astrophysics Data System (ADS)

    Chan, J. H.; Richardson, I. S.; Strayer, L. M.; Catchings, R.; McEvilly, A.; Goldman, M.; Criley, C.; Sickler, R. R.

    2017-12-01

    The Hayward Fault Zone (HFZ) includes the Hayward fault (HF), as well as several named and unnamed subparallel, subsidiary faults to the east, among them the Quaternary-active Chabot Fault (CF), the Miller Creek Fault (MCF), and a heretofore unnamed fault, the Redwood Thrust Fault (RTF). With an ≥M6.0 recurrence interval of 130 y for the HF and the last major earthquake in 1868, the HFZ is a major seismic hazard in the San Francisco Bay Area, exacerbated by the many unknown and potentially active secondary faults of the HFZ. In 2016, researchers from California State University, East Bay, working in concert with the United States Geological Survey conducted the East Bay Seismic Investigation (EBSI). We deployed 296 RefTek RT125 (Texan) seismographs along a 15-km-long linear seismic profile across the HF, extending from the bay in San Leandro to the hills in Castro Valley. Two-channel seismographs were deployed at 100 m intervals to record P- and S-waves, and additional single-channel seismographs were deployed at 20 m intervals where the seismic line crossed mapped faults. The active-source survey consisted of 16 buried explosive shots located at approximately 1-km intervals along the seismic line. We used the Multichannel Analysis of Surfaces Waves (MASW) method to develop 2-D shear-wave velocity models across the CF, MCF, and RTF. Preliminary MASW analysis show areas of anomalously low S-wave velocities , indicating zones of reduced shear modulus, coincident with these three mapped faults; additional velocity anomalies coincide with unmapped faults within the HFZ. Such compliant zones likely correspond to heavily fractured rock surrounding the faults, where the shear modulus is expected to be low compared to the undeformed host rock.

  7. Hardware-in-the-loop grid simulator system and method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, John Curtiss; Collins, Edward Randolph; Rigas, Nikolaos

    A hardware-in-the-loop (HIL) electrical grid simulation system and method that combines a reactive divider with a variable frequency converter to better mimic and control expected and unexpected parameters in an electrical grid. The invention provides grid simulation in a manner to allow improved testing of variable power generators, such as wind turbines, and their operation once interconnected with an electrical grid in multiple countries. The system further comprises an improved variable fault reactance (reactive divider) capable of providing a variable fault reactance power output to control a voltage profile, therein creating an arbitrary recovery voltage. The system further comprises anmore » improved isolation transformer designed to isolate zero-sequence current from either a primary or secondary winding in a transformer or pass the zero-sequence current from a primary to a secondary winding.« less

  8. The northwest trending north Boquerón Bay-Punta Montalva Fault Zone; A through going active fault system in southwestern Puerto Rico

    USGS Publications Warehouse

    Roig‐Silva, Coral Marie; Asencio, Eugenio; Joyce, James

    2013-01-01

    The North Boquerón Bay–Punta Montalva fault zone has been mapped crossing the Lajas Valley in southwest Puerto Rico. Identification of the fault was based upon detailed analysis of geophysical data, satellite images, and field mapping. The fault zone consists of a series of Cretaceous bedrock faults that reactivated and deformed Miocene limestone and Quaternary alluvial fan sediments. The fault zone is seismically active (local magnitude greater than 5.0) with numerous locally felt earthquakes. Focal mechanism solutions suggest strain partitioning with predominantly east–west left-lateral displacements with small normal faults striking mostly toward the northeast. Northeast-trending fractures and normal faults can be found in intermittent streams that cut through the Quaternary alluvial fan deposits along the southern margin of the Lajas Valley, an east–west-trending 30-km-long fault-controlled depression. Areas of preferred erosion within the alluvial fan trend toward the west-northwest parallel to the onland projection of the North Boquerón Bay fault. The North Boquerón Bay fault aligns with the Punta Montalva fault southeast of the Lajas Valley. Both faults show strong southward tilting of Miocene strata. On the western end, the Northern Boquerón Bay fault is covered with flat-lying Holocene sediments, whereas at the southern end the Punta Montalva fault shows left-lateral displacement of stream drainage on the order of a few hundred meters.

  9. Contribution of Transverse Structures, Magma, and Crustal Fluids to Continental Rift Evolution: The East African Rift in Southern Kenya

    NASA Astrophysics Data System (ADS)

    Kattenhorn, S. A.; Muirhead, J.; Dindi, E.; Fischer, T. P.; Lee, H.; Ebinger, C. J.

    2013-12-01

    The Magadi rift in southern Kenya formed at ~7 Ma within Proterozoic rocks of the Mozambique orogenic belt, parallel to its contact with the Archean Tanzania craton. The rift is bounded to the west by the ~1600-m-high Nguruman border fault. The rift center is intensely dissected by normal faults, most of which offset ~1.4-0.8 Ma lavas. Current E-W extensional velocities are ~2-4 mm/yr. Published crustal tomography models from the rift center show narrow high velocity zones in the upper crust, interpreted as cooled magma intrusions. Local, surface-wave, and SKS-splitting measurements show a rift-parallel anisotropy interpreted to be the result of aligned melt zones in the lithosphere. Our field observations suggest that recent fault activity is concentrated at the rift center, consistent with the location of the 1998 seismic swarm that was associated with an inferred diking event. Fault zones are pervasively mineralized by calcite, likely from CO2-rich fluids. A system of fault-fed springs provides the sole fluid input for Lake Magadi in the deepest part of the basin. Many of these springs emanate from the Kordjya fault, a 50-km-long, NW-SE striking, transverse structure connecting a portion of the border fault system (the NW-oriented Lengitoto fault) to the current locus of strain and magmatism at the rift center. Sampled springs are warm (44.4°C) and alkaline (pH=10). Dissolved gas data (mainly N2-Ar-He) suggests two-component mixing (mantle and air), possibly indicating that fluids are delivered into the fault zone from deep sources, consistent with a dominant role of magmatism to the focusing of strain at the rift center. The Kordjya fault has developed prominent fault scarps (~150 m high) despite being oblique to the dominant ~N-S fault fabric, and has utilized an en echelon alignment of N-S faults to accommodate its motion. These N-S faults show evidence of sinistral-oblique motion and imply a bookshelf style of faulting to accommodate dextral-oblique motion along the Kordjya fault. Fault relationships imply that the NW-SE transverse structures represent recent activity in the rift, and have locally tilted Late Pleistocene sediments. Given the abundance of N-S striking faults in the rift, the tendency for fault activity along transverse features suggests a change in the rifting driving forces that are likely the result of an interplay between strain localization at the rift center, inherited crustal fabric (NW structures in the Mozambique belt), a possible counterclockwise rotation of stress related to interacting rift segments in southern Kenya, and an active hydrothermal fluid regime that facilitates faulting. By connecting the Lengitoto fault to the rift center, the Kordjya fault has effectively caused the Magadi rift to bypass the Nguruman border fault, which has been rendered inactive and thus no longer a contributor to the rifting process.

  10. Motion-Based System Identification and Fault Detection and Isolation Technologies for Thruster Controlled Spacecraft

    NASA Technical Reports Server (NTRS)

    Wilson, Edward; Sutter, David W.; Berkovitz, Dustin; Betts, Bradley J.; Kong, Edmund; delMundo, Rommel; Lages, Christopher R.; Mah, Robert W.; Papasin, Richard

    2003-01-01

    By analyzing the motions of a thruster-controlled spacecraft, it is possible to provide on-line (1) thruster fault detection and isolation (FDI), and (2) vehicle mass- and thruster-property identification (ID). Technologies developed recently at NASA Ames have significantly improved the speed and accuracy of these ID and FDI capabilities, making them feasible for application to a broad class of spacecraft. Since these technologies use existing sensors, the improved system robustness and performance that comes with the thruster fault tolerance and system ID can be achieved through a software-only implementation. This contrasts with the added cost, mass, and hardware complexity commonly required by FDI. Originally developed in partnership with NASA - Johnson Space Center to provide thruster FDI capability for the X-38 during re-entry, these technologies are most recently being applied to the MIT SPHERES experimental spacecraft to fly on the International Space Station in 2004. The model-based FDI uses a maximum-likelihood calculation at its core, while the ID is based upon recursive least squares estimation. Flight test results from the SPHERES implementation, as flown aboard the NASA KC-1 35A 0-g simulator aircraft in November 2003 are presented.

  11. A Cooperative Approach to Virtual Machine Based Fault Injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naughton III, Thomas J; Engelmann, Christian; Vallee, Geoffroy R

    Resilience investigations often employ fault injection (FI) tools to study the effects of simulated errors on a target system. It is important to keep the target system under test (SUT) isolated from the controlling environment in order to maintain control of the experiement. Virtual machines (VMs) have been used to aid these investigations due to the strong isolation properties of system-level virtualization. A key challenge in fault injection tools is to gain proper insight and context about the SUT. In VM-based FI tools, this challenge of target con- text is increased due to the separation between host and guest (VM).more » We discuss an approach to VM-based FI that leverages virtual machine introspection (VMI) methods to gain insight into the target s context running within the VM. The key to this environment is the ability to provide basic information to the FI system that can be used to create a map of the target environment. We describe a proof- of-concept implementation and a demonstration of its use to introduce simulated soft errors into an iterative solver benchmark running in user-space of a guest VM.« less

  12. Constraining slip rates and spacings for active normal faults

    NASA Astrophysics Data System (ADS)

    Cowie, Patience A.; Roberts, Gerald P.

    2001-12-01

    Numerous observations of extensional provinces indicate that neighbouring faults commonly slip at different rates and, moreover, may be active over different time intervals. These published observations include variations in slip rate measured along-strike of a fault array or fault zone, as well as significant across-strike differences in the timing and rates of movement on faults that have a similar orientation with respect to the regional stress field. Here we review published examples from the western USA, the North Sea, and central Greece, and present new data from the Italian Apennines that support the idea that such variations are systematic and thus to some extent predictable. The basis for the prediction is that: (1) the way in which a fault grows is fundamentally controlled by the ratio of maximum displacement to length, and (2) the regional strain rate must remain approximately constant through time. We show how data on fault lengths and displacements can be used to model the observed patterns of long-term slip rate where measured values are sparse. Specifically, we estimate the magnitude of spatial variation in slip rate along-strike and relate it to the across-strike spacing between active faults.

  13. Holocene faulting in the Bellingham forearc basin: upper-plate deformation at the northern end of the Cascadia subduction zone

    USGS Publications Warehouse

    Kelsey, Harvey M.; Sherrod, Brian L.; Blakely, Richard J.; Haugerud, Ralph A.

    2013-01-01

    The northern Cascadia forearc takes up most of the strain transmitted northward via the Oregon Coast block from the northward-migrating Sierra Nevada block. The north-south contractional strain in the forearc manifests in upper-plate faults active during the Holocene, the northern-most components of which are faults within the Bellingham Basin. The Bellingham Basin is the northern of four basins of the actively deforming northern Cascadia forearc. A set of Holocene faults, Drayton Harbor, Birch Bay, and Sandy Point faults, occur within the Bellingham Basin and can be traced from onshore to offshore using a combination of aeromagnetic lineaments, paleoseismic investigations and scarps identified using LiDAR imagery. With the recognition of such Holocene faults, the northernmost margin of the actively deforming Cascadia forearc extends 60 km north of the previously recognized limit of Holocene forearc deformation. Although to date no Holocene faults are recognized at the northern boundary of the Bellingham Basin, which is 15 km north of the international border, there is no compelling tectonic reason to expect that Holocene faults are limited to south of the international border.

  14. A 13 km Long Paleoseismological Trench in Western Germany

    NASA Astrophysics Data System (ADS)

    Grützner, C. H.; Reicherter, K.; Winandy, J.

    2012-04-01

    The expansion of an open pit lignite mine in this area makes it necessary to translocate one of Germany's most frequented, E-W trending highways for a length of 13 km during the next months and years. By this occasion, one of the largest faults of the Lower Rhine Embayment (LRE), the Rurrand Fault, was already cut in 2010. We applied geological mapping and surface-near geophysical techniques for investigating this possible candidate for the 1756 Düren earthquake (M>6; and considered as the strongest historical earthquake in Germany), and found clear hints for recent active faulting. The LRE in western Germany is one of the seismically most active areas in Central Europe. Earthquakes stronger than M6 have been documented by paleoseismological and archeoseismological investigations and written sources. Instrumental seismicity reached ML5.9 (Mw5.4; April 13th, 1992) in this densely populated area with alone nearby Cologne having more than one million inhabitants. Active faults trend NW-SE in a horst-graben system, parallel to the rivers Rhine and Rur. Recent studies reported that active faults in the study area are characterized by recurrence periods in the order of tens of ka. Those faults in western Germany are often not visible in the field due to relatively high erosion rates and therefore, the seismic hazard might be underestimated. The ongoing highway construction works will cut more (active) faults. We expect at least eight already mapped faults to be cut by the earth works, some of which capable of causing damaging earthquakes judging from their mere length. The construction work is a unique opportunity for paleoseismological investigations at already known, but yet unstudied faults. We hope to gather additional data for an improvement of seismic hazard estimations in Western Germany.

  15. Transform fault earthquakes in the North Atlantic: Source mechanisms and depth of faulting

    NASA Technical Reports Server (NTRS)

    Bergman, Eric A.; Solomon, Sean C.

    1987-01-01

    The centroid depths and source mechanisms of 12 large earthquakes on transform faults of the northern Mid-Atlantic Ridge were determined from an inversion of long-period body waveforms. The earthquakes occurred on the Gibbs, Oceanographer, Hayes, Kane, 15 deg 20 min, and Vema transforms. The depth extent of faulting during each earthquake was estimated from the centroid depth and the fault width. The source mechanisms for all events in this study display the strike slip motion expected for transform fault earthquakes; slip vector azimuths agree to 2 to 3 deg of the local strike of the zone of active faulting. The only anomalies in mechanism were for two earthquakes near the western end of the Vema transform which occurred on significantly nonvertical fault planes. Secondary faulting, occurring either precursory to or near the end of the main episode of strike-slip rupture, was observed for 5 of the 12 earthquakes. For three events the secondary faulting was characterized by reverse motion on fault planes striking oblique to the trend of the transform. In all three cases, the site of secondary reverse faulting is near a compression jog in the current trace of the active transform fault zone. No evidence was found to support the conclusions of Engeln, Wiens, and Stein that oceanic transform faults in general are either hotter than expected from current thermal models or weaker than normal oceanic lithosphere.

  16. Preliminary Studies of the Structural Characteristics of the Lubao Fault using 2D High Resolution Shallow Seismic Reflection Profile

    NASA Astrophysics Data System (ADS)

    Bonus, A. A. B.; Lagmay, A. M. A.; Rodolfo, K. S.

    2016-12-01

    The Lubao fault, located in the province of Pampanga, Philippines, is part of the Bataan Volcanic Arc Complex (BVAC). Active faults within and around the BVAC include the East Zambales and Iba faults; according to the official active faults map of the Philippine Institute of Volcanology and Seismology (PHIVOLCS) there are no other existing active faults in the area. The Lubao Fault distinctly separates wetlands to the northeast and dry alluvial plains to the northwest of Manila Bay. Long term subsidence and high sedimentation rates were observed in the fault and over the past 1.5 thousand years, the northeastern block has dropped 3.5 meters. Along the southwest flank of Mount Natib, tectonic structures were identified using surface mapping and remote sensing. The Persistent Scattering Interferometric Synthetic Aperture Radar (PSInSAR) data results of Eco et al. in 2015 shows uplifts and subsidence in the BVAC area delineating the Lubao Fault. A 480-meter seismic reflection line was laid down perpendicular to the fault with a recording system consisting of 48 channels of Geometrics geophones spaced 10 meters apart. Acquired data were processed using the standard seismic reflection processing sequence by Yilmaz 2001. This preliminary study produced a high resolution subsurface profile of the Lubao fault in the village of San Rafael, Lubao where it is well manifested. The velocity model integrated by stratigraphic data of drilled core shows subsurface lithology. The depth converted profile reveals clear structures and dipping segments which indicates a history of movement along the Lubao fault. Discontinuity of reflectors, either offsets or breaks, are considered structures along the subsurface of the study area. Additional structural mapping and seismic lines along the projected fault are planned in the future to further detail the characteristics of the Lubao Fault. The surface observations made by other researchers coupled with the subsurface seismic profile mapping of this study hopes to clearly delineate and characterize the Lubao Fault.

  17. Probabilistic seismic hazard study based on active fault and finite element geodynamic models

    NASA Astrophysics Data System (ADS)

    Kastelic, Vanja; Carafa, Michele M. C.; Visini, Francesco

    2016-04-01

    We present a probabilistic seismic hazard analysis (PSHA) that is exclusively based on active faults and geodynamic finite element input models whereas seismic catalogues were used only in a posterior comparison. We applied the developed model in the External Dinarides, a slow deforming thrust-and-fold belt at the contact between Adria and Eurasia.. is the Our method consists of establishing s two earthquake rupture forecast models: (i) a geological active fault input (GEO) model and, (ii) a finite element (FEM) model. The GEO model is based on active fault database that provides information on fault location and its geometric and kinematic parameters together with estimations on its slip rate. By default in this model all deformation is set to be released along the active faults. The FEM model is based on a numerical geodynamic model developed for the region of study. In this model the deformation is, besides along the active faults, released also in the volumetric continuum elements. From both models we calculated their corresponding activity rates, its earthquake rates and their final expected peak ground accelerations. We investigated both the source model and the earthquake model uncertainties by varying the main active fault and earthquake rate calculation parameters through constructing corresponding branches of the seismic hazard logic tree. Hazard maps and UHS curves have been produced for horizontal ground motion on bedrock conditions VS 30 ≥ 800 m/s), thereby not considering local site amplification effects. The hazard was computed over a 0.2° spaced grid considering 648 branches of the logic tree and the mean value of 10% probability of exceedance in 50 years hazard level, while the 5th and 95th percentiles were also computed to investigate the model limits. We conducted a sensitivity analysis to control which of the input parameters influence the final hazard results in which measure. The results of such comparison evidence the deformation model and with their internal variability together with the choice of the ground motion prediction equations (GMPEs) are the most influencing parameter. Both of these parameters have significan affect on the hazard results. Thus having good knowledge of the existence of active faults and their geometric and activity characteristics is of key importance. We also show that PSHA models based exclusively on active faults and geodynamic inputs, which are thus not dependent on past earthquake occurrences, provide a valid method for seismic hazard calculation.

  18. Heterogeneity in friction strength of an active fault by incorporation of fragments of the surrounding host rock

    NASA Astrophysics Data System (ADS)

    Kato, Naoki; Hirono, Tetsuro

    2016-07-01

    To understand the correlation between the mesoscale structure and the frictional strength of an active fault, we performed a field investigation of the Atera fault at Tase, central Japan, and made laboratory-based determinations of its mineral assemblages and friction coefficients. The fault zone contains a light gray fault gouge, a brown fault gouge, and a black fault breccia. Samples of the two gouges contained large amounts of clay minerals such as smectite and had low friction coefficients of approximately 0.2-0.4 under the condition of 0.01 m s-1 slip velocity and 0.5-2.5 MP confining pressure, whereas the breccia contained large amounts of angular quartz and feldspar and had a friction coefficient of 0.7 under the same condition. Because the fault breccia closely resembles the granitic rock of the hangingwall in composition, texture, and friction coefficient, we interpret the breccia as having originated from this protolith. If the mechanical incorporation of wall rocks of high friction coefficient into fault zones is widespread at the mesoscale, it causes the heterogeneity in friction strength of fault zones and might contribute to the evolution of fault-zone architectures.

  19. Fault recovery characteristics of the fault tolerant multi-processor

    NASA Technical Reports Server (NTRS)

    Padilla, Peter A.

    1990-01-01

    The fault handling performance of the fault tolerant multiprocessor (FTMP) was investigated. Fault handling errors detected during fault injection experiments were characterized. In these fault injection experiments, the FTMP disabled a working unit instead of the faulted unit once every 500 faults, on the average. System design weaknesses allow active faults to exercise a part of the fault management software that handles byzantine or lying faults. It is pointed out that these weak areas in the FTMP's design increase the probability that, for any hardware fault, a good LRU (line replaceable unit) is mistakenly disabled by the fault management software. It is concluded that fault injection can help detect and analyze the behavior of a system in the ultra-reliable regime. Although fault injection testing cannot be exhaustive, it has been demonstrated that it provides a unique capability to unmask problems and to characterize the behavior of a fault-tolerant system.

  20. Method and apparatus for transfer function simulator for testing complex systems

    NASA Technical Reports Server (NTRS)

    Kavaya, M. J. (Inventor)

    1985-01-01

    A method and apparatus for testing the operation of a complex stabilization circuit in a closed loop system is presented. The method is comprised of a programmed analog or digital computing system for implementing the transfer function of a load thereby providing a predictable load. The digital computing system employs a table stored in a microprocessor in which precomputed values of the load transfer function are stored for values of input signal from the stabilization circuit over the range of interest. This technique may be used not only for isolating faults in the stabilization circuit, but also for analyzing a fault in a faulty load by so varying parameters of the computing system as to simulate operation of the actual load with the fault.

  1. A new fault diagnosis algorithm for AUV cooperative localization system

    NASA Astrophysics Data System (ADS)

    Shi, Hongyang; Miao, Zhiyong; Zhang, Yi

    2017-10-01

    Multiple AUVs cooperative localization as a new kind of underwater positioning technology, not only can improve the positioning accuracy, but also has many advantages the single AUV does not have. It is necessary to detect and isolate the fault to increase the reliability and availability of the AUVs cooperative localization system. In this paper, the Extended Multiple Model Adaptive Cubature Kalmam Filter (EMMACKF) method is presented to detect the fault. The sensor failures are simulated based on the off-line experimental data. Experimental results have shown that the faulty apparatus can be diagnosed effectively using the proposed method. Compared with Multiple Model Adaptive Extended Kalman Filter and Multi-Model Adaptive Unscented Kalman Filter, both accuracy and timelines have been improved to some extent.

  2. Fault management for the Space Station Freedom control center

    NASA Technical Reports Server (NTRS)

    Clark, Colin; Jowers, Steven; Mcnenny, Robert; Culbert, Chris; Kirby, Sarah; Lauritsen, Janet

    1992-01-01

    This paper describes model based reasoning fault isolation in complex systems using automated digraph analysis. It discusses the use of the digraph representation as the paradigm for modeling physical systems and a method for executing these failure models to provide real-time failure analysis. It also discusses the generality, ease of development and maintenance, complexity management, and susceptibility to verification and validation of digraph failure models. It specifically describes how a NASA-developed digraph evaluation tool and an automated process working with that tool can identify failures in a monitored system when supplied with one or more fault indications. This approach is well suited to commercial applications of real-time failure analysis in complex systems because it is both powerful and cost effective.

  3. Paleo-earthquake Analysis from the Morphologic Features of Unconsolidated-sediment Fault Scarp: An Example from Dushanzi Thrust Fault in the Northern Tianshan, China

    NASA Astrophysics Data System (ADS)

    Wei, Z.; He, H.

    2016-12-01

    Fault scarp is important specific tectonic landform caused by surface-rupture earthquake. The morphology of the fault scarp in unconsolidated sediment could evolve in a predictable, time-dependent diffusion model. As a result, the investigation of fault-generated fault scarps is a prevalent technique used to study fault activity, geomorphic evolution, and the recurrence of faulting events. Addition to obtainment of cumulative displacement, gradient changes, i.e. slope breaks, in the morphology of fault scarps could indicate multiple rupture events along an active fault. In this study, we exacted a large set of densely spaced topographic profiles across fault scarp from LiDAR-derive DEM to detect subtle changes in the fault scarp geometry at the Dushanzi trust fault in the Northern Tianshan, China. Several slope breaks in topographic profiles can be identified, which may represent repeated rupture at the investigated fault. The number of paleo-earthquakes derived from our analysis is 4-3, well in agreement with the investigation results from the paleoseismological trenches. Statistical analysis results show that the scarp height of fault scarp with one slope break is 0.75±0.12 (mean value ±1 standard deviation) m representing the last incremental displacement during earthquakes; the height of fault scarp with two slope breaks is 1.86±0.32 m, and the height of fault scarp with three-four slope break is 6.45±1.44 m. Our approach enables us to obtain paleo-earthquake information from geomorphological analysis of fault scarps, and to assess the multiple rupture history of a complex fault system.

  4. Physical and Transport Properties of the carbonate-bearing faults: experimental insights from the Monte Maggio Fault zone (Central Italy)

    NASA Astrophysics Data System (ADS)

    Trippetta, Fabio; Scuderi, Marco Maria; Collettini, Cristiano

    2015-04-01

    Physical properties of fault zones vary with time and space and in particular, fluid flow and permeability variations are strictly related to fault zone processes. Here we investigate the physical properties of carbonate samples collected along the Monte Maggio normal Fault (MMF), a regional structure (length ~10 km and displacement ~500 m) located within the active system of the Apennines. In particular we have studied an exceptionally exposed outcrop of the fault within the Calcare Massiccio formation (massive limestone) that has been recently exposed by new roadworks. Large cores (100 mm in diameter and up to 20 cm long) drilled perpendicular to the fault plane have been used to: 1) characterize the damage zone adjacent to the fault plane and 2) to obtain smaller cores, 38 mm in diameter both parallel and perpendicular to the fault plane, for rock deformation experiments. At the mesoscale two types of cataclastic damage zones can be identified in the footwall block (i) a Cemented Cataclasite (CC) and (ii), a Fault Breccia (FB). Since in some portions of the fault the hangingwall (HW) is still preserved we also collected HW samples. After preliminary porosity measurements at ambient pressure, we performed laboratory measurements of Vp, Vs, and permeability at effective confining pressures up to 100 MPa in order to simulate crustal conditions. The protolith has a primary porosity of about 7 %, formed predominantly by isolated pores since the connected porosity is only 1%. FB samples are characterized by 10% and 5% of bulk and connected porosity respectively, whilst CC samples show lower bulk porosity (7%) and a connected porosity of 2%. From ambient pressure to 100 MPa, P-wave velocity is about 5,9-6,0 km/s for the protolith, ranges from 4,9 km/s to 5,9 km/s for FB samples, whereas it is constant at 5,9 km/s for CC samples and ranges from 5,4 to 5,7 for HW sample. Vs shows the same behaviour resulting in a constant Vp/Vs ratio from 0 to 100 MPa that ranges from 1,5 to 1,98 where the lower values are recorded for FB samples. Permeability of FB samples is pressure dependent starting from 10-17 m2 at ambient pressure to 10-18 m2 at 100 MPa confining pressure. In contrast, for CC samples, permeability is about 10-19 m2 and is pressure independent. In conclusion, our dataset depicts a fault zone structure with heterogeneous static physical and transport properties that are controlled by the occurrence of different deformation mechanisms related to different protolites. At the moment we have been conducting experiments during loading/unloading stress cycles in order to characterize possible permeability and acoustic properties evolution induced by differential stress.

  5. Study of fault tolerant software technology for dynamic systems

    NASA Technical Reports Server (NTRS)

    Caglayan, A. K.; Zacharias, G. L.

    1985-01-01

    The major aim of this study is to investigate the feasibility of using systems-based failure detection isolation and compensation (FDIC) techniques in building fault-tolerant software and extending them, whenever possible, to the domain of software fault tolerance. First, it is shown that systems-based FDIC methods can be extended to develop software error detection techniques by using system models for software modules. In particular, it is demonstrated that systems-based FDIC techniques can yield consistency checks that are easier to implement than acceptance tests based on software specifications. Next, it is shown that systems-based failure compensation techniques can be generalized to the domain of software fault tolerance in developing software error recovery procedures. Finally, the feasibility of using fault-tolerant software in flight software is investigated. In particular, possible system and version instabilities, and functional performance degradation that may occur in N-Version programming applications to flight software are illustrated. Finally, a comparative analysis of N-Version and recovery block techniques in the context of generic blocks in flight software is presented.

  6. Active backstop faults in the Mentawai region of Sumatra, Indonesia, revealed by teleseismic broadband waveform modeling

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Bradley, Kyle Edward; Wei, Shengji; Wu, Wenbo

    2018-02-01

    Two earthquake sequences that affected the Mentawai islands offshore of central Sumatra in 2005 (Mw 6.9) and 2009 (Mw 6.7) have been highlighted as evidence for active backthrusting of the Sumatran accretionary wedge. However, the geometry of the activated fault planes is not well resolved due to large uncertainties in the locations of the mainshocks and aftershocks. We refine the locations and focal mechanisms of medium size events (Mw > 4.5) of these two earthquake sequences through broadband waveform modeling. In addition to modeling the depth-phases for accurate centroid depths, we use teleseismic surface wave cross-correlation to precisely relocate the relative horizontal locations of the earthquakes. The refined catalog shows that the 2005 and 2009 "backthrust" sequences in Mentawai region actually occurred on steeply (∼60 degrees) landward-dipping faults (Masilo Fault Zone) that intersect the Sunda megathrust beneath the deepest part of the forearc basin, contradicting previous studies that inferred slip on a shallowly seaward-dipping backthrust. Static slip inversion on the newly-proposed fault fits the coseismic GPS offsets for the 2009 mainshock equally well as previous studies, but with a slip distribution more consistent with the mainshock centroid depth (∼20 km) constrained from teleseismic waveform inversion. Rupture of such steeply dipping reverse faults within the forearc crust is rare along the Sumatra-Java margin. We interpret these earthquakes as 'unsticking' of the Sumatran accretionary wedge along a backstop fault separating imbricated material from the stronger Sunda lithosphere. Alternatively, the reverse faults may have originated as pre-Miocene normal faults of the extended continental crust of the western Sunda margin. Our waveform modeling approach can be used to further refine global earthquake catalogs in order to clarify the geometries of active faults.

  7. The aftershock signature of supershear earthquakes.

    PubMed

    Bouchon, Michel; Karabulut, Hayrullah

    2008-06-06

    Recent studies show that earthquake faults may rupture at speeds exceeding the shear wave velocity of rocks. This supershear rupture produces in the ground a seismic shock wave similar to the sonic boom produced by a supersonic airplane. This shock wave may increase the destruction caused by the earthquake. We report that supershear earthquakes are characterized by a specific pattern of aftershocks: The fault plane itself is remarkably quiet whereas aftershocks cluster off the fault, on secondary structures that are activated by the supershear rupture. The post-earthquake quiescence of the fault shows that friction is relatively uniform over supershear segments, whereas the activation of off-fault structures is explained by the shock wave radiation, which produces high stresses over a wide zone surrounding the fault.

  8. Timing of activity of two fault systems on Mercury

    NASA Astrophysics Data System (ADS)

    Galluzzi, V.; Guzzetta, L.; Giacomini, L.; Ferranti, L.; Massironi, M.; Palumbo, P.

    2015-10-01

    Here we discuss about two fault systems found in the Victoria and Shakespeare quadrangles of Mercury. The two fault sets intersect each other and show probable evidence for two stages of deformation. The most prominent system is N-S oriented and encompasses several tens to hundreds of kilometers long and easily recognizable fault segments. The other system strikes NE- SW and encompasses mostly degraded and short fault segments. The structural framework of the studied area and the morphological appearance of the faults suggest that the second system is older than the first one. We intend to apply the buffered crater counting technique on both systems to make a quantitative study of their timing of activity that could confirm the already clear morphological evidence.

  9. Map and database of Quaternary faults in Venezuela and its offshore regions

    USGS Publications Warehouse

    Audemard, F.A.; Machette, M.N.; Cox, J.W.; Dart, R.L.; Haller, K.M.

    2000-01-01

    As part of the International Lithosphere Program’s “World Map of Major Active Faults,” the U.S. Geological Survey is assisting in the compilation of a series of digital maps of Quaternary faults and folds in Western Hemisphere countries. The maps show the locations, ages, and activity rates of major earthquake-related features such as faults and fault-related folds. They are accompanied by databases that describe these features and document current information on their activity in the Quaternary. The project is a key part of the Global Seismic Hazards Assessment Program (ILP Project II-0) for the International Decade for Natural Hazard Disaster Reduction.The project is sponsored by the International Lithosphere Program and funded by the USGS’s National Earthquake Hazards Reduction Program. The primary elements of the project are general supervision and interpretation of geologic/tectonic information, data compilation and entry for fault catalog, database design and management, and digitization and manipulation of data in †ARCINFO. For the compilation of data, we engaged experts in Quaternary faulting, neotectonics, paleoseismology, and seismology.

  10. Recently Active Traces of the Berryessa Fault, California: A Digital Database

    USGS Publications Warehouse

    Lienkaemper, James J.

    2012-01-01

    The purpose of this map is to show the location of and evidence for recent movement on active fault traces within the Berryessa section and parts of adjacent sections of the Green Valley Fault Zone, California. The location and recency of the mapped traces is primarily based on geomorphic expression of the fault as interpreted from large-scale 2010 aerial photography and from 2007 and 2011 0.5 and 1.0 meter bare-earth LiDAR imagery (that is, high-resolution topographic data). In a few places, evidence of fault creep and offset Holocene strata in trenches and natural exposures have confirmed the activity of some of these traces. This publication is formatted both as a digital database for use within a geographic information system (GIS) and for broader public access as map images that may be browsed on-line or download a summary map. The report text describes the types of scientific observations used to make the map, gives references pertaining to the fault and the evidence of faulting, and provides guidance for use of and limitations of the map.

  11. Preliminary Monitoring of Soil gas Radon in Potentially Active Faults, San Sai District, Chiang Mai Province, Thailand

    NASA Astrophysics Data System (ADS)

    Pondthai, P.; Udphuay, S.

    2013-05-01

    The magnitude of 5.1 Mw earthquake occurred in San Sai District, Chiang Mai Province, Thailand in December 2006 was considered an uncommon event due to the fact that there was no statistical record of such significant earthquake in the area. Therefore the earthquake might have been associated with a potentially active fault zone within the area. The objective of this study is to measure soil gas radon across this unknown fault zone within the Chiang Mai Basin, northern Thailand. Two profiles traversing the expected fault zone of soil gas radon measurements have been monitored, using TASTRAK solid state track nuclear detectors (SSNTDs). Radon signals from three periods of measurement show a distinctive consistent spatial distribution pattern. Anomalous radon areas along the profiles are connected to fault locations previously interpreted from other geophysical survey results. The increased radon signal changes from the radon background level with the signal-to-background ratio above 3 are considered anomalous. Such pattern of radon anomaly supports the existence of the faults. The radon measurement, therefore is a powerful technique in mapping active fault zone.

  12. Active faulting in the central Betic Cordillera (Spain): Palaeoseismological constraint of the surface-rupturing history of the Baza Fault (Central Betic Cordillera, Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    Castro, J.; Martin-Rojas, I.; Medina-Cascales, I.; García-Tortosa, F. J.; Alfaro, P.; Insua-Arévalo, J. M.

    2018-06-01

    This paper on the Baza Fault provides the first palaeoseismic data from trenches in the central sector of the Betic Cordillera (S Spain), one of the most tectonically active areas of the Iberian Peninsula. With the palaeoseismological data we constructed time-stratigraphic OxCal models that yield probability density functions (PDFs) of individual palaeoseismic event timing. We analysed PDF overlap to quantitatively correlate the walls and site events into a single earthquake chronology. We assembled a surface-rupturing history of the Baza Fault for the last ca. 45,000 years. We postulated six alternative surface rupturing histories including 8-9 fault-wide earthquakes. We calculated fault-wide earthquake recurrence intervals using Monte Carlo. This analysis yielded a 4750-5150 yr recurrence interval. Finally, compared our results with the results from empirical relationships. Our results will provide a basis for future analyses of more of other active normal faults in this region. Moreover, our results will be essential for improving earthquake-probability assessments in Spain, where palaeoseismic data are scarce.

  13. Active faults newly identified in Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-05-01

    The Bellingham Basin, which lies north of Seattle and south of Vancouver around the border between the United States and Canada in the northern part of the Cascadia subduction zone, is important for understanding the regional tectonic setting and current high rates of crustal deformation in the Pacific Northwest. Using a variety of new data, Kelsey et al. identified several active faults in the Bellingham Basin that had not been previously known. These faults lie more than 60 kilometers farther north of the previously recognized northern limit of active faulting in the area. The authors note that the newly recognized faults could produce earthquakes with magnitudes between 6 and 6.5 and thus should be considered in hazard assessments for the region. (Journal of Geophysical Reserch-Solid Earth, doi:10.1029/2011JB008816, 2012)

  14. Period and amplitude of non-volcanic tremors and repeaters: a dimensional analysis

    NASA Astrophysics Data System (ADS)

    Nielsen, Stefan

    2017-04-01

    Since its relatively recent discovery, the origin of non-volcanic tremor has been source of great curiosity and debate. Two main interpretations have been proposed, one based on fluid migration, the other relating to slow slip events on a plate boundary (the latter hypothesis has recently gained considerable ground). Here I define the conditions of slip of one or more small asperities embedded within a larger creeping fault patch. The radiation-damping equation coupled with rate-and-state friction evolution equations results in a system of ordinary differential equations. For a finite size asperity, the system equates to a peculiar non-linear damped oscillator, converging to a limit cycle. Dimensional analysis shows that period and amplitude of the oscillations depend on dimensional parameter combinations formed from a limited set of parameters: asperity dimension Γ, rate and state friction parameters (a, b, L), shear stiffness of the medium G, mass density ρ, background creep rate ˙V and normal stress σ. Under realistic parameter ranges, the asperity may show (1) tremor-like short period oscillations, accelerating to radiate sufficient energy to be barely detectable and a periodicity of the order of one to ten Hertz, as observed for non-volcanic tremor activity at the base of large inter-plate faults; (2) isolated stick-slip events with intervals in the order of days to months, as observed in repeater events of modest magnitude within creeping fault sections.

  15. Using the 3D active fault model to estimate the surface deformation, a study on HsinChu area, Taiwan.

    NASA Astrophysics Data System (ADS)

    Lin, Y. K.; Ke, M. C.; Ke, S. S.

    2016-12-01

    An active fault is commonly considered to be active if they have moved one or more times in the last 10,000 years and likely to have another earthquake sometime in the future. The relationship between the fault reactivation and the surface deformation after the Chi-Chi earthquake (M=7.2) in 1999 has been concerned up to now. According to the investigations of well-known disastrous earthquakes in recent years, indicated that surface deformation is controlled by the 3D fault geometric shape. Because the surface deformation may cause dangerous damage to critical infrastructures, buildings, roads, power, water and gas lines etc. Therefore it's very important to make pre-disaster risk assessment via the 3D active fault model to decrease serious economic losses, people injuries and deaths caused by large earthquake. The approaches to build up the 3D active fault model can be categorized as (1) field investigation (2) digitized profile data and (3) build the 3D modeling. In this research, we tracked the location of the fault scarp in the field first, then combined the seismic profiles (had been balanced) and historical earthquake data to build the underground fault plane model by using SKUA-GOCAD program. Finally compared the results come from trishear model (written by Richard W. Allmendinger, 2012) and PFC-3D program (Itasca) and got the calculated range of the deformation area. By analysis of the surface deformation area made from Hsin-Chu Fault, we concluded the result the damage zone is approaching 68 286m, the magnitude is 6.43, the offset is 0.6m. base on that to estimate the population casualties, building damage by the M=6.43 earthquake in Hsin-Chu area, Taiwan. In the future, in order to be applied accurately on earthquake disaster prevention, we need to consider further the groundwater effect and the soil structure interaction inducing by faulting.

  16. Late Quaternary paleoearthquakes along the northern segment of the Nantinghe fault on the southeastern margin of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Sun, Haoyue; He, Honglin; Wei, Zhanyu; Shi, Feng; Gao, Wei

    2017-05-01

    The strong earthquake behaviors of faults are significant for learning crustal deformation mechanisms and for assessing regional seismic risk. To date, faults that bound tectonic blocks have attracted considerable concern and many studies; however, scant attention has been paid to faults within blocks that can also host devastating earthquakes. The Nantinghe fault is a left-lateral strike-slip fault within the Southwestern Yunnan Block, and it slips at ∼4 mm/yr suggesting strong activity in the late Quaternary. Nevertheless, no earthquake greater than 6 has ever been recorded along it, except for the 1941 M ∼7 earthquake near the Myanmar-China border region. In contrast, many earthquakes have occurred in the near region, delineating a seismic gap near the Nantinghe fault. Although several studies have been conducted upon it, the activity of its northern segment is confusing, and whether this fault segment has loaded sufficient stress to fail remains debatable. Furthermore, previous work failed to conduct any paleoseismological studies bringing out great uncertainty in learning its activity and faulting behavior, as well as in assessing the regional seismic risk. To solve these problems, we mapped the fault traces utilizing high-resolution satellite images and aerial photographs, and conducted three paleoseismological trenches along the northern segment of the Nantinghe fault. The trench excavations revealed a ∼45,000-year incomplete paleoearthquake history and confirmed that this fault segment has been active since the late Pleistocene but was not ruptured during the 1941 earthquake. Additionally, at least five paleoearthquakes are identified with their respective age ranges of before 39,030 BCE; 38,500-37,220 BCE; 28,475-5445 BCE; 3535 BCE-800 CE; and 1320-1435 CE based on radiocarbon dating. Among the paleoearthquakes, the latest is suggested to have generated a surface rupture much longer than 14 km with a magnitude likely up to Ms 7.0. Furthermore, based on the elapsed time since the latest paleoearthquake and the sinistral slip rate along the fault, it is proposed that the northern segment of the Nantinghe fault has accumulated a seismic energy equivalent to Ms 7.0, and it is in a high seismic risk along this fault segment and in the neighboring area.

  17. Fault Tree Based Diagnosis with Optimal Test Sequencing for Field Service Engineers

    NASA Technical Reports Server (NTRS)

    Iverson, David L.; George, Laurence L.; Patterson-Hine, F. A.; Lum, Henry, Jr. (Technical Monitor)

    1994-01-01

    When field service engineers go to customer sites to service equipment, they want to diagnose and repair failures quickly and cost effectively. Symptoms exhibited by failed equipment frequently suggest several possible causes which require different approaches to diagnosis. This can lead the engineer to follow several fruitless paths in the diagnostic process before they find the actual failure. To assist in this situation, we have developed the Fault Tree Diagnosis and Optimal Test Sequence (FTDOTS) software system that performs automated diagnosis and ranks diagnostic hypotheses based on failure probability and the time or cost required to isolate and repair each failure. FTDOTS first finds a set of possible failures that explain exhibited symptoms by using a fault tree reliability model as a diagnostic knowledge to rank the hypothesized failures based on how likely they are and how long it would take or how much it would cost to isolate and repair them. This ordering suggests an optimal sequence for the field service engineer to investigate the hypothesized failures in order to minimize the time or cost required to accomplish the repair task. Previously, field service personnel would arrive at the customer site and choose which components to investigate based on past experience and service manuals. Using FTDOTS running on a portable computer, they can now enter a set of symptoms and get a list of possible failures ordered in an optimal test sequence to help them in their decisions. If facilities are available, the field engineer can connect the portable computer to the malfunctioning device for automated data gathering. FTDOTS is currently being applied to field service of medical test equipment. The techniques are flexible enough to use for many different types of devices. If a fault tree model of the equipment and information about component failure probabilities and isolation times or costs are available, a diagnostic knowledge base for that device can be developed easily.

  18. Active Tectonics of Himalayan Faults/Thrusts System in Northern India on the basis of recent & Paleo earthquake Studies

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Biswal, S.; Parija, M. P.

    2016-12-01

    The Himalaya overrides the Indian plate along a decollement fault, referred as the Main Himalayan Thrust (MHT). The 2400 km long Himalayan mountain arc in the northern boundary of the Indian sub-continent is one of the most seismically active regions of the world. The Himalayan Frontal Thrust (HFT) is characterized by an abrupt physiographic and tectonic break between the Himalayan front and the Indo-Gangetic plain. The HFT represents the southern surface expression of the MHT on the Himalayan front. The tectonic zone between the Main Boundary Thrust (MBT) and the HFT encompasses the Himalayan Frontal Fault System (HFFS). The zone indicates late Quaternary-Holocene active deformation. Late Quaternary intramontane basin of Dehradun flanked to the south by the Mohand anticline lies between the MBT and the HFT in Garhwal Sub Himalaya. Slip rate 13-15 mm/yr has been estimated on the HFT based on uplifted strath terrace on the Himalyan front (Wesnousky et al. 2006). An out of sequence active fault, Bhauwala Thrust (BT), is observed between the HFT and the MBT. The Himalayan Frontal Fault System includes MBT, BT, HFT and PF active fault structures (Thakur, 2013). The HFFS structures were developed analogous to proto-thrusts in subduction zone, suggesting that the plate boundary is not a single structure, but series of structures across strike. Seismicity recorded by WIHG shows a concentrated belt of seismic events located in the Main Central Thrust Zone and the physiographic transition zone between the Higher and Lesser Himalaya. However, there is quiescence in the Himalayan frontal zone where surface rupture and active faults are reported. GPS measurements indicate the segment between the southern extent of microseismicity zone and the HFT is locked. The great earthquake originating in the locked segment rupture the plate boundary fault and propagate to the Himalaya front and are registered as surface rupture reactivating the fault in the HFFS.

  19. Scheduling lessons learned from the Autonomous Power System

    NASA Technical Reports Server (NTRS)

    Ringer, Mark J.

    1992-01-01

    The Autonomous Power System (APS) project at NASA LeRC is designed to demonstrate the applications of integrated intelligent diagnosis, control, and scheduling techniques to space power distribution systems. The project consists of three elements: the Autonomous Power Expert System (APEX) for Fault Diagnosis, Isolation, and Recovery (FDIR); the Autonomous Intelligent Power Scheduler (AIPS) to efficiently assign activities start times and resources; and power hardware (Brassboard) to emulate a space-based power system. The AIPS scheduler was tested within the APS system. This scheduler is able to efficiently assign available power to the requesting activities and share this information with other software agents within the APS system in order to implement the generated schedule. The AIPS scheduler is also able to cooperatively recover from fault situations by rescheduling the affected loads on the Brassboard in conjunction with the APEX FDIR system. AIPS served as a learning tool and an initial scheduling testbed for the integration of FDIR and automated scheduling systems. Many lessons were learned from the AIPS scheduler and are now being integrated into a new scheduler called SCRAP (Scheduler for Continuous Resource Allocation and Planning). This paper will service three purposes: an overview of the AIPS implementation, lessons learned from the AIPS scheduler, and a brief section on how these lessons are being applied to the new SCRAP scheduler.

  20. Geology along the Fairweather-Queen Charlotte fault system off southeast Alaska and British Columbia from GLORIA images and seismic-reflection data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruns, T.R.; Carlson, P.R.; Stevenson, A.J.

    1990-06-01

    GLORIA images collected in 1989 along southeast Alaska and British Columbia strikingly show the active trace of the Fairweather-Queen Charlotte transform fault system beneath the outer shelf and slope; seismic-reflection data are used to track the fault system across the continental shelf where GLORIA data are not available. From Cross Sound to Chatham Strait, the fault system is comprised of two sets of subparallel fault traces separated by 3 to 6 km. The fault system crosses the shelf from Icy Point to south of Yakobi Valley, then follows the shelf edge to Chatham Strait. Between Chatham Strait and Dixon Entrance,more » a single, sharply defined active fault trace underlies the upper and middle slope. This fault segment is bounded on the seaward side by a high, midslope ridge and by lower slope Quaternary( ) anticlines up to 35 km wide. Southeast of Dixon Entrance, the active fault trace trends back onto the outer shelf until midway along the Queen Charlotte Islands, then cuts back to and stays at midslope to the Tuzo Wilson Knolls south of the Queen Charlotte Islands. The fault steps westward at Tuzo Wilson Knolls, which are likely part of a spreading ridge segment. Major deep-sea fans along southeast Alaska show a southeastward age progression from older to younger and record both point source deposition at Chatham Strait and Dixon Entrance and subsequent (Quaternary ) offset along the fault system. Subsidence of ocean plate now adjacent to the Chatham Strait-Dixon Entrance fault segment initiated development of both Mukluk and Horizon Channels.« less

  1. Multidisciplinary approach for fault detection: Integration of PS-InSAR, geomorphological, stratigraphic and structural data in the Venafro intermontane basin (Central-Southern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Amato, Vincenzo; Aucelli, Pietro P. C.; Bellucci Sessa, Eliana; Cesarano, Massimo; Incontri, Pietro; Pappone, Gerardo; Valente, Ettore; Vilardo, Giuseppe

    2017-04-01

    A multidisciplinary methodology, integrating stratigraphic, geomorphological and structural data, combined with GIS-aided analysis and PS-InSAR interferometric data, was applied to characterize the relationships between ground deformations and the stratigraphic and the morphostructural setting of the Venafro intermontane basin. This basin is a morphostructural depression related to NW-SE and NE-SW oriented high angle normal faults bordering and crossing it. In particular, a well-known active fault crossing the plain is the Aquae Juliae Fault, whose recent activity is evidenced by archeoseismological data. The approach applied here reveals new evidence of possible faulting, acting during the Lower to Upper Pleistocene, which has driven the morphotectonic and the environmental evolution of the basin. In particular, the tectonic setting emerging from this study highlights the influence of the NW-SE oriented extensional phase during the late Lower Pleistocene - early Middle Pleistocene, in the generation of NE-SW trending, SE dipping, high-angle faults and NW-SE trending, high-angle transtensive faults. This phase has been followed by a NE-SW extensional one, responsible for the formation of NW-SE trending, both NW and SE dipping, high-angle normal faults, and the reactivation of the oldest NE-SW oriented structures. These NW-SE trending normal faults include the Aquae Juliae Fault and a new one, unknown until now, crossing the plain between the Venafro village and the Colle Cupone Mt. (hereinafter named the Venafro-Colle Cupone Fault, VCCF). This fault has controlled deposition of the youngest sedimentary units (late Middle Pleistocene to late Upper Pleistocene) suggesting its recent activity and it is well constrained by PS-InSAR data, as testified by the increase of the subsidence rate in the hanging wall block.

  2. New Geologic Data on the Seismic Risks of the Most Dangerous Fault on Shore in Central Japan, the Itoigawa-Shizuoka Tectonic Line Active Fault System

    NASA Astrophysics Data System (ADS)

    Okumura, K.; Kondo, H.; Toda, S.; Takada, K.; Kinoshita, H.

    2006-12-01

    Ten years have past since the first official assessment of the long-term seismic risks of the Itoigawa-Shizuoka tectonic line active fault system (ISTL) in 1996. The disaster caused by the1995 Kobe (Hyogo-ken-Nanbu) earthquake urged the Japanese government to initiated a national project to assess the long-term seismic risks of on-shore active faults using geologic information. ISTL was the first target of the 98 significant faults and the probability of a M7 to M8 event turned out to be the highest among them. After the 10 years of continued efforts to understand the ISTL, now it is getting ready to revise the assessment. Fault mapping and segmentation: The most active segment of the Gofukuji fault (~1 cm/yr left-lateral strike slip, R=500~800 yrs.) had been maped only for less than 10 km. Adjacent segments were much less active. This large slip on such a short segment was contradictory. However, detailed topographic study including Lidar survey revealed the length of the Gofukuji fault to be 25 km or more. High slip rate with frequent earthquakes may be restricted to the Gofukuji fault while the 1996 assessment modeled frequent >100 km rupture scenario. The geometry of the fault is controversial especially on the left-lateral strike-slip section of the ISTL. There are two models of high-angle Middel ISTL and low-angle Middle ISTL with slip partitioning. However, all geomorphic and shallow geologic data supports high-angle almost pure strike slip on the faults in the Middle ISTL. CRIEPI's 3- dimensional trenching in several sites as well as the previous results clearly demonstrated repeated pure strike-slip offset during past a few events. In Middle ISTL, there is no evidence of recent activity of pre-existing low-angle thrust faults that are inferred to be active from shallow seismic survey. Separation of high (~3000 m) mountain ranges and low (<1000 m) basin floor requires significant dip-slip component, but basin-fill sediments and geology of the range do not need vertical separation along the Gofukuji fault. The key issue for the time-dependent assessment of the Northern ISTL (east dipping reverse faults) was the lack of reliable time constraints on past earthquakes. In order to solve this problem, we have carried out intensive geoslicer and boring survey of buried faults at Kisaki. Along a 35 m long transect, we collected total 150 m complete cores in 9 geoslicer and 5 all-core boring holes. This is one of the most intensive surveys of a buried fault scarp under the water table. About 20 m vertical offset of 6000-year-old buried A-horizon is now underlain by a series of flood deposits, point bars and over-bank sediments, that intercalates 2 or 3 faulting events. The precise timing and offset of each event recorded in the section will be the critical evidence to tell the synchroneity of earthquakes in the Northern ISTL and the Middle ISTL. The magnitude of the coming event on ISTL is the most important but uncertain parameter of the 1996 assessment. The structural and paleoseimological information will present better constraints on the earthquake.

  3. Ground Deformation near active faults in the Kinki district, southwest Japan, detected by InSAR

    NASA Astrophysics Data System (ADS)

    Hashimoto, M.; Ozawa, T.

    2016-12-01

    The Kinki district, southwest Japan, consists of ranges and plains between which active faults reside. The Osaka plain is in the middle of this district and is surrounded by the Rokko, Arima-Takatsuki, Ikoma, Kongo and Median Tectonic Line fault zones in the clockwise order. These faults are considered to be capable to generate earthquakes of larger magnitude than 7. The 1995 Kobe earthquake is the most recent activity of the Rokko fault (NE-SW trending dextral fault). Therefore the monitoring of ground deformation with high spatial resolution is essential to evaluate seismic hazards in this area. We collected and analyzed available SAR images such as ERS-1/2, Envisat, JERS-1, TerraSAR-X, ALOS/PALSAR and ALOS-2/PALSAR-2 to reveal ground deformation during these 20 years. We made DInSAR and PSInSAR analyses of these images using ASTER-GDEM ver.2. We detected three spots of subsidence along the Arima-Takatsuki fault (ENE-WSW trending dextral fault, east neighbor of the Rokko fault) after the Kobe earthquake, which continued up to 2010. Two of them started right after the Kobe earthquake, while the easternmost one was observed after 2000. However, we did not find them in the interferograms of ALOS-2/PALSAR-2 acquired during 2014 - 2016. Marginal uplift was recognized along the eastern part of the Rokko fault. PS-InSAR results of ALOS/PALSAR also revealed slight uplift north of the Rokko Mountain that uplift by 20 cm coseismically. These observations suggest that the Rokko Mountain might have uplifted during the postseismic period. We found subsidence on the eastern frank of the Kongo Mountain, where the Kongo fault (N-S trending reverse fault) exits. In the southern neighbor of the Median Tectonic Line (ENE-WSW trending dextral fault), uplift of > 5 mm/yr was found by Envisat and ALOS/PALSAR images. This area is shifted westward by 4 mm/yr as well. Since this area is located east of a seismically active area in the northwestern Wakayama prefecture, this deformation may generate E-W compressive stress, which is dominant in focal mechanism of most earthquakes, in the epicentral area.

  4. Intraplate seismicity along the Gedi Fault in Kachchh rift basin of western India

    NASA Astrophysics Data System (ADS)

    Joshi, Vishwa; Rastogi, B. K.; Kumar, Santosh

    2017-11-01

    The Kachchh rift basin is located on the western continental margin of India and has a history of experiencing large to moderate intraplate earthquakes with M ≥ 5. During the past two centuries, two large earthquakes of Mw 7.8 (1819) and Mw 7.7 (2001) have occurred in the Kachchh region, the latter with an epicenter near Bhuj. The aftershock activity of the 2001 Bhuj earthquake is still ongoing with migration of seismicity. Initially, epicenters migrated towards the east and northeast within the Kachchh region but, since 2007, it has also migrated to the south. The triggered faults are mostly within 100 km and some up to 200 km distance from the epicentral area of the mainshock. Most of these faults are trending in E-W direction, and some are transverse. It was noticed that some faults generate earthquakes down to the Moho depth whereas some faults show earthquake activity within the upper crustal volume. The Gedi Fault, situated about 50 km northeast of the 2001 mainshock epicenter, triggered the largest earthquake of Mw 5.6 in 2006. We have carried out detailed seismological studies to evaluate the seismic potential of the Gedi Fault. We have relocated 331 earthquakes by HypoDD to improve upon location errors. Further, the relocated events are used to estimate the b value, p value, and fractal correlation dimension Dc of the fault zone. The present study indicates that all the events along the Gedi Fault are shallow in nature, with focal depths less than 20 km. The estimated b value shows that the Gedi aftershock sequence could be classified as Mogi's type 2 sequence, and the p value suggests a relatively slow decay of aftershocks. The fault plane solutions of some selected events of Mw > 3.5 are examined, and activeness of the Gedi Fault is assessed from the results of active fault studies as well as GPS and InSAR results. All these results are critically examined to evaluate the material properties and seismic potential of the Gedi Fault that may be useful for seismic hazard assessment in the region.

  5. Slip Rates of Main Active Fault Zones Through Turkey Inferred From GPS Observations

    NASA Astrophysics Data System (ADS)

    Ozener, H.; Aktug, B.; Dogru, A.; Tasci, L.; Acar, M.; Emre, O.; Yilmaz, O.; Turgut, B.; Halicioglu, K.; Sabuncu, A.; Bal, O.; Eraslan, A.

    2015-12-01

    Active Fault Map of Turkey was revised and published by General Directorate of Mineral Research and Exploration in 2012. This map reveals that there are about 500 faults can generate earthquakes.In order to understand the earthquake potential of these faults, it is needed to determine the slip rates. Although many regional and local studies were performed in the past, the slip rates of the active faults in Turkey have not been determined. In this study, the block modelling, which is the most common method to produce slip rates, will be done. GPS velocities required for block modeling is being compiled from the published studies and the raw data provided then velocity field is combined. To form a homogeneous velocity field, different stochastic models will be used and the optimal velocity field will be achieved. In literature, GPS site velocities, which are computed for different purposes and published, are combined globally and this combined velocity field are used in the analysis of strain accumulation. It is also aimed to develop optimal stochastic models to combine the velocity data. Real time, survey mode and published GPS observations is being combined in this study. We also perform new GPS observations. Furthermore, micro blocks and main fault zones from Active Fault Map Turkey will be determined and homogeneous velocity field will be used to infer slip rates of these active faults. Here, we present the result of first year of the study. This study is being supported by THE SCIENTIFIC AND TECHNOLOGICAL RESEARCH COUNCIL OF TURKEY (TUBITAK)-CAYDAG with grant no. 113Y430.

  6. Map and Database of Probable and Possible Quaternary Faults in Afghanistan

    USGS Publications Warehouse

    Ruleman, C.A.; Crone, A.J.; Machette, M.N.; Haller, K.M.; Rukstales, K.S.

    2007-01-01

    The U.S. Geological Survey (USGS) with support from the U.S. Agency for International Development (USAID) mission in Afghanistan, has prepared a digital map showing the distribution of probable and suspected Quaternary faults in Afghanistan. This map is a key component of a broader effort to assess and map the country's seismic hazards. Our analyses of remote-sensing imagery reveal a complex array of tectonic features that we interpret to be probable and possible active faults within the country and in the surrounding border region. In our compilation, we have mapped previously recognized active faults in greater detail, and have categorized individual features based on their geomorphic expression. We assigned mapped features to eight newly defined domains, each of which contains features that appear to have similar styles of deformation. The styles of deformation associated with each domain provide insight into the kinematics of the modern tectonism, and define a tectonic framework that helps constrain deformational models of the Alpine-Himalayan orogenic belt. The modern fault movements, deformation, and earthquakes in Afghanistan are driven by the collision between the northward-moving Indian subcontinent and Eurasia. The patterns of probable and possible Quaternary faults generally show that much of the modern tectonic activity is related to transfer of plate-boundary deformation across the country. The left-lateral, strike-slip Chaman fault in southeastern Afghanistan probably has the highest slip rate of any fault in the country; to the north, this slip is distributed onto several fault systems. At the southern margin of the Kabul block, the style of faulting changes from mainly strike-slip motion associated with the boundary between the Indian and Eurasian plates, to transpressional and transtensional faulting. North and northeast of the Kabul block, we recognized a complex pattern of potentially active strike-slip, thrust, and normal faults that form a conjugate shear system in a transpressional region of the Trans-Himalayan orogenic belt. The general patterns and orientations of faults and the styles of deformation that we interpret from the imagery are consistent with the styles of faulting determined from focal mechanisms of historical earthquakes. Northwest-trending strike-slip fault zones are cut and displaced by younger, southeast-verging thrust faults; these relations define the interaction between northwest-southeast-oriented contraction and northwest-directed extrusion in the western Himalaya, Pamir, and Hindu Kush regions. Transpression extends into north-central Afghanistan where north-verging contraction along the east-west-trending Alburz-Marmul fault system interacts with northwest-trending strike-slip faults. Pressure ridges related to thrust faulting and extensional basins bounded by normal faults are located at major stepovers in these northwest-trending strike-slip systems. In contrast, young faulting in central and western Afghanistan indicates that the deformation is dominated by extension where strike-slip fault zones transition into regions of normal faults. In addition to these initial observations, our digital map and database provide a foundation that can be expanded, complemented, and modified as future investigations provide more detailed information about the location, characteristics, and history of movement on Quaternary faults in Afghanistan.

  7. Geomorphology, kinematic history, and earthquake behavior of the active Kuwana wedge thrust anticline, central Japan

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tatsuya; Mueller, Karl; Togo, Masami; Okada, Atsumasa; Takemura, Keiji

    2004-12-01

    We combine surface mapping of fault and fold scarps that deform late Quaternary alluvial strata with interpretation of a high-resolution seismic reflection profile to develop a kinematic model and determine fault slip rates for an active blind wedge thrust system that underlies Kuwana anticline in central Japan. Surface fold scarps on Kuwana anticline are closely correlated with narrow fold limbs and angular hinges on the seismic profile that suggest at least ˜1.3 km of fault slip completely consumed by folding in the upper 4 km of the crust. The close coincidence and kinematic link between folded terraces and the underlying thrust geometry indicate that Kuwana anticline has accommodated slip at an average rate of 2.2 ± 0.5 mm/yr on a 27°, west dipping thrust fault since early-middle Pleistocene time. In contrast to classical fault bend folds the fault slip budget in the stacked wedge thrusts also indicates that (1) the fault tip propagated upward at a low rate relative to the accrual of fault slip and (2) fault slip is partly absorbed by numerous bedding plane flexural-slip faults above the tips of wedge thrusts. An historic earthquake that occurred on the Kuwana blind thrust system possibly in A.D. 1586 is shown to have produced coseismic surface deformation above the doubly vergent wedge tip. Structural analyses of Kuwana anticline coupled with tectonic geomorphology at 103-105 years timescales illustrate the significance of active folds as indicators of slip on underlying blind thrust faults and thus their otherwise inaccessible seismic hazards.

  8. Alternative interpretation for the active zones of Cuba

    NASA Astrophysics Data System (ADS)

    Rodríguez, Mario Octavio Cotilla

    2014-11-01

    An alternative explanation to the seismoactivity of Cuban faults is presented. The model is a consequence of the interaction between Caribbean and North American plates. It is made with 12 geodynamic cells form by a set of 13 active faults and their 14 areas of intersection. These cells are recognized morpho-structural blocks. The area between Eastern Matanzas and Western Cauto-Nipe is excluded because of the low level of seismic information. Cuba has two types of seismogenetic structures: faults and intersection of faults.

  9. Tectonic geomorphology and paleoseismology of strike-slip faults in Jamaica: Implications for distribution of strain and seismic hazard along the southern edge of the Gonave microplate

    NASA Astrophysics Data System (ADS)

    Koehler, R. D.; Mann, P.; Brown, L. A.

    2009-12-01

    The east-west, left lateral strike-slip fault system forming the southern edge of the Gonave microplate crosses the110-km-long and 70-km-wide island of Jamaica. GPS measurements in the northeastern Caribbean are supportive of the microplate interpretation and indicate that ~ half of the Caribbean-North America left-lateral plate motion (8-14 mm/yr) is carried by the Plantain Garden (PGFZ) and associated faults in Jamaica. We performed Neotectonic mapping of the Plantain Garden fault along the southern rangefront of the Blue Mountains and conducted a paleoseismic study of the fault at Morant River. Between Holland Bay and Morant River, the fault is characterized by a steep, faceted, linear mountain front, prominent linear valleys and depressions, shutter ridges, and springs. At the eastern end of the island, the PGFZ is characterized by a left-stepping fault geometry that includes a major, active hot spring. The river cut exposure at Morant River exposes a 1.5-m-wide, sub-vertical fault zone juxtaposing sheared alluvium and faulted Cretaceous basement rocks. This section is overlain by an, unfaulted 3-m-thick fluvial terrace inset into a late Pleistocene terrace that is culturally modified. Upward fault terminations indicate the occurrence of three paleoearthquakes that occurred prior to deposition of the flat lying inset terrace around 341-628 cal yr BP. At this time, our radiocarbon results suggest that we can rule out the PGFZ as the source of the 1907 Kingston earthquake 102 years ago, as well as, the 1692 event that destroyed Port Royal 317 years ago and produced a major landslide at Yallahs. Pending OSL ages will constrain the age of the penultimate and most recent ruptures. Gently to steeply dipping rocks as young as Pliocene exposed in roadcuts within the low coastal hills south of and parallel to the Plantain Garden fault may indicate active folding and blind thrust faulting. These structures are poorly characterized and may accommodate an unknown amount of oblique strain. Reconnaissance mapping was also performed along the South Coast fault in south-central Jamaica north of Portland Ridge, and along the Crawle River-Rio Minho fault near Frankfield in the Central Inlier. The absence of fault scarps or other tectonic geomorphic features across fluvial terraces of the Milk and Minho Rivers indicate that the South Coast fault has not been active in Holocene time. Left laterally offset streams, linear valleys, and saddles support active faulting along the east-west Crawle River-Rio Minho fault that is roughly collinear with the western extension of the Plantain Garden fault.

  10. Wetland losses related to fault movement and hydrocarbon production, southeastern Texas coast

    USGS Publications Warehouse

    White, William A.; Morton, Robert A.

    1997-01-01

    Time series analyses of surface fault activity and nearby hydrocarbon production from the southeastern Texas coast show a high correlation among volume of produced fluids, timing of fault activation, rates of subsidence, and rates of wetland loss. Greater subsidence on the downthrown sides of faults contributes to more frequent flooding and generally wetter conditions, which are commonly reflected by changes in plant communities {e.g., Spartina patens to Spartina alterniflora) or progressive transformation of emergent vegetation to open water. Since the 1930s and 1950s, approximately 5,000 hectares of marsh habitat has been lost as a result of subsidence associated with faulting. Marsh- es have expanded locally along faults where hydrophytic vegetation has spread into former upland areas. Fault traces are linear to curvilinear and are visible because elevation differences across faults alter soil hydrology and vegetation. Fault lengths range from 1 to 13.4 km and average 3.8 km. Seventy-five percent of the faults visible on recent aerial photographs are not visible on photographs taken in the 1930's, indicating relatively recent fault movement. At least 80% of the surface faults correlate with extrapolated subsurface faults; the correlation increases to more than 90% when certain assumptions are made to compensate for mismatches in direction of displacement. Coastal wetlands loss in Texas associated with hydrocarbon extraction will likely increase where production in mature fields is prolonged without fiuid reinjection.

  11. Palaeopermeability structure within fault-damage zones: A snap-shot from microfracture analyses in a strike-slip system

    NASA Astrophysics Data System (ADS)

    Gomila, Rodrigo; Arancibia, Gloria; Mitchell, Thomas M.; Cembrano, Jose M.; Faulkner, Daniel R.

    2016-02-01

    Understanding fault zone permeability and its spatial distribution allows the assessment of fluid-migration leading to precipitation of hydrothermal minerals. This work is aimed at unraveling the conditions and distribution of fluid transport properties in fault zones based on hydrothermally filled microfractures, which reflect the ''frozen-in'' instantaneous advective hydrothermal activity and record palaeopermeability conditions of the fault-fracture system. We studied the Jorgillo Fault, an exposed 20 km long, left-lateral strike-slip fault, which juxtaposes Jurassic gabbro against metadiorite belonging to the Atacama Fault System in northern Chile. Tracings of microfracture networks of 19 oriented thin sections from a 400 m long transect across the main fault trace was carried out to estimate the hydraulic properties of the low-strain fault damagezone, adjacent to the high-strain fault core, by assuming penny-shaped microfractures of constant radius and aperture within an anisotropic fracture system. Palaeopermeability values of 9.1*10-11 to 3.2*10-13 m2 in the gabbro and of 5.0*10-10 to 1.2*10-13 m2 in the metadiorite were determined, both decreasing perpendicularly away from the fault core. Fracture porosity values range from 40.00% to 0.28%. The Jorgillo Fault has acted as a left-lateral dilational fault-bend, generating large-scale dilation sites north of the JF during co-seismic activity.

  12. Tectonic context of moderate to large historical earthquakes in the Lesser Antilles and mechanical coupling with volcanoes

    NASA Astrophysics Data System (ADS)

    Feuillet, Nathalie; Beauducel, FrançOis; Tapponnier, Paul

    2011-10-01

    The oblique convergence between North American and Caribbean plates is accommodated in a bookshelf faulting manner by active, oblique-normal faults in the northern part of the Lesser Antilles arc. In the last 20 years, two M > 6 earthquakes occurred along a large, arc parallel, en echelon fault system, the 16 March 1985 in Redonda and 21 November 2004 in Les Saintes. A better understanding of active faulting in this region permit us to review the location and magnitude of historical earthquakes by using a regional seismic attenuation law. Several others moderate earthquakes may have occurred along the en echelon fault system implying a strong seismic hazard along the arc. These faults control the effusion of volcanic products and some earthquakes seem to be correlated in time with volcanic unrest. Shallow earthquakes on intraplate faults induced normal stress and pressure changes around neighboring volcano and may have triggered volcanic activity. The Redonda earthquake could have initiated the 1995 eruption of Montserrat's Soufrière Hills by compressing its plumbing system. Conversely, pressure changes under the volcano increased Coulomb stress changes and brought some faults closer to failure, promoting seismicity. We also discuss the magnitude of the largest 11 January 1839 and 8 February 1843 megathrust interplate earthquakes. We calculate that they have increased the stress on some overriding intraplate faults and the extensional strain beneath several volcanoes. This may explain an increase of volcanic and seismic activity in the second half of the 19th century culminating with the devastating, 1902 Mount Pelée eruption.

  13. Integrated geophysical investigations in a fault zone located on southwestern part of İzmir city, Western Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Drahor, Mahmut G.; Berge, Meriç A.

    2017-01-01

    Integrated geophysical investigations consisting of joint application of various geophysical techniques have become a major tool of active tectonic investigations. The choice of integrated techniques depends on geological features, tectonic and fault characteristics of the study area, required resolution and penetration depth of used techniques and also financial supports. Therefore, fault geometry and offsets, sediment thickness and properties, features of folded strata and tectonic characteristics of near-surface sections of the subsurface could be thoroughly determined using integrated geophysical approaches. Although Ground Penetrating Radar (GPR), Electrical Resistivity Tomography (ERT) and Seismic Refraction Tomography (SRT) methods are commonly used in active tectonic investigations, other geophysical techniques will also contribute in obtaining of different properties in the complex geological environments of tectonically active sites. In this study, six different geophysical methods used to define faulting locations and characterizations around the study area. These are GPR, ERT, SRT, Very Low Frequency electromagnetic (VLF), magnetics and self-potential (SP). Overall integrated geophysical approaches used in this study gave us commonly important results about the near surface geological properties and faulting characteristics in the investigation area. After integrated interpretations of geophysical surveys, we determined an optimal trench location for paleoseismological studies. The main geological properties associated with faulting process obtained after trenching studies. In addition, geophysical results pointed out some indications concerning the active faulting mechanism in the area investigated. Consequently, the trenching studies indicate that the integrated approach of geophysical techniques applied on the fault problem reveals very useful and interpretative results in description of various properties of faulting zone in the investigation site.

  14. Active transpressional tectonics in the Andean forearc of southern Peru quantified by 10Be surface exposure dating of an active fault scarp

    NASA Astrophysics Data System (ADS)

    Benavente, Carlos; Zerathe, Swann; Audin, Laurence; Hall, Sarah R.; Robert, Xavier; Delgado, Fabrizio; Carcaillet, Julien; Team, Aster

    2017-09-01

    Our understanding of the style and rate of Quaternary tectonic deformation in the forearc of the Central Andes is hampered by a lack of field observations and constraints on neotectonic structures. Here we present a detailed analysis of the Purgatorio fault, a recently recognized active fault located in the forearc of southern Peru. Based on field and remote sensing analysis (Pléiades DEM), we define the Purgatorio fault as a subvertical structure trending NW-SE to W-E along its 60 km length, connecting, on its eastern end, to the crustal Incapuquio Fault System. The Purgatorio fault accommodates right-lateral transpressional deformation, as shown by the numerous lateral and vertical plurimetric offsets recorded along strike. In particular, scarp with a 5 m cumulative throw is preserved and displays cobbles that are cut and covered by slickensides. Cosmogenic radionuclide exposure dating (10Be) of quartzite cobbles along the vertical fault scarp yields young exposure ages that can be bracketed between 0 to 6 ka, depending on the inheritance model that is applied. Our preferred scenario, which takes in account our geomorphic observations, implies at least two distinct rupture events, each associated with 3 and 2 m of vertical offset. These two events plausibly occurred during the last thousand years. Nevertheless, an interpretation invoking more tectonic events along the fault cannot be ruled out. This work affirms crustal deformation along active faults in the Andean forearc of southern Peru during the last thousand years.

  15. Artificial neural network application for space station power system fault diagnosis

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Oliver, Walter E.; Dias, Lakshman G.

    1995-01-01

    This study presents a methodology for fault diagnosis using a Two-Stage Artificial Neural Network Clustering Algorithm. Previously, SPICE models of a 5-bus DC power distribution system with assumed constant output power during contingencies from the DDCU were used to evaluate the ANN's fault diagnosis capabilities. This on-going study uses EMTP models of the components (distribution lines, SPDU, TPDU, loads) and power sources (DDCU) of Space Station Alpha's electrical Power Distribution System as a basis for the ANN fault diagnostic tool. The results from the two studies are contrasted. In the event of a major fault, ground controllers need the ability to identify the type of fault, isolate the fault to the orbital replaceable unit level and provide the necessary information for the power management expert system to optimally determine a degraded-mode load schedule. To accomplish these goals, the electrical power distribution system's architecture can be subdivided into three major classes: DC-DC converter to loads, DC Switching Unit (DCSU) to Main bus Switching Unit (MBSU), and Power Sources to DCSU. Each class which has its own electrical characteristics and operations, requires a unique fault analysis philosophy. This study identifies these philosophies as Riddles 1, 2 and 3 respectively. The results of the on-going study addresses Riddle-1. It is concluded in this study that the combination of the EMTP models of the DDCU, distribution cables and electrical loads yields a more accurate model of the behavior and in addition yielded more accurate fault diagnosis using ANN versus the results obtained with the SPICE models.

  16. Reverse fault growth and fault interaction with frictional interfaces: insights from analogue models

    NASA Astrophysics Data System (ADS)

    Bonanno, Emanuele; Bonini, Lorenzo; Basili, Roberto; Toscani, Giovanni; Seno, Silvio

    2017-04-01

    The association of faulting and folding is a common feature in mountain chains, fold-and-thrust belts, and accretionary wedges. Kinematic models are developed and widely used to explain a range of relationships between faulting and folding. However, these models may result not to be completely appropriate to explain shortening in mechanically heterogeneous rock bodies. Weak layers, bedding surfaces, or pre-existing faults placed ahead of a propagating fault tip may influence the fault propagation rate itself and the associated fold shape. In this work, we employed clay analogue models to investigate how mechanical discontinuities affect the propagation rate and the associated fold shape during the growth of reverse master faults. The simulated master faults dip at 30° and 45°, recalling the range of the most frequent dip angles for active reverse faults that occurs in nature. The mechanical discontinuities are simulated by pre-cutting the clay pack. For both experimental setups (30° and 45° dipping faults) we analyzed three different configurations: 1) isotropic, i.e. without precuts; 2) with one precut in the middle of the clay pack; and 3) with two evenly-spaced precuts. To test the repeatability of the processes and to have a statistically valid dataset we replicate each configuration three times. The experiments were monitored by collecting successive snapshots with a high-resolution camera pointing at the side of the model. The pictures were then processed using the Digital Image Correlation method (D.I.C.), in order to extract the displacement and shear-rate fields. These two quantities effectively show both the on-fault and off-fault deformation, indicating the activity along the newly-formed faults and whether and at what stage the discontinuities (precuts) are reactivated. To study the fault propagation and fold shape variability we marked the position of the fault tips and the fold profiles for every successive step of deformation. Then we compared precut models with isotropic models to evaluate the trends of variability. Our results indicate that the discontinuities are reactivated especially when the tip of the newly-formed fault is either below or connected to them. During the stage of maximum activity along the precut, the faults slow down or even stop their propagation. The fault propagation systematically resumes when the angle between the fault and the precut is about 90° (critical angle); only during this stage the fault crosses the precut. The reactivation of the discontinuities induces an increase of the apical angle of the fault-related fold and produces wider limbs compared to the isotropic reference experiments.

  17. A review of recently active faults in Taiwan

    USGS Publications Warehouse

    Bonilla, Manuel G.

    1975-01-01

    Six faults associated with five large earthquakes produced surface displacements ranging from 1 to 3 m in the period 1906 through 1951. Four of the ruptures occurred in the western coastal plain and foothills, and two occurred in the Longitudinal Valley of eastern Taiwan. Maps are included showing the locations and dimensions of the displacements. The published geological literature probably would not lead one to infer the existence of a fault along most of the 1906 rupture, except for descriptions of the rupture itself. Over most of its length the 1935 rupture on the Chihhu fault is parallel to but more than 0.5 km from nearby faults shown on geologic maps published in 1969 and 1971; only about 1.5 km of its 15 km length coincides with a mapped fault. The coastal plain part of the Tuntzuchio fault which ruptured in 1935 is apparently not revealed by landforms, and only suggested by other data. Part of the 1946 Hsinhua faulting coincides with a fault identified in the subsurface by seismic work but surface indications of the fault are obscure. The 1951 Meilun faulting occurred along a conspicuous pre-1951 scarp and the 1951 Yuli faulting occurred near or in line with pre-1951 scarps. More than 40 faults which, according to the published literature, have had Pleistocene or later movement are shown on a small-scale map. Most of these faults are in the densely-populated western part of Taiwan. The map and text calls attention to faults that may be active and therefore may be significant in planning important structures. Equivocal evidence suggestive of fault creep was found on the Yuli fault and the Hsinhua fault. Fault creep was not found at several places examined along the 1906 fault trace. Tectonic uplift has occurred in Taiwan in the last 10,000 years and application of eustatic sea level curves to published radiocarbon dates shows that the minimum rate of uplift is considerably different in different parts of the island. Incomplete data indicate that the rate is high near Hualien, where an uplift of at least 0.6 m and probably more than 1 m occurred in the 1951 earthquake, and near and south of the 1946 faulting. Sudden uplifts can have serious consequences for installations near the shore. Investigation of this process, study of recently active faults, and continuing study of seismicity are necessary parts of a practical earthquake-hazard reduction program.

  18. A microstructural study of fault rocks from the SAFOD: Implications for the deformation mechanisms and strength of the creeping segment of the San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Hadizadeh, Jafar; Mittempergher, Silvia; Gratier, Jean-Pierre; Renard, Francois; Di Toro, Giulio; Richard, Julie; Babaie, Hassan A.

    2012-09-01

    The San Andreas Fault zone in central California accommodates tectonic strain by stable slip and microseismic activity. We study microstructural controls of strength and deformation in the fault using core samples provided by the San Andreas Fault Observatory at Depth (SAFOD) including gouge corresponding to presently active shearing intervals in the main borehole. The methods of study include high-resolution optical and electron microscopy, X-ray fluorescence mapping, X-ray powder diffraction, energy dispersive X-ray spectroscopy, white light interferometry, and image processing. The fault zone at the SAFOD site consists of a strongly deformed and foliated core zone that includes 2-3 m thick active shear zones, surrounded by less deformed rocks. Results suggest deformation and foliation of the core zone outside the active shear zones by alternating cataclasis and pressure solution mechanisms. The active shear zones, considered zones of large-scale shear localization, appear to be associated with an abundance of weak phases including smectite clays, serpentinite alteration products, and amorphous material. We suggest that deformation along the active shear zones is by a granular-type flow mechanism that involves frictional sliding of microlithons along phyllosilicate-rich Riedel shear surfaces as well as stress-driven diffusive mass transfer. The microstructural data may be interpreted to suggest that deformation in the active shear zones is strongly displacement-weakening. The fault creeps because the velocity strengthening weak gouge in the active shear zones is being sheared without strong restrengthening mechanisms such as cementation or fracture sealing. Possible mechanisms for the observed microseismicity in the creeping segment of the SAF include local high fluid pressure build-ups, hard asperity development by fracture-and-seal cycles, and stress build-up due to slip zone undulations.

  19. Structural Analysis and Evolution of the Kashan (Qom-Zefreh) Fault, Central Iran

    NASA Astrophysics Data System (ADS)

    Safaei, H.; Taheri, A.; Vaziri-Moghaddam, H.

    The main objectives of this research were to identify the geometry and structure of the Qom-Zefreh fault and to determine the extent of its effects on stratigraphy and facies changes. The identification of movement mechanism of major faults in basement, extent and time of their activities are important effects for evaluation of paleogeography of the Iran plateau. In the Orumieh-Dokhtar volcanic band, there are nearly parallel faults to the Zagros Zone. These faults were formed during closure of the Neothetys and collision of the Arabic plate with crust of Iran. The Qom-Zefreh fault is one of these faults, which is known as having four different trend faults. The result indicates that, this fault is not divided in four segments with different trends but the major trend is of Central section, which is the Kashan segment with AZ140 trend and other segments are just related faults. Thus the name of the Kashan fault is recommended for this fault. The mechanism of the Kashan fault is dextral transpression and other related faults in the region are in good correlation with fractures in a dextral transpression system. The stratigraphic studies conducted on the present formations show the effect of fault movements in Upper Cretaceous sedimentary basin. Lack of noticeable changes in Lower Cretaceous sediments and before that indicates that, the fault system activity has been started from the Upper Cretaceous. Thus, based upon these results, the effect of the Neothetys sea closure in this region could be considered at least from the Upper Cretaceous.

  20. Trench logs, terrestrial lidar system imagery, and radiocarbon data from the kilometer-62 site on the Greenville Fault, southeastern Alameda County, California, 2014

    USGS Publications Warehouse

    Lienkaemper, James J.; DeLong, Stephen B.; Avdievitch, Nikita N.; Pickering, Alexandra J; Guilderson, Thomas P.

    2015-01-01

    In 2014, we investigated an abrupt 8.5-meter (m), right-laterally deflected stream channel located near the Greenville Fault in southeastern Alameda County, California (-121.56224° E, 37.53430° N) that we discovered using 0.5-m resolution, 2011 aerial lidar imagery flown along the active fault trace. Prior to trenching we surveyed the site using a terrestrial lidar system (TLS) to document the exact geomorphic expression of this deflected stream channel before excavating a trench adjacent to it. We trenched perpendicular to the fault hoping to document the prehistoric history of earthquake ruptures along the fault. However, the alluvial stratigraphy that we document in these trench logs shows conclusively that this trench did not expose any active fault trace. Using other local geomorphic evidence for the fault location, a straight fault scarp immediately north of this stream projects slightly upslope of the west end of our trench and may be the actual location of the active fault trace. Five radiocarbon samples establish age control for the alluvial sequence documented in the trench, which may in the future be useful in constraining the long-term slip rate of the Greenville Fault. The deflection had been caused by an abrupt nontectonic termination of unit u30, a relatively thick (0.15–0.35 m) silt that is more erosion resistant than the adjacent cohesionless sand and gravel. 

  1. Ground-penetrating radar investigation of active faults along the Dead Sea Transform and implications for seismic hazards within the city of Aqaba, Jordan

    NASA Astrophysics Data System (ADS)

    Slater, Lee; Niemi, Tina M.

    2003-06-01

    Ground-penetrating radar (GPR) was used in an effort to locate a major active fault that traverses Aqaba City, Jordan. Measurements over an exposed (trenched) cross fault outside of the city identify a radar signature consisting of linear events and horizontal offset/flexured reflectors both showing a geometric correlation with two known faults at a control site. The asymmetric linear events are consistent with dipping planar reflectors matching the known direction of dip of the faults. However, other observations regarding this radar signature render the mechanism generating these events more complex and uncertain. GPR measurements in Aqaba City were limited to vacant lots. Seven GPR profiles were conducted approximately perpendicular to the assumed strike of the fault zone, based on regional geological evidence. A radar response very similar to that obtained over the cross fault was observed on five of the profiles in Aqaba City, although the response is weaker than that obtained at the control site. The positions of the identified responses form a near straight line with a strike of 45°. Although subsurface verification of the fault by trenching within the city is needed, the geophysical evidence for fault zone location is strong. The location of the interpreted fault zone relative to emergency services, military bases, commercial properties, and residential areas is defined to within a few meters. This study has significant implications for seismic hazard analysis in this tectonically active and heavily populated region.

  2. Neotectonics of interior Alaska and the late Quaternary slip rate along the Denali fault system

    USGS Publications Warehouse

    Haeussler, Peter J.; Matmon, Ari; Schwartz, David P.; Seitz, Gordon G.

    2017-01-01

    The neotectonics of southern Alaska (USA) are characterized by a several hundred kilometers–wide zone of dextral transpressional that spans the Alaska Range. The Denali fault system is the largest active strike-slip fault system in interior Alaska, and it produced a Mw 7.9 earthquake in 2002. To evaluate the late Quaternary slip rate on the Denali fault system, we collected samples for cosmogenic surface exposure dating from surfaces offset by the fault system. This study includes data from 107 samples at 19 sites, including 7 sites we previously reported, as well as an estimated slip rate at another site. We utilize the interpreted surface ages to provide estimated slip rates. These new slip rate data confirm that the highest late Quaternary slip rate is ∼13 mm/yr on the central Denali fault near its intersection with the eastern Denali and the Totschunda faults, with decreasing slip rate both to the east and west. The slip rate decreases westward along the central and western parts of the Denali fault system to 5 mm/yr over a length of ∼575 km. An additional site on the eastern Denali fault near Kluane Lake, Yukon, implies a slip rate of ∼2 mm/yr, based on geological considerations. The Totschunda fault has a maximum slip rate of ∼9 mm/yr. The Denali fault system is transpressional and there are active thrust faults on both the north and south sides of it. We explore four geometric models for southern Alaska tectonics to explain the slip rates along the Denali fault system and the active fault geometries: rotation, indentation, extrusion, and a combination of the three. We conclude that all three end-member models have strengths and shortcomings, and a combination of rotation, indentation, and extrusion best explains the slip rate observations.

  3. Evolution of triangular topographic facets along active normal faults

    NASA Astrophysics Data System (ADS)

    Balogun, A.; Dawers, N. H.; Gasparini, N. M.; Giachetta, E.

    2011-12-01

    Triangular shaped facets, which are generally formed by the erosion of fault - bounded mountain ranges, are arguably one of the most prominent geomorphic features on active normal fault scarps. Some previous studies of triangular facet development have suggested that facet size and slope exhibit a strong linear dependency on fault slip rate, thus linking their growth directly to the kinematics of fault initiation and linkage. Other studies, however, generally conclude that there is no variation in triangular facet geometry (height and slope) with fault slip rate. The landscape of the northeastern Basin and Range Province of the western United States provides an opportunity for addressing this problem. This is due to the presence of well developed triangular facets along active normal faults, as well as spatial variations in fault scale and slip rate. In addition, the Holocene climatic record for this region suggests a dominant tectonic regime, as the faulted landscape shows little evidence of precipitation gradients associated with tectonic uplift. Using GIS-based analyses of USGS 30 m digital elevation data (DEMs) for east - central Idaho and southwestern Montana, we analyze triangular facet geometries along fault systems of varying number of constituent segments. This approach allows us to link these geometries with established patterns of along - strike slip rate variation. For this study, we consider major watersheds to include only catchments with upstream and downstream boundaries extending from the drainage divide to the mapped fault trace, respectively. In order to maintain consistency in the selection criteria for the analyzed triangular facets, only facets bounded on opposite sides by major watersheds were considered. Our preliminary observations reflect a general along - strike increase in the surface area, average slope, and relief of triangular facets from the tips of the fault towards the center. We attribute anomalies in the along - strike geometric measurements of the triangular facets to represent possible locations of fault segment linkage associated with normal fault evolution.

  4. How does the 2010 El Mayor - Cucapah Earthquake Rupture Connect to the Southern California Plate Boundary Fault System

    NASA Astrophysics Data System (ADS)

    Donnellan, A.; Ben-Zion, Y.; Arrowsmith, R.

    2016-12-01

    The Pacific - North American plate boundary in southern California is marked by several major strike slip faults. The 2010 M7.2 El Mayor - Cucapah earthquake ruptured 120 km of upper crust in Baja California to the US-Mexico border. The earthquake triggered slip along an extensive network of faults in the Salton Trough from the Mexican border to the southern end of the San Andreas fault. Earthquakes >M5 were triggered in the gap between the Laguna Salada and Elsinore faults at Ocotillo and on the Coyote Creek segment of the San Jacinto fault 20 km northwest of Borrego Springs. UAVSAR observations, collected since October of 2009, measure slip associated with the M5.7 Ocotillo aftershock with deformation continuing into 2014. The Elsinore fault has been remarkably quiet, however, with only M5.0 and M5.2 earthquakes occurring on the Coyote Mountains segment of the fault in 1940 and 1968 respectively. In contrast, the Imperial Valley has been quite active historically with numerous moderate events occurring since 1935. Moderate event activity is increasing along the San Jacinto fault zone (SJFZ), especially the trifurcation area, where 6 of 12 historic earthquakes in this 20 km long fault zone have occurred since 2000. However, no recent deformation has been detected using UAVSAR measurements in this area, including the recent M5.2 June 2016 Borrego earthquake. Does the El Mayor - Cucapah rupture connect to and transfer stress primarily to a single southern California fault or several? What is its role relative to the background plate motion? UAVSAR observations indicate that the southward extension of the Elsinore fault has recently experienced the most localized deformation. Seismicity suggests that the San Jacinto fault is more active than neighboring major faults, and geologic evidence suggests that the Southern San Andreas fault has been the major plate boundary fault in southern California. Topographic data with 3-4 cm resolution using structure from motion from a small UAV on the southern San Andreas fault and the San Jacinto fault south of Anza, decimeter level B4 lidar data, GPS, and UAVSAR observations flown as recently as June 2016 will serve as baseline data for future large earthquakes in the region. Models that combine the different data sets are required to better understand the interconnections of the faults.

  5. Feasibility analysis of a novel hybrid-type superconducting circuit breaker in multi-terminal HVDC networks

    NASA Astrophysics Data System (ADS)

    Khan, Umer Amir; Lee, Jong-Geon; Seo, In-Jin; Amir, Faisal; Lee, Bang-Wook

    2015-11-01

    Voltage source converter-based HVDC systems (VSC-HVDC) are a better alternative than conventional thyristor-based HVDC systems, especially for developing multi-terminal HVDC systems (MTDC). However, one of the key obstacles in developing MTDC is the absence of an adequate protection system that can quickly detect faults, locate the faulty line and trip the HVDC circuit breakers (DCCBs) to interrupt the DC fault current. In this paper, a novel hybrid-type superconducting circuit breaker (SDCCB) is proposed and feasibility analyses of its application in MTDC are presented. The SDCCB has a superconducting fault current limiter (SFCL) located in the main current path to limit fault currents until the final trip signal is received. After the trip signal the IGBT located in the main line commutates the current into a parallel line where DC current is forced to zero by the combination of IGBTs and surge arresters. Fault simulations for three-, four- and five-terminal MTDC were performed and SDCCB performance was evaluated in these MTDC. Passive current limitation by SFCL caused a significant reduction of fault current interruption stress in the SDCCB. It was observed that the DC current could change direction in MTDC after a fault and the SDCCB was modified to break the DC current in both the forward and reverse directions. The simulation results suggest that the proposed SDCCB could successfully suppress the DC fault current, cause a timely interruption, and isolate the faulty HVDC line in MTDC.

  6. Space-time evolution of a growth fold (Betic Cordillera, Spain). Evidences from 3D geometrical modelling

    NASA Astrophysics Data System (ADS)

    Martin-Rojas, Ivan; Alfaro, Pedro; Estévez, Antonio

    2014-05-01

    We present a study that encompasses several software tools (iGIS©, ArcGIS©, Autocad©, etc.) and data (geological mapping, high resolution digital topographic data, high resolution aerial photographs, etc.) to create a detailed 3D geometric model of an active fault propagation growth fold. This 3D model clearly shows structural features of the analysed fold, as well as growth relationships and sedimentary patterns. The results obtained permit us to discuss the kinematics and structural evolution of the fold and the fault in time and space. The study fault propagation fold is the Crevillente syncline. This fold represents the northern limit of the Bajo Segura Basin, an intermontane basin in the Eastern Betic Cordillera (SE Spain) developed from upper Miocene on. 3D features of the Crevillente syncline, including growth pattern, indicate that limb rotation and, consequently, fault activity was higher during Messinian than during Tortonian; consequently, fault activity was also higher. From Pliocene on our data point that limb rotation and fault activity steadies or probably decreases. This in time evolution of the Crevillente syncline is not the same all along the structure; actually the 3D geometric model indicates that observed lateral heterogeneity is related to along strike variation of fault displacement.

  7. Active faulting at Delphi, Greece: Seismotectonic remarks and a hypothesis for the geologic environment of a myth

    NASA Astrophysics Data System (ADS)

    Piccardi, Luigi

    2000-07-01

    Historical data are fundamental to the understanding of the seismic history of an area. At the same time, knowledge of the active tectonic processes allows us to understand how earthquakes have been perceived by past cultures. Delphi is one of the principal archaeological sites of Greece, the main oracle of Apollo. It was by far the most venerated oracle of the Greek ancient world. According to tradition, the mantic proprieties of the oracle were obtained from an open chasm in the earth. Delphi is directly above one of the main antithetic active faults of the Gulf of Corinth Rift, which bounds Mount Parnassus to the south. The geometry of the fault and slip-parallel lineations on the main fault plane indicate normal movement, with minor right-lateral slip component. Combining tectonic data, archaeological evidence, historical sources, and a reexamination of myths, it appears that the Helice earthquake of 373 B.C. ruptured not only the master fault of the Gulf of Corinth Rift at Helice, but also the antithetic fault at Delphi, similarly to the Corinth earthquake of 1981. Moreover, the presence of an active fault directly below the temples of the oldest sanctuary suggests that the mythological oracular chasm might well have been an ancient tectonic surface rupture.

  8. Subsurface structure identification of active fault based on magnetic anomaly data (Case study: Toru fault in Sumatera fault system)

    NASA Astrophysics Data System (ADS)

    Simanjuntak, Andrean V. H.; Husni, Muhammad; Syirojudin, Muhammad

    2017-07-01

    Toru segment, which is one of the active faults and located in the North of Sumatra, broke in 1984 ago on Pahae Jahe's earthquake with a magnitude 6.4 at the northern part of the fault which has a length of 23 km, and also broke again at the same place in 2008. The event of recurrence is very fast, which only 25 years old have repeatedly returned. However, in the elastic rebound theory, it probably happen with a fracture 50 cm and an average of the shear velocity 20 mm/year. The average focus of the earthquake sourced at a depth of 10 km and 23 km along its fracture zones, which can generate enough shaking 7 MMI and could breaking down buildings and create landslides on the cliff. Due to its seismic activity, this study was made to identify the effectiveness of this fault with geophysical methods. Geophysical methods such as gravity, geomagnetic and seismology are powerful tools for detecting subsurface structures of local, regional as well as of global scales. This study used to geophysical methods to discuss about total intensity of the geomagnetic anomaly data, resulted in the distribution of susceptibility values corresponding to the fault movement. The geomagnetic anomalies data was obtained from Geomag, such as total intensity measured by satellite. Data acquisition have been corrected for diurnal variations and reduced by IGRF. The study of earthquake records can be used for differentiating the active and non active fault elements. Modeling has been done using several methods, such as pseudo-gravity, reduce to pole, and upward or downward continuation, which is used to filter the geomagnetic anomaly data because the data has not fully representative of the fault structure. The results indicate that rock layers of 0 - 100 km depth encountered the process of intrusion and are dominated by sedimentary rocks that are paramagnetic, and that the ones of 100 - 150 km depth experienced the activity of subducting slab consisting of basalt and granite which are ferromagnetic and semi-ferromagnetic. This concluded that all the occurences correspond to the high seismicity and seismotectonic condition of Toru fault.

  9. Structural controls on a geothermal system in the Tarutung Basin, north central Sumatra

    NASA Astrophysics Data System (ADS)

    Nukman, Mochamad; Moeck, Inga

    2013-09-01

    The Sumatra Fault System provides a unique geologic setting to evaluate the influence of structural controls on geothermal activity. Whereas most of the geothermal systems in Indonesia are controlled by volcanic activity, geothermal systems at the Sumatra Fault System might be controlled by faults and fractures. Exploration strategies for these geothermal systems need to be verified because the typical pattern of heat source and alteration clays are missing so that conventional exploration with magnetotelluric surveys might not provide sufficient data to delineate favorable settings for drilling. We present field geological, structural and geomorphological evidence combined with mapping of geothermal manifestations to allow constraints between fault dynamics and geothermal activity in the Tarutung Basin in north central Sumatra. Our results indicate that the fault pattern in the Tarutung Basin is generated by a compressional stress direction acting at a high angle to the right-lateral Sumatra Fault System. NW-SE striking normal faults possibly related to negative flower structures and NNW-SSE to NNE-SSW oriented dilative Riedel shears are preferential fluid pathways whereas ENE-WSW striking faults act as barriers in this system. The dominant of geothermal manifestations at the eastern part of the basin indicates local extension due to clockwise block rotation in the Sumatra Fault System. Our results support the effort to integrate detailed field geological surveys to refined exploration strategies even in tropical areas where outcrops are limited.

  10. Microstructural characterization of high-manganese austenitic steels with different stacking fault energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Shigeo, E-mail: s.sato@imr.tohoku.ac.jp; Kwon, Eui-Pyo; Imafuku, Muneyuki

    Microstructures of tensile-deformed high-manganese austenitic steels exhibiting twinning-induced plasticity were analyzed by electron backscatter diffraction pattern observation and X-ray diffraction measurement to examine the influence of differences in their stacking fault energies on twinning activity during deformation. The steel specimen with the low stacking fault energy of 15 mJ/m{sup 2} had a microstructure with a high population of mechanical twins than the steel specimen with the high stacking fault energy (25 mJ/m{sup 2}). The <111> and <100> fibers developed along the tensile axis, and mechanical twinning occurred preferentially in the <111> fiber. The Schmid factors for slip and twinning deformationsmore » can explain the origin of higher twinning activity in the <111> fiber. However, the high stacking fault energy suppresses the twinning activity even in the <111> fiber. A line profile analysis based on the X-ray diffraction data revealed the relationship between the characteristics of the deformed microstructures and the stacking fault energies of the steel specimens. Although the variation in dislocation density with the tensile deformation is not affected by the stacking fault energies, the effect of the stacking fault energies on the crystallite size refinement becomes significant with a decrease in the stacking fault energies. Moreover, the stacking fault probability, which was estimated from a peak-shift analysis of the 111 and 200 diffractions, was high for the specimen with low stacking fault energy. Regardless of the difference in the stacking fault energies of the steel specimens, the refined crystallite size has a certain correlation with the stacking fault probability, indicating that whether the deformation-induced crystallite-size refinement occurs depends directly on the stacking fault probability rather than on the stacking fault energies in the present steel specimens. - Highlights: {yields} We studied effects of stacking fault energies on deformed microstructures of steels. {yields} Correlations between texture and occurrence of mechanical twinning are discussed. {yields} Evolutions of dislocations and crystallite are analyzed by line profile analysis.« less

  11. Late Cenozoic strike-slip faulting in the NE Mojave Block: Deformation at the southwest boundary of the Walker Lane belt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schermer, E.R.

    1993-04-01

    New structural and stratigraphy data from the NE Mojave Block (NEMB) establish the timing and style of Cenozoic deformation south of the Garlock fault and west of the Avawatz Mts. Unlike adjacent areas, most of the NEMB did not undergo early-mid Miocene extension. Major fault zones strike EW; offset markers and small-scale shear criteria indicate left-lateral strike slip with a small reverse component. Lateral offsets average ca. 1--6 km and vertical offset is locally >200m. Pre-Tertiary markers indicate minimum cumulative sinistral shear of ca. 15 km in the area between the Garlock and Coyote Lake faults. Tertiary strata are deformedmore » together with the older rocks. Along the Ft. Irwin fault, alluvial fan deposits interpreted to be <11Ma appear to be displaced as much as Mesozoic igneous rocks. EW sinistral faults S. of the Garlock fault cut unconsolidated Quaternary deposits; geomorphologic features and trench exposures along segments of the McLean Lake fault and the Tiefort Mt. fault suggest Late Quaternary activity. The EW faults do not cut modern drainages and are not seismically active. NW-striking faults are largely absent within the NEMB; the largest faults bound the domain of EW-striking faults. Offset of Cretaceous and Miocene rocks suggests the W boundary (Goldstone Lake fault) has <2km right separation. Along the E boundary (Soda-Avawatz fault zone), the presence of distinctive clasts in mid-late Miocene conglomerates west of the Avawatz Mts. supports the suggestion of Brady (1984) of ca. 20 km dextral displacement. Other NW-striking faults are cut by EW faults, have unknown or minor dextral displacement (Desert King Spring Fault, Garlic Spring fault) or are low- to moderate-angle left-oblique thrust faults (Red Pass Lake fault zone).« less

  12. Probabilistic Seismic Hazard Analysis of Victoria, British Columbia, Canada: Considering an Active Leech River Fault

    NASA Astrophysics Data System (ADS)

    Kukovica, J.; Molnar, S.; Ghofrani, H.

    2017-12-01

    The Leech River fault is situated on Vancouver Island near the city of Victoria, British Columbia, Canada. The 60km transpressional reverse fault zone runs east to west along the southern tip of Vancouver Island, dividing the lithologic units of Jurassic-Cretaceous Leech River Complex schists to the north and Eocene Metchosin Formation basalts to the south. This fault system poses a considerable hazard due to its proximity to Victoria and 3 major hydroelectric dams. The Canadian seismic hazard model for the 2015 National Building Code of Canada (NBCC) considered the fault system to be inactive. However, recent paleoseismic evidence suggests there to be at least 2 surface-rupturing events to have exceeded a moment magnitude (M) of 6.5 within the last 15,000 years (Morell et al. 2017). We perform a Probabilistic Seismic Hazard Analysis (PSHA) for the city of Victoria with consideration of the Leech River fault as an active source. A PSHA for Victoria which replicates the 2015 NBCC estimates is accomplished to calibrate our PSHA procedure. The same seismic source zones, magnitude recurrence parameters, and Ground Motion Prediction Equations (GMPEs) are used. We replicate the uniform hazard spectrum for a probability of exceedance of 2% in 50 years for a 500 km radial area around Victoria. An active Leech River fault zone is then added; known length and dip. We are determining magnitude recurrence parameters based on a Gutenberg-Richter relationship for the Leech River fault from various catalogues of the recorded seismicity (M 2-3) within the fault's vicinity and the proposed paleoseismic events. We seek to understand whether inclusion of an active Leech River fault source will significantly increase the probabilistic seismic hazard for Victoria. Morell et al. 2017. Quaternary rupture of a crustal fault beneath Victoria, British Columbia, Canada. GSA Today, 27, doi: 10.1130/GSATG291A.1

  13. Recent advances in understanding the characteristics of seismogenic intraplate deformation in Australia, and the potential for using global analogues

    NASA Astrophysics Data System (ADS)

    Clark, Dan; McPherson, Andrew

    2017-04-01

    Continental intraplate Australia can be divided according to crustal type in terms of seismogenic potential and fault characteristics. Three 'superdomains' are recognized, representing cratonic, non-cratonic and extended crust. In the Australian context, cratonic crust is Archaean to Proterozoic in age and has not been significantly tectonically reactivated during the Phanerozoic Eon. Non-cratonic crust includes Phanerozoic accretionary terranes and older crust significantly deformed during Phanerozoic tectonic events. Extended crust includes any crustal type that has been significantly extended during the Mesozoic and Cenozoic, and often to a lesser degree in the Paleozoic. Aulacogens and passive margins fit into this category. Cratonic crust is characterized by the thickest lithosphere and has the lowest seismogenic potential, despite all eight documented historic surface ruptures in Australia having occurred within this category. Little strain accumulation is observed on individual faults and isolated single-rupture scarps are common. Where recurrence has been demonstrated, average slip rates of only a few metres per million years are indicated. In contrast, extended crust is associated with thinner lithosphere, better connection between faults, and strain localization on faults which can result in regional relief-building. The most active faults have accumulated several hundred metres of slip under the current crustal stress regime at rates of several tens of metres per million years. Non-cratonic crust is typically intermediate in lithospheric thickness and seismogenic character. The more active faults have accumulated tens to a couple of hundreds of metres of slip, at rates of a few to a few tens of metres per million years. Across all superdomains paleoseismological data suggest that the largest credible earthquakes are likely to exceed those experienced in historic times. In general, the concept of large earthquake recurrence might only be meaningful in relation to individual faults in non-cratonic and extended superdomains. However, large earthquake recurrence and slip are demonstrably not evenly distributed in time. Within the limitations of the sparse paleoseismological data, temporal clustering of large events appears to be a common (perhaps ubiquitous?) characteristic. Over the last few decades, permanent and campaign GPS studies have failed to detect a tectonic deformation signal from which a strain budget could be calculated. Recent studies have used these observations, amongst others, to propose an orders of magnitude difference in the timescales of strain accumulation and seismogenic strain release in intraplate environments - i.e. clusters of large events deplete long-lived pools of lithospheric strain. The recognition of a relationship between crustal type/lithospheric thickness and seismogenic potential in Australia provides a framework for assessing whether ergodic substitution (i.e. global analogue studies) might be warranted as a tool to better understand intraplate seismicity worldwide. Further research is required to assess how variation in crustal stress regime may influence faulting characteristics within different superdomains.

  14. Surface fault rupture during the Mw 7.8 Kaikoura earthquake, New Zealand, with specific comment on the Kekerengu Fault - one of the country's fastest slipping onland active faults

    NASA Astrophysics Data System (ADS)

    Van Dissen, Russ; Little, Tim

    2017-04-01

    The Mw 7.8 Kaikoura earthquake of 14 November, 2016 (NZDT) was a complex event. It involved ground-surface (or seafloor) fault rupture on at least a dozen onland or offshore faults, and subsurface rupture on a handful of additional faults. Most of the surface ruptures involved previously known (or suspected) active faults, as well as surface rupture on at least two hitherto unrecognised active faults. The southwest to northeast extent of surface fault rupture, as generalised by two straight-line segments, is approximately 180 km, though this is a minimum for the collective length of surface rupture due to multiple overlapping faults with various orientations. Surface rupture displacements on specific faults involved in the Kaikoura Earthquake span approximately two orders of magnitude. For example, maximum surface displacement on the Heaver's Creek Fault is cm- to dm-scale in size; whereas, maximum surface displacement on the nearby Kekerengu Fault is approximately 10-12 m (predominantly in a dextral sense). The Kekerengu Fault has a Late Pleistocene slip-rate rate of 20-26 mm/yr, and is possibly the second fastest slipping onland fault in New Zealand, behind the Alpine Fault. Located in the northeastern South Island of New Zealand, the Kekerengu Fault - along with the Hope Fault to the southwest and the Needles Fault offshore to the northeast - comprise the fastest slipping elements of the Pacific-Australian plate boundary in this part of the country. In January 2016 (about ten months prior to the Kaikoura earthquake) three paleo-earthquake investigation trenches were excavated across pronounced traces of the Kekerengu Fault at two locations. These were the first such trenches dug and evaluated across the fault. All three trenches displayed abundant evidence of past surface fault ruptures (three surface ruptures in the last approximately 1,200 years, four now including the 2016 rupture). An interesting aspect of the 2016 rupture is that two of the trenches received surface fault rupture, and are now dextrally offset by about 9 m, while the third trench did not have any 2016 surface rupture pass through it. In this instance, ground-surface rupture along this trace of the fault died out within tens of metres of the trench. Another salient aspect of the Kaikoura earthquake is that the determined (or estimated) recurrence intervals of the faults that ruptured the ground surface vary by an order of magnitude or more. This strongly implies that the ensemble of faults that ruptured with the Kekerengu Fault in the 2016 earthquake has not always been the same for past earthquakes. Possible reasons for this could include the state of stress at the time of a specific earthquake, the direction of rupture propagation, and whether or not rupture on one fault system cascades into rupture on another as is suspected to have happened in the Kaikoura earthquake.

  15. ``DMS-R, the Brain of the ISS'', 10 Years of Continuous Successful Operation in Space

    NASA Astrophysics Data System (ADS)

    Wolff, Bernd; Scheffers, Peter

    2012-08-01

    Space industries on both sides of the Atlantic were faced with a new situation of collaboration in the beginning of the 1990s.In 1995, industrial cooperation between ASTRIUM ST, Bremen and RSC-E, Moscow started aiming the outfitting of the Russian Service Module ZVEZDA for the ISS with computers. The requested equipments had to provide not only redundancy but fault tolerance and high availability. The design and development of two fault tolerant computers, (FTCs) responsible for the telemetry (Telemetry Computer: TC) and the central control (CC), as well as the man machine interface CPC were contracted to ASTRIUM ST, Bremen. The computer system is responsible e.g. for the life support system and the ISS re-boost control.In July 2000, the integration of the Russian Service Module ZVEZDA with Russian ZARYA FGB and American Node 1 bears witness for transatlantic and European cooperation.The Russian Service module ZVEZDA provides several basic functions as Avionics Control, the Environmental Control and Life Support (ECLS) in the ISS and control of the docked Automatic Transfer Vehicle (ATV) which includes re-boost of ISS. If these elementary functions fail or do not work reliable the effects for the ISS will be catastrophic with respect to Safety (manned space) and ISS mission.For that reason the responsible computer system Data Management System - Russia (DMS-R) is also called "The brain of the ISS".The Russian Service module ZVEZDA, including DMS-R, was launched on 12th of July, 2000. DMS-R was operational also during launch and docking.The talk provide information about the definition, design and development of DMS-R, the integration of DMS-R in the Russian Service module and the maintenance of the system in space. Besides the technical aspects are also the German - Russian cooperation an important subject of this speech. An outlook finalises the talk providing further development activities and application of fault tolerant systems.The importance of the DMS-R equipment for the ISS related to availability and reliability is reported in paragraph 1.2, describing a serious incident.The DMS-R architecture, consisting of two fault tolerant computers, their interconnection via MIL 1553 STD Bus and the Control Post Computer (CPC) as man- machine interface is given in figure 1. The main data transfer within the ISS and therefore also the Russian segment is managed by the MIL1553 STD bus. The focus of this script is neither the operational concept nor the fault tolerant design according the Byzantine Theorem, but the architectural embedment. One fault tolerant computer consists out of up to four fault containment regions (FCR), comparing in- and output data and deciding by majority voting whether a faulty FCR has to be isolated. For this purpose all data have to pass the so-called fault management element and are distributed to the other participants in the computer pool (FTC). Each fault containment region is connected to the avionic busses of the vehicle avionics system. In case of a faulty FCR (wrong calculation result was detected by the other FCRs or by build-in self-detection) the dedicated FCR will reset itself or will be reset by the others. The bus controller functions of the isolated FCR will be taken over according to a specific deterministic scheme from another FCR. The FTC data throughput will be maintained, the FTC operation will continue without interruption. Each FCR consists of an application CPU board (ALB), the fault management layer (FML), the avionics bus interface board (AVI) and a power supply (PSU), sharing a VME data bus.The FML is fully transparent, in terms of I/O accessibility, to the application S/W and votes the data autonomously received from the avionics busses and transmitted from the application.

  16. A study of the relationship between the performance and dependability of a fault-tolerant computer

    NASA Technical Reports Server (NTRS)

    Goswami, Kumar K.

    1994-01-01

    This thesis studies the relationship by creating a tool (FTAPE) that integrates a high stress workload generator with fault injection and by using the tool to evaluate system performance under error conditions. The workloads are comprised of processes which are formed from atomic components that represent CPU, memory, and I/O activity. The fault injector is software-implemented and is capable of injecting any memory addressable location, including special registers and caches. This tool has been used to study a Tandem Integrity S2 Computer. Workloads with varying numbers of processes and varying compositions of CPU, memory, and I/O activity are first characterized in terms of performance. Then faults are injected into these workloads. The results show that as the number of concurrent processes increases, the mean fault latency initially increases due to increased contention for the CPU. However, for even higher numbers of processes (less than 3 processes), the mean latency decreases because long latency faults are paged out before they can be activated.

  17. Faulting arrested by control of ground-water withdrawal in Houston, Texas.

    USGS Publications Warehouse

    Holzer, T.; Gabrysch, R.K.; Verbeek, E.R.

    1983-01-01

    More than 86 historically active faults with an aggregate length of 150 miles have been identified within and adjacent to the Houston, Texas, metropolitan area. Although scarps of these faults grow gradually and without causing damaging earthquakes, historical fault offset has cost millions of dollars in damage to houses and other buildings, utilities, and highways that were built on or across the faults. The historical fault activity results from renewed movement along preexisting faults and appears to be caused principally by withdrawal of ground water for municipal, industrial, and agricultural uses in the Houston area. Approximately one-half of the area's water supply is obtained from local ground water. Monitoring by the US Geological Survey of heights of fault scarps indicates that many of the scarps have recently stopped increasing in height. The area where faulting has ceased coincides with the area where ground-water pumping was cut back in the mid-1970s to slow the damage caused by land subsidence along Galveston Bay and the Houston Ship Channel. Thus, it appears that efforts to halt land subsidence in the coastal area have provided the additional benefit of arresting damaging surface faulting. -from Authors

  18. Active faulting, earthquakes, and restraining bend development near Kerman city in southeastern Iran

    NASA Astrophysics Data System (ADS)

    Walker, Richard Thomas; Talebian, Morteza; Saiffori, Sohei; Sloan, Robert Alastair; Rasheedi, Ali; MacBean, Natasha; Ghassemi, Abbas

    2010-08-01

    We provide descriptions of strike-slip and reverse faulting, active within the late Quaternary, in the vicinity of Kerman city in southeastern Iran. The faults accommodate north-south, right-lateral, shear between central Iran and the Dasht-e-Lut depression. The regions that we describe have been subject to numerous earthquakes in the historical and instrumental periods, and many of the faults that are documented in this paper constitute hazards for local populations, including the city of Kerman itself (population ˜200,000). Faults to the north and east of Kerman are associated with the transfer of slip from the Gowk to the Kuh Banan right-lateral faults across a 40 km-wide restraining bend. Faults south and west of the city are associated with oblique slip on the Mahan and Jorjafk systems. The patterns of faulting observed along the Mahan-Jorjafk system, the Gowk-Kuh Banan system, and also the Rafsanjan-Rayen system further to the south, appear to preserve different stages in the development of these oblique-slip fault systems. We suggest that the faulting evolves through time. Topography is initially generated on oblique slip faults (as is seen on the Jorjafk fault). The shortening component then migrates to reverse faults situated away from the high topography whereas strike-slip continues to be accommodated in the high, mountainous, regions (as is seen, for example, on the Rafsanjan fault). The reverse faults may then link together and eventually evolve into new, through-going, strike-slip faults in a process that appears to be occurring, at present, in the bend between the Gowk and Kuh Banan faults.

  19. Imaging the concealed section of the Whakatane fault below Whakatane city, New Zealand, with a shear wave land streamer system

    NASA Astrophysics Data System (ADS)

    Polom, Ulrich; Mueller, Christof; Krawczyk, CharLotte M.

    2016-04-01

    The Mw 7.1 Darfield Earthquake in September 2010 ruptured the surface along the Greendale Fault that was not known prior to the earthquake. The subsequent Mw 6.3 Christchurch earthquake in February 2011 demonstrated that concealed active faults have a significant risk potential for urban infrastructure and human life in New Zealand if they are located beneath or close to such areas. Mapping exposures and analysis of active faults incorporated into the National Seismic Hazard Model (NSHM) suggests that several thousands of these active structures are yet to be identified and have the potential to generate moderate to large magnitude earthquakes (i.e. magnitudes >5). Geological mapping suggests that active faults pass beneath, or within many urban areas in New Zealand, including Auckland, Blenheim, Christchurch, Hastings/Napier, Nelson, Rotorua, Taupo, Wellington, and Whakatane. Since no established methodology for routinely locating and assessing the earthquake hazard posed by concealed active faults is available, the principal objective of the presented study was to evaluate the usefulness of high-resolution shear wave seismic reflection profiling using a land streamer to locate buried faults in urban areas of New Zealand. During the survey carried out in the city of Whakatane in February 2015, the method was first tested over a well known surface outcrop of the Edgecumbe Fault 30 km south-west of Whakatane city. This allowed further to investigate the principle shear wave propagation characteristics in the unknown sediments, consisting mainly of effusive rock material of the Taupo volcanic zone mixed with marine transgression units. Subsequently the survey was continued within Whakatane city using night operation time slots to reduce the urban noise. In total, 11 profiles of 5.7 km length in high data quality were acquired, which clearly show concealed rupture structures of obviously different age in the shallow sediments down to 100 m depth. Subject to depth verification by drillings normal fault displacements of up to 15 m are visible in depths of 20-40 m, deeper rupture structures show displacements of up to 20 m. Furthermore, indications of strike-slip fault activities are visible. The concealed rupture structures found are not aligned along former estimated fault lineaments or main surface structures like the Whakatane river bed. Correlations exist with small topographic variations detected by LIDAR imaging and surface signatures on a historic map of 1867.

  20. Award ER25750: Coordinated Infrastructure for Fault Tolerance Systems Indiana University Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumsdaine, Andrew

    2013-03-08

    The main purpose of the Coordinated Infrastructure for Fault Tolerance in Systems initiative has been to conduct research with a goal of providing end-to-end fault tolerance on a systemwide basis for applications and other system software. While fault tolerance has been an integral part of most high-performance computing (HPC) system software developed over the past decade, it has been treated mostly as a collection of isolated stovepipes. Visibility and response to faults has typically been limited to the particular hardware and software subsystems in which they are initially observed. Little fault information is shared across subsystems, allowing little flexibility ormore » control on a system-wide basis, making it practically impossible to provide cohesive end-to-end fault tolerance in support of scientific applications. As an example, consider faults such as communication link failures that can be seen by a network library but are not directly visible to the job scheduler, or consider faults related to node failures that can be detected by system monitoring software but are not inherently visible to the resource manager. If information about such faults could be shared by the network libraries or monitoring software, then other system software, such as a resource manager or job scheduler, could ensure that failed nodes or failed network links were excluded from further job allocations and that further diagnosis could be performed. As a founding member and one of the lead developers of the Open MPI project, our efforts over the course of this project have been focused on making Open MPI more robust to failures by supporting various fault tolerance techniques, and using fault information exchange and coordination between MPI and the HPC system software stack from the application, numeric libraries, and programming language runtime to other common system components such as jobs schedulers, resource managers, and monitoring tools.« less

Top