Sample records for active fault scarps

  1. Dating Tectonic Activity on Mercury’s Large-Scale Lobate-Scarp Thrust Faults

    NASA Astrophysics Data System (ADS)

    Barlow, Nadine G.; E Banks, Maria

    2017-10-01

    Mercury’s widespread large-scale lobate-scarp thrust faults reveal that the planet’s tectonic history has been dominated by global contraction, primarily due to cooling of its interior. Constraining the timing and duration of this contraction provides key insight into Mercury’s thermal and geologic evolution. We combine two techniques to enhance the statistical validity of size-frequency distribution crater analyses and constrain timing of the 1) earliest and 2) most recent detectable activity on several of Mercury’s largest lobate-scarp thrust faults. We use the sizes of craters directly transected by or superposed on the edge of the scarp face to define a count area around the scarp, a method we call the Modified Buffered Crater Counting Technique (MBCCT). We developed the MBCCT to avoid the issue of a near-zero scarp width since feature widths are included in area calculations of the commonly used Buffered Crater Counting Technique (BCCT). Since only craters directly intersecting the scarp face edge conclusively show evidence of crosscutting relations, we increase the number of craters in our analysis (and reduce uncertainties) by using the morphologic degradation state (i.e. relative age) of these intersecting craters to classify other similarly degraded craters within the count area (i.e., those with the same relative age) as superposing or transected. The resulting crater counts are divided into two categories: transected craters constrain the earliest possible activity and superposed craters constrain the most recent detectable activity. Absolute ages are computed for each population using the Marchi et al. [2009] model production function. A test of the Blossom lobate scarp indicates the MBCCT gives statistically equivalent results to the BCCT. We find that all scarps in this study crosscut surfaces Tolstojan or older in age (>~3.7 Ga). The most recent detectable activity along lobate-scarp thrust faults ranges from Calorian to Kuiperian (~3.7 Ga to

  2. Paleo-earthquake Analysis from the Morphologic Features of Unconsolidated-sediment Fault Scarp: An Example from Dushanzi Thrust Fault in the Northern Tianshan, China

    NASA Astrophysics Data System (ADS)

    Wei, Z.; He, H.

    2016-12-01

    Fault scarp is important specific tectonic landform caused by surface-rupture earthquake. The morphology of the fault scarp in unconsolidated sediment could evolve in a predictable, time-dependent diffusion model. As a result, the investigation of fault-generated fault scarps is a prevalent technique used to study fault activity, geomorphic evolution, and the recurrence of faulting events. Addition to obtainment of cumulative displacement, gradient changes, i.e. slope breaks, in the morphology of fault scarps could indicate multiple rupture events along an active fault. In this study, we exacted a large set of densely spaced topographic profiles across fault scarp from LiDAR-derive DEM to detect subtle changes in the fault scarp geometry at the Dushanzi trust fault in the Northern Tianshan, China. Several slope breaks in topographic profiles can be identified, which may represent repeated rupture at the investigated fault. The number of paleo-earthquakes derived from our analysis is 4-3, well in agreement with the investigation results from the paleoseismological trenches. Statistical analysis results show that the scarp height of fault scarp with one slope break is 0.75±0.12 (mean value ±1 standard deviation) m representing the last incremental displacement during earthquakes; the height of fault scarp with two slope breaks is 1.86±0.32 m, and the height of fault scarp with three-four slope break is 6.45±1.44 m. Our approach enables us to obtain paleo-earthquake information from geomorphological analysis of fault scarps, and to assess the multiple rupture history of a complex fault system.

  3. Millennial strain partitioning revealed by 36Cl cosmogenic data on active bedrock fault scarps from Abruzzo, Italy

    NASA Astrophysics Data System (ADS)

    Gregory, Laura; Roberts, Gerald; Cowie, Patience; Wedmore, Luke; McCaffrey, Ken; Shanks, Richard; Zijerveld, Leo; Phillips, Richard

    2017-04-01

    In zones of distributed continental faulting, it is critical to understand how slip is partitioned onto brittle structures over both long-term millennial time scales and shorter-term individual earthquake cycles. Measuring earthquake slip histories on different timescales is challenging due to earthquake repeat-times being longer or similar to historical earthquake records, and a paucity of data on fault activity covering millennial to Quaternary scales in detail. Cosmogenic isotope analyses from bedrock fault scarps have the potential to bridge the gap, as these datasets track the exposure of fault planes due to earthquakes with millennial resolution. In this presentation, we present new 36Cl data combined with historical earthquake records to document orogen-wide changes in the distribution of seismicity on millennial timescales in Abruzzo, central Italy. Seismic activity due to extensional faulting was concentrated on the northwest side of the mountain range during the historical period, or since approximately the 14th century. Seismicity is more limited on the southwest side of Abruzzo during historical times. This pattern has led some to suggest that faults on the southwest side of Abruzzo are not active, however clear fault scarps cutting Holocene-aged slopes are well preserved across the whole of the orogen. These scarps preserve an excellent record of Late Pleistocene to Holocene earthquake activity, which can be quantified using cosmogenic isotopes that track the exposure of the bedrock fault scarps. 36Cl accumulates in the fault scarps as the plane is progressively exhumed by earthquakes and the concentration of 36Cl measured up the fault plane reflects the rate and patterns of slip. We utilise Bayesian modelling techniques to estimate slip histories based on the cosmogenic data. Each sampling site is carefully characterised using LiDAR and GPR to ensure that fault plane exposure is due to slip during earthquakes and not sediment transport processes. In

  4. Micro-geomorphology Surveying and Analysis of Xiadian Fault Scarp, China

    NASA Astrophysics Data System (ADS)

    Ding, R.

    2014-12-01

    Historic records and field investigations reveal that the Mw 8.0 Sanhe-Pinggu (China) earthquake of 1679 produced a 10 to 18 km-long surface rupture zone, with dominantly dip-slip accompanied by a right-lateral component along the Xiadian fault, resulting in extensive damage throughout north China. The fault scarp that was coursed by the co-seismic ruptures from Dongliuhetun to Pangezhang is about 1 to 3 meters high, and the biggest vertical displacement locates in Pangezhuang, it is easily to be seen in the flat alluvial plain. But the 10 to 18 km-long surface rupture couldn't match the Mw 8.0 earthquake scale. After more than 300 years land leveling, the fault scarps in the meizoseismal zone which is farmland are retreat at different degree, some small scarps are becoming disappeared, so it is hard to identify by visual observation in the field investigations. The meizoseismal zone is located in the alluvial plain of the Chaobai river and Jiyun river, and the fault is perpendicular to the river. It is easy to distinguish fault scarps from erosion scarps. Land leveling just changes the slope of the fault scarp, but it can't eliminate the height difference between two side of the fault. So it is possible to recover the location and height of the fault scarp by using Digital Elevation Model (DEM) analysis and landform surveying which is constrained by 3D centimeter-precision RTK GPS surveying method in large scale crossing the fault zone. On the base of the high-precision DEM landform analysis, we carried out 15 GPS surveying lines which extends at least 10km for each crossing the meizoseismal zone. Our findings demonstrate that 1) we recover the complete rupture zone of the Sanhe-Pinggu earthquake in 1679, and survey the co-seismic displacement at 15 sites; 2) we conform that the Xiadian fault scarp is consist of three branches with left stepping. Height of the scarp is from 0.5 to 4.0 meters, and the total length of the scarp is at least 50km; 3) Combined with the

  5. Morphologic dating of fault scarps using airborne laser swath mapping (ALSM) data

    USGS Publications Warehouse

    Hilley, G.E.; Delong, S.; Prentice, C.; Blisniuk, K.; Arrowsmith, J.R.

    2010-01-01

    Models of fault scarp morphology have been previously used to infer the relative age of different fault scarps in a fault zone using labor-intensive ground surveying. We present a method for automatically extracting scarp morphologic ages within high-resolution digital topography. Scarp degradation is modeled as a diffusive mass transport process in the across-scarp direction. The second derivative of the modeled degraded fault scarp was normalized to yield the best-fitting (in a least-squared sense) scarp height at each point, and the signal-to-noise ratio identified those areas containing scarp-like topography. We applied this method to three areas along the San Andreas Fault and found correspondence between the mapped geometry of the fault and that extracted by our analysis. This suggests that the spatial distribution of scarp ages may be revealed by such an analysis, allowing the recent temporal development of a fault zone to be imaged along its length.

  6. Effects of Channel Modification on Detection and Dating of Fault Scarps

    NASA Astrophysics Data System (ADS)

    Sare, R.; Hilley, G. E.

    2016-12-01

    Template matching of scarp-like features could potentially generate morphologic age estimates for individual scarps over entire regions, but data noise and scarp modification limits detection of fault scarps by this method. Template functions based on diffusion in the cross-scarp direction may fail to accurately date scarps near channel boundaries. Where channels reduce scarp amplitudes, or where cross-scarp noise is significant, signal-to-noise ratios decrease and the scarp may be poorly resolved. In this contribution, we explore the bias in morphologic age of a complex scarp produced by systematic changes in fault scarp curvature. For example, fault scarps may be modified by encroaching channel banks and mass failure, lateral diffusion of material into a channel, or undercutting parallel to the base of a scarp. We quantify such biases on morphologic age estimates using a block offset model subject to two-dimensional linear diffusion. We carry out a synthetic study of the effects of two-dimensional transport on morphologic age calculated using a profile model, and compare these results to a well- studied and constrained site along the San Andreas Fault at Wallace Creek, CA. This study serves as a first step towards defining regions of high confidence in template matching results based on scarp length, channel geometry, and near-scarp topography.

  7. Active tectonics in southern Xinjiang, China: Analysis of terrace riser and normal fault scarp degradation along the Hotan-Qira fault system

    NASA Technical Reports Server (NTRS)

    Avouac, Jean-Philippe; Peltzer, Gilles

    1993-01-01

    The northern piedmont of the western Kunlun mountains (Xinjiang, China) is marked at its easternmost extremity, south of the Hotan-Qira oases, by a set of normal faults trending N50E for nearly 70 km. Conspicuous on Landsat and SPOT images, these faults follow the southeastern border of a deep flexural basin and may be related to the subsidence of the Tarim platform loaded by the western Kunlun northward overthrust. The Hotan-Qira normal fault system vertically offsets the piedmont slope by 70 m. Highest fault scarps reach 20 m and often display evidence for recent reactivations about 2 m high. Successive stream entrenchments in uplifted footwallls have formed inset terraces. We have leveled topographic profiles across fault scarps and transverse abandoned terrace risers. The state of degradation of each terrace edge has been characterized by a degradation coefficient tau, derived by comparison with analytical erosion models. Edges of highest abandoned terraces yield a degradation coefficient of 33 +/- 4 sq.m. Profiles of cumulative fault scarps have been analyzed in a similar way using synthetic profiles generated with a simple incremental fault scarp model.

  8. Shallow Seismic Reflection Study of Recently Active Fault Scarps, Mina Deflection, Western Nevada

    NASA Astrophysics Data System (ADS)

    Black, R. A.; Christie, M.; Tsoflias, G. P.; Stockli, D. F.

    2006-12-01

    During the spring and summer of 2006 University of Kansas geophysics students and faculty acquired shallow, high resolution seismic reflection data over actively deforming alluvial fans developing across the Emmigrant Peak (in Fish Lake Valley) and Queen Valley Faults in western Nevada. These normal faults represent a portion of the transition from the right-lateral deformation associated with the Walker Lane/Eastern California Shear Zone to the normal and left-lateral faulting of the Mina Deflection. Data were gathered over areas of recent high resolution geological mapping and limited trenching by KU students. An extensive GPR data grid was also acquired. The GPR results are reported in Christie, et al., 2006. The seismic data gathered in the spring included both walkaway tests and a short CMP test line. These data indicated that a very near-surface P-wave to S-wave conversion was taking place and that very high quality S-wave reflections were probably dominating shot records to over one second in time. CMP lines acquired during the summer utilized a 144 channel networked Geode system, single 28 hz geophones, and a 30.06 downhole rifle source. Receiver spacing was 0.5 m, source spacing 1.0m and CMP bin spacings were 0.25m for all lines. Surveying was performed using an RTK system which was also used to develop a concurrent high resolution DEM. A dip line of over 400m and a strike line over 100m in length were shot across the active fan scarp in Fish Lake Valley. Data processing is still underway. However, preliminary interpretation of common-offset gathers and brute stacks indicates very complex faulting and detailed stratigraphic information to depths of over 125m. Depth of information was actually limited by the 1024ms recording time. Several west-dipping normal faults downstep towards the basin. East-dipping antithetic normal faulting is extensive. Several distinctive stratigraphic packages are bound by the faults and apparent unconformitites. A CMP dip line

  9. Length-Displacement Scaling of Lunar Thrust Faults and the Formation of Uphill-Facing Scarps

    NASA Astrophysics Data System (ADS)

    Hiesinger, Harald; Roggon, Lars; Hetzel, Ralf; Clark, Jaclyn D.; Hampel, Andrea; van der Bogert, Carolyn H.

    2017-04-01

    (version 6.14). Our model results indicate that the onset of faulting in our 200-km-long model is a function of the surface topography [5]. Our numerical model indicates that uphill-facing scarps form earlier and grow faster than downhill-facing scarps under otherwise similar conditions. Thrust faults which dip in the same general direction as the topography (forming an uphill-facing scarp), start to slip earlier (4.2 Ma) after the onset of shortening and reach a total slip of 5.8 m after 70 Ma. In contrast, slip on faults that leads to the generation of a downhill-facing scarp initiates much later (i.e., after 20 Ma of elapsed model time) and attains a total slip of only 1.8 m in 70 Ma. If the surface of the model is horizontal, faulting on both fault structures starts after 4.4 Ma, but faulting proceeds at a lower rate than for fault, which generated the uphill-facing scarp. Although the absolute ages for fault initiation (as well as the total fault slip) depend on the arbitrarily chosen shortening rate (as well as on the size of the model and the elastic parameters), this relative timing of fault activation was consistently observed irrespective of the chosen shortening rate. Thus, the model results demonstrate that, for all other factors being equal, the differing weight of the hanging wall above the two modeled faults is responsible for the different timing of fault initiation and the difference in total slip. In conclusion, we present new quantitative estimates of the maximum total displacements of lunar lobate scarps and offer a new model to explain the origin of uphill-facing scarps that is also of importance for understanding the formation of the Lee-Lincoln scarp at the Apollo 17 landing site. [1] Watters et al., 2000, Geophys. Res. Lett. 27; [2] Williams et al., 2013, J. Geophys. Res. 118; [3] Massironi et al., 2015, Encycl. Planet. Landf., pp. 1255-1262; [4] Schultz et al., 2006, J. Struct. Geol. 28; [5] Roggon et al. (2017) Icarus, in press; [6] Watters and

  10. Nucleation of Waterfalls at Fault Scarps Temporarily Shielded By Alluvial Fan Aggradation.

    NASA Astrophysics Data System (ADS)

    Malatesta, L. C.; Lamb, M. P.

    2014-12-01

    Waterfalls are important components of mountain river systems and they can serve as an agent to transfer tectonic, climatic, or authigenic signals upstream through a catchment. Retreating waterfalls lower the local base level of the adjacent hillslopes, and temporarily increase sediment delivery to the fluvial system. Their creation is often attributed to seismic ruptures, lithological boundaries, or the coalescence of multiple smaller steps. We explore here a mechanism for the nucleation of waterfalls that does not rely on sudden seismic slip but on the build-up of accumulated slip during periods of fault burial by fluvial aggradation. Alluvial fans are common features at the front of mountain ranges bound by normal or thrust faults. Climate change or internal forcing in the mountain catchment modifies the equilibrium slope of alluvial fans. When alluvial fans aggrade, they shield the active fault scarp from fluvial erosion allowing the scarp to grow undisturbed. The scarp may then be exposed when the channel incises into the fan exposing a new bedrock waterfall. We explore this mechanism analytically and using a numerical model for bedrock river incision and sediment deposition. We find that the creation of waterfalls by scarp burial is limited by three distinct timescales: 1) the critical timescale for the scarp to grow to the burial height, 2) the timescale of alluvial re-grading of the fan, and 3) the timescale of the external or internal forcing, such as climate change. The height of the waterfall is controlled by i) the difference in equilibrium alluvial-fan slopes, ii) the ratio of the respective fan and catchment sizes, iii) the catchment wide denudation rate, and iv) the fault slip rate. We test whether an individual waterfall could be produced by alluvial shielding of a scarp, and identify the tectonic, climatic, or authigenic nature of waterfalls using example field sites in the southwest United States.

  11. Coseismic fold scarp associated with historic earthquakes upon the Yoro active blind thrust, the Nobi-Ise fault zone, central Japan

    NASA Astrophysics Data System (ADS)

    Ishiyama, T.; Mueller, K.; Togo, M.

    2004-12-01

    We present structural models constrained by tectonic geomorphology, surface geologic mapping, shallow borehole transects and a high-resolution S-wave seismic reflection profile to define the kinematic evolution of a coseismic fold scarp along the Nobi-Ise fault zone (NIFZ). The NIFZ is an active intraplate fault system in central Japan, and consists of a 110-km-long array of active, east-verging reverse faults. Fold scarps along the Yoro fault are interpreted as produced during a large historic blind-thrust earthquake. The Yoro Mountains form the stripped core of the largest structure in the NIFZ and expose Triassic-Jurassic basement that are thrust eastward over a 2-km-thick sequence of Pliocene-Pleistocene strata deposited in the Nobi basin. This basement-cored fold is underlain by an active blind thrust that is expressed as late Holocene fold scarps along its eastern flank. Drilling investigations across the fold scarp at a site near Shizu identified at least three episodes of active folding associated with large earthquakes on the Yoro fault. Radiocarbon ages constrain the latest event as having occurred in a period that contains historical evidence for a large earthquake in A.D. 1586. A high resolution, S-wave seismic reflection profile at the same site shows that the topographic fold scarp coincides with the projected surface trace of the synclinal axis, across which the buried, early Holocene to historic sedimentary units are folded. This is interpreted to indicate that the structure accommodated coseismic fault-propagation folding during the A.D. 1586 blind thrust earthquake. Flexural-slip folding associated with secondary bedding-parallel thrusts may also deform late Holocene strata and act to consume slip on the primary blind thrust across the synclinal axial surfaces. The best-fitting trishear model for folded ca. 13 ka gravels deposited across the forelimb requires a 28\\deg east-dipping thrust fault. This solution suggests that a 4.2 mm/yr of slip rate

  12. Paleoseismology of a possible fault scarp in Wenas Valley, central Washington

    USGS Publications Warehouse

    Sherrod, Brian L.; Barnett, Elizabeth A.; Knepprath, Nichole; Foit, Franklin F.

    2013-01-01

    In October 2009, two trenches excavated across an 11-kilometer-long scarp at Wenas Valley in central Washington exposed evidence for late Quaternary deformation. Lidar imagery of the Wenas Valley illuminated the west-northwest-trending, 2- to 8-meter-high scarp as it bisected alluvial fans developed at the mouths of canyons along the south side of Umtanum Ridge. The alignment of the scarp and aeromagnetic lineaments suggested that the scarp may be a product of and controlled by the same tectonic structure that produced the magnetic lineaments. Several large landslides mapped in the area demonstrated the potential for large mass-wasting events in the area. In order to test whether the scarp was the result of an earthquake-generated surface rupture or a landslide, trenches were excavated at Hessler Flats and McCabe Place. The profiles of bedrock and soil stratigraphy that underlie the scarp in each trench were photographed, mapped, and described, and a sequence of depositional and deformational events established for each trench. The McCabe Place trench exposed a sequence of volcaniclastic deposits overlain by soils and alluvial deposits separated by three unconformities. Six normal faults and two possible reverse faults deformed the exposed strata. Crosscutting relations indicated that up to five earthquakes occurred on a blind reverse fault, and a microprobe analysis of lapilli suggested that the earliest faulting occurred after 47,000 years before present. The Hessler Flat trench exposure revealed weathered bedrock that abuts loess and colluvium deposits and is overlain by soil, an upper sequence of loess, and colluvium. The latter two units bury a distinctive paloesol.

  13. Small Scarp Close-up

    NASA Image and Video Library

    2015-03-16

    Images obtained after lowering MESSENGER's altitude have revealed a population of small fault scarps (white arrows) that can be more than an order of magnitude smaller in size than their larger counterparts, like Enterprise Rupes. These small scarps are less than 10 km in length and have only tens of meters of relief. They are comparable in size and morphology to small fault scarps imaged on the Moon by the Lunar Reconnaissance Orbiter, suggesting that these small scarps are relatively young, and raising the possibility that some are even active today. http://photojournal.jpl.nasa.gov/catalog/PIA19245

  14. Active transpressional tectonics in the Andean forearc of southern Peru quantified by 10Be surface exposure dating of an active fault scarp

    NASA Astrophysics Data System (ADS)

    Benavente, Carlos; Zerathe, Swann; Audin, Laurence; Hall, Sarah R.; Robert, Xavier; Delgado, Fabrizio; Carcaillet, Julien; Team, Aster

    2017-09-01

    Our understanding of the style and rate of Quaternary tectonic deformation in the forearc of the Central Andes is hampered by a lack of field observations and constraints on neotectonic structures. Here we present a detailed analysis of the Purgatorio fault, a recently recognized active fault located in the forearc of southern Peru. Based on field and remote sensing analysis (Pléiades DEM), we define the Purgatorio fault as a subvertical structure trending NW-SE to W-E along its 60 km length, connecting, on its eastern end, to the crustal Incapuquio Fault System. The Purgatorio fault accommodates right-lateral transpressional deformation, as shown by the numerous lateral and vertical plurimetric offsets recorded along strike. In particular, scarp with a 5 m cumulative throw is preserved and displays cobbles that are cut and covered by slickensides. Cosmogenic radionuclide exposure dating (10Be) of quartzite cobbles along the vertical fault scarp yields young exposure ages that can be bracketed between 0 to 6 ka, depending on the inheritance model that is applied. Our preferred scenario, which takes in account our geomorphic observations, implies at least two distinct rupture events, each associated with 3 and 2 m of vertical offset. These two events plausibly occurred during the last thousand years. Nevertheless, an interpretation invoking more tectonic events along the fault cannot be ruled out. This work affirms crustal deformation along active faults in the Andean forearc of southern Peru during the last thousand years.

  15. A new look at formation and timing of thrust fault scarps on the Moon

    NASA Astrophysics Data System (ADS)

    Watters, T. R.; Robinson, M. S.; Beyer, R. A.; Bell, J. F.; Pritchard, M. E.; Banks, M. E.; Garry, W. B.; Williams, N. R.

    2009-12-01

    The current view of lunar tectonics is that most crustal deformation is directly associated with mare basins. Lunar lobate scarps, in contrast to nearside mare wrinkle ridges, and graben, are found most often in the highlands and are the dominant tectonic landform on the farside. Lunar scarps are relatively small-scale tectonic landforms, only easily resolved in the highest resolution Apollo Panoramic Camera and Lunar Orbiter images. These scarps are interpreted to be the surface expression of thrust faults, yet they have not been well characterized and their global spatial distribution remains unknown. Images from the Lunar Reconnaissance Orbiter Camera (LROC) reveal previously undetected scarps as well as remarkable new features related to some previously known lobate scarps. LROC Narrow Angle Camera (NAC) 1 to 2 m/pixel images show meter-scale tectonic landforms associated with the Lee-Lincoln scarp. The Lee-Lincoln thrust fault scarp cuts across the mare basalt-filled Taurus-Littrow valley near the Apollo 17 landing site, trending roughly north-south between two highland massifs. The fault scarp extends into the highlands of North Massif where it cuts up slope for a short distance and abruptly changes trend to the northwest cutting along slope for kilometers. NAC stereo-derived topography shows a narrow rise associated with the scarp segment in the valley floor. Spatially correlated with the rise is an array of fractures and shallow extensional troughs or graben. The small-scale graben have maximum widths of ~25 m and are typically 100-200 meters in length. The rise is interpreted to be the result of flexural bending of the valley floor basalts with bending stresses causing extension of the upper regolith. Lobate scarps appear to be among the youngest tectonic landforms on the Moon based on their generally crisp appearance and a lack of superposed, relatively large-diameter (>500 m), impact craters. NAC images of known and newly detected scarps reveal evidence

  16. High resolution t-LiDAR scanning of an active bedrock fault scarp for palaeostress analysis

    NASA Astrophysics Data System (ADS)

    Reicherter, Klaus; Wiatr, Thomas; Papanikolaou, Ioannis; Fernández-Steeger, Tomas

    2013-04-01

    Palaeostress analysis of an active bedrock normal fault scarp based on kinematic indicators is carried applying terrestrial laser scanning (t-LiDAR or TLS). For this purpose three key elements are necessary for a defined region on the fault plane: (i) the orientation of the fault plane, (ii) the orientation of the slickenside lineation or other kinematic indicators and (iii) the sense of motion of the hanging wall. We present a workflow to obtain palaeostress data from point cloud data using terrestrial laser scanning. The entire case-study was performed on a continuous limestone bedrock normal fault scarp on the island of Crete, Greece, at four different locations along the WNW-ESE striking Spili fault. At each location we collected data with a mobile terrestrial light detection and ranging system and validated the calculated three-dimensional palaeostress results by comparison with the conventional palaeostress method with compass at three of the locations. Numerous kinematics indicators for normal faulting were discovered on the fault plane surface using t-LiDAR data and traditional methods, like Riedel shears, extensional break-outs, polished corrugations and many more. However, the kinematic indicators are more or less unidirectional and almost pure dip-slip. No oblique reactivations have been observed. But, towards the tips of the fault, inclination of the striation tends to point towards the centre of the fault. When comparing all reconstructed palaeostress data obtained from t-LiDAR to that obtained through manual compass measurements, the degree of fault plane orientation divergence is around ±005/03 for dip direction and dip. The degree of slickenside lineation variation is around ±003/03 for dip direction and dip. Therefore, the percentage threshold error of the individual vector angle at the different investigation site is lower than 3 % for the dip direction and dip for planes, and lower than 6 % for strike. The maximum mean variation of the complete

  17. Extension across Tempe Terra, Mars, from measurements of fault scarp widths and deformed craters

    USGS Publications Warehouse

    Golombek, M.P.; Tanaka, K.L.; Franklin, B.J.

    1996-01-01

    Two independent methods, with no common assumptions, have been used to estimate the extension across the heavily deformed Tempe Terra province of the Tharsis region of Mars. One method uses measurements of normal fault scarp width with average scarp slope data for simple grabens and rifts on Mars to estimate the fault throw, which, combined with sparse fault dip data, can be used to estimate extension. Formal uncertainties in this method are only slightly greater than those in other methods, given that the total uncertainty is dominated by the likely uncertainty in the fault dip (assumed to be 60????15??). Measurement of normal fault scarp widths along two N25??-50??W directed traverses across Tempe Terra both yield about 22??16 km of extension (or ???2% strain across the northern traverse and nearly 3% across the southern one). About three quarters of the extension has occurred during the two main phases of Tharsis-related deformation from Middle/Late Noachian to Early Hesperian and from Late Hesperian to Early Amazonian, with more extension closer to the center of Tharsis during the first phase. Extension across the region was also determined by measuring the elongation and elongation direction of all ancient Noachian impact craters without ejecta blankets, which predate most of the deformation. Results have been corrected for initial non circularity of craters, established from similar measurements of young (post deformation) impact craters, yielding a statistically significant mean strain of 1.96??0.35% in a N38????10??W direction across Tempe Terra (extension of ???20??4, comparable in magnitude and direction to the average result from the scarp measurement method). Both methods indicate an average extension for single normal fault scarps (and shortening across wrinkle ridges for the crater method) of ???100 m. The agreement between the results of the two independent methods in overall extension and average single normal fault extension argues that the average

  18. Extension across Tempe Terra, Mars, from measurements of fault scarp widths and deformed craters

    NASA Astrophysics Data System (ADS)

    Golombek, M. P.; Tanaka, K. L.; Franklin, B. J.

    Two independent methods, with no common assumptions, have been used to estimate the extension across the heavily deformed Tempe Terra province of the Tharsis region of Mars. One method uses measurements of normal fault scarp width with average scarp slope data for simple grabens and rifts on Mars to estimate the fault throw, which, combined with sparse fault dip data, can be used to estimate extension. Formal uncertainties in this method are only slightly greater than those in other methods, given that the total uncertainty is dominated by the likely uncertainty in the fault dip (assumed to be 60°+/-15°). Measurement of normal fault scarp widths along two N25°-50°W directed traverses across Tempe Terra both yield about 22+/-16 km of extension (or ~2% strain across the northern traverse and nearly 3% across the southern one). About three quarters of the extension has occurred during the two main phases of Tharsis-related deformation from Middle/Late Noachian to Early Hesperian and from Late Hesperian to Early Amazonian, with more extension closer to the center of Tharsis during the first phase. Extension across the region was also determined by measuring the elongation and elongation direction of all ancient Noachian impact craters without ejecta blankets, which predate most of the deformation. Results have been corrected for initial non circularity of craters, established from similar measurements of young (post deformation) impact craters, yielding a statistically significant mean strain of 1.96+/-0.35% in a N38°+/-10°W direction across Tempe Terra (extension of ~20+/-4, comparable in magnitude and direction to the average result from the scarp measurement method). Both methods indicate an average extension for single normal fault scarps (and shortening across wrinkle ridges for the crater method) of ~100 m. The agreement between the results of the two independent methods in overall extension and average single normal fault extension argues that the average

  19. Logs and Scarp Data from a Paloseismic Investigation of the Surprise Valley Fault Zone, Modoc County, California

    USGS Publications Warehouse

    Personius, Stephen F.; Crone, Anthony J.; Machette, Michael N.; Lidke, David J.; Bradley, Lee-Ann; Mahan, Shannon

    2007-01-01

    This report contains field and laboratory data from a paleoseismic study of the Surprise Valley fault zone near Cedarville, California. The 85-km-long Surprise Valley fault zone forms the western active margin of the Basin and Range province in northeastern California. The down-to-the-east normal fault is marked by Holocene fault scarps along most of its length, from Fort Bidwell on the north to near the southern end of Surprise Valley. We studied the central section of the fault to determine ages of paleoearthquakes and to better constrain late Quaternary slip rates, which we hope to compare to deformation rates derived from a recently established geodetic network in the region (Hammond and Thatcher, 2005; 2007). We excavated a trench in June 2005 across a prominent fault scarp on pluvial Lake Surprise deltaic sediments near the mouth of Cooks Canyon, 4 km north of Cedarville. This site was chosen because of the presence of a well-preserved fault scarp and its development on lacustrine deposits thought to be suitable for luminescence dating. We also logged a natural exposure of the fault in similar deltaic sediments near the mouth of Steamboat Canyon, 11 km south of Cedarville, to better understand the along-strike extent of surface ruptures. The purpose of this report is to present photomosaics, trench, drill hole, and stream exposure logs; scarp profiles; and fault slip, tephrochronologic, radiocarbon, luminescence, and unit description data obtained during this investigation. We do not attempt to use the data presented herein to construct a paleoseismic history of this part of the Surprise Valley fault zone; that history will be the subject of a future report.

  20. Characterizing the Iron Wash fault: A fault line scarp in Utah

    NASA Astrophysics Data System (ADS)

    Kozaci, O.; Ostenaa, D.; Goodman, J.; Zellman, M.; Hoeft, J.; Sowers, J. M.; Retson, T.

    2015-12-01

    The Iron Wash fault (IWF) is an approximately 30 mile-long, NW-SE trending structure, oriented perpendicular to the San Rafael Monocline near Green River in Utah. IWF exhibits well-expressed geomorphic features such as a linear escarpment with consistently north side down displacement. The fault coincides with an abrupt change in San Rafael Monocline dip angle along its eastern margin. The IWF is exposed in incised drainages where Jurassic Navajo sandstone (oldest) and Lower Carmel Formation (old), are juxtaposed against Jurassic Entrada sandstone (younger) and Quaternary alluvium (youngest). To assess the recency of activity of the IWF we performed detailed geomorphic mapping and a paleoseismic trenching investigation. A benched trench was excavated across a Quaternary fluvial terrace remnant across the mapped trace of the IWF. The uppermost gravel units and overlying colluvium are exposed in the trench across the projection of the fault. In addition, we mapped the basal contact of the Quaternary gravel deposit in relation to the adjacent fault exposures in detail to show the geometry of the basal contact near and across the fault. We find no evidence of vertical displacement of these Quaternary gravels. A preliminary U-series date of calcite cementing unfaulted fluvial gravels and OSL dating of a sand lens within the unfaulted fluvial gravels yielded approximately 304,000 years and 78,000 years, respectively. These preliminary results of independent dating methods constrains the timing of last activity of the IWF to greater than 78,000 years before present suggesting that IWF not an active structure. Its distinct geomorphic expression is most likely the result of differential erosion, forming a fault-line scarp.

  1. A Geophysical Study of the Cadell Fault Scarp for Earthquake Hazard Assessment in Southeast Australia

    NASA Astrophysics Data System (ADS)

    Collins, C. D.

    2004-12-01

    The historical record of seismicity in Australia is too short (less than 150 years) to confidently define seismic source zones, particularly the recurrence rates for large, potentially damaging earthquakes, and this leads to uncertainty in hazard assessments. One way to extend this record is to search for evidence of earthquakes in the landscape, including Quaternary fault scarps, tilt blocks and disruptions to drainage patterns. A recent Geoscience Australia compilation of evidence of Quaternary tectonics identified over one hundred examples of potentially recent structures in Australia, testifying to the fact that a greater hazard may exist from large earthquakes than is evident from the recorded history alone. Most of these structures have not been studied in detail and have not been dated, so the recurrence rate for damaging events is unknown. One example of recent tectonic activity lies on the Victoria-New South Wales border, where geologically recent uplift has resulted in the formation of the Cadell Fault Scarp, damming Australia's largest river, the Murray River, and diverting its course. The scarp extends along a north-south strike for at least 50 km and reaches a maximum height of about 13 metres. The scarp displaces sands and clays of the Murray Basin sediments which overlie Palaeozoic bedrock at a depth of 100 to 250 m. There is evidence that the river system has eroded the scarp and displaced the topographic expression away from the location where the fault, or faults, meets the surface. Thus, to locate potential sites for trenching which intersect the faults, Geoscience Australia acquired ground-penetrating radar, resistivity and multi-channel high-resolution seismic reflection and refraction data along traverses across the scarp. The seismic data were acquired using an IVI T15000 MiniVib vibrator operating in p-wave mode, and a 24-channel Stratavisor acquisition system. Four 10-second sweeps, with a frequency range of 10-240 Hz, were carried out

  2. Surveying the Newly Digitized Apollo Metric Images for Highland Fault Scarps on the Moon

    NASA Astrophysics Data System (ADS)

    Williams, N. R.; Pritchard, M. E.; Bell, J. F.; Watters, T. R.; Robinson, M. S.; Lawrence, S.

    2009-12-01

    The presence and distribution of thrust faults on the Moon have major implications for lunar formation and thermal evolution. For example, thermal history models for the Moon imply that most of the lunar interior was initially hot. As the Moon cooled over time, some models predict global-scale thrust faults should form as stress builds from global thermal contraction. Large-scale thrust fault scarps with lengths of hundreds of kilometers and maximum relief of up to a kilometer or more, like those on Mercury, are not found on the Moon; however, relatively small-scale linear and curvilinear lobate scarps with maximum lengths typically around 10 km have been observed in the highlands [Binder and Gunga, Icarus, v63, 1985]. These small-scale scarps are interpreted to be thrust faults formed by contractional stresses with relatively small maximum (tens of meters) displacements on the faults. These narrow, low relief landforms could only be identified in the highest resolution Lunar Orbiter and Apollo Panoramic Camera images and under the most favorable lighting conditions. To date, the global distribution and other properties of lunar lobate faults are not well understood. The recent micron-resolution scanning and digitization of the Apollo Mapping Camera (Metric) photographic negatives [Lawrence et al., NLSI Conf. #1415, 2008; http://wms.lroc.asu.edu/apollo] provides a new dataset to search for potential scarps. We examined more than 100 digitized Metric Camera image scans, and from these identified 81 images with favorable lighting (incidence angles between about 55 and 80 deg.) to manually search for features that could be potential tectonic scarps. Previous surveys based on Panoramic Camera and Lunar Orbiter images found fewer than 100 lobate scarps in the highlands; in our Apollo Metric Camera image survey, we have found additional regions with one or more previously unidentified linear and curvilinear features on the lunar surface that may represent lobate thrust

  3. Deriving earthquake history of the Knidos Fault Zone, SW Turkey, using cosmogenic 36Cl surface exposure dating of the fault scarp.

    NASA Astrophysics Data System (ADS)

    Yildirim, Cengiz; Ersen Aksoy, Murat; Akif Sarikaya, Mehmet; Tuysuz, Okan; Genc, S. Can; Ertekin Doksanalti, Mustafa; Sahin, Sefa; Benedetti, Lucilla; Tesson, Jim; Aster Team

    2016-04-01

    Formation of bedrock fault scarps in extensional provinces is a result of large and successive earthquakes that ruptured the surface several times. Extraction of seismic history of such faults is critical to understand the recurrence intervals and the magnitude of paleo-earthquakes and to better constrain the regional seismic hazard. Knidos on the Datca Peninsula (SW Turkey) is one of the largest cities of the antique times and sits on a terraced hill slope formed by en-echelon W-SW oriented normal faults. The Datça Peninsula constitutes the southern boundary of the Gulf of Gökova, one of the largest grabens developed on the southernmost part of the Western Anatolian Extensional Province. Our investigation relies on cosmogenic 36Cl surface exposure dating of limestone faults scarps. This method is a powerful tool to reconstruct the seismic history of normal faults (e.g. Schlagenhauf et al 2010, Benedetti et al. 2013). We focus on one of the most prominent fault scarp (hereinafter Mezarlık Fault) of the Knidos fault zone cutting through the antique Knidos city. We collected 128 pieces of tablet size (10x20cm) 3-cm thick samples along the fault dip and opened 4 conventional paleoseismic trenches at the base of the fault scarp. Our 36Cl concentration profile indicates that 3 to 4 seismic events ruptured the Mezarlık Fault since Last Glacial Maximum (LGM). The results from the paleoseismic trenching are also compatible with 36Cl results, indicating 3 or 4 seismic events that disturbed the colluvium deposited at the base of the scarp. Here we will present implications for the seismic history and the derived slip-rate of the Mezarlık Fault based on those results. This project is supported by The Scientific and Technological Research Council of Turkey (TUBITAK, Grant number: 113Y436) and it was conducted with the Decision of the Council of Ministers with No. 2013/5387 on the date 30.09.2013 and was done with the permission of Knidos Presidency of excavation in

  4. Fault Scarp Detection Beneath Dense Vegetation Cover: Airborne Lidar Mapping of the Seattle Fault Zone, Bainbridge Island, Washington State

    NASA Technical Reports Server (NTRS)

    Harding, David J.; Berghoff, Gregory S.

    2000-01-01

    The emergence of a commercial airborne laser mapping industry is paying major dividends in an assessment of earthquake hazards in the Puget Lowland of Washington State. Geophysical observations and historical seismicity indicate the presence of active upper-crustal faults in the Puget Lowland, placing the major population centers of Seattle and Tacoma at significant risk. However, until recently the surface trace of these faults had never been identified, neither on the ground nor from remote sensing, due to cover by the dense vegetation of the Pacific Northwest temperate rainforests and extremely thick Pleistocene glacial deposits. A pilot lidar mapping project of Bainbridge Island in the Puget Sound, contracted by the Kitsap Public Utility District (KPUD) and conducted by Airborne Laser Mapping in late 1996, spectacularly revealed geomorphic features associated with fault strands within the Seattle fault zone. The features include a previously unrecognized fault scarp, an uplifted marine wave-cut platform, and tilted sedimentary strata. The United States Geologic Survey (USGS) is now conducting trenching studies across the fault scarp to establish ages, displacements, and recurrence intervals of recent earthquakes on this active fault. The success of this pilot study has inspired the formation of a consortium of federal and local organizations to extend this work to a 2350 square kilometer (580,000 acre) region of the Puget Lowland, covering nearly the entire extent (approx. 85 km) of the Seattle fault. The consortium includes NASA, the USGS, and four local groups consisting of KPUD, Kitsap County, the City of Seattle, and the Puget Sound Regional Council (PSRC). The consortium has selected Terrapoint, a commercial lidar mapping vendor, to acquire the data.

  5. Estimation of the depth of faulting in the northeast margin of Argyre basin (Mars) by structural analysis of lobate scarps

    NASA Astrophysics Data System (ADS)

    Herrero-Gil, Andrea; Ruiz, Javier; Egea-González, Isabel; Romeo, Ignacio

    2017-04-01

    Lobate scarps are tectonic structures considered as the topographic expression of thrust faults. For this study we have chosen three large lobate scarps (Ogygis Rupes, Bosporos Rupes and a third unnamed one) located in Aonia Terra, in the southern hemisphere of Mars near the northeast margin of the Argyre impact basin. These lobate scarps strike parallel to the edge of Thaumasia in this area, showing a roughly arcuate to linear form and an asymmetric cross section with a steeply frontal scarp and a gently dipping back scarp. The asymmetry in the cross sections suggests that the three lobate scarps were generated by ESE-vergent thrust faults. Two complementary methods were used to analyze the faults underlying these lobate scarps based on Mars Orbiter Laser Altimeter data and the Mars imagery available: (i) analyzing topographic profiles together with the horizontal shortening estimations from cross-cut craters to create balanced cross sections on the basis of thrust fault propagation folding [1]; (ii) using a forward mechanical dislocation method [2], which predicts fault geometry by comparing model outputs with real topography. The objective is to obtain fault geometry parameters as the minimum value for the horizontal offset, dip angle and depth of faulting of each underlying fault. By comparing the results obtained by both methods we estimate a preliminary depth of faulting value between 15 and 26 kilometers for this zone between Thaumasia and Argyre basin. The significant sizes of the faults underlying these three lobate scarps suggest that their detachments are located at a main rheological change. Estimates of the depth of faulting in similar lobate scarps on Mars or Mercury [3] have been associated to the depth of the brittle-ductile transition. [1] Suppe (1983), Am. J. Sci., 283, 648-721; Seeber and Sorlien (2000), Geol. Soc. Am. Bull., 112, 1067-1079. [2] Toda et al. (1998) JGR, 103, 24543-24565. [3] i.e. Schultz and Watters (2001) Geophys. Res. Lett., 28

  6. The Catfish Lake Scarp, Allyn, Washington preliminary field data and implications for earthquake hazards posed by the Tacoma Fault

    USGS Publications Warehouse

    Sherrod, Brian L.; Nelson, Alan R.; Kelsey, Harvey M.; Brocher, Thomas M.; Blakely, Richard J.; Weaver, Craig S.; Rountree, Nancy K.; Rhea, B. Susan; Jackson, Bernard S.

    2004-01-01

    The Tacoma fault bounds gravity and aeromagnetic anomalies for 50 km across central Puget lowland from Tacoma to western Kitsap County. Tomography implies at least 6 km of post-Eocene uplift to the north of the fault relative to basinal sedimentary rocks to the south. Coastlines north of the Tacoma fault rose about 1100 years ago during a large earthquake. Abrupt uplift up to several meters caused tidal flats at Lynch Cove, North Bay, and Burley Lagoon to turn into forested wetlands and freshwater marshes. South of the fault at Wollochet Bay, Douglas-fir forests sank into the intertidal zone and changed into saltmarsh. Liquefaction features found beneath the marsh at Burley Lagoon point to strong ground shaking at the time of uplift. Recent lidar maps of the area southwest of Allyn, Washington revealed a 4 km long scarp, or two closely spaced en-echelon scarps, which correspond closely to the Tacoma fault gravity and aeromagnetic anomalies. The scarp, named the Catfish Lake scarp, is north-side-up, trends east-west, and clearly displace striae left by a Vashon-age glacier. A trench across the scarp exposed evidence for postglacial folding and reverse slip. No organic material for radiocarbon dating was recovered from the trench. However, relationships in the trench suggest that the folding and faulting is postglacial in age.

  7. Field and Laboratory Data From an Earthquake History Study of Scarps in the Hanging Wall of the Tacoma Fault, Mason and Pierce Counties, Washington

    USGS Publications Warehouse

    Nelson, Alan R.; Personius, Stephen F.; Sherrod, Brian L.; Buck, Jason; Bradley, Lee-Ann; Henley, Gary; Liberty, Lee M.; Kelsey, Harvey M.; Witter, Robert C.; Koehler, R.D.; Schermer, Elizabeth R.; Nemser, Eliza S.; Cladouhos, Trenton T.

    2008-01-01

    As part of the effort to assess seismic hazard in the Puget Sound region, we map fault scarps on Airborne Laser Swath Mapping (ALSM, an application of LiDAR) imagery (with 2.5-m elevation contours on 1:4,000-scale maps) and show field and laboratory data from backhoe trenches across the scarps that are being used to develop a latest Pleistocene and Holocene history of large earthquakes on the Tacoma fault. We supplement previous Tacoma fault paleoseismic studies with data from five trenches on the hanging wall of the fault. In a new trench across the Catfish Lake scarp, broad folding of more tightly folded glacial sediment does not predate 4.3 ka because detrital charcoal of this age was found in stream-channel sand in the trench beneath the crest of the scarp. A post-4.3-ka age for scarp folding is consistent with previously identified uplift across the fault during AD 770-1160. In the trench across the younger of the two Stansberry Lake scarps, six maximum 14C ages on detrital charcoal in pre-faulting B and C soil horizons and three minimum ages on a tree root in post-faulting colluvium, limit a single oblique-slip (right-lateral) surface faulting event to AD 410-990. Stratigraphy and sedimentary structures in the trench across the older scarp at the same site show eroded glacial sediments, probably cut by a meltwater channel, with no evidence of post-glacial deformation. At the northeast end of the Sunset Beach scarps, charcoal ages in two trenches across graben-forming scarps give a close maximum age of 1.3 ka for graben formation. The ages that best limit the time of faulting and folding in each of the trenches are consistent with the time of the large regional earthquake in southern Puget Sound about AD 900-930.

  8. Review of the origin of the Braid Scarp near the Pebble prospect, southwestern Alaska

    USGS Publications Warehouse

    Haeussler, Peter J.; Waythomas, Christopher F.

    2011-01-01

    A linear geomorphic scarp, referred to as the 'Braid Scarp,' lies about 5 kilometers north of Iliamna Lake, Alaska, and has been identified as a possible seismically active fault. We examined the geomorphology of the area and an 8.5-meter-long excavation across the scarp. We conclude that the scarp was formed by incision of a glacial outwash braid plain into a slightly older outwash plain as ice stagnated in the region during deglaciation 11-15 thousand years ago. We found no evidence for active faulting along the scarp.

  9. Reconstruction of the Earthquake History of Limestone Fault Scarps in Knidos Fault Zone Using in-situ Chlorine-36 Exposure Dating and "R" Programming Language

    NASA Astrophysics Data System (ADS)

    Sahin, Sefa; Yildirim, Cengiz; Akif Sarikaya, Mehmet; Tuysuz, Okan; Genc, S. Can; Ersen Aksoy, Murat; Ertekin Doksanalti, Mustafa

    2016-04-01

    Cosmogenic surface exposure dating is based on the production of rare nuclides in exposed rocks, which interact with cosmic rays. Through modelling of measured 36Cl concentrations, we might obtain information of the history of the earthquake activity. Yet, there are several factors which may impact production of rare nuclides such as geometry of the fault, topography, geographic location of the study area, temporal variations of the Earth's magnetic field, self-cover and denudation rate on the scarp. Recently developed models provides a method to infer timing of earthquakes and slip rates on limited scales by taking into account these parameters. Our study area, the Knidos Fault Zone, is located on the Datça Peninsula in Southwestern Anatolia and contains several normal fault scarps formed within the limestone, which are appropriate to generate cosmogenic chlorine-36 (36Cl) dating models. Since it has a well-preserved scarp, we have focused on the Mezarlık Segment of the fault zone, which has an average length of 300 m and height 12-15 m. 128 continuous samples from top to bottom of the fault scarp were collected to carry out analysis of cosmic 36Cl isotopes concentrations. The main purpose of this study is to analyze factors affecting the production rates and amount of cosmogenic 36Cl nuclides concentration. Concentration of Cl36 isotopes are measured by AMS laboratories. Through the local production rates and concentration of the cosmic isotopes, we can calculate exposure ages of the samples. Recent research elucidated each step of the application of this method by the Matlab programming language (e.g. Schlagenhauf et al., 2010). It is vitally helpful to generate models of Quaternary activity of the normal faults. We, however, wanted to build a user-friendly program through an open source programing language "R" (GNU Project) that might be able to help those without knowledge of complex math programming, making calculations as easy and understandable as

  10. Field and Laboratory Data From an Earthquake History Study of Scarps of the Lake Creek-Boundary Creek Fault Between the Elwha River and Siebert Creek, Clallam County, Washington

    USGS Publications Warehouse

    Nelson, Alan R.; Personius, Stephen F.; Buck, Jason; Bradley, Lee-Ann; Wells, Ray E.; Schermer, Elizabeth R.

    2007-01-01

    Fault scarps recently discovered on Airborne Laser Swath Mapping (ALSM; also known as LiDAR) imagery show Holocene movement on the Lake Creek-Boundary Creek fault on the north flank of the Olympic Mountains of northwestern Washington State. Such recent movement suggests the fault is a potential source of large earthquakes. As part of the effort to assess seismic hazard in the Puget Sound region, we map scarps on ALSM imagery and show primary field and laboratory data from backhoe trenches across scarps that are being used to develop a latest Pleistocene and Holocene history of large earthquakes on the fault. Although some scarp segments 0.5-2 km long along the fault are remarkably straight and distinct on shaded ASLM imagery, most scarps displace the ground surface <1 m, and, therefore, are difficult to locate in dense brush and forest. We are confident of a surface-faulting or folding origin and a latest Pleistocene to Holocene age only for scarps between Lake Aldwell and the easternmost fork of Siebert Creek, a distance of 22 km. Stratigraphy in five trenches at four sites help determine the history of surface-deforming earthquakes since glacier recession and alluvial deposition 11-17 ka. Although the trend and plunge of indicators of fault slip were measured only in the weathered basalt exposed in one trench, upward-splaying fault patterns and inconsistent displacement of successive beds along faults in three of the five trenches suggest significant lateral as well as vertical slip during the surface-faulting or folding earthquakes that produced the scarps. Radiocarbon ages on fragments of wood charcoal from two wedges of scarp-derived colluvium in a graben-fault trench suggest two surface-faulting earthquakes between 2,000 and 700 years ago. The three youngest of nine radiocarbon ages on charcoal fragments from probable scarp-derived colluvum in a fold-scarp trench 1.2 km to the west suggest a possible earlier surface-faulting earthquake less than 5,000 years

  11. Length-displacement scaling of thrust faults on the Moon and the formation of uphill-facing scarps

    NASA Astrophysics Data System (ADS)

    Roggon, Lars; Hetzel, Ralf; Hiesinger, Harald; Clark, Jaclyn D.; Hampel, Andrea; van der Bogert, Carolyn H.

    2017-08-01

    Fault populations on terrestrial planets exhibit a linear relationship between their length, L, and the maximum displacement, D, which implies a constant D/L ratio during fault growth. Although it is known that D/L ratios of faults are typically a few percent on Earth and 0.2-0.8% on Mars and Mercury, the D/L ratios of lunar faults are not well characterized. Quantifying the D/L ratios of faults on the Moon is, however, crucial for a better understanding of lunar tectonics, including for studies of the amount of global lunar contraction. Here, we use high-resolution digital terrain models to perform a topographic analysis of four lunar thrust faults - Simpelius-1, Morozov (S1), Fowler, and Racah X-1 - that range in length from 1.3 km to 15.4 km. First, we determine the along-strike variation of the vertical displacement from ≥ 20 topographic profiles across each fault. For measuring the vertical displacements, we use a method that is commonly applied to fault scarps on Earth and that does not require detrending of the profiles. The resulting profiles show that the displacement changes gradually along these faults' strike, with maximum vertical displacements ranging from 17 ± 2 m for Simpelius-1 to 192 ± 30 m for Racah X-1. Assuming a fault dip of 30° yields maximum total displacements (D) that are twice as large as the vertical displacements. The linear relationship between D and L supports the inference that lunar faults gradually accumulate displacement as they propagate laterally. For the faults we investigated, the D/L ratio is ∼2.3%, an order of magnitude higher than theoretical predictions for the Moon, but a value similar for faults on Earth. We also employ finite-element modeling and a Mohr circle stress analysis to investigate why many lunar thrust faults, including three of those studied here, form uphill-facing scarps. Our analysis shows that fault slip is preferentially initiated on planes that dip in the same direction as the topography, because

  12. Non-tectonic exposure Rates along Bedrock Fault Scarps in an active Mountain Belt of the central Apennines

    NASA Astrophysics Data System (ADS)

    Kastelic, Vanja; Burrato, Pierfrancesco; Carafa, Michele M. C.; Basili, Roberto

    2017-04-01

    The central Apennines (Italy) are a mountain chain affected by post-collisional active extension along NW-SE striking normal faults and well-documented regional-scale uplift. Moderate to strong earthquakes along the seismogenically active extensional faults are frequent in this area, thus a good knowledge on the characteristics of the hosting faults is necessary for realistic seismic hazard models. The studied bedrock fault surfaces are generally located at various heights on mountain fronts above the local base level of glacio-fluvial valleys and intermountain fluvio-lacustrine basins and are laterally confined to the extent of related mountain fronts. In order to investigate the exposure of the bedrock fault scarps from under their slope-deposit cover, a process that has often been exclusively attributed to co-seismic earthquake slip and used as proxy for tectonic slip rates and earthquake recurrence estimations, we have set up a measurement experiment along various such structures. In this experiment we measure the relative position of chosen markers on the bedrock surface and the material found directly at the contact with its hanging wall. We present the results of monitoring the contact between the exposed fault surfaces and slope deposits at 23 measurement points on 12 different faults over 3.4 year-long observation period. We detected either downward or upward movements of the slope deposit with respect to the fault surface between consecutive measurements. During the entire observation period all points, except one, registered a net downward movement in the 2.9 - 25.6 mm/yr range, resulting in the progressive exposure of the fault surface. During the monitoring period no major earthquakes occurred in the region, demonstrating the measured exposure process is disconnected from seismic activity. We do however observe a positive correlation between the higher exposure in respect to higher average temperatures. Our results indicate that the fault surface

  13. Structural Analysis of Ogygis Rupes Lobate Scarp on Mars.

    NASA Astrophysics Data System (ADS)

    Herrero-Gil, A.; Ruiz, J.; Romeo, I.; Egea-González, I.

    2016-12-01

    Ogygis Rupes is a 200 kilometers long lobate scarp, striking N30ºE, with approximately 2km of maximum structural relief. It is located in Aonia Terra, in the southern hemisphere of Mars near the northeast margin of Argyre impact basin. Similar to other large lobate scarps on Mercury or Mars, it shows a roughly arcuate to linear form, and an asymmetric cross section with a steeply rising scarp face and a gently declining back scarp. This asymmetry suggests that Ogygis Rupes is the topographic expression of a ESE-vergent thrust fault. By using the Mars Orbiter Laser Altimeter data and the Mars imagery available we have measure the horizontal shortening on impact craters cross-cut by this lobate scarp to obtain a minimum value for the horizontal offset of the underling fault. Two complementary methods were used to estimate fault geometry parameters as fault displacement, dip angle and depth of faulting: (i) analyzing topographic profiles together with the horizontal shortening estimations from cross-cut craters to create balanced cross sections on the basis of the thrust fault propagation folding [1]; (ii) using a forward mechanical dislocation method [2], which predicts fault geometry by comparing model outputs with real topography. The significant size of the fault underlying this lobate scarp suggests that its detachment is located at a main rheological change, for which we have obtained a preliminary depth value of around 30 kilometers by the methods listed above. Estimates of the depth of faulting in similar lobate scarps [3] have been associated to the depth of the brittle-ductile transition. [1] Suppe (1983), Am. J. Sci., 283, 648-721; Seeber and Sorlien (2000), Geol. Soc. Am. Bull., 112, 1067-1079. [2] Toda et al. (1998) JGR, 103, 24543-24565. [3] i.e. Schultz and Watters (2001) Geophys. Res. Lett., 28, 4659-4662; Ruiz et al. (2008) EPSL, 270, 1-12; Egea-Gonzalez et al. (2012) PSS, 60, 193-198; Mueller et al. (2014) EPSL, 408, 100-109.

  14. Trench Logs and Scarp Data from an Investigation of the Steens Fault Zone, Bog Hot Valley and Pueblo Valley, Humboldt County, Nevada

    USGS Publications Warehouse

    Personius, Stephen F.; Crone, Anthony J.; Machette, Michael N.; Kyung, Jai Bok; Cisneros, Hector; Lidke, David J.; Mahan, Shannon

    2006-01-01

    Introduction: This report contains field and laboratory data from a study of the Steens fault zone near Denio, Nev. The 200-km-long Steens fault zone forms the longest, most topographically prominent fault-bounded escarpment in the Basin and Range of southern Oregon and northern Nevada. The down-to-the-east normal fault is marked by Holocene fault scarps along nearly half its length, including the southern one-third of the fault from the vicinity of Pueblo Mountain in southern Oregon to the southern margin of Bog Hot Valley (BHV) southwest of Denio, Nev. We studied this section of the fault to better constrain late Quaternary slip rates, which we hope to compare to deformation rates derived from a recently established geodetic network in the region (Hammond and Thatcher, 2005). We excavated a trench in May 2003 across one of a series of right-stepping fault scarps that extend south from the southern end of the Pueblo Mountains and traverse the floor of Bog Hot Valley, about 4 km south of Nevada State Highway 140. This site was chosen because of the presence of well-preserved fault scarps, their development on lacustrine deposits thought to be suitable for luminescence dating, and the proximity of two geodetic stations that straddle the fault zone. We excavated a second trench in the southern BHV, but the fault zone in this trench collapsed during excavation and thus no information about fault history was documented from this site. We also excavated a soil pit on a lacustrine barrier bar in the southern Pueblo Valley (PV) to better constrain the age of lacustrine deposits exposed in the trench. The purpose of this report is to present photomosaics and trench logs, scarp profiles and slip data, soils data, luminescence and radiocarbon ages, and unit descriptions obtained during this investigation. We do not attempt to use the data presented herein to construct a paleoseismic history of this part of the Steens fault zone; that history will be the subject of a future

  15. How old are lunar lobate scarps? 1. Seismic resetting of crater size-frequency distributions

    NASA Astrophysics Data System (ADS)

    van der Bogert, Carolyn H.; Clark, Jaclyn D.; Hiesinger, Harald; Banks, Maria E.; Watters, Thomas R.; Robinson, Mark S.

    2018-05-01

    Previous studies have estimated the ages of lunar lobate scarps, some of the youngest tectonic landforms on the Moon, based on the estimated life-times of their fresh morphologies and associated small graben, using crater degradation ages, or via buffered and traditional crater size-frequency distribution (CSFD) measurements. Here, we reexamine five scarps previously dated by Binder and Gunga (1985) with crater degradation ages to benchmark the evaluation of both the buffered and traditional CSFD approaches for determination of absolute model ages (AMAs) at scarps. Both CSFD methods yield similar ages for each individual scarp, indicating that fault activity not only can be measured on the scarp itself, but also in the surrounding terrain - an indication that tectonic activity causes surface renewal both adjacent to and even kilometers distant from scarps. Size-frequency variations in the regions surrounding the scarps are thus useful for studying the extent and severity of the ground motion caused by coseismic slip events during scarp formation. All age determination approaches continue to indicate that lunar lobate scarps were active in the late Copernican, with some scarps possibly experiencing activity within the last 100 Ma.

  16. How Old are Lunar Lobate Scarps? 1. Seismic Resetting of Crater Size-Frequency Distributions

    NASA Technical Reports Server (NTRS)

    Van Der Bogert, Carolyn H.; Clark, Jaclyn D.; Hiesinger, Harald; Banks, Maria E.; Watters, Thomas R.; Robinson, Mark S.

    2018-01-01

    Previous studies have estimated the ages of lunar lobate scarps, some of the youngest tectonic landforms on the Moon, based on the estimated life-times of their fresh morphologies and associated small graben, using crater degradation ages, or via buffered and traditional crater size-frequency distribution (CSFD) measurements. Here, we reexamine five scarps previously dated by Binder and Gunga (1985) with crater degradation ages to benchmark the evaluation of both the buffered and traditional CSFD approaches for determination of absolute model ages (AMAs) at scarps. Both CSFD methods yield similar ages for each individual scarp, indicating that fault activity not only can be measured on the scarp itself, but also in the surrounding terrain - an indication that tectonic activity causes surface renewal both adjacent to and even kilometers distant from scarps. Size-frequency variations in the regions surrounding the scarps are thus useful for studying the extent and severity of the ground motion caused by coseismic slip events during scarp formation. All age determination approaches continue to indicate that lunar lobate scarps were active in the late Copernican, with some scarps possibly experiencing activity within the last 100 Ma.

  17. Late Quaternary Faulting along the San Juan de los Planes Fault Zone, Baja California Sur, Mexico

    NASA Astrophysics Data System (ADS)

    Busch, M. M.; Coyan, J. A.; Arrowsmith, J.; Maloney, S. J.; Gutierrez, G.; Umhoefer, P. J.

    2007-12-01

    As a result of continued distributed deformation in the Gulf Extensional Province along an oblique-divergent plate margin, active normal faulting is well manifest in southeastern Baja California. By characterizing normal-fault related deformation along the San Juan de los Planes fault zone (SJPFZ) southwest of La Paz, Baja California Sur we contribute to understanding the patterns and rates of faulting along the southwest gulf-margin fault system. The geometry, history, and rate of faulting provide constraints on the relative significance of gulf-margin deformation as compared to axial system deformation. The SJPFZ is a major north-trending structure in the southern Baja margin along which we focused our field efforts. These investigations included: a detailed strip map of the active fault zone, including delineation of active scarp traces and geomorphic surfaces on the hanging wall and footwall; fault scarp profiles; analysis of bedrock structures to better understand how the pattern and rate of strain varied during the development of this fault zone; and a gravity survey across the San Juan de los Planes basin to determine basin geometry and fault behavior. The map covers a N-S swath from the Gulf of California in the north to San Antonio in the south, an area ~45km long and ~1-4km wide. Bedrock along the SJPFZ varies from Cretaceous Las Cruces Granite in the north to Cretaceous Buena Mujer Tonalite in the south and is scarred by shear zones and brittle faults. The active scarp-forming fault juxtaposes bedrock in the footwall against Late Quaternary sandstone-conglomerate. This ~20m wide zone is highly fractured bedrock infused with carbonate. The northern ~12km of the SJPFZ, trending 200°, preserves discontinuous scarps 1-2km long and 1-3m high in Quaternary units. The scarps are separated by stretches of bedrock embayed by hundreds of meters-wide tongues of Quaternary sandstone-conglomerate, implying low Quaternary slip rate. Further south, ~2 km north of the

  18. Une méthode de quantification de la dégradation d'un escarpement de faille au cours des cycles climatiques du Quaternaire : la faille de Jobourg (Nord Cotentin, France)Quantification of a fault-scarp degradation through Quaternary: the Jobourg fault (North Cotentin, France)

    NASA Astrophysics Data System (ADS)

    Font, Marianne; Lagarde, Jean-Louis; Amorese, Daniel; Coutard, Jean-Pierre; Ozouf, Jean-Claude

    The degradation of the Jobourg fault-scarp occurred by cryoclastic processes in a periglacial environment during a part of Quaternary time. An attempt of quantification indicates a bulk scarp erosion of about 39 m 3 m -2, while the head accumulated at the bottom of the fault scarp only represents 4.6 m 3 m -2. To cite this article: M. Font et al., C. R. Geoscience 334 (2002) 171-178.

  19. Active Flexural-Slip Faulting: Controls Exerted by Stratigraphy, Geometry, and Fold Kinematics

    NASA Astrophysics Data System (ADS)

    Li, Tao; Chen, Jie; Thompson Jobe, Jessica A.; Burbank, Douglas W.

    2017-10-01

    Flexural slip plays an important role in accommodating fold growth, and its topographic expression, flexural-slip fault (FSF) scarps, may be one of the most commonly occurring secondary structures in areas dominated by active thrusts and folds. Where FSF scarps are present and what factors control their occurrence, however, are typically poorly known. Through an investigation of clearly expressed FSF scarps, well-preserved fluvial terraces, and well-exposed bedrock at eight sites in the Pamir-Tian Shan convergent zone and Kuche fold belt, NW China, we summarize the most favorable conditions for active flexural-slip faulting. Our study yields six key results. First, flexural slip operates commonly in well-layered beds, although uncommonly can occur in massive, poorly layered beds as well. Second, in well-layered beds, the slip surface is commonly located either (a) close to the contact of competent and incompetent beds or (b) within thin incompetent beds. Third, FSF scarps are always found overlying steep beds with dips of 30-100°. Fourth, slip surfaces are typically spaced between 10 and 440 m but can reach up to 600 m. Fifth, FSF scarps at most sites can be observed far away from the hinge-migrated fold scarps, suggesting that compared to hinge migration, limb rotation is generally required to accumulate flexural slip and produce associated topographic scarps. Finally, a higher regional convergent rate seems to facilitate the creation of FSF scarps more often than lower rates, whereas well-preserved, old terraces capped by thin deposits are more likely to record FSF scarps than unevenly preserved, young terraces with thick sedimentary caps.

  20. Fault-scale controls on rift geometry: the Bilila-Mtakataka Fault, Malawi

    NASA Astrophysics Data System (ADS)

    Hodge, M.; Fagereng, A.; Biggs, J.; Mdala, H. S.

    2017-12-01

    Border faults that develop during initial stages of rifting determine the geometry of rifts and passive margins. At outcrop and regional scales, it has been suggested that border fault orientation may be controlled by reactivation of pre-existing weaknesses. Here, we perform a multi-scale investigation on the influence of anisotropic fabrics along a major developing border fault in the southern East African Rift, Malawi. The 130 km long Bilila-Mtakataka fault has been proposed to have slipped in a single MW 8 earthquake with 10 m of normal displacement. The fault is marked by an 11±7 m high scarp with an average trend that is oblique to the current plate motion. Variations in scarp height are greatest at lithological boundaries and where the scarp switches between following and cross-cutting high-grade metamorphic foliation. Based on the scarp's geometry and morphology, we define 6 geometrically distinct segments. We suggest that the segments link to at least one deeper structure that strikes parallel to the average scarp trend, an orientation consistent with the kinematics of an early phase of rift initiation. The slip required on a deep fault(s) to match the height of the current scarp suggests multiple earthquakes along the fault. We test this hypothesis by studying the scarp morphology using high-resolution satellite data. Our results suggest that during the earthquake(s) that formed the current scarp, the propagation of the fault toward the surface locally followed moderately-dipping foliation well oriented for reactivation. In conclusion, although well oriented pre-existing weaknesses locally influence shallow fault geometry, large-scale border fault geometry appears primarily controlled by the stress field at the time of fault initiation.

  1. Active faulting Vs other surface displacing complex geomorphic phenomena. Case studies from a tectonically active area, Abruzzi Region, central Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Lo Sardo, Lorenzo; Gori, Stefano; Falcucci, Emanuela; Saroli, Michele; Moro, Marco; Galadini, Fabrizio; Lancia, Michele; Fubelli, Giandomenico; Pezzo, Giuseppe

    2016-04-01

    How can be univocally inferred the genesis of a linear surface scarp as the result of an active and capable fault (FAC) in tectonically active regions? Or, conversely, how it is possible to exclude that a scarp is the result of a capable fault activation? Trying to unravel this open questions, we show two ambiguous case studies about the problem of the identification of active and capable faults in a tectonically active area just based on the presence of supposed fault scarps at surface. The selected cases are located in the area comprised between the Middle Aterno Valley Fault (MAVF) and the Campo Imperatore Plain (Abruzzi Region, central Apennines), nearby the epicentral area of the April 6th, 2009 L'Aquila earthquake. In particular, the two case studies analysed are located in a region characterized by a widespread Quaternary faults and by several linear scarps: the case studies of (i) Prata D'Ansidonia area and (ii) Santo Stefano di Sessanio area. To assess the origin and the state of activity of the investigated geomorphic features, we applied a classical geological and geomorphological approach, based on the analysis of the available literature, the interpretation of the aerial photographs, field surveying and classical paleoseismological approach, the latter consisting in digging excavations across the analysed scarps. These analysis were then integrated by morphometrical analyses. As for case (i), we focused on determining the geomorphic "meaning" of linear scarps carved onto fluvial-deltaic conglomerates (dated to the Early Pleistocene; Bertini and Bosi, 1993), up to 3 meters high and up to 1,5 km long, that border a narrow, elongated and flat-bottom depressions, filled by colluvial deposits. These features groove the paleo-landsurface of Valle Daria (Bosi and Bertini, 1970), wide landsurface located between Barisciano and Prata D'Ansidonia. Entwining paleoseismological trenching with geophysical analyses (GPR, ERT and microgravimetrical prospections), it

  2. Spatial Patterns of Geomorphic Surface Features and Fault Morphology Based on Diffusion Equation Modeling of the Kumroch Fault Kamchatka Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Heinlein, S. N.

    2013-12-01

    Remote sensing data sets are widely used for evaluation of surface manifestations of active tectonics. This study utilizes ASTER GDEM and Landsat ETM+ data sets with Google Earth images draped over terrain models. This study evaluates 1) the surrounding surface geomorphology of the study area with these data sets and 2) the morphology of the Kumroch Fault using diffusion modeling to estimate constant diffusivity (κ) and estimate slip rates by means of real ground data measured across fault scarps by Kozhurin et al. (2006). Models of the evolution of fault scarp morphology provide time elapsed since slip initiated on a faults surface and may therefore provide more accurate estimates of slip rate than the rate calculated by dividing scarp offset by the age of the ruptured surface. Profile modeling of scarps collected by Kozhurin et al. (2006) formed by several events distributed through time and were evaluated using a constant slip rate (CSR) solution which yields a value A/κ (1/2 slip rate/diffusivity). Time elapsed since slip initiated on the fault is determined by establishing a value for κ and measuring total scarp offset. CSR nonlinear modeling estimated of κ range from 8m2/ka - 14m2/ka on the Kumroch Fault which indicates a slip rates of 0.6 mm/yr - 1.0 mm/yr since 3.4 ka -3.7 ka. This method provides a quick and inexpensive way to gather data for a regional tectonic study and establish estimated rates of tectonic activity. Analyses of the remote sensing data are providing new insight into the role of active tectonics within the region. Results from fault scarp diffusion models of Mattson and Bruhn (2001) and DuRoss and Bruhn (2004) and Kozhurin et al. (2006), Kozhurin (2007), Kozhurin et al. (2008) and Pinegina et al. 2012 trench profiles of the KF as calibrated age fault scarp diffusion rates were estimated. (-) mean that no data could be determined.

  3. Investigation of newly discovered lobate scarps: Implications for the tectonic and thermal evolution of the Moon

    NASA Astrophysics Data System (ADS)

    Clark, Jaclyn D.; Hurtado, José M.; Hiesinger, Harald; van der Bogert, Carolyn H.; Bernhardt, Hannes

    2017-12-01

    Using observations of lunar scarps in Apollo Panoramic Camera photos, Binder and Gunga (1985) tested competing models for the initial thermal state of the Moon, i.e., whether it was initially completely molten or if the molten portion was limited to a global magma ocean. Binder and Gunga (1985) favored the concept of an initially molten Moon that had entered into a late-stage epoch of global tectonism. Since the start of the Lunar Reconnaissance Orbiter mission, thousands of new small lobate scarps have been identified across the lunar surface with high-resolution images from the Lunar Reconnaissance Orbiter Camera (LROC). As such, we selected spatially random scarps and reevaluated the fault dynamical calculations presented by Binder and Gunga (1985). Additionally, we examined the geometry and properties of these fault scarps and place better constraints on the amount of scarp-related crustal shortening. We found that these low angle thrust faults (∼23˚) have an average relief of ∼40 m and average depths of 951 m. Using crater size-frequency distribution (CSFD) measurements, we derived absolute model ages for the scarp surfaces proximal to the trace of the fault and found that the last slip event occurred in the last ∼132 Ma. Along with young model ages, lunar lobate scarps exhibit a youthful appearance with their crisp morphologies which is indicative of late-stage horizontal shortening. In conclusion, interior secular cooling and tidal stresses cause global contraction of the Moon.

  4. Wrinkle ridge-upland scarp transitions: Implications for the mechanical properties of the deformed materials

    NASA Technical Reports Server (NTRS)

    Watters, Thomas R.; Tuttle, Michael J.; Simpson, Debra

    1991-01-01

    Wrinkle ridge-upland scarp transitions are structures that occur at the contact between smooth plains material and highlands or uplands materials on the Moon and Mars. In the smooth plains material the structures have a morphology typical of wrinkle ridges, interpreted to be the result of a combination of folding and thrust faulting. Where the structures extend into the uplands, a distinct change in the morphology occurs. The generally asymmetric cross sectional geometry characteristics of wrinkle ridges becomes that of a one-sided, often lobate scarp. The scarp is indistinguishable from other highland/upland scarps, interpreted to be the result of reverse or thrust faulting. Although these structures are rare, they provide important insight into the mechanical properties of deformed materials. These insights are discussed.

  5. Holocene and latest Pleistocene oblique dextral faulting on the southern Inyo Mountains fault, Owens Lake basin, California

    USGS Publications Warehouse

    Bacon, S.N.; Jayko, A.S.; McGeehin, J.P.

    2005-01-01

    The Inyo Mountains fault (IMF) is a more or less continuous range-front fault system, with discontinuous late Quaternary activity, at the western base of the Inyo Mountains in Owens Valley, California. The southern section of the IMF trends ???N20??-40?? W for at least 12 km at the base of and within the range front near Keeler in Owens Lake basin. The southern IMF cuts across a relict early Pliocene alluvial fan complex, which has formed shutter ridges and northeast-facing scarps, and which has dextrally offset, well-developed drainages indicating long-term activity. Numerous fault scarps along the mapped trace are northeast-facing, mountain-side down, and developed in both bedrock and younger alluvium, indicating latest Quaternary activity. Latest Quaternary multiple- and single-event scarps that cut alluvium range in height from 0.5 to 3.0 m. The penultimate event on the southern IMF is bracketed between 13,310 and 10,590 cal years B.P., based on radiocarbon dates from faulted alluvium and fissure-fill stratigraphy exposed in a natural wash cut. Evidence of the most recent event is found at many sites along the mapped fault, and, in particular, is seen in an ???0.5-m northeast-facing scarp and several right-stepping en echelon ???0.5-m-deep depressions that pond fine sediment on a younger than 13,310 cal years B.P. alluvial fan. A channel that crosses transverse to this scarp is dextrally offset 2.3 ?? 0.8 m, providing a poorly constrained oblique slip rate of 0.1-0. 3 m/ k.y. The identified tectonic geomorphology and sense of displacement demonstrate that the southern IMF accommodates predominately dextral slip and should be integrated into kinematic fault models of strain distribution in Owens Valley.

  6. A review of recently active faults in Taiwan

    USGS Publications Warehouse

    Bonilla, Manuel G.

    1975-01-01

    Six faults associated with five large earthquakes produced surface displacements ranging from 1 to 3 m in the period 1906 through 1951. Four of the ruptures occurred in the western coastal plain and foothills, and two occurred in the Longitudinal Valley of eastern Taiwan. Maps are included showing the locations and dimensions of the displacements. The published geological literature probably would not lead one to infer the existence of a fault along most of the 1906 rupture, except for descriptions of the rupture itself. Over most of its length the 1935 rupture on the Chihhu fault is parallel to but more than 0.5 km from nearby faults shown on geologic maps published in 1969 and 1971; only about 1.5 km of its 15 km length coincides with a mapped fault. The coastal plain part of the Tuntzuchio fault which ruptured in 1935 is apparently not revealed by landforms, and only suggested by other data. Part of the 1946 Hsinhua faulting coincides with a fault identified in the subsurface by seismic work but surface indications of the fault are obscure. The 1951 Meilun faulting occurred along a conspicuous pre-1951 scarp and the 1951 Yuli faulting occurred near or in line with pre-1951 scarps. More than 40 faults which, according to the published literature, have had Pleistocene or later movement are shown on a small-scale map. Most of these faults are in the densely-populated western part of Taiwan. The map and text calls attention to faults that may be active and therefore may be significant in planning important structures. Equivocal evidence suggestive of fault creep was found on the Yuli fault and the Hsinhua fault. Fault creep was not found at several places examined along the 1906 fault trace. Tectonic uplift has occurred in Taiwan in the last 10,000 years and application of eustatic sea level curves to published radiocarbon dates shows that the minimum rate of uplift is considerably different in different parts of the island. Incomplete data indicate that the rate is

  7. Active normal fault network of the Apulian Ridge (Eastern Mediterranean Sea) imaged by multibeam bathymetry and seismic data

    NASA Astrophysics Data System (ADS)

    Pellegrini, Claudio; Marchese, Fabio; Savini, Alessandra; Bistacchi, Andrea

    2016-04-01

    The Apulian ridge (North-eastern Ionian margin - Mediterranean Sea) is formed by thick cretaceous carbonatic sequences and discontinuous tertiary deposits crosscut by a NNW-SSE penetrative normal fault system and is part of the present foreland system of both the Apennine to the west and the Hellenic arc to the east. The geometry, age, architecture and kinematics of the fault network were investigated integrating data of heterogeneous sources, provided by previous studies: regional scale 2D seismics and three wells collected by oil companies from the '60s to the '80s, more recent seismics collected during research projects in the '90s, very high resolution seismic (VHRS - Sparker and Chirp-sonar data), multi-beam echosounder bathymetry and results from sedimentological and geo-chronological analysis of sediment samples collected on the seabed. Multibeam bathymetric data allowed in particular assessing the 3D continuity of structures imaged in 2D seismics, thanks to the occurrence of continuous fault scarps on the seabed (only partly reworked by currents and covered by landslides), revealing the vertical extent and finite displacement associated to fault scarps. A penetrative network of relatively small faults, always showing a high dip angle, composes the NNW-SSE normal fault system, resulting in frequent relay zones, which are particularly well imaged by seafloor geomorphology. In addition, numerous fault scarps appear to be roughly coeval with quaternary submarine mass-wasting deposits colonised by Cold-Water Corals (CWC). Coral colonies, yielding ages between 11 and 14 kA, develop immediately on top of late Pleistocene mass-wasting deposits. Mutual cross-cutting relationships have been recognized between fault scarps and landslides, indicating that, at least in places, these features may be coeval. We suppose that fault activity lasted at least as far as the Holocene-Pleistocene boundary and that the NNW-SSW normal fault network in the Apulian Plateau can be

  8. Orientations of Pre-existing Structures along the Scarp of the Bilila-Mtakataka Fault in the Central Malawi Rift.

    NASA Astrophysics Data System (ADS)

    Elifritz, E. A.; Johnson, S.; Beresh, S. C. M.; Mendez, K.; Mynatt, W. G.; Mayle, M.; Laó-Dávila, D. A.; Atekwana, E. A.; Chindandali, P. R. N.; Chisenga, C.; Gondwe, S.; Mkumbwa, M.; Kalindekafe, L.; Kalaguluka, D.; Salima, J.

    2017-12-01

    The NW-SE Bilila-Mtakataka Fault is suggested to be 100 km in length and is located in the Malawi Rift, a portion of the magma-poor Western Branch of the East African Rift System. This fault is exposed south of Lake Malawi and occurs close to the epicenter of the 1989 6.2 magnitude Salima Earthquake. Moreover, it traverses rocks with inherited Precambrian fabrics that may control the modern rifting process. The effect of the orientation of the pre-existing fabric on the formation of this potentially seismogenic fault has not been well studied. In this project, we measured the older foliations, dikes, and joints in addition to younger faults and striations to understand how the active faulting of the Bilila-Mtakataka Fault is affected by the older fabric. The Fault is divided into 5 segments and 4 linkage zones. All four linkage zones were studied in detail and a Brunton compass was used to determine orientations of structures. The linkage zone between segments 1 and 2 occurs between a regional WNW-ESE joint and the border fault, which is identified by a zig-zag pattern in SRTM data. Precambrian gneiss is cut by oblique steeply-dipping faults in this area. Striations and layer offsets suggest both right-lateral and normal components. This segment strikes NE-SW, in contrast with the NW-SE average strike of the entire fault. The foliations, faults, dikes, and joints collected in this area strike NE-SW, therefore running parallel to the segment. The last 3 southern linkage zones all strike NW-SE and the linkage zone between segment 3 and 4 has a steep dip angle. Dip angles of structures vary from segment to segment, having a wide range of results. Nonetheless, all four linkage zones show structures striking parallel to its segment direction. The results show that pre-existing meso-scale and regional structures and faults strike parallel to the fault scarp. The parallelism of the structures suggest that they serve as planes of weakness, controlling the localization of

  9. Fault zone structure and inferences on past activities of the active Shanchiao Fault in the Taipei metropolis, northern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, C.; Lee, J.; Chan, Y.; Lu, C.

    2010-12-01

    The Taipei Metropolis, home to around 10 million people, is subject to seismic hazard originated from not only distant faults or sources scattered throughout the Taiwan region, but also active fault lain directly underneath. Northern Taiwan including the Taipei region is currently affected by post-orogenic (Penglai arc-continent collision) processes related to backarc extension of the Ryukyu subduction system. The Shanchiao Fault, an active normal fault outcropping along the western boundary of the Taipei Basin and dipping to the east, is investigated here for its subsurface structure and activities. Boreholes records in the central portion of the fault were analyzed to document the stacking of post- Last Glacial Maximum growth sediments, and a tulip flower structure is illuminated with averaged vertical slip rate of about 3 mm/yr. Similar fault zone architecture and post-LGM tectonic subsidence rate is also found in the northern portion of the fault. A correlation between geomorphology and structural geology in the Shanchiao Fault zone demonstrates an array of subtle geomorphic scarps corresponds to the branch fault while the surface trace of the main fault seems to be completely erased by erosion and sedimentation. Such constraints and knowledge are crucial in earthquake hazard evaluation and mitigation in the Taipei Metropolis, and in understanding the kinematics of transtensional tectonics in northern Taiwan. Schematic 3D diagram of the fault zone in the central portion of the Shanchiao Fault, displaying regional subsurface geology and its relation to topographic features.

  10. Numerical reconstruction of Late-Cenosoic evolution of normal-fault scarps in Baikal Rift Zone

    NASA Astrophysics Data System (ADS)

    Byzov, Leonid; San'kov, Vladimir

    2014-05-01

    Numerical landscape development modeling has recently become a popular tool in geo-logic and geomorphic investigations. We employed this technique to reconstruct Late-Cenosoic evolution of Baikal Rift Zone mountains. The objects of research were Barguzin Range and Svyatoy Nos Upland. These structures are formed under conditions of crustal extension and bounded by active normal faults. In our experiments we used instruments, engineered by Greg Tucker (University of Colo-rado) - CHILD (Channel-Hillslope Integrated Landscape Development) and 'Bedrock Fault Scarp'. First program allowed constructing the complex landscape model considering tectonic uplift, fluvial and hillslope processes; second program is used for more accurate simulating of triangular facet evolution. In general, our experiments consisted in testing of tectonic parameters, and climatic char-acteristic, erosion and diffusion properties, hydraulic geometry were practically constant except for some special runs. Numerous experiments, with various scenarios of development, showed that Barguzin range and Svyatoy Nos Upland has many common features. These structures characterized by internal differentiation, which appear in height and shape of slopes. At the same time, individual segments of these objects are very similar - this conclusion refers to most developing parts, with pronounced facets and V-shaped valleys. Accordingly modelling, these landscapes are in a steady state and are undergoing a uplift with rate 0,4 mm/yr since Early Pliocene (this solution accords with AFT-dating). Lower segments of Barguzin Range and Svyatoy Nos Upland also have some general fea-tures, but the reasons of such similarity probably are different. In particular, southern segment of Svyatoy Nos Upland, which characterized by relative high slope with very weak incision, may be formed as result very rapid fault movement or catastrophic landslide. On the other hand, a lower segment of Barguzin Range (Ulun segment, for example

  11. A remote sensing study of active folding and faulting in southern Kerman province, S.E. Iran

    NASA Astrophysics Data System (ADS)

    Walker, Richard Thomas

    2006-04-01

    Geomorphological observations reveal a major oblique fold-and-thrust belt in Kerman province, S.E. Iran. The active faults appear to link the Sabzevaran right-lateral strike-slip fault in southeast Iran to other strike-slip faults within the interior of the country and may provide the means of distributing right-lateral shear between the Zagros and Makran mountains over a wider region of central Iran. The Rafsanjan fault is manifest at the Earth's surface as right-lateral strike-slip fault scarps and folding in alluvial sediments. Height changes across the anticlines, and widespread incision of rivers, are likely to result from hanging-wall uplift above thrust faults at depth. Scarps in recent alluvium along the northern margins of the folds suggest that the thrusts reach the surface and are active at the present-day. The observations from Rafsanjan are used to identify similar late Quaternary faulting elsewhere in Kerman province near the towns of Mahan and Rayen. No instrumentally recorded destructive earthquakes have occurred in the study region and only one historical earthquake (Lalehzar, 1923) is recorded. In addition GPS studies show that present-day rates of deformation are low. However, fault structures in southern Kerman province do appear to be active in the late Quaternary and may be capable of producing destructive earthquakes in the future. This study shows how widely available remote sensing data can be used to provide information on the distribution of active faulting across large areas of deformation.

  12. Faulting arrested by control of ground-water withdrawal in Houston, Texas.

    USGS Publications Warehouse

    Holzer, T.; Gabrysch, R.K.; Verbeek, E.R.

    1983-01-01

    More than 86 historically active faults with an aggregate length of 150 miles have been identified within and adjacent to the Houston, Texas, metropolitan area. Although scarps of these faults grow gradually and without causing damaging earthquakes, historical fault offset has cost millions of dollars in damage to houses and other buildings, utilities, and highways that were built on or across the faults. The historical fault activity results from renewed movement along preexisting faults and appears to be caused principally by withdrawal of ground water for municipal, industrial, and agricultural uses in the Houston area. Approximately one-half of the area's water supply is obtained from local ground water. Monitoring by the US Geological Survey of heights of fault scarps indicates that many of the scarps have recently stopped increasing in height. The area where faulting has ceased coincides with the area where ground-water pumping was cut back in the mid-1970s to slow the damage caused by land subsidence along Galveston Bay and the Houston Ship Channel. Thus, it appears that efforts to halt land subsidence in the coastal area have provided the additional benefit of arresting damaging surface faulting. -from Authors

  13. Modification of wave-cut and faulting-controlled landforms.

    USGS Publications Warehouse

    Hanks, T.C.; Bucknam, R.C.; Lajoie, K.R.; Wallace, R.E.

    1984-01-01

    From a casual observation that the form of degraded fault scarps resembles the error function, this investigation proceeds through an elementary diffusion equation representation of landform evolution to the application of the resulting equations to the modern topography of scarplike landforms. The value of K = 1 GKG (K = 'mass diffusivity'; 1 GKG = 1m2/ka) may be generally applicable as a good first approximation, to the modification of alluvial terranes within the semiarid regions of the western United States. The Lake Bonneville shoreline K is the basis for dating four sets of fault scarps in west-central Utah. The Drum Mountains fault scarps date at 3.6 to 5.7 ka BP. Fault scarps along the eastern base of the Fish Springs Range are very young, 3 ka BP. We estimate the age of fault scarps along the western flank of the Oquirrh Mountains to be 32 ka B.P. Fault scarps along the NE margin of the Sheeprock Mountains are even older, 53 ka BP. -from Authors

  14. Fault zone structure from topography: signatures of en echelon fault slip at Mustang Ridge on the San Andreas Fault, Monterey County, California

    USGS Publications Warehouse

    DeLong, Stephen B.; Hilley, George E.; Rymer, Michael J.; Prentice, Carol

    2010-01-01

    We used high-resolution topography to quantify the spatial distribution of scarps, linear valleys, topographic sinks, and oversteepened stream channels formed along an extensional step over on the San Andreas Fault (SAF) at Mustang Ridge, California. This location provides detail of both creeping fault landform development and complex fault zone kinematics. Here, the SAF creeps 10–14 mm/yr slower than at locations ∼20 km along the fault in either direction. This spatial change in creep rate is coincident with a series of en echelon oblique-normal faults that strike obliquely to the SAF and may accommodate the missing deformation. This study presents a suite of analyses that are helpful for proper mapping of faults in locations where high-resolution topographic data are available. Furthermore, our analyses indicate that two large subsidiary faults near the center of the step over zone appear to carry significant distributed deformation based on their large apparent vertical offsets, the presence of associated sag ponds and fluvial knickpoints, and the observation that they are rotating a segment of the main SAF. Several subsidiary faults in the southeastern portion of Mustang Ridge are likely less active; they have few associated sag ponds and have older scarp morphologic ages and subdued channel knickpoints. Several faults in the northwestern part of Mustang Ridge, though relatively small, are likely also actively accommodating active fault slip based on their young morphologic ages and the presence of associated sag ponds.

  15. Late Quaternary faulting along the Death Valley-Furnace Creek fault system, California and Nevada

    USGS Publications Warehouse

    Brogan, George E.; Kellogg, Karl; Slemmons, D. Burton; Terhune, Christina L.

    1991-01-01

    The Death Valley-Furnace Creek fault system, in California and Nevada, has a variety of impressive late Quaternary neotectonic features that record a long history of recurrent earthquake-induced faulting. Although no neotectonic features of unequivocal historical age are known, paleoseismic features from multiple late Quaternary events of surface faulting are well developed throughout the length of the system. Comparison of scarp heights to amount of horizontal offset of stream channels and the relationships of both scarps and channels to the ages of different geomorphic surfaces demonstrate that Quaternary faulting along the northwest-trending Furnace Creek fault zone is predominantly right lateral, whereas that along the north-trending Death Valley fault zone is predominantly normal. These observations are compatible with tectonic models of Death Valley as a northwest-trending pull-apart basin. The largest late Quaternary scarps along the Furnace Creek fault zone, with vertical separation of late Pleistocene surfaces of as much as 64 m (meters), are in Fish Lake Valley. Despite the predominance of normal faulting along the Death Valley fault zone, vertical offset of late Pleistocene surfaces along the Death Valley fault zone apparently does not exceed about 15 m. Evidence for four to six separate late Holocene faulting events along the Furnace Creek fault zone and three or more late Holocene events along the Death Valley fault zone are indicated by rupturing of Q1B (about 200-2,000 years old) geomorphic surfaces. Probably the youngest neotectonic feature observed along the Death Valley-Furnace Creek fault system, possibly historic in age, is vegetation lineaments in southernmost Fish Lake Valley. Near-historic faulting in Death Valley, within several kilometers south of Furnace Creek Ranch, is represented by (1) a 2,000-year-old lake shoreline that is cut by sinuous scarps, and (2) a system of young scarps with free-faceted faces (representing several faulting

  16. Connecting the Yakima fold and thrust belt to active faults in the Puget Lowland, Washington

    USGS Publications Warehouse

    Blakely, R.J.; Sherrod, B.L.; Weaver, C.S.; Wells, R.E.; Rohay, A.C.; Barnett, E.A.; Knepprath, N.E.

    2011-01-01

    High-resolution aeromagnetic surveys of the Cascade Range and Yakima fold and thrust belt (YFTB), Washington, provide insights on tectonic connections between forearc and back-arc regions of the Cascadia convergent margin. Magnetic surveys were measured at a nominal altitude of 250 m above terrain and along flight lines spaced 400 m apart. Upper crustal rocks in this region have diverse magnetic properties, ranging from highly magnetic rocks of the Miocene Columbia River Basalt Group to weakly magnetic sedimentary rocks of various ages. These distinctive magnetic properties permit mapping of important faults and folds from exposures to covered areas. Magnetic lineaments correspond with mapped Quaternary faults and with scarps identified in lidar (light detection and ranging) topographic data and aerial photography. A two-dimensional model of the northwest striking Umtanum Ridge fault zone, based on magnetic and gravity data and constrained by geologic mapping and three deep wells, suggests that thrust faults extend through the Tertiary section and into underlying pre-Tertiary basement. Excavation of two trenches across a prominent scarp at the base of Umtanum Ridge uncovered evidence for bending moment faulting possibly caused by a blind thrust. Using aeromagnetic, gravity, and paleoseismic evidence, we postulate possible tectonic connections between the YFTB in eastern Washington and active faults of the Puget Lowland. We suggest that faults and folds of Umtanum Ridge extend northwestward through the Cascade Range and merge with the Southern Whidbey Island and Seattle faults near Snoqualmie Pass 35 km east of Seattle. Recent earthquakes (MW ≤ 5.3) suggest that this confluence of faults may be seismically active today.

  17. A 'Propagating' Active Across-Arc Normal Fault Shows Rupture Process of the Basement: the Case of the Southwestern Ryukyu Arc

    NASA Astrophysics Data System (ADS)

    Matsumoto, T.; Shinjo, R.; Nakamura, M.; Kubo, A.; Doi, A.; Tamanaha, S.

    2011-12-01

    Ryukyu Arc is located on the southwestern extension of Japanese Island-arc towards the east of Taiwan Island along the margin of the Asian continent off China. The island-arc forms an arcuate trench-arc-backarc system. A NW-ward subduction of the Philippine Sea Plate (PSP)at a rate of 6-8 cm/y relative to the Eurasian Plate (EP) causes frequent earthquakes. The PSP is subducting almost normally in the north-central area and more obliquely around the southwestern area. Behind the arc-trench system, the Okinawa Trough (OT) was formed by back-arc rifting, where active hydrothermal vent systems have been discovered. Several across-arc submarine faults are located in the central and southern Ryukyu Arc. The East Ishigaki Fault (EIF) is one of the across-arc normal faults located in the southwestern Ryukyu Arc, ranging by 44km and extending from SE to NW. This fault was surveyed by SEABAT8160 multibeam echo sounder and by ROV Hyper-Dolphin in 2005 and 2008. The result shows that the main fault consists of five fault segments. A branched segment from the main fault was also observed. The southernmost segment is most mature (oldest but still active) and the northernmost one is most nascent. This suggests the north-westward propagation of the fault rupture corresponding to the rifting of the southwestern OT and the southward retreat of the arc-trench system. Considering that the fault is segmented and in some part branched, propagation might take place episodically rather than continuously from SE to NW. The ROV survey also revealed the rupture process of the limestone basement along this fault from the nascent stage to the mature stage. Most of the rock samples collected from the basement outcrop were limestone blocks (or calcareous sedimentary rocks). Limestone basement was observed to the west on the hanging wall far away from the main fault scarp. Then fine-grained sand with ripple marks was observed towards the main scarp. Limestone basement was observed on the main

  18. Geometry of Thrust Faults Beneath Amenthes Rupes, Mars

    NASA Technical Reports Server (NTRS)

    Vidal, A.; Mueller, K. M.; Golombek, M. P.

    2005-01-01

    Amenthes Rupes is a 380 km-long lobate fault scarp located in the eastern hemisphere of Mars near the dichotomy boundary. The scarp is marked by about 1 km of vertical separation across a northeast dipping thrust fault (top to the SW) and offsets heavily-cratered terrain of Late Noachian age, the visible portion of which was in place by 3.92 Ga and the buried portion in place between 4.08 and 4.27 Ga. The timing of scarp formation is difficult to closely constrain. Previous geologic mapping shows that near the northern end of Amenthes Rupes, Hesperian age basalts terminate at the scarp, suggesting that fault slip predated the emplacement of these flows at 3.69 to 3.9 Ga. Maxwell and McGill also suggest the faulting ceased before the final emplacement of the Late Hesperian lavas on Isidis Planitia. The trend of the faults at Amenthes, like many thrust faults at the dichotomy boundary, parallels the boundary itself. Schultz and Watters used a dislocation modeling program to match surface topography and vertical offset of the scarp at Amenthes Rupes, varying the dip and depth of faulting, assuming a slip of 1.5 km on the fault. They modeled faulting below Amenthes Rupes as having a dip of between 25 and 30 degrees and a depth of 25 to 35 km, based on the best match to topography. Assuming a 25 degree dip and surface measurements of vertical offset of between 0.3 and 1.2 km, Watters later estimated the maximum displacement on the Amenthes Rupes fault to be 2.90 km. However, these studies did not determine the geometry of the thrust using quantitative constraints that included shortening estimates. Amenthes Rupes deforms large preexisting impact craters. We use these craters to constrain shortening across the scarp and combine this with vertical separation to infer fault geometry. Fault dip was also estimated using measurements of scarp morphology. Measurements were based on 460 m (1/128 per pixel) digital elevation data from the Mars Orbiter Laser Altimeter (MOLA), an

  19. Neogene compressional deformation and possible thrust faulting in southwest Dominican Republic

    NASA Technical Reports Server (NTRS)

    Golombek, M. P.; Goreau, P.; Dixon, T. H.

    1985-01-01

    Analysis of regional and high resolution remote sensing data coupled with detailed field investigations indicates Neogene compressional deformation in the southwest Dominican Republic. Airborne synthetic aperture radar data and high resolution near infrared photography show folds in Tertiary sediments and possible thrust fault scarps implying NE to SW compression in the region. Large road cuts through the scarps allow study of otherwise poorly accessible, heavily vegetated karst terrain. Deformation increases toward scrap fronts where small bedding-plane thrust faults become more numerous. Analysis of mesoscopic faults with slickensides indicates compression oriented between N to S and E to W. The lowermost scarp has highly sheared fault breccia and undeformed frontal talus breccias implying it is the basal thrust into which the higher thrust faults sole. Thus, the scarps probably formed in a regional NE to SW compressional stress regime and are the toes of thrust sheets. Previous workers have suggested that these scarps are ancient shorelines. However, the gross morphology of the scarps differs substantially from well known erosional terraces on the north coast.

  20. Multiple late Holocene earthquakes along the Reelfoot fault, central New Madrid seismic zone

    NASA Astrophysics Data System (ADS)

    Kelson, Keith I.; Simpson, Gary D.; Vanarsdale, Roy B.; Haraden, Colleen C.; Lettis, William R.

    1996-03-01

    The Reelfoot fault is an east vergent, reverse fault underlying the Lake County uplift, a low-amplitude, late Holocene anticline bordered on the east by the 32-km-long Reelfoot scarp. Fluvial deposits across the scarp define an 8-m-high, east facing monocline. Most near-surface deformation along the scarp is accommodated via folding rather than faulting. We interpret the scarp as a fault-propagation fold developed over a west dipping reverse fault interpreted from shallow seismic reflection data. Trench exposures provide evidence for three episodes of deformation along the Reelfoot fault within the past approximately 2400 years, between A.D. 780 and 1000, between A.D. 1260 and 1650, and during A.D. 1812. Our best estimate of the average recurrence interval for deformation along the scarp is 400-500 years. Each episode of deformation had a slightly different style. The third most recent event produced a small graben a few tens of centimeters deep in the hanging wall of the reverse fault. The second most recent earthquake produced about 1.3 m of throw in the graben, as well as folding along the updip projection of the reverse fault and development of the scarp. These relations suggest that graben development increased through time concomitant with growth of the monocline or that the events are of different magnitude. The 1811-1812 episode of deformation produced abundant liquefaction, prominent folding of fluvial strata along the scarp, and minor faulting in the graben.

  1. Discovery Scarp

    NASA Image and Video Library

    2000-01-18

    One of the most prominent lobate scarps Discovery Scarp, photographed by NASA Mariner 10 during it first encounter with Mercury, is located at the center of this image extending from the top to near bottom.

  2. The Bear River Fault Zone, Wyoming and Utah: Complex Ruptures on a Young Normal Fault

    NASA Astrophysics Data System (ADS)

    Schwartz, D. P.; Hecker, S.; Haproff, P.; Beukelman, G.; Erickson, B.

    2012-12-01

    The Bear River fault zone (BRFZ), a set of normal fault scarps located in the Rocky Mountains at the eastern margin of Basin and Range extension, is a rare example of a nascent surface-rupturing fault. Paleoseismic investigations (West, 1994; this study) indicate that the entire neotectonic history of the BRFZ may consist of two large surface-faulting events in the late Holocene. We have estimated a maximum per-event vertical displacement of 6-6.5 m at the south end of the fault where it abuts the north flank of the east-west-trending Uinta Mountains. However, large hanging-wall depressions resulting from back rotation, which front scarps that locally exceed 15 m in height, are prevalent along the main trace, obscuring the net displacement and its along-strike distribution. The modest length (~35 km) of the BRFZ indicates ruptures with a large displacement-to-length ratio, which implies earthquakes with a high static stress drop. The BRFZ is one of several immature (low cumulative displacement) normal faults in the Rocky Mountain region that appear to produce high-stress drop earthquakes. West (1992) interpreted the BRFZ as an extensionally reactivated ramp of the late Cretaceous-early Tertiary Hogsback thrust. LiDAR data on the southern section of the fault and Google Earth imagery show that these young ruptures are more extensive than currently mapped, with newly identified large (>10m) antithetic scarps and footwall graben. The scarps of the BRFZ extend across a 2.5-5.0 km-wide zone, making this the widest and most complex Holocene surface rupture in the Intermountain West. The broad distribution of Late Holocene scarps is consistent with reactivation of shallow bedrock structures but the overall geometry of the BRFZ at depth and its extent into the seismogenic zone are uncertain.

  3. Kanda fault: A major seismogenic element west of the Rukwa Rift (Tanzania, East Africa)

    NASA Astrophysics Data System (ADS)

    Vittori, Eutizio; Delvaux, Damien; Kervyn, François

    1997-09-01

    The NW-SE trending Rukwa Rift, part of the East African Rift System, links the approximately N-S oriented Tanganyika and Nyassa (Malawi) depressions. The rift has a complex half-graben structure, generally interpreted as the result of normal and strike-slip faulting. Morphological and structural data (e.g. fault scarps, faceted spurs, tilting of Quaternary continental deposits, volcanism, seismicity) indicate Late Quaternary activity within the rift. In 1910 an earthquake of M = 7.4 (historically the largest felt in Africa) struck the Rukwa region. The epicentre was located near the Kanda fault, which affects the Ufipa plateau, separating the Rukwa depression from the south-Tanganyika basin. The geomorphic expression of the Kanda fault is a prominent fresh-looking scarp more than 180 km long, from Tunduma to north of Sumbawanga, that strikes roughly NW-SE, and dips constantly northeast. No evidence for horizontal slip was observed. Generally, the active faulting affects a very narrow zone, and is only locally distributed over several subparallel scarps. The height of the scarp progressively decreases towards the northwest, from about 40-50 m to a few metres north of Sumbawanga. Faulted lacustrine deposits exposed in a road cut near Kaengesa were dated as 8340 ± 700 and 13 600 ± 1240 radiocarbon years. These low-energy deposits now hang more than 15 m above the present-day valley floor, suggesting rapid uplift during the Holocene. Due to its high rate of activity in very recent times, the Kanda Fault could have produced the 1910 earthquake. Detailed paleoseismological studies are used to characterize its recent history. In addition, the seismic hazard posed by this fault, which crosses the fast growing town of Sumbawanga, must be seriously considered in urban planning.

  4. Surface Morphology of Active Normal Faults in Hard Rock: Implications for the Mechanics of the Asal Rift, Djibouti

    NASA Astrophysics Data System (ADS)

    Pinzuti, P.; Mignan, A.; King, G. C.

    2009-12-01

    Mechanical stretching models have been previously proposed to explain the process of continental break-up through the example of the Asal Rift, Djibouti, one of the few places where the early stages of seafloor spreading can be observed. In these models, deformation is distributed starting at the base of a shallow seismogenic zone, in which sub-vertical normal faults are responsible for subsidence whereas cracks accommodate extension. Alternative models suggest that extension results from localized magma injection, with normal faults accommodating extension and subsidence above the maximum reach of the magma column. In these magmatic intrusion models, normal faults have dips of 45-55° and root into dikes. Using mechanical and kinematics concepts and vertical profiles of normal fault scarps from an Asal Rift campaign, where normal faults are sub-vertical on surface level, we discuss the creation and evolution of normal faults in massive fractured rocks (basalt). We suggest that the observed fault scarps correspond to sub-vertical en echelon structures and that at greater depth, these scarps combine and give birth to dipping normal faults. Finally, the geometry of faulting between the Fieale volcano and Lake Asal in the Asal Rift can be simply related to the depth of diking, which in turn can be related to magma supply. This new view supports the magmatic intrusion model of early stages of continental breaking.

  5. How quickly do earthquakes get locked in the landscape? One year of erosion on El Mayor-Cucapah rupture scarps imaged by repeat terrestrial lidar scans

    NASA Astrophysics Data System (ADS)

    Elliott, A. J.; Oskin, M. E.; Banesh, D.; Gold, P. O.; Hinojosa-Corona, A.; Styron, R. H.; Taylor, M. H.

    2012-12-01

    Differencing repeat terrestrial lidar scans of the 2010 M7.2 El Mayor-Cucapah (EMC) earthquake rupture reveals the rapid onset of surface processes that simultaneously degrade and preserve evidence of coseismic fault rupture in the landscape and paleoseismic record. We surveyed fresh fault rupture two weeks after the 4 April 2010 earthquake, then repeated these surveys one year later. We imaged fault rupture through four substrates varying in degree of consolidation and scarp facing-direction, recording modification due to a range of aeolian, fluvial, and hillslope processes. Using lidar-derived DEM rasters to calculate the topographic differences between years results in aliasing errors because GPS uncertainty between years (~1.5cm) exceeds lidar point-spacing (<1.0cm) shifting the raster sampling of the point cloud. Instead, we coregister each year's scans by iteratively minimizing the horizontal and vertical misfit between neighborhoods of points in each raw point cloud. With the misfit between datasets minimized, we compute the vertical difference between points in each scan within a specified neighborhood. Differencing results reveal two variables controlling the type and extent of erosion: cohesion of the substrate controls the degree to which hillslope processes affect the scarp, while scarp facing direction controls whether more effective fluvial erosion can act on the scarp. In poorly consolidated materials, large portions (>50% along strike distance) of the scarp crest are eroded up to 5cm by a combination of aeolian abrasion and diffusive hillslope processes, such as rainsplash and mass-wasting, while in firmer substrate (i.e., bedrock mantled by fault gouge) there is no detectable hillslope erosion. On the other hand, where small gullies cross downhill-facing scarps (<5% along strike distance), fluvial erosion has caused 5-50cm of headward scarp retreat in bedrock. Thus, although aeolian and hillslope processes operate over a greater along

  6. Holocene tectonics and fault reactivation in the foothills of the north Cascade Mountains, Washington

    USGS Publications Warehouse

    Sherrod, Brian L.; Barnett, Elizabeth; Schermer, Elizabeth; Kelsey, Harvey M.; Hughes, Jonathan; Foit, Franklin F.; Weaver, Craig S.; Haugerud, Ralph; Hyatt, Tim

    2013-01-01

    We use LiDAR imagery to identify two fault scarps on latest Pleistocene glacial outwash deposits along the North Fork Nooksack River in Whatcom County, Washington (United States). Mapping and paleoseismic investigation of these previously unknown scarps provide constraints on the earthquake history and seismic hazard in the northern Puget Lowland. The Kendall scarp lies along the mapped trace of the Boulder Creek fault, a south-dipping Tertiary normal fault, and the Canyon Creek scarp lies in close proximity to the south-dipping Canyon Creek fault and the south-dipping Glacier Extensional fault. Both scarps are south-side-up, opposite the sense of displacement observed on the nearby bedrock faults. Trenches excavated across these scarps exposed folded and faulted late Quaternary glacial outwash, locally dated between ca. 12 and 13 ka, and Holocene buried soils and scarp colluvium. Reverse and oblique faulting of the soils and colluvial deposits indicates at least two late Holocene earthquakes, while folding of the glacial outwash prior to formation of the post-glacial soil suggests an earlier Holocene earthquake. Abrupt changes in bed thickness across faults in the Canyon Creek excavation suggest a lateral component of slip. Sediments in a wetland adjacent to the Kendall scarp record three pond-forming episodes during the Holocene—we infer that surface ruptures on the Boulder Creek fault during past earthquakes temporarily blocked the stream channel and created an ephemeral lake. The Boulder Creek and Canyon Creek faults formed in the early to mid-Tertiary as normal faults and likely lay dormant until reactivated as reverse faults in a new stress regime. The most recent earthquakes—each likely Mw > 6.3 and dating to ca. 8050–7250 calendar years B.P. (cal yr B.P.), 3190–2980 cal. yr B.P., and 910–740 cal. yr B.P.—demonstrate that reverse faulting in the northern Puget Lowland poses a hazard to urban areas between Seattle (Washington) and Vancouver

  7. Strain pattern represented by scarps formed during the earthquakes of October 2, 1915, Pleasant Valley, Nevada

    USGS Publications Warehouse

    Wallace, R.E.

    1979-01-01

    The pattern of scarps developed during the earthquakes of October 2, 1915, in Pleasant Valley, Nevada, may have formed as a result of a modern stress system acting on a set of fractures produced by an earlier stress system which was oriented differently. Four major scarps developed in a right-stepping, en-echelon pattern suggestive of left-lateral slip across the zone and an extension axis oriented approximately S85??W. The trend of the zone is N25??E. However, the orientation of simple dip-slip on most segments trending approximately N20-40?? E and a right-lateral component of displacement on several N- and NW-trending segments of the scarps indicate that the axis of regional extension was oriented between N50?? and 70?? W, normal to the zone. The cumulative length of the scarps is 60 km, average vertical displacement 2 m, and the maximum vertical displacement near the Pearce School site 5.8 m. Almost everywhere the 1915 scarps formed along an older scarp line, and in some places older scarps represent multiple previous events. The most recent displacement event prior to 1915 is interpreted to have occurred more than 6600 years ago, but possibly less than 20,000 years ago. Some faults expressed by older scarps that trend northwest were not reactivated in 1915, possibly because they are oriented at a low angle with respect to the axis of modern regional extension. The 1915 event occurred in an area of overlap of three regional fault trends oriented northwest, north, and northeast and referred to, respectively, as the Oregon-Nevada, Northwest Nevada, and Midas-Battle Moutain trends. Each of these trends may have developed at a different time; the Oregon-Nevada trend was possibly the earliest and developed in Late Miocene time (Stewart et al. 1975). Segments of the 1915 scarps are parallel to each of these trends, suggesting influence by older sets of fractures. ?? 1979.

  8. Late Quaternary activity of the Grote Brogel fault, NE Belgium

    NASA Astrophysics Data System (ADS)

    Vanneste, Kris; Deckers, Jef; Van Noten, Koen; Schiltz, Marco; Lecocq, Thomas

    2017-04-01

    The Grote Brogel fault (GBF) is a WNW-ESE striking normal fault that is part of the western border fault system of the Roer Valley Graben in NE Belgium. It is one of three faults branching NW-ward from the main border fault (Geleen fault) near Bree, but its orientation diverges 22° from the general NW-SE orientation of the graben, causing a wide left step. Unlike the Geleen fault, the surface expression of the GBF has not been investigated in detail so far. We studied the Quaternary activity of the GBF and its effects on the local hydrology based on a high-resolution LiDAR digital terrain model (DTM), and geophysical and geological surveying at two sites, combining Electrical Resistivity Tomography (ERT), Cone Penetration Tests (CPTs) and boreholes. The GBF defines the northern edge of the Campine Plateau, an elevated area covered by the late Early to Middle Pleistocene Main Terrace of the Meuse River. Cumulative vertical offset since deposition of this terrace has resulted in a distinct 10-km-long fault scarp, the height of which decreases from 11 m near Bree in the east to less than 5 m near Grote Brogel in the west. The along-strike evolution of offset suggests that the GBF does not define an individual rupture segment, but is likely contiguous with the Geleen fault. DTM analysis indicates that scarps are only preserved in a few isolated places, and that the surface trace is rather complex, consisting of a series of short, relatively straight sections with strikes varying between 255° and 310°, arranged in a generally left-stepping pattern. At both investigated sites, ERT profiles clearly demonstrate the presence of fault splays in the shallow subsurface (< 50 m) underneath the identified scarps evidenced by a sudden increase in depth and thickness of a high-resistivity unit on top of a lower-resistivity unit. Boreholes and CPTs allow correlating the high-resistivity unit with the medium to coarse gravel-bearing sands of the Meuse Group, and the lower

  9. Project DAFNE - Drilling Active Faults in Northern Europe

    NASA Astrophysics Data System (ADS)

    Kukkonen, I. T.; Ask, M. S. V.; Olesen, O.

    2012-04-01

    We are currently developing a new ICDP project 'Drillling Active Faults in Northern Europe' (DAFNE) which aims at investigating, via scientific drilling, the tectonic and structural characteristics of postglacial (PG) faults in northern Fennoscandia, including their hydrogeology and associated deep biosphere [1, 2]. During the last stages of the Weichselian glaciation (ca. 9,000 - 15,000 years B.P.), reduced ice load and glacially affected stress field resulted in active faulting in Fennoscandia with fault scarps up to 160 km long and 30 m high. These postglacial (PG) faults are usually SE dipping, SW-NE oriented thrusts, and represent reactivated, pre-existing crustal discontinuities. Postglacial faulting indicates that the glacio-isostatic compensation is not only a gradual viscoelastic phenomenon, but includes also unexpected violent earthquakes, suggestively larger than other known earthquakes in stable continental regions. The research is anticipated to advance science in neotectonics, hydrogeology and deep biosphere studies, and provide important information for nuclear waste and CO2 disposal, petroleum exploration on the Norwegian continental shelf and studies of mineral resources in PG fault areas. We expect that multidisciplinary research applying shallow and deep drilling of postglacial faults would provide significant scientific results through generating new data and models, namely: (1) Understanding PG fault genesis and controls of their locations; (2) Deep structure and depth extent of PG faults; (3) Textural, mineralogical and physical alteration of rocks in the PG faults; (4) State of stress and estimates of paleostress of PG faults; (5) Hydrogeology, hydrochemistry and hydraulic properties of PG faults; (6) Dating of tectonic reactivation(s) and temporal evolution of tectonic systems hosting PG faults; (7) Existence/non-existence of deep biosphere in PG faults; (8) Data useful for planning radioactive waste disposal in crystalline bedrock; (9) Data

  10. Complex history of the Rembrandt basin and scarp system, Mercury

    NASA Astrophysics Data System (ADS)

    Ferrari, S.; Massironi, M.; Klimczak, C.; Byrne, P. K.; Cremonese, G.; Solomon, S. C.

    2012-09-01

    During its second and third flybys, the MESSENGER spacecraft [1] imaged the wellpreserved Rembrandt basin in Mercury's southern hemisphere. With a diameter of 715 km, Rembrandt is the second largest impact structure recognized on Mercury after the 1550-km-diameter Caloris basin. Rembrandt is also one of the youngest major basins [2] and formed near the end of the Late Heavy Bombardment (~3.8 Ga). Much of the basin interior has been resurfaced by smooth, high-reflectance units interpreted to be of volcanic origin [3]. These units host sets of contractional and extensional landforms generally oriented in directions radial or concentric to the basin, similar to those observed within the Caloris basin [4-6]; these structures are probably products of multiple episodes of deformation [2,7,8]. Of particular note in the Rembrandt area is a 1,000-km-long reverse fault system [9] that cuts the basin at its western rim and bends eastward toward the north, tapering into the impact material. On the basis of its shape, the structure has previously been characterized as a lobate scarp. Its formation and localization have been attributed to the global contraction of Mercury [2]. From MESSENGER flyby and orbital images, we have identified previously unrecognized kinematic indicators of strike-slip motion along the Rembrandt scarp, together with evidence of interaction between the scarp orientation and the concentric basin-related structural pattern described above. Here we show through cross-cutting relationships and scarp morphology that the development of the Rembrandt scarp was strongly influenced by tectonics related to basin formation and evolution.

  11. The evolving contribution of border faults and intra-rift faults in early-stage East African rifts: insights from the Natron (Tanzania) and Magadi (Kenya) basins

    NASA Astrophysics Data System (ADS)

    Muirhead, J.; Kattenhorn, S. A.; Dindi, E.; Gama, R.

    2013-12-01

    In the early stages of continental rifting, East African Rift (EAR) basins are conventionally depicted as asymmetric basins bounded on one side by a ~100 km-long border fault. As rifting progresses, strain concentrates into the rift center, producing intra-rift faults. The timing and nature of the transition from border fault to intra-rift-dominated strain accommodation is unclear. Our study focuses on this transitional phase of continental rifting by exploring the spatial and temporal evolution of faulting in the Natron (border fault initiation at ~3 Ma) and Magadi (~7 Ma) basins of northern Tanzania and southern Kenya, respectively. We compare the morphologies and activity histories of faults in each basin using field observations and remote sensing in order to address the relative contributions of border faults and intra-rift faults to crustal strain accommodation as rifting progresses. The ~500 m-high border fault along the western margin of the Natron basin is steep compared to many border faults in the eastern branch of the EAR, indicating limited scarp degradation by mass wasting. Locally, the escarpment shows open fissures and young scarps 10s of meters high and a few kilometers long, implying ongoing border fault activity in this young rift. However, intra-rift faults within ~1 Ma lavas are greatly eroded and fresh scarps are typically absent, implying long recurrence intervals between slip events. Rift-normal topographic profiles across the Natron basin show the lowest elevations in the lake-filled basin adjacent to the border fault, where a number of hydrothermal springs along the border fault system expel water into the lake. In contrast to Natron, a ~1600 m high, densely vegetated, border fault escarpment along the western edge of the Magadi basin is highly degraded; we were unable to identify evidence of recent rupturing. Rift-normal elevation profiles indicate the focus of strain has migrated away from the border fault into the rift center, where

  12. Active Fault Topography and Fault Outcrops in the Central Part of the Nukumi fault, the 1891 Nobi Earthquake Fault System, Central Japan

    NASA Astrophysics Data System (ADS)

    Sasaki, T.; Ueta, K.; Inoue, D.; Aoyagi, Y.; Yanagida, M.; Ichikawa, K.; Goto, N.

    2010-12-01

    It is important to evaluate the magnitude of earthquake caused by multiple active faults, taking into account the simultaneous effects. The simultaneity of adjacent active faults are often decided on the basis of geometric distances except for known these paleoseismic records. We have been studied the step area between the Nukumi fault and the Neodani fault, which appeared as consecutive ruptures in the 1891 Nobi earthquake, since 2009. The purpose of this study is to establish innovation in valuation technique of the simultaneity of adjacent active faults in addition to the paleoseismic record and the geometric distance. Geomorphological, geological and reconnaissance microearthquake surveys are concluded. The present work is intended to clarify the distribution of tectonic geomorphology along the Nukumi fault and the Neodani fault by high-resolution interpretations of airborne LiDAR DEM and aerial photograph, and the field survey of outcrops and location survey. The study area of this work is the southeastern Nukumi fault and the northwestern Neodani fault. We interpret DEM using shaded relief map and stereoscopic bird's-eye view made from 2m mesh DEM data which is obtained by airborne laser scanner of Kokusai Kogyo Co., Ltd. Aerial photographic survey is for confirmation of DEM interpretation using 1/16,000 scale photo. As a result of topographic survey, we found consecutive tectonic topography which is left lateral displacement of ridge and valley lines and reverse scarplets along the Nukumi fault and the Neodani fault . From Ogotani 2km southeastern of Nukumi pass which is located at the southeastern end of surface rupture along the Nukumi fault by previous study to Neooppa 9km southeastern of Nukumi pass, we can interpret left lateral topographies and small uphill-facing fault scarps on the terrace surface by detail DEM investigation. These topographies are unrecognized by aerial photographic survey because of heavy vegetation. We have found several new

  13. MPF model ages of the Rembrandt basin and scarp system, Mercury.

    NASA Astrophysics Data System (ADS)

    Ferrari, Sabrina; Massironi, Matteo; Marchi, Simone; Byrne, Paul K.; Klimczak, Christian; Cremonese, Gabriele

    2013-04-01

    The 715-km-diameter Rembrandt basin is the largest well-preserved impact feature of the southern hemisphere of Mercury [1] (Fig. 1), and was imaged for the first time during the second flyby of the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission [2]. Much of the basin interior is covered by smooth, high-reflectance plains interpreted to be of volcanic origin [1-3] that host sets of contractional and extensional tectonic structures. Notably, Rembrandt basin and its smooth plains are cross-cut by a 1,000-km-long reverse fault system [1-5] that trends ~E-W, bending toward the north within the basin. The individual faults of this system accommodated crustal shortening that resulted from global contraction as Mercury's interior cooled [1]. The current shape of the reverse fault system may have been influenced by the formation of the Rembrandt basin [5]. The emplacement of the interior smooth plains predates both the basin-related tectonism and the final development of the giant scarp, which is suggestive of either short-lived volcanic activity immediately after basin formation or a later volcanic phase set against prolonged tectonic activity. In order to quantify the duration of volcanic and tectonic activity in and around Rembrandt basin, we determined the crater count-derived ages of the involved terrains by means of the Model Production Function (MPF) chronology of Mercury [6-8], which is rely on the knowledge of the impactors flux on the planet. Crater chronology allowed us to constrain the Rembrandt basin formation to the early Calorian period and a widespread resurfacing up to 3.5 Ga ago. The volcanic activity affected both the basin and its surroundings, but ended prior to some basin-related and regional faulting. Hence, if the giant scarp begun to develop even before the basin formation (as suggested by its length-displacement profile across the basin itself, [5]) the regional tectonic activity along this structure might have

  14. Exploring the shallow structure of the San Ramón thrust fault in Santiago, Chile (~33.5° S), using active seismic and electric methods

    NASA Astrophysics Data System (ADS)

    Díaz, D.; Maksymowicz, A.; Vargas, G.; Vera, E.; Contreras-Reyes, E.; Rebolledo, S.

    2014-08-01

    The crustal-scale west-vergent San Ramón thrust fault system, which lies at the foot of the main Andean Cordillera in central Chile, is a geologically active structure with manifestations of late Quaternary complex surface rupture on fault segments along the eastern border of the city of Santiago. From the comparison of geophysical and geological observations, we assessed the subsurface structural pattern that affects the sedimentary cover and rock-substratum topography across fault scarps, which is critical for evaluating structural models and associated seismic hazard along the related faults. We performed seismic profiles with an average length of 250 m, using an array of 24 geophones (Geode), with 25 shots per profile, to produce high-resolution seismic tomography to aid in interpreting impedance changes associated with the deformed sedimentary cover. The recorded travel-time refractions and reflections were jointly inverted by using a 2-D tomographic approach, which resulted in variations across the scarp axis in both the velocities and the reflections that are interpreted as the sedimentary cover-rock substratum topography. Seismic anisotropy observed from tomographic profiles is consistent with sediment deformation triggered by west-vergent thrust tectonics along the fault. Electrical soundings crossing two fault scarps were used to construct subsurface resistivity tomographic profiles, which reveal systematic differences between lower resistivity values in the hanging wall with respect to the footwall of the geological structure, and clearly show well-defined east-dipping resistivity boundaries. These boundaries can be interpreted in terms of structurally driven fluid content change between the hanging wall and the footwall of the San Ramón fault. The overall results are consistent with a west-vergent thrust structure dipping ~55° E in the subsurface beneath the piedmont sediments, with local complexities likely associated with variations in fault

  15. Paleoseismic investigations at the Cal thrust fault, Mendoza, Argentina

    NASA Astrophysics Data System (ADS)

    Salomon, Eric; Schmidt, Silke; Hetzel, Ralf; Mingorance, Francisco

    2010-05-01

    Along the active mountain front of the Andean Precordillera between 30°S and 34°S in western Argentina several earthquakes occurred in recent times, including a 7.0 Ms event in 1861 which destroyed the city of Mendoza and killed two thirds of its population. The 1861 event and two other earthquakes (Ms = 5.7 in 1929 and Ms = 5.6 in 1967) were generated on the Cal thrust fault, which extends over a distance of 31 km north-south and runs straight through the center of Mendoza. In the city, which has now more than 1 million inhabitants, the fault forms a 3-m-high fault scarp. Although the Cal thrust fault poses a serious seismic hazard, the paleoseismologic history of this fault and its long-term slip rate remains largely unknown (Mingorance, 2006). We present the first results of an ongoing paleoseismologic study of the Cal thrust at a site located 5 km north of Mendoza. Here, the fault offsets Late Holocene alluvial fan sediments by 2.5 m vertically and exhibits a well developed fault scarp. A 15-m-long and 2-3-m-deep trench across the scarp reveals three east-vergent folds that we interpret to have formed during three earthquakes. Successive retrodeformation of the two youngest folds suggests that the most recent event (presumably the 1861 earthquake) caused ~1.1 m of vertical offset and ~1.8 m of horizontal shortening. For the penultimate event we obtain a vertical offset of ~0.7 m and a horizontal shortening of ~1.9 m. A vertical displacement of ~0.7 m observed on a steeply west-dipping fault may be associated with an older event. The cumulative vertical offset of 2.5 m for the three inferred events is in excellent agreement with the height of the scarp. Based on the retrodeformation of the trench deposits the fault plane dips ~25° to the west. In the deepest part of the trench evidence for even older seismic events is preserved beneath an angular unconformity that was formed during a period of erosion and pre-dates the present-day scarp. Dating of samples to

  16. Top of head scarp and internal scarps for landslide deposits in the Little North Santiam River Basin, Oregon

    USGS Publications Warehouse

    Sobieszczyk, Steven

    2010-01-01

    Data points represent head scarps, flank scarps, and minor internal scarps (linear) associated with landslide deposits in the Little North Santiam River Basin, Oregon. This work was completed as part of the Master's thesis "Turbidity Monitoring and LiDAR Imagery Indicate Landslides are Primary Source of Suspended-Sediment Load in the Little North Santiam River Basin, Oregon, Winter 2009-2010" by Steven Sobieszczyk, Portland State University and U.S. Geological Survey. Data layers in this geodatabase include: landslide deposit boundaries (Deposits); field-verfied location imagery (Photos); head scarp or scarp flanks (Scarp_Flanks); and secondary scarp features (Scarps).The geodatabase template was developed by the Oregon Department of Geology and Mineral Industries (Burns and Madin, 2009).

  17. Exploring the shallow structure of the San Ramón thrust fault in Santiago, Chile (∼33.5° S), using active seismic and electric methods

    NASA Astrophysics Data System (ADS)

    Díaz, D.; Maksymowicz, A.; Vargas, G.; Vera, E.; Contreras-Reyes, E.; Rebolledo, S.

    2014-01-01

    The crustal-scale west-vergent San Ramón thrust fault system at the foot of the main Andean Cordillera in central Chile is a geologically active structure with Quaternary manifestations of complex surface rupture along fault segments in the eastern border of Santiago city. From the comparison of geophysical and geological observations, we assessed the subsurface structure pattern affecting sedimentary cover and rock-substratum topography across fault scarps, which is critic for evaluating structural modeling and associated seismic hazard along this kind of faults. We performed seismic profiles with an average length of 250 m, using an array of twenty-four geophones (GEODE), and 25 shots per profile, supporting high-resolution seismic tomography for interpreting impedance changes associated to deformed sedimentary cover. The recorded traveltime refractions and reflections were jointly inverted by using a 2-D tomographic approach, which resulted in variations across the scarp axis in both velocities and reflections interpreted as the sedimentary cover-rock substratum topography. Seismic anisotropy observed from tomographic profiles is consistent with sediment deformation triggered by west-vergent thrust tectonics along the fault. Electrical soundings crossing two fault scarps supported subsurface resistivity tomographic profiles, which revealed systematic differences between lower resistivity values in the hanging wall with respect to the footwall of the geological structure, clearly limited by well-defined east-dipping resistivity boundaries. The latter can be interpreted in terms of structurally driven fluid content-change between the hanging wall and the footwall of a permeability boundary associated with the San Ramón fault. The overall results are consistent with a west-vergent thrust structure dipping ∼55° E at subsurface levels in piedmont sediments, with local complexities being probably associated to fault surface rupture propagation, fault-splay and

  18. Surface morphology of active normal faults in hard rock: Implications for the mechanics of the Asal Rift, Djibouti

    NASA Astrophysics Data System (ADS)

    Pinzuti, Paul; Mignan, Arnaud; King, Geoffrey C. P.

    2010-10-01

    Tectonic-stretching models have been previously proposed to explain the process of continental break-up through the example of the Asal Rift, Djibouti, one of the few places where the early stages of seafloor spreading can be observed. In these models, deformation is distributed starting at the base of a shallow seismogenic zone, in which sub-vertical normal faults are responsible for subsidence whereas cracks accommodate extension. Alternative models suggest that extension results from localised magma intrusion, with normal faults accommodating extension and subsidence only above the maximum reach of the magma column. In these magmatic rifting models, or so-called magmatic intrusion models, normal faults have dips of 45-55° and root into dikes. Vertical profiles of normal fault scarps from levelling campaign in the Asal Rift, where normal faults seem sub-vertical at surface level, have been analysed to discuss the creation and evolution of normal faults in massive fractured rocks (basalt lava flows), using mechanical and kinematics concepts. We show that the studied normal fault planes actually have an average dip ranging between 45° and 65° and are characterised by an irregular stepped form. We suggest that these normal fault scarps correspond to sub-vertical en echelon structures, and that, at greater depth, these scarps combine and give birth to dipping normal faults. The results of our analysis are compatible with the magmatic intrusion models instead of tectonic-stretching models. The geometry of faulting between the Fieale volcano and Lake Asal in the Asal Rift can be simply related to the depth of diking, which in turn can be related to magma supply. This new view supports the magmatic intrusion model of early stages of continental breaking.

  19. Evolution of triangular topographic facets along active normal faults

    NASA Astrophysics Data System (ADS)

    Balogun, A.; Dawers, N. H.; Gasparini, N. M.; Giachetta, E.

    2011-12-01

    Triangular shaped facets, which are generally formed by the erosion of fault - bounded mountain ranges, are arguably one of the most prominent geomorphic features on active normal fault scarps. Some previous studies of triangular facet development have suggested that facet size and slope exhibit a strong linear dependency on fault slip rate, thus linking their growth directly to the kinematics of fault initiation and linkage. Other studies, however, generally conclude that there is no variation in triangular facet geometry (height and slope) with fault slip rate. The landscape of the northeastern Basin and Range Province of the western United States provides an opportunity for addressing this problem. This is due to the presence of well developed triangular facets along active normal faults, as well as spatial variations in fault scale and slip rate. In addition, the Holocene climatic record for this region suggests a dominant tectonic regime, as the faulted landscape shows little evidence of precipitation gradients associated with tectonic uplift. Using GIS-based analyses of USGS 30 m digital elevation data (DEMs) for east - central Idaho and southwestern Montana, we analyze triangular facet geometries along fault systems of varying number of constituent segments. This approach allows us to link these geometries with established patterns of along - strike slip rate variation. For this study, we consider major watersheds to include only catchments with upstream and downstream boundaries extending from the drainage divide to the mapped fault trace, respectively. In order to maintain consistency in the selection criteria for the analyzed triangular facets, only facets bounded on opposite sides by major watersheds were considered. Our preliminary observations reflect a general along - strike increase in the surface area, average slope, and relief of triangular facets from the tips of the fault towards the center. We attribute anomalies in the along - strike geometric

  20. Seasonally active frost-dust avalanches on a north polar scarp of Mars captured by HiRISE

    USGS Publications Warehouse

    Russell, P.; Thomas, N.; Byrne, S.; Herkenhoff, K.; Fishbaugh, K.; Bridges, N.; Okubo, C.; Milazzo, M.; Daubar, I.; Hansen, C.; McEwen, A.

    2008-01-01

    North-polar temporal monitoring by the High Resolution Imaging Science Experiment (HiRISE) orbiting Mars has discovered new, dramatic examples that Mars1 CO2-dominated seasonal volatile cycle is not limited to quiet deposition and sublimation of frost. In early northern martian spring, 2008, HiRISE captured several cases of CO2 frost and dust cascading down a steep, polar scarp in discrete clouds. Analysis of morphology and process reveals these events to be similar to terrestrial powder avalanches, sluffs, and falls of loose, dry snow. Potential material sources and initiating mechanisms are discussed in the context of the Martian polar spring environment and of additional, active, aeolian processes observed on the plateau above the scarp. The scarp events are identified as a trigger for mass wasting of bright, fractured layers within the basal unit, and may indirectly influence the retreat rate of steep polar scarps in competing ways. Copyright 2008 by the American Geophysical Union.

  1. Are the benches at Mormon Point, Death Valley, California, USA, scarps or strandlines?

    USGS Publications Warehouse

    Knott, J.R.; Tinsley, J. C.; Wells, S.G.

    2002-01-01

    The benches and risers at Mormon Point, Death Valley, USA, have long been interpreted as strandlines cut by still-stands of pluvial lakes correlative with oxygen isotope stage (OIS) 5e/6 (120,000-186,000 yr B.P.) and OIS-2 (10,000-35,000 yr B.P.). This study presents geologic mapping and geomorphic analyses (Gilbert's criteria, longitudinal profiles), which indicate that only the highest bench at Mormon Point (~90 m above mean sea level (msl)) is a lake strandline. The other prominent benches on the north-descending slope immediately below this strandline are interpreted as fault scarps offsetting a lacustrine abrasion platform. The faults offsetting the abrasion platform most likely join downward into and slip sympathetically with the Mormon Point turtleback fault, implying late Quaternary slip on this low-angle normal fault. Our geomorphic reinterpretation implies that the OIS-5e/6 lake receded rapidly enough not to cut strandlines and was ~90 m deep. Consistent with independent core studies of the salt pan, no evidence of OIS-2 lake strandlines was found at Mormon Point, which indicates that the maximum elevation of the OIS-2 lake surface was -30 m msl. Thus, as measured by pluvial lake depth, the OIS-2 effective precipitation was significantly less than during OIS-5e/6, a finding that is more consistent with other studies in the region. The changed geomorphic context indicates that previous surface exposure dates on fault scarps and benches at Mormon Point are uninterpretable with respect to lake history. ?? 2002 University of Washington.

  2. Climate change and mountain-front morphology: Estimating Late Glacial to Holocene erosion rates from the shape of fault-bounded hillslopes

    NASA Astrophysics Data System (ADS)

    Tucker, G. E.; McCoy, S. W.; Whittaker, A. C.; Roberts, G.; Lancaster, S. T.; Phillips, R. J.

    2011-12-01

    The existence of well-preserved Holocene bedrock fault scarps along active normal faults in the Mediterranean region and elsewhere suggests a dramatic reduction in rates of rock weathering and erosion that correlates with the transition from glacial to interglacial climate. We test and quantify this interpretation using a case study in the Italian Central Apennines. Holocene rates are derived from measurements of weathering-pit depth along the Magnola scarp, where previous cosmogenic 36Cl analyses constrain exposure history. To estimate the average hillslope erosion rate over ˜105 years, we introduce a simple geometric model of normal-fault footwall slope evolution. The model predicts that the gradient of a weathering-limited footwall hillslope is set by fault dip angle and by the ratio of slip rate to erosion rate; if either slip or erosion rate is known, the other can be derived. Applying this model to the Magnola fault yields an estimated average weathering rate on the order of 0.2-0.4 mm/yr, more than 10x higher than either the Holocene scarp weathering rate or modern regional limestone weathering rates. A numerical model of footwall growth and erosion, in which erosion rate tracks the oxygen-isotope curve, reproduces the main features of hillslope and scarp morphology and suggests that the hillslope erosion rate has varied by about a factor of 30 over the past one to two glacial cycles. We conclude that preservation of carbonate fault scarps reflects strong climatic control on rock breakdown by frost cracking.

  3. Quantifying Coseismic Normal Fault Rupture at the Seafloor: The 2004 Les Saintes Earthquake Along the Roseau Fault (French Antilles)

    NASA Astrophysics Data System (ADS)

    Olive, J. A. L.; Escartin, J.; Leclerc, F.; Garcia, R.; Gracias, N.; Odemar Science Party, T.

    2016-12-01

    While >70% of Earth's seismicity is submarine, almost all observations of earthquake-related ruptures and surface deformation are restricted to subaerial environments. Such observations are critical for understanding fault behavior and associated hazards (including tsunamis), but are not routinely conducted at the seafloor due to obvious constraints. During the 2013 ODEMAR cruise we used autonomous and remotely operated vehicles to map the Roseau normal Fault (Lesser Antilles), source of the 2004 Mw6.3 earthquake and associated tsunami (<3.5m run-up). These vehicles acquired acoustic (multibeam bathymetry) and optical data (video and electronic images) spanning from regional (>1 km) to outcrop (<1 m) scales. These high-resolution submarine observations, analogous to those routinely conducted subaerially, rely on advanced image and video processing techniques, such as mosaicking and structure-from-motion (SFM). We identify sub-vertical fault slip planes along the Roseau scarp, displaying coseismic deformation structures undoubtedly due to the 2004 event. First, video mosaicking allows us to identify the freshly exposed fault plane at the base of one of these scarps. A maximum vertical coseismic displacement of 0.9 m can be measured from the video-derived terrain models and the texture-mapped imagery, which have better resolution than any available acoustic systems (<10 cm). Second, seafloor photomosaics allow us to identify and map both additional sub-vertical fault scarps, and cracks and fissures at their base, recording hangingwall damage from the same event. These observations provide critical parameters to understand the seismic cycle and long-term seismic behavior of this submarine fault. Our work demonstrates the feasibility of extensive, high-resolution underwater surveys using underwater vehicles and novel imaging techniques, thereby opening new possibilities to study recent seafloor changes associated with tectonic, volcanic, or hydrothermal activity.

  4. Logs and Geologic Data from a Paleoseismic Investigation of the Susitna Glacier fault, Central Alaska Range, Alaska

    USGS Publications Warehouse

    Personius, Stephen F.; Crone, Anthony J.; Burns, Patricia A.C.; Beget, James E.; Seitz, Gordon G.; Bemis, Sean P.

    2010-01-01

    This report contains field and laboratory data from a paleoseismic study of the Susitna Glacier fault, Alaska. The initial M 7.2 subevent of the November 3, 2002, M 7.9 Denali fault earthquake sequence produced a 48-km-long set of complex fault scarps, folds, and aligned landslides on the previously unknown, north-dipping Susitna Glacier thrust fault along the southern margin of the Alaska Range in central Alaska. Most of the 2002 folds and fault scarps are 1-3 m high, implying dip-slip thrust offsets (assuming a near-surface fault dip of approximately 20 degrees)of 3-5 m. Locally, some of the 2002 ruptures were superimposed on preexisting scarps that have as much as 5-10 m of vertical separation and are evidence of previous surface-rupturing earthquakes on the Susitna Glacier fault. In 2003-2005, we focused follow-up studies on several of the large scarps at the 'Wet fan' site in the central part of the 2002 rupture to determine the pre-2002 history of large surface-rupturing earthquakes on the fault. We chose this site for several reasons: (1) the presence of pre-2002 thrust- and normal-fault scarps on a gently sloping, post-glacial alluvial fan; (2) nearby natural exposures of underlying fan sediments revealed fine-grained fluvial silts with peat layers and volcanic ash beds useful for chronological control; and (3) a lack of permafrost to a depth of more than 1 m. Our studies included detailed mapping, fault-scarp profiling, and logging of three hand-excavated trenches. We were forced to restrict our excavations to 1- to 2-m-high splay faults and folds because the primary 2002 ruptures mostly were superimposed on such large scarps that it was impossible to hand dig through the hanging wall to expose the fault plane. Additional complications are the pervasive effects of cryogenic processes (mainly solifluction) that can mask or mimic tectonic deformation. The purpose of this report is to present photomosaics, trench logs, scarp profiles, and fault slip

  5. Use of OSL dating to establish the stratigraphic framework of Quaternary eolian sediments, Anton scarp upper trench, Northeastern Colorado High Plains, USA

    USGS Publications Warehouse

    Mahan, S.A.; Noe, D.C.; McCalpin, J.P.

    2009-01-01

    This paper contains the results of the optically stimulated luminescence (OSL) dating used to establish stratigraphic ages and relationships of eolian sediments in a trench in northeastern Colorado, USA. This trench was located in the upper face of the Anton scarp, a major topographic lineament trending NW-SE for a distance of 135 km, in anticipation of intersecting near-surface faulting. The trench was 180 m long, 4.5-6.0 m deep, and exposed 22 m of stratigraphic section, most of which dipped gently west and was truncated by gulley channeling at the face of the scarp. No direct evidence of faulting was found in the upper trench. The stratigraphy from the trench was described, mapped and dated using OSL on quartz and potassium feldspar, and 14C obtained from woody material. OSL dating identified two upper loess units as Peoria Loess and Gilman Canyon Loess, deposited between 16 and 30 ka ago. The bottom layers of the trench were substantially older, giving OSL ages in excess of 100 ka. These older ages are interpreted as underestimates, owing to saturation of the fast component of OSL. Using OSL and 14C dating, we can constrain the erosion and down cutting of the scarp face as occurring between 16 and 5.7 ka. As the trenching investigation continues in other parts of the scarp face, the results of this preliminary study will be of importance in relating the ages of the strata that underlie different parts of the scarp, and in determining whether Quaternary faulting was a mechanism that contributed to the formation of this regional geomorphic feature.

  6. Late Quaternary faulting in the Cabo San Lucas-La Paz Region, Baja California

    NASA Astrophysics Data System (ADS)

    Busch, M.; Arrowsmith, J. R.; Umhoefer, P. J.; Gutiérrez, G. M.; Toke, N.; Brothers, D.; Dimaggio, E.; Maloney, S.; Zielke, O.; Buchanan, B.

    2006-12-01

    While Baja California drifts, active deformation on and just offshore indicates that spreading is not completely localized to the rift axis in the Gulf of California. Using on and offshore data, we characterize normal faulting- related deformation in the Cabo San Lucas-La Paz area. We mapped sections of the north trending faults in a 150 km long left-stepping fault array. Starting in the south, the San Jose del Cabo fault (east dipping) bounds the ~2 km high Sierra La Laguna. It is >70 km long with well defined 1-10 meter fault scarps cutting the youngest late Quaternary geomorphic surfaces. Our preliminary mapping along the north central section exhibits extensive late Quaternary terraces with riser heights of tens of meters above Holocene terraces. The San Jose del Cabo fault trace becomes diffuse and terminates in the area of Los Barriles. Moving northward, the fault system steps to the west, apparently transferring slip to the faults of San Juan de Los Planes and Saltito, which then step left again across the La Paz basin to the NNW trending Carrizal Fault. It has an on shore length of > 60 km. We produced a 25 km detailed strip map along the northern segment. It is embayed by convex east arcs several km long and 100 m deep. In the south, few-m-high scarps cut a pediment of thin Quaternary cover over tertiary volcanic rocks. The escarpment along the fault is hundreds of meters high and scarps 1-10 m high where it goes offshore in the north. Near Bonfil, a quarry cut exposes the fault zone. It comprises a 5-10 m wide bedrock shear zone with sheared tertiary volcanic units. On the footwall, the lower silty and sandy units have moderately well developed pedogenic carbonate, whereas the upper coarse gravel does not. These late Quaternary units appear to be faulted by one to three earthquakes. Finally, we mapped the Saltito fault zone NNE of La Paz. It is a NW trending structure with well developed 5- 10 meter high bedrock scarps defining its NW 5 km and slightly

  7. Surface faults in the gulf coastal plain between Victoria and Beaumont, Texas

    USGS Publications Warehouse

    Verbeek, Earl R.

    1979-01-01

    scarps are probably very young, and where they can be demonstrated to partly or wholly predate fluid withdrawal, very recent natural fault activity is indicated. (6) Early aerial photographs (1930) of the entire region and topographic maps (1915-16 surveys) of Harris County (Houston and vicinity) show that many faults had already displaced the land surface at a time when appreciable pressure declines in subjacent strata were localized to relatively few areas of large-scale pumping. Prehistoric faulting of the land surface, as noted above, appears to have affected much of the Texas Gulf Coast. (7) A relation between groundwater extraction and current motion on active faults is suspected because of the increased incidence of ground failure in the Houston-Galveston subsidence bowl. This argument is weakened somewhat by recognition of numerous surface faults, some of them active today, far beyond the periphery of the strongly subsiding area. Moreover, tilt beam records from two monitored faults in northwest Houston and accounts of fault damage from local residents demonstrate a complex, episodic nature of fault creep which can only partially be correlated with groundwater production. Nevertheless, although specific mechanisms are in doubt, the extraction of groundwater from shallow (<800-m) sands is probably a major factor in contributing to current displacement of the ground surface in the Houston-Galveston region. Within this large area, the number of faults recognizable from aerial photographs has increased at least tenfold between 1930 and 1970. Elsewhere in the Texas Gulf Coast only a moderate increase has been noted, some of which is possibly attributable to oil and gas production. Surface fault density in the Houston-Galveston region is far greater than in any other area of the Texas Gulf Coast investigated to date. A plausible explanation for these differences is that large overdrafts of groundwater over an extended period of time in the Houston-Galveston region

  8. Pits and Scarps

    NASA Image and Video Library

    2015-04-08

    Lessing crater can be seen in the lower left of this image. Instead of the typical central peak found in a complex crater on Mercury, Lessing sports a central pit, likely formed by volcanic activity. A large tectonic scarp that formed when the planet's interior cooled and contracted can be seen running through a crater near the center of the image. http://photojournal.jpl.nasa.gov/catalog/PIA19276

  9. Seismic reflection study of the East Potrillo Fault, southwestern Dona Ana County, New Mexico

    NASA Astrophysics Data System (ADS)

    Carley, Shane Alan

    The East Potrillo Mountains are located just north of the U.S.-Mexico border in southwestern Dona Ana County, New Mexico. Laramide and Rio Grande rift deformation has formed low-angle and high-angle Tertiary normal faults that are exposed in the area. Along the east flank of the range is the East Potrillo Fault identified on the surface as a north-striking scarp. Fault scarps associated with the East Potrillo Fault have been dated using slope degradation models and they range between 56 ka and 377 ka in age. Offset of geomorphic surfaces interpreted to be tectonic terraces records at least four earthquakes over that period of time, leading to an estimated recurrence interval of 33.5 kyr. Because of this paleoseismic history, the East Potrillo Fault potentially poses a significant seismic hazard to the over 2 million residents living in the border region. Our study presents two 2D seismic reflection profiles to give the first subsurface image of the East Potrillo Fault and potentially other subsidiary faults that have not broken the surface. Three faults are identified in the subsurface, two of which were previously unknown. The range bounding fault is identified 300 m west of observed fault scarps. The fault scarp is found to be formed from one of two secondary faults. It dips 75°s east and has a fault offset of 150 m. The other secondary fault is an antithetic fault dipping 75°s west and forms a graben within the EPF system. The vibroseis source data acquisition is found to be beneficial for characterizing unknown subsurface features.

  10. The susitna glacier thrust fault: Characteristics of surface ruptures on the fault that initiated the 2002 denali fault earthquake

    USGS Publications Warehouse

    Crone, A.J.; Personius, S.F.; Craw, P.A.; Haeussler, P.J.; Staft, L.A.

    2004-01-01

    The 3 November 2002 Mw 7.9 Denali fault earthquake sequence initiated on the newly discovered Susitna Glacier thrust fault and caused 48 km of surface rupture. Rupture of the Susitna Glacier fault generated scarps on ice of the Susitna and West Fork glaciers and on tundra and surficial deposits along the southern front of the central Alaska Range. Based on detailed mapping, 27 topographic profiles, and field observations, we document the characteristics and slip distribution of the 2002 ruptures and describe evidence of pre-2002 ruptures on the fault. The 2002 surface faulting produced structures that range from simple folds on a single trace to complex thrust-fault ruptures and pressure ridges on multiple, sinuous strands. The deformation zone is locally more than 1 km wide. We measured a maximum vertical displacement of 5.4 m on the south-directed main thrust. North-directed backthrusts have more than 4 m of surface offset. We measured a well-constrained near-surface fault dip of about 19?? at one site, which is considerably less than seismologically determined values of 35??-48??. Surface-rupture data yield an estimated magnitude of Mw 7.3 for the fault, which is similar to the seismological value of Mw 7.2. Comparison of field and seismological data suggest that the Susitna Glacier fault is part of a large positive flower structure associated with northwest-directed transpressive deformation on the Denali fault. Prehistoric scarps are evidence of previous rupture of the Sustina Glacier fault, but additional work is needed to determine if past failures of the Susitna Glacier fault have consistently induced rupture of the Denali fault.

  11. Characterizing subaqueous co-seismic scarps using coeval specific sedimentary events; a case study in Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Beck, C.; Reyss, J.; Feuillet, N.; Leclerc, F.; Moreno, E.

    2012-12-01

    Improvements of active fault surveying have shown that creep, or alternating creep and co-seismic displacements, are not rare. Nevertheless, either on land (trenching), or in subaqueous setting (seismic imaging and coring), active fault offsets, investigated for paleoseismic purpose, are sometimes assumed as co-seismic without direct evidences. At the opposite, within adequate sedimentary archives, some gravity reworking events may be attributed to earthquake triggering, but often do not permit to locate the responsible fault and the co-seismic rupture. In the here-discussed example, both types of observations could be associated: faulting offsets and specific sedimentary events "sealing" them. Several very high resolution (VHR) seismic profiles obtained during The GWADASEIS cruise (Lesser Antilles volcanic arc, February-March 2009) evidenced frequent "ponding" of reworked sediments in the deepest areas. These bodies are acoustically transparent (few ms t.w.t. thick) and often deposited on the hanging walls of dominantly normal faults, at the base of scarps, as previously observed along the North Anatolian Fault (Beck et al., 2007, doi:10.1016/j.sedgeo.2005.12.031). Their thicknesses appear sufficient to compensate (i.e. bury) successive offsets, resulting in a flat and horizontal sea floor through time. Offshore Montserrat and Nevis islands, piston coring (4 to 7 m long) was dedicated to characterize the most recent of these particular layers. An up to 2m-thick "homogenite" appears capping the RedOx water/sediment interface. 210Pb and 137Cs activities lack in the homogenite, while a normal unsupported 210Pb decrease profile and a 137Cs peak, corresponding to the Atmospheric Nuclear Experiments (1962), are present below (Beck et al. 2012, doi:10.5194/nhess-12-1-2012). This sedimentary event and the coeval scarp are post-1970 AD, and attributed either to the March 16th 1985 earthquake or to the October 8th 1974 one (respectively Mw6.3 and Mw7.4). Based on the

  12. Millennial strain partitioning and fault interaction revealed by 36Cl cosmogenic nuclide datasets from Abruzzo, Central Italy

    NASA Astrophysics Data System (ADS)

    Gregory, L. C.; Phillips, R. J.; Roberts, G.; Cowie, P. A.; Shanks, R. P.; McCaffrey, K. J. W.; Wedmore, L. N. J.; Zijerveld, L.

    2015-12-01

    In zones of distributed continental faulting, it is critical to understand how slip is partitioned onto brittle structures over both long-term millennial time scales and shorter-term individual earthquake cycles. The comparison of slip distributions on different timescales is challenging due to earthquake repeat-times being longer or similar to historical earthquake records, and a paucity of data on fault activity covering millennial to Quaternary scales in detail. Cosmogenic isotope analyses from bedrock fault scarps have the potential to bridge the gap, as these datasets track the exposure of fault planes due to earthquakes with better-than-millennial resolution. In this presentation, we will use an extensive 36Cl dataset to characterise late Holocene activity across a complicated network of normal faults in Abruzzo, Italy, comparing the most recent fault behaviour with the historical earthquake record in the region. Extensional faulting in Abruzzo has produced scarps of exposed bedrock limestone fault planes that have been preserved since the last glacial maximum (LGM). 36Cl accumulates in bedrock fault scarps as the plane is progressively exhumed by earthquakes and thus the concentration of 36Cl measured up the fault plane reflects the rate and patterns of slip. In this presentation, we will focus on the most recent record, revealed at the base of the fault. Utilising new Bayesian modelling techniques on new and previously collected data, we compare evidence for this most recent period of slip (over the last several thousands of years) across 5-6 fault zones located across strike from each other. Each sampling site is carefully characterised using LiDAR and GPR. We demonstrate that the rate of slip on individual fault strands varies significantly, between having periods of accelerated slip to relative quiescence. Where data is compared between across-strike fault zones and with the historical catalogue, it appears that slip is partitioned such that one fault

  13. Scarp development in the Valles Marineris

    NASA Technical Reports Server (NTRS)

    Patton, P. C.

    1984-01-01

    The scarps along the margins of the Vales Marineris display a complex assemblage of forms that have been related to a variety of mass wasting and sapping processes. These scarp segments display variations in the degree of development of spur and gully topography, the number and density of apparent sapping features and the frequency of large scale landslides which reflect the age, geology and processes of slope development throughout the Valles Marineris. This regional analysis should provide more information on the geologic evolution of the Valles Marineris as well as new insight into the relative importance of different processes in the development of the scarp forms. In order to evaluate the regional variation in scarp form and the influence of time and structure on scarp development geomorphic mapping and morphometric analysis of geologically distinct regions of Valles Marineris is being undertaken.

  14. Active faulting induced by the slip partitioning in the Lesser Antilles arc

    NASA Astrophysics Data System (ADS)

    Leclerc, Frédérique; Feuillet, Nathalie

    2010-05-01

    AGUADOMAR marine cruise data acquired 11 years ago allowed us to identified and map two main sets of active faults within the Lesser Antilles arc (Feuillet et al., 2002; 2004). The faults belonging to the first set, such as Morne-Piton in Guadeloupe, bound up to 100km-long and 50km-wide arc-perpendicular graben or half graben that disrupt the fore-arc reef platforms. The faults of the second set form right-stepping en echelon arrays, accommodating left-lateral slip along the inner, volcanic islands. The two fault systems form a sinistral horsetail east of the tip of the left-lateral Puerto Rico fault zone that takes up the trench-parallel component of convergence between the North-American and Caribbean plates west of the Anegada passage. In other words, they together accommodate large-scale slip partitioning along the northeastern arc, consistent with recent GPS measurements (Lopez et al., 2006). These intraplate faults are responsible for a part of the shallow seismicity in the arc and have produce damaging historical earthquakes. Two magnitude 6.3 events occurred in the last 25 years along the inner en echelon faults, the last one on November 21 2004 in Les Saintes in the Guadeloupe archipelago. To better constrain the seismic hazard related to the inner arc faults and image the ruptures and effects on the seafloor of Les Saintes 2004 earthquake, we acquired new marine data between 23 February and 25 March 2009 aboard the French R/V le Suroît during the GWADASEIS cruise. We present here the data (high-resolution 72 channel and very high-resolution chirp 3.5 khz seismic reflection profiles, EM300 multibeam bathymetry, Küllenberg coring and SAR imagery) and the first results. We identified, mapped and characterized in detail several normal to oblique fault systems between Martinique and Saba. They offset the seafloor by several hundred meters and crosscut all active volcanoes, among them Nevis Peak, Soufriere Hills, Soufriere de Guadeloupe and Montagne Pel

  15. Scarps Confined to Crater Floors

    NASA Image and Video Library

    2000-01-15

    This image, from NASA Mariner 10 spacecraft which launched in 1974, shows several scarps, which appear to be confined to crater floors. The scarp in the crater at the upper left of the image has been diverted by the central peaks.

  16. Paleoseismology of a newly discovered scarp in the Yakima fold-and-thrust belt, Kittitas County, Washington

    USGS Publications Warehouse

    Barnett, Elizabeth A.; Sherrod, Brian L.; Norris, Robert; Gibbons, Douglas

    2013-01-01

    The Boylston Mountains anticlinal ridge is one of several that are cored by rocks of the Columbia River Basalt Group and, with the interceding synclinal valleys, constitute the Yakima fold-and-thrust belt of central Washington. Lidar data acquired from the U.S. Army's Yakima Training Center reveal a prominent, northwest-side-up, 65°- to 70°-trending, 3- to 4-meter-high scarp that cuts across the western end of the Boylston Mountains, perpendicular to the mapped anticline. The scarp continues to the northeast from the ridge on the southern side of Park Creek and across the low ridges for a total length of about 3 kilometers. A small stream deeply incises its flood plain where it projects across Johnson Canyon. The scarp is inferred to be late Quaternary in age based on its presence on the modern landscape and the incised flood-plain sediments in Johnson Canyon. Two trenches were excavated across this scarp. The most informative of the two, the Horned Lizard trench, exposed shallow, 15.5-Ma Grande Ronde Basalt, which is split by a deep, wide crack that is coincident with the base of the scarp and filled with wedges of silty gravels that are interpreted to represent at least two generations of fault colluvium that offset a buried soil.

  17. Identifying buried segments of active faults in the northern Rio Grande Rift using aeromagnetic, LiDAR,and gravity data, south-central Colorado, USA

    USGS Publications Warehouse

    Grauch, V.J.S.; Ruleman, Chester A.

    2013-01-01

    Combined interpretation of aeromagnetic and LiDAR data builds on the strength of the aeromagnetic method to locate normal faults with significant offset under cover and the strength of LiDAR interpretation to identify the age and sense of motion of faults. Each data set helps resolve ambiguities in interpreting the other. In addition, gravity data can be used to infer the sense of motion for totally buried faults inferred solely from aeromagnetic data. Combined interpretation to identify active faults at the northern end of the San Luis Basin of the northern Rio Grande rift has confirmed general aspects of previous geologic mapping but has also provided significant improvements. The interpretation revises and extends mapped fault traces, confirms tectonic versus fluvial origins of steep stream banks, and gains additional information on the nature of active and potentially active partially and totally buried faults. Detailed morphology of surfaces mapped from the LiDAR data helps constrain ages of the faults that displace the deposits. The aeromagnetic data provide additional information about their extents in between discontinuous scarps and suggest that several totally buried, potentially active faults are present on both sides of the valley.

  18. Paleoseismology of the Mt. Narryer Fault Zone, West Central Western Australia: a Multi-Segment Intraplate Fault System

    NASA Astrophysics Data System (ADS)

    Whitney, B. B.; Clark, D.; Hengesh, J.

    2014-12-01

    The Western Australia shear zone (WASZ) is a 2000 km long fault system within the intraplate region of Australia. A paleoseismological study of faults and fault-related folds comprising the Mount Narryer fault zone (MNfz) in the southern WASZ reveals a late Quaternary history of repeated morphogenic earthquake occurrence that has profoundly influenced the planform and course of the Murchison, Roderick, and Sanford Rivers. Folding in the near surface sediments is the predominant style of surface expression of reactivated basement faults which is consistent with other neotectonic structures throughout the Western Australia shear zone. CRN and OSL estimates of exposure and burial ages of fault-related folds and fold derived colluvium provide constraint on Late Quaternary slip rates on the underlying faults of ~0.05 - 0.1 mm/a. In the case of the Roderick River fault scarp, 2-3m high tectonic risers separating inset terraces where the Murchison River crosses the scarp are consistent with multiple late Quaternary seismic events on the order of magnitude Mw 7.1-7.3. Mid-Pleistocene ages of tectonically deformed strata in the MNfz are consistent with the timing of collision between the Australian extended margin and Savu-Rote ridge 0.2-1.8 Ma.

  19. High-resolution shallow reflection seismic image and surface evidence of the Upper Tiber Basin active faults (Northern Apennines, Italy)

    USGS Publications Warehouse

    Donne, D.D.; Plccardi, L.; Odum, J.K.; Stephenson, W.J.; Williams, R.A.

    2007-01-01

    Shallow seismic reflection prospecting has been carried out in order to investigate the faults that bound to the southwest and northeast the Quaternary Upper Tiber Basin (Northern Apennines, Italy). On the northeastern margin of the basin a ??? 1 km long reflection seismic profile images a fault segment and the associated up to 100 meters thick sediment wedge. Across the southwestern margin a 0.5 km-long seismic profile images a 50-55??-dipping extensional fault, that projects to the scarp at the base of the range-front, and against which a 100 m thick syn-tectonic sediment wedge has formed. The integration of surface and sub-surface data allows to estimate at least 190 meters of vertical displacement along the fault and a slip rate around 0.25 m/kyr. Southwestern fault might also be interpreted as the main splay structure of regional Alto Tiberina extensional fault. At last, the 1917 Monterchi earthquake (Imax=X, Boschi et alii, 2000) is correlable with an activation of the southwestern fault, and thus suggesting the seismogenic character of this latter.

  20. A refinement of the chronology of rift-related faulting in the Broadly Rifted Zone, southern Ethiopia, through apatite fission-track analysis

    NASA Astrophysics Data System (ADS)

    Balestrieri, Maria Laura; Bonini, Marco; Corti, Giacomo; Sani, Federico; Philippon, Melody

    2016-03-01

    To reconstruct the timing of rift inception in the Broadly Rifted Zone in southern Ethiopia, we applied the fission-track method to basement rocks collected along the scarp of the main normal faults bounding (i) the Amaro Horst in the southern Main Ethiopian Rift and (ii) the Beto Basin in the Gofa Province. At the Amaro Horst, a vertical traverse along the major eastern scarp yielded pre-rift ages ranging between 121.4 ± 15.3 Ma and 69.5 ± 7.2 Ma, similarly to two other samples, one from the western scarp and one at the southern termination of the horst (103.4 ± 24.5 Ma and 65.5 ± 4.2 Ma, respectively). More interestingly, a second traverse at the Amaro northeastern terminus released rift-related ages spanning between 12.3 ± 2.7 and 6.8 ± 0.7 Ma. In the Beto Basin, the ages determined along the base of the main (northwestern) fault scarp vary between 22.8 ± 3.3 Ma and 7.0 ± 0.7 Ma. We ascertain through thermal modeling that rift-related exhumation along the northwestern fault scarp of the Beto Basin started at 12 ± 2 Ma while in the eastern margin of the Amaro Horst faulting took place later than 10 Ma, possibly at about 8 Ma. These results suggest a reconsideration of previous models on timing of rift activation in the different sectors of the Ethiopian Rift. Extensional basin formation initiated more or less contemporaneously in the Gofa Province (~ 12 Ma) and Northern Main Ethiopian Rift (~ 10-12 Ma) at the time of a major reorganization of the Nubia-Somalia plate boundary (i.e., 11 ± 2 Ma). Afterwards, rift-related faulting involved the Southern MER (Amaro Horst) at ~ 8 Ma, and only later rifting seemingly affected the Central MER (after ~ 7 Ma).

  1. Modelling of Earthquake History of the Knidos Fault Zone SW Turkey Using in-situ 36Cl Surface Exposure Dating by R

    NASA Astrophysics Data System (ADS)

    Sahin, S.; Yıldırım, C.; Sarıkaya, M. A.; Tuysuz, O.; Genç, S. C.; Aksoy, M. E.; Doksanaltı, M. E.; Benedetti, L.

    2016-12-01

    Cosmogenic surface exposure dating is based on the production of rare nuclides in exposed rocks, which interact with cosmic rays. Through modelling of measured 36Cl concentrations, we might obtain information of the history of the earthquake activity. Yet, there are several factors which may impact production of rare nuclides such as geometry of fault, topography, geographic location of study area, temporal variations of the Earth's magnetic field, self-cover and denudation rate on the scarp. Our study area, the Knidos Fault Zone, is located on the Datça Peninsula in the Southwestern Anatolia and contains several normal fault scarps formed within the limestone, which are appropriate to apply cosmogenic chlorine-36 dating. Since it has a well-preserved scarp, we have focused on the Mezarlık Segment of the fault zone, which has an average length of 300 m and height 12-15 m. 128 continuous samples from top to bottom of the fault scarp were collected to carry out analysis of cosmic 36Cl isotopes concentrations. Recent research elucidated each step of the application of this method by the Matlab (e.g. Schlagenhauf et al., 2010). It is vitally helpful to generate models activity of normal faults. We, however, wanted to build a user-friendly program through an open source programing language R that might be able to help those without knowledge of complex math, programming, making calculations as easy as possible. We have set out to obtain accurate conclusions to compare and contrast our results with synthetic profiles and previous studies of limestone fault scarps. The preliminary results indicate at least three major or more earthquakes/earthquakes cluster events occurred on the Mezarlık fault within the past 20 kyr; over 10 meters of displacement took place between early Holocene and late Pleistocene. Estimated ages of those three large slip events are 18.7, 15.1 and 10.8 ka respectively. This study was conducted with the Decision of the Council of Ministers with No

  2. Structural Analysis of the Pärvie Fault in Northern Scandinavia

    NASA Astrophysics Data System (ADS)

    Baeckstroem, A.; Rantakokko, N.; Ask, M. V.

    2011-12-01

    The Pärvie fault is the largest known postglacial fault in the world with a length of about 160 km. The structure has a dominating fault scarp as its western perimeter but in several locations it is rather a system of several faults. The current fault scarps, mainly caused by reverse faulting, are on average, 10-15 m in height and are thought to have been formed during one momentous event near the end of the latest glaciation (the Weichselian, 9,500-115,000 BP ) (Lagerbäck & Sundh, 2008). This information has been learnt from studying deformation features in sediments from the latest glaciation. However, the fault is believed to have been formed as early as the Precambrian, and it has been reactivated repeatedly throughout its history. The earlier history of this fault zone is still largely unknown. Here we present a pre-study to the scientific drilling project "Drilling Active Faults in Northern Europe", that was submitted to the International Continental Scientific Drilling Program (ICDP) in 2009 (Kukkonen et al. 2010) with an ICDP-sponsored workshop in 2010 (Kukkonen et al. 2011). During this workshop a major issue to be addressed before the start of drilling was to reveal whether the fault scarps were formed by one big earthquake or by several small ones (Kukkonen et al. 2011). Initial results from a structural analysis by Riad (1990) have produced information of the latest kinematic event where it is suggested that the latest event coincides with the recent stress field, causing a transpressional effect. The geometrical model suggested for an extensive area of several fault scarps along the structure is the compressive tulip structure. In the southern part, where the fault dips steeply E, the structure is parallel to the foliation of the country rock and earlier breccias, thus indicating a dependence of earlier structures. Modelling of the stress field during the latest glaciation show that a reverse background stress field together with excess pore pressure

  3. Large mid-Holocene and late Pleistocene earthquakes on the Oquirrh fault zone, Utah

    USGS Publications Warehouse

    Olig, S.S.; Lund, W.R.; Black, B.D.

    1994-01-01

    The Oquirrh fault zone is a range-front normal fault that bounds the east side of Tooele Valley and it has long been recognized as a potential source for large earthquakes that pose a significant hazard to population centers along the Wasatch Front in central Utah. Scarps of the Oquirrh fault zone offset the Provo shoreline of Lake Bonneville and previous studies of scarp morphology suggested that the most recent surface-faulting earthquake occurred between 9000 and 13,500 years ago. Based on a potential rupture length of 12 to 21 km from previous mapping, moment magnitude (Mw) estimates for this event range from 6.3 to 6.6 In contrast, our results from detailed mapping and trench excavations at two sites indicate that the most-recent event actually occurred between 4300 and 6900 yr B.P. (4800 and 7900 cal B.P.) and net vertical displacements were 2.2 to 2.7 m, much larger than expected considering estimated rupture lengths for this event. Empirical relations between magnitude and displacement yield Mw 7.0 to 7.2. A few, short discontinuous fault scarps as far south as Stockton, Utah have been identified in a recent mapping investigation and our results suggest that they may be part of the Oquirrh fault zone, increasing the total fault length to 32 km. These results emphasize the importance of integrating stratigraphic and geomorphic information in fault investigations for earthquake hazard evaluations. At both the Big Canyon and Pole Canyon sites, trenches exposed faulted Lake Bonneville sediments and thick wedges of fault-scarp derived colluvium associated with the most-recent event. Bulk sediment samples from a faulted debris-flow deposit at the Big Canyon site yield radiocarbon ages of 7650 ?? 90 yr B.P. and 6840 ?? 100 yr B.P. (all lab errors are ??1??). A bulk sediment sample from unfaulted fluvial deposits that bury the fault scarp yield a radiocarbon age estimate of 4340 ?? 60 yr B.P. Stratigraphic evidence for a pre-Bonneville lake cycle penultimate

  4. Late Holocene earthquakes on the Toe Jam Hill fault, Seattle fault zone, Bainbridge Island, Washington

    USGS Publications Warehouse

    Nelson, A.R.; Johnson, S.Y.; Kelsey, H.M.; Wells, R.E.; Sherrod, B.L.; Pezzopane, S.K.; Bradley, L.A.; Koehler, R. D.; Bucknam, R.C.

    2003-01-01

    Five trenches across a Holocene fault scarp yield the first radiocarbon-measured earthquake recurrence intervals for a crustal fault in western Washington. The scarp, the first to be revealed by laser imagery, marks the Toe Jam Hill fault, a north-dipping backthrust to the Seattle fault. Folded and faulted strata, liquefaction features, and forest soil A horizons buried by hanging-wall-collapse colluvium record three, or possibly four, earthquakes between 2500 and 1000 yr ago. The most recent earthquake is probably the 1050-1020 cal. (calibrated) yr B.P. (A.D. 900-930) earthquake that raised marine terraces and triggered a tsunami in Puget Sound. Vertical deformation estimated from stratigraphic and surface offsets at trench sites suggests late Holocene earthquake magnitudes near M7, corresponding to surface ruptures >36 km long. Deformation features recording poorly understood latest Pleistocene earthquakes suggest that they were smaller than late Holocene earthquakes. Postglacial earthquake recurrence intervals based on 97 radiocarbon ages, most on detrital charcoal, range from ???12,000 yr to as little as a century or less; corresponding fault-slip rates are 0.2 mm/yr for the past 16,000 yr and 2 mm/yr for the past 2500 yr. Because the Toe Jam Hill fault is a backthrust to the Seattle fault, it may not have ruptured during every earthquake on the Seattle fault. But the earthquake history of the Toe Jam Hill fault is at least a partial proxy for the history of the rest of the Seattle fault zone.

  5. Faults in parts of north-central and western Houston metropolitan area, Texas

    USGS Publications Warehouse

    Verbeek, Earl R.; Ratzlaff, Karl W.; Clanton, Uel S.

    1979-01-01

    Hundreds of residential, commercial, and industrial structures in the Houston metropolitan area have sustained moderate to severe damage owing to their locations on or near active faults. Paved roads have been offset by faults at hundreds of locations, butted pipelines have been distorted by fault movements, and fault-induced gradient changes in drainage lines have raised concern among flood control engineers. Over 150 faults, many of them moving at rates of 0.5 to 2 cm/yr, have been mapped in the Houston area; the number of faults probably far exceeds this figure.This report includes a map of eight faults, in north-central and western Houston, at a scale useful for land-use planning. Seven of the faults, are known, to be active and have caused considerable damage to structures built on or near them. If the eighth fault is active, it may be of concern to new developments on the west side of Houston. A ninth feature shown on the map is regarded only as a possible fault, as an origin by faulting has not been firmly established.Seismic and drill-hold data for some 40 faults, studied in detail by various investigators have verified connections between scarps at the land surface and growth faults in the shallow subsurface. Some scarps, then, are known to be the surface manifestations of faults that have geologically long histories of movement. The degree to which natural geologic processes contribute to current fault movement, however, is unclear, for some of man’s activities may play a role in faulting as well.Evidence that current rates of fault movement far exceed average prehistoric rates and that most offset of the land surface in the Houston area has occurred only within the last 50 years indirectly suggest that fluid withdrawal may be accelerating or reinitiating movement on pre-existing faults. This conclusion, however, is based only on a coincidence in time between increased fault activity and increased rates of withdrawal of water, oil, and gas from

  6. DTM analysis and displacement estimates of a major mercurian lobate scarp.

    NASA Astrophysics Data System (ADS)

    Ferrari, S.; Massironi, M.; Pozzobon, R.; Castelluccio, A.; Di Achille, G.; Cremonese, G.

    2012-04-01

    During its second and third flybys, the MErcury Surface Space ENvironment GEochemistry and Ranging (MESSENGER) mission imaged a new large and well-preserved basin called Rembrandt Basin (Watters et al., 2009, Science) in Mercury's southern hemisphere. This basin is a 715-km-diameter impact feature which displays a distinct hummocky rim broken up by the presence of several large impact craters. Its interior is partially filled by volcanic materials, that extend up to the southern, eastern and part of the western rims, and is crossed by the 1000-km long homonymous lobate scarp. In attempt to reveal the basin-scarp complex evolution, we used MESSENGER Mercury Dual Imaging System (MDIS) mosaics to map the basin geological domains - inferring where possible their stratigraphic relationships, and fix the tectonic patterns. In contrast to other well-seen basins, Rembrandt displays evidence of global-scale in addition to basin-localized deformation that in some cases may be controlled by rheological layering within the crust. Extensional features are essentially radial and confined to the inner part, displaying one or more uplifts episodes that follow the impact. The widespread wrinkle ridges form a polygonal pattern of radial and concentric features on the whole floor, probably due to one or more near-surface compressional stages. On the other hand, Rembrandt scarp seems to be clearly unrelated to the basin formation stage and rather belonging to a global process like cooling contraction and/or tidal despinning of the planet. The main compressional phase responsible of the overall scarp build-up was followed by minor compressional structures detected within younger craters in turn cutting the main scarp. This suggests a prolonged slowing down phase of a global tectonic process. The whole feature displays an unusual transpressional nature for a common lobate scarp. Then we performed a structural and kinematic analysis subdividing the main feature into three branches: the

  7. Late movement of basin-edge lobate scarps on Mercury

    NASA Astrophysics Data System (ADS)

    Fegan, E. R.; Rothery, D. A.; Marchi, S.; Massironi, M.; Conway, S. J.; Anand, M.

    2017-05-01

    Basin-edge lobate scarps are a sub-type of tectonic shortening structure on the surface of Mercury that have formed at the edge of volcanic units that fill or partly fill impact basins. We have performed a global survey of these features and find that they are widespread in basins across the planet. We obtained model ages from crater size-frequency distribution analysis for a subset of our surveyed basins, for both the smooth plains infill and for the last resolvable tectonic activity on the associated basin-edge scarps. Our results indicate that some of these lobate scarps were still accumulating strain in the late Mansurian (approximately 1 Ga). From a photogeological assessment, we find that the orientations of these basin-edge lobate scarps are similar to those reported for the global population of lobate scarps in earlier studies, appearing to align ∼north-south at low latitudes and ∼east-west at higher latitudes. However, reassessing these landforms' orientation with artificially illuminated topographic data does not allow us to rule out the effect of illumination bias. We propose that these landforms, the result of crustal shortening in response to global contraction, formed along the interface between the basin floor and the smooth plains unit, which acted as a mechanical discontinuity along which shortening strains were concentrated.

  8. Fault propagation folds induced by gravitational failure and slumping of the Central Costa Rica volcanic range: Implications for large terrestrial and Martian volcanic edifices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borgia, A.; Burr, J.; Montero, W.

    1990-08-30

    Long sublinear ridges and related scarps located at the base of large volcanic structures are frequently interpreted as normal faults associated with extensional regional stress. In contrast, the ridges bordering the Central Costa Rica volcanic range (CCRVR) are the topographic expression of hanging wall asymmetric angular anticlines overlying low-angle thrust faults at the base of the range. These faults formed by gravitational failure and slumping of the flanks of the range due to the weight of the volcanic edifices and were perhaps triggered by the intrusion of magma over the past 20,000 years. These anticlines are hypothesized to occur alongmore » the base of the volcano, where the thrust faults ramp up toward the sea bottom. Ridges and scarps between 2,000 and 5,000 m below sea level are interpreted as the topographic expression of these folds. The authors further suggest that the scarps of the CCRVR and valid scaled terrestrial analogs of the perimeter scarp of the Martian volcano Olympus Mons. They suggest that the crust below Olympus Mons has failed under the load of the volcano, triggering the radial slumping of the flanks of the volcano on basal thrusts. The thrusting would have, in turn, formed the anticlinal ridges and scarps that surround the edifice. The thrust faults may extend all the way to the base of the Martian crust (about 40 km), and they may have been active until almost the end of the volcanic activity. They suggest that gravitational failure and slumping of the flanks of volcanoes is a process common to most large volcanic edifices. In the CCRVR this slumping of the flanks is a slow intermittent process, but it could evolve to rapid massive avalanching leading to catastrophic eruptions. Thus monitoring of uplift and displacement of the folds related to the slump tectonics could become an additional effective method for mitigating volcanic hazards.« less

  9. Surface faults on Montague Island associated with the 1964 Alaska earthquake: Chapter G in The Alaska earthquake, March 27, 1964: regional effects

    USGS Publications Warehouse

    Plafter, George

    1967-01-01

    -half foot near the southern end of the scarp. Warping and extension cracking occurred in bedrock near the midpoint on the upthrown block within about 1,000 feet of the fault scarp. The reverse faults on Montague Island and their postulated submarine extensions lie within a tectonically important narrow zone of crustal attenuation and maximum uplift associated with the earthquake. However, there are no significant lithologic differences in the rock sequences across these faults to suggest that they form major tectonic boundaries. Their spatial distribution relative to the regional uplift associated with the earthquake, the earthquake focal region, and the epicenter of the main shock suggest that they are probably subsidiary features rather than the causative faults along which the earthquake originated. Approximately 70 percent of the new breakage along the Patton Bay and the Hanning Bay faults on Montague Island was along obvious preexisting active fault traces. The estimated ages of undisturbed trees on and near the fault trace indicate that no major disc placement had occurred on these faults for at least 150 to 300 years before the 1964 earthquake.

  10. Shallow subsurface imaging of the Piano di Pezza active normal fault (central Italy) by high-resolution refraction and electrical resistivity tomography coupled with time-domain electromagnetic data

    NASA Astrophysics Data System (ADS)

    Villani, Fabio; Tulliani, Valerio; Sapia, Vincenzo; Fierro, Elisa; Civico, Riccardo; Pantosti, Daniela

    2015-12-01

    The Piano di Pezza fault is the central section of the 35 km long L'Aquila-Celano active normal fault-system in the central Apennines of Italy. Although palaeoseismic data document high Holocene vertical slip rates (˜1 mm yr-1) and a remarkable seismogenic potential of this fault, its subsurface setting and Pleistocene cumulative displacement are still poorly known. We investigated for the first time the shallow subsurface of a key section of the main Piano di Pezza fault splay by means of high-resolution seismic and electrical resistivity tomography coupled with time-domain electromagnetic soundings (TDEM). Our surveys cross a ˜5-m-high fault scarp that was generated by repeated surface-rupturing earthquakes displacing Holocene alluvial fans. We provide 2-D Vp and resistivity images, which show significant details of the fault structure and the geometry of the shallow basin infill material down to 50 m depth. Our data indicate that the upper fault termination has a sub-vertical attitude, in agreement with palaeoseismological trench evidence, whereas it dips ˜50° to the southwest in the deeper part. We recognize some low-velocity/low-resistivity regions in the fault hangingwall that we relate to packages of colluvial wedges derived from scarp degradation, which may represent the record of some Holocene palaeo-earthquakes. We estimate a ˜13-15 m throw of this fault splay since the end of the Last Glacial Maximum (˜18 ka), leading to a 0.7-0.8 mm yr-1 throw rate that is quite in accordance with previous palaeoseismic estimation of Holocene vertical slip rates. The 1-D resistivity models from TDEM soundings collected along the trace of the electrical profile significantly match with 2-D resistivity images. Moreover, they indicate that in the fault hangingwall, ˜200 m away from the surface fault trace, the pre-Quaternary carbonate basement is at ˜90-100 m depth. We therefore provide a minimal ˜150-160 m estimate of the cumulative throw of the Piano di Pezza

  11. Paleoseismic evidence for late Holocene tectonic deformation along the Saddle mountain fault zone, Southeastern Olympic Peninsula, Washington

    USGS Publications Warehouse

    Barnett, Elizabeth; Sherrod, Brian; Hughes, Jonathan F.; Kelsey, Harvey M.; Czajkowski, Jessica L.; Walsh, Timothy J.; Contreras, Trevor A.; Schermer, Elizabeth R.; Carson, Robert J.

    2015-01-01

    Trench and wetland coring studies show that northeast‐striking strands of the Saddle Mountain fault zone ruptured the ground about 1000 years ago, generating prominent scarps. Three conspicuous subparallel fault scarps can be traced for 15 km on Light Detection and Ranging (LiDAR) imagery, traversing the foothills of the southeast Olympic Mountains: the Saddle Mountain east fault, the Saddle Mountain west fault, and the newly identified Sund Creek fault. Uplift of the Saddle Mountain east fault scarp impounded stream flow, forming Price Lake and submerging an existing forest, thereby leaving drowned stumps still rooted in place. Stratigraphy mapped in two trenches, one across the Saddle Mountain east fault and the other across the Sund Creek fault, records one and two earthquakes, respectively, as faulting juxtaposed Miocene‐age bedrock against glacial and postglacial deposits. Although the stratigraphy demonstrates that reverse motion generated the scarps, slip indicators measured on fault surfaces suggest a component of left‐lateral slip. From trench exposures, we estimate the postglacial slip rate to be 0.2  mm/yr and between 0.7 and 3.2  mm/yr during the past 3000 years. Integrating radiocarbon data from this study with earlier Saddle Mountain fault studies into an OxCal Bayesian statistical chronology model constrains the most recent paleoearthquake age of rupture across all three Saddle Mountain faults to 1170–970 calibrated years (cal B.P.), which overlaps with the nearby Mw 7.5 1050–1020 cal B.P. Seattle fault earthquake. An earlier earthquake recorded in the Sund Creek trench exposure, dates to around 3500 cal B.P. The geometry of the Saddle Mountain faults and their near‐synchronous rupture to nearby faults 1000 years ago suggest that the Saddle Mountain fault zone forms a western boundary fault along which the fore‐arc blocks migrate northward in response to margin‐parallel shortening across the Puget Lowland.

  12. Armenia-To Trans-Boundary Fault: AN Example of International Cooperation in the Caucasus

    NASA Astrophysics Data System (ADS)

    Karakhanyan, A.; Avagyan, A.; Avanesyan, M.; Elashvili, M.; Godoladze, T.; Javakishvili, Z.; Korzhenkov, A.; Philip, S.; Vergino, E. S.

    2012-12-01

    Studies of a trans-boundary active fault that cuts through the border of Armenia to Georgia in the area of the Javakheti volcanic highland have been conducted since 2007. The studies have been implemented based on the ISTC 1418 and NATO SfP 983284 Projects. The Javakheti Fault is oriented to the north-northwest and consists of individual segments displaying clear left-stepping trend. Fault mechanism is represented by right-lateral strike-slip with normal-fault component. The fault formed distinct scarps, deforming young volcanic and glacial sediments. The maximum-size displacements are recorded in the central part of the fault and range up to 150-200 m by normal fault and 700-900 m by right-lateral strike-slip fault. On both flanks, fault scarps have younger appearance, and displacement size there decreases to tens of meters. Fault length is 80 km, suggesting that maximum fault magnitude is estimated at 7.3 according to the Wells and Coppersmith (1994) relation. Many minor earthquakes and a few stronger events (1088, Mw=6.4, 1899 Mw=6.4, 1912, Mw=6.4 and 1925, Mw=5.6) are associated with the fault. In 2011/2012, we conducted paleoseismological and archeoseismological studies of the fault. By two paleoseismological trenches were excavated in the central part of the fault, and on its northern and southern flanks. The trenches enabled recording at least three strong ancient earthquakes. Presently, results of radiocarbon age estimations of those events are expected. The Javakheti Fault may pose considerable seismic hazard for trans-boundary areas of Armenia and Georgia as its northern flank is located at the distance of 15 km from the Baku-Ceyhan pipeline.

  13. Geoloogic slip on offshore San Clemente fault, Southern California, understated in GPS data

    NASA Astrophysics Data System (ADS)

    Legg, M. R.

    2005-12-01

    The San Clemente fault offshore southern California exhibits prominent geomorphic evidence of major late Quaternary right-slip. Like the San Andreas fault, where modern Pacific-North America transform motion is focused, the San Clemente fault stretches more than 700 km along the continental margin with a well-defined principal displacement zone (PDZ). Lateral offset is generally concentrated in a zone less than about 1 km wide, and linear seafloor fault scarps cutting across active submarine fans and basin-filling turbidites demonstrate Holocene activity. Dextral offset of middle Miocene circular crater structures suggest as much as 60 km of Neogene and younger displacement. Offset submarine fan depositional features suggest a rate of about 4-7 mm/yr of late Quaternary slip. Nearly 75 years of seismograph recording in southern California registered at least three moderate (M~6) earthquakes, activity which exceeds that of the Elsinore fault with a similar measured slip rate. Geodetic data based only on a few decades of GPS observations have been interpreted to show less than 1 mm/yr right-slip on the San Clemente fault, whereas larger rates, of about 5-10 mm/yr are described in the Inner Borderland between Catalina Island and the coast. Extrapolations of data from GPS stations on the Pacific Plate offshore Baja California also suggest larger rates west of San Clemente Island. Because there are few offshore locations (islands) for GPS observations, and San Clemente Island is likely within the broader zone of deformation of its namesake fault, these data miss the full slip rate. Seafloor observations from submersible discovered youthful fault scarps in turbidite muds that are inferred to represent large prehistoric earthquakes, (M~7). The potential for large offshore earthquakes, with tsunami generation that would affect the heavily populated adjacent coastal areas underscores the importance of resolving the slip rate and quantifying the hazard potential.

  14. Shallow Lunar Seismic Activity and the Current Stress State of the Moon

    NASA Technical Reports Server (NTRS)

    Watters, Thomas R.; Weber, Renee C.; Collins, Geoffrey C.; Johnson, Catherine L.

    2017-01-01

    A vast, global network of more than 3200 lobate thrust fault scarps has been revealed in high resolution Lunar Reconnaissance Orbiter Camera (LROC) images. The fault scarps are very young, less than 50 Ma, based on their small scale and crisp appearance, crosscutting relations with small-diameter impact craters, and rates of infilling of associated small, shallow graben and may be actively forming today. The population of young thrust fault scarps provides a window into the recent stress state of the Moon and offers insight into the origin of global lunar stresses. The distribution of orientations of the fault scarps is non-random, inconsistent with isotropic stresses from late-stage global contraction as the sole source of stress. Modeling shows that tidal stresses contribute significantly to the current stress state of the lunar crust. Tidal stresses (orbital recession and diurnal tides) superimposed on stresses from global contraction result in non-isotropic compressional stress and may produce thrust faults consistent with lobate scarp orientations. At any particular point on the lunar surface, peak compressive stress will be reached at a certain time in the diurnal cycle. Coseismic slip events on currently active thrust faults are expected to be triggered when peak stresses are reached. Analysis of the timing of the 28 the shallow moonquakes recorded by the Apollo seismic network shows that 19 indeed occur when the Moon is closer to apogee, while only 9 shallow events occur when the Moon is closer to perigee. Here we report efforts to refine the model for the current stress state of the Moon by investigating the contribution of polar wander. Progress on relocating the epicentral locations of the shallow moonquakes using an algorithm designed for sparse networks is also reported.

  15. Geomorphic features of surface ruptures associated with the 2016 Kumamoto earthquake in and around the downtown of Kumamoto City, and implications on triggered slip along active faults

    NASA Astrophysics Data System (ADS)

    Goto, Hideaki; Tsutsumi, Hiroyuki; Toda, Shinji; Kumahara, Yasuhiro

    2017-02-01

    The 30-km-long surface ruptures associated with the M w 7.0 ( M j 7.3) earthquake at 01:25 JST on April 16 in Kumamoto Prefecture appeared along the previously mapped 100-km-long active fault called the Futagawa-Hinagu fault zone (FHFZ). The surface ruptures appeared to have extended further west out of the main FHFZ into the Kumamoto Plain. Although InSAR analysis by Geospatial Information Authority of Japan (GSI) indicated coseismic surface deformation in and around the downtown of Kumamoto City, the surface ruptures have not been clearly mapped in the central part of the Kumamoto Plain, and whether there are other active faults other than the Futagawa fault in the Kumamoto Plain remained unclear. We produced topographical stereo images (anaglyph) from 5-m-mesh digital elevation model of GSI, which was generated from light detection and ranging data. We interpreted them and identified that several SW-sloping river terraces formed after the deposition of the pyroclastic flow deposits related to the latest large eruption of the Aso caldera (86.8-87.3 ka) are cut and deformed by several NW-trending flexure scarps down to the southwest. These 5.4-km-long scarps that cut across downtown Kumamoto were identified for the first time, and we name them as the Suizenji fault zone. Surface deformation such as continuous cracks, tilts, and monoclinal folding associated with the main shock of the 2016 Kumamoto earthquake was observed in the field along the fault zone. The amount of vertical deformation ( 0.1 m) along this fault associated with the 2016 Kumamoto earthquake was quite small compared to the empirically calculated coseismic slip (0.5 m) based on the fault length. We thus suggest that the slip on this fault zone was triggered by the Kumamoto earthquake, but the fault zone has potential to generate an earthquake with larger slip that poses a high seismic risk in downtown Kumamoto area.[Figure not available: see fulltext.

  16. High-Resolution Seismic Reflection Profiling Across the Black Hills Fault, Clark County, Nevada: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Zaragoza, S. A.; Snelson, C. M.; Jernsletten, J. A.; Saldana, S. C.; Hirsch, A.; McEwan, D.

    2005-12-01

    The Black Hills fault (BHF) is located in the central Basin and Range Province of western North America, a region that has undergone significant Cenozoic extension. The BHF is an east-dipping normal fault that forms the northwestern structural boundary of the Eldorado basin and lies ~20 km southeast of Las Vegas, Nevada. A recent trench study indicated that the fault offsets Holocene strata, and is capable of producing Mw 6.4-6.8 earthquakes. These estimates indicate a subsurface rupture length at least 10 km greater than the length of the scarp. This poses a significant hazard to structures such as the nearby Hoover Dam Bypass Bridge, which is being built to withstand a Mw 6.2-7.0 earthquake on local faults. If the BHF does continue in the subsurface, this structure, as well as nearby communities (Las Vegas, Boulder City, and Henderson), may not be as safe as previously expected. Previous attempts to image the fault with shallow seismics (hammer source) were inconclusive. However, gravity studies imply that the fault continues south of the scarp. Therefore, a new experiment utilizing high-resolution seismic reflection was performed to image subsurface geologic structures south of the scarp. At each shot point, a stack of four 30-160 Hz vibroseis sweeps of 15 s duration was recorded on a 60-channel system with 40 Hz geophones. This produced two 300 m reflection profiles, with a maximum depth of 500-600 m. A preliminary look at these data indicates the existence of two faults, potentially confirming that the BHF continues in the subsurface south of the scarp.

  17. Investigating the deformation of upper crustal faults at the N-Chilean convergent plate boundary at different scales using high-resolution topography datasets and creepmeter measurements

    NASA Astrophysics Data System (ADS)

    Ewiak, O.; Victor, P.; Ziegenhagen, T.; Oncken, O.

    2012-04-01

    The Chilean convergent plate boundary is one of the tectonically most active regions on earth and prone to large megathrust earthquakes as e. g. the 2010 Mw 8.8 Maule earthquake which ruptured a mature seismic gap in south-central Chile. In northern Chile historical data suggests the existence of a seismic gap between Arica and Mejillones Peninsula (MP), which has not ruptured since 1877. Further south, the 1995 Mw 8.0 Antofagasta earthquake ruptured the subduction interface between MP and Taltal. In this study we investigate the deformation at four active upper plate faults (dip-slip and strike-slip) located above the coupling zone of the subduction interface. The target faults (Mejillones Fault - MF, Salar del Carmen Fault - SCF, Cerro Fortuna Fault - CFF, Chomache Fault - CF) are situated in forearc segments, which are in different stages of the megathrust seismic cycle. The main question of this study is how strain is accumulated in the overriding plate, what is the response of the target faults to the megathrust seismic cycle and what are the mechanisms / processes involved. The hyper arid conditions of the Atacama desert and the extremely low erosion rates enable us to investigate geomorphic markers, e .g. fault scarps and knickpoints, which serve as a record for upper crustal deformation and fault activity about ten thousands years into the past. Fault scarp data has been acquired with Differential-GPS by measuring high-resolution topographic profiles perpendicular to the fault scarps and along incised gullies. The topographic data show clear variations between the target faults which possibly result from their position within the forearc. The surveyed faults, e. g. the SCF, exhibit clear along strike variations in the morphology of surface ruptures attributed to seismic events and can be subdivided into individual segments. The data allows us to distinguish single, composite and multiple fault scarps and thus to detect differences in fault growth initiated

  18. Active Faults in Eastern Hispaniola: The Hispaniola-Puerto Rico Microplate Boundary?

    NASA Astrophysics Data System (ADS)

    McCann, W. R.

    2007-12-01

    An extensive tract of limestone of mostly Pleistocene-Recent age covers the Eastern part of the Dominican Republic. Numerous distinctive marine terraces outcrop along the southern and eastern coast, the lowest of which has been dated at about 125Ka. In the eastern area, the highest terrace is about 50m asl, is very variable in elevation, and correlates with a terrace of about 50 m asl along the southern coast. This feature might correlate with a feature of similar height on the Island of Marie Galante in the Lesser Antilles, dated at 250Ka. Manipulation of 3 arc-sec grid of SRTM land data and a 12 arc-sec grid of marine data reveals the location of the upper marine terrace as well as numerous scarps with 10's of meters of relief tending WNW across the region. The 2nd derivative of the relief grid is used to objectively identify the location of the upper terrace, which is compared to the elevation grid to develop an along escarpment profile of terrace elevation. If undisturbed, this feature should be contour parallel, that is all at the same elevation. Systematic elevation changes along profile suggest titling and numerous abrupt vertical (~30-50m) and at least one horizontal offset (375m) of this feature. Terrace displacing scarps can be traced many kilometers from offshore, across the coast paralleling marine terraces, and continuing inland as linear features that I interpret as active normal faults cutting the limestone platform. Five systems of normal faults have been identified in this manner, the longest of which may be capable of generating earthquakes of about magnitude 7-7 1/4. If the age of the upper terrace is roughly about 250Ka, then the observed horizontal displacements of about 375 meters suggest a rate of fault motion on the order of mm"s/yr for each of the5 faults. This total rate of deformation of several mm/yr is similar to the rate of deformation calculated from GPS studies for the rate of motion between the Hispaniola and Puerto Rico microplates

  19. Late Quaternary faulting in the Vallo di Diano basin (southern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Villani, F.; Pierdominici, S.; Cinti, F. R.

    2009-12-01

    The Vallo di Diano is the largest Quaternary extensional basin in the southern Apennines thrust-belt axis (Italy). This portion of the chain is highly seismic and is currently subject to NE-extension, which triggers large (M> 6) normal-faulting earthquakes along NW-trending faults. The eastern edge of the Vallo di Diano basin is bounded by an extensional fault system featuring three main NW-trending, SW-dipping, right-stepping, ~15-17 km long segments (from north to south: Polla, Atena Lucana-Sala Consilina and Padula faults). Holocene activity has been documented so far only for the Polla segment. We have therefore focused our geomorphological and paleoseismological study on the southern portion of the system, particularly along the ~ 4 km long Atena Lucana-Sala Consilina and Padula faults overlap zone. The latter is characterized by a complex system of coalescent alluvial fans, Middle Pleistocene to Holocene in age. Here we recognized a > 4 km long and 0.5-1.4 km wide set of scarps (ranging in height between 1 m and 2.5 m) affecting Late Pleistocene - Holocene alluvial fans. In the same area, two Late Pleistocene volcanoclastic layers at the top of an alluvial fan exposed in a quarry are affected by ~ 1 m normal displacements. Moreover, a trench excavated across a 2 m high scarp affecting a Holocene fan revealed warping of Late Holocene debris flow deposits, with a total vertical throw of about 0.3 m. We therefore infer the overlap zone of the Atena Lucana-Sala Consilina and Padula faults is a breached relay ramp, generated by hard-linkage of the two fault segments since Late Pleistocene. This ~ 32 km long fault system is active and is capable of generating Mw ≥6.5 earthquakes.

  20. Estimating Earthquake Magnitude from the Kentucky Bend Scarp in the New Madrid Seismic Zone Using Field Geomorphic Mapping and High-Resolution LiDAR Topography

    NASA Astrophysics Data System (ADS)

    Kelson, K. I.; Kirkendall, W. G.

    2014-12-01

    Recent suggestions that the 1811-1812 earthquakes in the New Madrid Seismic Zone (NMSZ) ranged from M6.8-7.0 versus M8.0 have implications for seismic hazard estimation in the central US. We more accurately identify the location of the NW-striking, NE-facing Kentucky Bend scarp along the northern Reelfoot fault, which is spatially associated with the Lake County uplift, contemporary seismicity, and changes in the Mississippi River from the February 1812 earthquake. We use 1m-resolution LiDAR hillshades and slope surfaces, aerial photography, soil surveys, and field geomorphic mapping to estimate the location, pattern, and amount of late Holocene coseismic surface deformation. We define eight late Holocene to historic fluvial deposits, and delineate younger alluvia that are progressively inset into older deposits on the upthrown, western side of the fault. Some younger, clayey deposits indicate past ponding against the scarp, perhaps following surface deformational events. The Reelfoot fault is represented by sinuous breaks-in-slope cutting across these fluvial deposits, locally coinciding with shallow faults identified via seismic reflection data (Woolery et al., 1999). The deformation pattern is consistent with NE-directed reverse faulting along single or multiple SW-dipping fault planes, and the complex pattern of fluvial deposition appears partially controlled by intermittent uplift. Six localities contain scarps across correlative deposits and allow evaluation of cumulative surface deformation from LiDAR-derived topographic profiles. Displacements range from 3.4±0.2 m, to 2.2±0.2 m, 1.4±0.3 m, and 0.6±0.1 m across four progressively younger surfaces. The spatial distribution of the profiles argues against the differences being a result of along-strike uplift variability. We attribute the lesser displacements of progressively younger deposits to recurrent surface deformation, but do not yet interpret these initial data with respect to possible earthquake

  1. North Polar Scarp

    NASA Image and Video Library

    2016-05-09

    This image from NASA 2001 Mars Odyssey spacecraft shows the scarp face of the north polar cap near Abalos Mensa. The top part of the image is the polar cap. This image was collected during northern hemisphere summer.

  2. Thrust faults and related structures in the crater floor of Mount St. Helens volcano, Washington

    USGS Publications Warehouse

    Chadwick, W.W.; Swanson, D.A.

    1989-01-01

    A lava dome was built in the crater of Mount St. Helens by intermittent intrusion and extrusion of dacite lava between 1980 and 1986. Spectacular ground deformation was associated with the dome-building events and included the development of a system of radial cracks and tangential thrust faults in the surrounding crater floor. These cracks and thrusts, best developed and studied in 1981-1982, formed first and, as some evolved into strike-slip tear faults, influenced the subsequent geometry of thrusting. Once faulting began, deformation was localized near the thrust scarps and their bounding tear faults. The magnitude of displacements systematically increased before extrusions, whereas the azimuth and inclination of displacements remained relatively constant. The thrust-fault scarps were bulbous in profile, lobate in plan, and steepened during continued fault movement. The hanging walls of each thrust were increasingly disrupted as cumulative fault slip increased. -from Authors

  3. Faults on Skylab imagery of the Salton Trough area, Southern California

    NASA Technical Reports Server (NTRS)

    Merifield, P. M.; Lamar, D. L. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Large segments of the major high angle faults in the Salton Trough area are readily identifiable in Skylab images. Along active faults, distinctive topographic features such as scarps and offset drainage, and vegetation differences due to ground water blockage in alluvium are visible. Other fault-controlled features along inactive as well as active faults visible in Skylab photography include straight mountain fronts, linear valleys, and lithologic differences producing contrasting tone, color or texture. A northwestern extension of a fault in the San Andreas set, is postulated by the regional alignment of possible fault-controlled features. The suspected fault is covered by Holocene deposits, principally windblown sand. A northwest trending tonal change in cultivated fields across Mexicali Valley is visible on Skylab photos. Surface evidence for faulting was not observed; however, the linear may be caused by differences in soil conditions along an extension of a segment of the San Jacinto fault zone. No evidence of faulting could be found along linears which appear as possible extensions of the Substation and Victory Pass faults, demonstrating that the interpretation of linears as faults in small scale photography must be corroborated by field investigations.

  4. Shallow seismic imaging of folds above the Puente Hills blind-thrust fault, Los Angeles, California

    USGS Publications Warehouse

    Pratt, T.L.; Shaw, J.H.; Dolan, J.F.; Christofferson, S.A.; Williams, R.A.; Odum, J.K.; Plesch, A.

    2002-01-01

    High-resolution seismic reflection profiles image discrete folds in the shallow subsurface (<600 m) above two segments of the Puente Hills blind-thrust fault system, Los Angeles basin, California. The profiles demonstrate late Quaternary activity at the fault tip, precisely locate the axial surfaces of folds within the upper 100 m, and constrain the geometry and kinematics of recent folding. The Santa Fe Springs segment of the Puente Hills fault zone shows an upward-narrowing kink band with an active anticlinal axial surface, consistent with fault-bend folding above an active thrust ramp. The Coyote Hills segment shows an active synclinal axial surface that coincides with the base of a 9-m-high scarp, consistent with tip-line folding or the presence of a backthrust. The seismic profiles pinpoint targets for future geologic work to constrain slip rates and ages of past events on this important fault system.

  5. Discovery Rupes Scarp

    NASA Image and Video Library

    1999-10-08

    NASA Mariner 10 spacecraft was coaxed into a third and final encounter with Mercury in March of 1975. This is one of the highest resolution images of Mercury acquired by the spacecraft. The prominent scarp snaking up the image was named Discovery Rupes.

  6. Measuring Relative Motions Across a Fault Using Seafloor Transponders Installed at Close Range to each Other Based on Differential GPS/Acoustic Technique

    NASA Astrophysics Data System (ADS)

    Kido, M.; Ashi, J.; Tsuji, T.; Tomita, F.

    2016-12-01

    Seafloor geodesy based on acoustic ranging technique is getting popular means to reveal crustal deformation beneath the ocean. GPS/acoustic technique can be applied to monitoring regional deformation or absolute position, while direct-path acoustic ranging can be applied to detecting localized strain or relative motion in a short distance ( 1-10 km). However the latter observation sometimes fails to keep the clearance of an acoustic path between the seafloor transponders because of topographic obstacle or of downward bending nature of the path due to vertical gradient of sound speed in deep-ocean. Especially at steep fault scarp, it is almost impossible to keep direct path between the top and bottom of the fault scarp. Even in such a situation, acoustic path to the sea surface might be always clear. Then we propose a new approach to monitor the relative motion of across a fault scarp using "differential" GPS/acoustic measurement, which account only for traveltime differences among the transponders. The advantages of this method are that: (1) uncertainty in sound speed in shallow water is almost canceled; (2) possible GPS error is also canceled; (3) picking error in traveltime detection is almost canceled; (4) only a pair of transponders can fully describe relative 3-dimensional motion. On the other hand the disadvantages are that: (5) data is not continuous but only campaign; (6) most advantages are only effective only for very short baseline (< 100-300 m). Our target being applied this method is a steep fault scarp near the Japan trench, which is expected as a surface expression of back thrust, in where time scale of fault activity is still controversial especially after the Tohoku earthquake. We have carefully installed three transponders across this scarp using a NSS system, which can remotely navigate instrument near the seafloor from a mother vessel based on video camera image. Baseline lengths among the transponders are 200-300 m at 3500 m depth. Initial

  7. Crestal graben associated with lobate scarps on Mercury

    NASA Astrophysics Data System (ADS)

    Vaughan, Rubio; Foing, Bernard; van Westrenen, Wim

    2014-05-01

    Mercury is host to various tectonic landforms which can be broadly divided into localized, basin-related features on the one hand, and regional or global features on the other. The globally distributed tectonic landforms are dominantly contractional in nature and consist of lobate scarps, wrinkle ridges and high-relief ridges [1]. Until now, extensional features have only been found within the Caloris basin, several smaller impact basins, such as Raditladi, Rachmaninoff & Rembrandt [2], and within volcanic deposits in the northern smooth plains [3,4]. New imagery obtained from the MESSENGER spacecraft, shows localized, along-strike troughs associated with several lobate scarps on Mercury. These troughs occur at or near the crest of the lobate scarps and are interpreted to be graben. While previously discovered graben on Mercury are thought to be related to thermal contraction of localized volcanic fill, these crestal graben are the first extensional tectonic features which have been discovered outside of such settings and have not been reported in literature previously. Of the 49 lobate scarps investigated in this study, 7 exhibit graben along their crest. The graben are usually only present along small sections of the scarp, but in some cases extend up to 180 km along the scarp crest. The persistent along-strike orientation of the graben with respect to the scarps, combined with several observed cross-cutting relations, suggests that the graben developed coeval with the formation of the lobate scarps. Numerical mechanical modeling using the Discrete Element Method (DEM) is currently being employed in order to better understand the mechanisms which control the formation of crestal graben associated with lobate scarps on Mercury. References: [1] Watters, Thomas R., and F. Nimmo. "The tectonics of Mercury." Planetary Tectonics 11 (2010): 15. [2] Blair, David M., et al. "The origin of graben and ridges in Rachmaninoff, Raditladi, and Mozart basins, Mercury." Journal

  8. Fault slip rates in the modern new madrid seismic zone

    PubMed

    Mueller; Champion; Guccione; Kelson

    1999-11-05

    Structural and geomorphic analysis of late Holocene sediments in the Lake County region of the New Madrid seismic zone indicates that they are deformed by fault-related folding above the blind Reelfoot thrust fault. The widths of narrow kink bands exposed in trenches were used to model the Reelfoot scarp as a forelimb on a fault-bend fold; this, coupled with the age of folded sediment, yields a slip rate on the blind thrust of 6.1 +/- 0.7 mm/year for the past 2300 +/- 100 years. An alternative method used structural relief across the scarp and the estimated dip of the underlying blind thrust to calculate a slip rate of 4.8 +/- 0.2 mm/year. Geometric relations suggest that the right lateral slip rate on the New Madrid seismic zone is 1.8 to 2.0 mm/year.

  9. Evidence of Multiple Ground-rupturing Earthquakes in the Past 4000 Years along the Pasuruan Fault, East Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Marliyani, G. I.; Arrowsmith, R.; Helmi, H.

    2015-12-01

    Instrumental and historical records of earthquakes, supplemented by paleoeseismic constraints can help reveal the earthquake potential of an area. The Pasuruan fault is a high angle normal fault with prominent youthful scarps cutting young deltaic sediments in the north coast of East Java, Indonesia and may pose significant hazard to the densely populated region. This fault has not been considered a significant structure, and mapped as a lineament with no sense of motion. Information regarding past earthquakes along this fault is not available. The fault is well defined both in the imagery and in the field as a ~13km long, 2-50m-high scarp. Open and filled fractures and natural exposures of the south-dipping fault plane indicate normal sense of motion. We excavated two fault-perpendicular trenches across a relay ramp identified during our surface mapping. Evidence for past earthquakes (documented in both trenches) includes upward fault termination with associated fissure fills, colluvial wedges and scarp-derived debris, folding, and angular unconformities. The ages of the events are constrained by 23 radiocarbon dates on detrital charcoal. We calibrated the dates using IntCal13 and used Oxcal to build the age model of the events. Our preliminary age model indicates that since 2006±134 B.C., there has been at least five ground rupturing earthquakes along the fault. The oldest event identified in the trench however, is not well-dated. Our modeled 95th percentile ranges of the next four earlier earthquakes (and their mean) are A.D. 1762-1850 (1806), A.D. 1646-1770 (1708), A.D. 1078-1648 (1363), and A.D. 726-1092 (909), yielding a rough recurrence rate of 302±63 yrs. These new data imply that Pasuruan fault is more active than previously thought. Additional well-dated earthquakes are necessary to build a solid earthquake recurrence model. Rupture along the whole section implies a minimum earthquake magnitude of 6.3, considering 13km as the minimum surface rupture

  10. The Relationships of Subparallel Synthetic Faults and Pre-existing Structures in the Central Malawi Rift

    NASA Astrophysics Data System (ADS)

    Johnson, S.; Mendez, K.; Beresh, S. C. M.; Mynatt, W. G.; Elifritz, E. A.; Laó-Dávila, D. A.; Atekwana, E. A.; Abdelsalam, M. G.; Chindandali, P. R. N.; Chisenga, C.; Gondwe, S.; Mkumbura, M.; Kalaguluka, D.; Kalindekafe, L.; Salima, J.

    2017-12-01

    The objective of our research is to explore the evolution of synthetic fault systems in continental rifts. It has been suggested that during the rifting process border faults may become locked and strain is then accommodated within the hanging wall. The Malawi Rift provides an opportunity to study the evolution of these faults within a young (8 Ma), active and magma-poor continental rift. Two faults in central Malawi may show the transference of strain into the hanging wall. These faults are the older Chirobwe-Ntcheu with a length of 115 km and a scarp height of 300-1000 m and the younger Bilila-Mtakataka with a length of 130 km and a scarp height of 4-320 m. We used high-resolution aeromagnetic data and 30m resolution Shuttle Radar Topography Mission (SRTM) digital elevation models (DEM) to provide a 3D spatial characterization of the fault system. Additionally 10cm resolution DEMs were created using unmanned aerial system (UAS) derived aerial photography and Structure from Motion to document the regional Precambrian foliation and joint patterns. Moreover, displacement profiles where extracted from the SRTM-DEM data to compare the segmentation and linkage of the outer and inner faults. Our preliminary results show that the strike of each fault is approximately NW-SE which follows the strike of the Precambrian fabric. The magnetic fabric has a strike of NW-SE in the south changing to NE-SW in the north suggesting that the faults are controlled in part by an inherited Precambrian fabric. The displacement profile of the inner Bilila-Mtakataka fault is asymmetric and displays five fault segments supporting the interpretation that this is a relatively young fault. The expected results of this study are information about segmentation and displacement of each fault and their relationship to one another. The results from the aeromagnetic data utilizing Source Parameter Imaging to produce an approximate depth to basement which will support the displacement profiles derived

  11. Scarp degraded by linear diffusion: inverse solution for age.

    USGS Publications Warehouse

    Andrews, D.J.; Hanks, T.C.

    1985-01-01

    Under the assumption that landforms unaffected by drainage channels are degraded according to the linear diffusion equation, a procedure is developed to invert a scarp profile to find its 'diffusion age'. The inverse procedure applied to synthetic data yields the following rules of thumb. Evidence of initial scarp shape has been lost when apparent age reaches twice its initial value. A scarp that appears to have been formed by one event may have been formed by two with an interval between them as large as apparent age. The simplicity of scarp profile measurement and this inversion makes profile analysis attractive. -from Authors

  12. Plio-Pleistocene synsedimentary fault compartments, foundation for the eastern Olduvai Basin paleoenvironmental mosaic, Tanzania.

    PubMed

    Stollhofen, Harald; Stanistreet, Ian G

    2012-08-01

    Normal faults displacing Upper Bed I and Lower Bed II strata of the Plio-Pleistocene Lake Olduvai were studied on the basis of facies and thickness changes as well as diversion of transport directions across them in order to establish criteria for their synsedimentary activity. Decompacted differential thicknesses across faults were then used to calculate average fault slip rates of 0.05-0.47 mm/yr for the Tuff IE/IF interval (Upper Bed I) and 0.01-0.13 mm/yr for the Tuff IF/IIA section (Lower Bed II). Considering fault recurrence intervals of ~1000 years, fault scarp heights potentially achieved average values of 0.05-0.47 m and a maximum value of 5.4 m during Upper Bed I, which dropped to average values of 0.01-0.13 m and a localized maximum of 0.72 m during Lower Bed II deposition. Synsedimentary faults were of importance to the form and paleoecology of landscapes utilized by early hominins, most traceably and provably Homo habilis as illustrated by the recurrent density and compositional pattern of Oldowan stone artifact assemblage variation across them. Two potential relationship factors are: (1) fault scarp topographies controlled sediment distribution, surface, and subsurface hydrology, and thus vegetation, so that a resulting mosaic of microenvironments and paleoecologies provided a variety of opportunities for omnivorous hominins; and (2) they ensured that the most voluminous and violent pyroclastic flows from the Mt. Olmoti volcano were dammed and conduited away from the Olduvai Basin depocenter, when otherwise a single or set of ignimbrite flows might have filled and devastated the topography that contained the central lake body. In addition, hydraulically active faults may have conduited groundwater, supporting freshwater springs and wetlands and favoring growth of trees. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. 3-D kinematics analysis of surface ruptures on an active creeping fault at Chihshang, Eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, J.; Angelier, J.; Chen, H.; Chu, H.; Hu, J.

    2003-12-01

    The Chihshang fault is one of the most active segments of the Longitudinal Valley Fault, the plate suture between the converging Philippine and Eurasian plates. A destructive earthquake of M 7.1 with substantial surface scarps resulted from rupturing of the Chihshang fault in 1951. From that on, no big earthquake greater than M 5.5 occurred in this area. Instead, the Chihshang fault reveals a creeping behavior at a rapid rate of about 20 mm/yr at least during the past 20 years. The surface breaks of the creeping Chihshang fault can be observed at the several places. A typical feature is reverse-fault-like fractures on the retaining wall. We deployed small geodetic networks across the fault zone at five sites. Each network comprises of 5 to 15 benchmarks. Trilateration measurements including angles and distances as well as leveling among the benchmarks have been carried out on an annual basis or twice a year since 1998. Compared to previous other measurements which have shown the first order creep rate for the entire fault zone, the present geodetic data provides the detailed information of the surface movements across the fault zone which usually composed of more than one fault strands and folds structures. According to our data from the local geodetic networks, we are able to reconstruct the 3-D kinematics of surface deformation across the Chihshang fault zone. Multiple fault strands are common along the Chihshang fault. Oblique shortening occurred at all sites and was characterized by a combination of thrusts, backthrust and surface warps. Strike-slip motion can also be distinguished on some fault strands. It is worth to note that the cultural feature, such as concrete basement of strong resistance, sometimes acted as deflection of surface ruptures. It should be taken into consideration for mitigation against seismic hazards.

  14. Shallow Lunar Seismic Activity and the Current Stress State of the Moon

    NASA Technical Reports Server (NTRS)

    Watters, T. R.; Weber, R. C.; Collins, G. C.; Johnson, C. L.

    2017-01-01

    A vast, global network of more than 3200 lobate thrust fault scarps has been revealed in high resolution Lunar Reconnaissance Orbiter Camera (LROC) images. The fault scarps very young, less than 50 Ma, based on their small scale and crisp appearance, crosscutting relations with small-diameter impact craters, and rates of infilling of associated small, shallow graben and may be actively forming today. The population of young thrust fault scarps provides a window into the recent stress state of the Moon and offers insight into the origin of global lunar stresses. The distribution of orientations of the fault scarps is non-random, inconsistent with isotropic stresses from late-stage global contraction as the sole source of stress Modeling shows that tidal stresses contribute significantly to the current stress state of the lunar crust. Tidal stresses (orbital recession and diurnal tides) superimposed on stresses from global contraction result in non-isotropic compressional stress and thrust faults consistent with lobate scarp orientations. Stresses due to orbital recession do not change with orbital position, thus it is with the addition of diurnal stresses that peak stresses are reached. At apogee, diurnal and recession stresses are most compressive near the tidal axis, while at perigee they are most compressive 90 degrees away from the tidal axis. Coseismic slip events on currently active thrust faults are expected to be triggered when peak stresses are reached. Analysis of the timing of the 28 the shallow moonquakes recorded by the Apollo seismic network shows that 19 indeed occur when the Moon is closer to apogee, while only 9 shallow events occur when the Moon is closer to perigee. Here we show the results of relocating the shallow moonquake using an algorithm designed for sparse networks to better constrain their epicentral locations in order to compare them with stress models. The model for the current stress state of the Moon is refined by investigating the

  15. Rare normal faulting earthquake induced by subduction megaquake: example from 2011 Tohoku-oki earthquake

    NASA Astrophysics Data System (ADS)

    Ishiyama, T.; Sugito, N.; Echigo, T.; Sato, H.; Suzuki, T.

    2012-04-01

    A month after March 11 gigantic M9.0 Tohoku-oki earthquake, M7.0 intraplate earthquake occurred at a depth of 5 km on April 11 beneath coastal area of near Iwaki city, Fukushima prefecture. Focal mechanism of the mainshock indicates that this earthquake is a normal faulting event. Based on field reconnaissance and LIDAR mapping by Geospatial Information Authority of Japan, we recognized coseismic surface ruptures, presumably associated with the main shock. Coseismic surface ruptures extend NNW for about 11 km in a right-stepping en echelon manner. Geomorphic expressions of these ruptures commonly include WWS-facing normal fault scarps and/or drape fold scarp with open cracks on their crests, on the hanging wall sides of steeply west-dipping normal fault planes subparallel to Cretaceous metamorphic rocks. Highest topographic scarp height is about 2.3 m. In this study we introduce preliminary results of a trenching survey across the coseismic surface ruptures at Shionohira site, to resolve timing of paleoseismic events along the Shionohira fault. Trench excavations were carried out at two sites (Ichinokura and Shionohira sites) in Iwaki, Fukushima. At Shionohira site a 2-m-deep trench was excavated across the coseismic fault scarp emerged on the alluvial plain on the eastern flank of the Abukuma Mountains. On the trench walls we observed pairs of steeply dipping normal faults that deform Neogene to Paleogene conglomerates and unconformably overlying, late Quaternary to Holocene fluvial units. Sense of fault slip observed on the trench walls (large dip-slip with small sinistral component) is consistent with that estimated from coseismic surface ruptures. Fault throw estimated from separation of piercing points on lower Unit I and vertical structural relief on folded upper Unit I is consistent with topographic height of the coseismic fault scarp at the trench site. In contrast, vertical separation of Unit II, unconformably overlain by Unit I, is measured as about 1.5 m

  16. Late Pleistocene - Holocene ruptures of the Lima Reservoir fault, SW Montana

    NASA Astrophysics Data System (ADS)

    Anastasio, David J.; Majerowicz, Christina N.; Pazzaglia, Frank J.; Regalla, Christine A.

    2010-12-01

    Active tectonics within the northern Basin and Range province provide a natural laboratory for the study of normal fault growth, linkage, and interaction. Here, we present new geologic mapping and morphologic fault-scarp modeling within the Centennial Valley, Montana to characterize Pleistocene - Holocene ruptures of the young and active Lima Reservoir fault. Geologic relationships and rupture ages indicate Middle Pleistocene activity on the Henry Gulch (>50 ka and 23-10 ka), Trail Creek (>43 ka and ˜13 ka), and reservoir (˜23 ka) segments. Offset Quaternary deposits also record Holocene rupture of the reservoir segment (˜8 ka), but unfaulted modern streams show that no segments of the Lima Reservoir fault have experienced a large earthquake in at least several millennia. The clustered pattern of rupture ages on the Lima Reservoir fault segments suggests a seismogenic linkage though segment length and spacing make a physical connection at depth unlikely. Trail Creek and reservoir segment slip rates were non-steady and appear to be increasing. The fault helps accommodate differential horizontal surface velocity measured by GPS geodesy across the boundary between the northern Basin and Range province and the Snake River Plain.

  17. The Palos Verdes Fault offshore southern California: late Pleistocene to present tectonic geomorphology, seascape evolution and slip rate estimate based on AUV and ROV surveys

    USGS Publications Warehouse

    Brothers, Daniel S.; Conrad, James E.; Maier, Katherine L.; Paull, Charles K.; McGann, Mary L.; Caress, David W.

    2015-01-01

    The Palos Verdes Fault (PVF) is one of few active faults in Southern California that crosses the shoreline and can be studied using both terrestrial and subaqueous methodologies. To characterize the near-seafloor fault morphology, tectonic influences on continental slope sedimentary processes and late Pleistocene to present slip rate, a grid of high-resolution multibeam bathymetric data, and chirp subbottom profiles were acquired with an autonomous underwater vehicle (AUV) along the main trace of PVF in water depths between 250 and 600 m. Radiocarbon dates were obtained from vibracores collected using a remotely operated vehicle (ROV) and ship-based gravity cores. The PVF is expressed as a well-defined seafloor lineation marked by subtle along-strike bends. Right-stepping transtensional bends exert first-order control on sediment flow dynamics and the spatial distribution of Holocene depocenters; deformed strata within a small pull-apart basin record punctuated growth faulting associated with at least three Holocene surface ruptures. An upper (shallower) landslide scarp, a buried sedimentary mound, and a deeper scarp have been right-laterally offset across the PVF by 55 ± 5, 52 ± 4 , and 39 ± 8 m, respectively. The ages of the upper scarp and buried mound are approximately 31 ka; the age of the deeper scarp is bracketed to 17–24 ka. These three piercing points bracket the late Pleistocene to present slip rate to 1.3–2.8 mm/yr and provide a best estimate of 1.6–1.9 mm/yr. The deformation observed along the PVF is characteristic of strike-slip faulting and accounts for 20–30% of the total right-lateral slip budget accommodated offshore Southern California.

  18. Erosional scarps on Io

    USGS Publications Warehouse

    McCauley, J.F.; Smith, B.A.; Soderblom, L.A.

    1979-01-01

    Irregular or fretted scarps on Io are similar to those found on Earth and Mars. A sapping mechanism involving liquid SO2 is proposed to explain these complexly eroded terrains on Io. ?? 1979 Nature Publishing Group.

  19. Paleoseismicity of two historically quiescent faults in Australia: Implications for fault behavior in stable continental regions

    USGS Publications Warehouse

    Crone, A.J.; De Martini, P. M.; Machette, M.M.; Okumura, K.; Prescott, J.R.

    2003-01-01

    Paleoseismic studies of two historically aseismic Quaternary faults in Australia confirm that cratonic faults in stable continental regions (SCR) typically have a long-term behavior characterized by episodes of activity separated by quiescent intervals of at least 10,000 and commonly 100,000 years or more. Studies of the approximately 30-km-long Roopena fault in South Australia and the approximately 30-km-long Hyden fault in Western Australia document multiple Quaternary surface-faulting events that are unevenly spaced in time. The episodic clustering of events on cratonic SCR faults may be related to temporal fluctuations of fault-zone fluid pore pressures in a volume of strained crust. The long-term slip rate on cratonic SCR faults is extremely low, so the geomorphic expression of many cratonic SCR faults is subtle, and scarps may be difficult to detect because they are poorly preserved. Both the Roopena and Hyden faults are in areas of limited or no significant seismicity; these and other faults that we have studied indicate that many potentially hazardous SCR faults cannot be recognized solely on the basis of instrumental data or historical earthquakes. Although cratonic SCR faults may appear to be nonhazardous because they have been historically aseismic, those that are favorably oriented for movement in the current stress field can and have produced unexpected damaging earthquakes. Paleoseismic studies of modern and prehistoric SCR faulting events provide the basis for understanding of the long-term behavior of these faults and ultimately contribute to better seismic-hazard assessments.

  20. 300 Kilometer Long Scarp

    NASA Image and Video Library

    2000-08-06

    A scarp, or cliff, extends diagonally from upper left to lower right in this picture of Mercury taken by NASA Mariner 10. The structures are believed to be formed by the compressive forces due to crustal shortening.

  1. Preliminary results from fault-slip analysis of the Pärvie neotectonic postglacial fault zone, northern Sweden

    NASA Astrophysics Data System (ADS)

    Backstrom, Ann; Viola, Giulio; Rantakokko, Nina; Jonsson, Erik; Ask, Maria

    2013-04-01

    Our study aims at constraining the paleostress field evolution of neotectonic postglacial faulting in northern Sweden. Postglacial faulting is a special type of intraplate faulting triggered by the retreat of continental glaciers and by the induced changes of the local stress field. We investigated the longest known post-glacial fault (PGF) in Scandinavia, the Pärvie PGF. It is 155 km long and consists of a series of 3-10 m high fault scarps developed in several rock types such as mafic and felsic meta-volcanic rocks, and in the north, Archean granites and gneisses. Most of the scarps trend north-northeast and dip steeply to the west. A smaller sibling fault to the east (the Lansjärv PGF) displaces postglacial sediments. It is interpreted as resulting from a great earthquake (M≤8.2) at the end or just after the last glaciation (~10 ky B.P.). Microseismic activity is still present along the Pärvie fault zone. Unfortunately, the stress history of the Pärvie PGF before the last glaciation is poorly known. To reconstruct its stress history, we have performed fault-slip analysis. Fault slip data have been collected from two profiles across the Pärvie PGF in the Corruvagge valley and in Kamasjaure in the north, and Stora Sjöfallet in the southern part of the fault zone. Cross-cutting relationships, fracture mineralization and structural features of the brittle overprint of the rocks have been used to suggest a conceptual model of the brittle history of the fault. Ca. 40 kinematically constrained fault planes were used in the inversion study in addition to ca. 1060 fractures. Preliminary results indicate that the oldest generation of fractures are coated by pink plagioclase and clinoamphibole. The key mineral epidote is prominent along cataclastic structures. Rarly multiple kinematic indicators are identified along the same fracture, indicating polyphase reactivation. Epidote coating is found along fractures from all the computed stress-fields, indicating that

  2. Fault tectonics and earthquake hazards in parts of southern California. [penninsular ranges, Garlock fault, Salton Trough area, and western Mojave Desert

    NASA Technical Reports Server (NTRS)

    Merifield, P. M. (Principal Investigator); Lamar, D. L.; Gazley, C., Jr.; Lamar, J. V.; Stratton, R. H.

    1976-01-01

    The author has identified the following significant results. Four previously unknown faults were discovered in basement terrane of the Peninsular Ranges. These have been named the San Ysidro Creek fault, Thing Valley fault, Canyon City fault, and Warren Canyon fault. In addition fault gouge and breccia were recognized along the San Diego River fault. Study of features on Skylab imagery and review of geologic and seismic data suggest that the risk of a damaging earthquake is greater along the northwestern portion of the Elsinore fault than along the southeastern portion. Physiographic indicators of active faulting along the Garlock fault identifiable in Skylab imagery include scarps, linear ridges, shutter ridges, faceted ridges, linear valleys, undrained depressions and offset drainage. The following previously unrecognized fault segments are postulated for the Salton Trough Area: (1) An extension of a previously known fault in the San Andreas fault set located southeast of the Salton Sea; (2) An extension of the active San Jacinto fault zone along a tonal change in cultivated fields across Mexicali Valley ( the tonal change may represent different soil conditions along opposite sides of a fault). For the Skylab and LANDSAT images studied, pseudocolor transformations offer no advantages over the original images in the recognition of faults in Skylab and LANDSAT images. Alluvial deposits of different ages, a marble unit and iron oxide gossans of the Mojave Mining District are more readily differentiated on images prepared from ratios of individual bands of the S-192 multispectral scanner data. The San Andreas fault was also made more distinct in the 8/2 and 9/2 band ratios by enhancement of vegetation differences on opposite sides of the fault. Preliminary analysis indicates a significant earth resources potential for the discrimination of soil and rock types, including mineral alteration zones. This application should be actively pursued.

  3. New Insight into the Role of Tectonics versus Gravitational Deformation in Development of Surface Ruptures along the Ragged Mountain Fault, Katalla, Alaska USA: Applications of High-Resolution Three-Dimensional Terrain Models

    NASA Astrophysics Data System (ADS)

    Heinlein, S. N.; Pavlis, T. L.; Bruhn, R. L.; McCalpin, J. P.

    2017-12-01

    This study evaluates a surface structure using 3D visualization of LiDAR and aerial photography then analyzes these datasets using structure mapping techniques. Results provide new insight into the role of tectonics versus gravitational deformation. The study area is located in southern Alaska in the western edge of the St. Elias Orogen where the Yakutat microplate is colliding into Alaska. Computer applications were used to produce 3D terrain models to create a kinematic assessment of the Ragged Mountain fault which trends along the length of the east flank of Ragged Mountain. The area contains geomorphic and structural features which are utilize to determine the type of displacement on the fault. Previous studies described the Ragged Mountain fault as a very shallow (8°), west-dipping thrust fault that reactivated in the Late Holocene by westward-directed gravity sliding and inferred at least 180 m of normal slip, in a direction opposite to the (relative) eastward thrust transport of the structure inferred from stratigraphic juxtaposition. More recently this gravity sliding hypothesis has been questioned and this study evaluates one of these alternative hypotheses; that uphill facing normal fault-scarps along the Ragged Mountain fault trace represent extension above a buried ramp in a thrust and is evaluated with a fault-parallel flow model of hanging-wall folding and extension. Profiles across the scarp trace were used to illustrate the curvature of the topographic surfaces adjacent to the scarps system and evaluate their origin. This simple kinematic model tests the hypothesis that extensional fault scarps at the surface are produced by flexure above a deeper ramp in a largely blind thrust system. The data in the context of this model implies that the extensional scarp structures previously examined represent a combination of erosionally modified features overprinted by flexural extension above a thrust system. Analyses of scarp heights along the structure are

  4. The interaction between active normal faulting and large scale gravitational mass movements revealed by paleoseismological techniques: A case study from central Italy

    NASA Astrophysics Data System (ADS)

    Moro, M.; Saroli, M.; Gori, S.; Falcucci, E.; Galadini, F.; Messina, P.

    2012-05-01

    Paleoseismological techniques have been applied to characterize the kinematic behaviour of large-scale gravitational phenomena located in proximity of the seismogenic fault responsible for the Mw 7.0, 1915 Avezzano earthquake and to identify evidence of a possible coseismic reactivation. The above mentioned techniques were applied to the surface expression of the main sliding planes of the Mt. Serrone gravitational deformation, located in the southeastern border of the Fucino basin (central Italy). The approach allows us to detect instantaneous events of deformation along the uphill-facing scarp. These events are testified by the presence of faulted deposits and colluvial wedges. The identified and chronologically-constrained episodes of rapid displacement can be probably correlated with seismic events determined by the activation of the Fucino seismogenic fault, affecting the toe of the gravitationally unstable rock mass. Indeed this fault can produce strong, short-term dynamic stresses able to trigger the release of local gravitational stress accumulated by Mt. Serrone's large-scale gravitational phenomena. The applied methodology could allow us to better understand the geometric and kinematic relationships between active tectonic structures and large-scale gravitational phenomena. It would be more important in seismically active regions, since deep-seated gravitational slope deformations can evolve into a catastrophic collapse and can strongly increase the level of earthquake-induced hazards.

  5. A Classification of Geometric Styles for Paleoseismic Trenches across Normal Faults in the North Island, New Zealand: An Interplay between Tectonic and Erosional/Depositional Processes

    NASA Astrophysics Data System (ADS)

    Villamor, P.; Berryman, K.; Langridge, R.; van Dissen, R.; Persaud, M.; Canora, C.; Nicol, A.; Alloway, B.; Litchfield, N.; Cochran, U.; Stirling, M.; Mouslopoulou, V.; Wilson, K.

    2006-12-01

    Over the last ~15 years we have excavated 73 trenches across active normal faults in the Taupo and Hauraki Rifts, North Island, New Zealand. The stratigraphy in these trenches is quite similar because of the predominance of volcanic and volcanic-derived deposits, sourced from the active Taupo Volcanic Zone. These deposits, whether alluvial (reworked, mainly volcanics) or volcanic (tephra), are all characterized by relative loose, to moderately loose, medium-size gravel and sands, and cohesive (sticky) clays. The homogeneity of the materials and of the sedimentation rates across these paleoseismic trenches has allowed us to assess the influence of different materials on the faulting style. The predominant types of material, their relative thickness, and their stratigraphic order (e.g. whether cohesive materials are overlying or underlying loose materials) in the trench strongly determine the deformation style when subjected to normal faulting. However, the final geometric relation between the sedimentary layers and the faults also depends on the sediment depositional environment (e.g., alluvial vs air fall deposition), the fault dip, and cumulative displacement (i.e., the size of the scarp). For example, the cumulative displacement of the fault conditions the amount of erosion/deposition at/derived from the scarp itself. When we combine observations from the tectonic deformation style and from geometries derived from erosional/depositional processes, we can define at least five "geometric styles" present in paleoseismic trenches in our study area: 1) folding, where the fault does not reach the upper layers, and relative displacement of the fault walls is achieved by folding (dragging of the layer); 2) folding-large cracks, where relative movement of the fault walls is achieved by folding and opening of large fissures; 3) faulting, the most common style where a layer is displaced along the fault plane; 4) faulting- erosion, similar to the previous style but with

  6. Coseismic fault-related fold model, growth structure, and the historic multisegment blind thrust earthquake on the basement-involved Yoro thrust, central Japan

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tatsuya; Mueller, Karl; Sato, Hiroshi; Togo, Masami

    2007-03-01

    We use high-resolution seismic reflection profiles, boring transects, and mapping of fold scarps that deform late Quaternary and Holocene sediments to define the kinematic evolution, subsurface geometry, coseismic behavior, and fault slip rates for an active, basement-involved blind thrust system in central Japan. Coseismic fold scarps on the Yoro basement-involved fold are defined by narrow fold limbs and angular hinges on seismic profiles, suggesting that at least 3.9 km of fault slip is consumed by wedge thrust folding in the upper 10 km of the crust. The close coincidence and kinematic link between folded horizons and the underlying thrust geometry indicate that the Yoro basement-involved fold has accommodated slip at an average rate of 3.2 ± 0.1 mm/yr on a shallowly west dipping thrust fault since early Pleistocene time. Past large-magnitude earthquakes, including an historic M˜7.7 event in A.D. 1586 that occurred on the Yoro blind thrust, are shown to have produced discrete folding by curved hinge kink band migration above the eastward propagating tip of the wedge thrust. Coseismic fold scarps formed during the A.D. 1586 earthquake can be traced along the en echelon active folds that extend for at least 60 km, in spite of different styles of folding along the apparently hard-linked Nobi-Ise blind thrust system. We thus emphasize the importance of this multisegment earthquake rupture across these structures and the potential risk for similar future events in en echelon active fold and thrust belts.

  7. Using the 3D active fault model to estimate the surface deformation, a study on HsinChu area, Taiwan.

    NASA Astrophysics Data System (ADS)

    Lin, Y. K.; Ke, M. C.; Ke, S. S.

    2016-12-01

    An active fault is commonly considered to be active if they have moved one or more times in the last 10,000 years and likely to have another earthquake sometime in the future. The relationship between the fault reactivation and the surface deformation after the Chi-Chi earthquake (M=7.2) in 1999 has been concerned up to now. According to the investigations of well-known disastrous earthquakes in recent years, indicated that surface deformation is controlled by the 3D fault geometric shape. Because the surface deformation may cause dangerous damage to critical infrastructures, buildings, roads, power, water and gas lines etc. Therefore it's very important to make pre-disaster risk assessment via the 3D active fault model to decrease serious economic losses, people injuries and deaths caused by large earthquake. The approaches to build up the 3D active fault model can be categorized as (1) field investigation (2) digitized profile data and (3) build the 3D modeling. In this research, we tracked the location of the fault scarp in the field first, then combined the seismic profiles (had been balanced) and historical earthquake data to build the underground fault plane model by using SKUA-GOCAD program. Finally compared the results come from trishear model (written by Richard W. Allmendinger, 2012) and PFC-3D program (Itasca) and got the calculated range of the deformation area. By analysis of the surface deformation area made from Hsin-Chu Fault, we concluded the result the damage zone is approaching 68 286m, the magnitude is 6.43, the offset is 0.6m. base on that to estimate the population casualties, building damage by the M=6.43 earthquake in Hsin-Chu area, Taiwan. In the future, in order to be applied accurately on earthquake disaster prevention, we need to consider further the groundwater effect and the soil structure interaction inducing by faulting.

  8. Slumping and shallow faulting related to the presence of salt on the Continental Slope and rise off North Carolina

    USGS Publications Warehouse

    Cashman, K.V.; Popenoe, P.

    1985-01-01

    Seismic reflection profiles and long- and medium-range sidescan sonar were used to investigate a salt diapir complex and area of slope instability near the base of the Continental Slope off North Carolina. Within the area of investigation three diapirs are bounded on their upslope side by a scarp 60 m high and 50 km long. The slope above the scarp is characterized by a series of shallow rotational normal faults. The bottom below the scarp is furrowed by slide tracks, which were probably carved by large blocks that broke off the scarp face and slid downslope leaving rubble and scree lobes. Extensive slumping in this area appears to be a result of uplift and faulting associated with salt intrusion, which has fractured and oversteepened the slope leading to instability and failure. Sharply defined slide tracks suggest that slope failure above the breached diapir complex is a continuing process, in contrast to much of the surrounding slope area where few instability features were observed. 

  9. Geomorphology of intraplate postglacial faults in Sweden

    NASA Astrophysics Data System (ADS)

    Ask, M. V. S.; Abdujabbar, M.; Lund, B.; Smith, C.; Mikko, H.; Munier, R.

    2015-12-01

    Melting of the Weichselian ice sheet at ≈10 000 BP is inferred to have induced large to great intraplate earthquakes in northern Fennoscandia. Over a dozen large so-called postglacial faults (PGF) have been found, mainly using aerial photogrammetry, trenching, and recognition of numerous paleolandslides in the vicinity of the faults (e.g. Lagerbäck & Sundh 2008). Recent LiDAR-based mapping led to the extension of known PGFs, the discovery of new segments of existing PGFs, and a number of new suspected PGFs (Smith et al. 2014; Mikko et al. 2015). The PGFs in Fennoscandia occur within 14-25°E and 61-69°N; the majority are within Swedish territory. PGFs generally are prominent features, up to 155 km in length and 30 m maximum surface offset. The most intense microseismic activity in Sweden occurs near PGFs. The seismogenic zone of the longest known PGF (Pärvie fault zone, PFZ) extends to ≈40 km depth. From fault geometry and earthquake scaling relations, the paleomagnitude of PFZ is estimated to 8.0±0.3 (Lindblom et al. 2015). The new high-resolution LiDAR-derived elevation model of Sweden offers an unprecedented opportunity to constrain the surface geometry of the PGFs. The objective is to reach more detailed knowledge of the surface offset across their scarps. This distribution provides a one-dimensional view of the slip distribution during the inferred paleorupture. The second objective is to analyze the pattern of vertical displacement of the hanging wall, to obtain a two-dimensional view of the displaced area that is linked to the fault geometry at depth. The anticipated results will further constrain the paleomagnitude of PGFs and will be incorporated into future modeling efforts to investigate the nature of PGFs. ReferencesLagerbäck & Sundh 2008. Early Holocene faulting and paleoseismicity in northern Sweden. http://resource.sgu.se/produkter/c/c836-rapport.pdf Smith et al. 2014. Surficial geology indicates early Holocene faulting and seismicity

  10. Orogen-scale uplift in the central Italian Apennines drives episodic behaviour of earthquake faults

    PubMed Central

    Cowie, P. A.; Phillips, R. J.; Roberts, G. P.; McCaffrey, K.; Zijerveld, L. J. J.; Gregory, L. C.; Faure Walker, J.; Wedmore, L. N. J.; Dunai, T. J.; Binnie, S. A.; Freeman, S. P. H. T.; Wilcken, K.; Shanks, R. P.; Huismans, R. S.; Papanikolaou, I.; Michetti, A. M.; Wilkinson, M.

    2017-01-01

    Many areas of the Earth’s crust deform by distributed extensional faulting and complex fault interactions are often observed. Geodetic data generally indicate a simpler picture of continuum deformation over decades but relating this behaviour to earthquake occurrence over centuries, given numerous potentially active faults, remains a global problem in hazard assessment. We address this challenge for an array of seismogenic faults in the central Italian Apennines, where crustal extension and devastating earthquakes occur in response to regional surface uplift. We constrain fault slip-rates since ~18 ka using variations in cosmogenic 36Cl measured on bedrock scarps, mapped using LiDAR and ground penetrating radar, and compare these rates to those inferred from geodesy. The 36Cl data reveal that individual faults typically accumulate meters of displacement relatively rapidly over several thousand years, separated by similar length time intervals when slip-rates are much lower, and activity shifts between faults across strike. Our rates agree with continuum deformation rates when averaged over long spatial or temporal scales (104 yr; 102 km) but over shorter timescales most of the deformation may be accommodated by <30% of the across-strike fault array. We attribute the shifts in activity to temporal variations in the mechanical work of faulting. PMID:28322311

  11. Orogen-scale uplift in the central Italian Apennines drives episodic behaviour of earthquake faults.

    PubMed

    Cowie, P A; Phillips, R J; Roberts, G P; McCaffrey, K; Zijerveld, L J J; Gregory, L C; Faure Walker, J; Wedmore, L N J; Dunai, T J; Binnie, S A; Freeman, S P H T; Wilcken, K; Shanks, R P; Huismans, R S; Papanikolaou, I; Michetti, A M; Wilkinson, M

    2017-03-21

    Many areas of the Earth's crust deform by distributed extensional faulting and complex fault interactions are often observed. Geodetic data generally indicate a simpler picture of continuum deformation over decades but relating this behaviour to earthquake occurrence over centuries, given numerous potentially active faults, remains a global problem in hazard assessment. We address this challenge for an array of seismogenic faults in the central Italian Apennines, where crustal extension and devastating earthquakes occur in response to regional surface uplift. We constrain fault slip-rates since ~18 ka using variations in cosmogenic 36 Cl measured on bedrock scarps, mapped using LiDAR and ground penetrating radar, and compare these rates to those inferred from geodesy. The 36 Cl data reveal that individual faults typically accumulate meters of displacement relatively rapidly over several thousand years, separated by similar length time intervals when slip-rates are much lower, and activity shifts between faults across strike. Our rates agree with continuum deformation rates when averaged over long spatial or temporal scales (10 4  yr; 10 2  km) but over shorter timescales most of the deformation may be accommodated by <30% of the across-strike fault array. We attribute the shifts in activity to temporal variations in the mechanical work of faulting.

  12. Geomorphology and Kinematics of the Nobi-Ise Active Fault Zone, Central Japan: Implications for the kinematic growth of tectonic landforms within an active thrust belt

    NASA Astrophysics Data System (ADS)

    Ishiyama, T.; Mueller, K. J.; Togo, M.; Takemura, K.; Okada, A.

    2002-12-01

    We present structural models constrained by tectonic geomorphology, surface geologic mapping and high-resolution seismic reflection profiles to define the kinematic evolution and geometry of active fault-related folds along the Nobi-Ise active fault zone (NAFZ). The NAFZ is an active intraplate fault system in central Japan, and consists of a 110-km-long array of active, east-verging reverse faults. We focus on the northern half of the NAFZ, where we use the kinematic evolution of active fault-related folds to constrain rates of slip on underlying blind thrusts and the rate of contraction across the belt since early Quaternary time. Fluvial terraces folded across the east-dipping forelimb, and west-dipping backlimb of the frontal Kuwana anticline suggest that it grows above a stacked sequence of thin-skinned wedge thrusts. Numerous secondary, bedding-parallel thrusts also deform the terraces and are interpreted to form by flexural slip folding that acts to consume slip on the primary blind thrusts across synclinal axial surfaces. Late Holocene fold scarps formed in the floodplain of the Ibi River east of Kuwana anticline coincide with the projected surface trace of the east-vergent wedge thrust tip and indicate the structure has accommodated coseismic (?) kink-band migration of a fault-bend fold during a historic blind thrust earthquake in 1586. A topographic cross-section based on a detailed photogrammetric map suggests 111 m of uplift of ca. 50-80 ka fluvial terraces deposited across the forelimb. For a 35° thrust, this yields the minimum slip rate of 2.7-4.8 mm/yr on the deepest wedge thrust beneath Kuwana anticline. Kinematic analysis for the much larger thrust defined to the west (the Fumotomura fault) suggests that folding of fluvial terraces occurred by trishear fault-propagation folding above a more steeply-dipping (54°), basement-involved blind thrust that propagated upward from the base of the seismogenic crust (about 12 km). Pleistocene growth strata

  13. Preliminary Investigation and Surficial Mapping of the Faults North and South of Blacktail Butte, Teton County, Wyoming

    NASA Astrophysics Data System (ADS)

    Wittke, S.

    2016-12-01

    The Wyoming State Geological Survey has focused on surficial mapping and examination of the location and offset of faults north and south of Blacktail Butte in eastern Jackson Hole, Wyoming. The fault strands south of Blacktail Butte are classified as Late Quaternary, the faults north of the butte are considered Class B structures by the USGS. Little to no detailed studies, including paleoseismic investigations or fault scarp morphology, have been conducted on these fault strands. The acquisition of LiDAR for the Grand Teton National Park and recent aerial photographs provided data necessary for revised mapping and geomorphic interpretation of fault-related features north and south of Blacktail Butte. New fault traces and geomorphic features were identified in the LiDAR data which had not been previously mapped. Mapped fault traces are intermittent, forming a 1.5 km-long graben that extends south from Blacktail Butte and crosses a loess-mantle late-Pleistocene terrace generated from the Pinedale glaciation. Other lineaments were identified that continued for another 0.5 km to the south. With very little vertical offset across the system and comparatively short fault strands, the faults may represent secondary features related to movement on another unidentified fault within the basin. The secondary faults north of Blacktail Butte were mapped based on geomorphic features and through LiDAR-based spatial analysis. The fault scarps are relatively short and are present on alluvial fan and/or terrace deposits related to the Pinedale glaciation or on undated Holocene deposits. The scarps have little net vertical offset, suggesting they could also be secondary features related to movement from another unidentified fault within the basin. Improved understanding of these fault strands is significant because of the vicinity to populated areas within Jackson Hole and the possible relevance to the Teton Fault system. To our knowledge, these fault strands have not been proposed

  14. Head scarp boundary for the landslides in the Little North Santiam River Basin, Oregon

    USGS Publications Warehouse

    Sobieszczyk, Steven

    2010-01-01

    Polygons represent head scarps and flank scarps associated with landslide deposits in the Little North Santiam River Basin, Oregon. This work was completed as part of the Master's thesis "Turbidity Monitoring and LiDAR Imagery Indicate Landslides are Primary Source of Suspended-Sediment Load in the Little North Santiam River Basin, Oregon, Winter 2009-2010" by Steven Sobieszczyk, Portland State University and U.S. Geological Survey. Data layers in this geodatabase include: landslide deposit boundaries (Deposits); field-verfied location imagery (Photos); head scarp or scarp flanks (Scarp_Flanks); and secondary scarp features (Scarps).The geodatabase template was developed by the Oregon Department of Geology and Mineral Industries (Burns and Madin, 2009).

  15. New Geologic Data on the Seismic Risks of the Most Dangerous Fault on Shore in Central Japan, the Itoigawa-Shizuoka Tectonic Line Active Fault System

    NASA Astrophysics Data System (ADS)

    Okumura, K.; Kondo, H.; Toda, S.; Takada, K.; Kinoshita, H.

    2006-12-01

    Ten years have past since the first official assessment of the long-term seismic risks of the Itoigawa-Shizuoka tectonic line active fault system (ISTL) in 1996. The disaster caused by the1995 Kobe (Hyogo-ken-Nanbu) earthquake urged the Japanese government to initiated a national project to assess the long-term seismic risks of on-shore active faults using geologic information. ISTL was the first target of the 98 significant faults and the probability of a M7 to M8 event turned out to be the highest among them. After the 10 years of continued efforts to understand the ISTL, now it is getting ready to revise the assessment. Fault mapping and segmentation: The most active segment of the Gofukuji fault (~1 cm/yr left-lateral strike slip, R=500~800 yrs.) had been maped only for less than 10 km. Adjacent segments were much less active. This large slip on such a short segment was contradictory. However, detailed topographic study including Lidar survey revealed the length of the Gofukuji fault to be 25 km or more. High slip rate with frequent earthquakes may be restricted to the Gofukuji fault while the 1996 assessment modeled frequent >100 km rupture scenario. The geometry of the fault is controversial especially on the left-lateral strike-slip section of the ISTL. There are two models of high-angle Middel ISTL and low-angle Middle ISTL with slip partitioning. However, all geomorphic and shallow geologic data supports high-angle almost pure strike slip on the faults in the Middle ISTL. CRIEPI's 3- dimensional trenching in several sites as well as the previous results clearly demonstrated repeated pure strike-slip offset during past a few events. In Middle ISTL, there is no evidence of recent activity of pre-existing low-angle thrust faults that are inferred to be active from shallow seismic survey. Separation of high (~3000 m) mountain ranges and low (<1000 m) basin floor requires significant dip-slip component, but basin-fill sediments and geology of the range do not

  16. Preliminary paleoseismic observations along the western Denali fault, Alaska

    NASA Astrophysics Data System (ADS)

    Koehler, R. D.; Schwartz, D. P.; Rood, D. H.; Reger, R.; Wolken, G. J.

    2013-12-01

    The Denali fault in south-central Alaska, from Mt. McKinley to the Denali-Totschunda fault branch point, accommodates ~9-12 mm/yr of the right-lateral component of oblique convergence between the Pacific/Yakutat and North American plates. The eastern 226 km of this fault reach was part of the source of the 2002 M7.9 Denali fault earthquake. West of the 2002 rupture there is evidence of two large earthquakes on the Denali fault during the past ~550-700 years but the paleoearthquake chronology prior to this time is largely unknown. To better constrain fault rupture parameters for the western Denali fault and contribute to improved seismic hazard assessment, we performed helicopter and ground reconnaissance along the southern flank of the Alaska Range between the Nenana Glacier and Pyramid Peak, a distance of ~35 km, and conducted a site-specific paleoseismic study. We present a Quaternary geologic strip map along the western Denali fault and our preliminary paleoseismic results, which include a differential-GPS survey of a displaced debris flow fan, cosmogenic 10Be surface exposure ages for boulders on this fan, and an interpretation of a trench across the main trace of the fault at the same site. Between the Nenana Glacier and Pyramid Peak, the Denali fault is characterized by prominent tectonic geomorphic features that include linear side-hill troughs, mole tracks, anastamosing composite scarps, and open left-stepping fissures. Measurements of offset rills and gullies indicate that slip during the most recent earthquake was between ~3 and 5 meters, similar to the average displacement in the 2002 earthquake. At our trench site, ~ 25 km east of the Parks Highway, a steep debris fan is displaced along a series of well-defined left-stepping linear fault traces. Multi-event displacements of debris-flow and snow-avalanche channels incised into the fan range from 8 to 43 m, the latter of which serves as a minimum cumulative fan offset estimate. The trench, excavated into

  17. Controls on Early-Rift Geometry: New Perspectives From the Bilila-Mtakataka Fault, Malawi

    NASA Astrophysics Data System (ADS)

    Hodge, M.; Fagereng, Å.; Biggs, J.; Mdala, H.

    2018-05-01

    We use the ˜110-km long Bilila-Mtakataka fault in the amagmatic southern East African Rift, Malawi, to investigate the controls on early-rift geometry at the scale of a major border fault. Morphological variations along the 14 ± 8-m high scarp define six 10- to 40-km long segments, which are either foliation parallel or oblique to both foliation and the current regional extension direction. As the scarp is neither consistently parallel to foliation nor well oriented for the current regional extension direction, we suggest that the segmented surface expression is related to the local reactivation of well-oriented weak shallow fabrics above a broadly continuous structure at depth. Using a geometrical model, the geometry of the best fitting subsurface structure is consistent with the local strain field from recent seismicity. In conclusion, within this early-rift, preexisting weaknesses only locally control border fault geometry at subsurface.

  18. Shallow subsurface imaging of the Piano di Pezza active normal fault (central Italy) by high-resolution refraction and electrical resistivity tomography coupled with time domain electromagnetic data

    NASA Astrophysics Data System (ADS)

    Villani, Fabio; Tulliani, Valerio; Fierro, Elisa; Sapia, Vincenzo; Civico, Riccardo

    2015-04-01

    The Piano di Pezza fault is the north-westernmost segment of the >20 km long Ovindoli-Pezza active normal fault-system (central Italy). Although existing paleoseismic data document high vertical Holocene slip rates (~1 mm/yr) and a remarkable seismogenic potential of this fault, its subsurface setting and Pleistocene cumulative displacement are still poorly known. We investigated for the first time by means of high-resolution seismic and electrical resistivity tomography coupled with time domain electromagnetic (TDEM) measurements the shallow subsurface of a key section of the Piano di Pezza fault. Our surveys cross a ~5 m-high fault scarp that was generated by repeated surface-rupturing earthquakes displacing some Late Holocene alluvial fans. We provide 2-D Vp and resistivity images which clearly show significant details of the fault structure and the geometry of the shallow basin infill material down to 50 m depth. We can estimate the dip (~50°) and the Holocene vertical displacement of the master fault (~10 m). We also recognize in the hangingwall some low-velocity/low-resistivity regions that we relate to packages of colluvial wedges derived from scarp degradation, which may represent the record of several paleo-earthquakes older than the Late Holocene events previously recognized by paleoseismic trenching. Conversely, due to the limited investigation depth of seismic and electrical tomography, the estimation of the cumulative amount of Pleistocene throw is hampered. Therefore, to increase the depth of investigation, we performed 7 TDEM measurements along the electrical profile using a 50 m loop size both in central and offset configuration. The recovered 1-D resistivity models show a good match with 2-D resistivity images in the near surface. Moreover, TDEM inversion results indicate that in the hangingwall, ~200 m away from the surface fault trace, the carbonate pre-Quaternary basement may be found at ~90-100 m depth. The combined approach of electrical and

  19. Holocene faulting in the Bellingham forearc basin: upper-plate deformation at the northern end of the Cascadia subduction zone

    USGS Publications Warehouse

    Kelsey, Harvey M.; Sherrod, Brian L.; Blakely, Richard J.; Haugerud, Ralph A.

    2013-01-01

    The northern Cascadia forearc takes up most of the strain transmitted northward via the Oregon Coast block from the northward-migrating Sierra Nevada block. The north-south contractional strain in the forearc manifests in upper-plate faults active during the Holocene, the northern-most components of which are faults within the Bellingham Basin. The Bellingham Basin is the northern of four basins of the actively deforming northern Cascadia forearc. A set of Holocene faults, Drayton Harbor, Birch Bay, and Sandy Point faults, occur within the Bellingham Basin and can be traced from onshore to offshore using a combination of aeromagnetic lineaments, paleoseismic investigations and scarps identified using LiDAR imagery. With the recognition of such Holocene faults, the northernmost margin of the actively deforming Cascadia forearc extends 60 km north of the previously recognized limit of Holocene forearc deformation. Although to date no Holocene faults are recognized at the northern boundary of the Bellingham Basin, which is 15 km north of the international border, there is no compelling tectonic reason to expect that Holocene faults are limited to south of the international border.

  20. Characteristics of the recent seismic activity on a near-shore fault south of Malta, Central Mediterranean

    NASA Astrophysics Data System (ADS)

    Bozionelos, George; Galea, Pauline; D'Amico, Sebastiano; Agius, Matthew

    2017-04-01

    The tectonic setting of the Maltese islands is mainly influenced by two dominant rift systems belonging to different ages and having different trends. The first and older rift created the horst and graben structure in northern Malta. The second rift generation, in the south, including the Maghlaq Fault, is associated with the Pantelleria Rift. The Maghlaq Fault is a spectacular NW - SE trending and left-stepping normal fault running along the southern coastline of the Maltese islands, cutting the Oligo-Miocene pre to syn-rift carbonates. Its surface expression is traceable along 4 km of the coastline, where vertical displacements of the island's Tertiary stratigraphic sequence are clearly visible and exceed 210m. These displacements have given rise to sheer, slickensided fault scarps, as well as isolating the small island of Filfla 4km offshore the southern coast. Identification and assessment of the seismic activity related with Maghlaq fault, for the recent years, is performed, re-evaluating and redetermining the hypocentral locations and the source parameters of both recent and older events. The earthquakes that have affected the Maltese islands in the historical past, have occurred mainly at the Sicily Channel, at eastern Sicily, even as far away as the Hellenic arc. Some of these earthquakes also have caused considerable damage to buildings. The Maghlaq fault is believed to be one of the master faults of the Sicily Channel Rift, being parallel to the Malta graben, which passes around 20km south of Malta and shows continuous seismic activity. Despite the relationship of this fault with the graben system, no seismic activity on the Maghlaq fault had been documented previous to 2015. On the July 30nth 2015, an earthquake was widely felt in the southern half of Malta and was approximately located just offshore the southern coast. Since then, a swarm of seismic events lasting several days, as well as other isolated events have occurred, indicating the fault to be

  1. The M6 1799 Vendée intraplate earthquake (France) : characterizing the active fault with a multidisciplinary approach.

    NASA Astrophysics Data System (ADS)

    Kaub, C.; Perrot, J.; Le Roy, P., Sr.; Authemayou, C.; Bollinger, L.; Hebert, H.; Geoffroy, L.

    2017-12-01

    The coastal Vendee (France) is located to the south of the intraplate Armorican area. This region is affected by a system of dominantly NW-SE trending shear zones and faults inherited from a long and poly-phased tectonic history since Variscan times. This area currently presents a moderate background seismic activity, but was affected by a significant historical earthquake (magnitude M 6) on the 1799 January 25th. This event generated particularly strong site effects in a Neogene basin located along a major onshore/offshore discontinuity bounding the basin, the Machecoul fault. The objective of this study is to identify and qualify active faults potentially responsible for such major seismic event in order to better constrain the seismic hazard of this area. We adopt for this purpose a multidisciplinary approach including an onshore seismological survey, high-resolution low-penetration offshore seismic data (CHIRP echo sounder, Sparker source and single channel streamer), high-resolution interferometric sonar bathymetry (GeoSwath), compilation of onshore drilling database (BSS, BRGM), and quantitative geomorphology In the meantime, the seismicity of the area was characterized by a network of 10 REFTEK stations, deployed since January 2016 around the Bay of Bourgneuf (MACHE network). About 50 local earthquakes, with coda magnitudes ranging from 0.5 to 3.1 and local magnitude ranging from 0.2 to 2.9 were identified so far. This new database complement a local earthquake catalog acquired since 2011 from previous regional networks. We surveyed the fault segments offshore, in the Bay of Bourgneuf, analyzing 700 km of high-resolution seismic profiles and 40 km² of high-resolution bathymetry acquired during the RETZ1 (2016) and RETZ2 (2017) campaigns, in addition to HR-bathymetry along the fault scarp. Those data are interpreted in conjunction with onshore wells to determine if (and since when) the Machecoul fault controlled tectonically the Neogene sedimentation.

  2. Identification of deep subaqueous co-seismic scarps through specific coeval sedimentation in Lesser Antilles: implication for seismic hazard

    NASA Astrophysics Data System (ADS)

    Beck, C.; Reyss, J.-L.; Leclerc, F.; Moreno, E.; Feuillet, N.; Barrier, L.; Beauducel, F.; Boudon, G.; Clément, V.; Deplus, C.; Gallou, N.; Lebrun, J.-F.; Le Friant, A.; Nercessian, A.; Paterne, M.; Pichot, T.; Vidal, C.

    2012-05-01

    During the GWADASEIS cruise (Lesser Antilles volcanic arc, February-March 2009) a very high resolution (VHR) seismic-reflection survey was performed in order to constrain Late Quaternary to Present faulting. The profiles we obtained evidence frequent "ponding" of reworked sediments in the deepest areas, similar to the deposition of Mediterranean "homogenites". These bodies are acoustically transparent (few ms t.w.t. thick) and are often deposited on the hanging walls of dominantly normal faults, at the base of scarps. Their thickness appears sufficient to compensate (i.e. bury) co-seismic scarps between successive earthquakes, resulting in a flat and horizontal sea floor through time. In a selected area (offshore Montserrat and Nevis islands), piston coring (4 to 7 m long) was dedicated to a sedimentological analysis of the most recent of these particular layers. It corresponds to non-stratified homogenous calcareous silty sand (reworked calcareous plankton and minor volcanoclastics). This layer can be up to 2 m thick, and overlies fine-grained hemipelagites. The upper centimeters of the latter represent the normal RedOx water/sediment interface. 210Pb and 137Cs activities lack in the massive sands, while a normal profile of unsupported 210Pb decrease is observed in the hemipelagite below, together with a 137Cs peak corresponding to the Atmospheric Nuclear Experiments (1962). The RedOx level was thus capped by a recent instantaneous major sedimentary event considered as post-1970 AD; candidate seismic events to explain this sedimentary deposits are either the 16 March 1985 earthquake or the 8 October 1974 one (Mw = 6.3 and Mw = 7.4, respectively). This leads to consider that the syntectonic sedimentation in this area is not continuous but results from accumulation of thick homogenites deposited after the earthquakes (as observed in the following weeks after Haiti January 2010 event, McHugh et al., 2011). The existence of such deposits suggests that, in the area of

  3. Cross-Cutting Faults

    NASA Technical Reports Server (NTRS)

    2005-01-01

    16 May 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows cross-cutting fault scarps among graben features in northern Tempe Terra. Graben form in regions where the crust of the planet has been extended; such features are common in the regions surrounding the vast 'Tharsis Bulge' on Mars.

    Location near: 43.7oN, 90.2oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Summer

  4. Active faults in Africa: a review

    NASA Astrophysics Data System (ADS)

    Skobelev, S. F.; Hanon, M.; Klerkx, J.; Govorova, N. N.; Lukina, N. V.; Kazmin, V. G.

    2004-03-01

    The active fault database and Map of active faults in Africa, in scale of 1:5,000,000, were compiled according to the ILP Project II-2 "World Map of Major Active Faults". The data were collected in the Royal Museum of Central Africa, Tervuren, Belgium, and in the Geological Institute, Moscow, where the final edition was carried out. Active faults of Africa form three groups. The first group is represented by thrusts and reverse faults associated with compressed folds in the northwest Africa. They belong to the western part of the Alpine-Central Asian collision belt. The faults disturb only the Earth's crust and some of them do not penetrate deeper than the sedimentary cover. The second group comprises the faults of the Great African rift system. The faults form the known Western and Eastern branches, which are rifts with abnormal mantle below. The deep-seated mantle "hot" anomaly probably relates to the eastern volcanic branch. In the north, it joins with the Aden-Red Sea rift zone. Active faults in Egypt, Libya and Tunis may represent a link between the East African rift system and Pantellerian rift zone in the Mediterranean. The third group included rare faults in the west of Equatorial Africa. The data were scarce, so that most of the faults of this group were identified solely by interpretation of space imageries and seismicity. Some longer faults of the group may continue the transverse faults of the Atlantic and thus can penetrate into the mantle. This seems evident for the Cameron fault line.

  5. Active Structures as Deduced from Geomorphic Features: A case in Hsinchu Area, northwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Shyu, J.; Ota, Y.; Chen, W.; Hu, J.; Tsai, B.; Wang, Y.

    2002-12-01

    Hsinchu area is located in the northwestern Taiwan, the fold-and thrust belt created by arc-continent collision between Eurasian and Philippine. Since the collision event is still ongoing, the island is tectonically active and full of active faults. According to the historical records, some of the faults are seismically acting. In Hsinchuarea two active faults, the Hsinchu and Hsincheng, have been previously mapped. To evaluate the recent activities, we studied the related geomorphic features by using newly developed Digital Elevation Model (DEM), the aerial photos and field investigation. Geologically, both of the faults are coupled with a hanging wall anticline. The anticlines are recently active due to the deformation of the geomorphic surfaces. The Hsinchu fault system shows complicate corresponding scarps, distributed sub-parallel to the fault trace previously suggested by projection of subsurface geology. This is probably caused by its strike-slip component tearing the surrounding area along the main trace. The scarps associated with the Hsincheng fault system are rather simple and unique. It offsets a flight of terraces all the way down to recent flood plain, indicating its long lasting activity. One to two kilometers to east of main trace a back-thrust is found, showing coupled vertical surface offsets with the main fault. The striking discovery in this study is that the surface deformation is only distributed in the southern bank of Touchien river, also suddenly decreasing when crossing another tear fault system, which is originated from Hsincheng fault in the west and extending southeastward parallel to the Touchien river. The strike-slip fault system mentioned above not only bisects the Hsinchu fault, but also divides the Hsincheng fault into segments. The supporting evidence found in this study includes pressure ridges and depressions. As a whole, the study area is tectonically dominated by three active fault systems and two actively growing anticlines

  6. Morphostructural study of the Belledonne faults system (French Alps).

    NASA Astrophysics Data System (ADS)

    Billant, Jérémy; Bellier, Olivier; Hippolyte, Jean-Claude; Godard, Vincent; Manchuel, Kevin

    2016-04-01

    The NE trending Belledonne faults system, located in the Alps, is a potentially active faults system that extends from the Aiguilles Rouges and Mont Blanc massifs in the NE to the Vercors massif in the SW (subalpine massifs). It includes the Belledonne border fault (BBF), defined by an alignment of micro earthquakes (ML≤3.5) along the eastern part of the Grésivaudan valley (Thouvenot et al., 2003). Focal mechanisms and their respective depths tend to confirm a dextral strike-slip faulting at crustal scale. In the scope of the Sigma project (http://projet-sigma.com/index.html, EDF), this study aims at better constraining the geometry, kinematic and seismogenic potential of the constitutive faults of the Belledonne fault system, by using a multidisciplinary approach that includes tectonics, geomorphology and geophysics. Fault kinematic analysis along the BBF (Billant et al., 2015) and the Jasneuf fault allows the determination of a strike-slip tectonic regime characterised by an ENE trending σ1 stress axes, which is consistent with stress state deduced from the focal mechanisms. Although no morphological anomalies could be related to recent faulting along the BBF, new clues of potential Quaternary deformations were observed along the other faults of the system: -right lateral offset of morphologic markers (talwegs...) along the NE trending Arcalod fault located at the north-eastern terminations of the BBF; -left lateral offset of the valley formed by the Isère glacier along the NW trending Brion fault which is consistent with its left-lateral slip inferred from the focal mechanisms; -fault scarps and right lateral offsets of cliffs bordering a calcareous plateau and talwegs along the four fault segments of the NE trending Jasneuf fault located at the south-western termination of the BBF in the Vercors massif. Some offsets were measured using a new method that does not require the identification of piercing points and take advantage of the high resolution

  7. Active, capable, and potentially active faults - a paleoseismic perspective

    USGS Publications Warehouse

    Machette, M.N.

    2000-01-01

    Maps of faults (geologically defined source zones) may portray seismic hazards in a wide range of completeness depending on which types of faults are shown. Three fault terms - active, capable, and potential - are used in a variety of ways for different reasons or applications. Nevertheless, to be useful for seismic-hazards analysis, fault maps should encompass a time interval that includes several earthquake cycles. For example, if the common recurrence in an area is 20,000-50,000 years, then maps should include faults that are 50,000-100,000 years old (two to five typical earthquake cycles), thus allowing for temporal variability in slip rate and recurrence intervals. Conversely, in more active areas such as plate boundaries, maps showing faults that are <10,000 years old should include those with at least 2 to as many as 20 paleoearthquakes. For the International Lithosphere Programs' Task Group II-2 Project on Major Active Faults of the World our maps and database will show five age categories and four slip rate categories that allow one to select differing time spans and activity rates for seismic-hazard analysis depending on tectonic regime. The maps are accompanied by a database that describes evidence for Quaternary faulting, geomorphic expression, and paleoseismic parameters (slip rate, recurrence interval and time of most recent surface faulting). These maps and databases provide an inventory of faults that would be defined as active, capable, and potentially active for seismic-hazard assessments.

  8. Investigations into the Fish Lake Valley Fault Zone (FLVFZ) and its interactions with normal faulting within Eureka and Deep Springs Valleys

    NASA Astrophysics Data System (ADS)

    Lawson, M. J.; Rhodes, E.; Yin, A.

    2016-12-01

    In most textbooks, the San Andreas Fault is stated to be the plate boundary between the North American and the Pacific plates, as plate tectonics assumes that boundaries are essentially discrete. In the Western United States this is not the case, as up to 25% of relative plate motion is accommodated on other structures within the Walker Lane Shear Zone (WLSZ) in a diffuse 100 km margin (Faulds et al., 2005; Oldow et al., 2001). Fish Lake Valley Fault Zone (FLVFZ), situated at the northern border of Death Valley National Park, is the northern continuation of the Furnace Creek Fault Zone (FCFZ), and is an important transfer structure within the Walker Lane Shear Zone. Though the FLVFZ has a long term rate (since 10 Ma) of 5 mm/yr (Reheis and Sawyer, 1997), it has a highly variable slip rate. In the middle Pleistocene, the rate has a maximum of up to 11 mm/yr which would accommodate nearly the entirety of slip within the Walker Lane, and yet this rate decreases significantly ( 2.5 to 3 mm/yr) by the late Pleistocene due to unknown causes (Frankel et al. 2007). This variation in slip rate has been proposed by previous workers to be due to strain transience, an increase in the overall strain rate, or due to other unknown structures (Lee et al., 2009). Currently, we are investigating the cause of this variation, and the possibility of the transfer of slip to faults south of the FLVFZ on oblique normal faults within Eureka and Deep Springs Valleys. Preliminary data will be shown utilizing scarp transects, geomorphic scarp modeling, and Optically Stimulated Luminescence (OSL) dating techniques.

  9. An integrated geodetic and seismic study of the Cusco Fault system in the Cusco Region-Southern Peru

    NASA Astrophysics Data System (ADS)

    Norabuena, E. O.; Tavera, H. J.

    2017-12-01

    The Cusco Fault system is composed by six main faults (Zurite, Tamboray, Qoricocha, Tambomachay, Pachatusan, and Urcos) extending in a NW-SE direction over the Cusco Region in southeastern Peru. From these, the Tambomachay is a normal fault of 20 km length, strikes N120°E and bounds a basin filled with quaternary lacustrine and fluvial deposits. Given its 5 km distance to Cusco, an historical and Inca's archeological landmark, it represents a great seismic hazard for its more than 350,000 inhabitants. The Tambomachay fault as well as the other secondary faults have been a source of significant seismic activity since historical times being the more damaging ones the Cusco earthquakes of 1650, 1950 and more recently April 1986 (M 5.8). Previous geological studies indicate that at the beginning of the Quaternary the fault showed a transcurrent mechanism leading to the formation of the Cusco basin. However, nowadays its mechanism is normal fault and scarps up to 22m can be observed. We report the current dynamics of the Tambomachay fault and secondary faults based on seismic activity imaged by a network of 29 broadband stations deployed in the Cusco Region as well as the deformation field inferred from GPS survey measurements carried out between 2014 and 2016.

  10. Paleoseismic observations of an onshore transform boundary: The Magallanes-Fagnano fault, Tierra del Fuego, Argentina

    USGS Publications Warehouse

    Costa, C.H.; Smalley, R.; Schwartz, D.P.; Stenner, Heidi D.; Ellis, M.; Ahumada, E.A.; Velasco, M.S.

    2006-01-01

    We present preliminary information on the geomorphologic features and paleoseismic record associated with the ruptures of two Ms 7.8 earthquakes that struck Tierra del Fuego and the southernmost continental margin of South America on December 17, 1949. The fault scarp was surveyed in several places cast of Lago Fagnano and a trench across a secondary fault trace of the Magallanes-Fagnano fault was excavated at the Ri??o San Pablo. The observed deformation in a 9 kyr-old peat bog sequence suggests evidence for two, and possibly three pre-1949 paleoearthquakes is preserved in the stratigraphy. The scarp reaches heights up to 11 m in late Pleistocene-Holocence(?) deposits, but the vertical component of the 1949 events was always less than ???1 m. This observation also argues for the occurrence of previous events during the Quaternary. Along die part of the fault we investigated east of Lago Fagnano, the horizontal component of the 1949 rupture does not exceed 4 m and is likely lower than 0.4 m, which is consistent with the kinematics of a local releasing bend, or at the end of a strike-slip rupture zone. ?? 2006 Revista de la Asociacio??n Geolo??gica Argentina.

  11. Reevaluation of 1935 M 7.0 earthquake fault, Miaoli-Taichung Area, western Taiwan: a DEM and field study

    NASA Astrophysics Data System (ADS)

    Lin, Y. N.; Chen, Y.; Ota, Y.

    2003-12-01

    A large earthquake (M 7.0) took place in Miaoli area, western Taiwan on April 21st, 1935. Right to its south is the 1999 Chi-Chi earthquake fault, indicating it is not only tectonically but seismically active. As the previous study, the study area is located in the mature zone of a tectonic collision that occurred between Philippine sea Plate and Eurasia continental Plate. The associated surface ruptures of 1935 earthquake daylighted Tungtsichiao Fault, a tear fault trending NE in the south and Chihhu Fault, a back thrust trending N-S in the north, but no ruptures occurred in between. Strike-slip component was identified by the horizontal offset observed along Tungtsichiao Fault; however, there are still disputes on the reported field evidence. Our purposes are (1) to identify the structural behaviors of these two faults, (2) to find out what the seismogenic structure is, and (3) to reconstruct the regional geology by information given by this earthquake. By DEM interpretation and field survey, we can clearly recognize a lot of the 1935 associated features. In the west of Chihhu Fault, a series of N-S higher terraces can be identified with eastward tilted surfaces and nearly 200 m relative height. Another lower terrace is also believed being created during the 1935 earthquake, showing an east-facing scarp with a height of ca. 1.5~2 m. Outcrop investigation reveals that the late-Miocene bedrock has been easterly thrusted over the Holocene conglomerates, indicating a west-dipping fault plane. The Tungtsichiao Fault cuts through a lateritic terrace at Holi, which is supposed developed in Pleistocene. The fault scarp is only discernible in the northeastern ending. Other noticeable features are the fault related antiforms that line up along the surface rupture. There is no outcrop to show the fault geometry among bedrocks. We re-interpret the northern Chihhu Fault as the back thrust generated from a main subsurface detachment, which may be the actual seismogenic fault

  12. Effect of height and orientation ( microclimate) on geomorphic degradation rates and processes, late-glacial terrace scarps in central Idaho

    USGS Publications Warehouse

    Pierce, K.L.; Colman, Steven M.

    1986-01-01

    Examines the effects of scarp size (height) and orientation (microclimate) by keeping constant variables such as age, lithology, and regional climate. For scarps 2m high, the degradation rate on S-facing scarps is 2 times that on N-facing scarps; for 10-m scarps, it is 5 times. Scarp morphology may be used to estimate age. -from Authors

  13. Geomorphic evidence of Quaternary tectonics within an underlap fault zone of southern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Giano, Salvatore Ivo; Pescatore, Eva; Agosta, Fabrizio; Prosser, Giacomo

    2018-02-01

    A composite seismic source, the Irpinia - Agri Valley Fault zone, located in the axial sector of the fold-and-thrust belt of southern Apennines, Italy, is investigated. This composite source is made up of a series of nearly parallel, NW-striking normal fault segments which caused many historical earthquakes. Two of these fault segments, known as the San Gregorio Magno and Pergola-Melandro, and the fault-related mountain fronts, form a wedge-shaped, right-stepping, underlap fault zone. This work is aimed at documenting tectonic geomorphology and geology of this underlap fault zone. The goal is to decipher the evidence of surface topographic interaction between two bounding fault segments and their related mountain fronts. In particular, computation of geomorphic indices such as mountain front sinuosity (Smf), water divide sinuosity (Swd), asymmetry factor (AF), drainage basin elongation (Bs), relief ratio (Rh), Hypsometry (HI), normalized steepness (Ksn), and concavity (θ) is integrated with geomorphological analysis, the geological mapping, and structural analysis in order to assess the recent activity of the fault scarp sets recognized within the underlap zone. Results are consistent with the NW-striking faults as those showing the most recent tectonic activity, as also suggested by presence of related slope deposits younger than 38 ka. The results of this work therefore show how the integration of a multidisciplinary approach that combines geomorphology, morphometry, and structural analyses may be key to solving tectonic geomorphology issues in a complex, fold-and-thrust belt configuration.

  14. Geomorphology, kinematic history, and earthquake behavior of the active Kuwana wedge thrust anticline, central Japan

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tatsuya; Mueller, Karl; Togo, Masami; Okada, Atsumasa; Takemura, Keiji

    2004-12-01

    We combine surface mapping of fault and fold scarps that deform late Quaternary alluvial strata with interpretation of a high-resolution seismic reflection profile to develop a kinematic model and determine fault slip rates for an active blind wedge thrust system that underlies Kuwana anticline in central Japan. Surface fold scarps on Kuwana anticline are closely correlated with narrow fold limbs and angular hinges on the seismic profile that suggest at least ˜1.3 km of fault slip completely consumed by folding in the upper 4 km of the crust. The close coincidence and kinematic link between folded terraces and the underlying thrust geometry indicate that Kuwana anticline has accommodated slip at an average rate of 2.2 ± 0.5 mm/yr on a 27°, west dipping thrust fault since early-middle Pleistocene time. In contrast to classical fault bend folds the fault slip budget in the stacked wedge thrusts also indicates that (1) the fault tip propagated upward at a low rate relative to the accrual of fault slip and (2) fault slip is partly absorbed by numerous bedding plane flexural-slip faults above the tips of wedge thrusts. An historic earthquake that occurred on the Kuwana blind thrust system possibly in A.D. 1586 is shown to have produced coseismic surface deformation above the doubly vergent wedge tip. Structural analyses of Kuwana anticline coupled with tectonic geomorphology at 103-105 years timescales illustrate the significance of active folds as indicators of slip on underlying blind thrust faults and thus their otherwise inaccessible seismic hazards.

  15. Width of surface rupture zone for thrust earthquakes: implications for earthquake fault zoning

    NASA Astrophysics Data System (ADS)

    Boncio, Paolo; Liberi, Francesca; Caldarella, Martina; Nurminen, Fiia-Charlotta

    2018-01-01

    The criteria for zoning the surface fault rupture hazard (SFRH) along thrust faults are defined by analysing the characteristics of the areas of coseismic surface faulting in thrust earthquakes. Normal and strike-slip faults have been deeply studied by other authors concerning the SFRH, while thrust faults have not been studied with comparable attention. Surface faulting data were compiled for 11 well-studied historic thrust earthquakes occurred globally (5.4 ≤ M ≤ 7.9). Several different types of coseismic fault scarps characterize the analysed earthquakes, depending on the topography, fault geometry and near-surface materials (simple and hanging wall collapse scarps, pressure ridges, fold scarps and thrust or pressure ridges with bending-moment or flexural-slip fault ruptures due to large-scale folding). For all the earthquakes, the distance of distributed ruptures from the principal fault rupture (r) and the width of the rupture zone (WRZ) were compiled directly from the literature or measured systematically in GIS-georeferenced published maps. Overall, surface ruptures can occur up to large distances from the main fault ( ˜ 2150 m on the footwall and ˜ 3100 m on the hanging wall). Most of the ruptures occur on the hanging wall, preferentially in the vicinity of the principal fault trace ( > ˜ 50 % at distances < ˜ 250 m). The widest WRZ are recorded where sympathetic slip (Sy) on distant faults occurs, and/or where bending-moment (B-M) or flexural-slip (F-S) fault ruptures, associated with large-scale folds (hundreds of metres to kilometres in wavelength), are present. A positive relation between the earthquake magnitude and the total WRZ is evident, while a clear correlation between the vertical displacement on the principal fault and the total WRZ is not found. The distribution of surface ruptures is fitted with probability density functions, in order to define a criterion to remove outliers (e.g. 90 % probability of the cumulative distribution

  16. CRE dating on the scarps of large landslides affecting the Belledonne massif ( French Alps)

    NASA Astrophysics Data System (ADS)

    Lebrouc, V.; Baillet, L.; Schwartz, S.; Jongmans, D.; Gamond, J. F.; Bourles, D.; Le Roux, O.; Carcaillet, J.; Braucher, R.

    2012-04-01

    The southwestern edge of the Belledonne Massif (French Alps) consists of micaschists unconformably covered with Mesozoic sediments and Quaternary deposits. The morphology corresponds to a glacial plateau (Mont Sec plateau) bordered by steep slopes (around 40°), where moraines and peat bog subsist. The massif is incised by the East-West trending Romanche valley that was shaped by several cycles of quaternary glaciations and deglaciations. Slopes are affected by several active or past large scale rock mass instabilities. Cosmic Ray Exposure (CRE) dating was applied on the head scarps of three large landslides, one of which being the active Séchilienne landslide whose headscarp was already dated by Leroux et al. [2009]. Dating results suggest a concomitant initiation of these instabilities at about 7 ± 2 10Be ka, thousands years after the total downwastage of the valley. A different kinematic behaviour was however observed on two contiguous landslides for which continuous exposure profiles were obtained. On the Séchilienne landslide, 23 samples were collected from internal and lateral scarps, as well as on polished bedrock surfaces, with the aim of dating the internal kinematics of the landslide. Preliminary dating results obtained on polished surfaces and near the top of the scarps show unexpected low 10Be concentrations, suggesting the existence of thin moraine or peat bog deposits masking the bedrock, which have been subsequently eroded. The minimum thickness of these deposits was estimated assuming a constant denudation rate over time. Exposure date profiles show that the studied lateral and internal scarps were initiated at the same period as the Sechilienne headscarp. An increase in the exposure rate was also observed between 2 and 1 ka, in agreement with that evidenced along the headscarp. Forty other samples have been collected in the landslide to corroborate these results. Reference Le Roux, O., S. Schwartz , J.-F. Gamond, D. Jongmans, D. Bourles, R

  17. Integrated study on the topographic and shallow subsurface expression of the Grote Brogel Fault at the boundary of the Roer Valley Graben, Belgium

    NASA Astrophysics Data System (ADS)

    Deckers, Jef; Van Noten, Koen; Schiltz, Marco; Lecocq, Thomas; Vanneste, Kris

    2018-01-01

    The Grote Brogel Fault (GBF) is a major WNW-ESE striking normal fault in Belgium that diverges westward from the NW-SE striking western border fault system of the Roer Valley Graben. The GBF delimits the topographically higher Campine Block from the subsiding Roer Valley Graben, and is expressed in the Digital Terrain Model (DTM) by relief gradients or scarps. By integrating DTM, Electrical Resistivity Tomography (ERT), Cone Penetration Test (CPT) and borehole data, we studied the Quaternary activity of the GBF and its effects on local hydrogeology. In the shallow subsurface (< 50 m) underneath these scarps, fault splays of the GBF were interpreted on newly acquired ERT profiles at two investigation sites: one on the eastern section and the other on the western section, near the limit of the visible surface trace of the fault. Borehole and CPT data enabled stratigraphic interpretations of the ERT profiles and thereby allowed measuring vertical fault offsets at the base of Pleistocene fluvial deposits of up to 12 m. Groundwater measurements in the boreholes and CPTs indicate that the GBF acts as a hydrologic boundary that prevents groundwater flow from the elevated footwall towards the hangingwall, resulting in hydraulic head differences of up to 12.7 m. For the two investigation sites, the hydraulic head changes correlate with the relief gradient, which in turn correlates with the Quaternary vertical offset of the GBF. ERT profiles at the eastern site also revealed a local soft-linked stepover in the shallow subsurface, which affects groundwater levels in the different fault blocks, and illustrates the complex small-scale geometry of the GBF.

  18. Surface expression of intraplate postglacial faults in Sweden: from LiDAR data

    NASA Astrophysics Data System (ADS)

    Abduljabbar, Mawaheb; Ask, Maria; Bauer, Tobias; Lund, Björn; Smith, Colby; Mikko, Henrik; Munier, Raymond

    2016-04-01

    Large intraplate earthquakes, up to magnitude 8.0±0.3 (Lindblom et al. 2015) are inferred to have occurred in northern Fennoscandia at the end of, or just after the Weichselian deglaciation. More than a dozen large so-called postglacial faults (PGF) have been found in the region. The present-day microseismic activity is rather high in north Sweden, and there is a correlation between microseismicity and mapped PGF scarps: 71% of the observed earthquakes north of 66°N locate within 30 km to the southeast and 10 km to the northwest of PGFs (Lindblom et al., 2015). Surface expressions of PGFs in Sweden have mainly been mapped using aerial photogrammetry and trenching (e.g. Lagerbäck & Sundh 2008). Their detailed surface geometry may be investigated using the new high-resolution elevation model of Sweden (NNH) that has a vertical- and lateral resolution of 2 m and 0.25 m, respectively. With NNH data, known PGFs have been modified, and a number of new potential PGFs have been identified (Smith et al. 2014; Mikko et al. 2015). However, the detailed variation of their surface expression remains to be determined. Our main objective is to constrain the strike and surface offset (i.e., apparent vertical throw because of soil cover overlays the bedrock) across the PGF scarps. We anticipate using the results to constrain direction of fault motion and paleomagnitudes of PGFs, and in numerical analyzes to investigate the nature of PGFs. We have developed a methodology for analyzing PGF-geomorphology from LiDAR data using two main software platforms (Ask et al. 2015): (1) Move2015 by Midland Valley has been used for constructing 3D models of the surface traces of the PGFs to determine apparent vertical throw. The apparent hanging- and footwall cut off lines are digitized, and subsequent computation of coordinates is rather time efficient and provide continuous data of fault and soil geomorphology that can be statistically analyzed; and (2) ArcGIS 10.3 by Esri has mostly been

  19. Scarps Confined to Crater Floors - High Resolution

    NASA Image and Video Library

    2000-01-18

    This image was taken by NASA Mariner 10 during it first encounter with Mercury in 1974. The scarp forms a broad lobe whose southern end abuts against and follows closely the irregular contour of the crater wall.

  20. Paleoseismologic evidence for large-magnitude (Mw 7.5-8.0) earthquakes on the Ventura blind thrust fault: Implications for multifault ruptures in the Transverse Ranges of southern California

    USGS Publications Warehouse

    McAuliffe, Lee J.; Dolan, James F.; Rhodes, Edward J.; Hubbard, Judith; Shaw, John H.; Pratt, Thomas L.

    2015-01-01

    Detailed analysis of continuously cored boreholes and cone penetrometer tests (CPTs), high-resolution seismic-reflection data, and luminescence and 14C dates from Holocene strata folded above the tip of the Ventura blind thrust fault constrain the ages and displacements of the two (or more) most recent earthquakes. These two earthquakes, which are identified by a prominent surface fold scarp and a stratigraphic sequence that thickens across an older buried fold scarp, occurred before the 235-yr-long historic era and after 805 ± 75 yr ago (most recent folding event[s]) and between 4065 and 4665 yr ago (previous folding event[s]). Minimum uplift in these two scarp-forming events was ∼6 m for the most recent earthquake(s) and ∼5.2 m for the previous event(s). Large uplifts such as these typically occur in large-magnitude earthquakes in the range of Mw7.5–8.0. Any such events along the Ventura fault would likely involve rupture of other Transverse Ranges faults to the east and west and/or rupture downward onto the deep, low-angle décollements that underlie these faults. The proximity of this large reverse-fault system to major population centers, including the greater Los Angeles region, and the potential for tsunami generation during ruptures extending offshore along the western parts of the system highlight the importance of understanding the complex behavior of these faults for probabilistic seismic hazard assessment.

  1. Elastic stress interaction between faulting and volcanism in the Olacapato-San Antonio de Los Cobres area (Puna plateau, Argentina)

    NASA Astrophysics Data System (ADS)

    Bonali, F. L.; Corazzato, C.; Tibaldi, A.

    2012-06-01

    We describe the relationships between Plio-Quaternary tectonics, palaeoseismicity and volcanism along the NW-trending Calama-Olacapato-El Toro (COT) lineament that crosses the Andean chain and the Puna Plateau and continues within the eastern Cordillera at about 24° S. We studied in detail the area from the Chile-Argentina border to a few km east of the San Antonio del Los Cobres village. Satellite and field data revealed the presence of seven Quaternary NW-striking normal left-lateral fault segments in the southeastern part of the studied area and of a Plio-Quaternary N-S-striking graben structure in the northwestern part. The NW-striking Chorrillos fault (CF) segment shows the youngest motions, of late Pleistocene age, being marked by several fault scarps, sag ponds and offset Quaternary deposits and landforms. Offset lavas of 0.78 ± 0.1 Ma to 0.2 ± 0.08 Ma indicate fault kinematics characterised by a pitch angle of 20° to 27° SE, a total net displacement of 31 to 63.8 m, and a slip-rate of 0.16 to 0.08 mm/yr. This fault segment is 32 km long and terminates to the northwest near a set of ESE-dipping thrust faults affecting Tertiary strata, while to the southeast it terminates 10 km further from San Antonio. In the westernmost part of the examined area, in Chile at altitudes > 4000 m, recent N-S-striking normal fault scarps depict the 5-km-wide and 10-km-long graben structure. Locally, fault pitches indicate left-lateral normal kinematics. These faults affect deposits up to ignimbrites of Plio-Quaternary age. Scarp heights are from a few metres to 24 m. Despite that this area is located along the trace of the COT strike-slip fault system, which is reported as a continuous structure from Chile to Argentina in the literature, no evidence of NW-striking Plio-Quaternary strike-slip structures is present here. A series of numerical models were also developed in an elastic half-space with uniform isotropic elastic properties using the Coulomb 3.1 code. We studied

  2. Sedimentology of rift climax deep water systems; Lower Rudeis Formation, Hammam Faraun Fault Block, Suez Rift, Egypt

    NASA Astrophysics Data System (ADS)

    Leppard, Christopher W.; Gawthorpe, Rob L.

    2006-09-01

    In most marine rift basins, subsidence outpaces sedimentation during rift climax times. Typically this results in sediment-starved hangingwall depocentres dominated by deep-marine mudstones, with subordinate local development of coarser clastics in the immediate hangingwall derived from restricted catchments on the immediate footwall scarp. To highlight the spatial variability of rift climax facies and the controls upon them, we have investigated the detailed three-dimensional geometry and facies relationships of the extremely well exposed Miocene, rift climax Lower Rudeis Formation in the immediate hangingwall to the Thal Fault Zone, Suez Rift, Egypt. Detailed sedimentological analyses allows the Lower Rudeis Formation to be divided into two contemporaneous depositional systems, (1) a laterally continuous slope system comprising, hangingwall restricted (< 250 m wide) slope apron, slope slumps, fault scarp degradation complex and laterally extensive lower slope-to-basinal siltstones, and (2) a localized submarine fan complex up to 1 km wide and extending at least 2 km basinward of the fault zone. Interpretation of individual facies, facies relationships and their spatial variability indicate that deposition in the immediate hangingwall to the Thal Fault occurred via a range of submarine concentrated density flows, surge-like turbidity flows, mass wasting and hemipelagic processes. Major controls on the spatial variability and stratigraphic architecture of the depositional systems identified reflect the influence of the steep footwall physiography, accommodation and drainage evolution associated with the growth of the Thal Fault. The under-filled nature of the hangingwall depocentre combined with the steep footwall gradient result in a steep fault-controlled basin margin characterised by either slope bypass or erosion, with limited coastal plain or shelf area. Sediment supply to the slope apron deposits is controlled in part by the evolution and size of small

  3. Overview of the Mechanics of the Active Mai'iu Low Angle Normal Fault (Dayman Dome), Southeastern Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Little, T. A.; Boulton, C. J.; Webber, S. M.; Mizera, M.; Oesterle, J.; Ellis, S. M.; Norton, K. P.; Wallace, L.; Biemiller, J.; Seward, D.; Boles, A.

    2016-12-01

    The Mai'iu Fault is a corrugated low-angle normal fault (LANF) that has slipped >24 km. It emerges near sea level at 21° N dip, and flattens southward over the dome crest at 3000 m. This reactivated Paleogene suture is slipping at up to 1 cm/year based on previous GPS data and preliminary 10Be cosmogenic nuclide exposure scarp dating. An alignment of microseismicity (Eilon et al. 2015) suggests a dip of 30° N at 15-25 km depth. Pseudotachylites are abundant in lower, mylonitic parts of the footwall. One vein yielded 40Ar/39Ar ages of 1.9-2.2 Ma, implying seismicity at 8-10 km depth at the above slip rate. Widespread, antithetic normal faults in the footwall are attributed to rolling-hinge controlled yielding during exhumation. A single rider block is downfolded into synformal megamullion. Unconformities within this block, and ductile folding and conjugate strike-slip faulting of mylonitic footwall fabrics record prolonged EW shortening and constriction. Many normal and strike-slip faults cut the metabasaltic footwall recording Andersonian stresses and flipping between σ1 and σ2. To exhume the steep faults, the LANF must have remained active despite differential stress being locally high enough to initiate well-oriented faults—relationships that bracket the frictional strength of the LANF. Quantitative XRD on mafic and serpentinitic gouges reveal the Mai'iu fault core is enriched in weak clays corrensite and saponite. Hydrothermal friction experiments were done at effective normal stresses of 30-210 MPa, and temperatures of 50-450oC. At shallow depths (T≤200 oC), clay-rich fault gouges are frictionally weak (μ=0.13-0.15 and 0.20-0.28) and velocity-strengthening. At intermediate depths (T>200 oC), the footwall is frictionally strong (μ=0.71-0.78 and 0.50-0.64) and velocity-weakening. Velocity-strengthening is observed at T≥400 oC. The experiments provide evidence for deep unstable slip, consistent with footwall pseudotachylites and microseismicity at

  4. Assessing earthquake hazards with fault trench and LiDAR maps in the Puget Lowland, Washington, USA (Invited)

    NASA Astrophysics Data System (ADS)

    Nelson, A. R.; Bradley, L.; Personius, S. F.; Johnson, S. Y.

    2010-12-01

    Deciphering the earthquake histories of faults over the past few thousands of years in tectonically complex forearc regions relies on detailed site-specific as well as regional geologic maps. Here we present examples of site-specific USGS maps used to reconstruct earthquake histories for faults in the Puget Lowland. Near-surface faults and folds in the Puget Lowland accommodate 4-7 mm/yr of north-south shortening resulting from northward migration of forearc blocks along the Cascadia convergent margin. The shortening has produced east-trending uplifts, basins, and associated reverse faults that traverse urban areas. Near the eastern and northern flanks of the Olympic Mountains, complex interactions between north-south shortening and mountain uplift are reflected by normal, oblique-slip, and reverse surface faults. Holocene oblique-slip movement has also been mapped on Whidbey Island and on faults in the foothills of the Cascade Mountains in the northeastern lowland. The close proximity of lowland faults to urban areas may pose a greater earthquake hazard there than do much longer but more distant plate-boundary faults. LiDAR imagery of the densely forested lowland flown over the past 12 years revealed many previously unknown 0.5-m to 6-m-high scarps showing Holocene movement on upper-plate faults. This imagery uses two-way traveltimes of laser light pulses to detect as little as 0.2 m of relative relief on the forest floor. The returns of laser pulses with the longest travel times yield digital elevation models of the ground surface, which we vertically exaggerate and digitally shade from multiple directions at variable transparencies to enhance identification of scarps. Our maps include imagery at scales of 1:40,000 to 1:2500 with contour spacings of 100 m to 0.5 m. Maps of the vertical walls of fault-scarp trenches show complex stratigraphies and structural relations used to decipher the histories of large surface-rupturing earthquakes. These logs (field mapping

  5. Elastic stress interaction between faulting and volcanism in the Olacapato-San Antonio de Los Cobres area (NW Argentina)

    NASA Astrophysics Data System (ADS)

    Bonali, F. L.; Tibaldi, A.; Corazzato, C.; Lanza, F.; Cavallo, A.; Nardin, A.

    2012-04-01

    The aim of this work is to describe the relationships between Plio-Quaternary tectonics, palaeoseismicity and volcanism along the NW-trending Calama-Olacapato-El Toro (COT) lineament that crosses the Andean chain and the Puna Plateau and continues within the eastern Cordillera at about 24° S. Field and satellite data have been collected from the Chile-Argentina border to a few km east of the San Antonio del Los Cobres village. These data revealed the presence of seven Quaternary NW-striking normal left-lateral fault segments in the southeastern part of the studied area and of a Plio-Quaternary N-S-striking graben structure in the northwestern part. The NW-striking Chorrillos fault (CF) segment shows the youngest motions, of late Pleistocene age, being marked by several fault scarps, sag-ponds and offset Quaternary deposits and landforms. Offset lavas of 0.78±0.1 Ma to 0.2±0.08 Ma indicate fault kinematics characterized by a pitch angle of 20° to 27° SE, a total net displacement that ranges from 31 to 63.8 m, and a slip-rate of 0.16 to 0.08 mm/yr. This fault segment is 32 km long and terminates to the northwest near a set of ESE-dipping thrust faults affecting Tertiary strata, while to the southeast it terminates 10 km further from San Antonio. In the westernmost part of the examined area, in Chile at altitudes of 4000 m, recent N-S-striking normal fault scarps depict the 5-km-wide and 10-km-long graben structure. Locally, fault pitches indicate left-lateral normal kinematics. These faults affect deposits up to ignimbrites of Plio-Quaternary age. Scarp heights are from a few metres to 24 m. Despite this area is located along the trace of the COT strike-slip fault system, which is reported as a continuous structure from Chile to Argentina in the literature, no evidence of NW-striking Plio-Quaternary strike-slip structures is present here. A series of numerical models were developed in an elastic half-space with uniform isotropic elastic properties using the

  6. Long Return Periods for Earthquakes in San Gorgonio Pass and Implications for Large Ruptures of the San Andreas Fault in Southern California

    NASA Astrophysics Data System (ADS)

    Yule, J.; McBurnett, P.; Ramzan, S.

    2011-12-01

    The largest discontinuity in the surface trace of the San Andreas fault occurs in southern California at San Gorgonio Pass. Here, San Andreas motion moves through a 20 km-wide compressive stepover on the dextral-oblique-slip thrust system known as the San Gorgonio Pass fault zone. This thrust-dominated system is thought to rupture during very large San Andreas events that also involve strike-slip fault segments north and south of the Pass region. A wealth of paleoseismic data document that the San Andreas fault segments on either side of the Pass, in the San Bernardino/Mojave Desert and Coachella Valley regions, rupture on average every ~100 yrs and ~200 yrs, respectively. In contrast, we report here a notably longer return period for ruptures of the San Gorgonio Pass fault zone. For example, features exposed in trenches at the Cabezon site reveal that the most recent earthquake occurred 600-700 yrs ago (this and other ages reported here are constrained by C-14 calibrated ages from charcoal). The rupture at Cabezon broke a 10 m-wide zone of east-west striking thrusts and produced a >2 m-high scarp. Slip during this event is estimated to be >4.5 m. Evidence for a penultimate event was not uncovered but presumably lies beneath ~1000 yr-old strata at the base of the trenches. In Millard Canyon, 5 km to the west of Cabezon, the San Gorgonio Pass fault zone splits into two splays. The northern splay is expressed by 2.5 ± 0.7 m and 5.0 ± 0.7 m scarps in alluvial terraces constrained to be ~1300 and ~2500 yrs old, respectively. The scarp on the younger, low terrace postdates terrace abandonment ~1300 yrs ago and probably correlates with the 600-700 yr-old event at Cabezon, though we cannot rule out that a different event produced the northern Millard scarp. Trenches excavated in the low terrace reveal growth folding and secondary faulting and clear evidence for a penultimate event ~1350-1450 yrs ago, during alluvial deposition prior to the abandonment of the low terrace

  7. Quaternary Geology and Surface Faulting Hazard: Active and Capable Faults in Central Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Falcucci, E.; Gori, S.

    2015-12-01

    The 2009 L'Aquila earthquake (Mw 6.1), in central Italy, raised the issue of surface faulting hazard in Italy, since large urban areas were affected by surface displacement along the causative structure, the Paganica fault. Since then, guidelines for microzonation were drew up that take into consideration the problem of surface faulting in Italy, and laying the bases for future regulations about related hazard, similarly to other countries (e.g. USA). More specific guidelines on the management of areas affected by active and capable faults (i.e. able to produce surface faulting) are going to be released by National Department of Civil Protection; these would define zonation of areas affected by active and capable faults, with prescriptions for land use planning. As such, the guidelines arise the problem of the time interval and general operational criteria to asses fault capability for the Italian territory. As for the chronology, the review of the international literature and regulatory allowed Galadini et al. (2012) to propose different time intervals depending on the ongoing tectonic regime - compressive or extensional - which encompass the Quaternary. As for the operational criteria, the detailed analysis of the large amount of works dealing with active faulting in Italy shows that investigations exclusively based on surface morphological features (e.g. fault planes exposition) or on indirect investigations (geophysical data), are not sufficient or even unreliable to define the presence of an active and capable fault; instead, more accurate geological information on the Quaternary space-time evolution of the areas affected by such tectonic structures is needed. A test area for which active and capable faults can be first mapped based on such a classical but still effective methodological approach can be the central Apennines. Reference Galadini F., Falcucci E., Galli P., Giaccio B., Gori S., Messina P., Moro M., Saroli M., Scardia G., Sposato A. (2012). Time

  8. South Polar Scarps

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-438, 31 July 2003

    The terrain of the south polar residual ice cap, made up mostly of frozen carbon dioxide, has come to be known by many as 'swiss cheese terrain,' because many areas of the cap resemble slices of swiss cheese. However, not all of the south polar cap looks like a tasty lunch food. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a series of curving scarps formed by erosion and sublimation of carbon dioxide from the south polar cap. This area is located near 86.3oS, 51.2oW. The image is illuminated by sunlight from the upper left; the area is about 1.5 km (0.9 mi) wide.

  9. Late Quaternary Surface Displacement Across a Normal-Fault Structural Boundary on the Northern Lost River Fault Zone (Idaho, USA)

    NASA Astrophysics Data System (ADS)

    DuRoss, C. B.; Bunds, M. P.; Reitman, N. G.; Gold, R. D.; Personius, S. F.; Briggs, R. W.; Toke, N. A.; Johnson, K. L.; Lajoie, L. J.

    2017-12-01

    In 1983, about 36 km of the 130-km-long multisegment Lost River fault zone (LRFZ) (Idaho, USA) ruptured in the M 6.9 Borah Peak earthquake. Normal-faulting surface rupture propagated along the entire 24-km-long Thousand Springs section, then branched to the northwest along a 4-km-long fault (western section) that continues into the Willow Creek Hills, a prominent bedrock ridge that forms a structural boundary between the Thousand Springs section and Warms Springs section to the north. North of the Willow Creek Hills, the 1983 rupture continued onto the southern 8 km of the 16-km-long Warm Springs section. To improve our understanding of the Borah Peak earthquake and the role of structural boundaries in normal-fault rupture propagation, we acquired low-altitude aerial imagery of the southern 8 km of the Warm Springs section and northern 6 km of the Thousand Springs section, including the western section branch fault. Using 5-10-cm-pixel digital surface models generated from this dataset, we measured vertical surface offsets across both 1983 and prehistoric scarps. On the Warm Springs section, 1983 displacement is minor (mean of 0.3 m) compared to at least two prehistoric events having mean displacements of 1.1 m and 1.7 m inferred from displacement difference curves. Prehistoric scarps on the western section indicate rupture of this branch fault prior to 1983. Correcting for 1983 displacement, mean prehistoric displacement on the western section is 0.9 m compared to a mean of 0.7 m in 1983. Using these data and previous paleoseismic displacements, we evaluate the spatial distribution of cumulative and per-earthquake displacement. Our results suggest that at least one prehistoric rupture of the Thousand Springs section occurred with a similar length and displacement to that in 1983. Further, the 1983 spillover rupture from the Thousand Springs section to the southernmost Warm Springs section appears unique from larger displacement, prehistoric ruptures that may have

  10. The Cottage Lake Lineament, Washington: Onshore Extension of the Southern Whidbey Island Fault?

    NASA Astrophysics Data System (ADS)

    Blakely, R. J.; Weaver, C. S.; Sherrod, B. L.; Troost, K. G.; Haugerud, R. A.; Wells, R. E.; McCormack, D. H.

    2003-12-01

    The northwest-striking southern Whidbey Island fault zone (SWIF) is reasonably well expressed by borehole data, marine seismic surveys, and potential-field anomalies on Whidbey Island and beneath surrounding waterways. Johnson et al. (1996) described evidence for Quaternary movement on the SWIF, suggested the fault zone is capable of a M 7 earthquake, and projected three fault strands onto the mainland between the cities of Seattle and Everett. Evidence for this onshore projection is scant, however, and the exact location of the SWIF in this populated region is unknown. Four linear, northwest-striking magnetic anomalies on the mainland may help address this issue. All of the anomalies are low in amplitude and best illuminated in residual magnetic fields. The most prominent of the magnetic anomalies extends at least 15 km, is on strike with the SWIF on Whidbey Island, and passes near Cottage Lake, about 15 km south of downtown Everett. The magnetic anomaly is associated with linear topography along its entire length, but spectral analysis indicates that the source of the anomaly lies principally beneath the topographic surface and extends to depths greater than 2 km. The anomalies are likely created by northwest-trending, faulted and folded Tertiary volcanic and sedimentary rocks of the Cascade foothills, which rise from beneath the Quaternary lowland fill to the southeast of the SWIF. High-resolution Lidar topography provided by King County shows subtle scarps cutting the latest Pleistocene glaciated surface at two locations along the magnetic anomaly; scarps are parallel to the anomaly trend. In the field, one scarp has 2 to 3 m of north-side-up offset; paleoseismic trench excavations are planned for Fall 2003 to determine their nature and history. Preliminary examination of boreholes, recently acquired as part of an ongoing sewer tunnel project, show anomalous stratigraphic and structural disturbances in the area of the magnetic anomalies. Analyses are underway

  11. Quaternary low-angle slip on detachment faults in Death Valley, California

    USGS Publications Warehouse

    Hayman, N.W.; Knott, J.R.; Cowan, D.S.; Nemser, E.; Sarna-Wojcicki, A. M.

    2003-01-01

    Detachment faults on the west flank of the Black Mountains (Nevada and California) dip 29??-36?? and cut subhorizontal layers of the 0.77 Ma Bishop ash. Steeply dipping normal faults confined to the hanging walls of the detachments offset layers of the 0.64 Ma Lava Creek B tephra and the base of 0.12-0.18 Ma Lake Manly gravel. These faults sole into and do not cut the low-angle detachments. Therefore the detachments accrued any measurable slip across the kinematically linked hanging-wall faults. An analysis of the orientations of hundreds of the hanging-wall faults shows that extension occurred at modest slip rates (<1 mm/yr) under a steep to vertically oriented maximum principal stress. The Black Mountain detachments are appropriately described as the basal detachments of near-critical Coulomb wedges. We infer that the formation of late Pleistocene and Holocene range-front fault scarps accompanied seismogenic slip on the detachments.

  12. Development, Interaction and Linkage of Normal Fault Segments along the 100-km Bilila-Mtakataka Fault, Malawi

    NASA Astrophysics Data System (ADS)

    Fagereng, A.; Hodge, M.; Biggs, J.; Mdala, H. S.; Goda, K.

    2016-12-01

    Faults grow through the interaction and linkage of isolated fault segments. Continuous fault systems are those where segments interact, link and may slip synchronously, whereas non-continuous fault systems comprise isolated faults. As seismic moment is related to fault length (Wells and Coppersmith, 1994), understanding whether a fault system is continuous or not is critical in evaluating seismic hazard. Maturity may be a control on fault continuity: immature, low displacement faults are typically assumed to be non-continuous. Here, we study two overlapping, 20 km long, normal fault segments of the N-S striking Bilila-Mtakataka fault, Malawi, in the southern section of the East African Rift System. Despite its relative immaturity, previous studies concluded the Bilila-Mtakataka fault is continuous for its entire 100 km length, with the most recent event equating to an Mw8.0 earthquake (Jackson and Blenkinsop, 1997). We explore whether segment geometry and relationship to pre-existing high-grade metamorphic foliation has influenced segment interaction and fault development. Fault geometry and scarp height is constrained by DEMs derived from SRTM, Pleiades and `Structure from Motion' photogrammetry using a UAV, alongside direct field observations. The segment strikes differ on average by 10°, but up to 55° at their adjacent tips. The southern segment is sub-parallel to the foliation, whereas the northern segment is highly oblique to the foliation. Geometrical surface discontinuities suggest two isolated faults; however, displacement-length profiles and Coulomb stress change models suggest segment interaction, with potential for linkage at depth. Further work must be undertaken on other segments to assess the continuity of the entire fault, concluding whether an earthquake greater than that of the maximum instrumentally recorded (1910 M7.4 Rukwa) is possible.

  13. Trench logs, terrestrial lidar system imagery, and radiocarbon data from the kilometer-62 site on the Greenville Fault, southeastern Alameda County, California, 2014

    USGS Publications Warehouse

    Lienkaemper, James J.; DeLong, Stephen B.; Avdievitch, Nikita N.; Pickering, Alexandra J; Guilderson, Thomas P.

    2015-01-01

    In 2014, we investigated an abrupt 8.5-meter (m), right-laterally deflected stream channel located near the Greenville Fault in southeastern Alameda County, California (-121.56224° E, 37.53430° N) that we discovered using 0.5-m resolution, 2011 aerial lidar imagery flown along the active fault trace. Prior to trenching we surveyed the site using a terrestrial lidar system (TLS) to document the exact geomorphic expression of this deflected stream channel before excavating a trench adjacent to it. We trenched perpendicular to the fault hoping to document the prehistoric history of earthquake ruptures along the fault. However, the alluvial stratigraphy that we document in these trench logs shows conclusively that this trench did not expose any active fault trace. Using other local geomorphic evidence for the fault location, a straight fault scarp immediately north of this stream projects slightly upslope of the west end of our trench and may be the actual location of the active fault trace. Five radiocarbon samples establish age control for the alluvial sequence documented in the trench, which may in the future be useful in constraining the long-term slip rate of the Greenville Fault. The deflection had been caused by an abrupt nontectonic termination of unit u30, a relatively thick (0.15–0.35 m) silt that is more erosion resistant than the adjacent cohesionless sand and gravel. 

  14. Along-Strike Variation in Geometry and Kinematics of a Major, Active Intracontinental Thrust System: the Pred-Terskey Fault Zone, Kyrgyz Tien Shan, Central Asia

    NASA Astrophysics Data System (ADS)

    Burgette, R. J.; Weldon, R. J.; Abdrakhmatov, K. Y.; Ormukov, C.

    2004-12-01

    The Pred-Terskey fault zone defines the southern margin of the Issyk-Kul basin, extending eastward over 250 km from at least the Chu River to the Kazakhstan border, and appears to be one of the most active zones in the Kyrgyz Tien Shan. Despite a diversity of structural styles and changes of vergence at the surface, the lateral continuity and overall geometry of the zone is consistent with a single north vergent thrust at depth, which uplifts the Terskey Range and generally tilts the south margin of the basin to the north. This northward tilting of the margin is probably due to a flattening of the fault as it approaches the surface. In spite of historical quiescence, it is likely capable of producing great earthquakes. We have conducted detailed field mapping coupled with terrace profiling and dating at seven representative, well-exposed areas of the fault zone. Based on these field observations and satellite image and air photo interpretation along the entire zone, we identify three major divisions in structural style expressed at the surface. The western segment is typified by the Tura-Su, Ak-Terek and Ton areas. A series of left-stepping, south-vergent, basement-involved reverse faults and folds are uplifting the southern margin of the Issyk-Kul basin in this area. The resulting uphill-facing scarps have trapped and diverted many of the rivers flowing north from the Terskey Range. Tertiary strata and Quaternary geomorphic surfaces show consistent, progressive northward tilting across the entire zone. The west-central segment is represented by the Kajy-Say area. South-vergent reverse faults and a north-vergent backthrust have uplifted an arcuate granite block. Offshore of this area, the lake floor descends to a sharp break in slope with a low relief area at a depth of about 650 m. Late Quaternary geomorphic features do not show evidence of tilting. In contrast to the areas east and west, the major north-dipping thrust is likely planar over this segment and

  15. Relationship of faults in basin sediments to the gravity and magnetic expression of their underlying fault systems

    USGS Publications Warehouse

    Baldyga, Christopher A.

    2001-01-01

    Gravity and magnetic surveys were performed along the western flanks of the Santa Rita Mountain range located in southeastern Arizona to develop an understanding of the relationship between surface fault scarps within the basin fill sediments and theirgeophysical response of the faults at depth within the bedrock. Data were acquired for three profiles, one of them along the northern terrace of Montosa Canyon, and the other two along the northern and southern terraces of Cottonwood Canyon. A total of 122 gravity stations were established as well as numerous magnetic data collected by a truckmounted cesium-vapor magnetometer. In addition, aeromagnetic data previously acquired were interpreted to obtain a geologically sound model, which produced a good fit to the data. Gravity anomalies associated with faults exhibiting surface rupture were more pronounced than the respective magnetic anomalies. More credence was given to the gravity data when determining fault structures and it was found in all three profiles that faults at depth projected through alluvium at a steeper dip than the bedrock fault indicating brittle behavior within the overlying sediments. The gravity data also detected a significant horst and graben structure within Cottonwood Canyon. The aeromagnetic data did not provide any insight into the response of the minor faults but rather served to verify the regional response of the whole profile.

  16. Diffuse Winter Lighting of the Chasma Boreale Scarp

    NASA Image and Video Library

    2013-08-08

    Sunlight was just starting to reach the high Northern latitudes in late winter when NASA Mars Reconnaissance Orbiter HiRISE camera captured this image of part of the steep scarps around portions of the North Polar layered deposits.

  17. Recent Motion on the Kern Canyon Fault, Southern Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Nadin, E. S.; Saleeby, J. B.

    2005-12-01

    Evidence suggests that the Kern Canyon Fault (KCF), the longest fault in the southern Sierra Nevada, is an active fault. Along the 140-km-long KCF, batholithic and metamorphic rocks were displaced up to 16~km in apparent dextral strike slip during at least three discrete phases of deformation throughout the past ~90~Myr. Early ductile shear is preserved along a 1.5-km-wide zone of S-C mylonites and phyllonites that constitutes the Proto-KCF; a later phase of brittle faulting led to through-going cataclasis along the 50-m-wide KCF; and finally, late-stage minor faulting resulted in thin, hematitic gouge zones. The KCF has been considered inactive since 3.5~Ma based on a dated basalt flow reported to cap the fault. However, we believe this basalt to be disturbed, and several pieces of evidence support the idea that the KCF has been reactivated in a normal sense during the Quaternary. Fresh, high-relief fault scarps at Engineer Point in Lake Isabella and near Brush Creek, suggest recent, west-side-up vertical offset. And seismicity in the area hints at local motion. The center of activity during the 1983--1984 Durrwood Meadows earthquake swarm, a series of more than 2,000 earthquakes, the largest of which was M = 4.5, was 10~km east of the KCF. The swarm spanned a discrete, 100~km-long north-south trajectory between latitudes 35° 20'N and 36° 30'N, and its focal mechanisms were consistent with pure normal faulting, but the KCF has been disqualified as too far west and too steep to accommodate the seismic activity. But it could be part of the fault system: Near latitude 36°N, we documented a well-preserved expression of the KCF, which places Cretaceous granitic rocks against a Quaternary glacial debris flow. This fault plane strikes N05°E and is consistent with west-side-up normal faulting, in agreement with the focal mechanism slip planes of the Durrwood Meadows swarm. It is possible that the recent swarm represents a budding strand of the KCF system, much like

  18. Detecting Blind Fault with Fractal and Roughness Factors from High Resolution LiDAR DEM at Taiwan

    NASA Astrophysics Data System (ADS)

    Cheng, Y. S.; Yu, T. T.

    2014-12-01

    There is no obvious fault scarp associated with blind fault. The traditional method of mapping this unrevealed geological structure is the cluster of seismicity. Neither the seismic event nor the completeness of cluster could be captured by network to chart the location of the entire possible active blind fault within short period of time. High resolution DEM gathered by LiDAR could denote actual terrain information despite the existence of plantation. 1-meter interval DEM of mountain region at Taiwan is utilized by fractal, entropy and roughness calculating with MATLAB code. By jointing these handing, the regions of non-sediment deposit are charted automatically. Possible blind fault associated with Chia-Sen earthquake at southern Taiwan is served as testing ground. GIS layer help in removing the difference from various geological formation, then multi-resolution fractal index is computed around the target region. The type of fault movement controls distribution of fractal index number. The scale of blind fault governs degree of change in fractal index. Landslide induced by rainfall and/or earthquake possesses larger degree of geomorphology alteration than blind fault; special treatment in removing these phenomena is required. Highly weathered condition at Taiwan should erase the possible trace remained upon DEM from the ruptured of blind fault while reoccurrence interval is higher than hundreds of years. This is one of the obstacle in finding possible blind fault at Taiwan.

  19. Underground Martian Ice Deposit Exposed at Scarp

    NASA Image and Video Library

    2018-01-11

    Click on the image for larger version A cross-section of a thick sheet of underground ice is exposed at the steep slope (or scarp) that appears bright blue in this enhanced-color view from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. The view covers an area about 550 yards (500 meters) wide. Figure 1 includes a 100-meter (109-yard) scale bar. North is toward the top. The upper third of the image shows level ground that is about 140 yards (130 meters) higher in elevation than the ground in the bottom third. In between, the scarp descends sharply, exposing about 260 vertical feet (80 vertical meters) of water ice. Color is exaggerated to make differences in surface materials easier to see. The presence of exposed water ice at this site was confirmed by observation with the same orbiter's Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). In January 2018, in the journal Science, researchers reported finding and studying eight such ice-exposing scarps in the middle latitudes of Mars. The presence of vast underground ice deposits in Mars' middle latitudes was known previously. The report of unusual sites where they are exposed provides new information about their depth and layering. It also identifies potential water resources for future Mars missions and possibilities for studying Martian climate history by examining the ice layers holding a record of past climate cycles. The ice may have been deposited as snow when the tilt of Mars' rotation axis was greater than it is now. HiRISE observation ESP_022389_1230 was made on May 7, 2011, at 56.6 degrees south latitude, 114.1 degrees east longitude. https://photojournal.jpl.nasa.gov/catalog/PIA22077

  20. "3D_Fault_Offsets," a Matlab Code to Automatically Measure Lateral and Vertical Fault Offsets in Topographic Data: Application to San Andreas, Owens Valley, and Hope Faults

    NASA Astrophysics Data System (ADS)

    Stewart, N.; Gaudemer, Y.; Manighetti, I.; Serreau, L.; Vincendeau, A.; Dominguez, S.; Mattéo, L.; Malavieille, J.

    2018-01-01

    Measuring fault offsets preserved at the ground surface is of primary importance to recover earthquake and long-term slip distributions and understand fault mechanics. The recent explosion of high-resolution topographic data, such as Lidar and photogrammetric digital elevation models, offers an unprecedented opportunity to measure dense collections of fault offsets. We have developed a new Matlab code, 3D_Fault_Offsets, to automate these measurements. In topographic data, 3D_Fault_Offsets mathematically identifies and represents nine of the most prominent geometric characteristics of common sublinear markers along faults (especially strike slip) in 3-D, such as the streambed (minimum elevation), top, free face and base of channel banks or scarps (minimum Laplacian, maximum gradient, and maximum Laplacian), and ridges (maximum elevation). By calculating best fit lines through the nine point clouds on either side of the fault, the code computes the lateral and vertical offsets between the piercing points of these lines onto the fault plane, providing nine lateral and nine vertical offset measures per marker. Through a Monte Carlo approach, the code calculates the total uncertainty on each offset. It then provides tools to statistically analyze the dense collection of measures and to reconstruct the prefaulted marker geometry in the horizontal and vertical planes. We applied 3D_Fault_Offsets to remeasure previously published offsets across 88 markers on the San Andreas, Owens Valley, and Hope faults. We obtained 5,454 lateral and vertical offset measures. These automatic measures compare well to prior ones, field and remote, while their rich record provides new insights on the preservation of fault displacements in the morphology.

  1. Parabolic distribution of circumeastern Snake River Plain seismicity and latest Quaternary faulting: Migratory pattern and association with the Yellowstone hotspot

    NASA Astrophysics Data System (ADS)

    Anders, Mark H.; Geissman, John Wm.; Piety, Lucille A.; Sullivan, J. Timothy

    1989-02-01

    . Mapping of fault scarps and unfaulted deposits along the Grand Valley fault system shows that latest Quaternary fault scarps are restricted to the portion farthest from the eastern SRP, the southern part of the Star Valley fault. Surface displacements estimated from scarp profiles and deposit ages estimated from soil development suggest a latest Quaternary displacement rate of 0.6-1.2 mm/yr for the southern portion of the Star Valley fault. Morphologic evidence suggests that this displacement rate persisted on the Star Valley fault throughout most of the Quaternary. The latest Quaternary displacement rate calculated for the southern portion of the Star Valley fault is similar to the rate calculated for Swan Valley during the interval from 2.0 to 4.4 Ma. This similarity, together with evidence for a low Quaternary displacement rate on the fault system in Swan Valley, suggests that the location of the highest displacement rate has migrated away from the eastern SRP. Other normal faults in southeastern Idaho, northwestern Wyoming, and southwestern Montana, while less well described than the Grand Valley fault system, exhibit a similar outward migrating pattern of increased fault activity followed by quiescence. Furthermore, a temporal and spatial relationship between fault activity and the 3.5 cm/yr northeastward track of the Yellowstone hotspot is observable on the Grand Valley fault system and on other north-northwest trending late Cenozoic faults that border the eastern SRP. The temporal and spatial relationship of Miocene to present high displacement rates for other circumeastern SRP faults and the observable outwardly migrating pattern of fault activity suggest that a similar parabolic distribution of seismicity and high displacement rates was symmetrically positioned about the former position of the hotspot. Moreover, the tandem migration of the hotspot and the parabolic distribution of increased fault activity and seismicity are closely followed by a parabolic

  2. Topography of closed depressions, scarps, and grabens in the North Tharsis region of Mars: implications for shallow crustal discontinuities and graben formation

    USGS Publications Warehouse

    Davis, Philip A.; Tanaka, Kenneth L.; Golombek, Matthew P.

    1995-01-01

    Using Viking Orbiter images, detailed photoclinometric profiles were obtained across 10 irregular depressions, 32 fretted fractures, 49 troughs and pits, 124 solitary scarps, and 370 simple grabens in the north Tharsis region of Mars. These data allow inferences to be made on the shallow crustal structure of this region. The frequency modes of measured scarp heights correspond with previous general thickness estimates of the heavily cratered and ridged plains units. The depths of the flat-floored irregular depressions (55-175 m), fretted fractures (85-890 m), and troughs and pits (60-1620 m) are also similar to scarp heights (thicknesses) of the geologic units in which these depressions occur, which suggests that the depths of these flat-floored features were controlled by erosional base levels created by lithologic contacts. Although the features have a similar age, both their depths and their observed local structural control increase in the order listed above, which suggests that the more advanced stages of associated fracturing facilitated the development of these depressions by increasing permeability. If a ground-ice zone is a factor in development of these features, as has been suggested, our observation that the depths of these features decrease with increasing latitude suggests that either the thickness of the ground-ice zone does not increase poleward or the depths of the depressions were controlled by the top of the ground-ice zone whose depth may decrease with latitude. Deeper discontinuities are inferred from fault-intersection depths of 370 simple grabens (assuming 60° dipping faults that initiate at a mechanical discontinuity) in Tempe Terra and Alba Patera and from the depths of the large, flat-floored troughs in Tempe Terra. The frequency distributions of these fault-intersection and large trough depths show a concentration at 1.0-1.6 km depth, similar to data obtained for Syria, Sinai, and Lunae Plana. The consistency of these depth data over

  3. Sorption of the Rare Earth Elements and Yttrium (REE-Y) in calcite: the mechanism of a new effective tool in identifying paleoearthquakes on carbonate faults

    NASA Astrophysics Data System (ADS)

    Moraetis, Daniel; Mouslopoulou, Vasiliki; Pratikakis, Alexandros

    2015-04-01

    A new tool for identifying paleoearthquakes on carbonate faults has been successfully tested on two carbonate faults in southern Europe (the Magnola Fault in Italy and the Spili Fault in Greece): the Rare Earth Element and Yttrium (REE-Y) method (Manighetti et al., 2010; Mouslopoulou et al., 2011). The method is based on the property of the calcite in limestone scarps to absorb the REE and Y from the soil during its residence beneath the ground surface (e.g. before its exhumation due to earthquakes). Although the method is established, the details of the enrichment mechanism are poorly investigated. Here we use published data together with new information from pot-experiments to shed light on the sorption mechanism and the time effectiveness of the REE-Y method. Data from the Magnola and Spili faults show that the average chemical enrichment is ~45%, in REE-Y while the denudation rate of the enriched zones is ~1% higher every 400 years due to exposure of the fault scarp in weathering. They also show that the chemical enrichment is significant even for short periods of residence time (e.g., ~100 years). To better understand the enrichment mechanism, we performed a series of pot experiments, where carbonate tiles extracted from the Spili Fault were buried into soil collected from the hanging-wall of the same fault. We irrigated the pots with artificial rain that equals 5 years of rainfall in Crete and at temperatures of 15oC and 25oC. Following, we performed sorption isotherm, kinetic and pH-edge tests for the europium (Eu), the cerium (Ce) and the ytterbium (Yt) that occur in the calcite minerals. The processes of adsorption and precipitation in the batch experiments are simulated by the Mineql software. The pot experiments indicate incorporation of the REE and Y into the surface of the carbonate tile which is in contact with the soil. The pH of the leached solution during the rain application range from 7.6 to 8.3. Nutrient release like Ca is higher in the leached

  4. Near-surface location, geometry, and velocities of the Santa Monica Fault Zone, Los Angeles, California

    USGS Publications Warehouse

    Catchings, R.D.; Gandhok, G.; Goldman, M.R.; Okaya, D.; Rymer, M.J.; Bawden, G.W.

    2008-01-01

    High-resolution seismic-reflection and seismic-refraction imaging, combined with existing borehole, earthquake, and paleoseismic trenching data, suggest that the Santa Monica fault zone in Los Angeles consists of multiple strands from several kilometers depth to the near surface. We interpret our seismic data as showing two shallow-depth low-angle fault strands and multiple near-vertical (???85??) faults in the upper 100 m. One of the low-angle faults dips northward at about 28?? and approaches the surface at the base of a topographic scarp on the grounds of the Wadsworth VA Hospital (WVAH). The other principal low-angle fault dips northward at about 20?? and projects toward the surface about 200 m south of the topographic scarp, near the northernmost areas of the Los Angeles Basin that experienced strong shaking during the 1994 Northridge earthquake. The 20?? north-dipping low-angle fault is also apparent on a previously published seismic-reflection image by Pratt et al. (1998) and appears to extend northward to at least Wilshire Boulevard, where the fault may be about 450 m below the surface. Slip rates determined at the WVAH site could be significantly underestimated if it is assumed that slip occurs only on a single strand of the Santa Monica fault or if it is assumed that the near-surface faults dip at angles greater than 20-28??. At the WVAH, tomographic velocity modeling shows a significant decrease in velocity across near-surface strands of the Santa Monica fault. P-wave velocities range from about 500 m/sec at the surface to about 4500 m/sec within the upper 50 m on the north side of the fault zone at WVAH, but maximum measured velocities on the south side of the low-angle fault zone at WVAH are about 3500 m/sec. These refraction velocities compare favorably with velocities measured in nearby boreholes by Gibbs et al. (2000). This study illustrates the utility of com- bined seismic-reflection and seismic-refraction methods, which allow more accurate

  5. Characterizing the recent behavior and earthquake potential of the blind western San Cayetano and Ventura fault systems

    NASA Astrophysics Data System (ADS)

    McAuliffe, L. J.; Dolan, J. F.; Hubbard, J.; Shaw, J. H.

    2011-12-01

    The recent occurrence of several destructive thrust fault earthquakes highlights the risks posed by such events to major urban centers around the world. In order to determine the earthquake potential of such faults in the western Transverse Ranges of southern California, we are studying the activity and paleoearthquake history of the blind Ventura and western San Cayetano faults through a multidisciplinary analysis of strata that have been folded above the fault tiplines. These two thrust faults form the middle section of a >200-km-long, east-west belt of large, interconnected reverse faults that extends across southern California. Although each of these faults represents a major seismic source in its own right, we are exploring the possibility of even larger-magnitude, multi-segment ruptures that may link these faults to other major faults to the east and west in the Transverse Ranges system. The proximity of this large reverse-fault system to several major population centers, including the metropolitan Los Angeles region, and the potential for tsunami generation during offshore ruptures of the western parts of the system, emphasizes the importance of understanding the behavior of these faults for seismic hazard assessment. During the summer of 2010 we used a mini-vibrator source to acquire four, one- to three-km-long, high-resolution seismic reflection profiles. The profiles were collected along the locus of active folding above the blind, western San Cayetano and Ventura faults - specifically, across prominent fold scarps that have developed in response to recent slip on the underlying thrust ramps. These high-resolution data overlap with the uppermost parts of petroleum-industry seismic reflection data, and provide a near-continuous image of recent folding from several km depth to within 50-100 m of the surface. Our initial efforts to document the earthquake history and slip-rate of this large, multi-fault reverse fault system focus on a site above the blind

  6. A 100-year average recurrence interval for the San Andreas fault at Wrightwood, California

    USGS Publications Warehouse

    Fumal, T.E.; Pezzopane, S.K.; Weldon, R.J.; Schwartz, D.P.

    1993-01-01

    Evidence for five large earthquakes during the past five centuries along the San Andreas fault zone 70 kilometers northeast of Los Angeles, California, indicates that the average recurrence interval and the temporal variability are significantly smaller than previously thought. Rapid sedimentation during the past 5000 years in a 150-meter-wide structural depression has produced a greater than 21-meter-thick sequence of debris flow and stream deposits interbedded with more than 50 datable peat layers. Fault scarps, colluvial wedges, fissure infills, upward termination of ruptures, and tilted and folded deposits above listric faults provide evidence for large earthquakes that occurred in A.D. 1857, 1812, and about 1700, 1610, and 1470.

  7. 3-D GPR data analysis for high-resolution imaging of shallow subsurface faults: the Mt Vettore case study (Central Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Ercoli, Maurizio; Pauselli, Cristina; Frigeri, Alessandro; Forte, Emanuele; Federico, Costanzo

    2014-07-01

    The activation of Late Quaternary faults in the Central Apennines (Italy) could generate earthquakes with magnitude of about 6.5, and the Monte Vettore fault system probably belongs to the same category of seismogenetic faults. Such structure has been defined `silent', because of its geological and geomorphological evidences of past activation, but the absence of historical records in the seismic catalogues to be associated with its activation. The `Piano di Castelluccio' intramountain basin, resulting from the Quaternary activity of normal faults, is characterized by a secondary fault strand highlighted by a NW-SE fault scarp: it has been already studied through palaeoseismological trenches, which highlighted evidences of Quaternary shallow faulting due to strong earthquakes, and through a 2-D ground penetrating radar (GPR) survey, showing the first geophysical signature of faulting for this site. Within the same place, a 3-D GPR volume over a 20 × 20 m area has been collected. The collection of radar echoes in three dimensions allows to map both the vertical and lateral continuity of shallow geometries of the fault zone (Fz), imaging features with high resolution, ranging from few metres to centimetres and therefore imaging also local variations at the microscale. Several geophysical markers of faulting, already highlighted on this site, have been taken as reference to plan the 3-D survey. In this paper, we provide the first 3-D subsurface imaging of an active shallow fault belonging to the Umbria-Marche Apennine highlighting the subsurface fault geometry and the stratigraphic sequence up to a depth of about 5 m. From our data, geophysical faulting signatures are clearly visible in three dimensions: diffraction hyperbolas, truncations of layers, local attenuated zones and varying dip of the layers have been detected within the Fz. The interpretation of the 3-D data set provided qualitative and quantitative geological information in addition to the fault location

  8. Current state of active-fault monitoring in Taiwan

    NASA Astrophysics Data System (ADS)

    Hou, C.; Lin, C.; Chen, Y.; Liu, H.; Chen, C.; Lin, Y.; Chen, C.

    2008-12-01

    The earthquake is one of the major hazard sources in Taiwan where an arc-continent collision is on-going. For the purpose of seismic hazard mitigation, to understand current situation of each already-known active fault is urgently needed. After the 1999 Chi-chi earthquake shocked Taiwan, the Central Geological Survey (CGS) of Taiwan aggressively promoted the tasks on studying the activities of active faults. One of them is the deployment of miscellaneous monitoring networks to cover all the target areas, where the earthquake occurrence potentials on active faults are eager to be answered. Up to the end of 2007, CGS has already deployed over 1000 GPS campaign sites, 44 GPS stations in continuous mode, and 42 leveling transects across the major active faults with a total ground distance of 974 km. The campaign sites and leveling tasks have to be measured once a year. The resulted crustal deformation will be relied on to derive the fault slip model. The time series analysis on continuous mode of GPS can further help understand the details of the fault behavior. In addition, 12 down-hole strain meters, five stations for liquid flux and geochemical proxies, and two for water table monitoring have been also installed to seek possible anomalies related to the earthquake activities. It may help discover reliable earthquake precursors.

  9. Active faults and minor plates in NE Asia

    NASA Astrophysics Data System (ADS)

    Kozhurin, Andrey I.; Zelenin, Egor A.

    2014-05-01

    Stated nearly 40 yr ago the uncertainty with plate boundaries location in NE Asia (Chapman, Solomon, 1976) still remains unresolved. Based on the prepositions that a plate boundary must, first, reveal itself in linear sets of active structures, and, second, be continuous and closed, we have undertaken interpretation of medium-resolution KH-9 Hexagon satellite imageries, mostly in stereoscopic regime, for nearly the entire region of NE Asia. Main findings are as follows. There are two major active fault zones in the region north of the Bering Sea. One of them, the Khatyrka-Vyvenka zone, stretches NE to ENE skirting the Bering Sea from the Kamchatka isthmus to the Navarin Cape. Judging by the kinematics of the Olyutorsky 2006 earthquake fault, the fault zones move both right-laterally and reversely. The second active fault zone, the Lankovaya-Omolon zone, starts close to the NE margin of the Okhotsk Sea and extends NE up to nearly the margin of the Chukcha Sea. The fault zone is mostly right-lateral, with topographically expressed cumulative horizontal offsets amounting to 2.5-2.6 km. There may be a third NE-SW zone between the major two coinciding with the Penzhina Range as several active faults found in the southern termination of the Range indicate. The two active fault zones divide the NE Asia area into two large domains, which both could be parts of the Bering Sea plate internally broken and with uncertain western limit. Another variant implies the Khatyrka-Vyvenka zone as the Bering Sea plate northern limit, and the Lankovaya-Omolon zone as separating an additional minor plate from the North-American plate. The choice is actually not crucial, and more important is that both variants leave the question of where the Bering Sea plate boundary is in Alaska. The Lankovaya-Omolon zone stretches just across the proposed northern boundary of the Okhorsk Sea plate. NW of the zone, there is a prominent left-lateral Ulakhan fault, which is commonly interpreted to be a

  10. Surface Break-through by Repeated Seismic Slip During Compressional Inversion of an Inherited Fault. The Ostler Fault, South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Ghisetti, F. C.; Gorman, A. R.

    2006-12-01

    Shortening across the plate boundary in the South Island of New Zealand is accommodated not just along the right-lateral transpressive Alpine Fault, but also on an array of N-S reverse faults in both the Australian and Pacific crust. The Ostler Fault is such a structure, developed in the piedmont of the Southern Alps, east of the Alpine Fault. The question addressed here is whether the fault is an entirely new structure formed in the current stress regime, or a reactivated fault inherited from earlier episodes of deformation. New data on the geometry and deformation history of the Ostler Fault have been acquired by integrating surface geological mapping (scale 1:25,000), structural and morphotectonic investigations, and two seismic reflection profiles across the most active segments of the fault. The geological and morphotectonic data constrain the long-term evolution of the fault system coeval with deposition of a late Pliocene-Pleistocene lacustrine-fluvial terrestrial sequence, and the overlying glacial and peri-glacial deposits 128-186 to 16-18 ka old. Sets of fault scarps define a segmented zone (50 km long and 2-3 km wide) of N-S reverse faults dipping 50° W, with a strongly deformed hanging wall panel, where the uplifted terrestrial units are uplifted, back-tilted up to 60° W, and folded. Gradients in elevation and thickness of the hanging wall sequence, shifting of crosscutting paleodrainages, and younging age of displaced markers, all consistently indicate the progressive propagation of the surface trace of the fault from south to north over many seismic cycles. The interpretation of the new seismic reflection profiles, consistent with existing gravity data and surface geology, suggests that the Ostler Fault belongs to a set of sub-parallel splays joining, at depths of > 1.5-2 km, a buried high-angle normal fault that underwent compressional reactivation during sedimentation of the Plio-Pleistocene and Holocene cover sequence. Repeated reactivation of

  11. Active Tectonics Around Almaty and along the Zailisky Alatau Rangefront

    NASA Astrophysics Data System (ADS)

    Grützner, C.; Walker, R. T.; Abdrakhmatov, K. E.; Mukambaev, A.; Elliott, A. J.; Elliott, J. R.

    2017-10-01

    The Zailisky Alatau is a >250 km long mountain range in Southern Kazakhstan. Its northern rangefront around the major city of Almaty has more than 4 km topographic relief, yet in contrast to other large mountain fronts in the Tien Shan, little is known about its Late Quaternary tectonic activity despite several destructive earthquakes in the historical record. We analyze the tectonic geomorphology of the rangefront fault using field observations, differential GPS measurements of fault scarps, historical and recent satellite imagery, meter-scale topography derived from stereo satellite images, and decimeter-scale elevation models from unmanned aerial vehicle surveys. Fault scarps ranging in height from 2 m to >20 m in alluvial fans indicate that surface rupturing earthquakes occurred along the rangefront fault since the Last Glacial Maximum. Minimum estimated magnitudes for those earthquakes are M6.8-7. Radiocarbon dating results from charcoal layers in uplifted river terraces indicate a Holocene slip rate of 1.2-2.2 mm/a. We find additional evidence for active tectonic deformation all along the Almaty rangefront, basinward in the Kazakh platform, and in the interior of the Zailisky mountain range. Our data indicate that the seismic hazard faced by Almaty comes from a variety of sources, and we emphasize the problems related to urban growth into the loess-covered foothills and secondary earthquake effects. With our structural and geochronologic framework, we present a schematic evolution of the Almaty rangefront that may be applicable to similar settings of tectonic shortening in the mountain ranges of Central Asia.

  12. Glacially induced faulting along the NW segment of the Sorgenfrei-Tornquist Zone, northern Denmark: Implications for neotectonics and Lateglacial fault-bound basin formation

    NASA Astrophysics Data System (ADS)

    Brandes, Christian; Steffen, Holger; Sandersen, Peter B. E.; Wu, Patrick; Winsemann, Jutta

    2018-06-01

    The Sorgenfrei-Tornquist Zone (STZ) is the northwestern segment of the Tornquist Zone and extends from Bornholm across the Baltic Sea and northern Denmark into the North Sea. It represents a major lithospheric structure with a significant increase in lithosphere thickness from south to north. A series of meter-scale normal faults and soft-sediment deformation structures (SSDS) are developed in Lateglacial marine and lacustrine sediments, which are exposed along the Lønstrup Klint cliff at the North Sea coast of northern Denmark. These deformed deposits occur in the local Nørre Lyngby basin that forms part of the STZ. Most of the SSDS are postdepositional, implying major tectonic activity between the Allerød and Younger Dryas (∼14 ka to 12 ka). The occurrence of some syn- and metadepositional SSDS point to an onset of tectonic activity at around 14.5 ka. The formation of normal faults is probably the effect of neotectonic movements along the Børglum fault, which represents the northern boundary fault of the STZ in the study area. The narrow and elongated Nørre Lyngby basin can be interpreted as a strike-slip basin that developed due to right-lateral movements at the Børglum fault. As indicated by the SSDS, these movements were most likely accompanied by earthquake(s). Based on the association of SSDS these earthquake(s) had magnitudes of at least Ms ≥ 4.2 or even up to magnitude ∼ 7 as indicated by a fault with 3 m displacement. The outcrop data are supported by a topographic analysis of the terrain that points to a strong impact from the fault activity on the topography, characterized by a highly regular erosional pattern, the evolution of fault-parallel sag ponds and a potential fault scarp with a height of 1-2 m. With finite-element simulations, we test the impact of Late Pleistocene (Weichselian) glaciation-induced Coulomb stress change on the reactivation potential of the Børglum fault. The numerical simulations of deglaciation-related lithospheric

  13. Preliminary atlas of active shallow tectonic deformation in the Puget Lowland, Washington

    USGS Publications Warehouse

    Barnett, Elizabeth A.; Haugerud, Ralph A.; Sherrod, Brian L.; Weaver, Craig S.; Pratt, Thomas L.; Blakely, Richard J.

    2010-01-01

    This atlas presents an up-to-date map compilation of the geological and geophysical observations that underpin interpretations of active, surface-deforming faults in the Puget Lowland, Washington. Shallow lowland faults are mapped where observations of deformation from paleoseismic, seismic-reflection, and potential-field investigations converge. Together, results from these studies strengthen the identification and characterization of regional faults and show that as many as a dozen shallow faults have been active during the Holocene. The suite of maps presented in our atlas identifies sites that have evidence of deformation attributed to these shallow faults. For example, the paleoseismic-investigations map shows where coseismic surface rupture and deformation produced geomorphic scarps and deformed shorelines. Other maps compile results of seismic-reflection and potential-field studies that demonstrate evidence of deformation along suspected fault structures in the subsurface. Summary maps show the fault traces derived from, and draped over, the datasets presented in the preceding maps. Overall, the atlas provides map users with a visual overview of the observations and interpretations that support the existence of active, shallow faults beneath the densely populated Puget Lowland.

  14. The buried active faults in southeastern China as revealed by the relocated background seismicity and fault plane solutions

    NASA Astrophysics Data System (ADS)

    Zhu, A.; Wang, P.; Liu, F.

    2017-12-01

    The southeastern China in the mainland corresponds to the south China block, which is characterized by moderate historical seismicity and low stain rate. Most faults are buried under thick Quaternary deposits, so it is difficult to detect and locate them using the routine geological methods. Only a few have been identified to be active in late Quaternary, which leads to relatively high potentially seismic risk to this region due to the unexpected locations of the earthquakes. We performed both hypoDD and tomoDD for the background seismicity from 2000 to 2016 to investigate the buried faults. Some buried active faults are revealed by the relocated seismicity and the velocity structure, no geologically known faults corresponding to them and no surface active evidence ever observed. The geometries of the faults are obtained by analyzing the hypocentral distribution pattern and focal mechanism. The focal mechanism solutions indicate that all the revealed faults are dominated in strike-slip mechanisms, or with some thrust components. While the previous fault investigation and detection results show that most of the Quaternary faults in southeastern China are dominated by normal movement. It suggests that there may exist two fault systems in deep and shallow tectonic regimes. The revealed faults may construct the deep one that act as the seismogenic faults, and the normal faults at shallow cannot generate the destructive earthquakes. The variation in the Curie-point depths agrees well with the structure plane of the revealed active faults, suggesting that the faults may have changed the deep structure.

  15. Wasatch fault zone, Utah - segmentation and history of Holocene earthquakes

    USGS Publications Warehouse

    Machette, Michael N.; Personius, Stephen F.; Nelson, Alan R.; Schwartz, David P.; Lund, William R.

    1991-01-01

    The Wasatch fault zone (WFZ) forms the eastern boundary of the Basin and Range province and is the longest continuous, active normal fault (343 km) in the United States. It underlies an urban corridor of 1.6 million people (80% of Utah's population) representing the largest earthquake risk in the interior of the western United States. The authors have used paleoseismological data to identify 10 discrete segments of the WFZ. Five are active, medial segments with Holocene slip rates of 1-2 mm a-1, recurrence intervals of 2000-4000 years and average lengths of about 50 km. Five are less active, distal segments with mostly pre-Holocene surface ruptures, late Quaternary slip rates of <0.5 mm a-1, recurrence intervals of ???10,000 years and average lengths of about 20 km. Surface-faulting events on each of the medial segments of the WFZ formed 2-4-m-high scarps repeatedly during the Holocene. Paleoseismological records for the past 6000 years indicate that a major surface-rupturing earthquake has occurred along one of the medial segments about every 395 ?? 60 years. However, between about 400 and 1500 years ago, the WFZ experienced six major surface-rupturing events, an average of one event every 220 years, or about twice as often as expected from the 6000-year record. Evidence has been found that surface-rupturing events occurred on the WFZ during the past 400 years, a time period which is twice the average intracluster recurrence interval and equal to the average Holocene recurrence interval.

  16. Identification of a new fault and associated lineament features in Oregon's Summer Lake Valley using high-resolution LiDAR data

    NASA Astrophysics Data System (ADS)

    Bennett, L.; Madin, I.

    2012-12-01

    In 2012, the Oregon Department of Geology and Mineral Industries (DOGAMI) contracted WSI to co-acquire airborne Light Detecting and Ranging (LiDAR) and Thermal Infrared Imagery (TIR) data within the region surrounding Summer Lake, Oregon. The objective of this project was to detect surficial expressions of geothermal activity and associated geologic features. An analysis of the LiDAR data revealed one newly identified fault and several accompanying lineaments that strike northwest, similar to the trend of the Ana River, Brothers, and Eugene-Denio Fault Zones in Central Oregon. The age of the Ana River Fault Zone and Summer Lake bed is known to be within the Holocene epoch. Apparent scarp height observed from the LiDAR is up to 8 meters. While detailed analysis is ongoing, the data illustrated the effectiveness of using high resolution remote sensing data for surficial analysis of geologic displacement. This presentation will focus on direct visual detection of features in the Summer Lake, Oregon landscape using LiDAR data.

  17. Active faults newly identified in Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-05-01

    The Bellingham Basin, which lies north of Seattle and south of Vancouver around the border between the United States and Canada in the northern part of the Cascadia subduction zone, is important for understanding the regional tectonic setting and current high rates of crustal deformation in the Pacific Northwest. Using a variety of new data, Kelsey et al. identified several active faults in the Bellingham Basin that had not been previously known. These faults lie more than 60 kilometers farther north of the previously recognized northern limit of active faulting in the area. The authors note that the newly recognized faults could produce earthquakes with magnitudes between 6 and 6.5 and thus should be considered in hazard assessments for the region. (Journal of Geophysical Reserch-Solid Earth, doi:10.1029/2011JB008816, 2012)

  18. The Active Fault Parameters for Time-Dependent Earthquake Hazard Assessment in Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Cheng, C.; Lin, P.; Shao, K.; Wu, Y.; Shih, C.

    2011-12-01

    Taiwan is located at the boundary between the Philippine Sea Plate and the Eurasian Plate, with a convergence rate of ~ 80 mm/yr in a ~N118E direction. The plate motion is so active that earthquake is very frequent. In the Taiwan area, disaster-inducing earthquakes often result from active faults. For this reason, it's an important subject to understand the activity and hazard of active faults. The active faults in Taiwan are mainly located in the Western Foothills and the Eastern longitudinal valley. Active fault distribution map published by the Central Geological Survey (CGS) in 2010 shows that there are 31 active faults in the island of Taiwan and some of which are related to earthquake. Many researchers have investigated these active faults and continuously update new data and results, but few people have integrated them for time-dependent earthquake hazard assessment. In this study, we want to gather previous researches and field work results and then integrate these data as an active fault parameters table for time-dependent earthquake hazard assessment. We are going to gather the seismic profiles or earthquake relocation of a fault and then combine the fault trace on land to establish the 3D fault geometry model in GIS system. We collect the researches of fault source scaling in Taiwan and estimate the maximum magnitude from fault length or fault area. We use the characteristic earthquake model to evaluate the active fault earthquake recurrence interval. In the other parameters, we will collect previous studies or historical references and complete our parameter table of active faults in Taiwan. The WG08 have done the time-dependent earthquake hazard assessment of active faults in California. They established the fault models, deformation models, earthquake rate models, and probability models and then compute the probability of faults in California. Following these steps, we have the preliminary evaluated probability of earthquake-related hazards in certain

  19. High Resolution Seismic Imaging of the Trench Canyon Fault Zone, Mono Lake, Northeastern California

    NASA Astrophysics Data System (ADS)

    Novick, M. W.; Jayko, A. S.; Roeske, S.; McClain, J. S.; Hart, P. E.; Boyle, M.

    2009-12-01

    High resolution seismic imaging of Mono Lake, located in northeastern California, has revealed an approximately northwest striking fault in the area to the west of aerially exposed Negit Volcano. This fault, henceforth referred to as the Trench Canyon Fault (TCF), has also been mapped onshore along a correlating strike as far north as Cedar Hill Volcano, located to the northeast of the lake on the California/Nevada border. Onshore, the TCF was mapped for approximately 10 kilometers using air photos, DEM images, and standard geologic pace and compass mapping techniques. The TCF post- dates the last glacial maximum, evidenced by the cutting of wave cut benches along Cedar Hill Volcano. Relict, non-historic shorelines, left by the steady evaporation of Mono Lake beginning approximately 13k, are also repeatedly cut by the fault. Additional evidence of fault presence includes sag ponds, pressure ridges, tectonically fractured rocks, and normal fault scarps found along strike. Offshore, DEM images show a northeast striking structure to the northwest of Negit Volcano, which is co-linear with the onshore TCF. High resolution seismic imaging of the structure, using an applied acoustic/SIG mini-sparker system, reveals steeply dipping Holocene sediments, as well as volcanic deposits from active vents which have erupted in the last 1000 years, offset by the fault. Detailed structural analysis of the previously unstudied Trench Canyon Fault (TFC) and faults in the Cedar Hill region of northern California, along with seismic studies of sediments beneath Mono Lake not only allow for a better comprehension of this minor fault system, but provide greater understanding of the larger and more complex Walker Lane Shear Zone. Fault analyses, combined and correlated with those from CHV, give a better understanding of how slip is transferred into the complicated Mina defection to the east, from the dextral and normal faults along the Sierra Nevada Range front.

  20. Automatic fault tracing of active faults in the Sutlej valley (NW-Himalayas, India)

    NASA Astrophysics Data System (ADS)

    Janda, C.; Faber, R.; Hager, C.; Grasemann, B.

    2003-04-01

    In the Sutlej Valley the Lesser Himalayan Crystalline Sequence (LHCS) is actively extruding between the Munsiari Thrust (MT) at the base, and the Karcham Normal Fault (KNF) at the top. The clear evidences for ongoing deformation are brittle faults in Holocene lake deposits, hot springs activity near the faults and dramatically younger cooling ages within the LHCS (Vannay and Grasemann, 2001). Because these brittle fault zones obviously influence the morphology in the field we developed a new method for automatically tracing the intersections of planar fault geometries with digital elevation models (Faber, 2002). Traditional mapping techniques use structure contours (i.e. lines or curves connecting points of equal elevation on a geological structure) in order to construct intersections of geological structures with topographic maps. However, even if the geological structure is approximated by a plane and therefore structure contours are equally spaced lines, this technique is rather time consuming and inaccurate, because errors are cumulative. Drawing structure contours by hand makes it also impossible to slightly change the azimuth and dip direction of the favoured plane without redrawing everything from the beginning on. However, small variations of the fault position which are easily possible by either inaccuracies of measurement in the field or small local variations in the trend and/or dip of the fault planes can have big effects on the intersection with topography. The developed method allows to interactively view intersections in a 2D and 3D mode. Unlimited numbers of planes can be moved separately in 3 dimensions (translation and rotation) and intersections with the topography probably following morphological features can be mapped. Besides the increase of efficiency this method underlines the shortcoming of classical lineament extraction ignoring the dip of planar structures. Using this method, areas of active faulting influencing the morphology, can be

  1. Anatomy of landslides along the Dead Sea Transform Fault System in NW Jordan

    NASA Astrophysics Data System (ADS)

    Dill, H. G.; Hahne, K.; Shaqour, F.

    2012-03-01

    In the mountainous region north of Amman, Jordan, Cenomanian calcareous rocks are being monitored constantly for their mass wasting processes which occasionally cause severe damage to the Amman-Irbid Highway. Satellite remote sensing data (Landsat TM, ASTER, and SRTM) and ground measurements are applied to investigate the anatomy of landslides along the Dead Sea Transform Fault System (DSTFS), a prominent strike-slip fault. The joints and faults pertinent to the DSTFS match the architectural elements identified in landslides of different size. This similarity attests to a close genetic relation between the tectonic setting of one of the most prominent fault zones on the earth and modern geomorphologic processes. Six indicators stand out in particular: 1) The fractures developing in N-S and splay faults represent the N-S lateral movement of the DSTFS. They governed the position of the landslides. 2) Cracks and faults aligned in NE-SW to NNW-SSW were caused by compressional strength. They were subsequently reactivated during extensional processes and used in some cases as slip planes during mass wasting. 3) Minor landslides with NE-SW straight scarps were derived from compressional features which were turned into slip planes during the incipient stages of mass wasting. They occur mainly along the slopes in small wadis or where a wide wadi narrows upstream. 4) Major landslides with curved instead of straight scarps and rotational slides are representative of a more advanced level of mass wasting. These areas have to be marked in the maps and during land management projects as high-risk area mainly and may be encountered in large wadis with steep slopes or longitudinal slopes undercut by road construction works. 5) The spatial relation between minor faults and slope angle is crucial as to the vulnerability of the areas in terms of mass wasting. 6) Springs lined up along faults cause serious problems to engineering geology in that they step up the behavior of marly

  2. Criteria for Seismic Splay Fault Activation During Subduction Earthquakes

    NASA Astrophysics Data System (ADS)

    Dedontney, N.; Templeton, E.; Bhat, H.; Dmowska, R.; Rice, J. R.

    2008-12-01

    As sediment is added to the accretionary prism or removed from the forearc, the material overlying the plate interface must deform to maintain a wedge structure. One of the ways this internal deformation is achieved is by slip on splay faults branching from the main detachment, which are possibly activated as part of a major seismic event. As a rupture propagates updip along the plate interface, it will reach a series of junctions between the shallowly dipping detachment and more steeply dipping splay faults. The amount and distribution of slip on these splay faults and the detachment determines the seafloor deformation and the tsunami waveform. Numerical studies by Kame et al. [JGR, 2003] of fault branching during dynamic slip-weakening rupture in 2D plane strain showed that branch activation depends on the initial stress state, rupture velocity at the branching junction, and branch angle. They found that for a constant initial stress state, with the maximum principal stress at shallow angles to the main fault, branch activation is favored on the compressional side of the fault for a range of branch angles. By extending the part of their work on modeling the branching behavior in the context of subduction zones, where critical taper wedge concepts suggest the angle that the principal stress makes with the main fault is shallow, but not horizontal, we hope to better understand the conditions for splay fault activation and the criteria for significant moment release on the splay. Our aim is to determine the range of initial stresses and relative frictional strengths of the detachment and splay fault that would result in seismic splay fault activation. In aid of that, we conduct similar dynamic rupture analyses to those of Kame et al., but use explicit finite element methods, and take fuller account of overall structure of the zone (rather than focusing just on the branching junction). Critical taper theory requires that the basal fault be weaker than the overlying

  3. Small Smooth Units ('Young' Lavas?) Abutting Lobate Scarps on Mercury

    NASA Astrophysics Data System (ADS)

    Malliband, C. C.; Rothery, D. A.; Balme, M. R.; Conway, S. J.

    2018-05-01

    We have identified small units abutting, and so stratigraphy younger than, lobate scarps. This post dates the end of large scale smooth plains formation at the onset of global contraction. This elaborates the history of volcanism on Mercury.

  4. Constraining Basin Depth and Fault Displacement in the Malombe Basin Using Potential Field Methods

    NASA Astrophysics Data System (ADS)

    Beresh, S. C. M.; Elifritz, E. A.; Méndez, K.; Johnson, S.; Mynatt, W. G.; Mayle, M.; Atekwana, E. A.; Laó-Dávila, D. A.; Chindandali, P. R. N.; Chisenga, C.; Gondwe, S.; Mkumbwa, M.; Kalaguluka, D.; Kalindekafe, L.; Salima, J.

    2017-12-01

    The Malombe Basin is part of the Malawi Rift which forms the southern part of the Western Branch of the East African Rift System. At its southern end, the Malawi Rift bifurcates into the Bilila-Mtakataka and Chirobwe-Ntcheu fault systems and the Lake Malombe Rift Basin around the Shire Horst, a competent block under the Nankumba Peninsula. The Malombe Basin is approximately 70km from north to south and 35km at its widest point from east to west, bounded by reversing-polarity border faults. We aim to constrain the depth of the basin to better understand displacement of each border fault. Our work utilizes two east-west gravity profiles across the basin coupled with Source Parameter Imaging (SPI) derived from a high-resolution aeromagnetic survey. The first gravity profile was done across the northern portion of the basin and the second across the southern portion. Gravity and magnetic data will be used to constrain basement depths and the thickness of the sedimentary cover. Additionally, Shuttle Radar Topography Mission (SRTM) data is used to understand the topographic expression of the fault scarps. Estimates for minimum displacement of the border faults on either side of the basin were made by adding the elevation of the scarps to the deepest SPI basement estimates at the basin borders. Our preliminary results using SPI and SRTM data show a minimum displacement of approximately 1.3km for the western border fault; the minimum displacement for the eastern border fault is 740m. However, SPI merely shows the depth to the first significantly magnetic layer in the subsurface, which may or may not be the actual basement layer. Gravimetric readings are based on subsurface density and thus circumvent issues arising from magnetic layers located above the basement; therefore expected results for our work will be to constrain more accurate basin depth by integrating the gravity profiles. Through more accurate basement depth estimates we also gain more accurate displacement

  5. Faulting along the southern margin of Reelfoot Lake, Tennessee

    USGS Publications Warehouse

    Van Arsdale, R.; Purser, J.; Stephenson, W.; Odum, J.

    1998-01-01

    The Reelfoot Lake basin, Tennessee, is structurally complex and of great interest seismologically because it is located at the junction of two seismicity trends of the New Madrid seismic zone. To better understand the structure at this location, a 7.5-km-long seismic reflection profile was acquired on roads along the southern margin of Reelfoot Lake. The seismic line reveals a westerly dipping basin bounded on the west by the Reelfoot reverse fault zone, the Ridgely right-lateral transpressive fault zone on the east, and the Cottonwood Grove right-lateral strike-slip fault in the middle of the basin. The displacement history of the Reelfoot fault zone appears to be the same as the Ridgely fault zone, thus suggesting that movement on these fault zones has been synchronous, perhaps since the Cretaceous. Since the Reelfoot and Ridgely fault systems are believed responsible for two of the mainshocks of 1811-1812, the fault history revealed in the Reelfoot Lake profile suggests that multiple mainshocks may be typical of the New Madrid seismic zone. The Ridgely fault zone consists of two northeast-striking faults that lie at the base of and within the Mississippi Valley bluff line. This fault zone has 15 m of post-Eocene, up-to-the-east displacement and appears to locally control the eastern limit of Mississippi River migration. The Cottonwood Grove fault zone passes through the center of the seismic line and has approximately 5 m up-to-the-east displacement. Correlation of the Cottonwood Grove fault with a possible fault scarp on the floor of Reelfoot Lake and the New Markham fault north of the lake suggests the Cottonwood Grove fault may change to a northerly strike at Reelfoot Lake, thereby linking the northeast-trending zones of seismicity in the New Madrid seismic zone.

  6. Borehole and High-Resolution Seismic Reflection Evidence for Holocene Activity on the Compton Blind-Thrust Fault, Los Angeles Basin, California

    NASA Astrophysics Data System (ADS)

    Leon, L. A.; Dolan, J. F.; Shaw, J. H.; Pratt, T. L.

    2006-12-01

    abundant detrital charcoal, should yield 14C dates that will allow us to accurately date these uplift events. A stratigraphically abrupt downward transition from an upper section dominated by clays, silts, and sands into a gravel-dominated lower section occurs at ~25 m depth. If this transition is similar in age to well-dated sections elsewhere in the Los Angeles region (e.g. our Carfax site along the Puente Hills Thrust fault), then it marks the Pleistocene-Holocene change in climate and stream power at ~9.5 ¨C 10 ka. The total uplift across the Holocene/Pleistocene boundary is ~8 m, yielding a minimum uplift rate of ~0.8 mm/yr, which in turn suggests a slip rate on the blind thrust of 1.5 to 2 mm/yr. The depth of the shallowest buried fold scarp (1 m) attests to the recency of the youngest large-magnitude earthquake on the Compton blind-thrust fault. These observations clearly indicate that the Compton fault is active and capable of producing damaging, large-magnitude earthquakes directly beneath metropolitan Los Angeles.

  7. Scarp within Chasma Boreale

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This HiRISE image is of the north polar layered deposits (PLD) and underlying units exposed along the margins of Chasma Boreale. Chasma Boreale is the largest trough in the north PLD, thought to have formed due to outflow of water from underneath the polar cap, or due to winds blowing off the polar cap, or a combination of both. At the top and left of the image, the bright area with uniform striping is the gently sloping surface of the PLD. In the middle of the image this surface drops off in a steeper scarp, or cliff. At the top of this cliff we see the bright PLD in a side view, or cross-section. From these two perspectives of the PLD it is evident that the PLD are a stack of roughly horizontal layers. The gently sloping top surface cuts through the vertical sequence of layers at a low angle, apparently stretching the layers out horizontally and thus revealing details of the brightness and texture of individual layers. The surface of the PLD on the scarp is also criss-crossed by fine scale fractures. The layers of the PLD are probably composed of differing proportions of ice and dust, believed to be related to the climate conditions at the time they were deposited. In this way, sequences of polar layers are records of past climates on Mars, as ice cores from terrestrial ice sheets hold evidence of past climates on Earth. Further down the scarp in the center of the image the bright layers give way suddenly to a much darker section where a few layers are visible intermittently amongst aprons of dark material. The darkest material, with a smooth surface suggestive of loose grains, is thought to be sandy because similar exposures elsewhere show it to be formed into dunes by the wind. An intermediate-toned material also appears to form aprons draped over layers in the scarp, but its surface contains lobate structures that appear hardened into place and its edges are more abrupt in places, suggesting it may contain some ice or other cementing agent that makes it

  8. Effects of Fault Segmentation, Mechanical Interaction, and Structural Complexity on Earthquake-Generated Deformation

    NASA Astrophysics Data System (ADS)

    Haddad, David Elias

    Earth's topographic surface forms an interface across which the geodynamic and geomorphic engines interact. This interaction is best observed along crustal margins where topography is created by active faulting and sculpted by geomorphic processes. Crustal deformation manifests as earthquakes at centennial to millennial timescales. Given that nearly half of Earth's human population lives along active fault zones, a quantitative understanding of the mechanics of earthquakes and faulting is necessary to build accurate earthquake forecasts. My research relies on the quantitative documentation of the geomorphic expression of large earthquakes and the physical processes that control their spatiotemporal distributions. The first part of my research uses high-resolution topographic lidar data to quantitatively document the geomorphic expression of historic and prehistoric large earthquakes. Lidar data allow for enhanced visualization and reconstruction of structures and stratigraphy exposed by paleoseismic trenches. Lidar surveys of fault scarps formed by the 1992 Landers earthquake document the centimeter-scale erosional landforms developed by repeated winter storm-driven erosion. The second part of my research employs a quasi-static numerical earthquake simulator to explore the effects of fault roughness, friction, and structural complexities on earthquake-generated deformation. My experiments show that fault roughness plays a critical role in determining fault-to-fault rupture jumping probabilities. These results corroborate the accepted 3-5 km rupture jumping distance for smooth faults. However, my simulations show that the rupture jumping threshold distance is highly variable for rough faults due to heterogeneous elastic strain energies. Furthermore, fault roughness controls spatiotemporal variations in slip rates such that rough faults exhibit lower slip rates relative to their smooth counterparts. The central implication of these results lies in guiding the

  9. A model for the geomorphic development of normal-fault facets

    NASA Astrophysics Data System (ADS)

    Tucker, G. E.; Hobley, D. E. J.; McCoy, S. W.

    2014-12-01

    Triangular facets are among the most striking landforms associated with normal faulting. The genesis of facets is of great interest both for the information facets contain about tectonic motion, and because the progressive emergence of facets makes them potential recorders of both geomorphic and tectonic history. In this report, we present observations of triangular facets in the western United States and in the Italian Central Apennines. Facets in these regions typically form quasi-planar surfaces that are aligned in series along and above the trace of an active fault. Some facet surfaces consist mainly of exposed bedrock, with a thin and highly discontinuous cover of loose regolith. Other facets are mantled by a several-decimeter-thick regolith cover. Over the course of its morphologic development, a facet slope segment may evolve from a steep (~60 degree) bedrock fault scarp, well above the angle of repose for soil, to a gentler (~20-40 degree) slope that can potentially sustain a coherent regolith cover. This evolutionary trajectory across the angle of repose renders nonlinear diffusion theory inapplicable. To formulate an alternative process-based theory for facet evolution, we use a particle-based approach that acknowledges the possibility for both short- and long-range sediment-grain motions, depending on the topography. The processes of rock weathering, grain entrainment, and grain motion are represented as stochastic state-pair transitions with specified transition rates. The model predicts that facet behavior can range smoothly along the spectrum from a weathering-limited mode to a transport-limited mode, depending on the ratio of fault-slip rate to bare-bedrock regolith production rate. The model also implies that facets formed along a fault with pinned tips should show systematic variation in slope angle that correlates with along-fault position and slip rate. Preliminary observations from central Italy and the eastern Basin and Range are consistent

  10. Subsurface structure identification of active fault based on magnetic anomaly data (Case study: Toru fault in Sumatera fault system)

    NASA Astrophysics Data System (ADS)

    Simanjuntak, Andrean V. H.; Husni, Muhammad; Syirojudin, Muhammad

    2017-07-01

    Toru segment, which is one of the active faults and located in the North of Sumatra, broke in 1984 ago on Pahae Jahe's earthquake with a magnitude 6.4 at the northern part of the fault which has a length of 23 km, and also broke again at the same place in 2008. The event of recurrence is very fast, which only 25 years old have repeatedly returned. However, in the elastic rebound theory, it probably happen with a fracture 50 cm and an average of the shear velocity 20 mm/year. The average focus of the earthquake sourced at a depth of 10 km and 23 km along its fracture zones, which can generate enough shaking 7 MMI and could breaking down buildings and create landslides on the cliff. Due to its seismic activity, this study was made to identify the effectiveness of this fault with geophysical methods. Geophysical methods such as gravity, geomagnetic and seismology are powerful tools for detecting subsurface structures of local, regional as well as of global scales. This study used to geophysical methods to discuss about total intensity of the geomagnetic anomaly data, resulted in the distribution of susceptibility values corresponding to the fault movement. The geomagnetic anomalies data was obtained from Geomag, such as total intensity measured by satellite. Data acquisition have been corrected for diurnal variations and reduced by IGRF. The study of earthquake records can be used for differentiating the active and non active fault elements. Modeling has been done using several methods, such as pseudo-gravity, reduce to pole, and upward or downward continuation, which is used to filter the geomagnetic anomaly data because the data has not fully representative of the fault structure. The results indicate that rock layers of 0 - 100 km depth encountered the process of intrusion and are dominated by sedimentary rocks that are paramagnetic, and that the ones of 100 - 150 km depth experienced the activity of subducting slab consisting of basalt and granite which are

  11. Structures associated with strike-slip faults that bound landslide elements

    USGS Publications Warehouse

    Fleming, R.W.; Johnson, A.M.

    1989-01-01

    Large landslides are bounded on their flanks and on elements within the landslides by structures analogous to strike-slip faults. We observed the formation of thwse strike-slip faults and associated structures at two large landslides in central Utah during 1983-1985. The strike-slip faults in landslides are nearly vertical but locally may dip a few degrees toward or away from the moving ground. Fault surfaces are slickensided, and striations are subparallel to the ground surface. Displacement along strike-slip faults commonly produces scarps; scarps occur where local relief of the failure surface or ground surface is displaced and becomes adjacent to higher or lower ground, or where the landslide is thickening or thinning as a result of internal deformation. Several types of structures are formed at the ground surface as a strike-slip fault, which is fully developed at some depth below the ground surface, propagates upward in response to displacement. The simplest structure is a tension crack oriented at 45?? clockwise or counterclockwise from the trend of an underlying right- or left-lateral strike-slip fault, respectively. The tension cracks are typically arranged en echelon with the row of cracks parallel to the trace of the underlying strike-slip fault. Another common structure that forms above a developing strike-slip fault is a fault segment. Fault segments are discontinuous strike-slip faults that contain the same sense of slip but are turned clockwise or counterclockwise from a few to perhaps 20?? from the underlying strike-slip fault. The fault segments are slickensided and striated a few centimeters below the ground surface; continued displacement of the landslide causes the fault segments to open and a short tension crack propagates out of one or both ends of the fault segments. These structures, open fault segments containing a short tension crack, are termed compound cracks; and the short tension crack that propagates from the tip of the fault segment

  12. Geologic and structural controls on rupture zone fabric: A field-based study of the 2010 Mw 7.2 El Mayor–Cucapah earthquake surface rupture

    USGS Publications Warehouse

    Teran, Orlando; Fletcher, John L.; Oskin, Michael; Rockwell, Thomas; Hudnut, Kenneth W.; Spelz, Ronald; Akciz, Sinan; Hernandez-Flores, Ana Paula; Morelan, Alexander

    2015-01-01

    We systematically mapped (scales >1:500) the surface rupture of the 4 April 2010 Mw (moment magnitude) 7.2 El Mayor-Cucapah earthquake through the Sierra Cucapah (Baja California, northwestern Mexico) to understand how faults with similar structural and lithologic characteristics control rupture zone fabric, which is here defined by the thickness, distribution, and internal configuration of shearing in a rupture zone. Fault zone thickness and master fault dip are strongly correlated with many parameters of rupture zone fabric. Wider fault zones produce progressively wider rupture zones and both of these parameters increase systematically with decreasing dip of master faults, which varies from 20° to 90° in our dataset. Principal scarps that accommodate more than 90% of the total coseismic slip in a given transect are only observed in fault sections with narrow rupture zones (<25 m). As rupture zone thickness increases, the number of scarps in a given transect increases, and the scarp with the greatest relative amount of coseismic slip decreases. Rupture zones in previously undeformed alluvium become wider and have more complex arrangements of secondary fractures with oblique slip compared to those with pure normal dip-slip or pure strike-slip. Field relations and lidar (light detection and ranging) difference models show that as magnitude of coseismic slip increases from 0 to 60 cm, the links between kinematically distinct fracture sets increase systematically to the point of forming a throughgoing principal scarp. Our data indicate that secondary faults and penetrative off-fault strain continue to accommodate the oblique kinematics of coseismic slip after the formation of a thoroughgoing principal scarp. Among the widest rupture zones in the Sierra Cucapah are those developed above buried low angle faults due to the transfer of slip to widely distributed steeper faults, which are mechanically more favorably oriented. The results from this study show that the

  13. Assessing active faulting by hydrogeological modeling and superconducting gravimetry: A case study for Hsinchu Fault, Taiwan

    NASA Astrophysics Data System (ADS)

    Lien, Tzuyi; Cheng, Ching-Chung; Hwang, Cheinway; Crossley, David

    2014-09-01

    We develop a new hydrology and gravimetry-based method to assess whether or not a local fault may be active. We take advantage of an existing superconducting gravimeter (SG) station and a comprehensive groundwater network in Hsinchu to apply the method to the Hsinchu Fault (HF) across the Hsinchu Science Park, whose industrial output accounts for 10% of Taiwan's gross domestic product. The HF is suspected to pose seismic hazards to the park, but its existence and structure are not clear. The a priori geometry of the HF is translated into boundary conditions imposed in the hydrodynamic model. By varying the fault's location, depth, and including a secondary wrench fault, we construct five hydrodynamic models to estimate groundwater variations, which are evaluated by comparing groundwater levels and SG observations. The results reveal that the HF contains a low hydraulic conductivity core and significantly impacts groundwater flows in the aquifers. Imposing the fault boundary conditions leads to about 63-77% reduction in the differences between modeled and observed values (both water level and gravity). The test with fault depth shows that the HF's most recent slip occurred in the beginning of Holocene, supplying a necessary (but not sufficient) condition that the HF is currently active. A portable SG can act as a virtual borehole well for model assessment at critical locations of a suspected active fault.

  14. Identification of active fault using analysis of derivatives with vertical second based on gravity anomaly data (Case study: Seulimeum fault in Sumatera fault system)

    NASA Astrophysics Data System (ADS)

    Hududillah, Teuku Hafid; Simanjuntak, Andrean V. H.; Husni, Muhammad

    2017-07-01

    Gravity is a non-destructive geophysical technique that has numerous application in engineering and environmental field like locating a fault zone. The purpose of this study is to spot the Seulimeum fault system in Iejue, Aceh Besar (Indonesia) by using a gravity technique and correlate the result with geologic map and conjointly to grasp a trend pattern of fault system. An estimation of subsurface geological structure of Seulimeum fault has been done by using gravity field anomaly data. Gravity anomaly data which used in this study is from Topex that is processed up to Free Air Correction. The step in the Next data processing is applying Bouger correction and Terrin Correction to obtain complete Bouger anomaly that is topographically dependent. Subsurface modeling is done using the Gav2DC for windows software. The result showed a low residual gravity value at a north half compared to south a part of study space that indicated a pattern of fault zone. Gravity residual was successfully correlate with the geologic map that show the existence of the Seulimeum fault in this study space. The study of earthquake records can be used for differentiating the active and non active fault elements, this gives an indication that the delineated fault elements are active.

  15. Fracture patterns of the drainage basin of Wadi Dahab in relation to tectonic-landscape evolution of the Gulf of Aqaba - Dead Sea transform fault

    NASA Astrophysics Data System (ADS)

    Shalaby, Ahmed

    2017-10-01

    Crustal rifting of the Arabian-Nubian Shield and formation of the Afro-Arabian rifts since the Miocene resulted in uplifting and subsequent terrain evolution of Sinai landscapes; including drainage systems and fault scarps. Geomorphic evolution of these landscapes in relation to tectonic evolution of the Afro-Arabian rifts is the prime target of this study. The fracture patterns and landscape evolution of the Wadi Dahab drainage basin (WDDB), in which its landscape is modeled by the tectonic evolution of the Gulf of Aqaba-Dead Sea transform fault, are investigated as a case study of landscape modifications of tectonically-controlled drainage systems. The early developed drainage system of the WDDB was achieved when the Sinai terrain subaerially emerged in post Eocene and initiation of the Afro-Arabian rifts in the Oligo-Miocene. Conjugate shear fractures, parallel to trends of the Afro-Arabian rifts, are synthesized with tensional fracture arrays to adapt some of inland basins, which represent the early destination of the Sinai drainage systems as paleolakes trapping alluvial sediments. Once the Gulf of Aqaba rift basin attains its deeps through sinistral movements on the Gulf of Aqaba-Dead Sea transform fault in the Pleistocene and the consequent rise of the Southern Sinai mountainous peaks, relief potential energy is significantly maintained through time so that it forced the Pleistocene runoffs to flow via drainage systems externally into the Gulf of Aqaba. Hence the older alluvial sediments are (1) carved within the paleolakes by a new generation of drainage systems; followed up through an erosional surface by sandy- to silty-based younger alluvium; and (2) brought on footslopes of fault scarps reviving the early developed scarps and inselbergs. These features argue for crustal uplifting of Sinai landscapes syn-rifting of the Gulf of Aqaba rift basin. Oblique orientation of the Red Sea-Gulf of Suez rift relative to the WNW-trending Precambrian Najd faults; and

  16. Fault kinematics and tectonic stress in the seismically active Manyara Dodoma Rift segment in Central Tanzania Implications for the East African Rift

    NASA Astrophysics Data System (ADS)

    Macheyeki, Athanas S.; Delvaux, Damien; De Batist, Marc; Mruma, Abdulkarim

    2008-07-01

    The Eastern Branch of the East African Rift System is well known in Ethiopia (Main Ethiopian Rift) and Kenya (Kenya or Gregory Rift) and is usually considered to fade away southwards in the North Tanzanian Divergence, where it splits into the Eyasi, Manyara and Pangani segments. Further towards the south, rift structures are more weakly expressed and this area has not attracted much attention since the mapping and exploratory works of the 1950s. In November 4, 2002, an earthquake of magnitude Mb = 5.5 struck Dodoma, the capital city of Tanzania. Analysis of modern digital relief, seismological and geological data reveals that ongoing tectonic deformation is presently affecting a broad N-S trending belt, extending southward from the North Tanzanian Divergence to the region of Dodoma, forming the proposed "Manyara-Dodoma Rift segment". North of Arusha-Ngorongoro line, the rift is confined to a narrow belt (Natron graben in Tanzania) and south of it, it broadens into a wide deformation zone which includes both the Eyasi and Manyara grabens. The two-stage rifting model proposed for Kenya and North Tanzania also applies to the Manyara-Dodoma Rift segment. In a first stage, large, well-expressed topographic and volcanogenic structures were initiated in the Natron, Eyasi and Manyara grabens during the Late Miocene to Pliocene. From the Middle Pleistocene onwards, deformations related to the second rifting stage propagated southwards to the Dodoma region. These young structures have still limited morphological expressions compared to the structures formed during the first stage. However, they appear to be tectonically active as shown by the high concentration of moderate earthquakes into earthquake swarms, the distribution of He-bearing thermal springs, the morphological freshness of the fault scarps, and the presence of open surface fractures. Fault kinematic and paleostress analysis of geological fault data in basement rocks along the active fault lines show that recent

  17. Insurance Applications of Active Fault Maps Showing Epistemic Uncertainty

    NASA Astrophysics Data System (ADS)

    Woo, G.

    2005-12-01

    Insurance loss modeling for earthquakes utilizes available maps of active faulting produced by geoscientists. All such maps are subject to uncertainty, arising from lack of knowledge of fault geometry and rupture history. Field work to undertake geological fault investigations drains human and monetary resources, and this inevitably limits the resolution of fault parameters. Some areas are more accessible than others; some may be of greater social or economic importance than others; some areas may be investigated more rapidly or diligently than others; or funding restrictions may have curtailed the extent of the fault mapping program. In contrast with the aleatory uncertainty associated with the inherent variability in the dynamics of earthquake fault rupture, uncertainty associated with lack of knowledge of fault geometry and rupture history is epistemic. The extent of this epistemic uncertainty may vary substantially from one regional or national fault map to another. However aware the local cartographer may be, this uncertainty is generally not conveyed in detail to the international map user. For example, an area may be left blank for a variety of reasons, ranging from lack of sufficient investigation of a fault to lack of convincing evidence of activity. Epistemic uncertainty in fault parameters is of concern in any probabilistic assessment of seismic hazard, not least in insurance earthquake risk applications. A logic-tree framework is appropriate for incorporating epistemic uncertainty. Some insurance contracts cover specific high-value properties or transport infrastructure, and therefore are extremely sensitive to the geometry of active faulting. Alternative Risk Transfer (ART) to the capital markets may also be considered. In order for such insurance or ART contracts to be properly priced, uncertainty should be taken into account. Accordingly, an estimate is needed for the likelihood of surface rupture capable of causing severe damage. Especially where a

  18. Fault Growth and Propagation and its Effect on Surficial Processes within the Incipient Okavango Rift Zone, Northwest Botswana, Africa (Invited)

    NASA Astrophysics Data System (ADS)

    Atekwana, E. A.

    2010-12-01

    The Okavango Rift Zone (ORZ) is suggested to be a zone of incipient continental rifting occuring at the distal end of the southwestern branch of the East African Rift System (EARS), therefore providing a unique opportunity to investigate neotectonic processes during the early stages of rifting. We used geophysical (aeromagnetic, magnetotelluric), Shuttle Radar Tomography Mission, Digital Elevation Model (SRTM-DEM), and sedimentological data to characterize the growth and propagation of faults associated with continental extension in the ORZ, and to elucidate the interplay between neotectonics and surficial processes. The results suggest that: (1) fault growth occurs by along axis linkage of fault segments, (2) an immature border fault is developing through the process of “Fault Piracy” by fault-linkages between major fault systems, (3) significant discrepancies exits between the height of fault scarps and the throws across the faults compared to their lengths in the basement, (4) utilization of preexisting zones of weakness allowed the development of very long faults (> 25-100 km) at a very early stage of continental rifting, explaining the apparent paradox between the fault length versus throw for this young rift, (5) active faults are characterized by conductive anomalies resulting from fluids, whereas, inactive faults show no conductivity anomaly; and 6) sedimentlogical data reveal a major perturbation in lake sedimentation between 41 ka and 27 ka. The sedimentation perturbation is attributed to faulting associated with the rifting and may have resulted in the alteration of hydrology forming the modern day Okavango delta. We infer that this time period may represent the age of the latest rift reactivation and fault growth and propagation within the ORZ.

  19. Role of the Precambrian Mughese Shear Zone on Cenozoic faulting along the Rukwa-Malawi Rift segment of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Heilman, E.; Kolawole, F.; Mayle, M.; Atekwana, E. A.; Abdelsalam, M. G.

    2017-12-01

    We address the longstanding question of the role of long-lived basement structures in strain accommodation within active rift systems. Studies have highlighted the influence of pre-existing zones of lithospheric weakness in modulating faulting and fault kinematics. Here, we investigate the role of the Neoproterozoic Mughese Shear Zone (MSZ) in Cenozoic rifting along the Rukwa-Malawi rift segment of the East African Rift System (EARS). Detailed analyses of Shuttle Radar Topography Mission (SRTM) DEM and filtered aeromagnetic data allowed us to determine the relationship between rift-related basement-rooted normal faults and the MSZ fabric extending along the southern boundary of the Rukwa-Malawi Rift North Basin. Our results show that the magnetic lineaments defining the MSZ coincide with the collinear Rukwa Rift border fault (Ufipa Fault), a dextral strike-slip fault (Mughese Fault), and the North Basin hinge-zone fault (Mbiri Fault). Fault-scarp and minimum fault-throw analyses reveal that within the Rukwa Rift, the Ufipa Border Fault has been accommodating significant displacement relative to the Lupa Border Fault, which represents the northeastern border fault of the Rukwa Rift. Our analysis also shows that within the North Basin half-graben, the Mbiri Fault has accommodated the most vertical displacement relative to other faults along the half-graben hinge zone. We propose that the Cenozoic reactivation along the MSZ facilitated significant normal slip displacement along the Ufipa Border Fault and the Mbiri Fault, and minor dextral strike-slip between the two faults. We suggest that the fault kinematics along the Rukwa-Malawi Rift is the result of reactivation of the MSZ through regional oblique extension.

  20. Gypsum scarps and asymmetric fluvial valleys in evaporitic terrains. The role of river migration, landslides, karstification and lithology (Ebro River, NE Spain)

    NASA Astrophysics Data System (ADS)

    Guerrero, J.; Gutiérrez, F.

    2017-11-01

    Most of the Spanish fluvial systems excavated in Tertiary evaporitic gypsum formations show asymmetric valleys characterized by a stepped sequence of fluvial terraces on one valley flank and kilometric-long and > 100-m high prominent river scarp on the opposite side of the valley. Scarp undermining by the continuous preferential lateral migration of the river channel toward the valley margin leads to vertical to overhanging unstable slopes affected by a large number of slope failures that become the main geological hazard for villages located at the toe of the scarps. Detailed mapping of the gypsum scarps along the Ebro and Huerva Rivers gypsum scarps demonstrates that landslides and lateral spreading processes are predominant when claystones crop out at the base of the scarp, while rockfalls and topples become the dominant movement in those reaches where the rock mass is mainly constituted by evaporites. The dissolution of gypsum nodules, seasonal swelling and shrinking, and dispersion processes contribute to a decrease in the mechanical strength of claystones. The existence of dissolution-enlarged joints, sinkholes, and severely damaged buildings at the toe of the scarp from karstic subsidence demonstrates that the interstratal karstification of evaporites becomes a triggering factor in the instability of the rock mass. The genesis of asymmetric valleys and river gypsum scarps in the study area seem to be caused by the random migration of the river channel in the absence of lateral tilting related to tectonics or dissolution-induced subsidence. Once the scarp is developed, its preservation depends on the physicochemical properties of the substratum, the ratio between bedrock erosion and river incision rates, and climatic conditions that favour runoff erosion versus dissolution.

  1. The hazard education model in the high school science-club activities above active huge fault

    NASA Astrophysics Data System (ADS)

    Nakamura, R.

    2017-12-01

    Along the west coast of pacific ocean, includes Japan, there are huge numerous volcanoes and earthquakes. The biggest cause is their location on the border of plates. The pressure among the plates cause strains and cracks. By the island arc lines, strains make long and enormous faults. More than huge 150 faults are reported (the head quarters for earthquake research promotion, Japan, 2017). Below my working school, it is laying one of the biggest faults Nagamachi-Rifu line which is also laying under 1 million population city Sendai. Before 2011 Tohoku earthquake, one of the hugest earthquake was predicted because of the fault activities. Investigating the fault activity with our school student who live in the closest area is one of the most important hazard education. Therefore, now we are constructing the science club activity with make attention for (1) seeking fault line(s) with topographic land maps and on foot search (2) investigate boling core sample soils that was brought in our school founded. (1) Estimate of displacement of the faults on foot observation In order to seek the unknown fault line in Rifu area, at first it was needed to estimate on the maps(1:25,000 Scale Topographic Maps and Active Faults in Urban Area of Map(Sendai), Geographical Survey Institute of Japan). After that estimation, walked over the region with club students to observe slopes which was occurred by the faults activation and recorded on the maps. By observant slope gaps, there has a possibilities to have 3 or 4 fault lines that are located parallel to the known activate faults. (2) Investigate of the boling core samples above the fault. We investigated 6 columnar-shaped boling core samples which were excavated when the school has been built. The maximum depth of the samples are over 20m, some are new filled sands over original ash tephra and pumice from old volcanoes located west direction. In the club activities, we described column diagram of sediments and discussed the sediment

  2. Geomorphic evidence of active tectonics in the San Gorgonio Pass region of the San Andreas Fault system: an example of discovery-based research in undergraduate teaching

    NASA Astrophysics Data System (ADS)

    Reinen, L. A.; Yule, J. D.

    2014-12-01

    Student-conducted research in courses during the first two undergraduate years can increase learning and improve student self-confidence in scientific study, and is recommended for engaging and retaining students in STEM fields (PCAST, 2012). At Pomona College, incorporating student research throughout the geology curriculum tripled the number of students conducting research prior to their senior year that culminated in a professional conference presentation (Reinen et al., 2006). Here we present an example of discovery-based research in Neotectonics, a second-tier course predominantly enrolling first-and second-year students; describe the steps involved in the four week project; and discuss early outcomes of student confidence, engagement and retention. In the San Gorgonio Pass region (SGPR) in southern California, the San Andreas fault undergoes a transition from predominantly strike-slip to a complex system of faults with significant dip-slip, resulting in diffuse deformation and raising the question of whether a large earthquake on the San Andreas could propagate through the region (Yule, 2009). In spring 2014, seven students in the Neotectonics course conducted original research investigating quantifiable geomorphic evidence of tectonic activity in the SGPR. Students addressed questions of [1] unequal uplift in the San Bernardino Mountains, [2] fault activity indicated by stream knick points, [3] the role of fault style on mountain front sinuosity, and [4] characteristic earthquake slip determined via fault scarp degradation models. Students developed and revised individual projects, collaborated with each other on methods, and presented results in a public forum. A final class day was spent reviewing the projects and planning future research directions. Pre- and post-course surveys show increases in students' self-confidence in the design, implementation, and presentation of original scientific inquiries. 5 of 6 eligible students participated in research the

  3. The relationship of near-surface active faulting to megathrust splay fault geometry in Prince William Sound, Alaska

    NASA Astrophysics Data System (ADS)

    Finn, S.; Liberty, L. M.; Haeussler, P. J.; Northrup, C.; Pratt, T. L.

    2010-12-01

    We interpret regionally extensive, active faults beneath Prince William Sound (PWS), Alaska, to be structurally linked to deeper megathrust splay faults, such as the one that ruptured in the 1964 M9.2 earthquake. Western PWS in particular is unique; the locations of active faulting offer insights into the transition at the southern terminus of the previously subducted Yakutat slab to Pacific plate subduction. Newly acquired high-resolution, marine seismic data show three seismic facies related to Holocene and older Quaternary to Tertiary strata. These sediments are cut by numerous high angle normal faults in the hanging wall of megathrust splay. Crustal-scale seismic reflection profiles show splay faults emerging from 20 km depth between the Yakutat block and North American crust and surfacing as the Hanning Bay and Patton Bay faults. A distinct boundary coinciding beneath the Hinchinbrook Entrance causes a systematic fault trend change from N30E in southwestern PWS to N70E in northeastern PWS. The fault trend change underneath Hinchinbrook Entrance may occur gradually or abruptly and there is evidence for similar deformation near the Montague Strait Entrance. Landward of surface expressions of the splay fault, we observe subsidence, faulting, and landslides that record deformation associated with the 1964 and older megathrust earthquakes. Surface exposures of Tertiary rocks throughout PWS along with new apatite-helium dates suggest long-term and regional uplift with localized, fault-controlled subsidence.

  4. Faulting processes in active faults - Evidences from TCDP and SAFOD drill core samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janssen, C.; Wirth, R.; Wenk, H. -R.

    The microstructures, mineralogy and chemistry of representative samples collected from the cores of the San Andreas Fault drill hole (SAFOD) and the Taiwan Chelungpu-Fault Drilling project (TCDP) have been studied using optical microscopy, TEM, SEM, XRD and XRF analyses. SAFOD samples provide a transect across undeformed host rock, the fault damage zone and currently active deforming zones of the San Andreas Fault. TCDP samples are retrieved from the principal slip zone (PSZ) and from the surrounding damage zone of the Chelungpu Fault. Substantial differences exist in the clay mineralogy of SAFOD and TCDP fault gouge samples. Amorphous material has beenmore » observed in SAFOD as well as TCDP samples. In line with previous publications, we propose that melt, observed in TCDP black gouge samples, was produced by seismic slip (melt origin) whereas amorphous material in SAFOD samples was formed by comminution of grains (crush origin) rather than by melting. Dauphiné twins in quartz grains of SAFOD and TCDP samples may indicate high seismic stress. The differences in the crystallographic preferred orientation of calcite between SAFOD and TCDP samples are significant. Microstructures resulting from dissolution–precipitation processes were observed in both faults but are more frequently found in SAFOD samples than in TCDP fault rocks. As already described for many other fault zones clay-gouge fabrics are quite weak in SAFOD and TCDP samples. Clay-clast aggregates (CCAs), proposed to indicate frictional heating and thermal pressurization, occur in material taken from the PSZ of the Chelungpu Fault, as well as within and outside of the SAFOD deforming zones, indicating that these microstructures were formed over a wide range of slip rates.« less

  5. Slip along the Sultanhanı Fault in Central Anatolia from deformed Pleistocene shorelines of palaeo-lake Konya and implications for seismic hazards in low-strain regions

    NASA Astrophysics Data System (ADS)

    Melnick, Daniel; Yıldırım, Cengiz; Hillemann, Christian; Garcin, Yannick; Çiner, Attila; Pérez-Gussinyé, Marta; Strecker, Manfred R.

    2017-06-01

    Central Anatolia is a low-relief, high-elevation region where decadal-scale deformation rates estimated from space geodesy suggest low strain rates within a stiff microplate. However, numerous Quaternary faults have been mapped within this low-strain region and estimating their slip rate and seismic potential is important for hazard assessments in an area of increasing infrastructural development. Here we focus on the Sultanhanı Fault (SF), which constitutes an integral part of the Eskişehir-Cihanbeyli Fault System, and use deformed maximum highstand shorelines of palaeo-lake Konya to estimate tectonic slip rates at millennial scale. Some of these shorelines were previously interpreted as fault scarps, but we provide conclusive evidence for their erosional origin. We found that shoreline-angle elevations estimated from differential GPS profiles record vertical displacements of 10.2 m across the SF. New radiocarbon ages of lacustrine molluscs suggest 22.4 m of relative lake-level fall between 22.1 ± 0.3 and 21.7 ± 0.4 cal. ka BP, constraining the timing of abrupt abandonment of the highstand shoreline. Models of lithospheric rebound associated with regressions of the Tuz Gölü and Konya palaeo-lakes predict only ∼1 m of regional-scale uplift across the Konya Basin. Dislocation models of displaced shorelines suggest fault-slip rates of 1.5 and 1.8 mm yr-1 for planar and listric fault geometries, respectively, providing reasonable results for the latter. We found fault scarps in the Nasuhpınar mudflat that likely represent the most recent ground-breaking rupture of the SF, with an average vertical displacement of 1.2 ± 0.5 m estimated from 54 topographic profiles, equivalent to a M ∼ 6.5-6.9 earthquake based on empirical scaling laws. If such events were characteristic during the ultimate 21 ka, a relatively short recurrence time of ∼800-900 yr would be needed to account for the millennial slip rate. Alternatively, the fault scarp at Nasuhpınar might

  6. Mass movements at steep scarps and crater rims in the Sextilia Quadrangle on Vesta

    NASA Astrophysics Data System (ADS)

    Krohn, Katrin; Jaumann, Ralf; Otto, Katharina; Stephan, Katrin; Wagner, Roland; Buczkowski3, Debra L.; Garry, Brent; Williams, Dave A.; Aileen Yingst, R.; Scully, Jennifer E.; De Sanctis, Maria C.; Kneissl, Thomas; Schmedemann, Nico; Kersten, Elke; Matz, Klaus-Dieter; Pieters, Carle M.; Preusker, Frank; Roatsch, Thomas; Schenk, Paul; Raymond, Carol A.

    2013-04-01

    Detailed geologic mapping of the Sextilia Quadrangle was conducted with the help of high resolution Framing Camera (FC) (1) and Visible and Infrared Spectrometer (VIR) (2) data of the Dawn spacecraft. Av-12 Sextilia Quadrangle is located between 21° - 66° South and 90° - 180° East. This region hosts a set of different geologic features. Primary geologic features of this region include Rheasilvia impact material, smooth material and different kinds of impact crater structures and materials, such as bimodal craters (3), dark and bright crater ray material and dark ejecta material (4) and different types of mass wasting features such as slumping blocks at the steep scarp Matronalia Rupes (centered at ~ 49°S and 85°E), spur-and-gully morphologies and landslides in craters (5). We analyzed several craters and the mass wasting features at Matronalia Rupes. Collapse processes, instability of slopes and seismic triggered events cause the landslides, rotational slumping blocks on scarps as well as spur-and-gully morphologies on crater walls and scarps. Spur-and-gully morphology is known to form on Mars and Earth normally supported by liquid flow but on Vesta these features formed under dry conditions. For that the individual particle settling has to be slower than characteristic debris flow speeds (5). At Matronalia Rupes rotational rock slumping blocks are clearly exposed as material slumped down the scarp wall in a stair-stepped pattern, which is interrupted by minor scarps and covers the underlying Rheasilvia ridge-and-groove terrain. This rotational rock slumping is affected by slope instability and gravitationally triggered events such as seismic shaking mostly produced by impacts elsewhere on Vesta (5). (1) Sierks et al. (2011) Space Science Rev. 163, 263-327. (2) De Sanctis et al. (2011) Space Science Rev. 163, 329-369. (3) Krohn et al. (2012) EPSC 7th, 463-3. (4) Jaumann, et al. (2012) Science 336, 687-690; (5) Krohn et al. (2013) submitted to Icarus.

  7. The Qartaba Structure: An Active Backthrust In Central Mt-Lebanon.

    NASA Astrophysics Data System (ADS)

    Elias, Ata Richard

    2016-04-01

    The Qartaba structure in central Mt-Lebanon is a 15x5km box fold running parallel to the restraining bend of the sinsitral Yammouneh Fault, the main fault of the central segment of the Dead Sea Transform. The Qartaba structure has long been described as a "horst" and associated with Mesozoic normal faulting. However, the Qartaba anticline is suitably oriented with the direction of maximum compression along the restraining bend. Jurassic carbonate rocks form the core of this anticline culminating at ~1953m asl to the east, of the highest structural elevation of the Mt-Lebanon range indicating important tectonic uplift rate. The fold is asymmetric. The western limb is steep and bordered by the Lebanese Flexure, a prominent continuous monocline of Upper Jurassic to Mid Cretaceous rocks, running along the western flank of Mt-Lebanon. The eastern limb of the anticline has a very steep dip, and forms a 200m high cliff well marked in the topography. Its Jurassic layers are almost vertical and end up overhanging Lower Cretaceous beds. Our study suggest that the Qartaba structure is a growing anticline, built by active thrusting over a west dipping thrust fault that cuts the surface at the base of the eastern limb of the anticline. The fault plane can be seen dipping 30-35 degrees to the west. At depth, this thrust is likely to connect with the blind thrust ramp of the Mt-Lebanon Flexure. The Qartaba backthrust with a dip to the west, is opposite to the general vergence of similar structures in the area. On some of the segments of the steep cliff forming the faulted eastern limb, a fresh scarp with smooth and polished surfaces bearing vertical slickensides can be followed over ~700m along the base of the cliff. It corresponds with the location of the thrust fault tip. Talus accumulation over the steep eastern limb covers most of the cliff base, and may be masking further extent of this scarp. We interpret this scarp as the freeface of a co-seismic rupture on the underlying

  8. Do mesoscale faults near the tip of an active strike-slip fault indicate regional or local stress?

    NASA Astrophysics Data System (ADS)

    Yamaji, Atsushi

    2017-04-01

    Fault-slip analysis is used in Japan after the Great Tohoku Earthquake (2011) to judge the stability of fractures in the foundations of nuclear power plants. In case a fault-slip datum from a fracture surface is explained by the present stress condition, the fracture is thought to have a risk to be activated as a fault. So, it is important to understand the relative significance of regional and local stresses. To answer the question whether mesoscale faults indicate regional or local stress, fault-slip data were collected from the walls of a trenching site of the Nojima Fault in central Japan—an active, dextral, strike-slip fault. The fault gave rise to the 1995 Kobe earthquake, which killed more than 6000 people. The trench was placed near the fault tip, which produced compressional and extensional local stress conditions on the sides of the fault near the tip. A segment of the fault, which ruptured the surface in 1995, bounded Cretaceous granite and latest Pliocene sediments in the trench. As a result, the stress inversion of the data from the mesoscale faults observed in the trench showed both the local stresses. The present WNW-ESE regional compression was found from the compressive side, but was not in the extensional side, probably because local extension surpassed the regional compression. Instead, the regional N-S compression of the Early Pleistocene was found from the extensional side. From this project, we got the lesson that fault-slip analysis reveals regional and local stresses, and that local stress sometimes masks regional one. This work was supported by a science project of "Drilling into Fault Damage Zone" (awarded to A. Lin) of the Secretariat of Nuclear Regulation Authority (Japan).

  9. Degradation and Deformation of Scarps and Slopes on Io: New Results

    NASA Technical Reports Server (NTRS)

    Moore, J. M.; Sullivan, R. J.; Pappalardo, R. T.; Turtle, E. P.

    2000-01-01

    Initial analysis of degradational processes on scarps and slopes on Io using just-acquired images by the Galileo SSI team. Among other results, is evidence for sublimation, sapping, and perhaps "glacial" flow of interstitial volatiles in relief-forming materials.

  10. Constraining slip rates and spacings for active normal faults

    NASA Astrophysics Data System (ADS)

    Cowie, Patience A.; Roberts, Gerald P.

    2001-12-01

    Numerous observations of extensional provinces indicate that neighbouring faults commonly slip at different rates and, moreover, may be active over different time intervals. These published observations include variations in slip rate measured along-strike of a fault array or fault zone, as well as significant across-strike differences in the timing and rates of movement on faults that have a similar orientation with respect to the regional stress field. Here we review published examples from the western USA, the North Sea, and central Greece, and present new data from the Italian Apennines that support the idea that such variations are systematic and thus to some extent predictable. The basis for the prediction is that: (1) the way in which a fault grows is fundamentally controlled by the ratio of maximum displacement to length, and (2) the regional strain rate must remain approximately constant through time. We show how data on fault lengths and displacements can be used to model the observed patterns of long-term slip rate where measured values are sparse. Specifically, we estimate the magnitude of spatial variation in slip rate along-strike and relate it to the across-strike spacing between active faults.

  11. New Evidence for Quaternary Strain Partitioning Along the Queen Charlotte Fault System, Southeastern Alaska

    NASA Astrophysics Data System (ADS)

    Walton, M. A. L.; Miller, N. C.; Brothers, D. S.; Kluesner, J.; Haeussler, P. J.; Conrad, J. E.; Andrews, B. D.; Ten Brink, U. S.

    2017-12-01

    The Queen Charlotte Fault (QCF) is a fast-moving ( 53 mm/yr) transform plate boundary fault separating the Pacific Plate from the North American Plate along western Canada and southeastern Alaska. New high-resolution bathymetric data along the fault show that the QCF main trace accommodates nearly all strike-slip plate motion along a single narrow deformation zone, though questions remain about how and where smaller amounts of oblique convergence are accommodated along-strike. Obliquity and convergence rates are highest in the south, where the 2012 Haida Gwaii, British Columbia MW 7.8 thrust earthquake was likely caused by Pacific underthrusting. In the north, where obliquity is lower, aftershocks from the 2013 Craig, Alaska MW 7.5 strike-slip earthquake also indicate active convergent deformation on the Pacific (west) side of the plate boundary. Off-fault structures previously mapped in legacy crustal-scale seismic profiles may therefore be accommodating part of the lesser amounts of Quaternary convergence north of Haida Gwaii. Between 2015 and 2017, the USGS acquired more than 8,000 line-km of offshore high-resolution multichannel seismic (MCS) data along the QCF to better understand plate boundary deformation. The new MCS data show evidence for Quaternary deformation associated with a series of elongate ridges located within 30 km of the QCF main trace on the Pacific side. These ridges are anticlinal structures flanked by growth faults, with recent deformation and active fluid flow characterized by seafloor scarps and seabed gas seeps at ridge crests. Structural and morphological evidence for contractional deformation decreases northward along the fault, consistent with a decrease in Pacific-North America obliquity along the plate boundary. Preliminary interpretations suggest that plate boundary transpression may be partitioned into distinctive structural domains, in which convergent stress is accommodated by margin-parallel thrust faulting, folding, and ridge

  12. Controls on Patterns of Repeated Fault Rupture: Examples From the Denali and Bear River Faults

    NASA Astrophysics Data System (ADS)

    Schwartz, D. P.; Hecker, S.

    2013-12-01

    A requirement for estimating seismic hazards is assigning magnitudes to earthquake sources. This relies on anticipating rupture length and slip along faults. Fundamental questions include whether lengths of past surface ruptures can be reasonably determined from fault zone characteristics and whether the variability in length and slip during repeated faulting can be constrained. To address these issues, we look at rupture characteristics and their possible controls from examples in very different tectonic settings: the high slip rate (≥15 mm/yr) Denali fault system, Alaska, and the recently activated Bear River normal fault, Wyoming-Utah. The 2002 rupture of the central Denali fault (CDF) is associated with two noteworthy geometric features. First, rupture initiated where the Susitna Glacier thrust fault (SG) intersects the CDF at depth, near the apex of a structurally complex restraining bend along the Denali. Paleoseismic data show that for the past 700 years the timing of large surface ruptures on the Denali fault west of the 2002 rupture has been distinct from those along the CDF. For the past ~6ka the frequency of SG to Denali ruptures has been ~1:12, indicating that this complexity of the 2002 rupture has not been common. Second, rupture propagated off of one strike-slip fault (CDF) onto another (the Totschunda fault, TF), an occurrence that seldom has been observed. LiDAR mapping of the intersection shows direct connectivity of the two faults--the CDF simply branches into both the TF and the eastern Denali fault (EDF). Differences in the timing of earthquakes during the past 700-800 years at sites surrounding this intersection, and estimates of accumulated slip from slip rates, indicate that for the 2002 rupture sufficient strain had accumulated on the TF to favor its failure. In contrast, the penultimate CDF rupture, with the same slip distribution as in 2002, appears to have stopped at or near the branch point, implying that neither the TF nor the EDF

  13. The Cottage Lake Aeromagnetic Lineament: A Possible Onshore Extension of the Southern Whidbey Island Fault, Washington

    USGS Publications Warehouse

    Blakely, Richard J.; Sherrod, Brian L.; Wells, Ray E.; Weaver, Craig S.; McCormack, David H.; Troost, Kathy G.; Haugerud, Ralph A.

    2004-01-01

    The northwest-striking southern Whidbey Island fault zone (SWIF) was mapped previously using borehole data and potential-field anomalies on Whidbey Island and marine seismic surveys beneath surrounding waterways. Abrupt subsidence at a coastal marsh on south-central Whidbey Island suggests that the SWIF experienced a MW 6.5 to 7.0 earthquake about 3000 years ago. Southeast of Whidbey Island, a hypothesized southeastward projection of the SWIF would make landfall between the cities of Seattle and Everett. As part of systematic, ongoing studies by the U.S. Geological Survey, University of Washington, and other earth science organizations to evaluate potentially active faults and other earth hazards throughout the Puget Lowland, we test this hypothesis using aeromagnetic, lidar, and borehole data. Linear, northwest-striking magnetic anomalies traversing the mainland region project southeastward toward the communities of Woodinville and Maltby, Washington. All of these magnetic anomalies are low in amplitude and best illuminated in residual magnetic fields. The most prominent of the residual magnetic anomalies extends at least 16 km, lies approximately on strike with the SWIF on Whidbey Island, and passes near Crystal and Cottage Lakes, about 27 km southeast of downtown Everett. In places, this magnetic anomaly is associated with topographic lineaments, but spectral analysis indicates that the source of the anomaly extends to depths greater than 2 km and cannot be explained entirely by topographic effects. The Alderwood #1 oil exploration well located on strike with the Cottage Lake aeromagnetic lineament shows evidence of deformation over a total depth range of 3000 m; some beds within this interval exhibit intense fracturing and shearing, although deformation within the well can only be constrained as post-early Oligocene and pre-Pleistocene. Boreholes acquired as part of a wastewater tunnel project show evidence of soil disturbance at locations where some

  14. Late Quaternary paleoseismicity and seismic potential of the Yilan-Yitong Fault Zone in NE China

    NASA Astrophysics Data System (ADS)

    Yu, Zhongyuan; Yin, Na; Shu, Peng; Li, Jincheng; Wei, Qinghai; Min, Wei; Zhang, Peizhen

    2018-01-01

    The Yilan-Yitong Fault Zone (YYFZ), which is composed of two nearly parallel branches with a spacing of 5-30 km and a length of ∼1100 km, is considered to be the key branch of the Tancheng-Lujiang Fault Zone (TLFZ) in NE China. It was traditionally believed that the YYFZ experienced weak activity or was inactive during the Late Quaternary, without the capability to generate strong earthquakes (M ≥ 7), based on the absence of typical outcrops and large historical or instrumental earthquakes (M > 6). However, our paleoseismic study shows that the YYFZ is the primary seismotectonic structure (M ≥ 7) that poses significant earthquake threats to NE China. The synthesis of data collected from geologic investigations, geomorphic mapping, trench logging and the dating of samples indicates that the YYFZ is an active structure that has undergone segmented strong tectonic deformation since the Late Quaternary with a characteristic assemblage of landforms, including linear scarps and troughs, offset or deflected streams, linear sag ponds, small horsts and grabens. The latest ruptures of the YYFZ migrated from previous boundary faults into the basin interior, forming a left-stepping en echelon pattern in plain view, and the kinematics of these events in the Late Quaternary were dominated by reverse dextral slipping. Multi-segment cluster faulting might have occurred during three cluster periods, i.e., ∼34750-35812 a BP, ∼21700-22640 a BP, and ∼4000 a BP-present, which implies that the recurrence interval of large earthquakes along the YYFZ may be as long as tens of thousands of years.

  15. Decadal strain along creeping faults in the Needles District, Paradox Basin Utah determined with InSAR Time Series Analysis

    NASA Astrophysics Data System (ADS)

    Kravitz, K.; Furuya, M.; Mueller, K. J.

    2013-12-01

    The Needles District, in Canyonlands National Park in Utah exposes an array of actively creeping normal faults that accommodate gravity-driven extension above a plastically deforming substrate of evaporite deposits. Previous interferogram stacking and InSAR analysis of faults in the Needles District using 35 ERS satellite scenes from 1992 to 2002 showed line-of-sight deformation rates of ~1-2 mm/yr along active normal faults, with a wide strain gradient along the eastern margin of the deforming region. More rapid subsidence of ~2-2.5 mm/yr was also evident south of the main fault array across a broad platform bounded by the Colorado River and a single fault scarp to the south. In this study, time series analysis was performed on SAR scenes from Envisat, PALSAR, and ERS satellites ranging from 1992 to 2010 to expand upon previous results. Both persistent scatterer and small baseline methods were implemented using StaMPS. Preliminary results from Envisat data indicate equally distributed slip rates along the length of faults within the Needles District and very little subsidence in the broad region further southwest identified in previous work. A phase ramp that appears to be present within the initial interferograms creates uncertainty in the current analysis and future work is aimed at removing this artifact. Our new results suggest, however that a clear deformation signal is present along a number of large grabens in the northern part of the region at higher rates of up to 3-4 mm/yr. Little to no creep is evident along the single fault zone that bounds the southern Needles, in spite of the presence of a large and apparently active fault. This includes a segment of this fault that is instrumented by a creepmeter that yields slip rates on the order of ~1mm/yr. Further work using time series analysis and a larger sampling of SAR scenes will be used in an effort to determine why differences exist between previous and current work and to test mechanics-based modeling

  16. Linking Incoming Plate Faulting and Intermediate Depth Seismicity

    NASA Astrophysics Data System (ADS)

    Kwong, K. B.; van Zelst, I.; Tong, X.; Eimer, M. O.; Naif, S.; Hu, Y.; Zhan, Z.; Boneh, Y.; Schottenfels, E.; Miller, M. S.; Moresi, L. N.; Warren, J. M.; Wiens, D. A.

    2017-12-01

    Intermediate depth earthquakes, occurring between 70-350 km depth, are often attributed to dehydration reactions within the subducting plate. It is proposed that incoming plate normal faulting associated with plate bending at the trench may control the amount of hydration in the plate by producing large damage zones that create pathways for the infiltration of seawater deep into the subducting mantle. However, a relationship between incoming plate seismicity, faulting, and intermediate depth seismicity has not been established. We compiled a global dataset consisting of incoming plate earthquake moment tensor (CMT) solutions, focal depths, bend fault spacing and offset measurements, along with plate age and convergence rates. In addition, a global intermediate depth seismicity dataset was compiled with parameters such as the maximum seismic moment and seismicity rate, as well as thicknesses of double seismic zones. The maximum fault offset in the bending region has a strong correlation with the intermediate depth seismicity rate, but a more modest correlation with other parameters such as convergence velocity and plate age. We estimated the expected rate of seismic moment release for the incoming plate faults using mapped fault scarps from bathymetry. We compare this with the cumulative moment from normal faulting earthquakes in the incoming plate from the global CMT catalog to determine whether outer rise fault movement has an aseismic component. Preliminary results from Tonga and the Middle America Trench suggest there may be an aseismic component to incoming plate bending faulting. The cumulative seismic moment calculated for the outer rise faults will also be compared to the cumulative moment from intermediate depth earthquakes to assess whether these parameters are related. To support the observational part of this study, we developed a geodynamic numerical modeling study to systematically explore the influence of parameters such as plate age and convergence

  17. Recent tectonic stress field, active faults and geothermal fields (hot-water type) in China

    NASA Astrophysics Data System (ADS)

    Wan, Tianfeng

    1984-10-01

    It is quite probable that geothermal fields of the hot-water type in China do not develop in the absence of recently active faults. Such active faults are all controlled by tectonic stress fields. Using the data of earthquake fault-plane solutions, active faults, and surface thermal manifestations, a map showing the recent tectonic stress field, and the location of active faults and geothermal fields in China is presented. Data collected from 89 investigated prospects with geothermal manifestations indicate that the locations of geothermal fields are controlled by active faults and the recent tectonic stress field. About 68% of the prospects are controlled by tensional or tensional-shear faults. The angle between these faults and the direction of maximum compressive stress is less than 45°, and both tend to be parallel. About 15% of the prospects are controlled by conjugate faults. Another 14% are controlled by compressive-shear faults where the angle between these faults and the direction maximum compressive stress is greater than 45°.

  18. Active tectonics of the Imperial Valley, southern California: fault damage zones, complex basins and buried faults

    NASA Astrophysics Data System (ADS)

    Persaud, P.; Ma, Y.; Stock, J. M.; Hole, J. A.; Fuis, G. S.; Han, L.

    2016-12-01

    Ongoing oblique slip at the Pacific-North America plate boundary in the Salton Trough produced the Imperial Valley. Deformation in this seismically active area is distributed across a complex network of exposed and buried faults resulting in a largely unmapped seismic hazard beneath the growing population centers of El Centro, Calexico and Mexicali. To better understand the shallow crustal structure in this region and the connectivity of faults and seismicity lineaments, we used data primarily from the Salton Seismic Imaging Project (SSIP) to construct a P-wave velocity profile to 15 km depth, and a 3-D velocity model down to 8 km depth including the Brawley Geothermal area. We obtained detailed images of a complex wedge-shaped basin at the southern end of the San Andreas Fault system. Two deep subbasins (VP <5.65 km/s) are located in the western part of the larger Imperial Valley basin, where seismicity trends and active faults play a significant role in shaping the basin edge. Our 3-D VP model reveals previously unrecognized NE-striking cross faults that are interacting with the dominant NW-striking faults to control deformation. New findings in our profile include localized regions of low VP (thickening of a 5.65-5.85 km/s layer) near faults or seismicity lineaments interpreted as possibly faulting-related. Our 3-D model and basement map reveal velocity highs associated with the geothermal areas in the eastern valley. The improved seismic velocity model from this study, and the identification of important unmapped faults or buried interfaces will help refine the seismic hazard for parts of Imperial County, California.

  19. The Wasatch fault zone, utah—segmentation and history of Holocene earthquakes

    NASA Astrophysics Data System (ADS)

    Machette, Michael N.; Personius, Stephen F.; Nelson, Alan R.; Schwartz, David P.; Lund, William R.

    The Wasatch fault zone (WFZ) forms the eastern boundary of the Basin and Range province and is the longest continuous, active normal fault (343 km) in the United States. It underlies an urban corridor of 1.6 million people (80% of Utah's population) representing the largest earthquake risk in the interior of the western United States. We have used paleoseismological data to identify 10 discrete segments of the WFZ. Five are active, medial segments with Holocene slip rates of 1-2 mm a -1, recurrence intervals of 2000-4000 years and average lengths of about 50 km. Five are less active, distal segments with mostly pre-Holocene surface ruptures, late Quaternary slip rates of <0.5 mm a -1 recurrence intervals of ≥10,000 years and average lengths of about 20 km. Surface-faulting events on each of the medial segments of the WFZ formed 2-4-m-high scarps repeatedly during the Holocene; latest Pleistocene (14-15 ka) deposits commonly have scarps as much as 15-20 m in height. Segments identified from paleoseismological studies of other major late Quaternary normal faults in the northern Basin and Range province are 20-25 km long, or about half of that proposed for the medial segments of the WFZ. Paleoseismological records for the past 6000 years indicate that a major surface-rupturing earthquake has occurred along one of the medial segments about every 395 ± 60 years. However, between about 400 and 1500 years ago, the WFZ experienced six major surface-rupturing events, an average of one event every 220 years, or about twice as often as expected from the 6000-year record. This pattern of temporal clustering is similar to that of the central Nevada—eastern California Seismic Belt in the western part of the Basin and Range province, where 11 earthquakes of M > 6.5 have occurred since 1860. Although the time scale of the clustering is different—130 years vs 1100 years—we consider the central Nevada—eastern California Seismic Belt to be a historic analog for movement on

  20. Geological indications for active deformation along Fethiye and G

    NASA Astrophysics Data System (ADS)

    Pavlides, S.; Chatzipetros, Anastasia Michailidou (1), Alexandros; Yağmurlu, Nevzat Özgür, Züheyr Kamaci, Murat Şentürk, Fuzuli

    2009-04-01

    Geological indications for active deformation along Fethiye and Gökova faults, SW Turkey Alexandros Chatzipetros, Spyros Pavlides, Anastasia Michailidou (1) Fuzuli Yağmurlu, Nevzat Özgür, Züheyr Kamaci, Murat Şentürk (2) 1Department of Geology, Aristotle University, 54124, Thessaloniki, Greece 2Department of Geological Engineering, Süleyman Demirel University, Isparta, Turkey Fethiye and Gökova faults (FF and GF respectively) are two long fault zones in SW Turkey, associated with minor to moderate historical seismic activity; their geological and geomorphological characteristics however are indicative of active deformation. FF is part of the Fethiye - Burdur Fault Zone (FBFZ), the inferred mainland continuation of the eastern part of the Hellenic Arc. FF, as well as FBFZ, is an oblique-slip (normal with significant dextral component) fault of NE-SW strike, dipping to the NW, that forms the SE border of Fethiye basin and controls its extension to the NE, while it also controls the development of the drainage network. Its geomorphological signature is characterized by steep bedrock fault scarps that are accompanied by thick sequences of alluvial fans and colluviums. Although it does not appear to disrupt the most recent generation of alluvial fans, geophysical prospecting showed that the deformation reaches all the way up to almost the superficial layers. Palaeoseismological trenching in selected sites along the fault yielded indications of at least two large, ground rupturing, seismic events in Holocene, as indicated by the inferred age of the trenched material. Indications include surface ruptures, faulted colluvial wedges and palaeosoils and microstratigraphical correlations. GF forms is divided into two main segments, the partly submarine Gökova-Kos segment trending E-W to NE-SW and the mainland NE-SW trending main Gökova segment, both dipping to the SE to S. They are predominantly normal with dextral component. The first segment defines the northern

  1. High-resolution seismic profiling reveals faulting associated with the 1934 Ms 6.6 Hansel Valley earthquake (Utah, USA)

    USGS Publications Warehouse

    Bruno, Pier Paolo G.; Duross, Christopher; Kokkalas, Sotirios

    2017-01-01

    The 1934 Ms 6.6 Hansel Valley, Utah, earthquake produced an 8-km-long by 3-km-wide zone of north-south−trending surface deformation in an extensional basin within the easternmost Basin and Range Province. Less than 0.5 m of purely vertical displacement was measured at the surface, although seismologic data suggest mostly strike-slip faulting at depth. Characterization of the origin and kinematics of faulting in the Hansel Valley earthquake is important to understand how complex fault ruptures accommodate regions of continental extension and transtension. Here, we address three questions: (1) How does the 1934 surface rupture compare with faults in the subsurface? (2) Are the 1934 fault scarps tectonic or secondary features? (3) Did the 1934 earthquake have components of both strike-slip and dip-slip motion? To address these questions, we acquired a 6.6-km-long, high-resolution seismic profile across Hansel Valley, including the 1934 ruptures. We observed numerous east- and west-dipping normal faults that dip 40°−70° and offset late Quaternary strata from within a few tens of meters of the surface down to a depth of ∼1 km. Spatial correspondence between the 1934 surface ruptures and subsurface faults suggests that ruptures associated with the earthquake are of tectonic origin. Our data clearly show complex basin faulting that is most consistent with transtensional tectonics. Although the kinematics of the 1934 earthquake remain underconstrained, we interpret the disagreement between surface (normal) and subsurface (strike-slip) kinematics as due to slip partitioning during fault propagation and to the effect of preexisting structural complexities. We infer that the 1934 earthquake occurred along an ∼3-km wide, off-fault damage zone characterized by distributed deformation along small-displacement faults that may be alternatively activated during different earthquake episodes.

  2. Active faulting on the Wallula fault zone within the Olympic-Wallowa lineament, Washington State, USA

    USGS Publications Warehouse

    Sherrod, Brian; Blakely, Richard J.; Lasher, John P.; Lamb, Andrew P.; Mahan, Shannon; Foit, Franklin F.; Barnett, Elizabeth

    2016-01-01

    The Wallula fault zone is an integral feature of the Olympic-Wallowa lineament, an ∼500-km-long topographic lineament oblique to the Cascadia plate boundary, extending from Vancouver Island, British Columbia, to Walla Walla, Washington. The structure and past earthquake activity of the Wallula fault zone are important because of nearby infrastructure, and also because the fault zone defines part of the Olympic-Wallowa lineament in south-central Washington and suggests that the Olympic-Wallowa lineament may have a structural origin. We used aeromagnetic and ground magnetic data to locate the trace of the Wallula fault zone in the subsurface and map a quarry exposure of the Wallula fault zone near Finley, Washington, to investigate past earthquakes along the fault. We mapped three main packages of rocks and unconsolidated sediments in an ∼10-m-high quarry exposure. Our mapping suggests at least three late Pleistocene earthquakes with surface rupture, and an episode of liquefaction in the Holocene along the Wallula fault zone. Faint striae on the master fault surface are subhorizontal and suggest reverse dextral oblique motion for these earthquakes, consistent with dextral offset on the Wallula fault zone inferred from offset aeromagnetic anomalies associated with ca. 8.5 Ma basalt dikes. Magnetic surveys show that the Wallula fault actually lies 350 m to the southwest of the trace shown on published maps, passes directly through deformed late Pleistocene or younger deposits exposed at Finley quarry, and extends uninterrupted over 120 km.

  3. Active faulting in apparently stable peninsular India: Rift inversion and a Holocene-age great earthquake on the Tapti Fault

    NASA Astrophysics Data System (ADS)

    Copley, Alex; Mitra, Supriyo; Sloan, R. Alastair; Gaonkar, Sharad; Reynolds, Kirsty

    2014-08-01

    We present observations of active faulting within peninsular India, far from the surrounding plate boundaries. Offset alluvial fan surfaces indicate one or more magnitude 7.6-8.4 thrust-faulting earthquakes on the Tapti Fault (Maharashtra, western India) during the Holocene. The high ratio of fault displacement to length on the alluvial fan offsets implies high stress-drop faulting, as has been observed elsewhere in the peninsula. The along-strike extent of the fan offsets is similar to the thickness of the seismogenic layer, suggesting a roughly equidimensional fault rupture. The subsiding footwall of the fault is likely to have been responsible for altering the continental-scale drainage pattern in central India and creating the large west flowing catchment of the Tapti river. A preexisting sedimentary basin in the uplifting hanging wall implies that the Tapti Fault was active as a normal fault during the Mesozoic and has been reactivated as a thrust, highlighting the role of preexisting structures in determining the rheology and deformation of the lithosphere. The slip sense of faults and earthquakes in India suggests that deformation south of the Ganges foreland basin is driven by the compressive force transmitted between India and the Tibetan Plateau. The along-strike continuation of faulting to the east of the Holocene ruptures we have studied represents a significant seismic hazard in central India.

  4. Geometry and slip rates of active blind thrusts in a reactivated back-arc rift using shallow seismic imaging: Toyama basin, central Japan

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tatsuya; Kato, Naoko; Sato, Hiroshi; Koshiya, Shin; Toda, Shigeru; Kobayashi, Kenta

    2017-10-01

    Active blind thrust faults, which can be a major seismic hazard in urbanized areas, are commonly difficult to image with seismic reflection surveys. To address these challenges in coastal plains, we collected about 8 km-long onshore high-resolution two-dimensional (2D) seismic reflection data using a dense array of 800 geophones across compressionally reactivated normal faults within a failed rift system located along the southwestern extension of the Toyama trough in the Sea of Japan. The processing of the seismic reflection data illuminated their detailed subsurface structures to depths of about 3 km. The interpreted depth-converted section, correlated with nearby Neogene stratigraphy, indicated the presence of and along-strike variation of previously unrecognized complex thrust-related structures composed of active fault-bend folds coupled with pairs of flexural slip faults within the forelimb and newly identified frontal active blind thrusts beneath the alluvial plain. In addition, growth strata and fold scarps that deform lower to upper Pleistocene units record the recent history of their structural growth and fault activity. This case shows that shallow seismic reflection imaging with densely spaced seismic recorders is a useful tool in defining locations, recent fault activity, and complex geometry of otherwise inaccessible active blind thrust faults.

  5. Subsurface Resistivity Structures in and Around Strike-Slip Faults - Electromagnetic Surveys and Drillings Across Active Faults in Central Japan -

    NASA Astrophysics Data System (ADS)

    Omura, K.; Ikeda, R.; Iio, Y.; Matsuda, T.

    2005-12-01

    Electrical resistivity is important property to investigate the structure of active faults. Pore fluid affect seriously the electrical properties of rocks, subsurface electrical resistivity can be an indicator of the existence of fluid and distribution of pores. Fracture zone of fault is expected to have low resistivity due to high porosity and small gain size. Especially, strike-slip type fault has nearly vertical fracture zone and the fracture zone would be detected by an electrical survey across the fault. We performed electromagnetic survey across the strike-slip active faults in central Japan. At the same faults, we also drilled borehole into the fault and did downhole logging in the borehole. We applied MT or CSAMT methods onto 5 faults: Nojima fault which appeared on the surface by the 1995 Great Kobe earthquake (M=7.2), western Nagano Ohtaki area(1984 Nagano-ken seibu earthquake (M=6.8), the fault did not appeared on the surface), Neodani fault which appeared by the 1891 Nobi earthquake (M=8.0), Atera fault which seemed to be dislocated by the 1586 Tensyo earthquake (M=7.9), Gofukuji fault that is considered to have activated about 1200 years ago. The sampling frequencies of electrical and magnetic field were 2 - 1024Hz (10 frequencies) for CSAMT survey and 0.00055 - 384Hz (40 frequencies) for MT survey. The electromagnetic data were processed by standard method and inverted to 2-D resistivity structure along transects of the faults. Results of the survey were compared with downhole electrical logging data and observational descriptions of drilled cores. Fault plane of each fault were recognized as low resistivity region or boundary between relatively low and high resistivity region, except for Gofukuji fault. As for Gofukuji fault, fault was located in relatively high resistivity region. During very long elapsed time from the last earthquake, the properties of fracture zone of Gofukuji fault might changed from low resistivity properties as observed for

  6. Comparison between hydroacoustical and terrestrial evidence of glacially induced faulting, Lake Voxsjön, central Sweden

    NASA Astrophysics Data System (ADS)

    Smith, Colby A.; Nyberg, Johan; Bergman, Björn

    2018-01-01

    The recent availability of a terrestrial high-resolution digital elevation model in Sweden has led to the discovery of previously unknown scarps believed to be associated with bedrock faults that ruptured to the surface during the Holocene. Field investigations, however, are required to confirm these findings and determine the timing of post-glacial seismicity. Here, we present results from a unique hybrid approach, where hydroacoustical data from the sediments of Lake Voxsjön are compared to stratigraphic and geomorphologic records from nearby terrestrial settings. The hydroacoustical data are largely consistent with the terrestrial data indicating a single fault rupture shortly after deglaciation, which occurred about 11,000-10,500 cal BP.

  7. Southern San Andreas Fault evaluation field activity: approaches to measuring small geomorphic offsets--challenges and recommendations for active fault studies

    USGS Publications Warehouse

    Scharer, Katherine M.; Salisbury, J. Barrett; Arrowsmith, J. Ramon; Rockwell, Thomas K.

    2014-01-01

    In southern California, where fast slip rates and sparse vegetation contribute to crisp expression of faults and microtopography, field and high‐resolution topographic data (<1  m/pixel) increasingly are used to investigate the mark left by large earthquakes on the landscape (e.g., Zielke et al., 2010; Zielke et al., 2012; Salisbury, Rockwell, et al., 2012, Madden et al., 2013). These studies measure offset streams or other geomorphic features along a stretch of a fault, analyze the offset values for concentrations or trends along strike, and infer that the common magnitudes reflect successive surface‐rupturing earthquakes along that fault section. Wallace (1968) introduced the use of such offsets, and the challenges in interpreting their “unique complex history” with offsets on the Carrizo section of the San Andreas fault; these were more fully mapped by Sieh (1978) and followed by similar field studies along other faults (e.g., Lindvall et al., 1989; McGill and Sieh, 1991). Results from such compilations spurred the development of classic fault behavior models, notably the characteristic earthquake and slip‐patch models, and thus constitute an important component of the long‐standing contrast between magnitude–frequency models (Schwartz and Coppersmith, 1984; Sieh, 1996; Hecker et al., 2013). The proliferation of offset datasets has led earthquake geologists to examine the methods and approaches for measuring these offsets, uncertainties associated with measurement of such features, and quality ranking schemes (Arrowsmith and Rockwell, 2012; Salisbury, Arrowsmith, et al., 2012; Gold et al., 2013; Madden et al., 2013). In light of this, the Southern San Andreas Fault Evaluation (SoSAFE) project at the Southern California Earthquake Center (SCEC) organized a combined field activity and workshop (the “Fieldshop”) to measure offsets, compare techniques, and explore differences in interpretation. A thorough analysis of the measurements from the

  8. Detecting Taiwan's Shanchiao Active Fault Using AMT and Gravity Methods

    NASA Astrophysics Data System (ADS)

    Liu, H.-C.; Yang, C.-H.

    2009-04-01

    Taiwan's Shanchiao normal fault runs in a northeast-southwest direction and is located on the western edge of the Taipei Basin in northern Taiwan. The overburden of the fault is late Quaternary sediment with a thickness of approximately a few tenth of a meter to several hundred meters. No detailed studies of the western side of the Shanchiao fault are available. As Taiwan is located on the Neotectonic Belt in the western Pacific, detecting active faults near the Taipei metropolitan area will provide necessary information for further disaster prevention. It is the responsibility of geologists and geophysicists in Taiwan to perform this task. Examination of the resistivity and density contrasts of subsurface layers permits a mapping of the Shanchiao fault and the deformed Tertiary strata of the Taipei Basin. The audio-frequency magnetotelluric (AMT) method and gravity method were chosen for this study. Significant resistivity and gravity anomalies were observed in the suspected fault zone. The interpretation reveals a good correlation between the features of the Shanchiao fault and resistivity and density distribution at depth. In this observation, AMT and gravity methods provides a viable means for mapping the Shanchiao fault position and studying its features associated with the subsidence of the western side of the Taipei Basin. This study indicates the AMT and gravity methods' considerable potential for accurately mapping an active fault.

  9. Paleoseismic study of the Cathedral Rapids fault in the northern Alaska Range near Tok, Alaska

    NASA Astrophysics Data System (ADS)

    Koehler, R. D.; Farrell, R.; Carver, G. A.

    2010-12-01

    The Cathedral Rapids fault extends ~40 km between the Tok and Robertson River valleys and is the easternmost fault in a series of active south-dipping imbricate thrust faults which bound the northern flank of the Alaska Range. Collectively, these faults accommodate a component of convergence transferred north of the Denali fault and related to the westward (counterclockwise) rotation of the Wrangell Block driven by relative Pacific/North American plate motion along the eastern Aleutian subduction zone and Fairweather fault system. To the west, the system has been defined as the Northern Foothills Fold and Thrust Belt (NFFTB), a 50-km-wide zone of east-west trending thrust faults that displace Quaternary deposits and have accommodated ~3 mm/yr of shortening since latest Pliocene time (Bemis, 2004). Over the last several years, the eastward extension of the NFFTB between Delta Junction and the Canadian border has been studied by the Alaska Division of Geological & Geophysical Surveys to better characterize faults that may affect engineering design of the proposed Alaska-Canada natural gas pipeline and other infrastructure. We summarize herein reconnaissance field observations along the western part of the Cathedral Rapids fault. The western part of the Cathedral Rapids fault extends 21 km from Sheep Creek to Moon Lake and is characterized by three roughly parallel sinuous traces that offset glacial deposits of the Illinoian to early Wisconsinan Delta glaciations and the late Wisconsinan Donnelly glaciation, as well as, Holocene alluvial deposits. The northern trace of the fault is characterized by an oversteepened, beveled, ~2.5-m-high scarp that obliquely cuts a Holocene alluvial fan and projects into the rangefront. Previous paleoseismic studies along the eastern part of the Cathedral Rapids fault and Dot “T” Johnson fault indicate multiple latest Pleistocene and Holocene earthquakes associated with anticlinal folding and thrust faulting (Carver et al., 2010

  10. Fault Activity in the Terrebonne Trough, Southeastern Louisiana: A Continuation of Salt-Withdrawal Fault Activity from the Miocene into the late Quaternary and Implication for Subsidence Hot-Spots

    NASA Astrophysics Data System (ADS)

    Akintomide, A. O.; Dawers, N. H.

    2017-12-01

    The observed displacement along faults in southeastern Louisiana has raised questions about the kinematic history of faults during the Quaternary. The Terrebonne Trough, a Miocene salt withdrawal basin, is bounded by the Golden Meadow fault zone on its northern boundary; north dipping, so-called counter-regional faults, together with a subsurface salt ridge, define its southern boundary. To date, there are relatively few published studies on fault architecture and kinematics in the onshore area of southeastern Louisiana. The only publically accessible studies, based on 2d seismic reflection profiles, interpreted faults as mainly striking east-west. Our interpretation of a 3-D seismic reflection volume, located in the northwestern Terrebonne Trough, as well as industry well log correlations define a more complex and highly-segmented fault architecture. The northwest striking Lake Boudreaux fault bounds a marsh on the upthrown block from Lake Boudreaux on the downthrown block. To the east, east-west striking faults are located at the Montegut marsh break and north of Isle de Jean Charles. Portions of the Lake Boudreaux and Isle de Jean Charles faults serve as the northern boundary of the Madison Bay subsidence hot-spot. All three major faults extend to the top of the 3d seismic volume, which is inferred to image latest Pleistocene stratigraphy. Well log correlation using 11+ shallow markers across these faults and kinematic techniques such as stratigraphic expansion indices indicate that all three faults were active in the middle(?) and late Pleistocene. Based on expansion indices, both the Montegut and Isle de Jean Charles faults were active simultaneously at various times, but with different slip rates. There are also time intervals when the Lake Boudreaux fault was slipping at a faster rate compared to the east-west striking faults. Smaller faults near the margins of the 3d volume appear to relate to nearby salt stocks, Bully Camp and Lake Barre. Our work to date

  11. Faulting and hydration of the Juan de Fuca plate system

    NASA Astrophysics Data System (ADS)

    Nedimović, Mladen R.; Bohnenstiehl, DelWayne R.; Carbotte, Suzanne M.; Pablo Canales, J.; Dziak, Robert P.

    2009-06-01

    Multichannel seismic observations provide the first direct images of crustal scale normal faults within the Juan de Fuca plate system and indicate that brittle deformation extends up to ~ 200 km seaward of the Cascadia trench. Within the sedimentary layering steeply dipping faults are identified by stratigraphic offsets, with maximum throws of 110 ± 10 m found near the trench. Fault throws diminish both upsection and seaward from the trench. Long-term throw rates are estimated to be 13 ± 2 mm/kyr. Faulted offsets within the sedimentary layering are typically linked to larger offset scarps in the basement topography, suggesting reactivation of the normal fault systems formed at the spreading center. Imaged reflections within the gabbroic igneous crust indicate swallowing fault dips at depth. These reflections require local alteration to produce an impedance contrast, indicating that the imaged fault structures provide pathways for fluid transport and hydration. As the depth extent of imaged faulting within this young and sediment insulated oceanic plate is primarily limited to approximately Moho depths, fault-controlled hydration appears to be largely restricted to crustal levels. If dehydration embrittlement is an important mechanism for triggering intermediate-depth earthquakes within the subducting slab, then the limited occurrence rate and magnitude of intraslab seismicity at the Cascadia margin may in part be explained by the limited amount of water imbedded into the uppermost oceanic mantle prior to subduction. The distribution of submarine earthquakes within the Juan de Fuca plate system indicates that propagator wake areas are likely to be more faulted and therefore more hydrated than other parts of this plate system. However, being largely restricted to crustal levels, this localized increase in hydration generally does not appear to have a measurable effect on the intraslab seismicity along most of the subducted propagator wakes at the Cascadia margin.

  12. Fault propagation folds induced by gravitational failure and slumping of the Central Costa Rica volcanic range - Implications for large terrestrial and Martian volcanic edifices

    NASA Technical Reports Server (NTRS)

    Borgia, Andrea; Burr, Jeremiah; Montero, Walter; Morales, Luis Diego; Alvarado, Guillermo E.

    1990-01-01

    Maps are presented that describe the compressional tectonic structures found at the base of the Central Costa Rica volcanic range (CCRVR), which comprise thrust faults and related fault propagation folds, only partly covered by syntectonic and posttectonic volcanoclastic deposits. Evidence is presented that these structures formed by gravitational failure and lumping of the flanks of the volcanic range. It is suggested that similar structures may be found at the toe of the southern flank of Kilauea volcano, Hawaii, and along the perimeter scarp of the Olympus Mons volcano on Mars.

  13. Accelerating slip rates on the puente hills blind thrust fault system beneath metropolitan Los Angeles, California, USA

    USGS Publications Warehouse

    Bergen, Kristian J.; Shaw, John H.; Leon, Lorraine A.; Dolan, James F.; Pratt, Thomas L.; Ponti, Daniel J.; Morrow, Eric; Barrera, Wendy; Rhodes, Edward J.; Murari, Madhav K.; Owen, Lewis A.

    2017-01-01

    Slip rates represent the average displacement across a fault over time and are essential to estimating earthquake recurrence for proba-bilistic seismic hazard assessments. We demonstrate that the slip rate on the western segment of the Puente Hills blind thrust fault system, which is beneath downtown Los Angeles, California (USA), has accel-erated from ~0.22 mm/yr in the late Pleistocene to ~1.33 mm/yr in the Holocene. Our analysis is based on syntectonic strata derived from the Los Angeles River, which has continuously buried a fold scarp above the blind thrust. Slip on the fault beneath our field site began during the late-middle Pleistocene and progressively increased into the Holocene. This increase in rate implies that the magnitudes and/or the frequency of earthquakes on this fault segment have increased over time. This challenges the characteristic earthquake model and presents an evolving and potentially increasing seismic hazard to metropolitan Los Angeles.

  14. Character of High Temperature Mylonitic Shear Zones Associated with Oceanic Detachment Faults at the Ultra-Slow Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    Marr, C.; John, B. E.; Cheadle, M. J.; German, C. R.

    2014-12-01

    Two well-preserved core complexes at the Mid-Cayman Rise (MCR), Mt Dent and Mt Hudson, provide an opportunity to examine the deformation history and rheology of detachment faults at an ultra-slow spreading ridge. Samples from the CAYTROUGH (1976-77) project and the Nautilus NA034 cruise (2013) were selected for detailed petrographic and microstructural study. Surface samples from Mt. Dent (near the center of the MCR) provide insight into lateral variation in footwall rock type and deformation history across a core complex in both the across and down dip directions. In contrast, sampling of Mt. Hudson (SE corner of the MCR) focuses on a high-angle, crosscutting normal fault scarp, which provides a cross section of the detachment fault system. Sampling across Mt Dent reveals that the footwall is composed of heterogeneously-distributed gabbro (47%) and peridotite (20%) with basaltic cover (33%) dominating the top of the core complex. Sampling of Mt Hudson is restricted to the normal fault scarp cutting the core complex and suggests the interior is dominated by gabbro (85% gabbro, 11% peridotite, 4% basalt). At Mt. Dent, peridotite is exposed within ~4km of the breakaway indicating that the Mt. Dent detachment does not cut Penrose-style oceanic crust. The sample set provides evidence of a full down-temperature sequence of detachment related-fault rocks, from possible granulite and clear amphibolite mylonitizatization to prehnite-pumpellyite brittle deformation. Both detachments show low-temperature brittle deformation overprinting higher temperature plastic fabrics. Fe-Ti oxide gabbro mylonites dominate the sample set, and plastic deformation of plagioclase is recorded in samples collected as near as ~4km from the inferred breakaway along the southern flank of Mt. Dent, suggesting the brittle-plastic transition was initially at ~3km depth. Recovered samples suggest strain associated with both detachment systems is localized into discrete mylonitic shear zones (~1-10cm

  15. Using high-resolution multibeam bathymetry to identify seafloor surface rupture along the Palos Verdes fault complex in offshore Southern California

    USGS Publications Warehouse

    Marlow, M. S.; Gardner, J.V.; Normark, W.R.

    2000-01-01

    Recently acquired high-resolution multibeam bathymetric data reveal several linear traces that are the surficial expressions of seafloor rupture of Holocene faults on the upper continental slope southeast of the Palos Verdes Peninsula. High-resolution multichannel and boomer seismic-reflection profiles show that these linear ruptures are the surficial expressions of Holocene faults with vertical to steep dips. The most prominent fault on the multibeam bathymetry is about 10 km to the west of the mapped trace of the Palos Verdes fault and extends for at least 14 km between the shelf edge and the base of the continental slope. This fault is informally called the Avalon Knoll fault for the nearby geographic feature of that name. Seismic-reflection profiles show that the Avalon Knoll fault is part of a northwest-trending complex of faults and anticlinal uplifts that are evident as scarps and bathymetric highs on the multibeam bathymetry. This fault complex may extend onshore and contribute to the missing balance of Quaternary uplift determined for the Palos Verdes Hills and not accounted for by vertical uplift along the onshore Palos Verdes fault. We investigate the extent of the newly located offshore Avalon Knoll fault and use this mapped fault length to estimate likely minimum magnitudes for events along this fault.

  16. Ridges and scarps in the equatorial belt of Mars

    USGS Publications Warehouse

    Lucchitta, B.K.; Klockenbrink, J.L.

    1981-01-01

    The morphology and distribution of ridges and scarps on Mars in the ?? 30?? latitude belt were investigated. Two distinct types of ridges were recognized. The first is long and linear, resembling mare ridges on the Moon; it occurs mostly in plains areas. The other is composed of short, anastomosing segments and occurs mostly in ancient cratered terrain and intervening plateaus. Where ridges are eroded, landscape configurations suggest that they are located along regional structures. The age of ridges is uncertain, but some are as young as the latest documented volcanic activity on Mars. The origins of ridges are probably diverse-they may result from wrinkling due to compression or from buckling due to settling over subsurface structures. The similar morphologic expressions of ridge types of various origins may be related to a similar deformation mechanism caused by two main factors: (1) most ridges are developed in thick layers of competent material and (2) ridges formed under stresses near a free surface. ?? 1981 D. Reidel Publishing Co.

  17. Features and dimensions of the Hayward Fault Zone in the Strawberry and Blackberry Creek Area, Berkeley, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, P.L.

    1995-03-01

    This report presents an examination of the geometry of the Hayward fault adjacent to the Lawrence Berkeley Laboratory and University of California campuses in central Berkeley. The fault crosses inside the eastern border of the UC campus. Most subtle geomorphic (landform) expressions of the fault have been removed by development and by the natural processes of landsliding and erosion. Some clear expressions of the fault remain however, and these are key to mapping the main trace through the campus area. In addition, original geomorphic evidence of the fault`s location was recovered from large scale mapping of the site dating frommore » 1873 to 1897. Before construction obscured and removed natural landforms, the fault was expressed by a linear, northwest-tending zone of fault-related geomorphic features. There existed well-defined and subtle stream offsets and beheaded channels, fault scarps, and a prominent ``shutter ridge``. To improve our confidence in fault locations interpreted from landforms, we referred to clear fault exposures revealed in trenching, revealed during the construction of the Foothill Housing Complex, and revealed along the length of the Lawson Adit mining tunnel. Also utilized were the locations of offset cultural features. At several locations across the study area, distress features in buildings and streets have been used to precisely locate the fault. Recent published mapping of the fault (Lienkaemper, 1992) was principally used for reference to evidence of the fault`s location to the northwest and southeast of Lawrence Berkeley Laboratory.« less

  18. Timing of activity of two fault systems on Mercury

    NASA Astrophysics Data System (ADS)

    Galluzzi, V.; Guzzetta, L.; Giacomini, L.; Ferranti, L.; Massironi, M.; Palumbo, P.

    2015-10-01

    Here we discuss about two fault systems found in the Victoria and Shakespeare quadrangles of Mercury. The two fault sets intersect each other and show probable evidence for two stages of deformation. The most prominent system is N-S oriented and encompasses several tens to hundreds of kilometers long and easily recognizable fault segments. The other system strikes NE- SW and encompasses mostly degraded and short fault segments. The structural framework of the studied area and the morphological appearance of the faults suggest that the second system is older than the first one. We intend to apply the buffered crater counting technique on both systems to make a quantitative study of their timing of activity that could confirm the already clear morphological evidence.

  19. Fault activation by hydraulic fracturing in western Canada.

    PubMed

    Bao, Xuewei; Eaton, David W

    2016-12-16

    Hydraulic fracturing has been inferred to trigger the majority of injection-induced earthquakes in western Canada, in contrast to the Midwestern United States, where massive saltwater disposal is the dominant triggering mechanism. A template-based earthquake catalog from a seismically active Canadian shale play, combined with comprehensive injection data during a 4-month interval, shows that earthquakes are tightly clustered in space and time near hydraulic fracturing sites. The largest event [moment magnitude (M W ) 3.9] occurred several weeks after injection along a fault that appears to extend from the injection zone into crystalline basement. Patterns of seismicity indicate that stress changes during operations can activate fault slip to an offset distance of >1 km, whereas pressurization by hydraulic fracturing into a fault yields episodic seismicity that can persist for months. Copyright © 2016, American Association for the Advancement of Science.

  20. Surface Rupture Map of the 2002 M7.9 Denali Fault Earthquake, Alaska: Digital Data

    USGS Publications Warehouse

    Haeussler, Peter J.

    2009-01-01

    The November 3, 2002, Mw7.9 Denali Fault earthquake produced about 340 km of surface rupture along the Susitna Glacier Thrust Fault and the right-lateral, strike-slip Denali and Totschunda Faults. Digital photogrammetric methods were primarily used to create a 1:500-scale, three-dimensional surface rupture map, and 1:6,000-scale aerial photographs were used for three-dimensional digitization in ESRI's ArcMap GIS software, using Leica's StereoAnalyst plug in. Points were digitized 4.3 m apart, on average, for the entire surface rupture. Earthquake-induced landslides, sackungen, and unruptured Holocene fault scarps on the eastern Denali Fault were also digitized where they lay within the limits of air photo coverage. This digital three-dimensional fault-trace map is superior to traditional maps in terms of relative and absolute accuracy, completeness, and detail and is used as a basis for three-dimensional visualization. Field work complements the air photo observations in locations of dense vegetation, on bedrock, or in areas where the surface trace is weakly developed. Seventeen km of the fault trace, which broke through glacier ice, were not digitized in detail due to time constraints, and air photos missed another 10 km of fault rupture through the upper Black Rapids Glacier, so that was not mapped in detail either.

  1. High-resolution lidar topography of the Puget Lowland, Washington - A bonanza for earth science

    USGS Publications Warehouse

    Haugerud, R.A.; Harding, D.J.; Johnson, S.Y.; Harless, J.L.; Weaver, C.S.; Sherrod, B.L.

    2003-01-01

    More than 10,000 km2 of high-resolution, public-domain topography acquired by the Puget Sound Lidar Consortium is revolutionizing investigations of active faulting, continental glaciation, landslides, and surficial processes in the seismically active Puget Lowland. The Lowland-the population and economic center of the Pacific Northwest-presents special problems for hazards investigations, with its young glacial topography, dense forest cover, and urbanization. Lidar mapping during leaf-off conditions has led to a detailed digital model of the landscape beneath the forest canopy. The surface thus revealed contains a rich and diverse record of previously unknown surface-rupturing faults, deep-seated landslides, uplifted Holocene and Pleistocene beaches, and subglacial and periglacial features. More than half a dozen suspected postglacial fault scarps have been identified to date. Five scarps that have been trenched show evidence of large, Holocene, surface-rupturing earthquakes.

  2. Crustal strain accumulation on Southern Basin and Range Province faults modulated by distant plate boundary earthquakes? Evidence from geodesy, seismic imaging, and paleoseismology

    NASA Astrophysics Data System (ADS)

    Bennett, R. A.; Shirzaei, M.; Broermann, J.; Spinler, J. C.; Holland, A. A.; Pearthree, P.

    2014-12-01

    GPS in Arizona reveals a change in the pattern of crustal strain accumulation in 2010 and based on viscoelastic modeling appears to be associated with the distant M7.2 El Mayor-Cucapah (EMC) earthquake in Baja California, Mexico. GPS data collected between 1999 and 2009 near the Santa Rita normal fault in SE Arizona reveal a narrow zone of crustal deformation coincident with the fault trace, delineated by W-NW facing Pleistocene fault scarps of heights 1 to 7 m. The apparent deformation zone is also seen in a preliminary InSAR interferogram. Total motion across the zone inferred using an elastic block model constrained by the pre-2010 GPS measurements is ~1 mm/yr in a sense consistent with normal fault motion. However, continuous GPS measurements throughout Arizona reveal pronounced changes in crustal velocity following the EMC earthquake, such that the relative motion across the Santa Rita fault post-2010 is negligible. Paleoseismic evidence indicates that mapped Santa Rita fault scarps were formed by two or more large magnitude (M6.7 to M7.6) surface rupturing normal-faulting earthquakes 60 to 100 kyrs ago. Seismic refraction and reflection data constrained by deep (~800 m) well log data provide evidence of progressive, possibly intermittent, displacement on the fault through time. The rate of strain accumulation observed geodetically prior to 2010, if constant over the past 60 to 100 kyrs, would imply an untenable minimum slip rate deficit of 60 to 100 m since the most recent earthquake. One explanation for the available geodetic, seismic, and paleoseismic evidence is that strain accumulation is modulated by viscoelastic relaxation associated with frequent large magnitude earthquakes in the Salton Trough region, episodically inhibiting the accumulation of elastic strain required to generate large earthquakes on the Santa Rita and possibly other faults in the Southern Basin and Range. An important question is thus for how long the postseismic velocity changes

  3. Pit Where a Scarp Exposes an Underground Deposit of Martian Ice

    NASA Image and Video Library

    2018-01-11

    At this wedge-shaped pit on Mars, the steep slope (or scarp) at the northern edge (toward the top of the image) exposes a cross-section of a thick sheet of underground water ice. The image is from the High Resolution Imaging Stereo Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. The gray-scale portions on left and right are from a single waveband in the red-light portion of the visible spectrum. The middle section, in enhanced color, combines data from red, near-infrared and blue-green wavebands. The scene covers an area about three miles (five kilometers) wide. Figure 1 includes a one-kilometer scale bar. One kilometer is about six-tenths of a mile. The ice-exposing scarp at the northern edge of the pit has a steepness of about 45 to 55 degrees, plunging from the relatively level ground outside the pit. The HiRISE observation ESP_022389_1230 was made on May 7, 2011, at 56.6 degrees south latitude, 114.1 degrees east longitude. In January 2018, in the journal Science, researchers reported finding and studying eight such ice-exposing scarps in the middle latitudes of Mars. The presence of vast underground ice deposits in Mars' middle latitudes was known previously. The report of unusual sites where they are exposed provides new information about their depth and layering. It also identifies potential water resources for future Mars missions and possibilities for studying Martian climate history by examining the ice layers holding a record of past climate cycles. The ice may have been deposited as snow when the tilt of Mars' rotation axis was greater than it is now. https://photojournal.jpl.nasa.gov/catalog/PIA22078

  4. Glacial Buzzcutting and Scarp Encroachment Limit the Height of Tropical Mountains

    NASA Astrophysics Data System (ADS)

    Cunningham, M.; Stark, C. P.; Kaplan, M. R.; Schaefer, J. M.; Winckler, G.

    2016-12-01

    In many mountain ranges hypsometric maxima occur between the glacial equilibrium line altitude (ELA) of the Last Glacial Maximum (LGM) and that of today. A common interpretation of this large-scale observation is that a "glacial buzzsaw" acting throughout the Pleistocene concentrated area within the altitudinal band of ELA fluctuation. This hypothesis remains controversial, however, as there are many examples of uplifted relict surfaces in heavily glaciated areas that occur near the ELA by coincidence. We have focused on the role of glacial erosion in the tropics, where it is spatially restricted to high elevations and temporally limited to global glacial maxima, but appears to have nevertheless truncated vertical orogen growth. Evidence of glacial buzzcutting in some of these ranges has been obscured by post-glacial destruction of glacial valleys by expanding fluvial catchments. We deduce that a duel between glacial buzzcuting and fluvially-driven scarp encroachment has proceeded throughout the Pleistocene in these places. In Costa Rica, we use 10Be and 3He surface-exposure age dating and topographic analysis to confirm that substantial glacial denudation took place at high elevations during the LGM, and employ topographic metrics there and in the Central Range of Taiwan to reveal shrinkage of glacially buzzcut surfaces driven by post-glacial scarp encroachment. These data cast new light on the buzzsaw hypothesis by showing that glacial erosion works with remarkable efficiency in the tropics, precisely where it is likely to be least effective. Our work also draws attention to landscapes with ambiguous signs of glacial erosion, as there are apparent instances of heavily modified, pre-LGM buzzcut surfaces in several tropical ranges. These perched, possibly pre-LGM landscapes may offer a window into previous phases of buzzcutting, and place speed limits on the rate of post-glacial scarp encroachment.

  5. The offshore Palos Verdes fault zone near San Pedro, Southern California

    USGS Publications Warehouse

    Fisher, M.A.; Normark, W.R.; Langenheim, V.E.; Calvert, A.J.; Sliter, R.

    2004-01-01

    High-resolution seismic-reflection data are combined with a variety of other geophysical and geological data to interpret the offshore structure and earthquake hazards of the San Pedro shelf, near Los Angeles, California. Prominent structures investigated include the Wilmington graben, the Palos Verdes fault zone, various faults below the west part of the San Pedro shelf and slope, and the deep-water San Pedro basin. The structure of the Palos Verdes fault zone changes markedly along strike southeastward across the San Pedro shelf and slope. Under the north part of the shelf, this fault zone includes several strands, with the main strand dipping west. Under the slope, the main fault strands exhibit normal separation and mostly dip east. To the southeast near Lasuen Knoll, the Palos Verdes fault zone locally is low angle, but elsewhere near this knoll, the fault dips steeply. Fresh seafloor scarps near Lasuen Knoll indicate recent fault movement. We explain the observed structural variation along the Palos Verdes fault zone as the result of changes in strike and fault geometry along a master right-lateral strike-slip fault at depth. Complicated movement along this deep fault zone is suggested by the possible wave-cut terraces on Lasuen Knoll, which indicate subaerial exposure during the last sea level lowstand and subsequent subsidence of the knoll. Modeling of aeromagnetic data indicates a large magnetic body under the west part of the San Pedro shelf and upper slope. We interpret this body to be thick basalt of probable Miocene age. This basalt mass appears to have affected the pattern of rock deformation, perhaps because the basalt was more competent during deformation than the sedimentary rocks that encased the basalt. West of the Palos Verdes fault zone, other northwest-striking faults deform the outer shelf and slope. Evidence for recent movement along these faults is equivocal, because we lack age dates on deformed or offset sediment.

  6. High resolution shallow imaging of the mega-splay fault in the central Nankai Trough off Kumano

    NASA Astrophysics Data System (ADS)

    Ashi, J.

    2012-12-01

    Steep slopes are continuously developed at water depths between 2200 to 2800 m at the Nankai accretionary prism off Kumano. These slopes are interpreted to be surface expressions caused by the megasplay fault on seismic reflection profiles. The fault plane has been drilled at multiple depths below seafloor by IODP NanTroSEIZE project. Mud breccias only recognized at the hanging wall of the fault (Site C0004) by Xray CT scanner are interpreted be formed by strong ground shaking and the age of the shallowest event of mud breccia layers suggests deformation in 1944 Tonankai earthquake (Sakaguchi et al., 2011). Detailed structures around the fault have been examined by seismic reflection profiles including 3D experiments. Although the fault plane deeper than 100 m is well imaged, the structure shallower than 100 m is characterized by obscure sediment veneer suggesting no recent fault activity. Investigation of shallow deformation structures is significant for understanding of recent tectonic activity. Therefore, we carried out deep towed subbottom profile survey by ROV NSS (Navigable Sampling System) during Hakuho-maru KH-11-9 cruise. We introduced a chirp subbottom profiling system of EdgeTech DW-106 for high resolution mapping of shallow structures. ROV NSS also has capability to take a long core with a pinpoint accuracy. The subbottom profiler crossing the megasplay fault near Site C0004 exhibits a landward dipping reflector suggesting the fault plane. The shallowest depth of the reflector is about 10 m below seafloor and the strata above it shows reflectors parallel to the seafloor without any topographic undulation. The fault must have displaced the shallow formation because intense deformation indicated by mud breccia was restricted to near fault zone. Slumping or sliding probably modified the shallow formation after the faulting. The shallow deformations near the megasplay fault were well imaged at the fault scarp 20 km southwest of Site C0004. Although the

  7. Recurrent Holocene movement on the Susitna Glacier Thrust Fault: The structure that initiated the Mw 7.9 Denali Fault earthquake, central Alaska

    USGS Publications Warehouse

    Personius, Stephen; Crone, Anthony J.; Burns, Patricia A.; Reitman, Nadine G.

    2017-01-01

    We conducted a trench investigation and analyzed pre‐ and postearthquake topography to determine the timing and size of prehistoric surface ruptures on the Susitna Glacier fault (SGF), the thrust fault that initiated the 2002 Mw 7.9 Denali fault earthquake sequence in central Alaska. In two of our three hand‐excavated trenches, we found clear evidence for a single pre‐2002 earthquake (penultimate earthquake [PE]) and determined an age of 2210±420  cal. B.P. (2σ) for this event. We used structure‐from‐motion software to create a pre‐2002‐earthquake digital surface model (DSM) from 1:62,800‐scale aerial photography taken in 1980 and compared this DSM with postearthquake 5‐m/pixel Interferometric Synthetic Aperature Radar topography taken in 2010. Topographic profiles measured from the pre‐earthquake DSM show features that we interpret as fault and fold scarps. These landforms were about the same size as those formed in 2002, so we infer that the PE was similar in size to the initial (Mw 7.2) subevent of the 2002 sequence. A recurrence interval of 2270 yrs and dip slip of ∼4.8  m yield a single‐interval slip rate of ∼1.8  mm/yr. The lack of evidence for pre‐PE deformation indicates probable episodic (clustering) behavior on the SGF that may be related to strain migration among other similarly oriented thrust faults that together accommodate shortening south of the Denali fault. We suspect that slip‐partitioned thrust‐triggered earthquakes may be a common occurrence on the Denali fault system, but documenting the frequency of such events will be very difficult, given the lack of long‐term paleoseismic records, the number of potential thrust‐earthquake sources, and the pervasive glacial erosion in the region.

  8. Active faulting in low- to moderate-seismicity regions: the SAFE project

    NASA Astrophysics Data System (ADS)

    Sebrier, M.; Safe Consortium

    2003-04-01

    SAFE (Slow Active Faults in Europe) is an EC-FP5 funded multidisciplinary effort which proposes an integrated European approach in identifying and characterizing active faults as input for evaluating seismic hazard in low- to moderate-seismicity regions. Seismically active western European regions are generally characterized by low hazard but high risk, due to the concentration of human and material properties with high vulnerability. Detecting, and then analysing, tectonic deformations that may lead to destructive earthquakes in such areas has to take into account three major limitations: - the typical climate of western Europe (heavy vegetation cover and/or erosion) ; - the subdued geomorphic signature of slowly deforming faults ; - the heavy modification of landscape by human activity. The main objective of SAFE, i.e., improving the assessment of seismic hazard through understanding of the mechanics and recurrence of active faults in slowly deforming regions, is achieved through four major steps : (1) extending geologic and geomorphic investigations of fault activity beyond the Holocene to take into account various time-windows; (2) developing an expert system that combines diverse lines of geologic, seismologic, geomorphic, and geophysical evidence to diagnose the existence and seismogenic potential of slow active faults; (3) delineating and characterising high seismic risk areas of western Europe, either from historical or geological/geomorphic evidence; (4) demonstrating and discussing the impact of the project results on risk assessment through a seismic scenario in the Basel-Mulhouse pilot area. To take properly into account known differences in source behavior, these goals are pursued both in extensional (Lower and Upper Rhine Graben, Catalan Coast) and compressional tectonic settings (southern Upper Rhine Graben, Po Plain, and Provence). Two arid compressional regions (SE Spain and Moroccan High Atlas) have also been selected to address the limitations

  9. Seismic Reflection Imaging of the Tucson Basin and Subsurface Relations Between the Catalina Detachment System and the Santa Rita Fault, SE Arizona

    NASA Astrophysics Data System (ADS)

    Wagner, F. T.; Johnson, R. A.

    2003-12-01

    Industry seismic reflection data collected in SE Arizona in the 1970's imaged the structure of the Tucson basin, the low-angle Catalina detachment fault, and the Santa Rita fault. Recent reprocessing of these data, including detailed near-surface statics compensation and modern event-migration techniques, have served to better focus the subsurface images. The Tucson basin occupies an area of approximately 2600 km2 and is bounded to the northeast by the Catalina-Rincon metamorphic core complex and to the south by the Santa Rita Mountains. The basin is characterized by an apparent half-graben structure down dropped along the eastern side and filled with up to 3700 m of Oligocene to recent volcanic and sedimentary rocks. In the northern portion of the basin, the gently-dipping ( ˜30 degrees) Catalina detachment fault is imaged from the western flank of the core complex dipping to the southwest beneath the Tucson basin. The detachment surface is evident to several seconds two-way-time in the seismic data and is characterized by broad corrugations parallel to extension with wavelengths of tens of kilometers. In the southern portion of the basin, the Santa Rita fault is imaged at the northwest side of the Santa Rita Mountains and dips ˜20 degrees to the northwest beneath the Tucson basin. Large, rotated hanging-wall blocks are also imaged above both the Catalina detachment and Santa Rita faults. While the Catalina detachment fault is no longer active, geomorphic analysis of fault scarps along the western flank of the Santa Rita Mountains supports recent (60-100 ka) movement on the Santa Rita fault. Preliminary results indicate that the Santa Rita fault terminates against the Catalina detachment fault beneath the central basin, suggesting that the recent movement observed on this fault may be, in part, a reactivation of the older fault surface.

  10. Shear concentration in a collision zone: kinematics of the Chihshang Fault as revealed by outcrop-scale quantification of active faulting, Longitudinal Valley, eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Angelier, J.; Chu, H.-T.; Lee, J.-C.

    1997-06-01

    Repeated measurements of active deformation were carried out at three sites along the active Chihshang Fault, a segment of the Longitudinal Valley Fault zone of eastern Taiwan (the present-day plate boundary between the Philippine Sea Plate and Eurasia). Reliable annual records of displacement along an active fault, were obtained based on detailed surveys of faulted concrete structures. Along the active Chihshang Fault striking N18°E, we determined average motion vectors trending N37°W with an average shortening of 2.2 cm/yr. Thus, the transverse component of motion related to westward thrusting is 1.8 cm/yr, whereas the left-lateral strike-slip component of motion is 1.3 cm/yr. The fault dips 39-45° to the east, so that the vertical displacement is 1.5-3 cm/yr and the actual oblique offset of the fault increases at a rate of 2.7-3.7 cm/yr. This is in good agreement with the results of regional geodetic and tectonic analyses in Taiwan, and consistent with the N54°W trend of convergence between the northernmost Luzon Arc and South China revealed by GPS studies. Our study provides an example of extreme shear concentration in an oblique collision zone. At Chihshang, the whole horizontal shortening of the Longitudinal Valley Fault, 2.2 cm/yr on average, occurs across a single, narrow fault zone, so that the whole reverse slip (about 2.7-3.7 cm/yr depending on fault dip) was entirely recorded by walls 20-200 m long where faults are tightly localized. This active faulting accounts for more than one fourth (27%) of the total shortening between the Luzon Arc and South China recorded through GPS analyses. Further surveys should indicate whether the decreasing shortening velocity across the fault is significant (revealing increasing earthquake risk due to stress accumulation) or not (revealing continuing fault creep and 'weak' behaviour of the Chihshang Fault).

  11. Finding Faults: Tohoku and other Active Megathrusts/Megasplays

    NASA Astrophysics Data System (ADS)

    Moore, J. C.; Conin, M.; Cook, B. J.; Kirkpatrick, J. D.; Remitti, F.; Chester, F.; Nakamura, Y.; Lin, W.; Saito, S.; Scientific Team, E.

    2012-12-01

    breakout occurrence and orientation provide the most common log criteria for recognizing major thrust zones in ocean drilling holes at convergent margins. In the case of JFAST, identification of faults by logging was confirmed during subsequent coring activities, and logging data was critical for successful placement of the observatory down hole.

  12. Conditions of Fissuring in a Pumped-Faulted Aquifer System

    NASA Astrophysics Data System (ADS)

    Hernandez-Marin, M.; Burbey, T. J.

    2007-12-01

    Earth fissuring associated with subsidence from groundwater pumping is problematic in many arid-zone heavily pumped basins such as Las Vegas Valley. Long-term pumping at rates considerably greater than the natural recharge rate has stressed the heterogeneous aquifer system resulting in a complex stress-strain regime. A rigorous artificial recharge program coupled with increased surface-water importation has allowed water levels to appreciably recover, which has led to surface rebound in some localities. Nonetheless, new fissures continue to appear, particularly near basin-fill faults that behave as barriers to subsidence bowls. The purpose of this research is to develop a series of computational models to better understand the influence that structure (faults), pumping, and hydrostratigraphy has in the generation and propagation of fissures. The hydrostratigraphy of Las Vegas Valley consists of aquifers, aquitards and a relatively dry vadoze zone that may be as thick as 100m in much of the valley. Quaternary faults are typically depicted as scarps resulting from pre- pumping extensional tectonic events and are probably not responsible for the observed strain. The models developed to simulate the stress-strain and deformation processes in a faulted pumped aquifer-aquitard system of Las Vegas use the ABAQUS CAE (Complete ABAQUS Environment) software system. ABAQUS is a sophisticated engineering industry finite-element modeling package capable of simulating the complex fault- fissure system described here. A brittle failure criteria based on the tensile strength of the materials and the acting stresses (from previous models) are being used to understand how and where fissures are likely to form. , Hypothetical simulations include the role that faults and the vadose zone may play in fissure formation

  13. Paleoseismology of the Chelungpu Fault during the past 1900 years

    USGS Publications Warehouse

    Chen, W.-S.; Lee, K.-J.; Lee, L.-S.; Ponti, D.J.; Prentice, C.; Chen, Y.-G.; Chang, H.-C.; Lee, Y.-H.

    2003-01-01

    The 1999 earthquake brought about 80-km-long surface ruptures along the Shihkang, Chelungpu, and Tajienshan Faults, central Taiwan. Several trenches have been excavated across the Chelungpu Fault of the middle segment. The surface ruptures display clear scarps ranging from 0.2 to 4 m high, showing a complex geomorphic pattern due to coseismic faulting and folding. In the study, measurement of the vertical offset or structural relief was taken with reference to the hanging wall beyond the trishear deformation zone. Therefore we suggest that, for the measurement of offset, we should disregard the trishear zone, and that structural relief on the hanging wall should be represented as a real vertical offset. The net slip is then calculated from the structural relief and dip angle of the thrust on a vertical plane along the slip direction. Through the excavation of a pineapple field across the Chelungpu Fault, we are able to provide evidence of at least four earthquake events for the past about 1900 years, including the 1999 earthquake. Furthermore, based on the radiocarbon dates and historical record, the timing of the penultimate event is bracketed to be between 430 and 150 years ago, and the average recurrence interval is less than 700 years. These data indicate that the average slip rate is about 8.7 mm/yr for the past 1900 years. ?? 2003 Published by Elsevier Ltd.

  14. Miocene extension in the East Range, Nevada: A two-stage history of normal faulting in the northern basin and range

    USGS Publications Warehouse

    Fosdick, J.C.; Colgan, J.P.

    2008-01-01

    The East Range in northwestern Nevada is a large, east-tilted crustal block bounded by west-dipping normal faults. Detailed mapping of Tertiary stratigraphic units demonstrates a two-phase history of faulting and extension. The oldest sedimentary and volcanic rocks in the area record cumulative tilting of -30??-45??E, whereas younger olivine basalt flows indicate only a 15??-20??E tilt since ca. 17-13 Ma. Cumulative fault slip during these two episodes caused a minimum of 40% extensional strain across the East Range, and Quaternary fault scarps and seismic activity indicate that fault motion has continued to the present day. Apatite fission track and (U-Th)/He data presented here show that faulting began in the East Range ca. 17-15 Ma, coeval with middle Miocene extension that occurred across much of the Basin and Range. This phase of extension occurred contemporaneously with middle Miocene volcanism related to the nearby northern Nevada rifts, suggesting a link between magmatism and extensional stresses in the crust that facilitated normal faulting in the East Range. Younger fault slip, although less well constrained, began after 10 Ma and is synchronous with the onset of low-magnitude extension in many parts of northwestern Nevada and eastern California. These findings imply that, rather than migrating west across a discrete boundary, late Miocene extension in western Nevada is a distinct, younger period of faulting that is superimposed on the older, middle Miocene distribution of extended and unextended domains. The partitioning of such middle Miocene deformation may reflect the influence of localized heterogeneities in crustal structure, whereas the more broadly distributed late Miocene extension may reflect a stronger influence from regional plate boundary processes that began in the late Miocene. ?? 2008 Geological Society of America.

  15. The mechanism of post-rift fault activities in Baiyun sag, Pearl River Mouth basin

    NASA Astrophysics Data System (ADS)

    Sun, Zhen; Xu, Ziying; Sun, Longtao; Pang, Xiong; Yan, Chengzhi; Li, Yuanping; Zhao, Zhongxian; Wang, Zhangwen; Zhang, Cuimei

    2014-08-01

    Post-rift fault activities were often observed in deepwater basins, which have great contributions to oil and gas migration and accumulation. The main causes for post-rift fault activities include tectonic events, mud or salt diapirs, and gravitational collapse. In the South China Sea continental margin, post-rift fault activities are widely distributed, especially in Baiyun sag, one of the largest deepwater sag with its main body located beneath present continental slope. During the post-rift stage, large population of faults kept active for a long time from 32 Ma (T70) till 5.5 Ma (T10). Seismic interpretation, fault analysis and analogue modeling experiments indicate that the post-rift fault activities in Baiyun sag between 32 Ma (T70) and 13.8 Ma (T30) was mainly controlled by gravity pointing to the Main Baiyun sag, which caused the faults extensive on the side facing Main Baiyun sag and the back side compressive. Around 32 Ma (T70), the breakup of the continental margin and the spreading of the South China Sea shed a combined effect of weak compression toward Baiyun sag. The gravity during post-rift stage might be caused by discrepant subsidence and sedimentation between strongly thinned sag center and wing areas. This is supported by positive relationship between sedimentation rate and fault growth index. After 13.8 Ma (T30), fault activity shows negative relationship with sedimentation rate. Compressive uplift and erosion in seismic profiles as well as negative tectonic subsiding rates suggest that the fault activity from 13.8 Ma (T30) to 5.5 Ma (T10) might be controlled by the subductive compression from the Philippine plate in the east.

  16. Active faulting on the island of Crete (Greece)

    NASA Astrophysics Data System (ADS)

    Caputo, Riccardo; Catalano, Stefano; Monaco, Carmelo; Romagnoli, Gino; Tortorici, Giuseppe; Tortorici, Luigi

    2010-10-01

    ABSTRACT In order to characterize and quantify the Middle-Late Quaternary and ongoing deformation within the Southern Aegean forearc, we analyse the major tectonic structures affecting the island of Crete and its offshore. The normal faults typically consist of 4-30-km-long dip-slip segments locally organised in more complex fault zones. They separate carbonate and/or metamorphic massifs, in the footwall block, from loose to poorly consolidated alluvial and colluvial materials within the hangingwall. All these faults show clear evidences of recent re-activations and trend parallel to two principal directions: WNW-ESE and NNE-SSW. Based on all available data for both onland and offshore structures (morphological and structural mapping, satellite imagery and airphotographs remote sensing as well as the analysis of seismic profiles and the investigation of marine terraces and Holocene raised notches along the island coasts), for each fault we estimate and constrain some of the principal seismotectonic parameters and particularly the fault kinematics, the cumulative amount of slip and the slip-rate. Following simple assumptions and empirical relationships, maximum expected magnitudes and mean recurrence periods are also suggested. Summing up the contribution to crustal extension provided by the two major fault sets we calculate both arc-normal and arc-parallel long-term strain rates. The occurrence of slightly deeper and more external low-angle thrust planes associated with the incipient continental collision occurring in western Crete is also analysed. Although these contractional structures can generate stronger seismic events (M ~ 7.5.) they are probably much rarer and thus providing a minor contribution to the overall morphotectonic evolution of the island and the forearc. A comparison of our geologically-based results with those obtained from GPS measurements show a good agreement, therefore suggesting that the present-day crustal deformation is probably active

  17. Recently Active Traces of the Berryessa Fault, California: A Digital Database

    USGS Publications Warehouse

    Lienkaemper, James J.

    2012-01-01

    The purpose of this map is to show the location of and evidence for recent movement on active fault traces within the Berryessa section and parts of adjacent sections of the Green Valley Fault Zone, California. The location and recency of the mapped traces is primarily based on geomorphic expression of the fault as interpreted from large-scale 2010 aerial photography and from 2007 and 2011 0.5 and 1.0 meter bare-earth LiDAR imagery (that is, high-resolution topographic data). In a few places, evidence of fault creep and offset Holocene strata in trenches and natural exposures have confirmed the activity of some of these traces. This publication is formatted both as a digital database for use within a geographic information system (GIS) and for broader public access as map images that may be browsed on-line or download a summary map. The report text describes the types of scientific observations used to make the map, gives references pertaining to the fault and the evidence of faulting, and provides guidance for use of and limitations of the map.

  18. Active faults system and related potential seismic events near Ulaanbaatar, capital of Mongolia.

    NASA Astrophysics Data System (ADS)

    Schlupp, Antoine; Ferry, Matthieu; Munkhuu, Ulziibat; Sodnomsambuu, Demberel; Al-Ashkar, Abeer

    2013-04-01

    The region of Ulaanbaatar lies several hundred kilometers from large known active faults that produced magnitude 6 to 8+ earthquakes during the last century. Beside the Hustai fault, which displays a clear morphological expression, no active fault was previously described less than 100 km from the city. In addition, no large historical (i.e. more recent than the 16th c.) earthquakes are known in this region. However, since 2005 a very dense seismic activity has developed over the Emeelt Township area, a mere 10 km from Ulaanbaatar. The activity is characterized by numerous low magnitude events (M<2.8), which are distributed linearly along several tens of kilometers where no active fault has been identified. This raises several questions: Is this seismicity associated to a -yet- unknown active fault? If so, are there other unknown active faults near Ulaanbaatar? Hence, we deployed a multi-disciplinary approach including morpho-tectonic, near-surface geophysical and paleoseismological investigations. We describe four large active faults west and south of Ulaanbaatar, three of them are newly discovered (Emeelt, Sharai, Avdar), one was previously known (Hustai) but without precise study on its seismic potential. The Emeelt seismicity can be mapped over 35 km along N150 and corresponds in the field to a smoothed, but clear, active fault morphology that can be mapped along a 10-km-long section. The fault dips at ~30° NE (GPR and surface morphology observations) and uplifts the eastern block. The age of the last surface rupture observed in trenches is about 10 ka (preliminary OSL dating). Considering a rupture length of 35 km, a full segment rupture would be comparable to the 1967 Mogod earthquake with a magnitude as large as Mw 7. It has to be considered today as a possible scenario for the seismic risk of Ulaanbaatar. The 90-km-long Hustai Range Fault System, oriented WSW-ENE and located about 10 km west of Ulaanbaatar, displays continuous microseismicity with five

  19. Topographic precursors and geological structures of deep-seated catastrophic landslides caused by Typhoon Talas

    NASA Astrophysics Data System (ADS)

    Chigira, Masahiro; Tsou, Ching-Ying; Matsushi, Yuki; Hiraishi, Narumi; Matsuzawa, Makoto

    2013-11-01

    Typhoon Talas crossed the Japanese Islands between 2 and 5 September 2011, causing more than 70 deep-seated catastrophic landslides in a Jurassic to Paleogene-lower Miocene accretion complex. Detailed examination of the topographic features of 10 large landslides before the event, recorded on 1-m DEMs based on airborne laser scanner surveys, showed that all landslides had small scarps near their future crowns prior to the slide, and one landslide had linear depressions along its future crown as precursor topographic features. These scarps and linear depressions were caused by gravitational slope deformation that preceded the catastrophic failure. Although the scarps may have been enlarged by degradation, their sizes relative to the whole slopes suggest that minimal slope deformation had occurred in the period immediately before the catastrophic failure. The scarp ratio, defined as the ratio of length of a scarp to that of the whole slope both measured along the slope line, ranged from 5% to 21%. Careful examination of aerial photographs from another four large landslides, for which no high-resolution DEMs were available, suggested that they also developed scarps at their heads beforehand. Twelve of the 14 landslides we surveyed in the field had sliding surfaces with wedge-shaped discontinuities that consisted of faults and bedding, suggesting that the buildup of pore pressure occurs readily on wedge-shaped discontinuities in a gravitationally deformed rock body. Most of the faults were undulatory and were probably thrust faults that formed during accretion. Other types of gravitational deformation were also active; e.g., flexural toppling and buckling were observed to have preceded one landslide.

  20. Structural Analysis of Active North Bozgush Fault Zone (NW Iran)

    NASA Astrophysics Data System (ADS)

    Saber, R.; Isik, V.; Caglayan, A.

    2013-12-01

    NW Iran is one of the seismically active regions between Zagros Thrust Belt at the south and Caucasus at the north. Not only large magnitude historical earthquakes (Ms>7), but also 1987 Bozgush, 1997 Ardebil (Mw 6.1) and 2012 Ahar-Varzagan (Mw 6.4) earthquakes reveal that the region is seismically active. The North Bozgush Fault Zone (NBFZ) in this region has tens of kilometers in length and hundreds of meters in width. The zone has produced some large and destructive earthquakes (1593 M:6.1 and 1883 M:6.2). The NBFZ affects the Cenozoic units and along this zone Eocene units thrusted over Miocene and/or Plio-Quaternary sedimentary units. Together with morphologic features (stream offsets and alluvial fan movements) affecting the young unites reveal that the zone is active. The zone is mainly characterized by strike-slip faults with reverse component and reverse faults. Reverse faults striking N55°-85°E and dip of 40°-50° to the SW while strike-slip faults show right lateral slip with N60°-85°W and N60°-80°E directions. Our structural data analysis in NBFZ indicates that the axis direction of σ2 principal stress is vertical and the stress ratio (R) is 0.12. These results suggest that the tectonic regime along the North Bozgush Fault Zone is transpressive. Obtained other principal stresses (σ1, σ3) results are compatible with stress directions and GPS velocity suggested for NW Iran.

  1. Recently active traces of the Bartlett Springs Fault, California: a digital database

    USGS Publications Warehouse

    Lienkaemper, James J.

    2010-01-01

    The purpose of this map is to show the location of and evidence for recent movement on active fault traces within the Bartlett Springs Fault Zone, California. The location and recency of the mapped traces is primarily based on geomorphic expression of the fault as interpreted from large-scale aerial photography. In a few places, evidence of fault creep and offset Holocene strata in trenches and natural exposures have confirmed the activity of some of these traces. This publication is formatted both as a digital database for use within a geographic information system (GIS) and for broader public access as map images that may be browsed on-line or download a summary map. The report text describes the types of scientific observations used to make the map, gives references pertaining to the fault and the evidence of faulting, and provides guidance for use of and limitations of the map.

  2. Active tectonic of the Medlicott Wadia Thrust (Western Himalaya) inferred from morphotectonic analysis

    NASA Astrophysics Data System (ADS)

    Vignon, V.; Mugnier, J. L.; Replumaz, A.; Vassallo, R.; Ramakrishnan, R.; Srivastava, P.; Malik, M. M.; Jouanne, F.; Carcaillet, J.

    2010-12-01

    We study the main emergence of the Main Himalayan Thrust (MHT), in the western Himalaya. The MHT is the active Indian/Asian plate boundary and is responsible for M > 8 shallow earthquakes. Its main emergence in west Himalaya occurred along the Medlicott Wadia Thrust (MWT) responsible for the 2005 M 7.6 Balakot earthquake in Pakistan. In the Riasi area, two major rivers, the Chenab and the Anji, have built large fluvial terraces across the MWT. We have mapped the geometry of the terraces and the elevation of the tectonic scarps using kinematic GPS, total station measurements and satellite imagery. The terraces have been dated combining several methods: cosmogenic-nuclide dating (10Be) on boulders constituting the terrace treads, and Optically Stimulated Luminescence (OSL) on fine-grained deposit layers. At the hanging wall of the fault, the Palaeozoic limestone bedrock is deeply incised by Chenab River that formed a series of stepped strath terraces from the present river level up to 350 m above it. We have mapped and measured the relative height of 8 terraces and of their alluvial cover. To estimate the incision rate of the hanging wall, we dated 3 terraces, situated respectively 375 m, 250m and 100m above the present day river bed. The highest terrace has a minimum exposure age of 28 ka. This yield a maximum incision rate of 1,3 cm/yr over the last 28 ka. At the foot wall of the fault, we have mapped 6 terraces deposited above tertiary foreland basin sediment (Siwalik). The most extended terrace, on which the Riasi city is built, forms the top of a more than 40 m thick aggradation sedimentary body, deposited between 16 and 14 ka. A tributary inflowing stream (Nodda River) deposited a steep alluvial fan above the active fault. Nodda River incised since ~4 ka its own deposits and provides a natural trench, revealing three splays of the Riasi thrust. Along the northern splay, Precambrian limestones are thrust over Quaternary sediments. This splay is sealed by Chenab

  3. Late Pleistocene intraplate extension of the Central Anatolian Plateau, Turkey: Inferences from cosmogenic exposure dating of alluvial fan, landslide and moraine surfaces along the Ecemiş Fault Zone

    NASA Astrophysics Data System (ADS)

    Yildirim, Cengiz; Akif Sarikaya, Mehmet; Ciner, Attila

    2016-04-01

    Late Pleistocene activity of the Ecemiş Fault Zone is integrally tied to ongoing intraplate crustal deformation in the Central Anatolian Plateau. Here we document the vertical displacement, slip rate, extension rate, and geochronology of normal faults within a narrow strip along the main strand of the fault zone. The Kartal, Cevizlik and Lorut faults are normal faults that have evident surface expression within the strip. Terrestrial cosmogenic nuclide geochronology reveals that the Kartal Fault deformed a 104.2 ± 16.5 ka alluvial fan surface and the Cevizlik Fault deformed 21.9 ± 1.8 ka glacial moraine and talus fan surfaces. The Cevizlik Fault delimits mountain front of the Aladaglar and forms >1 km relief. Our topographic surveys indicate 13.1 ± 1.4 m surface breaking vertical displacements along Cevizlik Faults, respectively. Accordingly, we suggest a 0.60 ± 0.08 mm a-1 slip rate and 0.35 ± 0.05 mm a-1 extension rate for the last 21.9 ± 1.8 ka on the Cevizlik Fault. Taken together with other structural observations in the region, we believe that the Cevizlik, Kartal ve Lorut faults are an integral part of intraplate crustal deformation in Central Anatolia. They imply that intraplate structures such as the Ecemiş Fault Zone may change their mode through time; presently, the Ecemiş Fault Zone has been deformed predominantly by normal faults. The presence of steep preserved fault scarps along the Kartal, Cevizlik and Lorut faults point to surface breaking normal faulting away from the main strand and particularly signify that these structures need to be taken into account for regional seismic hazard assessments. This project is supported by The Scientific and Technological Research Council of Turkey (TUBITAK, Grant number: 112Y087).

  4. Paleoseismology at high latitudes: Seismic disturbance of upper Quaternary deposits along the Castle Mountain fault near Houston, Alaska

    USGS Publications Warehouse

    Haeussler, Peter J.; Best, Timothy C.; Waythomas, Christopher F.

    2002-01-01

    Most paleoseismic studies are at low to moderate latitudes. Here we present results from a high-latitude (61°30′ N) trenching study of the Castle Mountain fault in south-central Alaska. This fault is the only one known in the greater Anchorage, Alaska, area with historical seismicity and a Holocene fault scarp. It strikes east-northeast and cuts glacial and postglacial sediments in an area of boreal spruce-birch forest, shrub tundra, and sphagnum bog. The fault has a prominent vegetation lineament on the upthrown, north side of the fault. Nine trenches were logged across the fault in glacial and postglacial deposits, seven along the main trace, and two along a splay. In addition to thrust and strike-slip faulting, important controls on observed relationships in the trenches are the season in which faulting occurred, the physical properties of the sediments, liquefaction, a shallow water table, soil-forming processes, the strength of the modern root mat, and freeze-thaw processes. Some of these processes and physical properties are unique to northern-latitude areas and result in seismic disturbance effects not observed at lower latitudes.The two trenches across the Castle Mountain fault splay exposed a thrust fault and few liquefaction features. Radiocarbon ages of soil organic matter and charcoal within and overlying the fault indicate movement on the fault at ca. 2735 cal. (calendar) yr B.P. and no subsequent movement. In the remaining seven trenches, surface faulting was accompanied by extensive liquefaction and a zone of disruption 3 m or more wide. The presence of numerous liquefaction features at depths of <0.5–1.0 m indicates faulting when the ground was not frozen—i.e., from about April to October. Sandy-matrix till, sand, silt, gravel, and pebbly peat were injected up to the base of the modern soil, but did not penetrate the interlocking spruce-birch root mat. The strength of the root mat prohibited development of a nonvegetated scarp face and

  5. Holocene activity and seismogenic capability of intraplate thrusts: Insights from the Pampean Ranges, Argentina

    NASA Astrophysics Data System (ADS)

    Costa, Carlos H.; Owen, Lewis A.; Ricci, Walter R.; Johnson, William J.; Halperin, Alan D.

    2018-07-01

    Trench excavations across the El Molino fault in the southeastern Pampean Ranges of central-western Argentina have revealed a deformation zone composed of opposite-verging thrusts that deform a succession of Holocene sediments. The west-verging thrusts place Precambrian basement over Holocene proximal scarp-derived deposits, whereas the east-verging thrusts form an east-directed fault-propagation fold that deforms colluvium, fluvial and aeolian deposits. Ages for exposed fault-related deposits range from 7.1 ± 0.4 to 0.3 ka. Evidence of surface deformation suggests multiple rupture events with related scarp-derived deposits and a minimum of three surface ruptures younger than 7.1 ± 0.4 ka, the last rupture event being younger than 1 ka. Shortening rates of 0.7 ± 0.2 mm/a are near one order of magnitude higher than those estimated for the faults bounding neighboring crustal blocks and are considered high for this intraplate setting. These ground-rupturing crustal earthquakes are estimated to be of magnitude Mw ≥ 7.0, a significant discrepancy with the magnitudes Mw < 6.5 recorded in the seismic catalog of this region at present with low to moderate seismicity. Results highlight the relevance of identifying primary surface ruptures as well as the seismogenic potential of thrust faults in seemingly stable continental interiors.

  6. On the implementation of faults in finite-element glacial isostatic adjustment models

    NASA Astrophysics Data System (ADS)

    Steffen, Rebekka; Wu, Patrick; Steffen, Holger; Eaton, David W.

    2014-01-01

    offsets of up to 22 m are obtained. A fault scarp at the surface of 19.74 m is determined. The fault is stable in the following time steps with a high stress accumulation at the fault tip. Along the upper part of the fault, GIA stresses are released in one earthquake.

  7. Surface fault rupture during the Mw 7.8 Kaikoura earthquake, New Zealand, with specific comment on the Kekerengu Fault - one of the country's fastest slipping onland active faults

    NASA Astrophysics Data System (ADS)

    Van Dissen, Russ; Little, Tim

    2017-04-01

    The Mw 7.8 Kaikoura earthquake of 14 November, 2016 (NZDT) was a complex event. It involved ground-surface (or seafloor) fault rupture on at least a dozen onland or offshore faults, and subsurface rupture on a handful of additional faults. Most of the surface ruptures involved previously known (or suspected) active faults, as well as surface rupture on at least two hitherto unrecognised active faults. The southwest to northeast extent of surface fault rupture, as generalised by two straight-line segments, is approximately 180 km, though this is a minimum for the collective length of surface rupture due to multiple overlapping faults with various orientations. Surface rupture displacements on specific faults involved in the Kaikoura Earthquake span approximately two orders of magnitude. For example, maximum surface displacement on the Heaver's Creek Fault is cm- to dm-scale in size; whereas, maximum surface displacement on the nearby Kekerengu Fault is approximately 10-12 m (predominantly in a dextral sense). The Kekerengu Fault has a Late Pleistocene slip-rate rate of 20-26 mm/yr, and is possibly the second fastest slipping onland fault in New Zealand, behind the Alpine Fault. Located in the northeastern South Island of New Zealand, the Kekerengu Fault - along with the Hope Fault to the southwest and the Needles Fault offshore to the northeast - comprise the fastest slipping elements of the Pacific-Australian plate boundary in this part of the country. In January 2016 (about ten months prior to the Kaikoura earthquake) three paleo-earthquake investigation trenches were excavated across pronounced traces of the Kekerengu Fault at two locations. These were the first such trenches dug and evaluated across the fault. All three trenches displayed abundant evidence of past surface fault ruptures (three surface ruptures in the last approximately 1,200 years, four now including the 2016 rupture). An interesting aspect of the 2016 rupture is that two of the trenches

  8. Assessment of Late Quaternary strain partitioning in the Afar Triple Junction: Dobe and Hanle grabens, Ethiopia and Djibouti

    NASA Astrophysics Data System (ADS)

    Polun, S. G.; Stockman, M. B.; Hickcox, K.; Horrell, D.; Tesfaye, S.; Gomez, F. G.

    2015-12-01

    As the only subaerial exposure of a ridge - ridge - ridge triple junction, the Afar region of Ethiopia and Djibouti offers a rare opportunity to assess strain partitioning within this type of triple junction. Here, the plate boundaries do not link discretely, but rather the East African rift meets the Red Sea and Gulf of Aden rifts in a zone of diffuse normal faulting characterized by a lack of magmatic activity, referred to as the central Afar. An initial assessment of Late Quaternary strain partitioning is based on faulted landforms in the Dobe - Hanle graben system in Ethiopia and Djibouti. These two extensional basins are connected by an imbricated accommodation zone. Several fault scarps occur within terraces formed during the last highstand of Lake Dobe, around 5 ka - they provide a means of calibrating a numerical model of fault scarp degradation. Additional timing constraints will be provided by pending exposure ages. The spreading rates of both grabens are equivalent, however in Dobe graben, extension is partitioned 2:1 between northern, south dipping faults and the southern, north dipping fault. Extension in Hanle graben is primarily focused on the north dipping Hanle fault. On the north margin of Dobe graben, the boundary fault bifurcates, where the basin-bordering fault displays a significantly higher modeled uplift rate than the more distal fault, suggesting a basinward propagation of faulting. On the southern Dobe fault, surveyed fault scarps have ages ranging from 30 - 5 ka with uplift rates of 0.71, 0.47, and 0.68 mm/yr, suggesting no secular variation in slip rates from the late Plestocene through the Holocene. These rates are converted into horizontal stretching estimates, which are compared with regional strain estimated from velocities of relatively sparse GPS data.

  9. Evaluation of feasibility of mapping seismically active faults in Alaska

    NASA Technical Reports Server (NTRS)

    Gedney, L. D. (Principal Investigator); Vanwormer, J. D.

    1973-01-01

    The author has identified the following significant results. ERTS-1 imagery is proving to be exceptionally useful in delineating structural features in Alaska which have never been recognized on the ground. Previously unmapped features such as seismically active faults and major structural lineaments are especially evident. Among the more significant results of this investigation is the discovery of an active strand of the Denali fault. The new fault has a history of scattered activity and was the scene of a magnitude 4.8 earthquake on October 1, 1972. Of greater significance is the disclosure of a large scale conjugate fracture system north of the Alaska Range. This fracture system appears to result from compressive stress radiating outward from around Mt. McKinley. One member of the system was the scene of a magnitude 6.5 earthquake in 1968. The potential value of ERTS-1 imagery to land use planning is reflected in the fact that this earthquake occurred within 10 km of the site which was proposed for the Rampart Dam, and the fault on which it occurred passes very near the proposed site for the bridge and oil pipeline crossing of the Yukon River.

  10. Topographic expression of active faults in the foothills of the Northern Apennines

    NASA Astrophysics Data System (ADS)

    Picotti, Vincenzo; Ponza, Alessio; Pazzaglia, Frank J.

    2009-09-01

    Active faults that rupture the earth's surface leave an imprint on the topography that is recognized using a combination of geomorphic and geologic metrics including triangular facets, the shape of mountain fronts, the drainage network, and incised river valleys with inset terraces. We document the presence of a network of active, high-angle extensional faults, collectively embedded in the actively shortening mountain front of the Northern Apennines, that possess unique geomorphic expressions. We measure the strain rate for these structures and find that they have a constant throw-to-length ratio. We demonstrate the necessary and sufficient conditions for triangular facet development in the footwalls of these faults and argue that rock-type exerts the strongest control. The slip rates of these faults range from 0.1 to 0.3 mm/yr, which is similar to the average rate of river incision and mountain front unroofing determined by corollary studies. The faults are a near-surface manifestation of deeper crustal processes that are actively uplifting rocks and growing topography at a rate commensurate with surface processes that are eroding the mountain front to base level.

  11. Microstructural investigations on carbonate fault core rocks in active extensional fault zones from the central Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Cortinovis, Silvia; Balsamo, Fabrizio; Storti, Fabrizio

    2017-04-01

    The study of the microstructural and petrophysical evolution of cataclasites and gouges has a fundamental impact on both hydraulic and frictional properties of fault zones. In the last decades, growing attention has been payed to the characterization of carbonate fault core rocks due to the nucleation and propagation of coseismic ruptures in carbonate successions (e.g., Umbria-Marche 1997, L'Aquila 2009, Amatrice 2016 earthquakes in Central Apennines, Italy). Among several physical parameters, grain size and shape in fault core rocks are expected to control the way of sliding along the slip surfaces in active fault zones, thus influencing the propagation of coseismic ruptures during earthquakes. Nevertheless, the role of grain size and shape distribution evolution in controlling the weakening or strengthening behavior in seismogenic fault zones is still not fully understood also because a comprehensive database from natural fault cores is still missing. In this contribution, we present a preliminary study of seismogenic extensional fault zones in Central Apennines by combining detailed filed mapping with grain size and microstructural analysis of fault core rocks. Field mapping was aimed to describe the structural architecture of fault systems and the along-strike fault rock distribution and fracturing variations. In the laboratory we used a Malvern Mastersizer 3000 granulometer to obtain a precise grain size characterization of loose fault rocks combined with sieving for coarser size classes. In addition, we employed image analysis on thin sections to quantify the grain shape and size in cemented fault core rocks. The studied fault zones consist of an up to 5-10 m-thick fault core where most of slip is accommodated, surrounded by a tens-of-meters wide fractured damage zone. Fault core rocks consist of (1) loose to partially cemented breccias characterized by different grain size (from several cm up to mm) and variable grain shape (from very angular to sub

  12. Reconnaissance study of late quaternary faulting along cerro GoDen fault zone, western Puerto Rico

    USGS Publications Warehouse

    Mann, P.; Prentice, C.S.; Hippolyte, J.-C.; Grindlay, N.R.; Abrams, L.J.; Lao-Davila, D.

    2005-01-01

    The Cerro GoDen fault zone is associated with a curvilinear, continuous, and prominent topographic lineament in western Puerto Rico. The fault varies in strike from northwest to west. In its westernmost section, the fault is ???500 m south of an abrupt, curvilinear mountain front separating the 270- to 361-m-high La CaDena De San Francisco range from the Rio A??asco alluvial valley. The Quaternary fault of the A??asco Valley is in alignment with the bedrock fault mapped by D. McIntyre (1971) in the Central La Plata quadrangle sheet east of A??asco Valley. Previous workers have postulated that the Cerro GoDen fault zone continues southeast from the A??asco Valley and merges with the Great Southern Puerto Rico fault zone of south-central Puerto Rico. West of the A??asco Valley, the fault continues offshore into the Mona Passage (Caribbean Sea) where it is characterized by offsets of seafloor sediments estimated to be of late Quaternary age. Using both 1:18,500 scale air photographs taken in 1936 and 1:40,000 scale photographs taken by the U.S. Department of Agriculture in 1986, we iDentified geomorphic features suggestive of Quaternary fault movement in the A??asco Valley, including aligned and Deflected drainages, apparently offset terrace risers, and mountain-facing scarps. Many of these features suggest right-lateral displacement. Mapping of Paleogene bedrock units in the uplifted La CaDena range adjacent to the Cerro GoDen fault zone reveals the main tectonic events that have culminated in late Quaternary normal-oblique displacement across the Cerro GoDen fault. Cretaceous to Eocene rocks of the La CaDena range exhibit large folds with wavelengths of several kms. The orientation of folds and analysis of fault striations within the folds indicate that the folds formed by northeast-southwest shorTening in present-day geographic coordinates. The age of Deformation is well constrained as late Eocene-early Oligocene by an angular unconformity separating folDed, Deep

  13. Evaluation of LiDAR Imagery as a Tool for Mapping the Northern San Andreas Fault in Heavily Forested Areas of Mendocino and Sonoma Counties, California

    NASA Astrophysics Data System (ADS)

    Prentice, C. S.; Koehler, R. D.; Baldwin, J. N.; Harding, D. J.

    2004-12-01

    We are mapping in detail active traces of the San Andreas Fault in Mendocino and Sonoma Counties in northern California, using recently acquired airborne LiDAR (also known as ALSM) data. The LiDAR data set provides a powerful new tool for mapping geomorphic features related to the San Andreas Fault because it can be used to produce high-resolution images of the ground surfaces beneath the forest canopy along the 70-km-long section of the fault zone encompassed by the data. Our effort represents the first use of LiDAR data to map active fault traces in a densely vegetated region along the San Andreas Fault. We are using shaded relief images generated from bare-earth DEMs to conduct detailed mapping of fault-related geomorphic features (e.g. scarps, offset streams, linear valleys, shutter ridges, and sag ponds) between Fort Ross and Point Arena. Initially, we map fault traces digitally, on-screen, based only on the geomorphology interpreted from LiDAR images. We then conduct field reconnaissance using the initial computer-based maps in order to verify and further refine our mapping. We found that field reconnaissance is of utmost importance in producing an accurate and detailed map of fault traces. Many lineaments identified as faults from the on-screen images were determined in the field to be old logging roads or other features unrelated to faulting. Also, in areas where the resolution of LiDAR data is poor, field reconnaissance, coupled with topographic maps and aerial photographs, permits a more accurate location of fault-related geomorphic features. LiDAR images are extremely valuable as a base for field mapping in this heavily forested area, and the use of LiDAR is far superior to traditional mapping techniques relying only on aerial photography and 7.5 minute USGS quadrangle topographic maps. Comparison with earlier mapping of the northern San Andreas fault (Brown and Wolfe, 1972) shows that in some areas the LiDAR data allow a correction of the fault trace

  14. Probabilistic seismic hazard study based on active fault and finite element geodynamic models

    NASA Astrophysics Data System (ADS)

    Kastelic, Vanja; Carafa, Michele M. C.; Visini, Francesco

    2016-04-01

    We present a probabilistic seismic hazard analysis (PSHA) that is exclusively based on active faults and geodynamic finite element input models whereas seismic catalogues were used only in a posterior comparison. We applied the developed model in the External Dinarides, a slow deforming thrust-and-fold belt at the contact between Adria and Eurasia.. is the Our method consists of establishing s two earthquake rupture forecast models: (i) a geological active fault input (GEO) model and, (ii) a finite element (FEM) model. The GEO model is based on active fault database that provides information on fault location and its geometric and kinematic parameters together with estimations on its slip rate. By default in this model all deformation is set to be released along the active faults. The FEM model is based on a numerical geodynamic model developed for the region of study. In this model the deformation is, besides along the active faults, released also in the volumetric continuum elements. From both models we calculated their corresponding activity rates, its earthquake rates and their final expected peak ground accelerations. We investigated both the source model and the earthquake model uncertainties by varying the main active fault and earthquake rate calculation parameters through constructing corresponding branches of the seismic hazard logic tree. Hazard maps and UHS curves have been produced for horizontal ground motion on bedrock conditions VS 30 ≥ 800 m/s), thereby not considering local site amplification effects. The hazard was computed over a 0.2° spaced grid considering 648 branches of the logic tree and the mean value of 10% probability of exceedance in 50 years hazard level, while the 5th and 95th percentiles were also computed to investigate the model limits. We conducted a sensitivity analysis to control which of the input parameters influence the final hazard results in which measure. The results of such comparison evidence the deformation model and

  15. Long-term changes to river regimes prior to late Holocene coseismic faulting, Canterbury, New Zealand

    NASA Astrophysics Data System (ADS)

    Campbell, Jocelyn K.; Nicol, Andrew; Howard, Matthew E.

    2003-09-01

    Two sites are described from range front faults along the foothills of the Southern Alps of New Zealand, where apparently a period of 200-300 years of accelerated river incision preceded late Holocene coseismic ruptures, each probably in excess of M w 7.5. They relate to separate fault segments and seismic events on a transpressive system associated with fault-driven folding, but both show similar evidence of off-plane aseismic deformation during the downcutting phase. The incision history is documented by the ages, relative elevations and profiles of degradation terraces. The surface dating is largely based on the weathering rind technique of McSaveney (McSaveney, M.J., 1992. A Manual for Weathering-rind Dating of Grey Sandstones of the Torlesse Supergroup, New Zealand. 92/4, Institute of Geological and Nuclear Sciences), supported by some consistent radiocarbon ages. On the Porters Pass Fault, drainage from Red Lakes has incised up to 12 m into late Pleistocene recessional outwash, but the oldest degradation terrace surface T I is dated at only 690±50 years BP. The upper terraces T I and T II converge uniformly downstream right across the fault trace, but by T III the terrace has a reversed gradient upstream. T II and T III break into multiple small terraces on the hanging wall only, close to the fault trace. Continued backtilting during incision caused T IV to diverge downstream relative to the older surfaces. Coseismic faulting displaced T V and all the older terraces by a metre high reverse scarp and an uncertain right lateral component. This event cannot be younger than a nearby ca. 500 year old rock avalanche covering the trace. The second site in the middle reaches of the Waipara River valley involves the interaction of four faults associated with the Doctors Anticline. The main river and tributaries have incised steeply into a 2000 year old mid-Holocene, broad, degradation surface downcutting as much as 55 m. Beginning approximately 600 years ago

  16. Tectonic geomorphology and paleoseismology of strike-slip faults in Jamaica: Implications for distribution of strain and seismic hazard along the southern edge of the Gonave microplate

    NASA Astrophysics Data System (ADS)

    Koehler, R. D.; Mann, P.; Brown, L. A.

    2009-12-01

    oblique strain. Reconnaissance mapping was also performed along the South Coast fault in south-central Jamaica north of Portland Ridge, and along the Crawle River-Rio Minho fault near Frankfield in the Central Inlier. The absence of fault scarps or other tectonic geomorphic features across fluvial terraces of the Milk and Minho Rivers indicate that the South Coast fault has not been active in Holocene time. Left laterally offset streams, linear valleys, and saddles support active faulting along the east-west Crawle River-Rio Minho fault that is roughly collinear with the western extension of the Plantain Garden fault.

  17. Incremental slip rate and paleoseismic data from the eastern Hope fault, New Zealand: the Hossack and Green Burn sites

    NASA Astrophysics Data System (ADS)

    Hatem, A. E.; Dolan, J. F.; Langridge, R.; Zinke, R. W.; McGuire, C. P.; Rhodes, E.; Van Dissen, R. J.

    2016-12-01

    We present incremental slip rate and paleo-earthquake data from the Conway segment of the eastern Hope fault, within the Marlborough Fault System (MFS) in the northern South Island of New Zealand. Our incremental slip rate site at Hossack Station is located near the western boundary of the Conway segment (near the Hanmer pull-apart basin), and preserves four offsets of the Hossack Stream channel that range in size from c. 11 to 190 m. Channel cut and fill deposits were exposed in several fault-parallel (channel perpendicular) trenches, and the initiation and abandonment of these offset channels are constrained by >60 radiocarbon ages, yielding four incremental slip rates spanning the Holocene. Our paleoseismologic trench at Green Burn, at the eastern end of the Conway segment near Kaikoura, was excavated across the 5-m-high fault scarp into the adjacent bog deposits. This fault-perpendicular trench revealed evidence for at least four paleo-earthquakes with age constraints provided by >40 radiocarbon dates. These results add to a growing body of slip rate and paleo-earthquake age and displacement data from all four main strike-slip faults that comprise the MFS. Collectively, these observations from the Hope fault are beginning to reveal the detailed system-level behavior of the four main faults in the MFS, with fundamental implications for, among other things, earthquake occurrence and behavior, as well as seismic hazard assessment.

  18. Fracture structures of active Nojima fault, Japan, revealed by borehole televiewer imaging

    NASA Astrophysics Data System (ADS)

    Nishiwaki, T.; Lin, A.

    2017-12-01

    Most large intraplate earthquakes occur as slip on mature active faults, any investigation of the seismic faulting process and assessment of seismic hazards require an understanding of the nature of active fault damage zones as seismogenic source. In this study, we focus on the fracture structures of the Nojima Fault (NF) that triggered the 1995 Kobe Mw 7.2 earthquake using ultrasonic borehole televiewer (BHTV) images from a borehole wall. The borehole used in this study was drilled throughout the NF at 1000 m in depth by a science project of Drilling into Fault Damage Zone(DFDZ) in 2016 (Lin, 2016; Miyawaki et al., 2016). In the depth of <230 m of the borehole, the rocks are composed of weak consolidated sandstone and conglomerate of the Plio-Pleistocene Osaka-Group and mudstone and sandstone of the Miocene Kobe Group. The basement rock in the depth of >230 m consist of pre-Neogene granitic rock. Based on the observations of cores and analysis of the BHTV images, the main fault plane was identified at a depth of 529.3 m with a 15 cm thick fault gouge zone and a damage zone of 100 m wide developed in the both sides of the main fault plane. Analysis of the BHTV images shows that the fractures are concentrated in two groups: N45°E (Group-1), parallel to the general trend of the NF, and another strikes N70°E (Group-2), oblique to the fault with an angle of 20°. It is well known that Riedel shear structures are common within strike-slip fault zones. Previous studies show that the NF is a right-lateral strike-slip fault with a minor thrust component, and that the fault damage zone is characterized by Riedel shear structures dominated by Y shears (main faults), R shears and P foliations (Lin, 2001). We interpret that the fractures of Group (1) correspond to Y Riedel fault shears, and those of Group (2) are R shears. Such Riedel shear structures indicate that the NF is a right-lateral strike-slip fault which is activated under a regional stress field oriented to the

  19. Surface effects of faulting and deformation resulting from magma accumulation at the Hengill triple junction, SW Iceland, 1994 1998

    NASA Astrophysics Data System (ADS)

    Clifton, Amy E.; Sigmundsson, Freysteinn; Feigl, Kurt L.; Guðmundsson, Gunnar; Árnadóttir, Thóra

    2002-06-01

    The Hengill triple junction, SW Iceland, is subjected to both tectonic extension and shear, causing seismicity related to strike-slip and normal faulting. Between 1994 and 1998, the area experienced episodic swarms of enhanced seismicity culminating in a ML=5.1 earthquake on June 4, 1998 and a ML=5 earthquake on November 13, 1998. Geodetic measurements, using Global Positioning System (GPS), leveling and Synthetic Aperture Radar Interferometry (InSAR) detected maximum uplift of 2 cm/yr and expansion between the Hrómundartindur and Grensdalur volcanic systems. A number of faults in the area generated meter-scale surface breaks. Geographic Information System (GIS) software has been used to integrate structural, field and geophysical data to determine how the crust failed, and to evaluate how much of the recent activity focused on zones of pre-existing weaknesses in the crust. Field data show that most surface effects can be attributed to the June 4, 1998 earthquake and have occurred along or adjacent to old faults. Surface effects consist of open gashes in soil, shattering of lava flows, rockfall along scarps and within old fractures, loosened push-up structures and landslides. Seismicity in 1994-1998 was distributed asymmetrically about the center of uplift, with larger events migrating toward the main fault of the June 4, 1998 earthquake. Surface effects are most extensive in the area of greatest structural complexity, where N- and E-trending structures related to the transform boundary intersect NE-trending structures related to the rift zone. InSAR, GPS, and field observations have been used in an attempt to constrain slip along the trace of the fault that failed on June 4, 1998. Geophysical and field data are consistent with an interpretation of distributed slip along a segmented right-lateral strike-slip fault, with slip decreasing southward along the fault plane. We suggest a right step or right bend between fault segments to explain local deformation near

  20. Owen Fracture Zone: The Arabia-India plate boundary unveiled

    NASA Astrophysics Data System (ADS)

    Fournier, M.; Chamot-Rooke, N.; Rodriguez, M.; Huchon, P.; Petit, C.; Beslier, M. O.; Zaragosi, S.

    2011-02-01

    We surveyed the Owen Fracture Zone at the boundary between the Arabia and India plates in the NW Indian Ocean using a high-resolution multibeam echo-sounder (Owen cruise, 2009) for search of active faults. Bathymetric data reveal a previously unrecognized submarine fault scarp system running for over 800 km between the Sheba Ridge in the Gulf of Aden and the Makran subduction zone. The primary plate boundary structure is not the bathymetrically high Owen Ridge, but is instead a series of clearly delineated strike-slip fault segments separated by several releasing and restraining bends. Despite an abundant sedimentary supply by the Indus River flowing from the Himalaya, fault scarps are not obscured by recent deposits and can be followed over hundreds of kilometres, pointing to very active tectonics. The total strike-slip displacement of the fault system is 10-12 km, indicating that it has been active for the past ~ 3 to 6 Ma if its current rate of motion of 3 ± 1 mm yr- 1 has remained stable. We describe the geometry of this recent fault system, including a major pull-apart basin at the latitude 20°N, and we show that it closely follows an arc of small circle centred on the Arabia-India pole of rotation, as expected for a transform plate boundary.

  1. Extreme hydrothermal conditions at an active plate-bounding fault.

    PubMed

    Sutherland, Rupert; Townend, John; Toy, Virginia; Upton, Phaedra; Coussens, Jamie; Allen, Michael; Baratin, Laura-May; Barth, Nicolas; Becroft, Leeza; Boese, Carolin; Boles, Austin; Boulton, Carolyn; Broderick, Neil G R; Janku-Capova, Lucie; Carpenter, Brett M; Célérier, Bernard; Chamberlain, Calum; Cooper, Alan; Coutts, Ashley; Cox, Simon; Craw, Lisa; Doan, Mai-Linh; Eccles, Jennifer; Faulkner, Dan; Grieve, Jason; Grochowski, Julia; Gulley, Anton; Hartog, Arthur; Howarth, Jamie; Jacobs, Katrina; Jeppson, Tamara; Kato, Naoki; Keys, Steven; Kirilova, Martina; Kometani, Yusuke; Langridge, Rob; Lin, Weiren; Little, Timothy; Lukacs, Adrienn; Mallyon, Deirdre; Mariani, Elisabetta; Massiot, Cécile; Mathewson, Loren; Melosh, Ben; Menzies, Catriona; Moore, Jo; Morales, Luiz; Morgan, Chance; Mori, Hiroshi; Niemeijer, Andre; Nishikawa, Osamu; Prior, David; Sauer, Katrina; Savage, Martha; Schleicher, Anja; Schmitt, Douglas R; Shigematsu, Norio; Taylor-Offord, Sam; Teagle, Damon; Tobin, Harold; Valdez, Robert; Weaver, Konrad; Wiersberg, Thomas; Williams, Jack; Woodman, Nick; Zimmer, Martin

    2017-06-01

    Temperature and fluid pressure conditions control rock deformation and mineralization on geological faults, and hence the distribution of earthquakes. Typical intraplate continental crust has hydrostatic fluid pressure and a near-surface thermal gradient of 31 ± 15 degrees Celsius per kilometre. At temperatures above 300-450 degrees Celsius, usually found at depths greater than 10-15 kilometres, the intra-crystalline plasticity of quartz and feldspar relieves stress by aseismic creep and earthquakes are infrequent. Hydrothermal conditions control the stability of mineral phases and hence frictional-mechanical processes associated with earthquake rupture cycles, but there are few temperature and fluid pressure data from active plate-bounding faults. Here we report results from a borehole drilled into the upper part of the Alpine Fault, which is late in its cycle of stress accumulation and expected to rupture in a magnitude 8 earthquake in the coming decades. The borehole (depth 893 metres) revealed a pore fluid pressure gradient exceeding 9 ± 1 per cent above hydrostatic levels and an average geothermal gradient of 125 ± 55 degrees Celsius per kilometre within the hanging wall of the fault. These extreme hydrothermal conditions result from rapid fault movement, which transports rock and heat from depth, and topographically driven fluid movement that concentrates heat into valleys. Shear heating may occur within the fault but is not required to explain our observations. Our data and models show that highly anomalous fluid pressure and temperature gradients in the upper part of the seismogenic zone can be created by positive feedbacks between processes of fault slip, rock fracturing and alteration, and landscape development at plate-bounding faults.

  2. Extreme hydrothermal conditions at an active plate-bounding fault

    NASA Astrophysics Data System (ADS)

    Sutherland, Rupert; Townend, John; Toy, Virginia; Upton, Phaedra; Coussens, Jamie; Allen, Michael; Baratin, Laura-May; Barth, Nicolas; Becroft, Leeza; Boese, Carolin; Boles, Austin; Boulton, Carolyn; Broderick, Neil G. R.; Janku-Capova, Lucie; Carpenter, Brett M.; Célérier, Bernard; Chamberlain, Calum; Cooper, Alan; Coutts, Ashley; Cox, Simon; Craw, Lisa; Doan, Mai-Linh; Eccles, Jennifer; Faulkner, Dan; Grieve, Jason; Grochowski, Julia; Gulley, Anton; Hartog, Arthur; Howarth, Jamie; Jacobs, Katrina; Jeppson, Tamara; Kato, Naoki; Keys, Steven; Kirilova, Martina; Kometani, Yusuke; Langridge, Rob; Lin, Weiren; Little, Timothy; Lukacs, Adrienn; Mallyon, Deirdre; Mariani, Elisabetta; Massiot, Cécile; Mathewson, Loren; Melosh, Ben; Menzies, Catriona; Moore, Jo; Morales, Luiz; Morgan, Chance; Mori, Hiroshi; Niemeijer, Andre; Nishikawa, Osamu; Prior, David; Sauer, Katrina; Savage, Martha; Schleicher, Anja; Schmitt, Douglas R.; Shigematsu, Norio; Taylor-Offord, Sam; Teagle, Damon; Tobin, Harold; Valdez, Robert; Weaver, Konrad; Wiersberg, Thomas; Williams, Jack; Woodman, Nick; Zimmer, Martin

    2017-06-01

    Temperature and fluid pressure conditions control rock deformation and mineralization on geological faults, and hence the distribution of earthquakes. Typical intraplate continental crust has hydrostatic fluid pressure and a near-surface thermal gradient of 31 ± 15 degrees Celsius per kilometre. At temperatures above 300-450 degrees Celsius, usually found at depths greater than 10-15 kilometres, the intra-crystalline plasticity of quartz and feldspar relieves stress by aseismic creep and earthquakes are infrequent. Hydrothermal conditions control the stability of mineral phases and hence frictional-mechanical processes associated with earthquake rupture cycles, but there are few temperature and fluid pressure data from active plate-bounding faults. Here we report results from a borehole drilled into the upper part of the Alpine Fault, which is late in its cycle of stress accumulation and expected to rupture in a magnitude 8 earthquake in the coming decades. The borehole (depth 893 metres) revealed a pore fluid pressure gradient exceeding 9 ± 1 per cent above hydrostatic levels and an average geothermal gradient of 125 ± 55 degrees Celsius per kilometre within the hanging wall of the fault. These extreme hydrothermal conditions result from rapid fault movement, which transports rock and heat from depth, and topographically driven fluid movement that concentrates heat into valleys. Shear heating may occur within the fault but is not required to explain our observations. Our data and models show that highly anomalous fluid pressure and temperature gradients in the upper part of the seismogenic zone can be created by positive feedbacks between processes of fault slip, rock fracturing and alteration, and landscape development at plate-bounding faults.

  3. Large-magnitude Dextral Slip on the Wairarapa Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Rodgers, D. W.; Little, T.

    2004-12-01

    Dextral slip associated with an 1855 Ms 8.0+ event on the Wairarapa fault near Wellington, New Zealand was reported to be 12+/-1 m along a rupture length of at least 148km (Grapes, 1999), one of the largest single-event strike-slip offsets documented worldwide. Initial results from a new study involving detailed neotectonic mapping and microtopographic surveys of offset landforms (including many beheaded, inactive streams) strongly suggest that dextral slip was as much as 50% greater than previously measured. 1855 surface ruptures were mapped with certainty where a linear scarp characterized by steep slopes (30-90°) and exposed alluvium cuts across active or inactive stream channels. The fifteen individual strands comprising the Wairarapa fault zone that we have mapped to date are 1200+/-700 m long and typically left-stepping. Slip in the stepover zones between these strands is distributed amongst two or more ruptures and intervening anticlines, a situation that causes along-strike variations in slip and which locally complicates the interpretation of 1855 displacement. We focused on seven of the best-preserved sites where low-discharge streams are disrupted by the fault zone, including five that had been previously attributed by Grapes (1999) to coseismic slip during the 1855 earthquake. One of these (Pigeon Bush) includes two sequentially displaced, now beheaded linear stream channels, oriented perpendicular to the fault scarp, that preserve distinct offsets with respect to a single deeply incised, originally contiguous gorge on the opposite side of the fault. To quantify the minimum fault displacements at each site, we made 1:500 scale topographic maps employing n = 2,000-10,000 points collected with GPS and laser instrumentation. Measured dextral slip values, here attributed to the 1855 earthquake, include 16.4+/-1.0m (Hinaburn), 12.9+/-2.0m (Cross Creek), 17.2+/-2.5m (Lake Meadows), 18.7+/-1.0m (Pigeon Bush), 13.0+/-1.5m (Pigeon Bush 2), 15.1+/-1.0m (Pigeon

  4. Modeling of fault activation and seismicity by injection directly into a fault zone associated with hydraulic fracturing of shale-gas reservoirs

    DOE PAGES

    Rutqvist, Jonny; Rinaldi, Antonio P.; Cappa, Frédéric; ...

    2015-03-01

    We conducted three-dimensional coupled fluid-flow and geomechanical modeling of fault activation and seismicity associated with hydraulic fracturing stimulation of a shale-gas reservoir. We simulated a case in which a horizontal injection well intersects a steeply dip- ping fault, with hydraulic fracturing channeled within the fault, during a 3-hour hydraulic fracturing stage. Consistent with field observations, the simulation results show that shale-gas hydraulic fracturing along faults does not likely induce seismic events that could be felt on the ground surface, but rather results in numerous small microseismic events, as well as aseismic deformations along with the fracture propagation. The calculated seismicmore » moment magnitudes ranged from about -2.0 to 0.5, except for one case assuming a very brittle fault with low residual shear strength, for which the magnitude was 2.3, an event that would likely go unnoticed or might be barely felt by humans at its epicenter. The calculated moment magnitudes showed a dependency on injection depth and fault dip. We attribute such dependency to variation in shear stress on the fault plane and associated variation in stress drop upon reactivation. Our simulations showed that at the end of the 3-hour injection, the rupture zone associated with tensile and shear failure extended to a maximum radius of about 200 m from the injection well. The results of this modeling study for steeply dipping faults at 1000 to 2500 m depth is in agreement with earlier studies and field observations showing that it is very unlikely that activation of a fault by shale-gas hydraulic fracturing at great depth (thousands of meters) could cause felt seismicity or create a new flow path (through fault rupture) that could reach shallow groundwater resources.« less

  5. Modeling of fault activation and seismicity by injection directly into a fault zone associated with hydraulic fracturing of shale-gas reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutqvist, Jonny; Rinaldi, Antonio P.; Cappa, Frédéric

    We conducted three-dimensional coupled fluid-flow and geomechanical modeling of fault activation and seismicity associated with hydraulic fracturing stimulation of a shale-gas reservoir. We simulated a case in which a horizontal injection well intersects a steeply dip- ping fault, with hydraulic fracturing channeled within the fault, during a 3-hour hydraulic fracturing stage. Consistent with field observations, the simulation results show that shale-gas hydraulic fracturing along faults does not likely induce seismic events that could be felt on the ground surface, but rather results in numerous small microseismic events, as well as aseismic deformations along with the fracture propagation. The calculated seismicmore » moment magnitudes ranged from about -2.0 to 0.5, except for one case assuming a very brittle fault with low residual shear strength, for which the magnitude was 2.3, an event that would likely go unnoticed or might be barely felt by humans at its epicenter. The calculated moment magnitudes showed a dependency on injection depth and fault dip. We attribute such dependency to variation in shear stress on the fault plane and associated variation in stress drop upon reactivation. Our simulations showed that at the end of the 3-hour injection, the rupture zone associated with tensile and shear failure extended to a maximum radius of about 200 m from the injection well. The results of this modeling study for steeply dipping faults at 1000 to 2500 m depth is in agreement with earlier studies and field observations showing that it is very unlikely that activation of a fault by shale-gas hydraulic fracturing at great depth (thousands of meters) could cause felt seismicity or create a new flow path (through fault rupture) that could reach shallow groundwater resources.« less

  6. Quaternary Activity of the Erciyes Fault Southeast of the Kayseri Basin, Turkey

    NASA Astrophysics Data System (ADS)

    Okumura, K.; Hayakawa, Y. S.; Kontani, R.; Fikri, K.

    2016-12-01

    The Erciyes fault in SE of the Kayseri basin is one of the most active Quaternary faults in Central Anatolia. Emre et al. (2011) mapped about 100 km long faults including a section runs across the Erciyes volcano. A M 7+ earthquake from the fault would be a big threat for the 1.5 million people in Kayseri basin, but little has been know about its activity and earthquake potential. We studied Plio-Pleistocene volacanics, Quaternary sediments, and UAV-SfM topography in southeast of the Kayseri basin and recognized significant dip-slip separation as well as sinistral slip in Late Quaternary. The Incesu ignimbrite (IC) of 2.52±0.49 Ma (Aydar et al., 2012) is a very distinctive densely welded ignimbrite layer in and around Kayseri basin. The Plinian pumice fall deposits from the Erciyes in Late Pleistocene (Sen et al. 2003) at Gesi Bagpnar (GBP) is another key-bed. There are two strands and one group of faults. The NE strike frontal strand separates the basin floor and the upland in SW extending from Kayseri city to more than 50 km NE. The Gesi Guney strand runs parallel to the frontal strand at 3 to 4 km away from the basin floor for 20 km from Ali Dag. The NS trending fault group is observed both inside and outside of the basin under IC. These NS faults are swarm of normal Pliocene faults. The Gesi Guney strand offsets IC around 120 m vertically. There is no information to infer the initiation of its activity, but the normal offset of an alluvial fan and unconsolidated fresh talus deposits indicate Late Quaternary activities. Near the SW end of the frontal strand, IC is vertically offset around 40 m. 15 km NE from the SW end, sand and gravel layers that intercalates GBP (0.11-0.14 Ma) are tilted to NW for 30 to 40 m and truncated by a sub-vertical sinistral faults. Most of frontal strand deformation occurred in Late Pleistocene because the offset of IC and GBP are similar. Estimated slip-rate of 0.3 to 0.4 mm/yr is significant for Central Anatolia.

  7. Three Recipes to Decipher Late Pleistocene Slip Rates of the Chelungpu Thrust (Central Taiwan), based on OSL-dated Folded Terraces

    NASA Astrophysics Data System (ADS)

    Le Beon, M.; Jaiswal, M.; Ustaszewski, M.; Suppe, J.; Chen, Y.

    2009-12-01

    Alluvial terraces may be used as markers of the deformation across faults. According to fault-bend folding theory (Suppe, 1983; Fig. 1), the amount of slip recorded since abandonment of a terrace level may be computed in 3 ways by measuring: 1/ terrace heights on the hanging wall relative to the foot wall (h1, h2), 2/ difference in terrace elevation across the fold scarp (Δh), and 3/ width of the fold scarp (WL), heights and scarp width being independent measurements. Contrary to method 3, methods 1 and 2 require knowledge of the subsurface structure of the fault. We aim to use these recipes to determine Late Pleistocene slip rates of the Chelungpu Thrust (CT), one of the most important active faults in the western foothills of Taiwan. It is responsible for the 1999 Mw7.6 Chi-Chi earthquake, which coseismic displacement field was well documented. Yet, the Quaternary activity of CT was examined only at 1 site, located on the southern CT and that yielded a Holocene slip rate of 12.9 ± 4.8 mm/a. Our study area lies on the northern CT, near the town of Hsinshe, where the N-S striking surface rupture of the 1999 earthquake merges into a NE-SW to E-W trending surface fold, and where the largest coseismic displacements are reported. The 3D subsurface geometry of CT has been well imaged (Yue et al, 2005). In Hsinshe area, it shows a N-S to E-W trending fault plane of varying dip with depth, that ramps from a shallow flat detachment. Three main distinct levels of fluvial terraces are discernible on the hanging wall near Hsinshe. They show progressive folding by kink-band migration in relation to the underlying fault geometry, forming a ~50m to ~120m high fold scarp from the lowest (T3) to the highest (T1) terrace level. Detailed morphological analysis using 20m resolution DEM and microtopography will allow us to quantify terrace heights relative to the modern riverbed and scarp heights, as well as to characterize the morphology of Late Pleistocene terrace risers versus

  8. Style and Rate of Late Pleistocene - Holocene Deformation of the Poukawa Fault Zone, Central Hawke's Bay, New Zealand

    NASA Astrophysics Data System (ADS)

    Basili, R.; Langridge, R. M.; Villamor, P.; Rieser, U.

    2008-12-01

    The Poukawa Fault Zone is one component of a complex system of contractional faulting in eastern North Island, New Zealand. It is located within the actively uplifting Hikurangi Margin where the Australian plate meets the Pacific plate at a convergence rate of over 40 mm/yr. The most destructive earthquake in New Zealand history, the 1931 Hawke's Bay earthquake of M 7.8, occurred just off the northern termination of the Poukawa Fault Zone. To the south and probably within the Poukawa Fault Zone, another strong earthquake struck near Waipukurau in 1863. We have characterized the contemporary style of faulting along the zone on the basis of an integrated analysis of a broad spectrum of data, including exploratory trenching; geomorphic data aided by 1m resolution digital orthophotos, a LIDAR-derived Terrain Model, and GPS-RTK surveys; stratigraphic and paleoseismic analysis; radiocarbon and OSL dating and tephra correlation. We have also made a detailed reconstruction of the terrace sequences formed where the Kaikora Stream crosses at a high angle to the Poukawa Fault Zone. These data show that the Poukawa Fault Zone is a contractional fault system formed by a series of NE-SW strands with style varying, from west to east, from high-angle east-dipping reverse to low-angle west-dipping thrusting. The geometry of the system suggests that these faults may merge at shallow depth into a single large structure capable of generating strong earthquakes similar to those that occurred in the past on nearby sections. All these faults variously displace the top of the Ohakean aggradation surface (12-15 ka) thereby generating scarps of several meters. The Kaikora Stream terrace sequences also testify to a series of uplift events associated with the late-Holocene growth of two of the eastern thrust faults. Two reaches of Kaikora Stream show evidence of uplifted and abandoned inset Holocene stream terraces found in association with a surface-rupture trace and an active fold. The four

  9. FTAPE: A fault injection tool to measure fault tolerance

    NASA Technical Reports Server (NTRS)

    Tsai, Timothy K.; Iyer, Ravishankar K.

    1995-01-01

    The paper introduces FTAPE (Fault Tolerance And Performance Evaluator), a tool that can be used to compare fault-tolerant computers. The tool combines system-wide fault injection with a controllable workload. A workload generator is used to create high stress conditions for the machine. Faults are injected based on this workload activity in order to ensure a high level of fault propagation. The errors/fault ratio and performance degradation are presented as measures of fault tolerance.

  10. Paleoseismic evidence of characteristic slip on the Western segment of the North Anatolian fault, Turkey

    USGS Publications Warehouse

    Klinger, Yann; Sieh, K.; Altunel, E.; Akoglu, A.; Barka, A.; Dawson, Tim; Gonzalez, Tania; Meltzner, A.; Rockwell, Thomas

    2003-01-01

    We have conducted a paleoseismic investigation of serial fault rupture at one site along the 110-km rupture of the North Anatolian fault that produced the Mw 7.4 earthquake of 17 August 1999. The benefit of using a recent rupture to compare serial ruptures lies in the fact that the location, magnitude, and slip vector of the most recent event are all very well documented. We wished to determine whether or not the previous few ruptures of the fault were similar to the recent one. We chose a site at a step-over between two major strike-slip traces, where the principal fault is a normal fault. Our two excavations across the 1999 rupture reveal fluvial sands and gravels with two colluvial wedges related to previous earthquakes. Each wedge is about 0.8 m thick. Considering the processes of collapse and subsequent diffusion that are responsible for the formation of a colluvial wedge, we suggest that the two paleoscarps were similar in height to the 1999 scarp. This similarity supports the concept of characteristic slip, at least for this location along the fault. Accelerator mass spectrometry (AMS) radiocarbon dates of 16 charcoal samples are consistent with the interpretation that these two paleoscarps formed during large historical events in 1509 and 1719. If this is correct, the most recent three ruptures at the site have occurred at 210- and 280-year intervals.

  11. Slip Rates of Main Active Fault Zones Through Turkey Inferred From GPS Observations

    NASA Astrophysics Data System (ADS)

    Ozener, H.; Aktug, B.; Dogru, A.; Tasci, L.; Acar, M.; Emre, O.; Yilmaz, O.; Turgut, B.; Halicioglu, K.; Sabuncu, A.; Bal, O.; Eraslan, A.

    2015-12-01

    Active Fault Map of Turkey was revised and published by General Directorate of Mineral Research and Exploration in 2012. This map reveals that there are about 500 faults can generate earthquakes.In order to understand the earthquake potential of these faults, it is needed to determine the slip rates. Although many regional and local studies were performed in the past, the slip rates of the active faults in Turkey have not been determined. In this study, the block modelling, which is the most common method to produce slip rates, will be done. GPS velocities required for block modeling is being compiled from the published studies and the raw data provided then velocity field is combined. To form a homogeneous velocity field, different stochastic models will be used and the optimal velocity field will be achieved. In literature, GPS site velocities, which are computed for different purposes and published, are combined globally and this combined velocity field are used in the analysis of strain accumulation. It is also aimed to develop optimal stochastic models to combine the velocity data. Real time, survey mode and published GPS observations is being combined in this study. We also perform new GPS observations. Furthermore, micro blocks and main fault zones from Active Fault Map Turkey will be determined and homogeneous velocity field will be used to infer slip rates of these active faults. Here, we present the result of first year of the study. This study is being supported by THE SCIENTIFIC AND TECHNOLOGICAL RESEARCH COUNCIL OF TURKEY (TUBITAK)-CAYDAG with grant no. 113Y430.

  12. Active strike-slip faulting in El Salvador, Central America

    NASA Astrophysics Data System (ADS)

    Corti, Giacomo; Carminati, Eugenio; Mazzarini, Francesco; Oziel Garcia, Marvyn

    2005-12-01

    Several major earthquakes have affected El Salvador, Central America, during the Past 100 yr as a consequence of oblique subduction of the Cocos plate under the Caribbean plate, which is partitioned between trench-orthogonal compression and strike-slip deformation parallel to the volcanic arc. Focal mechanisms and the distribution of the most destructive earthquakes, together with geomorphologic evidence, suggest that this transcurrent component of motion may be accommodated by a major strike-slip fault (El Salvador fault zone). We present field geological, structural, and geomorphological data collected in central El Salvador that allow the constraint of the kinematics and the Quaternary activity of this major seismogenic strike-slip fault system. Data suggest that the El Salvador fault zone consists of at least two main ˜E-W fault segments (San Vicente and Berlin segments), with associated secondary synthetic (WNW-ESE) and antithetic (NNW-SSE) Riedel shears and NW-SE tensional structures. The two main fault segments overlap in a dextral en echelon style with the formation of an intervening pull-apart basin. Our original geological and geomorphologic data suggest a late Pleistocene Holocene slip rate of ˜11 mm/yr along the Berlin segment, in contrast with low historical seismicity. The kinematics and rates of deformation suggested by our new data are consistent with models involving slip partitioning during oblique subduction, and support the notion that a trench-parallel component of motion between the Caribbean and Cocos plates is concentrated along E-W dextral strike-slip faults parallel to the volcanic arc.

  13. Digital Database of Recently Active Traces of the Hayward Fault, California

    USGS Publications Warehouse

    Lienkaemper, James J.

    2006-01-01

    The purpose of this map is to show the location of and evidence for recent movement on active fault traces within the Hayward Fault Zone, California. The mapped traces represent the integration of the following three different types of data: (1) geomorphic expression, (2) creep (aseismic fault slip),and (3) trench exposures. This publication is a major revision of an earlier map (Lienkaemper, 1992), which both brings up to date the evidence for faulting and makes it available formatted both as a digital database for use within a geographic information system (GIS) and for broader public access interactively using widely available viewing software. The pamphlet describes in detail the types of scientific observations used to make the map, gives references pertaining to the fault and the evidence of faulting, and provides guidance for use of and limitations of the map. [Last revised Nov. 2008, a minor update for 2007 LiDAR and recent trench investigations; see version history below.

  14. Late Pliocene-Quaternary evolution of outermost hinterland basins of the Northern Apennines (Italy), and their relevance to active tectonics

    NASA Astrophysics Data System (ADS)

    Sani, Federico; Bonini, Marco; Piccardi, Luigi; Vannucci, Gianfranco; Delle Donne, Dario; Benvenuti, Marco; Moratti, Giovanna; Corti, Giacomo; Montanari, Domenico; Sedda, Lorenzo; Tanini, Chiara

    2009-10-01

    We examine the tectonic evolution and structural characteristics of the Quaternary intermontane Mugello, Casentino, and Sansepolcro basins, in the Northern Apennines fold-and-thrust belt. These basins have been classically interpreted to have developed under an extensional regime, and to mark the extension-compression transition. The results of our study have instead allowed framing the formation of these basins into a compressive setting tied to the activity of backthrust faults at their northeastern margin. Syndepositional activity of these structures is manifested by consistent architecture of sediments and outcrop-scale deformation. After this phase, the Mugello and Sansepolcro basins experienced a phase of normal faulting extending from the middle Pleistocene until Present. Basin evolution can be thus basically framed into a two-phase history, with extensional tectonics superposed onto compressional structures. Analysis of morphologic features has revealed the occurrence of fresh fault scarps and interaction of faulting with drainage systems, which have been interpreted as evidence for potential ongoing activity of normal faults. Extensional tectonics is also manifested by recent seismicity, and likely caused the strong historical earthquakes affecting the Mugello and Sansepolcro basins. Qualitative comparison of surface information with depth-converted seismic data suggests the basins to represent discrete subsiding areas within the seismic belt extending along the axial zone of the Apennines. The inferred chronology of deformation and the timing of activity of normal faults have an obvious impact on the elaboration of seismic hazard models.

  15. Ring faults and ring dikes around the Orientale basin on the Moon.

    PubMed

    Andrews-Hanna, Jeffrey C; Head, James W; Johnson, Brandon; Keane, James T; Kiefer, Walter S; McGovern, Patrick J; Neumann, Gregory A; Wieczorek, Mark A; Zuber, Maria T

    2018-08-01

    The Orientale basin is the youngest and best-preserved multiring impact basin on the Moon, having experienced only modest modification by subsequent impacts and volcanism. Orientale is often treated as the type example of a multiring basin, with three prominent rings outside of the inner depression: the Inner Rook Montes, the Outer Rook Montes, and the Cordillera. Here we use gravity data from NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission to reveal the subsurface structure of Orientale and its ring system. Gradients of the gravity data reveal a continuous ring dike intruded into the Outer Rook along the plane of the fault associated with the ring scarp. The volume of this ring dike is ~18 times greater than the volume of all extrusive mare deposits associated with the basin. The gravity gradient signature of the Cordillera ring indicates an offset along the fault across a shallow density interface, interpreted to be the base of the low-density ejecta blanket. Both gravity gradients and crustal thickness models indicate that the edge of the central cavity is shifted inward relative to the equivalent Inner Rook ring at the surface. Models of the deep basin structure show inflections along the crust-mantle interface at both the Outer Rook and Cordillera rings, indicating that the basin ring faults extend from the surface to at least the base of the crust. Fault dips range from 13-22° for the Cordillera fault in the northeastern quadrant, to 90° for the Outer Rook in the northwestern quadrant. The fault dips for both outer rings are lowest in the northeast, possibly due to the effects of either the direction of projectile motion or regional gradients in pre-impact crustal thickness. Similar ring dikes and ring faults are observed around the majority of lunar basins.

  16. Late Pleistocene to Holocene paleoseismicity of the House Range fault from UAV photogrammetry and exposure-age dating

    NASA Astrophysics Data System (ADS)

    Niemi, N. A.; Stahl, T.; Andreini, J.; Wells, J.; Bunds, M. P.

    2016-12-01

    The western face of the House Range in Utah is one of the steepest normal fault-bounded blocks in the Basin and Range. In spite of this, clear evidence of recent faulting is limited to a single c. 10 km-long, 1-2 m high scarp at the surface. A drone-based photogrammetric DEM with <10 cm resolution reveals that the fault displaces transgressive Lake Bonneville (c. 20-18 ka) and Provo highstand shorelines (c. 17 cal. ka) by similar amounts, suggesting a single event displacement of c. 1.5 m. Elastic strain models that incorporate shoreline geometry are best-fit by a fault dip of 50-60° in the uppermost crust, whereas previous studies have noted that the fault becomes listric or is truncated by a low-angle fault at depth. Exposure-ages of surface clasts on undeformed alluvial fans suggest that regression from the Provo shoreline occurred rapidly and that the last surface-rupturing earthquake occurred during occupation of the Provo shoreline. This pattern is consistent with other areas in the Great Basin that observe enhanced seismic moment release and earthquake ruptures during late Pleistocene lake regression. We calculate a time-averaged slip rate of 0.1-0.2 mm/yr and minimum recurrence interval of 17 ka. This study highlights the utility of drone surveys and high-resolution geochronology in neotectonic studies and in defining paleoseismic fault parameters.

  17. Influence of Fault-Controlled Topography on Fluvio-Deltaic Sedimentary Systems in Eberswalde Crater, Mars

    NASA Technical Reports Server (NTRS)

    Rice, Melissa S.; Gupta, Sanjeev; Bell, James F., III; Warner, Nicholas H.

    2011-01-01

    Eberswalde crater was selected as a candidate landing site for the Mars Science Laboratory (MSL) mission based on the presence of a fan-shaped sedimentary deposit interpreted as a delta. We have identified and mapped five other candidate fluvio -deltaic systems in the crater, using images and digital terrain models (DTMs) derived from the Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment (HiRISE) and Context Camera (CTX). All of these systems consist of the same three stratigraphic units: (1) an upper layered unit, conformable with (2) a subpolygonally fractured unit, unconformably overlying (3) a pitted unit. We have also mapped a system of NNE-trending scarps interpreted as dip-slip faults that pre-date the fluvial -lacustrine deposits. The post-impact regional faulting may have generated the large-scale topography within the crater, which consists of a Western Basin, an Eastern Basin, and a central high. This topography subsequently provided depositional sinks for sediment entering the crater and controlled the geomorphic pattern of delta development.

  18. New Holocene Slip-rate Sites Along the Mojave San Andreas Fault Near Palmdale, CA

    NASA Astrophysics Data System (ADS)

    Young, E. K.; Cowgill, E.; Scharer, K. M.

    2016-12-01

    The slip rate for the Mojave San Andreas fault (MSAF) is poorly known: the long-term ( 413ky) geologic rate is as high as 37mm/yr [1] while the geodetic slip rate is as low as 15mm/yr [2]. To determine the Holocene-average rate for the MSAF, we investigated several offset landforms near Palmdale, CA using detailed surficial mapping and 14C analyses of charcoal collected from hand-dug excavations. Site X-12 preserves two offset markers sourced from a north-flowing catchment south of the fault. One is a terrace riser cut into older alluvium that is abutted by the eastern margin of a Qf3 fan and is displaced by 75 m. Offset of the riser and the alluvium generated a north-facing fault-scarp that was eroded to form a small fan on top of the eastern margin of the Qf3 fan. The second offset is a beheaded channel that is incised into the Qf3 fan north of the fault and is displaced 50m, and thus formed after the riser was offset by 25m. To date these landforms we opened 5 excavations at the site, with emphasis on the beheaded channel. Dates from within the Qf3 fan south/upstream of the fault and abandoned bedload in the beheaded channel give maximum and minimum ages for the channel incision of 1500calBP and 600calBP, respectively, implying a rate ≥33mm/yr. Future work seeks to date post-abandonment channel-fill deposits and the upper and lower bounds on the terrace riser. At a second site, Ranch Center, a north-flowing stream cut across a shutter ridge north of the fault and was then offset and deflected 80m before cutting a new channel across the fault. Future work here seeks to date the bases of the alluvial fans deposited by the abandoned and active channels to obtain maximum and minimum ages for the 80 m offset, respectively. Rates from these sites should help to better define the Holocene slip rate on the MSAF. 1) Matmon et al., 2005, GSAB. v. 117 p. 795 2) Becker et al., 2005, Geoph.. J. Int., v. 160 p. 634

  19. Geology of Saipan, Mariana Islands; Part 4, Submarine topography and shoal-water ecology

    USGS Publications Warehouse

    Cloud, Preston E.

    1959-01-01

    The topography of the sea floor within 10 miles of Saipan broadly resembles that of the land. Eastward, toward the Mariana trench, slopes are about 6°, without prominent benches or scarps. This is inferred to indicate easterly continuation of generally pyroclastic bedrock. The westward slope averages 2° to 3° and consists mainly of nearly flat benches and westfacing scarps. This is taken to imply westward continuation of a limestone bench-and-fault-scarp topography. Projection of known faults to sea and through Tinian, on the basis of topographic trends, suggests a pattern of west-dipping normal faults that parallel the strike of the Mariana ridge and affect the shape and position of islands at the crest of the ridge.

  20. Fault recovery characteristics of the fault tolerant multi-processor

    NASA Technical Reports Server (NTRS)

    Padilla, Peter A.

    1990-01-01

    The fault handling performance of the fault tolerant multiprocessor (FTMP) was investigated. Fault handling errors detected during fault injection experiments were characterized. In these fault injection experiments, the FTMP disabled a working unit instead of the faulted unit once every 500 faults, on the average. System design weaknesses allow active faults to exercise a part of the fault management software that handles byzantine or lying faults. It is pointed out that these weak areas in the FTMP's design increase the probability that, for any hardware fault, a good LRU (line replaceable unit) is mistakenly disabled by the fault management software. It is concluded that fault injection can help detect and analyze the behavior of a system in the ultra-reliable regime. Although fault injection testing cannot be exhaustive, it has been demonstrated that it provides a unique capability to unmask problems and to characterize the behavior of a fault-tolerant system.

  1. Strain partitioning in Southeastern Alaska: Is the Chatham Strait Fault active?

    NASA Astrophysics Data System (ADS)

    Brothers, Daniel S.; Elliott, Julie L.; Conrad, James E.; Haeussler, Peter J.; Kluesner, Jared W.

    2018-01-01

    A 1200 km-long transform plate boundary passes through southeastern Alaska and northwestern British Columbia and represents one of the most seismically active, but poorly understood continental margins of North America. Although most of the plate motion is accommodated by the right-lateral Queen Charlotte-Fairweather Fault (QCFF) System, which has produced at least six M > 7 earthquakes since 1920, seismic hazard assessments also include the Chatham Strait Fault (CSF) as a potentially active, 400 km-long strike slip fault that cuts northward through southeastern Alaska, connecting with the Eastern Denali Fault. Nearly the entire length of the CSF is submerged beneath Chatham Strait and Lynn Canal and has never been systematically imaged using high-resolution marine geophysical approaches. In this study we present an integrated analysis of new marine seismic reflection data acquired across Lynn Canal and tectonic block modeling constrained by data from continuous and campaign GPS sites. Seismic profiles cross the CSF at twelve locations spanning ∼50 km of fault length; they reveal thick (up to 300 m) packages of glaciomarine sedimentary facies emplaced on an unconformity surface that formed during the Last Glacial Maximum (LGM). Localized warping of post-LGM stratigraphy (∼13.9 kyr B.P. to present) appears to correlate with sediment drape on basement topography and current-controlled deposition. There is no evidence for an active fault along the axis of Lynn Canal in the seismic reflection data. Crustal block models constrained by GPS data allow, but do not require, a maximum slip rate of 2-3 mm/yr along the CSF; higher slip rates on the CSF result in significant misfit to GPS data in the surrounding region. Based on the combined marine geophysical and GPS observations, it is plausible that the CSF has not generated resolvable coseismic deformation in the last ∼13 ka and that the modern slip-rate is <1 mm/yr. We propose that models for strain transfer between

  2. Thermal consequences of thrust faulting: simultaneous versus successive fault activation and exhumation

    NASA Astrophysics Data System (ADS)

    ter Voorde, M.; de Bruijne, C. H.; Cloetingh, S. A. P. L.; Andriessen, P. A. M.

    2004-07-01

    When converting temperature-time curves obtained from geochronology into the denudation history of an area, variations in the isotherm geometry should not be neglected. The geothermal gradient changes with depth due to heat production and evolves with time due to heat advection, if the deformation rate is high. Furthermore, lateral variations arise due to topographic effects. Ignoring these aspects can result in significant errors when estimating denudation rates. We present a numerical model for the thermal response to thrust faulting, which takes these features into account. This kinematic two-dimensional model is fully time-dependent, and includes the effects of alternating fault activation in the upper crust. Furthermore, any denudation history can be imposed, implying that erosion and rock uplift can be studied independently to each other. The model is used to investigate the difference in thermal response between scenarios with simultaneous compressional faulting and erosion, and scenarios with a time lag between rock uplift and denudation. Hereby, we aim to contribute to the analysis of the mutual interaction between mountain growth and surface processes. We show that rock uplift occurring before the onset of erosion might cause 10% to more than 50% of the total amount of cooling. We applied the model to study the Cenozoic development of the Sierra de Guadarrama in the Spanish Central System, aiming to find the source of a cooling event in the Pliocene in this region. As shown by our modeling, this temperature drop cannot be caused by erosion of a previously uplifted mountain chain: the only scenarios giving results compatible with the observations are those incorporating active compressional deformation during the Pliocene, which is consistent with the ongoing NW-SE oriented convergence between Africa and Iberia.

  3. Characterization of active faulting beneath the Strait of Georgia, British Columbia

    USGS Publications Warehouse

    Cassidy, J.F.; Rogers, Gary C.; Waldhauser, F.

    2000-01-01

    Southwestern British Columbia and northwestern Washington State are subject to megathrust earthquakes, deep intraslab events, and earthquakes in the continental crust. Of the three types of earthquakes, the most poorly understood are the crustal events. Despite a high level of seismicity, there is no obvious correlation between the historical crustal earthquakes and the mapped surface faults of the region. On 24 June 1997, a ML = 4.6 earthquake occurred 3-4 km beneath the Strait of Georgia, 30 km to the west of Vancouver, British Columbia. This well-recorded earthquake was preceded by 11 days by a felt foreshock (ML = 3.4) and was followed by numerous small aftershocks. This earthquake sequence occurred in one of the few regions of persistent shallow seismic activity in southwestern British Columbia, thus providing an ideal opportunity to attempt to characterize an active near-surface fault. We have computed focal mechanisms and utilized a waveform cross-correlation and joint hypocentral determination routine to obtain accurate relative hypocenters of the mainshock, foreshock, and 53 small aftershocks in an attempt to image the active fault and the extent of rupture associated with this earthquake sequence. Both P-nodal and CMT focal mechanisms show thrust faulting for the mainshock and the foreshock. The relocated hypocenters delineate a north-dipping plane at 2-4 km depth, dipping at 53??, in good agreement with the focal mechanism nodal plane dipping to the north at 47??. The rupture area is estimated to be a 1.3-km-diameter circular area, comparable to that estimated using a Brune rupture model with the estimated seismic moment of 3.17 ?? 1015 N m and the stress drop of 45 bars. The temporal sequence indicates a downdip migration of the seismicity along the fault plane. The results of this study provide the first unambiguous evidence for the orientation and sense of motion for active faulting in the Georgia Strait area of British Columbia.

  4. The northwest trending north Boquerón Bay-Punta Montalva Fault Zone; A through going active fault system in southwestern Puerto Rico

    USGS Publications Warehouse

    Roig‐Silva, Coral Marie; Asencio, Eugenio; Joyce, James

    2013-01-01

    The North Boquerón Bay–Punta Montalva fault zone has been mapped crossing the Lajas Valley in southwest Puerto Rico. Identification of the fault was based upon detailed analysis of geophysical data, satellite images, and field mapping. The fault zone consists of a series of Cretaceous bedrock faults that reactivated and deformed Miocene limestone and Quaternary alluvial fan sediments. The fault zone is seismically active (local magnitude greater than 5.0) with numerous locally felt earthquakes. Focal mechanism solutions suggest strain partitioning with predominantly east–west left-lateral displacements with small normal faults striking mostly toward the northeast. Northeast-trending fractures and normal faults can be found in intermittent streams that cut through the Quaternary alluvial fan deposits along the southern margin of the Lajas Valley, an east–west-trending 30-km-long fault-controlled depression. Areas of preferred erosion within the alluvial fan trend toward the west-northwest parallel to the onland projection of the North Boquerón Bay fault. The North Boquerón Bay fault aligns with the Punta Montalva fault southeast of the Lajas Valley. Both faults show strong southward tilting of Miocene strata. On the western end, the Northern Boquerón Bay fault is covered with flat-lying Holocene sediments, whereas at the southern end the Punta Montalva fault shows left-lateral displacement of stream drainage on the order of a few hundred meters.

  5. Illuminating Northern California’s Active Faults

    USGS Publications Warehouse

    Prentice, Carol S.; Crosby, Christopher J.; Whitehill, Caroline S.; Arrowsmith, J. Ramon; Furlong, Kevin P.; Philips, David A.

    2009-01-01

    Newly acquired light detection and ranging (lidar) topographic data provide a powerful community resource for the study of landforms associated with the plate boundary faults of northern California (Figure 1). In the spring of 2007, GeoEarthScope, a component of the EarthScope Facility construction project funded by the U.S. National Science Foundation, acquired approximately 2000 square kilometers of airborne lidar topographic data along major active fault zones of northern California. These data are now freely available in point cloud (x, y, z coordinate data for every laser return), digital elevation model (DEM), and KMZ (zipped Keyhole Markup Language, for use in Google EarthTM and other similar software) formats through the GEON OpenTopography Portal (http://www.OpenTopography.org/data). Importantly, vegetation can be digitally removed from lidar data, producing high-resolution images (0.5- or 1.0-meter DEMs) of the ground surface beneath forested regions that reveal landforms typically obscured by vegetation canopy (Figure 2)

  6. The regional structural setting of the 2008 Wells earthquake and Town Creek Flat Basin: implications for the Wells earthquake fault and adjacent structures

    USGS Publications Warehouse

    Henry, Christopher S.; Colgan, Joseph P.

    2011-01-01

    The 2008 Wells earthquake occurred on a northeast-striking, southeast-dipping fault that is clearly delineated by the aftershock swarm to a depth of 10-12 km below sea level. However, Cenozoic rocks and structures around Wells primarily record east-west extension along north- to north-northeast-striking, west-dipping normal faults that formed during the middle Miocene. These faults are responsible for the strong eastward tilt of most basins and ranges in the area, including the Town Creek Flat basin (the location of the earthquake) and the adjacent Snake Mountains and western Windermere Hills. These older west-dipping faults are locally overprinted by a younger generation of east-dipping, high-angle normal faults that formed as early as the late Miocene and have remained active into the Quaternary. The most prominent of these east-dipping faults is the set of en-échelon, north-striking faults that bounds the east sides of the Ruby Mountains, East Humboldt Range, and Clover Hill (about 5 km southwest of Wells). The northeastern-most of these faults, the Clover Hill fault, projects northward along strike toward the Snake Mountains and the approximately located surface projection of the Wells earthquake fault as defined by aftershock locations. The Clover Hill fault also projects toward a previously unrecognized, east-facing Quaternary fault scarp and line of springs that appear to mark a significant east-dipping normal fault along the western edge of Town Creek Flat. Both western and eastern projections may be northern continuations of the Clover Hill fault. The Wells earthquake occurred along this east-dipping fault system. Two possible alternatives to rupture of a northern continuation of the Clover Hill fault are that the earthquake fault (1) is antithetic to an active west-dipping fault or (2) reactivated a Mesozoic thrust fault that dips east as a result of tilting by the west-dipping faults along the west side of the Snake Mountains. Both alternatives are

  7. Imaging the complexity of an active normal fault system: The 1997 Colfiorito (central Italy) case study

    USGS Publications Warehouse

    Chiaraluce, L.; Ellsworth, W.L.; Chiarabba, C.; Cocco, M.

    2003-01-01

    Six moderate magnitude earthquakes (5 < Mw < 6) ruptured normal fault segments of the southern sector of the North Apennine belt (central Italy) in the 1997 Colfiorito earthquake sequence. We study the progressive activation of adjacent and nearby parallel faults of this complex normal fault system using ???1650 earthquake locations obtained by applying a double-difference location method, using travel time picks and waveform cross-correlation measurements. The lateral extent of the fault segments range from 5 to 10 km and make up a broad, ???45 km long, NW trending fault system. The geometry of each segment is quite simple and consists of planar faults gently dipping toward SW with an average dip of 40??-45??. The fault planes are not listric but maintain a constant dip through the entire seismogenic volume, down to 8 km depth. We observe the activation of faults on the hanging wall and the absence of seismicity in the footwall of the structure. The observed fault segmentation appears to be due to the lateral heterogeneity of the upper crust: preexisting thrusts inherited from Neogene's compressional tectonic intersect the active normal faults and control their maximum length. The stress tensor obtained by inverting the six main shock focal mechanisms of the sequence is in agreement with the tectonic stress active in the inner chain of the Apennine, revealing a clear NE trending extension direction. Aftershock focal mechanisms show a consistent extensional kinematics, 70% of which are mechanically consistent with the main shock stress field.

  8. A plastic flow model for the Acquara - Vadoncello landslide in Senerchia, Southern Italy

    USGS Publications Warehouse

    Savage, W.; Wasowski, J.

    2006-01-01

    A previously developed model for stress and velocity fields in two-dimensional Coulomb plastic materials under self-weight and pore pressure predicts that long, shallow landslides develop slip surfaces that manifest themselves as normal faults and normal fault scarps at the surface in areas of extending flow and as thrust faults and thrust fault scarps at the surface in areas of compressive flow. We have applied this model to describe the geometry of slip surfaces and ground stresses developed during the 1995 reactivation of the Acquara - Vadoncello landslide in Senerchia, southern Italy. This landslide is a long and shallow slide in which regions of compressive and extending flow are clearly identified. Slip surfaces in the main scarp region of the landslide have been reconstructed using surface surveys and subsurface borehole logging and inclinometer observations made during retrogression of the main scarp. Two of the four inferred main scarp slip surfaces are best constrained by field data. Slip surfaces in the toe region are reconstructed in the same way and three of the five inferred slip surfaces are similarly constrained. The location of the basal shear surface of the landslide is inferred from borehole logging and borehole inclinometry. Extensive data on material properties, landslide geometries, and pore pressures collected for the Acquara - Vadoncello landslide give values for cohesion, friction angle, and unit weight, plus average basal shear-surface slopes, and pore-pressures required for modelling slip surfaces and stress fields. Results obtained from the landslide-flow model and the field data show that predicted slip surface shapes are consistent with inferred slip surface shapes in both the extending flow main scarp region and in the compressive flow toe region of the Acquara - Vadoncello landslide. Also predicted stress distributions are found to explain deformation features seen in the toe and main scarp regions of the landslide. ?? 2005 Elsevier

  9. Preservation of amorphous ultrafine material: A proposed proxy for slip during recent earthquakes on active faults

    NASA Astrophysics Data System (ADS)

    Hirono, Tetsuro; Asayama, Satoru; Kaneki, Shunya; Ito, Akihiro

    2016-11-01

    The criteria for designating an “Active Fault” not only are important for understanding regional tectonics, but also are a paramount issue for assessing the earthquake risk of faults that are near important structures such as nuclear power plants. Here we propose a proxy, based on the preservation of amorphous ultrafine particles, to assess fault activity within the last millennium. X-ray diffraction data and electron microscope observations of samples from an active fault demonstrated the preservation of large amounts of amorphous ultrafine particles in two slip zones that last ruptured in 1596 and 1999, respectively. A chemical kinetic evaluation of the dissolution process indicated that such particles could survive for centuries, which is consistent with the observations. Thus, preservation of amorphous ultrafine particles in a fault may be valuable for assessing the fault’s latest activity, aiding efforts to evaluate faults that may damage critical facilities in tectonically active zones.

  10. Abnormal fault-recovery characteristics of the fault-tolerant multiprocessor uncovered using a new fault-injection methodology

    NASA Technical Reports Server (NTRS)

    Padilla, Peter A.

    1991-01-01

    An investigation was made in AIRLAB of the fault handling performance of the Fault Tolerant MultiProcessor (FTMP). Fault handling errors detected during fault injection experiments were characterized. In these fault injection experiments, the FTMP disabled a working unit instead of the faulted unit once in every 500 faults, on the average. System design weaknesses allow active faults to exercise a part of the fault management software that handles Byzantine or lying faults. Byzantine faults behave such that the faulted unit points to a working unit as the source of errors. The design's problems involve: (1) the design and interface between the simplex error detection hardware and the error processing software, (2) the functional capabilities of the FTMP system bus, and (3) the communication requirements of a multiprocessor architecture. These weak areas in the FTMP's design increase the probability that, for any hardware fault, a good line replacement unit (LRU) is mistakenly disabled by the fault management software.

  11. Modeling right-lateral offset of a Late Pleistocene terrace riser along the Polaris fault using ground based LiDAR imagery

    NASA Astrophysics Data System (ADS)

    Howle, J. F.; Bawden, G. W.; Hunter, L. E.; Rose, R. S.

    2009-12-01

    High resolution (centimeter level) three-dimensional point-cloud imagery of offset glacial outwash deposits were collected by using ground based tripod LiDAR (T-LiDAR) to characterize the cumulative fault slip across the recently identified Polaris fault (Hunter et al., 2009) near Truckee, California. The type-section site for the Polaris fault is located 6.5 km east of Truckee where progressive right-lateral displacement of middle to late Pleistocene deposits is evident. Glacial outwash deposits, aggraded during the Tioga glaciation, form a flat lying ‘fill’ terrace on both the north and south sides of the modern Truckee River. During the Tioga deglaciation melt water incised into the terrace producing fluvial scarps or terrace risers (Birkeland, 1964). Subsequently, the terrace risers on both banks have been right-laterally offset by the Polaris fault. By using T-LiDAR on an elevated tripod (4.25 m high), we collected 3D high-resolution (thousands of points per square meter; ± 4 mm) point-cloud imagery of the offset terrace risers. Vegetation was removed from the data using commercial software, and large protruding boulders were manually deleted to generate a bare-earth point-cloud dataset with an average data density of over 240 points per square meter. From the bare-earth point cloud we mathematically reconstructed a pristine terrace/scarp morphology on both sides of the fault, defined coupled sets of piercing points, and extracted a corresponding displacement vector. First, the Polaris fault was approximated as a vertical plane that bisects the offset terrace risers, as well as bisecting linear swales and tectonic depressions in the outwash terrace. Then, piercing points to the vertical fault plane were constructed from the geometry of the geomorphic elements on either side of the fault. On each side of the fault, the best-fit modeled outwash plane is projected laterally and the best-fit modeled terrace riser projected upward to a virtual intersection in

  12. Aftershocks illuminate the 2011 Mineral, Virginia, earthquake causative fault zone and nearby active faults

    USGS Publications Warehouse

    Horton, J. Wright; Shah, Anjana K.; McNamara, Daniel E.; Snyder, Stephen L.; Carter, Aina M

    2015-01-01

    Deployment of temporary seismic stations after the 2011 Mineral, Virginia (USA), earthquake produced a well-recorded aftershock sequence. The majority of aftershocks are in a tabular cluster that delineates the previously unknown Quail fault zone. Quail fault zone aftershocks range from ~3 to 8 km in depth and are in a 1-km-thick zone striking ~036° and dipping ~50°SE, consistent with a 028°, 50°SE main-shock nodal plane having mostly reverse slip. This cluster extends ~10 km along strike. The Quail fault zone projects to the surface in gneiss of the Ordovician Chopawamsic Formation just southeast of the Ordovician–Silurian Ellisville Granodiorite pluton tail. The following three clusters of shallow (<3 km) aftershocks illuminate other faults. (1) An elongate cluster of early aftershocks, ~10 km east of the Quail fault zone, extends 8 km from Fredericks Hall, strikes ~035°–039°, and appears to be roughly vertical. The Fredericks Hall fault may be a strand or splay of the older Lakeside fault zone, which to the south spans a width of several kilometers. (2) A cluster of later aftershocks ~3 km northeast of Cuckoo delineates a fault near the eastern contact of the Ordovician Quantico Formation. (3) An elongate cluster of late aftershocks ~1 km northwest of the Quail fault zone aftershock cluster delineates the northwest fault (described herein), which is temporally distinct, dips more steeply, and has a more northeastward strike. Some aftershock-illuminated faults coincide with preexisting units or structures evident from radiometric anomalies, suggesting tectonic inheritance or reactivation.

  13. Comparative study of two active faults in different stages of the earthquake cycle in central Japan -The Atera fault (with 1586 Tensho earthquake) and the Nojima fault (with 1995 Kobe earthquake)-

    NASA Astrophysics Data System (ADS)

    Matsuda, T.; Omura, K.; Ikeda, R.

    2003-12-01

    National Research Institute for Earth Science and Disaster Prevention (NIED) has been conducting _gFault zone drilling_h. Fault zone drilling is especially important in understanding the structure, composition, and physical properties of an active fault. In the Chubu district of central Japan, large active faults such as the Atotsugawa (with 1858 Hietsu earthquake) and the Atera (with 1586 Tensho earthquake) faults exist. After the occurrence of the 1995 Kobe earthquake, it has been widely recognized that direct measurements in fault zones by drilling. This time, we describe about the Atera fault and the Nojima fault. Because, these two faults are similar in geological situation (mostly composed of granitic rocks), so it is easy to do comparative study of drilling investigation. The features of the Atera fault, which have been dislocated by the 1586 Tensho earthquake, are as follows. Total length is about 70 km. That general trend is NW45 degree with a left-lateral strike slip. Slip rate is estimated as 3-5 m / 1000 years. Seismicity is very low at present and lithologies around the fault are basically granitic rocks and rhyolite. Six boreholes have been drilled from the depth of 400 m to 630 m. Four of these boreholes (Hatajiri, Fukuoka, Ueno and Kawaue) are located on a line crossing in a direction perpendicular to the Atera fault. In the Kawaue well, mostly fractured and alternating granitic rock continued from the surface to the bottom at 630 m. X-ray fluorescence analysis (XRF) is conducted to estimate the amount of major chemical elements using the glass bead method for core samples. The amounts of H20+ are about from 0.5 to 2.5 weight percent. This fractured zone is also characterized by the logging data such as low resistivity, low P-wave velocity, low density and high neutron porosity. The 1995 Kobe (Hyogo-ken Nanbu) earthquake occurred along the NE-SW-trending Rokko-Awaji fault system, and the Nojima fault appeared on the surface on Awaji Island when this

  14. Preservation of amorphous ultrafine material: A proposed proxy for slip during recent earthquakes on active faults

    PubMed Central

    Hirono, Tetsuro; Asayama, Satoru; Kaneki, Shunya; Ito, Akihiro

    2016-01-01

    The criteria for designating an “Active Fault” not only are important for understanding regional tectonics, but also are a paramount issue for assessing the earthquake risk of faults that are near important structures such as nuclear power plants. Here we propose a proxy, based on the preservation of amorphous ultrafine particles, to assess fault activity within the last millennium. X-ray diffraction data and electron microscope observations of samples from an active fault demonstrated the preservation of large amounts of amorphous ultrafine particles in two slip zones that last ruptured in 1596 and 1999, respectively. A chemical kinetic evaluation of the dissolution process indicated that such particles could survive for centuries, which is consistent with the observations. Thus, preservation of amorphous ultrafine particles in a fault may be valuable for assessing the fault’s latest activity, aiding efforts to evaluate faults that may damage critical facilities in tectonically active zones. PMID:27827413

  15. Interactions between Polygonal Normal Faults and Larger Normal Faults, Offshore Nova Scotia, Canada

    NASA Astrophysics Data System (ADS)

    Pham, T. Q. H.; Withjack, M. O.; Hanafi, B. R.

    2017-12-01

    Polygonal faults, small normal faults with polygonal arrangements that form in fine-grained sedimentary rocks, can influence ground-water flow and hydrocarbon migration. Using well and 3D seismic-reflection data, we have examined the interactions between polygonal faults and larger normal faults on the passive margin of offshore Nova Scotia, Canada. The larger normal faults strike approximately E-W to NE-SW. Growth strata indicate that the larger normal faults were active in the Late Cretaceous (i.e., during the deposition of the Wyandot Formation) and during the Cenozoic. The polygonal faults were also active during the Cenozoic because they affect the top of the Wyandot Formation, a fine-grained carbonate sedimentary rock, and the overlying Cenozoic strata. Thus, the larger normal faults and the polygonal faults were both active during the Cenozoic. The polygonal faults far from the larger normal faults have a wide range of orientations. Near the larger normal faults, however, most polygonal faults have preferred orientations, either striking parallel or perpendicular to the larger normal faults. Some polygonal faults nucleated at the tip of a larger normal fault, propagated outward, and linked with a second larger normal fault. The strike of these polygonal faults changed as they propagated outward, ranging from parallel to the strike of the original larger normal fault to orthogonal to the strike of the second larger normal fault. These polygonal faults hard-linked the larger normal faults at and above the level of the Wyandot Formation but not below it. We argue that the larger normal faults created stress-enhancement and stress-reorientation zones for the polygonal faults. Numerous small, polygonal faults formed in the stress-enhancement zones near the tips of larger normal faults. Stress-reorientation zones surrounded the larger normal faults far from their tips. Fewer polygonal faults are present in these zones, and, more importantly, most polygonal faults

  16. Geophysical Features and Inferred Triggering Factors of Submarine Landslides in the Western Continental Margin of the Ulleung Basin, East Sea of Korea

    NASA Astrophysics Data System (ADS)

    Cukur, D.; Kim, S. P.; Kong, G. S.; Yoon, Y.; Kim, J. K.; Choi, J. G.

    2015-12-01

    Submarine landslides form very complex features on the seafloor and the associated geological processes are yet to be known completely. Various researches are still undergoing not only for their profound academic significance but also for their hazardous impact potential to seafloor infrastructures and coastal areas. In order to investigate the morphology and cause of landslides along the western margin of the Ulleung Basin in the East Sea, we collected multiple geophysical datasets in the summer of 2015, including sparker, subbottom profiler, and multibeam echosounder. The preliminary analysis of the bathymetric data shows a number of U-shaped scarps that occur on a rather steep slope (up to 10°) in water depths of ~600 m. The scarps cover an area of ~100 km2 and have reliefs of up to 50 m. Seismic data clearly image erosional headwalls and the basal gliding plane which is characterized by a prominent high-amplitude reflector. Chaotic- to transparent-seismic facies, located immediately downslope of the headwall scarps, represent landslide deposits of about 20 m in thickness. At the base of slope, the slides form lens-shaped transparent bodies, resting on well-stratified turbidite deposits. Several V-shaped seafloor depressions near the head of these scarps are seen on the subbottom profiles. These depressions, which are ~5 m deep and ~150 m wide, are interpreted to be representing pockmarks, resulted from upward migration of gas in the sediment layers beneath. The presence of these pockmarks directly above the scars may suggest that the gases and/or gas fluids might be playing an important role for destabilizing slope sediments. Furthermore, subbottom profiles suggest the presence of numerous faults in close vicinity of headwall scarps; some are extending to the seafloor suggesting their recent activity. Earthquakes associated with tectonic activity are indicated to be the cause of these faults. Thus the fault-related earthquakes might be the final triggering

  17. Strain partitioning in southeastern Alaska: Is the Chatham Strait Fault active?

    USGS Publications Warehouse

    Brothers, Daniel; Elliott, Julie L.; Conrad, James E.; Haeussler, Peter J.; Kluesner, Jared

    2018-01-01

    A 1200 km-long transform plate boundary passes through southeastern Alaska and northwestern British Columbia and represents one of the most seismically active, but poorly understood continental margins of North America. Although most of the plate motion is accommodated by the right-lateral Queen Charlotte–Fairweather Fault (QCFF) System, which has produced at least six M > 7 earthquakes since 1920, seismic hazard assessments also include the Chatham Strait Fault (CSF) as a potentially active, 400 km-long strike slip fault that cuts northward through southeastern Alaska, connecting with the Eastern Denali Fault. Nearly the entire length of the CSF is submerged beneath Chatham Strait and Lynn Canal and has never been systematically imaged using high-resolution marine geophysical approaches. In this study we present an integrated analysis of new marine seismic reflectiondata acquired across Lynn Canal and tectonic block modeling constrained by data from continuous and campaign GPS sites. Seismic profiles cross the CSF at twelve locations spanning ∼50 km of fault length; they reveal thick (up to 300 m) packages of glaciomarine sedimentary facies emplaced on an unconformity surface that formed during the Last Glacial Maximum (LGM). Localized warping of post-LGM stratigraphy (∼13.9 kyr B.P. to present) appears to correlate with sediment drape on basement topography and current-controlled deposition. There is no evidence for an active fault along the axis of Lynn Canal in the seismic reflection data. Crustal block models constrained by GPS data allow, but do not require, a maximum slip rate of 2–3 mm/yr along the CSF; higher slip rates on the CSF result in significant misfit to GPS data in the surrounding region. Based on the combined marine geophysical and GPS observations, it is plausible that the CSF has not generated resolvable coseismic deformation in the last ∼13 ka and that the modern slip-rate is <1 mm/yr. We propose that models for strain

  18. Paleoseismology and tectonic geomorphology of the Pallatanga fault (Central Ecuador), a major structure of the South-American crust

    NASA Astrophysics Data System (ADS)

    Baize, Stéphane; Audin, Laurence; Winter, Thierry; Alvarado, Alexandra; Pilatasig Moreno, Luis; Taipe, Mercedes; Reyes, Pedro; Kauffmann, Paul; Yepes, Hugo

    2015-05-01

    The Pallatanga fault (PF) is a prominent NNE-SSW strike-slip fault crossing Central Ecuador. This structure is suspected to have hosted large earthquakes, including the 1797 Riobamba event which caused severe destructions to buildings and a heavy death toll (more than 12,000 people), as well as widespread secondary effects like landsliding, liquefaction and surface cracking. The scope of this study is to evaluate the seismic history of the fault through a paleoseismological approach. This work also aims at improving the seismotectonic map of this part of the Andes through a new mapping campaign and, finally, aims at improving the seismic hazard assessment. We show that the PF continues to the north of the previously mapped fault portion in the Western Cordillera (Rumipamba-Pallatanga portion) into the Inter-Andean Valley (Riobamba basin). Field evidences of faulting are numerous, ranging from a clear geomorphological signature to fault plane outcrops. Along the western side of the Riobamba basin, the strike-slip component seems predominant along several fault portions, with a typical landscape assemblage (dextral offsets of valleys, fluvial terrace risers and generation of linear pressure ridges). In the core of the inter-Andean valley, the main fault portion exhibits a vertical component along the c. 100 m-high cumulative scarp. The presence of such an active fault bounding the western suburbs of Riobamba drastically increases the seismic risk for this densely inhabited and vulnerable city. To the east (Peltetec Massif, Cordillera Real), the continuation of the Pallatanga fault is suspected, but not definitely proved yet. Based on the analysis of three trenches, we state that the Rumipamba-Pallatanga section of the PF experienced 4 (maybe 5) Holocene to Historical strong events (Mw > 7). The coseismic behavior of the fault is deduced from the occurrence of several colluvial wedges and layers associated with the fault activity and interbedded within the organic

  19. Tilted lake shorelines record the onset of motion along the Hilton Creek fault adjacent to Long Valley caldera, CA, USA

    NASA Astrophysics Data System (ADS)

    Perkins, J. P.; Finnegan, N. J.; Cervelli, P. F.; Langbein, J. O.

    2010-12-01

    Creek fault to the last 100 kyr and imply a late Pleistocene slip rate of ~0.8 mm/yr, consistent with shorter (~ 25 kyr) timescale estimates of ~1 mm/yr from displacement of LGM moraines and terraces along the active fault scarp. These data show that tilting in Long Valley caldera related to slip on the Hilton Creek fault commenced after 100 ka, and that slip rates are seemingly uniform over that time period. The 22 km-long trace of the Hilton Creek fault, with at least 1070 m of offset at McGee Mountain to the south, must have experienced significant pre-caldera slip. A lack of apparent tilting within Long Valley caldera from 500 ka to 100 ka may therefore be interpreted in one of two ways. Either extension ceased here for at least~ 400 kyr, or more likely, accommodation of Hilton Creek extension occurred either elsewhere (outside of the Caldera) or via a different physical mechanism, such as dike intrusion.

  20. Post-Neogene tectonism along the Aravalli Range, Rajasthan, India

    NASA Astrophysics Data System (ADS)

    Sen, Deepawati; Sen, Saurindranath

    1983-03-01

    The Aravalli Range runs southwest from Delhi for a distance of about 700 km. Its western margin is well defined, but the eastern margin is diffuse. Five geomorphic provinces are recognized in the study area: the western piedmont plains; the ridge and valley province which in the Central Aravallis occurs at two different heights separated by a fault scarp; the plateau province demarcated from the former by a fault scarp, confined to the Southern Aravallis, and occurring for a short stretch at two heights across another fault scarp; the BGC rolling plains east of the Range; and the BGC uplands south of the above. The scarps coincide with Precambrian faults. A series of rapids and water-falls, together with deeply entrenched river courses across the scarps and the youthful aspects of the escarpments with no projecting spurs, or straight river courses along their feet, all point unmistakably to a recent or post-Neogene vertical uplift along pre-existing faults. Presence of knickpoints at a constant distance from the Range in all west-flowing rivers, the ubiquitous terraces, and river courses entrenched within their own flood-plain deposits of thick gritty to conglomeratic sand, are indicative of a constant disturbance with a gradual rise of the Range east of the knickpoint, wherefrom the coarse materials were carried by the fast west-flowing streams. There is a differential uplift across the plateau scarp together with a right-lateral offset. This epeirogenic tectonism is ascribed to the collision of the Eurasian and the subducting Indian plates and to a locking of their continental crusts. By early Pleistocene, with the MBT gradually dying off, continued plate movement caused a flexural bending of the plate by a moment generated at the back, and a possible delinking of the continental crust along the zone of subduction. The felexural bending ripped open the Precambrian regional faults. The differential uplift and the difference in the distances of the nodes on two

  1. Anatomy of an Active Seismic Source: the Interplay between Present-Day Seismic Activity and Inherited Fault Zone Architecture (Central Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Fondriest, M.; Demurtas, M.; Bistacchi, A.; Fabrizio, B.; Storti, F.; Valoroso, L.; Di Toro, G.

    2017-12-01

    The mechanics and seismogenic behaviour of fault zones are strongly influenced by their internal structure, in terms of both fault geometry and fault rock constitutive properties. In recent years high-resolution seismological techniques yielded new constraints on the geometry and velocity structure of seismogenic faults down to 10s meters length scales. This reduced the gap between geophysical imaging of active seismic sources and field observations of exhumed fault zones. Nevertheless fundamental questions such as the origin of geometrical and kinematic complexities associated to seismic faulting remain open. We addressed these topics by characterizing the internal structure of the Vado di Corno Fault Zone, an active seismogenic normal fault cutting carbonates in the Central Apennines of Italy and comparing it with the present-day seismicity of the area. The fault footwall block, which was exhumed from < 2 km depth, was mapped with high detail (< 1 m spatial resolution) for 2 km of exposure along strike, combining field structural data and photogrammetric surveys in a three dimensional structural model. Three main structural units separated by principal fault strands were recognized: (i) cataclastic unit (20-100 m thick), (ii) damage zone (≤ 300 m thick), (iii) breccia unit ( 20 thick). The cataclastic unit lines the master fault and represents the core of the normal fault zone. In-situ shattering together with evidence of extreme (possibly coseismic) shear strain localization (e.g., mirror-like faults with truncated clasts, ultrafine-grained sheared veins) was recognized. The breccia unit is an inherited thrust zone affected by pervasive veining and secondary dolomitization. It strikes subparallel to the active normal fault and is characterized by a non-cylindrical geometry with 10-100 m long frontal and lateral ramps. The cataclastic unit cuts through thrust flats within the breccia unit, whereas normal to oblique inversion occur on frontal and lateral ramps

  2. Erosional development of bedrock spur and gully topography in the Valles Marineris, Mars

    NASA Technical Reports Server (NTRS)

    Patton, Peter C.

    1990-01-01

    Gully networks separated by resistant bedrock spurs are a common erosional feature along the escarpments that border the Valles Marineris. The resistant spur topography is best developed where the base of the slope is truncated by linear scarps interpreted as fault scarps. Regional variations in slope morphology imply that spur and gully topography undergoes a systematic progressive degradation through time associated with the erosional destruction of the basal fault scarps. The comparative morphometry of the divide networks indicates that the density of the spur networks and the number of first-order unbranched spurs decreases as the basal slope break becomes more sinuous. Abstraction of the spurs occurs through regolith storage in adjacent gullies at the slope base and the most degraded slope forms are entirely buried in talus. The basal fault scarps apparently control regolith transport by allowing debris to drain from the slope. As these basal scarps decay the slope base becomes increasingly sinuous and the slopes become transport limited. Dry mass-wasting may be the most important process acting on these slopes where a continually lowered base level is required to maintain the spur topography. In contrast to the Martian slopes, range front fault escarpments in the western U.S. show no systematic trend in spur network geometry as they are eroded. These weathering limited slopes are controlled by the more efficient removal of regolith through fluvial processes which rapidly create quasi-equilibrium drainage networks.

  3. Active tectonic deformation of the western Indian plate boundary: A case study from the Chaman Fault System

    NASA Astrophysics Data System (ADS)

    Crupa, Wanda E.; Khan, Shuhab D.; Huang, Jingqiu; Khan, Abdul S.; Kasi, Aimal

    2017-10-01

    Collision of the Eurasian and Indian plates has resulted in two spatially offset subduction zones, the Makran subduction zone to the south and the Himalayan convergent margin to the north. These zones are linked by a system of left-lateral strike-slip faults known as the Chaman Fault System, ∼1200 km, which spans along western Pakistan. Although this is one of the greatest strike-slip faults, yet temporal and spatial variation in displacement has not been adequately defined along this fault system. This study conducted geomorphic and geodetic investigations along the Chaman Fault in a search for evidence of spatial variations in motion. Four study areas were selected over the span of the Chaman Fault: (1) Tarnak-Rud area over the Tarnak-Rud valley, (2) Spinatizha area over the Spinatizha Mountain Range, (3) Nushki area over the Nushki basin, and (4) Kharan area over the northern tip of the Central Makran Mountains. Remote sensing data allowed for in depth mapping of different components and faults within the Kohjak group. Wind and water gap pairs along with offset rivers were identified using high-resolution imagery and digital-elevation models to show displacement for the four study areas. The mountain-front-sinuosity ratio, valley height-to-width-ratio, and the stream-length-gradient index were calculated and used to determine the relative tectonic activity of each area. These geomorphic indices suggest that the Kharan area is the most active and the Tarnak-Rud area is the least active. GPS data were processed into a stable Indian plate reference frame and analyzed. Fault parallel velocity versus fault normal distance yielded a ∼8-10 mm/yr displacement rate along the Chaman Fault just north of the Spinatizha area. InSAR data were also integrated to assess displacement rates along the fault system. Geodetic data support that ultra-slow earthquakes similar to those that strike along other major strike-slip faults, such as the San Andreas Fault System, are

  4. Evidences of Pleistocene tectonic deformations along the SE border of the Upper Rhine Graben (Freiburg area, Germany)

    NASA Astrophysics Data System (ADS)

    Brüstle, A.; Nivière, B.; Bertrand, G.; Gourry, J. C.; Carretier, S.; Fracassi, U.; Winter, T.

    2003-04-01

    The Upper Rhine Graben (URG) is a NNE-trending continental rift that was mostly active from Upper Eocene to Lower Miocene. However, the relatively well-preserved topography of its shoulders, at the scale of the whole basin, suggests a Pleistocene reactivation of its borders. We evaluate here such a possibility along its SE border, in the vincinity of Freiburg (Germany). Despite a continuous but diffuse seismic activity, evidences of near-surface deformations are not yet described. We coupled at the regional and local scales a multi-disciplinary approach, including morphological and geological analyses, to identify the markers of an assumed Pleistocene deformation. The imagery analysis reveals that the Oligocene structural pattern is yet well-marked in the topography by continuous escarpments, few tenth of kilometers long and from 20--30 to 300--500 m high. The correlation of boreholes allowed us to build isohypse and isopach maps of the Quaternary deposits and to propose a river system evolution scenario for the Quaternary. More interesting are the local depocenters located above the hanging wall of the faults and suggesting a Pleistocene tectonic reactivation. Thus, a minimum Pleistocene vertical offset of about 30 m can be illustrated above the main border fault. We then focused on the western Rhine river fault where very young deposits are suspected to have recorded a wechselian deformation. The morphological aspect of the scarp (location above the structural fault, linearity and continuity of the scarp, topographic tilting and presence of hanging valleys...), borehole data and electric tomography survey realized across the scarplet, located at toe of the main scarp, testify of a possible deformation. In particular, a ˜15 m vertical offset of the Wechselian deposits is illustrated in two localities, along the fault, where trenching will be performed in a near future to validate the ages of deformed deposits and obtain information on the strain scenario.

  5. ALVIN investigation of an active propagating rift system, Galapagos 95.5° W

    USGS Publications Warehouse

    Hey, R.N.; Sinton, J.M.; Kleinrock, M.C.; Yonover, R.N.; MacDonald, K.C.; Miller, S.P.; Searle, R.C.; Christie, D.M.; Atwater, T.M.; Sleep, Norman H.; Johnson, H. Paul; Neal, C.A.

    1992-01-01

    ALVIN investigations have defined the fine-scale structural and volcanic patterns produced by active rift and spreading center propagation and failure near 95.5° W on the Galapagos spreading center. Behind the initial lithospheric rifting, which is propagating nearly due west at about 50 km m.y.−1, a triangular block of preexisting lithosphere is being stretched and fractured, with some recent volcanism along curving fissures. A well-organized seafloor spreading center, an extensively faulted and fissured volcanic ridge, develops ~ 10 km (~ 200,000 years) behind the tectonic rift tip. Regional variations in the chemical compositions of the youngest lavas collected during this program contrast with those encompassing the entire 3 m.y. of propagation history for this region. A maximum in degree of magmatic differentiation occurs about 9 km behind the propagating rift tip, in a region of diffuse rifting. The propagating spreading center shows a gentle gradient in magmatic differentiation culminating at the SW-curving spreading center tip. Except for the doomed rift, which is in a constructional phase, tectonic activity also dominates over volcanic activity along the failing spreading system. In contrast to the propagating rift, failing rift lavas show a highly restricted range of compositions consistent with derivation from a declining upwelling zone accompanying rift failure. The lithosphere transferred from the Cocos to the Nazca plate by this propagator is extensively faulted and characterized by ubiquitous talus in one of the most tectonically disrupted areas of seafloor known. The pseudofault scarps, where the preexisting lithosphere was rifted apart, appear to include both normal and propagator lavas and are thus more lithologically complex than previously thought. Biological communities, probably vestimentiferan tubeworms, occur near the top of the outer pseudofault scarp, although no hydrothermal venting was observed.

  6. Active faulting, earthquakes, and restraining bend development near Kerman city in southeastern Iran

    NASA Astrophysics Data System (ADS)

    Walker, Richard Thomas; Talebian, Morteza; Saiffori, Sohei; Sloan, Robert Alastair; Rasheedi, Ali; MacBean, Natasha; Ghassemi, Abbas

    2010-08-01

    We provide descriptions of strike-slip and reverse faulting, active within the late Quaternary, in the vicinity of Kerman city in southeastern Iran. The faults accommodate north-south, right-lateral, shear between central Iran and the Dasht-e-Lut depression. The regions that we describe have been subject to numerous earthquakes in the historical and instrumental periods, and many of the faults that are documented in this paper constitute hazards for local populations, including the city of Kerman itself (population ˜200,000). Faults to the north and east of Kerman are associated with the transfer of slip from the Gowk to the Kuh Banan right-lateral faults across a 40 km-wide restraining bend. Faults south and west of the city are associated with oblique slip on the Mahan and Jorjafk systems. The patterns of faulting observed along the Mahan-Jorjafk system, the Gowk-Kuh Banan system, and also the Rafsanjan-Rayen system further to the south, appear to preserve different stages in the development of these oblique-slip fault systems. We suggest that the faulting evolves through time. Topography is initially generated on oblique slip faults (as is seen on the Jorjafk fault). The shortening component then migrates to reverse faults situated away from the high topography whereas strike-slip continues to be accommodated in the high, mountainous, regions (as is seen, for example, on the Rafsanjan fault). The reverse faults may then link together and eventually evolve into new, through-going, strike-slip faults in a process that appears to be occurring, at present, in the bend between the Gowk and Kuh Banan faults.

  7. Influence of the Saros Fault on the Periodicity of Earthquake Activity (Gelibolu Peninsula, NW Turkey)

    NASA Astrophysics Data System (ADS)

    İpek Gültekin, Derya; Karakoç, Okan; Şahin, Murat; Elitez, İrem; Yaltırak, Cenk

    2017-04-01

    Active faults are vital in terms of settlement and socio-economic aspects of a region. For this reason, it is important to determine the characteristics and impact areas of active faults correctly. The Marmara region is a tectonically active region located in the northwestern Anatolia. The northern part of the North Anatolian Fault, which was named the Saros Fault, passes through the westernmost part of this region. The Saros Fault is a 52 km-long and NE-SW-trending right-lateral strike-slip fault. In this study, the seismicity of the Gelibolu Peninsula has been examined in the light of historical records. When considering the historical records, 545, 986, 1354 and 1756 earthquakes led to damage on the settlements close to the Saros Fault. The dates of historical earthquakes were calculated by integration of previously published empirical formulas, year difference between events and velocity of GPS vectors. The acceleration map (PGA MAPS) of the region has been produced by taking into account these earthquake magnitudes, fault geometry and geology of the region, and consequently, it was seen that these maps overlap quite well with the damage records of historical earthquakes. Considering the periodicity of the Saros Fault, which majorly controls the seismicity in the region, it is aimed to find an answer to the question "how does a recent earthquake affect the region?" by the help of historical earthquake records and PGA modelling. In conclusion, our data showed that PGA values are dominant in the northern side of the Gelibolu Peninsula and this region may be affected by a magnitude 7.3 earthquake.

  8. On the possible fault activation induced by UGS in depleted reservoirs

    NASA Astrophysics Data System (ADS)

    Feronato, Massimiliano; Gambolati, Giuseppe; Janna, Carlo; Teatini, Pietro; Tosattto, Omar

    2014-05-01

    Underground gas storage (UGS) represents an increasingly used approach to cope with the growing energy demand and occurs in many countries worldwide. Gas is injected in previously depleted deep reservoirs during summer when consumption is limited and removed in cold season mainly for heating. As a major consequence the pore pressure p within a UGS reservoir fluctuates yearly between a maximum close to the value pi prior to the field development and a minimum usually larger than the lowest pressure experienced by the reservoir at the end of its production life. The high frequency pressure fluctuations generally confine the pressure change volume to the reservoir volume without significantly involving the aquifers hydraulically connected to the hydrocarbon field (lateral and/or bottom waterdrive). The risk of UGS-induced seismicity is therefore restricted to those cases where existing faults cross or bound the reservoir. The possible risk of anthropogenic seismicity due to UGS operations is preliminary investigated by an advanced Finite Element (FE) - Interface Element (IE) 3-D elasto-plastic geomechanical model in a representative 1500 m deep reservoir bounded by a regional sealing fault and compartimentalized by an internal non-sealing thrust. Gas storage/production is ongoing with p ranging between pi in October/November and 60%pi in April/May. The yearly pressure fluctuation is assumed to be on the order of 50 bar. The overall geomechanical response of the porous medium has been calibrated by reproducing the vertical and horizontal cyclic displacements measured above the reservoir by advanced persistent scatterer interferometry. The FE-IE model shows that the stress variations remain basically confined within the gas field and negligibly propagate within the caprock and the waterdrive. Based on the Mohr-Coulomb failure criterion, IEs allow for the prediction of the fault activated area A, located at the reservoir depth as expected, and slip displacement d. A

  9. Neotectonic Geomorphology of the Owen Stanley Oblique-slip Fault System, Eastern Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Watson, L.; Mann, P.; Taylor, F.

    2003-12-01

    Previous GPS studies have shown that the Australia-Woodlark plate boundary bisects the Papuan Peninsula of Papua New Guinea and that interplate motion along the boundary varies from about 19 mm/yr of orthogonal opening in the area of the western Woodlark spreading center and D'Entrecasteaux Islands, to about 12 mm/yr of highly oblique opening in the central part of the peninsula, to about 10 mm/yr of transpressional motion on the western part of the peninsula. We have compiled a GIS database for the peninsula that includes a digital elevation model, geologic map, LANDSAT and radar imagery, and earthquake focal mechanisms. This combined data set demonstrates the regional importance of the 600-km-long Owen Stanley fault system (OSFS) in accommodating interplate motion and controlling the geomorphology and geologic exposures of the peninsula. The OSFS originated as a NE-dipping, reactivated Oligocene-Early Miocene age ophiolitic suture zone between an Australian continental margin and the Melanesian arc system. Pliocene to recent motion on the plate boundary has reactivated motion on the former NE-dipping thrust fault either as a NE-dipping normal fault in the eastern area or as a more vertical strike-slip fault in the western area. The broadly arcuate shape of the OSFS is probably an inherited feature from the original thrust fault. Faults in the eastern area (east of 148° E) exhibit characteristics expected for normal and oblique slip faults including: discontinuous fault traces bounding an upthrown highland block and a downthrown coastal plain or submarine block, transfer faults parallel to the opening direction, scarps facing to both the northeast and southwest, and spatial association with recent volcanism. Faults in the western area (west of 148° E) exibit characteristics expected for left-lateral strike-slip faults including: linear and continuous fault trace commonly confined to a deep, intermontane valley and sinistral offsets and deflections of rivers and

  10. Displaced rocks, strong motion, and the mechanics of shallow faulting associated with the 1999 Hector Mine, California, earthquake

    USGS Publications Warehouse

    Michael, Andrew J.; Ross, Stephanie L.; Stenner, Heidi D.

    2002-01-01

    The paucity of strong-motion stations near the 1999 Hector Mine earthquake makes it impossible to make instrumental studies of key questions about near-fault strong-motion patterns associated with this event. However, observations of displaced rocks allow a qualitative investigation of these problems. By observing the slope of the desert surface and the frictional coefficient between these rocks and the desert surface, we estimate the minimum horizontal acceleration needed to displace the rocks. Combining this information with observations of how many rocks were displaced in different areas near the fault, we infer the level of shaking. Given current empirical shaking attenuation relationships, the number of rocks that moved is slightly lower than expected; this implies that slightly lower than expected shaking occurred during the Hector Mine earthquake. Perhaps more importantly, stretches of the fault with 4 m of total displacement at the surface displaced few nearby rocks on 15?? slopes, suggesting that the horizontal accelerations were below 0.2g within meters of the fault scarp. This low level of shaking suggests that the shallow parts of this rupture did not produce strong accelerations. Finally, we did not observe an increased incidence of displaced rocks along the fault zone itself. This suggests that, despite observations of fault-zone-trapped waves generated by aftershocks of the Hector Mine earthquake, such waves were not an important factor in controlling peak ground acceleration during the mainshock.

  11. Earthquake-by-earthquake fold growth above the Puente Hills blind thrust fault, Los Angeles, California: Implications for fold kinematics and seismic hazard

    USGS Publications Warehouse

    Leon, L.A.; Christofferson, S.A.; Dolan, J.F.; Shaw, J.H.; Pratt, T.L.

    2007-01-01

    Boreholes and high-resolution seismic reflection data collected across the forelimb growth triangle above the central segment of the Puente Hills thrust fault (PHT) beneath Los Angeles, California, provide a detailed record of incremental fold growth during large earthquakes on this major blind thrust fault. These data document fold growth within a discrete kink band that narrows upward from ???460 m at the base of the Quaternary section (200-250 m depth) to 82% at 250 m depth) folding and uplift occur within discrete kink bands, thereby enabling us to develop a paleoseismic history of the underlying blind thrust fault. The borehole data reveal that the youngest part of the growth triangle in the uppermost 20 m comprises three stratigraphically discrete growth intervals marked by southward thickening sedimentary strata that are separated by intervals in which sediments do not change thickness across the site. We interpret the intervals of growth as occurring after the formation of now-buried paleofold scarps during three large PHT earthquakes in the past 8 kyr. The intervening intervals of no growth record periods of structural quiescence and deposition at the regional, near-horizontal stream gradient at the study site. Minimum uplift in each of the scarp-forming events, which occurred at 0.2-2.2 ka (event Y), 3.0-6.3 ka (event X), and 6.6-8.1 ka (event W), ranged from ???1.1 to ???1.6 m, indicating minimum thrust displacements of ???2.5 to 4.5 m. Such large displacements are consistent with the occurrence of large-magnitude earthquakes (Mw > 7). Cumulative, minimum uplift in the past three events was 3.3 to 4.7 m, suggesting cumulative thrust displacement of ???7 to 10.5 m. These values yield a minimum Holocene slip rate for the PHT of ???0.9 to 1.6 mm/yr. The borehole and seismic reflection data demonstrate that dip within the kink band is acquired incrementally, such that older strata that have been deformed by more earthquakes dip more steeply than younger

  12. Probabilistic Seismic Hazard Analysis of Victoria, British Columbia, Canada: Considering an Active Leech River Fault

    NASA Astrophysics Data System (ADS)

    Kukovica, J.; Molnar, S.; Ghofrani, H.

    2017-12-01

    The Leech River fault is situated on Vancouver Island near the city of Victoria, British Columbia, Canada. The 60km transpressional reverse fault zone runs east to west along the southern tip of Vancouver Island, dividing the lithologic units of Jurassic-Cretaceous Leech River Complex schists to the north and Eocene Metchosin Formation basalts to the south. This fault system poses a considerable hazard due to its proximity to Victoria and 3 major hydroelectric dams. The Canadian seismic hazard model for the 2015 National Building Code of Canada (NBCC) considered the fault system to be inactive. However, recent paleoseismic evidence suggests there to be at least 2 surface-rupturing events to have exceeded a moment magnitude (M) of 6.5 within the last 15,000 years (Morell et al. 2017). We perform a Probabilistic Seismic Hazard Analysis (PSHA) for the city of Victoria with consideration of the Leech River fault as an active source. A PSHA for Victoria which replicates the 2015 NBCC estimates is accomplished to calibrate our PSHA procedure. The same seismic source zones, magnitude recurrence parameters, and Ground Motion Prediction Equations (GMPEs) are used. We replicate the uniform hazard spectrum for a probability of exceedance of 2% in 50 years for a 500 km radial area around Victoria. An active Leech River fault zone is then added; known length and dip. We are determining magnitude recurrence parameters based on a Gutenberg-Richter relationship for the Leech River fault from various catalogues of the recorded seismicity (M 2-3) within the fault's vicinity and the proposed paleoseismic events. We seek to understand whether inclusion of an active Leech River fault source will significantly increase the probabilistic seismic hazard for Victoria. Morell et al. 2017. Quaternary rupture of a crustal fault beneath Victoria, British Columbia, Canada. GSA Today, 27, doi: 10.1130/GSATG291A.1

  13. Distribution of active faulting along orogenic wedges: Minimum-work models and natural analogue

    NASA Astrophysics Data System (ADS)

    Yagupsky, Daniel L.; Brooks, Benjamin A.; Whipple, Kelin X.; Duncan, Christopher C.; Bevis, Michael

    2014-09-01

    Numerical 2-D models based on the principle of minimum work were used to examine the space-time distribution of active faulting during the evolution of orogenic wedges. A series of models focused on thin-skinned thrusting illustrates the effects of arid conditions (no erosion), unsteady state conditions (accretionary influx greater than erosional efflux) and steady state conditions (accretionary influx balances erosional efflux), on the distribution of fault activity. For arid settings, a general forward accretion sequence prevails, although a significant amount of internal deformation is registered: the resulting fault pattern is a rather uniform spread along the profile. Under fixed erosional efficiency settings, the frontal advance of the wedge-front is inhibited, reaching a steady state after a given forward propagation. Then, the applied shortening is consumed by surface ruptures over a narrow frontal zone. Under a temporal increase in erosional efficiency (i.e., transient non-steady state mass balance conditions), a narrowing of the synthetic wedge results; a rather diffuse fault activity distribution is observed during the deformation front retreat. Once steady balanced conditions are reached, a single long-lived deformation front prevails. Fault activity distribution produced during the deformation front retreat of the latter scenario, compares well with the structural evolution and hinterlandward deformation migration identified in southern Bolivian Subandes (SSA) from late Miocene to present. This analogy supports the notion that the SSA is not in steady state, but is rather responding to an erosional efficiency increase since late Miocene. The results shed light on the impact of different mass balance conditions on the vastly different kinematics found in mountain ranges, suggesting that those affected by growing erosion under a transient unbalanced mass flux condition tend to distribute deformation along both frontal and internal faults, while others

  14. Investigation of growth fault bend folding using discrete element modeling: Implications for signatures of active folding above blind thrust faults

    NASA Astrophysics Data System (ADS)

    Benesh, N. P.; Plesch, A.; Shaw, J. H.; Frost, E. K.

    2007-03-01

    Using the discrete element modeling method, we examine the two-dimensional nature of fold development above an anticlinal bend in a blind thrust fault. Our models were composed of numerical disks bonded together to form pregrowth strata overlying a fixed fault surface. This pregrowth package was then driven along the fault surface at a fixed velocity using a vertical backstop. Additionally, new particles were generated and deposited onto the pregrowth strata at a fixed rate to produce sequential growth layers. Models with and without mechanical layering were used, and the process of folding was analyzed in comparison with fold geometries predicted by kinematic fault bend folding as well as those observed in natural settings. Our results show that parallel fault bend folding behavior holds to first order in these models; however, a significant decrease in limb dip is noted for younger growth layers in all models. On the basis of comparisons to natural examples, we believe this deviation from kinematic fault bend folding to be a realistic feature of fold development resulting from an axial zone of finite width produced by materials with inherent mechanical strength. These results have important implications for how growth fold structures are used to constrain slip and paleoearthquake ages above blind thrust faults. Most notably, deformation localized about axial surfaces and structural relief across the fold limb seem to be the most robust observations that can readily constrain fault activity and slip. In contrast, fold limb width and shallow growth layer dips appear more variable and dependent on mechanical properties of the strata.

  15. Constraining fault activity by investigating tectonically-deformed Quaternary palaeoshorelines using a synchronous correlation method: the Capo D'Orlando Fault as a case study (NE Sicily, Italy)

    NASA Astrophysics Data System (ADS)

    Meschis, Marco; Roberts, Gerald P.; Robertson, Jennifer

    2016-04-01

    Long-term curstal extension rates, accommodated by active normal faults, can be constrained by investigating Late Quaternary vertical movements. Sequences of marine terraces tectonically deformed by active faults mark the interaction between tectonic activity, sea-level changes and active faulting throughout the Quaternary (e.g. Armijo et al., 1996, Giunta et al, 2011, Roberts et al., 2013). Crustal deformation can be calculated over multiple seismic cycles by mapping Quaternary tectonically-deformed palaeoshorelines, both in the hangingwall and footwall of active normal faults (Roberts et al., 2013). Here we use a synchronous correlation method between palaeoshorelines elevations and the ages of sea-level highstands (see Roberts et al., 2013 for further details) which takes advantage of the facts that (i) sea-level highstands are not evenly-spaced in time, yet must correlate with palaeoshorelines that are commonly not evenly-spaced in elevation, and (ii) that older terraces may be destroyed and/or overprinted by younger highstands, so that the next higher or lower paleoshoreline does not necessarily correlate with the next older or younger sea-level highstand. We investigated a flight of Late Quaternary marine terraces deformed by normal faulting as a result of the Capo D'Orlando Fault in NE Sicily (e.g. Giunta et al., 2011). This fault lies within the Calabrian Arc which has experienced damaging seismic events such as the 1908 Messina Straits earthquake ~ Mw 7. Our mapping and previous mapping (Giunta et al. (2011) demonstrate that the elevations of marine terraces inner edges change along the strike the NE - SW oriented normal fault. This confirms active deformation on the Capo D'Orlando Fault, strongly suggesting that it should be added into the Database of Individual Seismogenic Sources (DISS, Basili et al., 2008). Giunta et al. (2011) suggested that uplift rates and hence faults lip-rates vary through time for this examples. We update the ages assigned to

  16. Subsurface structures of the active reverse fault zones in Japan inferred from gravity anomalies.

    NASA Astrophysics Data System (ADS)

    Matsumoto, N.; Sawada, A.; Hiramatsu, Y.; Okada, S.; Tanaka, T.; Honda, R.

    2016-12-01

    The object of our study is to examine subsurface features such as continuity, segmentation and faulting type, of the active reverse fault zones. We use the gravity data published by the Gravity Research Group in Southwest Japan (2001), the Geographical Survey Institute (2006), Yamamoto et al. (2011), Honda et al. (2012), and the Geological Survey of Japan, AIST (2013) in this study. We obtained the Bouguer anomalies through terrain corrections with 10 m DEM (Sawada et al. 2015) under the assumed density of 2670 kg/m3, a band-pass filtering, and removal of linear trend. Several derivatives and structural parameters calculated from a gravity gradient tensor are applied to highlight the features, such as a first horizontal derivatives (HD), a first vertical derivatives (VD), a normalized total horizontal derivative (TDX), a dip angle (β), and a dimensionality index (Di). We analyzed 43 reverse fault zones in northeast Japan and the northern part of southwest Japan among major active fault zones selected by Headquarters for Earthquake Research Promotion. As the results, the subsurface structural boundaries clearly appear along the faults at 21 faults zones. The weak correlations appear at 13 fault zones, and no correlations are recognized at 9 fault zones. For example, in the Itoigawa-Shizuoka tectonic line, the subsurface structure boundary seems to extend further north than the surface trace. Also, a left stepping structure of the fault around Hakuba is more clearly observed with HD. The subsurface structures, which detected as the higher values of HD, are distributed on the east side of the surface rupture in the north segments and on the west side in the south segments, indicating a change of the dip direction, the east dipping to the west dipping, from north to south. In the Yokote basin fault zone, the subsurface structural boundary are clearly detected with HD, VD and TDX along the fault zone in the north segment, but less clearly in the south segment. Also, Di

  17. The influence of the San Gregorio fault on the morphology of Monterey Canyon

    USGS Publications Warehouse

    McHugh, C.M.G.; Ryan, William B. F.; Eittreim, S.; Donald, Reed

    1998-01-01

    A side-scan sonar survey was conducted of Monterey Canyon and the San Gregorio fault zone, off shore of Monterey Bay. The acoustic character and morphology of the sonar images, enhanced by SeaBeam bathymetry, show the path of the San Gregorio fault zone across the shelf, upper slope, and Monterey Canyon. High backscatter linear features a few kilometers long and 100 to 200 m wide delineate the sea-floor expression of the fault zone on the shelf. Previous studies have shown that brachiopod pavements and carbonate crusts are the source of the lineations backscatter. In Monterey Canyon, the fault zone occurs where the path of the canyon makes a sharp bend from WNW to SSW (1800 m). Here, the fault is marked by NW-SE-trending, high reflectivity lineations that cross the canyon floor between 1850 m and 1900 m. The lineations can be traced to ridges on the northwestern canyon wall where they have ~ 15 m of relief. Above the low-relief ridges, bowl-shaped features have been excavated on the canyon wall contributing to the widening of the canyon. We suggest that shear along the San Gregorio fault has led to the formation of the low-relief ridges near the canyon wall and that carbonate crusts, as along the shelf, may be the source of the high backscatter features on the canyon floor. The path of the fault zone across the upper slope is marked by elongated tributary canyons with high backscatter floors and 'U'-shaped cross-sectional profiles. Linear features and stepped scarps suggestive of recent crustal movement and mass-wasting, occur on the walls and floors of these canyons. Three magnitude-4 earthquakes have occurred within the last 30 years in the vicinity of the canyons that may have contributed to the observed features. As shown by others, motion along the fault zone has juxtaposed diverse lithologies that outcrop on the canyon walls. Gully morphology and the canyon's drainage patterns have been influenced by the substrate into which the gullies have formed.

  18. Active Fault Tolerant Control for Ultrasonic Piezoelectric Motor

    NASA Astrophysics Data System (ADS)

    Boukhnifer, Moussa

    2012-07-01

    Ultrasonic piezoelectric motor technology is an important system component in integrated mechatronics devices working on extreme operating conditions. Due to these constraints, robustness and performance of the control interfaces should be taken into account in the motor design. In this paper, we apply a new architecture for a fault tolerant control using Youla parameterization for an ultrasonic piezoelectric motor. The distinguished feature of proposed controller architecture is that it shows structurally how the controller design for performance and robustness may be done separately which has the potential to overcome the conflict between performance and robustness in the traditional feedback framework. A fault tolerant control architecture includes two parts: one part for performance and the other part for robustness. The controller design works in such a way that the feedback control system will be solely controlled by the proportional plus double-integral PI2 performance controller for a nominal model without disturbances and H∞ robustification controller will only be activated in the presence of the uncertainties or an external disturbances. The simulation results demonstrate the effectiveness of the proposed fault tolerant control architecture.

  19. Active faulting in the central Betic Cordillera (Spain): Palaeoseismological constraint of the surface-rupturing history of the Baza Fault (Central Betic Cordillera, Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    Castro, J.; Martin-Rojas, I.; Medina-Cascales, I.; García-Tortosa, F. J.; Alfaro, P.; Insua-Arévalo, J. M.

    2018-06-01

    This paper on the Baza Fault provides the first palaeoseismic data from trenches in the central sector of the Betic Cordillera (S Spain), one of the most tectonically active areas of the Iberian Peninsula. With the palaeoseismological data we constructed time-stratigraphic OxCal models that yield probability density functions (PDFs) of individual palaeoseismic event timing. We analysed PDF overlap to quantitatively correlate the walls and site events into a single earthquake chronology. We assembled a surface-rupturing history of the Baza Fault for the last ca. 45,000 years. We postulated six alternative surface rupturing histories including 8-9 fault-wide earthquakes. We calculated fault-wide earthquake recurrence intervals using Monte Carlo. This analysis yielded a 4750-5150 yr recurrence interval. Finally, compared our results with the results from empirical relationships. Our results will provide a basis for future analyses of more of other active normal faults in this region. Moreover, our results will be essential for improving earthquake-probability assessments in Spain, where palaeoseismic data are scarce.

  20. Log and data from a trench across the Hubbell Spring Fault Zone, Bernalillo County, New Mexico

    USGS Publications Warehouse

    Personius, S.F.; Eppes, M.C.; Mahan, S.A.; Love, D.W.; Mitchell, D.K.; Murphy, Anne

    2000-01-01

    This report contains field and laboratory data resulting from a trench study of the Hubbell Spring fault zone near Albuquerque, New Mexico. This trench was excavated in September, 1997, as part of earthquake hazards investigations of Quaternary faults in the Albuquerque metropolitan area. The trench was excavated across the youngest of several fault strands near the northern end of the Hubbell Spring fault zone. The site is located on Pueblo of Isleta tribal lands, approximately 1 km south of the southern boundary of Kirtland Air Force Base. Thus the paleoearthquake data derived from investigations at the Hubbell Spring site will be useful in assessing potential earthquake hazards in Isleta Pueblo, Kirtland Air Force Base/Sandia National Laboratories, and the Albuquerque metropolitan area. The purpose of this report is to present a detailed trench log, a scarp profile, soils data (table 1), magnetic susceptibility data (table 2), luminescence and uranium-series ages (tables 3 and 4), and detailed unit descriptions (table 5) obtained in this investigation. S.F. Personius had primary responsibility for siting, excavating, describing, and interpreting the trench; S.A. Mahan did the luminescence dating, and James B. Paces did the uranium-series dating. M.C. Eppes and D.W. Love assisted with trench logging and mapping; and M.C. Eppes, D.K. Mitchell, and A. Murphy did the soils analyses.

  1. The 1959 MW 7.3 Hebgen Lake earthquake revisited: morphology and mechanics from lidar

    NASA Astrophysics Data System (ADS)

    Johnson, K. L.; Nissen, E.; Lajoie, L. J.

    2016-12-01

    This study demonstrates how we can glean new information by revisiting an early instrumental earthquake with high-resolution topography and modern thinking about the mechanics of surface rupturing. The 1959 MW 7.3 Hebgen Lake earthquake is among the largest and most deadly historic earthquakes within the conterminous United States outside of California, and one of the largest normal faulting earthquakes on record globally. The earthquake ruptured the subparallel Hebgen and Red Canyon faults within the slowly extending ( 3 mm/yr) Centennial Mountain Belt, and is one of the first to be field mapped in detail, modeled from global seismograms, and surveyed geodetically. Here, we augment these early studies with an investigation of the surface rupture in its current state. We use a 50 cm-resolution airborne lidar digital terrain model collected by the National Center for Airborne Laser Mapping (NCALM) in 2014 to document the fault scarp morphology, constrain its evolution, and speculate on the mechanical rupture properties. Using a dense set of scarp profiles, we add >400 displacement measurements to the 143 published data points from early field work, allowing more rigorous quantification of along-strike slip variability and strain gradients. Evidence of off-fault deformation is sparse along most of the scarp, though damage zone width increases where the earthquake ruptured closely spaced sedimentary contacts rather than unconsolidated Quaternary deposits. In a few places, we can identify composite scarps from which we estimate the number of earthquakes that have offset Holocene surfaces. We assess the scarp's degraded state, including some sites that were surveyed in 1980 and 2009 and others that have not been revisited since the initial investigation. Where the rupture crosses unconsolidated surfaces, we compute local sediment diffusion coefficients and analyze their variability along strike. Lastly, we model subsurface fault geometry by fitting dipping planes to its

  2. LIDAR Helps Identify Source of 1872 Earthquake Near Chelan, Washington

    NASA Astrophysics Data System (ADS)

    Sherrod, B. L.; Blakely, R. J.; Weaver, C. S.

    2015-12-01

    One of the largest historic earthquakes in the Pacific Northwest occurred on 15 December 1872 (M6.5-7) near the south end of Lake Chelan in north-central Washington State. Lack of recognized surface deformation suggested that the earthquake occurred on a blind, perhaps deep, fault. New LiDAR data show landslides and a ~6 km long, NW-side-up scarp in Spencer Canyon, ~30 km south of Lake Chelan. Two landslides in Spencer Canyon impounded small ponds. An historical account indicated that dead trees were visible in one pond in AD1884. Wood from a snag in the pond yielded a calibrated age of AD1670-1940. Tree ring counts show that the oldest living trees on each landslide are 130 and 128 years old. The larger of the two landslides obliterated the scarp and thus, post-dates the last scarp-forming event. Two trenches across the scarp exposed a NW-dipping thrust fault. One trench exposed alluvial fan deposits, Mazama ash, and scarp colluvium cut by a single thrust fault. Three charcoal samples from a colluvium buried during the last fault displacement had calibrated ages between AD1680 and AD1940. The second trench exposed gneiss thrust over colluvium during at least two, and possibly three fault displacements. The younger of two charcoal samples collected from a colluvium below gneiss had a calibrated age of AD1665- AD1905. For an historical constraint, we assume that the lack of felt reports for large earthquakes in the period between 1872 and today indicates that no large earthquakes capable of rupturing the ground surface occurred in the region after the 1872 earthquake; thus the last displacement on the Spencer Canyon scarp cannot post-date the 1872 earthquake. Modeling of the age data suggests that the last displacement occurred between AD1840 and AD1890. These data, combined with the historical record, indicate that this fault is the source of the 1872 earthquake. Analyses of aeromagnetic data reveal lithologic contacts beneath the scarp that form an ENE

  3. Late Holocene activity of the Dead Sea Transform revealed in 3D palaeoseismic trenches on the Jordan Gorge segment [rapid communication

    NASA Astrophysics Data System (ADS)

    Marco, Shmuel; Rockwell, Thomas K.; Heimann, Ariel; Frieslander, Uri; Agnon, Amotz

    2005-05-01

    Three-dimensional excavations of buried stream channels that have been displaced by the Jordan Fault, the primary strand of the Dead Sea fault zone in northern Israel, demonstrate that late Holocene slip has been primarily strike-slip at a minimum rate of 3 mm/yr. The palaeoseismic study was carried out in the Bet-Zayda Valley, the delta of the Jordan River at the north shore of the Sea of Galilee. The site was chosen where a north-striking scarp with up to 1-m vertical expression crosses the flat valley. One group of trench excavations was located where a small stream crosses the scarp. The active stream, which is incised into the scarp, is not offset by the fault. However we found two palaeo channels about 2 m below the surface offset sinistrally 2.7±0.2 m by the fault and two younger nested channels offset 0.5±0.05 m. Based on radiocarbon dates we attribute the last 0.5 m rupture to the earthquake of October 30, 1759. The older offset of 2.2 m most probably occurred in the earthquakes of May 20, 1202. These two events correlate with the findings at Ateret, about 12 km north of Bet-Zayda, where the 1202 earthquake produced 1.6 m of lateral displacement in E-W-striking defence walls of a Crusader castle, and an Ottoman mosque was offset 0.5 m in the earthquake of 1759. In the second group of trenches some 60 m farther south we found another offset channel. Its northern margin is displaced 15 m sinistrally whereas the southern margin shows only 9 m of sinistral offset. The dip slip component is 1.2 m, west side down. The different amounts of margin offset can be explained by erosion of the southern margin during the first 6 m of displacement. Additional slip of 9 m accrued after the stream had been abandoned and buried by a 2-m-thick lacustrine clay layers. Radiocarbon dates on organic residue provide the age control which indicates that the 15 m of slip has accrued over the past 5 kyr, yielding a short-term slip rate of 3 mm/yr for the late Holocene. It is

  4. Deep heterogeneous structure of active faults in the Kinki region, southwest Japan: Inversion analysis of coda envelopes

    NASA Astrophysics Data System (ADS)

    Nishigami, K.

    2006-12-01

    It is essential to estimate the deep structure of active faults related to the earthquake rupture process as well as the crustal structure related to the propagation of seismic waves, in order to improve the accuracy of estimating strong ground motion caused by future large inland earthquakes. In the Kinki region, southwest Japan, there are several active fault zones near large cities such as Osaka and Kyoto, and the evaluation of realistic strong ground motion is an important subject. We have been carrying out the Special Project for Earthquake Disaster Mitigation in Urban Areas, in the Kinki region for these purposes. In this presentation we will show the result of estimating the fault structure model of the Biwako-seigan, Hanaore, and Arima- Takatsuki fault zones. We estimated a 3-D distribution of relative scattering coefficients in the Kinki region, also in the vicinity of each active fault zone, by inversion of coda envelopes from local earthquakes. We analyzed 758 seismograms from 52 events which occurred in 2003, recorded at 50 stations of Kyoto Univ., Hi- net, and JMA. The preliminary result shows that active fault zones can be imaged as higher scattering than the surroundings. Based on previous studies of scattering properties in the crust, we consider that the relatively weaker scattering (namely more homogeneous) part on the fault plane may act as an asperity during future large earthquakes, and also that the part with relatively stronger scattering (namely more heterogeneous part) may become an initiation point of rupture. We are also studying the detailed distribution of microearthquakes, b-values, and velocity anomalies along these active fault zones. Combining these results, we will construct a possible fault model for each of the active fault zones. This study is sponsored by the Special Project for Earthquake Disaster Mitigation in Urban Areas from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

  5. Tectonic control of complex slope failures in the Ameka River Valley (Lower Gibe Area, central Ethiopia): Implications for landslide formation

    NASA Astrophysics Data System (ADS)

    Kycl, Petr; Rapprich, Vladislav; Verner, Kryštof; Novotný, Jan; Hroch, Tomáš; Mišurec, Jan; Eshetu, Habtamu; Tadesse Haile, Ezra; Alemayehu, Leta; Goslar, Tomasz

    2017-07-01

    Even though major faults represent important landslide controlling factors, the role the tectonic setting in actively spreading rifts plays in the development of large complex landslides is seldom discussed. The Ameka complex landslide area is located on the eastern scarp of the Gibe Gorge, approximately 45 km to the west of the Main Ethiopian Rift and 175 km to the southwest of Addis Ababa. Investigation of the complex landslide failures required a combination of satellite and airborne data-based geomorphology, geological field survey complemented with structural analysis, radiocarbon geochronology and vertical electric sounding. The obtained observations confirmed the multiphase evolution of the landslide area. We have documented that, apart from climatic and lithological conditions, the main triggering factor of the Ameka complex landslide is the tectonic development of this area. The E-W extension along the NNE-SSW trending Main Ethiopian Rift is associated with the formation of numerous parallel normal faults, such as the Gibe Gorge fault and the almost perpendicular scissor faults. The geometry of the slid blocks of coherent lithology have inherited the original tectonic framework, which suggests the crucial role tectonics play in the fragmentation of the compact rock-masses, and the origin and development of the Ameka complex landslide area. Similarly, the main scarps were also parallel to the principal tectonic features. The local tectonic framework is dominated by faults of the same orientation as the regional structures of the Main Ethiopian Rift. Such parallel tectonic frameworks display clear links between the extension of the Main Ethiopian Rift and the tectonic development of the landslide area. The Ameka complex landslide developed in several episodes over thousands of years. According to the radiocarbon data, the last of the larger displaced blocks (representing only 2% of the total area) most likely slid down in the seventh century AD. The main

  6. Is Downtown Seattle on the Hanging Wall of the Seattle Fault?

    NASA Astrophysics Data System (ADS)

    Pratt, T. L.

    2008-12-01

    degree dip previously interpreted from tomography data. A second fault strand about 2 km south of the northern strand causes gentle folding of the Holocene strata. Two prominent backthrusts occur on the south side of the anticline, with the southern backthrust on strike with a prominent scarp on the eastern shoreline. A large erosional paleochannel beneath west Seattle and the Duwamish waterway extends beneath Elliot Bay and obscures potential field anomalies and seismic reflection evidence for the fault strands. However, hints of fault-related features on the profiles in Elliot Bay, and clear images in Lake Washington, indicate that the fault strands extend beneath the city of Seattle in the downtown area. If indeed the northern strand of the Seattle fault lies beneath the northern part of downtown Seattle, the downtown area may experience ground deformation during a major Seattle fault earthquake and that focusing of energy in the fault zone may occur farther north than previously estimated.

  7. Influence of fault trend, fault bends, and fault convergence on shallow structure, geomorphology, and hazards, Hosgri strike-slip fault, offshore central California

    NASA Astrophysics Data System (ADS)

    Johnson, S. Y.; Watt, J. T.; Hartwell, S. R.

    2012-12-01

    We mapped a ~94-km-long portion of the right-lateral Hosgri Fault Zone from Point Sal to Piedras Blancas in offshore central California using high-resolution seismic reflection profiles, marine magnetic data, and multibeam bathymetry. The database includes 121 seismic profiles across the fault zone and is perhaps the most comprehensive reported survey of the shallow structure of an active strike-slip fault. These data document the location, length, and near-surface continuity of multiple fault strands, highlight fault-zone heterogeneity, and demonstrate the importance of fault trend, fault bends, and fault convergences in the development of shallow structure and tectonic geomorphology. The Hosgri Fault Zone is continuous through the study area passing through a broad arc in which fault trend changes from about 338° to 328° from south to north. The southern ~40 km of the fault zone in this area is more extensional, resulting in accommodation space that is filled by deltaic sediments of the Santa Maria River. The central ~24 km of the fault zone is characterized by oblique convergence of the Hosgri Fault Zone with the more northwest-trending Los Osos and Shoreline Faults. Convergence between these faults has resulted in the formation of local restraining and releasing fault bends, transpressive uplifts, and transtensional basins of varying size and morphology. We present a hypothesis that links development of a paired fault bend to indenting and bulging of the Hosgri Fault by a strong crustal block translated to the northwest along the Shoreline Fault. Two diverging Hosgri Fault strands bounding a central uplifted block characterize the northern ~30 km of the Hosgri Fault in this area. The eastern Hosgri strand passes through releasing and restraining bends; the releasing bend is the primary control on development of an elongate, asymmetric, "Lazy Z" sedimentary basin. The western strand of the Hosgri Fault Zone passes through a significant restraining bend and

  8. Central Japan's Atera Active Fault's Wide-Fractured Zone: An Examination of the Structure and In-situ Crustal Stress

    NASA Astrophysics Data System (ADS)

    Ikeda, R.; Omura, K.; Matsuda, T.; Mizuochi, Y.; Uehara, D.; Chiba, A.; Kikuchi, A.; Yamamoto, T.

    2001-12-01

    In-situ downhole measurements and coring within and around an active fault zone are needed to better understand the structure and material properties of fault rocks as well as the physical state of active faults and intra-plate crust. Particularly, the relationship between the stress concentration state and the heterogeneous strength of an earthquake fault zone is important to estimate earthquake occurrence mechanisms which correspond to the prediction of an earthquake. It is necessary to compare some active faults in different conditions of the chrysalis stage and their relation to subsequent earthquake occurrence. To better understand such conditions, "Active Fault Zone Drilling Project" has been conducted in the central part of Japan by the National Research Institute for Earth Science and Disaster Prevention. The Nojima fault which appeared on the surface by the 1995 Great Kobe earthquake (M=7.2) and the Neodani fault created by the 1981 Nobi earthquake, the greatest inland earthquake M=8.0 in Japan, have been drilled through the fault fracture zones. During these past four years, a similar experiment and research at the Atera fault, of which some parts seem to have been dislocated by the 1586 Tensyo earthquake, has been undertaken. The features of the Atera fault are as follows: (1) total length is about 70 km, (2) general trend is NW45_Kwith a left-lateral strike slip, (3) slip rate is estimated as 3-5 m/1000 yrs. and the average recurrence time as 1700 yrs., (4) seismicity is very low at present, and (5) lithologies around the fault are basically granitic rocks and rhyolite. We have conducted integrated investigations by surface geophysical survey and drilling around the Atera fault. Six boreholes have been drilled from the depth of 400 m to 630 m. Four of these boreholes are located on a line crossing the fracture zone of the Atera fault. Resistivity and gravity structures inferred from surface geophysical surveys were compared with the physical properties

  9. Assessment of the geodynamical setting around the main active faults at Aswan area, Egypt

    NASA Astrophysics Data System (ADS)

    Ali, Radwan; Hosny, Ahmed; Kotb, Ahmed; Khalil, Ahmed; Azza, Abed; Rayan, Ali

    2013-04-01

    The proper evaluation of crustal deformations in the Aswan region especially around the main active faults is crucial due to the existence of one major artificial structure: the Aswan High Dam. This construction created one of the major artificial lakes: Lake Nasser. The Aswan area is considered as an active seismic area in Egypt since many recent and historical felted earthquakes occurred such as the impressive earthquake occurred on November 14, 1981 at Kalabsha fault with a local magnitude ML=5.7. Lately, on 26 December 2011, a moderate earthquake with a local magnitude Ml=4.1 occurred at Kalabsha area too. The main target of this study is to evaluate the active geological structures that can potentially affect the Aswan High Dam and that are being monitored in detail. For implementing this objective, two different geophysical tools (magnetic, seismic) in addition to the Global Positioning System (GPS) have been utilized. Detailed land magnetic survey was carried out for the total component of geomagnetic field using two proton magnetometers. The obtained magnetic results reveal that there are three major faults parallel {F1 (Kalabsha), F2 (Seiyal) and F3} affecting the area. The most dominant magnetic trend strikes those faults in the WNW-ESE direction. The seismicity and fault plain solutions of the 26 December 2011 earthquake and its two aftershocks have been investigated. The source mechanisms of those events delineate two nodal plains. The trending ENE-WSW to E-W is consistent with the direction of Kalabsha fault and its extension towards east for the events located over it. The trending NNW-SSE to N-S is consistent with the N-S fault trending. The movement along the ENE-WSW plain is right lateral, but it is left lateral along the NNW-SSE plain. Based on the estimated relative motions using GPS, dextral strike-slip motion at the Kalabsha and Seiyal fault systems is clearly identified by changing in the velocity gradient between south and north stations

  10. Intra-caldera active fault: An example from the Mw 7.0 2016 Kumamoto, Japan, earthquake

    NASA Astrophysics Data System (ADS)

    Toda, S.; Murakami, T.; Takahashi, N.

    2017-12-01

    A NE-trending 30-km-long surface rupture with up to 2.4 m dextral slip emerged during the Mw=7.0 16 April 2016 Kumamoto earthquake along the previously mapped Futagawa and northern Hinagu fault systems. The 5-km-long portion of the northeast rupture end, which was previously unidentified, crossed somma and extended to the 20-km-diameter Aso Caldera, one of the major active volcanoes, central Kyushu. We here explore geologic exposures of interplays of active faulting and active volcanism, and then argue the Futagawa fault system has been influenced by the ring fault system associated with the caldera forming gigantic eruptions since 270 ka, last of which occurred 90 ka ejecting a huge amount of ignimbrite. To understand the interplays, together with the mapping of the 2016 rupture, we employed an UAV to capture numerous photos of the exposures along the canyon and developed 3D orthochromatic topographic model using PhotoScan. One-hundred-meter-deep Kurokawa River canyon by the Aso Caldera rim exposes two lava flow units of 50 ka vertically offset by 10 m by the Futatawa fault system. Reconstructions of the collapsed bridges across the Kurokawa River also reveal cross sections of a 30-meter-high tectonic bulge and 10-m-scale negative flower structure deformed by the frequent fault movements. We speculate two fault developing models across the Aso Caldera. One is that the NE edge of the Futagawa fault system was cut and reset by the caldera forming ring fault, which indicates the 3-km-long rupture extent within the Aso Caldera would be a product of the fault growth since the last Aso-4 eruption of 90 ka. It enables us to estimate the 33 mm/yr of the fault propagation speed. An alternative model is that subsurface rupture of the Kumamoto earthquake extended further to the NE rim, the other side of the caldera edge, which is partially supported by the geodetic and seismic inversions. With respect to the model, the clear surface rupture of the 2016 Kumamoto earthquake

  11. Ground Deformation near active faults in the Kinki district, southwest Japan, detected by InSAR

    NASA Astrophysics Data System (ADS)

    Hashimoto, M.; Ozawa, T.

    2016-12-01

    The Kinki district, southwest Japan, consists of ranges and plains between which active faults reside. The Osaka plain is in the middle of this district and is surrounded by the Rokko, Arima-Takatsuki, Ikoma, Kongo and Median Tectonic Line fault zones in the clockwise order. These faults are considered to be capable to generate earthquakes of larger magnitude than 7. The 1995 Kobe earthquake is the most recent activity of the Rokko fault (NE-SW trending dextral fault). Therefore the monitoring of ground deformation with high spatial resolution is essential to evaluate seismic hazards in this area. We collected and analyzed available SAR images such as ERS-1/2, Envisat, JERS-1, TerraSAR-X, ALOS/PALSAR and ALOS-2/PALSAR-2 to reveal ground deformation during these 20 years. We made DInSAR and PSInSAR analyses of these images using ASTER-GDEM ver.2. We detected three spots of subsidence along the Arima-Takatsuki fault (ENE-WSW trending dextral fault, east neighbor of the Rokko fault) after the Kobe earthquake, which continued up to 2010. Two of them started right after the Kobe earthquake, while the easternmost one was observed after 2000. However, we did not find them in the interferograms of ALOS-2/PALSAR-2 acquired during 2014 - 2016. Marginal uplift was recognized along the eastern part of the Rokko fault. PS-InSAR results of ALOS/PALSAR also revealed slight uplift north of the Rokko Mountain that uplift by 20 cm coseismically. These observations suggest that the Rokko Mountain might have uplifted during the postseismic period. We found subsidence on the eastern frank of the Kongo Mountain, where the Kongo fault (N-S trending reverse fault) exits. In the southern neighbor of the Median Tectonic Line (ENE-WSW trending dextral fault), uplift of > 5 mm/yr was found by Envisat and ALOS/PALSAR images. This area is shifted westward by 4 mm/yr as well. Since this area is located east of a seismically active area in the northwestern Wakayama prefecture, this deformation

  12. Recent shallow moonquake and impact-triggered boulder falls on the Moon: New insights from the Schrödinger basin

    NASA Astrophysics Data System (ADS)

    Senthil Kumar, P.; Sruthi, U.; Krishna, N.; Lakshmi, K. J. P.; Menon, Rajeev; Amitabh; Gopala Krishna, B.; Kring, David A.; Head, James W.; Goswami, J. N.; Kiran Kumar, A. S.

    2016-02-01

    Shallow moonquakes are thought to be of tectonic origin. However, the geologic structures responsible for these moonquakes are unknown. Here we report sites where moonquakes possibly occurred along young lobate scarps in the Schrödinger basin. Our analysis of Lunar Reconnaissance Orbiter and Chandrayaan-1 images revealed four lobate scarps in different parts of the Schrödinger basin. The scarps crosscut small fresh impact craters (<10-30 m) suggesting a young age for the scarps. A 28 km long scarp (Scarp 1) yields a minimum age of 11 Ma based on buffered crater counting, while others are 35-82 Ma old. The topography of Scarp 1 suggests a range of horizontal shortening (10-30 m) across the fault. Two scarps are associated with boulder falls in which several boulders rolled and bounced on nearby slopes. A cluster of a large number of boulder falls near Scarp 1 indicates that the scarp was seismically active recently. A low runout efficiency of the boulders (~2.5) indicates low to moderate levels of ground shaking, which we interpret to be related to low-magnitude moonquakes in the scarp. Boulder falls are also observed in other parts of the basin, where we mapped >1500 boulders associated with trails and bouncing marks. Their origins are largely controlled by recent impact events. Ejecta rays and secondary crater chains from a 14 km diameter impact crater traversed Schrödinger and triggered significant boulder falls about 17 Ma. Therefore, a combination of recent shallow moonquakes and impact events triggered the boulder falls in the Schrödinger basin.

  13. Model-based fault detection and isolation for intermittently active faults with application to motion-based thruster fault detection and isolation for spacecraft

    NASA Technical Reports Server (NTRS)

    Wilson, Edward (Inventor)

    2008-01-01

    The present invention is a method for detecting and isolating fault modes in a system having a model describing its behavior and regularly sampled measurements. The models are used to calculate past and present deviations from measurements that would result with no faults present, as well as with one or more potential fault modes present. Algorithms that calculate and store these deviations, along with memory of when said faults, if present, would have an effect on the said actual measurements, are used to detect when a fault is present. Related algorithms are used to exonerate false fault modes and finally to isolate the true fault mode. This invention is presented with application to detection and isolation of thruster faults for a thruster-controlled spacecraft. As a supporting aspect of the invention, a novel, effective, and efficient filtering method for estimating the derivative of a noisy signal is presented.

  14. Active Fault Near-Source Zones Within and Bordering the State of California for the 1997 Uniform Building Code

    USGS Publications Warehouse

    Petersen, M.D.; Toppozada, Tousson R.; Cao, T.; Cramer, C.H.; Reichle, M.S.; Bryant, W.A.

    2000-01-01

    The fault sources in the Project 97 probabilistic seismic hazard maps for the state of California were used to construct maps for defining near-source seismic coefficients, Na and Nv, incorporated in the 1997 Uniform Building Code (ICBO 1997). The near-source factors are based on the distance from a known active fault that is classified as either Type A or Type B. To determine the near-source factor, four pieces of geologic information are required: (1) recognizing a fault and determining whether or not the fault has been active during the Holocene, (2) identifying the location of the fault at or beneath the ground surface, (3) estimating the slip rate of the fault, and (4) estimating the maximum earthquake magnitude for each fault segment. This paper describes the information used to produce the fault classifications and distances.

  15. Diagenesis and evolution of microporosity of Middle-Upper Devonian Kee Scarp reefs, Norman Wells, Northwest Territories, Canada: Petrographic and chemical evidence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Aasm, I.S.; Azmy, K.K.

    The Middle-Upper Devonian Kee Scarp reef complexes of Norman Wells, Northwest Territories, Canada, are oil-producing, stromatoporoid-dominated carbonates. Episodic increases in the rate of sea level rise produced multiple cycles of reef growth that exhibit backstepping characteristics. These carbonates, composed of invariably altered limestones, have original interskeletal, intraskeletal, and intergranular porosity, mostly occluded by nonferroan, dull luminescent cements. Secondary porosity, represented by micropores of various types, developed during diagenesis by aggrading neomorphism and dissolution. The micropores represent the main reservoir porosity in the Kee Scarp limestone. Petrographic, chemical, and isotopic studies of Kee Scarp reef components reveal a complex diagenetic historymore » involving marine fluids modified by increasing water/rock interaction and burial. Neomorphic stabilization of skeletal components caused further depletion in {gamma}{sup 18}O but very little change in {gamma}{sup 13}C, an argument for modification of the original marine fluids with increasing burial. Variations in magnitude of water/rock interaction with depth, facies changes, and porosity modifications probably exerted some control on fractionation and distribution of stable isotopes and trace elements in reef components.« less

  16. Active intra-basin faulting in the Northern Basin of Lake Malawi from seismic reflection data

    NASA Astrophysics Data System (ADS)

    Shillington, D. J.; Chindandali, P. R. N.; Scholz, C. A.; Ebinger, C. J.; Onyango, E. A.; Peterson, K.; Gaherty, J. B.; Nyblade, A.; Accardo, N. J.; McCartney, T.; Oliva, S. J.; Kamihanda, G.; Ferdinand, R.; Salima, J.; Mruma, A. H.

    2016-12-01

    Many questions remain about the development and evolution of fault systems in weakly extended rifts, including the relative roles of border faults and intra-basin faults, and segmentation at various scales. The northern Lake Malawi (Nyasa) rift in the East African Rift System is an early stage rift exhibiting pronounced tectonic segmentation, which is defined by 100-km-long border faults. The basins also contain a series of intrabasinal faults and associated synrift sediments. The occurrence of the 2009 Karonga Earthquake Sequence on one of these intrabasinal faults indicates that some of them are active. Here we present new multichannel seismic reflection data from the Northern Basin of the Malawi Rift collected in 2015 as a part of the SEGMeNT (Study of Extension and maGmatism in Malawi aNd Tanzania) project. This rift basin is bound on its east side by the west-dipping Livingstone border fault. Over 650 km of seismic reflection profiles were acquired in the Northern Basin using a 500 to 1540 cu in air gun array and a 1200- to 1500-m seismic streamer. Dip lines image a series of north-south oriented west-dipping intra-basin faults and basement reflections up to 5 s twtt near the border fault. Cumulative offsets on intra-basin faults decrease to the west. The largest intra-basin fault has a vertical displacement of >2 s two-way travel time, indicating that it has accommodated significant total extension. Some of these intra-basin faults offset the lake bottom and the youngest sediments by up to 50 s twtt ( 37 m), demonstrating they are still active. The two largest intra-basin faults exhibit the largest offsets of young sediments and also correspond to the area of highest seismicity based on analysis of seismic data from the 89-station SEGMeNT onshore/offshore network (see Peterson et al, this session). Fault patterns in MCS profiles vary along the basin, suggesting a smaller scale of segmentation of faults within the basin; these variations in fault patterns

  17. Submarine Neotectonic Investigations of the Bahia Soledad Fault, off Northern Baja California Near the US - Mexico Border

    NASA Astrophysics Data System (ADS)

    Anderson, K.; Lundsten, E. M.; Paull, C. K.; Caress, D. W.; Thomas, H. J.; Maier, K. L.; McGann, M.; Herguera, J. C.; Gwiazda, R.; Arregui, S.; Barrientos, L. A.

    2015-12-01

    The Monterey Bay Aquarium Research Institute (MBARI) conducted detailed surveys at selected sites on the seafloor along the Bahia Soledad Fault offshore of Northern Baja California, Mexico, during a two-ship expedition in the spring of 2015. The Bahia Soledad Fault is a NNW-trending strike-slip fault that is likely continuous with the San Diego Trough Fault offshore of San Diego, California. Constraining the style of deformation, continuity, and slip rate along this fault system is critical to characterizing the seismic hazards to the adjacent coastal areas extending from Los Angeles to Ensenada. Detailed morphologic surveys were conducted using an autonomous underwater vehicle (AUV) to provide ultra high-resolution multibeam bathymetry (vertical precision of 0.15 m and horizontal resolution of 1.0 m). The AUV also carried a 2-10 kHz chirp sub-bottom profiler and an Edgetech 110kHz and 410kHz sidescan. The two sites along the Bahia Soledad Fault each run ~6 km along the fault with ~1.8 km wide footprint. The resulting bathymetry shows these fault zones are marked with distinct lineations that are flanked by ~1 km long elongated ridges and depressions which are interpreted to be transpressional pop-up structures and transtensional pull-apart basins up to 100 m of relief. Offset seismic reflectors that extend to near the seafloor confirm that these lineations are fault scarps. The detailed bathymetric maps and sub-bottom profiles were used to locate key sites where deformed stratigraphic horizons along the fault are within 1.5 m of the seafloor. These areas were sampled using a remotely operated vehicle (ROV) equipped with a vibracoring system capable of collecting precisely located cores that are up to 1.5 m long. The coupled use of multibeam imagery and surgically-collected stratigraphic samples will enable to constrain the frequency and timing of recent movements on this fault which will be useful to incorporated into future seismic hazard assessment.

  18. Copernican tectonic activities in the northwestern Imbrium region of the Moon

    NASA Astrophysics Data System (ADS)

    Daket, Yuko; Yamaji, Atsushi; Sato, Katsushi

    2015-04-01

    Mare ridges and lobate scarps are the manifestations of horizontal compression in the shallow part of the Moon. Conventionally, tectonism within mascon basins has been thought to originate from mascon loading which is syndepositional tectonics (e.g., Solomon and Head, 1980). However, Ono et al. (2009) have pointed out that the subsurface tectonic structures beneath some mare ridges in Serenitatis appeared to be formed after the deposition of mare strata. Watters et al. (2010) also reported Copernican lobate scarps. Those young deformations cannot be explained by the mascon loading and are possibly ascribed to global cooling, orbital evolution and/or regional factors. Since mare ridges are topographically larger than lobate scarps, they might have large contribution to the recent contraction. In this study, we estimated until when the tectonic activities of mare ridges lasted in the northwestern Imbrium region. In order to infer the timing of the latest ages of tectonic activities, we used craters dislocated by the thrust faults that run along to the mare ridges in the study area. The ages of dislocated craters indicate the oldest estimate of the latest tectonic activity of the faults, because those craters must have existed during the tectonic activities. The ages of craters are inferred by the degradation levels classified by Trask (1971). We found ~450 dislocated craters in the study area. About 40 of them are smaller than 100 meter in diameter. Sub-hundred-meter-sized craters that still maintain their morphology sharp are classified into Copernican Period. Those small dislocated craters are interspersed all over the region, indicating that the most of the mare ridges in the study area were tectonically active in Copernican Period. In addition, we also found two sub-hundred-meter-sized craters dislocated by a graben at the west of Promontorium Laplace, indicating horizontal extension existed at Copernican Period. Consequently, tectonic activities in the study

  19. Map showing recently active breaks along the San Andreas Fault between Pt. Delgada and Bolinas Bay, California

    USGS Publications Warehouse

    Brown, Robert D.; Wolfe, Edward W.

    1970-01-01

    This strip map is one of a series of maps showing recently active fault breaks along the San Andreas and other active faults in California. It is designed to inform persons who are concerned with land use near the fault of the location of those fault breaks that have moved recently. The lines on the map are lines of rupture and creep that can be identified by field evidence and that clearly affect the present surface of the land. Map users should keep in mind that these lines are intended primarily as guides to help locate the fault; the mapped lines are not necessarily shown with the precision demanded by some engineering or land utilization needs.

  20. Geodetic evidence for continuing tectonic activity of the Carboneras fault (SE Spain)

    NASA Astrophysics Data System (ADS)

    Echeverria, Anna; Khazaradze, Giorgi; Asensio, Eva; Masana, Eulalia

    2015-11-01

    The Carboneras fault zone (CFZ) is a prominent onshore-offshore strike-slip fault that forms part of the Eastern Betic Shear Zone (EBSZ), located in SE Spain. In this work, we show for the first time, the continuing tectonic activity of the CFZ and quantify its geodetic slip-rates using continuous and campaign GPS observations conducted during the last decade. We find that the left-lateral motion dominates the kinematics of the CFZ, with a strike-slip rate of 1.3 ± 0.2 mm/yr along the N48° direction. The shortening component is significantly lower and poorly constrained. Recent onshore and offshore paleoseismic and geomorphic results across the CFZ suggest a minimum Late Pleistocene to present-day strike-slip rate of 1.1 mm/yr. Considering the similarity of the geologic and geodetic slip rates measured at different points along the fault, the northern segment of the CFZ must have been slipping approximately at a constant rate during the Quaternary. Regarding the eastern Alpujarras fault zone corridor (AFZ), located to the north of the CFZ, our GPS measurements corroborate that this zone is active and exhibits a right-lateral motion. These opposite type strike-slip motion across the AFZ and CFZ is a result of a push-type force due to Nubia and Eurasia plate convergence, which, in turn, causes the westward escape of the block bounded by these two fault zones.

  1. Evidence for Late Holocene earthquakes on the Utsalady Point fault, Northern Puget Lowland, Washington

    USGS Publications Warehouse

    Johnson, S.Y.; Nelson, A.R.; Personius, S.F.; Wells, R.E.; Kelsey, H.M.; Sherrod, B.L.; Okumura, K.; Koehler, R.; Witter, R.C.; Bradley, L.A.; Harding, D.J.

    2004-01-01

    Trenches across the Utsalady Point fault in the northern Puget Lowland of Washington reveal evidence of at least one and probably two late Holocene earthquakes. The "Teeka" and "Duffers" trenches were located along a 1.4-km-long, 1-to 4-m-high, northwest-trending, southwest-facing, topographic scarp recognized from Airborne Laser Swath Mapping. Glaciomarine drift exposed in the trenches reveals evidence of about 95 to 150 cm of vertical and 200 to 220 cm of left-lateral slip in the Teeka trench. Radiocarbon ages from a buried soil A horizon and overlying slope colluvium along with the historical record of earthquakes suggest that this faulting occurred 100 to 400 calendar years B.P. (A.D. 1550 to 1850). In the Duffers trench, 370 to 450 cm of vertical separation is accommodated by faulting (???210 cm) and folding (???160 to 240 cm), with probable but undetermined amounts of lateral slip. Stratigraphic relations and radiocarbon ages from buried soil, colluvium, and fissure fill in the hanging wall suggest the deformation at Duffers is most likely from two earthquakes that occurred between 100 to 500 and 1100 to 2200 calendar years B.P., but deformation during a single earthquake is also possible. For the two-earthquake hypothesis, deformation at Teeka trench in the first event involved folding but not faulting. Regional relations suggest that the earthquake(s) were M ??? ???6.7 and that offshore rupture may have produced tsunamis. Based on this investigation and related recent studies, the maximum recurrence interval for large ground-rupturing crustal-fault earthquakes in the Puget Lowland is about 400 to 600 years or less.

  2. Diverse rupture modes for surface-deforming upper plate earthquakes in the southern Puget Lowland of Washington State

    USGS Publications Warehouse

    Nelson, Alan R.; Personius, Stephen F.; Sherrod, Brian L.; Kelsey, Harvey M.; Johnson, Samuel Y.; Bradley, Lee-Ann; Wells, Ray E.

    2014-01-01

    Earthquake prehistory of the southern Puget Lowland, in the north-south compressive regime of the migrating Cascadia forearc, reflects diverse earthquake rupture modes with variable recurrence. Stratigraphy and Bayesian analyses of previously reported and new 14C ages in trenches and cores along backthrust scarps in the Seattle fault zone restrict a large earthquake to 1040–910 cal yr B.P. (2σ), an interval that includes the time of the M 7–7.5 Restoration Point earthquake. A newly identified surface-rupturing earthquake along the Waterman Point backthrust dates to 940–380 cal yr B.P., bringing the number of earthquakes in the Seattle fault zone in the past 3500 yr to 4 or 5. Whether scarps record earthquakes of moderate (M 5.5–6.0) or large (M 6.5–7.0) magnitude, backthrusts of the Seattle fault zone may slip during moderate to large earthquakes every few hundred years for periods of 1000–2000 yr, and then not slip for periods of at least several thousands of years. Four new fault scarp trenches in the Tacoma fault zone show evidence of late Holocene folding and faulting about the time of a large earthquake or earthquakes inferred from widespread coseismic subsidence ca. 1000 cal yr B.P.; 12 ages from 8 sites in the Tacoma fault zone limit the earthquakes to 1050–980 cal yr B.P. Evidence is too sparse to determine whether a large earthquake was closely predated or postdated by other earthquakes in the Tacoma basin, but the scarp of the Tacoma fault was formed by multiple earthquakes. In the northeast-striking Saddle Mountain deformation zone, along the western limit of the Seattle and Tacoma fault zones, analysis of previous ages limits earthquakes to 1200–310 cal yr B.P. The prehistory clarifies earthquake clustering in the central Puget Lowland, but cannot resolve potential structural links among the three Holocene fault zones.

  3. Predeployment validation of fault-tolerant systems through software-implemented fault insertion

    NASA Technical Reports Server (NTRS)

    Czeck, Edward W.; Siewiorek, Daniel P.; Segall, Zary Z.

    1989-01-01

    Fault injection-based automated testing (FIAT) environment, which can be used to experimentally characterize and evaluate distributed realtime systems under fault-free and faulted conditions is described. A survey is presented of validation methodologies. The need for fault insertion based on validation methodologies is demonstrated. The origins and models of faults, and motivation for the FIAT concept are reviewed. FIAT employs a validation methodology which builds confidence in the system through first providing a baseline of fault-free performance data and then characterizing the behavior of the system with faults present. Fault insertion is accomplished through software and allows faults or the manifestation of faults to be inserted by either seeding faults into memory or triggering error detection mechanisms. FIAT is capable of emulating a variety of fault-tolerant strategies and architectures, can monitor system activity, and can automatically orchestrate experiments involving insertion of faults. There is a common system interface which allows ease of use to decrease experiment development and run time. Fault models chosen for experiments on FIAT have generated system responses which parallel those observed in real systems under faulty conditions. These capabilities are shown by two example experiments each using a different fault-tolerance strategy.

  4. New Constraints on Late Pleistocene - Holocene Slip Rates and Seismic Behavior Along the Panamint Valley Fault Zone, Eastern California

    NASA Astrophysics Data System (ADS)

    Hoffman, W.; Kirby, E.; McDonald, E.; Walker, J.; Gosse, J.

    2008-12-01

    Space-time patterns of seismic strain release along active fault systems can provide insight into the geodynamics of deforming lithosphere. Along the eastern California shear zone, fault systems south of the Garlock fault appear to have experienced an ongoing pulse of seismic activity over the past ca. 1 kyr (Rockwell et al., 2000). Recently, this cluster of seismicity has been implicated as both cause and consequence of the oft-cited discrepancy between geodetic velocities and geologic slip rates in this region (Dolan et al., 2007; Oskin et al., 2008). Whether other faults within the shear zone exhibit similar behavior remains uncertain. Here we report the preliminary results of new investigations of slip rates and seismic history along the Panamint Valley fault zone (PVFZ). The PVFZ is characterized by dextral, oblique-normal displacement along a moderately to shallowly-dipping range front fault. Previous workers (Zhang et al., 1990) identified a relatively recent surface rupture confined to a ~25 km segment of the southern fault zone and associated with dextral displacements of ~3 m. Our mapping reveals that youthful scarps ranging from 2-4 m in height are distributed along the central portion of the fault zone for at least 50 km. North of Ballarat, a releasing jog in the fault zone forms a 2-3 km long embayment. Displacement of debris-flow levees and channels along NE-striking faults that confirm that displacement is nearly dip-slip, consistent with an overall transport direction toward ~340°, and affording an opportunity to constrain fault displacement directly from the vertical offset of alluvial surfaces of varying age. At the mouth of Happy Canyon, the frontal fault strand displaces a fresh debris-flow by ~3-4 m; soil development atop the debris-flow surface is incipient to negligible. Radiocarbon ages from logs embedded in the flow matrix constrain the timing of the most recent event to younger than ~ 600 cal yr BP. Older alluvial surfaces, such as that

  5. GeoBioScience: Red Wood Ants as Bioindicators for Active Tectonic Fault Systems in the West Eifel (Germany)

    PubMed Central

    Berberich, Gabriele; Schreiber, Ulrich

    2013-01-01

    Simple Summary In a 1.140 km² study area of the volcanic West Eifel, approx. 3,000 Red Wood Ant (RWA; Formica rufa-group) mounds had been identified and correlated with tectonically active gas-permeable faults, mostly strike-slip faults. Linear alignment of RWA mounds and soil gas anomalies distinctly indicate the course of these faults, while clusters of mounds indicate crosscut zones of fault systems, which can be correlated with voids caused by crustal block rotation. This demonstrates that RWA are bioindicators for identifying active fault systems and useful where information on the active regime is incomplete or the resolution by technical means is insufficient. Abstract In a 1.140 km² study area of the volcanic West Eifel, a comprehensive investigation established the correlation between red wood ant mound (RWA; Formica rufa-group) sites and active tectonic faults. The current stress field with a NW-SE-trending main stress direction opens pathways for geogenic gases and potential magmas following the same orientation. At the same time, Variscan and Mesozoic fault zones are reactivated. The results showed linear alignments and clusters of approx. 3,000 RWA mounds. While linear mound distribution correlate with strike-slip fault systems documented by quartz and ore veins and fault planes with slickensides, the clusters represent crosscut zones of dominant fault systems. Latter can be correlated with voids caused by crustal block rotation. Gas analyses from soil air, mineral springs and mofettes (CO2, Helium, Radon and H2S) reveal limiting concentrations for the spatial distribution of mounds and colonization. Striking is further the almost complete absence of RWA mounds in the core area of the Quaternary volcanic field. A possible cause can be found in occasionally occurring H2S in the fault systems, which is toxic at miniscule concentrations to the ants. Viewed overall, there is a strong relationship between RWA mounds and active tectonics in the West Eifel

  6. Active tectonics of the Seattle fault and central Puget sound, Washington - Implications for earthquake hazards

    USGS Publications Warehouse

    Johnson, S.Y.; Dadisman, S.V.; Childs, J. R.; Stanley, W.D.

    1999-01-01

    We use an extensive network of marine high-resolution and conventional industry seismic-reflection data to constrain the location, shallow structure, and displacement rates of the Seattle fault zone and crosscutting high-angle faults in the Puget Lowland of western Washington. Analysis of seismic profiles extending 50 km across the Puget Lowland from Lake Washington to Hood Canal indicates that the west-trending Seattle fault comprises a broad (4-6 km) zone of three or more south-dipping reverse faults. Quaternary sediment has been folded and faulted along all faults in the zone but is clearly most pronounced along fault A, the northernmost fault, which forms the boundary between the Seattle uplift and Seattle basin. Analysis of growth strata deposited across fault A indicate minimum Quaternary slip rates of about 0.6 mm/yr. Slip rates across the entire zone are estimated to be 0.7-1.1 mm/yr. The Seattle fault is cut into two main segments by an active, north-trending, high-angle, strike-slip fault zone with cumulative dextral displacement of about 2.4 km. Faults in this zone truncate and warp reflections in Tertiary and Quaternary strata and locally coincide with bathymetric lineaments. Cumulative slip rates on these faults may exceed 0.2 mm/yr. Assuming no other crosscutting faults, this north-trending fault zone divides the Seattle fault into 30-40-km-long western and eastern segments. Although this geometry could limit the area ruptured in some Seattle fault earthquakes, a large event ca. A.D. 900 appears to have involved both segments. Regional seismic-hazard assessments must (1) incorporate new information on fault length, geometry, and displacement rates on the Seattle fault, and (2) consider the hazard presented by the previously unrecognized, north-trending fault zone.

  7. Slope, Scarp and Sea Cliff Instability Susceptibility Mapping for Planning Regulations in Almada County, Portugal

    NASA Astrophysics Data System (ADS)

    Marques, Fernando; Queiroz, Sónia; Gouveia, Luís; Vasconcelos, Manuel

    2017-12-01

    In Portugal, the modifications introduced in 2008 and 2012 in the National Ecological Reserve law (REN) included the mandatory study of slope instability, including slopes, natural scarps, and sea cliffs, at municipal or regional scale, with the purpose of avoiding the use of hazardous zones with buildings and other structures. The law also indicates specific methods to perform these studies, with different approaches for slope instability, natural scarps and sea cliffs. The methods used to produce the maps required by REN law, with modifications and improvements to the law specified methods, were applied to the 71 km2 territory of Almada County, and included: 1) Slope instability mapping using the statistically based Information Value method validated with the landslide inventory using ROC curves, which provided an AAC=0.964, with the higher susceptibility zones which cover at least 80% of the landslides of the inventory to be included in REN map. The map was object of a generalization process to overcome the inconveniences of the use of a pixel based approach. 2) Natural scarp mapping including setback areas near the top, defined according to the law and setback areas near the toe defined by the application of the shadow angle calibrated with the major rockfalls which occurred in the study area; 3) Sea cliffs mapping including two levels of setback zones near the top, and one setback zone at the cliffs toe, which were based on systematic inventories of cliff failures occurred between 1947 and 2010 in a large scale regional littoral monitoring project. In the paper are described the methods used and the results obtained in this study, which correspond to the final maps of areas to include in REN. The results obtained in this study may be considered as an example of good practice of the municipal authorities in terms of solid, technical and scientifically supported regulation definitions, hazard prevention and safe and sustainable land use management.

  8. Active backstop faults in the Mentawai region of Sumatra, Indonesia, revealed by teleseismic broadband waveform modeling

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Bradley, Kyle Edward; Wei, Shengji; Wu, Wenbo

    2018-02-01

    Two earthquake sequences that affected the Mentawai islands offshore of central Sumatra in 2005 (Mw 6.9) and 2009 (Mw 6.7) have been highlighted as evidence for active backthrusting of the Sumatran accretionary wedge. However, the geometry of the activated fault planes is not well resolved due to large uncertainties in the locations of the mainshocks and aftershocks. We refine the locations and focal mechanisms of medium size events (Mw > 4.5) of these two earthquake sequences through broadband waveform modeling. In addition to modeling the depth-phases for accurate centroid depths, we use teleseismic surface wave cross-correlation to precisely relocate the relative horizontal locations of the earthquakes. The refined catalog shows that the 2005 and 2009 "backthrust" sequences in Mentawai region actually occurred on steeply (∼60 degrees) landward-dipping faults (Masilo Fault Zone) that intersect the Sunda megathrust beneath the deepest part of the forearc basin, contradicting previous studies that inferred slip on a shallowly seaward-dipping backthrust. Static slip inversion on the newly-proposed fault fits the coseismic GPS offsets for the 2009 mainshock equally well as previous studies, but with a slip distribution more consistent with the mainshock centroid depth (∼20 km) constrained from teleseismic waveform inversion. Rupture of such steeply dipping reverse faults within the forearc crust is rare along the Sumatra-Java margin. We interpret these earthquakes as 'unsticking' of the Sumatran accretionary wedge along a backstop fault separating imbricated material from the stronger Sunda lithosphere. Alternatively, the reverse faults may have originated as pre-Miocene normal faults of the extended continental crust of the western Sunda margin. Our waveform modeling approach can be used to further refine global earthquake catalogs in order to clarify the geometries of active faults.

  9. Frictional and hydraulic behaviour of carbonate fault gouge during fault reactivation - An experimental study

    NASA Astrophysics Data System (ADS)

    Delle Piane, Claudio; Giwelli, Ausama; Clennell, M. Ben; Esteban, Lionel; Nogueira Kiewiet, Melissa Cristina D.; Kiewiet, Leigh; Kager, Shane; Raimon, John

    2016-10-01

    We present a novel experimental approach devised to test the hydro-mechanical behaviour of different structural elements of carbonate fault rocks during experimental re-activation. Experimentally faulted core plugs were subject to triaxial tests under water saturated conditions simulating depletion processes in reservoirs. Different fault zone structural elements were created by shearing initially intact travertine blocks (nominal size: 240 × 110 × 150 mm) to a maximum displacement of 20 and 120 mm under different normal stresses. Meso-and microstructural features of these sample and the thickness to displacement ratio characteristics of their deformation zones allowed to classify them as experimentally created damage zones (displacement of 20 mm) and fault cores (displacement of 120 mm). Following direct shear testing, cylindrical plugs with diameter of 38 mm were drilled across the slip surface to be re-activated in a conventional triaxial configuration monitoring the permeability and frictional behaviour of the samples as a function of applied stress. All re-activation experiments on faulted plugs showed consistent frictional response consisting of an initial fast hardening followed by apparent yield up to a friction coefficient of approximately 0.6 attained at around 2 mm of displacement. Permeability in the re-activation experiments shows exponential decay with increasing mean effective stress. The rate of permeability decline with mean effective stress is higher in the fault core plugs than in the simulated damage zone ones. It can be concluded that the presence of gouge in un-cemented carbonate faults results in their sealing character and that leakage cannot be achieved by renewed movement on the fault plane alone, at least not within the range of slip measureable with our apparatus (i.e. approximately 7 mm of cumulative displacement). Additionally, it is shown that under sub seismic slip rates re-activated carbonate faults remain strong and no frictional

  10. Active fault characterization throughout the Caribbean and Central America for seismic hazard modeling

    NASA Astrophysics Data System (ADS)

    Styron, Richard; Pagani, Marco; Garcia, Julio

    2017-04-01

    The region encompassing Central America and the Caribbean is tectonically complex, defined by the Caribbean plate's interactions with the North American, South American and Cocos plates. Though active deformation over much of the region has received at least cursory investigation the past 50 years, the area is chronically understudied and lacks a modern, synoptic characterization. Regardless, the level of risk in the region - as dramatically demonstrated by the 2010 Haiti earthquake - remains high because of high-vulnerability buildings and dense urban areas home to over 100 million people, who are concentrated near plate boundaries and other major structures. As part of a broader program to study seismic hazard worldwide, the Global Earthquake Model Foundation is currently working to quantify seismic hazard in the region. To this end, we are compiling a database of active faults throughout the region that will be integrated into similar models as recently done in South America. Our initial compilation hosts about 180 fault traces in the region. The faults show a wide range of characteristics, reflecting the diverse styles of plate boundary and plate-margin deformation observed. Regional deformation ranges from highly localized faulting along well-defined strike-slip faults to broad zones of distributed normal or thrust faulting, and from readily-observable yet slowly-slipping structures to inferred faults with geodetically-measured slip rates >10 mm/yr but essentially no geomorphic expression. Furthermore, primary structures such as the Motagua-Polochic Fault Zone (the strike-slip plate boundary between the North American and Caribbean plates in Guatemala) display strong along-strike slip rate gradients, and many other structures are undersea for most or all of their length. A thorough assessment of seismic hazard in the region will require the integration of a range of datasets and techniques and a comprehensive characterization of epistemic uncertainties driving

  11. Active out-of-sequence thrust faulting in the central Nepalese Himalaya.

    PubMed

    Wobus, Cameron; Heimsath, Arjun; Whipple, Kelin; Hodges, Kip

    2005-04-21

    Recent convergence between India and Eurasia is commonly assumed to be accommodated mainly along a single fault--the Main Himalayan Thrust (MHT)--which reaches the surface in the Siwalik Hills of southern Nepal. Although this model is consistent with geodetic, geomorphic and microseismic data, an alternative model incorporating slip on more northerly surface faults has been proposed to be consistent with these data as well. Here we present in situ cosmogenic 10Be data indicating a fourfold increase in millennial timescale erosion rates occurring over a distance of less than 2 km in central Nepal, delineating for the first time an active thrust fault nearly 100 km north of the surface expression of the MHT. These data challenge the view that rock uplift gradients in central Nepal reflect only passive transport over a ramp in the MHT. Instead, when combined with previously reported 40Ar-39Ar data, our results indicate persistent exhumation above deep-seated, surface-breaking structures at the foot of the high Himalaya. These results suggest that strong dynamic interactions between climate, erosion and tectonics have maintained a locus of active deformation well to the north of the Himalayan deformation front.

  12. Modelling Active Faults in Probabilistic Seismic Hazard Analysis (PSHA) with OpenQuake: Definition, Design and Experience

    NASA Astrophysics Data System (ADS)

    Weatherill, Graeme; Garcia, Julio; Poggi, Valerio; Chen, Yen-Shin; Pagani, Marco

    2016-04-01

    The Global Earthquake Model (GEM) has, since its inception in 2009, made many contributions to the practice of seismic hazard modeling in different regions of the globe. The OpenQuake-engine (hereafter referred to simply as OpenQuake), GEM's open-source software for calculation of earthquake hazard and risk, has found application in many countries, spanning a diversity of tectonic environments. GEM itself has produced a database of national and regional seismic hazard models, harmonizing into OpenQuake's own definition the varied seismogenic sources found therein. The characterization of active faults in probabilistic seismic hazard analysis (PSHA) is at the centre of this process, motivating many of the developments in OpenQuake and presenting hazard modellers with the challenge of reconciling seismological, geological and geodetic information for the different regions of the world. Faced with these challenges, and from the experience gained in the process of harmonizing existing models of seismic hazard, four critical issues are addressed. The challenge GEM has faced in the development of software is how to define a representation of an active fault (both in terms of geometry and earthquake behaviour) that is sufficiently flexible to adapt to different tectonic conditions and levels of data completeness. By exploring the different fault typologies supported by OpenQuake we illustrate how seismic hazard calculations can, and do, take into account complexities such as geometrical irregularity of faults in the prediction of ground motion, highlighting some of the potential pitfalls and inconsistencies that can arise. This exploration leads to the second main challenge in active fault modeling, what elements of the fault source model impact most upon the hazard at a site, and when does this matter? Through a series of sensitivity studies we show how different configurations of fault geometry, and the corresponding characterisation of near-fault phenomena (including

  13. Constraints on Early Mars Evolution and Dichotomy Origin from Relaxation Modeling of Dichotomy Boundary in the Ismenius Region

    NASA Technical Reports Server (NTRS)

    Guest, A.; Smrekar, S. E.

    2004-01-01

    The Martian dichotomy is a global feature separating the northern and southern hemispheres. The 3.5 - 4 Gyr old feature is manifested by a topographic difference of 2-6 km and crustal thickness difference of approx. 15 - 30 km between the two hemispheres. In the Ismenius region, sections of the boundary are characterized by a single scarp with a slope of approx. 20 deg. - 23 deg. and are believed to be among the most well preserved parts of the dichotomy boundary. The origin of the dichotomy is unknown. Endogenic hypotheses do not predict the steep slopes (scarps) of the dichotomy boundary. Exogenic models for forming the northern lowlands by impact cratering, associate the scarps along the dichotomy boundary with craters' rims, but are not globally consistent with the topography and gravity. In order to better understand the origin of the Martian dichotomy, it is necessary to know if the steep scarps along the boundary represent the original shape of the dichotomy. Smrekar et al. presented evidence showing that the boundary scarp in Ismenius is a fault along which the highland crust was down faulted. We test whether the relaxation process could produce faulting along the dichotomy boundary and examine the crustal and mantle conditions that would allow for faulting to occur within 1 Gyr and preserve the long wavelength topography over another 3 Gyr. We approach the problem by a combination of numerical and semi-analytical modeling. We test different viscosity profiles and crustal thicknesses by comparing our modeled magnitude, location and timing of plastic strain and displacements to detailed geologic observations in the Ismenius region.

  14. Paper 58714 - Exploring activated faults hydromechanical processes from semi-controled field injection experiments

    NASA Astrophysics Data System (ADS)

    Guglielmi, Y.; Cappa, F.; Nussbaum, C.

    2015-12-01

    The appreciation of the sensitivity of fractures and fault zones to fluid-induced-deformations in the subsurface is a key question in predicting the reservoir/caprock system integrity around fluid manipulations with applications to reservoir leakage and induced seismicity. It is also a question of interest in understanding earthquakes source, and recently the hydraulic behavior of clay faults under a potential reactivation around nuclear underground depository sites. Fault and fractures dynamics studies face two key problems (1) the up-scaling of laboratory determined properties and constitutive laws to the reservoir scale which is not straightforward when considering faults and fractures heterogeneities, (2) the difficulties to control both the induced seismicity and the stimulated zone geometry when a fault is reactivated. Using instruments dedicated to measuring coupled pore pressures and deformations downhole, we conducted field academic experiments to characterize fractures and fault zones hydromechanical properties as a function of their multi-scale architecture, and to monitor their dynamic behavior during the earthquake nucleation process. We show experiments on reservoir or cover rocks analogues in underground research laboratories where experimental conditions can be optimized. Key result of these experiments is to highlight how important the aseismic fault activation is compared to the induced seismicity. We show that about 80% of the fault kinematic moment is aseismic and discuss the complex associated fault friction coefficient variations. We identify that the slip stability and the slip velocity are mainly controlled by the rate of the permeability/porosity increase, and discuss the conditions for slip nucleation leading to seismic instability.

  15. Width of the Surface Rupture Zone for Thrust Earthquakes and Implications for Earthquake Fault Zoning: Chi-Chi 1999 and Wenchuan 2008 Earthquakes

    NASA Astrophysics Data System (ADS)

    Boncio, P.; Caldarella, M.

    2016-12-01

    We analyze the zones of coseismic surface faulting along thrust faults, whit the aim of defining the most appropriate criteria for zoning the Surface Fault Rupture Hazard (SFRH) along thrust faults. Normal and strike-slip faults were deeply studied in the past, while thrust faults were not studied with comparable attention. We analyze the 1999 Chi-Chi, Taiwan (Mw 7.6) and 2008 Wenchuan, China (Mw 7.9) earthquakes. Several different types of coseismic fault scarps characterize the two earthquakes, depending on the topography, fault geometry and near-surface materials. For both the earthquakes, we collected from the literature, or measured in GIS-georeferenced published maps, data about the Width of the coseismic Rupture Zone (WRZ). The frequency distribution of WRZ compared to the trace of the main fault shows that the surface ruptures occur mainly on and near the main fault. Ruptures located away from the main fault occur mainly in the hanging wall. Where structural complexities are present (e.g., sharp bends, step-overs), WRZ is wider then for simple fault traces. We also fitted the distribution of the WRZ dataset with probability density functions, in order to define a criterion to remove outliers (e.g., by selecting 90% or 95% probability) and define the zone where the probability of SFRH is the highest. This might help in sizing the zones of SFRH during seismic microzonation (SM) mapping. In order to shape zones of SFRH, a very detailed earthquake geologic study of the fault is necessary. In the absence of such a very detailed study, during basic (First level) SM mapping, a width of 350-400 m seems to be recommended (95% of probability). If the fault is carefully mapped (higher level SM), one must consider that the highest SFRH is concentrated in a narrow zone, 50 m-wide, that should be considered as a "fault-avoidance (or setback) zone". These fault zones should be asymmetric. The ratio of footwall to hanging wall (FW:HW) calculated here ranges from 1:5 to 1:3.

  16. Viscous roots of active seismogenic faults revealed by geologic slip rate variations

    NASA Astrophysics Data System (ADS)

    Cowie, P. A.; Scholz, C. H.; Roberts, G.; Faure Walker, J.; Steer, P.

    2013-12-01

    Viscous flow at depth contributes to elastic strain accumulation along seismogenic faults during both post-seismic and inter-seismic phases of the earthquake cycle. Evaluating the importance of this contribution is hampered by uncertainties regarding (i) the extent to which viscous deformation occurs in shear zones or by distributed flow within the crust and/or upper mantle, and (ii) the value of the exponent, n, in the flow law that relates strain rate to applied stress. Geodetic data, rock deformation experiments, and field observations of exhumed (inactive) faults provide strong evidence for non-linear viscous flow but may not fully capture the long term, in situ behaviour of active fault zones. Here we demonstrate that strain rates derived from Holocene offsets on seismogenic normal faults in the actively uplifting and extending central and southern Italian Apennines may be used to address this issue. The measured strain rates, averaged over a time scale of 104 years, exhibit a well-defined power-law dependence on topographic elevation with a power-law exponent ≈ 3.0 (2.7 - 3.4 at 95% CI; 2.3 - 4.0 at 99% CI). Contemporary seismicity indicates that the upper crust in this area is at the threshold for frictional failure within an extensional stress field and therefore differential stress is directly proportional to elevation. Our data thus imply a relationship between strain rate and stress that is consistent with non-linear viscous flow, with n ≈ 3, but because the measurements are derived from slip along major crustal faults they do not represent deformation of a continuum. We know that, down-dip of the seismogenic part of active faults, cataclasis, hydrous alteration, and shear heating all contribute to grain size reduction and material weakening. These processes initiate localisation at the frictional-viscous transition and the development of mylonitic shear zones within the viscous regime. Furthermore, in quartzo-feldspathic crust, mylonites form a

  17. Paleoseismology of the Southern Section of the Black Mountains and Southern Death Valley Fault Zones, Death Valley, United States

    USGS Publications Warehouse

    Sohn, Marsha S.; Knott, Jeffrey R.; Mahan, Shannon

    2014-01-01

    The Death Valley Fault System (DVFS) is part of the southern Walker Lane–eastern California shear zone. The normal Black Mountains Fault Zone (BMFZ) and the right-lateral Southern Death Valley Fault Zone (SDVFZ) are two components of the DVFS. Estimates of late Pleistocene-Holocene slip rates and recurrence intervals for these two fault zones are uncertain owing to poor relative age control. The BMFZ southernmost section (Section 1W) steps basinward and preserves multiple scarps in the Quaternary alluvial fans. We present optically stimulated luminescence (OSL) dates ranging from 27 to 4 ka of fluvial and eolian sand lenses interbedded with alluvial-fan deposits offset by the BMFZ. By cross-cutting relations, we infer that there were three separate ground-rupturing earthquakes on BMFZ Section 1W with vertical displacement between 5.5 m and 2.75 m. The slip-rate estimate is ∼0.2 to 1.8 mm/yr, with an earthquake recurrence interval of 4,500 to 2,000 years. Slip-per-event measurements indicate Mw 7.0 to 7.2 earthquakes. The 27–4-ka OSL-dated alluvial fans also overlie the putative Cinder Hill tephra layer. Cinder Hill is offset ∼213 m by SDVFZ, which yields a tentative slip rate of 1 to 8 mm/yr for the SDVFZ.

  18. The Devils Mountain Fault zone: An active Cascadia upper plate zone of deformation, Pacific Northwest of North America

    NASA Astrophysics Data System (ADS)

    Barrie, J. Vaughn; Greene, H. Gary

    2018-02-01

    The Devils Mountain Fault Zone (DMFZ) extends east to west from Washington State to just south of Victoria, British Columbia, in the northern Strait of Juan de Fuca of Canada and the USA. Recently collected geophysical data were used to map this fault zone in detail, which show the main fault trace, and associated primary and secondary (conjugate) strands, and extensive northeast-southwest oriented folding that occurs within a 6 km wide deformation zone. The fault zone has been active in the Holocene as seen in the offset and disrupted upper Quaternary strata, seafloor displacement, and deformation within sediment cores taken close to the seafloor expression of the faults. Data suggest that the present DMFZ and the re-activated Leech River Fault may be part of the same fault system. Based on the length and previously estimated slip rates of the fault zone in Washington State, the DMFZ appears to have the potential of producing a strong earthquake, perhaps as large as magnitude 7.5 or greater, within 2 km of the city of Victoria.

  19. Fault Diagnosis Based on Chemical Sensor Data with an Active Deep Neural Network.

    PubMed

    Jiang, Peng; Hu, Zhixin; Liu, Jun; Yu, Shanen; Wu, Feng

    2016-10-13

    Big sensor data provide significant potential for chemical fault diagnosis, which involves the baseline values of security, stability and reliability in chemical processes. A deep neural network (DNN) with novel active learning for inducing chemical fault diagnosis is presented in this study. It is a method using large amount of chemical sensor data, which is a combination of deep learning and active learning criterion to target the difficulty of consecutive fault diagnosis. DNN with deep architectures, instead of shallow ones, could be developed through deep learning to learn a suitable feature representation from raw sensor data in an unsupervised manner using stacked denoising auto-encoder (SDAE) and work through a layer-by-layer successive learning process. The features are added to the top Softmax regression layer to construct the discriminative fault characteristics for diagnosis in a supervised manner. Considering the expensive and time consuming labeling of sensor data in chemical applications, in contrast to the available methods, we employ a novel active learning criterion for the particularity of chemical processes, which is a combination of Best vs. Second Best criterion (BvSB) and a Lowest False Positive criterion (LFP), for further fine-tuning of diagnosis model in an active manner rather than passive manner. That is, we allow models to rank the most informative sensor data to be labeled for updating the DNN parameters during the interaction phase. The effectiveness of the proposed method is validated in two well-known industrial datasets. Results indicate that the proposed method can obtain superior diagnosis accuracy and provide significant performance improvement in accuracy and false positive rate with less labeled chemical sensor data by further active learning compared with existing methods.

  20. Transform fault earthquakes in the North Atlantic: Source mechanisms and depth of faulting

    NASA Technical Reports Server (NTRS)

    Bergman, Eric A.; Solomon, Sean C.

    1987-01-01

    The centroid depths and source mechanisms of 12 large earthquakes on transform faults of the northern Mid-Atlantic Ridge were determined from an inversion of long-period body waveforms. The earthquakes occurred on the Gibbs, Oceanographer, Hayes, Kane, 15 deg 20 min, and Vema transforms. The depth extent of faulting during each earthquake was estimated from the centroid depth and the fault width. The source mechanisms for all events in this study display the strike slip motion expected for transform fault earthquakes; slip vector azimuths agree to 2 to 3 deg of the local strike of the zone of active faulting. The only anomalies in mechanism were for two earthquakes near the western end of the Vema transform which occurred on significantly nonvertical fault planes. Secondary faulting, occurring either precursory to or near the end of the main episode of strike-slip rupture, was observed for 5 of the 12 earthquakes. For three events the secondary faulting was characterized by reverse motion on fault planes striking oblique to the trend of the transform. In all three cases, the site of secondary reverse faulting is near a compression jog in the current trace of the active transform fault zone. No evidence was found to support the conclusions of Engeln, Wiens, and Stein that oceanic transform faults in general are either hotter than expected from current thermal models or weaker than normal oceanic lithosphere.

  1. Reverse fault growth and fault interaction with frictional interfaces: insights from analogue models

    NASA Astrophysics Data System (ADS)

    Bonanno, Emanuele; Bonini, Lorenzo; Basili, Roberto; Toscani, Giovanni; Seno, Silvio

    2017-04-01

    The association of faulting and folding is a common feature in mountain chains, fold-and-thrust belts, and accretionary wedges. Kinematic models are developed and widely used to explain a range of relationships between faulting and folding. However, these models may result not to be completely appropriate to explain shortening in mechanically heterogeneous rock bodies. Weak layers, bedding surfaces, or pre-existing faults placed ahead of a propagating fault tip may influence the fault propagation rate itself and the associated fold shape. In this work, we employed clay analogue models to investigate how mechanical discontinuities affect the propagation rate and the associated fold shape during the growth of reverse master faults. The simulated master faults dip at 30° and 45°, recalling the range of the most frequent dip angles for active reverse faults that occurs in nature. The mechanical discontinuities are simulated by pre-cutting the clay pack. For both experimental setups (30° and 45° dipping faults) we analyzed three different configurations: 1) isotropic, i.e. without precuts; 2) with one precut in the middle of the clay pack; and 3) with two evenly-spaced precuts. To test the repeatability of the processes and to have a statistically valid dataset we replicate each configuration three times. The experiments were monitored by collecting successive snapshots with a high-resolution camera pointing at the side of the model. The pictures were then processed using the Digital Image Correlation method (D.I.C.), in order to extract the displacement and shear-rate fields. These two quantities effectively show both the on-fault and off-fault deformation, indicating the activity along the newly-formed faults and whether and at what stage the discontinuities (precuts) are reactivated. To study the fault propagation and fold shape variability we marked the position of the fault tips and the fold profiles for every successive step of deformation. Then we compared

  2. Low resistivity and permeability in actively deforming shear zones on the San Andreas Fault at SAFOD

    USGS Publications Warehouse

    Morrow, Carolyn A.; Lockner, David A.; Hickman, Stephen H.

    2015-01-01

    The San Andreas Fault Observatory at Depth (SAFOD) scientific drillhole near Parkfield, California crosses the San Andreas Fault at a depth of 2.7 km. Downhole measurements and analysis of core retrieved from Phase 3 drilling reveal two narrow, actively deforming zones of smectite-clay gouge within a roughly 200 m-wide fault damage zone of sandstones, siltstones and mudstones. Here we report electrical resistivity and permeability measurements on core samples from all of these structural units at effective confining pressures up to 120 MPa. Electrical resistivity (~10 ohm-m) and permeability (10-21 to 10-22 m2) in the actively deforming zones were one to two orders of magnitude lower than the surrounding damage zone material, consistent with broader-scale observations from the downhole resistivity and seismic velocity logs. The higher porosity of the clay gouge, 2 to 8 times greater than that in the damage zone rocks, along with surface conduction were the principal factors contributing to the observed low resistivities. The high percentage of fine-grained clay in the deforming zones also greatly reduced permeability to values low enough to create a barrier to fluid flow across the fault. Together, resistivity and permeability data can be used to assess the hydrogeologic characteristics of the fault, key to understanding fault structure and strength. The low resistivities and strength measurements of the SAFOD core are consistent with observations of low resistivity clays that are often found in the principal slip zones of other active faults making resistivity logs a valuable tool for identifying these zones.

  3. Paleoseismic and geomorphologic evidence of recent tectonic activity of the Pozohondo Fault (Betic Cordillera, SE Spain)

    USGS Publications Warehouse

    Rodríguez-Pascua, M.A.; Pérez-López, R.; Garduño-Monroy, V.H.; Giner-Robles, J.L.; Silva, P.G.; Perucha-Atienza, M.A.; Hernández-Madrigal, V.M.; Bischoff, J.

    2012-01-01

    Instrumental and historical seismicity in the Albacete province (External Prebetic Zone) has been scarcely recorded. However, major strike-slip faults showing NW-SE trending provide geomorphologic and paleoseismic evidence of recent tectonic activity (Late Pleistocene to Present). Moreover, these faults are consistently well oriented under the present stress tensor and therefore, they can trigger earthquakes of magnitude greater than M6, according to the lengths of surface ruptures and active segments recognized in fieldwork. Present landscape nearby the village of Hellin (SE of Albacete) is determined by the recent activity of the Pozohondo Fault (FPH), a NW-SE right-lateral fault with 90 km in length. In this study, we have calculated the Late Quaternary tectonic sliprate of the FPH from geomorphological, sedimentological, archaeoseimological, and paleoseismological approaches. All of these data suggest that the FPH runs with a minimum slip-rate of 0.1 mm/yr during the last 100 kyrs (Upper Pleistocene-Holocene). In addition, we have recognized the last two major paleoearthquakes associated to this fault. Magnitudes of these paleoearthquakes were gretarer than M6 and their recurrence intervals ranged from 6600 to 8600 yrs for the seismic cycle of FPH. The last earthquake was dated between the 1st and 6th centuries, though two earthquakes could be interpreted in this wide time interval, one at the FPH and other from a far field source. Results obtained here, suggest an increasing of the tectonic activity of the Pozohondo Fault during the last 10,000 yrs.

  4. Quantitative Assessment of Potentially Active Faults in Oklahoma Utilizing Detailed Information on In Situ Stress Orientation and Relative Magnitude

    NASA Astrophysics Data System (ADS)

    Walsh, R.; Zoback, M. D.

    2015-12-01

    Over the past six years, the earthquake rate in the central and eastern U.S. has increased markedly, and is related to fluid injection. Nowhere has seismicity increased more than in Oklahoma, where large volumes of saline pore water are co-produced with oil and gas, then injected into deeper sedimentary formations. These deeper formations appear to be in hydraulic communication with potentially active faults in crystalline basement, where nearly all the earthquakes are occurring. Although the majority of the recent earthquakes have posed little danger to the public, the possibility of triggering damaging earthquakes on potentially active basement faults cannot be discounted. To understand probability of slip on a given fault, we invert for stresses from the hundreds of M4+ events in Oklahoma for which moment tensors have been made. We then resolve these stresses, while incorporating uncertainties, on the faults from the preliminary Oklahoma fault map. The result is a probabilistic understanding of which faults are most likely active and best avoided.

  5. Stratigraphy of the Oliocene Sullivan Buttes Latite constrains transition zone development in Chino Valley, Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, S.A.; Riggs, N.R.

    The 26.7--23.4 Ma Sullivan Buttes Latite of Chino Valley, Yavapai County, Arizona, erupted during the development of the Transition Zone between the Basin and Range and Colorado Plateau provinces. Detailed mapping and stratigraphic analysis of a portion of the volcanic field indicate volcanism began with the eruption of a shoshonite lava flow and associated cinder cone. Amphibole latite domes then erupted fallouts, surges, and mass flow breccias and culminated activity with a lava flow. Extrusive units from a biotite oxidized latite center to the east interfinger with the older amphibole lattice volcaniclastics. Sullivan Buttes Latite units erupted onto Precambrian andmore » lower Paleozoic strata and Tertiary gravels; the scarp of upper Paleozoic strata equivalent to the paleo' Mogollon Rim had retreated from the area by the time of emplacement of the oldest Sullivan Buttes Latite unit. Subsequent 15--10 Ma Hickey Formation basalts flowed onto an erosion surface cut into Sullivan Buttes deposits, and the nearby Verde River downcut through younger 4.62 Ma Perkinsville Formation basalt. Both situations demonstrate erosion and degradation post Sullivan Buttes activity. Normal faults offsetting Hickey Formation basalts and all older units constrain Basin and Range structural activity to 15 Ma or younger. These stratigraphic relationships of the Sullivan Buttes Latite in the context of Transition Zone development concur with 65--18 Ma retreat of the upper Paleozoic scarp and below-scarp aggradation, 18--12 Ma Basin and Range faulting, and subsequent degradation.« less

  6. Active faulting at Delphi, Greece: Seismotectonic remarks and a hypothesis for the geologic environment of a myth

    NASA Astrophysics Data System (ADS)

    Piccardi, Luigi

    2000-07-01

    Historical data are fundamental to the understanding of the seismic history of an area. At the same time, knowledge of the active tectonic processes allows us to understand how earthquakes have been perceived by past cultures. Delphi is one of the principal archaeological sites of Greece, the main oracle of Apollo. It was by far the most venerated oracle of the Greek ancient world. According to tradition, the mantic proprieties of the oracle were obtained from an open chasm in the earth. Delphi is directly above one of the main antithetic active faults of the Gulf of Corinth Rift, which bounds Mount Parnassus to the south. The geometry of the fault and slip-parallel lineations on the main fault plane indicate normal movement, with minor right-lateral slip component. Combining tectonic data, archaeological evidence, historical sources, and a reexamination of myths, it appears that the Helice earthquake of 373 B.C. ruptured not only the master fault of the Gulf of Corinth Rift at Helice, but also the antithetic fault at Delphi, similarly to the Corinth earthquake of 1981. Moreover, the presence of an active fault directly below the temples of the oldest sanctuary suggests that the mythological oracular chasm might well have been an ancient tectonic surface rupture.

  7. Crustal Evolution of the Protonilus Mensae Area, Mars

    NASA Technical Reports Server (NTRS)

    McGill, G. E.; Smrekar, S. E.; Dimitriou, A. M.; Raymond, C. A.

    2004-01-01

    Despite research by numerous geologists and geo- physicists, the age and origin of the martian crustal dichotomy remain uncertain. Models for the origin of this dichotomy involve single or multiple impact, mantle megaplumes, primordial crustal asymmetry, and plate tectonics. Most of these models imply a Noachian age for the dichotomy. A major problem common to all genetic models is the difficulty separating the features resulting from the primary cause for the dichotomy from features due to younger fault- ing, impact cratering, volcanism, deposition, and erosion. highlands (the dichotomy boundary) approximates a small circle that ranges in latitude from about -10 deg. in Elysium Planitia to about +45 deg. north of Arabia Terra. For much of its length the boundary is characterized by relatively steep scarps separating highland plateau to the south from lowland plains to the north, generally with a complex transition zone on the lowland side of these scarps. These scarps are almost certainly due to normal faulting. The type fretted terrain, which defines the boundary in north-central Arabia Terra, also is characterized by scarps but has under- gone a more complex history of faulting and dissection [13]. In some places, notably in the Acidalia Planitia region, the dichotomy boundary is gradational. In the Tharsis region the boundary is obscured by younger volcanics.

  8. Tsunami simulations of the 1867 Virgin Island earthquake: Constraints on epicenter location and fault parameters

    USGS Publications Warehouse

    Barkan, Roy; ten Brink, Uri S.

    2010-01-01

    The 18 November 1867 Virgin Island earthquake and the tsunami that closely followed caused considerable loss of life and damage in several places in the northeast Caribbean region. The earthquake was likely a manifestation of the complex tectonic deformation of the Anegada Passage, which cuts across the Antilles island arc between the Virgin Islands and the Lesser Antilles. In this article, we attempt to characterize the 1867 earthquake with respect to fault orientation, rake, dip, fault dimensions, and first tsunami wave propagating phase, using tsunami simulations that employ high-resolution multibeam bathymetry. In addition, we present new geophysical and geological observations from the region of the suggested earthquake source. Results of our tsunami simulations based on relative amplitude comparison limit the earthquake source to be along the northern wall of the Virgin Islands basin, as suggested by Reid and Taber (1920), or on the carbonate platform north of the basin, and not in the Virgin Islands basin, as commonly assumed. The numerical simulations suggest the 1867 fault was striking 120°–135° and had a mixed normal and left-lateral motion. First propagating wave phase analysis suggests a fault striking 300°–315° is also possible. The best-fitting rupture length was found to be relatively small (50 km), probably indicating the earthquake had a moment magnitude of ∼7.2. Detailed multibeam echo sounder surveys of the Anegada Passage bathymetry between St. Croix and St. Thomas reveal a scarp, which cuts the northern wall of the Virgin Islands basin. High-resolution seismic profiles further indicate it to be a reasonable fault candidate. However, the fault orientation and the orientation of other subparallel faults in the area are more compatible with right-lateral motion. For the other possible source region, no clear disruption in the bathymetry or seismic profiles was found on the carbonate platform north of the basin.

  9. Earthquake Model of the Middle East (EMME) Project: Active Fault Database for the Middle East Region

    NASA Astrophysics Data System (ADS)

    Gülen, L.; Wp2 Team

    2010-12-01

    The Earthquake Model of the Middle East (EMME) Project is a regional project of the umbrella GEM (Global Earthquake Model) project (http://www.emme-gem.org/). EMME project region includes Turkey, Georgia, Armenia, Azerbaijan, Syria, Lebanon, Jordan, Iran, Pakistan, and Afghanistan. Both EMME and SHARE projects overlap and Turkey becomes a bridge connecting the two projects. The Middle East region is tectonically and seismically very active part of the Alpine-Himalayan orogenic belt. Many major earthquakes have occurred in this region over the years causing casualties in the millions. The EMME project will use PSHA approach and the existing source models will be revised or modified by the incorporation of newly acquired data. More importantly the most distinguishing aspect of the EMME project from the previous ones will be its dynamic character. This very important characteristic is accomplished by the design of a flexible and scalable database that will permit continuous update, refinement, and analysis. A digital active fault map of the Middle East region is under construction in ArcGIS format. We are developing a database of fault parameters for active faults that are capable of generating earthquakes above a threshold magnitude of Mw≥5.5. Similar to the WGCEP-2007 and UCERF-2 projects, the EMME project database includes information on the geometry and rates of movement of faults in a “Fault Section Database”. The “Fault Section” concept has a physical significance, in that if one or more fault parameters change, a new fault section is defined along a fault zone. So far over 3,000 Fault Sections have been defined and parameterized for the Middle East region. A separate “Paleo-Sites Database” includes information on the timing and amounts of fault displacement for major fault zones. A digital reference library that includes the pdf files of the relevant papers, reports is also being prepared. Another task of the WP-2 of the EMME project is to prepare

  10. Active fault databases: building a bridge between earthquake geologists and seismic hazard practitioners, the case of the QAFI v.3 database

    NASA Astrophysics Data System (ADS)

    García-Mayordomo, Julián; Martín-Banda, Raquel; Insua-Arévalo, Juan M.; Álvarez-Gómez, José A.; Martínez-Díaz, José J.; Cabral, João

    2017-08-01

    Active fault databases are a very powerful and useful tool in seismic hazard assessment, particularly when singular faults are considered seismogenic sources. Active fault databases are also a very relevant source of information for earth scientists, earthquake engineers and even teachers or journalists. Hence, active fault databases should be updated and thoroughly reviewed on a regular basis in order to keep a standard quality and uniformed criteria. Desirably, active fault databases should somehow indicate the quality of the geological data and, particularly, the reliability attributed to crucial fault-seismic parameters, such as maximum magnitude and recurrence interval. In this paper we explain how we tackled these issues during the process of updating and reviewing the Quaternary Active Fault Database of Iberia (QAFI) to its current version 3. We devote particular attention to describing the scheme devised for classifying the quality and representativeness of the geological evidence of Quaternary activity and the accuracy of the slip rate estimation in the database. Subsequently, we use this information as input for a straightforward rating of the level of reliability of maximum magnitude and recurrence interval fault seismic parameters. We conclude that QAFI v.3 is a much better database than version 2 either for proper use in seismic hazard applications or as an informative source for non-specialized users. However, we already envision new improvements for a future update.

  11. Preliminary Monitoring of Soil gas Radon in Potentially Active Faults, San Sai District, Chiang Mai Province, Thailand

    NASA Astrophysics Data System (ADS)

    Pondthai, P.; Udphuay, S.

    2013-05-01

    The magnitude of 5.1 Mw earthquake occurred in San Sai District, Chiang Mai Province, Thailand in December 2006 was considered an uncommon event due to the fact that there was no statistical record of such significant earthquake in the area. Therefore the earthquake might have been associated with a potentially active fault zone within the area. The objective of this study is to measure soil gas radon across this unknown fault zone within the Chiang Mai Basin, northern Thailand. Two profiles traversing the expected fault zone of soil gas radon measurements have been monitored, using TASTRAK solid state track nuclear detectors (SSNTDs). Radon signals from three periods of measurement show a distinctive consistent spatial distribution pattern. Anomalous radon areas along the profiles are connected to fault locations previously interpreted from other geophysical survey results. The increased radon signal changes from the radon background level with the signal-to-background ratio above 3 are considered anomalous. Such pattern of radon anomaly supports the existence of the faults. The radon measurement, therefore is a powerful technique in mapping active fault zone.

  12. Fault Diagnosis Based on Chemical Sensor Data with an Active Deep Neural Network

    PubMed Central

    Jiang, Peng; Hu, Zhixin; Liu, Jun; Yu, Shanen; Wu, Feng

    2016-01-01

    Big sensor data provide significant potential for chemical fault diagnosis, which involves the baseline values of security, stability and reliability in chemical processes. A deep neural network (DNN) with novel active learning for inducing chemical fault diagnosis is presented in this study. It is a method using large amount of chemical sensor data, which is a combination of deep learning and active learning criterion to target the difficulty of consecutive fault diagnosis. DNN with deep architectures, instead of shallow ones, could be developed through deep learning to learn a suitable feature representation from raw sensor data in an unsupervised manner using stacked denoising auto-encoder (SDAE) and work through a layer-by-layer successive learning process. The features are added to the top Softmax regression layer to construct the discriminative fault characteristics for diagnosis in a supervised manner. Considering the expensive and time consuming labeling of sensor data in chemical applications, in contrast to the available methods, we employ a novel active learning criterion for the particularity of chemical processes, which is a combination of Best vs. Second Best criterion (BvSB) and a Lowest False Positive criterion (LFP), for further fine-tuning of diagnosis model in an active manner rather than passive manner. That is, we allow models to rank the most informative sensor data to be labeled for updating the DNN parameters during the interaction phase. The effectiveness of the proposed method is validated in two well-known industrial datasets. Results indicate that the proposed method can obtain superior diagnosis accuracy and provide significant performance improvement in accuracy and false positive rate with less labeled chemical sensor data by further active learning compared with existing methods. PMID:27754386

  13. Effect of bend faulting on the hydration state of oceanic crust: Electromagnetic constraints from the Middle America Trench

    NASA Astrophysics Data System (ADS)

    Naif, S.; Key, K.; Constable, S.; Evans, R. L.

    2017-12-01

    In Northern Central America, the portion of the incoming Cocos oceanic plate formed at the East Pacific Rise has a seafloor spreading fabric that is oriented nearly parallel to the trench axis, whereby flexural bending at the outer rise reactivates a dense network of dormant abyssal hill faults. If bending-induced normal faults behave as fluid pathways they may promote extensive mantle hydration and significantly raise the flux of fluids into the subduction system. Multi-channel seismic reflection data imaged bend faults that extend several kilometers beneath the Moho offshore Nicaragua, coincident with seismic refraction data showing significant P-wave velocity reductions in both the crust and uppermost mantle. Ignoring the effect of fracture porosity, the observed mantle velocity reduction is equivalent to an upper bound of 15-20% serpentinization (or 2.0-2.5 wt% H2O). Yet the impact of bend faulting on porosity structure and crustal hydration are not well known. Here, we present results on the electrical resistivity structure of the incoming Cocos plate offshore Nicaragua, the first controlled-source electromagnetic (CSEM) experiment at a subduction zone. The CSEM data imaged several sub-vertical conductive channels extending beneath fault scarps to 5.5 km below seafloor, providing independent evidence for fluid infiltration into the oceanic crust via bending faults. We applied Archie's Law to estimate porosity from the resistivity observations: the dike and gabbro layers increase from 2.7% and 0.7% porosity at 100 km to 4.8% and 1.7% within 20 km of the trench, respectively. In contrast the resistivity, and hence porosity, remain relatively unchanged at sub-Moho depths. Therefore, either the faults do not provide an additional flux of free water to the mantle or, in light of the reduced seismic velocities, the volumetric expansion resulting from mantle serpentinization rapidly consumes any fault-generated porosity. Since our crustal porosity estimates seaward

  14. Solar system fault detection

    DOEpatents

    Farrington, R.B.; Pruett, J.C. Jr.

    1984-05-14

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  15. Solar system fault detection

    DOEpatents

    Farrington, Robert B.; Pruett, Jr., James C.

    1986-01-01

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  16. An update of Quaternary faults of central and eastern Oregon

    USGS Publications Warehouse

    Weldon, Ray J.; Fletcher, D.K.; Weldon, E.M.; Scharer, K.M.; McCrory, P.A.

    2002-01-01

    This is the online version of a CD-ROM publication. We have updated the eastern portion of our previous active fault map of Oregon (Pezzopane, Nakata, and Weldon, 1992) as a contribution to the larger USGS effort to produce digital maps of active faults in the Pacific Northwest region. The 1992 fault map has seen wide distribution and has been reproduced in essentially all subsequent compilations of active faults of Oregon. The new map provides a substantial update of known active or suspected active faults east of the Cascades. Improvements in the new map include (1) many newly recognized active faults, (2) a linked ArcInfo map and reference database, (3) more precise locations for previously recognized faults on shaded relief quadrangles generated from USGS 30-m digital elevations models (DEM), (4) more uniform coverage resulting in more consistent grouping of the ages of active faults, and (5) a new category of 'possibly' active faults that share characteristics with known active faults, but have not been studied adequately to assess their activity. The distribution of active faults has not changed substantially from the original Pezzopane, Nakata and Weldon map. Most faults occur in the south-central Basin and Range tectonic province that is located in the backarc portion of the Cascadia subduction margin. These faults occur in zones consisting of numerous short faults with similar rates, ages, and styles of movement. Many active faults strongly correlate with the most active volcanic centers of Oregon, including Newberry Craters and Crater Lake.

  17. Unraveling the Earthquake History of the Denali Fault System, Alaska: Filling a Blank Canvas With Paleoearthquakes

    NASA Astrophysics Data System (ADS)

    Schwartz, D. P.; Haeussler, P. J.; Seitz, G. G.; Dawson, T. E.; Stenner, H. D.; Matmon, A.; Crone, A. J.; Personius, S.; Burns, P. B.; Cadena, A.; Thoms, E.

    2005-12-01

    Developing accurate rupture histories of long, high-slip-rate strike-slip faults is is especially challenging where recurrence is relatively short (hundreds of years), adjacent segments may fail within decades of each other, and uncertainties in dating can be as large as, or larger than, the time between events. The Denali Fault system (DFS) is the major active structure of interior Alaska, but received little study since pioneering fault investigations in the early 1970s. Until the summer of 2003 essentially no data existed on the timing or spatial distribution of past ruptures on the DFS. This changed with the occurrence of the M7.9 2002 Denali fault earthquake, which has been a catalyst for present paleoseismic investigations. It provided a well-constrained rupture length and slip distribution. Strike-slip faulting occurred along 290 km of the Denali and Totschunda faults, leaving unruptured ?140km of the eastern Denali fault, ?180 km of the western Denali fault, and ?70 km of the eastern Totschunda fault. The DFS presents us with a blank canvas on which to fill a chronology of past earthquakes using modern paleoseismic techniques. Aware of correlation issues with potentially closely-timed earthquakes we have a) investigated 11 paleoseismic sites that allow a variety of dating techniques, b) measured paleo offsets, which provide insight into magnitude and rupture length of past events, at 18 locations, and c) developed late Pleistocene and Holocene slip rates using exposure age dating to constrain long-term fault behavior models. We are in the process of: 1) radiocarbon-dating peats involved in faulting and liquefaction, and especially short-lived forest floor vegetation that includes outer rings of trees, spruce needles, and blueberry leaves killed and buried during paleoearthquakes; 2) supporting development of a 700-900 year tree-ring time-series for precise dating of trees used in event timing; 3) employing Pb 210 for constraining the youngest ruptures in

  18. Plume Activity and Tidal Deformation on Enceladus Influenced by Faults and Variable Ice Shell Thickness

    NASA Astrophysics Data System (ADS)

    Běhounková, Marie; Souček, Ondřej; Hron, Jaroslav; Čadek, Ondřej

    2017-09-01

    We investigated the effect of variations in ice shell thickness and of the tiger stripe fractures crossing Enceladus' south polar terrain on the moon's tidal deformation by performing finite element calculations in three-dimensional geometry. The combination of thinning in the polar region and the presence of faults has a synergistic effect that leads to an increase of both the displacement and stress in the south polar terrain by an order of magnitude compared to that of the traditional model with a uniform shell thickness and without faults. Assuming a simplified conductive heat transfer and neglecting the heat sources below the ice shell, we computed the global heat budget of the ice shell. For the inelastic properties of the shell described by a Maxwell viscoelastic model, we show that unrealistically low average viscosity of the order of 10^{13} Pa s is necessary for preserving the volume of the ocean, suggesting the important role of the heat sources in the deep interior. Similarly, low viscosity is required to predict the observed delay of the plume activity, which hints at other delaying mechanisms than just the viscoelasticity of the ice shell. The presence of faults results in large spatial and temporal heterogeneity of geysering activity compared to the traditional models without faults. Our model contributes to understanding the physical mechanisms that control the fault activity, and it provides potentially useful information for future missions that will sample the plume for evidence of life.

  19. Active tectonic extension across the Alto Tiberina normal fault system from GPS data modeling and InSAR velocity maps: new perspectives within TABOO Near Fault Observatory

    NASA Astrophysics Data System (ADS)

    Vadacca, Luigi; Anderlini, Letizia; Casarotti, Emanuele; Serpelloni, Enrico; Chiaraluce, Lauro; Polcari, Marco; Albano, Matteo; Stramondo, Salvatore

    2014-05-01

    The Alto Tiberina fault (ATF) is a low-angle (east-dipping at 15°) normal fault (LANF) 70 km long placed in the Umbria-Marche Apennines (central Italy), characterized by SW-NE oriented extension occurring at rates of 2-3 mm/yr. These rates were measured by continuous GPS stations belonging to several networks, which are denser in the study area thanks to additional sites recently installed in the framework of the INGV national RING network and of the ATF observatory. In this area historical and instrumental earthquakes mainly occur on west-dipping high-angle normal faults. Within this context the ATF has accumulated 2 km of displacement over the past 2 Ma, but at the same time the deformation processes active along this misoriented fault, as well as its mechanical behavior, are still unknown. We tackle this issue by solving for interseismic deformation models obtained by two different methods. At first, through the 2D and 3D finite element modeling, we define the effects of locking depth, synthetic and antithetic fault activity and lithology on the velocity gradient measured along the ATF system. Subsequently through a block modeling approach, we model the GPS velocities by considering the major fault systems as bounds of rotating blocks, while estimating the corresponding geodetic fault slip-rates and maps of heterogeneous fault coupling. Thanks to the latest imaging of the ATF deep structure obtained from seismic profiles, we improve the proposed models by modeling the fault as a complex rough surface to understand where the stress accumulations are located and the interseismic coupling changes. The preliminary results obtained show firstly that the observed extension is mainly accommodated by interseismic deformation on both the ATF and antithetic faults, highlighting the important role of this LANF inside an active tectonic contest. Secondarily, using the ATF surface "topography", we find an interesting correlation between microseismicty and creeping portions

  20. Active fault mapping in Karonga-Malawi after the December 19, 2009 Ms 6.2 seismic event

    NASA Astrophysics Data System (ADS)

    Macheyeki, A. S.; Mdala, H.; Chapola, L. S.; Manhiça, V. J.; Chisambi, J.; Feitio, P.; Ayele, A.; Barongo, J.; Ferdinand, R. W.; Ogubazghi, G.; Goitom, B.; Hlatywayo, J. D.; Kianji, G. K.; Marobhe, I.; Mulowezi, A.; Mutamina, D.; Mwano, J. M.; Shumba, B.; Tumwikirize, I.

    2015-02-01

    The East African Rift System (EARS) has natural hazards - earthquakes, volcanic eruptions, and landslides along the faulted margins, and in response to ground shaking. Strong damaging earthquakes have been occurring in the region along the EARS throughout historical time, example being the 7.4 (Ms) of December 1910. The most recent damaging earthquake is the Karonga earthquake in Malawi, which occurred on 19th December, 2009 with a magnitude of 6.2 (Ms). The earthquake claimed four lives and destroyed over 5000 houses. In its effort to improve seismic hazard assessment in the region, Eastern and Southern Africa Seismological Working Group (ESARSWG) under the sponsorship of the International Program on Physical Sciences (IPPS) carried out a study on active fault mapping in the region. The fieldwork employed geological and geophysical techniques. The geophysical techniques employed are ground magnetic, seismic refraction and resistivity surveys but are reported elsewhere. This article gives findings from geological techniques. The geological techniques aimed primarily at mapping of active faults in the area in order to delineate presence or absence of fault segments. Results show that the Karonga fault (the Karonga fault here referred to as the fault that ruptured to the surface following the 6th-19th December 2009 earthquake events in the Karonga area) is about 9 km long and dominated by dip slip faulting with dextral and insignificant sinistral components and it is made up of 3-4 segments of length 2-3 km. The segments are characterized by both left and right steps. Although field mapping show only 9 km of surface rupture, maximum vertical offset of about 43 cm imply that the surface rupture was in little excess of 14 km that corresponds with Mw = 6.4. We recommend the use or integration of multidisciplinary techniques in order to better understand the fault history, mechanism and other behavior of the fault/s for better urban planning in the area.

  1. Contradicting Estimates of Location, Geometry, and Rupture History of Highly Active Faults in Central Japan

    NASA Astrophysics Data System (ADS)

    Okumura, K.

    2011-12-01

    Accurate location and geometry of seismic sources are critical to estimate strong ground motion. Complete and precise rupture history is also critical to estimate the probability of the future events. In order to better forecast future earthquakes and to reduce seismic hazards, we should consider over all options and choose the most likely parameter. Multiple options for logic trees are acceptable only after thorough examination of contradicting estimates and should not be a result from easy compromise or epoche. In the process of preparation and revisions of Japanese probabilistic and deterministic earthquake hazard maps by Headquarters for Earthquake Research Promotion since 1996, many decisions were made to select plausible parameters, but many contradicting estimates have been left without thorough examinations. There are several highly-active faults in central Japan such as Itoigawa-Shizuoka Tectonic Line active fault system (ISTL), West Nagano Basin fault system (WNBF), Inadani fault system (INFS), and Atera fault system (ATFS). The highest slip rate and the shortest recurrence interval are respectively ~1 cm/yr and 500 to 800 years, and estimated maximum magnitude is 7.5 to 8.5. Those faults are very hazardous because almost entire population and industries are located above the fault within tectonic depressions. As to the fault location, most uncertainties arises from interpretation of geomorphic features. Geomorphological interpretation without geological and structural insight often leads to wrong mapping. Though non-existent longer fault may be a safer estimate, incorrectness harm reliability of the forecast. Also this does not greatly affect strong motion estimates, but misleading to surface displacement issues. Fault geometry, on the other hand, is very important to estimate intensity distribution. For the middle portion of the ISTL, fast-moving left-lateral strike-slip up to 1 cm/yr is obvious. Recent seismicity possibly induced by 2011 Tohoku

  2. Microseismic data records fault activation before and after a Mw 4.1 induced earthquake

    NASA Astrophysics Data System (ADS)

    Eyre, T.; Eaton, D. W. S.

    2017-12-01

    Several large earthquakes (Mw 4) have been observed in the vicinity of the town of Fox Creek, Alberta. These events have been determined to be induced earthquakes related to hydraulic fracturing in the region. The largest of these has a magnitude Mw = 4.1, and is associated with a hydraulic-fracturing treatment close to Crooked Lake, about 30 km west of Fox Creek. The underlying factors that lead to localization of the high numbers of hydraulic fracturing induced events in this area remain poorly understood. The treatment that is associated with the Mw 4.1 event was monitored by 93 shallow three-level borehole arrays of sensors. Here we analyze the temporal and spatial evolution of the microseismic and seismic data recorded during the treatment. Contrary to expected microseismic event clustering parallel to the principal horizontal stress (NE - SW), the events cluster along obvious fault planes that align both NNE - SSW and N - S. As the treatment well is oriented N - S, it appears that each stage of the treatment intersects a new portion of the fracture network, causing seismicity to occur. Focal-plane solutions support a strike-slip failure along these faults, with nodal planes aligning with the microseismic cluster orientations. Each fault segment is activated with a cluster of microseismicity in the centre, gradually extending along the fault as time progresses. Once a portion of a fault is active, further seismicity can be induced, regardless if the present stage is distant from the fault. However, the large events seem to occur in regions with a gap in the microseismicity. Interestingly, most of the seismicity is located above the reservoir, including the larger events. Although a shallow-well array is used, these results are believed to have relatively high depth resolution, as the perforation shots are correctly located with an average error of 26 m in depth. This information contradicts previously held views that large induced earthquakes occur primarily

  3. Widespread active detachment faulting and core complex formation near 13 degrees N on the Mid-Atlantic Ridge.

    PubMed

    Smith, Deborah K; Cann, Johnson R; Escartín, Javier

    2006-07-27

    Oceanic core complexes are massifs in which lower-crustal and upper-mantle rocks are exposed at the sea floor. They form at mid-ocean ridges through slip on detachment faults rooted below the spreading axis. To date, most studies of core complexes have been based on isolated inactive massifs that have spread away from ridge axes. Here we present a survey of the Mid-Atlantic Ridge near 13 degrees N containing a segment in which a number of linked detachment faults extend for 75 km along one flank of the spreading axis. The detachment faults are apparently all currently active and at various stages of development. A field of extinct core complexes extends away from the axis for at least 100 km. Our observations reveal the topographic characteristics of actively forming core complexes and their evolution from initiation within the axial valley floor to maturity and eventual inactivity. Within the surrounding region there is a strong correlation between detachment fault morphology at the ridge axis and high rates of hydroacoustically recorded earthquake seismicity. Preliminary examination of seismicity and seafloor morphology farther north along the Mid-Atlantic Ridge suggests that active detachment faulting is occurring in many segments and that detachment faulting is more important in the generation of ocean crust at this slow-spreading ridge than previously suspected.

  4. Basin-floor Lake Bonneville stratigraphic section as revealed in paleoseismic trenches at the Baileys Lake site, West Valley fault zone, Utah

    USGS Publications Warehouse

    Hylland, Michael D.; DuRoss, Christopher B.; McDonald, Greg N.; Olig, Susan S.; Oviatt, Charles G.; Mahan, Shannon; Crone, Anthony J.; Personius, Stephen

    2012-01-01

     Recent paleoseismic trenching on the Granger fault of the West Valley fault zone in Salt Lake County, Utah, exposed a nearly complete section of late Pleistocene Lake Bonneville deposits, and highlights challenges related to accurate interpretation of basin-floor stratigraphy in the absence of numerical age constraints. We used radiocarbon and luminescence dating as well as ostracode biostratigraphy to provide chronostratigraphic control on the Lake Bonneville section exposed at the Baileys Lake trench site. The fault trenches exposed folded and faulted pre- to post- Bonneville sediments, including about 0.7 m of pre-Bonneville wetland/fluvial-marsh deposits, a nearly complete Bonneville section 2.5–4.0 m thick, and 0.4–1.0 m of post-Bonneville deposits consisting primarily of loess with minor scarp-derived colluvium. The relatively thin Bonneville section compares favorably with basin-floor Bonneville sections documented in boreholes and seismic reflection profiles beneath Great Salt Lake. Distinctive features of the Bonneville section at the Baileys Lake site include a sequence of turbidites in the upper part of the Bonneville transgressive deposits, evidence for an earthquake during Provo-shoreline time that disturbed lake-bottom sediments and destroyed any stratigraphic signature of the Bonneville Flood, tufa deposition associated with Gilbert-phase shoreline transgression, and stratigraphic evidence for two Gilbert transgressions across the site.

  5. Plume Activity and Tidal Deformation on Enceladus Influenced by Faults and Variable Ice Shell Thickness

    PubMed Central

    Souček, Ondřej; Hron, Jaroslav; Čadek, Ondřej

    2017-01-01

    Abstract We investigated the effect of variations in ice shell thickness and of the tiger stripe fractures crossing Enceladus' south polar terrain on the moon's tidal deformation by performing finite element calculations in three-dimensional geometry. The combination of thinning in the polar region and the presence of faults has a synergistic effect that leads to an increase of both the displacement and stress in the south polar terrain by an order of magnitude compared to that of the traditional model with a uniform shell thickness and without faults. Assuming a simplified conductive heat transfer and neglecting the heat sources below the ice shell, we computed the global heat budget of the ice shell. For the inelastic properties of the shell described by a Maxwell viscoelastic model, we show that unrealistically low average viscosity of the order of 1013 Pa s is necessary for preserving the volume of the ocean, suggesting the important role of the heat sources in the deep interior. Similarly, low viscosity is required to predict the observed delay of the plume activity, which hints at other delaying mechanisms than just the viscoelasticity of the ice shell. The presence of faults results in large spatial and temporal heterogeneity of geysering activity compared to the traditional models without faults. Our model contributes to understanding the physical mechanisms that control the fault activity, and it provides potentially useful information for future missions that will sample the plume for evidence of life. Key Words: Enceladus—Tidal deformation—Faults—Variable ice shell thickness—Tidal heating—Plume activity and timing. Astrobiology 17, 941–954. PMID:28816521

  6. Fault healing and earthquake spectra from stick slip sequences in the laboratory and on active faults

    NASA Astrophysics Data System (ADS)

    McLaskey, G. C.; Glaser, S. D.; Thomas, A.; Burgmann, R.

    2011-12-01

    Repeating earthquake sequences (RES) are thought to occur on isolated patches of a fault that fail in repeated stick-slip fashion. RES enable researchers to study the effect of variations in earthquake recurrence time and the relationship between fault healing and earthquake generation. Fault healing is thought to be the physical process responsible for the 'state' variable in widely used rate- and state-dependent friction equations. We analyze RES created in laboratory stick slip experiments on a direct shear apparatus instrumented with an array of very high frequency (1KHz - 1MHz) displacement sensors. Tests are conducted on the model material polymethylmethacrylate (PMMA). While frictional properties of this glassy polymer can be characterized with the rate- and state- dependent friction laws, the rate of healing in PMMA is higher than room temperature rock. Our experiments show that in addition to a modest increase in fault strength and stress drop with increasing healing time, there are distinct spectral changes in the recorded laboratory earthquakes. Using the impact of a tiny sphere on the surface of the test specimen as a known source calibration function, we are able to remove the instrument and apparatus response from recorded signals so that the source spectrum of the laboratory earthquakes can be accurately estimated. The rupture of a fault that was allowed to heal produces a laboratory earthquake with increased high frequency content compared to one produced by a fault which has had less time to heal. These laboratory results are supported by observations of RES on the Calaveras and San Andreas faults, which show similar spectral changes when recurrence time is perturbed by a nearby large earthquake. Healing is typically attributed to a creep-like relaxation of the material which causes the true area of contact of interacting asperity populations to increase with time in a quasi-logarithmic way. The increase in high frequency seismicity shown here

  7. Late Pleistocene-Holocene Activity of the Strike-slip Xianshuihe Fault Zone, Tibetan Plateau, Inferred from Tectonic Landforms

    NASA Astrophysics Data System (ADS)

    Lin, A.; Yan, B.

    2017-12-01

    Knowledges on the activity of the strike-slip fault zones on the Tibetan Plateau have been promoted greatly by the interpretation of remote sensing images (Molnar and Tapponnier, 1975; Tapponnier and Molnar, 1977). The active strike-slip Xianshuihe-Xiaojiang Fault System (XXFS), with the geometry of an arc projecting northeastwards, plays an important role in the crustal deformation of the Tibetan Plateau caused by the continental collision between the Indian and Eurasian plates. The Xianshuihe Fault Zone (XFZ) is located in the central segment of the XXFS and extends for 370 km, with a maximum sinistral offset of 60 km since 13‒5 Ma. In this study, we investigated the tectonic landforms and slip rate along the central segment of the left-lateral strike-slip XFZ. Field investigations and analysis of ttectonic landforms show that horizontal offset has been accumulated on the topographical markers of different scales that developed since the Last Glacial Maximum (LGM). The central segment of the XFZ is composed of three major faults: Yalahe, Selaha, and Zheduotang faults showing a right-stepping echelon pattern, that is characterized by systematical offset of drainages, alluvial fans and terrace risers with typical scissoring structures, indicating a structural feature of left-lateral strike-slip fault. Based on the offset glacial morphology and radiocarbon dating ages, we estimate the Late Pleistocene-Holocene slip rate to be 10 mm/yr for the central segment of the XFZ, which is consistent with that estimated from the GPS observations and geological evidence as reported previously. Across the central segment of the XFZ, the major Selaha and Zheduotang faults participate a slip rate of 5.8 mm/yr and 3.4 mm/yr, respectively. Detailed investigations of tectonic landforms are essential for the understanding the activity of active faults. Our findings suggest that the left-lateral slipping of the XFZ partitions the deformation of eastward extrusion and northeastward

  8. Mountain front migration and drainage captures related to fault segment linkage and growth: The Polopos transpressive fault zone (southeastern Betics, SE Spain)

    NASA Astrophysics Data System (ADS)

    Giaconia, Flavio; Booth-Rea, Guillermo; Martínez-Martínez, José Miguel; Azañón, José Miguel; Pérez-Romero, Joaquín; Villegas, Irene

    2013-01-01

    The Polopos E-W- to ESE-WNW-oriented dextral-reverse fault zone is formed by the North Alhamilla reverse fault and the North and South Gafarillos dextral faults. It is a conjugate fault system of the sinistral NNE-SSW Palomares fault zone, active from the late most Tortonian (≈7 Ma) up to the late Pleistocene (≥70 ky) in the southeastern Betics. The helicoidal geometry of the fault zone permits to shift SE-directed movement along the South Cabrera reverse fault to NW-directed shortening along the North Alhamilla reverse fault via vertical Gafarillos fault segments, in between. Since the Messinian, fault activity migrated southwards forming the South Gafarillos fault and displacing the active fault-related mountain-front from the north to the south of Sierra de Polopos; whilst recent activity of the North Alhamilla reverse fault migrated westwards. The Polopos fault zone determined the differential uplift between the Sierra Alhamilla and the Tabernas-Sorbas basin promoting the middle Pleistocene capture that occurred in the southern margin of the Sorbas basin. Continued tectonic uplift of the Sierra Alhamilla-Polopos and Cabrera anticlinoria and local subsidence associated to the Palomares fault zone in the Vera basin promoted the headward erosion of the Aguas river drainage that captured the Sorbas basin during the late Pleistocene.

  9. Scissoring Fault Rupture Properties along the Median Tectonic Line Fault Zone, Southwest Japan

    NASA Astrophysics Data System (ADS)

    Ikeda, M.; Nishizaka, N.; Onishi, K.; Sakamoto, J.; Takahashi, K.

    2017-12-01

    The Median Tectonic Line fault zone (hereinafter MTLFZ) is the longest and most active fault zone in Japan. The MTLFZ is a 400-km-long trench parallel right-lateral strike-slip fault accommodating lateral slip components of the Philippine Sea plate oblique subduction beneath the Eurasian plate [Fitch, 1972; Yeats, 1996]. Complex fault geometry evolves along the MTLFZ. The geomorphic and geological characteristics show a remarkable change through the MTLFZ. Extensional step-overs and pull-apart basins and a pop-up structure develop in western and eastern parts of the MTLFZ, respectively. It is like a "scissoring fault properties". We can point out two main factors to form scissoring fault properties along the MTLFZ. One is a regional stress condition, and another is a preexisting fault. The direction of σ1 anticlockwise rotate from N170°E [Famin et al., 2014] in the eastern Shikoku to Kinki areas and N100°E [Research Group for Crustral Stress in Western Japan, 1980] in central Shikoku to N85°E [Onishi et al., 2016] in western Shikoku. According to the rotation of principal stress directions, the western and eastern parts of the MTLFZ are to be a transtension and compression regime, respectively. The MTLFZ formed as a terrain boundary at Cretaceous, and has evolved with a long active history. The fault style has changed variously, such as left-lateral, thrust, normal and right-lateral. Under the structural condition of a preexisting fault being, the rupture does not completely conform to Anderson's theory for a newly formed fault, as the theory would require either purely dip-slip motion on the 45° dipping fault or strike-slip motion on a vertical fault. The fault rupture of the 2013 Barochistan earthquake in Pakistan is a rare example of large strike-slip reactivation on a relatively low angle dipping fault (thrust fault), though many strike-slip faults have vertical plane generally [Avouac et al., 2014]. In this presentation, we, firstly, show deep subsurface

  10. Active Tectonics of Himalayan Faults/Thrusts System in Northern India on the basis of recent & Paleo earthquake Studies

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Biswal, S.; Parija, M. P.

    2016-12-01

    The Himalaya overrides the Indian plate along a decollement fault, referred as the Main Himalayan Thrust (MHT). The 2400 km long Himalayan mountain arc in the northern boundary of the Indian sub-continent is one of the most seismically active regions of the world. The Himalayan Frontal Thrust (HFT) is characterized by an abrupt physiographic and tectonic break between the Himalayan front and the Indo-Gangetic plain. The HFT represents the southern surface expression of the MHT on the Himalayan front. The tectonic zone between the Main Boundary Thrust (MBT) and the HFT encompasses the Himalayan Frontal Fault System (HFFS). The zone indicates late Quaternary-Holocene active deformation. Late Quaternary intramontane basin of Dehradun flanked to the south by the Mohand anticline lies between the MBT and the HFT in Garhwal Sub Himalaya. Slip rate 13-15 mm/yr has been estimated on the HFT based on uplifted strath terrace on the Himalyan front (Wesnousky et al. 2006). An out of sequence active fault, Bhauwala Thrust (BT), is observed between the HFT and the MBT. The Himalayan Frontal Fault System includes MBT, BT, HFT and PF active fault structures (Thakur, 2013). The HFFS structures were developed analogous to proto-thrusts in subduction zone, suggesting that the plate boundary is not a single structure, but series of structures across strike. Seismicity recorded by WIHG shows a concentrated belt of seismic events located in the Main Central Thrust Zone and the physiographic transition zone between the Higher and Lesser Himalaya. However, there is quiescence in the Himalayan frontal zone where surface rupture and active faults are reported. GPS measurements indicate the segment between the southern extent of microseismicity zone and the HFT is locked. The great earthquake originating in the locked segment rupture the plate boundary fault and propagate to the Himalaya front and are registered as surface rupture reactivating the fault in the HFFS.

  11. Geologic and paleoseismic study of the Lavic Lake fault at Lavic Lake Playa, Mojave Desert, Southern California

    USGS Publications Warehouse

    Rymer, M.J.; Seitz, G.G.; Weaver, K.D.; Orgil, A.; Faneros, G.; Hamilton, J.C.; Goetz, C.

    2002-01-01

    event may be younger. There is abundant, subtle evidence for pre-1999 activity of the Lavic Lake fault in the playa area, even though the fault was not mapped near the playa prior to the Hector Mine earthquake. The most notable indicators for long-term presence of the fault are pronounced, persistent vegetation lineaments and uplifted basalt exposures. Primary and secondary slip occurred in 1999 on two southern vegetation lineaments, and minor slip locally formed on a northern lineament; trench exposures across the northern vegetation lineament revealed the post-A.D. 260 earthquake, and a geomorphic trough extends northward into alluvial fan deposits in line with this lineament. The presence of two basalt exposures in Lavic lake playa indicates the presence of persistent compressional steps and uplift along the fault. Fault-line scarps are additional geomorphic markers of repeated slip events in basalt exposures.

  12. Mass movement on Vesta at steep scarps and crater rims

    NASA Astrophysics Data System (ADS)

    Krohn, K.; Jaumann, R.; Otto, K.; Hoogenboom, T.; Wagner, R.; Buczkowski, D. L.; Garry, B.; Williams, D. A.; Yingst, R. A.; Scully, J.; De Sanctis, M. C.; Kneissl, T.; Schmedemann, N.; Kersten, E.; Stephan, K.; Matz, K.-D.; Pieters, C. M.; Preusker, F.; Roatsch, T.; Schenk, P.; Russell, C. T.; Raymond, C. A.

    2014-12-01

    The Quadrangles Av-11 and Av-12 on Vesta are located at the northern rim of the giant Rheasilvia south polar impact basin. The primary geologic units in Av-11 and Av-12 include material from the Rheasilvia impact basin formation, smooth material and different types of impact crater structures (such as bimodal craters, dark and bright crater ray material and dark ejecta material). Av-11 and Av-12 exhibit almost the full range of mass wasting features observed on Vesta, such as slump blocks, spur-and-gully morphologies and landslides within craters. Processes of collapse, slope instability and seismically triggered events force material to slump down crater walls or scarps and produce landslides or rotational slump blocks. The spur-and-gully morphology that is known to form on Mars is also observed on Vesta; however, on Vesta this morphology formed under dry conditions.

  13. Mass Movement on Vesta at Steep Scarps and Crater Rims

    NASA Technical Reports Server (NTRS)

    Krohn, K.; Jaumann, R.; Otto, K.; Hoogenboom, T.; Wagner, R.; Buczkowski, D. L.; Garry, B.; Williams, D. A.; Yingst, R. A.; Scully, J.; hide

    2014-01-01

    The Quadrangles Av-11 and Av-12 on Vesta are located at the northern rim of the giant Rheasilvia south polar impact basin. The primary geologic units in Av-11 and Av-12 include material from the Rheasilvia impact basin formation, smooth material and different types of impact crater structures (such as bimodal craters, dark and bright crater ray material and dark ejecta material). Av-11 and Av-12 exhibit almost the full range of mass wasting features observed on Vesta, such as slump blocks, spur-and-gully morphologies and landslides within craters. Processes of collapse, slope instability and seismically triggered events force material to slump down crater walls or scarps and produce landslides or rotational slump blocks. The spur-and-gully morphology that is known to form on Mars is also observed on Vesta; however, on Vesta this morphology formed under dry conditions.

  14. Geophysical Investigation of the Lake City Fault Zone, Surprise Valley, California, and Implications for Geothermal Circulation

    NASA Astrophysics Data System (ADS)

    McPhee, D. K.; Glen, J. M.; Egger, A. E.; Chuchel, B. A.

    2009-12-01

    New audiomagnetotelluric (AMT), gravity, and magnetic data were collected in Surprise Valley, northwestern Basin and Range, in order to investigate the role that the Lake City Fault Zone (LCFZ) may play in controlling geothermal circulation in the area. Surprise Valley hosts an extensional geothermal system currently undergoing exploration for development on several scales. The focus of much of that exploration has been the LCFZ, a set of NW-SE-trending structures that has been suggested on the basis of (1) low-relief scarps in the NW portion of the zone, (2) dissolved mineral-rich groundwater chemistry along its length, and (3) parallelism with a strong regional fabric that includes the Brothers Fault Zone. The LCFZ extends across the valley at a topographic high, intersecting the N-S-trending basin-bounding faults where major hot springs occur. This relationship suggests that the LCFZ may be a zone of permeability for flow of hydrothermal fluids. Previous potential field data indicate that there is no vertical offset along this fault zone, and little signature at all in either the gravity or magnetic data; along with the lack of surface expression along most of its length, the subsurface geometry of the LCFZ and its influence on geothermal fluid circulation remains enigmatic. The LCFZ therefore provides an ideal opportunity to utilize AMT data, which measures subsurface resistivity and therefore - unlike potential field data - is highly sensitive to the presence of saline fluids. AMT data and additional gravity and magnetic data were collected in 2009 along 3 profiles perpendicular to the LCFZ in order to define the subsurface geometry and conductivity of the fault zone down to depths of ~ 500 m. AMT soundings were collected using the Geometrics Stratagem EH4 system, a four channel, natural and controlled-source tensor system recording in the range of 10 to 92,000 Hz. To augment the low signal in the natural field a transmitter of two horizontal-magnetic dipoles

  15. Temporal variations in extension rate on the Lone Mountain fault and strain distribution in the eastern California shear zone-Walker Lane

    NASA Astrophysics Data System (ADS)

    Hoeft, J. S.; Frankel, K. L.

    2010-12-01

    The eastern California shear zone (ECSZ) and Walker Lane represent an evolving segment of the Pacific-North America plate boundary. Understanding temporal variations in strain accumulation and release along plate boundary structures is critical to assessing how deformation is accommodated throughout the lithosphere. Late Pleistocene displacement along the Lone Mountain fault suggests the Silver Peak-Lone Mountain (SPLM) extensional complex is an important structure in accommodating and transferring strain within the ECSZ and Walker Lane. Using geologic and geomorphic mapping, differential global positioning system surveys, and terrestrial cosmogenic nuclide (TCN) geochronology, we determined rates of extension across the Lone Mountain fault in western Nevada. The Lone Mountain fault displaces the northwestern Lone Mountain and Weepah Hills piedmonts and is the northeastern component of the SPLM extensional complex, a series of down-to-the-northwest normal faults. We mapped seven distinct alluvial fan deposits and dated three of the surfaces using 10Be TCN geochronology, yielding ages of 16.5 ± 1.2 ka, 92 ± 9 ka, and 137 ± 25 ka for the Q3b, Q2c, and Q2b deposits, respectively. The ages were combined with scarp profile measurements across the displaced fans to obtain minimum rates of extension; the Q2b and Q2c surfaces yield an extension rate between 0.1 ± 0.1 and 0.2 ± 01 mm/yr and the Q3b surface yields a rate of 0.2 ± 0.1 to 0.4 ± 0.1 mm/yr, depending on the dip of the fault. Active extension on the Lone Mountain fault suggests that it helps partition strain off of the major strike-slip faults in the northern ECSZ and transfers deformation to the east around the Mina Deflection and northward into the Walker Lane. Combining our results with estimates from other faults accommodating dextral shear in the northern ECSZ reveals an apparent discrepancy between short- and long-term rates of strain accumulation and release. If strain rates have remained constant

  16. Earthquake probabilities for the Wassatch front region in Utah, Idaho, and Wyoming

    USGS Publications Warehouse

    Wong, Ivan G.; Lund, William R.; Duross, Christopher; Thomas, Patricia; Arabasz, Walter; Crone, Anthony J.; Hylland, Michael D.; Luco, Nicolas; Olig, Susan S.; Pechmann, James; Personius, Stephen; Petersen, Mark D.; Schwartz, David P.; Smith, Robert B.; Rowman, Steve

    2016-01-01

    In a letter to The Salt Lake Daily Tribune in September 1883, U.S. Geological Survey (USGS) geologist G.K. Gilbert warned local residents about the implications of observable fault scarps along the western base of the Wasatch Range. The scarps were evidence that large surface-rupturing earthquakes had occurred in the past and more would likely occur in the future. The main actor in this drama is the 350-km-long Wasatch fault zone (WFZ), which extends from central Utah to southernmost Idaho. The modern Wasatch Front urban corridor, which follows the valleys on the WFZ’s hanging wall between Brigham City and Nephi, is home to nearly 80% of Utah’s population of 3 million. Adding to this circumstance of “lots of eggs in one basket,” more than 75% of Utah’s economy is concentrated along the Wasatch Front in Utah’s four largest counties, literally astride the five central and most active segments of the WFZ.

  17. Heterogeneity in friction strength of an active fault by incorporation of fragments of the surrounding host rock

    NASA Astrophysics Data System (ADS)

    Kato, Naoki; Hirono, Tetsuro

    2016-07-01

    To understand the correlation between the mesoscale structure and the frictional strength of an active fault, we performed a field investigation of the Atera fault at Tase, central Japan, and made laboratory-based determinations of its mineral assemblages and friction coefficients. The fault zone contains a light gray fault gouge, a brown fault gouge, and a black fault breccia. Samples of the two gouges contained large amounts of clay minerals such as smectite and had low friction coefficients of approximately 0.2-0.4 under the condition of 0.01 m s-1 slip velocity and 0.5-2.5 MP confining pressure, whereas the breccia contained large amounts of angular quartz and feldspar and had a friction coefficient of 0.7 under the same condition. Because the fault breccia closely resembles the granitic rock of the hangingwall in composition, texture, and friction coefficient, we interpret the breccia as having originated from this protolith. If the mechanical incorporation of wall rocks of high friction coefficient into fault zones is widespread at the mesoscale, it causes the heterogeneity in friction strength of fault zones and might contribute to the evolution of fault-zone architectures.

  18. Geomorphic evidence of active faults growth in the Norcia seismic area (central Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Materazzi, Marco; Aringoli, Domenico; Farabollini, Piero; Giacopetti, Marco; Pambianchi, Gilberto; Tondi, Emanuele; Troiani, Francesco

    2016-04-01

    Fault-growth by segment linkage is one of the fundamental processes controlling the evolution, in both time and the space, of fault systems. In fact, step-like trajectories shown by length-displacement diagrams for individual fault arrays suggest that the development of evolved structures result by the linkage of single fault segments. The type of interaction between faults and the rate at which faults reactivate not only control the long term tectonic evolution of an area, but also influence the seismic hazard, as earthquake recurrence intervals tend to decrease as fault slip rate increase. The use of Geomorphological investigations represents an important tool to constrain the latest history of active faults. In this case, attention has to be given to recognize morphostructural, historical, environmental features at the surface, since they record the long-term seismic behavior due to the fault growth processes (Tondi and Cello, 2003). The aim of this work is to investigate the long term morphotectonic evolution of a well know seismic area in the central Apennines: the Norcia intramontane basin (Aringoli et al., 2005). The activity of the Norcia seismic area is characterized by moderate events and by strong earthquakes with maximum intensities of X-XI degrees MCS and equivalent magnitudes around 6.5±7.0 (CPTI, 2004). Based on the morphostructural features as well as on the historical seismicity of the area, we may divide the Norcia seismic area into three minor basins roughly NW-SE oriented: the Preci sub-basin in the north; the S. Scolastica and the Castel S. Maria sub-basins in the south. The wider basin (S. Scolastica) is separated from the other two by ridges transversally oriented with respect the basins themselves; they are the geomorphological response to the tectonic deformation which characterizes the whole area. Other geomorphological evidences of tectonic activity are represented by deformation of old summit erosional surfaces, hydrographic network

  19. Co-seismic ruptures of the 12 May 2008, Ms 8.0 Wenchuan earthquake, Sichuan: East-west crustal shortening on oblique, parallel thrusts along the eastern edge of Tibet

    USGS Publications Warehouse

    Liu-Zeng, J.; Zhang, Z.; Wen, L.; Tapponnier, P.; Sun, Jielun; Xing, X.; Hu, G.; Xu, Q.; Zeng, L.; Ding, L.; Ji, C.; Hudnut, K.W.; van der Woerd, J.

    2009-01-01

    The Ms 8.0, Wenchuan earthquake, which devastated the mountainous western rim of the Sichuan basin in central China, produced a surface rupture over 200??km-long with oblique thrust/dextral slip and maximum scarp heights of ~ 10??m. It thus ranks as one of the world's largest continental mega-thrust events in the last 150??yrs. Field investigation shows clear surface breaks along two of the main branches of the NE-trending Longmen Shan thrust fault system. The principal rupture, on the NW-dipping Beichuan fault, displays nearly equal amounts of thrust and right-lateral slip. Basin-ward of this rupture, another continuous surface break is observed for over 70??km on the parallel, more shallowly NW-dipping Pengguan fault. Slip on this latter fault was pure thrusting, with a maximum scarp height of ~ 3.5??m. This is one of the very few reported instances of crustal-scale co-seismic slip partitioning on parallel thrusts. This out-of-sequence event, with distributed surface breaks on crustal mega-thrusts, highlights regional, ~ EW-directed, present day crustal shortening oblique to the Longmen Shan margin of Tibet. The long rupture and large offsets with strong horizontal shortening that characterize the Wenchuan earthquake herald a re-evaluation of tectonic models anticipating little or no active shortening of the upper crust along this edge of the plateau, and require a re-assessment of seismic hazard along potentially under-rated active faults across the densely populated western Sichuan basin and mountains. ?? 2009 Elsevier B.V.

  20. Determining the Positions of Seismically Active Faults in Platform Regions Based on the Integrated Profile Observations

    NASA Astrophysics Data System (ADS)

    Levshenko, V. T.; Grigoryan, A. G.

    2018-03-01

    By the examples of the Roslavl'skii, Grafskii, and Platava-Varvarinskii faults, the possibility is demonstrated of mapping the geological objects by the measurement algorithm that includes successively measuring the spectra of microseisms at the points of the measurement network by movable instruments and statistical accumulation of the ratios of the power spectra of the amplitudes. Based on this technique, the positions of these seismically active faults are determined by the integrated profile observations of the parameters of microseismic and radon fields. The refined positions of the faults can be used in estimating the seismic impacts on the critical objects in the vicinity of these faults.

  1. Geophysical anatomy of counter-slope scarps in sedimentary flysch rocks (Outer Western Carpathians)

    NASA Astrophysics Data System (ADS)

    Tábořík, P.; Lenart, J.; Blecha, V.; Vilhelm, J.; Turský, O.

    2017-01-01

    A multidisciplinary geophysical survey, consisting of electrical resistivity tomography (ERT), ground penetrating radar (GPR), shallow seismic refraction (SSR) and gravity survey (GS), was used to investigate the counter-slope scarps, one of the typical manifestations of the relaxed zones of rock massifs, and the possible initial stages of deep-seated landslides (DSLs). Two upper parts of the extensive DSLs within the Moravskoslezské Beskydy Mountains (Outer Western Carpathians - OWC) built by the sedimentary flysch rock were chosen as the testing sites. A combined geophysical survey on the flysch rocks was performed on both localities to enhance our present findings. The survey revealed that the ERT is able to reliably detect underground discontinuities, which are manifested at the ground surface by one of the typical landforms (tension cracks, trenches, pseudokarst sinkholes, double-crested ridges and counter-slope scarps). Previous studies suggested that bedrock discontinuities should be depicted by high-resistivity features within ERT surveying. According to SSR and GS, expected zones of weakened rock massif were not confirmed directly underneath the superficial landforms, but they were shifted. Based on the SSR and GS measurements, the depicted high-contrast transitions between high- and low-resistivity domains within the ERT profiles were newly identified as possible manifestation of bedrock discontinuities. The results of GPR measurements give only limited information on the sedimentary flysch rocks, due to shallow penetrating depth and locally strong signal attenuation. The combined results of multidisciplinary geophysical surveying confirmed an importance of employing more than one geophysical technique for integrated interpretations of measured data. Integrated interpretations of the measured geophysical data provided a new insight into massif disintegration and the geomorphic origin of the landforms related to the DSL.

  2. Distribution of Subsurface Flexure zone caused by Uemachi Fault, Japan and its activity

    NASA Astrophysics Data System (ADS)

    Kitada, N.; Inoue, N.; Takemura, K.; Ito, H.; Mitamura, M.

    2012-12-01

    In Osaka, Uemachi Fault is one of the famous active faults. It across the center of Osaka and lies in N-S direction mainly and is more than 40 km in length. The faults bound sedimentary basins, where thick sedimentary deposits of the Pliocene-Quaternary Osaka Group have accumulated. The deposits consist primarily of sand and marine and non-marine clay, and the clay layers are key markers for the interpretation of glacial and interglacial cycles. In this study, we estimate the width of the flexure zone using a geotechnical borehole database. GI database collects more than 40,000 boreholes and includes both geological information and soil properties around Osaka by the Geo-database Information Committee of Kansai Area. Our results indicate that the deformation associated with the flexure zone is distributed primarily along the splay fault (NE-SW) and not along the main fault, suggesting that the splay fault might be the primary fault at present. We first examined the borehole data along the seismic reflection line and then considered the surrounding area. An Upper Pleistocene marine clay (Ma12) is a good indicator of the flexure zone. We constructed many cross sections in and around the fault zone and classified the deformation form into three categories around the flexure zone. The results of this study allowed us to map the distribution of folding in a zone in the west of the Osaka area. Folding can be classified into three types: (1) Ma12 folding, (2) Ma12 folding that does not continue toward the hanging wall, and (3) folding or displacement of old marine clay. These folding zone trends are N-W strike however these trace are serpentine. These folding zone information are not in worth to estimate the source fault, however these zone will be more serious damaged when the earthquake occurred. Our result agrees well with the average displacement speed of about 0.4 m/ka that was derived by the Headquarters for Earthquake Research Promotion of the Ministry of Education

  3. A structural transect across the Mongolian Western Altai: Active transpressional mountain building in central Asia

    NASA Astrophysics Data System (ADS)

    Dickson Cunningham, W.; Windley, Brian F.; Dorjnamjaa, D.; Badamgarov, G.; Saandar, M.

    1996-02-01

    We present results from the first detailed geological transect across the Mongolian Western Altai using modern methods of structural geology and fault kinematic analysis. Our purpose was to document the structures responsible for Cenozoic uplift of the range in order to better understand processes of intracontinental mountain building. Historical right-lateral strike-slip and oblique-slip earthquakes have previously been documented from the Western Altai, and many mountain fronts are marked by active fault scarps indicating current tectonic activity and uplift. The dominant structures in the range are long (>200 km) NNW trending right-lateral strike-slip faults. Our transect can be divided into three separate domains that contain active, right-lateral strike-slip master faults and thrust faults with opposing vergence. The current deformation regime is thus transpressional. Each domain has an asymmetric flower structure cross-sectional geometry, and the transect as a whole is interpreted as three separate large flower structures. The mechanism of uplift along the transect appears to be horizontal and vertical growth of flower structures rooted into the dominant right-lateral strike-slip faults. The major Bulgan Fault forms the southern structural boundary to the range and is a 3.5-km-wide brittle-ductile zone that has accommodated reverse and left-lateral strike-slip displacements. It appears to be linked to the North Gobi Fault Zone to the east and Irtysh Fault zone to the west and thus may be over 900 km in length. Two major ductile left-lateral extensional shear zones were identified in the interior of the range that appear to be preserved structures related to a regional Paleozoic or Mesozoic extensional event. Basement rocks along the transect are dominantly metavolcanic, metasedimentary, or intrusive units probably representing a Paleozoic accretionary prism and arc complex. The extent to which Cenozoic uplift has been accommodated by reactivation of older

  4. Levelling Profiles and a GPS Network to Monitor the Active Folding and Faulting Deformation in the Campo de Dalias (Betic Cordillera, Southeastern Spain)

    PubMed Central

    Marín-Lechado, Carlos; Galindo-Zaldívar, Jesús; Gil, Antonio José; Borque, María Jesús; de Lacy, María Clara; Pedrera, Antonio; López-Garrido, Angel Carlos; Alfaro, Pedro; García-Tortosa, Francisco; Ramos, Maria Isabel; Rodríguez-Caderot, Gracia; Rodríguez-Fernández, José; Ruiz-Constán, Ana; de Galdeano-Equiza, Carlos Sanz

    2010-01-01

    The Campo de Dalias is an area with relevant seismicity associated to the active tectonic deformations of the southern boundary of the Betic Cordillera. A non-permanent GPS network was installed to monitor, for the first time, the fault- and fold-related activity. In addition, two high precision levelling profiles were measured twice over a one-year period across the Balanegra Fault, one of the most active faults recognized in the area. The absence of significant movement of the main fault surface suggests seismogenic behaviour. The possible recurrence interval may be between 100 and 300 y. The repetitive GPS and high precision levelling monitoring of the fault surface during a long time period may help us to determine future fault behaviour with regard to the existence (or not) of a creep component, the accumulation of elastic deformation before faulting, and implications of the fold-fault relationship. PMID:22319309

  5. Active transfer fault zone linking a segmented extensional system (Betics, southern Spain): Insight into heterogeneous extension driven by edge delamination

    NASA Astrophysics Data System (ADS)

    Martínez-Martínez, José Miguel; Booth-Rea, Guillermo; Azañón, José Miguel; Torcal, Federico

    2006-08-01

    Pliocene and Quaternary tectonic structures mainly consisting of segmented northwest-southeast normal faults, and associated seismicity in the central Betics do not agree with the transpressive tectonic nature of the Africa-Eurasia plate boundary in the Ibero-Maghrebian region. Active extensional deformation here is heterogeneous, individual segmented normal faults being linked by relay ramps and transfer faults, including oblique-slip and both dextral and sinistral strike-slip faults. Normal faults extend the hanging wall of an extensional detachment that is the active segment of a complex system of successive WSW-directed extensional detachments which have thinned the Betic upper crust since middle Miocene. Two areas, which are connected by an active 40-km long dextral strike-slip transfer fault zone, concentrate present-day extension. Both the seismicity distribution and focal mechanisms agree with the position and regime of the observed faults. The activity of the transfer zone during middle Miocene to present implies a mode of extension which must have remained substantially the same over the entire period. Thus, the mechanisms driving extension should still be operating. Both the westward migration of the extensional loci and the high asymmetry of the extensional systems can be related to edge delamination below the south Iberian margin coupled with roll-back under the Alborán Sea; involving the asymmetric westward inflow of asthenospheric material under the margins.

  6. Paleoearthquakes of the past ~2500 years at the Dead Mouse site, west-central Denali fault at the Nenana River, Alaska

    NASA Astrophysics Data System (ADS)

    Carlson, K.; Bemis, S. P.; Toke, N. A.; Bishop, B.; Taylor, P.

    2015-12-01

    Understanding the record of earthquakes along the Denali Fault (DF) is important for resource and infrastructure development and presents the potential to test earthquake rupture models in a tectonic environment with a larger ratio of event recurrence to geochronological uncertainty than well studied plate boundary faults such as the San Andreas. However, the fault system is over 1200 km in length and has proven challenging to identify paleoseismic sites that preserve more than 2-3 Paleoearthquakes (PEQ). In 2012 and 2015 we developed the 'Dead Mouse' site, providing the first long PEQ record west of the 2002 rupture extent. This site is located on the west-central segment of the DF near the southernmost intersection of the George Parks Hwy and the Nenana River (63.45285, -148.80249). We hand-excavated three fault-perpendicular trenches, including a fault-parallel extension that we excavated and recorded in a progressive sequence. We used Structure from Motion software to build mm-scale 3D models of the exposures. These models allowed us to produce orthorectified photomosaics for hand logging at 1:5 scale. We document evidence for 4-5 surface rupturing earthquakes that have deformed the upper 2.5 m of stratigraphy. Age control from our preliminary 2012 investigation indicates these events occurred within the past ~2,500 years. Evidence for these events include offset units, filled fissures, upward fault terminations, angular unconformities and minor scarp-derived colluvial deposits. Multiple lines of evidence from the primary fault zones and fault splays are apparent for each event. We are testing these correlations by constructing a georeferenced 3D site model and running an additional 20 geochronology samples including woody macrofossils, detrital and in-situ charcoal, and samples for post-IR IRSL from positions that should closely constrain stratigraphic evidence for earthquakes. We expect this long PEQ history to provide a critical test for future modeling of

  7. Geodetic Network Design and Optimization on the Active Tuzla Fault (Izmir, Turkey) for Disaster Management

    PubMed Central

    Halicioglu, Kerem; Ozener, Haluk

    2008-01-01

    Both seismological and geodynamic research emphasize that the Aegean Region, which comprises the Hellenic Arc, the Greek mainland and Western Turkey is the most seismically active region in Western Eurasia. The convergence of the Eurasian and African lithospheric plates forces a westward motion on the Anatolian plate relative to the Eurasian one. Western Anatolia is a valuable laboratory for Earth Science research because of its complex geological structure. Izmir is a large city in Turkey with a population of about 2.5 million that is at great risk from big earthquakes. Unfortunately, previous geodynamics studies performed in this region are insufficient or cover large areas instead of specific faults. The Tuzla Fault, which is aligned trending NE–SW between the town of Menderes and Cape Doganbey, is an important fault in terms of seismic activity and its proximity to the city of Izmir. This study aims to perform a large scale investigation focusing on the Tuzla Fault and its vicinity for better understanding of the region's tectonics. In order to investigate the crustal deformation along the Tuzla Fault and Izmir Bay, a geodetic network has been designed and optimizations were performed. This paper suggests a schedule for a crustal deformation monitoring study which includes research on the tectonics of the region, network design and optimization strategies, theory and practice of processing. The study is also open for extension in terms of monitoring different types of fault characteristics. A one-dimensional fault model with two parameters – standard strike-slip model of dislocation theory in an elastic half-space – is formulated in order to determine which sites are suitable for the campaign based geodetic GPS measurements. Geodetic results can be used as a background data for disaster management systems. PMID:27873783

  8. Geodetic Network Design and Optimization on the Active Tuzla Fault (Izmir, Turkey) for Disaster Management.

    PubMed

    Halicioglu, Kerem; Ozener, Haluk

    2008-08-19

    Both seismological and geodynamic research emphasize that the Aegean Region, which comprises the Hellenic Arc, the Greek mainland and Western Turkey is the most seismically active region in Western Eurasia. The convergence of the Eurasian and African lithospheric plates forces a westward motion on the Anatolian plate relative to the Eurasian one. Western Anatolia is a valuable laboratory for Earth Science research because of its complex geological structure. Izmir is a large city in Turkey with a population of about 2.5 million that is at great risk from big earthquakes. Unfortunately, previous geodynamics studies performed in this region are insufficient or cover large areas instead of specific faults. The Tuzla Fault, which is aligned trending NE-SW between the town of Menderes and Cape Doganbey, is an important fault in terms of seismic activity and its proximity to the city of Izmir. This study aims to perform a large scale investigation focusing on the Tuzla Fault and its vicinity for better understanding of the region's tectonics. In order to investigate the crustal deformation along the Tuzla Fault and Izmir Bay, a geodetic network has been designed and optimizations were performed. This paper suggests a schedule for a crustal deformation monitoring study which includes research on the tectonics of the region, network design and optimization strategies, theory and practice of processing. The study is also open for extension in terms of monitoring different types of fault characteristics. A one-dimensional fault model with two parameters - standard strike-slip model of dislocation theory in an elastic half-space - is formulated in order to determine which sites are suitable for the campaign based geodetic GPS measurements. Geodetic results can be used as a background data for disaster management systems.

  9. Holocene earthquakes of magnitude 7 during westward escape of the Olympic Mountains, Washington

    USGS Publications Warehouse

    Nelson, Alan R.; Personius, Stephen; Wells, Ray; Schermer, Elizabeth R.; Bradley, Lee-Ann; Buck, Jason; Reitman, Nadine G.

    2017-01-01

    The Lake Creek–Boundary Creek fault, previously mapped in Miocene bedrock as an oblique thrust on the north flank of the Olympic Mountains, poses a significant earthquake hazard. Mapping using 2015 light detection and ranging (lidar) confirms 2004 lidar mapping of postglacial (<13  ka"><13  ka) and Holocene fault scarps along the 22‐km‐long eastern section of the fault and documents Holocene scarps that extend ≥14  km">≥14  km along a splay fault, the Sadie Creek fault, west of Lake Crescent. Scarp morphology suggests repeated earthquake ruptures along the eastern section of the Lake Creek–Boundary Creek fault and the Sadie Creek fault since ∼13  ka">∼13  ka. Right‐lateral (∼11–28  m">∼11–28  m) and vertical (1–2 m) cumulative fault offsets suggest slip rates of ∼1–2  mm/yr">∼1–2  mm/yr Stratigraphic and age‐model data from five trenches perpendicular to scarps at four sites on the eastern section of the fault show evidence of 3–5 surface‐rupturing earthquakes. Near‐vertical fault dips and upward‐branching fault patterns in trenches, abrupt changes in the thickness of stratigraphic units across faults, and variations in vertical displacement of successive stratigraphic units along fault traces also suggest a large lateral component of slip. Age models suggest two earthquakes date from 1.3±0.8">1.3±0.8 and 2.9±0.6  ka">2.9±0.6  ka; evidence and ages for 2–3 earlier earthquakes are less certain. Assuming 3–5 postglacial earthquakes, lateral and vertical cumulative fault offsets yield average slip per earthquake of ∼4.6  m">∼4.6  m, a lateral‐to‐vertical slip ratio of ∼10:1">∼10:1, and a recurrence interval of 3.5±1.0  ka">3.5±1.0  ka. Empirical relations yield moment magnitude estimates of M 7.2–7.5 (slip per earthquake) and 7.1–7.3 (56 km maximum rupture length). An apparent left‐lateral Miocene to right

  10. A multidisciplinary approach to characterize the geometry of active faults: the example of Mt. Massico, Southern Italy

    NASA Astrophysics Data System (ADS)

    Luiso, P.; Paoletti, V.; Nappi, R.; La Manna, M.; Cella, F.; Gaudiosi, G.; Fedi, M.; Iorio, M.

    2018-06-01

    We present the results of a multidisciplinary and multiscale study at Mt. Massico, Southern Italy. Mt. Massico is a carbonate horst located along the Campanian-Latial margin of the Tyrrhenian basin, bordered by two main NE-SW systems of faults, and by NW-SE and N-S trending faults. Our analysis deals with the modelling of the main NE-SW faults. These faults were capable during Plio-Pleistocene and are still active today, even though with scarce and low-energy seismicity (Mw maximum = 4.8). We inferred the pattern of the fault planes through a combined interpretation of 2-D hypocentral sections, a multiscale analysis of gravity field and geochemical data. This allowed us to characterize the geometry of these faults and infer their large depth extent. This region shows very striking gravimetric signatures, well-known Quaternary faults, moderate seismicity and a localized geothermal fluid rise. Thus, this analysis represents a valid case study for testing the effectiveness of a multidisciplinary approach, and employing it in areas with buried and/or silent faults of potential high hazard, such as in the Apennine chain.

  11. The Seismic Stratigraphic Record of Quaternary Deformation Across the North Anatolian Fault System in Southern Marmara Sea, Turkey

    NASA Astrophysics Data System (ADS)

    Sorlien, C. C.; Seeber, L.; Diebold, J.; Shillington, D.; Steckler, M. S.; Gurcay, S.; Kucuk, H. M.; Akhun, S. D.; Timur, D.; Dondurur, D.; Kurt, H.; Perincek, E.; Ozer, P.; Imren, C.; Coskun, S.; Buyukasik, E.; Cevatoglu, M.; Cifci, G.; Demirbag, E.

    2008-12-01

    We collected high-resolution multichannel seismic reflection (MCS) and chirp seismic data across the North Anatolian Fault (NAF) system in the Marmara Sea aboard the R/V K. Piri Reis during July 2008. Three 1200+ m-deep bathymetric basins are arrayed along the North strand of the NAF. This strand passes closest to Istanbul and is considered to carry most of the current and late Holocene plate motion, but other strands to the south are active and may have been more important in the past. The transverse Central Marmara Ridge, formed by a contractional anticline, separates two of the basins. Filled sedimentary basins underlie the southern shelf, and, adjacent to that shelf, the partly-filled North Imrali basin underlies a 400 m-deep platform. Our chirp data image several strands of the southern fault system, 50 km south of the northern NAF on the inner (southern) shelf, that offset strata which postdate the ~12 ka marine transgression. Another W-striking fault that deforms post-12 ka strata cuts the mid-southern shelf. A WNW-striking segment of the Imrali fault system is associated with normal-separation, 300 m-high sea floor scarps that separate the shelf from the North Imrali basin. This basin is cut by numerous NW-striking normal-separation faults, some deforming the sea floor. At least 4 complexes of shelf edge deltas, whose tops were formed near sea level or lake level, are stacked between 500 and 900 m depth in this downthrown block of the Imrali fault. The originally sub- horizontal tops of each delta are now locally progressively tilted and folded near an ENE-striking branch of the Imrali fault (known as the Yalova fault). Lacking stratigraphic control, we infer that the deltas represent glacial intervals spaced at 100 ka during the late Pleistocene. Assuming a locally constant subsidence rate, with lowstands near -90 m, and the observed 130 m vertical spacing between the deltas, subsidence rates would be ~1.3 mm/yr, and the youngest well-preserved delta would

  12. Progressive failure during the 1596 Keicho earthquakes on the Median Tectonic Line active fault zone, southwest Japan

    NASA Astrophysics Data System (ADS)

    Ikeda, M.; Toda, S.; Nishizaka, N.; Onishi, K.; Suzuki, S.

    2015-12-01

    Rupture patterns of a long fault system are controlled by spatial heterogeneity of fault strength and stress associated with geometrical characteristics and stress perturbation history. Mechanical process for sequential ruptures and multiple simultaneous ruptures, one of the characteristics of a long fault such as the North Anatolian fault, governs the size and frequency of large earthquakes. Here we introduce one of the cases in southwest Japan and explore what controls rupture initiation, sequential ruptures and fault branching on a long fault system. The Median Tectonic Line active fault zone (hereinafter MTL) is the longest and most active fault in Japan. Based on historical accounts, a series of M ≥ 7 earthquakes occurred on at least a 300-km-long portion of the MTL in 1596. On September 1, the first event occurred on the Kawakami fault segment, in Central Shikoku, and the subsequent events occurred further west. Then on September 5, another rupture initiated from the Central to East Shikoku and then propagated toward the Rokko-Awaji fault zone to Kobe, a northern branch of the MTL, instead of the eastern main extent of the MTL. Another rupture eventually extended to near Kyoto. To reproduce this progressive failure, we applied two numerical models: one is a coulomb stress transfer; the other is a slip-tendency analysis under the tectonic stress. We found that Coulomb stress imparted from historical ruptures have triggered the subsequent ruptures nearby. However, stress transfer does not explain beginning of the sequence and rupture directivities. Instead, calculated slip-tendency values show highly variable along the MTL: high and low seismic potential in West and East Shikoku. The initiation point of the 1596 progressive failure locates near the boundary in the slip-tendency values. Furthermore, the slip-tendency on the Rokko-Awaji fault zone is far higher than that of the MTL in Wakayama, which may explain the rupture directivity toward Kobe-Kyoto.

  13. Fault-Related Sanctuaries

    NASA Astrophysics Data System (ADS)

    Piccardi, L.

    2001-12-01

    Beyond the study of historical surface faulting events, this work investigates the possibility, in specific cases, of identifying pre-historical events whose memory survives in myths and legends. The myths of many famous sacred places of the ancient world contain relevant telluric references: "sacred" earthquakes, openings to the Underworld and/or chthonic dragons. Given the strong correspondence with local geological evidence, these myths may be considered as describing natural phenomena. It has been possible in this way to shed light on the geologic origin of famous myths (Piccardi, 1999, 2000 and 2001). Interdisciplinary researches reveal that the origin of several ancient sanctuaries may be linked in particular to peculiar geological phenomena observed on local active faults (like ground shaking and coseismic surface ruptures, gas and flames emissions, strong underground rumours). In many of these sanctuaries the sacred area is laid directly above the active fault. In a few cases, faulting has affected also the archaeological relics, right through the main temple (e.g. Delphi, Cnidus, Hierapolis of Phrygia). As such, the arrangement of the cult site and content of relative myths suggest that specific points along the trace of active faults have been noticed in the past and worshiped as special `sacred' places, most likely interpreted as Hades' Doors. The mythological stratification of most of these sanctuaries dates back to prehistory, and points to a common derivation from the cult of the Mother Goddess (the Lady of the Doors), which was largely widespread since at least 25000 BC. The cult itself was later reconverted into various different divinities, while the `sacred doors' of the Great Goddess and/or the dragons (offspring of Mother Earth and generally regarded as Keepers of the Doors) persisted in more recent mythologies. Piccardi L., 1999: The "Footprints" of the Archangel: Evidence of Early-Medieval Surface Faulting at Monte Sant'Angelo (Gargano, Italy

  14. Active faults of the Baikal depression

    USGS Publications Warehouse

    Levi, K.G.; Miroshnichenko, A.I.; San'kov, V. A.; Babushkin, S.M.; Larkin, G.V.; Badardinov, A.A.; Wong, H.K.; Colman, S.; Delvaux, D.

    1997-01-01

    The Baikal depression occupies a central position in the system of the basins of the Baikal Rift Zone and corresponds to the nucleus from which the continental lithosphere began to open. For different reasons, the internal structure of the Lake Baikal basin remained unknown for a long time. In this article, we present for the first time a synthesis of the data concerning the structure of the sedimentary section beneath Lake Baikal, which were obtained by complex seismic and structural investigations, conducted mainly from 1989 to 1992. We make a brief description of the most interesting seismic profiles which provide a rough idea of a sedimentary unit structure, present a detailed structural interpretation and show the relationship between active faults in the lake, heat flow anomalies and recent hydrothermalism.

  15. Paleoseismology of the Nephi Segment of the Wasatch Fault Zone, Juab County, Utah - Preliminary Results From Two Large Exploratory Trenches at Willow Creek

    USGS Publications Warehouse

    Machette, Michael N.; Crone, Anthony J.; Personius, Stephen F.; Mahan, Shannon; Dart, Richard L.; Lidke, David J.; Olig, Susan S.

    2007-01-01

    In 2004, we identified a small parcel of U.S. Forest Service land at the mouth of Willow Creek (about 5 km west of Mona, Utah) that was suitable for trenching. At the Willow Creek site, which is near the middle of the southern strand of the Nephi segment, the WFZ has vertically displaced alluvial-fan deposits >6-7 m, forming large, steep, multiple-event scarps. In May 2005, we dug two 4- to 5-m-deep backhoe trenches at the Willow Creek site, identified three colluvial wedges in each trench, and collected samples of charcoal and A-horizon organic material for AMS (acceleration mass spectrometry) radiocarbon dating, and sampled fine-grained eolian and colluvial sediment for luminescence dating. The trenches yielded a stratigraphic assemblage composed of moderately coarse-grained fluvial and debris-flow deposits and discrete colluvial wedges associated with three faulting events (P1, P2, and P3). About one-half of the net vertical displacement is accommodated by monoclinal tilting of fan deposits on the hanging-wall block, possibly related to massive ductile landslide deposits that are present beneath the Willow Creek fan. The timing of the three surface-faulting events is bracketed by radiocarbon dates and results in a much different fault chronology and higher slip rates than previously considered for this segment of the Wasatch fault zone.

  16. Fault linkage and continental breakup

    NASA Astrophysics Data System (ADS)

    Cresswell, Derren; Lymer, Gaël; Reston, Tim; Stevenson, Carl; Bull, Jonathan; Sawyer, Dale; Morgan, Julia

    2017-04-01

    The magma-poor rifted margin off the west coast of Galicia (NW Spain) has provided some of the key observations in the development of models describing the final stages of rifting and continental breakup. In 2013, we collected a 68 x 20 km 3D seismic survey across the Galicia margin, NE Atlantic. Processing through to 3D Pre-stack Time Migration (12.5 m bin-size) and 3D depth conversion reveals the key structures, including an underlying detachment fault (the S detachment), and the intra-block and inter-block faults. These data reveal multiple phases of faulting, which overlap spatially and temporally, have thinned the crust to between zero and a few km thickness, producing 'basement windows' where crustal basement has been completely pulled apart and sediments lie directly on the mantle. Two approximately N-S trending fault systems are observed: 1) a margin proximal system of two linked faults that are the upward extension (breakaway faults) of the S; in the south they form one surface that splays northward to form two faults with an intervening fault block. These faults were thus demonstrably active at one time rather than sequentially. 2) An oceanward relay structure that shows clear along strike linkage. Faults within the relay trend NE-SW and heavily dissect the basement. The main block bounding faults can be traced from the S detachment through the basement into, and heavily deforming, the syn-rift sediments where they die out, suggesting that the faults propagated up from the S detachment surface. Analysis of the fault heaves and associated maps at different structural levels show complementary fault systems. The pattern of faulting suggests a variation in main tectonic transport direction moving oceanward. This might be interpreted as a temporal change during sequential faulting, however the transfer of extension between faults and the lateral variability of fault blocks suggests that many of the faults across the 3D volume were active at least in part

  17. Distributed Fault-Tolerant Control of Networked Uncertain Euler-Lagrange Systems Under Actuator Faults.

    PubMed

    Chen, Gang; Song, Yongduan; Lewis, Frank L

    2016-05-03

    This paper investigates the distributed fault-tolerant control problem of networked Euler-Lagrange systems with actuator and communication link faults. An adaptive fault-tolerant cooperative control scheme is proposed to achieve the coordinated tracking control of networked uncertain Lagrange systems on a general directed communication topology, which contains a spanning tree with the root node being the active target system. The proposed algorithm is capable of compensating for the actuator bias fault, the partial loss of effectiveness actuation fault, the communication link fault, the model uncertainty, and the external disturbance simultaneously. The control scheme does not use any fault detection and isolation mechanism to detect, separate, and identify the actuator faults online, which largely reduces the online computation and expedites the responsiveness of the controller. To validate the effectiveness of the proposed method, a test-bed of multiple robot-arm cooperative control system is developed for real-time verification. Experiments on the networked robot-arms are conduced and the results confirm the benefits and the effectiveness of the proposed distributed fault-tolerant control algorithms.

  18. Liquefaction along Late Pleistocene to early Holocene Faults as Revealed by Lidar in Northwest Tasmania, Australia

    NASA Astrophysics Data System (ADS)

    Webb, J.; Gardner, T.

    2016-12-01

    In northwest Tasmania well-preserved mid-Holocene beach ridges with maximum radiocarbon ages of 5.25 ka occur along the coast; inland are a parallel set of lower relief beach ridges of probable MIS 5e age. The latter are cut by northeast-striking faults clearly visible on LIDAR images, with a maximum vertical displacement (evident as difference in topographic elevation) of 3 m. Also distinct on the LIDAR images are large sand boils along the fault lines; they are up to 5 m in diameter and 2-3 m high and mostly occur on the hanging wall close to the fault traces. Without LIDAR it would have been almost impossible to distinguish either the fault scarps or the sand boils. Excavations through the sand boils show that they are massive, with no internal structure, suggesting that they formed in a single event. They are composed of well-sorted, very fine white sand, identical to the sand in the underlying beach ridges. The sand boils overlie a peaty paleosol; this formed in the tea-tree swamp that formerly covered the area, and has been offset along the faults. Radiocarbon dating of the buried organic-rich paleosol gave ages of 14.8-7.2 ka, suggesting that the faulting is latest Pleistocene to early Holocene in age; it occurred prior to deposition of the mid-Holocene beach ridges, which are not offset. The beach ridge sediments are up to 7 m thick and contain an iron-cemented hard pan 1-3 m below the surface. The water table is very shallow and close to the ground surface, so the sands of the beach ridges are mostly saturated. During faulting these sands experienced extensive liquefaction. The resulting sand boils rose to a substantial height of 2-3 m, probably possibly reflecting the elevation of the potentiometric surface within the confined part of the beach ridge sediments below the iron-cemented hard pan. Motion on the faults was predominantly dip slip (shown by an absence of horizontal offset) and probably reverse, which is consistent with the present-day northwest

  19. Active Faults and Seismic Sources of the Middle East Region: Earthquake Model of the Middle East (EMME) Project

    NASA Astrophysics Data System (ADS)

    Gulen, L.; EMME WP2 Team*

    2011-12-01

    The Earthquake Model of the Middle East (EMME) Project is a regional project of the GEM (Global Earthquake Model) project (http://www.emme-gem.org/). The EMME project covers Turkey, Georgia, Armenia, Azerbaijan, Syria, Lebanon, Jordan, Iran, Pakistan, and Afghanistan. Both EMME and SHARE projects overlap and Turkey becomes a bridge connecting the two projects. The Middle East region is tectonically and seismically very active part of the Alpine-Himalayan orogenic belt. Many major earthquakes have occurred in this region over the years causing casualties in the millions. The EMME project consists of three main modules: hazard, risk, and socio-economic modules. The EMME project uses PSHA approach for earthquake hazard and the existing source models have been revised or modified by the incorporation of newly acquired data. The most distinguishing aspect of the EMME project from the previous ones is its dynamic character. This very important characteristic is accomplished by the design of a flexible and scalable database that permits continuous update, refinement, and analysis. An up-to-date earthquake catalog of the Middle East region has been prepared and declustered by the WP1 team. EMME WP2 team has prepared a digital active fault map of the Middle East region in ArcGIS format. We have constructed a database of fault parameters for active faults that are capable of generating earthquakes above a threshold magnitude of Mw≥5.5. The EMME project database includes information on the geometry and rates of movement of faults in a "Fault Section Database", which contains 36 entries for each fault section. The "Fault Section" concept has a physical significance, in that if one or more fault parameters change, a new fault section is defined along a fault zone. So far 6,991 Fault Sections have been defined and 83,402 km of faults are fully parameterized in the Middle East region. A separate "Paleo-Sites Database" includes information on the timing and amounts of fault

  20. Transition from strike-slip faulting to oblique subduction: active tectonics at the Puysegur Margin, South New Zealand

    NASA Astrophysics Data System (ADS)

    Lamarche, Geoffroy; Lebrun, Jean-Frédéric

    2000-01-01

    series of transpressional faults that splay northwards across the Snares Fault, and terminate at the top of the Puysegur trench slope. Between ca. 48°S and 46°30'S, the relative plate motion appears to be distributed over the Puysegur subduction zone and the strike-slip faults located on the edge of the upper plate. Conversely, north of ca. 46°S, a lack of active strike-slip faulting along the MFS and across most of Puysegur Bank indicates that the subduction in the northern part of Puysegur Trench accounts for most of the oblique convergence. Hence, active transpression in the Snares fault zone indicates that the relative PAC-AUS plate motion is transferred from strike-slip faulting along the Puysegur Fault to subduction at Puysegur Trench. The progressive transition from thrusts at Puysegur Trench and strike-slip faulting at the Puysegur Fault to oblique subduction at Puysegur Trench suggests that the subduction interface progressively developed from a western shallow splay of the Puysegur Fault. It implies that the transfer fault links the subduction interface at depth. A tectonic sliver is identified between Puysegur Trench and the Puysegur Fault. Its northwards motion relative to the Pacific Plate implies that is might collide with Puysegur Bank.

  1. Fluid-rock interaction during a large earthquake recorded in fault gouge: A case study of the Nojima fault, Japan

    NASA Astrophysics Data System (ADS)

    Bian, D.; Lin, A.

    2016-12-01

    Distinguishing the seismic ruptures during the earthquake from a lot of fractures in borehole core is very important to understand rupture processes and seismic efficiency. In particular, a great earthquake like the 1995 Mw 7.2 Kobe earthquake, but again, evidence has been limited to the grain size analysis and the color of fault gouge. In the past two decades, increasing geological evidence has emerged that seismic faults and shear zones within the middle to upper crust play a crucial role in controlling the architectures of crustal fluid migration. Rock-fluid interactions along seismogenic faults give us a chance to find the seismic ruptures from the same event. Recently, a new project of "Drilling into Fault Damage Zone" has being conducted by Kyoto University on the Nojima Fault again after 20 years of the 1995 Kobe earthquake for an integrated multidisciplinary study on the assessment of activity of active faults involving active tectonics, geochemistry and geochronology of active fault zones. In this work, we report on the signature of slip plane inside the Nojima Fault associated with individual earthquakes on the basis of trace element and isotope analyses. Trace element concentrations and 87Sr/86Sr ratios of fault gouge and host rocks were determined by an inductively coupled plasma mass spectrometer (ICP-MS) and thermal ionization mass spectrometry (TIMS). Samples were collected from two trenches and an outcrop of Nojima Fault which. Based on the geochemical result, we interpret these geochemical results in terms of fluid-rock interactions recorded in fault friction during earthquake. The trace-element enrichment pattern of the slip plane can be explained by fluid-rock interactions at high temperature. It also can help us find the main coseismic fault slipping plane inside the thick fault gouge zone.

  2. Influence of the post-Miocene tectonic activity on the geomorphology between Andes and Pampa Deprimida in the area of Provincia de La Pampa, Argentina

    NASA Astrophysics Data System (ADS)

    Vogt, Henri; Vogt, Thea; Calmels, Augusto P.

    2010-09-01

    The genesis of the relief between the Andes and the Pampa Deprimida plain between 36° and 39°S has never been considered. The region is intermediate between two contrasting geomorphic styles, the meridian-oriented highs and depressions of the Sierras Pampeanas to the north and the eastwards sloping northern Patagonian mesetas to the south. From geophysical data, it coincides with an intermediate zone between a flat-slab subduction zone to the north and a normal subduction zone to the south. From west to east (68° to 64°W), four units follow each other: the easternmost portion of the Sub-Andean piedmont, the depression of the Río Chadileuvú, a Plateau, and a high scarp separating it from the Pampa Deprimida lowland. The Plateau is the southernmost portion of the Brazilian shield. Geomorphological and sedimentological analyses led us to the following conclusions: 1. the Andes uplift created a large piedmont reaching the Pampa Deprimida and including the Plateau which between the Pliocene and the Middle Pleistocene was shaped in a series of stepped levels covered by Andean fluvial sediments; 2. the meridian-oriented Rio Chadileuvú depression is of tectonic origin, younger than the Middle Pleistocene, and breaks the continuity between the piedmont and the Plateau: this depression could be an incipient foreland basin; 3. the eastern scarp is a fault scarp, probably Upper Pleistocene in age, due to a faster activity of the fault zone between the craton and the Macachín Trough. This young morphotectonic activity coincides with the change from a west-east Patagonian pattern to a north-south orientation of the relief typical of the Sierras Pampeanas, but younger than them. The river network was affected by this evolution. During the Upper Miocene, a palaeo-Río Negro flowed to the north-east, then shifted southwards. The Río Colorado entered the Pampa region during the Upper Pliocene creating a set of stepped fluvial accumulation terraces, while the piedmont was

  3. Strong ground motion prediction applying dynamic rupture simulations for Beppu-Haneyama Active Fault Zone, southwestern Japan

    NASA Astrophysics Data System (ADS)

    Yoshimi, M.; Matsushima, S.; Ando, R.; Miyake, H.; Imanishi, K.; Hayashida, T.; Takenaka, H.; Suzuki, H.; Matsuyama, H.

    2017-12-01

    We conducted strong ground motion prediction for the active Beppu-Haneyama Fault zone (BHFZ), Kyushu island, southwestern Japan. Since the BHFZ runs through Oita and Beppy cities, strong ground motion as well as fault displacement may affect much to the cities.We constructed a 3-dimensional velocity structure of a sedimentary basin, Beppu bay basin, where the fault zone runs through and Oita and Beppu cities are located. Minimum shear wave velocity of the 3d model is 500 m/s. Additional 1-d structure is modeled for sites with softer sediment: holocene plain area. We observed, collected, and compiled data obtained from microtremor surveys, ground motion observations, boreholes etc. phase velocity and H/V ratio. Finer structure of the Oita Plain is modeled, as 250m-mesh model, with empirical relation among N-value, lithology, depth and Vs, using borehole data, then validated with the phase velocity data obtained by the dense microtremor array observation (Yoshimi et al., 2016).Synthetic ground motion has been calculated with a hybrid technique composed of a stochastic Green's function method (for HF wave), a 3D finite difference (LF wave) and 1D amplification calculation. Fault geometry has been determined based on reflection surveys and active fault map. The rake angles are calculated with a dynamic rupture simulation considering three fault segments under a stress filed estimated from source mechanism of earthquakes around the faults (Ando et al., JpGU-AGU2017). Fault parameters such as the average stress drop, a size of asperity etc. are determined based on an empirical relation proposed by Irikura and Miyake (2001). As a result, strong ground motion stronger than 100 cm/s is predicted in the hanging wall side of the Oita plain.This work is supported by the Comprehensive Research on the Beppu-Haneyama Fault Zone funded by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan.

  4. Permeability evolution associated to creep and episodic slow slip of a fault affecting clay formations: Results from the FS fault activation experiment in Mt Terri (Switzerland).

    NASA Astrophysics Data System (ADS)

    Guglielmi, Y.; Nussbaum, C.; Birkholzer, J. T.; De Barros, L.; Cappa, F.

    2017-12-01

    There is a large spectrum of fault slow rupture processes such as stable creep and slow slip that radiate no or little seismic energy, and which relationships to normal earthquakes and fault permeability variations are enigmatic. Here we present measurements of a fault slow rupture, permeability variation and seismicity induced by fluid-injection in a fault affecting the Opalinus clay (Mt Terri URL, Switzerland) at a depth of 300 m. We observe multiple dilatant slow slip events ( 0.1-to-30 microm/s) associated with factor-of-1000 increase of permeability, and terminated by a magnitude -2.5 main seismic event associated with a swarm of very small magnitude ones. Using fully coupled numerical modeling, we calculate that the short term velocity strengthening behavior observed experimentally at laboratory scale is overcome by longer slip weakening that may be favored by slip induced dilation. Two monitoring points set across the fault allow estimating that, at the onset of the seismicity, the radius of the fault patch invaded by pressurized fluid is 9-to-11m which is in good accordance with a fault instability triggering when the dimensions of the critical slip distance are overcome. We then observe that the long term slip weakening is associated to an exponential permeability increase caused by a cumulated effective normal stress drop of about 3.4MPa which controls the successive slip activation of multiple fracture planes inducing a 0.1MPa shear stress drop in the fault zone. Therefore, our data suggest that the induced earthquake that terminated the rupture sequence may have represented enough dynamic stress release to arrest the fault permeability increase, suggesting the high sensitivity of the slow rupture processes to the structural heterogeneity of the fault zone hydromechanical properties.

  5. A pilot GIS database of active faults of Mt. Etna (Sicily): A tool for integrated hazard evaluation

    NASA Astrophysics Data System (ADS)

    Barreca, Giovanni; Bonforte, Alessandro; Neri, Marco

    2013-02-01

    A pilot GIS-based system has been implemented for the assessment and analysis of hazard related to active faults affecting the eastern and southern flanks of Mt. Etna. The system structure was developed in ArcGis® environment and consists of different thematic datasets that include spatially-referenced arc-features and associated database. Arc-type features, georeferenced into WGS84 Ellipsoid UTM zone 33 Projection, represent the five main fault systems that develop in the analysed region. The backbone of the GIS-based system is constituted by the large amount of information which was collected from the literature and then stored and properly geocoded in a digital database. This consists of thirty five alpha-numeric fields which include all fault parameters available from literature such us location, kinematics, landform, slip rate, etc. Although the system has been implemented according to the most common procedures used by GIS developer, the architecture and content of the database represent a pilot backbone for digital storing of fault parameters, providing a powerful tool in modelling hazard related to the active tectonics of Mt. Etna. The database collects, organises and shares all scientific currently available information about the active faults of the volcano. Furthermore, thanks to the strong effort spent on defining the fields of the database, the structure proposed in this paper is open to the collection of further data coming from future improvements in the knowledge of the fault systems. By layering additional user-specific geographic information and managing the proposed database (topological querying) a great diversity of hazard and vulnerability maps can be produced by the user. This is a proposal of a backbone for a comprehensive geographical database of fault systems, universally applicable to other sites.

  6. Slip accumulation and lateral propagation of active normal faults in Afar

    NASA Astrophysics Data System (ADS)

    Manighetti, I.; King, G. C. P.; Gaudemer, Y.; Scholz, C. H.; Doubre, C.

    2001-01-01

    We investigate fault growth in Afar, where normal fault systems are known to be currently growing fast and most are propagating to the northwest. Using digital elevation models, we have examined the cumulative slip distribution along 255 faults with lengths ranging from 0.3 to 60 km. Faults exhibiting the elliptical or "bell-shaped" slip profiles predicted by simple linear elastic fracture mechanics or elastic-plastic theories are rare. Most slip profiles are roughly linear for more than half of their length, with overall slopes always <0.035. For the dominant population of NW striking faults and fault systems longer than 2 km, the slip profiles are asymmetric, with slip being maximum near the eastern ends of the profiles where it drops abruptly to zero, whereas slip decreases roughly linearly and tapers in the direction of overall Aden rift propagation. At a more detailed level, most faults appear to be composed of distinct, shorter subfaults or segments, whose slip profiles, while different from one to the next, combine to produce the roughly linear overall slip decrease along the entire fault. On a larger scale, faults cluster into kinematically coupled systems, along which the slip on any scale individual fault or fault system complements that of its neighbors, so that the total slip of the whole system is roughly linearly related to its length, with an average slope again <0.035. We discuss the origin of these quasilinear, asymmetric profiles in terms of "initiation points" where slip starts, and "barriers" where fault propagation is arrested. In the absence of a barrier, slip apparently extends with a roughly linear profile, tapered in the direction of fault propagation.

  7. Active tectonics of the onshore Hengchun Fault using UAS DSM combined with ALOS PS-InSAR time series (Southern Taiwan)

    NASA Astrophysics Data System (ADS)

    Deffontaines, Benoit; Chang, Kuo-Jen; Champenois, Johann; Lin, Kuan-Chuan; Lee, Chyi-Tyi; Chen, Rou-Fei; Hu, Jyr-Ching; Magalhaes, Samuel

    2018-03-01

    Characterizing active faults and quantifying their activity are major concerns in Taiwan, especially following the major Chichi earthquake on 21 September 1999. Among the targets that still remain poorly understood in terms of active tectonics are the Hengchun and Kenting faults (Southern Taiwan). From a geodynamic point of view, the faults affect the outcropping top of the Manila accretionary prism of the Manila subduction zone that runs from Luzon (northern Philippines) to Taiwan. In order to better locate and quantify the location and quantify the activity of the Hengchun Fault, we start from existing geological maps, which we update thanks to the use of two products derived from unmanned aircraft system acquisitions: (1) a very high precision (< 50 cm) and resolution (< 10 cm) digital surface model (DSM) and (2) a georeferenced aerial photograph mosaic of the studied area. Moreover, the superimposition of the resulting structural sketch map with new Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) results obtained from PALSAR ALOS images, validated by Global Positioning System (GPS) and leveling data, allows the characterization and quantification of the surface displacements during the monitoring period (2007-2011). We confirm herein the geometry, characterization and quantification of the active Hengchun Fault deformation, which acts as an active left-lateral transpressive fault. As the Hengchun ridge was the location of one of the last major earthquakes in Taiwan (26 December 2006, depth: 44 km, ML = 7.0), Hengchun Peninsula active tectonics must be better constrained in order if possible to prevent major destructions in the near future.

  8. Reexaming Owens Valley: Partitioning of Discrete and Distributed Transtension, Structural Controls on Magmatism, and Seismic Potential within an Active Rift Zone, Eastern California.

    NASA Astrophysics Data System (ADS)

    Levy, D. A.; Haproff, P. J.; Yin, A.

    2016-12-01

    Crustal-scale transtensional deformation is common in intracontinental extensional settings. However, along-strike variations in the geometry, kinematics, and linkages between rift-related faults, along with controls on local magmatic plumbing, remain inadequately examined. In this study, we conducted geologic mapping of active structures within central and northern Owens Valley of eastern California. C. Owens Valley features right-slip oblique deformation accommodated by three discrete north-south-trending faults: (1) the right-slip Owens Valley fault (OVF) and rift-bounding (2) Sierra Nevada Frontal fault (SNFF) and (3) the White-Inyo Mountains fault (WIMF). The OVF also serves as a lithospheric-scale, vertical conduit for asthenospheric-derived magma to migrate upwards and erupt at Big Pine Volcanic Field. Right-slip shear within C. Owens Valley is transferred to the SNFF of N. Owens Valley via the Poverty Hills restraining bend. In contrast to C. Owens Valley, the northern segment is dominated by distributed E-W to NE-SW-oriented extension, evidenced by normal fault scarps throughout Volcanic Tablelands and basin floor. Furthermore, the White Mountain fault which bounds N. Owens Valley to the east consists of a master west-dipping detachment fault that thinned the lithosphere, allowing for asthenospheric upwelling into the crust beneath the western rift shoulder. Subvertical, right-slip faults of the SNFF provide a conduit for magma to erupt on the surface throughout the Long Valley Caldera, Mono-Inyo Craters, and Mono Basin region. Our mapping demonstrates complex strain partitioning of discrete and distributed deformation within an alternating pure and simple shear, transtensional rift zone. Lastly, we present previously unknown relationships in Owens Valley between lithospheric-scale fault systems, seismic potential, and rift magmatism.

  9. Actively dewatering fluid-rich zones along the Costa Rica plate boundary fault

    NASA Astrophysics Data System (ADS)

    Bangs, N. L.; McIntosh, K. D.; Silver, E. A.; Kluesner, J. W.; Ranero, C. R.; von Huene, R.

    2012-12-01

    New 3D seismic reflection data reveal distinct evidence for active dewatering above a 12 km wide segment of the plate boundary fault within the Costa Rica subduction zone NW of the Osa Peninsula. In the spring of 2011 we acquired a 11 x 55 km 3D seismic reflection data set on the R/V Langseth using four 6,000 m streamers and two 3,300 in3 airgun arrays to examine the structure of the Costa Rica margin from the trench into the seismogenic zone. We can trace the plate-boundary interface from the trench across our entire survey to where the plate-boundary thrust lies > 10 km beneath the margin shelf. Approximately 20 km landward of the trench beneath the mid slope and at the updip edge of the seismogenic zone, a 12 km wide zone of the plate-boundary interface has a distinctly higher-amplitude seismic reflection than deeper or shallower segments of the fault. Directly above and potentially directly connected with this zone are high-amplitude, reversed-polarity fault-plane reflections that extend through the margin wedge and into overlying slope sediment cover. Within the slope cover, high-amplitude reversed-polarity reflections are common within the network of closely-spaced nearly vertical normal faults and several broadly spaced, more gently dipping thrust faults. These faults appear to be directing fluids vertically toward the seafloor, where numerous seafloor fluid flow indicators, such as pockmarks, mounds and ridges, and slope failure features, are distinct in multibeam and backscatter images. There are distinctly fewer seafloor and subsurface fluid flow indicators both updip and downdip of this zone. We believe these fluids come from a 12 km wide fluid-rich segment of the plate-boundary interface that is likely overpressured and has relatively low shear stress.

  10. Geologic map of the Paintbrush Canyon Area, Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickerson, R.P.; Drake, R.M. II

    This geologic map is produced to support site characterization studies of Yucca Mountain, Nevada, site of a potential nuclear waste storage facility. The area encompassed by this map lies between Yucca Wash and Fortymile Canyon, northeast of Yucca Mountain. It is on the southern flank of the Timber Mountain caldera complex within the southwest Nevada volcanic field. Miocene tuffs and lavas of the Calico Hills Formation, the Paintbrush Group, and the Timber Mountain Group crop out in the area of this map. The source vents of the tuff cones and lava domes commonly are located beneath the thickest deposits ofmore » pyroclastic ejecta and lava flows. The rocks within the mapped area have been deformed by north- and northwest-striking, dominantly west-dipping normal faults and a few east-dipping normal faults. Faults commonly are characterized by well developed fault scarps, thick breccia zones, and hanging-wall grabens. Latest movement as preserved by slickensides on west-dipping fault scarps is oblique down towards the southwest. Two of these faults, the Paintbrush Canyon fault and the Bow Ridge fault, are major block-bounding faults here and to the south at Yucca Mountain. Offset of stratigraphic units across faults indicates that faulting occurred throughout the time these volcanic units were deposited.« less

  11. Gently dipping normal faults identified with Space Shuttle radar topography data in central Sulawesi, Indonesia, and some implications for fault mechanics

    USGS Publications Warehouse

    Spencer, J.E.

    2011-01-01

    Space-shuttle radar topography data from central Sulawesi, Indonesia, reveal two corrugated, domal landforms, covering hundreds to thousands of square kilometers, that are bounded to the north by an abrupt transition to typical hilly to mountainous topography. These domal landforms are readily interpreted as metamorphic core complexes, an interpretation consistent with a single previous field study, and the abrupt northward transition in topographic style is interpreted as marking the trace of two extensional detachment faults that are active or were recently active. Fault dip, as determined by the slope of exhumed fault footwalls, ranges from 4?? to 18??. Application of critical-taper theory to fault dip and hanging-wall surface slope, and to similar data from several other active or recently active core complexes, suggests a theoretical limit of three degrees for detachment-fault dip. This result appears to conflict with the dearth of seismological evidence for slip on faults dipping less than ~. 30??. The convex-upward form of the gently dipping fault footwalls, however, allows for greater fault dip at depths of earthquake initiation and dominant energy release. Thus, there may be no conflict between seismological and mapping studies for this class of faults. ?? 2011 Elsevier B.V.

  12. Transformation of graphite by tectonic and hydrothermal processes in an active plate boundary fault zone, Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Kirilova, Matina; Toy, Virginia; Timms, Nicholas; Halfpenny, Angela; Menzies, Catriona; Craw, Dave; Rooney, Jeremy; Giorgetti, Carolina

    2017-04-01

    Graphite is a material with one of the lowest frictional strengths, with coefficient of friction of 0.1 and thus in natural fault zones it may act as a natural solid lubricant. Graphitization, or the transformation of organic matter (carbonaceous material, or CM) into crystalline graphite, is induced by compositional and structural changes during diagenesis and metamorphism. The supposed irreversible nature of this process has allowed the degree of graphite crystallinity to be calibrated as an indicator of the peak temperatures reached during progressive metamorphism. We examine processes of graphite emplacement and deformation in the Alpine Fault Zone, New Zealand's active continental tectonic plate boundary. Raman spectrometry indicates that graphite in the distal, amphibolite-facies Alpine Schist, which experienced peak metamorphic temperatures up to 640 ◦C, is highly crystalline and occurs mainly along grain boundaries within quartzo-feldspathic domains. The subsequent mylonitisation in the Alpine Fault Zone resulted in progressive reworking of CM under lower temperature conditions (500◦C-600◦C) in a structurally controlled environment, resulting in spatial clustering in lower-strain protomylonites, and further foliation-alignment in higher-strain mylonites. Subsequent brittle deformation of the mylonitised schists resulted in cataclasites that contain over three-fold increase in the abundance of graphite than mylonites. Furthermore, cataclasites contain graphite with two different habits: highly-crystalline, foliated forms that are inherited mylonitic graphite; and lower-crystallinity, less mature patches of finer-grained graphite. The observed graphite enrichment and the occurrence of poorly-organised graphite in the Alpine Fault cataclasites could result from: i) hydrothermal precipitation from carbon-supersaturated fluids; and/or ii) mechanical degradation by structural disordering of mylonitic graphite combined with strain-induced graphite

  13. Topography of closed depressions, scarps, and grabens in the north Tharsis region of Mars: Implications for shallow crustal discontinuities and Graben formation

    NASA Technical Reports Server (NTRS)

    Davis, P. A.; Tanaka, Kenneth L.; Golombek, M. P.

    1995-01-01

    Using Viking Orbiter images, detailed photoclinometric profiles were obtained across 10 irregular depressions, 32 fretted fractures, 40 troughs and pits, 124 solitary scarps, and 370 simple grabens in the north Tharsis region of Mars. These data allow inferences to be made on the shallow crustal structure of this region. The frequency modes of measured scarp heights correspond with previous general thickness estimates of the heavily cratered and rigded plains units. The depths of the flat-floored irregular depressions (55-175 m), fretted fractures (85-890 m), and troughs and pits (60-1620 m) are also similar to scarp heights (thicknesses) of the geologic units in which these depressions occur, which suggests that the depths of these flat-floored features were controlled by erosional base levels created by lithologic contacts. Although the features have a similar age, both their depths and their observed local structural control increase in the order listed above, which suggests that the more advanced stages of associated fracturing facilitated the development of these depressions by increasing permeability. If a ground-ice zone is a factor in development of these features, as has been suggested, our observation that the depths of these features decrease with increasing latitude suggests that either the thickness of the ground-ice zone does not increase poleward or the depths of the depressions were controlled by the top of the ground-ice zone whose depth may decrease with latitude.

  14. Evidence of Quaternary and recent activity along the Kyaukkyan Fault, Myanmar

    NASA Astrophysics Data System (ADS)

    Crosetto, Silvia; Watkinson, Ian M.; Soe Min; Gori, Stefano; Falcucci, Emanuela; Nwai Le Ngal

    2018-05-01

    Cenozoic right-lateral shear between the eastern Indian margin and Eurasia is expressed by numerous N-S trending fault systems inboard of the Sunda trench, including the Sagaing Fault. The most easterly of these fault systems is the prominent ∼500 km long Kyaukkyan Fault, on the Shan Plateau. Myanmar's largest recorded earthquake, Mw 7.7 on 23rd May 1912, focused near Maymyo, has been attributed to the Kyaukkyan Fault, but the area has experienced little significant seismicity since then. Despite its demonstrated seismic potential and remarkable topographic expression, questions remain about the Kyaukkyan Fault's neotectonic history.

  15. Preliminary Vertical Slip Rate for the West Tahoe Fault from six new Cosmogenic 10Be Exposure Ages of Late Pleistocene Glacial Moraines at Cascade Lake, Lake Tahoe, California

    NASA Astrophysics Data System (ADS)

    Pierce, I. K. D.; Wesnousky, S. G.; Kent, G. M.; Owen, L. A.

    2015-12-01

    The West Tahoe Fault is the primary range bounding fault of the Sierra Nevada at the latitude of Lake Tahoe. It is a N-NW striking, east dipping normal fault that has a pronounced onshore quaternary scarp extending from highway 50 southwest of Meyers, CA to Emerald Bay. At Cascade Lake, the fault cuts and progressively offsets late Pleistocene right lateral moraines. The fault vertically offsets the previously mapped Tahoe moraine ~83 m and the Tioga moraine ~23 m, measured from lidar data. Seventeen samples were collected for 10Be cosmogenic age analysis from boulders on both the hanging and footwalls of the fault along the crests of these moraines.We report here the initial analysis of 6 of these boulders and currently await processing of the remainder. The 10Be exposure ages of 3 boulders each on the younger Tioga and older Tahoe moraines range from 12.7 +/- 1.6 to 20.7 +/- 3.3 ka and 13.3 +/- 2.1 to 72.5 +/- 8.8 ka, respectively. Using the oldest ages as minima, these preliminary results suggest that the slip rate has averaged ~1 mm/yr since the penultimate glaciation, in accord with estimates of previous workers, and place additional bounds on the age of glaciation in the Lake Tahoe basin. The Last Glacial Maxima and penultimate glaciation near Lake Tahoe thus appear to coincide with the Tioga and Tahoe II glaciations of the Eastern Sierra.

  16. Can we follow the neotectonic activity of the Hluboká-fault by reconstructing the evolution of the Vltava river course? - Mapping of fluvial terraces around the Budejovice-basin using historic maps

    NASA Astrophysics Data System (ADS)

    Homolova, Dana; Lomax, Johanna; Prachar, Ivan; Spacek, Petr; Zamolyi, Andras; Decker, Kurt

    2010-05-01

    The Budějovice Basin in the Bohemian Massif (Czech Republic) is a fault-bounded sedimentary basin with a multiple subsidence history overlying Variscan crystalline basement. Permian, Cretaceous and Miocene sediments record repeated reactivations of faults at or close to the basin margin, which may have continued into the Quaternary. The latter is indicated by geomorphological features such as linear topographic scarps, which characterize part of the faults within and at the border of the Budějovice Basin. In a current study we assess possible Quaternary displacements along the faults delimiting the basin using geomorphological data, analyses of river planform patterns and correlations of Quaternary terraces of the Vltava River, which crosses the basin and its boundary faults. The regionally most important tectonic feature - the Hluboká fault -forms the northeastern margin of the Budějovice basin. The fault crosses the course of the river Vltava, a fact that guided our research to take a more precise look at the character and distribution of fluvial sediments in this area. Our main focus is on dating of terrace bodies around the Hluboká fault. According to the scheme used in most European regions, influences by the Pleistocene glacial cycles, the Vltava river terraces were assigned by most scientists to the 4(5) main alpine glacial periods. This dating is not straightforward as terraces are not connected to moraine bodies like in the Alps. The terraces were basically correlated by their altitude above the river and by their lithology (clastic content and grain size composition), but mostly without any numerical age determination. Our studies include several field and laboratory methods, supported by computer analyses of various types of spatial data. Data sources include: (i) modern topographic maps, (ii) geological maps, (iii) georeferenced historic map sheets of the Austrian Second Military Survey (provided by the Geoinformatics Laboratory of the University J

  17. Detailed Mapping of Historical and Preinstrumental Earthquake Ruptures in Central Asia Using Multi-Scale, Multi-Platform Photogrammetry

    NASA Astrophysics Data System (ADS)

    Elliott, A. J.; Walker, R. T.; Parsons, B.; Ren, Z.; Ainscoe, E. A.; Abdrakhmatov, K.; Mackenzie, D.; Arrowsmith, R.; Gruetzner, C.

    2016-12-01

    In regions of the planet with long historical records, known past seismic events can be attributed to specific fault sources through the identification and measurement of single-event scarps in high-resolution imagery and topography. The level of detail captured by modern remote sensing is now sufficient to map and measure complete earthquake ruptures that were originally only sparsely mapped or overlooked entirely. We can thus extend the record of mapped earthquake surface ruptures into the preinstrumental period and capture the wealth of information preserved in the numerous historical earthquake ruptures throughout regions like Central Asia. We investigate two major late 19th and early 20th century earthquakes that are well located macroseismically but whose fault sources had proved enigmatic in the absence of detailed imagery and topography. We use high-resolution topographic models derived from photogrammetry of satellite, low-altitude, and ground-based optical imagery to map and measure the coseismic scarps of the 1889 M8.3 Chilik, Kazakhstan and 1932 M7.6 Changma, China earthquakes. Measurement of the scarps on the combined imagery and topography reveals the extent and slip distribution of coseismic rupture in each of these events, showing both earthquakes involved multiple faults with variable kinematics. We use a 1-m elevation model of the Changma fault derived from Pleiades satellite imagery to map the changing kinematics of the 1932 rupture along strike. For the 1889 Chilik earthquake we use 1.5-m SPOT-6 satellite imagery to produce a regional elevation model of the fault ruptures, from which we identify three distinct, intersecting fault systems that each have >20 km of fresh, single-event scarps. Along sections of each of these faults we construct high resolution (330 points per sq m) elevation models using quadcopter- and helikite-mounted cameras. From the detailed topography we measure single-event oblique offsets of 6-10 m, consistent with the large

  18. Seafloor morphology related to recent tectonics in the Alboran Sea Basin

    NASA Astrophysics Data System (ADS)

    Vázquez, Juan-Tomás; Estrada, Ferran; Vegas, Ramon; Ercilla, Gemma; Medialdea, Teresa; d'Acremont, Elia; Alonso, Belen; Fernández-Salas, Luis-Miguel; Gómez-Ballesteros, María; Somoza, Luis; Bárcenas, Patricia; Palomino, Desirée; Gorini, Christian

    2014-05-01

    A detailed geomorphological study of the northern part of the Alboran Sea Basin has been realized based on the combined analysis of multibeam swath bathymetric data and medium to very high resolution seismic profiles (singled Sparker, Airgun, TOPAS and Atlas PARASOUND P35). This has enabled us to define several tectonic-related seafloor features and their role in the recent tectonics. The observed morpho-tectonic features correspond to: i) lineal scarps with a wide range of dimensions and following several trends ,WNW-ESE, NE-SW, NNE-SSW and N-S; ii) NE-SW to NNE-SSW-oriented compressive ridges; iii) ENE-WSW to NE-SW-striking antiforms; iv) NNE-SSW-oriented lineal depressions; v) rhomb-shaped depressions; vi) lineal valleys, canyons and gullies with WNW-ESE, and N-S orientations; and vii) N-S directed dissected valleys, canyons and gullies. Three families of faults and related folds, with NE-SW, WNW-ESE and NNE-SSW to N-S have been interpreted within this geomorphological scheme. The NE-SW family corresponds to: a) major scarps in both flanks of the Alboran Ridge and b) the offshore prolongation of La Serrata Fault, and both have been considered as a set of sinistral strike-slip faults. To this family, some compressive ridges, antiforms and occasionally reverse faults have been correlated. The WNW-ESE family corresponds to a set of faulted valleys (occasionally with rhomb-shaped depressions), fault scarps and linear inflection points occurring in the northern Alboran margin and the Yusuf-Habibas corridor. This family has been interpreted as transtensive dextral strike-slip faults. The NNE-SSW to N-S family corresponds to a penetrative system of linear fault scarps and tectonic depressions that cross-cut the Alboran Ridge and the Djibouti-Motril marginal plateau. This family can be considered as more recent since it offsets the other two families and shows a minor importance with regard to the main reliefs. This communication is a contribution to the Spanish R + D

  19. Late Pleistocene Activity and deformation features of the North Margin Fault of West Qinling Mountains, northeastern Tibet

    NASA Astrophysics Data System (ADS)

    Chen, P.; Lin, A.; Yan, B.

    2017-12-01

    Abstract: A precise constraints of slip rates of active faults within and around Tibetan Plateau will provide us a definite and explicit knowledge of continental dynamics and present-day tectonic evolution. The major strike-slip faults in the northern and northeastern Tibetan Plateau, including the Altyn Tagh fault and Kunlun fault play a vital role in dissipating and transferring the strain energy. The WNW-trending North Margin Fault of West Qinling Mountains (hereafter name NMFWQM, the target of this study) developed along the topographic boundary between Longzhong basin and the Qinling mountains. Intensive Historic records show that large earthquakes repeatedly in the area around the NMFWQM, including the AD 143 M 7.0 Gangu West earthquake; AD 734 M≥7.0 Tianshui earthquake; AD 1654 M 8.0 Tianshui South earthquake and the most recent 2013 Mw6.0 Zhangxian earthquake. In this study, we investigated the structural features and activity of the NMFWQM including the nature of the fault, slip rate, and paleoseismicity by interpretation of high-resolution remote sensing images and field investigation. Based on the interpretations of high resolution satellite images, field investigations and 14C dating ages, we conclude the following conclusions: 1) The drainage systems have been systematical deflected or offset sinistrally along the fault trace; 2) The amounts of displacement (D) show a positive linear correlation with the upstream length (L) from the deflected point of offset river channels as DaL (a: a certain coefficient); 3) The alluvial fans and terrace risers formed in the last interglacial period are systematically offset by 16.4m to 93.9 m, indicating an accumulation of horizontal displacements as that observed in the offset drainages; 4) A horizontal slip rate is estimated to be 2.5-3.1 mm/yr with an average of 2.8 mm/yr. Comparing with the well-know strike-slip active faults developed in the northern Tibetan Plateau, such as the Altyn Tagh fault and Kunlun

  20. Combined Application of Shallow Seismic Reflection and High-resolution Refraction Exploration Approach to Active Fault Survey, Central Orogenic Belt, China

    NASA Astrophysics Data System (ADS)

    Lin, S.; Luo, D.; Yanlin, F.; Li, Y.

    2016-12-01

    Shallow Seismic Reflection (SSR) is a major geophysical exploration method with its exploration depth range, high-resolution in urban active fault exploration. In this paper, we carried out (SSR) and High-resolution refraction (HRR) test in the Liangyun Basin to explore a buried fault. We used NZ distributed 64 channel seismic instrument, 60HZ high sensitivity detector, Geode multi-channel portable acquisition system and hammer source. We selected single side hammer hit multiple overlay, 48 channels received and 12 times of coverage. As there are some coincidence measuring lines of SSR and HRR, we chose multi chase and encounter observation system. Based on the satellite positioning, we arranged 11 survey lines in our study area with total length for 8132 meters. GEOGIGA seismic reflection data processing software was used to deal with the SSR data. After repeated tests from the aspects of single shot record compilation, interference wave pressing, static correction, velocity parameter extraction, dynamic correction, eventually got the shallow seismic reflection profile images. Meanwhile, we used Canadian technology company good refraction and tomographic imaging software to deal with HRR seismic data, which is based on nonlinear first arrival wave travel time tomography. Combined with drilling geological profiles, we explained 11 measured seismic profiles. Results show 18 obvious fault feature breakpoints, including 4 normal faults of south-west, 7 reverse faults of south-west, one normal fault of north-east and 6 reverse faults of north-east. Breakpoints buried depth is 15-18 meters, and the inferred fault distance is 3-12 meters. Comprehensive analysis shows that the fault property is reverse fault with northeast incline section, and fewer branch normal faults presenting southwest incline section. Since good corresponding relationship between the seismic interpretation results, drilling data and SEM results on the property, occurrence, broken length of the fault