Late Pleistocene - Holocene ruptures of the Lima Reservoir fault, SW Montana
NASA Astrophysics Data System (ADS)
Anastasio, David J.; Majerowicz, Christina N.; Pazzaglia, Frank J.; Regalla, Christine A.
2010-12-01
Active tectonics within the northern Basin and Range province provide a natural laboratory for the study of normal fault growth, linkage, and interaction. Here, we present new geologic mapping and morphologic fault-scarp modeling within the Centennial Valley, Montana to characterize Pleistocene - Holocene ruptures of the young and active Lima Reservoir fault. Geologic relationships and rupture ages indicate Middle Pleistocene activity on the Henry Gulch (>50 ka and 23-10 ka), Trail Creek (>43 ka and ˜13 ka), and reservoir (˜23 ka) segments. Offset Quaternary deposits also record Holocene rupture of the reservoir segment (˜8 ka), but unfaulted modern streams show that no segments of the Lima Reservoir fault have experienced a large earthquake in at least several millennia. The clustered pattern of rupture ages on the Lima Reservoir fault segments suggests a seismogenic linkage though segment length and spacing make a physical connection at depth unlikely. Trail Creek and reservoir segment slip rates were non-steady and appear to be increasing. The fault helps accommodate differential horizontal surface velocity measured by GPS geodesy across the boundary between the northern Basin and Range province and the Snake River Plain.
Chiaraluce, L.; Ellsworth, W.L.; Chiarabba, C.; Cocco, M.
2003-01-01
Six moderate magnitude earthquakes (5 < Mw < 6) ruptured normal fault segments of the southern sector of the North Apennine belt (central Italy) in the 1997 Colfiorito earthquake sequence. We study the progressive activation of adjacent and nearby parallel faults of this complex normal fault system using ???1650 earthquake locations obtained by applying a double-difference location method, using travel time picks and waveform cross-correlation measurements. The lateral extent of the fault segments range from 5 to 10 km and make up a broad, ???45 km long, NW trending fault system. The geometry of each segment is quite simple and consists of planar faults gently dipping toward SW with an average dip of 40??-45??. The fault planes are not listric but maintain a constant dip through the entire seismogenic volume, down to 8 km depth. We observe the activation of faults on the hanging wall and the absence of seismicity in the footwall of the structure. The observed fault segmentation appears to be due to the lateral heterogeneity of the upper crust: preexisting thrusts inherited from Neogene's compressional tectonic intersect the active normal faults and control their maximum length. The stress tensor obtained by inverting the six main shock focal mechanisms of the sequence is in agreement with the tectonic stress active in the inner chain of the Apennine, revealing a clear NE trending extension direction. Aftershock focal mechanisms show a consistent extensional kinematics, 70% of which are mechanically consistent with the main shock stress field.
Shallow seismic imaging of folds above the Puente Hills blind-thrust fault, Los Angeles, California
Pratt, T.L.; Shaw, J.H.; Dolan, J.F.; Christofferson, S.A.; Williams, R.A.; Odum, J.K.; Plesch, A.
2002-01-01
High-resolution seismic reflection profiles image discrete folds in the shallow subsurface (<600 m) above two segments of the Puente Hills blind-thrust fault system, Los Angeles basin, California. The profiles demonstrate late Quaternary activity at the fault tip, precisely locate the axial surfaces of folds within the upper 100 m, and constrain the geometry and kinematics of recent folding. The Santa Fe Springs segment of the Puente Hills fault zone shows an upward-narrowing kink band with an active anticlinal axial surface, consistent with fault-bend folding above an active thrust ramp. The Coyote Hills segment shows an active synclinal axial surface that coincides with the base of a 9-m-high scarp, consistent with tip-line folding or the presence of a backthrust. The seismic profiles pinpoint targets for future geologic work to constrain slip rates and ages of past events on this important fault system.
NASA Astrophysics Data System (ADS)
Sun, Haoyue; He, Honglin; Wei, Zhanyu; Shi, Feng; Gao, Wei
2017-05-01
The strong earthquake behaviors of faults are significant for learning crustal deformation mechanisms and for assessing regional seismic risk. To date, faults that bound tectonic blocks have attracted considerable concern and many studies; however, scant attention has been paid to faults within blocks that can also host devastating earthquakes. The Nantinghe fault is a left-lateral strike-slip fault within the Southwestern Yunnan Block, and it slips at ∼4 mm/yr suggesting strong activity in the late Quaternary. Nevertheless, no earthquake greater than 6 has ever been recorded along it, except for the 1941 M ∼7 earthquake near the Myanmar-China border region. In contrast, many earthquakes have occurred in the near region, delineating a seismic gap near the Nantinghe fault. Although several studies have been conducted upon it, the activity of its northern segment is confusing, and whether this fault segment has loaded sufficient stress to fail remains debatable. Furthermore, previous work failed to conduct any paleoseismological studies bringing out great uncertainty in learning its activity and faulting behavior, as well as in assessing the regional seismic risk. To solve these problems, we mapped the fault traces utilizing high-resolution satellite images and aerial photographs, and conducted three paleoseismological trenches along the northern segment of the Nantinghe fault. The trench excavations revealed a ∼45,000-year incomplete paleoearthquake history and confirmed that this fault segment has been active since the late Pleistocene but was not ruptured during the 1941 earthquake. Additionally, at least five paleoearthquakes are identified with their respective age ranges of before 39,030 BCE; 38,500-37,220 BCE; 28,475-5445 BCE; 3535 BCE-800 CE; and 1320-1435 CE based on radiocarbon dating. Among the paleoearthquakes, the latest is suggested to have generated a surface rupture much longer than 14 km with a magnitude likely up to Ms 7.0. Furthermore, based on the elapsed time since the latest paleoearthquake and the sinistral slip rate along the fault, it is proposed that the northern segment of the Nantinghe fault has accumulated a seismic energy equivalent to Ms 7.0, and it is in a high seismic risk along this fault segment and in the neighboring area.
NASA Astrophysics Data System (ADS)
Martínez-Martínez, José Miguel; Booth-Rea, Guillermo; Azañón, José Miguel; Torcal, Federico
2006-08-01
Pliocene and Quaternary tectonic structures mainly consisting of segmented northwest-southeast normal faults, and associated seismicity in the central Betics do not agree with the transpressive tectonic nature of the Africa-Eurasia plate boundary in the Ibero-Maghrebian region. Active extensional deformation here is heterogeneous, individual segmented normal faults being linked by relay ramps and transfer faults, including oblique-slip and both dextral and sinistral strike-slip faults. Normal faults extend the hanging wall of an extensional detachment that is the active segment of a complex system of successive WSW-directed extensional detachments which have thinned the Betic upper crust since middle Miocene. Two areas, which are connected by an active 40-km long dextral strike-slip transfer fault zone, concentrate present-day extension. Both the seismicity distribution and focal mechanisms agree with the position and regime of the observed faults. The activity of the transfer zone during middle Miocene to present implies a mode of extension which must have remained substantially the same over the entire period. Thus, the mechanisms driving extension should still be operating. Both the westward migration of the extensional loci and the high asymmetry of the extensional systems can be related to edge delamination below the south Iberian margin coupled with roll-back under the Alborán Sea; involving the asymmetric westward inflow of asthenospheric material under the margins.
NASA Astrophysics Data System (ADS)
Pinel-Puysségur, B.; Grandin, R.; Bollinger, L.; Baudry, C.
2014-07-01
On 28-29 October 2008, within 12 h, two similar Mw = 6.4 strike-slip earthquakes struck Baluchistan (Pakistan), as part of a complex seismic sequence. Interferometric Synthetic Aperture Radar (InSAR) data reveal that the peak of surface displacement is near the Ziarat anticline, a large active fold affected by Quaternary strike-slip faulting. All coseismic interferograms integrate the deformation due to both earthquakes. As their causative faults ruptured close to each other, the individual signals cannot be separated. According to their focal mechanisms, each earthquake may have activated a NE-SW sinistral or a NW-SE dextral fault segment, which leads to four possible scenarios of fault orientations. A nonlinear inversion of the InSAR data set allows rejecting two scenarios. The best slip distributions on the two fault segments for the two remaining scenarios are determined by linear inversion. Stress-change modeling favors a scenario involving two abutting conjugate strike-slip faults. Two other fault segments accommodated left-lateral strike slip during the seismic sequence. The activated fault system includes multiple fault segments with different orientations and little surface expression. This may highlight, at a smaller scale, the distributed, possibly transient character of deformation within a broader right-lateral shear zone. It suggests that the activated faults delineate a small tectonic block extruding and subtly rotating within the shear zone. It occurs in the vicinity of the local tectonic syntaxis where orogenic structures sharply turn around a vertical axis. These mechanisms could participate in the long-term migration of active tectonic structures within this kinematically unstable tectonic syntaxis.
Evolving geometrical heterogeneities of fault trace data
NASA Astrophysics Data System (ADS)
Wechsler, Neta; Ben-Zion, Yehuda; Christofferson, Shari
2010-08-01
We perform a systematic comparative analysis of geometrical fault zone heterogeneities using derived measures from digitized fault maps that are not very sensitive to mapping resolution. We employ the digital GIS map of California faults (version 2.0) and analyse the surface traces of active strike-slip fault zones with evidence of Quaternary and historic movements. Each fault zone is broken into segments that are defined as a continuous length of fault bounded by changes of angle larger than 1°. Measurements of the orientations and lengths of fault zone segments are used to calculate the mean direction and misalignment of each fault zone from the local plate motion direction, and to define several quantities that represent the fault zone disorder. These include circular standard deviation and circular standard error of segments, orientation of long and short segments with respect to the mean direction, and normal separation distances of fault segments. We examine the correlations between various calculated parameters of fault zone disorder and the following three potential controlling variables: cumulative slip, slip rate and fault zone misalignment from the plate motion direction. The analysis indicates that the circular standard deviation and circular standard error of segments decrease overall with increasing cumulative slip and increasing slip rate of the fault zones. The results imply that the circular standard deviation and error, quantifying the range or dispersion in the data, provide effective measures of the fault zone disorder, and that the cumulative slip and slip rate (or more generally slip rate normalized by healing rate) represent the fault zone maturity. The fault zone misalignment from plate motion direction does not seem to play a major role in controlling the fault trace heterogeneities. The frequency-size statistics of fault segment lengths can be fitted well by an exponential function over the entire range of observations.
NASA Astrophysics Data System (ADS)
Ott, B.; Mann, P.; Saunders, M.
2013-12-01
Previous workers, mainly mapping onland active faults on Caribbean islands, defined the northern Caribbean plate boundary zone as a 200-km-wide bounded by two active and parallel strike-slip faults: the Oriente fault along the northern edge of the Cayman trough with a GPS rate of 14 mm/yr, and and the Enriquillo-Plaintain Garden fault zone (EPGFZ) with a rate of 5-7 mm/yr. In this study we use 5,000 km of industry and academic data from the Nicaraguan Rise south and southwest of the EPGFZ in the maritime areas of Jamaica, Honduras, and Colombia to define an offshore, 700-km-long, active, left-lateral strike-slip fault in what has previously been considered the stable interior of the Caribbean plate as determined from plate-wide GPS studies. The fault was named by previous workers as the Pedro Banks fault zone because a 100-km-long segment of the fault forms an escarpment along the Pedro carbonate bank of the Nicaraguan Rise. Two fault segments of the PBFZ are defined: the 400-km-long eastern segment that exhibits large negative flower structures 10-50 km in width, with faults segments rupturing the sea floor as defined by high resolution 2D seismic data, and a 300-km-long western segment that is defined by a narrow zone of anomalous seismicity first observed by previous workers. The western end of the PBFZ terminates on a Quaternary rift structure, the San Andres rift, associated with Plio-Pleistocene volcanism and thickening trends indicating initial rifting in the Late Miocene. The southern end of the San Andreas rift terminates on the western Hess fault which also exhibits active strands consistent with left-lateral, strike-slip faults. The total length of the PBFZ-San Andres rift-Southern Hess escarpment fault is 1,200 km and traverses the entire western end of the Caribbean plate. Our interpretation is similar to previous models that have proposed the "stable" western Caribbean plate is broken by this fault whose rate of displacement is less than the threshold recognizable from the current GPS network (~3 mm/yr). The Late Miocene age of the fault indicates it may have activated during the Late Miocene to recent Hispaniola-Bahamas oblique collision event.
Subsurface structures of the active reverse fault zones in Japan inferred from gravity anomalies.
NASA Astrophysics Data System (ADS)
Matsumoto, N.; Sawada, A.; Hiramatsu, Y.; Okada, S.; Tanaka, T.; Honda, R.
2016-12-01
The object of our study is to examine subsurface features such as continuity, segmentation and faulting type, of the active reverse fault zones. We use the gravity data published by the Gravity Research Group in Southwest Japan (2001), the Geographical Survey Institute (2006), Yamamoto et al. (2011), Honda et al. (2012), and the Geological Survey of Japan, AIST (2013) in this study. We obtained the Bouguer anomalies through terrain corrections with 10 m DEM (Sawada et al. 2015) under the assumed density of 2670 kg/m3, a band-pass filtering, and removal of linear trend. Several derivatives and structural parameters calculated from a gravity gradient tensor are applied to highlight the features, such as a first horizontal derivatives (HD), a first vertical derivatives (VD), a normalized total horizontal derivative (TDX), a dip angle (β), and a dimensionality index (Di). We analyzed 43 reverse fault zones in northeast Japan and the northern part of southwest Japan among major active fault zones selected by Headquarters for Earthquake Research Promotion. As the results, the subsurface structural boundaries clearly appear along the faults at 21 faults zones. The weak correlations appear at 13 fault zones, and no correlations are recognized at 9 fault zones. For example, in the Itoigawa-Shizuoka tectonic line, the subsurface structure boundary seems to extend further north than the surface trace. Also, a left stepping structure of the fault around Hakuba is more clearly observed with HD. The subsurface structures, which detected as the higher values of HD, are distributed on the east side of the surface rupture in the north segments and on the west side in the south segments, indicating a change of the dip direction, the east dipping to the west dipping, from north to south. In the Yokote basin fault zone, the subsurface structural boundary are clearly detected with HD, VD and TDX along the fault zone in the north segment, but less clearly in the south segment. Also, Di implies the existence of 3D-like structure with E-W trend around the segment boundary. The distribution of dip angle β along the fault zone implies a reverse faulting, corresponding to the faulting type of this fault zone reported by previous studies.
Rift flank segmentation, basin initiation and propagation: a neotectonic example from Lake Baikal
Agar, Susan M.; Klitgord, Kim D.
1995-01-01
New surficial data (field, Landsat TM and topography) define morpho-tectonic domains and rift flank segmentation in the Ol'khon region of the Central Baikal rift. Deformation, drainage and depositional patterns indicate a change in the locus of active extension that may relate to a recent (
Along-strike variations of geometry and kinematics on the border fault of Nanpu sag, Bohai Bay Basin
NASA Astrophysics Data System (ADS)
Zhang, C.; Ren, J.; Liu, X.; Sun, Z.; Su, M.
2010-12-01
Nanpu sag is located in the north-eastern portion of the Huanghua depression, covering an area of approximately 1900km2, and comprises one of the most important petroliferous basins of the Bohai Bay Basin. The Nanpu sag is bordered by two master faults with long-term activity: the Xi’nanzhuang (XNZ) and Bogezhuang (BGZ) fault. By analysis of horizontal slices, gravity anomaly map and seismic reflection sections, we found there is no cutting relationship, and thus considered the XNZ and BGZ fault as a same one. However it showed striking differences between the XNZ and BGZ segment in fault occurrence, fault throw and residual formation thickness and so on. The BGZ fault was NW trending fault with a steep inclination. Taken section across the northern region in Nanpu sag for example, its controlling depocenter is located in eastern subsag (Fig.1); the XNZ fault was a NE fault and displayed a Shovel-shaped to plate-like geometry, with its controlling depocenter located in western subsag. We qualitify the fault throw, showing that the XNZ fault strongly acted during the sedimentary period of Es3-Es2, while the BGZ fault presented weak activity, and especially during Es31 submember-Es2 member, the XNZ fault acted so strongly that the hanging wall of BGZ fault was tilt-lifted and suffered erosion (Fig.1), which created Es1 uncomformity; The BGZ fault acted strongly during the sedimentary period of Es1-Ed, which led the hanging wall of XNZ fault to be tilt-lifted. Controlled by such segmented activity of the whole border fault, which we suggested a "seesaw" model for its evolution, the northern part in the Nanpu sag experienced an alternative variation between a deposition center and an erosion region after tilt-lifting. Combination of the sediment stacking patterns, we further classified the history of "seesaw" activities into four stages: 1) Early double-break stage (Es35-Es31), both of the XNZ and BGZ fault acted; 2) Middle the XNZ segment throw and the BGZ tilting (Es2); 3) Late the XNZ segment tilting and BGZ throw (Es1-Ed3); 4) End weak double-break stage (Ed2-Present), the whole fault acted weakly and were superposed by neotectonic movement. Fig.1 Seesaw activity of the whole border fault
Duross, Christopher; Personius, Stephen; Olig, Susan S; Crone, Anthony J.; Hylland, Michael D.; Lund, William R; Schwartz, David P.
2017-01-01
The Wasatch fault (WFZ)—Utah’s longest and most active normal fault—forms a prominent eastern boundary to the Basin and Range Province in northern Utah. To provide paleoseismic data for a Wasatch Front regional earthquake forecast, we synthesized paleoseismic data to define the timing and displacements of late Holocene surface-faulting earthquakes on the central five segments of the WFZ. Our analysis yields revised histories of large (M ~7) surface-faulting earthquakes on the segments, as well as estimates of earthquake recurrence and vertical slip rate. We constrain the timing of four to six earthquakes on each of the central segments, which together yields a history of at least 24 surface-faulting earthquakes since ~6 ka. Using earthquake data for each segment, inter-event recurrence intervals range from about 0.6 to 2.5 kyr, and have a mean of 1.2 kyr. Mean recurrence, based on closed seismic intervals, is ~1.1–1.3 kyr per segment, and when combined with mean vertical displacements per segment of 1.7–2.6 m, yield mean vertical slip rates of 1.3–2.0 mm/yr per segment. These data refine the late Holocene behavior of the central WFZ; however, a significant source of uncertainty is whether structural complexities that define the segments of the WFZ act as hard barriers to ruptures propagating along the fault. Thus, we evaluate fault rupture models including both single-segment and multi-segment ruptures, and define 3–17-km-wide spatial uncertainties in the segment boundaries. These alternative rupture models and segment-boundary zones honor the WFZ paleoseismic data, take into account the spatial and temporal limitations of paleoseismic data, and allow for complex ruptures such as partial-segment and spillover ruptures. Our data and analyses improve our understanding of the complexities in normal-faulting earthquake behavior and provide geological inputs for regional earthquake-probability and seismic hazard assessments.
Active faults system and related potential seismic events near Ulaanbaatar, capital of Mongolia.
NASA Astrophysics Data System (ADS)
Schlupp, Antoine; Ferry, Matthieu; Munkhuu, Ulziibat; Sodnomsambuu, Demberel; Al-Ashkar, Abeer
2013-04-01
The region of Ulaanbaatar lies several hundred kilometers from large known active faults that produced magnitude 6 to 8+ earthquakes during the last century. Beside the Hustai fault, which displays a clear morphological expression, no active fault was previously described less than 100 km from the city. In addition, no large historical (i.e. more recent than the 16th c.) earthquakes are known in this region. However, since 2005 a very dense seismic activity has developed over the Emeelt Township area, a mere 10 km from Ulaanbaatar. The activity is characterized by numerous low magnitude events (M<2.8), which are distributed linearly along several tens of kilometers where no active fault has been identified. This raises several questions: Is this seismicity associated to a -yet- unknown active fault? If so, are there other unknown active faults near Ulaanbaatar? Hence, we deployed a multi-disciplinary approach including morpho-tectonic, near-surface geophysical and paleoseismological investigations. We describe four large active faults west and south of Ulaanbaatar, three of them are newly discovered (Emeelt, Sharai, Avdar), one was previously known (Hustai) but without precise study on its seismic potential. The Emeelt seismicity can be mapped over 35 km along N150 and corresponds in the field to a smoothed, but clear, active fault morphology that can be mapped along a 10-km-long section. The fault dips at ~30° NE (GPR and surface morphology observations) and uplifts the eastern block. The age of the last surface rupture observed in trenches is about 10 ka (preliminary OSL dating). Considering a rupture length of 35 km, a full segment rupture would be comparable to the 1967 Mogod earthquake with a magnitude as large as Mw 7. It has to be considered today as a possible scenario for the seismic risk of Ulaanbaatar. The 90-km-long Hustai Range Fault System, oriented WSW-ENE and located about 10 km west of Ulaanbaatar, displays continuous microseismicity with five light to moderate (M 4 - 5.4) earthquakes over the last 40 years. The last surface-rupturing earthquake occurred about 1000 years ago (OSL dating). Alluvial fans affected by the fault suggest the rate of deformation (left lateral with normal component) along the main segment ranges from 0.3 to 0.4 mm/year for the last 120 000 years. Hence, the average recurrence interval for a full-segment M 7-7.5 is likely in the order of 10 ky. However, if the Hustai fault also releases strain during partial ruptures along its strongly segmented trace, a Mw 6.5 event may be expected anytime. However, only the main central fault segment has been investigated in terms of paleoseismicity. The Sharai and Avdar faults, oriented NNE-SSW, were mapped along ~50-km-long sections. Each of these faults was the site of earthquakes of magnitude 6 and more in the past as suggested by morphology and trench observations. Full-segment-ruptures could produce events as large as M 7.2. The precise relationship and interactions between these faults as well as associated earthquakes have to be clarified by collecting more data. They are the key of the seismic hazard and risk of Ulaanbaatar.
Investigation of Aceh Segment and Seulimeum Fault by using seismological data; A preliminary result
NASA Astrophysics Data System (ADS)
Muksin, U.; Irwandi; Rusydy, I.; Muzli; Erbas, K.; Marwan; Asrillah; Muzakir; Ismail, N.
2018-04-01
The Seulimeum Fault has not generated large earthquake after last large earthquake with magnitude of M 7.3 occured in 1936. The Seulimeum Fault is accompanied by the Seulawah volcano that reported to be active in 1839, 1975 and 2010. The activity of the Seulimeum Fault could be related with the existence of the Seulawah volcano and the Seulawah volcano activity could also triggered by the Seulumeum Fault activity. The objective of the longterm research is to investigate the relation between the Seulimeum Fault and the Seulawah Volcano. The aim of this paper is to present the first result of the investigation of the Seulimeum Fault based on the seismicity and geomorphology. A seismic network consisting of 17 seismometers (Trilium Compact) and data logger (DSS Cube) were deployed in Aceh Besar. The seismic network was installed for 3 months to record earthquakes along the Seulimeum and the Aceh Faults. The Seulimeum Fault is considered to be active as several local earthquakes were recorded. The Seulimeum Fault is much more active in the region of the bifurcation of the The Aceh Segment and the Seulimeum Fault. The mechanisms of earthquakes along the Seulimeum Fault were mostly strike slip following similar to the Sumatran Fault characteristics.
NASA Astrophysics Data System (ADS)
Nennewitz, Markus; Thiede, Rasmus; Bookhagen, Bodo
2017-04-01
The location and magnitude of the active deformation of the Himalaya has been debated for decades, but several aspects remain unknown. For instance, the spatial distribution of the deformation and the shortening that ultimately sustains Himalayan topography and the activity of major fault zones are not well constrained neither for the present day and nor for Holocene and Quarternary timescales. Because of these weakly constrained factors, many previous studies have assumed that the structural setting and the fault geometry of the Himalaya is continuous along strike and similar to fault geometries of central Nepal. Thus, the sub-surface structural information from central Nepal have been projected along strike, but have not been verified at other locations. In this study we use digital topographic analysis of the NW Himalaya. We obtained catchment-averaged, normalized steepness indexes of longitudinal river profiles with drainage basins ranging between 5 and 250km2 and analyzed the relative change in their spatial distribution both along and across strike. More specific, we analyzed the relative changes of basins located in the footwall and in the hanging wall of major fault zones. Under the assumption that along strike changes in the normalized steepness index are primarily controlled by the activity of thrust segments, we revealed new insights in the tectonic deformation and uplift pattern. Our results show three different segments along the northwest Himalaya, which are located, from east to west, in Garwhal, Chamba and Kashmir Himalaya. These have formed independent orogenic segments characterized by significant changes in their structural architecture and fault geometry. Moreover, their topographic changes indicate strong variations on fault displacement rates across first-order fault zones. With the help of along- and across-strike profiles, we were able to identify fault segments of pronounced fault activity across MFT, MBT, and the PT2 and identify the location of along strike changes which are interpreted as their segment boundaries. In addition to the steepness indices we use the accumulation of elevation data as a proxy for the strain that has been accumulated over a specific distance. Thus, despite the changes in topography, structural setting, and kinematics along the NW Himalaya we observe that the topography of the orogen is in good agreement with recently measured convergence rates obtained from GPS campaigns. These data suggest reduced crustal shortening towards the northwest. Deformation in the Central Himalaya has been explained either by in-sequence thrusting along the MFT that localize the entire Holocene shortening or a combination of this with out-of-sequence thrusting in the vicinity of the PT2. In contrast to these conceptual models, we propose that the segmented NW Himalaya is a product of the synchronous activity of different fault segments, accommodating the crustal shortening along three independently deforming organic segments. The lateral discontinuity of these segments is responsible for the accommodation of the variation in the deformation and the maintenance of the topography of the Himalaya in NW India.
NASA Astrophysics Data System (ADS)
Mahya, M. J.; Sanny, T. A.
2017-04-01
Lembang and Cimandiri fault are active faults in West Java that thread people near the faults with earthquake and surface deformation risk. To determine the deformation, GPS measurements around Lembang and Cimandiri fault was conducted then the data was processed to get the horizontal velocity at each GPS stations by Graduate Research of Earthquake and Active Tectonics (GREAT) Department of Geodesy and Geomatics Engineering Study Program, ITB. The purpose of this study is to model the displacement distribution as deformation parameter in the area along Lembang and Cimandiri fault using 2-dimensional boundary element method (BEM) using the horizontal velocity that has been corrected by the effect of Sunda plate horizontal movement as the input. The assumptions that used at the modeling stage are the deformation occurs in homogeneous and isotropic medium, and the stresses that acted on faults are in elastostatic condition. The results of modeling show that Lembang fault had left-lateral slip component and divided into two segments. A lineament oriented in southwest-northeast direction is observed near Tangkuban Perahu Mountain separating the eastern and the western segments of Lembang fault. The displacement pattern of Cimandiri fault shows that Cimandiri fault is divided into the eastern segment with right-lateral slip component and the western segment with left-lateral slip component separated by a northwest-southeast oriented lineament at the western part of Gede Pangrango Mountain. The displacement value between Lembang and Cimandiri fault is nearly zero indicating that Lembang and Cimandiri fault are not connected each other and this area is relatively safe for infrastructure development.
Rodriguez-Pascua, M. A.; Bischoff, J.; Garduno-Monroy, Victor H.; Pérez-López, R.; Giner-Robles, J.L.; Israde-Alcántara, I.; Calvo, J.P.; Williams, Ross W.
2009-01-01
The Quaternary lacustrine basin of Cordovilla (CB) represents one of the most active tectonic areas of the Prebetic Zone (Albacete, SE of Spain). The Quaternary sedimentary deposits of this basin are mainly endoreic lacustrine carbonate and alluvial deposits, developed in a semi-arid climate (Pleistocene-present). The basin is a NW-SE-elongated graben bounded by a major right-lateral oblique-fault, the Pozohondo Fault. This fault trends NW-SE, with an approximate trace of 55 km, and is composed of various segments which are identified by fault scarps. In order to establish the slip-rate of the most active segment of the Pozohondo Fault, called the Cordovilla segment, we carried out a detailed study of the affected Quaternary lacustrine deposits. We found that the lacustrine facies could be related to episodic moderate paleoearthquakes. The slip-rate is calculated to be 0.05 and 0.09 mm/yr, using radiometric dating for the vertical offsets of the lacustrine facies. A trenching study at the northern part of the Cordovilla segment revealed two events caused by paleoearthquakes, with the most recent expressed as an oblique-fault off-setting a poorly-developed soil. The magnitude of the last event was greater than 6, using various empirical relationships for the fault displacement and the surface-length rupture. We estimate episodic activity across the Cordovilla segment, to be characterized by moderate-sized paleoearthquakes (M6), which is in agreement with the tectonic context of an intraplate zone of the Iberian plate. ?? 2009 Elsevier B.V.
Active intra-basin faulting in the Northern Basin of Lake Malawi from seismic reflection data
NASA Astrophysics Data System (ADS)
Shillington, D. J.; Chindandali, P. R. N.; Scholz, C. A.; Ebinger, C. J.; Onyango, E. A.; Peterson, K.; Gaherty, J. B.; Nyblade, A.; Accardo, N. J.; McCartney, T.; Oliva, S. J.; Kamihanda, G.; Ferdinand, R.; Salima, J.; Mruma, A. H.
2016-12-01
Many questions remain about the development and evolution of fault systems in weakly extended rifts, including the relative roles of border faults and intra-basin faults, and segmentation at various scales. The northern Lake Malawi (Nyasa) rift in the East African Rift System is an early stage rift exhibiting pronounced tectonic segmentation, which is defined by 100-km-long border faults. The basins also contain a series of intrabasinal faults and associated synrift sediments. The occurrence of the 2009 Karonga Earthquake Sequence on one of these intrabasinal faults indicates that some of them are active. Here we present new multichannel seismic reflection data from the Northern Basin of the Malawi Rift collected in 2015 as a part of the SEGMeNT (Study of Extension and maGmatism in Malawi aNd Tanzania) project. This rift basin is bound on its east side by the west-dipping Livingstone border fault. Over 650 km of seismic reflection profiles were acquired in the Northern Basin using a 500 to 1540 cu in air gun array and a 1200- to 1500-m seismic streamer. Dip lines image a series of north-south oriented west-dipping intra-basin faults and basement reflections up to 5 s twtt near the border fault. Cumulative offsets on intra-basin faults decrease to the west. The largest intra-basin fault has a vertical displacement of >2 s two-way travel time, indicating that it has accommodated significant total extension. Some of these intra-basin faults offset the lake bottom and the youngest sediments by up to 50 s twtt ( 37 m), demonstrating they are still active. The two largest intra-basin faults exhibit the largest offsets of young sediments and also correspond to the area of highest seismicity based on analysis of seismic data from the 89-station SEGMeNT onshore/offshore network (see Peterson et al, this session). Fault patterns in MCS profiles vary along the basin, suggesting a smaller scale of segmentation of faults within the basin; these variations in fault patterns appear to correlate with variations in the distribution of aftershocks from the 2009 and 2014 Karonga earthquakes and in background seismicity beneath the lake, providing new constraints on length-displacement scaling for predictive models and earthquake hazards.
Kinematic Evolution of the North-Tehran Fault (NTF), Alborz Mountains, Iran
NASA Astrophysics Data System (ADS)
Landgraf, A.; Ballato, P.; Strecker, M. R.; Shahpasandzadeh, M.; Friedrich, A.; Tabatabaei, S. H.
2007-12-01
The ENE-to NW-striking NTF is an active frontal thrust that delimits the Alborz Mountain range to the south with an up to 2000 m topographic break with respect to the adjacent Tehran plain. Eocene rocks of the Alborz range are thrusted over Neogene and Quaternary sediments of the alluvial Tehran embayment. The fault consists of right- stepping segments and merges to the east with the active Mosha-Fasham strike-slip fault (MFF). The complex tectonic history, involving changes in the direction of SHmax, has resulted in a composite tectonic landscape with inherited topographic and fault-kinematic fingerprints along the NTF. We therefore used a combination of fault-kinematic measurements and geomorphic observations to unravel the temporal tectonic evolution of this fault. Presently, the NTF is virtually inactive, although the tectonically overprinted landforms reflect tectonic activity on longer time scales during the Quaternary. Being located adjacent north of the Tehran megacity, there is thus considerable interest to decipher its youngest tectonic evolution and to better understand the relation with other fault systems. Our fault kinematic study has revealed an early dextral kinematic history for the NTF. Dextral strike-slip and oblique reverse faulting took place during NW-oriented shortening. The overall fault-geometry of the NTF suggests that it has evolved in relation to dextral transpression along the MFF. This early kinematic regime was superseded by NE-oriented shortening, associated with sinistral-oblique thrusting along the fault segments. Fault linkage between the semi-independent ENE-striking NTF-segments and NW-striking thrusts (Emamzadeh Davud Fault [EDF], Purkan Vardij Thrust [PVT], NTF-prolongation) point towards an evolution into a nascent transpressional duplex. In this scenario the NTF segments constitute lateral ramps and the NW-striking faults act as frontal ramps. Topographic residuals, as an expression of high-uplift zones, indicate that the central segment of the NTF, incorporating the EDF was most effective in accommodating oblique convergence during this time. However, subtle knickpoints in the longitudinal river profiles crossing the PVT may indicate a relatively recent transfer of deformation onto this block. The youngest manifestations of deformation along the NTF, however, are left-lateral and normal faulting. This youngest phase of activity is documented by numerous striated and rotated conglomeratic clasts, meter-scale fault gouge zones with shear-sense indicators of oblique normal faulting, and multiple colluvial wedges with drag phenomena. Rupture traces and filled extensional cracks reaching the surface also document the seismogenic nature of these features. Since recent left-lateral transtension is also known from neighboring faults, e.g., the eastern MFF, our observations suggest that this youngest phase of tectonic activity of the NTF is a regional phenomenon, rather than the result of locally-determined geometries.
Timing of activity of two fault systems on Mercury
NASA Astrophysics Data System (ADS)
Galluzzi, V.; Guzzetta, L.; Giacomini, L.; Ferranti, L.; Massironi, M.; Palumbo, P.
2015-10-01
Here we discuss about two fault systems found in the Victoria and Shakespeare quadrangles of Mercury. The two fault sets intersect each other and show probable evidence for two stages of deformation. The most prominent system is N-S oriented and encompasses several tens to hundreds of kilometers long and easily recognizable fault segments. The other system strikes NE- SW and encompasses mostly degraded and short fault segments. The structural framework of the studied area and the morphological appearance of the faults suggest that the second system is older than the first one. We intend to apply the buffered crater counting technique on both systems to make a quantitative study of their timing of activity that could confirm the already clear morphological evidence.
NASA Astrophysics Data System (ADS)
Lin, A.; Yan, B.
2017-12-01
Knowledges on the activity of the strike-slip fault zones on the Tibetan Plateau have been promoted greatly by the interpretation of remote sensing images (Molnar and Tapponnier, 1975; Tapponnier and Molnar, 1977). The active strike-slip Xianshuihe-Xiaojiang Fault System (XXFS), with the geometry of an arc projecting northeastwards, plays an important role in the crustal deformation of the Tibetan Plateau caused by the continental collision between the Indian and Eurasian plates. The Xianshuihe Fault Zone (XFZ) is located in the central segment of the XXFS and extends for 370 km, with a maximum sinistral offset of 60 km since 13‒5 Ma. In this study, we investigated the tectonic landforms and slip rate along the central segment of the left-lateral strike-slip XFZ. Field investigations and analysis of ttectonic landforms show that horizontal offset has been accumulated on the topographical markers of different scales that developed since the Last Glacial Maximum (LGM). The central segment of the XFZ is composed of three major faults: Yalahe, Selaha, and Zheduotang faults showing a right-stepping echelon pattern, that is characterized by systematical offset of drainages, alluvial fans and terrace risers with typical scissoring structures, indicating a structural feature of left-lateral strike-slip fault. Based on the offset glacial morphology and radiocarbon dating ages, we estimate the Late Pleistocene-Holocene slip rate to be 10 mm/yr for the central segment of the XFZ, which is consistent with that estimated from the GPS observations and geological evidence as reported previously. Across the central segment of the XFZ, the major Selaha and Zheduotang faults participate a slip rate of 5.8 mm/yr and 3.4 mm/yr, respectively. Detailed investigations of tectonic landforms are essential for the understanding the activity of active faults. Our findings suggest that the left-lateral slipping of the XFZ partitions the deformation of eastward extrusion and northeastward shortening of the central Tibetan Plateau to accommodate the continuing penetration of the Indian plate into the Eurasian plate.
NASA Technical Reports Server (NTRS)
Rubin, C. M.
1996-01-01
Because most large-magnitude earthquakes along reverse faults have such irregular and complicated rupture patterns, reverse-fault segments defined on the basis of geometry alone may not be very useful for estimating sizes of future seismic sources. Most modern large ruptures of historical earthquakes generated by intracontinental reverse faults have involved geometrically complex rupture patterns. Ruptures across surficial discontinuities and complexities such as stepovers and cross-faults are common. Specifically, segment boundaries defined on the basis of discontinuities in surficial fault traces, pronounced changes in the geomorphology along strike, or the intersection of active faults commonly have not proven to be major impediments to rupture. Assuming that the seismic rupture will initiate and terminate at adjacent major geometric irregularities will commonly lead to underestimation of magnitudes of future large earthquakes.
NASA Astrophysics Data System (ADS)
Sakran, Shawky; Said, Said Mohamed
2018-02-01
Detailed surface geological mapping and subsurface seismic interpretation have been integrated to unravel the structural style and kinematic history of the Nubian Fault System (NFS). The NFS consists of several E-W Principal Deformation Zones (PDZs) (e.g. Kalabsha fault). Each PDZ is defined by spectacular E-W, WNW and ENE dextral strike-slip faults, NNE sinistral strike-slip faults, NE to ENE folds, and NNW normal faults. Each fault zone has typical self-similar strike-slip architecture comprising multi-scale fault segments. Several multi-scale uplifts and basins were developed at the step-over zones between parallel strike-slip fault segments as a result of local extension or contraction. The NNE faults consist of right-stepping sinistral strike-slip fault segments (e.g. Sin El Kiddab fault). The NNE sinistral faults extend for long distances ranging from 30 to 100 kms and cut one or two E-W PDZs. Two nearly perpendicular strike-slip tectonic regimes are recognized in the NFS; an inactive E-W Late Cretaceous - Early Cenozoic dextral transpression and an active NNE sinistral shear.
NASA Astrophysics Data System (ADS)
Dannowski, A.; Morgan, J. P.; Grevemeyer, I.; Ranero, C. R.
2018-02-01
Crustal structure provides the key to understand the interplay of magmatism and tectonism, while oceanic crust is constructed at Mid-Ocean Ridges (MORs). At slow spreading rates, magmatic processes dominate central areas of MOR segments, whereas segment ends are highly tectonized. The TAMMAR segment at the Mid-Atlantic Ridge (MAR) between 21°25'N and 22°N is a magmatically active segment. At 4.5 Ma this segment started to propagate south, causing the termination of the transform fault at 21°40'N. This stopped long-lived detachment faulting and caused the migration of the ridge offset to the south. Here a segment center with a high magmatic budget has replaced a transform fault region with limited magma supply. We present results from seismic refraction profiles that mapped the crustal structure across the ridge crest of the TAMMAR segment. Seismic data yield crustal structure changes at the segment center as a function of melt supply. Seismic Layer 3 underwent profound changes in thickness and became rapidly thicker 5 Ma. This correlates with the observed "Bull's Eye" gravimetric anomaly in that region. Our observations support a temporal change from thick lithosphere with oceanic core complex formation and transform faulting to thin lithosphere with focused mantle upwelling and segment growth. Temporal changes in crustal construction are connected to variations in the underlying mantle. We propose that there is a link between the neighboring segments at a larger scale within the asthenosphere, to form a long, highly magmatically active macrosegment, here called the TAMMAR-Kane Macrosegment.
NASA Astrophysics Data System (ADS)
Asano, K.; Iwata, T.; Kubo, H.
2015-12-01
A thrust earthquake of MW 6.3 occurred along the northern part of the Itoigawa-Shizuoka Tectonic Line (ISTL) in the northern Nagano prefecture, central Japan, on November 22, 2014. This event was reported to be related to an active fault, the Kamishiro fault belonging to the ISTL (e.g., HERP, 2014). The surface rupture is observed along the Kamishiro fault (e.g., Lin et al., 2015; Okada et al., 2015). We estimated the kinematic source rupture process of this earthquake through the multiple time-window linear waveform inversion method (Hartzell and Heaton, 1983). We used velocity waveforms in 0.05-1 Hz from 12 strong motion stations of K-NET, KiK-net (NIED), JMA, and Nagano prefecture (SK-net, ERI). In order to enhance the reliability in Green's functions, we assumed one-dimensional velocity structure models different for the different stations, which were extracted from the nation-wide three-dimensional velocity structure model, Japan Integrated Velocity Structure Model (JIVSM, Koketsu et al., 2012). Considering the spatial distribution of aftershocks (Sakai et al., 2015) and surface ruptures, the assumed fault model consisted of two dip-bending fault segments with different dip angles between the northern and southern segments. The total length and width of the fault plane is 20 km and 13 km, relatively, and the fault model is divided into 260 subfaults of 1 km × 1 km in space and six smoothed ramp functions in time. An asperity or large slip area with a peak slip of 1.9 m was estimated in the lower plane of the northern segment in the approximate depth range of 4 to 8 km. The depth extent of this asperity is consistent with the seismogenic zone revealed by past studies (e.g., Panayotopoulos et al., 2014). In contrast, the slip in the southern segment is relatively concentrated in the shallow portion of the segment where the surface ruptures were found along the Kamishiro fault. The overall spatial rupture pattern of the source fault, in which the deep asperity was located on the northern segment and surface rupture was found on the southern segment, seems to be spatially consistent with the mapped active faults. These findings suggest characteristic and repeating features of fault ruptures along active faults where static offsets have accumulated over past events, and it would be a good constraint on earthquake scenarios along it.
NASA Astrophysics Data System (ADS)
Omura, K.; Yamashita, F.; Yamada, R.; Matsuda, T.; Fukuyama, E.; Kubo, A.; Takai, K.; Ikeda, R.; Mizuochi, Y.
2004-12-01
Drilling is an effective method to investigate the structure and physical state in and around the active fault zone, such as, stress and strength distribution, geological structure and materials properties. In particular, the structure in the fault zone is important to understand where and how the stress accumulates during the earthquake cycle. In previous studies, we did integrate investigation on active faults in central Japan by drilling and geophysical prospecting. Those faults are estimated to be at different stage in the earthquake cycle, i.e., Nojima fault which appeared on the surface by the 1995 Great Kobe earthquake (M=7.2), the Neodani fault which appeared by the 1891 Nobi earth-quake (M=8.0), the Atera fault, of which some parts have seemed to be dislocated by the 1586 Tensyo earthquake (M=7.9), and Gofukuji Fault that is considered to have activated about 1200 years ago. Each faults showed characteristic features of fracture zone structure according to their geological and geophysical situations. In a present study, we did core recovery and down hole measurements at the Atotsugawa fault, central Japan, that is considered to have activated at 1858 Hida earthquake (M=7.0). The Atotsugawa fault is characterized by active seismicity along the fault. But, at the same time, the shallow region in the central segment of the fault seems to have low seismicity. The high seismicity segment and low seismicity segments may have different mechanical, physical and material properties. A 350m depth borehole was drilled vertically beside the surface trace of the fault in the low seismicity segment. Recovered cores were overall heavily fractured and altered rocks. In the cores, we observed many shear planes holding fault gouge. Logging data showed that the apparent resistance was about 100 - 600 ohm-m, density was about 2.0 - 2.5g/cm3, P wave velocity was approximately 3.0 - 4.0 km/sec, neutron porosity was 20 - 40 %. Results of physical logging show features of fault fracture zone that were the same as the fault fracture zones of other active faults that we have drilled previously. By the BHTV logging, we detected many fractures of which the strikes are not only parallel to the fault trace bur also oblique to the fault trace. The observations of cores and logging data indicate that the borehole passed in the fracture zone down to the bottom, and that the fracture zone has complicate internal structure including foliation not parallel to the fault trace. The core samples are significant for further investigation on material properties in the fracture zone. And we need data of geophysical prospecting to infer the deeper structure of the fracture zone.
NASA Astrophysics Data System (ADS)
Giaconia, Flavio; Booth-Rea, Guillermo; Martínez-Martínez, José Miguel; Azañón, José Miguel; Pérez-Romero, Joaquín; Villegas, Irene
2013-01-01
The Polopos E-W- to ESE-WNW-oriented dextral-reverse fault zone is formed by the North Alhamilla reverse fault and the North and South Gafarillos dextral faults. It is a conjugate fault system of the sinistral NNE-SSW Palomares fault zone, active from the late most Tortonian (≈7 Ma) up to the late Pleistocene (≥70 ky) in the southeastern Betics. The helicoidal geometry of the fault zone permits to shift SE-directed movement along the South Cabrera reverse fault to NW-directed shortening along the North Alhamilla reverse fault via vertical Gafarillos fault segments, in between. Since the Messinian, fault activity migrated southwards forming the South Gafarillos fault and displacing the active fault-related mountain-front from the north to the south of Sierra de Polopos; whilst recent activity of the North Alhamilla reverse fault migrated westwards. The Polopos fault zone determined the differential uplift between the Sierra Alhamilla and the Tabernas-Sorbas basin promoting the middle Pleistocene capture that occurred in the southern margin of the Sorbas basin. Continued tectonic uplift of the Sierra Alhamilla-Polopos and Cabrera anticlinoria and local subsidence associated to the Palomares fault zone in the Vera basin promoted the headward erosion of the Aguas river drainage that captured the Sorbas basin during the late Pleistocene.
NASA Astrophysics Data System (ADS)
Sun, H.; He, H.; Ikeda, Y.; Kano, K.; Shi, F.; Gao, W.; Echigo, T.; Okada, S.
2017-12-01
Although much work has been performed for faults with high slip-rates, little attention has been paid to low slip-rate faults, such as the Longmenshan Thrust Zone (LTZ). The LTZ is a long and matured fault that evolved during the Mesozoic as a structural boundary, but its Quaternary activity had been considered insignificant. The Wenchuan earthquake and the following Lushan earthquake on the central and southwestern segments of the LTZ not only demonstrate its capability for strong earthquakes but also illustrate the necessity of assessing the regional seismic potential around its northeastern extension. The sparse seismicity along the northeastern segment of the LTZ relative to the very seismically active Minshan Uplift seems to have suggested that the slip on the central LTZ transfers northeastward to the Minshan Uplift, so that its northeastern segment is inactive. However, the Wenchuan earthquake surface rupture and aftershocks extended beyond the Minshan Uplift, and revealed that the break both at and below the ground surface may have reached the northeastern segment of the LTZ raising a question that whether or not this fault segment is active. Although several studies had been carried out on the northeastern segment of the LTZ, little is known about its activity and seismic potential. To solve these problems, we conducted paleoseismological trench excavations on the Qingchuan fault (QF) in the northeastern LTZ and identified one (and the latest) event occurred in the Holocene. Based on radiocarbon dating, the event is constrained to occur between 4115-3820 B.C., and a long recurrence interval is thus estimated. Judging from the matured fault structure of the QF, the latest event was likely to have ruptured the full length of the QF, and was estimated to be Mw 7.6-7.9 according to empirical scaling laws. Using the slip rate and the elapsed time since the last event, it is estimated an accumulated seismic moment equivalent to Mw 7.5 on the QF. Considering the increased Coulomb failure stress and the shortened time of earthquake recurrence triggered by the Wenchuan earthquake, it is suggested a high seismic risk along the QF and its neighboring area. Furthermore, the slow strain buildup, unadapted geometry, and matured fault structure of the LTZ may be the reason why it produces rare but large intraplate earthquakes.
NASA Astrophysics Data System (ADS)
Ruzhich, Valery V.; Psakhie, Sergey G.; Levina, Elena A.; Shilko, Evgeny V.; Grigoriev, Alexandr S.
2017-12-01
In the paper we briefly outline the experience in forecasting catastrophic earthquakes and the general problems in ensuring seismic safety. The purpose of our long-term research is the development and improvement of the methods of man-caused impacts on large-scale fault segments to safely reduce the negative effect of seismodynamic failure. Various laboratory and large-scale field experiments were carried out in the segments of tectonic faults in Baikal rift zone and in main cracks in block-structured ice cove of Lake Baikal using the developed measuring systems and special software for identification and treatment of deformation response of faulty segments to man-caused impacts. The results of the study let us to ground the necessity of development of servo-controlled technologies, which are able to provide changing the shear resistance and deformation regime of fault zone segments by applying vibrational and pulse triggering impacts. We suppose that the use of triggering impacts in highly stressed segments of active faults will promote transferring the geodynamic state of these segments from a metastable to a more stable and safe state.
The Gabbs Valley, Nevada, geothermal prospect: Exploring for a potential blind geothermal resource
NASA Astrophysics Data System (ADS)
Payne, J.; Bell, J. W.; Calvin, W. M.
2012-12-01
The Gabbs Valley prospect in west-central Nevada is a potential blind geothermal resource system. Possible structural controls on this system were investigated using high-resolution LiDAR, low sun-angle aerial (LSA) photography, exploratory fault trenching and a shallow temperature survey. Active Holocene faults have previously been identified at 37 geothermal systems with indication of temperatures greater than 100° C in the western Nevada region. Active fault controls in Gabbs Valley include both Holocene and historical structures. Two historical earthquakes occurring in 1932 and 1954 have overlapping surface rupture patterns in Gabbs Valley. Three active fault systems identified through LSA and LiDAR mapping have characteristics of Basin and Range normal faulting and Walker Lane oblique dextral faulting. The East Monte Cristo Mountains fault zone is an 8.5 km long continuous NNE striking, discrete fault with roughly 0.5 m right-normal historic motion and 3 m vertical Quaternary separation. The Phillips Wash fault zone is an 8.2 km long distributed fault system striking NE to N, with Quaternary fault scarps of 1-3 m vertical separation and a 500 m wide graben adjacent to the Cobble Cuesta anticline. This fault displays ponded drainages, an offset terrace riser and right stepping en echelon fault patterns suggestive of left lateral offset, and fault trenching exposed non-matching stratigraphy typical of a significant component of lateral offset. The unnamed faults of Gabbs Valley are a 10.6 km long system of normal faults striking NNE and Quaternary scarps are up to 4 m high. These normal faults largely do not have historic surface rupture, but a small segment of 1932 rupture has been identified. A shallow (2 m deep) temperature survey of 80 points covering roughly 65 square kilometers was completed. Data were collected over approximately 2 months, and continual base station temperature measurements were used to seasonally correct temperature measurements. A 2.5 km long temperature anomaly greater than 3° C above background temperatures forms west-northwest trending zone between terminations of the Phillips Wash fault zone and unnamed faults of Gabbs Valley to the south. Rupture segments of two young active faults bracket the temperature anomaly. The temperature anomaly may be due to several possible causes. 1. Increases in stress near the rupture segments or tip-lines of these faults, or where multiple fault splays exist, can increase fault permeability. The un-ruptured segments of these faults may be controlling the location of the Gabbs Valley thermal anomaly between ruptured segments of the 1932 Cedar Mountain and 1954 Fairview Peak earthquakes. 2. Numerous unnamed normal faults may interact and the hanging wall of these faults is hosting the thermal anomaly. The size and extent of the anomaly may be due to its proximity to a flat playa and not the direct location of the shallow heat anomaly. 3. The linear northwest nature of the thermal anomaly may reflect a hydrologic barrier in the subsurface controlling where heated fluids rise. A concealed NW- striking fault is possible, but has not been identified in previous studies or in the LiDAR or LSA fault mapping.
Johnson, S.Y.; Dadisman, S.V.; Childs, J. R.; Stanley, W.D.
1999-01-01
We use an extensive network of marine high-resolution and conventional industry seismic-reflection data to constrain the location, shallow structure, and displacement rates of the Seattle fault zone and crosscutting high-angle faults in the Puget Lowland of western Washington. Analysis of seismic profiles extending 50 km across the Puget Lowland from Lake Washington to Hood Canal indicates that the west-trending Seattle fault comprises a broad (4-6 km) zone of three or more south-dipping reverse faults. Quaternary sediment has been folded and faulted along all faults in the zone but is clearly most pronounced along fault A, the northernmost fault, which forms the boundary between the Seattle uplift and Seattle basin. Analysis of growth strata deposited across fault A indicate minimum Quaternary slip rates of about 0.6 mm/yr. Slip rates across the entire zone are estimated to be 0.7-1.1 mm/yr. The Seattle fault is cut into two main segments by an active, north-trending, high-angle, strike-slip fault zone with cumulative dextral displacement of about 2.4 km. Faults in this zone truncate and warp reflections in Tertiary and Quaternary strata and locally coincide with bathymetric lineaments. Cumulative slip rates on these faults may exceed 0.2 mm/yr. Assuming no other crosscutting faults, this north-trending fault zone divides the Seattle fault into 30-40-km-long western and eastern segments. Although this geometry could limit the area ruptured in some Seattle fault earthquakes, a large event ca. A.D. 900 appears to have involved both segments. Regional seismic-hazard assessments must (1) incorporate new information on fault length, geometry, and displacement rates on the Seattle fault, and (2) consider the hazard presented by the previously unrecognized, north-trending fault zone.
The Role of Coseismic Coulomb Stress Changes in Shaping the Hard Link Between Normal Fault Segments
NASA Astrophysics Data System (ADS)
Hodge, M.; Fagereng, Å.; Biggs, J.
2018-01-01
The mechanism and evolution of fault linkage is important in the growth and development of large faults. Here we investigate the role of coseismic stress changes in shaping the hard links between parallel normal fault segments (or faults), by comparing numerical models of the Coulomb stress change from simulated earthquakes on two en echelon fault segments to natural observations of hard-linked fault geometry. We consider three simplified linking fault geometries: (1) fault bend, (2) breached relay ramp, and (3) strike-slip transform fault. We consider scenarios where either one or both segments rupture and vary the distance between segment tips. Fault bends and breached relay ramps are favored where segments underlap or when the strike-perpendicular distance between overlapping segments is less than 20% of their total length, matching all 14 documented examples. Transform fault linkage geometries are preferred when overlapping segments are laterally offset at larger distances. Few transform faults exist in continental extensional settings, and our model suggests that propagating faults or fault segments may first link through fault bends or breached ramps before reaching sufficient overlap for a transform fault to develop. Our results suggest that Coulomb stresses arising from multisegment ruptures or repeated earthquakes are consistent with natural observations of the geometry of hard links between parallel normal fault segments.
NASA Astrophysics Data System (ADS)
Havazli, E.; Wdowinski, S.; Amelung, F.
2017-12-01
The North Anatolian Fault Zone (NAFZ) is one of the most active continental transform faults in the world. A westward migrating earthquake sequence has started in 1939 in Erzincan and the last two events of this sequence occurred in 1999 in Izmit and Duzce manifesting the importance of NAFZ on the seismic hazard potential of the region. NAFZ exhibits slip rates ranging from 14-30 mm/yr along its 1500 km length with a right lateral strike slip characteristic. In the East of the Marmara Sea, the NAFZ splits into two branches. The Gazikoy-Saros segment (Ganos Fault) is the westernmost and onshore segment of the northern branch. The ENE-WSW oriented Ganos Fault is seismically active. It produced a Ms 7.2 earthquake in 1912, which was followed by several large aftershocks, including Ms 6.3 and Ms 6.9 events. Since 1912, the Ganos Fault did not produce any significant earthquakes (> M 5), in contrast to its adjacent segments, which produced 20 M>5 earthquakes, including a M 6.7 event, offshore in Gulf of Saros. Interseismic strain accumulation along the Ganos Fault was assessed from sparse GPS measurements along a single transect located perpendicular to the fault zone, suggesting strain accumulation rate of 20-25 mm/yr. Insofar, InSAR studies, based on C-band data, didn't produce conclusive results due to low coherence over the fault zone area, which is highly vegetated. In this study, we present a detailed interseismic velocity map of the Ganos Fault zone derived from L-band InSAR observations. We use 21 ALOS PALSAR scenes acquired over a 5-year period, from 2007 to 2011. We processed the ALOS data using the PySAR software, which is the University of Miami version of the Small Baseline (SB) method. The L-band observations enabled us to overcome the coherence issue in the study area. Our initial results indicate a maximum velocity of 15 mm/yr across the fault zone. The high spatial resolution of the InSAR-based interseismic velocity map will enable us to better to resolve locking depth variations and structural complexities along the seismically active Ganos Fault segment of the NAFZ.
Geomorphic indices indicated differential active tectonics of the Longmen Shan
NASA Astrophysics Data System (ADS)
Gao, M.; Xu, X.; Tan, X.
2012-12-01
The Longmen Shan thrust belt is located at the eastern margin of the Tibetan Plateau. It is a region of rapid active tectonics with high erosion rates and dense vegetation. The structure of the Longmen Shan region is dominated by northeast-trending thrusts and overturned folds that verge to the east and southeast (Burchfiel et al. 1995, Chen and Wilson 1996). The Longmen Shan thrust belt consists of three major faults from west to east: back-range fault, central fault, and frontal-range fault. The Mw 7.9 Wenchuan earthquake ruptured two large thrust faults along the Longmen Shan thrust belt (Xiwei et al., 2009). In this paper, we focus on investigating the spatial variance of tectonic activeness from the back-range fault to the frontal-range fault, particular emphasis on the differential recent tectonic activeness reflected by the hypsometry and the asymmetric factor of the drainage. Results from asymmetric factor indicate the back-rannge thrust fault on the south of the Maoxian caused drainage basins tilted on the hanging wall. For the north of the Maoxian, the strike-slip fault controlled the shapes of the drainage basins. Constantly river capture caused the expansion of the drainage basins which traversed by the fault. The drainages on the central fault and the frontal-range fault are also controlled by the fault slip. The drainage asymmetric factor suggested the central and southern segments of the Longmen Shan are more active than the northern segment, which is coherence with results of Huiping et al. (2010). The results from hypsometry show the back-range fault is the most active fault among the three major faults. Central fault is less active than the back-range fault but more active than the frontal-range fault. Beichuan is identified as the most active area along the central fault. Our geomorphic indices reflect an overall eastward decreasing of tectonic activeness of the Longmen Shan thrust belt.
NASA Astrophysics Data System (ADS)
Elifritz, E. A.; Johnson, S.; Beresh, S. C. M.; Mendez, K.; Mynatt, W. G.; Mayle, M.; Laó-Dávila, D. A.; Atekwana, E. A.; Chindandali, P. R. N.; Chisenga, C.; Gondwe, S.; Mkumbwa, M.; Kalindekafe, L.; Kalaguluka, D.; Salima, J.
2017-12-01
The NW-SE Bilila-Mtakataka Fault is suggested to be 100 km in length and is located in the Malawi Rift, a portion of the magma-poor Western Branch of the East African Rift System. This fault is exposed south of Lake Malawi and occurs close to the epicenter of the 1989 6.2 magnitude Salima Earthquake. Moreover, it traverses rocks with inherited Precambrian fabrics that may control the modern rifting process. The effect of the orientation of the pre-existing fabric on the formation of this potentially seismogenic fault has not been well studied. In this project, we measured the older foliations, dikes, and joints in addition to younger faults and striations to understand how the active faulting of the Bilila-Mtakataka Fault is affected by the older fabric. The Fault is divided into 5 segments and 4 linkage zones. All four linkage zones were studied in detail and a Brunton compass was used to determine orientations of structures. The linkage zone between segments 1 and 2 occurs between a regional WNW-ESE joint and the border fault, which is identified by a zig-zag pattern in SRTM data. Precambrian gneiss is cut by oblique steeply-dipping faults in this area. Striations and layer offsets suggest both right-lateral and normal components. This segment strikes NE-SW, in contrast with the NW-SE average strike of the entire fault. The foliations, faults, dikes, and joints collected in this area strike NE-SW, therefore running parallel to the segment. The last 3 southern linkage zones all strike NW-SE and the linkage zone between segment 3 and 4 has a steep dip angle. Dip angles of structures vary from segment to segment, having a wide range of results. Nonetheless, all four linkage zones show structures striking parallel to its segment direction. The results show that pre-existing meso-scale and regional structures and faults strike parallel to the fault scarp. The parallelism of the structures suggest that they serve as planes of weakness, controlling the localization of extension expressed as the border fault. Thus, further studies of the Precambrian foliation in the subsurface are necessary to understand the characterization of the fault where it is unexposed at depth.
Structural Analysis and Evolution of the Kashan (Qom-Zefreh) Fault, Central Iran
NASA Astrophysics Data System (ADS)
Safaei, H.; Taheri, A.; Vaziri-Moghaddam, H.
The main objectives of this research were to identify the geometry and structure of the Qom-Zefreh fault and to determine the extent of its effects on stratigraphy and facies changes. The identification of movement mechanism of major faults in basement, extent and time of their activities are important effects for evaluation of paleogeography of the Iran plateau. In the Orumieh-Dokhtar volcanic band, there are nearly parallel faults to the Zagros Zone. These faults were formed during closure of the Neothetys and collision of the Arabic plate with crust of Iran. The Qom-Zefreh fault is one of these faults, which is known as having four different trend faults. The result indicates that, this fault is not divided in four segments with different trends but the major trend is of Central section, which is the Kashan segment with AZ140 trend and other segments are just related faults. Thus the name of the Kashan fault is recommended for this fault. The mechanism of the Kashan fault is dextral transpression and other related faults in the region are in good correlation with fractures in a dextral transpression system. The stratigraphic studies conducted on the present formations show the effect of fault movements in Upper Cretaceous sedimentary basin. Lack of noticeable changes in Lower Cretaceous sediments and before that indicates that, the fault system activity has been started from the Upper Cretaceous. Thus, based upon these results, the effect of the Neothetys sea closure in this region could be considered at least from the Upper Cretaceous.
Active strike-slip faulting in El Salvador, Central America
NASA Astrophysics Data System (ADS)
Corti, Giacomo; Carminati, Eugenio; Mazzarini, Francesco; Oziel Garcia, Marvyn
2005-12-01
Several major earthquakes have affected El Salvador, Central America, during the Past 100 yr as a consequence of oblique subduction of the Cocos plate under the Caribbean plate, which is partitioned between trench-orthogonal compression and strike-slip deformation parallel to the volcanic arc. Focal mechanisms and the distribution of the most destructive earthquakes, together with geomorphologic evidence, suggest that this transcurrent component of motion may be accommodated by a major strike-slip fault (El Salvador fault zone). We present field geological, structural, and geomorphological data collected in central El Salvador that allow the constraint of the kinematics and the Quaternary activity of this major seismogenic strike-slip fault system. Data suggest that the El Salvador fault zone consists of at least two main ˜E-W fault segments (San Vicente and Berlin segments), with associated secondary synthetic (WNW-ESE) and antithetic (NNW-SSE) Riedel shears and NW-SE tensional structures. The two main fault segments overlap in a dextral en echelon style with the formation of an intervening pull-apart basin. Our original geological and geomorphologic data suggest a late Pleistocene Holocene slip rate of ˜11 mm/yr along the Berlin segment, in contrast with low historical seismicity. The kinematics and rates of deformation suggested by our new data are consistent with models involving slip partitioning during oblique subduction, and support the notion that a trench-parallel component of motion between the Caribbean and Cocos plates is concentrated along E-W dextral strike-slip faults parallel to the volcanic arc.
Paleoseismological surveys on the Hinagu fault zone in Kumamoto, central Kyushu, Japan
NASA Astrophysics Data System (ADS)
Azuma, T.
2017-12-01
The Hinagu fault zone is located on the south of the Futagawa fault zone, which was a main part of the source fault of the 2016 Kumamoto earthquake of Mj 7.3. Northernmost part of the Hinagu fault zone was also acted in 2016 event and surface faults with right-lateral displacement upto ca. 50 cm were appeared. Seismicity along the central part of the Hinagu fault was increased just after the 2016 Kumamoto Earthquake. It seems that the Hinagu fault zone would produce the next large earthquake in the near future, although it has not occurred yet. The Headquarters of the Earthquake Research Promotions (HERP) conducted active fault surveys on the Hinagu fault zone to recognize the probability of the occurrence of the next faulting event. The Hinagu fault zone is composed with 3 fault segments, Takano-Shirahata, Hinagu, and Yatsushiro Bay. Yatsushiro Bay segment is offshore fault. In FY2016, we conducted paleoseismological trenching surveys at 2 sites (Yamaide, Minamibeta) and offshore drilling. Those result showed evidences that the recurrence intervals of the Hinagu fault zone was rather short and the last faulting event occurred around 1500-2000 yrsBP. In FY2017, we are planning another trenching survey on the southern part of the central segment, where Yatsushiro city located close to the fault.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruns, T.R.; Carlson, P.R.; Stevenson, A.J.
1990-06-01
GLORIA images collected in 1989 along southeast Alaska and British Columbia strikingly show the active trace of the Fairweather-Queen Charlotte transform fault system beneath the outer shelf and slope; seismic-reflection data are used to track the fault system across the continental shelf where GLORIA data are not available. From Cross Sound to Chatham Strait, the fault system is comprised of two sets of subparallel fault traces separated by 3 to 6 km. The fault system crosses the shelf from Icy Point to south of Yakobi Valley, then follows the shelf edge to Chatham Strait. Between Chatham Strait and Dixon Entrance,more » a single, sharply defined active fault trace underlies the upper and middle slope. This fault segment is bounded on the seaward side by a high, midslope ridge and by lower slope Quaternary( ) anticlines up to 35 km wide. Southeast of Dixon Entrance, the active fault trace trends back onto the outer shelf until midway along the Queen Charlotte Islands, then cuts back to and stays at midslope to the Tuzo Wilson Knolls south of the Queen Charlotte Islands. The fault steps westward at Tuzo Wilson Knolls, which are likely part of a spreading ridge segment. Major deep-sea fans along southeast Alaska show a southeastward age progression from older to younger and record both point source deposition at Chatham Strait and Dixon Entrance and subsequent (Quaternary ) offset along the fault system. Subsidence of ocean plate now adjacent to the Chatham Strait-Dixon Entrance fault segment initiated development of both Mukluk and Horizon Channels.« less
Faults on Skylab imagery of the Salton Trough area, Southern California
NASA Technical Reports Server (NTRS)
Merifield, P. M.; Lamar, D. L. (Principal Investigator)
1975-01-01
The author has identified the following significant results. Large segments of the major high angle faults in the Salton Trough area are readily identifiable in Skylab images. Along active faults, distinctive topographic features such as scarps and offset drainage, and vegetation differences due to ground water blockage in alluvium are visible. Other fault-controlled features along inactive as well as active faults visible in Skylab photography include straight mountain fronts, linear valleys, and lithologic differences producing contrasting tone, color or texture. A northwestern extension of a fault in the San Andreas set, is postulated by the regional alignment of possible fault-controlled features. The suspected fault is covered by Holocene deposits, principally windblown sand. A northwest trending tonal change in cultivated fields across Mexicali Valley is visible on Skylab photos. Surface evidence for faulting was not observed; however, the linear may be caused by differences in soil conditions along an extension of a segment of the San Jacinto fault zone. No evidence of faulting could be found along linears which appear as possible extensions of the Substation and Victory Pass faults, demonstrating that the interpretation of linears as faults in small scale photography must be corroborated by field investigations.
Irregular earthquake recurrence patterns and slip variability on a plate-boundary Fault
NASA Astrophysics Data System (ADS)
Wechsler, N.; Rockwell, T. K.; Klinger, Y.
2015-12-01
The Dead Sea fault in the Levant represents a simple, segmented plate boundary from the Gulf of Aqaba northward to the Sea of Galilee, where it changes its character into a complex plate boundary with multiple sub-parallel faults in northern Israel, Lebanon and Syria. The studied Jordan Gorge (JG) segment is the northernmost part of the simple section, before the fault becomes more complex. Seven fault-crossing buried paleo-channels, offset by the Dead Sea fault, were investigated using paleoseismic and geophysical methods. The mapped offsets capture the long-term rupture history and slip-rate behavior on the JG fault segment for the past 4000 years. The ~20 km long JG segment appears to be more active (in term of number of earthquakes) than its neighboring segments to the south and north. The rate of movement on this segment varies considerably over the studied period: the long-term slip-rate for the entire 4000 years is similar to previously observed rates (~4 mm/yr), yet over shorter time periods the rate varies from 3-8 mm/yr. Paleoseismic data on both timing and displacement indicate a high COV >1 (clustered) with displacement per event varying by nearly an order of magnitude. The rate of earthquake production does not produce a time predictable pattern over a period of 2 kyr. We postulate that the seismic behavior of the JG fault is influenced by stress interactions with its neighboring faults to the north and south. Coulomb stress modelling demonstrates that an earthquake on any neighboring fault will increase the Coulomb stress on the JG fault and thus promote rupture. We conclude that deriving on-fault slip-rates and earthquake recurrence patterns from a single site and/or over a short time period can produce misleading results. The definition of an adequately long time period to resolve slip-rate is a question that needs to be addressed and requires further work.
NASA Astrophysics Data System (ADS)
Young, C. S.; Dawers, N. H.
2017-12-01
Fault growth is often accomplished by linking a series of en echelon faults through relay ramps. A relay ramp is the area between two overlapping fault segments that tilts and deforms as the faults accrue displacement. The structural evolution of breached normal fault relay ramps remains poorly understood because of the difficulty in defining how slip is partitioned between the most basinward fault (known as the outboard fault), the overlapping fault (inboard fault), and any ramp-breaching linking faults. Along the Warner Valley fault in south-central Oregon, two relay ramps displaying different fault linkage geometries are lined with a series of paleo-lacustrine shorelines that record a Pleistocene paleolake regression. The inner edges of these shorelines act as paleo-horizontal datums that have been deformed by fault activity, and are used to measure relative slip variations across the relay ramp bounding faults. By measuring the elevation changes using a 10m digital elevation model (DEM) of shoreline inner edges, we estimate the amount of slip partitioned between the inboard, outboard and ramp-breaching linking faults. In order to attribute shoreline deformation to fault activity we identify shoreline elevation anomalies, where deformation exceeds a ± 3.34 m window, which encompass our conservative estimates of natural variability in the shoreline geomorphology and the error associated with the data collection. Fault activity along the main length of the fault for each ramp-breaching style is concentrated near the intersection of the linking fault and the outboard portion of the main fault segment. However, fault activity along the outboard fault tip varies according to breaching style. At a footwall breach the entire outboard fault tip appears relatively inactive. At a mid-ramp breach the outboard fault tip remains relatively active because of the proximity of the linking fault to this fault tip.
Transpressive mantle uplift at large offset oceanic transform faults
NASA Astrophysics Data System (ADS)
Maia, M.; Briais, A.; Brunelli, D.; Ligi, M.; Sichel, S. E.; Campos, T.
2017-12-01
Large-offset transform faults deform due to changes in plate motions and local processes. At the St. Paul transform, in the Equatorial Atlantic, a large body of ultramafic rocks composed of variably serpentinized and mylonitized peridotites is presently being tectonically uplifted. We recently discovered that the origin of the regional mantle uplift is linked to long-standing compressive stresses along the transform fault (1). A positive flower structure, mainly made of mylonitized mantle rocks, can be recognized on the 200 km large push-up ridge. Compressive earthquakes mechanisms reveal seismically active thrust faults on the southern flank of the ridge . The regional transpressive stress field affects a large portion of the ridge segment south of the transform, as revealed by the presence of faults and dykes striking obliquely to the direction of the central ridge axis. A smaller thrust, affecting recent sediments, was mapped south of this segment, suggesting a regional active compressive stress field. The transpressive stress field is interpreted to derive from the propagation of the Mid-Atlantic Ridge (MAR) segment into the transform domain as a response to the enhanced melt supply at the ridge axis. The propagation forced the migration and segmentation of the transform fault southward and the formation of restraining step-overs. The process started after a counterclockwise change in plate motion at 11 Ma initially resulting in extensive stress of the transform domain. A flexural transverse ridge formed in response. Shortly after plate reorganization, the MAR segment started to propagate southwards due to the interaction of the ridge and the Sierra Leone thermal anomaly. 1- Maia et al., 2016. Extreme mantle uplift and exhumation along a transpressive transform fault Nat. Geo. doi:10.1038/ngeo2759
NASA Astrophysics Data System (ADS)
Ouillon, G.; Ducorbier, C.; Sornette, D.
2008-01-01
We propose a new pattern recognition method that is able to reconstruct the three-dimensional structure of the active part of a fault network using the spatial location of earthquakes. The method is a generalization of the so-called dynamic clustering (or k means) method, that partitions a set of data points into clusters, using a global minimization criterion of the variance of the hypocenters locations about their center of mass. The new method improves on the original k means method by taking into account the full spatial covariance tensor of each cluster in order to partition the data set into fault-like, anisotropic clusters. Given a catalog of seismic events, the output is the optimal set of plane segments that fits the spatial structure of the data. Each plane segment is fully characterized by its location, size, and orientation. The main tunable parameter is the accuracy of the earthquake locations, which fixes the resolution, i.e., the residual variance of the fit. The resolution determines the number of fault segments needed to describe the earthquake catalog: the better the resolution, the finer the structure of the reconstructed fault segments. The algorithm successfully reconstructs the fault segments of synthetic earthquake catalogs. Applied to the real catalog constituted of a subset of the aftershock sequence of the 28 June 1992 Landers earthquake in southern California, the reconstructed plane segments fully agree with faults already known on geological maps or with blind faults that appear quite obvious in longer-term catalogs. Future improvements of the method are discussed, as well as its potential use in the multiscale study of the inner structure of fault zones.
Fault creep and persistent asperities on the western section of the North Anatolian Fault, Turkey
NASA Astrophysics Data System (ADS)
Floyd, M.; Reilinger, R. E.; Ergintav, S.; Karabulut, H.; Vernant, P.; Konca, A. O.; Dogan, U.; Cetin, S.; Cakir, Z.; Mencin, D.; Bilham, R. G.; King, R. W.
2017-12-01
We interpret new geodetic and seismic observations along the western section of the North Anatolian Fault (NAF) in Turkey as evidence for persistent asperities on the fault surface. Analysis of geodetic and seismic observations of seven segments of the fault at different stages of the earthquake cycle suggest that areas of the fault surface that are accumulating strain (i.e. asperities) are deficient in interseismic seismicity and earthquake aftershocks compared to areas between asperities that are failing at least in part by fault creep. From west to east, these segments include the 2014 M6.9 Gokceada earthquake and 1912 M7.4 Ganos earthquake segments, the Sea of Marmara and Princes' Islands seismic "gaps", the 1999 M7.6/7.2 Izmit/Duzce earthquake segments, and the 1944 M7.4 Ismetpasa segment, which remains actively creeping. Aspects of each segment contribute to our interpretation of overall fault behavior. The most well-defined distribution of coseismic slip in relation to pre- and post-earthquake seismicity is for the 2014 Gokceada event. The most complete set of geodetic observations (pre-, co-, and short- and long-term post-seismic) come from the 1999 Izmit and Duzce events. Simple three-layer elastic models including a middle layer that is fully locked between earthquakes, and shallow and deeper layers that are allowed to creep, can account for these observations of the deformation cycle. Recent observations from InSAR, creepmeters and small-aperture GPS profiles indicate ongoing surface and shallow fault creep rates, as allowed by the upper layer of the three-layer model. Conceptually, creep in the deeper layer represents the deep healing of the fault following the earthquake. For the Izmit and Duzce earthquake segments, healing from prior earthquakes was complete before the 1999 sequence. More generally, the consistent pattern of strain accumulation along the full length of the NAF, including the long eastern segments that ruptured in major earthquakes in 1939, 1942 and 1943, suggests that deep fault healing is complete over time scales much shorter than the earthquake repeat time. Given their similarities, these results may be applicable and provide insights into the mechanics of strain accumulation and earthquake potential along other continental strike-slip faults such as the San Andreas Fault.
NASA Astrophysics Data System (ADS)
Fagereng, A.; Hodge, M.; Biggs, J.; Mdala, H. S.; Goda, K.
2016-12-01
Faults grow through the interaction and linkage of isolated fault segments. Continuous fault systems are those where segments interact, link and may slip synchronously, whereas non-continuous fault systems comprise isolated faults. As seismic moment is related to fault length (Wells and Coppersmith, 1994), understanding whether a fault system is continuous or not is critical in evaluating seismic hazard. Maturity may be a control on fault continuity: immature, low displacement faults are typically assumed to be non-continuous. Here, we study two overlapping, 20 km long, normal fault segments of the N-S striking Bilila-Mtakataka fault, Malawi, in the southern section of the East African Rift System. Despite its relative immaturity, previous studies concluded the Bilila-Mtakataka fault is continuous for its entire 100 km length, with the most recent event equating to an Mw8.0 earthquake (Jackson and Blenkinsop, 1997). We explore whether segment geometry and relationship to pre-existing high-grade metamorphic foliation has influenced segment interaction and fault development. Fault geometry and scarp height is constrained by DEMs derived from SRTM, Pleiades and `Structure from Motion' photogrammetry using a UAV, alongside direct field observations. The segment strikes differ on average by 10°, but up to 55° at their adjacent tips. The southern segment is sub-parallel to the foliation, whereas the northern segment is highly oblique to the foliation. Geometrical surface discontinuities suggest two isolated faults; however, displacement-length profiles and Coulomb stress change models suggest segment interaction, with potential for linkage at depth. Further work must be undertaken on other segments to assess the continuity of the entire fault, concluding whether an earthquake greater than that of the maximum instrumentally recorded (1910 M7.4 Rukwa) is possible.
NASA Astrophysics Data System (ADS)
Giano, Salvatore Ivo; Pescatore, Eva; Agosta, Fabrizio; Prosser, Giacomo
2018-02-01
A composite seismic source, the Irpinia - Agri Valley Fault zone, located in the axial sector of the fold-and-thrust belt of southern Apennines, Italy, is investigated. This composite source is made up of a series of nearly parallel, NW-striking normal fault segments which caused many historical earthquakes. Two of these fault segments, known as the San Gregorio Magno and Pergola-Melandro, and the fault-related mountain fronts, form a wedge-shaped, right-stepping, underlap fault zone. This work is aimed at documenting tectonic geomorphology and geology of this underlap fault zone. The goal is to decipher the evidence of surface topographic interaction between two bounding fault segments and their related mountain fronts. In particular, computation of geomorphic indices such as mountain front sinuosity (Smf), water divide sinuosity (Swd), asymmetry factor (AF), drainage basin elongation (Bs), relief ratio (Rh), Hypsometry (HI), normalized steepness (Ksn), and concavity (θ) is integrated with geomorphological analysis, the geological mapping, and structural analysis in order to assess the recent activity of the fault scarp sets recognized within the underlap zone. Results are consistent with the NW-striking faults as those showing the most recent tectonic activity, as also suggested by presence of related slope deposits younger than 38 ka. The results of this work therefore show how the integration of a multidisciplinary approach that combines geomorphology, morphometry, and structural analyses may be key to solving tectonic geomorphology issues in a complex, fold-and-thrust belt configuration.
NASA Astrophysics Data System (ADS)
Hiramatsu, Y.; Matsumoto, N.; Sawada, A.
2016-12-01
We analyze gravity anomalies in the focal area of the 2016 Kumamoto earthquake, evaluate the continuity, segmentation and faulting type of the active fault zones, and discuss relationships between those features and the aftershock distribution. We compile the gravity data published by the Gravity Research Group in Southwest Japan (2001), the Geographical Survey Institute (2006), Yamamoto et al. (2011), Honda et al. (2012), and the Geological Survey of Japan, AIST (2013). We apply terrain corrections with 10 m DEM and a low-pass filter, then remove a linear trend to obtain Bouguer anomalies. We calculate the first horizontal derivative (HD), the first vertical derivative (VD), the normalized total horizontal derivative (TDX) (Cooper and Cowan, 2006), the dimensionality index (Di) (Beki and Pedersen, 2010), and dip angle (β) (Beki, 2013) from a gravity gradient tensor. The HD, VD and TDX show the existence of the continuous fault structure along the Futagawa fault zone, extending from the Uto peninsula to the Beppu Bay except Mt. Aso area. Aftershocks are distributed along this structural boundary from the confluence of the Futagawa and the Hinagu fault zones to the east end of the Aso volcano. The distribution of dip angle β along the Futagawa fault zone implies a normal faulting, which corresponds to the coseismic faulting estimated geologically and geomorphologically. We observe the S-shaped distribution of the Bouguer anomalies around the southern part of the Hinagu segment, indicating a right lateral faulting. The VD and TDX support the existence of the fault structure along the segment but it is not so clear. We can recognize no clear structural boundaries along the Takano-Shirahata segment. TDX implies the existence of a structural boundary with a NW-SE trend around the boundary between the Hinagu and Takano-Shirahata segments. The Di shows that this boundary has a 3D-like structure rather than a 2D-like one, suggesting the discontinuity of 2D-like fault structure along the fault zone. A geological map indicates that this structure boundary corresponds to a boundary between the metamorphic rock and the sedimentary rock. The active area of the aftershocks does not extend to the south beyond this structure boundary, implying that the spatial extent of the source fault is controlled by this boundary.
Structure and Neotectonics of the Southern Chile Forearc 35°S - 40°S
NASA Astrophysics Data System (ADS)
Geersen, Jacob; Völker, David; Weinrebe, Wilhelm; Krastel-Gudegast, Sebastian; Behrmann, Jan H.
2010-05-01
The Southern Chile Forearc exhibits an extreme level of neotectonic deformation. On-land studies have documented a pronounced segmentation in the region 36°S - 41°S. However, information on the seaward continuation of the individual segments towards the Chile Trench is rare, as direct observations end at the coastline and are replaced by a less dense set of marine geophysical data. In this study we use swath bathymetric data combined with high and low-frequency reflection seismic data as well as results from heat-flow measurements to: (A) map and identify active deformation structures and investigate their spatial distribution, and (B) analyse the factors controlling segmentation along the Southern Chile Forearc. Considering the region 35°S to 40°S we found evidence for a division into four major segments; Concepcion North, Concepcion South, Nahuelbuta, and Tolten (from North to South). Within all four segments, the lower continental slope is dissected by distinct margin-parallel thrust ridges overlying active landward-dipping thrust faults, indicating the presence of an active accretionary prism. The middle and upper slope, however, shows major differences between the four segments. The Concepcion North Segment is dominated by a large margin-parallel thrust ridge. The Concepcion South Segment shows large up to 600 m high north-south aligned normal fault scarps highlighting east-west extension. The change from thrust to normal faulting domains is accompanied by a drastic decrease in surface heat-flow by a factor of up to four. Further south in the Nahuelbuta Segment, east-west trending active thrust ridges indicate north-south compression of this part of the forearc. Shortening in this segment is not only limited to the middle and upper slope, but includes the entire marine forearc and occurs perpendicular to the direction of plate convergence. In the southernmost Tolten Segment the middle and upper continental slope shows no signs of compressive or extensional deformation. For the factors controlling segmentation our data suggest that when considering the whole forearc variations in the overriding plate such as the position of continental fault zones are responsible for the large scale tectonic segmentation. The east-west oriented shortening structures in the Nahuelbuta Segment (perpendicular to the direction of plate motion) probably originate from the collision of the Chiloe Microplate with a marine buttress situated below the Concepcion South Segment. The Chiloe Microplate represents a 1000 km-sized forearc sliver, which is kinematically decoupled from stable South America along the Liquine-Ofqui and Lanalhue Fault Zones. The important transition from wholesale forearc compression to extension observed between the two Concepcion segments, however, is more likely related to plate boundary processes, i.e. different degrees of coupling and/or friction in the plate boundary itself.
Active geodynamics of the Caucasus/Caspian region educed from GPS, and seismic Observations
NASA Astrophysics Data System (ADS)
Gadirov (Kadirov), Fakhraddin; Floyd, Michael; Reilinger, Robert; Alizadeh, Akif; Guliyev, Ibrahim; Mammadov, Samir; Safarov, Rafig
2017-04-01
The geodynamic and earthquake activity in the Caucasus/Caspian region is due to the ongoing collision of the Arabian plate with Eurasia. The Caucasus and Caspian Sea are historically among the most seismically active regions on earth. These earthquakes have caused thousands of deaths and great economic distress. Future earthquakes in the Caucasus and Caspian Sea must be considered and planned for in order to limit their impact on the people, ecology, and infrastructure of the region. Within this plate tectonics context, we examine deformation of the Caucasus region and show that most crustal shortening in the collision zone is accommodated by the Greater Caucasus Fold-and-Thrust Belt (GCFTB) along the southern edge of the Greater Caucasus Mountains. The eastern GCFTB appears to bifurcate west of Baku, with one branch following the accurate geometry of the Greater Caucasus, turning towards the south and traversing the Neftchala Peninsula. A second branch may extend directly into the Caspian Sea south of Baku, likely connecting to the Central Caspian Seismic Zone. We model deformation in terms of a locked thrust fault that coincides in general with the main surface trace of the GCFTB. We consider two end-member models, each of which tests the likelihood of one or other of the branches being the dominant cause of observed deformation. Our models indicate that strain is actively accumulating on the fault along the 200 km segment of the fault west of Baku (approximately between longitudes 47-49°E). Parts of this segment of the fault broke in major earthquakes historically (1191, 1859, 1902) suggesting that significant future earthquakes (M 6-7) are likely on the central and western segment of the fault. We observe a similar deformation pattern across the eastern end of the GCFTB along a profile crossing the Kura Depression and Greater Caucasus Mountains in the vicinity of Baku. Along this eastern segment, a branch of the fault changes from a NW-SE striking thrust to an N-S oriented strike-slip fault. The similar deformation pattern along the eastern and central GCFTB segments raises the possibility that major earthquakes may also occur in eastern Azerbaijan. However, the eastern segment of the GCFTB has no record of large historic earthquakes, and is characterized by thick, highly saturated and over-pressured sediments within the Kura Depression and adjacent Caspian Basin that may inhibit elastic strain accumulation in favour of fault creep, and/or distributed faulting and folding. Thus, while our analyses suggest that large earthquakes are likely in central and western Azerbaijan, it is still uncertain whether significant earthquakes are also likely along the eastern segment, and on which structure. Ongoing and future focused studies of active deformation promise to shed further light on the tectonics and earthquake hazards in this highly populated and developed part of Azerbaijan.
NASA Astrophysics Data System (ADS)
Heesakkers, V.; Murphy, S.; Reches, Z.
2011-12-01
We analyze the structure of the Archaean Pretorius fault in TauTona mine, South Africa, as well as the rupture-zone that recently reactivated it. The analysis is part of the Natural Earthquake Laboratory in South African Mines (NELSAM) project that utilizes the access to 3.6 km depth provided by the mining operations. The Pretorius fault is a ~10 km long, oblique-strike-slip fault with displacement of up to 200 m that crosscuts fine to very coarse grain quartzitic rocks in TauTona mine. We identify here three structural zones within the fault-zone: (1) an outer damage zone, ~100 m wide, of brittle deformation manifested by multiple, widely spaced fractures and faults with slip up to 3 m; (2) an inner damage zone, 25-30 m wide, with high density of anastomosing conjugate sets of fault segments and fractures, many of which carry cataclasite zones; and (3) a dominant segment, with a cataclasite zone up to 50 cm thick that accommodated most of the Archaean slip of the Pretorius fault, and is regarded as the `principal slip zone' (PSZ). This fault-zone structure indicates that during its Archaean activity, the Pretorius fault entered the mature fault stage in which many slip events were localized along a single, PSZ. The mining operations continuously induce earthquakes, including the 2004, M2.2 event that rejuvenated the Pretorius fault in the NELSAM project area. Our analysis of the M2.2 rupture-zone shows that (1) slip occurred exclusively along four, pre-existing large, quasi-planer segments of the ancient fault-zone; (2) the slipping segments contain brittle cataclasite zones up to 0.5 m thick; (3) these segments are not parallel to each other; (4) gouge zones, 1-5 mm thick, composed of white `rock-flour' formed almost exclusively along the cataclasite-host rock contacts of the slipping segments; (5) locally, new, fresh fractures branched from the slipping segments and propagated in mixed shear-tensile mode; (6) the maximum observed shear displacement is 25 mm in oblique-normal slip. The mechanical analysis of this rupture-zone is presented in Part II (H eesakkers et al., Earthquake Rupture at Focal Depth, Part II: Mechanics of the 2004 M2.2 Earthquake Along the Pretorius Fault, TauTona mine, South Africa 2011, this volume).
Hydrothermal activity at slow-spreading ridges: variability and importance of magmatic controls
NASA Astrophysics Data System (ADS)
Escartin, Javier
2016-04-01
Hydrothermal activity along mid-ocean ridge axes is ubiquitous, associated with mass, chemical, and heat exchanges between the deep lithosphere and the overlying envelopes, and sustaining chemiosynthetic ecosystems at the seafloor. Compared with hydrothermal fields at fast-spreading ridges, those at slow spreading ones show a large variability as their location and nature is controlled or influenced by several parameters that are inter-related: a) tectonic setting, ranging from 'volcanic systems' (along the rift valley floor, volcanic ridges, seamounts), to 'tectonic' ones (rift-bounding faults, oceanic detachment faults); b) the nature of the host rock, owing to compositional heterogeneity of slow-spreading lithosphere (basalt, gabbro, peridotite); c) the type of heat source (magmatic bodies at depth, hot lithosphere, serpentinization reactions); d) and the associated temperature of outflow fluids (high- vs.- low temperature venting and their relative proportion). A systematic review of the distribution and characteristics of hydrothermal fields along the slow-spreading Mid-Atlantic Ridge suggests that long-lived hydrothermal activity is concentrated either at oceanic detachment faults, or along volcanic segments with evidence of robust magma supply to the axis. A detailed study of the magmatically robust Lucky Strike segment suggests that all present and past hydrothermal activity is found at the center of the segment. The association of these fields to central volcanos, and the absence of indicators of hydrothermal activity along the remaining of the ridge segment, suggests that long-lived hydrothermal activity in these volcanic systems is maintained by the enhanced melt supply and the associated magma chamber(s) required to build these volcanic edifices. In this setting, hydrothermal outflow zones at the seafloor are systematically controlled by faults, indicating that hydrothermal fluids in the shallow crust exploit permeable fault zones to circulate. While less studied, similar hydrothermal systems are found elsewhere associated to other central volcanoes along the ridge axis (e.g., Menez Gwenn at the Mid-Atlantic Ridge and Soria Mornia or Troll Wall at the Arctic Ridges). Long-lived hydrothermal activity plays an important role in controlling the thermal structure of the lithosphere and its accretion at and near-axis, and also determining the distribution and biogeography of vent communities. Along slow-spreading segments, long-lived hydrothermal activity can be provided both by volcanic systems (e.g., Lucky Strike) and tectonic systems (oceanic detachment faults). While magmatic and hydrothermal activity is relatively well understood now in volcanic systems (e.g., Lucky Strike), tectonic systems (oceanic detachment faults) require further integrated studies to constrain the links between long-lived localization of deformation along oceanic detachment faults, hydrothermal activity, and origin and nature of off-axis heat sources animating hydrothermal circulation.
Soil radon profile of the Alhama de Murcia Fault: implications in tectonic segmentation
NASA Astrophysics Data System (ADS)
Bejar-Pizarro, M.; Perez Lopez, R.; Fernández Cortés, A.; Martínez-Díaz, J. J.; Staller, A.; Sánchez-Malo, A.; Sanz, E.; Cuezva, S.; Sánchez-Moral, S.
2017-12-01
Soil radon exhalation in active faults has been reported in several cases. Mobilization of radon gas in tectonic areas is related to CO2emission, acting as gas carrier from deeper fractured zones. Fluctuation of radon values can be correlated with earthquake occurrence. We have used the soil radon emission for characterizing different tectonic segment of the Alhama de Murcia Fault (FAM), one of the most active on-shore tectonic faults in Spain. The FAM is a NE-SW trending strike-slip fault with reverse component, 90 km long and it is capable to trigger M7 earthquakes, as far as several paleoseismic studies shown. The last destructive earthquake took place in 2011 and killed 9 people. Tectonic segmentation of this fault has been proposed, with a tectonic slip-rate close to 0.1 mm/yr from geomorphic evidence, whereas 0.5 mm/yr has been suggested from GPS geodetic measurements. We have developed a perpendicular profile for measuring the soil radon exhalation, in relationship with three principal segments of FAM from west to east: (1) Goñar-Lorca segment, (2) Lorca Totana segment and (3) Alhama segment. We have introduced radon passive detectors equipped with LR115 films in colluvium detritic deposits and at 0.8 m depth. Using detritic deposits affected by Quaternary fault movement we assure equal permeability conditions for radon transport. We used passive closed housings type DRF, with a filter that avoid thoron disturbance. Results show the largest values of radon emission close to the Quaternary surface ruptures (ca 3-5.5 kBq/m3). Furthermore, the Goñar segment exhibits the highest value (6 kBq/m3) although the Lorca segment shows an isotopic signal of 13dCO2 (-7.24‰) which indicates this is a mantle-rootled CO2, i.e. non-soil derived CO2 flux, likely related to CO2 produced by thermal decarbonation of underlying sedimentary rocks containing more marine carbonate minerals. These results are part of the combined Spanish projects GEIs-SUB (CGL2016- 78318-C2-1-R and CGL2016-78318-C2-2-R) and INTERGEO and SISMOSIMA (CGL2013-47412-C2-1-P, CGL2013-47412-C2-2-P).
The 2016-2017 Central Italy Seismic Sequence: Source Complexity Inferred from Rupture Models.
NASA Astrophysics Data System (ADS)
Scognamiglio, L.; Tinti, E.; Casarotti, E.; Pucci, S.; Villani, F.; Cocco, M.; Magnoni, F.; Michelini, A.
2017-12-01
The Apennines have been struck by several seismic sequences in recent years, showing evidence of the activation of multiple segments of normal fault systems in a variable and, relatively short, time span, as in the case of the 1980 Irpinia earthquake (three shocks in 40 s), the 1997 Umbria-Marche sequence (four main shocks in 18 days) and the 2009 L'Aquila earthquake having three segments activated within a few weeks. The 2016-2017 central Apennines seismic sequence begin on August 24th with a MW 6.0 earthquake, which strike the region between Amatrice and Accumoli causing 299 fatalities. This earthquake ruptures a nearly 20 km long normal fault and shows a quite heterogeneous slip distribution. On October 26th, another main shock (MW 5.9) occurs near Visso extending the activated seismogenic area toward the NW. It is a double event rupturing contiguous patches on the fault segment of the normal fault system. Four days after the second main shock, on October 30th, a third earthquake (MW 6.5) occurs near Norcia, roughly midway between Accumoli and Visso. In this work we have inverted strong motion waveforms and GPS data to retrieve the source model of the MW 6.5 event with the aim of interpreting the rupture process in the framework of this complex sequence of moderate magnitude earthquakes. We noted that some preliminary attempts to model the slip distribution of the October 30th main shock using a single fault plane oriented along the Apennines did not provide convincing fits to the observed waveforms. In addition, the deformation pattern inferred from satellite observations suggested the activation of a multi-fault structure, that is coherent to the complexity and the extension of the geological surface deformation. We investigated the role of multi-fault ruptures and we found that this event revealed an extraordinary complexity of the rupture geometry and evolution: the coseismic rupture propagated almost simultaneously on a normal fault and on a blind fault, possibly inherited from compressional tectonics. These earthquakes raise serious concerns on our understanding of fault segmentation and seismicity evolution during sequences of normal faulting earthquakes. Finally, the retrieved rupture history has important implications on seismic hazard assessment and on the maximum expected magnitude in a given tectonic area.
Wasatch fault zone, Utah - segmentation and history of Holocene earthquakes
Machette, Michael N.; Personius, Stephen F.; Nelson, Alan R.; Schwartz, David P.; Lund, William R.
1991-01-01
The Wasatch fault zone (WFZ) forms the eastern boundary of the Basin and Range province and is the longest continuous, active normal fault (343 km) in the United States. It underlies an urban corridor of 1.6 million people (80% of Utah's population) representing the largest earthquake risk in the interior of the western United States. The authors have used paleoseismological data to identify 10 discrete segments of the WFZ. Five are active, medial segments with Holocene slip rates of 1-2 mm a-1, recurrence intervals of 2000-4000 years and average lengths of about 50 km. Five are less active, distal segments with mostly pre-Holocene surface ruptures, late Quaternary slip rates of <0.5 mm a-1, recurrence intervals of ???10,000 years and average lengths of about 20 km. Surface-faulting events on each of the medial segments of the WFZ formed 2-4-m-high scarps repeatedly during the Holocene. Paleoseismological records for the past 6000 years indicate that a major surface-rupturing earthquake has occurred along one of the medial segments about every 395 ?? 60 years. However, between about 400 and 1500 years ago, the WFZ experienced six major surface-rupturing events, an average of one event every 220 years, or about twice as often as expected from the 6000-year record. Evidence has been found that surface-rupturing events occurred on the WFZ during the past 400 years, a time period which is twice the average intracluster recurrence interval and equal to the average Holocene recurrence interval.
NASA Astrophysics Data System (ADS)
Bennett, S. E. K.; DuRoss, C. B.; Reitman, N. G.; Devore, J. R.; Hiscock, A.; Gold, R. D.; Briggs, R. W.; Personius, S. F.
2014-12-01
Paleoseismic data near fault segment boundaries constrain the extent of past surface ruptures and the persistence of rupture termination at segment boundaries. Paleoseismic evidence for large (M≥7.0) earthquakes on the central Holocene-active fault segments of the 350-km-long Wasatch fault zone (WFZ) generally supports single-segment ruptures but also permits multi-segment rupture scenarios. The extent and frequency of ruptures that span segment boundaries remains poorly known, adding uncertainty to seismic hazard models for this populated region of Utah. To address these uncertainties we conducted four paleoseismic investigations near the Salt Lake City-Provo and Provo-Nephi segment boundaries of the WFZ. We examined an exposure of the WFZ at Maple Canyon (Woodland Hills, UT) and excavated the Flat Canyon trench (Salem, UT), 7 and 11 km, respectively, from the southern tip of the Provo segment. We document evidence for at least five earthquakes at Maple Canyon and four to seven earthquakes that post-date mid-Holocene fan deposits at Flat Canyon. These earthquake chronologies will be compared to seven earthquakes observed in previous trenches on the northern Nephi segment to assess rupture correlation across the Provo-Nephi segment boundary. To assess rupture correlation across the Salt Lake City-Provo segment boundary we excavated the Alpine trench (Alpine, UT), 1 km from the northern tip of the Provo segment, and the Corner Canyon trench (Draper, UT) 1 km from the southern tip of the Salt Lake City segment. We document evidence for six earthquakes at both sites. Ongoing geochronologic analysis (14C, optically stimulated luminescence) will constrain earthquake chronologies and help identify through-going ruptures across these segment boundaries. Analysis of new high-resolution (0.5m) airborne LiDAR along the entire WFZ will quantify latest Quaternary displacements and slip rates and document spatial and temporal slip patterns near fault segment boundaries.
NASA Astrophysics Data System (ADS)
Natawidjaja, Danny Hilman; Bradley, Kyle; Daryono, Mudrik R.; Aribowo, Sonny; Herrin, Jason
2017-12-01
Over the last decade, studies of natural hazards in Sumatra have focused primarily on great earthquakes and associated tsunamis produced by rupture of the Sunda megathrust. However, the Sumatran Fault and the active volcanic arc present proximal hazards to populations on mainland Sumatra. At present, there is little reliable information on the maximum magnitudes and recurrence intervals of Sumatran Fault earthquakes, or the frequency of paroxysmal caldera-forming (VEI 7-8) eruptions. Here, we present new radiocarbon dates of paleosols buried under the voluminous Ranau Tuff that constrain the large caldera-forming eruption to around 33,830-33,450 calender year BP (95% probability). We use the lateral displacement of river channels incised into the Ranau Tuff to constrain the long-term slip rate of two segments of the Sumatran Fault. South of Ranau Lake, the Kumering segment preserves isochronous right-lateral channel offsets of approximately 350 ± 50 m, yielding a minimum slip rate of 10.4 ± 1.5 mm/year for the primary active fault trace. South of Suoh pull-apart depression, the West Semangko segment offsets the Semangko River by 230 ± 60 m, yielding an inferred slip rate of 6.8 ± 1.8 mm/year. Compared with previous studies, these results indicate more recent high-volume volcanism in South Sumatra and increased seismic potency of the southernmost segments of the Sumatran Fault Zone.
Active fault mapping in Karonga-Malawi after the December 19, 2009 Ms 6.2 seismic event
NASA Astrophysics Data System (ADS)
Macheyeki, A. S.; Mdala, H.; Chapola, L. S.; Manhiça, V. J.; Chisambi, J.; Feitio, P.; Ayele, A.; Barongo, J.; Ferdinand, R. W.; Ogubazghi, G.; Goitom, B.; Hlatywayo, J. D.; Kianji, G. K.; Marobhe, I.; Mulowezi, A.; Mutamina, D.; Mwano, J. M.; Shumba, B.; Tumwikirize, I.
2015-02-01
The East African Rift System (EARS) has natural hazards - earthquakes, volcanic eruptions, and landslides along the faulted margins, and in response to ground shaking. Strong damaging earthquakes have been occurring in the region along the EARS throughout historical time, example being the 7.4 (Ms) of December 1910. The most recent damaging earthquake is the Karonga earthquake in Malawi, which occurred on 19th December, 2009 with a magnitude of 6.2 (Ms). The earthquake claimed four lives and destroyed over 5000 houses. In its effort to improve seismic hazard assessment in the region, Eastern and Southern Africa Seismological Working Group (ESARSWG) under the sponsorship of the International Program on Physical Sciences (IPPS) carried out a study on active fault mapping in the region. The fieldwork employed geological and geophysical techniques. The geophysical techniques employed are ground magnetic, seismic refraction and resistivity surveys but are reported elsewhere. This article gives findings from geological techniques. The geological techniques aimed primarily at mapping of active faults in the area in order to delineate presence or absence of fault segments. Results show that the Karonga fault (the Karonga fault here referred to as the fault that ruptured to the surface following the 6th-19th December 2009 earthquake events in the Karonga area) is about 9 km long and dominated by dip slip faulting with dextral and insignificant sinistral components and it is made up of 3-4 segments of length 2-3 km. The segments are characterized by both left and right steps. Although field mapping show only 9 km of surface rupture, maximum vertical offset of about 43 cm imply that the surface rupture was in little excess of 14 km that corresponds with Mw = 6.4. We recommend the use or integration of multidisciplinary techniques in order to better understand the fault history, mechanism and other behavior of the fault/s for better urban planning in the area.
Geological indications for active deformation along Fethiye and G
NASA Astrophysics Data System (ADS)
Pavlides, S.; Chatzipetros, Anastasia Michailidou (1), Alexandros; Yağmurlu, Nevzat Özgür, Züheyr Kamaci, Murat Şentürk, Fuzuli
2009-04-01
Geological indications for active deformation along Fethiye and Gökova faults, SW Turkey Alexandros Chatzipetros, Spyros Pavlides, Anastasia Michailidou (1) Fuzuli Yağmurlu, Nevzat Özgür, Züheyr Kamaci, Murat Şentürk (2) 1Department of Geology, Aristotle University, 54124, Thessaloniki, Greece 2Department of Geological Engineering, Süleyman Demirel University, Isparta, Turkey Fethiye and Gökova faults (FF and GF respectively) are two long fault zones in SW Turkey, associated with minor to moderate historical seismic activity; their geological and geomorphological characteristics however are indicative of active deformation. FF is part of the Fethiye - Burdur Fault Zone (FBFZ), the inferred mainland continuation of the eastern part of the Hellenic Arc. FF, as well as FBFZ, is an oblique-slip (normal with significant dextral component) fault of NE-SW strike, dipping to the NW, that forms the SE border of Fethiye basin and controls its extension to the NE, while it also controls the development of the drainage network. Its geomorphological signature is characterized by steep bedrock fault scarps that are accompanied by thick sequences of alluvial fans and colluviums. Although it does not appear to disrupt the most recent generation of alluvial fans, geophysical prospecting showed that the deformation reaches all the way up to almost the superficial layers. Palaeoseismological trenching in selected sites along the fault yielded indications of at least two large, ground rupturing, seismic events in Holocene, as indicated by the inferred age of the trenched material. Indications include surface ruptures, faulted colluvial wedges and palaeosoils and microstratigraphical correlations. GF forms is divided into two main segments, the partly submarine Gökova-Kos segment trending E-W to NE-SW and the mainland NE-SW trending main Gökova segment, both dipping to the SE to S. They are predominantly normal with dextral component. The first segment defines the northern shore of Gökova gulf, which is the longest fault-controlled shoreline in Turkey. Bathymetric data indicate that its continuation is submarine and continues up to the southern shores of Kos island (Greece), posing a relatively unknown up to now probable seismic source for this part of the Aegean Sea in the Greek territory. The second segment forms a very impressive and dominant scarp that almost totally controls the geomorphology (drainage, alluvial fans and colluviums). Although this fault is not associated with significant historical seismicity, there are some archaeological indications of recent activity. Microstratigraphical analysis of paleoseismological trenches showed that indeed there are no recent earthquakes in the area, at least not any that caused significant ground deformations. Quantitative results regarding the dating of specific seismic events will be extrapolated after the results of 14C dating of selected samples from palaeoseismological trenches,currently under way, become available.
Effects of Strike-Slip Fault Segmentation on Earthquake Energy and Seismic Hazard
NASA Astrophysics Data System (ADS)
Madden, E. H.; Cooke, M. L.; Savage, H. M.; McBeck, J.
2014-12-01
Many major strike-slip faults are segmented along strike, including those along plate boundaries in California and Turkey. Failure of distinct fault segments at depth may be the source of multiple pulses of seismic radiation observed for single earthquakes. However, how and when segmentation affects fault behavior and energy release is the basis of many outstanding questions related to the physics of faulting and seismic hazard. These include the probability for a single earthquake to rupture multiple fault segments and the effects of segmentation on earthquake magnitude, radiated seismic energy, and ground motions. Using numerical models, we quantify components of the earthquake energy budget, including the tectonic work acting externally on the system, the energy of internal rock strain, the energy required to overcome fault strength and initiate slip, the energy required to overcome frictional resistance during slip, and the radiated seismic energy. We compare the energy budgets of systems of two en echelon fault segments with various spacing that include both releasing and restraining steps. First, we allow the fault segments to fail simultaneously and capture the effects of segmentation geometry on the earthquake energy budget and on the efficiency with which applied displacement is accommodated. Assuming that higher efficiency correlates with higher probability for a single, larger earthquake, this approach has utility for assessing the seismic hazard of segmented faults. Second, we nucleate slip along a weak portion of one fault segment and let the quasi-static rupture propagate across the system. Allowing fractures to form near faults in these models shows that damage develops within releasing steps and promotes slip along the second fault, while damage develops outside of restraining steps and can prohibit slip along the second fault. Work is consumed in both the propagation of and frictional slip along these new fractures, impacting the energy available for further slip and for subsequent earthquakes. This suite of models reveals that efficiency may be a useful tool for determining the relative seismic hazard of different segmented fault systems, while accounting for coseismic damage zone production is critical in assessing fault interactions and the associated energy budgets of specific systems.
Initiation and Along-Axis Segmentation of Seaward-Dipping Volcanic Sequences Captured in Afar
NASA Astrophysics Data System (ADS)
Ebinger, C.; Wolfenden, E.; Yirgu, G.; Keir, D.
2003-12-01
The Afar triple junction zone provides a unique opportunity to examine the early development of magmatic margins, as respective limbs of the triple junction capture different stages of the breakup process. Initial rifting in the southernmost Red Sea occurred concurrent with, or soon after flood basaltic magmatism at ~31 Ma in the Ethiopia-Yemen plume province, whereas the northern part of the Main Ethiopian rift initiated after 12 Ma. Both rift systems initiated with the development of high-angle border fault systems bounding broad basins, but 8-10 My after rifting we see riftward migration of strain from the western border fault to narrow zones of increasingly more basaltic magmatism. These localised zones of faulting and volcanism (magmatic segments) show a segmentation independent of the border fault segmentation. The much older, more evolved magmatic segments in the southern Red Sea, where not onlapped by Pliocene-Recent sedimentary strata, dip steeply riftward and define a regional eastward flexure into transitional oceanic crust, as indicated by gravity models constrained by seismic refraction and receiver function data. The southern Red Sea magmatic segments have been abandoned in Pliocene-Recent triple junction reorganisations, whereas the process of seaward-dipping volcanic sequence emplacement is ongoing in the seismically and volcanically active Main Ethiopian rift. Field, remote sensing, gravity, and seismicity data from the Main Ethiopian and southern Red Sea rifts indicate that seaward-dipping volcanic sequences initiate in moderately stretched continental crust above a narrow zone of dike-intrusion. Our comparison of active and ancient magmatic segments show that they are the precursors to seaward-dipping volcanic sequences analogous to those seen on passive continental margins, and provides insights into the initiation of along-axis segmentation of seafloor-spreading centers.
Scaling Relations for the Thermal Structure of Segmented Oceanic Transform Faults
NASA Astrophysics Data System (ADS)
Wolfson-Schwehr, M.; Boettcher, M. S.; Behn, M. D.
2015-12-01
Mid-ocean ridge-transform faults (RTFs) are a natural laboratory for studying strike-slip earthquake behavior due to their relatively simple geometry, well-constrained slip rates, and quasi-periodic seismic cycles. However, deficiencies in our understanding of the limited size of the largest RTF earthquakes are due, in part, to not considering the effect of short intra-transform spreading centers (ITSCs) on fault thermal structure. We use COMSOL Multiphysics to run a series of 3D finite element simulations of segmented RTFs with visco-plastic rheology. The models test a range of RTF segment lengths (L = 10-150 km), ITSC offset lengths (O = 1-30 km), and spreading rates (V = 2-14 cm/yr). The lithosphere and upper mantle are approximated as steady-state, incompressible flow. Coulomb failure incorporates brittle processes in the lithosphere, and a temperature-dependent flow law for dislocation creep of olivine activates ductile deformation in the mantle. ITSC offsets as small as 2 km affect the thermal structure underlying many segmented RTFs, reducing the area above the 600˚C isotherm, A600, and thus the size of the largest expected earthquakes, Mc. We develop a scaling relation for the critical ITSC offset length, OC, which significantly reduces the thermal affect of adjacent fault segments of length L1 and L2. OC is defined as the ITSC offset that results in an area loss ratio of R = (Aunbroken - Acombined)/Aunbroken - Adecoupled) = 63%, where Aunbroken = C600(L1+L2)1.5V-0.6 is A600 for an RTF of length L1 + L2; Adecoupled = C600(L11.5+L21.5)V-0.6 is the combined A600 of RTFs of lengths L1 and L2, respectively; and Acombined = Aunbroken exp(-O/ OC) + Adecoupled (1-exp(-O/ OC)). C600 is a constant. We use OC and kinematic fault parameters (L1, L2, O, and V) to develop a scaling relation for the approximate seismogenic area, Aseg, for each segment of a RTF system composed of two fault segments. Finally, we estimate the size of Mc on a fault segment based on Aseg. We show that small (<1 km) offsets in the fault trace observed between MW6 rupture patches on Gofar and Discovery transform faults, located at ~4S on the East Pacific Rise, are not sufficient to thermally decouple adjacent fault patches. Thus additional factors, possibly including changes in fault zone material properties, must limit the size of Mc on these faults.
NASA Astrophysics Data System (ADS)
Martin-Banda, Raquel; Insua-Arevalo, Juan Miguel; Garcia-Mayordomo, Julian
2017-04-01
Many studies have dealt with the calculation of fault-propagation fold growth rates considering a variety of kinematics models, from limb rotation to hinge migration models. In most cases, the different geometrical and numeric growth models are based on horizontal pre-growth strata architecture and a constant known slip rate. Here, we present the estimation of the vertical slip rate of the NE Segment of the Carrascoy Fault (SE Iberian Peninsula) from the geometrical modeling of a progressive unconformity developed on alluvial fan sediments with a high depositional slope. The NE Segment of the Carrascoy Fault is a left-lateral strike slip fault with reverse component belonging to the Eastern Betic Shear Zone, a major structure that accommodates most of the convergence between Iberian and Nubian tectonics plates in Southern Spain. The proximity of this major fault to the city of Murcia encourages the importance of carrying out paleosismological studies in order to determinate the Quaternary slip rate of the fault, a key geological parameter for seismic hazard calculations. This segment is formed by a narrow fault zone that articulates abruptly the northern edge of the Carrascoy Range with the Guadalentin Depression through high slope, short alluvial fans Upper-Middle Pleistocene in age. An outcrop in a quarry at the foot of this front reveals a progressive unconformity developed on these alluvial fan deposits, showing the important reverse component of the fault. The architecture of this unconformity is marked by well-developed calcretes on the top some of the alluvial deposits. We have determined the age of several of these calcretes by the Uranium-series disequilibrium dating method. The results obtained are consistent with recent published studies on the SW segment of the Carrascoy Fault that together with offset canals observed at a few locations suggest a net slip rate close to 1 m/ka.
NASA Astrophysics Data System (ADS)
Seiler, C.; Gleadow, A. J.; Kohn, B. P.
2012-12-01
Rifts are commonly segmented into several hundred kilometre long zones of opposing upper-plate transport direction with boundaries defined by accommodation and transfer zones. A number of such rift segments have been recognized in the northern Gulf of California, a youthful oceanic basin that is currently undergoing the rift-drift transition. However, detailed field studies have so far failed to identify suitable structures that could accommodate the obvious deformation gradients between different rift segments, and the nature of strain transfer at segment boundaries remains enigmatic. The situation is even less clear in central and southern Baja California, where a number of rift segments have been hypothesized but it is unknown whether the intervening segment boundaries facilitate true reversals in the upper-plate transport direction, or whether they simply accommodate differences in the timing, style or magnitude of deformation. The Bocana transfer zone (BTZ) in central Baja California is a linear, WNW-ESE striking structural discontinuity separating two rift segments with different magnitudes and styles of extensional deformation. North of the BTZ, the Libertad fault is part of the Main Gulf Escarpment, which represents the breakaway fault that separates the Gulf of California rift to the east from the relatively stable western portion of the Baja peninsula. The N-striking Libertad escarpment developed during the Late Miocene (~10-8Ma) and exhibits a topographic relief of ca. 1,000m along a strike-length of ca. 50km. Finite displacement decreases from ~1000m in the central fault segment to ~500m further south, where the fault bends SE and merges with the BTZ. In the hanging wall of the Libertad fault, a series of W-tilted horsts are bound along their eastern margins by two moderate-displacement E-dipping normal faults. South of the BTZ, extension was much less than further north, which explains the comparatively subdued relief and generally shallower tilt of pre-rift strata in this area. The BTZ itself is characterized by two en echelon WNW-ESE striking dextral-oblique transfer faults with a significant down-to-the-NNE extensional component. Strain is transferred from the Libertad breakaway fault onto the transfer faults over a distance of >20km through a network of interacting normal, oblique and strike-slip faults. The shape, location and orientation of the main faults were strongly influenced by pre-existing rheological heterogeneities. Major normal faults are parallel to either the Mesozoic metamorphic foliation or Cretaceous intrusive contacts, and developed where the foliation was at a high angle to the extension direction. In contrast, the oblique-slip faults of the BTZ formed parallel to the metamorphic foliation where formlines are at a small angle to the regional extension direction. Compared to other, less well-understood accommodation zones in the Gulf of California rift, the BTZ shows a distinct lack of volcanic activity, which may help explain the different exposure and structural expression of the various segment boundaries.
NASA Astrophysics Data System (ADS)
Tong, X.; Sandwell, D. T.; Schmidt, D. A.
2018-04-01
We analyzed the interferometric synthetic aperture radar data from the ALOS-1/PALSAR-1 satellite to image the interseismic deformation along the Sumatran fault. The interferometric synthetic aperture radar time series analysis reveals up to 20 mm/year of aseismic creep on the Aceh segment along the Northern Sumatran fault. This is a large fraction of the total slip rate across this fault. The spatial extent of the aseismic creep extends for 100 km. The along-strike variation of the aseismic creep has an inverse "U" shape. An analysis of the moment accumulation rate shows that the central part of the creeping section accumulates moment at approximately 50% of the rate of the surrounding locked segments. An initial analysis of temporal variations suggests that the creep rate may be decelerating with time, suggesting that the creep rate is adjusting to a stress perturbation from nearby seismic activity. Our study has implications to the earthquake hazard along the northern Sumatran fault.
NASA Astrophysics Data System (ADS)
Okumura, K.; Kondo, H.; Toda, S.; Takada, K.; Kinoshita, H.
2006-12-01
Ten years have past since the first official assessment of the long-term seismic risks of the Itoigawa-Shizuoka tectonic line active fault system (ISTL) in 1996. The disaster caused by the1995 Kobe (Hyogo-ken-Nanbu) earthquake urged the Japanese government to initiated a national project to assess the long-term seismic risks of on-shore active faults using geologic information. ISTL was the first target of the 98 significant faults and the probability of a M7 to M8 event turned out to be the highest among them. After the 10 years of continued efforts to understand the ISTL, now it is getting ready to revise the assessment. Fault mapping and segmentation: The most active segment of the Gofukuji fault (~1 cm/yr left-lateral strike slip, R=500~800 yrs.) had been maped only for less than 10 km. Adjacent segments were much less active. This large slip on such a short segment was contradictory. However, detailed topographic study including Lidar survey revealed the length of the Gofukuji fault to be 25 km or more. High slip rate with frequent earthquakes may be restricted to the Gofukuji fault while the 1996 assessment modeled frequent >100 km rupture scenario. The geometry of the fault is controversial especially on the left-lateral strike-slip section of the ISTL. There are two models of high-angle Middel ISTL and low-angle Middle ISTL with slip partitioning. However, all geomorphic and shallow geologic data supports high-angle almost pure strike slip on the faults in the Middle ISTL. CRIEPI's 3- dimensional trenching in several sites as well as the previous results clearly demonstrated repeated pure strike-slip offset during past a few events. In Middle ISTL, there is no evidence of recent activity of pre-existing low-angle thrust faults that are inferred to be active from shallow seismic survey. Separation of high (~3000 m) mountain ranges and low (<1000 m) basin floor requires significant dip-slip component, but basin-fill sediments and geology of the range do not need vertical separation along the Gofukuji fault. The key issue for the time-dependent assessment of the Northern ISTL (east dipping reverse faults) was the lack of reliable time constraints on past earthquakes. In order to solve this problem, we have carried out intensive geoslicer and boring survey of buried faults at Kisaki. Along a 35 m long transect, we collected total 150 m complete cores in 9 geoslicer and 5 all-core boring holes. This is one of the most intensive surveys of a buried fault scarp under the water table. About 20 m vertical offset of 6000-year-old buried A-horizon is now underlain by a series of flood deposits, point bars and over-bank sediments, that intercalates 2 or 3 faulting events. The precise timing and offset of each event recorded in the section will be the critical evidence to tell the synchroneity of earthquakes in the Northern ISTL and the Middle ISTL. The magnitude of the coming event on ISTL is the most important but uncertain parameter of the 1996 assessment. The structural and paleoseimological information will present better constraints on the earthquake.
NASA Astrophysics Data System (ADS)
Haproff, P. J.; Yin, A.
2014-12-01
Bimodal volcanism is common in continental rift zones. Structural controls to the emplacement and compositions of magmas, however, are not well understood. To address this issue, we examine the location, age, and geochemistry of active volcanic centers, and geometry and kinematics of rift-related faults across the active transtensional Owens Valley rift zone. Building on existing studies, we postulate that the spatial distribution and geochemical composition of volcanism are controlled by motion along rift-bounding fault systems. Along-strike variation in fault geometry and characteristics of active volcanism allow us to divide Owens Valley into three segments: southern, northern, and central. The southern segment of Owens Valley is a simple shear, asymmetric rift bounded to the west by the east-dipping Sierra Nevada frontal fault (SNFF). Active vents of Coso volcanic field are distributed along the eastern rift shoulder and characterized by the eruption of bimodal lavas. The SNFF within this segment is low-angle and penetrates through the lithosphere and into the ductile asthenosphere, allowing for mantle-derived magma to migrate across the weakest part of the fault zone beneath the eastern rift shoulder. Magma thermally weakens wall rocks and eventually stalls in the crust where the melt develops a greater felsic component prior to eruption. The northern segment of Owens Valley displays similar structural geometry, as the west-dipping White Mountains fault (WMF) is listric at depth and offsets the crust and mantle lithosphere, allowing for vertical transport of magma and reservoir emplacement within the crust. Bimodal lavas periodically erupted in the Long Valley Caldera region along the western rift shoulder. The central segment of Owens Valley is a pure shear, symmetric graben generated by motion along the SNFF and WMF. The subvertical, right-slip Owens Valley fault (OVF) strikes along the axis of the valley and penetrates through the lithosphere into the asthenosphere. Volcanic centers of Big Pine volcanic field are located along the trace of the OVF and characterized by mafic eruptions. The OVF is interpreted to provide a subvertical conduit for asthenospheric magma to migrate across the LAB and Moho and erupt on the rift surface without significant contamination with felsic crust.
Tectono-stratigraphic evolution of normal fault zones: Thal Fault Zone, Suez Rift, Egypt
NASA Astrophysics Data System (ADS)
Leppard, Christopher William
The evolution of linkage of normal fault populations to form continuous, basin bounding normal fault zones is recognised as an important control on the stratigraphic evolution of rift-basins. This project aims to investigate the temporal and spatial evolution of normal fault populations and associated syn-rift deposits from the initiation of early-formed, isolated normal faults (rift-initiation) to the development of a through-going fault zone (rift-climax) by documenting the tectono-stratigraphic evolution of the Sarbut EI Gamal segment of the exceptionally well-exposed Thai fault zone, Suez Rift, Egypt. A number of dated stratal surfaces mapped around the syn-rift depocentre of the Sarbut El Gamal segment allow constraints to be placed on the timing and style of deformation, and the spatial variability of facies along this segment of the fault zone. Data collected indicates that during the first 3.5 My of rifting the structural style was characterised by numerous, closely spaced, short (< 3 km), low displacement (< 200 m) synthetic and antithetic normal faults within 1 - 2 km of the present-day fault segment trace, accommodating surface deformation associated with the development of a fault propagation monocline above the buried, pre-cursor strands of the Sarbut El Gamal fault segment. The progressive localisation of displacement onto the fault segment during rift-climax resulted in the development of a major, surface-breaking fault 3.5 - 5 My after the onset of rifting and is recorded by the death of early-formed synthetic and antithetic faults up-section, and thickening of syn-rift strata towards the fault segment. The influence of intrabasinal highs at the tips of the Sarbut EI Gamal fault segment on the pre-rift sub-crop level, combined with observations from the early-formed structures and coeval deposits suggest that the overall length of the fault segment was fixed from an early stage. The fault segment is interpreted to have grown through rapid lateral propagation and early linkage of the precursor fault strands at depth before the fault segment broke surface, followed by the accumulation of displacement on the linked fault segment with minimal lateral propagation. This style of fault growth contrasts conventional fault growth models by which growth occurs through incremental increases in both displacement and length through time. The evolution of normal fault populations and fault zones exerts a first- order control on basin physiography and sediment supply, and therefore, the architecture and distribution of coeval syn-rift stratigraphy. The early syn-rift continental, Abu Zenima Formation, to shallow marine, Nukhul Formation show a pronounced westward increase in thickness controlled by the series of synthetic and antithetic faults up to 3 km west of present day Thai fault. The orientation of these faults controlled the location of fluvial conglomerates, sandstones and mudstones that shifted to the topographic lows created. The progressive localisation of displacement onto the Sarbut El Gamal fault segment during rift-climax resulted in an overall change in basin geometry. Accelerated subsidence rates led to sedimentation rates being outpaced by subsidence resulting in the development of a marine, sediment-starved, underfilled hangingwall depocentre characterised by slope-to-basinal depositional environments, with a laterally continuous slope apron in the immediate hangingwall, and point-sourced submarine fans. Controls on the spatial distribution, three dimensional architecture, and facies stacking patterns of coeval syn-rift deposits are identified as: I) structural style of the evolution and linkage of normal fault populations, ii) basin physiography, iii) evolution of drainage catchments, iv) bedrock lithology, and v) variations in sea/lake level.
Static stress changes associated with normal faulting earthquakes in South Balkan area
NASA Astrophysics Data System (ADS)
Papadimitriou, E.; Karakostas, V.; Tranos, M.; Ranguelov, B.; Gospodinov, D.
2007-10-01
Activation of major faults in Bulgaria and northern Greece presents significant seismic hazard because of their proximity to populated centers. The long recurrence intervals, of the order of several hundred years as suggested by previous investigations, imply that the twentieth century activation along the southern boundary of the sub-Balkan graben system, is probably associated with stress transfer among neighbouring faults or fault segments. Fault interaction is investigated through elastic stress transfer among strong main shocks ( M ≥ 6.0), and in three cases their foreshocks, which ruptured distinct or adjacent normal fault segments. We compute stress perturbations caused by earthquake dislocations in a homogeneous half-space. The stress change calculations were performed for faults of strike, dip, and rake appropriate to the strong events. We explore the interaction between normal faults in the study area by resolving changes of Coulomb failure function ( ΔCFF) since 1904 and hence the evolution of the stress field in the area during the last 100 years. Coulomb stress changes were calculated assuming that earthquakes can be modeled as static dislocations in an elastic half-space, and taking into account both the coseismic slip in strong earthquakes and the slow tectonic stress buildup associated with major fault segments. We evaluate if these stress changes brought a given strong earthquake closer to, or sent it farther from, failure. Our modeling results show that the generation of each strong event enhanced the Coulomb stress on along-strike neighbors and reduced the stress on parallel normal faults. We extend the stress calculations up to present and provide an assessment for future seismic hazard by identifying possible sites of impending strong earthquakes.
Factors affecting the recognition of faults exposed in exploratory trenches
Bonilla, Manuel G.; Lienkaemper, James J.
1991-01-01
Trenching-a widely used method for evaluating fault activity-has limitations that can mislead investigators. Some segments of fault strands in trench walls may not be visible, and this nonvisibility can lead to incorrect interpretations of time of most recent displacement and recurrence intervals on a fault. We examined the logs of 163 trench exposures and tabulated data on more than 1,200 fault strands to investigate three categories of nonvisibility: (1) strands with obscure (invisible or poorly visible) segments, (2) strands that die out upward, and (3) strands that die out downward. About 14 percent of all the strands have obscure segments. Of the 143 strands on which it is possible to recognize dieout up (limited to strands for which position of ground surface at time of faulting is known), 45 percent do die out upward, and the fraction exceeds 70 percent for strike-slip and reverse faults. Thus a fault strand overlain by an apparently undisturbed deposit is not necessarily older than the deposit. More than 30 percent of all the strands die out downward, providing more evidence that fault strands can end for reasons other than being covered by deposits younger than the fault. Analysis of trench-log data revealed various relations between geologic factors and nonvisibility of fault strands. For example, fault type affects the incidence of nonvisibility, which is generally most common on strike-slip faults, less common on reverse faults, and least common on normal fau Its. The type of material penetrated by the fault also influences nonvisibility, which tends to be more common in soil horizons and sand, and less common in gravel. Dieout down is weakly influenced by fault displacement, decreasing in frequency with increase in displacement; the frequencies of obscure segments and dieout up do not vary consistently with fault displacement. Frequency of obscure segments generally decreases with increase in length of obscure segments, and frequency of dieout up generally decreases with depth of dieout up. Length of obscure segments and depth of dieout up are typically less than the effective thickness of associated beds. On the basis of few data, obscure segments seem to be more common on faults with younger, rather than older, ages of latest displacement. Our study revealed additional relations not directly related to nonvisibility. For example, the median widths of faults crossed by the trenches vary by fault type, strike-slip faults being narrower than dip-slip faults. In the shallow and mostly unconsolidated materials cut by the trenches, fault widths show only an erratic and, at best, weak relationship to fault displacements. Hanging walls are deformed more frequently than footwalls in dip-slip faults, but both walls are deformed at more than 30 percent of the exposures. We tabulated several phenomena that may indicate faulting or provide evidence of prehistorical earthquakes. Rotation of pebbles was identified in 41 percent of the exposures having gravel in the fault zone; type of fault has no strong influence on the incidence of pebble rotation. Fissures were recorded at 52 percent of the exposures and were more common in strike-slip and normal faults than in reverse fau Its. Gouge was reported at 1 5 percent of the exposures; fault type has no significant influence on its frequency. Slickensides were noted at 10 percent of the exposures, and fault type has an unknown influence on their incidence. Slickensides in unconsolidated materials were restricted to clay, silt, and gouge. Other mechanical or hydrologic effects related to faulting or earthquakesrubble, breccia, mixing, crushing, polishing, water barriers, c;ind probable liquefaction effects-were reported at fewer than 1 0 percent of the exposures.
Smith, Deborah K; Cann, Johnson R; Escartín, Javier
2006-07-27
Oceanic core complexes are massifs in which lower-crustal and upper-mantle rocks are exposed at the sea floor. They form at mid-ocean ridges through slip on detachment faults rooted below the spreading axis. To date, most studies of core complexes have been based on isolated inactive massifs that have spread away from ridge axes. Here we present a survey of the Mid-Atlantic Ridge near 13 degrees N containing a segment in which a number of linked detachment faults extend for 75 km along one flank of the spreading axis. The detachment faults are apparently all currently active and at various stages of development. A field of extinct core complexes extends away from the axis for at least 100 km. Our observations reveal the topographic characteristics of actively forming core complexes and their evolution from initiation within the axial valley floor to maturity and eventual inactivity. Within the surrounding region there is a strong correlation between detachment fault morphology at the ridge axis and high rates of hydroacoustically recorded earthquake seismicity. Preliminary examination of seismicity and seafloor morphology farther north along the Mid-Atlantic Ridge suggests that active detachment faulting is occurring in many segments and that detachment faulting is more important in the generation of ocean crust at this slow-spreading ridge than previously suspected.
Uranium-Series Dating of the East Franklin Mountain's Fault Carbonates in El Paso, Texas
NASA Astrophysics Data System (ADS)
Garcia, V. H.; Ma, L.; Pavlis, T. L.; Hurtado, J. M., Jr.
2017-12-01
Direct dating of fault activity is a fundamentally important part of many paleoseismic studies and has potential implications on the quantity, magnitude, recurrence intervals, and timing of earthquake occurrences in the past and future. Faults in the Rio Grande Rift (RGR) in southern New Mexico and West Texas have often been overlooked in seismic hazard assessments due to inferred low tectonic rates and long recurrence intervals. However, there is geologic evidence from surface ruptures that at least 22 large earthquakes (M > 6.25) have occurred in the RGR within the last 10,000 kyrs. The binational conurbation of the El Paso-Juarez region (home to 2.3 million people) lies in the southern extent of the RGR and is traversed by many Quaternary faults, which pose a potentially catastrophic hazard for the region. One fault in particular, the East Franklin Mountains fault (EFMF), is made up of many smaller fault segments that cross through heavily populated areas of the El Paso-Juarez region. Direct dating of past movement on a central segment of the EFMF is a fundamental and important piece of the puzzle in understanding when and how often seismic activity occurred in the fault. In this study, we applied Uranium-series (U-series) dating of fault carbonates collected from a trench that was dug on the central segment of the EFMF. Fault related calcite precipitants and pedogenic carbonates from a nearby soil profile were collected to (1) constraint the timing of past fault activity and (2) understand the relationship and timing of pedogenic carbonate formation away from the EFMF. U-series dating reveals that pedogenic carbonates collected from colluvial wedges along the fault are approximately half the optically stimulated luminescence age of the deposits, suggesting the U-Series dates record a relatively continuous accumulation of carbonates post-deposition. U-Series dates from within the EFMF, however, provided potentially the best estimates for the age of the most recent seismic event with ages of 10 - 12 kyrs, suggesting this method has potential broader applications in paleoseismic studies.
NASA Astrophysics Data System (ADS)
Ando, R.; Kaneko, Y.
2017-12-01
The coseismic rupture of the 2016 Kaikoura earthquake propagated over the distance of 150 km along the NE-SW striking fault system in the northern South Island of New Zealand. The analysis of In-SAR, GPS and field observations (Hamling et al., 2017) revealed that the most of the rupture occurred along the previously mapped active faults, involving more than seven major fault segments. These fault segments, mostly dipping to northwest, are distributed in a quite complex manner, manifested by fault branching and step-over structures. Back-projection rupture imaging shows that the rupture appears to jump between three sub-parallel fault segments in sequence from the south to north (Kaiser et al., 2017). The rupture seems to be terminated on the Needles fault in Cook Strait. One of the main questions is whether this multi-fault rupture can be naturally explained with the physical basis. In order to understand the conditions responsible for the complex rupture process, we conduct fully dynamic rupture simulations that account for 3-D non-planar fault geometry embedded in an elastic half-space. The fault geometry is constrained by previous In-SAR observations and geological inferences. The regional stress field is constrained by the result of stress tensor inversion based on focal mechanisms (Balfour et al., 2005). The fault is governed by a relatively simple, slip-weakening friction law. For simplicity, the frictional parameters are uniformly distributed as there is no direct estimate of them except for a shallow portion of the Kekerengu fault (Kaneko et al., 2017). Our simulations show that the rupture can indeed propagate through the complex fault system once it is nucleated at the southernmost segment. The simulated slip distribution is quite heterogeneous, reflecting the nature of non-planar fault geometry, fault branching and step-over structures. We find that optimally oriented faults exhibit larger slip, which is consistent with the slip model of Hamling et al. (2017). We conclude that the first order characteristics of this event may be interpreted by the effect of irregularity in the fault geometry.
Late Quaternary faulting in the Vallo di Diano basin (southern Apennines, Italy)
NASA Astrophysics Data System (ADS)
Villani, F.; Pierdominici, S.; Cinti, F. R.
2009-12-01
The Vallo di Diano is the largest Quaternary extensional basin in the southern Apennines thrust-belt axis (Italy). This portion of the chain is highly seismic and is currently subject to NE-extension, which triggers large (M> 6) normal-faulting earthquakes along NW-trending faults. The eastern edge of the Vallo di Diano basin is bounded by an extensional fault system featuring three main NW-trending, SW-dipping, right-stepping, ~15-17 km long segments (from north to south: Polla, Atena Lucana-Sala Consilina and Padula faults). Holocene activity has been documented so far only for the Polla segment. We have therefore focused our geomorphological and paleoseismological study on the southern portion of the system, particularly along the ~ 4 km long Atena Lucana-Sala Consilina and Padula faults overlap zone. The latter is characterized by a complex system of coalescent alluvial fans, Middle Pleistocene to Holocene in age. Here we recognized a > 4 km long and 0.5-1.4 km wide set of scarps (ranging in height between 1 m and 2.5 m) affecting Late Pleistocene - Holocene alluvial fans. In the same area, two Late Pleistocene volcanoclastic layers at the top of an alluvial fan exposed in a quarry are affected by ~ 1 m normal displacements. Moreover, a trench excavated across a 2 m high scarp affecting a Holocene fan revealed warping of Late Holocene debris flow deposits, with a total vertical throw of about 0.3 m. We therefore infer the overlap zone of the Atena Lucana-Sala Consilina and Padula faults is a breached relay ramp, generated by hard-linkage of the two fault segments since Late Pleistocene. This ~ 32 km long fault system is active and is capable of generating Mw ≥6.5 earthquakes.
Surface and Subsurface Fault Displacements from the September 2010 Darfield (Canterbury) Earthquake
NASA Astrophysics Data System (ADS)
Meyers, B.; Furlong, K. P.; Hayes, G. P.; Herman, M. W.; Quigley, M.
2012-12-01
On September 3, 2010 a Magnitude 7.1 earthquake struck near Darfield, New Zealand. This was to be the first earthquake in an ongoing, damaging sequence near the city of Christchurch. The earthquake produced a surface rupture with measurable offsets of up to 5.3m along a 30km surface fault system. The spatial pattern of slip during this rupture has been determined by various groups using a range of approaches and several independent data sets. Surface fault rupture was measured in the field and fault slip at depth has been inferred from a seismologic finite fault model (FFM) and various geodetic observations including GPS and InSAR. Here we compare the observed segmented surface displacements with fault slip inferred from the other data. Measurements of the surface rupture show segmented faulting consistent with subsurface slip in the FFM. In the FFM, the main slip patch near the hypocenter can be directly correlated to the region of maximum surface displacement. The FFM and some evidence in the InSAR data also indicate that the Greendale fault system, the structure responsible for the bulk of the rupture, continues at depth closer towards Christchurch than is seen in surface rupture patterns. There is an additional 20km long patch with up to 3m of modeled slip seen in the eastern end of the inverted fault, offset to the south from the Greendale fault trace. This additional fault segment is consistent with a zone of aftershock activity of the main Darfield event, and with local patterns of strong motion. It thus appears that slip recorded at the surface does not describe the entire fault system. This eastward extension of the September rupture means that there is only a short segment of unruptured crust remaining along the entire fault system involved in the Canterbury earthquake sequence.
Radon concentration distributions in shallow and deep groundwater around the Tachikawa fault zone.
Tsunomori, Fumiaki; Shimodate, Tomoya; Ide, Tomoki; Tanaka, Hidemi
2017-06-01
Groundwater radon concentrations around the Tachikawa fault zone were surveyed. The radon concentrations in shallow groundwater samples around the Tachikawa fault segment are comparable to previous studies. The characteristics of the radon concentrations on both sides of the segment are considered to have changed in response to the decrease in groundwater recharge caused by urbanization on the eastern side of the segment. The radon concentrations in deep groundwater samples collected around the Naguri and the Tachikawa fault segments are the same as those of shallow groundwater samples. However, the radon concentrations in deep groundwater samples collected from the bedrock beside the Naguri and Tachikawa fault segments are markedly higher than the radon concentrations expected from the geology on the Kanto plane. This disparity can be explained by the development of fracture zones spreading on both sides of the two segments. The radon concentration distribution for deep groundwater samples from the Naguri and the Tachikawa fault segments suggests that a fault exists even at the southern part of the Tachikawa fault line. Copyright © 2017 Elsevier Ltd. All rights reserved.
Spatial instability of the rift in the St. Paul multifault transform fracture system, Atlantic Ocean
NASA Astrophysics Data System (ADS)
Sokolov, S. Yu.; Zaraiskaya, Yu. A.; Mazarovich, A. O.; Efimov, V. N.; Sokolov, N. S.
2016-05-01
The structure of the acoustic basement of the eastern part of the St. Paul multifault transform fracture system hosts rift paleovalleys and a paleonodal depression that mismatch the position of the currently active zones. This displacement zone, which is composed of five fault troughs, is unstable in terms of the position of the rift segments, which jumped according to redistribution of stresses. The St. Paul system is characterized by straightening of the transform transition between two remote segments of the Mid-Atlantic Ridge (MAR). The eastern part of the system contains anomalous bright-spot-like reflectors on the flattened basement, which is a result of atypical magmatism, that forms the standard ridge relief of the acoustic basement. Deformations of the acoustic basement have a presedimentation character. The present-day deformations with lower amplitude in comparison to the basement are accompanied by acoustic brightening of the sedimentary sequence. The axial Bouguer anomalies in the east of the system continue to the north for 120 km from the active segments of the St. Paul system. Currently seismically active segments of the spreading system are characterized by increasing amplitudes of the E-W displacement along the fault troughs. Cross-correlation of the lengths of the active structural elements of the MAR zone (segments of the ridge and transform fracture zones of displacement) indicates that, statistically, the multifault transform fracture system is a specific type of oceanic strike-slip faults.
The relationship between oceanic transform fault segmentation, seismicity, and thermal structure
NASA Astrophysics Data System (ADS)
Wolfson-Schwehr, Monica
Mid-ocean ridge transform faults (RTFs) are typically viewed as geometrically simple, with fault lengths readily constrained by the ridge-transform intersections. This relative simplicity, combined with well-constrained slip rates, make them an ideal environment for studying strike-slip earthquake behavior. As the resolution of available bathymetric data over oceanic transform faults continues to improve, however, it is being revealed that the geometry and structure of these faults can be complex, including such features as intra-transform pull-apart basins, intra-transform spreading centers, and cross-transform ridges. To better determine the resolution of structural complexity on RTFs, as well as the prevalence of RTF segmentation, fault structure is delineated on a global scale. Segmentation breaks the fault system up into a series of subparallel fault strands separated by an extensional basin, intra-transform spreading center, or fault step. RTF segmentation occurs across the full range of spreading rates, from faults on the ultraslow portion of the Southwest Indian Ridge to faults on the ultrafast portion of the East Pacific Rise (EPR). It is most prevalent along the EPR, which hosts the fastest spreading rates in the world and has undergone multiple changes in relative plate motion over the last couple of million years. Earthquakes on RTFs are known to be small, to scale with the area above the 600°C isotherm, and to exhibit some of the most predictable behaviors in seismology. In order to determine whether segmentation affects the global RTF scaling relations, the scalings are recomputed using an updated seismic catalog and fault database in which RTF systems are broken up according to their degree of segmentation (as delineated from available bathymetric datasets). No statistically significant differences between the new computed scaling relations and the current scaling relations were found, though a few faults were identified as outliers. Finite element analysis is used to model 3-D RTF fault geometry assuming a viscoplastic rheology in order to determine how segmentation affects the underlying thermal structure of the fault. In the models, fault segment length, length and location along fault of the intra-transform spreading center, and slip rate are varied. A new scaling relation is developed for the critical fault offset length (OC) that significantly reduces the thermal area of adjacent fault segments, such that adjacent segments are fully decoupled at ~4 OC . On moderate to fast slipping RTFs, offsets ≥ 5 km are sufficient to significantly reduce the thermal influence between two adjacent transform fault segments. The relationship between fault structure and seismic behavior was directly addressed on the Discovery transform fault, located at 4°S on the East Pacific Rise. One year of microseismicity recorded on an OBS array, and 24 years of Mw ≥ 5.4 earthquakes obtained from the Global Centroid Moment Tensor catalog, were correlated with surface fault structure delineated from high-resolution multibeam bathymetry. Each of the 15 Mw ≥ 5.4 earthquakes was relocated into one of five distinct repeating rupture patches, while microseismicity was found to be reduced within these patches. While the endpoints of these patches appeared to correlate with structural features on the western segment of Discovery, small step-overs in the primary fault trace were not observed at patch boundaries. This indicates that physical segmentation of the fault is not the primary control on the size and location of large earthquakes on Discovery, and that along-strike heterogeneity in fault zone properties must play an important role.
NASA Astrophysics Data System (ADS)
Horalek, Josef; Fischer, Tomas; Cermakova, Hana
2013-04-01
West Bohemia/Vogtland (border area between Czech Republic and Germany) belongs to the most active intraplate earthquake-swarm regions in Europe. Above, this area is characteristic by high activity of crustal fluids. Swarm earthquakes with magnitudes ML < 4.0 occur frequently in the area of about 3 000 km2, however, the Nový Kostel focal zone (NK), which shows a few tens of thousands events within the last twenty years, dominates the recent seismicity of the whole region. During last fifteen years there were four earthquake swarms in 1997, 2000, 2008 and 20011 (besides a few tens of microswarms) encompassing a fault plane of about 15 x 6 km. The swarms were located close to each other. Moreover, the 2000 (MLmax = 3.3) and 2008 (MLmax = 3.8) swarms were "twins", i.e. their hypocenters fall precisely on the same portion of the NK fault plane; and the 1997 (MLmax = 2.9) and 2011 (MLmax = 3.6) swarms also occurred on the same fault segment. However, the individual swarms differed considerably in their evolution, mainly in the rate of the seismic-moment release and foci migration. Source mechanisms (in the full moment-tensor description) and their time and space variations also show different patterns. All the 2000- and 2008-swarm events were pure shears, most of them showing the oblique normal faulting. Although source mechanisms of majority of the 2000- and 2008 events signify the faulting parallel to the main NK fault plane, there is a significant amount of events having different source mechanisms. We also found alteration of the source mechanisms with depths. The 1997 and 2011 swarms took place on two differently oriented fault segments thus two different source mechanisms occurred: the oblique-normal on the one segment and the oblique-thrust type on the other one. Moreover, source mechanisms of the oblique thrust events suggest combined sources (possessing significant non-DC components). This indicates complexity of both NK focal zone (where earthquake swarms have periodically occurred) and rupturing in the individual swarms. Similar pattern of the strain energy release we disclosed for seismicity due to fluid injection into deep boreholes at HDR site Soultz-sous-Forêts (France) in 2003. We analyzed the spatial and temporal distribution of micro-earthquakes and their source mechanisms and found that injected fluids triggered large seismicity (pure-shear events) at two existing natural fault segments, which ran independently of the injection strategy. Taking into account all our results, we can conclude that earthquake swarms occur on short subcritically loaded fault segments which are affected by crustal fluids. Pressurized fluids reduced normal component of the tectonic stress and lower friction, thus decrease the shear strength of the medium (in terms of Coulomb friction criterion). On critically loaded and favourably oriented fault segments the swarm activity is driven by the differential local stress, the shear rupturing occurs.
NASA Astrophysics Data System (ADS)
Bergh, Steffen; Sylvester, Arthur; Damte, Alula; Indrevær, Kjetil
2014-05-01
The San Andreas fault in southern California records only few large-magnitude earthquakes in historic time, and the recent activity is confined primarily on irregular and discontinuous strike-slip and thrust fault strands at shallow depths of ~5-20 km. Despite this fact, slip along the San Andreas fault is calculated to c. 35 mm/yr based on c.160 km total right lateral displacement for the southern segment of the fault in the last c. 8 Ma. Field observations also reveal complex fault strands and multiple events of deformation. The presently diffuse high-magnitude crustal movements may be explained by the deformation being largely distributed along more gently dipping reverse faults in fold-thrust belts, in contrast to regions to the north where deformation is less partitioned and localized to narrow strike-slip fault zones. In the Mecca Hills of the Salton trough transpressional deformation of an uplifted segment of the San Andreas fault in the last ca. 4.0 My is expressed by very complex fault-oblique and fault-parallel (en echelon) folding, and zones of uplift (fold-thrust belts), basement-involved reverse and strike-slip faults and accompanying multiple and pervasive cataclasis and conjugate fracturing of Miocene to Pleistocene sedimentary strata. Our structural analysis of the Mecca Hills addresses the kinematic nature of the San Andreas fault and mechanisms of uplift and strain-stress distribution along bent fault strands. The San Andreas fault and subsidiary faults define a wide spectrum of kinematic styles, from steep localized strike-slip faults, to moderate dipping faults related to oblique en echelon folds, and gently dipping faults distributed in fold-thrust belt domains. Therefore, the San Andreas fault is not a through-going, steep strike-slip crustal structure, which is commonly the basis for crustal modeling and earthquake rupture models. The fault trace was steep initially, but was later multiphase deformed/modified by oblique en echelon folding, renewed strike-slip movements and contractile fold-thrust belt structures. Notably, the strike-slip movements on the San Andreas fault were transformed outward into the surrounding rocks as oblique-reverse faults to link up with the subsidiary Skeleton Canyon fault in the Mecca Hills. Instead of a classic flower structure model for this transpressional uplift, the San Andreas fault strands were segmented into domains that record; (i) early strike-slip motion, (ii) later oblique shortening with distributed deformation (en echelon fold domains), followed by (iii) localized fault-parallel deformation (strike-slip) and (iv) superposed out-of-sequence faulting and fault-normal, partitioned deformation (fold-thrust belt domains). These results contribute well to the question if spatial and temporal fold-fault branching and migration patterns evolving along non-vertical strike-slip fault segments can play a role in the localization of earthquakes along the San Andreas fault.
Surface Rupture Characteristics and Rupture Mechanics of the Yushu Earthquake (Ms7.1), 14/04/2010
NASA Astrophysics Data System (ADS)
Pan, J.; Li, H.; Xu, Z.; Li, N.; Wu, F.; Guo, R.; Zhang, W.
2010-12-01
On April 14th 2010, a disastrous earthquake (Ms 7.1) struck Yushu County, Qinghai Province, China, killing thousands of people. This earthquake occurred as a result of sinistral strike-slip faulting on the western segment of the Xianshuihe Fault zone in eastern Tibetan Plateau. Our group conducted scientific investigation in the field on co-seismic surface rupture and active tectonics in the epicenter area immediately after the earthquake. Here, we introduce our preliminary results on the surface ruptures and rupture mechanics of the Yushu Earthquake. The surface rupture zone of Yushu earthquake, which is about 49 km-long, consists of 3 discontinuous left stepping rupture segments, which are 19 km, 22 km, and about 8 km, respectively, from west to east. Each segment consists of a series of right stepping en-echelon branch ruptures. The branch ruptures consist of interphase push-up and tension fissures or simply en-echelon tension fissures. The co-seismic displacements had been surveyed with a total station in detail on landmarks such as rivers, gullies, roads, farmlands, wire poles, and fences. The maximum offset measured is 2.3m, located near the Guoyangyansongduo Village. There are 3 offset peaks along the rupture zone corresponding to the 3 segments of the surface rupture zone. The maximum offsets in the west, central, and east segment rupture zones are 1.4m, 2.3m, and 1.6m respectively. The surface rupture zone of Yushu earthquake strikes in a 310°NW direction. The fault plane dips to the northeast and the dip angle is about 81°. The rupture zone is developed in transtension setting. Tension normal fault developed during the sinistral strike-slip process of the fault. The valley west of Yushu City and the Longbao Lake are both pull-apart basins formed during the transtension activity of the fault.
von Huene, Roland E.; Miller, John J.; Dartnell, Peter
2016-01-01
The Semidi segment of the Alaska convergent margin appears capable of generating a giant tsunami like the one produced along the nearby Unimak segment in 1946. Reprocessed legacy seismic reflection data and a compilation of multibeam bathymetric surveys reveal structures that could generate such a tsunami. A 200 km long ridge or escarpment with crests >1 km high is the surface expression of an active out-of-sequence fault zone, recently referred to as a splay fault. Such faults are potentially tsunamigenic. This type of fault zone separates the relatively rigid rock of the margin framework from the anelastic accreted sediment prism. Seafloor relief of the ridge exceeds that of similar age accretionary prism ridges indicating preferential slip along the splay fault zone. The greater slip may derive from Quaternary subduction of the Patton Murray hot spot ridge that extends 200 km toward the east across the north Pacific. Estimates of tsunami repeat times from paleotsunami studies indicate that the Semidi segment could be near the end of its current inter-seismic cycle. GPS records from Chirikof Island at the shelf edge indicate 90% locking of plate interface faults. An earthquake in the shallow Semidi subduction zone could generate a tsunami that will inundate the US west coast more than the 1946 and 1964 earthquakes because the Semidi continental slope azimuth directs a tsunami southeastward.
NASA Astrophysics Data System (ADS)
Gülerce, Zeynep; Buğra Soyman, Kadir; Güner, Barış; Kaymakci, Nuretdin
2017-12-01
This contribution provides an updated planar seismic source characterization (SSC) model to be used in the probabilistic seismic hazard assessment (PSHA) for Istanbul. It defines planar rupture systems for the four main segments of the North Anatolian fault zone (NAFZ) that are critical for the PSHA of Istanbul: segments covering the rupture zones of the 1999 Kocaeli and Düzce earthquakes, central Marmara, and Ganos/Saros segments. In each rupture system, the source geometry is defined in terms of fault length, fault width, fault plane attitude, and segmentation points. Activity rates and the magnitude recurrence models for each rupture system are established by considering geological and geodetic constraints and are tested based on the observed seismicity that is associated with the rupture system. Uncertainty in the SSC model parameters (e.g., b value, maximum magnitude, slip rate, weights of the rupture scenarios) is considered, whereas the uncertainty in the fault geometry is not included in the logic tree. To acknowledge the effect of earthquakes that are not associated with the defined rupture systems on the hazard, a background zone is introduced and the seismicity rates in the background zone are calculated using smoothed-seismicity approach. The state-of-the-art SSC model presented here is the first fully documented and ready-to-use fault-based SSC model developed for the PSHA of Istanbul.
The 2016 Central Italy "reverse" seismic sequence
NASA Astrophysics Data System (ADS)
Chiaraluce, Lauro; Di Stefano, Raffaele; Tinti, Elisa; Scognamiglio, Laura; Michele, Maddalena; Cattaneo, Marco; De Gori, Pasquale; Chiarabba, Claudio; Monachesi, Giancarlo; Lombardi, Annamaria; Valoroso, Luisa; Latorre, Diana; Marzorati, Simone
2017-04-01
The 2016 seismic sequence consists so far of a series of moderate to large earthquakes that within three month's time activated a 60 km long segmented normal fault system located in the Central Italy and almost contiguous to the 1997 Colfiorito and 2009 L'Aquila normal fault systems. The first mainshock of the sequence occurred with MW6.0 on the 24th of August at 01:36 UTC close to the Accumoli and Amatrice villages producing evidence for centimetres' surface ruptures along the Mt. Vettore normal fault outcrop. Two months later on the 26th of October at 19:18 UTC another mainshock with MW5.9 occurred 25 km to the north activating another normal fault segment approximately on the along strike continuation of the first structure. Then, four days later on the 30th of October at 06:40 UTC the largest shock of the sequence with MW6.5 close to Norcia, in the middle part of the fault system activated two months before. We reconstruct the first order anatomy of the activated normal faults system, by analysing the spatial and temporal distribution of 25,354 aftershocks with 0.1
Petersen, M.D.; Toppozada, Tousson R.; Cao, T.; Cramer, C.H.; Reichle, M.S.; Bryant, W.A.
2000-01-01
The fault sources in the Project 97 probabilistic seismic hazard maps for the state of California were used to construct maps for defining near-source seismic coefficients, Na and Nv, incorporated in the 1997 Uniform Building Code (ICBO 1997). The near-source factors are based on the distance from a known active fault that is classified as either Type A or Type B. To determine the near-source factor, four pieces of geologic information are required: (1) recognizing a fault and determining whether or not the fault has been active during the Holocene, (2) identifying the location of the fault at or beneath the ground surface, (3) estimating the slip rate of the fault, and (4) estimating the maximum earthquake magnitude for each fault segment. This paper describes the information used to produce the fault classifications and distances.
NASA Astrophysics Data System (ADS)
Saltogianni, Vasso; Moschas, Fanis; Stiros, Stathis
2017-04-01
Finite fault models (FFM) are presented for the two main shocks of the 2014 Cephalonia (Ionian Sea, Greece) seismic sequence (M 6.0) which produced extreme peak ground accelerations ( 0.7g) in the west edge of the Aegean Arc, an area in which the poor coverage by seismological and GPS/INSAR data makes FFM a real challenge. Modeling was based on co-seismic GPS data and on the recently introduced TOPological INVersion algorithm. The latter is a novel uniform grid search-based technique in n-dimensional spaces, is based on the concept of stochastic variables and which can identify multiple unconstrained ("free") solutions in a specified search space. Derived FFMs for the 2014 earthquakes correspond to an essentially strike slip fault and of part of a shallow thrust, the surface projection of both of which run roughly along the west coast of Cephalonia. Both faults correlate with pre-existing faults. The 2014 faults, in combination with the faults of the 2003 and 2015 Leucas earthquakes farther NE, form a string of oblique slip, partly overlapping fault segments with variable geometric and kinematic characteristics along the NW edge of the Aegean Arc. This composite fault, usually regarded as the Cephalonia Transform Fault, accommodates shear along this part of the Arc. Because of the highly fragmented crust, dominated by major thrusts in this area, fault activity is associated with 20km long segments and magnitude 6.0-6.5 earthquakes recurring in intervals of a few seconds to 10 years.
NASA Astrophysics Data System (ADS)
Wei, M.
2016-12-01
Progress towards a quantitative and predictive understanding of the earthquake behavior can be achieved by improved understanding of earthquake cycles. However, it is hindered by the long repeat times (100s to 1000s of years) of the largest earthquakes on most faults. At fast-spreading oceanic transform faults, the typical repeating time ranges from 5-20 years, making them a unique tectonic environment for studying the earthquake cycle. One important observation on OTFs is the quasi-periodicity and the spatial-temporal clustering of large earthquakes: same fault segment ruptured repeatedly at a near constant interval and nearby segments ruptured during a short time period. This has been observed on the Gofar and Discovery faults in the East Pacific Rise. Between 1992 and 2014, five clusters of M6 earthquakes occurred on the Gofar and Discovery fault system with recurrence intervals of 4-6 years. Each cluster consisted of a westward migration of seismicity from the Discovery to Gofar segment within a 2-year period, providing strong evidence for spatial-temporal clustering of large OTFs earthquakes. I simulated earthquake cycles of oceanic transform fault in the framework of rate-and-state friction, motivated by the observations at the Gofar and Discovery faults. I focus on a model with two seismic segments, each 20 km long and 5 km wide, separated by an aseismic segment of 10 km wide. This geometry is set based on aftershock locations of the 2008 M6.0 earthquake on Gofar. The repeating large earthquake on both segments are reproduced with similar magnitude as observed. I set the state parameter differently for the two seismic segments so initially they are not synchornized. Results also show that synchronization of the two seismic patches can be achieved after several earthquake cycles when the effective normal stress or the a-b parameter is smaller than surrounding aseismic areas, both having reduced the resistance to seismic rupture in the VS segment. These parameter settings likely reflect the alteration of stress and friction property by the enhanced hydrothermal activity suggested by McGuire et al., 2012. The seismic coupling ratio of the entire model is about 0.3, not far from the global average of 0.15.
Motion in the north Iceland volcanic rift zone accommodated by bookshelf faulting
NASA Astrophysics Data System (ADS)
Green, Robert G.; White, Robert S.; Greenfield, Tim
2014-01-01
Along mid-ocean ridges the extending crust is segmented on length scales of 10-1,000km. Where rift segments are offset from one another, motion between segments is accommodated by transform faults that are oriented orthogonally to the main rift axis. Where segments overlap, non-transform offsets with a variety of geometries accommodate shear motions. Here we use micro-seismic data to analyse the geometries of faults at two overlapping rift segments exposed on land in north Iceland. Between the rift segments, we identify a series of faults that are aligned sub-parallel to the orientation of the main rift. These faults slip through left-lateral strike-slip motion. Yet, movement between the overlapping rift segments is through right-lateral motion. Together, these motions induce a clockwise rotation of the faults and intervening crustal blocks in a motion that is consistent with a bookshelf-faulting mechanism, named after its resemblance to a tilting row of books on a shelf. The faults probably reactivated existing crustal weaknesses, such as dyke intrusions, that were originally oriented parallel to the main rift and have since rotated about 15° clockwise. Reactivation of pre-existing, rift-parallel weaknesses contrasts with typical mid-ocean ridge transform faults and is an important illustration of a non-transform offset accommodating shear motion between overlapping rift segments.
NASA Astrophysics Data System (ADS)
Hadizadeh, Jafar; Mittempergher, Silvia; Gratier, Jean-Pierre; Renard, Francois; Di Toro, Giulio; Richard, Julie; Babaie, Hassan A.
2012-09-01
The San Andreas Fault zone in central California accommodates tectonic strain by stable slip and microseismic activity. We study microstructural controls of strength and deformation in the fault using core samples provided by the San Andreas Fault Observatory at Depth (SAFOD) including gouge corresponding to presently active shearing intervals in the main borehole. The methods of study include high-resolution optical and electron microscopy, X-ray fluorescence mapping, X-ray powder diffraction, energy dispersive X-ray spectroscopy, white light interferometry, and image processing. The fault zone at the SAFOD site consists of a strongly deformed and foliated core zone that includes 2-3 m thick active shear zones, surrounded by less deformed rocks. Results suggest deformation and foliation of the core zone outside the active shear zones by alternating cataclasis and pressure solution mechanisms. The active shear zones, considered zones of large-scale shear localization, appear to be associated with an abundance of weak phases including smectite clays, serpentinite alteration products, and amorphous material. We suggest that deformation along the active shear zones is by a granular-type flow mechanism that involves frictional sliding of microlithons along phyllosilicate-rich Riedel shear surfaces as well as stress-driven diffusive mass transfer. The microstructural data may be interpreted to suggest that deformation in the active shear zones is strongly displacement-weakening. The fault creeps because the velocity strengthening weak gouge in the active shear zones is being sheared without strong restrengthening mechanisms such as cementation or fracture sealing. Possible mechanisms for the observed microseismicity in the creeping segment of the SAF include local high fluid pressure build-ups, hard asperity development by fracture-and-seal cycles, and stress build-up due to slip zone undulations.
Lacustrine Paleoseismology Reveals Earthquake Segmentation of the Alpine Fault, New Zealand
NASA Astrophysics Data System (ADS)
Howarth, J. D.; Fitzsimons, S.; Norris, R.; Langridge, R. M.
2013-12-01
Transform plate boundary faults accommodate high rates of strain and are capable of producing large (Mw>7.0) to great (Mw>8.0) earthquakes that pose significant seismic hazard. The Alpine Fault in New Zealand is one of the longest, straightest and fastest slipping plate boundary transform faults on Earth and produces earthquakes at quasi-periodic intervals. Theoretically, the fault's linearity, isolation from other faults and quasi-periodicity should promote the generation of earthquakes that have similar magnitudes over multiple seismic cycles. We test the hypothesis that the Alpine Fault produces quasi-regular earthquakes that contiguously rupture the southern and central fault segments, using a novel lacustrine paleoseismic proxy to reconstruct spatial and temporal patterns of fault rupture over the last 2000 years. In three lakes located close to the Alpine Fault the last nine earthquakes are recorded as megaturbidites formed by co-seismic subaqueous slope failures, which occur when shaking exceeds Modified Mercalli (MM) VII. When the fault ruptures adjacent to a lake the co-seismic megaturbidites are overlain by stacks of turbidites produced by enhanced fluvial sediment fluxes from earthquake-induced landslides. The turbidite stacks record shaking intensities of MM>IX in the lake catchments and can be used to map the spatial location of fault rupture. The lake records can be dated precisely, facilitating meaningful along strike correlations, and the continuous records allow earthquakes closely spaced in time on adjacent fault segments to be distinguished. The results show that while multi-segment ruptures of the Alpine Fault occurred during most seismic cycles, sequential earthquakes on adjacent segments and single segment ruptures have also occurred. The complexity of the fault rupture pattern suggests that the subtle variations in fault geometry, sense of motion and slip rate that have been used to distinguish the central and southern segments of the Alpine Fault can inhibit rupture propagation, producing a soft earthquake segment boundary. The study demonstrates the utility of lakes as paleoseismometers that can be used to reconstruct the spatial and temporal patterns of earthquakes on a fault.
NASA Astrophysics Data System (ADS)
Jiménez-Bonilla, Alejandro; Balanya, Juan Carlos; Exposito, Inmaculada; Diaz-Azpiroz, Manuel; Barcos, Leticia
2015-04-01
Strain partitioning modes within migrating orogenic arcs may result in arc-parallel stretching that produces along-strike structural and topographic discontinuities. In the Western Gibraltar Arc, arc-parallel stretching has operated from the Lower Miocene up to recent times. In this study, we have reviewed the Colmenar Fault, located at the SW end of the Subbetic ranges, previously interpreted as a Middle Miocene low-angle normal fault. Our results allow to identify younger normal fault segments, to analyse their kinematics, growth and segment linkage, and to discuss its role on the structural and relief drop at regional scale. The Colmenar Fault is folded by post-Serravallian NE-SW buckle folds. Both the SW-dipping fault surfaces and the SW-plunging fold axes contribute to the structural relief drop toward the SW. Nevertheless, at the NW tip of the Colmenar Fault, we have identified unfolded normal faults cutting quaternary soils. They are grouped into a N110˚E striking brittle deformation band 15km long and until 3km wide (hereafter Ubrique Normal Fault Zone; UNFZ). The UNFZ is divided into three sectors: (a) The western tip zone is formed by normal faults which usually dip to the SW and whose slip directions vary between N205˚E and N225˚E. These segments are linked to each other by left-lateral oblique faults interpreted as transfer faults. (b) The central part of the UNFZ is composed of a single N115˚E striking fault segment 2,4km long. Slip directions are around N190˚E and the estimated throw is 1,25km. The fault scarp is well-conserved reaching up to 400m in its central part and diminishing to 200m at both segment terminations. This fault segment is linked to the western tip by an overlap zone characterized by tilted blocks limited by high-angle NNE-SSW and WNW-ESE striking faults interpreted as "box faults" [1]. (c) The eastern tip zone is formed by fault segments with oblique slip which also contribute to the downthrown of the SW block. This kinematic pattern seems to be related to other strike-slip fault systems developed to the E of the UNFZ. The structural revision together with updated kinematic data suggest that the Colmenar Fault is cut and downthrown by a younger normal fault zone, the UNFZ, which would have contributed to accommodate arc-parallel stretching until the Quaternary. This stretching provokes along-strike relief segmentation, being the UNFZ the main fault zone causing the final drop of the Subbetic ranges towards the SW within the Western Gibraltar Arc. Our results show displacement variations in each fault segment of the UNFZ, diminishing to their tips. This suggests fault segment linkage finally evolved to build the nearly continuous current fault zone. The development of current large through-going faults linked inside the UNFZ is similar to those ones simulated in some numerical modelling of rift systems [2]. Acknowledgements: RNM-415 and CGL-2013-46368-P [1]Peacock, D.C.P., Knipe, R.J., Sanderson, D.J., 2000. Glossary of normal faults. Journal Structural Geology, 22, 291-305. [2]Cowie, P.A., Gupta, S., Dawers, N.H., 2000. Implications of fault array evolution for synrift depocentre development: insights from a numerical fault growth model. Basin Research, 12, 241-261.
The Effects of Fault Bends on Rupture Propagation: A Parameter Study
NASA Astrophysics Data System (ADS)
Lozos, J. C.; Oglesby, D. D.; Duan, B.; Wesnousky, S. G.
2008-12-01
Segmented faults with stepovers are ubiquitous, and occur at a variety of scales, ranging from small stepovers on the San Jacinto Fault, to the large-scale stepover on of the San Andreas Fault between Tejon Pass and San Gorgonio Pass. Because this type of fault geometry is so prevalent, understanding how rupture propagates through such systems is important for evaluating seismic hazard at different points along these faults. In the present study, we systematically investigate how far rupture will propagate through a fault with a linked (i.e., continuous fault) stepover, based on the length of the linking fault segment and the angle that connects the linking segment to adjacent segments. We conducted dynamic models of such systems using a two-dimensional finite element code (Duan and Oglesby 2007). The fault system in our models consists of three segments: two parallel 10km-long faults linked at a specified angle by a linking segment of between 500 m and 5 km. This geometry was run both as a extensional system and a compressional system. We observed several distinct rupture behaviors, with systematic differences between compressional and extensional cases. Both shear directions rupture straight through the stepover for very shallow stepover angles. In compressional systems with steeper angles, rupture may jump ahead from the stepover segment onto the far segment; whether or not rupture on this segment reaches critical patch size and slips fully is also a function of angle and stepover length. In some compressional cases, if the angle is steep enough and the stepover short enough, rupture may jump over the step entirely and propagate down the far segment without touching the linking segment. In extensional systems, rupture jumps from the nucleating segment onto the linking segment even at shallow angles, but at steeper angles, rupture propagates through without jumping. It is easier to propagate through a wider range of angles in extensional cases. In both extensional and compressional cases, for each stepover length there exists a maximum angle through which rupture can fully propagate; this maximum angle decreases asymptotically to a minimum value as the stepover length increases. We also found that a wave associated with a stopping phase coming from the far end of the fault may restart rupture and induce full propagation after a significant delay in some cases where the initial rupture terminated.
NASA Astrophysics Data System (ADS)
Seiler, Christian; Gleadow, Andrew; Kohn, Barry
2013-04-01
Rifts are commonly segmented into several hundred kilometre long zones of opposing upper-plate transport direction with boundaries defined by accommodation and transfer zones. A number of such rift segments have been recognized in the Gulf of California, a youthful oceanic basin that is currently undergoing the rift-drift transition. However, detailed field studies have so far failed to identify suitable structures that could accommodate the obvious deformation gradients between different rift segments, and the nature of strain transfer at segment boundaries remains enigmatic. The Bocana transfer zone (BTZ) in central Baja California is a linear, WNW striking structural discontinuity separating two rift segments with different magnitudes and styles of extensional deformation. North of the BTZ, the Libertad fault is part of the Main Gulf Escarpment, which represents the breakaway fault that separates the Gulf of California rift to the east from the relatively stable western portion of the Baja peninsula. The N-striking Libertad escarpment developed during the Late Miocene (~10-8Ma) and exhibits a topographic relief of ca. 1,000m along a strike-length of ca. 50km. Finite displacement decreases from ~1000m in the central fault segment to ~500m further south, where the fault bends SE and merges with the BTZ. In the hanging wall of the Libertad fault, a series of W-tilted horsts are bound along their eastern margins by two moderate-displacement E-dipping normal faults. South of the BTZ, extension was much less than further north, which explains the comparatively subdued relief and generally shallower tilt of pre-rift strata in this area. The BTZ itself is characterized by two en echelon WNW-ESE striking dextral-oblique transfer faults with a significant down-to-the-NNE extensional component. Strain is transferred from the Libertad breakaway fault onto the transfer faults over a distance of >20km through a network of interacting normal, oblique and strike-slip faults. The shape, location and orientation of the main faults were strongly influenced by pre-existing rheological heterogeneities. Major normal faults are parallel to either the Mesozoic metamorphic foliation or Cretaceous intrusive contacts, and developed where the foliation was at a high angle to the extension direction. In contrast, the oblique-slip faults of the BTZ formed parallel to the metamorphic foliation where formlines are at a small angle to the regional extension direction. Compared to the BTZ, deformation in other known accommodation zones of the Gulf of California rift occurred distributed across a much wider zone, and appropriate transfer faults are either lacking or minor. In these cases, however, the accommodation zones coincide with the locations of significant pre- and synrift volcanism, suggesting that thermal weakening associated with magmatic activity may have promoted the distribution of strain across a wider region instead of localising it into discrete transfer faults.
Fault reactivation: The Picuris-Pecos fault system of north-central New Mexico
NASA Astrophysics Data System (ADS)
McDonald, David Wilson
The PPFS is a N-trending fault system extending over 80 km in the Sangre de Cristo Mountains of northern New Mexico. Precambrian basement rocks are offset 37 km in a right-lateral sense; however, this offset includes dextral strike-slip (Precambrian), mostly normal dip-slip (Pennsylvanian), mostly reverse dip-slip (Early Laramide), limited strike-slip (Late Laramide) and mostly normal dip-slip (Cenozoic). The PPFS is broken into at least 3 segments by the NE-trending Embudo fault and by several Laramide age NW-trending tear faults. These segments are (from N to S): the Taos, the Picuris, and the Pecos segments. On the east side of the Picuris segment in the Picuris Mountains, the Oligocene-Miocene age Miranda graben developed and represents a complex extension zone south of the Embudo fault. Regional analysis of remotely sensed data and geologic maps indicate that lineaments subparallel to the trace of the PPFS are longer and less frequent than lineaments that trend orthogonal to the PPFS. Significant cross cutting faults and subtle changes in fault trends in each segment are clear in the lineament data. Detailed mapping in the eastern Picuris Mountains showed that the favorably oriented Picuris segment was not reactivated in the Tertiary development of the Rio Grande rift. Segmentation of the PPFS and post-Laramide annealing of the Picuris segment are interpreted to have resulted in the development of the subparallel La Serna fault. The Picuris segment of the PPFS is offset by several E-ESE trending faults. These faults are Late Cenozoic in age and interpreted to be related to the uplift of the Picuris Mountains and the continuing sinistral motion on the Embudo fault. Differential subsidence within the Miranda graben caused the development of several synthetic and orthogonal faults between the bounding La Serna and Miranda faults. Analysis of over 10,000 outcrop scale brittle structures reveals a strong correlation between faults and fracture systems. The dominant trends are NNE to NNW related to the PPF, NE related to the Embudo fault, and ENE to ESE and NW related to Laramide and younger tectonic events. Recent faults are characterized by a significant increase in fracture density near the fault while ancient faults show a lesser increase. The results from this study suggest that in regions where sigma1 is vertical and sigma2 ≈ sigma 3, fractures orthogonal to the main faults are as likely as fractures parallel to the main faults.
Structures associated with strike-slip faults that bound landslide elements
Fleming, R.W.; Johnson, A.M.
1989-01-01
Large landslides are bounded on their flanks and on elements within the landslides by structures analogous to strike-slip faults. We observed the formation of thwse strike-slip faults and associated structures at two large landslides in central Utah during 1983-1985. The strike-slip faults in landslides are nearly vertical but locally may dip a few degrees toward or away from the moving ground. Fault surfaces are slickensided, and striations are subparallel to the ground surface. Displacement along strike-slip faults commonly produces scarps; scarps occur where local relief of the failure surface or ground surface is displaced and becomes adjacent to higher or lower ground, or where the landslide is thickening or thinning as a result of internal deformation. Several types of structures are formed at the ground surface as a strike-slip fault, which is fully developed at some depth below the ground surface, propagates upward in response to displacement. The simplest structure is a tension crack oriented at 45?? clockwise or counterclockwise from the trend of an underlying right- or left-lateral strike-slip fault, respectively. The tension cracks are typically arranged en echelon with the row of cracks parallel to the trace of the underlying strike-slip fault. Another common structure that forms above a developing strike-slip fault is a fault segment. Fault segments are discontinuous strike-slip faults that contain the same sense of slip but are turned clockwise or counterclockwise from a few to perhaps 20?? from the underlying strike-slip fault. The fault segments are slickensided and striated a few centimeters below the ground surface; continued displacement of the landslide causes the fault segments to open and a short tension crack propagates out of one or both ends of the fault segments. These structures, open fault segments containing a short tension crack, are termed compound cracks; and the short tension crack that propagates from the tip of the fault segment is typically oriented 45?? to the trend of the underlying fault. Fault segments are also typically arranged en echelon above the upward-propagating strike-slip fault. Continued displacement of the landslide causes the ground to buckle between the tension crack portions of the compound cracks. Still more displacement produces a thrust fault on one or both limbs of the buckle fold. These compressional structures form at right angles to the short tension cracks at the tips of the fault segments. Thus, the compressional structures are bounded on their ends by one face of a tension crack and detached from underlying material by thrusting or buckling. The tension cracks, fault segments, compound cracks, folds, and thrusts are ephemeral; they are created and destroyed with continuing displacement of the landslide. Ultimately, the structures are replaced by a throughgoing strike-slip fault. At one landslide, we observed the creation and destruction of the ephemeral structures as the landslide enlarged. Displacement of a few centimeters to about a decimeter was sufficient to produce scattered tension cracks and fault segments. Sets of compound cracks with associated folds and thrusts were produced by displacements of up to 1 m, and 1 to 2 m of displacement was required to produce a throughgoing strike-slip fault. The type of first-formed structure above an upward-propagating strike-slip fault is apparently controlled by the rheology of the material. Brittle material such as dry topsoil or the compact surface of a gravel road produces echelon tension cracks and sets of tension cracks and compressional structures, wherein the cracks and compressional structures are normal to each other and 45?? to the strike-slip fault at depth. First-formed structures in more ductile material such as moist cohesive soil are fault segments. In very ductile material such as soft clay and very wet soil in swampy areas, the first-formed structure is a throughgoing strike-slip fault. There are othe
NASA Astrophysics Data System (ADS)
Graymer, R. W.; Simpson, R. W.; Jachens, R. C.; Ponce, D. A.; Phelps, G. A.; Watt, J. T.; Wentworth, C. M.
2007-12-01
For the purpose of estimating seismic hazard, the Calaveras and Hayward Faults have been considered as separate structures and analyzed and segmented based largely on their surface-trace geometry and the extent of the 1868 Hayward Fault earthquake. Recent relocations of earthquakes and 3-D geologic mapping have shown, however, that at depths associated with large earthquakes (>5 km) the fault geology and geometry is quite different than that at the surface. Using deep fault geometry inferred from these studies we treat the Hayward and Calaveras Faults as a single system and divide the system into segments that differ from the previously accepted segments as follows: 1. The Hayward Fault connects directly to the central Calaveras Fault at depth, as opposed to the 5 km wide restraining stepover zone of multiple imbricate oblique right-lateral reverse faults at the surface east of Fremont and San Jose (between about 37.25°-37.6°N). 2. The segment boundary between the Hayward, central Calaveras, and northern Calaveras is based on their Y- shaped intersection at depth near 37.40°N, 121.76°W (Cherry Flat Reservoir), about 8 km south of the previously accepted central-northern Calaveras Fault segment boundary. 3. The central Calaveras Fault is divided near 37.14°N, 121.56°W (southern end of Anderson Lake) into two subsegments based on a large discontinuity at depth seen in relocated seismicity. 4. The Hayward Fault is divided near 37.85°N, 122.23°W (Lake Temescal) into two segments based on a large contrast in fault face geology. This segmentation is similar to that based on the extent of 1868 fault rupture, but is now related to an underlying geologic cause. The direct connection of the Hayward and central Calaveras Faults at depth suggests that earthquakes larger than those previously modeled should be considered (~M6.9 for the southern Hayward, ~M7.2 for the southern Hayward plus northern central Calaveras). A NEHRP study by Witter and others (2003; NEHRP 03HQGR0098) suggested evidence for large surface ruptures on the northern central Calaveras, but that work is not peer-reviewed and there is little or no other paleoseismic or geodetic data from the stepover zone or northern central Calaveras Fault (all commonly cited data are from the southern central Calaveras Fault), so the sparse surface data neither demands nor precludes our interpretation. The additional segmentation of the central Calaveras Fault proposed here may explain the observation that this segment seems to generate characteristic moderate (~M6.0-6.5) earthquakes rather than the larger ~M6.9 earthquakes that could be generated by rupture of the previously defined longer central Calaveras segment. Better information regarding fault plane geometry and 3-D distribution of rock properties adjacent to the faults at seismogenic depths should help us revise proposed segmentation models of other faults for seismic hazard analyses.
NASA Astrophysics Data System (ADS)
Dawers, N. H.; McLindon, C.
2017-12-01
A synthesis of late Quaternary faults within the Mississippi River deltaic plain aims to provide a more accurate assessment of regional and local fault architecture, and interactions between faulting, sediment loading, salt withdrawal and compaction. This effort was initiated by the New Orleans Geological Society and has resulted in access to industry 3d seismic reflection data, as well as fault trace maps, and various types of well data and biostratigraphy. An unexpected outgrowth of this project is a hypothesis that gravity-driven normal faults in deltaic settings may be good candidates for shallow aseismic and slow-slip phenomena. The late Quaternary fault population is characterized by several large, highly segmented normal fault arrays: the Baton Rouge-Tepetate fault zone, the Lake Pontchartrain-Lake Borgne fault zone, the Golden Meadow fault zone (GMFZ), and a major counter-regional salt withdrawal structure (the Bay Marchand-Timbalier Bay-Caillou Island salt complex and West Delta fault zone) that lies just offshore of southeastern Louisiana. In comparison to the other, more northerly fault zones, the GMFZ is still significantly salt-involved. Salt structures segment the GMFZ with fault tips ending near or within salt, resulting in highly localized fault and compaction related subsidence separated by shallow salt structures, which are inherently buoyant and virtually incompressible. At least several segments within the GMFZ are characterized by marsh breaks that formed aseismically over timescales of days to months, such as near Adams Bay and Lake Enfermer. One well-documented surface rupture adjacent to a salt dome propagated over a 3 day period in 1943. We suggest that Louisiana's coastal faults make excellent analogues for deltaic faults in general, and propose that a series of positive feedbacks keep them active in the near surface. These include differential sediment loading and compaction, weak fault zone materials, high fluid pressure, low elastic stiffness in surrounding materials, and low confining pressure.
NASA Astrophysics Data System (ADS)
Fuis, G. S.; Catchings, R.; Scheirer, D. S.; Goldman, M.; Zhang, E.; Bauer, K.
2016-12-01
The San Andreas fault (SAF) in the northern Salton Trough, or Coachella Valley, in southern California, appears non-vertical and non-planar. In cross section, it consists of a steeply dipping segment (75 deg dip NE) from the surface to 6- to 9-km depth, and a moderately dipping segment below 6- to 9-km depth (50-55 deg dip NE). It also appears to branch upward into a flower-like structure beginning below about 10-km depth. Images of the SAF zone in the Coachella Valley have been obtained from analysis of steep reflections, earthquakes, modeling of potential-field data, and P-wave tomography. Review of seismological and geodetic research on the 1989 M 6.9 Loma Prieta earthquake, in central California (e.g., U.S. Geological Survey Professional Paper 1550), shows several features of SAF zone structure similar to those seen in the northern Salton Trough. Aftershocks in the Loma Prieta epicentral area form two chief clusters, a tabular zone extending from 18- to 9-km depth and a complex cluster above 5-km depth. The deeper cluster has been interpreted to surround the chief rupture plane, which dips 65-70 deg SW. When double-difference earthquake locations are plotted, the shallower cluster contains tabular subclusters that appear to connect the main rupture with the surface traces of the Sargent and Berrocal faults. In addition, a diffuse cluster may surround a steep to vertical fault connecting the main rupture to the surface trace of the SAF. These interpreted fault connections from the main rupture to surface fault traces appear to define a flower-like structure, not unlike that seen above the moderately dipping segment of the SAF in the Coachella Valley. But importantly, the SAF, interpreted here to include the main rupture plane, appears segmented, as in the Coachella Valley, with a moderately dipping segment below 9-km depth and a steep to vertical segment above that depth. We hope to clarify fault-zone structure in the Loma Prieta area by reanalyzing active-source data collected after the earthquake for steep reflections.
NASA Astrophysics Data System (ADS)
Nakano, M.; Kumagai, H.; Toda, S.; Ando, R.; Yamashina, T.; Inoue, H.; Sunarjo
2010-04-01
On 2007 March 6, an earthquake doublet occurred along the Sumatran fault, Indonesia. The epicentres were located near Padang Panjang, central Sumatra, Indonesia. The first earthquake, with a moment magnitude (Mw) of 6.4, occurred at 03:49 UTC and was followed two hours later (05:49 UTC) by an earthquake of similar size (Mw = 6.3). We studied the earthquake doublet by a waveform inversion analysis using data from a broadband seismograph network in Indonesia (JISNET). The focal mechanisms of the two earthquakes indicate almost identical right-lateral strike-slip faults, consistent with the geometry of the Sumatran fault. Both earthquakes nucleated below the northern end of Lake Singkarak, which is in a pull-apart basin between the Sumani and Sianok segments of the Sumatran fault system, but the earthquakes ruptured different fault segments. The first earthquake occurred along the southern Sumani segment and its rupture propagated southeastward, whereas the second one ruptured the northern Sianok segment northwestward. Along these fault segments, earthquake doublets, in which the two adjacent fault segments rupture one after the other, have occurred repeatedly. We investigated the state of stress at a segment boundary of a fault system based on the Coulomb stress changes. The stress on faults increases during interseismic periods and is released by faulting. At a segment boundary, on the other hand, the stress increases both interseismically and coseismically, and may not be released unless new fractures are created. Accordingly, ruptures may tend to initiate at a pull-apart basin. When an earthquake occurs on one of the fault segments, the stress increases coseismically around the basin. The stress changes caused by that earthquake may trigger a rupture on the other segment after a short time interval. We also examined the mechanism of the delayed rupture based on a theory of a fluid-saturated poroelastic medium and dynamic rupture simulations incorporating a rheological velocity hardening effect. These models of the delayed rupture can qualitatively explain the observations, but further studies, especially based on the rheological effect, are required for quantitative studies.
NASA Astrophysics Data System (ADS)
McLindon, C.
2017-12-01
The Barataria fault is a major component of the Terrebonne Trough, a structural system of faults and salt domes underlying coastal Louisiana. High-quality 3-D seismic reflection data, industry well logs, micro-paleontological data and published literature on regional depositional patterns are integrated to provide an evolutionary history of the Barataria fault. The fault is a segment within a series of south-dipping normal faults that define the northern boundary of the Terrebonne Trough. The fault segment tips at depth interact with the Lake Washington and Bay de Chene salt domes, which appear to have limited its along-strike length. This study shows that the Barataria fault has exhibited continuous but episodic slip since at least the middle Miocene and through the present. Periods of maximum rates of fault slip are related to periods of maximum rates of sediment accumulation associated with Miocene deltaic deposition. The expansion of interval thickness between biostratigraphic markers in the hanging wall section of the fault relative to the footwall section (expansion index) indicate that rates of subsidence on the footwall during active fault slip were substantially greater than on the footwall. Pliocene-Pleistocene stratigraphic intervals exhibiting lower expansion indexes indicate that the fault remained active, but with a pattern of slower slip rate in which stratigraphic thickening was more limited to the area immediately adjacent to the fault. The Barataria fault defines the modern-day width of Barataria Bay, and also has a surface expression in the coastal marsh indicating that recent episodic slip has been associated with patterns of Holocene deltaic deposition.
NASA Astrophysics Data System (ADS)
Macheyeki, Athanas S.; Delvaux, Damien; De Batist, Marc; Mruma, Abdulkarim
2008-07-01
The Eastern Branch of the East African Rift System is well known in Ethiopia (Main Ethiopian Rift) and Kenya (Kenya or Gregory Rift) and is usually considered to fade away southwards in the North Tanzanian Divergence, where it splits into the Eyasi, Manyara and Pangani segments. Further towards the south, rift structures are more weakly expressed and this area has not attracted much attention since the mapping and exploratory works of the 1950s. In November 4, 2002, an earthquake of magnitude Mb = 5.5 struck Dodoma, the capital city of Tanzania. Analysis of modern digital relief, seismological and geological data reveals that ongoing tectonic deformation is presently affecting a broad N-S trending belt, extending southward from the North Tanzanian Divergence to the region of Dodoma, forming the proposed "Manyara-Dodoma Rift segment". North of Arusha-Ngorongoro line, the rift is confined to a narrow belt (Natron graben in Tanzania) and south of it, it broadens into a wide deformation zone which includes both the Eyasi and Manyara grabens. The two-stage rifting model proposed for Kenya and North Tanzania also applies to the Manyara-Dodoma Rift segment. In a first stage, large, well-expressed topographic and volcanogenic structures were initiated in the Natron, Eyasi and Manyara grabens during the Late Miocene to Pliocene. From the Middle Pleistocene onwards, deformations related to the second rifting stage propagated southwards to the Dodoma region. These young structures have still limited morphological expressions compared to the structures formed during the first stage. However, they appear to be tectonically active as shown by the high concentration of moderate earthquakes into earthquake swarms, the distribution of He-bearing thermal springs, the morphological freshness of the fault scarps, and the presence of open surface fractures. Fault kinematic and paleostress analysis of geological fault data in basement rocks along the active fault lines show that recent faults often reactivate older fault systems that were formed under E-W to NW-SE horizontal compression, compatible with late Pan-African tectonics. The present-day stress inverted from earthquake focal mechanisms shows that the Manyara-Dodoma Rift segment is presently subjected to an extensional stress field with a N080°E direction of horizontal principal extension. Under this stress field, the rift develops by: (1) reactivation of the pre-existing tectonic planes of weakness, and (2) progressive development of a new fault system in a more N-S trend by the linkage of existing rift faults. This process started about 1.2 Ma ago and is still ongoing.
Evolution of the Puente Hills Thrust Fault
NASA Astrophysics Data System (ADS)
Bergen, K. J.; Shaw, J. H.; Dolan, J. F.
2013-12-01
This study aims to assess the evolution of the blind Puente Hills thrust fault system (PHT) by determining its age of initiation, lateral propagation history, and changes in slip rate over time. The PHT presents one of the largest seismic hazards in the United States, given its location beneath downtown Los Angeles. The PHT is comprised of three fault segments: the Los Angeles (LA), Santa Fe Springs (SFS), and Coyote Hills (CH). The LA and SFS segments are characterized by growth stratigraphy where folds formed by uplift on the fault segments have been continually buried by sediment from the Los Angeles and San Gabriel rivers. The CH segment has developed topography and is characterized by onlapping growth stratigraphy. This depositional setting gives us the unique opportunity to measure uplift on the LA and SFS fault segments, and minimum uplift on the CH fault segment, as the difference in sediment thicknesses across the buried folds. We utilize depth converted oil industry seismic reflection data to image the fold geometries. Identifying time-correlative stratigraphic markers for slip rate determination in the basin has been a problem for researchers in the past, however, as the faunal assemblages observed in wells are time-transgressive by nature. To overcome this, we utilize the sequence stratigraphic model and well picks of Ponti et al. (2007) as a basis for mapping time-correlative sequence boundaries throughout our industry seismic reflection data from the present to the Pleistocene. From the Pleistocene to Miocene we identify additional sequence boundaries in our seismic reflection data from imaged sequence geometries and by correlating industry well formation tops. The sequence and formation top picks are then used to build 3-dimensional surfaces in the modeling program Gocad. From these surfaces we measure the change in thicknesses across the folds to obtain uplift rates between each sequence boundary. Our results show three distinct phases of deformation on the LA and SFS segments: an early period characterized by fault-propagation or structural wedge kinematics that terminates in the early Pleistocene, followed by a period of quiescence. The faults were subsequently reactivated in the middle Pleistocene and propagated upward to detachments, with the deformation characterized by fold-bend folding kinematics. Slip on the LA segment decreases to the West, suggesting lateral growth in that direction. Our work highlights the need to assess along-strike variability in slip rate when assessing the seismic hazard of a compressional fault, as marginal sites may significantly underestimate fault activity. Ponti, D. J. et al. A 3-Dimensional Model of Water-Bearing Sequences in the Dominguez Gap Region, Long Beach, California. US Geological Survey Open-File Report 1013 (2007).
Stress state and movement potential of the Kar-e-Bas fault zone, Fars, Iran
NASA Astrophysics Data System (ADS)
Sarkarinejad, Khalil; Zafarmand, Bahareh
2017-08-01
The Kar-e-Bas or Mengharak basement-inverted fault is comprised of six segments in the Zagros foreland folded belt of Iran. In the Fars region, this fault zone associated with the Kazerun, Sabz-Pushan and Sarvestan faults serves as a lateral transfer zone that accommodates the change in shortening direction from the western central to the eastern Zagros. This study evaluates the recent tectonic stress regime of the Kar-e-Bas fault zone based on inversion of earthquake focal mechanism data, and quantifies the fault movement potential of this zone based on the relationship between fault geometric characteristics and recent tectonic stress regimes. The trend and plunge of σ 1 and σ 3 are S25°W/04°-N31°E/05° and S65°E/04°-N60°W/10°, respectively, with a stress ratio of Φ = 0.83. These results are consistent with the collision direction of the Afro-Arabian continent and the Iranian microcontinent. The near horizontal plunge of maximum and minimum principle stresses and the value of stress ratio Φ indicate that the state of stress is nearly strike-slip dominated with little relative difference between the value of two principal stresses, σ 1 and σ 2. The obliquity of the maximum compressional stress into the fault trend reveals a typical stress partitioning of thrust and strike-slip motion in the Kar-e-Bas fault zone. Analysis of the movement potential of this fault zone shows that its northern segment has a higher potential of fault activity (0.99). The negligible difference between the fault-plane dips of the segments indicates that their strike is a controlling factor in the changes in movement potential.
New Field Observations About 19 August 1966 Varto earthquake, Eastern Turkey
NASA Astrophysics Data System (ADS)
Gurboga, S.
2013-12-01
Some destructive earthquakes in the past and even in the recent have several mysteries. For example, magnitude, epicenter location, faulting type and source fault of an earthquake have not been detected yet. One of these mysteries events is 19 August 1966 Varto earthquake in Turkey. 19 August 1966 Varto earthquake (Ms = 6.8) was an extra ordinary event at the 40 km east of junction between NAFS and EAFS which are two seismogenic system and active structures shaping the tectonics of Turkey. This earthquake sourced from Varto fault zone which are approximately 4 km width and 43 km length. It consists of faults which have parallel to sub-parallel, closely-spaced, north and south-dipping up to 85°-88° dip amount. Although this event has 6.8 (Ms) magnitude that is big enough to create a surface rupture, there was no clear surface deformation had been detected. This creates the controversial issue about the source fault and the mechanism of the earthquake. According to Wallace (1968) the type of faulting is right-lateral. On the other hand, McKenzie (1972) proposed right-lateral movement with thrust component by using the focal mechanism solution. The recent work done by Sançar et al. (2011) claimed that type of faulting is pure right-lateral strike-slip and there is no any surface rupture during the earthquake. Furthermore, they suggested that Varto segment in the Varto Fault Zone was most probably not broken in 1966 earthquake. This study is purely focused on the field geology and trenching survey for the investigation of 1966 Varto earthquake. Four fault segments have been mapped along the Varto fault zone: Varto, Sazlica, Leylekdağ and Çayçati segments. Because of the thick volcanic cover on the area around Varto, surface rupture has only been detected by trenching survey. Two trenching survey have been applied along the Yayikli and Ağaçalti faults in the Varto fault zone. Consequently, detailed geological work in the field and trenching survey indicate that a) source of 1966 earthquake is Varto segment in Varto Fault Zone, b) many of the surface deformations observed just after the earthquake is lateral-spreading and small landslides, c) surface rupture was created with 10 cm displacement at the surface with thrust component. Because of the volcanic cover and activation of many faults, ground surface rupture could not be seen clearly which has been expected after 6.8 magnitude earthquake, d) faulting type is right-lateral component with thrust component. Keywords: 1966 Varto earthquake, paleoseismology, right-lateral fault with thrust component.
Structural Mapping Along the Central San Andreas Fault-zone Using Airborne Electromagnetics
NASA Astrophysics Data System (ADS)
Zamudio, K. D.; Bedrosian, P.; Ball, L. B.
2017-12-01
Investigations of active fault zones typically focus on either surface expressions or the associated seismogenic zones. However, the largely aseismic upper kilometer can hold significant insight into fault-zone architecture, strain partitioning, and fault-zone permeability. Geophysical imaging of the first kilometer provides a link between surface fault mapping and seismically-defined fault zones and is particularly important in geologically complex regions with limited surface exposure. Additionally, near surface imaging can provide insight into the impact of faulting on the hydrogeology of the critical zone. Airborne electromagnetic (AEM) methods offer a unique opportunity to collect a spatially-large, detailed dataset in a matter of days, and are used to constrain subsurface resistivity to depths of 500 meters or more. We present initial results from an AEM survey flown over a 60 kilometer long segment of the central San Andreas Fault (SAF). The survey is centered near Parkfield, California, the site of the SAFOD drillhole, which marks the transition between a creeping fault segment to the north and a locked zone to the south. Cross sections with a depth of investigation up to approximately 500 meters highlight the complex Tertiary and Mesozoic geology that is dismembered by the SAF system. Numerous fault-parallel structures are imaged across a more than 10 kilometer wide zone centered on the surface trace. Many of these features can be related to faults and folds within Plio-Miocene sedimentary rocks found on both sides of the fault. Northeast of the fault, rocks of the Mesozoic Franciscan and Great Valley complexes are extremely heterogeneous, with highly resistive volcanic rocks within a more conductive background. The upper 300 meters of a prominent fault-zone conductor, previously imaged to 1-3 kilometers depth by magnetotellurics, is restricted to a 20 kilometer long segment of the fault, but is up to 4 kilometers wide in places. Elevated fault-zone conductivity may be related to damage within the fault zone, Miocene marine shales, or some combination of the two.
NASA Astrophysics Data System (ADS)
Burgette, R. J.; Weldon, R. J.; Abdrakhmatov, K. Y.; Ormukov, C.
2004-12-01
The Pred-Terskey fault zone defines the southern margin of the Issyk-Kul basin, extending eastward over 250 km from at least the Chu River to the Kazakhstan border, and appears to be one of the most active zones in the Kyrgyz Tien Shan. Despite a diversity of structural styles and changes of vergence at the surface, the lateral continuity and overall geometry of the zone is consistent with a single north vergent thrust at depth, which uplifts the Terskey Range and generally tilts the south margin of the basin to the north. This northward tilting of the margin is probably due to a flattening of the fault as it approaches the surface. In spite of historical quiescence, it is likely capable of producing great earthquakes. We have conducted detailed field mapping coupled with terrace profiling and dating at seven representative, well-exposed areas of the fault zone. Based on these field observations and satellite image and air photo interpretation along the entire zone, we identify three major divisions in structural style expressed at the surface. The western segment is typified by the Tura-Su, Ak-Terek and Ton areas. A series of left-stepping, south-vergent, basement-involved reverse faults and folds are uplifting the southern margin of the Issyk-Kul basin in this area. The resulting uphill-facing scarps have trapped and diverted many of the rivers flowing north from the Terskey Range. Tertiary strata and Quaternary geomorphic surfaces show consistent, progressive northward tilting across the entire zone. The west-central segment is represented by the Kajy-Say area. South-vergent reverse faults and a north-vergent backthrust have uplifted an arcuate granite block. Offshore of this area, the lake floor descends to a sharp break in slope with a low relief area at a depth of about 650 m. Late Quaternary geomorphic features do not show evidence of tilting. In contrast to the areas east and west, the major north-dipping thrust is likely planar over this segment and daylights at the lake floor break in slope. The east-central segment is exemplified by the Barskaun and Jety Oguz areas. A high angle reverse fault juxtaposes Paleozoic rock against Tertiary sediments. To the north, a thrust fault with a sinuous trace places north-dipping Tertiary rock over the nearly horizontal basin floor. Quaternary terraces in the hanging wall of this fault record progressive northward tilting. North of the thrust fault a series of anticlines are growing out of the basin sediments. The eastern segment, which includes the Jergalan River valley, lacks a low angle thrust fault at the basin margin. Along this segment, the basement reverse fault uplifts Paleozoic rock against Quaternary basin sediment. To the north of this range-bounding structure, late Quaternary terraces are offset by south-vergent scarps. We are calculating geologic slip rates for each of the seven sites along the Pred-Terskey zone by dating terraces and constructing structural models consistent with both the rock and terrace records. Based on preliminary radiocarbon dates, a prominent Jety Oguz River terrace is 50 +/- 10 ka. The terrace is tilted 0.5° relative to the modern river, and with the low angle fault branching off of the basement reverse fault at dips ranging between 45° and 90° , the slip rate of this fault is 6 +/- 4 mm/yr. This is consistent with the GPS shortening rate across the Pred-Terskey zone at this longitude.
Kroll, K.; Cochran, Elizabeth S.; Richards-Dinger, K.; Sumy, Danielle
2013-01-01
We detect and precisely locate over 9500 aftershocks that occurred in the Yuha Desert region during a 2 month period following the 4 April 2010 Mw 7.2 El Mayor-Cucapah (EMC) earthquake. Events are relocated using a series of absolute and relative relocation procedures that include Hypoinverse, Velest, and hypoDD. Location errors are reduced to ~40 m horizontally and ~120 m vertically.Aftershock locations reveal a complex pattern of faulting with en echelon fault segments trending toward the northwest, approximately parallel to the North American-Pacific plate boundary and en echelon, conjugate features trending to the northeast. The relocated seismicity is highly correlated with published surface mapping of faults that experienced triggered surface slip in response to the EMC main shock. Aftershocks occurred between 2 km and 11 km depths, consistent with previous studies of seismogenic thickness in the region. Three-dimensional analysis reveals individual and intersecting fault planes that are limited in their along-strike length. These fault planes remain distinct structures at depth, indicative of conjugate faulting, and do not appear to coalesce onto a throughgoing fault segment. We observe a complex spatiotemporal migration of aftershocks, with seismicity that jumps between individual fault segments that are active for only a few days to weeks. Aftershock rates are roughly consistent with the expected earthquake production rates of Dieterich (1994). The conjugate pattern of faulting and nonuniform aftershock migration patterns suggest that strain in the Yuha Desert is being accommodated in a complex manner.
Structure and Tectonics of the Saint Elias Orogen
NASA Astrophysics Data System (ADS)
Bruhn, R. L.; Pavlis, T. L.; Plafker, G.; Serpa, L.; Picornell, C.
2001-12-01
The Saint Elias orogen of western Canada and southern Alaska is a complex mountain belt formed by transform faulting and subduction between the Pacific and North American plates, and collision of the Yakutat terrane. The orogen is segmented into three regions of different structural style caused by lateral variations in transpression and processes of terrane accretion. Deformation is strain and displacement partitioned throughout the orogen; transcurrent motion is focused along discrete strike-slip faults, and shortening is distributed among reverse faults and folds with sub-horizontal axes. Plunging folds accommodate horizontal shortening and extension in the western part of the orogen. Segment boundaries extend across the Yakutat terrane where they coincide with the courses of huge piedmont glaciers that flow from the topographic backbone of the range onto the coastal plain. The eastern segment is marked by strike-slip faulting along the Fairweather transform fault and by a narrow belt of reverse faulting where the transpression ratio is 0.4:1 shortening to dextral shear. The transpression ratio is 1.7:1 in the central part of the orogen where a broad thin-skinned fold and thrust belt deforms the Yakutat terrane south of the Chugach-Saint Elias (CSE) suture. Dextral shearing is accommodated by strike-slip faulting beneath the Seward and Bagley glaciers in the hanging wall of the CSE suture, and partly by reverse faulting along a structural belt that cuts across the Yakutat terrane along the western edge of the Malaspina Glacier and links to the Pamplona fold and thrust belt offshore. Deformation along this segment boundary is probably also driven by vertical axis bending of the Yakutat microplate during collision. Subduction & accretion in the western segment of the orogen causes re-folding of previously formed structures when they are emplaced into the upper plate of the Alaska-Aleutian mega-thrust. Second phase folds plunge at moderate to steep angles and accretion is marked by only modest amounts of uplift. The structural boundary between the central and western segments of the orogen localizes the course of the Bering piedmont glacier. The structural segments coincide with subdivisions in historical seismicity, particularly ruptures of great to large magnitude earthquakes. The results of this structural study provide the requisite geological framework to design new-generation geophysical monitoring systems to study active deformation within the orogen.
Renewal models and coseismic stress transfer in the Corinth Gulf, Greece, fault system
NASA Astrophysics Data System (ADS)
Console, Rodolfo; Falcone, Giuseppe; Karakostas, Vassilis; Murru, Maura; Papadimitriou, Eleftheria; Rhoades, David
2013-07-01
model interevent times and Coulomb static stress transfer on the rupture segments along the Corinth Gulf extension zone, a region with a wealth of observations on strong-earthquake recurrence behavior. From the available information on past seismic activity, we have identified eight segments without significant overlapping that are aligned along the southern boundary of the Corinth rift. We aim to test if strong earthquakes on these segments are characterized by some kind of time-predictable behavior, rather than by complete randomness. The rationale for time-predictable behavior is based on the characteristic earthquake hypothesis, the necessary ingredients of which are a known faulting geometry and slip rate. The tectonic loading rate is characterized by slip of 6 mm/yr on the westernmost fault segment, diminishing to 4 mm/yr on the easternmost segment, based on the most reliable geodetic data. In this study, we employ statistical and physical modeling to account for stress transfer among these fault segments. The statistical modeling is based on the definition of a probability density distribution of the interevent times for each segment. Both the Brownian Passage-Time (BPT) and Weibull distributions are tested. The time-dependent hazard rate thus obtained is then modified by the inclusion of a permanent physical effect due to the Coulomb static stress change caused by failure of neighboring faults since the latest characteristic earthquake on the fault of interest. The validity of the renewal model is assessed retrospectively, using the data of the last 300 years, by comparison with a plain time-independent Poisson model, by means of statistical tools including the Relative Operating Characteristic diagram, the R-score, the probability gain and the log-likelihood ratio. We treat the uncertainties in the parameters of each examined fault source, such as linear dimensions, depth of the fault center, focal mechanism, recurrence time, coseismic slip, and aperiodicity of the statistical distribution, by a Monte Carlo technique. The Monte Carlo samples for all these parameters are drawn from a uniform distribution within their uncertainty limits. We find that the BPT and the Weibull renewal models yield comparable results, and both of them perform significantly better than the Poisson hypothesis. No clear performance enhancement is achieved by the introduction of the Coulomb static stress change into the renewal model.
NASA Astrophysics Data System (ADS)
Kumar, S.; Biswal, S.; Parija, M. P.
2016-12-01
The Himalaya overrides the Indian plate along a decollement fault, referred as the Main Himalayan Thrust (MHT). The 2400 km long Himalayan mountain arc in the northern boundary of the Indian sub-continent is one of the most seismically active regions of the world. The Himalayan Frontal Thrust (HFT) is characterized by an abrupt physiographic and tectonic break between the Himalayan front and the Indo-Gangetic plain. The HFT represents the southern surface expression of the MHT on the Himalayan front. The tectonic zone between the Main Boundary Thrust (MBT) and the HFT encompasses the Himalayan Frontal Fault System (HFFS). The zone indicates late Quaternary-Holocene active deformation. Late Quaternary intramontane basin of Dehradun flanked to the south by the Mohand anticline lies between the MBT and the HFT in Garhwal Sub Himalaya. Slip rate 13-15 mm/yr has been estimated on the HFT based on uplifted strath terrace on the Himalyan front (Wesnousky et al. 2006). An out of sequence active fault, Bhauwala Thrust (BT), is observed between the HFT and the MBT. The Himalayan Frontal Fault System includes MBT, BT, HFT and PF active fault structures (Thakur, 2013). The HFFS structures were developed analogous to proto-thrusts in subduction zone, suggesting that the plate boundary is not a single structure, but series of structures across strike. Seismicity recorded by WIHG shows a concentrated belt of seismic events located in the Main Central Thrust Zone and the physiographic transition zone between the Higher and Lesser Himalaya. However, there is quiescence in the Himalayan frontal zone where surface rupture and active faults are reported. GPS measurements indicate the segment between the southern extent of microseismicity zone and the HFT is locked. The great earthquake originating in the locked segment rupture the plate boundary fault and propagate to the Himalaya front and are registered as surface rupture reactivating the fault in the HFFS.
Evolution of triangular topographic facets along active normal faults
NASA Astrophysics Data System (ADS)
Balogun, A.; Dawers, N. H.; Gasparini, N. M.; Giachetta, E.
2011-12-01
Triangular shaped facets, which are generally formed by the erosion of fault - bounded mountain ranges, are arguably one of the most prominent geomorphic features on active normal fault scarps. Some previous studies of triangular facet development have suggested that facet size and slope exhibit a strong linear dependency on fault slip rate, thus linking their growth directly to the kinematics of fault initiation and linkage. Other studies, however, generally conclude that there is no variation in triangular facet geometry (height and slope) with fault slip rate. The landscape of the northeastern Basin and Range Province of the western United States provides an opportunity for addressing this problem. This is due to the presence of well developed triangular facets along active normal faults, as well as spatial variations in fault scale and slip rate. In addition, the Holocene climatic record for this region suggests a dominant tectonic regime, as the faulted landscape shows little evidence of precipitation gradients associated with tectonic uplift. Using GIS-based analyses of USGS 30 m digital elevation data (DEMs) for east - central Idaho and southwestern Montana, we analyze triangular facet geometries along fault systems of varying number of constituent segments. This approach allows us to link these geometries with established patterns of along - strike slip rate variation. For this study, we consider major watersheds to include only catchments with upstream and downstream boundaries extending from the drainage divide to the mapped fault trace, respectively. In order to maintain consistency in the selection criteria for the analyzed triangular facets, only facets bounded on opposite sides by major watersheds were considered. Our preliminary observations reflect a general along - strike increase in the surface area, average slope, and relief of triangular facets from the tips of the fault towards the center. We attribute anomalies in the along - strike geometric measurements of the triangular facets to represent possible locations of fault segment linkage associated with normal fault evolution.
Loading of the San Andreas fault by flood-induced rupture of faults beneath the Salton Sea
Brothers, Daniel; Kilb, Debi; Luttrell, Karen; Driscoll, Neal W.; Kent, Graham
2011-01-01
The southern San Andreas fault has not experienced a large earthquake for approximately 300 years, yet the previous five earthquakes occurred at ~180-year intervals. Large strike-slip faults are often segmented by lateral stepover zones. Movement on smaller faults within a stepover zone could perturb the main fault segments and potentially trigger a large earthquake. The southern San Andreas fault terminates in an extensional stepover zone beneath the Salton Sea—a lake that has experienced periodic flooding and desiccation since the late Holocene. Here we reconstruct the magnitude and timing of fault activity beneath the Salton Sea over several earthquake cycles. We observe coincident timing between flooding events, stepover fault displacement and ruptures on the San Andreas fault. Using Coulomb stress models, we show that the combined effect of lake loading, stepover fault movement and increased pore pressure could increase stress on the southern San Andreas fault to levels sufficient to induce failure. We conclude that rupture of the stepover faults, caused by periodic flooding of the palaeo-Salton Sea and by tectonic forcing, had the potential to trigger earthquake rupture on the southern San Andreas fault. Extensional stepover zones are highly susceptible to rapid stress loading and thus the Salton Sea may be a nucleation point for large ruptures on the southern San Andreas fault.
The aftershock signature of supershear earthquakes.
Bouchon, Michel; Karabulut, Hayrullah
2008-06-06
Recent studies show that earthquake faults may rupture at speeds exceeding the shear wave velocity of rocks. This supershear rupture produces in the ground a seismic shock wave similar to the sonic boom produced by a supersonic airplane. This shock wave may increase the destruction caused by the earthquake. We report that supershear earthquakes are characterized by a specific pattern of aftershocks: The fault plane itself is remarkably quiet whereas aftershocks cluster off the fault, on secondary structures that are activated by the supershear rupture. The post-earthquake quiescence of the fault shows that friction is relatively uniform over supershear segments, whereas the activation of off-fault structures is explained by the shock wave radiation, which produces high stresses over a wide zone surrounding the fault.
NASA Astrophysics Data System (ADS)
Matsumoto, T.; Shinjo, R.; Nakamura, M.; Kubo, A.; Doi, A.; Tamanaha, S.
2011-12-01
Ryukyu Arc is located on the southwestern extension of Japanese Island-arc towards the east of Taiwan Island along the margin of the Asian continent off China. The island-arc forms an arcuate trench-arc-backarc system. A NW-ward subduction of the Philippine Sea Plate (PSP)at a rate of 6-8 cm/y relative to the Eurasian Plate (EP) causes frequent earthquakes. The PSP is subducting almost normally in the north-central area and more obliquely around the southwestern area. Behind the arc-trench system, the Okinawa Trough (OT) was formed by back-arc rifting, where active hydrothermal vent systems have been discovered. Several across-arc submarine faults are located in the central and southern Ryukyu Arc. The East Ishigaki Fault (EIF) is one of the across-arc normal faults located in the southwestern Ryukyu Arc, ranging by 44km and extending from SE to NW. This fault was surveyed by SEABAT8160 multibeam echo sounder and by ROV Hyper-Dolphin in 2005 and 2008. The result shows that the main fault consists of five fault segments. A branched segment from the main fault was also observed. The southernmost segment is most mature (oldest but still active) and the northernmost one is most nascent. This suggests the north-westward propagation of the fault rupture corresponding to the rifting of the southwestern OT and the southward retreat of the arc-trench system. Considering that the fault is segmented and in some part branched, propagation might take place episodically rather than continuously from SE to NW. The ROV survey also revealed the rupture process of the limestone basement along this fault from the nascent stage to the mature stage. Most of the rock samples collected from the basement outcrop were limestone blocks (or calcareous sedimentary rocks). Limestone basement was observed to the west on the hanging wall far away from the main fault scarp. Then fine-grained sand with ripple marks was observed towards the main scarp. Limestone basement was observed on the main scarp and on the footwall. These suggest that basically the both sides are composed of the same material, that the whole study area is characterised by Ryukyu limestone exposure and that the basement was split by the across-arc normal fault. Coarse-grained sand and gravels/rubbles were observed towards and on the trough of the fault. On the main scarp an outcrop of limestone basement was exposed and in some part it was broken into rubbles. These facts suggest that crash of the basement due to rupturing is taking place repeatedly on the scarp and the trough. The observed fine-grained sand on the hanging wall might be the final product by the process of the crash of the limestone basement.
Actively dewatering fluid-rich zones along the Costa Rica plate boundary fault
NASA Astrophysics Data System (ADS)
Bangs, N. L.; McIntosh, K. D.; Silver, E. A.; Kluesner, J. W.; Ranero, C. R.; von Huene, R.
2012-12-01
New 3D seismic reflection data reveal distinct evidence for active dewatering above a 12 km wide segment of the plate boundary fault within the Costa Rica subduction zone NW of the Osa Peninsula. In the spring of 2011 we acquired a 11 x 55 km 3D seismic reflection data set on the R/V Langseth using four 6,000 m streamers and two 3,300 in3 airgun arrays to examine the structure of the Costa Rica margin from the trench into the seismogenic zone. We can trace the plate-boundary interface from the trench across our entire survey to where the plate-boundary thrust lies > 10 km beneath the margin shelf. Approximately 20 km landward of the trench beneath the mid slope and at the updip edge of the seismogenic zone, a 12 km wide zone of the plate-boundary interface has a distinctly higher-amplitude seismic reflection than deeper or shallower segments of the fault. Directly above and potentially directly connected with this zone are high-amplitude, reversed-polarity fault-plane reflections that extend through the margin wedge and into overlying slope sediment cover. Within the slope cover, high-amplitude reversed-polarity reflections are common within the network of closely-spaced nearly vertical normal faults and several broadly spaced, more gently dipping thrust faults. These faults appear to be directing fluids vertically toward the seafloor, where numerous seafloor fluid flow indicators, such as pockmarks, mounds and ridges, and slope failure features, are distinct in multibeam and backscatter images. There are distinctly fewer seafloor and subsurface fluid flow indicators both updip and downdip of this zone. We believe these fluids come from a 12 km wide fluid-rich segment of the plate-boundary interface that is likely overpressured and has relatively low shear stress.
NASA Astrophysics Data System (ADS)
Xue, Lian; Bürgmann, Roland; Shelly, David R.; Johnson, Christopher W.; Taira, Taka'aki
2018-05-01
Earthquake swarms represent a sudden increase in seismicity that may indicate a heterogeneous fault-zone, the involvement of crustal fluids and/or slow fault slip. Swarms sometimes precede major earthquake ruptures. An earthquake swarm occurred in October 2015 near San Ramon, California in an extensional right step-over region between the northern Calaveras Fault and the Concord-Mt. Diablo fault zone, which has hosted ten major swarms since 1970. The 2015 San Ramon swarm is examined here from 11 October through 18 November using template matching analysis. The relocated seismicity catalog contains ∼4000 events with magnitudes between - 0.2
NASA Astrophysics Data System (ADS)
Rimando, J. M.; Schoenbohm, L. M.
2016-12-01
The Barrancas anticline in Mendoza Province, west-central Argentina is a N-NW-oriented, east-vergent fault-bend fold located in the transition from the mainly east-vergent, thin-skinned Argentine Precordillera to the mainly west-vergent, thick-skinned Sierras Pampeanas — one of the most active thrust zones on Earth. Previous studies of the Barrancas anticline interpreted its structure from 2-D and 3-D seismic data. The anticline is a fault-bend fold with multiple segments with different uplift histories and which linked only after 2.3Ma. This study aims to establish the temporal persistence of segmentation and to describe the role, extent and rates of deformation processes involved in the development of the Barrancas anticline from morphometric analyses, geologic and geomorphic mapping, and accurate dating of relevant geomorphic features. Longitudinal profile analysis of streams on the anticline reveals marked differences in normalized steepness index (ksn) between the western and eastern limbs as well as variation along strike. This distribution of ksn values reveals patterns consistent with asymmetry and segmentation of the Barrancas anticline. Swath profiles parallel to the fold axis resemble fault slip distribution profiles which was a basis for segmentation from previous studies. Drainage basin morphometric indices such as hypsometry, drainage density, and basin elongation were also measured. Hypsometric integral values were particularly higher on the west than on the east, possibly indicating younger folding on the western limb. This study will contribute to a better understanding of the nature, extent, timing, and rate of folding at the transition from thin- to thick-skinned thrust deformation in west-central Argentina. Additionally, this study will contribute to assessment of seismic hazards associated with fault-related folds in Argentina and in similar tectonic settings worldwide.
NASA Astrophysics Data System (ADS)
Cheng, Yali; He, Chuanqi; Rao, Gang; Yan, Bing; Lin, Aiming; Hu, Jianmin; Yu, Yangli; Yao, Qi
2018-01-01
The Cenozoic graben systems around the tectonically stable Ordos Block, central China, have been considered as ideal places for investigating active deformation within continental rifts, such as the Weihe Graben at the southern margin with high historical seismicity (e.g., 1556 M 8.5 Huaxian great earthquake). However, previous investigations have mostly focused on the active structures in the eastern and northern parts of this graben. By contrast, in the southwest, tectonic activity along the northern margin of the Qinling Mountains has not been systematically investigated yet. In this study, based on digital elevation models (DEMs), we carried out geomorphological analysis to evaluate the relative tectonic activity along the whole South Border Fault (SBF). On the basis of field observations, high resolution DEMs acquired by small unmanned aerial vehicles (sUVA) using structure-for-motion techniques, radiocarbon (14C) age dating, we demonstrate that: 1) Tectonic activity along the SBF changes along strike, being higher in the eastern sector. 2) Seven major segment boundaries have been assigned, where the fault changes its strike and has lower tectonic activity. 3) The fault segment between the cities of Huaxian and Huayin characterized by almost pure normal slip has been active during the Holocene. We suggest that these findings would provide a basis for further investigating on the seismic risk in densely-populated Weihe Graben. Table S2. The values and classification of geomorphic indices obtained in this study. Fig. S1. Morphological features of the stream long profiles (Nos. 1-75) and corresponding SLK values. Fig. S2. Comparison of geomorphological parameters acquired from different DEMs (90-m SRTM and 30-m ASTER GDEM): (a) HI values; (b) HI linear regression; (c) mean slope of drainage basin; (d) mean slope linear regression.
NASA Astrophysics Data System (ADS)
Stock, J. M.
2013-12-01
Along the Pacific-North America plate boundary zone, the segment including the southern San Andreas fault to Salton Trough and northern Gulf of California basins has been transtensional throughout its evolution, based on Pacific-North America displacement vectors calculated from the global plate circuit (900 × 20 km at N54°W since 20 Ma; 460 × 20 km at N48°W since 11 Ma). Nevertheless, active seismicity and focal mechanisms show a broad zone of plate boundary deformation within which the inferred stress regime varies locally (Yang & Hauksson 2013 GJI), and fault patterns in some regions suggest ongoing tectonic rotation. Similar behavior is inferred to have occurred in this zone over most of its history. Crustal structure in this region is constrained by surface geology, geophysical experiments (e.g., the 2011 Salton Seismic Imaging Project (SSIP), USGS Imperial Valley 1979, PACE), and interdisciplinary marine and onland studies in Mexico (e.g., NARS-Baja, Cortes, and surveys by PEMEX). Magnetic data (e.g., EMAG-2) aids in the recognition of large-scale crustal provinces and fault boundaries in regions lacking detailed geophysical surveys. Consideration of existing constraints on crustal thickness and architecture, and fault and basin evolution suggests that to reconcile geological deformation with plate motion history, the following additional factors need to be taken into account. 1) Plate boundary displacement via interacting systems of rotating blocks, coeval with slip on steep strike slip faults, and possibly related to slip on low angle extensional faults (e.g, Axen & Fletcher 1998 IGR) may be typical prior to the onset of seafloor spreading. This fault style may have accommodated up to 150 km of plate motion in the Mexican Continental Borderland and north of the Vizcaino Peninsula, likely between 12 and 15 Ma, as well as explaining younger rotations adjacent to the Gulf of California and current deformation southwest of the Salton Sea. 2) Geophysical characteristics suggest that the zone of strike-slip faults related to past plate boundary deformation extends eastward into SW Arizona and beneath the Sonoran coastal plain. 3) 'New' crust and mantle lithosphere at the plate boundary, in the Salton Trough and the non-oceanic part of the northern Gulf of California, varies in seismic velocity structure and dimensions, both within and across extensional segments. Details of within-segment variations imaged by SSIP (e.g., Ma et al., and Han et al., this meeting) are attributed to active fault patterns and small scale variations in hydrothermal activity and magmatism superposed on a more uniform sedimentation. Differences between the Imperial Valley rift segment and the north Gulf of California segments may be due to more involvement of low angle normal faults in the marine basins in the south (Martin et al., 2013, Tectonics), as well as differences in lower crustal or mantle lithospheric flow from the adjacent continental regions.
Current microseismicity and generating faults in the Gyeongju area, southeastern Korea
NASA Astrophysics Data System (ADS)
Han, Minhui; Kim, Kwang-Hee; Son, Moon; Kang, Su Young
2017-01-01
A study of microseismicity in a 15 × 20 km2 subregion of Gyeongju, southeastern Korea, establishes a direct link between minor earthquakes and known fault structures. The study area has a complex history of tectonic deformation and has experienced large historic earthquakes, with small earthquakes recorded since the beginning of modern instrumental monitoring. From 5 years of continuously recorded local seismic data, 311 previously unidentified microearthquakes can be reliably located using the double-difference algorithm. These newly discovered events occur in linear streaks that can be spatially correlated with active faults, which could pose a serious hazard to nearby communities. At-risk infrastructure includes the largest industrial park in South Korea, nuclear power plants, and disposal facilities for radioactive waste. The current work suggests that the southern segment of the Yeonil Tectonic Line and segments of the Seokup and Waup Basin boundary faults are active. For areas with high rates of microseismic activity, reliably located hypocenters are spatially correlated with mapped faults; in less active areas, earthquake clusters tend to occur at fault intersections. Microearthquakes in stable continental regions are known to exist, but have been largely ignored in assessments of seismic hazard because their magnitudes are well below the detection thresholds of seismic networks. The total number of locatable microearthquakes could be dramatically increased by lowering the triggering thresholds of network detection algorithms. The present work offers an example of how microearthquakes can be reliably detected and located with advanced techniques. This could make it possible to create a new database to identify subsurface fault geometries and modes of fault movement, which could then be considered in the assessments of seismic hazard in regions where major earthquakes are rare.
The Morelia-Acambay Fault System
NASA Astrophysics Data System (ADS)
Velázquez Bucio, M.; Soria-Caballero, D.; Garduño-Monroy, V.; Mennella, L.
2013-05-01
The Trans-Mexican Volcanic Belt (TMVB) is one of the most actives and representative zones of Mexico geologically speaking. Research carried out in this area gives stratigraphic, seismologic and historical evidence of its recent activity during the quaternary (Martinez and Nieto, 1990). Specifically the Morelia-Acambay faults system (MAFS) consist in a series of normal faults of dominant direction E - W, ENE - WSW y NE - SW which is cut in center west of the Trans-Mexican Volcanic Belt. This fault system appeared during the early Miocene although the north-south oriented structures are older and have been related to the activity of the tectonism inherited from the "Basin and Range" system, but that were reactivated by the east- west faults. It is believed that the activity of these faults has contributed to the creation and evolution of the longed lacustrine depressions such as: Chapala, Zacapu, Cuitzeo, Maravatio y Acambay also the location of monogenetic volcanoes that conformed the Michoacan-Guanajuato volcanic field (MGVF) and tend to align in the direction of the SFMA dominant effort. In a historical time different segments of the MAFS have been the epicenter of earthquakes from moderated to strong magnitude like the events of 1858 in Patzcuaro, Acambay in 1912, 1979 in Maravatio and 2007 in Morelia, among others. Several detailed analysis and semi-detailed analysis through a GIS platform based in the vectorial archives and thematic charts 1:50 000 scaled from the data base of the INEGI which has allowed to remark the influence of the MAFS segments about the morphology of the landscape and the identification of other structures related to the movement of the existent faults like fractures, alignments, collapses and others from the zone comprehended by the northwest of Morelia in Michoacán to the East of Acambay, Estado de México. Such analysis suggests that the fault segments possess a normal displacement plus a left component. In addition it can be associated to an alignment or different structures oblique directed to the principal fault trace which sometimes shows inverted moves suggest that the MAFS is a system with ''en echelon'' geometry which respond to transtensive tectonic activity. Recent research based in cinematic indicators from some of the most important faults of the MAFS concludes with evidence of the existence of a transtensive deformation in the center section of the TMVB, which can be explained through the oblique convergence model of plates Northamerica, Rivera and Cocos added to the division of the subduction angle at the North of the Mesoamerican trench.
Volcanic Eruptions of the EPR and Ridge Axis Segmentation: An Interdisciplinary View
NASA Astrophysics Data System (ADS)
White, S.; Soule, S. A.; Tolstoy, M.; Waldhauser, F.; Rubin, K.
2008-12-01
The eruption of the EPR in 2005-06 provides an ideal window into the relationship between fine-scale segmentation of the ridge axis and individual eruptive episodes. Lava flow mapping of the eruption by visual and acoustic images, precise dates on multiple eruptive units, stress information from seismicity, long-term records of hydrothermal activity, and well known segment boundaries illustrate the relationships between eruptions and segmentation of mid-ocean ridges. Lava flows emerged from several sections of the axial summit trough (AST) during the eruption, presumably from en echelon fissures between 9 45'N and 9 57'N. Each en echelon fissure is a 4th order segment, and the overall area matches the 3rd Order segment between ~9 45'N and ~9 58'N. Within the eruption, the primary eruptive fissure jumped east by 600 m at 9 53'N, and ran along an inward facing fault scarp, although limited lava effusion also extended northward along the axial fissure. A zone of high seismicity connects the normal fault bounding the eastern fissure eruption with the main locus of eruption on the ridge axis to the south, suggesting that the offset eruption may have occurred in response to stress buildup on this fault. Radiometric ages indicate that the entire along-axis extent of the eruptive fissures activated initially, but that volcanic activity focused to a single fourth-order segment within 1-3 months. Previously indentified breaks in the AST and its overall outline were largely unchanged by the eruption. These observations support the hypothesis that fourth-order segments are offsets controlled by the mechanics of dike emplacement, whereas third-order segments represent discrete volcanic systems. Dike segmentation may be controlled by variations in underlying ridge structure or the magma reservoir. Hydrothermal systems disrupted as far south as 9 37'N may be responding to cracking due to stress interaction or share a common deeper magmatic source. Comparisons between the 1991 EPR eruption at the same site, and several mapped southern EPR eruptions, the 10 45'N EPR eruption in ca. 2003 all show similar relationships to segmentation
NASA Astrophysics Data System (ADS)
Li, Kang; Xu, Xiwei; Kirby, Eric; Tang, Fangtou; Kang, Wenjun
2018-04-01
How the eastward motion of crust in the central Tibetan Plateau is accommodated in the remote regions of the eastern Himalayan syntaxis remains uncertain. Although the Yarlung Zangbo suture (YZS) forms a striking lineament in the topography of the region, evidence for recent faulting along this zone has been equivocal. To understand whether faults along the YZS are active, we performed a geological investigation along the eastern segments of the YZS. Geomorphic observations suggest the presence of active faulting along several segments of the YZS, which we collectively refer to as the "Milin fault". Paleoseismologic data from trenches reveal evidence for one faulting event, which is constrained to occur between 5620 and 1945 a BP. The latest faulting event displaced alluvial surface T2 by 7 m. The offset on this earthquake place the minimum value on the vertical slip rate of 0.3 mm/yr. Empirical relationships between surface rupture length, displacement and magnitude, suggest that magnitude of the latest event could have been Mw 7.3-7.7. On the basis of this slip rate and the elapsed time since the last event, it is estimated that a seismic moment equivalent to Mw 7.0 has been accumulated on the Milin fault. It is pose a threat to the surrounding region. Our results suggest that shortening occurs in the vicinity of the eastern Himalayan syntaxis, and part of eastward motion of crust from the central Tibetan Plateau is absorbed by uplift of the eastern Himalayan syntaxis.
NASA Astrophysics Data System (ADS)
Papadimitriou, E.; Karakostas, V.; Mesimeri, M.; Chouliaras, G.; Kourouklas, Ch.
2017-10-01
The 2015 Mw6.5 Lefkada main shock occurred at the south western part of Lefkada Island (Greece), less than 2 years after the occurrence of a doublet along the western part of the nearby Kefalonia Island, Paliki peninsula (on 25/01/2014, with Mw6.1 and 03/02/2014 with Mw6.0) and 12 years after the 2003 Mw6.2 main shock that struck the northwestern part of Lefkada Island. The four failed dextral strike slip fault segments belong to the Kefalonia transform fault zone (KTFZ), the major active boundary that bounds from the west the area of central Ionian Islands, namely Lefkada and Kefalonia. It is associated with several known historical earthquakes and is considered the most hazardous area in the Greek territory. The KTFZ fault segments are characterized by high slip rates (of the order of tens of millimeters per year), with maximum earthquake magnitudes up to 6.7 for Lefkada and 7.2 for Kefalonia fault zone, respectively. The double difference location technique was employed for relocating the aftershocks revealing a seismogenic layer extending from 3 to 16 km depth and multiple activation on well-defined fault planes, with strikes that differ than the main rupture and dips either to east or to west. This implies that strain energy was not solely released on a main fault only, but on secondary and adjacent fault segments as well. The reliable definition of their geometry forms the basis for the structural interpretation of the local fault network. The aftershock spatial distribution indicates three main clusters of the seismic activity, along with activation of smaller faults to an extent of more than 50 km. A northeasterly striking cluster is observed to the north of the main shock epicenter, with a remarkable aftershock density. The central cluster is less dense than the previous one with an epicentral alignment in full accordance with the strike provided by the main shock centroid moment tensor solution, and is considered as the main rupture with a length of 17 km. The third cluster, encompassing a large number of aftershocks, is located in the offshore area between Lefkada and Kefalonia Islands with a NE-SW epicentral alignment, alike the first cluster. The northeast-southwest striking secondary faults positioned obliquely and in continuation of the main fault segment, reveal that the KTFZ is being deformed in a complex tectonic setting. The presence of faults with this geometry implies strain partitioning and sheds light to new components necessary to be taken into account in the seismic hazard assessment. Stress transfer models of the M ≥6.0 main shocks were investigated and the calculated static stress changes may well explain their sequential occurrence. Static stress changes due to the 2015 coseismic slip were also calculated with the main objective of exploring the aftershock occurrence pattern and it was found as the driving mechanism that triggered the vast majority of the off-fault aftershocks.
ERIC Educational Resources Information Center
Haddad, David Elias
2014-01-01
Earth's topographic surface forms an interface across which the geodynamic and geomorphic engines interact. This interaction is best observed along crustal margins where topography is created by active faulting and sculpted by geomorphic processes. Crustal deformation manifests as earthquakes at centennial to millennial timescales. Given that…
NASA Astrophysics Data System (ADS)
Buijze, Loes; Guo, Yanhuang; Niemeijer, André R.; Ma, Shengli; Spiers, Christopher J.
2017-04-01
Faults in the upper crust cross-cut many different lithologies, which cause the composition of the fault rocks to vary. Each different fault rock segment may have specific mechanical properties, e.g. there may be stronger and weaker segments, and segments prone to unstable slip or creeping. This leads to heterogeneous deformation and stresses along such faults, and a heterogeneous distribution of seismic events. We address the influence of fault variability on stress, deformation, and seismicity using a combination of scaled laboratory fault and numerical modeling. A vertical fault was created along the diagonal of a 30 x 20 x 5 cm block of PMMA, along which a 2 mm thick gouge layer was deposited. Gouge materials of different characteristics were used to create various segments along the fault; quartz (average strength, stable sliding), kaolinite (weak, stable sliding), and gypsum (average strength, unstable sliding). The sample assembly was placed in a horizontal biaxial deformation apparatus, and shear displacement was enforced along the vertical fault. Multiple observations were made: 1) Acoustic emissions were continuously recorded at 3 MHz to observe the occurrence of stick-slips (micro-seismicity), 2) Photo-elastic effects (indicative of the differential stress) were recorded in the transparent set of PMMA wall-rocks using a high-speed camera, and 3) particle tracking was conducted on a speckle painted set of PMMA wall-rocks to study the deformation in the wall-rocks flanking the fault. All three observation methods show how the heterogeneous fault gouge exerts a strong control on the fault behavior. For example, a strong, unstable segment of gypsum flanked by two weaker kaolinite segments show strong stress concentrations develop near the edges of the strong segment, with at the same time most of acoustic emissions being located at the edge of this strong segment. The measurements of differential stress, strain and acoustic emissions provide a strong means to compare the scaled experiment to modeling results. In a finite-element model we reproduce the laboratory experiments, and compare the modeled stresses and strains to the observations and we compare the nucleation of seismic instability to the location of acoustic emissions. The model aids in understanding how the stresses and strains may vary as a result of fault heterogeneity, but also as a result of the boundary conditions inherent to a laboratory setup. The scaled experimental setup and modeling results also provide a means explain and compare with observations made at a larger scale, for example geodetic and seismological measurements along crustal scale faults.
The role of bed-parallel slip in the development of complex normal fault zones
NASA Astrophysics Data System (ADS)
Delogkos, Efstratios; Childs, Conrad; Manzocchi, Tom; Walsh, John J.; Pavlides, Spyros
2017-04-01
Normal faults exposed in Kardia lignite mine, Ptolemais Basin, NW Greece formed at the same time as bed-parallel slip-surfaces, so that while the normal faults grew they were intermittently offset by bed-parallel slip. Following offset by a bed-parallel slip-surface, further fault growth is accommodated by reactivation on one or both of the offset fault segments. Where one fault is reactivated the site of bed-parallel slip is a bypassed asperity. Where both faults are reactivated, they propagate past each other to form a volume between overlapping fault segments that displays many of the characteristics of relay zones, including elevated strains and transfer of displacement between segments. Unlike conventional relay zones, however, these structures contain either a repeated or a missing section of stratigraphy which has a thickness equal to the throw of the fault at the time of the bed-parallel slip event, and the displacement profiles along the relay-bounding fault segments have discrete steps at their intersections with bed-parallel slip-surfaces. With further increase in displacement, the overlapping fault segments connect to form a fault-bound lens. Conventional relay zones form during initial fault propagation, but with coeval bed-parallel slip, relay-like structures can form later in the growth of a fault. Geometrical restoration of cross-sections through selected faults shows that repeated bed-parallel slip events during fault growth can lead to complex internal fault zone structure that masks its origin. Bed-parallel slip, in this case, is attributed to flexural-slip arising from hanging-wall rollover associated with a basin-bounding fault outside the study area.
2014 Mainshock-Aftershock Activity Versus Earthquake Swarms in West Bohemia, Czech Republic
NASA Astrophysics Data System (ADS)
Jakoubková, Hana; Horálek, Josef; Fischer, Tomáš
2018-01-01
A singular sequence of three episodes of ML3.5, 4.4 and 3.6 mainshock-aftershock occurred in the West Bohemia/Vogtland earthquake-swarm region during 2014. We analysed this activity using the WEBNET data and compared it with the swarms of 1997, 2000, 2008 and 2011 from the perspective of cumulative seismic moment, statistical characteristics, space-time distribution of events, and prevailing focal mechanisms. For this purpose, we improved the scaling relation between seismic moment M0 and local magnitude ML by WEBNET. The total seismic moment released during 2014 episodes (M_{0tot}≈ 1.58× 10^{15} Nm) corresponded to a single ML4.6+ event and was comparable to M_{0tot} of the swarms of 2000, 2008 and 2011. We inferred that the ML4.8 earthquake is the maximum expected event in Nový Kostel (NK), the main focal zone. Despite the different character of the 2014 sequence and the earthquake swarms, the magnitude-frequency distributions (MFDs) show the b-values ≈ 1 and probability density functions (PDFs) of the interevent times indicate the similar event rate of the individual swarms and 2014 activity. Only the a-value (event-productivity) in the MFD of the 2014 sequence is significantly lower than those of the swarms. A notable finding is a significant acceleration of the seismic moment release in each subsequent activity starting from the 2000 swarm to the 2014 sequence, which may indicate an alteration from the swarm-like to the mainshocks-aftershock character of the seismicity. The three mainshocks are located on a newly activated fault segment/asperity (D in out notation) of the NK zone situated in the transition area among fault segments A, B, C, which hosted the 2000, 2008 and 2011 swarms. The segment D appears to be predisposed to an oblique-thrust faulting while strike-slip faulting is typical of segments A, B and C. In conclusion, we propose a basic segment scheme of the NK zone which should be improved gradually.
Bookshelf faulting and transform motion between rift segments of the Northern Volcanic Zone, Iceland
NASA Astrophysics Data System (ADS)
Green, R. G.; White, R. S.; Greenfield, T. S.
2013-12-01
Plate spreading is segmented on length scales from 10 - 1,000 kilometres. Where spreading segments are offset, extensional motion has to transfer from one segment to another. In classical plate tectonics, mid-ocean ridge spreading centres are offset by transform faults, but smaller 'non-transform' offsets exist between slightly overlapping spreading centres which accommodate shear by a variety of geometries. In Iceland the mid-Atlantic Ridge is raised above sea level by the Iceland mantle plume, and is divided into a series of segments 20-150 km long. Using microseismicity recorded by a temporary array of 26 three-component seismometers during 2009-2012 we map bookshelf faulting between the offset Askja and Kverkfjöll rift segments in north Iceland. The micro-earthquakes delineate a series of sub-parallel strike-slip faults. Well constrained fault plane solutions show consistent left-lateral motion on fault planes aligned closely with epicentral trends. The shear couple across the transform zone causes left-lateral slip on the series of strike-slip faults sub-parallel to the rift fabric, causing clockwise rotations about a vertical axis of the intervening rigid crustal blocks. This accommodates the overall right-lateral transform motion in the relay zone between the two overlapping volcanic rift segments. The faults probably reactivated crustal weaknesses along the dyke intrusion fabric (parallel to the rift axis) and have since rotated ˜15° clockwise into their present orientation. The reactivation of pre-existing rift-parallel weaknesses is in contrast with mid-ocean ridge transform faults, and is an important illustration of a 'non-transform' offset accommodating shear between overlapping spreading segments.
Hanging-wall deformation above a normal fault: sequential limit analyses
NASA Astrophysics Data System (ADS)
Yuan, Xiaoping; Leroy, Yves M.; Maillot, Bertrand
2015-04-01
The deformation in the hanging wall above a segmented normal fault is analysed with the sequential limit analysis (SLA). The method combines some predictions on the dip and position of the active fault and axial surface, with geometrical evolution à la Suppe (Groshong, 1989). Two problems are considered. The first followed the prototype proposed by Patton (2005) with a pre-defined convex, segmented fault. The orientation of the upper segment of the normal fault is an unknown in the second problem. The loading in both problems consists of the retreat of the back wall and the sedimentation. This sedimentation starts from the lowest point of the topography and acts at the rate rs relative to the wall retreat rate. For the first problem, the normal fault either has a zero friction or a friction value set to 25o or 30o to fit the experimental results (Patton, 2005). In the zero friction case, a hanging wall anticline develops much like in the experiments. In the 25o friction case, slip on the upper segment is accompanied by rotation of the axial plane producing a broad shear zone rooted at the fault bend. The same observation is made in the 30o case, but without slip on the upper segment. Experimental outcomes show a behaviour in between these two latter cases. For the second problem, mechanics predicts a concave fault bend with an upper segment dip decreasing during extension. The axial surface rooting at the normal fault bend sees its dips increasing during extension resulting in a curved roll-over. Softening on the normal fault leads to a stepwise rotation responsible for strain partitioning into small blocks in the hanging wall. The rotation is due to the subsidence of the topography above the hanging wall. Sedimentation in the lowest region thus reduces the rotations. Note that these rotations predicted by mechanics are not accounted for in most geometrical approaches (Xiao and Suppe, 1992) and are observed in sand box experiments (Egholm et al., 2007, referring to Dahl, 1987). References: Egholm, D. L., M. Sandiford, O. R. Clausen, and S. B. Nielsen (2007), A new strategy for discrete element numerical models: 2. sandbox applications, Journal of Geophysical Research, 112 (B05204), doi:10.1029/2006JB004558. Groshong, R. H. (1989), Half-graben structures: Balanced models of extensional fault-bend folds, Geological Society of America Bulletin, 101 (1), 96-105. Patton, T. L. (2005), Sandbox models of downward-steepening normal faults, AAPG Bulletin, 89 (6), 781-797. Xiao, H.-B., and J. Suppe (1992), Orgin of rollover, AAPG Bulletin, 76 (4), 509-529.
NASA Astrophysics Data System (ADS)
Yi, G.; Vallage, A.; Klinger, Y.; Long, F.; Wang, S.
2017-12-01
760 ML≥3.5 aftershocks of the 2008 Wenchuan earthquake, the 2013 Lushan mainshock and its 87 ML≥3.5 aftershocks were selected to obtain focal mechanism solutions from CAP waveform inversion method (Zhu and Helmberger, 1996), along with strain rosette (Amelung and King, 1997) and Areal strain (As) (Vallage et al., 2014), we aimed to analyze the tectonic deformation pattern along the Longmen Shan (LMS) fault zone, southwestern China. The As values show that 93% compressional earthquakes for the Lushan sequence are of pure thrust for the southern segment of the LMS fault zone, while only 50% compressional and nearly 40% of strike-slip and oblique-thrust events for the Wenchuan sequence reflect the strike-slip component increase on the central-northern segment of the LMS fault zone, meaning many different faults responsible for the Wenchuan aftershock activity. The strain rosettes with purely NW-trending compressional white lobe for the entire 87 aftershocks and 4 different classes of magnitudes are very similar to that of the Lushan mainshock. We infer that the geological structures for the southern segment are of thrust faulting under NW compressional deformation. The strain rosettes exhibit self-similarity in terms of orientation and shape for all classes, reflecting that the deformation pattern of the southern segment is independent with earthquake size, and suggesting that each class is representative of the overall deformation for the southern segment. We obtained EW-oriented pure compressional strain rosette of the entire 760 aftershocks and NW-oriented white lobe with small NE-oriented black lobe of the Wenchuan mainshock, and this difference may reflect different tectonic deformation pattern during the co-seismic and post-seismic stages. The deformation segmentation along the Wenchuan coseismic surface rupture is also evidenced from the different orientation of strain rosettes, i.e., NW for the southern area, NE for the central and NNW for the northern parts. The above inferences indicate a very complicated tectonic deformation pattern related to the complex geological structure. The segment of the northern aftershock area without ruptures behaves an oblique compressional deformation.
NASA Astrophysics Data System (ADS)
Sanny, Teuku A.
2017-07-01
The objective of this study is to determine boundary and how to know surrounding area between Lembang Fault and Cimandiri fault. For the detailed study we used three methodologies: (1). Surface deformation modeling by using Boundary Element method and (2) Controlled Source Audiomagneto Telluric (CSAMT). Based on the study by using surface deformation by using Boundary Element Methods (BEM), the direction Lembang fault has a dominant displacement in east direction. The eastward displacement at the nothern fault block is smaller than the eastward displacement at the southern fault block which indicates that each fault block move in left direction relative to each other. From this study we know that Lembang fault in this area has left lateral strike slip component. The western part of the Lembang fault move in west direction different from the eastern part that moves in east direction. Stress distribution map of Lembang fault shows difference between the eastern and western segments of Lembang fault. Displacement distribution map along x-direction and y-direction of Lembang fault shows a linement oriented in northeast-southwest direction right on Tangkuban Perahu Mountain. Displacement pattern of Cimandiri fault indicates that the Cimandiri fault is devided into two segment. Eastern segment has left lateral strike slip component while the western segment has right lateral strike slip component. Based on the displacement distribution map along y-direction, a linement oriented in northwest-southeast direction is observed at the western segment of the Cimandiri fault. The displacement along x-direction and y-direction between the Lembang and Cimandiri fault is nearly equal to zero indicating that the Lembang fault and Cimandiri Fault are not connected to each others. Based on refraction seismic tomography that we know the characteristic of Cimandiri fault as normal fault. Based on CSAMT method th e lembang fault is normal fault that different of dip which formed as graben structure.
DuRoss, Christopher B.; Personius, Stephen F.; Crone, Anthony J.; Olig, Susan S.; Lund, William R.
2011-01-01
We present a method to evaluate and integrate paleoseismic data from multiple sites into a single, objective measure of earthquake timing and recurrence on discrete segments of active faults. We apply this method to the Weber segment (WS) of the Wasatch fault zone using data from four fault-trench studies completed between 1981 and 2009. After systematically reevaluating the stratigraphic and chronologic data from each trench site, we constructed time-stratigraphic OxCal models that yield site probability density functions (PDFs) of the times of individual earthquakes. We next qualitatively correlated the site PDFs into a segment-wide earthquake chronology, which is supported by overlapping site PDFs, large per-event displacements, and prominent segment boundaries. For each segment-wide earthquake, we computed the product of the site PDF probabilities in common time bins, which emphasizes the overlap in the site earthquake times, and gives more weight to the narrowest, best-defined PDFs. The product method yields smaller earthquake-timing uncertainties compared to taking the mean of the site PDFs, but is best suited to earthquakes constrained by broad, overlapping site PDFs. We calculated segment-wide earthquake recurrence intervals and uncertainties using a Monte Carlo model. Five surface-faulting earthquakes occurred on the WS at about 5.9, 4.5, 3.1, 1.1, and 0.6 ka. With the exception of the 1.1-ka event, we used the product method to define the earthquake times. The revised WS chronology yields a mean recurrence interval of 1.3 kyr (0.7–1.9-kyr estimated two-sigma [2δ] range based on interevent recurrence). These data help clarify the paleoearthquake history of the WS, including the important question of the timing and rupture extent of the most recent earthquake, and are essential to the improvement of earthquake-probability assessments for the Wasatch Front region.
DuRoss, C.B.; Personius, S.F.; Crone, A.J.; Olig, S.S.; Lund, W.R.
2011-01-01
We present a method to evaluate and integrate paleoseismic data from multiple sites into a single, objective measure of earthquake timing and recurrence on discrete segments of active faults. We apply this method to the Weber segment (WS) of the Wasatch fault zone using data from four fault-trench studies completed between 1981 and 2009. After systematically reevaluating the stratigraphic and chronologic data from each trench site, we constructed time-stratigraphic OxCal models that yield site probability density functions (PDFs) of the times of individual earthquakes. We next qualitatively correlated the site PDFs into a segment-wide earthquake chronology, which is supported by overlapping site PDFs, large per-event displacements, and prominent segment boundaries. For each segment-wide earthquake, we computed the product of the site PDF probabilities in common time bins, which emphasizes the overlap in the site earthquake times, and gives more weight to the narrowest, best-defined PDFs. The product method yields smaller earthquake-timing uncertainties compared to taking the mean of the site PDFs, but is best suited to earthquakes constrained by broad, overlapping site PDFs. We calculated segment-wide earthquake recurrence intervals and uncertainties using a Monte Carlo model. Five surface-faulting earthquakes occurred on the WS at about 5.9, 4.5, 3.1, 1.1, and 0.6 ka. With the exception of the 1.1-ka event, we used the product method to define the earthquake times. The revised WS chronology yields a mean recurrence interval of 1.3 kyr (0.7-1.9-kyr estimated two-sigma [2??] range based on interevent recurrence). These data help clarify the paleoearthquake history of the WS, including the important question of the timing and rupture extent of the most recent earthquake, and are essential to the improvement of earthquake-probability assessments for the Wasatch Front region.
NASA Astrophysics Data System (ADS)
Ando, R.; Aoki, Y.; Uchide, T.; Imanishi, K.; Matsumoto, S.; Nishimura, T.
2016-12-01
A couple of interesting earthquake rupture phenomena were observed associated with the sequence of the 2016 Kumamoto, Japan, earthquake sequence. The sequence includes the April 15, 2016, Mw 7.0, mainshock, which was preceded by multiple M6-class foreshock. The mainshock mainly broke the Futagawa fault segment striking NE-SW direction extending over 50km, and it further triggered a M6-class earthquake beyond the distance more than 50km to the northeast (Uchide et al., 2016, submitted), where an active volcano is situated. Compiling the data of seismic analysis and InSAR, we presumed this dynamic triggering event occurred on an active fault known as Yufuin fault (Ando et al., 2016, JPGU general assembly). It is also reported that the coseismic slip was significantly large at a shallow portion of Futagawa Fault near Aso volcano. Since the seismogenic depth becomes significantly shallower in these two areas, we presume the geothermal anomaly play a role as well as the elasto-dynamic processes associated with the coseismic rupture. In this study, we conducted a set of fully dynamic simulations of the earthquake rupture process by assuming the inferred 3D fault geometry and the regional stress field obtained referring the stress tensor inversion. As a result, we showed that the dynamic rupture process was mainly controlled by the irregularity of the fault geometry subjected to the gently varying regional stress field. The foreshocks ruptures have been arrested at the juncture of the branch faults. We also show that the dynamic triggering of M-6 class earthquakes occurred along the Yufuin fault segment (located 50 km NE) because of the strong stress transient up to a few hundreds of kPa due to the rupture directivity effect of the M-7 event. It is also shown that the geothermal condition may lead to the susceptible condition of the dynamic triggering by considering the plastic shear zone on the down dip extension of the Yufuin segment, situated in the vicinity of an active volcano.
Geometric-kinematic characteristics of the main faults in the W-SW of the Lut Block (SE Iran)
NASA Astrophysics Data System (ADS)
Rashidi Boshrabadi, Ahmad; Khatib, Mohamad Mahdi; Raeesi, Mohamad; Mousavi, Seyed Morteza; Djamour, Yahya
2018-03-01
The area to the W-SW of the Lut Block in Iran has experienced numerous historical and recent destructive earthquakes. We examined a number of faults in this area that have high potential for generating destructive earthquakes. In this study a number of faults are introduced and named for the first time. These new faults are Takdar, Dehno, Suru, Hojat Abad, North Faryab, North Kahnoj, Heydarabad, Khatun Abad and South Faryab. For a group of previously known faults, their mechanism and geological offsets are investigated for the first time. This group of faults include East Nayband, West Nayband, Sardueiyeh, Dalfard, Khordum, South Jabal-e-Barez, and North Jabal-e-Barez. The N-S fault systems of Sabzevaran, Gowk, and Nayband induce slip on the E-W, NE-SW and NW-SE fault systems. The faulting patterns appear to preserve different stages of fault development. We investigated the distribution of active faults and the role that they play in accommodating tectonic strain in the SW-Lut. In the study area, the fault systems with en-echelon arrangement create structures such as restraining and releasing stepover, fault bend and pullapart basin. The main mechanism for fault growth in the region seems to be 'segment linkage of preexisting weaknesses' and also for a limited area through 'process zone'. Estimations are made for the likely magnitudes of separate or combined failure of the fault segments. Such magnitudes are used in hazard analysis of the region.
NASA Astrophysics Data System (ADS)
Ellouz, N.; Leroy, S. D.; Momplaisir, R.; Mercier de Lepinay, B.
2013-12-01
The characterization of the deformation along large strike-slip fault-systems like transpressive boundaries between N. Caribbean/N America is a challenging topic, which requires a multi-scale approach. Thanks to Haiti-sis new data, the precise description of the fault segmentation pattern, the sedimentogical distribution, the uplift/subsidence rates, the along-fault and intra-basin fluids circulations, allows to actualize the evolution of the deformation history up to present-day . All the co-seismic surface to near-surface events, have to be also identified in order to integrate geophysical solutions for the earthquake, within the present-day geological and structural pattern. These two approaches, ranging from geological to instantaneous time-scales have been used during multi-tools Haiti-Sis oceanographic survey, allowing to document and image these different aspects at a large scale. The complex strike-slip North Caribbean boundary registered significative stress partitioning. Oblique convergence is expressed by along-strike evolution; from rifted segments (Cayman Through) to transpressive ones (Haiti, Dominican Rep.), to subduction (Porto Rico). In the Haiti-Sis survey, we acquired new offshore data surrounding the active fault areas, in the Gonâve Bay, the Jamaica Channel and along Southern Peninsula. Mapping the sea-floor, and HR seismic acquisition were our main objectives, in order to characterize the fault and fold architecture, with a new delineation of active segments. Offshore piston cores, have been used as representative of the modern basin sedimentation, and to document the catastrophic events (earthquakes, massive flood or sudden destabilization of the platform ) represented by turbiditic or mass-flow sequences, with the objective to track the time recurrence of seismic events by dating some of these catastrophic sediment deposition. At surface, the other markers of the fault activity are linked with along-fault permeability and fluid circulation pathway changes. Geochemical signature and temperature of the fluids and gas, change drastically depending on location and depth provenance. Our first results show that 1) the present-day EPGF geometry results from oblique shortening processes along different segments of the fault. Deep basins previously localized south and north of the fault are inverted at different degrees, 2) the Gonâve Island is only the emerged part of a NW-SE, either growing large " anti-formal stack" or basement inversion responsible for the large present-day fold amplitude, or both of them successively. It separates two sub-basins South and North Gonâve with independant sedimentary and deformation evolution 3) the Jeremie Basin probably has a specific long-living evolution, allowing to precise the geodynamic evolution of the Western Hispaniola Margin.
NASA Astrophysics Data System (ADS)
Serpelloni, E.; Anderlini, L.; Cavaliere, A.; Danesi, S.; Pondrelli, S.; Salimbeni, S.; Danecek, P.; Massa, M.; Lovati, S.
2014-12-01
The southern Alps fold-and-thrust belt (FTB) in northern Italy is a tectonically active area accommodating large part of the ~N-S Adria-Eurasia plate convergence, that in the southeastern Alps ranges from 1.5 to 2.5 mm/yr, as constrained by a geodetically defined rotation pole. Because of the high seismic hazard of northeastern Italy, the area is well monitored at a regional scale by seismic and GPS networks. However, more localized seismotectonic and kinematic features, at the scale of the fault segments, are not yet resolved, limiting our knowledge about the seismic potential of the different fault segments belonging to the southeastern Alps FTB. Here we present the results obtained from the analysis of data collected during local seismic and geodetic experiments conducted installing denser geophysical networks across the Montello-Bassano-Belluno system, a segment of the FTB that is presently characterized by a lower sismicity rate with respect to the surrounding domains. The Montello anticline, which is the southernmost tectonic features of the southeastern Alps FTB (located ~15 km south of the mountain front), is a nice example of growing anticline associated with a blind thrust fault. However, how the Adria-Alps convergence is partitioned across the FTB and the seismic potential of the Montello thrust (the area has been struck by a Mw~6.5 in 1695 but the causative fault is still largely debated) remained still unresolved. The new, denser, GPS data show that this area is undergoing among the highest geodetic deformation rates of the entire south Alpine chain, with a steep velocity gradient across the Montello anticline. The earthquakes recorded during the experiment, precisely relocated with double difference methods, and the new earthquake focal mechanisms well correlate with available information about sub-surface geological structures and highlight the seismotectonic activity of the Montello thrust fault. We model the GPS velocities using elastic dislocations embedded in a kinematic block model approach, which suggest that the Montello thrust fault is weakly coupled with respect to surrounding segments of the southernmost thrust system. Future works will include the integration of InSAR data and the densification/improvement of the geodetic infrastructure.
Geophysical study of the Ota-VF Xira-Lisbon-Sesimbra fault zone and the lower Tagus Cenozoic basin
NASA Astrophysics Data System (ADS)
Carvalho, João; Rabeh, Taha; Bielik, Miroslav; Szalaiová, Eva; Torres, Luís; Silva, Marisa; Carrilho, Fernando; Matias, Luís; Miranda, Jorge Miguel
2011-09-01
This paper focuses on the interpretation of seismic reflection, gravimetric, topographic, deep seismic refraction and seismicity data to study the recently proposed Ota-Vila Franca de Xira-Lisbon-Sesimbra (OVLS) fault zone and the lower Tagus Cenozoic basin (LTCB). The studied structure is located in the lower Tagus valley (LTV), an area with over 2 million inhabitants that has experienced historical earthquakes which caused significant damage and economical losses (1344, 1531 and 1909 earthquakes) and whose tectonic sources are thought to be local but mostly remain unknown. This study, which is intended as a contribution to improve the seismic hazard of the area and the neotectonics of the region, shows that the above-proposed fault zone is probably a large crustal thrust fault that constitutes the western limit of the LTCB. Gravimetric, deep refraction and seismic reflection data suggest that the LTCB is a foreland basin, as suggested previously by some authors, and that the OVLS northern and central sectors act as the major thrusts. The southern sector fault has been dominated by strike-slip kinematics due to a different orientation to the stress field. Indeed, geological outcrop and seismic reflection data interpretation suggests that, based on fault geometry and type of deformation at depth, the structure is composed of three major segments. These data suggest that these segments have different kinematics in agreement with their orientation to the regional stress field. The OVLS apparently controls the distribution of the seismicity in the area. Geological and geophysical information previously gathered also points that the central segment is active into the Quaternary. The segment lengths vary between 20 and 45 km. Since faults usually rupture only by segments, maximum expectable earthquake magnitudes and other parameters have been calculated for the three sectors of the OVLS fault zone using empirical relationships between earthquake statistics and geological parameters available from the literature. Calculated slip rates are compatible with previous estimates for the area (0.33 mm yr-1). A more accurate estimation of the OVLS throw in the Quaternary sediments is therefore of vital importance for a more accurate evaluation of the seismic hazard of the area.
NASA Astrophysics Data System (ADS)
Petukhin, A.; Galvez, P.; Somerville, P.; Ampuero, J. P.
2017-12-01
We perform earthquake cycle simulations to study the characteristics of source scaling relations and strong ground motions and in multi-segmented fault ruptures. For earthquake cycle modeling, a quasi-dynamic solver (QDYN, Luo et al, 2016) is used to nucleate events and the fully dynamic solver (SPECFEM3D, Galvez et al., 2014, 2016) is used to simulate earthquake ruptures. The Mw 7.3 Landers earthquake has been chosen as a target earthquake to validate our methodology. The SCEC fault geometry for the three-segmented Landers rupture is included and extended at both ends to a total length of 200 km. We followed the 2-D spatial correlated Dc distributions based on Hillers et. al. (2007) that associates Dc distribution with different degrees of fault maturity. The fault maturity is related to the variability of Dc on a microscopic scale. Large variations of Dc represents immature faults and lower variations of Dc represents mature faults. Moreover we impose a taper (a-b) at the fault edges and limit the fault depth to 15 km. Using these settings, earthquake cycle simulations are performed to nucleate seismic events on different sections of the fault, and dynamic rupture modeling is used to propagate the ruptures. The fault segmentation brings complexity into the rupture process. For instance, the change of strike between fault segments enhances strong variations of stress. In fact, Oglesby and Mai (2012) show the normal stress varies from positive (clamping) to negative (unclamping) between fault segments, which leads to favorable or unfavorable conditions for rupture growth. To replicate these complexities and the effect of fault segmentation in the rupture process, we perform earthquake cycles with dynamic rupture modeling and generate events similar to the Mw 7.3 Landers earthquake. We extract the asperities of these events and analyze the scaling relations between rupture area, average slip and combined area of asperities versus moment magnitude. Finally, the simulated ground motions will be validated by comparison of simulated response spectra with recorded response spectra and with response spectra from ground motion prediction models. This research is sponsored by the Japan Nuclear Regulation Authority.
NASA Astrophysics Data System (ADS)
Andrade, V.; Rajendran, K.
2010-12-01
The response of subduction zones to large earthquakes varies along their strike, both during the interseismic and post-seismic periods. The December 26, 2004 earthquake nucleated at 3° N latitude and its rupture propagated northward, along the Andaman-Sumatra subduction zone, terminating at 15°N. Rupture speed was estimated at about 2.0 km per second in the northern part under the Andaman region and 2.5 - 2.7 km per second under southern Nicobar and North Sumatra. We have examined the pre and post-2004 seismicity to understand the stress transfer processes within the subducting plate, in the Andaman (10° - 15° N ) and Nicobar (5° - 10° N) segments. The seismicity pattern in these segments shows distinctive characteristics associated with the outer rise, accretionary prism and the spreading ridge, all of which are relatively better developed in the Andaman segment. The Ninety East ridge and the Sumatra Fault System are significant tectonic features in the Nicobar segment. The pre-2004 seismicity in both these segments conform to the steady-state conditions wherein large earthquakes are fewer and compressive stresses dominate along the plate interface. Among the pre-2004 great earthquakes are the 1881 Nicobar and 1941 Andaman events. The former is considered to be a shallow thrust event that generated a small tsunami. Studies in other subduction zones suggest that large outer-rise tensional events follow great plate boundary breaking earthquakes due to the the up-dip transfer of stresses within the subducting plate. The seismicity of the Andaman segment (1977-2004) concurs with the steady-state stress conditions where earthquakes occur dominantly by thrust faulting. The post-2004 seismicity shows up-dip migration along the plate interface, with dominance of shallow normal faulting, including a few outer rise events and some deeper (> 100 km) strike-slip faulting events within the subducting plate. The September 13, 2002, Mw 6.5 thrust faulting earthquake at Diglipur (depth: 21 km) and the August 10, 2009, Mw 7.5 normal faulting earthquake near Coco Island (depth: 22 km), within the northern terminus of the 2004 rupture are cited as examples of the alternating pre and post earthquake stress conditions. The major pre and post 2004 clusters were associated with the Andaman Spreading Ridge (ASR). In the Nicobar segment, the most recent earthquake on June 12, 2010, Mw 7.5 (focal depth: 35 km) occurred very close to the plate boundary, through left lateral strike-slip faulting. A segment that does not feature any active volcanoes unlike its northern and southern counterparts, this part of the plate boundary has generated several right lateral strike-slip earthquakes, mostly on the Sumatra Fault System. The left-lateral strike-slip faulting associated with the June 12 event on a nearly N-S oriented fault plane consistent with the trend of the Ninety East ridge and the occasional left-lateral earthquakes prior to the 2004 mega-thrust event suggest the involvement of the Ninety East ridge in the subduction process.
NASA Astrophysics Data System (ADS)
Horálek, Josef; Čermáková, Hana; Fischer, Tomáš
2014-05-01
The origin of earthquake swarms remains still an enigma. The swarms typically accompany volcanic activity at the plate margins but also occur in intracontinental areas. West Bohemia-Vogtland (border area between Czech Republic and Germany) represents one of the most active intraplate earthquake-swarm regions in Europe. Above, this area is characteristic by high activity of crustal fluids. Swarm earthquakes occur persistently in the area of about 3 000 km2. However, the Novö Kostel focal zone (NK), which shows a few tens of thousands events within the last twenty years, dominates the recent seismicity of the whole region. There were swarms in 1997, 2000, 2008 and 20011 followed by reactivation in 2013, and a few tens of microswarms which forming a focal belt of about 15 x 6 km. We analyse geometry of the NK focal zone applying the double-difference method to seismicity in the period 1997 - 2013. The swarms are located close to each other in at depths from 6 to 13 km. The 2000 (MLmax = 3.3) and 2008 (MLmax = 3.8) swarms are 'twins' i.e. their hypocenters fall precisely on the same portion of the NK fault; similarly the 1997 (MLmax = 2.9), 2011 (MLmax = 3.6) and 2013 (MLmax = 2.4) swarms also occurred on the same fault segment. However, the individual swarms differ considerably in their evolution, mainly in the rate of the seismic-moment release and foci migration. Source mechanisms (in the full moment-tensor description) and their time and space variations also show different patterns. All the 2000- and 2008-swarm events are pure shears, signifying both oblique-normal and oblique-thrust faulting but the former prevails. We found a several families of source mechanisms, which fit well geometry of respective fault segments being determined on the basis of the event location: The 2000 and 2008 swarms activated the same portion of the NK fault, hence the source mechanisms are similar. The 1997 and 2011 swarms took place on two differently oriented fault segments, thus two different source mechanisms occurred: the oblique-normal on the one segment and the oblique-thrust type on the other one. Furthermore, we disclose that all the ML ≥ 2.7 swarm events, which occurred in the given time span, are located in a few dense clusters. It implies that the most of seismic energy in the individual swarms has been released in step by step rupturing of one or a few asperities. The existing results do not allow us to explain properly an origin of earthquake swarms. Nevertheless, some results point to a connection between pressurized fluids in the crust and the earthquake swarm occurrence. Taking this into account, we may infer that earthquake swarms occur on short fault segments with heterogeneous stress and strength, which are affected by crustal fluids. Pressurized fluids reduced normal component of the tectonic stress and lower friction. Thus, critically loaded and favourably oriented faults are brought to failure and the swarm activity is driven by the differential local stress.
Fault zone processes in mechanically layered mudrock and chalk
NASA Astrophysics Data System (ADS)
Ferrill, David A.; Evans, Mark A.; McGinnis, Ronald N.; Morris, Alan P.; Smart, Kevin J.; Wigginton, Sarah S.; Gulliver, Kirk D. H.; Lehrmann, Daniel; de Zoeten, Erich; Sickmann, Zach
2017-04-01
A 1.5 km long natural cliff outcrop of nearly horizontal Eagle Ford Formation in south Texas exposes northwest and southeast dipping normal faults with displacements of 0.01-7 m cutting mudrock, chalk, limestone, and volcanic ash. These faults provide analogs for both natural and hydraulically-induced deformation in the productive Eagle Ford Formation - a major unconventional oil and gas reservoir in south Texas, U.S.A. - and other mechanically layered hydrocarbon reservoirs. Fault dips are steep to vertical through chalk and limestone beds, and moderate through mudrock and clay-rich ash, resulting in refracted fault profiles. Steeply dipping fault segments contain rhombohedral calcite veins that cross the fault zone obliquely, parallel to shear segments in mudrock. The vertical dimensions of the calcite veins correspond to the thickness of offset competent beds with which they are contiguous, and the slip parallel dimension is proportional to fault displacement. Failure surface characteristics, including mixed tensile and shear segments, indicate hybrid failure in chalk and limestone, whereas shear failure predominates in mudrock and ash beds - these changes in failure mode contribute to variation in fault dip. Slip on the shear segments caused dilation of the steeper hybrid segments. Tabular sheets of calcite grew by repeated fault slip, dilation, and cementation. Fluid inclusion and stable isotope geochemistry analyses of fault zone cements indicate episodic reactivation at 1.4-4.2 km depths. The results of these analyses document a dramatic bed-scale lithologic control on fault zone architecture that is directly relevant to the development of porosity and permeability anisotropy along faults.
The Wasatch fault zone, utah-segmentation and history of Holocene earthquakes
Machette, M.N.; Personius, S.F.; Nelson, A.R.; Schwartz, D.P.; Lund, W.R.
1991-01-01
The Wasatch fault zone (WFZ) forms the eastern boundary of the Basin and Range province and is the longest continuous, active normal fault (343 km) in the United States. It underlies an urban corridor of 1.6 million people (80% of Utah's population) representing the largest earthquake risk in the interior of the western United States. We have used paleoseismological data to identify 10 discrete segments of the WFZ. Five are active, medial segments with Holocene slip rates of 1-2 mm a-1, recurrence intervals of 2000-4000 years and average lengths of about 50 km. Five are less active, distal segments with mostly pre-Holocene surface ruptures, late Quaternary slip rates of 6.5 have occurred since 1860. Although the time scale of the clustering is different-130 years vs 1100 years-we consider the central Nevada-eastern California Seismic Belt to be a historic analog for movement on the WFZ during the past 1500 years. We have found no evidence that surface-rupturing events occurred on the WFZ during the past 400 years, a time period which is twice the average intracluster recurrence interval and equal to the average Holocene recurrence interval. In particular, the Brigham City segment (the northernmost medial segment) has not ruptured in the past 3600 years-a period that is about three times longer than this segment's average recurrence interval during the early and middle Holocene. Although the WFZ's seismological record is one of relative quiescence, a comparison with other historic surface-rupturing earthquakes in the region suggests that earthquakes having moment magnitudes of 7.1-7.4 (or surface-wave magnitudes of 7.5-7.7)-each associated with tens of kilometers of surface rupture and several meters of normal dip slip-have occurred about every four centuries during the Holocene and should be expected in the future. ?? 1991.
Is the Marmara Sea segment of the North Anatolian Fault Creeping or loading ?
NASA Astrophysics Data System (ADS)
Klein, Emilie; Masson, Frédéric; Duputel, Zacharie; Yavasoglu, Hakan
2016-04-01
During the last century, the North Anatolian Fault has experienced a migrating Mw>7 earthquakes sequence that ruptured about 1000 km of the fault westward. The last major earthquakes occurred in 1999 in Izmit (Mw7.4) and Duzce (Mw7.2). Only the segments located directly offshore of Istanbul, in the Marmara Sea, remain unbroken in this series of events. This region represents a major issue in terms of seismic hazard with more than 13 millions inhabitants in the city of Istanbul. However, a strong controversy remains over whether the central segment of the Main Marmara Fault is locked and likely to experience a major earthquake, or not. Recent studies based on geodetic data suggest indeed that, contrary to the Prince's Island segment which is fully locked, the central segment is accommodating the strain by aseismic fault creep. So it has not the potential to generate a Mw ~7 event. These results, mostly based on relatively simple strain accumulation models over infinitely long faults, is contested by a recent seismic data study, which suggests on the contrary that this fault segment is fully locked and mature to generate such a great earthquake. In this study, we revisit the available geodetic data considering a 3D geometry of the fault, allowing to take into account the lateral variations of behavior along the fault. In particular, we evaluate if current geodetic datasets are sufficient to constrain strain accumulation and thus to conclude about the seismic hazard in the region.
Rizza, M.; Ritz, J.-F.; Braucher, R.; Vassallo, R.; Prentice, C.; Mahan, S.; McGill, S.; Chauvet, A.; Marco, S.; Todbileg, M.; Demberel, S.; Bourles, D.
2011-01-01
We carried out morphotectonic studies along the left-lateral strike-slip Bogd Fault, the principal structure involved in the Gobi-Altay earthquake of 1957 December 4 (published magnitudes range from 7.8 to 8.3). The Bogd Fault is 260 km long and can be subdivided into five main geometric segments, based on variation in strike direction. West to East these segments are, respectively: the West Ih Bogd (WIB), The North Ih Bogd (NIB), the West Ih Bogd (WIB), the West Baga Bogd (WBB) and the East Baga Bogd (EBB) segments. Morphological analysis of offset streams, ridges and alluvial fans-particularly well preserved in the arid environment of the Gobi region-allows evaluation of late Quaternary slip rates along the different faults segments. In this paper, we measure slip rates over the past 200 ka at four sites distributed across the three western segments of the Bogd Fault. Our results show that the left-lateral slip rate is ~1 mm yr-1 along the WIB and EIB segments and ~0.5 mm yr-1 along the NIB segment. These variations are consistent with the restraining bend geometry of the Bogd Fault. Our study also provides additional estimates of the horizontal offset associated with the 1957 earthquake along the western part of the Bogd rupture, complementing previously published studies. We show that the mean horizontal offset associated with the 1957 earthquake decreases progressively from 5.2 m in the west to 2.0 m in the east, reflecting the progressive change of kinematic style from pure left-lateral strike-slip faulting to left-lateral-reverse faulting. Along the three western segments, we measure cumulative displacements that are multiples of the 1957 coseismic offset, which may be consistent with a characteristic slip. Moreover, using these data, we re-estimate the moment magnitude of the Gobi-Altay earthquake at Mw 7.78-7.95. Combining our slip rate estimates and the slip distribution per event we also determined a mean recurrence interval of ~2500-5200 yr for past earthquakes along the different segments of the western Bogd Fault. This suggests that the three western segments of the Bogd Fault and the Gurvan Bulag thrust fault (a reverse fault bounding the southern side of the Ih Bogd range that ruptured during the 1957 earthquake) have similar average recurrence times, and therefore may have ruptured together in previous earthquakes as they did in 1957. These results suggest that the western part of the Bogd Fault system, including the Gurvan Bulag thrust fault, usually behaves in a 'characteristic earthquake' mode. ?? 2011 The Authors Geophysical Journal International ?? 2011 RAS.
Prentice, Carol S.; Rizza, M.; Ritz, J.F.; Baucher, R.; Vassallo, R.; Mahan, S.
2011-01-01
We carried out morphotectonic studies along the left-lateral strike-slip Bogd Fault, the principal structure involved in the Gobi-Altay earthquake of 1957 December 4 (published magnitudes range from 7.8 to 8.3). The Bogd Fault is 260 km long and can be subdivided into five main geometric segments, based on variation in strike direction. West to East these segments are, respectively: the West Ih Bogd (WIB), The North Ih Bogd (NIB), the West Ih Bogd (WIB), the West Baga Bogd (WBB) and the East Baga Bogd (EBB) segments. Morphological analysis of offset streams, ridges and alluvial fans—particularly well preserved in the arid environment of the Gobi region—allows evaluation of late Quaternary slip rates along the different faults segments. In this paper, we measure slip rates over the past 200 ka at four sites distributed across the three western segments of the Bogd Fault. Our results show that the left-lateral slip rate is∼1 mm yr–1 along the WIB and EIB segments and∼0.5 mm yr–1 along the NIB segment. These variations are consistent with the restraining bend geometry of the Bogd Fault. Our study also provides additional estimates of the horizontal offset associated with the 1957 earthquake along the western part of the Bogd rupture, complementing previously published studies. We show that the mean horizontal offset associated with the 1957 earthquake decreases progressively from 5.2 m in the west to 2.0 m in the east, reflecting the progressive change of kinematic style from pure left-lateral strike-slip faulting to left-lateral-reverse faulting. Along the three western segments, we measure cumulative displacements that are multiples of the 1957 coseismic offset, which may be consistent with a characteristic slip. Moreover, using these data, we re-estimate the moment magnitude of the Gobi-Altay earthquake at Mw 7.78–7.95. Combining our slip rate estimates and the slip distribution per event we also determined a mean recurrence interval of∼2500–5200 yr for past earthquakes along the different segments of the western Bogd Fault. This suggests that the three western segments of the Bogd Fault and the Gurvan Bulag thrust fault (a reverse fault bounding the southern side of the Ih Bogd range that ruptured during the 1957 earthquake) have similar average recurrence times, and therefore may have ruptured together in previous earthquakes as they did in 1957. These results suggest that the western part of the Bogd Fault system, including the Gurvan Bulag thrust fault, usually behaves in a ‘characteristic earthquake’ mode.
Langridge, R.M.; Stenner, Heidi D.; Fumal, T.E.; Christofferson, S.A.; Rockwell, T.K.; Hartleb, R.D.; Bachhuber, J.; Barka, A.A.
2002-01-01
The Mw 7.4 17 August 1999 İzmit earthquake ruptured five major fault segments of the dextral North Anatolian Fault Zone. The 26-km-long, N86°W-trending Sakarya fault segment (SFS) extends from the Sapanca releasing step-over in the west to near the town of Akyazi in the east. The SFS emerges from Lake Sapanca as two distinct fault traces that rejoin to traverse the Adapazari Plain to Akyazi. Offsets were measured across 88 cultural and natural features that cross the fault, such as roads, cornfield rows, rows of trees, walls, rails, field margins, ditches, vehicle ruts, a dike, and ground cracks. The maximum displacement observed for the İzmit earthquake (∼5.1 m) was encountered on this segment. Dextral displacement for the SFS rises from less than 1 m at Lake Sapanca to greater than 5 m near Arifiye, only 3 km away. Average slip decreases uniformly to the east from Arifiye until the fault steps left from Sagir to Kazanci to the N75°W, 6-km-long Akyazi strand, where slip drops to less than 1 m. The Akyazi strand passes eastward into the Akyazi Bend, which consists of a high-angle bend (18°-29°) between the Sakarya and Karadere fault segments, a 6-km gap in surface rupture, and high aftershock energy release. Complex structural geometries exist between the İzmit, Düzce, and 1967 Mudurnu fault segments that have arrested surface ruptures on timescales ranging from 30 sec to 88 days to 32 yr. The largest of these step-overs may have acted as a rupture segmentation boundary in previous earthquake cycles.
Fault segmentation: New concepts from the Wasatch Fault Zone, Utah, USA
Duross, Christopher; Personius, Stephen F.; Crone, Anthony J.; Olig, Susan S.; Hylland, Michael D.; Lund, William R.; Schwartz, David P.
2016-01-01
The question of whether structural segment boundaries along multisegment normal faults such as the Wasatch fault zone (WFZ) act as persistent barriers to rupture is critical to seismic hazard analyses. We synthesized late Holocene paleoseismic data from 20 trench sites along the central WFZ to evaluate earthquake rupture length and fault segmentation. For the youngest (<3 ka) and best-constrained earthquakes, differences in earthquake timing across prominent primary segment boundaries, especially for the most recent earthquakes on the north-central WFZ, are consistent with segment-controlled ruptures. However, broadly constrained earthquake times, dissimilar event times along the segments, the presence of smaller-scale (subsegment) boundaries, and areas of complex faulting permit partial-segment and multisegment (e.g., spillover) ruptures that are shorter (~20–40 km) or longer (~60–100 km) than the primary segment lengths (35–59 km). We report a segmented WFZ model that includes 24 earthquakes since ~7 ka and yields mean estimates of recurrence (1.1–1.3 kyr) and vertical slip rate (1.3–2.0 mm/yr) for the segments. However, additional rupture scenarios that include segment boundary spatial uncertainties, floating earthquakes, and multisegment ruptures are necessary to fully address epistemic uncertainties in rupture length. We compare the central WFZ to paleoseismic and historical surface ruptures in the Basin and Range Province and central Italian Apennines and conclude that displacement profiles have limited value for assessing the persistence of segment boundaries but can aid in interpreting prehistoric spillover ruptures. Our comparison also suggests that the probabilities of shorter and longer ruptures on the WFZ need to be investigated.
NASA Astrophysics Data System (ADS)
Heilman, E.; Kolawole, F.; Mayle, M.; Atekwana, E. A.; Abdelsalam, M. G.
2017-12-01
We address the longstanding question of the role of long-lived basement structures in strain accommodation within active rift systems. Studies have highlighted the influence of pre-existing zones of lithospheric weakness in modulating faulting and fault kinematics. Here, we investigate the role of the Neoproterozoic Mughese Shear Zone (MSZ) in Cenozoic rifting along the Rukwa-Malawi rift segment of the East African Rift System (EARS). Detailed analyses of Shuttle Radar Topography Mission (SRTM) DEM and filtered aeromagnetic data allowed us to determine the relationship between rift-related basement-rooted normal faults and the MSZ fabric extending along the southern boundary of the Rukwa-Malawi Rift North Basin. Our results show that the magnetic lineaments defining the MSZ coincide with the collinear Rukwa Rift border fault (Ufipa Fault), a dextral strike-slip fault (Mughese Fault), and the North Basin hinge-zone fault (Mbiri Fault). Fault-scarp and minimum fault-throw analyses reveal that within the Rukwa Rift, the Ufipa Border Fault has been accommodating significant displacement relative to the Lupa Border Fault, which represents the northeastern border fault of the Rukwa Rift. Our analysis also shows that within the North Basin half-graben, the Mbiri Fault has accommodated the most vertical displacement relative to other faults along the half-graben hinge zone. We propose that the Cenozoic reactivation along the MSZ facilitated significant normal slip displacement along the Ufipa Border Fault and the Mbiri Fault, and minor dextral strike-slip between the two faults. We suggest that the fault kinematics along the Rukwa-Malawi Rift is the result of reactivation of the MSZ through regional oblique extension.
NASA Astrophysics Data System (ADS)
Donnellan, A.; Ben-Zion, Y.; Arrowsmith, R.
2016-12-01
The Pacific - North American plate boundary in southern California is marked by several major strike slip faults. The 2010 M7.2 El Mayor - Cucapah earthquake ruptured 120 km of upper crust in Baja California to the US-Mexico border. The earthquake triggered slip along an extensive network of faults in the Salton Trough from the Mexican border to the southern end of the San Andreas fault. Earthquakes >M5 were triggered in the gap between the Laguna Salada and Elsinore faults at Ocotillo and on the Coyote Creek segment of the San Jacinto fault 20 km northwest of Borrego Springs. UAVSAR observations, collected since October of 2009, measure slip associated with the M5.7 Ocotillo aftershock with deformation continuing into 2014. The Elsinore fault has been remarkably quiet, however, with only M5.0 and M5.2 earthquakes occurring on the Coyote Mountains segment of the fault in 1940 and 1968 respectively. In contrast, the Imperial Valley has been quite active historically with numerous moderate events occurring since 1935. Moderate event activity is increasing along the San Jacinto fault zone (SJFZ), especially the trifurcation area, where 6 of 12 historic earthquakes in this 20 km long fault zone have occurred since 2000. However, no recent deformation has been detected using UAVSAR measurements in this area, including the recent M5.2 June 2016 Borrego earthquake. Does the El Mayor - Cucapah rupture connect to and transfer stress primarily to a single southern California fault or several? What is its role relative to the background plate motion? UAVSAR observations indicate that the southward extension of the Elsinore fault has recently experienced the most localized deformation. Seismicity suggests that the San Jacinto fault is more active than neighboring major faults, and geologic evidence suggests that the Southern San Andreas fault has been the major plate boundary fault in southern California. Topographic data with 3-4 cm resolution using structure from motion from a small UAV on the southern San Andreas fault and the San Jacinto fault south of Anza, decimeter level B4 lidar data, GPS, and UAVSAR observations flown as recently as June 2016 will serve as baseline data for future large earthquakes in the region. Models that combine the different data sets are required to better understand the interconnections of the faults.
NASA Astrophysics Data System (ADS)
Febriani, F.; Handayani, L.; Setyani, A.; Anggono, T.; Syuhada; Soedjatmiko, B.
2018-03-01
The dimensionality and regional strike analyses of the Cimandiri Fault, West Java, Indonesia have been investigated. The Cimandiri Fault consists of six segments. They are Loji, Cidadap, Nyalindung, Cibeber, Saguling and Padalarang segments. The magnetotelluric (MT) investigation was done in the Cibeber segment. There were 42 observation points of the magnetotelluric data, which were distributed along 2 lines. The magnetotelluric phase tensor has been applied to determine the dimensionality and regional strike of the Cibeber segment, Cimandiri Fault, West Java. The result of the dimensionality analysis shows that the range values of the skew angle value which indicate the dimensionality of the study area are -5 ≤ β ≥ 5. These values indicate if we would like to generate the subsurface model of the Cibeber segment by using the magnetotelluric data, it is safe to assume that the Cibeber segment has the 2-D. While the regional strike analysis presents that the regional strike of the Cibeber segment is about N70-80°E.
NASA Astrophysics Data System (ADS)
De Martini, P. M.; Pucci, S.; Villani, F.; Civico, R.; Del Rio, L.; Cinti, F. R.; Pantosti, D.
2017-12-01
In 2016-2017 a series of moderate to large normal faulting earthquakes struck central Italy producing severe damage in many towns including Amatrice, Norcia and Visso and resulting in 299 casualties and >20,000 homeless. The complex seismic sequence depicts a multiple activation of the Mt. Vettore-Mt. Bove (VBFS) and the Laga Mts. fault systems, which were considered in literature as independent segments characterizing a recent seismic gap in the region comprised between two modern seismic sequences: the 1997-1998 Colfiorito and the 2009 L'Aquila. We mapped in detail the coseismic surface ruptures following three mainshocks (Mw 6.0 on 24th August, Mw 5.9 and Mw 6.5 on 26th and 30th October, 2016, respectively). Primary surface ruptures were observed and recorded for a total length of 5.2 km, ≅10 km and ≅25 km, respectively, along closely-spaced, parallel or subparallel, overlapping or step-like synthetic and antithetic fault splays of the activated fault systems, in some cases rupturing repeatedly the same location. Some coseismic ruptures were mapped also along the Norcia Fault System, paralleling the VBFS about 10 km westward. We recorded geometric and kinematic characteristics of the normal faulting ruptures with an unprecedented detail thanks to almost 11,000 oblique photographs taken from helicopter flights soon after the mainshocks, verified and integrated with field data (more than 7000 measurements). We analyze the along-strike coseismic slip and slip vectors distribution to be observed in the context of the geomorphic expression of the disrupted slopes and their depositional and erosive processes. Moreover, we constructed 1:10.000 scale geologic cross-sections based on updated maps, and we reconstructed the net offset distribution of the activated fault system to be compared with the morphologic throws and to test a cause-effect relationship between faulting and first-order landforms. We provide a reconstruction of the 2016 coseismic rupture pattern as representative of the VBFS behavior, a discussion on the fault system boundaries persistence, and on the significance of the repeated surface faulting at same location.
Marine Geophysical Characterization of the Chain Fracture Zone in the Equatorial Atlantic
NASA Astrophysics Data System (ADS)
Harmon, N.; Rychert, C.; Agius, M. R.; Tharimena, S.; Kendall, J. M.
2017-12-01
The Chain Fracture zone is part of a larger system of fracture zones along the Mid Atlantic Ridge that is thought to be one of the original zones of weakness during the break up of Pangea. It is over 300 km long and produces earthquakes as large as Mw 6.9 on segments of the active fault zone. Here we present the results of two marine geophysical mapping campaigns over the active part of the Chain Fracture zone as part of the PI-LAB (Passive Imaging of the Lithosphere-Asthenosphere Boundary) experiment. We collected swath bathymetry, backscatter imagery, gravity and total field magnetic anomaly. We mapped the fault scarps within the transform fault system using the 50 m resolution swath and backscatter imagery. In addition, a 30-40 mGal residual Mantle Bouguer Anomaly determined from gravity analysis suggests the crust is by up to 1.4-2.0 km beneath the Chain relative to the adjacent ridge segments. However, in the eastern 75 km of the active transform we find evidence for thicker crust. The active fault system cuts through the region of thicker crust and there is a cluster of MW > 6 earthquakes in this region. There is a cluster of similar sized earthquakes on the western end where thinner crust is inferred. This suggests that variations in melt production and crustal thickness at the mid ocean ridge systems may have only a minor effect on the seismicity and longevity of the transform fault system.
The Wasatch fault zone, utah—segmentation and history of Holocene earthquakes
NASA Astrophysics Data System (ADS)
Machette, Michael N.; Personius, Stephen F.; Nelson, Alan R.; Schwartz, David P.; Lund, William R.
The Wasatch fault zone (WFZ) forms the eastern boundary of the Basin and Range province and is the longest continuous, active normal fault (343 km) in the United States. It underlies an urban corridor of 1.6 million people (80% of Utah's population) representing the largest earthquake risk in the interior of the western United States. We have used paleoseismological data to identify 10 discrete segments of the WFZ. Five are active, medial segments with Holocene slip rates of 1-2 mm a -1, recurrence intervals of 2000-4000 years and average lengths of about 50 km. Five are less active, distal segments with mostly pre-Holocene surface ruptures, late Quaternary slip rates of <0.5 mm a -1 recurrence intervals of ≥10,000 years and average lengths of about 20 km. Surface-faulting events on each of the medial segments of the WFZ formed 2-4-m-high scarps repeatedly during the Holocene; latest Pleistocene (14-15 ka) deposits commonly have scarps as much as 15-20 m in height. Segments identified from paleoseismological studies of other major late Quaternary normal faults in the northern Basin and Range province are 20-25 km long, or about half of that proposed for the medial segments of the WFZ. Paleoseismological records for the past 6000 years indicate that a major surface-rupturing earthquake has occurred along one of the medial segments about every 395 ± 60 years. However, between about 400 and 1500 years ago, the WFZ experienced six major surface-rupturing events, an average of one event every 220 years, or about twice as often as expected from the 6000-year record. This pattern of temporal clustering is similar to that of the central Nevada—eastern California Seismic Belt in the western part of the Basin and Range province, where 11 earthquakes of M > 6.5 have occurred since 1860. Although the time scale of the clustering is different—130 years vs 1100 years—we consider the central Nevada—eastern California Seismic Belt to be a historic analog for movement on the WFZ during the past 1500 years. We have found no evidence that surface-rupturing events occurred on the WFZ during the past 400 years, a time period which is twice the average intracluster recurrence interval and equal to the average Holocene recurrence interval. In particular, the Brigham City segment (the northernmost medial segment) has not ruptured in the past 3600 years—a period that is about three times longer than this segment's average recurrence interval during the early and middle Holocene. Although the WFZ's seismological record is one of relative quiescence, a comparison with other historic surface-rupturing earthquakes in the region suggests that earthquakes having moment magnitudes of 7.1-7.4 (or surface-wave magnitudes of 7.5-7.7)—each associated with tens of kilometers of surface rupture and several meters of normal dip slip—have occurred about every four centuries during the Holocene and should be expected in the future.
NASA Astrophysics Data System (ADS)
Victor, P.; Sobiesiak, M.
2005-12-01
Convergent plate boundaries at continental margins belong to the tectonically most active areas on earth and are endangered by devastating earthquakes and tsunamis. The north Chilean margin is a high strain continental margin driven by fast plate convergence rate. The greatest amount of strain is accommodated along the subduction interface. Nevertheless there is extensive crustal deformation obvious by surface ruptures along reactivated segments of large fault systems and vertical surface motions reflecting the interaction between subducting and overriding plates. The historical seismicity record indicates that great earthquakes affect the Chilean Forearc with recurrence intervals of about 112+/- 21 y . The last great event in northern Chile occurred in 1995 near Antofagasta. The Mw= 8.0 event ruptured the subduction interface 180 km along strike with an average slip of about 5m in the depth interval between 10-50 km. From careful evaluation of the aftershock sequence by examining the different catagories of aftershock focal mechanisms we can define three segments of the seismogenic zone affected by the Antofagasta main shock. The non-ruptured northern segment beneath Mejillones Peninsula is seperated by a broad transition zone from the central segment which hosts the earthquakes' rupture plane. The southern fault plane boundary is identified by linear alignment of all apparent aftershock mechanisms. Along this southern boundary the strike slip mechanisms are exclusively left lateral whereas the strike slip mechanisms along the northern transition zone are right lateral. The orientations of summed moment tensors calculated from aftershock fault plane solutions on the northern segment and in the northern transition zone differ from the orientations exhibited by moment tensors on the central segment. This might indicate a rotational component in the coseismic movement of the ruptured segment relative to the non-ruptured segment. The observed segmentation of the downgoing plate correlates well with changes in the coseismic surface displacement field and coseismic rotations derived from GPS data (Allmendinger et al. in press). We can localize a transition zone at Mejillones peninsula (23,5°S) striking approximately N 80°E dominated by clockwise vertical axis rotations also marked by rotations of the summed moment tensors on the downgoing plate. The calculated strain tensor for this transition zone does not correspond with long term surface deformation, implying that coseismic as well as early postseismic effects on the subduction interface do not contribute to long term deformation of crustal fault zones. The Antofagasta earthquake took place just south of the large 1877 gap which extends from southern Peru to Mejillones Peninsula, being the surface expression of a barrier seperating the Antofagasta fault plane from the expected future fault plane. From our studies of the Antofagasta subduction zone and the surface displacement field we hope to find evidences for interface-crust-surface interactions which can be extrapolated also to the 1877 gap.
Chronology of volcanism and rift basin propagation - Rungwe volcanic province, East Africa
NASA Technical Reports Server (NTRS)
Ebinger, C. J.; Deino, A. L.; Drake, R. E.; Tesha, A. L.
1989-01-01
The spatial and temporal development of along-axis segmentation in youthful continental rifts was investigated using the results of field, remote sensing, and K-Ar geochronology studies conducted in four (Rukwa, Songwe, Usangu, and Karonga) rift basins within the Rungwe volcanic province in East Africa. Results indicated that the Rukwa and Karonga border fault segments formed between 7.25 and 5 m.y. ago, the Usangu border fault segment developed between 3 and 2 m.y. ago, and subsidence along the Songwe border fault segment had occurred by 0.5 Ma. It is shown that individual basins developed diachronously, each following a similar sequence: (1) initial border fault development; (2) asymmetric basin subsidence/flank uplift and the development of monoclines opposite the border faults; and (3) continued subsidence and tilting along intrabasinal faults with flexural upwarping of the rift flanks, enhancing basinal asymmetries.
NASA Astrophysics Data System (ADS)
Yu, Hongyu; Liu, Yajing; Yang, Hongfeng; Ning, Jieyuan
2018-05-01
To assess the potential of catastrophic megathrust earthquakes (MW > 8) along the Manila Trench, the eastern boundary of the South China Sea, we incorporate a 3D non-planar fault geometry in the framework of rate-state friction to simulate earthquake rupture sequences along the fault segment between 15°N-19°N of northern Luzon. Our simulation results demonstrate that the first-order fault geometry heterogeneity, the transitional-segment (possibly related to the subducting Scarborough seamount chain) connecting the steeper south segment and the flatter north segment, controls earthquake rupture behaviors. The strong along-strike curvature at the transitional-segment typically leads to partial ruptures of MW 8.3 and MW 7.8 along the southern and northern segments respectively. The entire fault occasionally ruptures in MW 8.8 events when the cumulative stress in the transitional-segment is sufficiently high to overcome the geometrical inhibition. Fault shear stress evolution, represented by the S-ratio, is clearly modulated by the width of seismogenic zone (W). At a constant plate convergence rate, a larger W indicates on average lower interseismic stress loading rate and longer rupture recurrence period, and could slow down or sometimes stop ruptures that initiated from a narrower portion. Moreover, the modeled interseismic slip rate before whole-fault rupture events is comparable with the coupling state that was inferred from the interplate seismicity distribution, suggesting the Manila trench could potentially rupture in a M8+ earthquake.
Grauch, V.J.S.; Ruleman, Chester A.
2013-01-01
Combined interpretation of aeromagnetic and LiDAR data builds on the strength of the aeromagnetic method to locate normal faults with significant offset under cover and the strength of LiDAR interpretation to identify the age and sense of motion of faults. Each data set helps resolve ambiguities in interpreting the other. In addition, gravity data can be used to infer the sense of motion for totally buried faults inferred solely from aeromagnetic data. Combined interpretation to identify active faults at the northern end of the San Luis Basin of the northern Rio Grande rift has confirmed general aspects of previous geologic mapping but has also provided significant improvements. The interpretation revises and extends mapped fault traces, confirms tectonic versus fluvial origins of steep stream banks, and gains additional information on the nature of active and potentially active partially and totally buried faults. Detailed morphology of surfaces mapped from the LiDAR data helps constrain ages of the faults that displace the deposits. The aeromagnetic data provide additional information about their extents in between discontinuous scarps and suggest that several totally buried, potentially active faults are present on both sides of the valley.
Interactive Retro-Deformation of Terrain for Reconstructing 3D Fault Displacements.
Westerteiger, R; Compton, T; Bernadin, T; Cowgill, E; Gwinner, K; Hamann, B; Gerndt, A; Hagen, H
2012-12-01
Planetary topography is the result of complex interactions between geological processes, of which faulting is a prominent component. Surface-rupturing earthquakes cut and move landforms which develop across active faults, producing characteristic surface displacements across the fault. Geometric models of faults and their associated surface displacements are commonly applied to reconstruct these offsets to enable interpretation of the observed topography. However, current 2D techniques are limited in their capability to convey both the three-dimensional kinematics of faulting and the incremental sequence of events required by a given reconstruction. Here we present a real-time system for interactive retro-deformation of faulted topography to enable reconstruction of fault displacement within a high-resolution (sub 1m/pixel) 3D terrain visualization. We employ geometry shaders on the GPU to intersect the surface mesh with fault-segments interactively specified by the user and transform the resulting surface blocks in realtime according to a kinematic model of fault motion. Our method facilitates a human-in-the-loop approach to reconstruction of fault displacements by providing instant visual feedback while exploring the parameter space. Thus, scientists can evaluate the validity of traditional point-to-point reconstructions by visually examining a smooth interpolation of the displacement in 3D. We show the efficacy of our approach by using it to reconstruct segments of the San Andreas fault, California as well as a graben structure in the Noctis Labyrinthus region on Mars.
NASA Astrophysics Data System (ADS)
Falcucci, E.; Gori, S.; Moro, M.; Fubelli, G.; Saroli, M.; Chiarabba, C.; Galadini, F.
2015-05-01
We investigate the Middle Aterno Valley fault system (MAVF), a poorly investigated seismic gap in the central Apennines, adjacent to the 2009 L'Aquila earthquake epicentral area. Geological and paleoseismological analyses revealed that the MAVF evolved through hanging wall splay nucleation, its main segment moving at 0.23-0.34 mm/year since the Middle Pleistocene; the penultimate activation event occurred between 5388-5310 B.C. and 1934-1744 B.C., the last event after 2036-1768 B.C. and just before 1st-2nd century AD. These data define hard linkage (sensu Walsh and Watterson, 1991; Peacock et al., 2000; Walsh et al., 2003, and references therein) with the contiguous Subequana Valley fault segment, able to rupture in large magnitude earthquakes (up to 6.8), that did not rupture since about two millennia. By the joint analysis of geological observations and seismological data acquired during to the 2009 seismic sequence, we derive a picture of the complex structural framework of the area comprised between the MAVF, the Paganica fault (the 2009 earthquake causative fault) and the Gran Sasso Range. This sector is affected by a dense array of few-km long, closely and regularly spaced Quaternary normal fault strands, that are considered as branches of the MAVF northern segment. Our analysis reveals that these structures are downdip confined by a decollement represented by to the presently inactive thrust sheet above the Gran Sasso front limiting their seismogenic potential. Our study highlights the advantage of combining Quaternary geological field analysis with high resolution seismological data to fully unravel the structural setting of regions where subsequent tectonic phases took place and where structural interference plays a key role in influencing the seismotectonic context; this has also inevitably implications for accurately assessing seismic hazard of such structurally complex regions.
NASA Astrophysics Data System (ADS)
Martel, Stephen J.; Pollard, David D.
1989-07-01
We exploit quasi-static fracture mechanics models for slip along pre-existing faults to account for the fracture structure observed along small exhumed faults and small segmented fault zones in the Mount Abbot quadrangle of California and to estimate stress drop and shear fracture energy from geological field measurements. Along small strike-slip faults, cracks that splay from the faults are common only near fault ends. In contrast, many cracks splay from the boundary faults at the edges of a simple fault zone. Except near segment ends, the cracks preferentially splay into a zone. We infer that shear displacement discontinuities (slip patches) along a small fault propagated to near the fault ends and caused fracturing there. Based on elastic stress analyses, we suggest that slip on one boundary fault triggered slip on the adjacent boundary fault, and that the subsequent interaction of the slip patches preferentially led to the generation of fractures that splayed into the zones away from segment ends and out of the zones near segment ends. We estimate the average stress drops for slip events along the fault zones as ˜1 MPa and the shear fracture energy release rate during slip as 5 × 102 - 2 × 104 J/m2. This estimate is similar to those obtained from shear fracture of laboratory samples, but orders of magnitude less than those for large fault zones. These results suggest that the shear fracture energy release rate increases as the structural complexity of fault zones increases.
Overview of the Kinematics of the Salton Trough and Northern Gulf of California
NASA Astrophysics Data System (ADS)
Stock, J. M.
2016-12-01
In the Salton Trough and Northern Gulf of California, transtensional rifting is leading to full continental plate breakup, as a major continental block is being transferred to an oceanic plate. Since at least 6 Ma this region has taken up most of the plate boundary slip between the Pacific and North America plates at this latitude. We review the structural history of plate separation, as constrained by many recent studies of present and past fault configurations, seismicity, and basin development as seen from geology and geophysics. Modern activity in the USA is dominated by NW-striking strike-slip faults (San Andreas, San Jacinto, Elsinore), and subsidiary NE-striking faults. There is an equally broad zone in Mexico (faults from the Mexicali Valley to the Colorado River Delta and bounding the Laguna Salada basin), including active low-angle detachment faults. In both areas, shifts in fault activity are indicated by buried faults and exhumed or buried earlier basin strata. Seismicity defines 3 basin segments in the N Gulf: Consag-Wagner, Upper Delfin, and Lower Delfin, but localization is incomplete. These basins occupy a broad zone of modern deformation, lacking single transform faults, although major strike-slip faults formed in the surrounding continental area. The off-boundary deformation on the western side of the plate boundary has changed with time, as seen by Holocene and Quaternary faults controlling modern basins in the Gulf Extensional Province of NE Baja California, and stranded Pliocene continental and marine basin strata in subaerial fault blocks. The eastern side of the plate boundary, in the shallow northeastern Gulf, contains major NW-striking faults that may have dominated the earlier (latest Miocene-early Pliocene) kinematics. The Sonoran coastal plain likely buries additional older faults and basin sequences; further studies here are needed to refine models of the earlier structural development of this sector. Despite > 250 km of plate separation, and production of new crustal area in these segments of the plate boundary, the deformation is not considered to be fully localized because some occurs outside the region of new crustal formation. Similar scenarios may need to be considered when evaluating continent-ocean transitions in other rift systems.
Seismic Reflectivity of the Crust in the Northern Salton Trough
NASA Astrophysics Data System (ADS)
Bauer, K.; Fuis, G. S.; Goldman, M.; Persaud, P.; Ryberg, T.; Langenheim, V. E.; Scheirer, D. S.; Rymer, M. J.; Hole, J. A.; Stock, J. M.; Catchings, R.
2015-12-01
The Salton Trough in southern California is a tectonically active pull-apart basin that was formed by migrating step-overs between strike-slip faults, of which the San Andreas Fault (SAF) and the Imperial Fault are the current, northernmost examples. The Salton Seismic Imaging Project (SSIP) was undertaken to improve our knowledge of fault geometry and seismic velocities within the sedimentary basins and underlying crystalline crust around the SAF. Such data are useful as input for modeling scenarios of strong ground shaking in the surrounding high-population areas. We used pre-stack depth migration of line segments from shot gathers in several seismic profiles that were acquired in the northern part of the SSIP study area (Lines 4 - 7). Our migration approach can be considered as an infinite-frequency approximation of the Fresnel volume pre-stack depth migration method. We use line segments instead of the original waveform data. We demonstrate the method using synthetic data and analyze real data from Lines 4 - 7 to illustrate the relationship between distinct phases in the time domain and their resulting image at depth. We show both normal-moveout reflections from sub-horizontal interfaces and reverse-moveout reflections from steep interfaces, such as faults. Migrated images of dipping faults, such as the SAF and the Pinto Mountain Fault, are presented in this way. The SAF is imaged along Line 4, through the Mecca Hills, as a number of steeply dipping fault segments that collectively form a flower structure, above 5 km depth, that sole into a moderately NE-dipping fault below that depth. The individual migrated reflection packages correlate with mapped surface fault traces in the Mecca Hills. A similar geometry is seen on Line 6, from Palm Springs through Yucca Valley, where fault splays sole or project into a moderately dipping SAF below 10-km depth. We also show and discuss the reflectivity pattern of the middle and lower crust for Lines 4 - 7.
NASA Astrophysics Data System (ADS)
Pinar, Ali; Coskun, Zeynep; Mert, Aydin; Kalafat, Dogan
2015-04-01
The general consensus based on historical earthquake data point out that the last major moment release on the Prince's islands fault was in 1766 which in turn signals an increased seismic risk for Istanbul Metropolitan area considering the fact that most of the 20 mm/yr GPS derived slip rate for the region is accommodated mostly by that fault segment. The orientation of the Prince's islands fault segment overlaps with the NW-SE direction of the maximum principle stress axis derived from the focal mechanism solutions of the large and moderate sized earthquakes occurred in the Marmara region. As such, the NW-SE trending fault segment translates the motion between the two E-W trending branches of the North Anatolian fault zone; one extending from the Gulf of Izmit towards Çınarcık basin and the other extending between offshore Bakırköy and Silivri. The basic relation between the orientation of the maximum and minimum principal stress axes, the shear and normal stresses, and the orientation of a fault provides clue on the strength of a fault, i.e., its frictional coefficient. Here, the angle between the fault normal and maximum compressive stress axis is a key parameter where fault normal and fault parallel maximum compressive stress might be a necessary and sufficient condition for a creeping event. That relation also implies that when the trend of the sigma-1 axis is close to the strike of the fault the shear stress acting on the fault plane approaches zero. On the other hand, the ratio between the shear and normal stresses acting on a fault plane is proportional to the coefficient of frictional coefficient of the fault. Accordingly, the geometry between the Prince's islands fault segment and a maximum principal stress axis matches a weak fault model. In the frame of the presentation we analyze seismological data acquired in Marmara region and interpret the results in conjuction with the above mentioned weak fault model.
NASA Astrophysics Data System (ADS)
Arzhannikova, A.; Arzhannikov, S.; Braucher, R.; Jolivet, M.; Aumaître, G.; Bourlès, D.; Keddadouche, K.
2018-02-01
The formation of the Baikal rift system basins is controlled by active faults separating each basin from the adjacent horsts. The kinematics of these faults is mainly explored through investigation of complex sequences of the fault-intersecting river terraces that record both tectonic and climatic events. This study focuses on the northern margin of the major Tunka basin that develops south-west of Lake Baikal. The development of the basin is controlled by the segmented Tunka fault. We performed a detailed mapping of the Kyngarga river terraces, the best preserved terraces staircase in Baikal rift system, at their intersection with the Tunka fault. In order to decipher the chronology of seismic events and the slip rates along that segment of the fault, key terraces were dated using in situ produced cosmogenic 10Be. We demonstrate that the formation of the terrace staircase occurred entirely during MIS1-MIS2. The obtained data allowed us to estimate the rate of incision at different stages of the terrace staircase formation and the relationship between the vertical and horizontal slip rates along this sub-latitudinal segment of the Tunka fault making respectively 0.8 and 1.12 mm yr- 1 over the past 12.5 ka. Analysis of the paleoseismology and paleoclimate data together with terrace dating provided the possibility to estimate the influence of tectonic and climatic factors on the terrace formation. Our proposed model of the Kyngarga river terrace development shows that the incisions into terraces T3 and T6 were induced by the abrupt climatic warming episodes GI-1 and GI-2, respectively, whereas terraces T5, T4 and T2 were abandoned due to the vertical tectonic displacement along the Tunka fault caused by coseismic ruptures.
Structural architecture and tectonic evolution of the Maghara inverted basin, Northern Sinai, Egypt
NASA Astrophysics Data System (ADS)
Moustafa, Adel R.
2014-05-01
Large NE-SW oriented asymmetric inversion anticlines bounded on their southeastern sides by reverse faults affect the exposed Mesozoic and Cenozoic sedimentary rocks of the Maghara area (northern Sinai). Seismic data indicate an earlier Jurassic rifting phase and surface structures indicate Late Cretaceous-Early Tertiary inversion phase. The geometry of the early extensional fault system clearly affected the sense of slip of the inverted faults and the geometry of the inversion anticlines. Rift-parallel fault segments were reactivated by reverse slip whereas rift-oblique fault segments were reactivated as oblique-slip faults or lateral/oblique ramps. New syn-inversion faults include two short conjugate strike-slip sets dissecting the forelimbs of inversion anticlines and the inverted faults as well as a set of transverse normal faults dissecting the backlimbs. Small anticline-syncline fold pairs ornamenting the steep flanks of the inversion anticlines are located at the transfer zones between en echelon segments of the inverted faults.
Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake
Shen, Z.-K.; Sun, Jielun; Zhang, P.; Wan, Y.; Wang, M.; Burgmann, R.; Zeng, Y.; Gan, Weijun; Liao, H.; Wang, Q.
2009-01-01
The disastrous 12 May 2008 Wenchuan earthquake in China took the local population as well as scientists by surprise. Although the Longmen Shan fault zonewhich includes the fault segments along which this earthquake nucleatedwas well known, geologic and geodetic data indicate relatively low (<3 mm yr -1) deformation rates. Here we invert Global Positioning System and Interferometric Synthetic Aperture Radar data to infer fault geometry and slip distribution associated with the earthquake. Our analysis shows that the geometry of the fault changes along its length: in the southwest, the fault plane dips moderately to the northwest but becomes nearly vertical in the northeast. Associated with this is a change in the motion along the fault from predominantly thrusting to strike-slip. Peak slip along the fault occurs at the intersections of fault segments located near the towns of Yingxiu, Beichuan and Nanba, where fatalities and damage were concentrated. We suggest that these locations represent barriers that failed in a single event, enabling the rupture to cascade through several fault segments and cause a major moment magnitude (Mw) 7.9 earthquake. Using coseismic slip distribution and geodetic and geological slip rates, we estimate that the failure of barriers and rupture along multiple segments takes place approximately once in 4,000 years. ?? 2009 Macmillan Publishers Limited. All rights reserved.
Seismic Hazard Analysis for Armenia and its Surrounding Areas
NASA Astrophysics Data System (ADS)
Klein, E.; Shen-Tu, B.; Mahdyiar, M.; Karakhanyan, A.; Pagani, M.; Weatherill, G.; Gee, R. C.
2017-12-01
The Republic of Armenia is located within the central part of a large, 800 km wide, intracontinental collision zone between the Arabian and Eurasian plates. Active deformation occurs along numerous structures in the form of faulting, folding, and volcanism distributed throughout the entire zone from the Bitlis-Zargos suture belt to the Greater Caucasus Mountains and between the relatively rigid Back Sea and Caspian Sea blocks without any single structure that can be claimed as predominant. In recent years, significant work has been done on mapping active faults, compiling and reviewing historic and paleoseismological studies in the region, especially in Armenia; these recent research contributions have greatly improved our understanding of the seismogenic sources and their characteristics. In this study we performed a seismic hazard analysis for Armenia and its surrounding areas using the latest detailed geological and paleoseismological information on active faults, strain rates estimated from kinematic modeling of GPS data and all available historic earthquake data. The seismic source model uses a combination of characteristic earthquake and gridded seismicity models to take advantage of the detailed knowledge of the known faults while acknowledging the distributed deformation and regional tectonic environment of the collision zone. In addition, the fault model considers earthquake ruptures that include single and multi-segment or fault rupture scenarios with earthquakes that can rupture any part of a multiple segment fault zone. The ground motion model uses a set of ground motion prediction equations (GMPE) selected from a pool of GMPEs based on the assessment of each GMPE against the available strong motion data in the region. The hazard is computed in the GEM's OpenQuake engine. We will present final hazard results and discuss the uncertainties associated with various input data and their impact on the hazard at various locations.
NASA Astrophysics Data System (ADS)
Valoroso, L.; Chiaraluce, L.; Di Stefano, R.; Piccinini, D.; Schaff, D. P.; Waldhauser, F.
2011-12-01
On April 6th 2009, a MW 6.1 normal faulting earthquake struck the axial area of the Abruzzo region in Central Italy. We present high-precision hypocenter locations of an extraordinary dataset composed by 64,000 earthquakes recorded at a very dense seismic network of 60 stations operating for 9 months after the main event. Events span in magnitude (ML) between -0.9 to 5.9, reaching a completeness magnitude of 0.7. The dataset has been processed by integrating an accurate automatic picking procedure together with cross-correlation and double-difference relative location methods. The combined use of these procedures results in earthquake relative location uncertainties in the range of a few meters to tens of meters, comparable/lower than the spatial dimension of the earthquakes themselves). This data set allows us to image the complex inner geometry of individual faults from the kilometre to meter scale. The aftershock distribution illuminates the anatomy of the en-echelon fault system composed of two major faults. The mainshock breaks the entire upper crust from 10 km depth to the surface along a 14-km long normal fault. A second segment, located north of the normal fault and activated by two Mw>5 events, shows a striking listric geometry completely blind. We focus on the analysis of about 300 clusters of co-located events to characterize the mechanical behavior of the different portions of the fault system. The number of events in each cluster ranges from 4 to 24 events and they exhibit strongly correlated seismograms at common stations. They mostly occur where secondary structures join the main fault planes and along unfavorably oriented segments. Moreover, larger clusters nucleate on secondary faults located in the overlapping area between the two main segments, where the rate of earthquake production is very high with a long-lasting seismic decay.
Becker, T.W.; Hardebeck, J.L.; Anderson, G.
2005-01-01
We use Global Positioning System (GPS) velocities and stress orientations inferred from seismicity to invert for the distribution of slip on faults in the southern California plate-boundary region. Of particular interest is how long-term slip rates are partitioned between the Indio segment of the San Andreas fault (SAF), the San Jacinto fault (SJF) and the San Bernardino segment of the SAE We use two new sets of constraints to address this problem. The first is geodetic velocities from the Southern California Earthquake Center's (SCEC) Crustal Motion Map (version 3 by Shen et al.), which includes significantly more data than previous models. The second is a regional model of stress-field orientations at seismogenic depths, as determined from earthquake focal mechanisms. While GPS data have been used in similar studies before, this is the first application of stress-field observations to this problem. We construct a simplified model of the southern California fault system, and estimate the interseismic surface velocities using a backslip approach with purely elastic strain accumulation, following Meade et al. In addition, we model the stress orientations at seismogenic depths, assuming that crustal stress results from the loading of active faults. The geodetically derived stressing rates are found to be aligned with the stress orientations from seismicity. We therefore proceed to invert simultaneously GPS and stress observations for slip rates of the faults in our network. We find that the regional patterns of crustal deformation as imaged by both data sets can be explained by our model, and that joint inversions lead to better constrained slip rates. In our preferred model, the SJF accommodates ???15 mm yr-1 and the Indio segment of the SAF ???23 mm yr-1 of right-lateral motion, accompanied by a low slip rate on the San Bernardino segment of the SAF 'Anomalous' fault segments such as around the 1992 Mw = 7.3 Landers surface rupture can be detected. There, observed stresses deviate strongly from the long-term loading as predicted by our simple model. Evaluation of model misfits together with information from palaeoseismology may provide further insights into the time dependence of strain accumulation along the San Andreas system. ?? 2004 RAS.
A step forward in understanding step-overs: the case of the Dead Sea Fault in northern Israel
NASA Astrophysics Data System (ADS)
Dembo, Neta; Granot, Roi; Hamiel, Yariv
2017-04-01
The rotational deformation field around step-overs between segments of strike-slip faults is poorly resolved. Vertical-axis paleomagnetic rotations can be used to characterize the deformation field, and together with mechanical modeling, can provide constraints on the characteristics of the adjacent fault segments. The northern Dead Sea Fault, a major segmented sinistral transform fault that straddles the boundary between the Arabian Plate and Sinai Subplate, offers an appropriate tectonic setting for our detailed mechanical and paleomagnetic investigation. We examine the paleomagnetic vertical-axis rotations of Neogene-Pleistocene basalt outcrops surrounding a right step-over between two prominent segments of the fault: the Jordan Gorge section and the Hula East Boundary Fault. Results from 20 new paleomagnetic sites reveal significant (>20˚) counterclockwise rotations within the step-over and small clockwise rotations in the vicinity. Sites located further (>2.5 km) away from the step-over generally experience negligible to minor rotations. Finally, we construct a mechanical model guided by the observed rotational field that allows us to characterize the structural, mechanical and kinematic behavior of the Dead Sea Fault in northern Israel.
Earthquake behavior along the Levant fault from paleoseismology (Invited)
NASA Astrophysics Data System (ADS)
Klinger, Y.; Le Beon, M.; Wechsler, N.; Rockwell, T. K.
2013-12-01
The Levant fault is a major continental structure 1200 km-long that bounds the Arabian plate to the west. The finite offset of this left-lateral strike-slip fault is estimated to be 105 km for the section located south of the restraining bend corresponding roughly to Lebanon. Along this southern section the slip-rate has been estimated over a large range of time scales, from few years to few hundreds thousands of years. Over these different time scales, studies agree for the slip-rate to be 5mm/yr × 2 mm/yr. The southern section of the Levant fault is particularly attractive to study earthquake behavior through time for several reasons: 1/ The fault geometry is simple and well constrained. 2/ The fault system is isolated and does not interact with obvious neighbor fault systems. 3/ The Middle-East, where the Levant fault is located, is the region in the world where one finds the longest and most complete historical record of past earthquakes. About 30 km north of the city of Aqaba, we opened a trench in the southern part of the Yotvata playa, along the Wadi Araba fault segment. The stratigraphy presents silty sand playa units alternating with coarser sand sediments from alluvial fans flowing westwards from the Jordan plateau. Two fault zones can be recognized in the trench and a minimum of 8 earthquakes can be identified, based on upward terminations of ground ruptures. Dense 14C dating through the entire exposure allows matching the 4 most recent events with historical events in AD1458, AD1212, AD1068 and AD748. Size of the ground rupture suggests a bi-modal distribution of earthquakes with earthquakes rupturing the entire Wadi Araba segment and earthquakes ending in the extensional jog forming the playa. Timing of earthquakes shows that no earthquakes occurred at this site since about 600 years, suggesting earthquake clustering along this section of the fault and potential for a large earthquake in the near future. 3D paleoseismological trenches at the Beteiha site, north of the lake Tiberias, show that there the earthquake activity varies significantly through time, with periods of intense seismic activity associated to small horizontal offsets and periods of bigger earthquakes with larger offsets. Hence, earthquake clustering also seems to govern earthquake occurrence along this segment of the Levant fault. On the contrary, further north, where the fault bends and deformation is spread between several parallel faults, paleoseismological trenches at the Yammouneh site show that earthquakes seem to be fairly regular every 800 years. Such difference in behavior along different sections of the fault suggests that the fault geometry might play an important role in the way earthquakes are distributed through time.
Ground-motion signature of dynamic ruptures on rough faults
NASA Astrophysics Data System (ADS)
Mai, P. Martin; Galis, Martin; Thingbaijam, Kiran K. S.; Vyas, Jagdish C.
2016-04-01
Natural earthquakes occur on faults characterized by large-scale segmentation and small-scale roughness. This multi-scale geometrical complexity controls the dynamic rupture process, and hence strongly affects the radiated seismic waves and near-field shaking. For a fault system with given segmentation, the question arises what are the conditions for producing large-magnitude multi-segment ruptures, as opposed to smaller single-segment events. Similarly, for variable degrees of roughness, ruptures may be arrested prematurely or may break the entire fault. In addition, fault roughness induces rupture incoherence that determines the level of high-frequency radiation. Using HPC-enabled dynamic-rupture simulations, we generate physically self-consistent rough-fault earthquake scenarios (M~6.8) and their associated near-source seismic radiation. Because these computations are too expensive to be conducted routinely for simulation-based seismic hazard assessment, we thrive to develop an effective pseudo-dynamic source characterization that produces (almost) the same ground-motion characteristics. Therefore, we examine how variable degrees of fault roughness affect rupture properties and the seismic wavefield, and develop a planar-fault kinematic source representation that emulates the observed dynamic behaviour. We propose an effective workflow for improved pseudo-dynamic source modelling that incorporates rough-fault effects and its associated high-frequency radiation in broadband ground-motion computation for simulation-based seismic hazard assessment.
Earthquake epicenters and fault intersections in central and southern California
NASA Technical Reports Server (NTRS)
Abdel-Gawad, M. (Principal Investigator); Silverstein, J.
1972-01-01
The author has identifed the following significant results. ERTS-1 imagery provided evidence for the existence of short transverse fault segments lodged between faults of the San Andreas system in the Coast Ranges, California. They indicate that an early episode of transverse shear has affected the Coast Ranges prior to the establishment of the present San Andreas fault. The fault has been offset by transverse faults of the Transverse Ranges. It appears feasible to identify from ERTS-1 imagery geomorphic criteria of recent fault movements. Plots of historic earthquakes in the Coast Ranges and western Transverse Ranges show clusters in areas where structures are complicated by interaction of tow active fault systems. A fault lineament apparently not previously mapped was identified in the Uinta Mountains, Utah. Part of the lineament show evidence of recent faulting which corresponds to a moderate earthquake cluster.
NASA Technical Reports Server (NTRS)
Abdel-Gawad, M. (Principal Investigator); Silverstein, J.; Tubbesing, L.
1973-01-01
The author has identified the following significant results. ERTS-1 imagery covering the eastern California-Nevada seismic belt were utilized to study the fault pattern in relation to the distribution of earthquake epicenters and Quaternary volcanic rocks. Many suspected faults not previously mapped were identified. These include several suspected shear zones in Nevada, faults showing evidence of recent breakage, and major lineaments. Highly seismic areas are generally characterized by Holocene faulting and Quaternary volcanic activity. However, several major fault segments showing evidence of recent breakage are associated with little or no seismicity. The tectonic pattern strongly suggests that the eastern California-Nevada seismic belt coincides with a major crustal rift associated with zones of lateral shear. New data on potentially active fault zones have direct practical applications in national and local earthquake hazard reduction programs. Positive contacts have been made with Kern and Ventura Counties to make results of this investigation available for application to their earthquake hazards definition projects.
NASA Astrophysics Data System (ADS)
Johnson, S.; Mendez, K.; Beresh, S. C. M.; Mynatt, W. G.; Elifritz, E. A.; Laó-Dávila, D. A.; Atekwana, E. A.; Abdelsalam, M. G.; Chindandali, P. R. N.; Chisenga, C.; Gondwe, S.; Mkumbura, M.; Kalaguluka, D.; Kalindekafe, L.; Salima, J.
2017-12-01
The objective of our research is to explore the evolution of synthetic fault systems in continental rifts. It has been suggested that during the rifting process border faults may become locked and strain is then accommodated within the hanging wall. The Malawi Rift provides an opportunity to study the evolution of these faults within a young (8 Ma), active and magma-poor continental rift. Two faults in central Malawi may show the transference of strain into the hanging wall. These faults are the older Chirobwe-Ntcheu with a length of 115 km and a scarp height of 300-1000 m and the younger Bilila-Mtakataka with a length of 130 km and a scarp height of 4-320 m. We used high-resolution aeromagnetic data and 30m resolution Shuttle Radar Topography Mission (SRTM) digital elevation models (DEM) to provide a 3D spatial characterization of the fault system. Additionally 10cm resolution DEMs were created using unmanned aerial system (UAS) derived aerial photography and Structure from Motion to document the regional Precambrian foliation and joint patterns. Moreover, displacement profiles where extracted from the SRTM-DEM data to compare the segmentation and linkage of the outer and inner faults. Our preliminary results show that the strike of each fault is approximately NW-SE which follows the strike of the Precambrian fabric. The magnetic fabric has a strike of NW-SE in the south changing to NE-SW in the north suggesting that the faults are controlled in part by an inherited Precambrian fabric. The displacement profile of the inner Bilila-Mtakataka fault is asymmetric and displays five fault segments supporting the interpretation that this is a relatively young fault. The expected results of this study are information about segmentation and displacement of each fault and their relationship to one another. The results from the aeromagnetic data utilizing Source Parameter Imaging to produce an approximate depth to basement which will support the displacement profiles derived from the SRTM. Additionally the basement fabrics and faults will be delineated using a combination of aeromagnetic and SRTM data to show the relationship between the surface expression and the expression at depth of the fault scarp. Finally, all remote sensing interpretations are compared to our structural field mapping to confirm our interpretations.
NASA Astrophysics Data System (ADS)
Díaz, D.; Maksymowicz, A.; Vargas, G.; Vera, E.; Contreras-Reyes, E.; Rebolledo, S.
2014-08-01
The crustal-scale west-vergent San Ramón thrust fault system, which lies at the foot of the main Andean Cordillera in central Chile, is a geologically active structure with manifestations of late Quaternary complex surface rupture on fault segments along the eastern border of the city of Santiago. From the comparison of geophysical and geological observations, we assessed the subsurface structural pattern that affects the sedimentary cover and rock-substratum topography across fault scarps, which is critical for evaluating structural models and associated seismic hazard along the related faults. We performed seismic profiles with an average length of 250 m, using an array of 24 geophones (Geode), with 25 shots per profile, to produce high-resolution seismic tomography to aid in interpreting impedance changes associated with the deformed sedimentary cover. The recorded travel-time refractions and reflections were jointly inverted by using a 2-D tomographic approach, which resulted in variations across the scarp axis in both the velocities and the reflections that are interpreted as the sedimentary cover-rock substratum topography. Seismic anisotropy observed from tomographic profiles is consistent with sediment deformation triggered by west-vergent thrust tectonics along the fault. Electrical soundings crossing two fault scarps were used to construct subsurface resistivity tomographic profiles, which reveal systematic differences between lower resistivity values in the hanging wall with respect to the footwall of the geological structure, and clearly show well-defined east-dipping resistivity boundaries. These boundaries can be interpreted in terms of structurally driven fluid content change between the hanging wall and the footwall of the San Ramón fault. The overall results are consistent with a west-vergent thrust structure dipping ~55° E in the subsurface beneath the piedmont sediments, with local complexities likely associated with variations in fault surface rupture propagation, fault splays and fault segment transfer zones.
NASA Astrophysics Data System (ADS)
Díaz, D.; Maksymowicz, A.; Vargas, G.; Vera, E.; Contreras-Reyes, E.; Rebolledo, S.
2014-01-01
The crustal-scale west-vergent San Ramón thrust fault system at the foot of the main Andean Cordillera in central Chile is a geologically active structure with Quaternary manifestations of complex surface rupture along fault segments in the eastern border of Santiago city. From the comparison of geophysical and geological observations, we assessed the subsurface structure pattern affecting sedimentary cover and rock-substratum topography across fault scarps, which is critic for evaluating structural modeling and associated seismic hazard along this kind of faults. We performed seismic profiles with an average length of 250 m, using an array of twenty-four geophones (GEODE), and 25 shots per profile, supporting high-resolution seismic tomography for interpreting impedance changes associated to deformed sedimentary cover. The recorded traveltime refractions and reflections were jointly inverted by using a 2-D tomographic approach, which resulted in variations across the scarp axis in both velocities and reflections interpreted as the sedimentary cover-rock substratum topography. Seismic anisotropy observed from tomographic profiles is consistent with sediment deformation triggered by west-vergent thrust tectonics along the fault. Electrical soundings crossing two fault scarps supported subsurface resistivity tomographic profiles, which revealed systematic differences between lower resistivity values in the hanging wall with respect to the footwall of the geological structure, clearly limited by well-defined east-dipping resistivity boundaries. The latter can be interpreted in terms of structurally driven fluid content-change between the hanging wall and the footwall of a permeability boundary associated with the San Ramón fault. The overall results are consistent with a west-vergent thrust structure dipping ∼55° E at subsurface levels in piedmont sediments, with local complexities being probably associated to fault surface rupture propagation, fault-splay and fault segment transfer zones.
Tearing, segmentation, and backstepping of subduction in the Aegean: New insights from seismicity
NASA Astrophysics Data System (ADS)
Bocchini, G. M.; Brüstle, A.; Becker, D.; Meier, T.; van Keken, P. E.; Ruscic, M.; Papadopoulos, G. A.; Rische, M.; Friederich, W.
2018-06-01
This study revisits subduction processes at the Hellenic Subduction Zone (HSZ) including tearing, segmentation, and backstepping, by refining the geometry of the Nubian slab down to 150-180 km depth using well-located hypocentres from global and local seismicity catalogues. At the western termination of the HSZ, the Kefalonia Transform Fault marks the transition between oceanic and continental lithosphere subducting to the south and to the north of it, respectively. A discontinuity is suggested to exist between the two slabs at shallow depths. The Kefalonia Transform Fault is interpreted as an active Subduction-Transform-Edge-Propagator-fault formed as consequence of faster trench retreat induced by the subduction of oceanic lithosphere to the south of it. A model reconstructing the evolution of the subduction system in the area of Peloponnese since 34 Ma, involving the backstepping of the subduction to the back-side of Adria, provides seismological evidence that supports the single-slab model for the HSZ and suggests the correlation between the downdip limit of the seismicity to the amount of subducted oceanic lithosphere. In the area of Rhodes, earthquake hypocentres indicate the presence of a NW dipping subducting slab that rules out the presence of a NE-SW striking Subduction-Transform-Edge-Propagator-fault in the Pliny-Strabo trenches region. Earthquake hypocentres also allow refining the slab tear beneath southwestern Anatolia down to 150-180 km depth. Furthermore, the distribution of microseismicity shows a first-order slab segmentation in the region between Crete and Karpathos, with a less steep and laterally wider slab segment to the west and a steeper and narrower slab segment to the east. Thermal models indicate the presence of a colder slab beneath the southeastern Aegean that leads to deepening of the intermediate-depth seismicity. Slab segmentation affects the upper plate deformation that is stronger above the eastern slab segment and the seismicity along the interplate seismogenic zone.
NASA Astrophysics Data System (ADS)
Xiao, J.; Wang, W.; He, J.
2016-12-01
The 2001 Mw=7.8 Kokoxili earthquake nucleated on the west-east tending Kunlun strike-slip fault in center of the Tibetan plateau. When the rupture propagated eastward near the Xidatan segment of the Kunlun fault, this earthquake jumped to the Kunlun Pass fault, a less matured fault that, due to the geometric orientation, was obviously clamped by the coseismic deformation before its rupture. To investigate the possible mechanism for the rupture jump, we updated the coseismic rupture model from a joint inversion of the geological, geodetic and seismic wave data. Constrained with the rupture process, a three-dimensional finite element model was developed to calculate the failure stress from elastic and poroelastic deformation of the crust during the rupture propagation. Results show that just before the rupture reached the conjunction of the Xidatan segment and the Kunlun Pass fault, the failure stress induced by elastic deformation is indeed larger on Xidatan segment of the Kunlun fault than on the Kunlun Pass fault. However, if the pore pressure resulted from undrained poroelastic deformation was invoked, the failure stress is significantly increased on the Kunlun Pass fault. Given a reasonable bound on fault friction and on poroelastic parameters, it can be seen that the poroelastic failure stress is 0.3-0.9 Mpa greater on the Kunlun Pass fault than on Xidatan segment of the Kunlun fault. We therefore argue that during the rupture process of the 2001 Mw=7.8 Kokoxili earthquake, pore pressure may play an important role on controlling the rupture propagation from the Kunlun fault to the Kunlun Pass fault.
Fault creep rates of the Chaman fault (Afghanistan and Pakistan) inferred from InSAR
NASA Astrophysics Data System (ADS)
Barnhart, William D.
2017-01-01
The Chaman fault is the major strike-slip structural boundary between the India and Eurasia plates. Despite sinistral slip rates similar to the North America-Pacific plate boundary, no major (>M7) earthquakes have been documented along the Chaman fault, indicating that the fault either creeps aseismically or is at a late stage in its seismic cycle. Recent work with remotely sensed interferometric synthetic aperture radar (InSAR) time series documented a heterogeneous distribution of fault creep and interseismic coupling along the entire length of the Chaman fault, including an 125 km long creeping segment and an 95 km long locked segment within the region documented in this study. Here I present additional InSAR time series results from the Envisat and ALOS radar missions spanning the southern and central Chaman fault in an effort to constrain the locking depth, dip, and slip direction of the Chaman fault. I find that the fault deviates little from a vertical geometry and accommodates little to no fault-normal displacements. Peak-documented creep rates on the fault are 9-12 mm/yr, accounting for 25-33% of the total motion between India and Eurasia, and locking depths in creeping segments are commonly shallower than 500 m. The magnitude of the 1892 Chaman earthquake is well predicted by the total area of the 95 km long coupled segment. To a first order, the heterogeneous distribution of aseismic creep combined with consistently shallow locking depths suggests that the southern and central Chaman fault may only produce small to moderate earthquakes (
Active Structures as Deduced from Geomorphic Features: A case in Hsinchu Area, northwestern Taiwan
NASA Astrophysics Data System (ADS)
Chen, Y.; Shyu, J.; Ota, Y.; Chen, W.; Hu, J.; Tsai, B.; Wang, Y.
2002-12-01
Hsinchu area is located in the northwestern Taiwan, the fold-and thrust belt created by arc-continent collision between Eurasian and Philippine. Since the collision event is still ongoing, the island is tectonically active and full of active faults. According to the historical records, some of the faults are seismically acting. In Hsinchuarea two active faults, the Hsinchu and Hsincheng, have been previously mapped. To evaluate the recent activities, we studied the related geomorphic features by using newly developed Digital Elevation Model (DEM), the aerial photos and field investigation. Geologically, both of the faults are coupled with a hanging wall anticline. The anticlines are recently active due to the deformation of the geomorphic surfaces. The Hsinchu fault system shows complicate corresponding scarps, distributed sub-parallel to the fault trace previously suggested by projection of subsurface geology. This is probably caused by its strike-slip component tearing the surrounding area along the main trace. The scarps associated with the Hsincheng fault system are rather simple and unique. It offsets a flight of terraces all the way down to recent flood plain, indicating its long lasting activity. One to two kilometers to east of main trace a back-thrust is found, showing coupled vertical surface offsets with the main fault. The striking discovery in this study is that the surface deformation is only distributed in the southern bank of Touchien river, also suddenly decreasing when crossing another tear fault system, which is originated from Hsincheng fault in the west and extending southeastward parallel to the Touchien river. The strike-slip fault system mentioned above not only bisects the Hsinchu fault, but also divides the Hsincheng fault into segments. The supporting evidence found in this study includes pressure ridges and depressions. As a whole, the study area is tectonically dominated by three active fault systems and two actively growing anticlines. The interactions between active structural systems formed the complicate geomorphic features presented in this paper.
NASA Astrophysics Data System (ADS)
Nakano, M.; Kumagai, H.; Yamashina, T.; Inoue, H.; Toda, S.
2007-12-01
On March 6, 2007, an earthquake doublet occurred around Lake Singkarak, central Sumatra in Indonesia. An earthquake with magnitude (Mw) 6.4 at 03:49 is followed two hours later (05:49) by a similar-size event (Mw 6.3). Lake Singkarak is located between the Sianok and Sumani fault segments of the Sumatran fault system, and is a pull-apart basin formed at the segment boundary. We investigate source processes of the earthquakes using waveform data obtained from JISNET, which is a broad-band seismograph network in Indonesia. We first estimate the centroid source locations and focal mechanisms by the waveform inversion carried out in the frequency domain. Since stations are distributed almost linearly in the NW-SE direction coincident with the Sumatran fault strike direction, the estimated centroid locations are not well resolved especially in the direction orthogonal to the NW-SE direction. If we assume that these earthquakes occurred along the Sumatran fault, the first earthquake is located on the Sumani segment below Lake Singkarak and the second event is located at a few tens of kilometers north of the first event on the Sianok segment. The focal mechanisms of both events point to almost identical right-lateral strike-slip vertical faulting, which is consistent with the geometry of the Sumatran fault system. We next investigate the rupture initiation points using the particle motions of the P-waves of these earthquakes observed at station PPI, which is located about 20 km north of the Lake Singkarak. The initiation point of the first event is estimated in the north of the lake, which corresponds to the northern end of the Sumani segment. The initiation point of the second event is estimated at the southern end of the Sianok segment. The observed maximum amplitudes at stations located in the SE of the source region show larger amplitudes for the first event than those for the second one. On the other hand, the amplitudes at station BSI located in the NW of the source region show larger amplitude for the second event than that for the first one. Since the magnitudes, focal mechanisms, and source locations are almost identical for the two events, the larger amplitudes for the second event at BSI may be due to the effect of rupture directivity. Accordingly, we obtain the following image of source processes of the earthquake doublet: The first event initiated at the segment boundary and its rupture propagated along the Sumani segment to the SW direction. Then, the second event, which may be triggered by the first event, initiated at a location close to the hypocenter of the first event, but its rupture propagated along the Sianok segment to the NE direction, opposite to the first event. It is known that the previous significant seismic activity along the Sianok and Sumani segments occurred in 1926, which was also an earthquake doublet with similar magnitudes to those in 2007. If we assume that the time interval between the earthquake doublets in 1926 and 2007 represents the average recurrence interval and that typical slip in the individual earthquakes is 1 m, we obtain approximately 1 cm/year for a slip rate of the fault segments. Geological features indicate that Lake Singkrak is no more than a few million years old (Sieh and Natawidjaja, 2000, JGR). If the pull-apart basin has been created since a few million years ago with the estimated slip rate of the segments, we obtain roughly 20 km of the total offset on the Sianok and Sumani segments, which is consistent with the observed offset. Our study supports the model of Sieh and Natawidjaja (2000) that the basin continues to be created by dextral slip on the en echelon Sumani and Sianok segments.
NASA Astrophysics Data System (ADS)
Takeuchi, C. S.; Sclater, J. G.; Grindlay, N. R.; Madsen, J. A.; Rommevaux-Jestin, C.
2008-12-01
The ultra-slow spreading Southwest Indian Ridge (SWIR) separates the Antarctic and African plates. We present results from two surveys covering the SWIR between 26° and 27°30'E and between 32° and 35°E, lying on either side of the long-offset Andrew Bain transform fault. The objectives of the surveys were to characterize the segmentation of an ultra-slow spreading ridge on either side of a long-offset transform fault and to examine the structure of the individual segments. Four transform faults, the Du Toit, Andrew Bain, Marion, and Prince Edward, and one non-transform discontinuity bound four accretionary segments in the survey areas. Two segments lie northeast of the Andrew Bain (32°-35°E). Large central axial volcanoes, deep, broad mantle Bouguer anomaly (MBA) lows, and high magnetization intensities centered on the spreading axis result from high magmatic activity. Increased magmatism on the ridge axis is likely caused by high mantle temperatures produced by the close proximity of the Marion Plume, which abuts the northern end of the Andrew Bain. Two segments lie southwest of the Andrew Bain (26°-27°30'E). Discrepancies in the locations of the axial rift valley, central magnetization high, and an irregularly-shaped MBA low suggest complex accretionary processes at the western segment (~26°-27° E). The eastern segment (~27°-27°30'E), which abuts the southwest end of the Andrew Bain, shows a deep axial valley, MBA values which increase to the east, and nearly nonexistent magnetization intensity. These features are probably the result of amagmatic accretion caused by the transform edge effect of the Andrew Bain. A transition in the character of topography at 26°45'E suggests that the current segment configuration may not be temporally stable. High-relief (~1 km) ridge-trough structures south of the spreading axis may be the result of an episodic interplay between accretion, both magmatic and amagmatic, and tectonic extension.
An Examination of Seismicity Linking the Solomon Islands and Vanuatu Subduction Zones
NASA Astrophysics Data System (ADS)
Neely, J. S.; Furlong, K. P.
2015-12-01
The Solomon Islands-Vanuatu composite subduction zone represents a tectonically complex region along the Pacific-Australia plate boundary in the southwest Pacific Ocean. Here the Australia plate subducts under the Pacific plate in two segments: the South Solomon Trench and the Vanuatu Trench. The two subducting sections are offset by a 200 km long, transform fault - the San Cristobal Trough (SCT) - which acts as a Subduction-Transform Edge Propagator (STEP) fault. The subducting segments have experienced much more frequent and larger seismic events than the STEP fault. The northern Vanuatu trench hosted a M8.0 earthquake in 2013. In 2014, at the juncture of the western terminus of the SCT and the southern South Solomon Trench, two earthquakes (M7.4 and M7.6) occurred with disparate mechanisms (dominantly thrust and strike-slip respectively), which we interpret to indicate the tearing of the Australia plate as its northern section subducts and southern section translates along the SCT. During the 2013-2014 timeframe, little seismic activity occurred along the STEP fault. However, in May 2015, three M6.8-6.9 strike-slip events occurred in rapid succession as the STEP fault ruptured east to west. These recent events share similarities with a 1993 strike-slip STEP sequence on the SCT. Analysis of the 1993 and 2015 STEP earthquake sequences provides constraints on the plate boundary geometry of this major transform fault. Preliminary research suggests that plate motion along the STEP fault is partitioned between larger east-west oriented strike-slip events and smaller north-south thrust earthquakes. Additionally, the differences in seismic activity between the subducting slabs and the STEP fault can provide insights into how stress is transferred along the plate boundary and the mechanisms by which that stress is released.
NASA Astrophysics Data System (ADS)
Zhao, M.; Canales, J.
2009-12-01
The Trans-Atlantic Geotraverse (TAG) segment of the Mid-Atlantic Ridge (MAR) (25°55'N-26°20'N) is characterized by massive active and relict high-temperature hydrothermal deposits. Previous geological and geophysical studies indicate that the active TAG hydrothermal mound sits on the hanging wall of an active detachment fault. The STAG microseismicity study revealed that seismicity associated to detachment faulting extends deep into the crust/uppermost mantle (>6 km), forming an arcuate band (in plan view) extending along ~25 km of the rift valley floor (deMartin et al., Geology, 35, 711-714, 2007). Two-dimensional analysis of the STAG seismic refraction data acquired with ocean bottom seismometers (OBSs) showed that the eastern rift valley wall is associated with high P-wave velocities (>7 km/s) at shallow levels (>1 km depth), indicating uplift of lower crustal and/or upper mantle rocks along the detachment fault (Canales et al., Geochem., Geophys., Geosyst., 8, Q08004, doi:08010.01029/02007GC001629, 2008). Here we present a three-dimensional (3D) seismic tomography analysis of the complete STAG seismic refraction OBS dataset to illuminate the 3D crustal architecture of the TAG segment. Our new results provide, for the first time, a detailed picture of the complex, dome-shaped geometry and structure of a nascent oceanic core complex being exhumed by a detachment fault. Our results show a relatively low-velocity anomaly embedded within the high-velocity body forming the footwall of the detachment fault. The low velocity sits 2-3 km immediately beneath the active TAG hydrothermal mound. Although velocities within the low-velocity zone are too high (6 km/s) to represent partial melt, we speculate that this low velocity zone is intimately linked to hydrothermal processes taking place at TAG. We consider three possible scenarios for its origin: (1) a highly fissured zone produced by extensional stresses during footwall exhumation that may help localize fluid flow; (2) a hot -perhaps partially molten- gabbro pluton intruding the detachment fault footwall, which could provide some of the heat driving hydrothermal circulation at TAG; or (3) serpenitized peridotite, with hydration of the footwall being enhanced by hydrothermal fluid flow. This research was granted by the US-NSF (OCE-0137329) and the Chinese National Natural Science Foundation (40776025). M. Zhao was supported by China Scholarship Council (CSC) for 6 months of cooperative research at WHOI.
Resistivity structure of Sumatran Fault (Aceh segment) derived from 1-D magnetotelluric modeling
NASA Astrophysics Data System (ADS)
Nurhasan, Sutarno, D.; Bachtiar, H.; Sugiyanto, D.; Ogawa, Y.; Kimata, F.; Fitriani, D.
2012-06-01
Sumatran Fault Zone is the most active fault in Indonesia as a result of strike-slip component of Indo-Australian oblique convergence. With the length of 1900 km, Sumatran fault was divided into 20 segments starting from the southernmost Sumatra Island having small slip rate and increasing to the north end of Sumatra Island. There are several geophysical methods to analyze fault structure depending on physical parameter used in these methods, such as seismology, geodesy and electromagnetic. Magnetotelluric method which is one of geophysical methods has been widely used in mapping and sounding resistivity distribution because it does not only has the ability for detecting contras resistivity but also has a penetration range up to hundreds of kilometers. Magnetotelluric survey was carried out in Aceh region with the 12 total sites crossing Sumatran Fault on Aceh and Seulimeum segments. Two components of electric and magnetic fields were recorded during 10 hours in average with the frequency range from 320 Hz to 0,01 Hz. Analysis of the pseudosection of phase and apparent resistivity exhibit vertical low phase flanked on the west and east by high phase describing the existence of resistivity contras in this region. Having rotated the data to N45°E direction, interpretation of the result has been performed using three different methods of 1D MT modeling i.e. Bostick inversion, 1D MT inversion of TM data, and 1D MT inversion of the impedance determinant. By comparison, we concluded that the use of TM data only and the impedance determinant in 1D inversion yield the more reliable resistivity structure of the fault compare to other methods. Based on this result, it has been shown clearly that Sumatra Fault is characterized by vertical contras resistivity indicating the existence of Aceh and Seulimeum faults which has a good agreement with the geological data.
NASA Astrophysics Data System (ADS)
Klein, E.; Masson, F.; Duputel, Z.; Yavasoglu, H.; Agram, P. S.
2016-12-01
Over the last two decades, the densification of GPS networks and the development of new radar satellites offered an unprecedented opportunity to study crustal deformation due to faulting. Yet, submarine strike slip fault segments remain a major issue, especially when the landscape appears unfavorable to the use of SAR measurements. It is the case of the North Anatolian fault segments located in the Main Marmara Sea, that remain unbroken ever since the Mw7.4 earthquake of Izmit in 1999, which ended a eastward migrating seismic sequence of Mw > 7 earthquakes. Located directly offshore Istanbul, evaluation of seismic hazard appears capital. But a strong controversy remains over whether these segments are accumulating strain and are likely to experience a major earthquake, or are creeping, resulting both from the simplicity of current geodetic models and the scarcity of geodetic data. We indeed show that 2D infinite fault models cannot account for the complexity of the Marmara fault segments. But current geodetic data in the western region of Istanbul are also insufficient to invert for the coupling using a 3D geometry of the fault. Therefore, we implement a global optimization procedure aiming at identifying the most favorable distribution of GPS stations to explore the strain accumulation. We present here the results of this procedure that allows to determine both the optimal number and location of the new stations. We show that a denser terrestrial survey network can indeed locally improve the resolution on the shallower part of the fault, even more efficiently with permanent stations. But data closer from the fault, only possible by submarine measurements, remain necessary to properly constrain the fault behavior and its potential along strike coupling variations.
Fisher, M.A.; Langenheim, V.E.; Sorlien, C.C.; Dartnell, P.; Sliter, R.W.; Cochrane, G.R.; Wong, F.L.
2005-01-01
Offshore faults west of Point Dume, southern California, are part of an important regional fault system that extends for about 206 km, from near the city of Los Angeles westward along the south flank of the Santa Monica Mountains and through the northern Channel Islands. This boundary fault system separates the western Transverse Ranges, on the north, from the California Continental Borderland, on the south. Previous research showed that the fault system includes many active fault strands; consequently, the entire system is considered a serious potential earthquake hazard to nearby Los Angeles. We present an integrated analysis of multichannel seismic- and high-resolution seismic-reflection data and multibeam-bathymetric information to focus on the central part of the fault system that lies west of Point Dume. We show that some of the main offshore faults have cumulative displacements of 3-5 km, and many faults are currently active because they deform the seafloor or very shallow sediment layers. The main offshore fault is the Dume fault, a large north-dipping reverse fault. In the eastern part of the study area, this fault offsets the seafloor, showing Holocene displacement. Onshore, the Malibu Coast fault dips steeply north, is active, and shows left-oblique slip. The probable offshore extension of this fault is a large fault that dips steeply in its upper part but flattens at depth. High-resolution seismic data show that this fault deforms shallow sediment making up the Hueneme fan complex, indicating Holocene activity. A structure near Sycamore knoll strikes transversely to the main faults and could be important to the analysis of the regional earthquake hazard because the structure might form a boundary between earthquake-rupture segments.
Activation of preexisting transverse structures in an evolving magmatic rift in East Africa
NASA Astrophysics Data System (ADS)
Muirhead, J. D.; Kattenhorn, S. A.
2018-01-01
Inherited crustal weaknesses have long been recognized as important factors in strain localization and basin development in the East African Rift System (EARS). However, the timing and kinematics (e.g., sense of slip) of transverse (rift-oblique) faults that exploit these weaknesses are debated, and thus the roles of inherited weaknesses at different stages of rift basin evolution are often overlooked. The mechanics of transverse faulting were addressed through an analysis of the Kordjya fault of the Magadi basin (Kenya Rift). Fault kinematics were investigated from field and remote-sensing data collected on fault and joint systems. Our analysis indicates that the Kordjya fault consists of a complex system of predominantly NNE-striking, rift-parallel fault segments that collectively form a NNW-trending array of en echelon faults. The transverse Kordjya fault therefore reactivated existing rift-parallel faults in ∼1 Ma lavas as oblique-normal faults with a component of sinistral shear. In all, these fault motions accommodate dip-slip on an underlying transverse structure that exploits the Aswa basement shear zone. This study shows that transverse faults may be activated through a complex interplay among magma-assisted strain localization, preexisting structures, and local stress rotations. Rather than forming during rift initiation, transverse structures can develop after the establishment of pervasive rift-parallel fault systems, and may exhibit dip-slip kinematics when activated from local stress rotations. The Kordjya fault is shown here to form a kinematic linkage that transfers strain to a newly developing center of concentrated magmatism and normal faulting. It is concluded that recently activated transverse faults not only reveal the effects of inherited basement weaknesses on fault development, but also provide important clues regarding developing magmatic and tectonic systems as young continental rift basins evolve.
Synthetic earthquake catalogs simulating seismic activity in the Corinth Gulf, Greece, fault system
NASA Astrophysics Data System (ADS)
Console, Rodolfo; Carluccio, Roberto; Papadimitriou, Eleftheria; Karakostas, Vassilis
2015-01-01
The characteristic earthquake hypothesis is the basis of time-dependent modeling of earthquake recurrence on major faults. However, the characteristic earthquake hypothesis is not strongly supported by observational data. Few fault segments have long historical or paleoseismic records of individually dated ruptures, and when data and parameter uncertainties are allowed for, the form of the recurrence distribution is difficult to establish. This is the case, for instance, of the Corinth Gulf Fault System (CGFS), for which documents about strong earthquakes exist for at least 2000 years, although they can be considered complete for M ≥ 6.0 only for the latest 300 years, during which only few characteristic earthquakes are reported for individual fault segments. The use of a physics-based earthquake simulator has allowed the production of catalogs lasting 100,000 years and containing more than 500,000 events of magnitudes ≥ 4.0. The main features of our simulation algorithm are (1) an average slip rate released by earthquakes for every single segment in the investigated fault system, (2) heuristic procedures for rupture growth and stop, leading to a self-organized earthquake magnitude distribution, (3) the interaction between earthquake sources, and (4) the effect of minor earthquakes in redistributing stress. The application of our simulation algorithm to the CGFS has shown realistic features in time, space, and magnitude behavior of the seismicity. These features include long-term periodicity of strong earthquakes, short-term clustering of both strong and smaller events, and a realistic earthquake magnitude distribution departing from the Gutenberg-Richter distribution in the higher-magnitude range.
NASA Astrophysics Data System (ADS)
Siame, L. L.; Bellier, O.; Sébrier, M.; Bourlès, D. L.; Leturmy, P.; Perez, M.; Araujo, M.
2002-07-01
Because earthquakes on large active thrust or reverse faults are not always accompanied with surface rupture, paleoseismological estimation of their associated seismic hazard is a difficult task. To improve the seismic hazard assessments in the Andean foreland of western Argentina (San Juan Province), this paper proposes a novel approach that combines structural geology, geomorphology and exposure age dating. The Eastern Precordillera of San Juan is probably one of the most active zones of thrust tectonics in the world. We concentrated on one major regional active reverse structure, the 145 km long Villicúm-Pedernal thrust, where this methodology allows one to: (1) constrain the Quaternary stress regime by inversion of geologically determined slip vectors on minor or major fault planes; (2) analyse the geometry and the geomorphic characteristics of the Villicúm-Pedernal thrust; and (3) estimate uplift and shortening rates through determination of in situ-produced 10Be cosmic ray exposure (CRE) ages of abandoned and uplifted alluvial terraces. From a structural point of view, the Villicúm-Pedernal thrust can be subdivided into three thrust portions constituting major structural segments separated by oblique N40°E-trending fault branches. Along the three segments, inversion of fault slip data shows that the development of the Eastern Precordillera between 31°S and 32°S latitude is dominated by a pure compressive reverse faulting stress regime characterized by a N110°+/- 10°E-trending compressional stress axis (σ1). A geomorphic study realized along the 18 km long Las Tapias fault segment combined with CRE ages shows that the minimum shortening rate calculated over the previous ~20 kyr is at least of the order of 1 mm yr-1. An earthquake moment tensor sum has also been used to calculate a regional shortening rate caused by seismic deformation. This analysis of the focal solutions available for the last 23 yr shows that the seismic contribution may be three times greater than the shortening rate we determined for the Las Tapias fault (i.e. ~3 mm yr-), suggesting that the San Juan region may have experienced a seismic crisis during the 20th century. Moreover, the ramp that controls the development of the Eastern Precordillera appears to be one of the main seismic sources in the San Juan area, particularly the 65 km long Villicúm-Las Tapias segment. A first-order evaluation of the seismic hazard parameters shows that this thrust segment can produce a maximum earthquake characterized by a moment magnitude of ~7.3 (+/-0.1) and a recurrence interval of 2.4 (+/-1.5) kyr. This part of the Villicúm-Pedernal ramp may have ruptured during the Ms= 7.4, 1944 San Juan earthquake producing very few surface ruptures and only distributed flexural slip deformation on to the Neogene foreland bedding planes between the Eastern Precordillera and Pie de Palo.
NASA Astrophysics Data System (ADS)
Audin, L.; Manighetti, I.; Tapponnier, P.; Métivier, F.; Jacques, E.; Huchon, P.
2001-02-01
A detailed geophysical survey of the Ghoubbet Al Kharab (Djibouti) clarifies the small-scale morphology of the last submerged rift segment of the propagating Aden ridge before it enters the Afar depression. The bathymetry reveals a system of antithetic normal faults striking N130°E, roughly aligned with those active along the Asal rift. The 3.5kHz sub-bottom profiler shows how the faults cut distinct layers within the recent, up to 60m thick, sediment cover on the floor of the basin. A large volcanic structure, in the centre of the basin, the `Ghoubbet' volcano, separates two sedimentary flats. The organization of volcanism and the planform of faulting, with en echelon subrifts along the entire Asal-Ghoubbet rift, appear to confirm the westward propagation of this segment of the plate boundary. Faults throughout the rift have been active continuously for the last 8400yr, but certain sediment layers show different offsets. The varying offsets of these layers, dated from cores previously retrieved in the southern basin, imply Holocene vertical slip rates of 0.3-1.4mmyr-1 and indicate a major decrease in sedimentation rate after about 6000yr BP, and a redistribution of sediments in the deepest troughs during the period that preceded that change.
NASA Astrophysics Data System (ADS)
Madden, E. H.; Pollard, D. D.
2009-12-01
Multi-fault, strike-slip earthquakes have proved difficult to incorporate into seismic hazard analyses due to the difficulty of determining the probability of these ruptures, despite collection of extensive data associated with such events. Modeling the mechanical behavior of these complex ruptures contributes to a better understanding of their occurrence by elucidating the relationship between surface and subsurface earthquake activity along transform faults. This insight is especially important for hazard mitigation, as multi-fault systems can produce earthquakes larger than those associated with any one fault involved. We present a linear elastic, quasi-static model of the southern portion of the 28 June 1992 Landers earthquake built in the boundary element software program Poly3D. This event did not rupture the extent of any one previously mapped fault, but trended 80km N and NW across segments of five sub-parallel, N-S and NW-SE striking faults. At M7.3, the earthquake was larger than the potential earthquakes associated with the individual faults that ruptured. The model extends from the Johnson Valley Fault, across the Landers-Kickapoo Fault, to the Homestead Valley Fault, using data associated with a six-week time period following the mainshock. It honors the complex surface deformation associated with this earthquake, which was well exposed in the desert environment and mapped extensively in the field and from aerial photos in the days immediately following the earthquake. Thus, the model incorporates the non-linearity and segmentation of the main rupture traces, the irregularity of fault slip distributions, and the associated secondary structures such as strike-slip splays and thrust faults. Interferometric Synthetic Aperture Radar (InSAR) images of the Landers event provided the first satellite images of ground deformation caused by a single seismic event and provide constraints on off-fault surface displacement in this six-week period. Insight is gained by comparing the density, magnitudes and focal plane orientations of relocated aftershocks for this time frame with the magnitude and orientation of planes of maximum Coulomb shear stress around the fault planes at depth.
Rupture complexity and the supershear transition on rough faults
NASA Astrophysics Data System (ADS)
Bruhat, Lucile; Fang, Zijun; Dunham, Eric M.
2016-01-01
Field investigations suggest that supershear earthquakes occur on geometrically simple, smooth fault segments. In contrast, dynamic rupture simulations show how heterogeneity of stress, strength, and fault geometry can trigger supershear transitions, as well as other complex rupture styles. Here we examine the Fang and Dunham (2013) ensemble of 2-D plane strain dynamic ruptures on fractally rough faults subject to strongly rate weakening friction laws to document the effect of fault roughness and prestress on rupture behavior. Roughness gives rise to extremely diverse rupture styles, such as rupture arrests, secondary slip pulses that rerupture previously slipped fault sections, and supershear transitions. Even when the prestress is below the Burridge-Andrews threshold for supershear on planar faults with uniform stress and strength conditions, supershear transitions are observed. A statistical analysis of the rupture velocity distribution reveals that supershear transients become increasingly likely at higher stress levels and on rougher faults. We examine individual ruptures and identify recurrent patterns for the supershear transition. While some transitions occur on fault segments that are favorably oriented in the background stress field, other transitions happen at the initiation of or after propagation through an unfavorable bend. We conclude that supershear transients are indeed favored by geometric complexity. In contrast, sustained supershear propagation is most common on segments that are locally smoother than average. Because rupture style is so sensitive to both background stress and small-scale details of the fault geometry, it seems unlikely that field maps of fault traces will provide reliable deterministic predictions of supershear propagation on specific fault segments.
NASA Astrophysics Data System (ADS)
Wechsler, N.; Rockwell, T. K.; Klinger, Y.; Agnon, A.; Marco, S.
2012-12-01
Models used to forecast future seismicity make fundamental assumptions about the behavior of faults and fault systems in the long term, but in many cases this long-term behavior is assumed using short-term and perhaps non-representative observations. The question arises - how long of a record is long enough to represent actual fault behavior, both in terms of recurrence of earthquakes and of moment release (aka slip-rate). We test earthquake recurrence and slip models via high-resolution three-dimensional trenching of the Beteiha (Bet-Zayda) site on the Dead Sea Transform (DST) in northern Israel. We extend the earthquake history of this simple plate boundary fault to establish slip rate for the past 3-4kyr, to determine the amount of slip per event and to study the fundamental behavior, thereby testing competing rupture models (characteristic, slip-patch, slip-loading, and Gutenberg Richter type distribution). To this end we opened more than 900m of trenches, mapped 8 buried channels and dated more than 80 radiocarbon samples. By mapping buried channels, offset by the DST on both sides of the fault, we obtained for each an estimate of displacement. Coupled with fault crossing trenches to determine event history, we construct earthquake and slip history for the fault for the past 2kyr. We observe evidence for a total of 9-10 surface-rupturing earthquakes with varying offset amounts. 6-7 events occurred in the 1st millennium, compared to just 2-3 in the 2nd millennium CE. From our observations it is clear that the fault is not behaving in a periodic fashion. A 4kyr old buried channel yields a slip rate of 3.5-4mm/yr, consistent with GPS rates for this segment. Yet in spite of the apparent agreement between GPS, Pleistocene to present slip rate, and the lifetime rate of the DST, the past 800-1000 year period appears deficit in strain release. Thus, in terms of moment release, most of the fault has remained locked and is accumulating elastic strain. In contrast, the preceding 1200 years or so experienced a spate of earthquake activity, with large events along the Jordan Valley segment alone in 31 BCE, 363, 749, and 1033 CE. Thus, the return period appears to vary by a factor of two to four during the historical period in the Jordan Valley as well as at our site. The Beteiha site seems to be affected by both its southern and northern neighboring segments, and there is tentative evidence that earthquakes nucleating in the Jordan Valley (e.g. 749 CE) can rupture through the Galilee step-over to the south of Beteiha, or trigger a smaller event on the Jordan Gorge segment, in which case the historical record will tend to amalgamate any evidence for it into one large event. We offer a model of earthquake slip for this segment, in which the overall slip rate remains constant, yet differing earthquake sizes can occur, depending on the segment from which they originated and the time since the last large event. The rate of earthquake production in this model does not produce a time predictable pattern over a period of 2kyr, and the slip rate varies between the 1st and 2nd millennia CE, as a result of the interplay between coalescing fault segments to the north.
NASA Astrophysics Data System (ADS)
Okumura, K.
2011-12-01
Accurate location and geometry of seismic sources are critical to estimate strong ground motion. Complete and precise rupture history is also critical to estimate the probability of the future events. In order to better forecast future earthquakes and to reduce seismic hazards, we should consider over all options and choose the most likely parameter. Multiple options for logic trees are acceptable only after thorough examination of contradicting estimates and should not be a result from easy compromise or epoche. In the process of preparation and revisions of Japanese probabilistic and deterministic earthquake hazard maps by Headquarters for Earthquake Research Promotion since 1996, many decisions were made to select plausible parameters, but many contradicting estimates have been left without thorough examinations. There are several highly-active faults in central Japan such as Itoigawa-Shizuoka Tectonic Line active fault system (ISTL), West Nagano Basin fault system (WNBF), Inadani fault system (INFS), and Atera fault system (ATFS). The highest slip rate and the shortest recurrence interval are respectively ~1 cm/yr and 500 to 800 years, and estimated maximum magnitude is 7.5 to 8.5. Those faults are very hazardous because almost entire population and industries are located above the fault within tectonic depressions. As to the fault location, most uncertainties arises from interpretation of geomorphic features. Geomorphological interpretation without geological and structural insight often leads to wrong mapping. Though non-existent longer fault may be a safer estimate, incorrectness harm reliability of the forecast. Also this does not greatly affect strong motion estimates, but misleading to surface displacement issues. Fault geometry, on the other hand, is very important to estimate intensity distribution. For the middle portion of the ISTL, fast-moving left-lateral strike-slip up to 1 cm/yr is obvious. Recent seismicity possibly induced by 2011 Tohoku earthquake show pure strike-slip. However, thrusts are modeled from seismic profiles and gravity anomalies. Therefore, two contradicting models are presented for strong motion estimates. There should be a unique solution of the geometry, which will be discussed. As to the rupture history, there is plenty of paleoseismological evidence that supports segmentation of those faults above. However, in most fault zones, the largest and sometimes possibly less frequent earthquakes are modeled. Segmentation and modeling of coming earthquakes should be more carefully examined without leaving them in contradictions.
NASA Astrophysics Data System (ADS)
Coussement, C.; Gente, P.; Rolet, J.; Tiercelin, J.-J.; Wafula, M.; Buku, S.
1994-10-01
The two branches of the East African Rift system include numerous hydrothermal fields, which are closely related to the present fault motion and to volcanic and seismic activity. In this study structural data from Pemba and Cape Banza hydrothermal fields (western branch, North Tanganyika, Zaire) are discussed in terms of neotectonic phenomena. Different types of records, such as fieldwork (onshore and underwater) and LANDSAT and SPOT imagery, are used to explain structural controls on active and fossil hydrothermal systems and their significance. The Pemba site is located at the intersection of 000-020°-trending normal faults belonging to the Uvira Border Fault System and a 120-130°-trending transtensional fault zone and is an area of high seismicity, with events of relatively large magnitude ( Ms < 6.5). The Cape Banza site occurs at the northern end of the Ubawari Peninsula horst. It is bounded by two fault systems trending 015° and is characterized seismically by events of small magnitude ( Ms < 4). The hydrothermal area itself is tectonically controlled by structures striking 170-180° and 080°. The analysis of both hydrothermal areas demonstrates the rejuvenation of older Proterozoic structures during Recent rift faulting and the location of the hydrothermal activity at the junctions of submeridian and transverse faults. The fault motion is compatible with a regional direction of extension of 090-110°. The Cape Banza and Pemba hydrothermal fields may testify to magma chambers existing below the junctions of the faults. They appear to form at structural nodes and may represent a future volcanic province. Together with the four surface volcanic provinces existing along the western branch, they possibly indicate an incipient rift segmentation related to 'valley-valley' or 'transverse fault-valley' junctions, contrasting with the spacing of the volcanoes measured in the eastern branch. These spacings appear to express the different elastic thicknesses between the eastern and western branches of the East African Rift system, perhaps related to a difference in stage of evolution of the two branches.
Donne, D.D.; Plccardi, L.; Odum, J.K.; Stephenson, W.J.; Williams, R.A.
2007-01-01
Shallow seismic reflection prospecting has been carried out in order to investigate the faults that bound to the southwest and northeast the Quaternary Upper Tiber Basin (Northern Apennines, Italy). On the northeastern margin of the basin a ??? 1 km long reflection seismic profile images a fault segment and the associated up to 100 meters thick sediment wedge. Across the southwestern margin a 0.5 km-long seismic profile images a 50-55??-dipping extensional fault, that projects to the scarp at the base of the range-front, and against which a 100 m thick syn-tectonic sediment wedge has formed. The integration of surface and sub-surface data allows to estimate at least 190 meters of vertical displacement along the fault and a slip rate around 0.25 m/kyr. Southwestern fault might also be interpreted as the main splay structure of regional Alto Tiberina extensional fault. At last, the 1917 Monterchi earthquake (Imax=X, Boschi et alii, 2000) is correlable with an activation of the southwestern fault, and thus suggesting the seismogenic character of this latter.
Active shortening of the Cascadia forearc and implications for seismic hazards of the Puget Lowland
Johnson, S.Y.; Blakely, R.J.; Stephenson, W.J.; Dadisman, S.V.; Fisher, M.A.
2004-01-01
Margin-parallel shortening of the Cascadia forearc is a consequence of oblique subduction of the Juan de Fuca plate beneath North America. Strike-slip, thrust, and oblique crustal faults beneath the densely populated Puget Lowland accommodate much of this north-south compression, resulting in large crustal earthquakes. To better understand this forearc deformation and improve earthquake hazard, assessment, we here use seismic reflection surveys, coastal exposures of Pleistocene strata, potential-field data, and airborne laser swath mapping to document and interpret a significant structural boundary near the City of Tacoma. This boundary is a complex structural zone characterized by two distinct segments. The northwest trending, eastern segment, extending from Tacoma to Carr Inlet, is formed by the broad (??? 11.5 km), southwest dipping (??? 11??-2??) Rosedale monocline. This monocline raises Crescent Formation basement about 2.5 km, resulting in a moderate gravity gradient. We interpret the Rosedale monocline as a fault-bend fold, forming above a deep thrust fault. Within the Rosedale monocline, inferred Quaternary strata thin northward and form a growth triangle that is 4.1 to 6.6 km wide at its base, suggesting ??? 2-3 mm/yr of slip on the underlying thrust. The western section of the >40-km-long, north dipping Tacoma fault, extending from Hood Canal to Carr Inlet, forms the western segment of the Tacoma basin margin. Structural relief on this portion of the basin margin may be several kilometers, resulting in steep gravity and aeromagnetic anomalies. Quaternary structural relief along the Tacoma fault is as much as 350-400 m, indicating a minimum slip rate of about 0.2 mm/yr. The inferred eastern section of the Tacoma fault (east of Carr Inlet) crosses the southern part of the Seattle uplift, has variable geometry along strike, and diminished structural relief. The Tacoma fault is regarded as a north dipping backthrust to the Seattle fault, so that slip on a master thrust fault at depth could result in movement on the Seattle fault, the Tacoma fault, or both.
NASA Astrophysics Data System (ADS)
Cilona, A.; Aydin, A.; Hazelton, G.
2013-12-01
Characterization of the structural architecture of a 5 km-long, N40°E-striking fault zone provides new insights for the interpretation of hydraulic heads measured across and along the fault. Of interest is the contaminant transport across a portion of the Upper Cretaceous Chatsworth Formation, a 1400 m-thick turbidite sequence of sandstones and shales exposed in the Simi Hills, south California. Local bedding consistently dips about 20° to 30° to NW. Participating hydrogeologists monitor the local groundwater system by means of numerous boreholes used to define the 3D distribution of the groundwater table around the fault. Sixty hydraulic head measurements consistently show differences of 10s of meters, except for a small area. In this presentation, we propose a link between this distribution and the fault zone architecture. Despite an apparent linear morphological trend, the fault is made up of at least three distinct segments named here as northern, central and southern segments. Key aspects of the fault zone architecture have been delineated at two sites. The first is an outcrop of the central segment and the second is a borehole intersecting the northern segment at depth. The first site shows the fault zone juxtaposing sandstones against shales. Here the fault zone consists of a 13 meter-wide fault rock including a highly deformed sliver of sandstone on the northwestern side. In the sandstone, shear offset was resolved along N42°E striking and SE dipping fracture surfaces localized within a 40 cm thick strand. Here the central core of the fault zone is 8 m-wide and contains mostly shale characterized by highly diffuse deformation. It shows a complex texture overprinted by N30°E-striking carbonate veins. At the southeastern edge of the fault zone exposure, a shale unit dipping 50° NW towards the fault zone provides the key information that the shale unit was incorporated into the fault zone in a manner consistent with shale smearing. At the second site, a borehole more than 194 meter-long intersects the fault zone at its bottom. Based on an optical televiewer image supplemented by limited recovered rock cores, a juxtaposition plane (dipping 75° SE) between a fractured sandstone and a highly-deformed shale fault rock has been interpreted as the southeastern boundary of the fault zone. The shale fault rock estimated to be thicker than 4 meters is highly folded and brecciated with locally complex cataclastic texture. The observations and interpretations of the fault architecture presented above suggest that the drop of hydraulic head detected across the fault segments is due primarily to the low-permeability shaly fault rock incorporated into the fault zone by a shale smearing mechanism. Interestingly, at around the step between the northern and the central fault segments, where the fault offset is expected to diminish (no hard link and no significant shaly fault rock), the groundwater levels measured on either sides of the fault zone are more-or-less equal.
NASA Astrophysics Data System (ADS)
He, Zhongtai
2017-04-01
The two eastern segments of the Sertengshan piedmont fault have moved considerably since the Holocene. Several paleoseismic events have occurred along the fault since 30 ka BP. Paleoearthquake studies have been advanced by digging new trenches and combining the results with the findings of previous studies. Comprehensive analyses of the trenches revealed that 6 paleoseismic events have occurred on the Kuoluebulong segment since approximately 30 ka BP within the following successive time periods: 19.01-37.56 ka, 18.73 ka, 15.03-15.86 ka, 10.96 ka, 5.77-6.48 ka and 2.32 ka BP. The analyses also revealed that 6 paleoseismic events have occurred on the Dashetai segment since approximately 30 ka BP, and the successive occurrence times are 29.07 ka, 19.12-28.23 ka, 13.92-15.22 ka, 9.38-9.83 ka, 6.08-8.36 ka and 3.59 ka BP. The results indicate that quasi-periodic recurrences occurred along the two segments with an approximate 4000 a mean recurrence interval. The consistent timing of the 6 events between the two segments indicates that the segments might conform to the cascade rupturing model between the two segments of the Sertengshan piedmont fault. The latest event on the Kuoluebulong segment of the Sertengshan piedmont fault is the historical M8 earthquake that occurred on November 11, 7 BC, which was recorded by a large number of Chinese historical texts.
NASA Astrophysics Data System (ADS)
Philibosian, B.; Meltzner, A. J.; Sieh, K.
2017-12-01
Understanding earthquake cycle processes is key to both seismic hazard and fault mechanics. A concept that has come into focus recently is that rupture segmentation and cyclicity can be complex, and that simple models of periodically repeating similar earthquakes are inadequate. The term "supercycle" has been used to describe repeating longer periods of strain accumulation that involve multiple fault ruptures. However, this term has become broadly applied, lumping together several distinct phenomena that likely have disparate underlying causes. Earthquake recurrence patterns have often been described as "clustered," but this term is also imprecise. It is necessary to develop a terminology framework that consistently and meaningfully describes all types of behavior that are observed. We divide earthquake cycle patterns into four major classes, each having different implications for seismic hazard and fault mechanics: 1) quasi-periodic similar ruptures, 2) temporally clustered similar ruptures, 3) temporally clustered complementary ruptures, also known as rupture cascades, in which neighboring fault patches fail sequentially, and 4) superimposed cycles in which neighboring fault patches have cycles with different recurrence intervals, but may occasionally rupture together. Rupture segmentation is classified as persistent, frequent, or transient depending on how reliably ruptures terminate in a given area. We discuss the paleoseismic and historical evidence currently available for each of these types of behavior on subduction zone megathrust faults worldwide. Due to the unique level of paleoseismic and paleogeodetic detail provided by the coral microatoll technique, the Sumatran Sunda megathrust provides one of the most complete records over multiple seismic cycles. Most subduction zones with sufficient data exhibit examples of persistent and frequent segmentation, with cycle patterns 1, 3, and 4 on different segments. Pattern 2 is generally confined to overlap zones between segments. This catalog of seismic cycle observations provides a basis for exploring and modeling root causes of rupture segmentation and cycle behavior. Researchers should expect to discover similar behavior styles on other megathrust faults and perhaps major crustal faults around the world.
NASA Astrophysics Data System (ADS)
Kalafat, D.; Gunes, Y.; Kekovali, K.; Kara, M.; Gorgun, E.
2017-12-01
n this study we investigated seismicity and source characteristics of the Sultandağı Fault Zone (SFZ). As known Western Anatolia is one of the most important seismically active region in Turkey. The relative movement of the African-Arabian plates, it causes the Anatolian Plate to movement to the west-Southwest direction 2.5 cm per year and this result provides N-S direction with extensional regime in the recent tectonic. In this study, especially with the assessment of seismic activity occurring in Afyon and around between 200-2002 years, we have been evaluated to date with seismic activity as well as fault mechanism solution. We analyzed recent seismicity and distribution of earthquakes in this region. In the last century, 3 important earthquakes occurred in the Sultandağı Fault zone (Afyon-Akşehir Graben), this result shown it was seismic active and broken fault segments caused stress balance in the region and it caused to occur with short intervals of earthquakes in 2000 and 2002, triggering each other. The scope of this tudy, we installed new BB stations in the region and we have been done of the fault plane solutions for important earthquakes. The focal mechanisms clearly exhibit the activation of a NE-SW trending normal faulting system along the SFZ region. The results of stress analysis showed that the effective current tectonic evolution of normal faulting in this region. This study is supported by Bogazici University Research Projects Commission under SRP/BAP project No. 12280. Key Words: Sultandağı fault zone, normal faulting, seismicity, fault mechanism
de Michele, Marcello; Ergintav, Semih; Aochi, Hideo; Raucoules, Daniel
2017-01-01
We utilize L-band interferometric synthetic aperture radar (InSAR) data in this study to retrieve a ground velocity map for the near field of the Ganos section of the north Anatolian fault (NAF) zone. The segmentation and creep distribution of this section, which last ruptured in 1912 to generate a moment magnitude (Mw)7.3 earthquake, remains incompletely understood. Because InSAR processing removes the mean orbital plane, we do not investigate large scale displacements due to regional tectonics in this study as these can be determined using global positioning system (GPS) data, instead concentrating on the close-to-the-fault displacement field. Our aim is to determine whether, or not, it is possible to retrieve robust near field velocity maps from stacking L-band interferograms, combining both single and dual polarization SAR data. In addition, we discuss whether a crustal velocity map can be used to complement GPS observations in an attempt to discriminate the present-day surface displacement of the Ganos fault (GF) across multiple segments. Finally, we characterize the spatial distribution of creep on shallow patches along multiple along-strike segments at shallow depths. Our results suggest the presence of fault segmentation along strike as well as creep on the shallow part of the fault (i.e. the existence of a shallow creeping patch) or the presence of a smoother section on the fault plane. Data imply a heterogeneous fault plane with more complex mechanics than previously thought. Because this study improves our knowledge of the mechanisms underlying the GF, our results have implications for local seismic hazard assessment.
Ergintav, Semih; Aochi, Hideo; Raucoules, Daniel
2017-01-01
We utilize L-band interferometric synthetic aperture radar (InSAR) data in this study to retrieve a ground velocity map for the near field of the Ganos section of the north Anatolian fault (NAF) zone. The segmentation and creep distribution of this section, which last ruptured in 1912 to generate a moment magnitude (Mw)7.3 earthquake, remains incompletely understood. Because InSAR processing removes the mean orbital plane, we do not investigate large scale displacements due to regional tectonics in this study as these can be determined using global positioning system (GPS) data, instead concentrating on the close-to-the-fault displacement field. Our aim is to determine whether, or not, it is possible to retrieve robust near field velocity maps from stacking L-band interferograms, combining both single and dual polarization SAR data. In addition, we discuss whether a crustal velocity map can be used to complement GPS observations in an attempt to discriminate the present-day surface displacement of the Ganos fault (GF) across multiple segments. Finally, we characterize the spatial distribution of creep on shallow patches along multiple along-strike segments at shallow depths. Our results suggest the presence of fault segmentation along strike as well as creep on the shallow part of the fault (i.e. the existence of a shallow creeping patch) or the presence of a smoother section on the fault plane. Data imply a heterogeneous fault plane with more complex mechanics than previously thought. Because this study improves our knowledge of the mechanisms underlying the GF, our results have implications for local seismic hazard assessment. PMID:28961264
NASA Astrophysics Data System (ADS)
Brown, C.; Ebinger, C. J.; Belachew, M.; Gregg, T.; Keir, D.; Ayele, A.; Aronovitz, A.; Campbell, E.
2008-12-01
Fault patterns record the strain history along passive continental margins, but geochronological constraints are, in general, too sparse to evaluate these patterns in 3D. The Afar depression in Ethiopia provides a unique setting to evaluate the time and space relations between faulting and magmatism across an incipient passive margin that formed above a mantle plume. The margin comprises a high elevation flood basalt province with thick, underplated continental crust, a narrow fault-line escarpment underlain by stretched and intruded crust, and a broad zone of highly intruded, mafic crust lying near sealevel. We analyze fault and seismicity patterns across and along the length of the Afar rift zone to determine the spatial distribution of strain during the final stages of continental breakup, and its relation to active magmatism and dike intrusions. Seismicity data include historic data and 2005-2007 data from the collaborative US-UK-Ethiopia Afar Geodynamics Project that includes the 2005-present Dabbahu rift episode. Earthquake epicenters cluster within discrete, 50 km-long magmatic segments that lack any fault linkage. Swarms also cluster along the fault-line scarp between the unstretched and highly stretched Afar rift zone; these earthquakes may signal release of stresses generated by large lateral density contrasts. We compare Coulomb static stress models with focal mechanisms and fault kinematics to discriminate between segmented magma intrusion and crank- arm models for the central Afar rift zone.
The 2016 Mw7.0 Kumamoto, Japan earthquake: the rupture propagation under extensional stress
NASA Astrophysics Data System (ADS)
Zhang, Y.; Shan, X.; Zhang, G.; Gong, W.
2016-12-01
On April 16, 2016, the Kumamoto city was hit by an Mw7.0 earthquake, the largest earthquake since 1900 in the central part of Kyushu Island in Japan. It is an event with two foreshocks and rather complex source faults and surface rupture scarps. The Mw7.0 Kumamoto earthquake and its foreshocks and aftershocks occurred on the Futagawa and Hinagu faults, which are previously mapped and formed the southwest portion of the median tectonic line on Kyushu Island. These faults are mainly controlled by extensional and right-lateral shear stress. In this study, we obtained the deformation filed of the Kumamoto earthquake using both of descending and ascending Sentinel-1A data. We then invert the fault slip distribution based on the displacements obtained by InSAR. A three-segment fault model is established by trial and error. We analyze the rupture propagation and the conclusions are listed as following: The Mw 7.0 earthquake is a right-lateral striking event with a slight normal component. Most of the slip distributed on the Futagawa fault segment, with a maximum slip of 4.9 m at 5 km depth below the surface. The energy released on this Futagawa fault segment is equivalent to an Mw6.9 event. The slip distribution on the Hinagu fault segment is also right-lateral, but with a maximum slip of 2 m. Compared to the southern two segments, the northern source fault segment has the steepest dipping segment, which is almost vertical, with a dip as high as 80°; The normal component of the Kumamoto event is controlled by extensional stress due to the tectonic background. The Beppu-Shimabara half graben is the largest extensional structure on Kyushu Island and its formation could strongly be affected by Philippine Sea slab (PHS) convergence and Okinawa Trough extension, so we argue the Kumamoto event maybe exhibits the concrete manifestation of Okinawa Trough extension to Kyushu Island; Continuous surface rupture trace is observed from InSAR coseismic deformation and field investigation, based on which we confirm that the Kumamoto event jumped a 1 km wide step over of the Kiyama fault and two 0.6km wide gaps. However, the mainshock do not jump a 1.7 km wide step over of the Futagawa fault, so its magnitude moment is constrained. In addition, both the Mw6.4 and Mw6.5 events could not go through a 2 km wide at the northeast termination of the Hinagu faults.
NASA Astrophysics Data System (ADS)
Lienkaemper, James J.; Williams, Patrick L.
1999-07-01
WGCEP90 estimated the Hayward fault to have a high probability (0.45 in 30 yr) of producing a future M7 Bay Area earthquake. This was based on a generic recurrence time and an unverified segmentation model, because there were few direct observations for the southern fault and none for the northern Hayward fault. To better constrain recurrence and segmentation of the northern Hayward fault, we trenched in north Oakland. Unexpectedly, we observed evidence of surface rupture probably from the M7 1868 earthquake. This extends the limit of that surface rupture 13 km north of the segmentation boundary used in the WGCEP90 model and forces serious re-evaluation of the current two-segment paradigm. Although we found that major prehistoric ruptures have occurred here, we could not radiocarbon date them. However, the last major prehistoric event appears correlative with a recently recognized event 13 km to the north dated AD 1640-1776.
Lienkaemper, J.J.; Williams, P.L.
1999-01-01
WGCEP90 estimated the Hayward fault to have a high probability (0.45 in 30 yr) of producing a future M7 Bay Area earthquake. This was based on a generic recurrence time and an unverified segmentation model, because there were few direct observations for the southern fault and none for the northern Hayward fault. To better constrain recurrence and segmentation of the northern Hayward fault, we trenched in north Oakland. Unexpectedly, we observed evidence of surface rupture probably from the M7 1868 earthquake. This extends the limit of that surface rupture 13 km north of the segmentation boundary used in the WGCEP90 model and forces serious re-evaluation of the current two-segment paradigm. Although we found that major prehistoric ruptures have occurred here, we could not radiocarbon date them. However, the last major prehistoric event appears correlative with a recently recognized event 13 km to the north dated AD 1640-1776. Copyright 1999 by the American Geophysical Union.
DeLong, Stephen B.; Hilley, George E.; Rymer, Michael J.; Prentice, Carol
2010-01-01
We used high-resolution topography to quantify the spatial distribution of scarps, linear valleys, topographic sinks, and oversteepened stream channels formed along an extensional step over on the San Andreas Fault (SAF) at Mustang Ridge, California. This location provides detail of both creeping fault landform development and complex fault zone kinematics. Here, the SAF creeps 10–14 mm/yr slower than at locations ∼20 km along the fault in either direction. This spatial change in creep rate is coincident with a series of en echelon oblique-normal faults that strike obliquely to the SAF and may accommodate the missing deformation. This study presents a suite of analyses that are helpful for proper mapping of faults in locations where high-resolution topographic data are available. Furthermore, our analyses indicate that two large subsidiary faults near the center of the step over zone appear to carry significant distributed deformation based on their large apparent vertical offsets, the presence of associated sag ponds and fluvial knickpoints, and the observation that they are rotating a segment of the main SAF. Several subsidiary faults in the southeastern portion of Mustang Ridge are likely less active; they have few associated sag ponds and have older scarp morphologic ages and subdued channel knickpoints. Several faults in the northwestern part of Mustang Ridge, though relatively small, are likely also actively accommodating active fault slip based on their young morphologic ages and the presence of associated sag ponds.
Geomorphic evidence of active faults growth in the Norcia seismic area (central Apennines, Italy)
NASA Astrophysics Data System (ADS)
Materazzi, Marco; Aringoli, Domenico; Farabollini, Piero; Giacopetti, Marco; Pambianchi, Gilberto; Tondi, Emanuele; Troiani, Francesco
2016-04-01
Fault-growth by segment linkage is one of the fundamental processes controlling the evolution, in both time and the space, of fault systems. In fact, step-like trajectories shown by length-displacement diagrams for individual fault arrays suggest that the development of evolved structures result by the linkage of single fault segments. The type of interaction between faults and the rate at which faults reactivate not only control the long term tectonic evolution of an area, but also influence the seismic hazard, as earthquake recurrence intervals tend to decrease as fault slip rate increase. The use of Geomorphological investigations represents an important tool to constrain the latest history of active faults. In this case, attention has to be given to recognize morphostructural, historical, environmental features at the surface, since they record the long-term seismic behavior due to the fault growth processes (Tondi and Cello, 2003). The aim of this work is to investigate the long term morphotectonic evolution of a well know seismic area in the central Apennines: the Norcia intramontane basin (Aringoli et al., 2005). The activity of the Norcia seismic area is characterized by moderate events and by strong earthquakes with maximum intensities of X-XI degrees MCS and equivalent magnitudes around 6.5±7.0 (CPTI, 2004). Based on the morphostructural features as well as on the historical seismicity of the area, we may divide the Norcia seismic area into three minor basins roughly NW-SE oriented: the Preci sub-basin in the north; the S. Scolastica and the Castel S. Maria sub-basins in the south. The wider basin (S. Scolastica) is separated from the other two by ridges transversally oriented with respect the basins themselves; they are the geomorphological response to the tectonic deformation which characterizes the whole area. Other geomorphological evidences of tectonic activity are represented by deformation of old summit erosional surfaces, hydrographic network diversion, faulted deposits, deep-seated gravitational slope deformations and large landslides. Moreover the sub-basins represent the surface evidence of traits belonging to the Norcia seismogenic structure, which have repeatedly caused earthquakes in the past, thus determining similar geological, structural and morphostructural features within the wider Norcia area, without causing the whole structure to rupture. The size of these sub-basins and, thus, the size of the relevant seismogenic segments, allows to calculate a maximum magnitude for the three sub-basins and for the seismogenic area as a whole. References Aringoli D., Cavitolo P., Farabollini P., Galindo-Zaldivar J., Gentili B., Giano S.I., Lòpez-Garrido A.C.,. Materazzi M, Nibbi L., Pedrera A., Pambianchi G., Ruano P., Ruiz-Constàn A., Sanz de Galdeano C., Savelli D., Tondi E., Troiani F. 2014. Morphotectonic characterization of the quaternary intermontane basins in the Umbria-Marche Apennines (Italy). Rend. Fis. Acc. Lincei 25 (Suppl 2), S111-S128. DOI 10.1007/s12210-014-0330-0 CPTI, Working Group, 2004. Catalogo Parametrico Terremoti Italiani, ING, GNDT, SGA, SSN, 92 pp., Bologna. Tondi, E., Cello, G. 2003. Spatiotemporal Evolution of the Central Apennines Fault System (Italy). Journal of Geodynamics, 36, 113-128
Spreading rate dependence of gravity anomalies along oceanic transform faults.
Gregg, Patricia M; Lin, Jian; Behn, Mark D; Montési, Laurent G J
2007-07-12
Mid-ocean ridge morphology and crustal accretion are known to depend on the spreading rate of the ridge. Slow-spreading mid-ocean-ridge segments exhibit significant crustal thinning towards transform and non-transform offsets, which is thought to arise from a three-dimensional process of buoyant mantle upwelling and melt migration focused beneath the centres of ridge segments. In contrast, fast-spreading mid-ocean ridges are characterized by smaller, segment-scale variations in crustal thickness, which reflect more uniform mantle upwelling beneath the ridge axis. Here we present a systematic study of the residual mantle Bouguer gravity anomaly of 19 oceanic transform faults that reveals a strong correlation between gravity signature and spreading rate. Previous studies have shown that slow-slipping transform faults are marked by more positive gravity anomalies than their adjacent ridge segments, but our analysis reveals that intermediate and fast-slipping transform faults exhibit more negative gravity anomalies than their adjacent ridge segments. This finding indicates that there is a mass deficit at intermediate- and fast-slipping transform faults, which could reflect increased rock porosity, serpentinization of mantle peridotite, and/or crustal thickening. The most negative anomalies correspond to topographic highs flanking the transform faults, rather than to transform troughs (where deformation is probably focused and porosity and alteration are expected to be greatest), indicating that crustal thickening could be an important contributor to the negative gravity anomalies observed. This finding in turn suggests that three-dimensional magma accretion may occur near intermediate- and fast-slipping transform faults.
NASA Astrophysics Data System (ADS)
Bonali, F. L.; Corazzato, C.; Tibaldi, A.
2012-06-01
We describe the relationships between Plio-Quaternary tectonics, palaeoseismicity and volcanism along the NW-trending Calama-Olacapato-El Toro (COT) lineament that crosses the Andean chain and the Puna Plateau and continues within the eastern Cordillera at about 24° S. We studied in detail the area from the Chile-Argentina border to a few km east of the San Antonio del Los Cobres village. Satellite and field data revealed the presence of seven Quaternary NW-striking normal left-lateral fault segments in the southeastern part of the studied area and of a Plio-Quaternary N-S-striking graben structure in the northwestern part. The NW-striking Chorrillos fault (CF) segment shows the youngest motions, of late Pleistocene age, being marked by several fault scarps, sag ponds and offset Quaternary deposits and landforms. Offset lavas of 0.78 ± 0.1 Ma to 0.2 ± 0.08 Ma indicate fault kinematics characterised by a pitch angle of 20° to 27° SE, a total net displacement of 31 to 63.8 m, and a slip-rate of 0.16 to 0.08 mm/yr. This fault segment is 32 km long and terminates to the northwest near a set of ESE-dipping thrust faults affecting Tertiary strata, while to the southeast it terminates 10 km further from San Antonio. In the westernmost part of the examined area, in Chile at altitudes > 4000 m, recent N-S-striking normal fault scarps depict the 5-km-wide and 10-km-long graben structure. Locally, fault pitches indicate left-lateral normal kinematics. These faults affect deposits up to ignimbrites of Plio-Quaternary age. Scarp heights are from a few metres to 24 m. Despite that this area is located along the trace of the COT strike-slip fault system, which is reported as a continuous structure from Chile to Argentina in the literature, no evidence of NW-striking Plio-Quaternary strike-slip structures is present here. A series of numerical models were also developed in an elastic half-space with uniform isotropic elastic properties using the Coulomb 3.1 code. We studied the stress changes caused by slip along the various Quaternary COT fault segments, showing that the last motions occurred along the CF might promote in the future further displacement along nearby fault segments located to the northwest. Furthermore, slip along the NW-striking fault segments imparts normal stress changes on the nearby Tuzgle volcano feeding system.
NASA Astrophysics Data System (ADS)
Medynski, S.; Williams, A.; Pik, R.; Burnard, P.; Vye, C.; France, L.; Ayalew, D.; Yirgu, G.
2012-12-01
In the Afar depression (Ethiopia), extension is already organised along rift segments which morphologically resemble oceanic rifts. Segmentation here results from interactions between dyke injection and volcanism, as observed during the well documented 2005 event on the Dabbahu rift segment. During this tectono-volcanic crisis, a megadyke was injected, followed by 12 subsequent dike intrusions, sometimes associated with fissure flow eruptions. Despite the accurate surveying of the magmatic and tectonic interplay during this event via remote sensing techniques, there is a lack of data on timescales of 1 to 100 kyr, the period over which the main morphology of a rift is acquired. The Dabbahu rift segment represents an ideal natural laboratory to study the evolution of rift morphology as a response to volcanic and tectonic influences. It is possible to constrain the timing of fault growth relative to the infilling of the rift axial depression by lava flows, and to assess the influence of the different magma bodies involved in lava production along the rift-segment. We use cosmogenic nuclides (3He) to determine the ages of young (<100 kyr) lava flows and to date the initiation and movement of fault scarps which cut the lavas. Combined with major & trace element compositions, field mapping and digital cartography (Landsat, ASTER and SPOT imagery), the rift geomorphology can be linked to the magmatic and tectonic history defined by surface exposure dating. The results show that over the last 100 ka the Northern part of the Dabbahu segment was supplied by two different magma reservoirs which can be identified based on their distinctive chemistries. The main reservoir is located beneath Dabbahu volcano, and has been supplied with magma for at least 72 ka. This magmatic centre supplies magma to most of the northern third of the rift segment. The second reservoir is located further south, on the axis, close to the current mid-segment magma chamber, which was responsible for the 2005 rifting episode. This second magmatic centre supplies magma to the remaining 2/3 of the segment, but scarcely impacts its Northern termination (where the Dabbahu activity predominates) - except during extraordinary events when dykes are long enough to reach those parts, as in 2005. The eruption ages of the different lava units correlates with their degrees of differentiation, allowing different magmatic cycles of about a few tens of years each to be distinguished. During the first recorded magmatic cycle (~70 ka to ~55 ka), Dabbahu is built of wide-spreading pāhoehoe flows around localised eruptive centres. The resulting topography of the volcanic edifice remains low, and is only slightly affected by rift-related fault activity, with the development of minor scarps. The second recorded magmatic cycle (~50 ka to ~20 ka) coincides with a strong development of Dabbahu topography - underlined by the change in lava morphology with well channelized 'a'ā flows since 50 ka. Tectonic activity also clearly increases over this period, with the initiation of the major fault scarps of the rift, which have been dated at around 35 ka. Our study underlines the role of the magma supply and availability beneath Dabbahu in the evolution both topographies of Dabbahu volcano and of the rift depression morphology.
Viscoelastic coupling model of the San Andreas fault along the big bend, southern California
Savage, J.C.; Lisowski, M.
1997-01-01
The big bend segment of the San Andreas fault is the 300-km-long segment in southern California that strikes about N65??W, roughly 25?? counterclockwise from the local tangent to the small circle about the Pacific-North America pole of rotation. The broad distribution of deformation of trilateration networks along this segment implies a locking depth of at least 25 km as interpreted by the conventional model of strain accumulation (continuous slip on the fault below the locking depth at the rate of relative plate motion), whereas the observed seismicity and laboratory data on fault strength suggest that the locking depth should be no greater than 10 to 15 km. The discrepancy is explained by the viscoelastic coupling model which accounts for the viscoelastic response of the lower crust. Thus the broad distribution of deformation observed across the big bend segment can be largely associated with the San Andreas fault itself, not subsidiary faults distributed throughout the region. The Working Group on California Earthquake Probabilities [1995] in using geodetic data to estimate the seismic risk in southern California has assumed that strain accumulated off the San Andreas fault is released by earthquakes located off the San Andreas fault. Thus they count the San Andreas contribution to total seismic moment accumulation more than once, leading to an overestimate of the seismicity for magnitude 6 and greater earthquakes in their Type C zones.
Seismic sources in El Salvador. A geological and geodetic contribution
NASA Astrophysics Data System (ADS)
Alonso-Henar, J.; Martínez-Díaz, J. J.; Benito, B.; Alvarez-Gomez, J. A.; Canora, C.; Capote, R.; Staller, A.; Tectónica Activa, Paleosismicidad y. Riesgos Asociados UCM-910368
2013-05-01
El Salvador Fault Zone is a deformation band of 150 km long and 20 km wide within the Salvadorian volcanic arc. This shear band distributes the deformation between main strike-slip faults trending N90°-100°E and around 30 km long, and secondary normal faults trending between N120°E and N170°E. The ESFZ continues westward and is relieved by the Jalpatagua Fault. Eastward ESFZ becomes less clear disappearing at Golfo de Fonseca. The ESFZ deforms and offsets quaternary deposits with a right lateral movement in its main segments. Five segments have been proposed for the whole fault zone, from the Jalpatagua Fault to the Golfo de Fonseca. Paleoseismic studies in the Berlin and San Vicente Segments reveal an important amount of quaternary deformation. In fact, the San Vicente Segment was the source of the February 13, 2001 destructive earthquake. In this work we propose 18 capable seismic sources within El Salvador. The slip rate of each source has been obtained through out the combination of GPS data and paleoseismic data when it has been possible. We also have calculated maximum theoretical intensities produced by the maximum earthquakes related with each fault. We have taken into account several scenarios considering different possible surface rupture lengths up to 50 km and Mw 7.6 in some of the strike slip faults within ESFZ.
Dynamic rupture simulations on a fault network in the Corinth Rift
NASA Astrophysics Data System (ADS)
Durand, V.; Hok, S.; Boiselet, A.; Bernard, P.; Scotti, O.
2017-03-01
The Corinth rift (Greece) is made of a complex network of fault segments, typically 10-20 km long separated by stepovers. Assessing the maximum magnitude possible in this region requires accounting for multisegment rupture. Here we apply numerical models of dynamic rupture to quantify the probability of a multisegment rupture in the rift, based on the knowledge of the fault geometry and on the magnitude of the historical and palaeoearthquakes. We restrict our application to dynamic rupture on the most recent and active fault network of the western rift, located on the southern coast. We first define several models, varying the main physical parameters that control the rupture propagation. We keep the regional stress field and stress drop constant, and we test several fault geometries, several positions of the faults in their seismic cycle, several values of the critical distance (and so several fracture energies) and two different hypocentres (thus testing two directivity hypothesis). We obtain different scenarios in terms of the number of ruptured segments and the final magnitude (between M = 5.8 for a single segment rupture to M = 6.4 for a whole network rupture), and find that the main parameter controlling the variability of the scenarios is the fracture energy. We then use a probabilistic approach to quantify the probability of each generated scenario. To do that, we implement a logical tree associating a weight to each model input hypothesis. Combining these weights, we compute the probability of occurrence of each scenario, and show that the multisegment scenarios are very likely (52 per cent), but that the whole network rupture scenario is unlikely (14 per cent).
NASA Astrophysics Data System (ADS)
Bonali, F. L.; Tibaldi, A.; Corazzato, C.; Lanza, F.; Cavallo, A.; Nardin, A.
2012-04-01
The aim of this work is to describe the relationships between Plio-Quaternary tectonics, palaeoseismicity and volcanism along the NW-trending Calama-Olacapato-El Toro (COT) lineament that crosses the Andean chain and the Puna Plateau and continues within the eastern Cordillera at about 24° S. Field and satellite data have been collected from the Chile-Argentina border to a few km east of the San Antonio del Los Cobres village. These data revealed the presence of seven Quaternary NW-striking normal left-lateral fault segments in the southeastern part of the studied area and of a Plio-Quaternary N-S-striking graben structure in the northwestern part. The NW-striking Chorrillos fault (CF) segment shows the youngest motions, of late Pleistocene age, being marked by several fault scarps, sag-ponds and offset Quaternary deposits and landforms. Offset lavas of 0.78±0.1 Ma to 0.2±0.08 Ma indicate fault kinematics characterized by a pitch angle of 20° to 27° SE, a total net displacement that ranges from 31 to 63.8 m, and a slip-rate of 0.16 to 0.08 mm/yr. This fault segment is 32 km long and terminates to the northwest near a set of ESE-dipping thrust faults affecting Tertiary strata, while to the southeast it terminates 10 km further from San Antonio. In the westernmost part of the examined area, in Chile at altitudes of 4000 m, recent N-S-striking normal fault scarps depict the 5-km-wide and 10-km-long graben structure. Locally, fault pitches indicate left-lateral normal kinematics. These faults affect deposits up to ignimbrites of Plio-Quaternary age. Scarp heights are from a few metres to 24 m. Despite this area is located along the trace of the COT strike-slip fault system, which is reported as a continuous structure from Chile to Argentina in the literature, no evidence of NW-striking Plio-Quaternary strike-slip structures is present here. A series of numerical models were developed in an elastic half-space with uniform isotropic elastic properties using the Coulomb 3.2 code. We studied the stress changes caused by slip along the various Quaternary COT fault segments, showing that the last motions occurred along the Chorrillos fault might promote in the future further displacement along nearby fault segments located to the northwest. Furthermore, slip along the NW-striking fault segments imparts normal stress changes on the nearby Tuzgle volcano feeding system. Cumulative effects of fault reactivation disadvantage future Tuzgle eruptions.
Could offset cluster reveal strong earthquake pattern?——case study from Haiyuan Fault
NASA Astrophysics Data System (ADS)
Ren, Z.; Zhang, Z.; Chen, T.; Yin, J.; Zhang, P. Z.; Zheng, W.; Zhang, H.; Li, C.
2016-12-01
Since 1990s, researchers tried to use offset clusters to study strong earthquake patterns. However, due to the limitation of quantity of offset data, it was not widely used until recent years with the rapid development of high-resolution topographic data, such as remote sensing images, LiDAR. In this study, we use airborne LiDAR data to re-evaluate the cumulative offsets and co-seismic offset of the 1920 Haiyuan Ms 8.5 earthquake along the western and middle segments of the co-seismic surface rupture zone. Our LiDAR data indicate the offset observations along both the western and middle segments fall into five groups. The group with minimum slip amount is associated with the 1920 Haiyuan Ms 8.5 earthquake, which ruptured both the western and middle segments. Our research highlights two new interpretations: firstly, the previously reported maximum displacement of the 1920 Earthquake is likely to be produced by at least two earthquakes; secondly, Our results reveal that the Cumulative Offset Probability Density (COPD) peaks of same offset amount on western segment and middles segment did not corresponding to each other one by one. The ages of the paleoearthquakes indicate the offsets are not accumulated during same period. We suggest that any discussion of the rupture pattern of a certain fault based on the offset data should also consider fault segmentation and paleoseismological data; Therefore, using the COPD peaks for studying the number of palaeo-events and their rupture patterns, the COPD peaks should be computed and analyzed on fault sub-sections and not entire fault zones. Our results reveal that the rupture pattern on the western and middle segment of the Haiyuan Fault is different from each other, which provide new data for the regional seismic potential analysis.
High-Resolution Seismic Reflection Imaging of the Reelfoot Fault, New Madrid, Missouri
NASA Astrophysics Data System (ADS)
Rosandich, B.; Harris, J. B.; Woolery, E. W.
2017-12-01
Earthquakes in the Lower Mississippi Valley are mainly concentrated in the New Madrid Seismic Zone and are associated with reactivated faults of the Reelfoot Rift. Determining the relationship between the seismogenic faults (in crystalline basement rocks) and deformation at the Earth's surface and in the shallow subsurface has remained an active research topic for decades. An integrated seismic data set, including compressional (P-) wave and shear (S-) wave seismic reflection profiles, was collected in New Madrid, Missouri, across the "New Madrid" segment of the Reelfoot Fault, whose most significant rupture produced the M 7.5, February 7, 1812, New Madrid earthquake. The seismic reflection profiles (215 m long) were centered on the updip projection of the fault, which is associated with a surface drainage feature (Des Cyprie Slough) located at the base of a prominent east-facing escarpment. The seismic reflection profiles were collected using 48-channel (P-wave) and 24-channel (S-wave) towable landsteamer acquisition equipment. Seismic energy was generated by five vertical impacts of a 1.8-kg sledgehammer on a small aluminum plate for the P-wave data and five horizontal impacts of the sledgehammer on a 10-kg steel I-beam for the S-wave data. Interpretation of the profiles shows a west-dipping reverse fault (Reelfoot Fault) that propagates upward from Paleozoic sedimentary rocks (>500 m deep) to near-surface Quaternary sediments (<10 m deep). The hanging wall of the fault is anticlinally folded, a structural setting almost identical to that imaged on the Kentucky Bend and Reelfoot Lake segments (of the Reelfoot Fault) to the south.
Mendoza, C.; Fukuyama, E.
1996-01-01
We employ a finite fault inversion scheme to infer the distribution of coseismic slip for the July 12, 1993, Hokkaido-Nansei-Oki earthquake using strong ground motions recorded by the Japan Meteorological Agency within 400 km of the epicenter and vertical P waveforms recorded by the Global Digital Seismograph Network at teleseismic distances. The assumed fault geometry is based on the location of the aftershock zone and comprises two fault segments with different orientations: a northern segment striking at N20??E with a 30?? dip to the west and a southern segment with a N20??W strike. For the southern segment we use both westerly and easterly dip directions to test thrust orientations previously proposed for this portion of the fault. The variance reduction is greater using a shallow west dipping segment, suggesting that the direction of dip did not change as the rupture propagated south from the hypocenter. This indicates that the earthquake resulted from the shallow underthrusting of Hokkaido beneath the Sea of Japan. Static vertical movements predicted by the corresponding distribution of fault slip are consistent with the general pattern of surface deformation observed following the earthquake. Fault rupture in the northern segment accounts for about 60% of the total P wave seismic moment of 3.4 ?? 1020 N m and includes a large circular slip zone (4-m peak) near the earthquake hypocenter at depths between 10 and 25 km. Slip in the southern segment is also predominantly shallower than 25 km, but the maximum coseismic displacements (2.0-2.5 m) are observed at a depth of about 5 km. This significant shallow slip in the southern portion of the rupture zone may have been responsible for the large tsunami that devastated the small offshore island of Okushiri. Localized shallow faulting near the island, however, may require a steep westerly dip to reconcile the measured values of ground subsidence.
NASA Astrophysics Data System (ADS)
Roland, E. C.; Walton, M. A. L.; Ruppert, N. A.; Gulick, S. P. S.; Christeson, G. L.; Haeussler, P. J.
2014-12-01
In January 2013, a Mw 7.5 earthquake ruptured a segment of the Queen Charlotte Fault offshore the town of Craig in southeast Alaska. The region of the fault that slipped during the Craig earthquake is adjacent to and possibly overlapping with the northern extent of the 1949 M 8.1 Queen Charlotte earthquake rupture (Canada's largest recorded earthquake), and is just south of the rupture area of the 1972 M 7.6 earthquake near Sitka, Alaska. Here we present aftershock locations and focal mechanisms for events that occurred four months following the mainshock using data recorded on an Ocean Bottom Seismometer (OBS) array that was deployed offshore of Prince of Wales Island. This array consisted of 9 short period instruments surrounding the fault segment, and recorded hundreds of aftershocks during the months of April and May, 2013. In addition to highlighting the primary mainshock rupture plane, aftershocks also appear to be occurring along secondary fault structures adjacent to the main fault trace, illuminating complicated structure, particularly toward the northern extent of the Craig rupture. Focal mechanisms for the larger events recorded during the OBS deployment show both near-vertical strike slip motion consistent with the mainshock mechanism, as well as events with varying strike and a component of normal faulting. Although fault structure along this northern segment of the QCF appears to be considerably simpler than to the south, where a higher degree of oblique convergence leads to sub-parallel compressional deformation structures, secondary faulting structures apparent in legacy seismic reflection data near the Craig rupture may be consistent with the observed seismicity patterns. In combination, these data may help to characterize structural heterogeneity along the northern segment of the Queen Charlotte Fault that contributes to rupture segmentation during large strike slip events.
NASA Astrophysics Data System (ADS)
Fontaine, F. J.; Cannat, M.; Escartin, J.; Crawford, W. C.; Singh, S. C.
2012-12-01
The modalities and efficiency of hydrothermal heat evacuation at mid-ocean ridges (25% of the global heat loss) are controlled by the lithosphere thermal and permeability structures for which we had robust constraints only for fast/intermediate spreading axis until the last past few years during which integrated geophysical, geological and geochemical studies focused on some hydrothermal sites at slow-spreading ridges. At the Lucky Strike vent field of the mid-atlantic ridge - a hydrothermal complex composed of high-temperature (maximum T=340°C), smoker-like vents and associated diffuse flow and extracting a few hundreds MW from the oceanic lithosphere - a seafloor observatory which installation started in 2005 highlights local interactions between hydrothermal, tectonic and magmatic processes. Detailed geophysical and geological investigations stress the role of the local axial fault system on localizing high- and low-temperature ventings around the faulted rim of a paleo lava lake. Microseismic studies bring constraints on the subseafloor hydrology and suggest an along-axis flow pattern, with a privileged recharge area located about a kilometer north off the active discharges. Seismic reflection studies image a central magma chamber fueling the hydrothermal sites and also reveal its along-axis depth variations likely influencing hydrothermal cell organization and flow focusing. Such linkages among hydrothermal dynamics, heat source and crustal permeability geometries usually lack quantitative constraints at mid-ocean ridges in general, and the Lucky Strike segment settings offers a unique opportunity to couple high-resolution geophysical data to hydrodynamic model. Here we develop a series of original two- and three-dimensional numerical and physical models of hydrothermal activity, tailored to this slow-spreading environment. Our results highlight physical linkages among magmatism, tectonics and crustal hydrology stressing the key role of faulting and magma chamber roof-topology in focusing fluid flow at the center of the Lucky Strike segment. They also help identifying some causes of variations in the modalities of hydrothermal heat extraction along the global ridge network.
NASA Astrophysics Data System (ADS)
Fitzenz, D. D.; Miller, S. A.
2001-12-01
We present preliminary results from a 3-dimensional fault interaction model, with the fault system specified by the geometry and tectonics of the San Andreas Fault (SAF) system. We use the forward model for earthquake generation on interacting faults of Fitzenz and Miller [2001] that incorporates the analytical solutions of Okada [85,92], GPS-constrained tectonic loading, creep compaction and frictional dilatancy [Sleep and Blanpied, 1994, Sleep, 1995], and undrained poro-elasticity. The model fault system is centered at the Big Bend, and includes three large strike-slip faults (each discretized into multiple subfaults); 1) a 300km, right-lateral segment of the SAF to the North, 2) a 200km-long left-lateral segment of the Garlock fault to the East, and 3) a 100km-long right-lateral segment of the SAF to the South. In the initial configuration, three shallow-dipping faults are also included that correspond to the thrust belt sub-parallel to the SAF. Tectonic loading is decomposed into basal shear drag parallel to the plate boundary with a 35mm yr-1 plate velocity, and East-West compression approximated by a vertical dislocation surface applied at the far-field boundary resulting in fault-normal compression rates in the model space about 4mm yr-1. Our aim is to study the long-term seismicity characteristics, tectonic evolution, and fault interaction of this system. We find that overpressured faults through creep compaction are a necessary consequence of the tectonic loading, specifically where high normal stress acts on long straight fault segments. The optimal orientation of thrust faults is a function of the strike-slip behavior, and therefore results in a complex stress state in the elastic body. This stress state is then used to generate new fault surfaces, and preliminary results of dynamically generated faults will also be presented. Our long-term aim is to target measurable properties in or around fault zones, (e.g. pore pressures, hydrofractures, seismicity catalogs, stress orientation, surface strain, triggering, etc.), which may allow inferences on the stress state of fault systems.
Response to comment on "No late Quaternary strike-slip motion along the northern Karakoram fault"
NASA Astrophysics Data System (ADS)
Robinson, Alexander C.; Owen, Lewis A.; Chen, Jie; Schoenbohm, Lindsay M.; Hedrick, Kathryn A.; Blisniuk, Kimberly; Sharp, Warren D.; Imrecke, Daniel B.; Li, Wenqiao; Yuan, Zhaode; Caffee, Marc W.; Mertz-Kraus, Regina
2016-06-01
In their comment on ;No late Quaternary strike-slip motion along the northern Karakoram fault;, while Chevalier et al. (2016) do not dispute any of the results or interpretations regarding our observations along the main strand of the northern Karakoram fault, they make several arguments as to why they interpret the Kongur Shan Extensional System (KES) to be kinematically linked to the Karakoram fault. These arguments center around how an ;active; fault is defined, how slip on segments of the KES may be compatible with dextral shear related to continuation of the Karakoram fault, and suggestions as to how the two fault systems might still be connected. While we appreciate that there are still uncertainties in the regional geology, we address these comments and show that their arguments are inconsistent with all available data, known geologic relationships, and basic kinematics.
NASA Astrophysics Data System (ADS)
Sankov, Vladimir; Parfeevets, Anna; Lukhnev, Andrey; Miroshnitchenko, Andrey; Ashurkov, Sergey; Sankov, Alexey; Usynin, Leonid; Eskin, Alexander; Bryzhak, Evgeny
2013-04-01
This work addresses to relation of transpression and extension stress-strain conditions in intracontinental rift system. In our investigation we use a new structural, shallow geophysics, GPS geodetic data and paleostress reconstructions. The surroundings of southern tip of Siberian platform is the region of three Late Cenozoic structures conjugation: sublatitudinal Obruchev fault (OF) controlling the northern boundary of the South Baikal basin, NW trending Main Sayan fault (MSF) as the strike-slip boundary between Siberian platform and East Sayan block and WNW trending eastern segment of Tunka fault (TF) as part of the Tunka basins system northern boundary. A new evidences of superposition of compression and extension fault structures were revealed near the southern extremity of Baikal lake. We've find a very close vicinity of Late Pleistocene - Holocene strike-slip, thrust and normal faulting in the MSF and OF junction zone. The on-land Holocene normal faulting can be considered as secondary fault paragenesis within the main strike-slip zone (Sankov et al., 2009). Active strike-slip, thrust and reverse faulting characterize the MSF and TF junction zone. The transpression conditions are replaced very sharply by transtension and extension ones in eastern direction from zone of structures conjugation - the active normal faulting is dominated within the South Baikal basin. The Bystraya rift basin located in the west shows the tectonic inversion since Middle Pleistocene as a result of the strike-slip movements partitioning between TF and MSF and inset of edition compression stress. The active strike-slip and intrabasin extension conditions are dominated father to the west in Tunka basin. The results of our GPS measurements show the present day convergence and east movements of Khamar-Daban block and eastern Tunka basins relative to Siberian platform along MSF and TF with NE-SW shortening domination. The clear NW-SE divergence across Baikal basin is documented. Holocene and present-day left lateral relative motions of about 3 mm/yr (Sankov et al., 2004) between of Siberian platform and its mounting frame are accommodated along south-eastern segment of MSF. We consider two main factors of sharp transition between transpression and transtension to extension conditions in Tunka-South Baikal segment of Baikal rift system. The first one is the influence of geometry of southern tip of Siberian platform as a first order ancient lithosphere heterogeneity in agreement with (Petit et al., 1996). The second factor is the interaction in this region of two tectonic forces driving the Cenozoic geodynamics. The initial opening of the Tunka and South Baikal basins since Oligocene time as well as father Baikal rift system development caused by long lived asthenosphere flow along NW-SE direction (Sankov et al., 2011). The addition NE-SW compression started during Pliocene (Parfeevets, Sankov, 2006) as the result of the Hindustan and Eurasia convergence. The former caused transpression deformations and clockwise horizontal block rotations along south-western boundary of the platform with their SE movements to the "free space" opened by the divergence of Siberian platform and Transbaikal block (Sankov et al., 2002, 2005).
DOE Office of Scientific and Technical Information (OSTI.GOV)
N. Seth Carpenter; Suzette J. Payne; Annette L. Schafer
We recognize a discrepancy in magnitudes estimated for several Basin and Range, U.S.A. faults. For example, magnitudes predicted for the Wasatch (Utah), Lost River (Idaho), and Lemhi (Idaho) faults from fault segment lengths (L{sub seg}) where lengths are defined between geometrical, structural, and/or behavioral discontinuities assumed to persistently arrest rupture, are consistently less than magnitudes calculated from displacements (D) along these same segments. For self-similarity, empirical relationships (e.g. Wells and Coppersmith, 1994) should predict consistent magnitudes (M) using diverse fault dimension values for a given fault (i.e. M {approx} L{sub seg}, should equal M {approx} D). Typically, the empirical relationshipsmore » are derived from historical earthquake data and parameter values used as input into these relationships are determined from field investigations of paleoearthquakes. A commonly used assumption - grounded in the characteristic-earthquake model of Schwartz and Coppersmith (1984) - is equating L{sub seg} with surface rupture length (SRL). Many large historical events yielded secondary and/or sympathetic faulting (e.g. 1983 Borah Peak, Idaho earthquake) which are included in the measurement of SRL and used to derive empirical relationships. Therefore, calculating magnitude from the M {approx} SRL relationship using L{sub seg} as SRL leads to an underestimation of magnitude and the M {approx} L{sub seg} and M {approx} D discrepancy. Here, we propose an alternative approach to earthquake magnitude estimation involving a relationship between moment magnitude (Mw) and length, where length is L{sub seg} instead of SRL. We analyze seven historical, surface-rupturing, strike-slip and normal faulting earthquakes for which segmentation of the causative fault and displacement data are available and whose rupture included at least one entire fault segment, but not two or more. The preliminary Mw {approx} L{sub seg} results are strikingly consistent with Mw {approx} D calculations using paleoearthquake data for the Wasatch, Lost River, and Lemhi faults, demonstrating self-similarity and implying that the Mw {approx} L{sub seg} relationship should supplant M {approx} SRL relationships currently employed in seismic hazard analyses. The relationship will permit reliable use of L{sub seg} data from field investigations and proper use and weighting of multiple-segment-rupture scenarios in seismic hazard analyses, and eliminate the need to reconcile the Mw {approx} SRL and Mw {approx} D differences in a multiple-parameter relationship for segmented faults.« less
Spencer, J.E.
2000-01-01
The corrugated form of the Harcuvar, South Mountains, and Catalina metamorphic core complexes in Arizona reflects the shape of the middle Tertiary extensional detachment fault that projects over each complex. Corrugation axes are approximately parallel to the fault-displacement direction and to the footwall mylonitic lineation. The core complexes are locally incised by enigmatic, linear drainages that parallel corrugation axes and the inferred extension direction and are especially conspicuous on the crests of antiformal corrugations. These drainages have been attributed to erosional incision on a freshly denuded, planar, inclined fault ramp followed by folding that elevated and preserved some drainages on the crests of rising antiforms. According to this hypothesis, corrugations were produced by folding after subacrial exposure of detachment-fault foot-walls. An alternative hypothesis, proposed here, is as follows. In a setting where preexisting drainages cross an active normal fault, each fault-slip event will cut each drainage into two segments separated by a freshly denuded fault ramp. The upper and lower drainage segments will remain hydraulically linked after each fault-slip event if the drainage in the hanging-wall block is incised, even if the stream is on the flank of an antiformal corrugation and there is a large component of strike-slip fault movement. Maintenance of hydraulic linkage during sequential fault-slip events will guide the lengthening stream down the fault ramp as the ramp is uncovered, and stream incision will form a progressively lengthening, extension-parallel, linear drainage segment. This mechanism for linear drainage genesis is compatible with corrugations as original irregularities of the detachment fault, and does not require folding after early to middle Miocene footwall exhumations. This is desirable because many drainages are incised into nonmylonitic crystalline footwall rocks that were probably not folded under low-temperature, surface conditions. An alternative hypothesis, that drainages were localized by small fault grooves as footwalls were uncovered, is not supported by analysis of a down-plunge fault projection for the southern Rincon Mountains that shows a linear drainage aligned with the crest of a small antiformal groove on the detachment fault, but this process could have been effective elsewhere. Lineation-parallel drainages now plunge gently southwestward on the southwest ends of antiformal corrugations in the South and Buckskin Mountains, but these drainages must have originally plunged northeastward if they formed by either of the two alternative processes proposed here. Footwall exhumation and incision by northeast-flowing streams was apparently followed by core-complex arching and drainage reversal.
Microseismicity at the North Anatolian Fault in the Sea of Marmara offshore Istanbul, NW Turkey
Bulut, Fatih; Bohnhoff, Marco; Ellsworth, William L.; Aktar, Mustafa; Dresen, Georg
2009-01-01
The North Anatolian Fault Zone (NAFZ) below the Sea of Marmara forms a “seismic gap” where a major earthquake is expected to occur in the near future. This segment of the fault lies between the 1912 Ganos and 1999 İzmit ruptures and is the only NAFZ segment that has not ruptured since 1766. To monitor the microseismic activity at the main fault branch offshore of Istanbul below the Çınarcık Basin, a permanent seismic array (PIRES) was installed on the two outermost Prince Islands, Yassiada and Sivriada, at a few kilometers distance to the fault. In addition, a temporary network of ocean bottom seismometers was deployed throughout the Çınarcık Basin. Slowness vectors are determined combining waveform cross correlation and P wave polarization. We jointly invert azimuth and traveltime observations for hypocenter determination and apply a bootstrap resampling technique to quantify the location precision. We observe seismicity rates of 20 events per month for M < 2.5 along the basin. The spatial distribution of hypocenters suggests that the two major fault branches bounding the depocenter below the Çınarcık Basin merge to one single master fault below ∼17 km depth. On the basis of a cross-correlation technique we group closely spaced earthquakes and determine composite focal mechanisms implementing recordings of surrounding permanent land stations. Fault plane solutions have a predominant right-lateral strike-slip mechanism, indicating that normal faulting along this part of the NAFZ plays a minor role. Toward the west we observe increasing components of thrust faulting. This supports the model of NW trending, dextral strike-slip motion along the northern and main branch of the NAFZ below the eastern Sea of Marmara.
NASA Astrophysics Data System (ADS)
Korzhenkov, A. M.; Arrowsmith, J. R.; Crosby, C. J.; Guralnik, B.; Rogozhin, E. A.; Sorokin, A. A.; Abdieva, S. V.; Fortuna, A. B.; Yudakhin, A. S.; Agatova, A. R.; Deev, E. V.; Mazeika, J. V.; Rodkin, M. V.; Shen, J.
2018-03-01
The study and radiocarbon dating of the low alluvial terraces of the Chon-Aksuu River, in the Northern Issyk-Kul region, which were broken by the Kebin (Kemin) earthquake of 1911 (Ms = 8.2, Io = 10 to 11), are carried out. The obtained radiocarbon dated ages refer to the second half of the Holocene. Since that time, at least eight strong earthquakes took place along this (Chon-Aksuu) segment of the Aksuu border fault. Three seismic events, including the earthquake of 1911 occurred in the second millennium A.D. This outburst of seismic energy was preceded by two millennia of seismic quiescence, which set in after another pulse of seismic activation. The latter lasted for 1.5 millennia and included five strong earthquakes. The recurrence period of seismic events during the activations is 300-600 years. Hence, the seismic regime along the Chon-Aksuu segment of the Aksuu border fault in the second half of the Holocene was a succession of two seismic activations, each with a duration of 1.0-1.5 ka, which were separated by a 2-ka interval of seismic quiescence. Therefore, the absolute datings of the river terraces of different ages which have been broken by a seismogenic rupture can serve as a reliable source of information about the age of the strong earthquakes that occurred along the seismogenic fault.
NASA Astrophysics Data System (ADS)
Ewiak, O.; Victor, P.; Ziegenhagen, T.; Oncken, O.
2012-04-01
The Chilean convergent plate boundary is one of the tectonically most active regions on earth and prone to large megathrust earthquakes as e. g. the 2010 Mw 8.8 Maule earthquake which ruptured a mature seismic gap in south-central Chile. In northern Chile historical data suggests the existence of a seismic gap between Arica and Mejillones Peninsula (MP), which has not ruptured since 1877. Further south, the 1995 Mw 8.0 Antofagasta earthquake ruptured the subduction interface between MP and Taltal. In this study we investigate the deformation at four active upper plate faults (dip-slip and strike-slip) located above the coupling zone of the subduction interface. The target faults (Mejillones Fault - MF, Salar del Carmen Fault - SCF, Cerro Fortuna Fault - CFF, Chomache Fault - CF) are situated in forearc segments, which are in different stages of the megathrust seismic cycle. The main question of this study is how strain is accumulated in the overriding plate, what is the response of the target faults to the megathrust seismic cycle and what are the mechanisms / processes involved. The hyper arid conditions of the Atacama desert and the extremely low erosion rates enable us to investigate geomorphic markers, e .g. fault scarps and knickpoints, which serve as a record for upper crustal deformation and fault activity about ten thousands years into the past. Fault scarp data has been acquired with Differential-GPS by measuring high-resolution topographic profiles perpendicular to the fault scarps and along incised gullies. The topographic data show clear variations between the target faults which possibly result from their position within the forearc. The surveyed faults, e. g. the SCF, exhibit clear along strike variations in the morphology of surface ruptures attributed to seismic events and can be subdivided into individual segments. The data allows us to distinguish single, composite and multiple fault scarps and thus to detect differences in fault growth initiated either by seismic rupture or fault creep. Additional information on the number of seismic events responsible for the cumulative displacement can be derived from the mapping of knickpoints. By reconstructing the stress field responsible for the formation of identified seismic surface ruptures we can determine stress conditions for failure of upper crustal faults. Comparing these paleo stress conditions with the recent forearc stresses (interseismic / coseismic) we can derive information about a possible activation of upper crustal faults during the megathrust seismic cycle. In addition to the morphotectonic surveys we explore the recent deformation of the target faults by analyzing time series of displacements recorded with micron precision by an array of creepmeters at the target faults for over three years. Total displacement is composed of steady state creep, creep events and sudden displacement events (SDEs) related to seismic rupture. The percentage of SDEs accounts for >50 % (SCF) to 90 % (CFF) of the cumulative displacement. This result very well reflects the field observation that a considerable amount of the total displacement has been accumulated during multiple seismic events.
Do mesoscale faults near the tip of an active strike-slip fault indicate regional or local stress?
NASA Astrophysics Data System (ADS)
Yamaji, Atsushi
2017-04-01
Fault-slip analysis is used in Japan after the Great Tohoku Earthquake (2011) to judge the stability of fractures in the foundations of nuclear power plants. In case a fault-slip datum from a fracture surface is explained by the present stress condition, the fracture is thought to have a risk to be activated as a fault. So, it is important to understand the relative significance of regional and local stresses. To answer the question whether mesoscale faults indicate regional or local stress, fault-slip data were collected from the walls of a trenching site of the Nojima Fault in central Japan—an active, dextral, strike-slip fault. The fault gave rise to the 1995 Kobe earthquake, which killed more than 6000 people. The trench was placed near the fault tip, which produced compressional and extensional local stress conditions on the sides of the fault near the tip. A segment of the fault, which ruptured the surface in 1995, bounded Cretaceous granite and latest Pliocene sediments in the trench. As a result, the stress inversion of the data from the mesoscale faults observed in the trench showed both the local stresses. The present WNW-ESE regional compression was found from the compressive side, but was not in the extensional side, probably because local extension surpassed the regional compression. Instead, the regional N-S compression of the Early Pleistocene was found from the extensional side. From this project, we got the lesson that fault-slip analysis reveals regional and local stresses, and that local stress sometimes masks regional one. This work was supported by a science project of "Drilling into Fault Damage Zone" (awarded to A. Lin) of the Secretariat of Nuclear Regulation Authority (Japan).
NASA Astrophysics Data System (ADS)
Diehl, Tobias; Singer, Julia; Hetényi, György; Grujic, Djordje; Clinton, John; Giardini, Domenico; Kissling, Edi
2017-04-01
The instrumental seismicity of Bhutan is characterized by a lower activity compared to most other parts of the Himalayan arc. To understand this low activity and its impact on the seismic hazard, a seismic network was installed in Bhutan for 22 months between 2013 and 2014. From the recorded seismicity, earthquake moment tensors, and local earthquake tomography, we reveal along-strike variations in structure and crustal deformation regime. Imaged structural variations, primarily a thickened crust in western Bhutan, suggest lateral differences in stresses on the Main Himalayan Thrust (MHT), potentially affecting interseismic coupling and style of deformation. Sikkim, western Bhutan, and its foreland are characterized by strike-slip faulting in the Indian basement. Strain is particularly localized along a NW-SE striking dextral fault zone reaching from Chungthang in northeast Sikkim to Dhubri at the northwestern edge of the Shillong Plateau in the foreland. The dextral Dhubri-Chungthang fault zone (DCF) might segment the MHT between eastern Nepal and western Bhutan and connect the deformation front of the Himalaya with the Shillong Plateau in the foreland by forming the western boundary of a West-Assam block. In contrast, the eastern boundary of this block, hitherto associated with the Kopili foreland fault, appears to be diffuse. In eastern Bhutan, we image a seismogenic, flat portion of the MHT, which might be related to a partially creeping fault segment or increased background seismicity originating from the 2009 MW6.1 earthquake. In western-central Bhutan, clusters of micro-earthquakes at the front of the High-Himalayas indicate the presence of a mid-crustal ramp and stress buildup on a fully coupled MHT. The area bounded by the DCF in the west and the seismogenic MHT in the east has the potential for M7-8 earthquakes in Bhutan. Similarly, the DCF has the potential to host M7 earthquakes beneath the densely populated foreland basin as documented by the Dhubri earthquake of 1930, which is likely associated to this structure.
NASA Astrophysics Data System (ADS)
Aguiar, Roberto; Rivas-Medina, Alicia; Caiza, Pablo; Quizanga, Diego
2017-03-01
The Metropolitan District of Quito is located on or very close to segments of reverse blind faults, Puengasí, Ilumbisí-La Bota, Carcelen-El Inca, Bellavista-Catequilla and Tangahuilla, making it one of the most seismically dangerous cities in the world. The city is divided into five areas: south, south-central, central, north-central and north. For each of the urban areas, elastic response spectra are presented in this paper, which are determined by utilizing some of the new models of the Pacific Earthquake Engineering Research Center (PEER) NGA-West2 program. These spectra are calculated considering the maximum magnitude that could be generated by the rupture of each fault segment, and taking into account the soil type that exists at different points of the city according to the Norma Ecuatoriana de la Construcción (2015). Subsequently, the recurrence period of earthquakes of high magnitude in each fault segment is determined from the physical parameters of the fault segments (size of the fault plane and slip rate) and the pattern of recurrence of type Gutenberg-Richter earthquakes with double truncation magnitude (Mmin and Mmax) is used.
NASA Astrophysics Data System (ADS)
Tsai, M. C.; Hu, J. C.; Yang, Y. H.; Hashimoto, M.; Aurelio, M.; Su, Z.; Escudero, J. A.
2017-12-01
Multi-sight and high spatial resolution interferometric SAR data enhances our ability for mapping detailed coseismic deformation to estimate fault rupture model and to infer the Coulomb stress change associated with a big earthquake. Here, we use multi-sight coseismic interferograms acquired by ALOS-2 and Sentinel-1A satellites to estimate the fault geometry and slip distribution on the fault plane of the 2017 Mw 6.5 Ormoc Earthquake in Leyte island of Philippine. The best fitting model predicts that the coseismic rupture occurs along a fault plane with strike of 325.8º and dip of 78.5ºE. This model infers that the rupture of 2017 Ormoc earthquake is dominated by left-lateral slip with minor dip-slip motion, consistent with the left-lateral strike-slip Philippine fault system. The fault tip has propagated to the ground surface, and the predicted coseismic slip on the surface is about 1 m located at 6.5 km Northeast of Kananga city. Significant slip is concentrated on the fault patches at depth of 0-8 km and an along-strike distance of 20 km with varying slip magnitude from 0.3 m to 2.3 m along the southwest segment of this seismogenic fault. Two minor coseismic fault patches are predicted underneath of the Tononan geothermal field and the creeping segment of the northwest portion of this seismogenic fault. This implies that the high geothermal gradient underneath of the Tongonan geothermal filed could prevent heated rock mass from the coseismic failure. The seismic moment release of our preferred fault model is 7.78×1018 Nm, equivalent to Mw 6.6 event. The Coulomb failure stress (CFS) calculated by the preferred fault model predicts significant positive CFS change on the northwest segment of the Philippine fault in Leyte Island which has coseismic slip deficit and is absent from aftershocks. Consequently, this segment should be considered to have increasing of risk for future seismic hazard.
NASA Astrophysics Data System (ADS)
Yang, Ying-Hui; Tsai, Min-Chien; Hu, Jyr-Ching; Aurelio, Mario A.; Hashimoto, Manabu; Escudero, John Agustin P.; Su, Zhe; Chen, Qiang
2018-03-01
Coseismic surface deformation imaged through interferometric synthetic aperture radar (InSAR) measurements was used to estimate the fault geometry and slip distribution of the 2017 Mw 6.5 Ormoc earthquake along a creeping segment of the Philippine Fault on Leyte Island. Our best fitting faulting model suggests that the coseismic rupture occurred on a fault plane with high dip angle of 78.5° and strike angle of 325.8°, and the estimated maximum fault slip of 2.3 m is located at 6.5 km east-northeast of the town of Kananga. The recognized insignificant slip in the Tongonan geothermal field zone implies that the plastic behavior caused by high geothermal gradient underneath the Tongonan geothermal field could prevent the coseismic failure in heated rock mass in this zone. The predicted Coulomb failure stress change shows that a significant positive Coulomb failure stress change occurred along the SE segment of central Philippine Fault with insignificant coseismic slip and infrequent aftershocks, which suggests an increasing risk for future seismic hazard.
NASA Astrophysics Data System (ADS)
Victor, Pia; Ewiak, Oktawian; Thomas, Ziegenhagen; Monika, Sobiesiak; Bernd, Schurr; Gabriel, Gonzalez; Onno, Oncken
2016-04-01
The Atacama Fault System (AFS) is an active trench-parallel fault system, located in the forearc of N-Chile directly above the subduction zone interface. Due to its well-exposed position in the hyper arid forearc of N-Chile it is the perfect target to investigate the interaction between the deformation cycle in the overriding forearc and the subduction zone seismic cycle of the underlying megathrust. Although the AFS and large parts of the upper crust are devoid of any noteworthy seismicity, at least three M=7 earthquakes in the past 10 ky have been documented in the paleoseismological record, demonstrating the potential of large events in the future. We apply a two-fold approach to explore fault activation and reactivation patterns through time and to investigate the triggering potential of upper crustal faults. 1) A new methodology using high-resolution topographic data allows us to investigate the number of past earthquakes for any given segment of the fault system as well as the amount of vertical displacement of the last increment. This provides us with a detailed dataset of past earthquake rupture of upper plate faults which is potentially linked to large subduction zone earthquakes. 2) The IPOC Creepmeter array (http://www.ipoc-network.org/index.php/observatory/creepmeter.html) provides us with high-resolution time series of fault displacement accumulation for 11 stations along the 4 most active branches of the AFS. This array monitors the displacement across the fault with 2 samples/min with a resolution of 1μm. Collocated seismometers record the seismicity at two of the creepmeters, whereas the regional seismicity is provided by the IPOC Seismological Networks. Continuous time series of the creepmeter stations since 2009 show that the shallow segments of the fault do not creep permanently. Instead the accumulation of permanent deformation occurs by triggered slip caused by local or remote earthquakes. The 2014 Mw=8.2 Pisagua Earthquake, located close to the creepmeter array, triggered large displacement events on all stations. Another event recorded on all stations was the 2010 Mw=8.8 Maule earthquake located 1500km south of the array. Exploring observations from both datasets, we can clearly state that triggering of upper crustal faults is observed for small-scale displacements. These findings allow us to speculate that the observed larger events in the past are likely being triggered events that require a critically prestressed condition of the target fault that is unclamped by stress changes triggered by large or potentially even small subduction zone earthquakes.
Paleoseismology in Venezuela: Objectives, methods, applications, limitations and perspectives
NASA Astrophysics Data System (ADS)
Audemard M., Franck A.
2005-10-01
The privileged location of Venezuela along an active interplate deformation belt, despite of being a "so-called" developing country, has led to a long paleoseismic tradition as attested by 45 trench assessments since 1968. Since then, a first 2-trench study was carried out by the American Woodward-Clyde company across the Oca fault at Sinamaica. Since 1980, all further paleoseismic studies have been performed by FUNVISIS and the Uribante-Caparo hydroelectric project (southern Mérida Andes) became their first assessment where 22 huge trenches were bulldozer-dug. Except for these Compañía Anónima de Administración y Fomento Eléctrico (CADAFE) financed trenches and two others, all other assessments were for Petróleos de Venezuela S. A. -PDVSA-. In this paper, geographic and geologic factors, as well as logistic limitations, conditioning success in paleoseismic studies by trenching, shall be discussed based on the Venezuelan experience developed over the years. The scientific contribution of this approach refer to: confirmation of Holocene fault activity, slip-per-event and average slip rate of a given fault (or segment), seismic potential (repeat of maximum credible earthquakes) of known faults, fault segmentation, fault interaction as consequence of stress loading by stick-slip on contiguous faults, time-space distribution of seismic activity along a given tectonic feature, seismotectonic association of historical earthquakes and landscape evolution on the short term and its implications on the long-term evolution (poorly discussed since this is really part of the field of Neotectonics). In recent years (since 1999), a new approach has been introduced in Venezuela consisting in complementing the seismic history derived from trenching studies with the evaluation of seismically induced perturbations in the continuous Quaternary sedimentary record of (either active or fossil) lakes. The future of this discipline in Venezuela heads to more trenching and lake coring in order to gather more data on the previously mentioned aspects. Other paleoseismic approaches have been developed very little in Venezuela since either climate or the geodynamic setting do not favor their application.
NASA Astrophysics Data System (ADS)
Akintomide, A. O.; Dawers, N. H.
2017-12-01
The observed displacement along faults in southeastern Louisiana has raised questions about the kinematic history of faults during the Quaternary. The Terrebonne Trough, a Miocene salt withdrawal basin, is bounded by the Golden Meadow fault zone on its northern boundary; north dipping, so-called counter-regional faults, together with a subsurface salt ridge, define its southern boundary. To date, there are relatively few published studies on fault architecture and kinematics in the onshore area of southeastern Louisiana. The only publically accessible studies, based on 2d seismic reflection profiles, interpreted faults as mainly striking east-west. Our interpretation of a 3-D seismic reflection volume, located in the northwestern Terrebonne Trough, as well as industry well log correlations define a more complex and highly-segmented fault architecture. The northwest striking Lake Boudreaux fault bounds a marsh on the upthrown block from Lake Boudreaux on the downthrown block. To the east, east-west striking faults are located at the Montegut marsh break and north of Isle de Jean Charles. Portions of the Lake Boudreaux and Isle de Jean Charles faults serve as the northern boundary of the Madison Bay subsidence hot-spot. All three major faults extend to the top of the 3d seismic volume, which is inferred to image latest Pleistocene stratigraphy. Well log correlation using 11+ shallow markers across these faults and kinematic techniques such as stratigraphic expansion indices indicate that all three faults were active in the middle(?) and late Pleistocene. Based on expansion indices, both the Montegut and Isle de Jean Charles faults were active simultaneously at various times, but with different slip rates. There are also time intervals when the Lake Boudreaux fault was slipping at a faster rate compared to the east-west striking faults. Smaller faults near the margins of the 3d volume appear to relate to nearby salt stocks, Bully Camp and Lake Barre. Our work to date suggests both salt and fault activity continued at least into the latest Pleistocene.
Geomorphic Evolution and Slip rate Measurements of the Noushki Segment , Chaman Fault Zone, Pakistan
NASA Astrophysics Data System (ADS)
Abubakar, Y.; Khan, S. D.; Owen, L. A.; Khan, A.
2012-12-01
The Nushki segment of the Chaman fault system is unique in its nature as it records both the imprints of oblique convergence along the western Indian Plate boundary as well as the deformation along the Makran subduction zone. The left-lateral Chaman transform zone has evolved from a subduction zone along the Arabian-Eurasian collision complex to a strike-slip fault system since the collision of the Indian Plate with the Eurasia. The geodetically and geologically constrained displacement rates along the Chaman fault varies from about 18 mm/yr to about 35 mm/yr respectively throughout its total length of ~ 860 km. Two major hypothesis has been proposed by workers for these variations; i) Variations in rates of elastic strain accumulation along the plate boundary and, ii) strain partitioning along the plate boundary. Morphotectonic analysis is a very useful tool in investigations of spatial variations in tectonic activities both regionally and locally. This work uses morphotectonic analysis to investigate the degree of variations in active tectonic deformation, which can be directly related to elastic strain accumulation and other kinematics in the western boundary of the plate margin. Geomorphic mapping was carried out using remotely sensed data. ASTER and RADAR data were used in establishing Quaternary stratigraphy and measurement of geomorphic indices such as stream length gradient index, valley floor width to height ratio and, river/stream longitudinal profile within the study area. High resolution satellite images (e.g., IKONOS imagery) and 30m ASTER DEMs were employed to measure displacement recorded by landforms along individual strands of the fault. Results from geomorphic analysis shows three distinct levels of tectonic deformation. Areas showing high levels of tectonic deformation are characterized by displaced fan surfaces, deflected streams and beheaded streams. Terrestrial Cosmogenic nuclide surface exposure dating of the displaced landforms is being carried out to calculate slip-rates. Slip-rates estimation along this segment of this plate boundary will help in understanding of tectonic evolution of this plate boundary and seismic activity in the region.
NASA Astrophysics Data System (ADS)
Angelier, J.; Chu, H.-T.; Lee, J.-C.
1997-06-01
Repeated measurements of active deformation were carried out at three sites along the active Chihshang Fault, a segment of the Longitudinal Valley Fault zone of eastern Taiwan (the present-day plate boundary between the Philippine Sea Plate and Eurasia). Reliable annual records of displacement along an active fault, were obtained based on detailed surveys of faulted concrete structures. Along the active Chihshang Fault striking N18°E, we determined average motion vectors trending N37°W with an average shortening of 2.2 cm/yr. Thus, the transverse component of motion related to westward thrusting is 1.8 cm/yr, whereas the left-lateral strike-slip component of motion is 1.3 cm/yr. The fault dips 39-45° to the east, so that the vertical displacement is 1.5-3 cm/yr and the actual oblique offset of the fault increases at a rate of 2.7-3.7 cm/yr. This is in good agreement with the results of regional geodetic and tectonic analyses in Taiwan, and consistent with the N54°W trend of convergence between the northernmost Luzon Arc and South China revealed by GPS studies. Our study provides an example of extreme shear concentration in an oblique collision zone. At Chihshang, the whole horizontal shortening of the Longitudinal Valley Fault, 2.2 cm/yr on average, occurs across a single, narrow fault zone, so that the whole reverse slip (about 2.7-3.7 cm/yr depending on fault dip) was entirely recorded by walls 20-200 m long where faults are tightly localized. This active faulting accounts for more than one fourth (27%) of the total shortening between the Luzon Arc and South China recorded through GPS analyses. Further surveys should indicate whether the decreasing shortening velocity across the fault is significant (revealing increasing earthquake risk due to stress accumulation) or not (revealing continuing fault creep and 'weak' behaviour of the Chihshang Fault).
NASA Astrophysics Data System (ADS)
Zheng, A.; Zhang, W.
2016-12-01
On 15 April, 2016 the great earthquake with magnitude Mw7.1 occurred in Kumamoto prefecture, Japan. The focal mechanism solution released by F-net located the hypocenter at 130.7630°E, 32.7545°N, at a depth of 12.45 km, and the strike, dip, and the rake angle of the fault were N226°E, 84° and -142° respectively. The epicenter distribution and focal mechanisms of aftershocks implied the mechanism of the mainshock might have changed in the source rupture process, thus a single focal mechanism was not enough to explain the observed data adequately. In this study, based on the inversion result of GNSS and InSAR surface deformation with active structures for reference, we construct a finite fault model with focal mechanism changes, and derive the source rupture process by multi-time-window linear waveform inversion method using the strong-motion data (0.05 1.0Hz) obtained by K-NET and KiK-net of Japan. Our result shows that the Kumamoto earthquake is a right-lateral strike slipping rupture event along the Futagawa-Hinagu fault zone, and the seismogenic fault is divided into a northern segment and a southern one. The strike and the dip of the northern segment are N235°E, 60° respectively. And for the southern one, they are N205°E, 72° respectively. The depth range of the fault model is consistent with the depth distribution of aftershocks, and the slip on the fault plane mainly concentrate on the northern segment, in which the maximum slip is about 7.9 meter. The rupture process of the whole fault continues for approximately 18-sec, and the total seismic moment released is 5.47×1019N·m (Mw 7.1). In addition, the essential feature of the distribution of PGV and PGA synthesized by the inversion result is similar to that of observed PGA and seismic intensity.
Source Rupture Process of the 2016 Kumamoto, Japan, Earthquake Inverted from Strong-Motion Records
NASA Astrophysics Data System (ADS)
Zhang, Wenbo; Zheng, Ao
2017-04-01
On 15 April, 2016 the great earthquake with magnitude Mw7.1 occurred in Kumamoto prefecture, Japan. The focal mechanism solution released by F-net located the hypocenter at 130.7630°E, 32.7545°N, at a depth of 12.45 km, and the strike, dip, and the rake angle of the fault were N226°E, 84˚ and -142° respectively. The epicenter distribution and focal mechanisms of aftershocks implied the mechanism of the mainshock might have changed in the source rupture process, thus a single focal mechanism was not enough to explain the observed data adequately. In this study, based on the inversion result of GNSS and InSAR surface deformation with active structures for reference, we construct a finite fault model with focal mechanism changes, and derive the source rupture process by multi-time-window linear waveform inversion method using the strong-motion data (0.05 1.0Hz) obtained by K-NET and KiK-net of Japan. Our result shows that the Kumamoto earthquake is a right-lateral strike slipping rupture event along the Futagawa-Hinagu fault zone, and the seismogenic fault is divided into a northern segment and a southern one. The strike and the dip of the northern segment are N235°E, 60˚ respectively. And for the southern one, they are N205°E, 72˚ respectively. The depth range of the fault model is consistent with the depth distribution of aftershocks, and the slip on the fault plane mainly concentrate on the northern segment, in which the maximum slip is about 7.9 meter. The rupture process of the whole fault continues for approximately 18-sec, and the total seismic moment released is 5.47×1019N·m (Mw 7.1). In addition, the essential feature of the distribution of PGV and PGA synthesized by the inversion result is similar to that of observed PGA and seismic intensity.
NASA Astrophysics Data System (ADS)
Wu, Kongyou; Pei, Yangwen; Li, Tianran; Wang, Xulong; Liu, Yin; Liu, Bo; Ma, Chao; Hong, Mei
2018-03-01
The Daerbute fault zone, located in the northwestern margin of the Junggar basin, in the Central Asian Orogenic Belt, is a regional strike-slip fault with a length of 400 km. The NE-SW trending Daerbute fault zone presents a distinct linear trend in plain view, cutting through both the Zair Mountain and the Hala'alate Mountain. Because of the intense contraction and shearing, the rocks within the fault zone experienced high degree of cataclasis, schistosity, and mylonization, resulting in rocks that are easily eroded to form a valley with a width of 300-500 m and a depth of 50-100 m after weathering and erosion. The well-exposed outcrops along the Daerbute fault zone present sub-horizontal striations and sub-vertical fault steps, indicating sub-horizontal shearing along the observed fault planes. Flower structures and horizontal drag folds are also observed in both the well-exposed outcrops and high-resolution satellite images. The distribution of accommodating strike-slip splay faults, e.g., the 973-pluton fault and the Great Jurassic Trough fault, are in accordance with the Riedel model of simple shear. The seismic and time-frequency electromagnetic (TFEM) sections also demonstrate the typical strike-slip characteristics of the Daerbute fault zone. Based on detailed field observations of well-exposed outcrops and seismic sections, the Daerbute fault can be subdivided into two segments: the western segment presents multiple fault cores and damage zones, whereas the eastern segment only presents a single fault core, in which the rocks experienced a higher degree of rock cataclasis, schistosity, and mylonization. In the central overlapping portion between the two segments, the sediments within the fault zone are primarily reddish sandstones, conglomerates, and some mudstones, of which the palynological tests suggest middle Permian as the timing of deposition. The deformation timing of the Daerbute fault was estimated by integrating the depocenters' basinward migration and initiation of the splay faults (e.g., the Great Jurassic Trough fault and the 973-pluton fault). These results indicate that there were probably two periods of faulting deformation for the Daerbute fault. By integrating our study with previous studies, we speculate that the Daerbute fault experienced a two-phase strike-slip faulting deformation, commencing with the initial dextral strike-slip faulting in mid-late Permian, and then being inversed to sinistral strike-slip faulting since the Triassic. The results of this study can provide useful insights for the regional tectonics and local hydrocarbon exploration.
Observations of Static Coulomb Stress Triggering During the Mw 5.7 Pawnee Earthquake Sequence
NASA Astrophysics Data System (ADS)
Pennington, C.; Chen, X.; Nakata, N.; Chang, J. C.
2016-12-01
The Pawnee earthquake occurred at 12:02 UTC on September 3 and was felt throughout Oklahoma and is the largest event recorded in Oklahoma instrumented history. The earthquake occurred near the junction of two previously mapped faults (Watchorn Fault and Labette Fault), but the actual fault that ruptured was a left-lateral unmapped basement fault (now known as the Sooner Lake Fault) with a strike of 107°, which is conjugate to a segment of the Labette fault that is optimally oriented (referred as OOF). We located 634 events from both before and after the mainshock (updated on September 15, 2016) and use these locations to map other seismogenic faults in the area. Examining the catalog, we found two episodes of seismicity, which started at 100 days and 40 days prior to mainshock, each episode has two clusters occurring two days apart on both OOF and near the mainshock. The near-simultaneous occurrence of clusters suggests possible stress interaction between the Sooner Lake Fault and the Labette fault. We examined the Coulomb stress changes on the surrounding faults caused by the mainshock and have found an increase of coulomb stress along the rakes of mapped faults in the area, the highest being along the Sooner Lake fault and the OOF segment of the Labette fault (see fig 1). These faults experienced up to 5 bars of positive coulomb stress increase, which matched the areas that experience the most aftershocks. To better understand the effect of the coulomb stress on the aftershocks, we plan on refining the catalogs for both aftershocks over a longer period and focal mechanisms to obtain accurate nodal planes, which will be used to see how and if the aftershocks were triggered by the Coulomb stress changes. We will also examine and refine the focal mechanisms that were produced for the events that occurred both before and after the main shock to investigate Coulomb stress interaction. Fig 1. (a) Is a map of faults in the Pawnee area with the red line being the source fault, which is part of the Sooner Lake Fault (green and red line segments.) The opitimally oriented segment of the Labette Fault (OOF) is shown in blue. (b) Shows the coulomb stress change for individual rakes after the rupture along the source fault.
The Quaternary thrust system of the northern Alaska Range
Bemis, Sean P.; Carver, Gary A.; Koehler, Richard D.
2012-01-01
The framework of Quaternary faults in Alaska remains poorly constrained. Recent studies in the Alaska Range north of the Denali fault add significantly to the recognition of Quaternary deformation in this active orogen. Faults and folds active during the Quaternary occur over a length of ∼500 km along the northern flank of the Alaska Range, extending from Mount McKinley (Denali) eastward to the Tok River valley. These faults exist as a continuous system of active structures, but we divide the system into four regions based on east-west changes in structural style. At the western end, the Kantishna Hills have only two known faults but the highest rate of shallow crustal seismicity. The western northern foothills fold-thrust belt consists of a 50-km-wide zone of subparallel thrust and reverse faults. This broad zone of deformation narrows to the east in a transition zone where the range-bounding fault of the western northern foothills fold-thrust belt terminates and displacement occurs on thrust and/or reverse faults closer to the Denali fault. The eastern northern foothills fold-thrust belt is characterized by ∼40-km-long thrust fault segments separated across left-steps by NNE-trending left-lateral faults. Altogether, these faults accommodate much of the topographic growth of the northern flank of the Alaska Range.Recognition of this thrust fault system represents a significant concern in addition to the Denali fault for infrastructure adjacent to and transecting the Alaska Range. Although additional work is required to characterize these faults sufficiently for seismic hazard analysis, the regional extent and structural character should require the consideration of the northern Alaska Range thrust system in regional tectonic models.
NASA Astrophysics Data System (ADS)
Gülyüz, Erhan; Özkaptan, Murat; Kaymakcı, Nuretdin
2016-04-01
Gondwana- (Tauride Platfrom and Kırşehir Block) and Eurasia (Pontides) - derived continental blocks bound the Haymana basin, in the south and north, respectively. Boundaries between these blocks are signed by İzmir-Ankara-Erzincan and debatable Intra-Tauride Suture zones which are straddled by the Haymana Basin in the region. In this regard, deformation recorded in the upper Cretaceous to middle Eocene deposits of the basin is mainly controlled by the relative movements of these blocks. Therefore, understanding the structural evolution of the Haymana Basin in a spatio-temporal concept is crucial to shed some light on some debatable issues such as ; (1) timing of late stage subduction histories of various branches of Neotethys and subsequent collision events, (2) effects of post-collisional tectonic activity in the Haymana region. Fault kinematic analyses (based on 623 fault-slip data from 73 stations) indicate that the basin was subjected to initially N-S to NNE-SSW extension until middle Paleocene and then N-S- to NNE-SSW- directed continuous compression and coeval E-W to ESE-WNW extension up to middle Miocene. These different deformation phases correspond to the fore-arc (closure) and foreland (collision and further convergence) stages of the basin. Additionally, fold analyses (based on 1017 bedding attitudes) and structural mapping studies show that development of folds and major faults are coeval and they can be explained by principle stress orientations of the second deformation phase. The Haymana basin is, based on the trends of E-W- and WNW-ESE- directed structures at the south-eastern and the north-western parts of the basin, respectively, divided into two structural segments. The balanced cross-sections also indicate ~4% and ~25% shortening at the north-western and south-eastern segments, respectively. The differences in amounts of shortenings are explained by reduce in effectiveness zone of basin-bounding thrust faults towards west. On the other hand, the boundary of the segments is defined as an intra-basinal strike-slip system which is thought to be developed together with late stage activities of the basin bounding thrust (or reverse) faults (Dereköy and İnler faults) in response to the north-westward movement of the northern segment of the Kırşehir block. It is proposed that the Haymana basin was initially evolved under the influences of subduction related extensional setting until middle Paleocene, and latterly foreland settings in front of a south-vergent fold and thrust belt developed during collision and post-collisional convergence until middle Miocene. Additionally, the north-westward movement and indentation of the Kırşehir Block caused structural segmentation and rotation events in the basin.
Late-Variscan Tectonic Inheritance and Salt Tectonics Interplay in the Central Lusitanian Basin
NASA Astrophysics Data System (ADS)
Nogueira, Carlos R.; Marques, Fernando O.
2017-04-01
Tectonic inheritance and salt structures can play an important role in the tectono-sedimentary evolution of basins. The Alpine regional stress field in west Iberia had a horizontal maximum compressive stress striking approximately NNW-SSE, related to the Late Miocene inversion event. However, this stress field cannot produce a great deal of the observed and mapped structures in the Lusitanian Basin. Moreover, many observed structures show a trend similar to well-known basement fault systems. The Central Lusitanian basin shows an interesting tectonic structure, the Montejunto structure, generally assigned to this inversion event. Therefore, special attention was paid to: (1) basement control of important observed structures; and (2) diapir tectonics (vertical maximum compressive stress), which can be responsible for significant vertical movements. Based on fieldwork, tectonic analysis and interpretation of geological maps (Portuguese Geological Survey, 1:50000 scale) and geophysical data, our work shows: (1) the Montejunto structure is a composite structure comprising an antiform with a curved hinge and middle Jurassic core, and bounding main faults; (2) the antiform can be divided into three main segments: (i) a northern segment with NNE-SSW trend showing W-dipping bedding bounded at the eastern border by a NNE-SSW striking fault, (ii) a curved central segment, showing the highest topography, with a middle Jurassic core and radial dipping bedding, (iii) a western segment with ENE-WSW trend comprising an antiform with a steeper northern limb and periclinal termination towards WSW, bounded to the south by ENE-WSW reverse faulting, (3) both fold and fault trends at the northern and western segments are parallel to well-known basement faults related to late-Variscan strike-slip systems with NNE-SSW and ENE-WSW trends; (4) given the orientation of Alpine maximum compressive stress, the northern segment border fault should be mostly sinistral strike-slip and the western segment border fault should be a pure thrust; (5) uplift along the northern and central segments may point out to the presence of a salt diapir at depth, aiding vertical movement and local uplift of the structure; (6) geometry of seismic units of the neighboring basins is consistent with halokinesis related to the antiform growth during the Jurassic; (7) sedimentary filling of the neighbouring basins shows relationship to antiform development and growth into a structural high before the Late Miocene Alpine event. These data suggest that: (1) pre-existing basement faults and their reactivation played important role on the development of Montejunto complex tectonic structure; (2) important vertical movements occurred as the result of regional and local (diapir) tectonics; (3) subsidence in neighbouring basins may have promoted maturation, and possible targets with strong potential for hydrocarbon trapping and accumulation may have also developed; (4) diapir tectonics initiated before the Cretaceous; (5) given the topography, and the geometry and inferred kinematics of all segments, it seems that the Montejunto structure formed in a restraining bend controlled by inherited late-Variscan basement faults.
NASA Astrophysics Data System (ADS)
Mattos, Nathalia H.; Alves, Tiago M.; Omosanya, Kamaldeen O.
2016-10-01
This paper uses 2D and high-quality 3D seismic reflection data to assess the geometry and kinematics of the Samson Dome, offshore Norway, revising the implications of the new data to hydrocarbon exploration in the Barents Sea. The study area was divided into three (3) zones in terms of fault geometries and predominant strikes. Displacement-length (D-x) and Throw-depth (T-z) plots showed faults to consist of several segments that were later dip-linked. Interpreted faults were categorised into three families, with Type A comprising crestal faults, Type B representing large E-W faults, and Type C consisting of polygonal faults. The Samson Dome was formed in three major stages: a) a first stage recording buckling of the post-salt overburden and generation of radial faults; b) a second stage involving dissolution and collapse of the dome, causing subsidence of the overburden and linkage of initially isolated fault segments; and c) a final stage in which large fault segments were developed. Late Cretaceous faults strike predominantly to the NW, whereas NE-trending faults comprise Triassic structures that were reactivated in a later stage. Our work provides scarce evidence for the escape of hydrocarbons in the Samson Dome. In addition, fault analyses based on present-day stress distributions indicate a tendency for 'locking' of faults at depth, with the largest leakage factors occurring close to the surface. The Samson Dome is an analogue to salt structures in the Barents Sea where oil and gas exploration has occurred with varied degrees of success.
NASA Astrophysics Data System (ADS)
Wang, Yu; Wei, Shengji; Wang, Xin; Lindsey, Eric O.; Tongkul, Felix; Tapponnier, Paul; Bradley, Kyle; Chan, Chung-Han; Hill, Emma M.; Sieh, Kerry
2017-12-01
The M w 6.0 Mt. Kinabalu earthquake of 2015 was a complete (and deadly) surprise, because it occurred well away from the nearest plate boundary in a region of very low historical seismicity. Our seismological, space geodetic, geomorphological, and field investigations show that the earthquake resulted from rupture of a northwest-dipping normal fault that did not reach the surface. Its unilateral rupture was almost directly beneath 4000-m-high Mt. Kinabalu and triggered widespread slope failures on steep mountainous slopes, which included rockfalls that killed 18 hikers. Our seismological and morphotectonic analyses suggest that the rupture occurred on a normal fault that splays upwards off of the previously identified normal Marakau fault. Our mapping of tectonic landforms reveals that these faults are part of a 200-km-long system of normal faults that traverse the eastern side of the Crocker Range, parallel to Sabah's northwestern coastline. Although the tectonic reason for this active normal fault system remains unclear, the lengths of the longest fault segments suggest that they are capable of generating magnitude 7 earthquakes. Such large earthquakes must occur very rarely, though, given the hitherto undetectable geodetic rates of active tectonic deformation across the region.
Stress transfer to the Denali and other regional faults from the M 9.2 Alaska earthquake of 1964
Bufe, C.G.
2004-01-01
Stress transfer from the great 1964 Prince William Sound earthquake is modeled on the Denali fault, including the Denali-Totschunda fault segments that ruptured in 2002, and on other regional fault systems where M 7.5 and larger earthquakes have occurred since 1900. The results indicate that analysis of Coulomb stress transfer from the dominant earthquake in a region is a potentially powerful tool in assessing time-varying earthquake hazard. Modeled Coulomb stress increases on the northern Denali and Totschunda faults from the great 1964 earthquake coincide with zones that ruptured in the 2002 Denali fault earthquake, although stress on the Susitna Glacier thrust plane, where the 2002 event initiated, was decreased. A southeasterlytrending Coulomb stress transect along the right-lateral Totschunda-Fairweather-Queen Charlotte trend shows stress transfer from the 1964 event advancing slip on the Totschunda, Fairweather, and Queen Charlotte segments, including the southern Fairweather segment that ruptured in 1972. Stress transfer retarding right-lateral strike slip was observed from the southern part of the Totschunda fault to the northern end of the Fairweather fault (1958 rupture). This region encompasses a gap with shallow thrust faulting but with little evidence of strike-slip faulting connecting the segments to the northwest and southeast. Stress transfer toward failure was computed on the north-south trending right-lateral strike-slip faults in the Gulf of Alaska that ruptured in 1987 and 1988, with inhibitory stress changes at the northern end of the northernmost (1987) rupture. The northern Denali and Totschunda faults, including the zones that ruptured in the 2002 earthquakes, follow very closely (within 3%), for about 90??, an arc of a circle of radius 375 km. The center of this circle is within a few kilometers of the intersection at depth of the Patton Bay fault with the Alaskan megathrust. This inferred asperity edge may be the pole of counterclockwise rotation of the block south of the Denali fault. These observations suggest that the asperity and its recurrent rupture in great earthquakes as in 1964 may have influenced the tectonics of the region during the later stages of evolution of the Denali strike-slip fault system.
NASA Astrophysics Data System (ADS)
Zhang, Kun; Lü, Qingtian; Yan, Jiayong; Hu, Hao; Fu, GuangMing
2017-08-01
We use 3D audio magnetotelluric method to the south segment of Jiaojia fault belt, and obtain the 3D electrical model of this area. Regional geophysical data were combined in an analysis of strata and major structural distribution in the study area, and included the southern segment of the Jiaojia fault zone transformed into two fault assemblages. Together with the previous studies of the ore-controlling action of the Jiaojia fault belt and deposit characteristics, the two faults are considered to be favorable metallogenic provinces, because some important features coupled with them, such as the subordinate fault intersection zone and several fault assemblages in one fault zone. It was also suggested the control action of later fault with reversed downthrows to the ore distribution. These studies have enabled us to predict the presence of two likely target regions of mineralization, and are prospecting breakthrough in the southern section of Jiaojia in the Shandong Peninsula, China.
NASA Astrophysics Data System (ADS)
Booth-Rea, Guillermo; Pérez-Peña, Vicente; Azañón, José Miguel; de Lis Mancilla, Flor; Morales, Jose; Stich, Daniel; Giaconia, Flavio
2014-05-01
Most of the geological features of the Betics and Rif have resulted from slab tearing, edge delamination and punctual slab breakoff events between offset STEP faults. New P-reciever function data of the deep structure under the Betics and Rif have helped to map the deep boundaries of slab tearing and rupture in the area. Linking surface geological features with the deep structure shows that STEP faulting under the Betics occurred along ENE-WSW segments offset towards the south, probably do to the westward narrowing of the Tethys slab. The surface expression of STEP faulting at the Betics consists of ENE-WSW dextral strike-slip fault segments like the Crevillente, Alpujarras or Torcal faults that are interrupted by basins and elongated extensional domes were exhumed HP middle crust occurs. Exhumation of deep crust erases the effects of strike-slip faulting in the overlying brittle crust. Slab tearing affected the eastern Betics during the Tortonian to Messinian, producing the Fortuna and Lorca basins, and later propagated westward generating the end-Messinian to Pleistocene Guadix-Baza basins and the Granada Pliocene-Pleistocene depocentre. At present slab tearing is occurring beneath the Málaga depression, where the Torcal dextral strike-slip fault ends in a region of active distributed shortening and where intermediate depth seismicity occurs. STEP fault migration has occurred at average rates between 2 and 4 cm/yr since the late Miocene, producing a wave of alternating uplift-subsidence pulses. These initiate with uplift related to slab flexure, subsidence related to slab-pull, followed by uplift after rupture and ending with thermal subsidence. This "yo-yo" type tectonic evolution leads to the generation of endorheic basins that later evolve to exhorheic when they are uplifted and captured above the region where asthenospheric upwelling occurs.
NASA Astrophysics Data System (ADS)
Brandsdottir, B.; Parsons, M.; White, R. S.; Gudmundsson, O.; Drew, J.
2010-12-01
The mid-Atlantic plate boundary breaks up into a series of segments across Iceland. The South Iceland Seismic Zone (SISZ) is a complex transform zone where left-lateral E-W shear between the Reykjanes Peninsula Rift Zone and the Eastern Volcanic Zone is accommodated by bookshelf faulting along N-S lateral strike-slip faults. The SISZ is also a transient feature, migrating sideways in response to the southward propagation of the Eastern Volcanic Zone. Sequences of large earthquakes (M > 6) lasting from days to years and affecting most of the seismic zone have occurred repeatedly in historical time (last 1100 years), separated by intervals of relative quiescence lasting decades to more than a century. On May 29 2008, a Mw 6.1 earthquake struck the western part of the South Iceland Seismic Zone, followed within seconds by a slightly smaller event on a second fault ~5 km further west. Aftershocks, detected by a temporal array of 11 seismometers and three permanent Icelandic Meteorological Office stations were located using an automated Coalescence Microseismic Mapping technique. The epicenters delineate two major and several smaller N-S faults as well as an E-W zone of activity stretching further west into the Reykjanes Peninsula Rift Zone. Fault plane solutions show both right lateral and oblique strike slip mechanisms along the two major N-S faults. The aftershocks deepen from 3-5 km in the north to 8-9 km in the south, suggesting that the main faults dip southwards. The faulting is interpreted to be driven by the local stress due to transform motion between two parallel segments of the divergent plate boundary crossing Iceland.
McCalpin, J.P.; Nishenko, S.P.
1996-01-01
The chronology of M>7 paleoearthquakes on the central five segments of the Wasatch fault zone (WFZ) is one of the best dated in the world and contains 16 earthquakes in the past 5600 years with an average repeat time of 350 years. Repeat times for individual segments vary by a factor of 2, and range from about 1200 to 2600 years. Four of the central five segments ruptured between ??? 620??30 and 1230??60 calendar years B.P. The remaining segment (Brigham City segment) has not ruptured in the past 2120??100 years. Comparison of the WFZ space-time diagram of paleoearthquakes with synthetic paleoseismic histories indicates that the observed temporal clusters and gaps have about an equal probability (depending on model assumptions) of reflecting random coincidence as opposed to intersegment contagion. Regional seismicity suggests that for exposure times of 50 and 100 years, the probability for an earthquake of M>7 anywhere within the Wasatch Front region, based on a Poisson model, is 0.16 and 0.30, respectively. A fault-specific WFZ model predicts 50 and 100 year probabilities for a M>7 earthquake on the WFZ itself, based on a Poisson model, as 0.13 and 0.25, respectively. In contrast, segment-specific earthquake probabilities that assume quasi-periodic recurrence behavior on the Weber, Provo, and Nephi segments are less (0.01-0.07 in 100 years) than the regional or fault-specific estimates (0.25-0.30 in 100 years), due to the short elapsed times compared to average recurrence intervals on those segments. The Brigham City and Salt Lake City segments, however, have time-dependent probabilities that approach or exceed the regional and fault specific probabilities. For the Salt Lake City segment, these elevated probabilities are due to the elapsed time being approximately equal to the average late Holocene recurrence time. For the Brigham City segment, the elapsed time is significantly longer than the segment-specific late Holocene recurrence time.
NASA Astrophysics Data System (ADS)
Brandes, Christian; Steffen, Holger; Sandersen, Peter B. E.; Wu, Patrick; Winsemann, Jutta
2018-06-01
The Sorgenfrei-Tornquist Zone (STZ) is the northwestern segment of the Tornquist Zone and extends from Bornholm across the Baltic Sea and northern Denmark into the North Sea. It represents a major lithospheric structure with a significant increase in lithosphere thickness from south to north. A series of meter-scale normal faults and soft-sediment deformation structures (SSDS) are developed in Lateglacial marine and lacustrine sediments, which are exposed along the Lønstrup Klint cliff at the North Sea coast of northern Denmark. These deformed deposits occur in the local Nørre Lyngby basin that forms part of the STZ. Most of the SSDS are postdepositional, implying major tectonic activity between the Allerød and Younger Dryas (∼14 ka to 12 ka). The occurrence of some syn- and metadepositional SSDS point to an onset of tectonic activity at around 14.5 ka. The formation of normal faults is probably the effect of neotectonic movements along the Børglum fault, which represents the northern boundary fault of the STZ in the study area. The narrow and elongated Nørre Lyngby basin can be interpreted as a strike-slip basin that developed due to right-lateral movements at the Børglum fault. As indicated by the SSDS, these movements were most likely accompanied by earthquake(s). Based on the association of SSDS these earthquake(s) had magnitudes of at least Ms ≥ 4.2 or even up to magnitude ∼ 7 as indicated by a fault with 3 m displacement. The outcrop data are supported by a topographic analysis of the terrain that points to a strong impact from the fault activity on the topography, characterized by a highly regular erosional pattern, the evolution of fault-parallel sag ponds and a potential fault scarp with a height of 1-2 m. With finite-element simulations, we test the impact of Late Pleistocene (Weichselian) glaciation-induced Coulomb stress change on the reactivation potential of the Børglum fault. The numerical simulations of deglaciation-related lithospheric stress build-up additionally support that this neotectonic activity occurred between ∼14.5 and 12 ka and was controlled by stress changes that were induced by the decay of the Scandinavian ice sheet. In the Holocene, the stress field in the study area thus changed from GIA-controlled to a stress field that is determined by plate tectonic forces. Comparable observations were described from the central STZ in the Kattegat area and the southeastern end of the STZ near Bornholm. We therefore interpret the entire STZ as a structure where glacially induced faulting very likely occurred in Lateglacial times. The fault reactivation was associated with the formation of small fault-bound basins that provided accommodation space for Lateglacial to Holocene marine and freshwater sediments.
NASA Astrophysics Data System (ADS)
Shah, A. A.
2016-03-01
Shah (Int J Earth Sci 102:1957-1966, 2013) mapped major unknown faults and fault segments in Kashmir basin using geomorphological techniques. The major trace of out-of-sequence thrust fault was named as Kashmir basin fault (KBF) because it runs through the middle of Kashmir basin, and the active movement on it has backtilted and uplifted most of the basin. Ahmad et al. (Int J Earth Sci, 2015) have disputed the existence of KBF and maintained that faults identified by Shah (Int J Earth Sci 102:1957-1966, 2013) were already mapped as inferred faults by earlier workers. The early works, however, show a major normal fault, or a minor out-of-sequence reverse fault, and none have shown a major thrust fault.
Numerical reconstruction of Late-Cenosoic evolution of normal-fault scarps in Baikal Rift Zone
NASA Astrophysics Data System (ADS)
Byzov, Leonid; San'kov, Vladimir
2014-05-01
Numerical landscape development modeling has recently become a popular tool in geo-logic and geomorphic investigations. We employed this technique to reconstruct Late-Cenosoic evolution of Baikal Rift Zone mountains. The objects of research were Barguzin Range and Svyatoy Nos Upland. These structures are formed under conditions of crustal extension and bounded by active normal faults. In our experiments we used instruments, engineered by Greg Tucker (University of Colo-rado) - CHILD (Channel-Hillslope Integrated Landscape Development) and 'Bedrock Fault Scarp'. First program allowed constructing the complex landscape model considering tectonic uplift, fluvial and hillslope processes; second program is used for more accurate simulating of triangular facet evolution. In general, our experiments consisted in testing of tectonic parameters, and climatic char-acteristic, erosion and diffusion properties, hydraulic geometry were practically constant except for some special runs. Numerous experiments, with various scenarios of development, showed that Barguzin range and Svyatoy Nos Upland has many common features. These structures characterized by internal differentiation, which appear in height and shape of slopes. At the same time, individual segments of these objects are very similar - this conclusion refers to most developing parts, with pronounced facets and V-shaped valleys. Accordingly modelling, these landscapes are in a steady state and are undergoing a uplift with rate 0,4 mm/yr since Early Pliocene (this solution accords with AFT-dating). Lower segments of Barguzin Range and Svyatoy Nos Upland also have some general fea-tures, but the reasons of such similarity probably are different. In particular, southern segment of Svyatoy Nos Upland, which characterized by relative high slope with very weak incision, may be formed as result very rapid fault movement or catastrophic landslide. On the other hand, a lower segment of Barguzin Range (Ulun segment, for example) probably has small height and relative weak incision over later beginning of uplift.
Jachens, R.C.; Zoback, M.L.
1999-01-01
Recently acquired high-resolution aeromagnetic data delineate offset and/or truncated magnetic rock bodies of the Franciscan Complex that define the location and structure of, and total offset across, the San Andreas fault in the San Francisco Bay region. Two distinctive magnetic anomalies caused by ultramafic rocks and metabasalts east of, and truncated at, the San Andreas fault have clear counterparts west of the fault that indicate a total right-lateral offset of only 22 km on the Peninsula segment, the active strand that ruptured in 1906. The location of the Peninsula segment is well defined magnetically on the northern peninsula where it goes offshore, and can be traced along strike an additional ~6 km to the northwest. Just offshore from Lake Merced, the inferred fault trace steps right (northeast) 3 km onto a nearly parallel strand that can be traced magnetically northwest more than 20 km as the linear northeast edge of a magnetic block bounded by the San Andreas fault, the Pilarcitos fault, and the San Gregorio-Hosgri fault zone. This right-stepping strand, the Golden Gate segment, joins the eastern mapped trace of the San Andreas fault at Bolinas Lagoon and projects back onshore to the southeast near Lake Merced. Inversion of detailed gravity data on the San Francisco Peninsula reveals a 3 km wide basin situated between the two strands of the San Andreas fault, floored by Franciscan basement and filled with Plio-Quaternary sedimentary deposits of the Merced and Colma formations. The basin, ~1 km deep at the coast, narrows and becomes thinner to the southeast along the fault over a distance of ~12 km. The length, width, and location of the basin between the two strands are consistent with a pull-apart basin formed behind the right step in the right-lateral strike-slip San Andreas fault system and currently moving southeast with the North American plate. Slight nonparallelism of the two strands bounding the basin (implying a small component of convergence with continued strike-slip movement) may explain the progressive narrowing of the basin to the southeast and the puzzling recent uplift of the Merced Formation in a predominantly extensional (pull-apart basin) setting. The 1906 San Francisco earthquake may have nucleated within the step-over region, and the step-over places a strand of the San Andreas fault 3 km closer to downtown San Francisco than previously thought.
NASA Technical Reports Server (NTRS)
Merifield, P. M. (Principal Investigator); Lamar, D. L.; Gazley, C., Jr.; Lamar, J. V.; Stratton, R. H.
1976-01-01
The author has identified the following significant results. Four previously unknown faults were discovered in basement terrane of the Peninsular Ranges. These have been named the San Ysidro Creek fault, Thing Valley fault, Canyon City fault, and Warren Canyon fault. In addition fault gouge and breccia were recognized along the San Diego River fault. Study of features on Skylab imagery and review of geologic and seismic data suggest that the risk of a damaging earthquake is greater along the northwestern portion of the Elsinore fault than along the southeastern portion. Physiographic indicators of active faulting along the Garlock fault identifiable in Skylab imagery include scarps, linear ridges, shutter ridges, faceted ridges, linear valleys, undrained depressions and offset drainage. The following previously unrecognized fault segments are postulated for the Salton Trough Area: (1) An extension of a previously known fault in the San Andreas fault set located southeast of the Salton Sea; (2) An extension of the active San Jacinto fault zone along a tonal change in cultivated fields across Mexicali Valley ( the tonal change may represent different soil conditions along opposite sides of a fault). For the Skylab and LANDSAT images studied, pseudocolor transformations offer no advantages over the original images in the recognition of faults in Skylab and LANDSAT images. Alluvial deposits of different ages, a marble unit and iron oxide gossans of the Mojave Mining District are more readily differentiated on images prepared from ratios of individual bands of the S-192 multispectral scanner data. The San Andreas fault was also made more distinct in the 8/2 and 9/2 band ratios by enhancement of vegetation differences on opposite sides of the fault. Preliminary analysis indicates a significant earth resources potential for the discrimination of soil and rock types, including mineral alteration zones. This application should be actively pursued.
NASA Astrophysics Data System (ADS)
Fazzito, Sabrina Y.; Rapalini, Augusto E.; Cortés, José M.; Terrizzano, Carla M.
2017-03-01
Palaeomagnetic data from poorly consolidated to non-consolidated late Cenozoic sediments along the central segment of the active El Tigre Fault (Central-Western Precordillera of the San Juan Province, Argentina) demonstrate broad cumulative deformation up to 450 m from the fault trace and reveal clockwise and anticlockwise vertical-axis rotations of variable magnitude. This deformation has affected in different amounts Miocene to late Pleistocene samples and indicates a complex kinematic pattern. Several inherited linear structures in the shear zone that are oblique to the El Tigre Fault may have acted as block boundary faults. Displacement along these faults may have resulted in a complex pattern of rotations. The maximum magnitude of rotation is a function of the age of the sediments sampled, with largest values corresponding to middle Miocene-lower Pliocene deposits and minimum values obtained from late Pleistocene deposits. The kinematic study is complemented by low-field anisotropy of magnetic susceptibility data to show that the local strain regime suggests a N-S stretching direction, subparallel to the strike of the main fault.
Late Neogene and Active Tectonics along the Northern Margin of the Central Anatolian Plateau,TURKEY
NASA Astrophysics Data System (ADS)
Yildirim, C.; Schildgen, T. F.; Melnick, D.; Echtler, H. P.; Strecker, M. R.
2009-12-01
Margins of orogenic plateaus are conspicuous geomorphic provinces that archive tectonic and climatic variations related to surface uplift. Their growth is associated with spatial and temporal variations of mode and rate of tectonics and surface processes. Those processes can be strongly linked to the evolution of margins and plateaus thorough time. As one of the major morpho-tectonic provinces of Turkey, the Central Pontides (coinciding with the northern margin of the Central Anatolian Plateau (CAP)) display a remarkable topography and present valuable geologic and geomorphic indicators to identify active tectonics. Morpho-tectonic analysis, geological cross-sections, seismic profiles, and geodetic analysis reveal continuous deformation characterized by brittle faults from Late Miocene to recent across the northern margin of the CAP. In the Sinop Peninsula and offshore in the southern Black Sea, pervasive faulting and folding and uplift of Late Miocene to Quaternary marine deposits is related to active margin tectonics of the offshore southern Black Sea thrust and the onshore Balifaki and Erikli faults. In the Kastamonu-Boyabat sedimentary basin, the Late Miocene to Quaternary continental equivalents are strongly deformed by the Ekinveren Fault. This vergent inverse and thrust fault with overstepping en echelon segments deforms not only Quaternary travertines and conglomerates, but also patterns of the Pleistocene to Holocene drainage systems. In the southern Kastamonu-Boyabat basin, an antithetic thrust fault of the Ekinveren Fault system deformed also Quaternary fluviatile terrace deposits. Farther south, a dextral transpressive splay of the North Anatolian Fault (NAF) deforms pediment surfaces and forms the northern flank of the Ilgaz active mountain range. The Ilgaz Range rises up to 2587 m.a.s.l and is delimited by active segments of the NAF.The Central Pontides are located at the apex of northward convex arc of the NAF. Geodetic analysis indicate a deviation of the slip vectors and strain partitioning in the Central Pontides due to the large restraining bend geometry of the NAF. DEM analysis and field observations reveal that the Central Pontides integrate an active bivergent wedge, indicating out-of sequence thrusting and topographical asymmetry, with a gentle pro-wedge northern slope and a steep retro-wedge southern slopes, and regional surface tilting from south to north. Uplifted presumably Late Pleistocene to Holocene marine terraces 4 to 40 m.a.s.l. along the coast and well developed pediment and fill and strath terrace surfaces ranging from 10 to 300 m above along the Gokirmak and Kizilirmak rivers will provide chronological constraints on the uplift and incision rates of the study area.
ten Brink, Uri S.; Lin, J.
2004-01-01
Strike-slip faults in the forearc region of a subduction zone often present significant seismic hazard because of their proximity to population centers. We explore the interaction between thrust events on the subduction interface and strike-slip faults within the forearc region using three-dimensional models of static Coulomb stress change. Model results reveal that subduction earthquakes with slip vectors subparallel to the trench axis enhance the Coulomb stress on strike-slip faults adjacent to the trench but reduce the stress on faults farther back in the forearc region. In contrast, subduction events with slip vectors perpendicular to the trench axis enhance the Coulomb stress on strike-slip faults farther back in the forearc, while reducing the stress adjacent to the trench. A significant contribution to Coulomb stress increase on strike-slip faults in the back region of the forearc comes from "unclamping" of the fault, i.e., reduction in normal stress due to thrust motion on the subduction interface. We argue that although Coulomb stress changes from individual subduction earthquakes are ephemeral, their cumulative effects on the pattern of lithosphere deformation in the forearc region are significant. We use the Coulomb stress models to explain the contrasting deformation pattern between two adjacent segments of the Caribbean subduction zone. Subduction earthquakes with slip vectors nearly perpendicular to the Caribbean trench axis is dominant in the Hispaniola segment, where the strike-slip faults are more than 60 km inland from the trench. In contrast, subduction slip motion is nearly parallel to the Caribbean trench axis along the Puerto Rico segment, where the strike-slip fault is less than 15 km from the trench. This observed jump from a strike-slip fault close to the trench axis in the Puerto Rico segment to the inland faults in Hispaniola is explained by different distributions of Coulomb stress in the forearc region of the two segments, as a result of the change from the nearly trench parallel slip on the Puerto Rico subduction interface to the more perpendicular subduction slip beneath Hispaniola. The observations and modeling suggest that subduction-induced strike-slip seismic hazard to Puerto Rico may be smaller than previously assumed but the hazard to Hispaniola remains high. Copyright 2004 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Hauksson, E.; Ross, Z. E.; Yu, C.
2016-12-01
The southern San Andreas Fault (SAF) accommodates 80% of the plate motion between the Pacific and North America plates in southern California. We image complex patterns of the state of stress, style of faulting, and seismicity adjacent to the SAF, both along strike and away from the fault. This complexity is not captured in previous one-dimensional profiles of stress orientations across the fault. On average the maximum principal stress (S1) rotates from N30°E in central California, along the Cholame segment, to N0°-20°W along the Mojave and San Bernardino segments. Farther south, along the Coachella Valley segment the orientation is again N30°E. On a broad scale these changes in S1 orientation coincide with the more westerly strike of the SAF across the Mojave Desert but in detail they suggest significant variations in frictional coefficient or strength along strike. Similarly, on a more detailed scale, the size of the S1 rotations is spatially heterogeneous, with the largest rotations associated with the two bends in the SAF, at Gorman and Cajon Pass. In each location a major fault, Garlock fault and San Jacinto fault, intersects the SAF. In these intersected regions, the seismicity is more abundant and the S1 orientation is more likely to exhibit abrupt changes in trend by up to 10° across the fault. The GPS maximum principal strain rate orientations exhibit a similar but smoother pattern with mostly west of north orientations along the Mojave and San Bernardino segments. The style of faulting as derived from stress inversion is similarly heterogeneous with a mixture of strike-slip and thrust faulting forming complex spatial patterns. The D95% maximum depth of earthquakes changes abruptly both along and across the SAF suggesting that local variations in composition affect the maximum seismicity depth. The heterogeneity in the state of stress is not influenced by the average heat flow, which is similar along the whole length of the southern SAF. The crustal composition, background seismicity, and the strength of the SAF vary along strike, with the strongest fault segments being near the two bends, Gorman and Cajon Pass, where past major earthquake ruptures may have preferentially terminated.
Determination of Seismic Activity on the Main Marmara Fault with GPS Measurements
NASA Astrophysics Data System (ADS)
Alkan, M. N.; Alkan, R. M.; Yavaşoğlu, H.; Köse, Z.; Aladoğan, K.; Özbey, V.
2017-12-01
The tectonic plates that creates the Earth have always been an important topic to work on for Geosciences. Plate motion affecting the Earth's crust have occurred for millions of years. This slow but continuous movement that has been going on for millions of years can only be followed by instrumental measurements. In recent years, this process has been done with GPS very accurately. The North Anatolian Fault (NAF) is a major right-lateral, strike-slip fault that extends more than 1200 km extends along all North Anatolia from Bingol to Saros Gulf. The NAFZ is divided into Southern and Northern Branches to the east of Marmara region that several destructive earthquakes occurred, such as Izmit (in 1999, Mw=7.4) and Duzce (in 1999, Mw=7.2) in the last century. MMF (Main Marmara Fault) which is the part of the Northern Branch in the Marmara Sea, starting in from the Gulf of Izmit-Adapazarı and reaching the Gulf of Saros. The determination of the deformation accumulated on the MMF has become extremely important especially after the 1999 Izmit earthquake. According to the recent studies, the MMF is the largest unbroken part of the fault and is divided into segments. These segments are Cinarcik, Prince Island, Central Marmara and Tekirdag. Recent studies have demonstrated that the Prince Island segment is fully locked. However, studies that are focused on the Central Marmara segment, that is located offshore Istanbul, a giant metropole that has more than 14 million populations, do not conclude about the presence of a seismic gap, capable of generating a big earthquake. Therefore, in the scope of this study, a new GPS network was established at short and long distance from the Main Marmara Fault, to densify the existing GPS network. 3 campaign GPS measurements were done in 2015, 2016, 2017. The evaluation of the datasets were done by GAMIT/GLOBK software. For the evaluation, 30 continuous observation stations, 14 stations connected to the IGS network and 16 stations connected to the local networks CORS-TR and ISKI-UKBS, and 18 campaign stations that located in the study area were used. The evaluation was made between 12-26 August for each year and thus intended to determine the kinematics of the Main Marmara Fault.
Dynamics of seismogenerating structures in the frontal zone of the Kolyma-Omolon superterrane
NASA Astrophysics Data System (ADS)
Imaeva, L. P.; Imaev, V. S.; Koz'min, B. M.
2016-07-01
To develop a model for the dynamics of seismogenerating structures in the frontal zone of the Kolyma-Omolon superterrane (Chersky seismotectonic zone), the following aspects are analyzed: structural-tectonic position, deep structure parameters, active faults, and fields of tectonic stresses as revealed from solutions of focal mechanisms of strong earthquakes and kinematic types of Late Cenozoic fold deformations and faults. It is found that a certain dynamic setting under transpressional conditions takes place and it was caused by the interaction between structures of the Eurasian, North American, and Okhotsk lithospheric plates within regional segments of the Chersky zone (Yana-Indigirka and Indigirka-Kolyma). These conditions are possible if the Kolyma-Omolon block located in the frontal zone of the North American Plate was an indenter. Due to this, some terranes of different geodynamic origin underwent horizontal shortening, under which particular blocks of segments were pushed out laterally along the orogenic belt, on a system of conjugated strike-slip faults of different directions and hierarchical series, in the northwest and southeast directions, respectively, to form the main seismogenerating reverse-fault and thrust structures with the maximum seismic potential ( M ≥ 6.5).
Late Quaternary paleoseismicity and seismic potential of the Yilan-Yitong Fault Zone in NE China
NASA Astrophysics Data System (ADS)
Yu, Zhongyuan; Yin, Na; Shu, Peng; Li, Jincheng; Wei, Qinghai; Min, Wei; Zhang, Peizhen
2018-01-01
The Yilan-Yitong Fault Zone (YYFZ), which is composed of two nearly parallel branches with a spacing of 5-30 km and a length of ∼1100 km, is considered to be the key branch of the Tancheng-Lujiang Fault Zone (TLFZ) in NE China. It was traditionally believed that the YYFZ experienced weak activity or was inactive during the Late Quaternary, without the capability to generate strong earthquakes (M ≥ 7), based on the absence of typical outcrops and large historical or instrumental earthquakes (M > 6). However, our paleoseismic study shows that the YYFZ is the primary seismotectonic structure (M ≥ 7) that poses significant earthquake threats to NE China. The synthesis of data collected from geologic investigations, geomorphic mapping, trench logging and the dating of samples indicates that the YYFZ is an active structure that has undergone segmented strong tectonic deformation since the Late Quaternary with a characteristic assemblage of landforms, including linear scarps and troughs, offset or deflected streams, linear sag ponds, small horsts and grabens. The latest ruptures of the YYFZ migrated from previous boundary faults into the basin interior, forming a left-stepping en echelon pattern in plain view, and the kinematics of these events in the Late Quaternary were dominated by reverse dextral slipping. Multi-segment cluster faulting might have occurred during three cluster periods, i.e., ∼34750-35812 a BP, ∼21700-22640 a BP, and ∼4000 a BP-present, which implies that the recurrence interval of large earthquakes along the YYFZ may be as long as tens of thousands of years.
Coupled geohazards at Southern Andes (Copahue-Lanín volcanoes): Chile's GEO supersite proposal
NASA Astrophysics Data System (ADS)
Lara, Luis E.; Cordova, Loreto
2017-04-01
Southern Andes are a young and active mountain belt where volcanism and tectonic processes (and those related to the hydrometeorological conditions controlled by this geological setting) pose a significant threat to the growing communities nearby. This proposal focus on a ca. 200 km long segment of the Southern Andes where 9 stratovolcanoes and 2 distributed volcanic fields are located, just along a tectonic corridor defined by the northern segment of the Liquiñe-Ofqui Faul System (LOFS), a long-lived active strike-slip fault running for 1200 km. Volcanoes in this area take part of the central province of the Andean Southern Volcanic Zone (37-41°S), particularly the northermost portion that is limited at the south by an Andean tranverse fault (Lanalhue Fault, which define the Villarrica-Lanin volcanic chain) and run along the horse-tail array of the LOFS to the north. Most of the stravolcanoes are atop of the LOFS main branch with only 3 exceptions (Callaqui, Tolhuaca and Lanín) 15-20 km away, but related to transverse faults. Hazards in the segment derive from the activity of some of the most active volcanoes in South America (e.g., Villarrica, Llaima), others with long-lasting weak activity (e.g., Copahue) or some volcanoes with low frequency but high magnitude eruptions in the geological record. Only since the beggining of the 20th century 80 eruptions have been recorded in this area. In addition, activity of the LOFS has been detected prior to some eruptions and coeval with some others (e.g., Lonquimay 1989). A strong two-way coupling between tectonics and volcanism has been proposed for the segment but only recently detected by geophysical techniques or numerical modelling. Tectonic triggered landslides are frequent in this region together with debris flows at erupting ice-covered volcanoes or stream headed at high altitude basins. The latter scenario seems to be worst at present because of global climate change. Ground-based monitoring networks for both volcanism (the so-called Red Nacional de Vigilancia Volcánica at Sernageomin) and tectonics (Centro Sismólogico Nacional at Universidad de Chile) allow a good complement with space-borne data (e.g., we observed deformation by GPS and InSAR at Villarrica volcano related to the March 3, 2015 eruption) in order to promote basic and applied research for a successful national strategy of disaster risk reduction. In addition, at least 3 active national research grants focus in this area and a number of young scientists are working there. Thus, we propose the Copahue-Lanín (37.5-39.5°S) segment of the Southern Volcanic Zone as a Geohazards Supersite and look forward for an enhanced engagement of the scientific community in this area.
NASA Astrophysics Data System (ADS)
Donnellan, A.; Grant Ludwig, L.; Rundle, J. B.; Parker, J. W.; Granat, R.; Heflin, M. B.; Pierce, M. E.; Wang, J.; Gunson, M.; Lyzenga, G. A.
2017-12-01
The 2010 M7.2 El Mayor - Cucapah earthquake caused extensive triggering of slip on faults proximal to the Salton Trough in southern California. Triggered slip and postseismic motions that have continued for over five years following the earthquake highlight connections between the El Mayor - Cucapah rupture and the network of faults that branch out along the southern Pacific - North American Plate Boundary. Coseismic triggering follows a network of conjugate faults from the northern end of the rupture to the Coachella segment of the southernmost San Andreas fault. Larger aftershocks and postseismic motions favor connections to the San Jacinto and Elsinore faults further west. The 2012 Brawley Swarm can be considered part of the branching on the Imperial Valley or east side of the plate boundary. Cluster analysis of long-term GPS velocities using Lloyds Algorithm, identifies bifurcation of the Pacific - North American plate boundary; The San Jacinto fault joins with the southern San Andreas fault, and the Salton Trough and Coachella segment of the San Andreas fault join with the Eastern California Shear Zone. The clustering analysis does not identify throughgoing deformation connecting the Coachella segment of the San Andreas fault with the rest of the San Andreas fault system through the San Gorgonio Pass. This observation is consistent with triggered slip from both the 1992 Landers and 2010 El Mayor - Cucapah earthquakes that follows the plate boundary bifurcation and with paleoseismic evidence of smaller earthquakes in the San Gorgonio Pass.
San Andreas fault geometry in the Parkfield, California, region
Simpson, R.W.; Barall, M.; Langbein, J.; Murray, J.R.; Rymer, M.J.
2006-01-01
In map view, aftershocks of the 2004 Parkfield earthquake lie along a line that forms a straighter connection between San Andreas fault segments north and south of the Parkfield reach than does the mapped trace of the fault itself. A straightedge laid on a geologic map of Central California reveals a ???50-km-long asymmetric northeastward warp in the Parkfield reach of the fault. The warp tapers gradually as it joins the straight, creeping segment of the San Andreas to the north-west, but bends abruptly across Cholame Valley at its southeast end to join the straight, locked segment that last ruptured in 1857. We speculate that the San Andreas fault surface near Parkfield has been deflected in its upper ???6 km by nonelastic behavior of upper crustal rock units. These units and the fault surface itself are warped during periods between large 1857-type earthquakes by the presence of the 1857-locked segment to the south, which buttresses intermittent coseismic and continuous aseismic slip on the Parkfield reach. Because of nonelastic behavior, the warping is not completely undone when an 1857-type event occurs, and the upper portion of the three-dimensional fault surface is slowly ratcheted into an increasingly prominent bulge. Ultimately, the fault surface probably becomes too deformed for strike-slip motion, and a new, more vertical connection to the Earth's surface takes over, perhaps along the Southwest Fracture Zone. When this happens a wedge of material currently west of the main trace will be stranded on the east side of the new main trace.
Time-dependent seismic hazard analysis for the Greater Tehran and surrounding areas
NASA Astrophysics Data System (ADS)
Jalalalhosseini, Seyed Mostafa; Zafarani, Hamid; Zare, Mehdi
2018-01-01
This study presents a time-dependent approach for seismic hazard in Tehran and surrounding areas. Hazard is evaluated by combining background seismic activity, and larger earthquakes may emanate from fault segments. Using available historical and paleoseismological data or empirical relation, the recurrence time and maximum magnitude of characteristic earthquakes for the major faults have been explored. The Brownian passage time (BPT) distribution has been used to calculate equivalent fictitious seismicity rate for major faults in the region. To include ground motion uncertainty, a logic tree and five ground motion prediction equations have been selected based on their applicability in the region. Finally, hazard maps have been presented.
The effect of segmented fault zones on earthquake rupture propagation and termination
NASA Astrophysics Data System (ADS)
Huang, Y.
2017-12-01
A fundamental question in earthquake source physics is what can control the nucleation and termination of an earthquake rupture. Besides stress heterogeneities and variations in frictional properties, damaged fault zones (DFZs) that surround major strike-slip faults can contribute significantly to earthquake rupture propagation. Previous earthquake rupture simulations usually characterize DFZs as several-hundred-meter-wide layers with lower seismic velocities than host rocks, and find earthquake ruptures in DFZs can exhibit slip pulses and oscillating rupture speeds that ultimately enhance high-frequency ground motions. However, real DFZs are more complex than the uniform low-velocity structures, and show along-strike variations of damages that may be correlated with historical earthquake ruptures. These segmented structures can either prohibit or assist rupture propagation and significantly affect the final sizes of earthquakes. For example, recent dense array data recorded at the San Jacinto fault zone suggests the existence of three prominent DFZs across the Anza seismic gap and the south section of the Clark branch, while no prominent DFZs were identified near the ends of the Anza seismic gap. To better understand earthquake rupture in segmented fault zones, we will present dynamic rupture simulations that calculate the time-varying rupture process physically by considering the interactions between fault stresses, fault frictional properties, and material heterogeneities. We will show that whether an earthquake rupture can break through the intact rock outside the DFZ depend on the nucleation size of the earthquake and the rupture propagation distance in the DFZ. Moreover, material properties of the DFZ, stress conditions along the fault, and friction properties of the fault also have a critical impact on rupture propagation and termination. We will also present scenarios of San Jacinto earthquake ruptures and show the parameter space that is favorable for rupture propagation through the Anza seismic gap. Our results suggest that a priori knowledge of properties of segmented fault zones is of great importance for predicting sizes of future large earthquakes on major faults.
Implications of river morphology response to Dien Bien Phu fault in NW Vietnam
NASA Astrophysics Data System (ADS)
Lai, K.; Chen, Y.; Lam, D.
2007-12-01
In northern Vietnam, most rivers are flowing southeastward sub- or parallel to the valley of Red River and characterized by long but narrow catchments. The Dien Bien Phu fault is associated with the most seismically active zone in Vietnam and situated in the potential eastern boundary of the rotating southeastern Tibetan block. It cuts the Da River, the largest tributary of Red River in northwest Vietnam and has distorted the drainage basin resulting in complex river patterns. To assess the river morphology response to active Dien Bien Phu fault, we use 1/50,000 topographic data and ASTER images to map the precise river courses and digital elevation model data of SRTM to retrieve and analyze the river profiles. From the mapping results, the N-S striking fault results in three conspicuous north-trending river valleys coincided with the different fault segments to facilitate the measurement and reconstruction of the offsets along the fault. Further combining the longitudinal profile analysis we obtain ca. 10 km offsets by deflected river as the largest left-lateral displacement recorded along the active fault. The restored results show the downstream paleochannel of the Da River had been abandoned and becomes two small tributaries in opposite flow directions at present due to differential crustal uplift. Also the present crisscross valley at the junction of the Da River and the fault is resulted from the capture by another river which has been also deflected by the neotectonics. Based on our observations on river response, the Dien Bien Phu fault is a sinistral dominant fault with an uplift occurring in its eastern block. Furthermore the active Dien Bien Phu fault does not cut through the Red River northward indicating the western block of the fault can not be regarded as a single rigid block. There should be possible to find NW-SE trending faults paralleling to Red River to accommodate the deformation of the western block of the fault.
Implications of river morphology response to Dien Bien Phu fault in NW Vietnam
NASA Astrophysics Data System (ADS)
Lai, K.; Chen, Y.; Lam, D.
2004-12-01
In northern Vietnam, most rivers are flowing southeastward sub- or parallel to the valley of Red River and characterized by long but narrow catchments. The Dien Bien Phu fault is associated with the most seismically active zone in Vietnam and situated in the potential eastern boundary of the rotating southeastern Tibetan block. It cuts the Da River, the largest tributary of Red River in northwest Vietnam and has distorted the drainage basin resulting in complex river patterns. To assess the river morphology response to active Dien Bien Phu fault, we use 1/50,000 topographic data and ASTER images to map the precise river courses and digital elevation model data of SRTM to retrieve and analyze the river profiles. From the mapping results, the N-S striking fault results in three conspicuous north-trending river valleys coincided with the different fault segments to facilitate the measurement and reconstruction of the offsets along the fault. Further combining the longitudinal profile analysis we obtain ca. 10 km offsets by deflected river as the largest left-lateral displacement recorded along the active fault. The restored results show the downstream paleochannel of the Da River had been abandoned and becomes two small tributaries in opposite flow directions at present due to differential crustal uplift. Also the present crisscross valley at the junction of the Da River and the fault is resulted from the capture by another river which has been also deflected by the neotectonics. Based on our observations on river response, the Dien Bien Phu fault is a sinistral dominant fault with an uplift occurring in its eastern block. Furthermore the active Dien Bien Phu fault does not cut through the Red River northward indicating the western block of the fault can not be regarded as a single rigid block. There should be possible to find NW-SE trending faults paralleling to Red River to accommodate the deformation of the western block of the fault.
Towards a Fault-based SHA in the Southern Upper Rhine Graben
NASA Astrophysics Data System (ADS)
Baize, Stéphane; Reicherter, Klaus; Thomas, Jessica; Chartier, Thomas; Cushing, Edward Marc
2016-04-01
A brief overview at a seismic map of the Upper Rhine Graben area (say between Strasbourg and Basel) reveals that the region is seismically active. The area has been hit recently by shallow and moderate quakes but, historically, strong quakes damaged and devastated populated zones. Several authors previously suggested, through preliminary geomorphological and geophysical studies, that active faults could be traced along the eastern margin of the graben. Thus, fault-based PSHA (probabilistic seismic hazard assessment) studies should be developed. Nevertheless, most of the input data in fault-based PSHA models are highly uncertain, based upon sparse or hypothetical data. Geophysical and geological data document the presence of post-Tertiary westward dipping faults in the area. However, our first investigations suggest that the available surface fault map do not provide a reliable document of Quaternary fault traces. Slip rate values that can be currently used in fault-PSHA models are based on regional stratigraphic data, but these include neither detailed datings nor clear base surface contours. Several hints on fault activity do exist and we have now relevant tools and techniques to figure out the activity of the faults of concern. Our preliminary analyses suggest that the LiDAR topography can adequately image the fault segments and, thanks to detailed geomorphological analysis, these data allow tracking cumulative fault offsets. Because the fault models can therefore be considered highly uncertain, our coming project for the next 3 years is to acquire and analyze these accurate topographical data, to trace the active faults and to determine slip rates through relevant features dating. Eventually, we plan to find a key site to perform a paleoseismological trench because this approach has been proved to be worth in the Graben, both to the North (Wörms and Strasbourg) and to the South (Basel). This would be done in order to definitely prove whether the faults ruptured the ground surface during the Quaternary, and in order to determine key fault parameters such as magnitude and age of large events.
NASA Astrophysics Data System (ADS)
Dixon, Timothy H.; Xie, Surui
2018-07-01
The Eastern California shear zone in the Mojave Desert, California, accommodates nearly a quarter of Pacific-North America plate motion. In south-central Mojave, the shear zone consists of six active faults, with the central Calico fault having the fastest slip rate. However, faults to the east of the Calico fault have larger total offsets. We explain this pattern of slip rate and total offset with a model involving a crustal block (the Mojave Block) that migrates eastward relative to a shear zone at depth whose position and orientation is fixed by the Coachella segment of the San Andreas fault (SAF), southwest of the transpressive "big bend" in the SAF. Both the shear zone and the Garlock fault are assumed to be a direct result of this restraining bend, and consequent strain redistribution. The model explains several aspects of local and regional tectonics, may apply to other transpressive continental plate boundary zones, and may improve seismic hazard estimates in these zones.
NASA Astrophysics Data System (ADS)
Chevalier, M. L.; Bai, M.; Pan, J.; Replumaz, A.; Leloup, P. H.; Li, H.
2017-12-01
The left-slip Xianshuihe fault system in E Tibet is considered as one of the most tectonically active fault system in China. Studying its activity, especially its slip rate at different time scales, is essential to evaluate regional earthquake hazards. Here, we focus on the central segment, where the Xianshuihe fault splays into three branches: the Selaha, Yalahe and Zheduotang faults. We use 10Be cosmogenic dating at 3 sites where the active Selaha fault cuts and left-laterally offsets moraine crests and levees. By matching their emplacement ages with their offsets, we obtain a conservative late Quaternary horizontal slip-rate of 5.7-12 mm/yr at TG levees and SLH moraine, or 9.6-9.9 mm/yr assuming that the slip rate should be constant between the two nearby sites. At YJG moraine, we obtain a lower slip rate of 4.4±0.5 mm/yr, most likely because the parallel Zheduotang fault shares the slip rate at this longitude, therefore suggesting a 5 mm/yr slip rate along the Zheduotang fault. A higher slip rate along the short ( 60 km) and discontinuous Selaha fault compared to that along the long ( 300 km) and linear Ganzi fault (7 mm/yr) suggests a high earthquake hazard in the densely populated city of Kangding. Using the moraine ages that we determined here in addition to our previous studies in the same region allows us to study the timing and extent of past glaciations in the Himalayan-Tibetan orogen. This is essential to reconstruct regional paleoclimate and to understand variations in the atmospheric circulation due to the high-altitude low latitude Tibetan Plateau, in order to possibly predict future climate changes. We dated 6 glacial deposits from SE Tibet using 10Be cosmogenic dating on 68 boulders and only found advances during the Last Glacial Maximum (limited) and Marine Isotope Stage-6 (extensive), with no signal in between. That the two coldest periods are LGM and MIS-6 is in agreement with the Northern hemisphere cooling cycles, suggesting that in SE Tibet, glaciers are more sensitive to a decrease of temperature rather than an increase of precipitation and that they respond to the Northern hemisphere cooling cycles rather than to the South Asian summer monsoon. This explains the absence of MIS-3 advances, in contradiction with what is observed in W Tibet where they are the most extensive.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konstantinovskaya, E.; Rutqvist, J.; Malo, M.
2014-01-21
In this paper, coupled reservoir-geomechanical (TOUGH-FLAC) modeling is applied for the first time to the St. Lawrence Lowlands region to evaluate the potential for shear failure along pre-existing high-angle normal faults, as well as the potential for tensile failure in the caprock units (Utica Shale and Lorraine Group). This activity is part of a general assessment of the potential for safe CO 2 injection into a sandstone reservoir (the Covey Hill Formation) within an Early Paleozoic sedimentary basin. Field and subsurface data are used to estimate the sealing properties of two reservoir-bounding faults (Yamaska and Champlain faults). The spatial variationsmore » in fluid pressure, effective minimum horizontal stress, and shear strain are calculated for different injection rates, using a simplified 2D geological model of the Becancour area, located ~110 km southwest of Quebec City. The simulation results show that initial fault permeability affects the timing, localization, rate, and length of fault shear slip. Contrary to the conventional view, our results suggest that shear failure may start earlier for a permeable fault than for a sealing fault, depending on the site-specific geologic setting. In simulations of a permeable fault, shear slip is nucleated along a 60 m long fault segment in a thin and brittle caprock unit (Utica Shale) trapped below a thicker and more ductile caprock unit (Lorraine Group) – and then subsequently progresses up to the surface. In the case of a sealing fault, shear failure occurs later in time and is localized along a fault segment (300 m) below the caprock units. The presence of the inclined low-permeable Yamaska Fault close to the injection well causes asymmetric fluid-pressure buildup and lateral migration of the CO 2 plume away from the fault, reducing the overall risk of CO 2 leakage along faults. Finally, fluid-pressure-induced tensile fracturing occurs only under extremely high injection rates and is localized below the caprock units, which remain intact, preventing upward CO 2 migration.« less
NASA Astrophysics Data System (ADS)
Johnston, A. S.; Zhang, R.; Gottardi, R.; Dawers, N. H.
2017-12-01
Wetland loss is one of the greatest environmental and economic threats in the deltaic plain of the Gulf Coast. This loss is controlled by subsidence, sea level rise, decreased sediment supply rates, movement along normal faults, salt tectonics, fluid extraction related to oil, gas and water exploration, and compaction. However, the interplay and feedback between these different processes are still poorly understood. In this study, we investigate the role of active faulting and salt tectonics on wetland loss in an area located between Golden Meadow and Leeville, Louisiana. Using industry 3D seismic and well log data, we investigate key segments of the Golden Meadow fault zone and map shallow faults that overlie the Leeville salt dome, to compare those fault planes with areas of wetland loss and subsidence. Faults were mapped to a depth of 1200 m, and well logs were tied to the upper 180 m of the seismic data to make accurate projections of the faults to the surface. Preliminary results highlight a graben structure south of a segment of the Golden Meadow fault. Well log and published data from shallow borings reveal a thicker Holocene accumulation at the center of the graben, up to 45 m than on the flanks of the graben. The location of this graben spatially correlates with Catfish Lake, and part of it overlies salt adjacent to the main fault surface. Bayou Lafourche, the main distributary channel of the Lafourche lobe of the Mississippi River delta complex, appears to have its path controlled by faults. Bayou Lafourche changes orientation and flows parallel to, and on the downthrown side of, two radial faults associated with the Leeville salt dome. These preliminary results indicate that there is a relationship between surface geomorphology and subsurface structures that, at least in part, exert a control on wetland loss in southern Louisiana.
Owen Fracture Zone: The Arabia-India plate boundary unveiled
NASA Astrophysics Data System (ADS)
Fournier, M.; Chamot-Rooke, N.; Rodriguez, M.; Huchon, P.; Petit, C.; Beslier, M. O.; Zaragosi, S.
2011-02-01
We surveyed the Owen Fracture Zone at the boundary between the Arabia and India plates in the NW Indian Ocean using a high-resolution multibeam echo-sounder (Owen cruise, 2009) for search of active faults. Bathymetric data reveal a previously unrecognized submarine fault scarp system running for over 800 km between the Sheba Ridge in the Gulf of Aden and the Makran subduction zone. The primary plate boundary structure is not the bathymetrically high Owen Ridge, but is instead a series of clearly delineated strike-slip fault segments separated by several releasing and restraining bends. Despite an abundant sedimentary supply by the Indus River flowing from the Himalaya, fault scarps are not obscured by recent deposits and can be followed over hundreds of kilometres, pointing to very active tectonics. The total strike-slip displacement of the fault system is 10-12 km, indicating that it has been active for the past ~ 3 to 6 Ma if its current rate of motion of 3 ± 1 mm yr- 1 has remained stable. We describe the geometry of this recent fault system, including a major pull-apart basin at the latitude 20°N, and we show that it closely follows an arc of small circle centred on the Arabia-India pole of rotation, as expected for a transform plate boundary.
Superficial simplicity of the 2010 El Mayorg-Cucapah earthquake of Baja California in Mexico
Wei, S.; Fielding, E.; Leprince, S.; Sladen, A.; Avouac, J.-P.; Helmberger, D.; Hauksson, E.; Chu, R.; Simons, M.; Hudnut, K.; Herring, T.; Briggs, R.
2011-01-01
The geometry of faults is usually thought to be more complicated at the surface than at depth and to control the initiation, propagation and arrest of seismic ruptures1-6. The fault system that runs from southern California into Mexico is a simple strike-slip boundary: the west side of California and Mexico moves northwards with respect to the east. However, the Mw 7.2 2010 El Mayorg-Cucapah earthquake on this fault system produced a pattern of seismic waves that indicates a far more complex source than slip on a planar strike-slip fault. Here we use geodetic, remote-sensing and seismological data to reconstruct the fault geometry and history of slip during this earthquake. We find that the earthquake produced a straight 120-km-long fault trace that cut through the Cucapah mountain range and across the Colorado River delta. However, at depth, the fault is made up of two different segments connected by a small extensional fault. Both segments strike N130 ??E, but dip in opposite directions. The earthquake was initiated on the connecting extensional fault and 15s later ruptured the two main segments with dominantly strike-slip motion. We show that complexities in the fault geometry at depth explain well the complex pattern of radiated seismic waves. We conclude that the location and detailed characteristics of the earthquake could not have been anticipated on the basis of observations of surface geology alone. ?? 2011 Macmillan Publishers Limited. All rights reserved.
NASA Astrophysics Data System (ADS)
Jourdain, A.; Singh, S. C.; Klinger, Y.
2013-12-01
Transform faults are the major discontinuities and define the main segment boundaries along spreading centres but their anatomy is poorly understood because of their complex seafloor morphology, even though they are observed at all types of spreading centres. Here, we present high-resolution seismic reflection images across the sedimented Andaman Sea Transform Fault where the sediments record the faulting and allow studying the evolution of the transform fault both in space and time. Furthermore, sediments allow the imaging of the faults down to the Moho depth that provides insight on the interplay between tectonic and magmatic processes. On the other hand, overlapping spreading centres (OSC) are small-scale discontinuities, possibly transient, and are observed only along fast or intermediate spreading centres. Exceptionally, an overlapping spreading centre is present at the slow spreading Andaman Sea Spreading Centre, which, we suggest, is due to the presence of thick sediments that hamper the efficient hydrothermal circulation allowing magma to stay much longer in the crust at different depths, and up to close to the segment ends, leading to the development of an overlapping spreading. The seismic reflection images across the OSC indicate the presence of large magma bodies in the crust. Seismic images also provide images of active faults allowing to study the link between faulting and magmatism. Interestingly, an earthquake swarm occurred at propagating limb of the OSC in 2006, after the great 2004 Andaman-Sumatra earthquake of Mw=9.3, highlighting the migration of the OSC westward. In this paper, we will show seismic reflection images and interpret these images in the light of bathymetry and earthquake data, and provide the anatomy of the ridge discontinuities along the slow spreading sedimented Andaman Sea Spreading Centre.
NASA Astrophysics Data System (ADS)
Bi, Haiyun; Zheng, Wenjun; Ge, Weipeng; Zhang, Peizhen; Zeng, Jiangyuan; Yu, Jingxing
2018-03-01
Reconstruction of the along-fault slip distribution provides an insight into the long-term rupture patterns of a fault, thereby enabling more accurate assessment of its future behavior. The increasing wealth of high-resolution topographic data, such as Light Detection and Ranging and photogrammetric digital elevation models, allows us to better constrain the slip distribution, thus greatly improving our understanding of fault behavior. The South Heli Shan Fault is a major active fault on the northeastern margin of the Tibetan Plateau. In this study, we built a 2 m resolution digital elevation model of the South Heli Shan Fault based on high-resolution GeoEye-1 stereo satellite imagery and then measured 302 vertical displacements along the fault, which increased the measurement density of previous field surveys by a factor of nearly 5. The cumulative displacements show an asymmetric distribution along the fault, comprising three major segments. An increasing trend from west to east indicates that the fault has likely propagated westward over its lifetime. The topographic relief of Heli Shan shows an asymmetry similar to the measured cumulative slip distribution, suggesting that the uplift of Heli Shan may result mainly from the long-term activity of the South Heli Shan Fault. Furthermore, the cumulative displacements divide into discrete clusters along the fault, indicating that the fault has ruptured in several large earthquakes. By constraining the slip-length distribution of each rupture, we found that the events do not support a characteristic recurrence model for the fault.
"The Big One" in Taipei: Numerical Simulation Study of the Sanchiao Fault Earthquake Scenarios
NASA Astrophysics Data System (ADS)
Wang, Y.; Lee, S.; Ng, S.
2012-12-01
Sanchiao fault is a western boundary fault of the Taipei basin located in northern Taiwan, close to the densely populated Taipei metropolitan area. According to the report of Central Geological Survey, the terrestrial portion of the Sanchiao fault can be divided into north and south segments. The south segment is about 13 km and north segment is about 21 km. Recent study demonstrated that there are about 40 km of the fault trace that extended to the marine area offshore of northern Taiwan. Combined with the marine and terrestrial parts, the total fault length of Sanchiao fault could be nearly 70 kilometers. Based on the recipe proposed by IRIKURA and Miyake (2010), we estimate the Sanchiao fault has the potential to produce an earthquake with moment magnitude larger than Mw 7.2. The total area of fault rupture is about 1323 km2, asperity to the total fault plane is 22%, and the slips of the asperity and background are 2.8 m and 1.6 m respectively. Use the characteristic source model based on this assumption, the 3D spectral-element method simulation results indicate that Peak ground acceleration (PGA) is significantly stronger along the surface fault-rupture. The basin effects play an important role when wave propagates in the Taipei basin which cause seismic wave amplified and prolong the shaking for a very long time. It is worth noting that, when the rupture starts from the southern tip of the fault, i.e. the hypocenter locates in the basin, the impact of the Sanchiao fault earthquake to the Taipei metropolitan area will be the most serious. The strong shaking can cover the entire Taipei city, and even across the basin that extended to eastern-most part of northern Taiwan.
NASA Astrophysics Data System (ADS)
Syracuse, E. M.; Thurber, C. H.; Savage, M. K.
2012-12-01
The previously unknown Greendale fault produced the September 4, 2010 M 7.1 Darfield earthquake and later triggered the destructive February 22, 2011 M 6.3 Christchurch earthquake, as well as later M>5 aftershocks east of Christchurch. Surface rupture from the Darfield earthquake indicates up to 5 m of strike-slip motion along the main portion of the Greendale fault, while various geodetic and seismic models also indicate reverse faulting on surrounding smaller faults. We combine seismic data from a variety of sources (permanent network seismometers and strong motion instruments, temporary intermediate to broadband seismometers) to understand the geometry of these various sections of faults and the evolution of seismicity along them for the first four months of aftershocks from the Darfield earthquake. We identify 4 to 5 fault segments that were likely active in the Darfield earthquake and an additional 5 to 6 segments that were active during the study period, prior to the Christchurch earthquake. While relocating hypocenters, we also jointly invert for 3D Vp, Vs, and Vp/Vs in the Canterbury region using an extended version of the double-difference tomography code tomoDD (Zhang et al., 2009). In the area of the Greendale and associated faults, Vp, Vs, and Vp/Vs are generally reduced from the top 8 km of the average velocity model for the Canterbury region of New Zealand. from the surface to ~8 km depth, below which the resolution begins to decline. Beneath Christchurch and areas immediately to the south and west, Vp and Vs are elevated and Vp/Vs is reduced from the surface to ~8 km depth, corresponding to the location of a negative Bouguer gravity anomaly and an increase in depth to basement (Hicks, 1989). In the northwest portion of the model, Vp and Vs increase when approaching the foothills of the Southern Alps. There are no clearly defined features in the velocity model that cross or are offset by the Greendale fault and no apparent contrast in velocities across the fault, preventing us from conjecturing about the age or total offset along the fault over its lifespan based on the velocity models alone.
Analysing fault growth at the continental break up zone in Afar, Ethiopia
NASA Astrophysics Data System (ADS)
Hofmann, Barbara; Wright, Tim; Rowland, Julie; Hautot, Sophie; Paton, Douglas; Kidane, Tesfaye; Abebe, Bekele
2010-05-01
Continental break up, the formation of new oceans still holds many unanswered questions. The continental rift of Afar, Ethiopia is the only place on Earth today where the final stages of continental rupture and the beginning of seafloor spreading are occurring above sea level. In September 2005 a new rifting episode started at the Dabbahu segment with the intrusion of about 2-2.5 km^ 3 of magma into a 60-km-long dyke (Wright et. al., 2006; Grandin et. al., 2009), causing horizontal opening of up to 8m. Faults within the research area show fresh slip of up to 3m along fault segments of about 10km (Rowland et. al., 2007). Since then 13 further dyke intrusions showing surface deformation have been detected and analysed using InSAR data. However, how faults grow remains a key question. To establish fault growth models, distribution of displacement along surface tracks as well as scaling relationships of faults of different order of magnitudes within a similar lithological setting are essential (eg. Walsh and Watterson, 1988; Cowie and Scholz, 1992). Set in Pliocene flood basalts the highly faulted Dabbahu segment forms an ideal study case. We used 6 pairs of SPOT5 images with a pixel size of 2.5m to create a relative DEM of 6m resolution covering the whole of the 60km x 30km Dabbahu segment. By tying the relative DEM to the georeferenced 90m resolution DEM from SRTM data and applying linear and bi-quadratic polynomial transformations we were able to georeference the DEM. During October 2009 a LiDAR survey took place over the central rift segment with additional cross profiles. The additional data has enhanced the DEM spatial resolution to 1m in the centre. Using this large, precise dataset we have developed an automated method to systematically derive the distribution of displacement along the surface expression of the faults. This enables us to determine whether scaling relationships derived in other areas are valid for magmatically-driven faults. Here we present first results of these statistical analyses.
NASA Astrophysics Data System (ADS)
Wechsler, Neta; Rockwell, Thomas K.; Klinger, Yann
2018-01-01
We resolved displacement on buried stream channels that record the past 3400 years of slip history for the Jordan Gorge (JGF) section of the Dead Sea fault in Israel. Based on three-dimensional (3D) trenching, slip in the past millennium amounts to only 2.7 m, similar to that determined in previous studies, whereas the previous millennium experienced two to three times this amount of displacement with nearly 8 m of cumulative slip, indicating substantial short term variations in slip rate. The slip rate averaged over the past 3400 years, as determined from 3D trenching, is 4.1 mm/yr, which agrees well with geodetic estimates of strain accumulation, as well as with longer-term geologic slip rate estimates. Our results indicate that: 1) the past 1200 years appear to significantly lack slip, which may portend a significant increase in future seismic activity; 2) short-term slip rates for the past two millennia have varied by more than a factor of two and suggest that past behavior is best characterized by clustering of earthquakes. From these observations, the earthquake behavior of the Jordan Gorge fault best fits is a "weak segment model" where the relatively short fault section (20 km), bounded by releasing steps, fails on its own in moderate earthquakes, or ruptures with adjacent segments.
NASA Astrophysics Data System (ADS)
Laó-Dávila, Daniel A.; Al-Salmi, Haifa S.; Abdelsalam, Mohamed G.; Atekwana, Estella A.
2015-12-01
We used detailed analysis of Shuttle Radar Topography Mission-digital elevation model and observations from aeromagnetic data to examine the influence of inherited lithospheric heterogeneity and kinematics in the segmentation of largely amagmatic continental rifts. We focused on the Cenozoic Malawi Rift, which represents the southern extension of the Western Branch of the East African Rift System. This north trending rift traverses Precambrian and Paleozoic-Mesozoic structures of different orientations. We found that the rift can be hierarchically divided into first-order and second-order segments. In the first-order segmentation, we divided the rift into Northern, Central, and Southern sections. In its Northern Section, the rift follows Paleoproterozoic and Neoproterozoic terrains with structural grain that favored the localization of extension within well-developed border faults. The Central Section occurs within Mesoproterozoic-Neoproterozoic terrain with regional structures oblique to the rift extent. We propose that the lack of inherited lithospheric heterogeneity favoring extension localization resulted in the development of the rift in this section as a shallow graben with undeveloped border faults. In the Southern Section, Mesoproterozoic-Neoproterozoic rocks were reactivated and developed the border faults. In the second-order segmentation, only observed in the Northern Section, we divided the section into five segments that approximate four half-grabens/asymmetrical grabens with alternating polarities. The change of polarity coincides with flip-over full-grabens occurring within overlap zones associated with ~150 km long alternating border faults segments. The inherited lithospheric heterogeneity played the major role in facilitating the segmentation of the Malawi Rift during its opening resulting from extension.
Rodríguez-Pascua, M.A.; Pérez-López, R.; Garduño-Monroy, V.H.; Giner-Robles, J.L.; Silva, P.G.; Perucha-Atienza, M.A.; Hernández-Madrigal, V.M.; Bischoff, J.
2012-01-01
Instrumental and historical seismicity in the Albacete province (External Prebetic Zone) has been scarcely recorded. However, major strike-slip faults showing NW-SE trending provide geomorphologic and paleoseismic evidence of recent tectonic activity (Late Pleistocene to Present). Moreover, these faults are consistently well oriented under the present stress tensor and therefore, they can trigger earthquakes of magnitude greater than M6, according to the lengths of surface ruptures and active segments recognized in fieldwork. Present landscape nearby the village of Hellin (SE of Albacete) is determined by the recent activity of the Pozohondo Fault (FPH), a NW-SE right-lateral fault with 90 km in length. In this study, we have calculated the Late Quaternary tectonic sliprate of the FPH from geomorphological, sedimentological, archaeoseimological, and paleoseismological approaches. All of these data suggest that the FPH runs with a minimum slip-rate of 0.1 mm/yr during the last 100 kyrs (Upper Pleistocene-Holocene). In addition, we have recognized the last two major paleoearthquakes associated to this fault. Magnitudes of these paleoearthquakes were gretarer than M6 and their recurrence intervals ranged from 6600 to 8600 yrs for the seismic cycle of FPH. The last earthquake was dated between the 1st and 6th centuries, though two earthquakes could be interpreted in this wide time interval, one at the FPH and other from a far field source. Results obtained here, suggest an increasing of the tectonic activity of the Pozohondo Fault during the last 10,000 yrs.
NASA Astrophysics Data System (ADS)
Crupa, Wanda E.; Khan, Shuhab D.; Huang, Jingqiu; Khan, Abdul S.; Kasi, Aimal
2017-10-01
Collision of the Eurasian and Indian plates has resulted in two spatially offset subduction zones, the Makran subduction zone to the south and the Himalayan convergent margin to the north. These zones are linked by a system of left-lateral strike-slip faults known as the Chaman Fault System, ∼1200 km, which spans along western Pakistan. Although this is one of the greatest strike-slip faults, yet temporal and spatial variation in displacement has not been adequately defined along this fault system. This study conducted geomorphic and geodetic investigations along the Chaman Fault in a search for evidence of spatial variations in motion. Four study areas were selected over the span of the Chaman Fault: (1) Tarnak-Rud area over the Tarnak-Rud valley, (2) Spinatizha area over the Spinatizha Mountain Range, (3) Nushki area over the Nushki basin, and (4) Kharan area over the northern tip of the Central Makran Mountains. Remote sensing data allowed for in depth mapping of different components and faults within the Kohjak group. Wind and water gap pairs along with offset rivers were identified using high-resolution imagery and digital-elevation models to show displacement for the four study areas. The mountain-front-sinuosity ratio, valley height-to-width-ratio, and the stream-length-gradient index were calculated and used to determine the relative tectonic activity of each area. These geomorphic indices suggest that the Kharan area is the most active and the Tarnak-Rud area is the least active. GPS data were processed into a stable Indian plate reference frame and analyzed. Fault parallel velocity versus fault normal distance yielded a ∼8-10 mm/yr displacement rate along the Chaman Fault just north of the Spinatizha area. InSAR data were also integrated to assess displacement rates along the fault system. Geodetic data support that ultra-slow earthquakes similar to those that strike along other major strike-slip faults, such as the San Andreas Fault System, are possible along the northern segments of the Chaman Fault zone. Geomorphic data suggest that the Chaman Fault along southern part is not very active now but may have gone through high tectonic activity in the past.
NASA Astrophysics Data System (ADS)
Clifton, Amy E.; Sigmundsson, Freysteinn; Feigl, Kurt L.; Guðmundsson, Gunnar; Árnadóttir, Thóra
2002-06-01
The Hengill triple junction, SW Iceland, is subjected to both tectonic extension and shear, causing seismicity related to strike-slip and normal faulting. Between 1994 and 1998, the area experienced episodic swarms of enhanced seismicity culminating in a ML=5.1 earthquake on June 4, 1998 and a ML=5 earthquake on November 13, 1998. Geodetic measurements, using Global Positioning System (GPS), leveling and Synthetic Aperture Radar Interferometry (InSAR) detected maximum uplift of 2 cm/yr and expansion between the Hrómundartindur and Grensdalur volcanic systems. A number of faults in the area generated meter-scale surface breaks. Geographic Information System (GIS) software has been used to integrate structural, field and geophysical data to determine how the crust failed, and to evaluate how much of the recent activity focused on zones of pre-existing weaknesses in the crust. Field data show that most surface effects can be attributed to the June 4, 1998 earthquake and have occurred along or adjacent to old faults. Surface effects consist of open gashes in soil, shattering of lava flows, rockfall along scarps and within old fractures, loosened push-up structures and landslides. Seismicity in 1994-1998 was distributed asymmetrically about the center of uplift, with larger events migrating toward the main fault of the June 4, 1998 earthquake. Surface effects are most extensive in the area of greatest structural complexity, where N- and E-trending structures related to the transform boundary intersect NE-trending structures related to the rift zone. InSAR, GPS, and field observations have been used in an attempt to constrain slip along the trace of the fault that failed on June 4, 1998. Geophysical and field data are consistent with an interpretation of distributed slip along a segmented right-lateral strike-slip fault, with slip decreasing southward along the fault plane. We suggest a right step or right bend between fault segments to explain local deformation near the fault.
NASA Astrophysics Data System (ADS)
Mariniere, J.; Champenois, J.; Nocquet, J. M.; Beauval, C. M.; Audin, L.; Baize, S.; Alvarado, A. P.; Yepes, H. A.; Jomard, H.
2017-12-01
Quito, the capital of Ecuador hosting two million inhabitants lies on an active reverse fault system within the Andes. Regular moderate size earthquakes (M 5) occur on these faults, widely felt within the city and its surrounding. Despite a relatively small magnitude of Mw 5.1, the 2014 August 12 earthquake triggered landslides that killed 4 people, cut off one of the main highways for several weeks and caused the temporary shutdown of the airport. Quantifying the seismic potential of the Quito fault system is therefore crucial for a better preparation and mitigation to seismic risk. Previous work using a limited GPS data set found that the Quito fault accommodates 4 mm/yr of EW shortening (Alvarado et al., 2014) at shallow locking depths (3-7 km). We combine GPS and new InSAR data to extend the previous analysis and better quantify the spatial distribution of locking of the Quito fault. GPS dataset includes new continuous sites operating since 2013. 18 ERS SAR scenes, spanning the 1993-2000 time period and covering an area of 85 km by 30 km, were processed using a Permanent Scatter strategy. We perform a joint inversion of both data set (GPS and InSAR) to infer a new and better-constrained kinematic model of the fault to determine both the slip rate and the locking distribution at depth. We find a highly variable level of locking which changes along strike. At some segments, sharp displacement gradients observed both for GPS and InSAR suggest that the fault is creeping up to the surface, while shallow locking is found for other segments. Previous Probabilistic Seismic Hazard Assessment studies have shown that the Quito fault fully controls the hazard in Quito city (Beauval et al. 2014). The results will be used to improve the forecast of earthquakes on the Quito fault system for PSHA studies.
von Huene, Roland E.; Miller, John J.; Klaeschen, Dirk; Dartnell, Peter
2016-01-01
In 1946, megathrust seismicity along the Unimak segment of the Alaska subduction zone generated the largest ever recorded Alaska/Aleutian tsunami. The tsunami severely damaged Pacific islands and coastal areas from Alaska to Antarctica. It is the charter member of “tsunami” earthquakes that produce outsized far-field tsunamis for the recorded magnitude. Its source mechanisms were unconstrained by observations because geophysical data for the Unimak segment were sparse and of low resolution. Reprocessing of legacy geophysical data reveals a deep water, high-angle reverse or splay thrust fault zone that leads megathrust slip upward to the mid-slope terrace seafloor rather than along the plate boundary toward the trench axis. Splay fault uplift elevates the outer mid-slope terrace and its inner area subsides. Multibeam bathymetry along the splay fault zone shows recent but undated seafloor disruption. The structural configuration of the nearby Semidi segment is similar to that of the Unimak segment, portending generation of a future large tsunami directed toward the US West coast.
Dewey, J.W.
1991-01-01
Joint epicenter determination of earthquakes that occurred in northern Algeria near Ech Cheliff (named Orleansville in 1954 and El Asnam in 1980) shows that the earthquake of 9 September 1954 (M=6.5) occurred at nearly the same location as the earthquake of 10 October 1980 (M=7.3). The 1954 main shock and earliest aftershocks were concentrated close to the boundaries of segment B (nomenclature of Deschamps et al., 1982; King and Yielding, 1984) of the 1980 fault system, which was to experience approximately 8 m of slip in the 1980 earthquake. Later aftershocks of the 1954 earthquake were spread over a broad area, notably in a region north of the 1980 fault system that also experienced many aftershocks to the 1980 earthquake. The closeness of the 1954 main shock and earliest aftershocks to the 1980 segment B implies that the 1954 earthquake involved either 1) rupture of segment B proper, or 2) rupture of a distinct fault in the hanging wall of footwall block of segment B. -from Author
NASA Astrophysics Data System (ADS)
von Huene, Roland; Miller, John J.; Klaeschen, Dirk; Dartnell, Peter
2016-12-01
In 1946, megathrust seismicity along the Unimak segment of the Alaska subduction zone generated the largest ever recorded Alaska/Aleutian tsunami. The tsunami severely damaged Pacific islands and coastal areas from Alaska to Antarctica. It is the charter member of "tsunami" earthquakes that produce outsized far-field tsunamis for the recorded magnitude. Its source mechanisms were unconstrained by observations because geophysical data for the Unimak segment were sparse and of low resolution. Reprocessing of legacy geophysical data reveals a deep water, high-angle reverse or splay thrust fault zone that leads megathrust slip upward to the mid-slope terrace seafloor rather than along the plate boundary toward the trench axis. Splay fault uplift elevates the outer mid-slope terrace and its inner area subsides. Multibeam bathymetry along the splay fault zone shows recent but undated seafloor disruption. The structural configuration of the nearby Semidi segment is similar to that of the Unimak segment, portending generation of a future large tsunami directed toward the US West coast.
NASA Astrophysics Data System (ADS)
Rosas, F. M.; Tomas, R.; Duarte, J. C.; Schellart, W. P.; Terrinha, P.
2014-12-01
The intersection between the Gloria Fault (GF) and the Tore-Madeira rise (TMR) in NE Atlantic marks a transition from a discrete to a diffuse nature along a critical segment of the Eurasia/Africa plate boundary. To the West of such intersection, approximately since the Azores triple junction, this plate boundary is mostly characterized by a set of closely aligned and continuous strike-slip faults that make up the narrow active dextral transcurrent system of the GF (with high magnitude M>7 historical earthquakes). While intersecting the TMR the closely E-W trending trace of the GF system is slightly deflected (changing to WNW-ESE), and splays into several fault branches that often coincide with aligned (TMR related?) active volcanic plugs. The segment of the plate boundary between the TMR and the Gorringe Bank (further to the East) corresponds to a more complex (less discrete) tectonic configuration, within which the tectonic connection between the Gloria Fault and another major dextral transcurrent system (the so called SWIM system) occurs. This SWIM fault system has been described to extend even further to the East (almost until the Straits of Gibraltar) across the Gulf of Cadiz domain. In this domain the relative movement between the Eurasian and the African plates is thought to be accommodated through a diffuse manner, involving large scale strain partition between a dextral transcurrent fault-system (the SWIM system), and a set of active west-directed én-échelon major thrusts extending to the North along the SW Iberian margin. We present new analog modeling results, in which we employed different experimental settings to address (namely) the following main questions (as a first step to gain new insight on the tectonic evolution of the TRM-GF critical intersection area): Could the observed morphotectonic configuration of such intersection be simply caused by a bathymetric anomaly determined by a postulated thickened oceanic crust, or is it more compatible with a crustal rheological (viscous) anomaly, possibly related with the active volcanism in the intersection zone? What could cause the observed deflection and splaying of the GF in the intersection with the TMR? Is the GF cutting across the TMR, or is it ending against a morpho-rheological anomaly through waning lateral propagation?
The 2016 Kumamoto earthquake sequence.
Kato, Aitaro; Nakamura, Kouji; Hiyama, Yohei
2016-01-01
Beginning in April 2016, a series of shallow, moderate to large earthquakes with associated strong aftershocks struck the Kumamoto area of Kyushu, SW Japan. An M j 7.3 mainshock occurred on 16 April 2016, close to the epicenter of an M j 6.5 foreshock that occurred about 28 hours earlier. The intense seismicity released the accumulated elastic energy by right-lateral strike slip, mainly along two known, active faults. The mainshock rupture propagated along multiple fault segments with different geometries. The faulting style is reasonably consistent with regional deformation observed on geologic timescales and with the stress field estimated from seismic observations. One striking feature of this sequence is intense seismic activity, including a dynamically triggered earthquake in the Oita region. Following the mainshock rupture, postseismic deformation has been observed, as well as expansion of the seismicity front toward the southwest and northwest.
The 2016 Kumamoto earthquake sequence
KATO, Aitaro; NAKAMURA, Kouji; HIYAMA, Yohei
2016-01-01
Beginning in April 2016, a series of shallow, moderate to large earthquakes with associated strong aftershocks struck the Kumamoto area of Kyushu, SW Japan. An Mj 7.3 mainshock occurred on 16 April 2016, close to the epicenter of an Mj 6.5 foreshock that occurred about 28 hours earlier. The intense seismicity released the accumulated elastic energy by right-lateral strike slip, mainly along two known, active faults. The mainshock rupture propagated along multiple fault segments with different geometries. The faulting style is reasonably consistent with regional deformation observed on geologic timescales and with the stress field estimated from seismic observations. One striking feature of this sequence is intense seismic activity, including a dynamically triggered earthquake in the Oita region. Following the mainshock rupture, postseismic deformation has been observed, as well as expansion of the seismicity front toward the southwest and northwest. PMID:27725474
Transpressional Rupture Cascade of the 2016 Mw 7.8 Kaikoura Earthquake, New Zealand
NASA Astrophysics Data System (ADS)
Xu, Wenbin; Feng, Guangcai; Meng, Lingsen; Zhang, Ailin; Ampuero, Jean Paul; Bürgmann, Roland; Fang, Lihua
2018-03-01
Large earthquakes often do not occur on a simple planar fault but involve rupture of multiple geometrically complex faults. The 2016 Mw 7.8 Kaikoura earthquake, New Zealand, involved the rupture of at least 21 faults, propagating from southwest to northeast for about 180 km. Here we combine space geodesy and seismology techniques to study subsurface fault geometry, slip distribution, and the kinematics of the rupture. Our finite-fault slip model indicates that the fault motion changes from predominantly right-lateral slip near the epicenter to transpressional slip in the northeast with a maximum coseismic surface displacement of about 10 m near the intersection between the Kekerengu and Papatea faults. Teleseismic back projection imaging shows that rupture speed was overall slow (1.4 km/s) but faster on individual fault segments (approximately 2 km/s) and that the conjugate, oblique-reverse, north striking faults released the largest high-frequency energy. We show that the linking Conway-Charwell faults aided in propagation of rupture across the step over from the Humps fault zone to the Hope fault. Fault slip cascaded along the Jordan Thrust, Kekerengu, and Needles faults, causing stress perturbations that activated two major conjugate faults, the Hundalee and Papatea faults. Our results shed important light on the study of earthquakes and seismic hazard evaluation in geometrically complex fault systems.
NASA Astrophysics Data System (ADS)
Bonus, A. A. B.; Lagmay, A. M. A.; Rodolfo, K. S.
2016-12-01
The Lubao fault, located in the province of Pampanga, Philippines, is part of the Bataan Volcanic Arc Complex (BVAC). Active faults within and around the BVAC include the East Zambales and Iba faults; according to the official active faults map of the Philippine Institute of Volcanology and Seismology (PHIVOLCS) there are no other existing active faults in the area. The Lubao Fault distinctly separates wetlands to the northeast and dry alluvial plains to the northwest of Manila Bay. Long term subsidence and high sedimentation rates were observed in the fault and over the past 1.5 thousand years, the northeastern block has dropped 3.5 meters. Along the southwest flank of Mount Natib, tectonic structures were identified using surface mapping and remote sensing. The Persistent Scattering Interferometric Synthetic Aperture Radar (PSInSAR) data results of Eco et al. in 2015 shows uplifts and subsidence in the BVAC area delineating the Lubao Fault. A 480-meter seismic reflection line was laid down perpendicular to the fault with a recording system consisting of 48 channels of Geometrics geophones spaced 10 meters apart. Acquired data were processed using the standard seismic reflection processing sequence by Yilmaz 2001. This preliminary study produced a high resolution subsurface profile of the Lubao fault in the village of San Rafael, Lubao where it is well manifested. The velocity model integrated by stratigraphic data of drilled core shows subsurface lithology. The depth converted profile reveals clear structures and dipping segments which indicates a history of movement along the Lubao fault. Discontinuity of reflectors, either offsets or breaks, are considered structures along the subsurface of the study area. Additional structural mapping and seismic lines along the projected fault are planned in the future to further detail the characteristics of the Lubao Fault. The surface observations made by other researchers coupled with the subsurface seismic profile mapping of this study hopes to clearly delineate and characterize the Lubao Fault.
Detrital zircon provenance evidence for large-scale extrusion along the Altyn Tagh fault
Yue, Y.; Graham, S.A.; Ritts, B.D.; Wooden, J.L.
2005-01-01
The question of whether or not the Altyn Tagh fault is a large-scale extrusion boundary is critical for understanding the role of lateral extrusion in accommodating the Indo-Asian convergence and in building the Tibetan Plateau. Oligocene conglomerate clasts in the eastern Xorkol basin are low-grade slate, phyllite, sandstone, dacite and carbonate, and associated paleocurrent indicators evince sediment derivation from the opposing side of the Altyn Tagh fault. Matching these clasts with similar basement rocks in the North Qilian and Tuolainanshan terranes requires post-Oligocene left-lateral offset of 380 ?? 60 km on the eastern segment of the Altyn Tagh fault, suggesting large-scale extrusion along the fault in the Cenozoic (Yue, Y.J., Ritts, B.D., Graham, S.A., 2001b. Initiation and long-term slip history of the Altyn Tagh fault. International Geological Review 43, 1087-1094.). In order to further define this piercing point, the detrital zircon pattern of Oligocene sandstone from the Xorkol basin and the zircon ages of basement on the southern side of the fault were established by ion microprobe dating. Characterized by strong peaks between 850 and 950 Ma and the absence of Paleozoic and Mesozoic ages, the detrital zircon age pattern of the Oligocene sandstone matches the age distribution of zircon-bearing rocks of the Tuolainanshan terrane. This match requires 360 ?? 40 km of post-Oligocene left-lateral displacement on the eastern segment of the Altyn Tagh fault, supporting as well as refining the previously reported lithology-based cross-fault match. At least one of the following three extrusion scenarios must have existed to accommodate this large offset: (1) northeastward extrusion along the Altyn Tagh-Alxa-East Mongolia fault, (2) eastward extrusion along the Altyn Tagh-North Qilian-Haiyuan fault, and (3) northeastward extrusion of northern Tibet as a Himalaya-scale thrust sheet along the North Qilian-Haiyuan fault. We prefer the first scenario inasmuch as rapidly growing evidence for Cenozoic strike-slip activity on the Alxa-East Mongolia fault and mid-Miocene exhumation of northern Tibet supports it. ?? 2005 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hatem, A. E.; Dolan, J. F.; Langridge, R.; Zinke, R. W.; McGuire, C. P.; Rhodes, E.; Van Dissen, R. J.
2016-12-01
We present incremental slip rate and paleo-earthquake data from the Conway segment of the eastern Hope fault, within the Marlborough Fault System (MFS) in the northern South Island of New Zealand. Our incremental slip rate site at Hossack Station is located near the western boundary of the Conway segment (near the Hanmer pull-apart basin), and preserves four offsets of the Hossack Stream channel that range in size from c. 11 to 190 m. Channel cut and fill deposits were exposed in several fault-parallel (channel perpendicular) trenches, and the initiation and abandonment of these offset channels are constrained by >60 radiocarbon ages, yielding four incremental slip rates spanning the Holocene. Our paleoseismologic trench at Green Burn, at the eastern end of the Conway segment near Kaikoura, was excavated across the 5-m-high fault scarp into the adjacent bog deposits. This fault-perpendicular trench revealed evidence for at least four paleo-earthquakes with age constraints provided by >40 radiocarbon dates. These results add to a growing body of slip rate and paleo-earthquake age and displacement data from all four main strike-slip faults that comprise the MFS. Collectively, these observations from the Hope fault are beginning to reveal the detailed system-level behavior of the four main faults in the MFS, with fundamental implications for, among other things, earthquake occurrence and behavior, as well as seismic hazard assessment.
NASA Astrophysics Data System (ADS)
Horalek, Josef; Jakoubkova, Hana
2017-04-01
The origin of earthquake swarms is still unclear. The swarms typically occur at the plate margins but also in intracontinental areas. West Bohemia-Vogtland represents one of the most active intraplate earthquake-swarm areas in Europe. It is characterised by a frequent reoccurrence of ML < 4.0 swarms and by high activity of crustal fluids. The Nový Kostel focal zone (NK) dominates the recent seismicity of the whole region. There were swarms in 1997, 2000, 2008 and 20011 followed by reactivation in 2013 which forming a focal belt of about 15 x 6 km, focal depths vary from 6 to 15 km. An exceptional non-swarm activity (mainshock-aftershock sequences) up to magnitudes ML = 4.5, stroke the region in May to August 2014, the events were also located in the NK swarm-focal belt. We analysed geometry of the NK focal zone applying the double-difference method to seismicity in the period 1997 - 2014. The swarms are located close to each other at depths between 6 and 13 km, the 2014 maishock-aftershock sequences among them. The 2000 and 2008 swarms were located on the same portion of the NK fault, similarly the swarms of 1997, 2011 and 2013 also occurred on the same fault segment. Other fault segment hosted three mainshock-aftershock sequences of 2014. The individual swarms differ considerably in their evolution, mainly in the rate of the seismic-moment release and foci migration. The frequency-magnitude distributions of all the swarms show bimodal-like character: the most events obey the b-value = 1.0 distribution, however, a group of the largest events ( ML > 2.8) depart significantly from it. Furthermore, we disclose that all the ML > 2.8 swarm events, which occurred in the given time span, are located in a few dense clusters. It implies that the most of seismic energy in the individual swarms has been released in step by step rupturing of one or a few asperities. The source mechanisms have been retrieved in the full moment-tensor description (MT). The mechanism patters of the individual swarms indicate their complexity. All the swarms exhibit both oblique-normal and oblique-thrust faulting but the former prevails. We found a several families of mechanisms, which fit well geometry of respective fault segments being determined by means of the double-difference location. MTs of the most analysed events signify pure shears except for events the second phase of the 1997 swarm the MTs of which indicate significant amount of non-DC components. The existing results do not allow us to explain properly an origin of earthquake swarms. Nevertheless, we infer that the individual earthquake swarms in West Bohemia-Vogtland are mixture of the mainshock-aftershock sequences which correspond to step by step rupturing of one or a few asperities. The swarms occur on short fault segments with heterogeneous stress and strength, which may be affected by crustal fluids. Pressurized fluids may reduce normal component of the tectonic stress and lower friction. Thus, critically loaded and favourably oriented faults are brought to failure and the swarm activity is driven by the differential local stress.
Dynamic rupture simulations of the 2016 Mw7.8 Kaikōura earthquake: a cascading multi-fault event
NASA Astrophysics Data System (ADS)
Ulrich, T.; Gabriel, A. A.; Ampuero, J. P.; Xu, W.; Feng, G.
2017-12-01
The Mw7.8 Kaikōura earthquake struck the Northern part of New Zealand's South Island roughly one year ago. It ruptured multiple segments of the contractional North Canterbury fault zone and of the Marlborough fault system. Field observations combined with satellite data suggest a rupture path involving partly unmapped faults separated by large stepover distances larger than 5 km, the maximum distance usually considered by the latest seismic hazard assessment methods. This might imply distant rupture transfer mechanisms generally not considered in seismic hazard assessment. We present high-resolution 3D dynamic rupture simulations of the Kaikōura earthquake under physically self-consistent initial stress and strength conditions. Our simulations are based on recent finite-fault slip inversions that constrain fault system geometry and final slip distribution from remote sensing, surface rupture and geodetic data (Xu et al., 2017). We assume a uniform background stress field, without lateral fault stress or strength heterogeneity. We use the open-source software SeisSol (www.seissol.org) which is based on an arbitrary high-order accurate DERivative Discontinuous Galerkin method (ADER-DG). Our method can account for complex fault geometries, high resolution topography and bathymetry, 3D subsurface structure, off-fault plasticity and modern friction laws. It enables the simulation of seismic wave propagation with high-order accuracy in space and time in complex media. We show that a cascading rupture driven by dynamic triggering can break all fault segments that were involved in this earthquake without mechanically requiring an underlying thrust fault. Our prefered fault geometry connects most fault segments: it does not features stepover larger than 2 km. The best scenario matches the main macroscopic characteristics of the earthquake, including its apparently slow rupture propagation caused by zigzag cascading, the moment magnitude and the overall inferred slip distribution. We observe a high sensitivity of cascading dynamics on fault-step over distance and off-fault energy dissipation.
NASA Astrophysics Data System (ADS)
Muirhead, J.; Scholz, C. A.
2017-12-01
During continental breakup extension is accommodated in the upper crust largely through dike intrusion and normal faulting. The Eastern branch of the East African Rift arguably represents the premier example of active continental breakup in the presence magma. Constraining how faulting is distributed in both time and space in these regions is challenging, yet can elucidate how extensional strain localizes within basins as rifting progresses to sea-floor spreading. Studies of active rifts, such as the Turkana Rift, reveal important links between faulting and active magmatic processes. We utilized over 1100 km of high-resolution Compressed High Intensity Radar Pulse (CHIRP) 2D seismic reflection data, integrated with a suite of radiocarbon-dated sediment cores (3 in total), to constrain a 17,000 year history of fault activity in south Lake Turkana. Here, a set of N-S-striking intra-rift faults exhibit time-averaged slip-rates as high as 1.6 mm/yr, with the highest slip-rates occurring along faults within 3 km of the rift axis. Results show that strain has localized into a zone of intra-rift faults along the rift axis, forming an approximately 20 km-wide graben in central parts of the basin. Subsurface structural mapping and fault throw profile analyses reveal increasing basin subsidence and fault-related strain as this faulted graben approaches a volcanic island in the center of the basin (South Island). The long-axis of this island trends north-south, and it contains a number of elongate cones that support recent emplacement of N-S-striking dike intrusions, which parallel recently active intra-rift faults. Overall, these observations suggest strain localization into intra-rift faults in the rift center is likely a product of both volcanic loading and the mechanical and thermal effects of diking along the rift axis. These results support the establishment of magmatic segmentation in southern Lake Turkana, and highlight the importance of magmatism for focusing upper crustal strain as rifts evolve to sea-floor spreading.
NASA Astrophysics Data System (ADS)
Sarkarinejad, Khalil; Zafarmand, Bahareh; Oveisi, Behnam
2018-03-01
The NW-SE trending Zagros orogenic belt was initiated during the convergence of the Afro-Arabian continent and the Iranian microcontinent in the Late Cretaceous. Ongoing convergence is confirmed by intense seismicity related to compressional stresses collision-related in the Zagros orogenic belt by reactivation of an early extensional faulting to latter compressional segmented strike-slip and dip-slip faulting. These activities are strongly related either to the deep-seated basement fault activities (deep-seated earthquakes) underlies the sedimentary cover or gently dipping shallow-seated décollement horizon of the rheological weak rocks of the infra-Cambrian Hormuz salt. The compressional stress regimes in the different units play an important role in controlling the stress conditions between the different units within the sedimentary cover and basement. A significant set of nearly N-S trending right-lateral strike-slip faults exists throughout the study area in the Fars area in the Zagros Foreland Folded Belt. Fault-slip and focal mechanism data were analyzed using the stress inversion method to reconstruct the paleo and recent stress conditions. The results suggest that the current direction of maximum principal stress averages N19°E, with N38°E that for the past from Cretaceous to Tertiary (although a few sites on the Kar-e-Bass fault yield a different direction). The results are consistent with the collision of the Afro-Arabian continent and the Iranian microcontinent. The difference between the current and paleo-stress directions indicates an anticlockwise rotation in the maximum principle stress direction over time. This difference resulted from changes in the continental convergence path, but was also influenced by the local structural evolution, including the lateral propagation of folds and the presence of several local décollement horizons that facilitated decoupling of the deformation between the basement and the sedimentary cover. The obliquity of the maximum compressional stress into the fault trends reveals a typical stress partitioning of thrust and strike-slip motion in the Kazerun, Kar-e-Bass, Sabz-Pushan, and Sarvestan fault zones that caused these fault zones behave as segmented strike-slip and dip-slip faults.
NASA Astrophysics Data System (ADS)
Teoman, U.; Altuncu Poyraz, S.; Kahraman, M.; Mutlu, A. K.; Cambaz, D.; Turkelli, N.; Thompson, D. A.; Rost, S.; Houseman, G. A.; Utkucu, M.
2014-12-01
To extensively investigate the upper crustal structure beneath the western segment of the North Anatolian Fault Zone (NAFZ) in Sakarya and the surroundings, a temporary seismic network consisting of 70 stations (with nearly 7km station spacing) was deployed in early May 2012 and operated for 18 months during the Faultlab experiment encompassing both the northern and southern strands of the fault in between the area of 1999 İzmit and Düzce mainshock ruptures. With the help of this new and extensive data set, our main objective is to provide new insights on the most recent micro-seismic activity and the velocity structure beneath the region. Out of 2437 events contaminated by the explosions, we extracted 1344 well located earthquakes with a total of 31595 P and 18512 S phase readings which lead to an avarage Vp/Vs ratio of ~1.82 extracted from the wadati diagram. The enhanced station coverage decreased the magnitude threshold to 0.1 where the horizontal and vertical location errors did not exceed 0.5 km and 2.0 km, respectively. Average RMS values were calculated within the range of 0.05-0.4 seconds. We observed significant seismic activity along both branches of the fault where the depth of the seismogenic zone was confined to 15 km. Focal parameters of 41 earthquakes with magnitudes greater than 1.8 were also determined using both Regional Moment Tensor Inversion and P first arrival time methods. Focal mechanism solutions confirm that Sakarya and its vicinity could be defined by a compressional regime showing a primarily oblique-slip motion character. Furthermore, we selected the earthquakes recorded by at least 8 stations with azimuthal gaps less than 200° for the ongoing tomographic inversion that would enable us to accurately map the complex upper crustal velocity structure with high resolution beneath this segment of the NAFZ.
NASA Astrophysics Data System (ADS)
Cowgill, E.; Bernardin, T. S.; Oskin, M. E.; Bowles, C. J.; Yikilmaz, M. B.; Kreylos, O.; Elliott, A. J.; Bishop, M. S.; Gold, R. D.; Morelan, A.; Bawden, G. W.; Hamann, B.; Kellogg, L. H.
2010-12-01
The Mw 7.0 January 12, 2010 Haiti earthquake ended 240 years of relative quiescence following earthquakes that destroyed Port-au-Prince in 1751 and 1770. We place the 2010 rupture in the context of past earthquakes and future hazards by using remote analysis of airborne LiDAR to observe the topographic expression of active faulting and develop a new conceptual model for the earthquake behavior of the eastern Enriquillo fault zone (EFZ). In this model, the 2010 event occupies a long-lived segment boundary at a stepover within the EFZ separating fault segments that likely ruptured in 1751 and 1770, explaining both past clustering and the lack of 2010 surface rupture. Immediately following the 2010 earthquake, an airborne LiDAR point cloud containing over 2.7 billion point measurements of surface features was collected by the Rochester Inst. of Technology. To analyze these data, we capitalize on the human capacity to visually identify meaningful patterns embedded in noisy data by conducting interactive visual analysis of the entire 66.8 GB Haiti terrain data in a 4-sided, 800 ft3 immersive virtual-reality environment at the UC Davis KeckCAVES using the software tools LiDAR Viewer (to analyze point cloud data) and Crusta (for 3D surficial geologic mapping on DEM data). We discovered and measured landforms displaced by past surface-rupturing earthquakes and remotely characterized the regional fault geometry. Our analysis of the ~50 km long reach of EFZ spanning the 2010 epicenter indicates that geomorphic evidence of active faulting is clearer east of the epicenter than to the west. West of the epicenter, and in the region of the 2010 rupture, the fault is poorly defined along an embayed, low-relief range front, with little evidence of recent surface rupture. In contrast, landform offsets of 6 to 50 m along the reach of the EFZ east of the epicenter and closest to Port-au-Prince attest to repeated recent surface-rupturing earthquakes here. Specifically, we found and documented offset landforms including fluvial terrace risers near Dumay (6.3 +0.9/-1.3 m) and Chauffard/Jameau (32.2 +1.8/-3.1 m), a channel (52 +18/-13 m) ~500 m east of the Chauffard/Jameau site, and an alluvial fan near Fayette (8.6 +2.8/-2.5 m). Based on the fault-trace morphology and distribution of sites where we see 6-8 m offsets, we estimate the probable along-strike extent of past surface rupture was 40 to 60 km along this fault reach. Application of moment-rupture area relationships to these observations suggest that an earthquake similar to, or larger than the Mw 7.0 2010 event is possible along the Enriquillo fault near Port-au-Prince. We deduce that the 2010 earthquake was a relatively small event on a boundary between fault segments that ruptured in 1751 and 1770, based on new analysis of historical damage reports and the gap of well-defined fault-zone morphology where the 2010 earthquake occurred.
NASA Astrophysics Data System (ADS)
Moyer, P. A.; Boettcher, M. S.; McGuire, J. J.; Collins, J. A.
2017-12-01
During the last five seismic cycles on Gofar transform fault on the East Pacific Rise, the largest earthquakes (6.0 ≤ Mw ≤ 6.2) have repeatedly ruptured the same fault segment (rupture asperity), while intervening fault segments host swarms of microearthquakes. Previous studies on Gofar have shown that these segments of low (≤10%) seismic coupling contain diffuse zones of seismicity and P-wave velocity reduction compared with the rupture asperity; suggesting heterogeneous fault properties control earthquake behavior. We investigate the role systematic differences in material properties have on earthquake rupture along Gofar using waveforms from ocean bottom seismometers that recorded the end of the 2008 Mw 6.0 seismic cycle.We determine stress drop for 117 earthquakes (2.4 ≤ Mw ≤ 4.2) that occurred in and between rupture asperities from corner frequency derived using an empirical Green's function spectral ratio method and seismic moment obtained by fitting the omega-square source model to the low frequency amplitude of earthquake spectra. We find stress drops from 0.03 to 2.7 MPa with significant spatial variation, including 2 times higher average stress drop in the rupture asperity compared to fault segments with low seismic coupling. We interpret an inverse correlation between stress drop and P-wave velocity reduction as the effect of damage on earthquake rupture. Earthquakes with higher stress drops occur in more intact crust of the rupture asperity, while earthquakes with lower stress drops occur in regions of low seismic coupling and reflect lower strength, highly fractured fault zone material. We also observe a temporal control on stress drop consistent with log-time healing following the Mw 6.0 mainshock, suggesting a decrease in stress drop as a result of fault zone damage caused by the large earthquake.
Determination of Aseismic Creep or Strain Field on the Main Marmara Fault
NASA Astrophysics Data System (ADS)
Özbey, V.; Yavasoglu, H.; Masson, F.; Klein, E.; Alkan, M. N.; Alkan, R. M.
2016-12-01
Plate motion affecting the Earth's crust have occurred for millions of years. Determination of strain accumulation based on the plate motion is commonly monitored with GPS in recent years. The North Anatolian Fault (NAF) Zone, which is one of the fastest faults in the world, extends along all North Anatolia from Bingöl to Saros Gulf. Several destructive earthquakes occurred there, such as Izmit (in 1999, Mw=7.4) and Duzce (in 1999, Mw=7.2) in last century. The NAFZ is dividing into southern and northern branches to the east of Marmara region and the Northern branch (Main Marmara Fault-MMF) is crossing the Marmara Sea, starting in from the Gulf of Izmit - Adapazarı and reaching the Gulf of Saros. According to recent studies, the MMF is the largest unbroken part of the fault and is divided into segments (among which the Central Marmara-CM and Prince's Island-PI segments). The determination of the deformation accumulated on the MMF has become extremely important especially after the 1999 Izmit earthquake. Recent studies have demonstrated that the Prince's Island segment is fully locked. However, studies that are focused on the Central Marmara segment, that is located offshore Istanbul, a giant metropole that has more than 14 million population, do not conclude about the presence of a seismic gap, capable of generating a big earthquake. Therefore, in the scope of this study, a new GPS network will be established at short and long distance from the Main Marmara Fault, to densify the existing GPS network. several campaign measurements will be necessary to compute a velocity field. The velocity field will reveal the compression and variations of accumulation rate on the fault. Also, the amount of aseismic creep deep within the fault will be determined using Elastic Displacement Modeling method, allowing to conclude about the existence of a seismic gap on the Main Marmara Fault originated from aseismic deformation or not.
Structural features of the San Andreas fault at Tejon Pass, California
NASA Astrophysics Data System (ADS)
Dewers, T. A.; Reches, Z.; Brune, J. N.
2002-12-01
We mapped a 2 km belt along the San Andreas fault (SAF) in the Tejon Pass area where road cuts provide fresh exposures of the fault zone and surrounding rocks. Our 1:2,000 structural mapping is focused on analysis of faulting processes and is complementary to regional mapping at 1:12,000 scale by Ramirez (M.Sc., UC Santa Barbara, 1984). The dominant rock units are the Hungry Valley Formation of Pliocene age (clastic sediments) exposed south of the SAF, and the Tejon Lookout granite (Cretaceous) and Neenach Volcanic Formation exposed north of it. Ramirez (1983) deduced ~220 km of post-Miocene lateral slip. The local trend of the SAF is about N60W and it includes at least three main, subparallel segments that form a 200 m wide zone. The traces of the segments are quasi-linear, discontinuous, and they are stepped with respect to each other, forming at least five small pull-aparts and sag ponds in the mapping area. The three segments were not active semi-contemporaneously and the southern segment is apparently the oldest. The largest pull-apart, 60-70 m wide, displays young (Quaternary?) silt and shale layers. We found two rock bodies that are suspected as fault-rocks. One is a 1-2 m thick sheet-like body that separates the Tejon Lookout granite from young (Recent?) clastic rocks. In the field, it appears as a gouge zone composed of poorly cemented, dark clay size grains; however, the microstructure of this rock does not reveal clear shear features. The second body is the 80-120 m wide zone of Tejon Lookout granite that extends for less than 1 km along the SAF in the mapped area. It is characterized by three structural features: (1) pulverization into friable, granular material by multitude of grain-crossing fractures; (2) abundance of dip-slip small faults that are gently dipping toward and away from the SAF; and (3) striking lack of evidence for shear parallel to the SAF. The relationships between these features and the large right-lateral shear along the SAF are puzzling. Our future work on these relations will include extensive microstructural analysis, determination of the depth of granite pulverization and the examination of several models that have been proposed to explain the enigmatic field features.
NASA Astrophysics Data System (ADS)
Yoshida, Kunikazu; Miyakoshi, Ken; Somei, Kazuhiro; Irikura, Kojiro
2017-05-01
In this study, we estimated source process of the 2016 Kumamoto earthquake from strong-motion data by using the multiple-time window linear kinematic waveform inversion method to discuss generation of strong motions and to explain crustal deformation pattern with a seismic source inversion model. A four-segment fault model was assumed based on the aftershock distribution, active fault traces, and interferometric synthetic aperture radar data. Three western segments were set to be northwest-dipping planes, and the most eastern segment under the Aso caldera was examined to be a southeast-dipping plane. The velocity structure models used in this study were estimated by using waveform modeling of moderate earthquakes that occurred in the source region. We applied a two-step approach of the inversions of 20 strong-motion datasets observed by K-NET and KiK-net by using band-pass-filtered strong-motion data at 0.05-0.5 Hz and then at 0.05-1.0 Hz. The rupture area of the fault plane was determined by applying the criterion of Somerville et al. (Seismol Res Lett 70:59-80, 1999) to the inverted slip distribution. From the first-step inversion, the fault length was trimmed from 52 to 44 km, whereas the fault width was kept at 18 km. The trimmed rupture area was not changed in the second-step inversion. The source model obtained from the two-step approach indicated 4.7 × 1019 Nm of the total moment release and 1.8 m average slip of the entire fault with a rupture area of 792 km2. Large slip areas were estimated in the seismogenic zone and in the shallow part corresponding to the surface rupture that occurred during the Mj7.3 mainshock. The areas of the high peak moment rate correlated roughly with those of large slip; however, the moment rate functions near the Earth surface have low peak, bell shape, and long duration. These subfaults with long-duration moment release are expected to cause weak short-period ground motions. We confirmed that the southeast dipping of the most eastern segment is more plausible rather than northwest-dipping from the observed subsidence around the central cones of the Aso volcano.[Figure not available: see fulltext.
Lateral propagation of folding and thrust faulting at Mahan, S.E. Iran
NASA Astrophysics Data System (ADS)
Walker, R. T.
2003-12-01
Folding identified near the town of Mahan in S.E. Iran has no record of historical activity, and yet there are clear geomorphological indications of recent fold growth, presumably driven by movements on underlying thrust faults. The structures at Mahan may still be capable of producing destructive earthquakes, posing a considerable hazard to local population centres. We describe a drainage evolution that shows the effect of lateral propagation of surface folding and the effect of tilting above an underlying thrust fault. River systems cross and incise through the fold segments. Each of these rivers show a distinct deflection parallel to the fold axis. This deflection starts several kilometres into the hanging-wall of the underlying thrust fault. Remnants of several abandoned drainage channels and abandoned alluvial fans are preserved within the folds. The westward lateral propagation of folding is also suggested by an increase in relief and exposure of deeper stratigraphic layers across fold segments in the east of the system, implying a greater cumulative displacement in the east than in the west. The preservation of numerous dry valleys across the fold suggests a continual forcing of drainage around the nose of the growing fold, rather than an along strike variation in slip-rate.
Detailed fault structure of the 2000 Western Tottori, Japan, earthquake sequence
Fukuyama, E.; Ellsworth, W.L.; Waldhauser, F.; Kubo, A.
2003-01-01
We investigate the faulting process of the aftershock region of the 2000 western Tottori earthquake (Mw 6.6) by combining aftershock hypocenters and moment tensor solutions. Aftershock locations were precisely determined by the double difference method using P- and S-phase arrival data of the Japan Meteorological Agency unified catalog. By combining the relocated hypocenters and moment tensor solutions of aftershocks by broadband waveform inversion of FREESIA (F-net), we successfully resolved very detailed fault structures activated by the mainshock. The estimated fault model resolves 15 individual fault segments that are consistent with both aftershock distribution and focal mechanism solutions. Rupture in the mainshock was principally confined to the three fault elements in the southern half of the zone, which is also where the earliest aftershocks concentrate. With time, the northern part of the zone becomes activated, which is also reflected in the postseismic deformation field. From the stress tensor analysis of aftershock focal mechanisms, we found a rather uniform stress field in the aftershock region, although fault strikes were scattered. The maximum stress direction is N107??E, which is consistent with the tectonic stress field in this region. In the northern part of the fault, where no slip occurred during the mainshock but postseismic slip was observed, the maximum stress direction of N130??E was possible as an alternative solution of stress tensor inversion.
NASA Astrophysics Data System (ADS)
Yoshida, Keisuke; Hasegawa, Akira; Saito, Tatsuhiko; Asano, Youichi; Tanaka, Sachiko; Sawazaki, Kaoru; Urata, Yumi; Fukuyama, Eiichi
2016-10-01
A shallow M7.3 event with a M6.5 foreshock occurred along the Futagawa-Hinagu fault zone in Kyushu, SW Japan. We investigated the spatiotemporal variation of the stress orientations in and around the source area of this 2016 Kumamoto earthquake sequence by inverting 1218 focal mechanisms. The results show that the σ3 axis in the vicinity of the fault plane significantly rotated counterclockwise after the M6.5 foreshock and rotated clockwise after the M7.3 main shock in the Hinagu fault segment. This observation indicates that a significant portion of the shear stress was released both by the M6.5 foreshock and M7.3 main shock. It is estimated that the stress release by the M6.5 foreshock occurred in the shallower part of the Hinagu fault segment, which brought the stress concentration in its deeper part. This might have caused the M7.3 main shock rupture mainly along the deeper part of the Hinagu fault segment after 28 h.
Thermal regime of the San Andreas fault near Parkfield, California
Sass, J.H.; Williams, C.F.; Lachenbruch, A.H.; Galanis, S.P.; Grubb, F.V.
1997-01-01
Knowledge of the temperature variation with depth near the San Andreas fault is vital to understanding the physical processes that occur within the fault zone during earthquakes and creep events. Parkfield is near the southern end of the Coast Ranges segment of the San Andreas fault. This segment has higher mean heat flow than the Cape Mendocino segment to the northwest or the Mojave segment to the southeast. Boreholes were drilled specifically for the U.S. Geological Survey's Parkfield earthquake prediction experiment or converted from other uses at 25 sites within a few kilometers of the fault near Parkfield. These holes, which range in depth from 150 to over 1500 m, were intended mainly for the deployment of volumetric strain meters, water-level recorders, and other downhole instruments. Temperature profiles were obtained from all the holes, and heat flow values were estimated from 17 of them. For a number of reasons, including a paucity of thermal conductivity data and rugged local topography, the accuracy of individual determinations was not sufficiently high to document local variations in heat flow. Values range from 54 to 92 mW m-2, with mean and 95% confidence limits of 74 ?? 4 mW m-2. This mean is slightly lower than the mean (83 ?? 3) of 39 previously published values from the central Coast Ranges, but it is consistent with the overall pattern of elevated heat flow in the Coast Ranges, and it is transitional to the mean of 68 ?? 2 mW m-2 that characterizes the Mojave segment of the San Andreas fault immediately to the south. The lack of a heat flow peak near the fault underscores the absence of a frictional thermal anomaly and provides additional support for a very small resolved shear stress parallel to the San Andreas fault and the nearly fault-normal maximum compressive stress observed in this region. Estimates of subsurface thermal conditions indicate that the seismic-aseismic transition for the Parkfield segment corresponds to temperatures in the range of 350??-400??C. Increasing heat flow to the northwest of Parkfield corresponds to a transition from locked to creeping sections and to a shallowing of the base of seismicity and confirms the importance of temperature in controlling the thickness of the seismogenic crust. Lateral variations in heat flow do not appear to have any major role in determining the regularity of M5.5-6 earthquakes at Parkfield.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schermer, E.R.
1993-04-01
New structural and stratigraphy data from the NE Mojave Block (NEMB) establish the timing and style of Cenozoic deformation south of the Garlock fault and west of the Avawatz Mts. Unlike adjacent areas, most of the NEMB did not undergo early-mid Miocene extension. Major fault zones strike EW; offset markers and small-scale shear criteria indicate left-lateral strike slip with a small reverse component. Lateral offsets average ca. 1--6 km and vertical offset is locally >200m. Pre-Tertiary markers indicate minimum cumulative sinistral shear of ca. 15 km in the area between the Garlock and Coyote Lake faults. Tertiary strata are deformedmore » together with the older rocks. Along the Ft. Irwin fault, alluvial fan deposits interpreted to be <11Ma appear to be displaced as much as Mesozoic igneous rocks. EW sinistral faults S. of the Garlock fault cut unconsolidated Quaternary deposits; geomorphologic features and trench exposures along segments of the McLean Lake fault and the Tiefort Mt. fault suggest Late Quaternary activity. The EW faults do not cut modern drainages and are not seismically active. NW-striking faults are largely absent within the NEMB; the largest faults bound the domain of EW-striking faults. Offset of Cretaceous and Miocene rocks suggests the W boundary (Goldstone Lake fault) has <2km right separation. Along the E boundary (Soda-Avawatz fault zone), the presence of distinctive clasts in mid-late Miocene conglomerates west of the Avawatz Mts. supports the suggestion of Brady (1984) of ca. 20 km dextral displacement. Other NW-striking faults are cut by EW faults, have unknown or minor dextral displacement (Desert King Spring Fault, Garlic Spring fault) or are low- to moderate-angle left-oblique thrust faults (Red Pass Lake fault zone).« less
NASA Astrophysics Data System (ADS)
Arai, Ryuta; Kodaira, Shuichi; Takahashi, Tsutomu; Miura, Seiichi; Kaneda, Yoshiyuki
2018-04-01
Tectonic and volcanic structures of the northern Ryukyu arc are investigated on the basis of multichannel seismic (MCS) reflection data. The study area forms an active volcanic front in parallel to the non-volcanic island chain in the eastern margin of the Eurasian plate and has been undergoing regional extension on its back-arc side. We carried out a MCS reflection experiment along two across-arc lines, and one of the profiles was laid out across the Tokara Channel, a linear bathymetric depression which demarcates the northern and central Ryukyu arcs. The reflection image reveals that beneath this topographic valley there exists a 3-km-deep sedimentary basin atop the arc crust, suggesting that the arc segment boundary was formed by rapid and focused subsidence of the arc crust driven by the arc-parallel extension. Around the volcanic front, magmatic conduits represented by tubular transparent bodies in the reflection images are well developed within the shallow sediments and some of them are accompanied by small fragments of dipping seismic reflectors indicating intruded sills at their bottoms. The spatial distribution of the conduits may suggest that the arc volcanism has multiple active outlets on the seafloor which bifurcate at crustal depths and/or that the location of the volcanic front has been migrating trenchward over time. Further distant from the volcanic front toward the back-arc (> 30 km away), these volcanic features vanish, and alternatively wide rift basins become predominant where rapid transitions from normal-fault-dominant regions to strike-slip-fault-dominant regions occur. This spatial variation in faulting patterns indicates complex stress regimes associated with arc/back-arc rifting in the northern Okinawa Trough.[Figure not available: see fulltext.
Varga, R.J.; Faulds, J.E.; Snee, L.W.; Harlan, S.S.; Bettison-Varga, L.
2004-01-01
Recent studies demonstrate that rifts are characterized by linked tilt domains, each containing a consistent polarity of normal faults and stratal tilt directions, and that the transition between domains is typically through formation of accommodation zones and generally not through production of throughgoing transfer faults. The mid-Miocene Black Mountains accommodation zone of southern Nevada and western Arizona is a well-exposed example of an accommodation zone linking two regionally extensive and opposing tilt domains. In the southeastern part of this zone near Kingman, Arizona, east dipping normal faults of the Whipple tilt domain and west dipping normal faults of the Lake Mead domain coalesce across a relatively narrow region characterized by a series of linked, extensional folds. The geometry of these folds in this strike-parallel portion of the accommodation zone is dictated by the geometry of the interdigitating normal faults of opposed polarity. Synclines formed where normal faults of opposite polarity face away from each other whereas anticlines formed where the opposed normal faults face each other. Opposed normal faults with small overlaps produced short folds with axial trends at significant angles to regional strike directions, whereas large fault overlaps produce elongate folds parallel to faults. Analysis of faults shows that the folds are purely extensional and result from east/northeast stretching and fault-related tilting. The structural geometry of this portion of the accommodation zone mirrors that of the Black Mountains accommodation zone more regionally, with both transverse and strike-parallel antithetic segments. Normal faults of both tilt domains lose displacement and terminate within the accommodation zone northwest of Kingman, Arizona. However, isotopic dating of growth sequences and crosscutting relationships show that the initiation of the two fault systems in this area was not entirely synchronous and that west dipping faults of the Lake Mead domain began to form between 1 m.y. to 0.2 m.y. prior to east dipping faults of the Whipple domain. The accommodation zone formed above an active and evolving magmatic center that, prior to rifting, produced intermediate-composition volcanic rocks and that, during rifting, produced voluminous rhyolite and basalt magmas. Copyright 2004 by the American Geophysical Union.
Slip and Dilation Tendency Analysis of the Tuscarora Geothermal Area
Faulds, James E.
2013-12-31
Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the Tuscarora geothermal field was calculated based on the faults mapped Tuscarora area (Dering, 2013). The Tuscarora area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the Tuscarora area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. Tuscarora is defined by a left-step in a major north- to-north northeast striking, west-dipping range-bounding normal fault system. Faults within the broad step define an anticlinal accommodation zone...
Dynamics of folding: Impact of fault bend folds on earthquake cycles
NASA Astrophysics Data System (ADS)
Sathiakumar, S.; Barbot, S.; Hubbard, J.
2017-12-01
Earthquakes in subduction zones and subaerial convergent margins are some of the largest in the world. So far, forecasts of future earthquakes have primarily relied on assessing past earthquakes to look for seismic gaps and slip deficits. However, the roles of fault geometry and off-fault plasticity are typically overlooked. We use structural geology (fault-bend folding theory) to inform fault modeling in order to better understand how deformation is accommodated on the geological time scale and through the earthquake cycle. Fault bends in megathrusts, like those proposed for the Nepal Himalaya, will induce folding of the upper plate. This introduces changes in the slip rate on different fault segments, and therefore on the loading rate at the plate interface, profoundly affecting the pattern of earthquake cycles. We develop numerical simulations of slip evolution under rate-and-state friction and show that this effect introduces segmentation of the earthquake cycle. In crustal dynamics, it is challenging to describe the dynamics of fault-bend folds, because the deformation is accommodated by small amounts of slip parallel to bedding planes ("flexural slip"), localized on axial surface, i.e. folding axes pinned to fault bends. We use dislocation theory to describe the dynamics of folding along these axial surfaces, using analytic solutions that provide displacement and stress kernels to simulate the temporal evolution of folding and assess the effects of folding on earthquake cycles. Studies of the 2015 Gorkha earthquake, Nepal, have shown that fault geometry can affect earthquake segmentation. Here, we show that in addition to the fault geometry, the actual geology of the rocks in the hanging wall of the fault also affect critical parameters, including the loading rate on parts of the fault, based on fault-bend folding theory. Because loading velocity controls the recurrence time of earthquakes, these two effects together are likely to have a strong impact on the earthquake cycle.
NASA Astrophysics Data System (ADS)
Diehl, Tobias; Kraft, Toni; Eduard, Kissling; Nicholas, Deichmann; Clinton, John; Wiemer, Stefan
2014-05-01
From July to November 2013 a sequence of more than 850 events, of which more than 340 could be located, was triggered in a planned hydrothermal system below the city of St. Gallen in eastern Switzerland. Seismicity initiated on July 14 and the maximum Ml in the sequence was 3.5, comparable in size with the Ml 3.4 event induced by stimulation below Basel in 2006. To improve absolute locations of the sequence, more than 1000 P and S wave arrivals were inverted for hypocenters and 1D velocity structure. Vp of 5.6-5.8 km/s and a Vp/Vs ratio of 1.82-1.9 in the source region indicate a limestone or shale-type composition and a comparison with a lithological model from a 3D seismic model suggests that the seismically active streak (height up to 400 m) is within the Mesozoic layer. To resolve the fine structure of the induced seismicity, we applied waveform cross-correlation and double-difference algorithms. The results image a NE-SW striking lineament, consistent with a left-lateral fault plane derived from first motion polarities and moment tensor inversions. A spatio-temporal analysis of the relocated seismicity shows that, during first acid jobs on July 17, microseismicity propagated towards southwest over the entire future Ml 3.5 rupture plane. The almost vertical focal plane associated with the Ml 3.5 event of July 20 is well imaged by the seismicity. The area of the ruptured fault is approximately 675x400 m. Seismicity images a change in focal depths along strike, which correlates with a kink or bend in the mapped fault system northeast of the Ml 3.5 event. This change might indicate structural differences or a segmentation of the fault. Following the Ml 3.5 event, seismicity propagated along strike to the northeast, in a region without any mapped faults, indicating a continuation of the fault segment. Seismicity on this segment occurred in September and October. A complete rupture of the NE segment would have the potential to produce a magnitude larger than 3.0. Similarity of waveforms suggests that an Ml 3.2 in 1987 and an Ml 2.2 event in 1993 occurred on a similar structure with a similar slip direction as the Ml 3.5 event. It appears that the fault zone targeted by the geothermal project is not only oriented favourably for rupture relative to the regional stress field, but is also close to failure.
NASA Astrophysics Data System (ADS)
Kolawole, F.; Atekwana, E. A.; Laó-Dávila, D. A.; Abdelsalam, M. G.; Chindandali, P. R.; Salima, J.; Kalindekafe, L.
2018-03-01
We integrated temporal aeromagnetic data and recent earthquake data to address the long-standing question on the role of preexisting Precambrian structures in modulating strain accommodation and subsequent ruptures leading to seismic events within the East African Rift System. We used aeromagnetic data to elucidate the relationship between the locations of the 2009 Mw 6.0 Karonga, Malawi, earthquake surface ruptures and buried basement faults along the hinge zone of the half-graben comprising the North Basin of the Malawi Rift. Through the application of derivative filters and depth-to-magnetic-source modeling, we identified and constrained the trend of the Precambrian metamorphic fabrics and correlated them to the three-dimensional structure of buried basement faults. Our results reveal an unprecedented detail of the basement fabric dominated by high-frequency WNW to NW trending magnetic lineaments associated with the Precambrian Mughese Shear Zone fabric. The high-frequency magnetic lineaments are superimposed by lower frequency NNW trending magnetic lineaments associated with possible Cenozoic faults. Surface ruptures associated with the 2009 Mw 6.0 Karonga earthquake swarm aligned with one of the NNW-trending magnetic lineaments defining a normal fault that is characterized by right-stepping segments along its northern half and coalesced segments on its southern half. Fault geometries, regional kinematics, and spatial distribution of seismicity suggest that seismogenic faults reactivated the basement fabric found along the half-graben hinge zone. We suggest that focusing of strain accommodation and seismicity along the half-graben hinge zone is facilitated and modulated by the presence of the basement fabric.
Postglacial seismic activity along the Isovaara-Riikonkumpu fault complex
NASA Astrophysics Data System (ADS)
Ojala, Antti E. K.; Mattila, Jussi; Ruskeeniemi, Timo; Palmu, Jukka-Pekka; Lindberg, Antero; Hänninen, Pekka; Sutinen, Raimo
2017-10-01
Analysis of airborne LiDAR-based digital elevation models (DEMs), trenching of Quaternary deposits, and diamond drilling through faulted bedrock was conducted to characterize the geological structure and full slip profiles of the Isovaara-Riikonkumpu postglacial fault (PGF) complex in northern Finland. The PGF systems are recognized from LiDAR DEMs as a complex of surface ruptures striking SW-NE, cutting through late-Weichselian till, and associated with several postglacial landslides within 10 km. Evidence from the terrain rupture characteristics, the deformed and folded structure of late-Weichselian till, and the 14C age of 11,300 cal BP from buried organic matter underneath the Sotka landslide indicates a postglacial origin of the Riikonkumpu fault (PGF). The fracture frequency and lithology of drill cores and fault geometry in the trench log indicate that the Riikonkumpu PGF dips to WNW with a dip angle of 40-45° at the Riikonkumpu site and close to 60° at the Riikonvaara site. A fault length of 19 km and the mean and maximum cumulative vertical displacement of 1.3 m and 4.1 m, respectively, of the Riikonkumpu PGF system indicate that the fault potentially hosted an earthquake with a moment magnitude MW ≈ 6.7-7.3 assuming that slip was accumulated in one seismic event. Our interpretation further suggests that the Riikonkumpu PGF system is linked to the Isovaara PGF system and that, together, they form a larger Isovaara-Riikonkumpu fault complex. Relationships between the 38-km-long rupture of the Isovaara-Riikonkumpu complex and the fault offset parameters, with cumulative displacement of 1.5 and 8.3 m, respectively, indicate that the earthquake(s) contributing to the PGF complex potentially had a moment magnitude of MW ≈ 6.9-7.5. In order to adequately sample the uncertainty space, the moment magnitude was also estimated for each major segment within the Isovaara-Riikonkumpu PGF complex. These estimates vary roughly between MW ≈ 5-8 for the individual segments.
NASA Astrophysics Data System (ADS)
Turkelli, N.; Teoman, U.; Altuncu Poyraz, S.; Cambaz, D.; Mutlu, A. K.; Kahraman, M.; Houseman, G. A.; Rost, S.; Thompson, D. A.; Cornwell, D. G.; Utkucu, M.; Gülen, L.
2013-12-01
The North Anatolian Fault (NAF) is one of the major strike slip fault systems on Earth comparable to San Andreas Fault in some ways. Devastating earthquakes have occurred along this system causing major damage and casualties. In order to comprehensively investigate the shallow and deep crustal structure beneath the western segment of NAF, a temporary dense seismic network for North Anatolia (DANA) consisting of 73 broadband sensors was deployed in early May 2012 surrounding a rectangular grid of by 70 km and a nominal station spacing of 7 km with the aim of further enhancing the detection capability of this dense seismic array. This joint project involves researchers from University of Leeds, UK, Bogazici University Kandilli Observatory and Earthquake Research Institute (KOERI), and University of Sakarya and primarily focuses on upper crustal studies such as earthquake locations (especially micro-seismic activity), receiver functions, moment tensor inversions, shear wave splitting, and ambient noise correlations. To begin with, we obtained the hypocenter locations of local earthquakes that occured within the DANA network. The dense 2-D grid geometry considerably enhanced the earthquake detection capability which allowed us to precisely locate events with local magnitudes (Ml) less than 1.0. Accurate earthquake locations will eventually lead to high resolution images of the upper crustal structure beneath the northern and southern branches of NAF in Sakarya region. In order to put additional constraints on the active tectonics of the western part of NAF, we also determined fault plane solutions using Regional Moment Tensor Inversion (RMT) and P wave first motion methods. For the analysis of high quality fault plane solutions, data from KOERI and the DANA project were merged. Furthermore, with the aim of providing insights on crustal anisotropy, shear wave splitting parameters such as lag time and fast polarization direction were obtained for local events recorded within the seismic network with magnitudes larger than 2.5.
A hierarchical stress release model for synthetic seismicity
NASA Astrophysics Data System (ADS)
Bebbington, Mark
1997-06-01
We construct a stochastic dynamic model for synthetic seismicity involving stochastic stress input, release, and transfer in an environment of heterogeneous strength and interacting segments. The model is not fault-specific, having a number of adjustable parameters with physical interpretation, namely, stress relaxation, stress transfer, stress dissipation, segment structure, strength, and strength heterogeneity, which affect the seismicity in various ways. Local parameters are chosen to be consistent with large historical events, other parameters to reproduce bulk seismicity statistics for the fault as a whole. The one-dimensional fault is divided into a number of segments, each comprising a varying number of nodes. Stress input occurs at each node in a simple random process, representing the slow buildup due to tectonic plate movements. Events are initiated, subject to a stochastic hazard function, when the stress on a node exceeds the local strength. An event begins with the transfer of excess stress to neighboring nodes, which may in turn transfer their excess stress to the next neighbor. If the event grows to include the entire segment, then most of the stress on the segment is transferred to neighboring segments (or dissipated) in a characteristic event. These large events may themselves spread to other segments. We use the Middle America Trench to demonstrate that this model, using simple stochastic stress input and triggering mechanisms, can produce behavior consistent with the historical record over five units of magnitude. We also investigate the effects of perturbing various parameters in order to show how the model might be tailored to a specific fault structure. The strength of the model lies in this ability to reproduce the behavior of a general linear fault system through the choice of a relatively small number of parameters. It remains to develop a procedure for estimating the internal state of the model from the historical observations in order to use the model for forward prediction.
Conditional, Time-Dependent Probabilities for Segmented Type-A Faults in the WGCEP UCERF 2
Field, Edward H.; Gupta, Vipin
2008-01-01
This appendix presents elastic-rebound-theory (ERT) motivated time-dependent probabilities, conditioned on the date of last earthquake, for the segmented type-A fault models of the 2007 Working Group on California Earthquake Probabilities (WGCEP). These probabilities are included as one option in the WGCEP?s Uniform California Earthquake Rupture Forecast 2 (UCERF 2), with the other options being time-independent Poisson probabilities and an ?Empirical? model based on observed seismicity rate changes. A more general discussion of the pros and cons of all methods for computing time-dependent probabilities, as well as the justification of those chosen for UCERF 2, are given in the main body of this report (and the 'Empirical' model is also discussed in Appendix M). What this appendix addresses is the computation of conditional, time-dependent probabilities when both single- and multi-segment ruptures are included in the model. Computing conditional probabilities is relatively straightforward when a fault is assumed to obey strict segmentation in the sense that no multi-segment ruptures occur (e.g., WGCEP (1988, 1990) or see Field (2007) for a review of all previous WGCEPs; from here we assume basic familiarity with conditional probability calculations). However, and as we?ll see below, the calculation is not straightforward when multi-segment ruptures are included, in essence because we are attempting to apply a point-process model to a non point process. The next section gives a review and evaluation of the single- and multi-segment rupture probability-calculation methods used in the most recent statewide forecast for California (WGCEP UCERF 1; Petersen et al., 2007). We then present results for the methodology adopted here for UCERF 2. We finish with a discussion of issues and possible alternative approaches that could be explored and perhaps applied in the future. A fault-by-fault comparison of UCERF 2 probabilities with those of previous studies is given in the main part of this report.
Geodetic evidence for continuing tectonic activity of the Carboneras fault (SE Spain)
NASA Astrophysics Data System (ADS)
Echeverria, Anna; Khazaradze, Giorgi; Asensio, Eva; Masana, Eulalia
2015-11-01
The Carboneras fault zone (CFZ) is a prominent onshore-offshore strike-slip fault that forms part of the Eastern Betic Shear Zone (EBSZ), located in SE Spain. In this work, we show for the first time, the continuing tectonic activity of the CFZ and quantify its geodetic slip-rates using continuous and campaign GPS observations conducted during the last decade. We find that the left-lateral motion dominates the kinematics of the CFZ, with a strike-slip rate of 1.3 ± 0.2 mm/yr along the N48° direction. The shortening component is significantly lower and poorly constrained. Recent onshore and offshore paleoseismic and geomorphic results across the CFZ suggest a minimum Late Pleistocene to present-day strike-slip rate of 1.1 mm/yr. Considering the similarity of the geologic and geodetic slip rates measured at different points along the fault, the northern segment of the CFZ must have been slipping approximately at a constant rate during the Quaternary. Regarding the eastern Alpujarras fault zone corridor (AFZ), located to the north of the CFZ, our GPS measurements corroborate that this zone is active and exhibits a right-lateral motion. These opposite type strike-slip motion across the AFZ and CFZ is a result of a push-type force due to Nubia and Eurasia plate convergence, which, in turn, causes the westward escape of the block bounded by these two fault zones.
Personius, Stephen F.; DuRoss, Christopher B.; Crone, Anthony J.
2012-01-01
The Brigham City segment (BCS), the northernmost Holocene‐active segment of the Wasatch fault zone (WFZ), is considered a likely location for the next big earthquake in northern Utah. We refine the timing of the last four surface‐rupturing (~Mw 7) earthquakes at several sites near Brigham City (BE1, 2430±250; BE2, 3490±180; BE3, 4510±530; and BE4, 5610±650 cal yr B.P.) and calculate mean recurrence intervals (1060–1500 yr) that are greatly exceeded by the elapsed time (~2500 yr) since the most recent surface‐rupturing earthquake (MRE). An additional rupture observed at the Pearsons Canyon site (PC1, 1240±50 cal yr B.P.) near the southern segment boundary is probably spillover rupture from a large earthquake on the adjacent Weber segment. Our seismic moment calculations show that the PC1 rupture reduced accumulated moment on the BCS about 22%, a value that may have been enough to postpone the next large earthquake. However, our calculations suggest that the segment currently has accumulated more than twice the moment accumulated in the three previous earthquake cycles, so we suspect that additional interactions with the adjacent Weber segment contributed to the long elapse time since the MRE on the BCS. Our moment calculations indicate that the next earthquake is not only overdue, but could be larger than the previous four earthquakes. Displacement data show higher rates of latest Quaternary slip (~1.3 mm/yr) along the southern two‐thirds of the segment. The northern third likely has experienced fewer or smaller ruptures, which suggests to us that most earthquakes initiate at the southern segment boundary.
NASA Astrophysics Data System (ADS)
Suter, Max
2015-01-01
During the 3 May 1887 Mw 7.5 Sonora earthquake (surface rupture end-to-end length: 101.8 km), an array of three north-south striking Basin-and-Range Province faults (from north to south Pitáycachi, Teras, and Otates) slipped sequentially along the western margin of the Sierra Madre Occidental Plateau. This detailed field survey of the 1887 earthquake rupture zone along the Pitáycachi fault includes mapping the rupture scarp and measurements of surface deformation. The surface rupture has an endpoint-to-endpoint length of ≥41.0 km, dips 70°W, and is characterized by normal left-lateral extension. The maximum surface offset is 487 cm and the mean offset 260 cm. The rupture trace shows a complex pattern of second-order segmentation. However, this segmentation is not expressed in the 1887 along-rupture surface offset profile, which indicates that the secondary segments are linked at depth into a single coherent fault surface. The Pitáycachi surface rupture shows a well-developed bipolar branching pattern suggesting that the rupture originated in its central part, where the polarity of the rupture bifurcations changes. Most likely the rupture first propagated bilaterally along the Pitáycachi fault. The southern rupture front likely jumped across a step over to the Teras fault and from there across a major relay zone to the Otates fault. Branching probably resulted from the lateral propagation of the rupture after breaching the seismogenic part of the crust, given that the much shorter ruptures of the Otates and Teras segments did not develop branches.
NASA Astrophysics Data System (ADS)
Gil, Antonio J.; Galindo-Zaldívar, Jesús; Sanz de Galdeano, Carlos; Borque, Maria Jesús; Sánchez-Alzola, Alberto; Martinez-Martos, Manuel; Alfaro, Pedro
2017-08-01
The Padul Fault is located in the Central Betic Cordillera, formed in the framework of the NW-SE Eurasian-African plate convergence. In the Internal Zone, large E-W to NE-SW folds of western Sierra Nevada accommodated the greatest NW-SE shortening and uplift of the cordillera. However, GPS networks reveal a present-day dominant E-W to NE-SW extensional setting at surface. The Padul Fault is the most relevant and best exposed active normal fault that accommodates most of the NE-SW extension of the Central Betics. This WSW-wards dipping fault, formed by several segments of up to 7 km maximum length, favored the uplift of the Sierra Nevada footwall away from the Padul graben hanging wall. A non-permanent GPS network installed in 1999 constrains an average horizontal extensional rate of 0.5 mm/yr in N66°E direction. The fault length suggests that a (maximum) 6 magnitude earthquake may be expected, but the absence of instrumental or historical seismic events would indicate that fault activity occurs at least partially by creep. Striae on fault surfaces evidence normal-sinistral kinematics, suggesting that the Padul Fault may have been a main transfer fault of the westernmost end of the Sierra Nevada antiform. Nevertheless, GPS results evidence: (1) shortening in the Sierra Nevada antiform is in its latest stages, and (2) the present-day fault shows normal with minor oblique dextral displacements. The recent change in Padul fault kinematics will be related to the present-day dominance of the ENE-WSW regional extension versus NNW-SSE shortening that produced the uplift and northwestwards displacement of Sierra Nevada antiform. This region illustrates the importance of heterogeneous brittle extensional tectonics in the latest uplift stages of compressional orogens, as well as the interaction of folding during the development of faults at shallow crustal levels.
Updating the USGS seismic hazard maps for Alaska
Mueller, Charles; Briggs, Richard; Wesson, Robert L.; Petersen, Mark D.
2015-01-01
The U.S. Geological Survey makes probabilistic seismic hazard maps and engineering design maps for building codes, emergency planning, risk management, and many other applications. The methodology considers all known earthquake sources with their associated magnitude and rate distributions. Specific faults can be modeled if slip-rate or recurrence information is available. Otherwise, areal sources are developed from earthquake catalogs or GPS data. Sources are combined with ground-motion estimates to compute the hazard. The current maps for Alaska were developed in 2007, and included modeled sources for the Alaska-Aleutian megathrust, a few crustal faults, and areal seismicity sources. The megathrust was modeled as a segmented dipping plane with segmentation largely derived from the slip patches of past earthquakes. Some megathrust deformation is aseismic, so recurrence was estimated from seismic history rather than plate rates. Crustal faults included the Fairweather-Queen Charlotte system, the Denali–Totschunda system, the Castle Mountain fault, two faults on Kodiak Island, and the Transition fault, with recurrence estimated from geologic data. Areal seismicity sources were developed for Benioff-zone earthquakes and for crustal earthquakes not associated with modeled faults. We review the current state of knowledge in Alaska from a seismic-hazard perspective, in anticipation of future updates of the maps. Updated source models will consider revised seismicity catalogs, new information on crustal faults, new GPS data, and new thinking on megathrust recurrence, segmentation, and geometry. Revised ground-motion models will provide up-to-date shaking estimates for crustal earthquakes and subduction earthquakes in Alaska.
Slip and Dilation Tendency Anlysis of Neal Hot Springs Geothermal Area
Faulds, James E.
2013-12-31
Slip and Dilation Tendency in focus areas Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Based on inversion of fault kinematic data, Edwards (2013) interpreted that two discrete stress orientations are preserved at Neal Hot Springs. An older episode of east-west directed extension and a younger episode of southwest-northeast directed sinistral, oblique -normal extension. This interpretation is consistent with the evolution of Cenozoic tectonics in the region (Edwards, 2013). As such we applied a southwest-northeast (060) directed normal faulting stress regime, consistent with the younger extensional episode, to the Neal Hot Springs faults. Under these stress conditions northeast striking steeply dipping fault segments have the highest tendency to dilate and northeast striking 60° dipping fault segments have the highest tendency to slip. Under these stress condition...
NASA Astrophysics Data System (ADS)
Lister, Gordon
2017-04-01
The Great Sumatran Earthquake took place on 26th December 2004. One month into the aftershock sequence, a dense swarm of earthquakes took place beneath the Andaman Sea, northeast of the Nicobar Islands. The swarm continued for ˜11 days, rapidly decreasing in intensity towards the end of that period. Unlike most earthquake swarms, the Nicobar cluster was characterised by a large number of shocks with moment magnitude exceeding five. This meant that centroid moment tensor data could be determined, and this data in turn allows geometric analysis of inferred fault plane motions. The classification obtained using program eQuakes shows aftershocks falling into distinct spatial groups. Thrusts dominate in the south (in the Sumatran domain), and normal faults dominate in the north (in the Andaman domain). Strike-slip faults are more evenly spread. They occur on the Sumatran wrench system, for example, but also on the Indian plate itself. Orientation groups readily emerge from such an analysis. Temporal variation in behaviour is immediately evident, changing after ˜12 months. Orientation groups in the first twelve months are consistent with margin perpendicular extension beneath the Andaman Sea (i.e. mode II megathrust behaviour) whereas afterward the pattern of deformation appears to have reverted to that expected in consequence of relative plate motion. In the first twelve months, strike-slip motion appears to have taken place on faults that are sub-parallel to spreading segments in the Andaman Sea. By early 2006 however normal fault clusters formed that showed ˜N-S extension across these spreading segments had resumed, while the overall density of aftershocks in the Andaman segment had considerably diminished. Throughout this entire period the Sumatran segment exhibited aftershock sequences consistent with ongoing Mode I megathrust behaviour. The Nicobar Swarm marks the transition from one sort of slab dynamics to the other. The earthquake swarm may have been facilitated by hydrothermal activity related to a seamount, or by magma intrusion. However, the swarm is located where the transpressional regime of the Sumatran strike-slip fault system changes to that of the 'microplate-bounding' transtensional wrench involved in the Andaman Sea spreading centre. The swarm thus may be the result of the confluence of two tectonic modes of afterslip on the main rupture, with arc-normal compression to the south, and arc-normal extension to the north. The orientations of the controlling faults can be related to the right-lateral Sumatran strike-slip system, and to oceanic transforms in the spreading system. Faults parallel to the Andaman Sea spreading system axis reactivated as left-lateral strike-slip faults during the period of afterslip. Analysis of the orientation groups shows that the swarm involved synchronous but geometrically incompatible movements on opposing but conjugate fault plane sets with trends that are consistent with Mohr-Coulomb failure, even though the orientation groups delineated require slip in many different directions on these planes. The fault planes allow inference of regional deviatoric stress axes with the principal compressive stress parallel to the prior distortion inferred using satellite geodesy.
High Frequency Near-Field Ground Motion Excited by Strike-Slip Step Overs
NASA Astrophysics Data System (ADS)
Hu, Feng; Wen, Jian; Chen, Xiaofei
2018-03-01
We performed dynamic rupture simulations on step overs with 1-2 km step widths and present their corresponding horizontal peak ground velocity distributions in the near field within different frequency ranges. The rupture speeds on fault segments are determinant in controlling the near-field ground motion. A Mach wave impact area at the free surface, which can be inferred from the distribution of the ratio of the maximum fault-strike particle velocity to the maximum fault-normal particle velocity, is generated in the near field with sustained supershear ruptures on fault segments, and the Mach wave impact area cannot be detected with unsustained supershear ruptures alone. Sub-Rayleigh ruptures produce stronger ground motions beyond the end of fault segments. The existence of a low-velocity layer close to the free surface generates large amounts of high-frequency seismic radiation at step over discontinuities. For near-vertical step overs, normal stress perturbations on the primary fault caused by dipping structures affect the rupture speed transition, which further determines the distribution of the near-field ground motion. The presence of an extensional linking fault enhances the near-field ground motion in the extensional regime. This work helps us understand the characteristics of high-frequency seismic radiation in the vicinities of step overs and provides useful insights for interpreting the rupture speed distributions derived from the characteristics of near-field ground motion.
Ching, K.-E.; Rau, R.-J.; Zeng, Y.
2007-01-01
A coseismic source model of the 2003 Mw 6.8 Chengkung, Taiwan, earthquake was well determined with 213 GPS stations, providing a unique opportunity to study the characteristics of coseismic displacements of a high-angle buried reverse fault. Horizontal coseismic displacements show fault-normal shortening across the fault trace. Displacements on the hanging wall reveal fault-parallel and fault-normal lengthening. The largest horizontal and vertical GPS displacements reached 153 and 302 mm, respectively, in the middle part of the network. Fault geometry and slip distribution were determined by inverting GPS data using a three-dimensional (3-D) layered-elastic dislocation model. The slip is mainly concentrated within a 44 ?? 14 km slip patch centered at 15 km depth with peak amplitude of 126.6 cm. Results from 3-D forward-elastic model tests indicate that the dome-shaped folding on the hanging wall is reproduced with fault dips greater than 40??. Compared with the rupture area and average slip from slow slip earthquakes and a compilation of finite source models of 18 earthquakes, the Chengkung earthquake generated a larger rupture area and a lower stress drop, suggesting lower than average friction. Hence the Chengkung earthquake seems to be a transitional example between regular and slow slip earthquakes. The coseismic source model of this event indicates that the Chihshang fault is divided into a creeping segment in the north and the locked segment in the south. An average recurrence interval of 50 years for a magnitude 6.8 earthquake was estimated for the southern fault segment. Copyright 2007 by the American Geophysical Union.
Self-constrained inversion of microgravity data along a segment of the Irpinia fault
NASA Astrophysics Data System (ADS)
Lo Re, Davide; Florio, Giovanni; Ferranti, Luigi; Ialongo, Simone; Castiello, Gabriella
2016-01-01
A microgravity survey was completed to precisely locate and better characterize the near-surface geometry of a recent fault with small throw in a mountainous area in the Southern Apennines (Italy). The site is on a segment of the Irpinia fault, which is the source of the M6.9 1980 earthquake. This fault cuts a few meter of Mesozoic carbonate bedrock and its younger, mostly Holocene continental deposits cover. The amplitude of the complete Bouguer anomaly along two profiles across the fault is about 50 μGal. The data were analyzed and interpreted according to a self-constrained strategy, where some rapid estimation of source parameters was later used as constraint for the inversion. The fault has been clearly identified and localized in its horizontal position and depth. Interesting features in the overburden have been identified and their interpretation has allowed us to estimate the fault slip-rate, which is consistent with independent geological estimates.
NASA Astrophysics Data System (ADS)
Williams, A.; Arrowsmith, R.; Rockwell, T. K.; Akciz, S. O.; Grant Ludwig, L.
2016-12-01
The Cholame segment of the San Andreas Fault interacts with the Parkfield segment to the northwest with its creep and M6 earthquakes and the locked Carrizo segment to the southeast. Although offset reconstructions exist for this 75 km reach, rupture behavior is poorly characterized, limiting seismic hazard evaluation. Here we present new paleoseismic results from 2 fault perpendicular 26 m long trenches connected by a 15 m long fault parallel trench. The site is located south of the Parkfield segment 20 km southeast of Highway 46. Site geomorphology is characterized by several 50 m offset drainages northwest of the trenches, small shutter ridges and sag ponds, and alluvial fans crossing the fault. Fault zone stratigraphy consists of alternating finely bedded sands, silts, and gravels, and bioturbated soil horizons. The strata record 3-4 earthquakes and possible deformation post-1857, similar to the LY4 site 38 km southeast. E4, E3 and the most recent earthquake (MRE) are well supported by evidence of decreasing vertical offset up-sequence, capped fissure fill and colluvial wedges, which create small horst and graben structures. Units display vertical offsets ranging from 60 cm at the base to 12 cm near the MRE horizon, small colluvial wedges, and sag deposits within the 4 m wide fault zone. E2—the penultimate-is less certain, supported only by the decreasing offset in the stratigraphic sequence. The E4 event horizon is a gradational clayey silt sag deposit capped by discontinuous gravel, 18 cm at its thickest point and extending 4.8 m across the fault zone. The E3 and E2 event horizons are capped by thin bedded silty clay, and bounded by discontinuous burn horizons. The MRE horizon extends 6 m across the main fault zone, and consists of a silty clay sag deposit capped by very fine, bedded sand and coarse gravel, 22 cm at its thickest point and overlying a burn horizon. If the MRE is indeed the 1857 event, it has significant potential in correlation with the high quality rupture records at Bidart (70 km southeast), and Frazier Mountain (180 km southeast). This site contains abundant detrital charcoal in many of the units and burn horizons at or near event horizons providing great potential for bracketing the age of these paleoearthquakes.
Depth dependent stress revealed by aftershocks
NASA Astrophysics Data System (ADS)
Narteau, C.; Shebalin, P.
2017-12-01
Aftershocks occur in response to perturbations of the state of stress induced either by earthquakes or human activities. Along major strike-slip fault segments of the San Andreas fault system, the time-delay before the onset of the power-law aftershock decay rate (the c-value) varies by three orders of magnitude in the first twenty kilometers below the surface. Despite the influence of the lithostatic stress, there is no continuous change in c-value with respect to depth. Instead, two decay phases are separated by an abrupt increase at an intermediate depth range of 2 to 5 km. This transitional regime is the only one observed in fluid-injection-induced seismic areas. This provides strong evidence for the role of fluid and a porosity reduction mechanism at depth of few kilometers in active fault zones. Aftershock statistics can then be used to predict the evolution the differential shear stress with depth until the brittle-ductile transition is reached.
NASA Astrophysics Data System (ADS)
Doubre, C.; Deprez, A.; Masson, F.; Socquet, A.; Ulrich, P.; Ibrahim Ahmed, S.; de Chabalier, J. B.; Ahmadine Omar, A.; Vigny, C.; Ruegg, J. C.
2014-12-01
We present the results of the last GPS campaign conducted over the Djiboutian part of Eastern Afar. A large and dense geodetic network has been measured regularly since the 90's, and allows an accurate determination of the velocity field associated with the western tip of the Arabia-Somalia divergent plate boundary. Within the Tadjoura Gulf, the Aden ridge consists of a series of 3 en échelon, submerged spreading segments, except for the Asal segment, which is partly above water. The repetition of 6 to 7 measurements together with 6 permanent continuous GNSS stations allow an opportunity to study the spatial distribution of the active extension in relation to these 3 segments, but also to study time variations of the displacements, which are greatly expected to be transitory because of the occurrence of dyking events, small to intermediate seismic events, and volcanic activity. The divergent motion of the two margins of the Gulf occurs at ~15 mm/yr, which is consistent with the long-term estimates of the Arabia-Somalia motion. Across the Asal segment, this value confirms that the effect of the dyking event in 1978 has ended. The velocity gradients show that the deformation is distributed from the southern to the northern rift shoulder. As revealed by the InSAR data however, the along-axis variations of the deformation pattern, i.e. clear superficial active faults in the SE part of the rift and deep opening in the NW part, suggests the remaining influence of the previous dyke intrusions within the segment inner floor. The time series show that the velocity field was more heterogeneous before 2003, when the micro-seismic activity was significant, particularly around the volcanic center. The striking feature of the time evolution of the velocity field consists in the transition from an extension mainly localized across the Asal segment before 2003 to an extension more distributed, implying the influence of the southern Quaternary structures forming the Gaggade and Hanle Basins. This results in a decrease of the opening velocity across the Asal segment. This crucial change suggests that the activity of the volcanic/geothermal centre in the segment is a determining factor in the spatial organization of the deformation, by affecting the activity of the normal faults and thereby favoring the concentration of the extensive deformation.
NASA Astrophysics Data System (ADS)
Zhang, Z.; Lin, J.; Chen, Y. J.
2004-12-01
The 28 July 1976 ML = 7.8 Tangshan earthquake struck a highly populated metropolitan center in northern China and was one of the most devastating earthquakes in modern history. Its occurrence has significantly changed the Coulomb stresses on a complex network of strike-slip, normal, and thrust faults in the region, potentially heightened the odds of future earthquakes on some of these fault segments. We have conducted a detailed analysis of the 3D stress effects of the Tangshan earthquake on its neighboring faults, the relationship between stress transfer and aftershock locations, and the implications for future seismic hazard in the region. Available seismic and geodetic data, although limited, indicate that the Tangshan main shock sequence is composed of complex rupture on 2-3 fault segments. The dominant rupture mode is right-lateral strike-slip on two adjoining sub-segments that strike N5¡aE and N35¡aE, respectively. We calculated that the Tangshan main shock sequence has increased the Coulomb failure stress by more than 1 bar in the vicinity of the Lunanxian district to the east, where the largest aftershock (ML = 7.1) occurred 15 hours after the Tangshan main event. The second largest aftershock (ML = 6.8) occurred on the Ninghe fault to the southwest of the main rupture, in a transitional region between the calculated Coulomb stress increase and decrease. The majority of the ML > 5.0 aftershocks also occurred in areas of calculated Coulomb stress increase. Our analyses further indicate that the Coulomb stress on portions of other fault segments, including the Leting and Lulong fault to the east and Yejito fault to the north, may also have been increased. Thus it is critical to obtain estimates of earthquake repeat times on these and other tectonic faults and to acquire continuous GPS and space geodetic measurements. Investigation of stress interaction and earthquake triggering in northern China is not only highly societal relevant but also important for advancing our understanding of the fundamental characteristics of earthquakes in regions of diffuse continental deformation.
Aseismic Slip Events along the Southern San Andreas Fault System Captured by Radar Interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vincent, P
2001-10-01
A seismic slip is observed along several faults in the Salton Sea and southernmost Landers rupture zone regions using interferometric synthetic aperture radar (InSAR) data spanning different time periods between 1992 and 1997. In the southernmost Landers rupture zone, projecting south from the Pinto Mountain Fault, sharp discontinuities in the interferometric phase are observed along the sub-parallel Burnt Mountain and Eureka Peak Faults beginning three months after the Landers earthquake and is interpreted to be post-Landers after-slip. Abrupt phase offsets are also seen along the two southernmost contiguous 11 km Durmid Hill and North Shore segments of the San Andreasmore » Fault with an abrupt termination of slip near the northern end of the North Shore Segment. A sharp phase offset is seen across 20 km of the 30 km-long Superstition Hills Fault before phase decorrelation in the Imperial Valley along the southern 10 km of the fault prevents coherent imaging by InSAR. A time series of deformation interferograms suggest most of this slip occurred between 1993 and 1995 and none of it occurred between 1992 and 1993. A phase offset is also seen along a 5 km central segment of the Coyote Creek fault that forms a wedge with an adjoining northeast-southwest trending conjugate fault. Most of the slip observed on the southern San Andreas and Superstition Hills Faults occurred between 1993 and 1995--no slip is observed in the 92-93 interferograms. These slip events, especially the Burnt Mountain and Eureka Peak events, are inferred to be related to stress redistribution from the June, 1992 M{sub w} = 7.3 Landers earthquake. Best-fit elastic models of the San Andreas and Superstition Hills slip events suggest source mechanisms with seismic moments over three orders of magnitude larger than a maximum possible summation of seismic moments from all seismicity along each fault segment during the entire 4.8-year time interval spanned by the InSAR data. Aseismic moment releases of this magnitude (equivalent to M{sub w} = 5.3 and 5.6 events on the Superstition Hills and San Andreas Faults respectively) are hitherto unknown and have not been captured previously by any geodetic technique.« less
Surface Creep along the Chaman Fault on the Pakistan-Afghanistan Border imaged by SAR interferometry
NASA Astrophysics Data System (ADS)
Szeliga, W. M.; Furuya, M.; Satyabala, S.; Bilham, R.
2006-12-01
The Chaman fault system is an on-land transform separating the Indian and Asian plates. From the Arabia/Asia/India triple junction on the Makran coast it passes north through Baluchistan, trending NNE into Afghanistan before merging with the Himalayan arc in the North West Frontier province of Pakistan. Geological and plate closure estimates of slip on the system suggest sinistral slip of between 1.9 and 3.5 cm/yr over the last 25 Ma. Oblique convergence occurs near and north of Quetta, Pakistan where it is accommodated by thrust faulting in ranges to the east of the apparently pure strike-slip Chaman fault. We present InSAR analyses that suggest that a 110 km segment of the Chaman fault system north of Quetta may be experiencing shallow aseismic slip (creep). ERS-1/-2 data indicate a change in range along a 110 km segment of the Chaman fault by as much as 7.8 mm/yr. The absence of ascending pass scenes means that we cannot exclude the possibility that some or all of this sinistral slip occurs as vertical displacement, although we suspect that slip partitioning may rule out a substantial vertical component to the observed slip. The trend of the Chaman fault lies nearly perpendicular to the satellite range direction reducing the signal to noise ratio and rendering the data too noisy to assess the locking depth of creep on the fault, although it would appear to be locked at least 5 km beneath the surface. We note the length and rate of slip of the creeping segment of the Chaman fault is similar to that of the Hayward fault in California.
NASA Astrophysics Data System (ADS)
Ghisetti, F. C.; Gorman, A. R.
2006-12-01
Shortening across the plate boundary in the South Island of New Zealand is accommodated not just along the right-lateral transpressive Alpine Fault, but also on an array of N-S reverse faults in both the Australian and Pacific crust. The Ostler Fault is such a structure, developed in the piedmont of the Southern Alps, east of the Alpine Fault. The question addressed here is whether the fault is an entirely new structure formed in the current stress regime, or a reactivated fault inherited from earlier episodes of deformation. New data on the geometry and deformation history of the Ostler Fault have been acquired by integrating surface geological mapping (scale 1:25,000), structural and morphotectonic investigations, and two seismic reflection profiles across the most active segments of the fault. The geological and morphotectonic data constrain the long-term evolution of the fault system coeval with deposition of a late Pliocene-Pleistocene lacustrine-fluvial terrestrial sequence, and the overlying glacial and peri-glacial deposits 128-186 to 16-18 ka old. Sets of fault scarps define a segmented zone (50 km long and 2-3 km wide) of N-S reverse faults dipping 50° W, with a strongly deformed hanging wall panel, where the uplifted terrestrial units are uplifted, back-tilted up to 60° W, and folded. Gradients in elevation and thickness of the hanging wall sequence, shifting of crosscutting paleodrainages, and younging age of displaced markers, all consistently indicate the progressive propagation of the surface trace of the fault from south to north over many seismic cycles. The interpretation of the new seismic reflection profiles, consistent with existing gravity data and surface geology, suggests that the Ostler Fault belongs to a set of sub-parallel splays joining, at depths of > 1.5-2 km, a buried high-angle normal fault that underwent compressional reactivation during sedimentation of the Plio-Pleistocene and Holocene cover sequence. Repeated reactivation of the inherited fault system through cycles of seismic deformation eventually culminated in the surface break-through of the buried fault, resulting in its strong control on sediment deposition, intra-basinal morphology and drainage. This evolution discloses the history of progressive reactivation and propagation of seismogenic basement faults that may remain undetected in absence of clear surface exposure, especially in countries like New Zealand where the historical seismic catalogue is very short.
Puente Hills blind-thrust system, Los Angeles, California
Shaw, J.H.; Plesch, A.; Dolan, J.F.; Pratt, T.L.; Fiore, P.
2002-01-01
We describe the three-dimensional geometry and Quaternary slip history of the Puente Hills blind-thrust system (PHT) using seismic reflection profiles, petroleum well data, and precisely located seismicity. The PHT generated the 1987 Whittier Narrows (moment magnitude [Mw] 6.0) earthquake and extends for more than 40 km along strike beneath the northern Los Angeles basin. The PHT comprises three, north-dipping ramp segments that are overlain by contractional fault-related folds. Based on an analysis of these folds, we produce Quaternary slip profiles along each ramp segment. The fault geometry and slip patterns indicate that segments of the PHT are related by soft-linkage boundaries, where the fault ramps are en echelon and displacements are gradually transferred from one segment to the next. Average Quaternary slip rates on the ramp segments range from 0.44 to 1.7 mm/yr, with preferred rates between 0.62 and 1.28 mm/yr. Using empirical relations among rupture area, magnitude, and coseismic displacement, we estimate the magnitude and frequency of single (Mw 6.5-6.6) and multisegment (Mw 7.1) rupture scenarios for the PHT.
NASA Astrophysics Data System (ADS)
Ustaszewski, Kamil; Herak, Marijan; Tomljenović, Bruno; Herak, Davorka; Matej, Srebrenka
2014-05-01
With GPS-derived shortening rates of c. 3-5 mm/a, the Adria-Europe convergence zone across the fold-and-thrust belt of the Dinarides (Balkan Peninsula) is a slowly deforming plate boundary by global standards. We have analysed the active tectonics and instrumental seismicity of the northernmost segment of this fold-and-thrust belt at its border to the Pannonian Basin. This area hosts a Maastrichtian collisional suture formed by closure of Mesozoic fragments of the Neotethys, overprinted by Miocene back-arc extension, which led to the exhumation of greenschist- to amphibolite-grade rocks in several core complexes. Geological, geomorphological and reflection seismic data provide evidence for a compressive or transpressive reactivation of extensional faults after about 5 Ma. The study area represents the seismically most active region of the Dinarides apart from the Adriatic Sea coast and the area around Zagreb. The strongest instrumentally recorded earthquake (27 October 1969) affected the city of Banja Luka (northern Bosnia and Herzegovina). Fault plane solutions for the main shock (ML 6.4) and its largest foreshock (ML 6.0) indicate reverse faulting along ESE-WNW-striking nodal planes and generally N-S trending pressure axes. The spatial distribution of epicentres and focal depths, analyses of the macroseismic field and fault-plane solutions for several smaller events suggest on-going shortening in the internal Dinarides. Our results therefore imply that current Adria-Europe convergence is widely distributed across c. 300 km, rendering the entire Dinarides fold-and-thrust belt a slowly deforming plate boundary.
NASA Astrophysics Data System (ADS)
Blakely, R. J.; Wells, R. E.; Sherrod, B. L.; Brocher, T. M.
2016-12-01
Newly acquired potential-field data, geologic mapping, and recorded seismicity indicate that the Cascadia subduction zone is segmented in southwestern Washington by a left-stepping, possibly active crustal structure spanning nearly the entire onshore portion of the forearc. The east-striking, southward verging Doty thrust fault is an important part of this trans-forearc structure. As mapped, the eastern end of the 50-km-long Doty fault connects with the northwestern termination of ongoing seismicity on the north-northwest-striking Mt. St. Helens seismic zone (MSHSZ), suggesting that the Doty fault and MSHSZ may be kinematically linked. Westward, the mapped Doty fault terminates at and may link to mapped faults striking northwestward to 35 km north of Grays Harbor, a total northwest distance of 85 km. A newly acquired aeromagnetic survey over the Doty fault and MSHSZ, and existing gravity data, emphasize Crescent Formation and other Eocene volcanic rocks in the hanging wall of the Doty fault with up to 4 km of vertical throw. Most MSHSZ epicenters fall within a broad (5- to 10-km wide) magnetic low extending 50 km north-northwestward from Mt. St Helens. The magnetic low skirts around the western margin of the Miocene-age Spirit Lake pluton, but otherwise is not obviously associated with topography or mapped geology. We suggest that dextral slip on the MSHSZ is distributed across a broad, northwest-striking area that includes the magnetic low and is transferred to compressional slip on the Doty fault. The Doty fault demarcates a clear north-to-south decrease in the density of episodic tremor, suggesting that the thrust fault may intersect or modulate over-pressured fluids generated above the slab (Wells et al., in review). The Doty fault, MSHSZ, and neighboring structures are consistent with a dextral shear couple (Wells and Coe, 1985) and consequent clockwise crustal rotation extending across the entire landward portion of the Cascadia forearc, from the Pacific Coast to the Cascadia arc and from Grays Harbor to the Portland basin in northwestern Oregon.
Development of Final A-Fault Rupture Models for WGCEP/ NSHMP Earthquake Rate Model 2
Field, Edward H.; Weldon, Ray J.; Parsons, Thomas; Wills, Chris J.; Dawson, Timothy E.; Stein, Ross S.; Petersen, Mark D.
2008-01-01
This appendix discusses how we compute the magnitude and rate of earthquake ruptures for the seven Type-A faults (Elsinore, Garlock, San Jacinto, S. San Andreas, N. San Andreas, Hayward-Rodgers Creek, and Calaveras) in the WGCEP/NSHMP Earthquake Rate Model 2 (referred to as ERM 2. hereafter). By definition, Type-A faults are those that have relatively abundant paleoseismic information (e.g., mean recurrence-interval estimates). The first section below discusses segmentation-based models, where ruptures are assumed be confined to one or more identifiable segments. The second section discusses an un-segmented-model option, the third section discusses results and implications, and we end with a discussion of possible future improvements. General background information can be found in the main report.
Sparsity guided empirical wavelet transform for fault diagnosis of rolling element bearings
NASA Astrophysics Data System (ADS)
Wang, Dong; Zhao, Yang; Yi, Cai; Tsui, Kwok-Leung; Lin, Jianhui
2018-02-01
Rolling element bearings are widely used in various industrial machines, such as electric motors, generators, pumps, gearboxes, railway axles, turbines, and helicopter transmissions. Fault diagnosis of rolling element bearings is beneficial to preventing any unexpected accident and reducing economic loss. In the past years, many bearing fault detection methods have been developed. Recently, a new adaptive signal processing method called empirical wavelet transform attracts much attention from readers and engineers and its applications to bearing fault diagnosis have been reported. The main problem of empirical wavelet transform is that Fourier segments required in empirical wavelet transform are strongly dependent on the local maxima of the amplitudes of the Fourier spectrum of a signal, which connotes that Fourier segments are not always reliable and effective if the Fourier spectrum of the signal is complicated and overwhelmed by heavy noises and other strong vibration components. In this paper, sparsity guided empirical wavelet transform is proposed to automatically establish Fourier segments required in empirical wavelet transform for fault diagnosis of rolling element bearings. Industrial bearing fault signals caused by single and multiple railway axle bearing defects are used to verify the effectiveness of the proposed sparsity guided empirical wavelet transform. Results show that the proposed method can automatically discover Fourier segments required in empirical wavelet transform and reveal single and multiple railway axle bearing defects. Besides, some comparisons with three popular signal processing methods including ensemble empirical mode decomposition, the fast kurtogram and the fast spectral correlation are conducted to highlight the superiority of the proposed method.
Heesakkers, V.; Murphy, S.; Lockner, D.A.; Reches, Z.
2011-01-01
We analyze here the rupture mechanics of the 2004, M2.2 earthquake based on our observations and measurements at focal depth (Part I). This event ruptured the Archean Pretorius fault that has been inactive for at least 2 Ga, and was reactivated due to mining operations down to a depth of 3.6 km depth. Thus, it was expected that the Pretorius fault zone will fail similarly to an intact rock body independently of its ancient healed structure. Our analysis reveals a few puzzling features of the M2.2 rupture-zone: (1) the earthquake ruptured four, non-parallel, cataclasite bearing segments of the ancient Pretorius fault-zone; (2) slip occurred almost exclusively along the cataclasite-host rock contacts of the slipping segments; (3) the local in-situ stress field is not favorable to slip along any of these four segments; and (4) the Archean cataclasite is pervasively sintered and cemented to become brittle and strong. To resolve these observations, we conducted rock mechanics experiments on the fault-rocks and host-rocks and found a strong mechanical contrast between the quartzitic cataclasite zones, with elastic-brittle rheology, and the host quartzites, with damage, elastic–plastic rheology. The finite-element modeling of a heterogeneous fault-zone with the measured mechanical contrast indicates that the slip is likely to reactivate the ancient cataclasite-bearing segments, as observed, due to the strong mechanical contrast between the cataclasite and the host quartzitic rock.
NASA Astrophysics Data System (ADS)
Masson, F.; Klein, E.; Rembert, F.; Peyret, M.; Duputel, Z.; Yavasoglu, H.; Ulrich, P.
2017-12-01
The North Anatolian Fault (NAF) is the major transform system that accommodates the westward movement of the relatively rigid Anatolian block with respect to Eurasia. Mitigating the hazard associated with devastating earthquakes requires understanding how the NAF accumulates and releases the stored elastic strain energy both in space and in time. In this study, we present new results obtained from re-analyzed geodetic data sets: 1- along the offshore segment of the NAF through the Marmara Sea and 2- along the whole onshore NAF from Ismetpaça to Karliova. To study the Marmara sea segments, we analyze GPS and InSAR data from Istanbul to Tekirdag and propose a new interpretation of the velocity field in the area. The results indicate large east-west variations in the behavior of the fault that are modeled using a Bayesian approach. Some parts of the fault are probably creeping at shallow depth, inducing a lower strain accumulation than expected if the fault is fully locked. Along the NAF from Ismetpaça to Karliova, we use a synthesis of the velocities provided by Kreemer et al. (2014), updated with the new data provided by Aktug et al. (2015). The main results indicate (1) a contrasted behavior between eastern and western segments of the fault, the eastern part being fully locked while the western part is only partially coupled and (2) the existence of compressional and extensional segments that are well-correlated with pull-apart basins and mountain ranges respectively.
NASA Astrophysics Data System (ADS)
Li, H.; Wang, H.; Li, C.; Zhang, J.; Sun, Z.; Si, J.; Liu, D.; Chevalier, M. L.; Han, L.; Yun, K.; Zheng, Y.
2015-12-01
The 2008 Mw7.9 Wenchuan earthquake produced two co-seismic surface ruptures along Yingxiu-Beichuan fault (~270 km) and the Guanxian-Anxian fault (~80 km) simultaneously in the Longmen Shan thrust belt. Besides, two surface rupture zones were tracked in the southern segment of the Yingxiu-Beichuan rupture zone, one along the Yingxiu fault, the other along the Shenxigou-Longchi fault, which both converged into one rupture zone at the Bajiaomiao village, Hongkou town, where one distinct fault plane with two striation orientations was exposed. The Wenchuan earthquake Fault Scientific Drilling project (WFSD) was carried out right after the earthquake to investigate its faulting mechanisms and rupture process. Six boreholes were drilled along the rupture zones with depths ranging from 600 to 2400 m. WFSD-1 and WFSD-2 are located at the Bajiaomiao area, the southern segment of the Yingxiu-Beichuan rupture zone, while WFSD-4 and WFSD-4S are in the Nanba town area, in the northern part of the rupture zone. Detailed research showed that ~1 mm thick Principal Slip Zone (PSZ) of the Wenchuan earthquake is located at ~589 m-depth in the WFSD-1 cores. Graphite present in the PSZ indicates a low fault strength. Long-term temperature monitoring shows an extremely low fault friction coefficient during the earthquake. Recently, another possible PSZ was found in WFSD-1 cores at ~732 m-depth, with a ~2 mm thick melt layer in the fault gouge, where feldspar was melted but quartz was not, indicating that the frictional melting temperature was 1230°C < T < 1720°C. These two PSZs at depth may correspond to the two co-seismic surface rupture zones. Besides, the Wenchuan earthquake PSZ was also recognized in the WFSD-4S cores, at ~1084 m-depth. About 200-400 μm thick melt layer (fault vein, mainly feldspar), as well as melt injection veins, were observed in the slip zone, where oblique distinct striations were visible on the slip surface. Therefore, there are two PSZs in the shallow crust at the southern segment along the Yingxiu-Beichuan fault, and another one along the northern segment. Melt and graphite in the PSZs indicate that the frictional melting and thermal pressurization are the main fault mechanisms during the Wenchuan earthquake. The melt and graphite can be considered as markers of large earthquakes.
NASA Astrophysics Data System (ADS)
Ikeda, M.; Toda, S.; Nishizaka, N.; Onishi, K.; Suzuki, S.
2015-12-01
Rupture patterns of a long fault system are controlled by spatial heterogeneity of fault strength and stress associated with geometrical characteristics and stress perturbation history. Mechanical process for sequential ruptures and multiple simultaneous ruptures, one of the characteristics of a long fault such as the North Anatolian fault, governs the size and frequency of large earthquakes. Here we introduce one of the cases in southwest Japan and explore what controls rupture initiation, sequential ruptures and fault branching on a long fault system. The Median Tectonic Line active fault zone (hereinafter MTL) is the longest and most active fault in Japan. Based on historical accounts, a series of M ≥ 7 earthquakes occurred on at least a 300-km-long portion of the MTL in 1596. On September 1, the first event occurred on the Kawakami fault segment, in Central Shikoku, and the subsequent events occurred further west. Then on September 5, another rupture initiated from the Central to East Shikoku and then propagated toward the Rokko-Awaji fault zone to Kobe, a northern branch of the MTL, instead of the eastern main extent of the MTL. Another rupture eventually extended to near Kyoto. To reproduce this progressive failure, we applied two numerical models: one is a coulomb stress transfer; the other is a slip-tendency analysis under the tectonic stress. We found that Coulomb stress imparted from historical ruptures have triggered the subsequent ruptures nearby. However, stress transfer does not explain beginning of the sequence and rupture directivities. Instead, calculated slip-tendency values show highly variable along the MTL: high and low seismic potential in West and East Shikoku. The initiation point of the 1596 progressive failure locates near the boundary in the slip-tendency values. Furthermore, the slip-tendency on the Rokko-Awaji fault zone is far higher than that of the MTL in Wakayama, which may explain the rupture directivity toward Kobe-Kyoto.
NASA Astrophysics Data System (ADS)
Singh, Vimal; Tandon, S. K.
2008-12-01
The Himalayan orogenic belt, formed as a result of collision tectonic processes, shows abundant evidence of neotectonic activity, active tectonics, and the occurrence of historical earthquakes. Its frontal deformation zone is characterized, in some segments, by intermontane longitudinal valleys (duns). Such frontal segments of the Himalaya are marked by the occurrence of multiple mountain fronts. In one such segment of the foothills of the NW Himalaya, the Pinjaur dun is developed and marked by three mountain fronts: MF1A and MF1B associated with the southernmost Himalayan Frontal Thrust (HFT), MF2 associated with the Sirsa fault, and MF3 associated with the Barsar thrust along the southern margin of the relatively higher main part of the sub-Himalaya. Geomorphic responses to the tectonic activity of these and related structural features have been analyzed through the use of geomorphic indices, drainage density, stream longitudinal profiles, drainage anomalies, and hypsometric analysis. Also, fault and fold growth and their expression on landform development was studied using a combination of surface profiles and field observations. The values of valley floor width to height ratio ( Vf) for valleys associated with MF1 ranged between 0.07 and 0.74, and for valleys associated with MF2 ranged from 1.02-5.12. Vf for the four major valleys associated with MF1B ranged from 1.1-1.7. The asymmetry factor for 26 drainage basins related to MF1A indicate these have developed under the influence of a transverse structure. These results taken together with those obtained from the Hack profiles and SL index values, hypsometry, drainage density, and drainage anomalies suggest that the faults associated with the mountain fronts and related structures are active. Active tectonics and neotectonic activity have led to the formation of four surfaces in the Pinjaur dun. In addition, an important drainage divide separating the Sirsa and Jhajara drainage networks also developed in the intermontane valley. Surface profile analysis helped in deciphering the growth history of the fault bend fold structures of the outermost Siwalik hills. The effects of tectonic activity on the proximal part of the Indo-Gangetic plains are interpreted from the remarkable river deflections that are aligned linearly over tens of kilometers in a zone about 10 km south of the HFT. Based on these integrated structural and tectonic geomorphological approaches, a morphotectonic evolutionary model of the dun has been proposed. This model highlights the role of uplift and growth history of the fault bend fold structures of the outermost Siwalik hills on (i) the depositional landforms and drainage development of the Pinjaur dun, and (ii) valley development of the outermost Siwalik hills. Importantly, this study postulates the formation of an incipient mountain front that is evolving ahead of the HFT and the outermost Siwalik hills in the Indo-Gangetic plains.
NASA Astrophysics Data System (ADS)
Simanjuntak, Andrean V. H.; Husni, Muhammad; Syirojudin, Muhammad
2017-07-01
Toru segment, which is one of the active faults and located in the North of Sumatra, broke in 1984 ago on Pahae Jahe's earthquake with a magnitude 6.4 at the northern part of the fault which has a length of 23 km, and also broke again at the same place in 2008. The event of recurrence is very fast, which only 25 years old have repeatedly returned. However, in the elastic rebound theory, it probably happen with a fracture 50 cm and an average of the shear velocity 20 mm/year. The average focus of the earthquake sourced at a depth of 10 km and 23 km along its fracture zones, which can generate enough shaking 7 MMI and could breaking down buildings and create landslides on the cliff. Due to its seismic activity, this study was made to identify the effectiveness of this fault with geophysical methods. Geophysical methods such as gravity, geomagnetic and seismology are powerful tools for detecting subsurface structures of local, regional as well as of global scales. This study used to geophysical methods to discuss about total intensity of the geomagnetic anomaly data, resulted in the distribution of susceptibility values corresponding to the fault movement. The geomagnetic anomalies data was obtained from Geomag, such as total intensity measured by satellite. Data acquisition have been corrected for diurnal variations and reduced by IGRF. The study of earthquake records can be used for differentiating the active and non active fault elements. Modeling has been done using several methods, such as pseudo-gravity, reduce to pole, and upward or downward continuation, which is used to filter the geomagnetic anomaly data because the data has not fully representative of the fault structure. The results indicate that rock layers of 0 - 100 km depth encountered the process of intrusion and are dominated by sedimentary rocks that are paramagnetic, and that the ones of 100 - 150 km depth experienced the activity of subducting slab consisting of basalt and granite which are ferromagnetic and semi-ferromagnetic. This concluded that all the occurences correspond to the high seismicity and seismotectonic condition of Toru fault.
NASA Astrophysics Data System (ADS)
La Femina, P.; Weber, J. C.; Geirsson, H.; Latchman, J. L.; Robertson, R. E. A.; Higgins, M.; Miller, K.; Churches, C.; Shaw, K.
2017-12-01
We studied active faults in Trinidad and Tobago in the Caribbean-South American (CA-SA) transform plate boundary zone using episodic GPS (eGPS) data from 19 sites and continuous GPS (cGPS) data from 8 sites, then by modeling these data using a series of simple screw dislocation models. Our best-fit model for interseismic (interseimic = between major earthquakes) fault slip requires: 12-15 mm/yr of right-lateral movement and very shallow locking (0.2 ± 0.2 km; essentially creep) across the Central Range Fault (CRF); 3.4 +0.3/-0.2 mm/yr across the Soldado Fault in south Trinidad, and 3.5 +0.3/-0.2 mm/yr of dextral shear on fault(s) between Trinidad and Tobago. The upper-crustal faults in Trinidad show very little seismicity (1954-current from local network) and do not appear to have generated significant historic earthquakes. However, paleoseismic studies indicate that the CRF ruptured between 2710 and 500 yr. B.P. and thus it was recently capable of storing elastic strain. Together, these data suggest spatial and/or temporal fault segmentation on the CRF. The CRF marks a physical boundary between rocks associated with thermogenically generated petroleum and over-pressured fluids in south and central Trinidad, from rocks containing only biogenic gas to the north, and a long string of active mud volcanoes align with the trace of the Soldado Fault along Trinidad's south coast. Fluid (oil and gas) overpressure, as an alternative or in addition to weak mineral phases in the fault zone, may thus cause the CRF fault creep and the lack of seismicity that we observe.
Rosa, C.M.; Catchings, R.D.; Rymer, M.J.; Grove, Karen; Goldman, M.R.
2016-07-08
High-resolution seismic-reflection and refraction images of the 1906 surface rupture zone of the San Andreas Fault near Woodside, California reveal evidence for one or more additional near-surface (within about 3 meters [m] depth) fault strands within about 25 m of the 1906 surface rupture. The 1906 surface rupture above the groundwater table (vadose zone) has been observed in paleoseismic trenches that coincide with our seismic profile and is seismically characterized by a discrete zone of low P-wave velocities (Vp), low S-wave velocities (Vs), high Vp/Vs ratios, and high Poisson’s ratios. A second near-surface fault strand, located about 17 m to the southwest of the 1906 surface rupture, is inferred by similar seismic anomalies. Between these two near-surface fault strands and below 5 m depth, we observed a near-vertical fault strand characterized by a zone of high Vp, low Vs, high Vp/Vs ratios, and high Poisson’s ratios on refraction tomography images and near-vertical diffractions on seismic-reflection images. This prominent subsurface zone of seismic anomalies is laterally offset from the 1906 surface rupture by about 8 m and likely represents the active main (long-term) strand of the San Andreas Fault at 5 to 10 m depth. Geometries of the near-surface and subsurface (about 5 to 10 m depth) fault zone suggest that the 1906 surface rupture dips southwestward to join the main strand of the San Andreas Fault at about 5 to 10 m below the surface. The 1906 surface rupture forms a prominent groundwater barrier in the upper 3 to 5 m, but our interpreted secondary near-surface fault strand to the southwest forms a weaker barrier, suggesting that there has been less or less-recent near-surface slip on that strand. At about 6 m depth, the main strand of the San Andreas Fault consists of water-saturated blue clay (collected from a hand-augered borehole), which is similar to deeply weathered serpentinite observed within the main strand of the San Andreas Fault at nearby sites. Multiple fault strands in the area of the 1906 surface rupture may account for variations in geologic slip rates calculated from several paleoseismic sites along the Peninsula segment of the San Andreas Fault.t.
NASA Astrophysics Data System (ADS)
Hemelsdaël, Romain; Ford, Mary; Meyer, Nicolas
2013-04-01
Relay zones along rift border fault systems form topographic lows that are considered to allow the transfer of sediment from the footwall into hanging wall depocentres. Present knowledge focuses on the modifications of drainage patterns and sediment pathways across relay zones, however their vertical motion during growth and interaction of faults segments is not well documented. 3D models of fault growth and linkage are also under debate. The Corinth rift (Greece) is an ideal natural laboratory for the study of fault system evolution. Fault activity and rift depocentres migrated northward during Pliocene to Recent N-S extension. We report on the evolution of a relay zone in the currently active southern rift margin fault system from Pleistocene to present-day. The relay zone lies between the E-W East Helike (EHF) and Derveni faults (DF) that lie just offshore and around the town of Akrata. During its evolution the relay zone captured the antecedent Krathis river which continued to deposit Gilbert-type deltas across the relay zone during fault interaction, breaching and post linkage phases. Moreover our work underlines the role that pre-existing structure in the location of the transfer zone. Offshore fault geometry and kinematics, and sediment distribution were defined by interpretation and depth conversion of high resolution seismic profiles (from Maurice Ewing 2001 geophysical survey). Early lateral propagation of the EHF is recorded by synsedimentary fault propagation folds while the DF records tilted block geometries since initiation. Within the relay zone beds are gradually tilted toward the basin before breaching. These different styles of deformation highlight mechanical contrasts and upper crustal partition associated with the development of the Akrata relay zone. Onshore detailed lithostratigraphy, structure and geomorphological features record sedimentation across the subsiding relay ramp and subsequent footwall uplift after breaching. The area is characterised by the successive deposition of the northward prograding Platanos Gilbert-type delta (Middle group; deposited in hangingwall of the Pirgaki-Mamoussia fault) and the NE to E prograding Akrata Gilbert-type delta (Upper group). The Akrata Gilbert-type delta records progressive rotation and lengthening of the relay ramp as the East Helike fault and Derveni fault propagated laterally (from around 0.8 Ma) and started to overlap. The relay ramp was then breached by the Krathis fault (around 0.45 Ma) and the latter reactivated a NW-SE oriented inherited structure. Onshore-offshore correlation and profile restoration of the Upper group demonstrate the presence of this pre-existing structure (detachment fault?) below the Akrata relay zone that was responsible for significant eastward thickening in early rift sediments (Lower to Middle group). Our evolution model is consistent with the 'isolated fault' model where a fault array initially develops from growth of kinematically independent fault segments and fault displacement gradually accumulates during pre- and post-linkage stages. Despite the prominent control of pre-existing fabrics on the location of the transfer zone, lateral fault propagation and interaction can be well documented.
NASA Astrophysics Data System (ADS)
Rizza, M.; Dubois, C.; Fleury, J.; Abdrakhmatov, K.; Pousse, L.; Baikulov, S.; Vezinet, A.
2017-12-01
In the western Tien-Shan Range, the largest intracontinental strike-slip fault is the Karatau-Talas Fergana Fault system. This dextral fault system is subdivided into two main segments: the Karatau fault to the north and the Talas-Fergana fault (TFF) to the south. Kinematics and rates of deformation for the TFF during the Quaternary period are still debated and are poorly constrained. Only a few paleoseismological investigations are availabe along the TFF (Burtman et al., 1996; Korjenkov et al., 2010) and no systematic quantifications of the dextral displacements along the TFF has been undertaken. As such, the appraisal of the TFF behavior demands new tectonic information. In this study, we present the first detailed analysis of the morphology and the segmentation of the TFF and an offset inventory of morphological markers along the TFF. To discuss temporal and spatial recurrence patterns of slip accumulated over multiple seismic events, our study focused on a 60 km-long section of the TFF (Chatkal segment). Using tri-stereo Pleiades satellite images, high-resolution DEMs (1*1 m pixel size) have been generated in order to (i) analyze the fine-scale fault geometry and (ii) thoroughly measure geomorphic offsets. Photogrammetry data obtained from our drone survey on high interest sites, provide higher-resolution DEMs of 0.5 * 0.5 m pixel size.Our remote sensing mapping allows an unprecedented subdivision - into five distinct segments - of the study area. About 215 geomorphic markers have been measured and offsets range from 4.5m to 180 m. More than 80% of these offsets are smaller than 60 m, suggesting landscape reset during glacial maximum. Calculations of Cumulative Offset Probability Density (COPD) for the whole 60 km-long section as well as for each segments support distinct behavior from a segment to another and thus variability in slip-accumulation patterns. Our data argue for uniform slip model behavior along this section of the TFF. Moreover, we excavated a trench and found evidence for two earthquakes. Analysis of radiocarbon and OSL samples collected in the excavation will provide constraints on the timing of those two events. We also collected some surficial samples for cosmogenic dating to determine the geological slip-rate at two sites and to discuss some spatial slip-rate variations along the TFF.
NASA Astrophysics Data System (ADS)
Tizzani, P.; Castaldo, R.; Solaro, G.; Pepe, S.; Bonano, M.; Casu, F.; Manunta, M.; Manzo, M.; Pepe, A.; Samsonov, S.; Lanari, R.; Sansosti, E.
2013-05-01
We provide new insights into the two main seismic events that occurred in 2012 in the Emilia region, Italy. We extend the results from previous studies based on analytical inversion modeling of GPS and RADARSAT-1 InSAR measurements by exploiting RADARSAT-2 data. Moreover, we benefit from the available large amount of geological and geophysical information through finite element method (FEM) modeling implemented in a structural-mechanical context to investigate the impact of known buried structures on the modulation of the ground deformation field. We find that the displacement pattern associated with the 20 May event is consistent with the activation of a single fault segment of the inner Ferrara thrust, in good agreement with the analytical solution. In contrast, the interpretation of the 29 May episode requires the activation of three different fault segments and a block roto-translation of the Mirandola anticline. The proposed FEM-based methodology is applicable to other seismic areas where the complexity of buried structures is known and plays a fundamental role in the modulation of the associated surface deformation pattern.
NASA Astrophysics Data System (ADS)
Materna, Kathryn; Taira, Taka'aki; Bürgmann, Roland
2018-01-01
The Mendocino Triple Junction (MTJ), at the northern terminus of the San Andreas Fault system, is an actively deforming plate boundary region with poorly constrained estimates of seismic coupling on most offshore fault surfaces. Characteristically repeating earthquakes provide spatial and temporal descriptions of aseismic creep at the MTJ, including on the oceanic transform Mendocino Fault Zone (MFZ) as it subducts beneath North America. Using a dataset of earthquakes from 2008 to 2017, we find that the easternmost segment of the MFZ displays creep during this period at about 65% of the long-term slip rate. We also find creep at slower rates on the shallower strike-slip interface between the Pacific plate and the North American accretionary wedge, as well as on a fault that accommodates Gorda subplate internal deformation. After a nearby
NASA Astrophysics Data System (ADS)
Karson, J. A.
2017-11-01
Unlike most of the Mid-Atlantic Ridge, the North America/Eurasia plate boundary in Iceland lies above sea level where magmatic and tectonic processes can be directly investigated in subaerial exposures. Accordingly, geologic processes in Iceland have long been recognized as possible analogs for seafloor spreading in the submerged parts of the mid-ocean ridge system. Combining existing and new data from across Iceland provides an integrated view of this active, mostly subaerial plate boundary. The broad Iceland plate boundary zone includes segmented rift zones linked by transform fault zones. Rift propagation and transform fault migration away from the Iceland hotspot rearrange the plate boundary configuration resulting in widespread deformation of older crust and reactivation of spreading-related structures. Rift propagation results in block rotations that are accommodated by widespread, rift-parallel, strike-slip faulting. The geometry and kinematics of faulting in Iceland may have implications for spreading processes elsewhere on the mid-ocean ridge system where rift propagation and transform migration occur.
Study of the deformation in Central Afar using InSAR NSBAS chain
NASA Astrophysics Data System (ADS)
Deprez, A.; Doubre, C.; Grandin, R.; Saad, I.; Masson, F.; Socquet, A.
2013-12-01
The Afar Depression (East Africa) connects all three continental plates of Arabia, Somalia and Nubia plates. For over 20 Ma, the divergent motion of these plates has led to the formation of large normal faults building tall scarps between the high plateaus and the depression, and the development of large basins and an incipient seafloor spreading along a series of active volcano-tectonic rift segments within the depression. The space-time evolution of the active surface deformation over the whole Afar region remains uncertain. Previous tectonic and geodetic studies confirm that a large part of the current deformation is concentrated along these segments. However, the amount of extension accommodated by other non-volcanic basins and normal faulting remains unclear, despite significant micro-seismic activity. Due to the active volcanism, large transient displacements related to dyking sequence, notably in the Manda Hararo rift (2005-2010), increase the difficulty to characterize the deformation field over simple time and space scales. In this study, we attempt to obtain a complete inventory of the deformation within the whole Afar Depression and to understand the associated phenomena, which occurred in this singular tectonic environment. We study in particular, the behavior of the structures activated during the post-dyking stage of the rift segments. For this purpose, we conduct a careful processing of a large set of SAR ENVISAT images over the 2004-2010 period, we also use previous InSAR results and GPS data from permanent stations and from campaigns conducted in 1999, 2003, 2010, 2012 within a GPS network particularly dense along the Asal-Ghoubbet segment. In one hand, in the western part of Afar, the far-field response of the 2005-2010 dyke sequence appears to be the dominant surface motion on the mean velocity field. In an other hand, more eastward across the Asal-Ghoubbet rift, strong gradients of deformation are observed. The time series analysis of both InSAR and GPS data allow us to (1) point out the role of volcano activity on the localization of the extensive deformation within these rifts, (2) describe the temporal evolution of the mostly aseismic fault slips, and eventually (3) characterize the behavior of the crust after the dyking events in relation to visco-elastic relaxation. Moreover, we analyze several interesting small patches of localized deformation revealing transient displacements by combining time series results and seismic data collected by the Arta Geophysical Observatory in Djibouti. In particular, a specific clear deformation pattern on the northern margin of the Tadjoura Bay could be associated with a seismic swarm, probably resulting from the occurrence of an offshore dyking event sequence along the immerged Tadjoura rift segment.
NASA Astrophysics Data System (ADS)
Wang, Y.; Lin, F. C.; Allam, A. A.; Ben-Zion, Y.
2017-12-01
The San Jacinto fault is presently the most seismically active component of the San Andreas Transform system in Southern California. To study the damage zone structure, two dense linear geophone arrays (BS and RR) were deployed across the Clark segment of the San Jacinto Fault between Anza and Hemet during winter 2015 and Fall 2016, respectively. Both arrays were 2 km long with 20 m station spacing. Month-long three-component ambient seismic noise data were recorded and used to calculate multi-channel cross-correlation functions. All three-component noise records of each array were normalized simultaneously to retain relative amplitude information between different stations and different components. We observed clear Rayleigh waves and Love waves on the cross-correlations of both arrays at 0.3 - 1 s period. The phase travel times of the Rayleigh waves on both arrays were measured by frequency-time analysis (FTAN), and inverted for Rayleigh wave phase velocity profiles of the upper 500 m depth. For both arrays, we observe prominent asymmetric low velocity zones which narrow with depth. At the BS array near the Hemet Stepover, an approximately 250m wide slow zone is observed to be offset by 75m to the northeast of the surface fault trace. At the RR array near the Anza segment of the fault, a similar low velocity zone width and offset are observed, along with a 10% across-fault velocity contrast. Analyses of Rayleigh wave ellipticity (H/V ratio), Love wave phase travel times, and site amplification are in progress. By using multiple measurements from ambient noise cross-correlations, we can obtain strong constraints on the local damage zone structure of the San Jacinto Fault. The results contribute to improved understanding of rupture directivity, maximum earthquake magnitude and more generally seismic hazard associated with the San Jacinto fault zone.
NASA Astrophysics Data System (ADS)
Papanikolaοu, Ioannis D.; Roberts, Gerald P.; Deligiannakis, Georgios; Sakellariou, Athina; Vassilakis, Emmanuel
2013-06-01
The Sparta Fault system is a major structure approximately 64 km long that bounds the eastern flank of the Taygetos Mountain front (2407 m) and shapes the present-day Sparta basin. It was activated in 464 B.C., devastating the city of Sparta. This fault is examined and described in terms of its geometry, segmentation, drainage pattern and post-glacial throw, emphasising how these parameters vary along strike. Qualitative analysis of long profile catchments shows a significant difference in longitudinal convexity between the central and both the south and north parts of the fault system, leading to the conclusion of varying uplift rate along strike. Catchments are sensitive in differential uplift as it is observed by the calculated differences of the steepness index ksn between the outer (ksn < 83) and central parts (121 < ksn < 138) of the Sparta Fault along strike the fault system. Based on fault throw-rates and the bedrock geology a seismic hazard map has been constructed that extracts a locality specific long-term earthquake recurrence record. Based on this map the town of Sparta would experience a destructive event similar to that in 464 B.C. approximately every 1792 ± 458 years. Since no other major earthquake M ~ 7.0 has been generated by this system since 464 B.C., a future event could be imminent. As a result, not only time-independent but also time-dependent probabilities, which incorporate the concept of the seismic cycle, have been calculated for the town of Sparta, showing a considerably higher time-dependent probability of 3.0 ± 1.5% over the next 30 years compared to the time-independent probability of 1.66%. Half of the hanging wall area of the Sparta Fault can experience intensities ≥ IX, but belongs to the lowest category of seismic risk of the national seismic building code. On view of these relatively high calculated probabilities, a reassessment of the building code might be necessary.
NASA Astrophysics Data System (ADS)
Papanikolaou, Ioannis; Roberts, Gerald; Deligiannakis, Georgios; Sakellariou, Athina; Vassilakis, Emmanuel
2013-04-01
The Sparta Fault system is a major structure approximately 64 km long that bounds the eastern flank of the Taygetos Mountain front (2.407 m) and shapes the present-day Sparta basin. It was activated in 464 B.C., devastating the city of Sparta. This fault is examined and described in terms of its geometry, segmentation, drainage pattern and postglacial throw, emphasizing how these parameters vary along strike. Qualitative analysis of long profile catchments shows a significant difference in longitudinal convexity between the central and both the south and north parts of the fault system, leading to the conclusion of varying uplift rate along strike. Catchments are sensitive in differential uplift as it is observed by the calculated differences of the steepness index ksn between the outer (ksn<83) and central parts (121
A synthetic seismicity model for the Middle America Trench
NASA Technical Reports Server (NTRS)
Ward, Steven N.
1991-01-01
A novel iterative technique, based on the concept of fault segmentation and computed using 2D static dislocation theory, for building models of seismicity and fault interaction which are physically acceptable and geometrically and kinematically correct, is presented. The technique is applied in two steps to seismicity observed at the Middle America Trench. The first constructs generic models which randomly draw segment strengths and lengths from a 2D probability distribution. The second constructs predictive models in which segment lengths and strengths are adjusted to mimic the actual geography and timing of large historical earthquakes. Both types of models reproduce the statistics of seismicity over five units of magnitude and duplicate other aspects including foreshock and aftershock sequences, migration of foci, and the capacity to produce both characteristic and noncharacteristic earthquakes. Over a period of about 150 yr the complex interaction of fault segments and the nonlinear failure conditions conspire to transform an apparently deterministic model into a chaotic one.
Structure of the central Terror Rift, western Ross Sea, Antarctica
Hall, Jerome; Wilson, Terry; Henrys, Stuart
2007-01-01
The Terror Rift is a zone of post-middle Miocene faulting and volcanism along the western margin of the West Antarctic Rift System. A new seismic data set from NSF geophysical cruise NBP04-01, integrated with the previous dataset to provide higher spatial resolution, has been interpreted in this study in order to improve understanding of the architecture and history of the Terror Rift. The Terror Rift contains two components, a structurally-controlled rollover anticlinal arch intruded by younger volcanic bodies and an associated synclinal basin. Offsets and trend changes in fault patterns have been identified, coincident with shifts in the location of depocenters that define rift sub-basins, indicating that the Terror Rift is segmented by transverse structures. Multiple phases of faulting all post-date 17 Ma, including faults cutting the seafloor surface, indicating Neogene rifting and possible modern activity.
An application of synthetic seismicity in earthquake statistics - The Middle America Trench
NASA Technical Reports Server (NTRS)
Ward, Steven N.
1992-01-01
The way in which seismicity calculations which are based on the concept of fault segmentation incorporate the physics of faulting through static dislocation theory can improve earthquake recurrence statistics and hone the probabilities of hazard is shown. For the Middle America Trench, the spread parameters of the best-fitting lognormal or Weibull distributions (about 0.75) are much larger than the 0.21 intrinsic spread proposed in the Nishenko Buland (1987) hypothesis. Stress interaction between fault segments disrupts time or slip predictability and causes earthquake recurrence to be far more aperiodic than has been suggested.
Coulomb stress transfer and tectonic loading preceding the 2002 Denali fault earthquake
Bufe, Charles G.
2006-01-01
Pre-2002 tectonic loading and Coulomb stress transfer are modeled along the rupture zone of the M 7.9 Denali fault earthquake (DFE) and on adjacent segments of the right-lateral Denali–Totschunda fault system in central Alaska, using a three-dimensional boundary-element program. The segments modeled closely follow, for about 95°, the arc of a circle of radius 375 km centered on an inferred asperity near the northeastern end of the intersection of the Patton Bay fault with the Alaskan megathrust under Prince William Sound. The loading model includes slip of 6 mm/yr below 12 km along the fault system, consistent with rotation of the Wrangell block about the asperity at a rate of about 1°/m.y. as well as slip of the Pacific plate at 5 cm/yr at depth along the Fairweather–Queen Charlotte transform fault system and on the Alaska megathrust. The model is consistent with most available pre-2002 Global Positioning System (GPS) displacement rate data. Coulomb stresses induced on the Denali–Totschunda fault system (locked above 12 km) by slip at depth and by transfer from the M 9.2 Prince William Sound earthquake of 1964 dominated the changing Coulomb stress distribution along the fault. The combination of loading (∼70–85%) and coseismic stress transfer from the great 1964 earthquake (∼15–30%) were the principal post-1900 stress factors building toward strike-slip failure of the northern Denali and Totschunda segments in the M 7.9 earthquake of November 2002. Postseismic stresses transferred from the 1964 earthquake may also have been a significant factor. The M 7.2–7.4 Delta River earthquake of 1912 (Carver et al., 2004) may have delayed or advanced the timing of the DFE, depending on the details and location of its rupture. The initial subevent of the 2002 DFE earthquake was on the 40-km Susitna Glacier thrust fault at the western end of the Denali fault rupture. The Coulomb stress transferred from the 1964 earthquake moved the Susitna Glacier thrust fault uniformly away from thrust failure by about 100 kPa. The initiation of the Denali fault earthquake was advanced by transfer of 30–50 kPa of positive Coulomb stress to the Susitna Glacier fault (Anderson and Ji, 2003) by the nearby M 6.7 Nenana Mountain foreshock of 23 October 2002. The regional tectonic loading model used here suggests that the Semidi (Alaska Peninsula) segment of the megathrust that ruptured in 1938 (M 8.2) may be reloaded and approaching failure.
The 2013 Mw 6.2 Khaki-Shonbe (Iran) Earthquake: Seismic Shortening of the Zagros Sedimentary Cover
NASA Astrophysics Data System (ADS)
Elliott, J. R.; Bergman, E.; Copley, A.; Ghods, A.; Nissen, E.; Oveisi, B.; Walters, R. J.
2014-12-01
The 2013 Mw 6.2 Khaki-Shonbe earthquake occurred in the Simply Folded Belt of the Zagros Mountains, Iran. This is the largest earthquake in the Zagros since the November 1990 Mw 6.4 Furg (Hormozgan) thrust faulting event, and therefore the largest in the period for which dense InSAR ground displacements are available. It is also the biggest seismic event to have occurred in the Simply Folded Belt since the March 1977 Mw 6.7 Khurgu earthquake. This earthquake therefore potentially provides valuable insights into a range of controversies: (1) the preponderance of earthquake faulting in the crystalline basement versus the sedimentary cover and the potential importance of lithology in controlling and limiting seismic rupture; (2) the nature of surface folding and whether or not there is a one-to-one relationship between buried reverse faults and surface anticlines; and (3) the presence or absence of large pulses of aseismic slip triggered by mainshock rupture. We combine seismological solutions and aftershock relocations with satellite interferometric ground displacements and observations from the field to determine the geometry of faulting and its relationship with the structure, stratigraphy and tectonics of the Central Zagros. The earthquake rupture involved reverse slip on two along-strike southwest dipping fault segments, the rupture initiating at the northern and bottom end of the larger north-west segment. These faults verge away from the foreland and towards the high range interior, contrary to the fault geometries depicted in many structural cross-sections of the Zagros. The slip measured on the reverse segments occurred over two mutually exclusive depth ranges, 10-5 km and 4-2 km, resulting in long (16 km), narrow (7 km) rupture segments. Conversely, aftershocks are found to cluster in the depth range 8-16 km, beneath the main rupture segment. This indicates only significant reverse slip and coseismic shortening in the sedimentary cover, with the slip distribution likely to be lithologically controlled in depth by the Hormuz salt at the base of the sedimentary cover, and the Kazhdumi Formation mudrocks at upper-levels (5 km), and aftershocks constrained largely beneath the main coseismic rupture planes.
Stress distribution along the Fairweather-Queen Charlotte transform fault system
Bufe, C.G.
2005-01-01
Tectonic loading and Coulomb stress transfer are modeled along the right-lateral Fairweather-Queen Charlotte transform fault system using a threedimensional boundary element program. The loading model includes slip below 12 km along the transform as well as motion of the Pacific plate, and it is consistent with most available Global Positioning System (GPS) displacement rate data. Coulomb stress transfer is shown to have been a weak contributing factor in the failure of the southeastern (Sitka) segment of the Fairweather fault in 1972, hastening the occurrence of the earthquake by only about 8 months. Failure of the Sitka segment was enhanced by a combination of cumulative loading from below (95%) by slip of about 5 cm/yr since 1848, by stress transfer (about 1%) from major earthquakes on straddling segments of the Queen Charlotte fault (M 8.1 in 1949) and the Fairweather fault (M 7.8 in 1958), and by viscoelastic relaxation (about 4%) following the great 1964 Alaska earthquake, modeled by Pollitz et al. (1998). Cumulative stress increases in excess of 7 MPa at a depth of 8 km are projected prior to the M 7.6 earthquake. Coulomb stress transferred by the rupture of the great M 9.2 Alaska earthquake in 1964 (Bufe, 2004a) also hastened the occurrence of the 1972 event, but only by a month or two. Continued tectonic loading over the last half century and stress transfer from the M 7.6 Sitka event has resulted in restressing of the adjacent segments by about 3 MPa at 8 km depth. The occurrence of a M 6.8 earthquake on the northwestern part of the Queen Charlotte fault on 28 June 2004, the largest since 1949, also suggests increased stress. The Cape St. James segment of the fault immediately southeast of the 1949 Queen Charlotte rupture has accumulated about 6 MPa at 8 km through loading since 1900 and stress transfer in 1949. A continued rise in earthquake hazard is indicated for the Alaska panhandle and Queen Charlotte Islands region in the decades ahead as the potential for damaging earthquakes increases.
Mantle uplift and exhumation caused by long-lived transpression at a major transform fault
NASA Astrophysics Data System (ADS)
Maia, Marcia; Sichel, Susanna; Briais, Anne; Brunelli, Daniele; Ligi, Marco; Campos, Thomas; Mougel, Bérengère; Hémond, Christophe
2017-04-01
Large portions of slow-spreading ridges have mantle-derived peridotites emplaced either on, or at shallow levels below the sea floor. Mantle and deep rock exposure in such contexts results from extension through low-angle detachment faults at oceanic core complexes or, along transform faults, to transtension due to small changes in spreading geometry. In the Equatorial Atlantic, a large body of ultramafic rocks at the large-offset St. Paul transform fault forms the archipelago of St. Peter & St. Paul. These islets are emplaced near the axis of the Mid-Atlantic Ridge (MAR), and have intrigued geologists since Darwin's time. They are made of variably serpentinized and mylonitized peridotites, and are presently being uplifted at a rate of 1.5 mm/yr, which suggests tectonic stresses. The existence of an abnormally cold upper mantle or cold lithosphere in the Equatorial Atlantic was, until now, the preferred explanation for the origin of these ultramafics. High-resolution geophysical data and rock samples acquired in 2013 show that the origin of the St. Peter & St. Paul archipelago is linked to compressive stresses along the transform fault. The islets represent the summit of a large push-up ridge formed by deformed mantle rocks, located in the center of a positive flower structure, where large portions of mylonitized mantle are uplifted. The transpressive stress field can be explained by the propagation of the northern MAR segment into the transform domain. The latter induced the overlap of ridge segments, resulting in the migration and segmentation of the transform fault and the creation of a series of restraining step-overs. A counterclockwise change in plate motion at 11 Ma initially generated extensive stresses in the transform domain, forming a flexural transverse ridge. Shortly after the plate reorganization, the MAR segment located on the northern side of the transform fault started to propagate southwards, adjusting to the new spreading direction. Enhanced melt supply at the ridge axis, possibly due to the Sierra Leone thermal anomaly, induced the robust response of this segment.
Controls of repeating earthquakes' location from a- and b- values imaging
NASA Astrophysics Data System (ADS)
Chen, K. H.; Kawamura, M.
2017-12-01
The locations where creeping and locked fault areas abut have commonly found to be delineated by the foci of small repeating earthquakes (REs). REs not only represent the finer structure of high creep-rate location, they also function as fault slip-rate indicators. Knowledge of the expected location of REs therefore, is crucial for fault deformation monitoring and assessment of earthquake potential. However, a precise description of factors determining REs locations is lacking. To explore where earthquakes tend to recur, we statistically investigated repeating earthquake catalogs and background seismicity from different regions including six fault segments in California and Taiwan. We show that the location of repeating earthquakes can be mapped using the spatial distribution of the seismic a- and b-values obtained from the background seismicity. Molchan's error diagram statistically confirmed that repeating earthquakes occur within areas with high a-values (2.8-3.8) and high b-values (0.9-1.1) on both strike-slip and thrust fault segments. However, no significant association held true for fault segments with more complicated geometry or for wider areas with a complex fault network. The productivity of small earthquakes responsible for high a- and b-values may thus be the most important factor controlling the location of repeating earthquakes. We hypothesize that, given that the deformation conditions within a fault zone are suitable for a planar fault plane, the location of repeating earthquakes can be best described by a-value 3 and b-value 1. This feature of a- and b-values may be useful for foresee the location of REs for measuring creep rate at depth. Further investigation of REs-rich areas may allow testing of this hypothesis.
Stable creeping fault segments can become destructive as a result of dynamic weakening.
Noda, Hiroyuki; Lapusta, Nadia
2013-01-24
Faults in Earth's crust accommodate slow relative motion between tectonic plates through either similarly slow slip or fast, seismic-wave-producing rupture events perceived as earthquakes. These types of behaviour are often assumed to be separated in space and to occur on two different types of fault segment: one with stable, rate-strengthening friction and the other with rate-weakening friction that leads to stick-slip. The 2011 Tohoku-Oki earthquake with moment magnitude M(w) = 9.0 challenged such assumptions by accumulating its largest seismic slip in the area that had been assumed to be creeping. Here we propose a model in which stable, rate-strengthening behaviour at low slip rates is combined with coseismic weakening due to rapid shear heating of pore fluids, allowing unstable slip to occur in segments that can creep between events. The model parameters are based on laboratory measurements on samples from the fault of the M(w) 7.6 1999 Chi-Chi earthquake. The long-term slip behaviour of the model, which we examine using a unique numerical approach that includes all wave effects, reproduces and explains a number of both long-term and coseismic observations-some of them seemingly contradictory-about the faults at which the Tohoku-Oki and Chi-Chi earthquakes occurred, including there being more high-frequency radiation from areas of lower slip, the largest seismic slip in the Tohoku-Oki earthquake having occurred in a potentially creeping segment, the overall pattern of previous events in the area and the complexity of the Tohoku-Oki rupture. The implication that earthquake rupture may break through large portions of creeping segments, which are at present considered to be barriers, requires a re-evaluation of seismic hazard in many areas.
Age of the North Anatolian Fault Segments in the Yalova with U/Th Dating Method by Travertine Data
NASA Astrophysics Data System (ADS)
Selim, Haluk; Ömer Taş, K.
2016-04-01
Travertine occurrences developed along the segments of the North Anatolian Fault (NAF) in the south of Yalova. Travertines outcrop approximately 1 km2 area. These are middle-thick bedded approximately 20-40 m and back-tilted southward or horizontally. Lithology of travertines deposited such as physolite, stalactites-stalagmites, cave pearls, sharp pebble carbonate nodules, spherical-roller-intricate shapes or laminated banded travertine. Geochemical analyses were performed on the six samples of the travertines. X-ray analysis indicates that all samples are entirely composed of low-Mg calcite. Banded travertines with some tubular structures formed by precipitation from rising hot water are best developed near the toes of the large, hanging-wall-derived alluvial fans, whereas phreatic cement preferentially exists in footwall-derived, alluvial-fan conglomerates. The unit developed clarity which is controlled by normal fault as the structural and morphological, relationship with active tectonics. The travertines are a range-front type. U/Th series age dating results indicate that the travertine deposition extends back to 155 ka and yields ages of 60.000 (± 3, 091) to 153.149 (±13,466) from the range-front type travertines.
NASA Astrophysics Data System (ADS)
Ott, B.; Mann, P.
2015-12-01
The offshore Nicaraguan Rise in the western Caribbean Sea is an approximately 500,000 km2 area of Precambrian to Late Cretaceous tectonic terranes that have been assembled during the Late Cretaceous formation of the Caribbean plate and include: 1) the Chortis block, a continental fragment; 2) the Great Arc of the Caribbean, a deformed Cretaceous arc, and 3) the Caribbean large igneous province formed in late Cretaceous time. Middle Eocene to Recent eastward motion of the Caribbean plate has been largely controlled by strike-slip faulting along the northern Caribbean plate boundary zone that bounds the northern margin of the Nicaraguan Rise. These faults reactivate older rift structures near the island of Jamaica and form the transtensional basins of the Honduran Borderlands near Honduras. Recent GPS studies suggest that small amount of intraplate motion within the current margin of error of GPS measurements (1-3 mm/yr) may occur within the center of the western Caribbean plate at the Pedro Bank fault zone and Hess Escarpment. This study uses a database of over 54,000 km of modern and vintage 2D seismic data, combined with earthquake data and results from previous GPS studies to define the active areas of inter- and intraplate fault zones in the western Caribbean. Intraplate deformation occurs along the 700-km-long Pedro Bank fault zone that traverses the center of the Nicaraguan Rise and reactivates the paleo suture zone between the Great Arc of the Caribbean and the Caribbean large igneous province. The Pedro Bank fault zone also drives active extension at the 200-km-long San Andres rift along the southwest margin of the Nicaraguan Rise. Influence of the Cocos Ridge indentor may be contributing to reactivation of faulting along the southwesternmost, active segment of the Hess Escarpment.
NASA Astrophysics Data System (ADS)
Benfedda, A.; Abbes, K.; Bouziane, D.; Bouhadad, Y.; Slimani, A.; Larbes, S.; Haddouche, D.; Bezzeghoud, M.
2017-03-01
On August 1st, 2014, a moderate-sized earthquake struck the capital city of Algiers at 05:11:17.6 (GMT+1). The earthquake caused the death of six peoples and injured 420, mainly following a panic movement among the population. Following the main shock, we surveyed the aftershock activity using a portable seismological network (short period), installed from August 2nd, 2014 to August 21st, 2015. In this work, first, we determined the main shock epicenter using the accelerograms recorded by the Algerian accelerograph network (under the coordination of the National Center of Applied Research in Earthquake Engineering-CGS). We calculated the focal mechanism of the main shock, using the inversion of the accelerograph waveforms in displacement that provides a reverse fault with a slight right-lateral component of slip and a compression axis striking NNW-SSE. The obtained scalar seismic moment ( M o = 1.25 × 1017 Nm) corresponds to a moment magnitude of M w = 5.3. Second, the analysis of the obtained aftershock swarm, of the survey, suggests an offshore ENE-WSW, trending and NNW dipping, causative active fault in the bay of Algiers, which may likely correspond to an offshore unknown segment of the Sahel active fault.
NASA Astrophysics Data System (ADS)
Yang, Honggang; Lin, Huibin; Ding, Kang
2018-05-01
The performance of sparse features extraction by commonly used K-Singular Value Decomposition (K-SVD) method depends largely on the signal segment selected in rolling bearing diagnosis, furthermore, the calculating speed is relatively slow and the dictionary becomes so redundant when the fault signal is relatively long. A new sliding window denoising K-SVD (SWD-KSVD) method is proposed, which uses only one small segment of time domain signal containing impacts to perform sliding window dictionary learning and select an optimal pattern with oscillating information of the rolling bearing fault according to a maximum variance principle. An inner product operation between the optimal pattern and the whole fault signal is performed to enhance the characteristic of the impacts' occurrence moments. Lastly, the signal is reconstructed at peak points of the inner product to realize the extraction of the rolling bearing fault features. Both simulation and experiments verify that the method could extract the fault features effectively.
NASA Astrophysics Data System (ADS)
Villani, Fabio; D'Amico, Sebastiano; Panzera, Francesco; Vassallo, Maurizio; Bozionelos, George; Farrugia, Daniela; Galea, Pauline
2018-01-01
The Victoria Lines Fault (island of Malta) is a >15 km-long and N260°-striking segmented normal fault-system, which is probably inactive since the late Pliocene. In the westernmost part, the Fomm Ir-Rih segment displays comparable geologic throw and escarpment height ( 150-170 m), moreover its hangingwall hosts thin patches of Middle Pleistocene clastic continental deposits (red beds), which are poorly preserved elsewhere. We acquired two seismic transects, by collecting ambient vibration recordings, processed by using horizontal-to-vertical spectral ratios, complemented by one high-resolution 2-D refraction tomography survey crossing this fault where it is locally covered by red beds and recent colluvial deposits. We found a resonance peak at 1.0 Hz in the hangingwall block, whereas clear peaks in the range 5.0-10.0 Hz appear when approaching the subsurface fault, and we relate them to the fractured bedrock within the fault zone. The best-fit tomographic model shows a relatively high-Vp shallow body (Vp 2200-2400 m/s) that we relate to the weathered top of the Miocene Upper Coralline Limestone Fm., bounded on both sides by low-Vp regions (<1400 m/s). The latter are the smeared images of steep fault zones. Tomography further reveals a thick ( 15-20 m) low-Vp (<1000 m/s) zone, which could be a syn-tectonic wedge of colluvial deposits developed in the downthrown block. Surface waves analysis indicates lateral changes of the average shallow shear wave velocity, with Vs 130 m/s within the inferred fault zone, and Vs >230 m/s above the weathered top-bedrock. Our results depict a clear seismic signature of the Victoria Lines Fault, characterized by low seismic velocity and high amplification of ground motion. We hypothesize that, during the Middle Pleistocene, faulting may have affected the basal part of the red beds, so that this part of the investigated complex fault-system may be considered inactive since 0.6 Myr ago.
Insurance Applications of Active Fault Maps Showing Epistemic Uncertainty
NASA Astrophysics Data System (ADS)
Woo, G.
2005-12-01
Insurance loss modeling for earthquakes utilizes available maps of active faulting produced by geoscientists. All such maps are subject to uncertainty, arising from lack of knowledge of fault geometry and rupture history. Field work to undertake geological fault investigations drains human and monetary resources, and this inevitably limits the resolution of fault parameters. Some areas are more accessible than others; some may be of greater social or economic importance than others; some areas may be investigated more rapidly or diligently than others; or funding restrictions may have curtailed the extent of the fault mapping program. In contrast with the aleatory uncertainty associated with the inherent variability in the dynamics of earthquake fault rupture, uncertainty associated with lack of knowledge of fault geometry and rupture history is epistemic. The extent of this epistemic uncertainty may vary substantially from one regional or national fault map to another. However aware the local cartographer may be, this uncertainty is generally not conveyed in detail to the international map user. For example, an area may be left blank for a variety of reasons, ranging from lack of sufficient investigation of a fault to lack of convincing evidence of activity. Epistemic uncertainty in fault parameters is of concern in any probabilistic assessment of seismic hazard, not least in insurance earthquake risk applications. A logic-tree framework is appropriate for incorporating epistemic uncertainty. Some insurance contracts cover specific high-value properties or transport infrastructure, and therefore are extremely sensitive to the geometry of active faulting. Alternative Risk Transfer (ART) to the capital markets may also be considered. In order for such insurance or ART contracts to be properly priced, uncertainty should be taken into account. Accordingly, an estimate is needed for the likelihood of surface rupture capable of causing severe damage. Especially where a high deductible is in force, this requires estimation of the epistemic uncertainty on fault geometry and activity. Transport infrastructure insurance is of practical interest in seismic countries. On the North Anatolian Fault in Turkey, there is uncertainty over an unbroken segment between the eastern end of the Dazce Fault and Bolu. This may have ruptured during the 1944 earthquake. Existing hazard maps may simply use a question mark to flag uncertainty. However, a far more informative type of hazard map might express spatial variations in the confidence level associated with a fault map. Through such visual guidance, an insurance risk analyst would be better placed to price earthquake cover, allowing for epistemic uncertainty.
Stress Study on Southern Segment of Longmenshan Fault Constrained by Focal Mechanism Data
NASA Astrophysics Data System (ADS)
Yang, Y.; Liang, C.; Su, J.; Zhou, L.
2016-12-01
The Longmenshan fault (LMSF) lies at the eastern margin of Tibetan plateau and constitutes the boundary of the active Bayankala block and rigid Sichuan basin. This fault was misinterpreted as an inactive fault before the great Wenchuan earthquake. Five years after the devastating event, the Lushan MS 7.0 stroke the southern segment of the LMSF but fractured in a very limited scale and formed a seismic gap between the two earthquakes. In this study, we determined focal mechanisms of earthquakes with magnitude M≥3 from Jan 2008 to July 2014 in the southern segment of LMSF, and then applied the damped linear inversion to derive the regional stress field based on the focal mechanisms. Focal mechanisms of 755 earthquakes in total were determined. We further used a damped linear inversion technique to produce a 2D stress map in upper crust in the study region. A dominant thrust regime is determined south of the seismic gap, with a horizontal maximum compression oriented in NWW-SEE. But in the area to the north of the seismic gap is characterized as a much more complex stress environment. To the west of the Dujiangyan city, there appear to be a seismic gap in the Pengguan complex. The maximum compressions show the anti-clockwise and clockwise patterns to the south and north of this small gap. Thus the small gap seems to be an asperity that causes the maximum compression to rotate around it. While combined the maximum compression pattern with the focal solutions of strong earthquakes (Mw≥5) in this region, two of those strong earthquakes located near the back-range-fault have strikes parallel to the Miyaluo fault. Considering a large amount of earthquakes in Lixian branch, the Miyaluo fault may be extended to LMSF following the great Wenchuan earthquake. Investigations on the stress field of different depths indicate complex spatial variations. The Pengguan complex is almost aseismic in shallow depth in its central part. In deeper depth, the maximum compressions show the NNW-SSE and NE-SW directions to the north and south of the seismic gap respectively, this are surprisingly different from that of the shallower depth. Thus the maximum compressions vary with depth may imply the movement in depth is decoupled from the movement in shallow depth. This work was partially supported by National Natural Science Foundation of China (41340009).
Deformation during terrane accretion in the Saint Elias orogen, Alaska
Bruhn, R.L.; Pavlis, T.L.; Plafker, G.; Serpa, L.
2004-01-01
The Saint Elias orogen of southern Alaska and adjacent Canada is a complex belt of mountains formed by collision and accretion of the Yakutat terrane into the transition zone from transform faulting to subduction in the northeast Pacific. The orogen is an active analog for tectonic processes that formed much of the North American Cordillera, and is also an important site to study (1) the relationships between climate and tectonics, and (2) structures that generate large- to great-magnitude earthquakes. The Yakutat terrane is a fragment of the North American plate margin that is partly subducted beneath and partly accreted to the continental margin of southern Alaska. Interaction between the Yakutat terrane and the North American and Pacific plates causes significant differences in the style of deformation within the terrane. Deformation in the eastern part of the terrane is caused by strike-slip faulting along the Fairweather transform fault and by reverse faulting beneath the coastal mountains, but there is little deformation immediately offshore. The central part of the orogen is marked by thrusting of the Yakutat terrane beneath the North American plate along the Chugach-Saint Elias fault and development of a wide, thin-skinned fold-and-thrust belt. Strike-slip faulting in this segment may he localized in the hanging wall of the Chugach-Saint Elias fault, or dissipated by thrust faulting beneath a north-northeast-trending belt of active deformation that cuts obliquely across the eastern end of the fold-and-thrust belt. Superimposed folds with complex shapes and plunging hinge lines accommodate horizontal shortening and extension in the western part of the orogen, where the sedimentary cover of the Yakutat terrane is accreted into the upper plate of the Aleutian subduction zone. These three structural segments are separated by transverse tectonic boundaries that cut across the Yakutat terrane and also coincide with the courses of piedmont glaciers that flow from the topographic backbone of the Saint Elias Mountains onto the coastal plain. The Malaspina fault-Pamplona structural zone separates the eastern and central parts of the orogen and is marked by reverse faulting and folding. Onshore, most of this boundary is buried beneath the western or "Agassiz" lobe of the Malaspina piedmont glacier. The boundary between the central fold-and-thrust belt and western zone of superimposed folding lies beneath the middle and lower course of the Bering piedmont glacier. ?? 2004 Geological Society of America.
Comparison of Observed Spatio-temporal Aftershock Patterns with Earthquake Simulator Results
NASA Astrophysics Data System (ADS)
Kroll, K.; Richards-Dinger, K. B.; Dieterich, J. H.
2013-12-01
Due to the complex nature of faulting in southern California, knowledge of rupture behavior near fault step-overs is of critical importance to properly quantify and mitigate seismic hazards. Estimates of earthquake probability are complicated by the uncertainty that a rupture will stop at or jump a fault step-over, which affects both the magnitude and frequency of occurrence of earthquakes. In recent years, earthquake simulators and dynamic rupture models have begun to address the effects of complex fault geometries on earthquake ground motions and rupture propagation. Early models incorporated vertical faults with highly simplified geometries. Many current studies examine the effects of varied fault geometry, fault step-overs, and fault bends on rupture patterns; however, these works are limited by the small numbers of integrated fault segments and simplified orientations. The previous work of Kroll et al., 2013 on the northern extent of the 2010 El Mayor-Cucapah rupture in the Yuha Desert region uses precise aftershock relocations to show an area of complex conjugate faulting within the step-over region between the Elsinore and Laguna Salada faults. Here, we employ an innovative approach of incorporating this fine-scale fault structure defined through seismological, geologic and geodetic means in the physics-based earthquake simulator, RSQSim, to explore the effects of fine-scale structures on stress transfer and rupture propagation and examine the mechanisms that control aftershock activity and local triggering of other large events. We run simulations with primary fault structures in state of California and northern Baja California and incorporate complex secondary faults in the Yuha Desert region. These models produce aftershock activity that enables comparison between the observed and predicted distribution and allow for examination of the mechanisms that control them. We investigate how the spatial and temporal distribution of aftershocks are affected by changes to model parameters such as shear and normal stress, rate-and-state frictional properties, fault geometry, and slip rate.
3-D kinematics analysis of surface ruptures on an active creeping fault at Chihshang, Eastern Taiwan
NASA Astrophysics Data System (ADS)
Lee, J.; Angelier, J.; Chen, H.; Chu, H.; Hu, J.
2003-12-01
The Chihshang fault is one of the most active segments of the Longitudinal Valley Fault, the plate suture between the converging Philippine and Eurasian plates. A destructive earthquake of M 7.1 with substantial surface scarps resulted from rupturing of the Chihshang fault in 1951. From that on, no big earthquake greater than M 5.5 occurred in this area. Instead, the Chihshang fault reveals a creeping behavior at a rapid rate of about 20 mm/yr at least during the past 20 years. The surface breaks of the creeping Chihshang fault can be observed at the several places. A typical feature is reverse-fault-like fractures on the retaining wall. We deployed small geodetic networks across the fault zone at five sites. Each network comprises of 5 to 15 benchmarks. Trilateration measurements including angles and distances as well as leveling among the benchmarks have been carried out on an annual basis or twice a year since 1998. Compared to previous other measurements which have shown the first order creep rate for the entire fault zone, the present geodetic data provides the detailed information of the surface movements across the fault zone which usually composed of more than one fault strands and folds structures. According to our data from the local geodetic networks, we are able to reconstruct the 3-D kinematics of surface deformation across the Chihshang fault zone. Multiple fault strands are common along the Chihshang fault. Oblique shortening occurred at all sites and was characterized by a combination of thrusts, backthrust and surface warps. Strike-slip motion can also be distinguished on some fault strands. It is worth to note that the cultural feature, such as concrete basement of strong resistance, sometimes acted as deflection of surface ruptures. It should be taken into consideration for mitigation against seismic hazards.
Seismic Hazard Analysis on a Complex, Interconnected Fault Network
NASA Astrophysics Data System (ADS)
Page, M. T.; Field, E. H.; Milner, K. R.
2017-12-01
In California, seismic hazard models have evolved from simple, segmented prescriptive models to much more complex representations of multi-fault and multi-segment earthquakes on an interconnected fault network. During the development of the 3rd Uniform California Earthquake Rupture Forecast (UCERF3), the prevalence of multi-fault ruptures in the modeling was controversial. Yet recent earthquakes, for example, the Kaikora earthquake - as well as new research on the potential of multi-fault ruptures (e.g., Nissen et al., 2016; Sahakian et al. 2017) - have validated this approach. For large crustal earthquakes, multi-fault ruptures may be the norm rather than the exception. As datasets improve and we can view the rupture process at a finer scale, the interconnected, fractal nature of faults is revealed even by individual earthquakes. What is the proper way to model earthquakes on a fractal fault network? We show multiple lines of evidence that connectivity even in modern models such as UCERF3 may be underestimated, although clustering in UCERF3 mitigates some modeling simplifications. We need a methodology that can be applied equally well where the fault network is well-mapped and where it is not - an extendable methodology that allows us to "fill in" gaps in the fault network and in our knowledge.
Quantitative study of tectonic geomorphology along Haiyuan fault based on airborne LiDAR
Chen, Tao; Zhang, Pei Zhen; Liu, Jing; Li, Chuan You; Ren, Zhi Kun; Hudnut, Kenneth W.
2014-01-01
High-precision and high-resolution topography are the fundamental data for active fault research. Light detection and ranging (LiDAR) presents a new approach to build detailed digital elevation models effectively. We take the Haiyuan fault in Gansu Province as an example of how LiDAR data may be used to improve the study of active faults and the risk assessment of related hazards. In the eastern segment of the Haiyuan fault, the Shaomayin site has been comprehensively investigated in previous research because of its exemplary tectonic topographic features. Based on unprecedented LiDAR data, the horizontal and vertical coseismic offsets at the Shaomayin site are described. The measured horizontal value is about 8.6 m, and the vertical value is about 0.8 m. Using prior dating ages sampled from the same location, we estimate the horizontal slip rate as 4.0 ± 1.0 mm/a with high confidence and define that the lower bound of the vertical slip rate is 0.4 ± 0.1 mm/a since the Holocene. LiDAR data can repeat the measurements of field work on quantifying offsets of tectonic landform features quite well. The offset landforms are visualized on an office computer workstation easily, and specialized software may be used to obtain displacement quantitatively. By combining precious chronological results, the fundamental link between fault activity and large earthquakes is better recognized, as well as the potential risk for future earthquake hazards.
Using Earthquake Analysis to Expand the Oklahoma Fault Database
NASA Astrophysics Data System (ADS)
Chang, J. C.; Evans, S. C.; Walter, J. I.
2017-12-01
The Oklahoma Geological Survey (OGS) is compiling a comprehensive Oklahoma Fault Database (OFD), which includes faults mapped in OGS publications, university thesis maps, and industry-contributed shapefiles. The OFD includes nearly 20,000 fault segments, but the work is far from complete. The OGS plans on incorporating other sources of data into the OFD, such as new faults from earthquake sequence analyses, geologic field mapping, active-source seismic surveys, and potential fields modeling. A comparison of Oklahoma seismicity and the OFD reveals that earthquakes in the state appear to nucleate on mostly unmapped or unknown faults. Here, we present faults derived from earthquake sequence analyses. From 2015 to present, there has been a five-fold increase in realtime seismic stations in Oklahoma, which has greatly expanded and densified the state's seismic network. The current seismic network not only improves our threshold for locating weaker earthquakes, but also allows us to better constrain focal plane solutions (FPS) from first motion analyses. Using nodal planes from the FPS, HypoDD relocation, and historic seismic data, we can elucidate these previously unmapped seismogenic faults. As the OFD is a primary resource for various scientific investigations, the inclusion of seismogenic faults improves further derivative studies, particularly with respect to seismic hazards. Our primal focus is on four areas of interest, which have had M5+ earthquakes in recent Oklahoma history: Pawnee (M5.8), Prague (M5.7), Fairview (M5.1), and Cushing (M5.0). Subsequent areas of interest will include seismically active data-rich areas, such as the central and northcentral parts of the state.
The impact of lake level variation on seismicity around XianNvShan fault in the Three Gorge area
NASA Astrophysics Data System (ADS)
Liao, W.; Li, J.; Zhang, L.
2017-12-01
Since the impounding of Three Gorge Project in 2003,more than 10000 earthquakes have been recorded by the digital telemetry seismic network. Most of them occurred around the GaoQiao fault and the Northern segment of XianNvShan fault . In March 2014, the M4.3 and M4.7 earthquake happened in the northern segment of Xiannvshshan fault .In order to study the relationship between the seismicity around the XianNvShan fault and the lake level variation, we had been deployed 5 temporal seismic stations in this area from 2015 to 2016. More than 3000 earthquakes recorded during the time of temporal seismic monitoring are located by hypo-center of by waveform cross-correlation and double-difference method. The depth of most earthquakes is from 5 to 7 km.but it is obvious that the variation of depth is relate to the fluctuation of water level.
Slip and Dilation Tendency Analysis of the San Emidio Geothermal Area
Faulds, James E.
2013-12-31
Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the San Emidio geothermal field was calculated based on the faults mapped Tuscarora area (Rhodes, 2011). The San Emidio area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the San Emidio area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. This is consistent with the shmin determined through inversion of fault data by Rhodes (2011). Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. Interesting, the San Emidio geothermal field lies in an area of primarily north striking faults, which...
Geology and structure of the North Boqueron Bay-Punta Montalva Fault System
NASA Astrophysics Data System (ADS)
Roig Silva, Coral Marie
The North Boqueron Bay-Punta Montalva Fault Zone is an active fault system that cuts across the Lajas Valley in southwestern Puerto Rico. The fault zone has been recognized and mapped based upon detailed analysis of geophysical data, satellite images and field mapping. The fault zone consists of a series of Cretaceous bedrock faults that reactivated and deformed Miocene limestone and Quaternary alluvial fan sediments. The fault zone is seismically active (ML < 5.0) with numerous locally felt earthquakes. Focal mechanism solutions and structural field data suggest strain partitioning with predominantly east-west left-lateral displacements with small normal faults oriented mostly toward the northeast. Evidence for recent displacement consists of fractures and small normal faults oriented mostly northeast found in intermittent streams that cut through the Quaternary alluvial fan deposits along the southern margin of the Lajas Valley, Areas of preferred erosion, within the alluvial fan, trend toward the west-northwest parallel to the on-land projection of the North Boqueron Bay Fault. Beyond the faulted alluvial fan and southeast of the Lajas Valley, the Northern Boqueron Bay Fault joins with the Punta Montalva Fault. The Punta Montalva Fault is defined by a strong topographic WNW lineament along which stream channels are displaced left laterally 200 meters and Miocene strata are steeply tilted to the south. Along the western end of the fault zone in northern Boqueron Bay, the older strata are only tilted 3° south and are covered by flat lying Holocene sediments. Focal mechanisms solutions along the western end suggest NW-SE shortening, which is inconsistent with left lateral strain partitioning along the fault zone. The limited deformation of older strata and inconsistent strain partitioning may be explained by a westerly propagation of the fault system from the southwest end. The limited geomorphic structural expression along the North Boqueron Bay Fault segment could also be because most of the displacement along the fault zone is older than the Holocene and that the rate of displacement is low, such that the development of fault escarpments and deformation all along the fault zone has yet to occur.
NASA Astrophysics Data System (ADS)
Shan, B.; Xiong, X.; Zheng, Y.
2009-12-01
The Xianshuihe-Xiaojiang fault system (XXFS) in southwestern China is a curved left-lateral strike-slip structure extending at least 1400 km in the eastern margin of the Tibetan Plateau. Fieldworks confirm that the XXFS, whose slip motion releases strain that is related to the convergence between the Indian and Eurasian plates, is one of the largest and most seismically active faults in China. The entire fault has experienced at least 35 earthquakes of M>6 since 1700, and almost all segments of the system have been the locus of major earthquakes within the historic record. Since the XXFS region is heavily populated (over 50 million people), understanding the distribution of large earthquakes in space and time in this region is crucial for improving forecasting and reducing catastrophic life and monetary losses. We investigated a sequence of twenty-five earthquakes (M≥6.5) that occurred along the XXFS since 1713, and the interaction between the historical earthquakes and the Mw7.9 Wenchuan earthquake occurred on the Longmenshan Fault last year. The layered model used in the study and relevant parameters were constrained by seismic studies. Fault rupture locations and geometries, as well as slip distributions of earthquakes were taken from field observations and seismic studies. Numerical results showed a good correlation between stress transfer, accumulation and earthquakes. Fourteen of the twenty-four earthquakes occurred after the 1713 Xundian were encouraged by the preceding earthquakes with positive stress loading. Three events occurred in the stress shadow induced by preceding events. And others occurred in the probable area with Coulomb stress increment. The triggering process on the fault zone may exist. According to our results, there are three visible earthquake gaps along the fault zone, which are consistent with the results of historical earthquake study. The seismic activity and tectonic motion on XXFS reduced the shear stress on the epicenter of M8.0 Wenchuan earthquake, but increased the normal stress, encouraging the occurrence of Wenchuan earthquake. On the other hand, the Coulomb failure stress, induced by the Wenchuan earthquake, increased in a region of 100-km-long segment north of Kangding, and the post-seismic influence is insignificant in the coming 50 yrs.
Transportations Systems Modeling and Applications in Earthquake Engineering
2010-07-01
49 Figure 6 PGA map of a M7.7 earthquake on all three New Madrid fault segments (g)............... 50...Memphis, Tennessee. The NMSZ was responsible for the devastating 1811-1812 New Madrid earthquakes , the largest earthquakes ever recorded in the...Figure 6 PGA map of a M7.7 earthquake on all three New Madrid fault segments (g) Table 1 Fragility parameters for MSC steel bridge (Padgett 2007
NASA Astrophysics Data System (ADS)
d'Acremont, Elia; Leroy, Sylvie; Maia, Marcia; Gente, Pascal; Autin, Julia
2010-02-01
The rifting between Arabia and Somalia, which started around 35 Ma, was followed by oceanic accretion from at least 17.6 Ma leading to the formation of the present-day Gulf of Aden. Bathymetric, gravity and magnetic data from the Encens-Sheba cruise are used to constrain the structure and segmentation of the oceanic basin separating the conjugate continental margins in the eastern part of the Gulf of Aden between 51°E and 55.5°E. Data analysis reveals that the oceanic domain along this ridge section is divided into two distinct areas. The Eastern area is characterized by a shorter wavelength variation of the axial segmentation and an extremely thin oceanic crust. In the western segment, a thicker oceanic crust suggests a high melt supply. This supply is probably due to an off-axis melting anomaly located below the southern flank of the Sheba ridge, 75 km east of the major Alula-Fartak transform fault. This suggests that the axial morphology is produced by a combination of factors, including spreading rate, melt supply and the edge effect of the Alula-Fartak transform fault, as well as the proximity of the continental margin. The oceanic domains have undergone two distinct phases of accretion since the onset of seafloor spreading, with a shift around 11 Ma. At that time, the ridge jumped southwards, in response to the melting anomaly. Propagating ridges were triggered by the melting activity, and propagated both eastward and westward. The influence of the melting anomaly on the ridges decreased, stopping their propagation since less than 9 Ma. From that time up to the present, the N025°E-trending Socotra transform fault developed in association with the formation of the N115°E-trending segment #2. In recent times, a counter-clockwise rotation of the stress field associated with kinematic changes could explain the structural morphology of the Alula-Fartak and Socotra-Hadbeen fracture zones.
Active tectonics of the northern Mojave Desert: The 2017 Desert Symposium field trip road log
Miller, David; Reynolds, R.E.; Phelps, Geoffrey; Honke, Jeff; Cyr, Andrew J.; Buesch, David C.; Schmidt, Kevin M.; Losson, G.
2017-01-01
The 2017 Desert Symposium field trip will highlight recent work by the U.S. Geological Survey geologists and geophysicists, who have been mapping young sediment and geomorphology associated with active tectonic features in the least well-known part of the eastern California Shear Zone (ECSZ). This area, stretching from Barstow eastward in a giant arc to end near the Granite Mountains on the south and the Avawatz Mountains on the north (Fig. 1-1), encompasses the two major structural components of the ECSZ—east-striking sinistral faults and northwest-striking dextral faults—as well as reverseoblique and normal-oblique faults that are associated with topographic highs and sags, respectively. In addition, folds and stepovers (both restraining stepovers that form pop-up structures and releasing stepovers that create narrow basins) have been identified. The ECSZ is a segment in the ‘soft’ distributed deformation of the North American plate east of the San Andreas fault (Fig. 1-1), where it takes up approximately 20-25% of plate motion in a broad zone of right-lateral shear (Sauber et al., 1994) The ECSZ (sensu strictu) begins in the Joshua Tree area and passes north through the Mojave Desert, past the Owens Valley-to-Death Valley swath and northward, where it is termed the Walker Lane. It has been defined as the locus of active faulting (Dokka and Travis, 1990), but when the full history from about 10 Ma forward is considered, it lies in a broader zone of right shear that passes westward in the Mojave Desert to the San Andreas fault (Mojave strike-slip province of Miller and Yount, 2002) and passes eastward to the Nevada state line or beyond (Miller, this volume).We will visit several accessible highlights for newly studied faults, signs of young deformation, and packages of syntectonic sediments. These pieces of a complex active tectonic puzzle have yielded some answers to longstanding questions such as: How is fault slip transfer in this area accommodated between northwest-striking dextral faults and eaststriking sinistral faults?How is active deformation on the Ludlow fault transferred northward, presumably to connect to the southern Death Valley fault zone?When were faults in this area of the central Mojave Desert initiated?Are faults in this area more or less active than faults in the ECSZ to the west?What is the role of NNW-striking faults and when did they form?How has fault slip changed over time? Locations and fault names are provided in figure 1-2. Important turns and locations are identified with locations in the projection: UTM, zone 11; datum NAD 83: (578530 3917335).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doser, D.I.
1993-04-01
Source parameters determined from the body waveform modeling of large (M [>=] 5.5) historic earthquakes occurring between 1915 and 1956 along the San Jacinto and Imperial fault zones of southern California and the Cerro Prieto, Tres Hermanas and San Miguel fault zones of Baja California have been combined with information from post-1960's events to study regional variations in source parameters. The results suggest that large earthquakes along the relatively young San Miguel and Tres Hermanas fault zones have complex rupture histories, small source dimensions (< 25 km), high stress drops (60 bar average), and a high incidence of foreshock activity.more » This may be a reflection of the rough, highly segmented nature of the young faults. In contrast, Imperial-Cerro Prieto events of similar magnitude have low stress drops (16 bar average) and longer rupture lengths (42 km average), reflecting rupture along older, smoother fault planes. Events along the San Jacinto fault zone appear to lie in between these two groups. These results suggest a relationship between the structural and seismological properties of strike-slip faults that should be considered during seismic risk studies.« less
NASA Astrophysics Data System (ADS)
Matrau, Rémi; Klinger, Yann; Van der Woerd, Jérôme; Liu-Zeng, Jing; Li, Zhanfei; Xu, Xiwei
2017-04-01
Late Quaternary slip rate determination by CRN dating on the Haiyuan fault, China, and implication for complex geometry fault systems Matrau Rémi, Klinger Yann, Van der Woerd Jérôme, Liu-Zeng Jing, Li Zhanfei, Xu Xiwei The Haiyuan fault in Gansu Province, China, is a major left-lateral strike-slip fault forming the northeastern boundary of the Tibetan plateau and accommodating part of the deformation from the India-Asia collision. Geomorphic and geodetic studies of the Haiyuan fault show slip rates ranging from 4 mm/yr to 19 mm/yr from east to west along 500 km of the fault. Such discrepancy could be explained by the complex geometry of the fault system, leading to slip distribution on multiple branches. Combining displacement measurements of alluvial terraces from high-resolution Pléiades images and 10Be - 26Al cosmogenic radionuclides (CRN) dating, we bracket the late Quaternary slip rate along the Hasi Shan fault segment (37°00' N, 104°25' E). At our calibration site, terrace riser offsets for 5 terraces ranging from 6 m to 227 m and CRN ages ranging from 6.5±0.6 kyr to 41±4 kyr - yield geological left-lateral slip rates from 2.0 mm/yr to 4.4 mm/yr. We measured consistent terrace riser offset values along the entire 25 km-long segment, which suggests that some external forcing controls the regional river-terrace emplacement, regardless of each specific catchment. Hence, we extend our slip rate determination to the entire Hasi Shan fault segment to be 4.0±1.0 mm/yr since the last 40 kyr. This rate is consistent with other long-term rates of 4 mm/yr to 5 mm/yr east and west of Hasi Shan - as well as geodetic rates of 4 mm/yr to 6 mm/yr west of Hasi Shan. However, Holocene terraces and moraines offsets have suggested higher rates of 15 to 20 mm/yr further west. Such disparate rates may be explained by slip distribution on multiple branches. In particular, the Zhongwei fault splay in the central part of the Haiyuan fault, with a slip rate of 4-5 mm/yr could partly explain the faster rates on the western single stranded Haiyuan fault. In addition we constrained 0.55±0.1 mm/yr of uplift rate along the Hasi Shan, where the fault strike veers southward, indicating slip partitioning. Our slip rate along the Hasi Shan segment is consistent with most of the long-term and short-term slip rates ( 5 mm/yr) measured along the central and eastern parts of the Haiyuan fault. However the discrepancy with other studies to the west highlights the major implication of complex geometries on the slip distribution over large fault systems.
Slip and Dilation Tendency Analysis of the Salt Wells Geothermal Area
Faulds, James E.
2013-12-31
Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the Salt Wells geothermal field was calculated based on the faults mapped in the Bunejug Mountains quadrangle (Hinz et al., 2011). The Salt Wells area lies in the Basin and Range Province (N. Hinz personal comm.) As such we applied a normal faulting stress regime to the Salt Wells area faults, with a minimum horizontal stress direction oriented 105, based on inspection of local and regional stress determinations. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. Several such faults intersect in high density in the core of the accommodation zone in the Bunejug Mountains and local to the Salt Wells geothermal .
Slip and Dilation Tendency Anlysis of McGinness Hills Geothermal Area
Faulds, James E.
2013-12-31
Slip and Dilation Tendency in focus areas Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the McGinness Hills geothermal field was calculated based on the faults mapped McGinness Hills area (Siler 2012, unpublished). The McGinness Hills area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the McGinness area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. The McGinness Hills geothermal system is characterized by a left-step in a north-northeast striking west-dipping fault system wit...
NASA Astrophysics Data System (ADS)
Shabanian, Esmaeil; Bellier, Olivier; Siame, Lionel L.; Abbassi, Mohammad R.; Leanni, Laetitia; Braucher, Régis; Farbod, Yassaman; Bourlès, Didier L.
2010-05-01
In northeast Iran, the Binalud Mountains accommodate part of active convergence between the Arabian and Eurasian plates. This fault-bounded mountain range has been considered a key region to describe Quaternary deformations at the northeastern boundary of the Arabia-Eurasia collision. But, the lack of knowledge on active faulting hampered evaluating the geological reliability of tectonic models describing the kinematics of deformation in northeast Iran. Morphotectonic investigations along both sides of the Binalud Mountains allowed us to characterize the structural and active faulting patterns along the Neyshabur and Mashhad fault systems on the southwest and northeast sides of the mountain range, respectively. We applied combined approaches of morphotectonic analyses based on satellite imageries (SPOT5 and Landsat ETM+), STRM and site-scale digital topographic data, and field surveys complemented with in situ-produced 10Be exposure dating to determine the kinematics and rate of active faulting. Three regional episodes of alluvial surface abandonments were dated at 5.3±1.1 kyr (Q1), 94±5 kyr (Q3), and 200±14 kyr (S3). The geomorphic reconstruction of both vertical and right-lateral fault offsets postdating these surface abandonment episodes yielded Quaternary fault slip rates on both sides of the Binalud Mountains. On the Neyshabur Fault System, thanks to geomorphic reconstructions of cumulative offsets recorded by Q3 fan surfaces, slip rates of 2.7±0.8 mm/yr and 2.4±0.2 mm/yr are estimated for right-lateral and reverse components of active faulting, respectively. Those indicate a total slip rate of 3.6±1.2 mm/yr for the late Quaternary deformation on the southwest flank of the Binalud Mountains. Reconstructing the cumulative right-lateral offset recorded by S3 surfaces, a middle-late Quaternary slip rate of 1.6±0.1 mm/yr is determined for the Mashhad Fault System. Altogether, our geomorphic observations reveal that, on both sides of the Binalud Mountains, the relative motion between central Iran and Eurasia is partly taken-up by dextral-reverse oblique-slip faulting along the Neyshabur and Mashhad fault systems. This faulting mechanism implies a long-term rate of ~4 mm/yr for the range-parallel strike-slip faulting, and an uplift rate of ~2.4 mm/yr due to the range-normal shortening during late Quaternary. Our data provide the first geological constraints on the rate of active faulting on both sides of the Binalud Mountains, and allow us to examine the geological reliability of preexisting tectonic models proposed to describe the kinematics of active deformation at the northeastern boundary of the Arabia-Eurasia collision. Our results favor the northward translation of central Iran with respect to Eurasia through strike-slip faulting localized along distinct crustal scale fault systems rather than systematic block rotations around vertical axes.
NASA Astrophysics Data System (ADS)
Gkarlaouni, Charikleia; Andreani, Louis; Pennos, Chris; Gloaguen, Richard; Papadimitriou, Eleftheria; Kilias, Adamantios; Michail, Maria
2014-05-01
In Greek mainland, active extensional deformation resulted in the development of numerous seismogenic E- to SE-trending basins. The Mygdonia graben located in central Macedonia produced major historical earthquakes and poses a serious threat to the neighbouring city of Thessaloniki. Our aim is to determine which active seismic sources have the potential to generate strong events. Active tectonics shape the landscape, control the evolution of the fluvial network and cause the occurrence of strong and frequent earthquakes generated by fault populations. Thus, our approach combined both seismology and remote-sensed geomorphology. Seismological investigation and more especially relocation analysis was performed for recent seismicity in the area (2000-2012). Low magnitude earthquakes not exceeding 4.8 constitute the seismicity pattern for this period. Accurately determined focal parameters indicate that seismicity is not only localized along major fault zones. Smaller faults seem also to be activated. Temporal and spatial investigation show that seismicity is clustered and seismic bursts often migrate to adjacent faults. The hypocentral distribution of precisely determined microearthquake foci reveals the existence of high-angle (> 60º) normal faults dipping both south and north. This is consistent with fault plane solutions of stronger earthquakes. The largest amount of earthquakes is generated along the NW-SE sub-basin bounded from "Assiros-Analipsi" and "Lagina" fault zone, as well as in "Sochos" fault in the north which dips with approximately 70º-80º to the south. All these structures played an important role in the seismotectonic evolution of the area. We used geomorphic indices in order to analyse the landscapes of the Mygdonia region. Geomorphic indices were derived from DEM and computed using MATLAB scripts. We classified the landscapes according to their erosional stages using hypsometric integral and surface roughness. Both indices suggest stronger erosion along the southern flank of the Mygdonia graben. Observed differences may be related to a diachronic evolution. River profiles crossing the Thessaloniki-Gerakarou fault system (TGFS) south of the Mygdonia basin display anomalies such as knickpoints or convex segments. These anomalies reflect significant changes in river base-levels possibly triggered by uplift/subsidence processes. We also computed the normalized steepness index (ksn) for concave segments in rivers. We observe an increase of ksn values towards the south while the lithology remains almost constant. These changes in ksn values may be thus related to an increase in deformation rates along the southern TGFS. Our geomorphic analysis also highlighted several flat paleo-surfaces located on top of main ranges at elevations comprised between 300 and 450m above the basin infill. Finally, we produced thematic maps combining present-day seismicity, historical earthquakes and geomorphic features derived from DEM. The combined use of both seismology and remote-sensed geomorphology allowed us to better understand the at-depth and surface expressions of active structures within the Mygdonia basin. It also provided further insights into the tectonic evolution of the study area. This project is funded by the German Academic Exchange Service (DAAD) and the Greek State Scholarschips Foundation (IKY) under the IKYDA initiative.
Berger, B.R.; Tingley, J.V.; Drew, L.J.
2003-01-01
Bonanza-grade orebodies in epithermal-style mineral deposits characteristically occur as discrete zones within spatially more extensive fault and/or fracture systems. Empirically, the segregation of such systems into compartments of higher and lower permeability appears to be a key process necessary for high-grade ore formation and, most commonly, it is such concentrations of metals that make an epithermal vein district world class. In the world-class silver- and gold-producing Comstock mining district, Nevada, several lines of evidence lead to the conclusion that the Comstock lode is localized in an extensional stepover between right-lateral fault zones. This evidence includes fault geometries, kinematic indicators of slip, the hydraulic connectivity of faults as demonstrated by veins and dikes along faults, and the opening of a normal-fault-bounded, asymmetric basin between two parallel and overlapping northwest-striking, lateral- to lateral-oblique-slip fault zones. During basin opening, thick, generally subeconomic, banded quartz-adularia veins were deposited in the normal fault zone, the Comstock fault, and along one of the bounding lateral fault zones, the Silver City fault. As deformation continued, the intrusion of dikes and small plugs into the hanging wall of the Comstock fault zone may have impeded the ability of the stepover to accommodate displacement on the bounding strike-slip faults through extension within the stepover. A transient period of transpressional deformation of the Comstock fault zone ensued, and the early-stage veins were deformed through boudinaging and hydraulic fragmentation, fault-motion inversion, and high- and low-angle axial rotations of segments of the fault planes and some fault-bounded wedges. This deformation led to the formation of spatially restricted compartments of high vertical permeability and hydraulic connectivity and low lateral hydraulic connectivity. Bonanza orebodies were formed in the compartmentalized zones of high permeability and hydraulic connectivity. As heat flow and related hydrothermal activitv waned along the Comstock fault zone, extension was reactivated in the stepover along the Occidental zone of normal faults east of the Comstock fault zone. Volcanic and related intrusive activity in this part of the stepover led to a new episode of hydrothermal activity and formation of the Occidental lodes.
Earthquake geology of Kashmir Basin and its implications for future large earthquakes
NASA Astrophysics Data System (ADS)
Shah, A. A.
2013-09-01
Two major traces of active thrust faults were identified in the Kashmir Basin (KB) using satellite images and by mapping active geomorphic features. The ~N130°E strike of the mapped thrust faults is consistent with the regional ~NE-SW convergence along the Indian-Eurasian collision zone. The ~NE dipping thrust faults have uplifted the young alluvial fan surfaces at the SW side of the KB. This created a major tectono-geomorphic boundary along the entire strike length of the KB that is characterised by (1) a low relief with sediment-filled sluggish streams to the SE and (2) an uplifted region, with actively flowing streams to the SW. The overall tectono-geomorphic expression suggests that recent activity along these faults has tilted the entire Kashmir valley towards NE. Further, the Mw 7.6 earthquake, which struck Northern Pakistan and Kashmir on 8 October 2005, also suggests a similar strike and NE dipping fault plane, which could indicate that the KB fault is continuous over a distance of ~210 km and connects on the west with the Balakot Bagh fault. However, the geomorphic and the structural evidences of such a structure are not very apparent on the north-west, which thus suggest that it is not a contiguous structure with the Balakot Bagh fault. Therefore, it is more likely that the KB fault is an independent thrust, a possible ramp on the Main Himalayan Thrust, which has uplifting the SW portion of the KB and drowning everything to the NE (e.g. Madden et al. 2011). Furthermore, it seems very likely that the KB fault could be a right stepping segment of the Balakot Bagh fault, similar to Riasi Thrust, as proposed by Thakur et al. (2010). The earthquake magnitude is measured by estimating the fault rupture parameters (e.g. Wells and Coppersmith in Bull Seismol Soc Am 84:974-1002, 1994). Therefore, the total strike length of the mapped KB fault is ~120 km and by assuming a dip of 29° (Avouac et al. in Earth Planet Sci Lett 249:514-528, 2006) and a down-dip limit of 20 km, a Mw of 7.6 is possible on this fault.
NASA Astrophysics Data System (ADS)
Kamaruddin, Nur Aminuda; Saad, Rosli; Nordiana, M. M.; Azwin, I. N.
2015-04-01
The Great Sumatra Fault system was split into two sub-parallel lines or segments at the Northern Sumatra. This event is one of the impacts of powerful earthquakes that hit Sumatra Island especially one that occurred in 2004. These two sub-parallel segments known as Aceh and Seulimeum fault. The study is focused on the Seulimeum fault and two geophysical methods chosen aimed to compare and verified the result obtained respectively. 2-D resistivity method is a common geophysical method used in determination of near surface structures such as faults, cavities, voids and sinkholes. Meanwhile, the magnetic method often chosen to delineate subsurface structures, determine depth of magnetic source bodies and possibly sediment thickness. Three survey lines of resistivity method and randomly magnetic stations were carried out covering Krueng district. The resistivity data processed using Res2Dinv and result presented using Surfer software. The fault identified by the contrast of low and high resistivity value. Meanwhile, the magnetic data were presented in magnetic residual contour map and the extended fault system is suspected represent by the contrast value of the magnetic anomalies. Within suspected fault zone, the results of resistivity are tally with magnetic result.
Paleoseismological History of the Acambay Graben (Central Mexico)
NASA Astrophysics Data System (ADS)
Lacan, P.; Zúñiga, R.; Ortuño, M.; Persaud, M.; Aguirre-Diaz, G. J.; Langridge, R. M.; Villamor, P.; Perea, H.; Štěpančíková, P.; Carreon, D.; Cerca, M.; Suñe Puchol, I.; Corominas Calvet, O.; Audin, L.; Baize, S.; Lawton, T. F.; Rendón, A.
2013-12-01
The Acambay graben is part of the Trans-Mexican Volcanic Belt (TMVB) which strikes ESE-WNW across central Mexico, where the major part of the Mexican population is concentrated. The TMVB is an active, calc-alkaline volcanic arc that is related to the subduction of the Rivera and Cocos plates underneath the North American plate. The TMVB contains a series of intra-arc basins that form the Chapala-Tula fault zone (450 km long, 50 km wide). One of these extensive basins, the Acambay graben, is 80 km long and 15 to 30 km wide. It is limited north by the E-W striking Epitacio-Huerta (EHF) and Acambay-Tixmadejé normal faults and south by the Venta de Bravo (VBF) and the Pastores faults (PF) in the south. Other minor active faults are located within the basin, along the axis of the Graben. In the area, the instrumental seismicity is low to moderate, although one major historical earthquake (Ms = 6.9 Acambay event) occurred on November 19, 1912, causing widespread damage. In the last decade, our group has focused on the neotectonic and paleoseismological study of the major faults of the Acambay graben. More than 30 trenches have been dug at 15 sites in order to interpret the paleoseismological history of 7 major faults of the graben. In addition to paleoseismological trench studies, tectonic geomorphology, subsurface geophysics and micro topographic surveys have been used to assess the rupture history. All of the studied faults have to be considered as active faults, with a minimum of 2 to 5 paleoseismic events on each fault during the last 20 ka. Each fault rupture corresponds to a vertical displacement ranging from 1 to 150 centimetres. Considering the size of the observed displacements and the length of active segments, we demonstrate that large earthquakes with magnitude higher than 7 have occurred along some of these faults. Based on paleoseismological results, we calculate a major earthquake recurrence interval ranging from 2,000 to 5,000 years over a time span (~20 ka). These recurrence values overpass the Mexican historical seismicity catalogue that incorporates no more than the last 500 years. This suggests that most of the faults of the TMVB may be active despite the lack of known historical destructive events and could be able to produce earthquakes with serious consequences in the most populated area of Mexico.
Zeng, Yuehua; Shen, Zheng-Kang
2017-01-01
We develop a crustal deformation model to determine fault‐slip rates for the western United States (WUS) using the Zeng and Shen (2014) method that is based on a combined inversion of Global Positioning System (GPS) velocities and geological slip‐rate constraints. The model consists of six blocks with boundaries aligned along major faults in California and the Cascadia subduction zone, which are represented as buried dislocations in the Earth. Faults distributed within blocks have their geometrical structure and locking depths specified by the Uniform California Earthquake Rupture Forecast, version 3 (UCERF3) and the 2008 U.S. Geological Survey National Seismic Hazard Map Project model. Faults slip beneath a predefined locking depth, except for a few segments where shallow creep is allowed. The slip rates are estimated using a least‐squares inversion. The model resolution analysis shows that the resulting model is influenced heavily by geologic input, which fits the UCERF3 geologic bounds on California B faults and ±one‐half of the geologic slip rates for most other WUS faults. The modeled slip rates for the WUS faults are consistent with the observed GPS velocity field. Our fit to these velocities is measured in terms of a normalized chi‐square, which is 6.5. This updated model fits the data better than most other geodetic‐based inversion models. Major discrepancies between well‐resolved GPS inversion rates and geologic‐consensus rates occur along some of the northern California A faults, the Mojave to San Bernardino segments of the San Andreas fault, the western Garlock fault, the southern segment of the Wasatch fault, and other faults. Off‐fault strain‐rate distributions are consistent with regional tectonics, with a total off‐fault moment rate of 7.2×1018">7.2×1018 and 8.5×1018 N·m/year">8.5×1018 N⋅m/year for California and the WUS outside California, respectively.
NASA Astrophysics Data System (ADS)
Sangha, Simran; Peltzer, Gilles; Zhang, Ailin; Meng, Lingsen; Liang, Cunren; Lundgren, Paul; Fielding, Eric
2017-03-01
Combining space-based geodetic and array seismology observations can provide detailed information about earthquake ruptures in remote regions. Here we use Landsat-8 imagery and ALOS-2 and Sentinel-1 radar interferometry data combined with data from the European seismology network to describe the source of the December 7, 2015, Mw7.2 Murghab (Tajikistan) earthquake. The earthquake reactivated a ∼79 km-long section of the Sarez-Karakul Fault, a NE oriented sinistral, trans-tensional fault in northern Pamir. Pixel offset data delineate the geometry of the surface break and line of sight ground shifts from two descending and three ascending interferograms constrain the fault dip and slip solution. Two right-stepping, NE-striking segments connected by a more easterly oriented segment, sub-vertical or steeply dipping to the west were involved. The solution shows two main patches of slip with up to 3.5 m of left lateral slip on the southern and central fault segments. The northern segment has a left-lateral and normal oblique slip of up to a meter. Back-projection of high-frequency seismic waves recorded by the European network, processed using the Multitaper-MUSIC approach, focuses sharply along the surface break. The time progression of the high-frequency radiators shows that, after a 10 second initiation phase at slow speed, the rupture progresses in 2 phases at super-shear velocity (∼4.3-5 km/s) separated by a 3 second interval of slower propagation corresponding to the passage through the restraining bend. The intensity of the high-frequency radiation reaches maxima during the initial and middle phases of slow propagation and is reduced by ∼50% during the super-shear phases of the propagation. These findings are consistent with studies of other strike-slip earthquakes in continental domain, showing the importance of fault geometric complexities in controlling the speed of fault propagation and related spatiotemporal pattern of the high-frequency radiation.
NASA Astrophysics Data System (ADS)
Levy, D. A.; Haproff, P. J.; Yin, A.
2016-12-01
Crustal-scale transtensional deformation is common in intracontinental extensional settings. However, along-strike variations in the geometry, kinematics, and linkages between rift-related faults, along with controls on local magmatic plumbing, remain inadequately examined. In this study, we conducted geologic mapping of active structures within central and northern Owens Valley of eastern California. C. Owens Valley features right-slip oblique deformation accommodated by three discrete north-south-trending faults: (1) the right-slip Owens Valley fault (OVF) and rift-bounding (2) Sierra Nevada Frontal fault (SNFF) and (3) the White-Inyo Mountains fault (WIMF). The OVF also serves as a lithospheric-scale, vertical conduit for asthenospheric-derived magma to migrate upwards and erupt at Big Pine Volcanic Field. Right-slip shear within C. Owens Valley is transferred to the SNFF of N. Owens Valley via the Poverty Hills restraining bend. In contrast to C. Owens Valley, the northern segment is dominated by distributed E-W to NE-SW-oriented extension, evidenced by normal fault scarps throughout Volcanic Tablelands and basin floor. Furthermore, the White Mountain fault which bounds N. Owens Valley to the east consists of a master west-dipping detachment fault that thinned the lithosphere, allowing for asthenospheric upwelling into the crust beneath the western rift shoulder. Subvertical, right-slip faults of the SNFF provide a conduit for magma to erupt on the surface throughout the Long Valley Caldera, Mono-Inyo Craters, and Mono Basin region. Our mapping demonstrates complex strain partitioning of discrete and distributed deformation within an alternating pure and simple shear, transtensional rift zone. Lastly, we present previously unknown relationships in Owens Valley between lithospheric-scale fault systems, seismic potential, and rift magmatism.
NASA Astrophysics Data System (ADS)
La Femina, P. C.; Geirsson, H.; Saballos, A.; Mattioli, G. S.
2017-12-01
A long-standing paradigm in plate tectonics is that oblique convergence results in strain partitioning and the formation of migrating fore-arc terranes accommodated on margin-parallel strike-slip faults within or in close proximity to active volcanic arcs (e.g., the Sumatran fault). Some convergent margins, however, are segmented by margin-normal faults and margin-parallel shear is accommodated by motion on these faults and by vertical axis block rotation. Furthermore, geologic and geophysical observations of active and extinct margins where strain partitioning has occurred, indicate the emplacement of magmas within the shear zones or extensional step-overs. Characterizing the mechanism of accommodation is important for understanding short-term (decadal) seismogenesis, and long-term (millions of years) fore-arc migration, and the formation of continental lithosphere. We investigate the geometry and kinematics of Quaternary faulting and magmatism along the Nicaraguan convergent margin, where historical upper crustal earthquakes have been located on margin-normal, strike-slip faults within the fore arc and arc. Using new GPS time series, other geophysical and geologic data, we: 1) determine the location of the maximum gradient in forearc motion; 2) estimate displacement rates on margin-normal faults; and 3) constrain the geometric moment rate for the fault system. We find that: 1) forearc motion is 11 mm a-1; 2) deformation is accommodated within the active volcanic arc; and 3) that margin-normal faults can have rates of 10 mm a-1 in agreement with geologic estimates from paleoseismology. The minimum geometric moment rate for the margin-normal fault system is 2.62x107 m3 yr-1, whereas the geometric moment rate for historical (1931-2006) earthquakes is 1.01x107 m3/yr. The discrepancy between fore-arc migration and historical seismicity may be due to aseismic accommodation of fore-arc motion by magmatic intrusion along north-trending volcanic alignments within the volcanic arc.
NASA Astrophysics Data System (ADS)
Yoshimi, M.; Matsushima, S.; Ando, R.; Miyake, H.; Imanishi, K.; Hayashida, T.; Takenaka, H.; Suzuki, H.; Matsuyama, H.
2017-12-01
We conducted strong ground motion prediction for the active Beppu-Haneyama Fault zone (BHFZ), Kyushu island, southwestern Japan. Since the BHFZ runs through Oita and Beppy cities, strong ground motion as well as fault displacement may affect much to the cities.We constructed a 3-dimensional velocity structure of a sedimentary basin, Beppu bay basin, where the fault zone runs through and Oita and Beppu cities are located. Minimum shear wave velocity of the 3d model is 500 m/s. Additional 1-d structure is modeled for sites with softer sediment: holocene plain area. We observed, collected, and compiled data obtained from microtremor surveys, ground motion observations, boreholes etc. phase velocity and H/V ratio. Finer structure of the Oita Plain is modeled, as 250m-mesh model, with empirical relation among N-value, lithology, depth and Vs, using borehole data, then validated with the phase velocity data obtained by the dense microtremor array observation (Yoshimi et al., 2016).Synthetic ground motion has been calculated with a hybrid technique composed of a stochastic Green's function method (for HF wave), a 3D finite difference (LF wave) and 1D amplification calculation. Fault geometry has been determined based on reflection surveys and active fault map. The rake angles are calculated with a dynamic rupture simulation considering three fault segments under a stress filed estimated from source mechanism of earthquakes around the faults (Ando et al., JpGU-AGU2017). Fault parameters such as the average stress drop, a size of asperity etc. are determined based on an empirical relation proposed by Irikura and Miyake (2001). As a result, strong ground motion stronger than 100 cm/s is predicted in the hanging wall side of the Oita plain.This work is supported by the Comprehensive Research on the Beppu-Haneyama Fault Zone funded by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan.
Seismicity associated with the Sumatra-Andaman Islands earthquake of 26 December 2004
Dewey, J.W.; Choy, G.; Presgrave, B.; Sipkin, S.; Tarr, A.C.; Benz, H.; Earle, P.; Wald, D.
2007-01-01
The U.S. Geological Survey/National Earthquake Information Center (USGS/ NEIC) had computed origins for 5000 earthquakes in the Sumatra-Andaman Islands region in the first 36 weeks after the Sumatra-Andaman Islands mainshock of 26 December 2004. The cataloging of earthquakes of mb (USGS) 5.1 and larger is essentially complete for the time period except for the first half-day following the 26 December mainshock, a period of about two hours following the Nias earthquake of 28 March 2005, and occasionally during the Andaman Sea swarm of 26-30 January 2005. Moderate and larger (mb ???5.5) aftershocks are absent from most of the deep interplate thrust faults of the segments of the Sumatra-Andaman Islands subduction zone on which the 26 December mainshock occurred, which probably reflects nearly complete release of elastic strain on the seismogenic interplate-thrust during the mainshock. An exceptional thrust-fault source offshore of Banda Aceh may represent a segment of the interplate thrust that was bypassed during the mainshock. The 26 December mainshock triggered a high level of aftershock activity near the axis of the Sunda trench and the leading edge of the overthrust Burma plate. Much near-trench activity is intraplate activity within the subducting plate, but some shallow-focus, near-trench, reverse-fault earthquakes may represent an unusual seismogenic release of interplate compressional stress near the tip of the overriding plate. The interplate-thrust Nias earthquake of 28 March 2005, in contrast to the 26 December aftershock sequence, was followed by many interplate-thrust aftershocks along the length of its inferred rupture zone.
NASA Astrophysics Data System (ADS)
Becel, A.; Shillington, D. J.; Nedimovic, M. R.; Keranen, K. M.; Li, J.; Webb, S. C.; Kuehn, H.
2013-12-01
Structure in the overriding plate is one of the parameters that may increase the tsunamigenic potential of a subduction zone but also influence the seismogenic behavior and segmentation of great earthquake rupture. The Alaska-Aleutian margin is characterized by along-strike changes in plate interface coupling over relatively small distances. Here, we present trench normal multichannel seismic (MCS) profiles acquired across the Shumagin gap that has not broken in many decades and appears to be weakly coupled. The high fold, deep penetration (636 channel, 8-km long streamer, 6600 cu.in airgun source) MCS data were acquired as part of the ALEUT project. This dataset gives us critical new constraints on the interplate boundary that can be traced over ~100 km distance beneath the forearc with high variation in its reflection response with depth. These profiles also reveal the detailed upper plate fault structure and forearc morphology. Clear reflections in the overriding plate appear to delineate one or more large faults that cross the shelf and the upper slope. These faults are observed 75 km back from the trench and seem to branch at depth and connect to the plate interface within this gap at ~11 s twtt. We compare the reflective structure of these faults to that of the plate boundary and examine where it intersects the megathrust with respect of the expected downdip limit of coupling. We also compare this major structure with the seismicity recorded in this sector. The imaged fault system is associated with a large deep basin (~6s twt) that is an inherited structure formed during the pre-Aleutian period. Basins faults appear to have accommodated primarily normal motion, although folding of sediments near the fault and complicated fault geometries in the shallow section may indicate that this fault has accommodated other types of motion during its history that may reflect the stress-state at the megathrust over time. The deformation within the youngest sediment also suggests also that this fault system might be still active. The coincident wide-angle seismic data coincident with one MCS profile allow the addition of more information about the deep P-wave velocity structure whereas the streamer tomography (Michaelson-Rotermund et al., this session) around the fault system add more detailed view into the complex structure in the shallow portions (upper 2km) of these structures showing a low velocity zone along one large fault suggesting that this fault is still active. These large-scale structures imaged in the overriding plate within the Shumagin gap are probably sufficiently profound to play a major role in the behavior of the megathrust in this area, segmentation of great earthquake rupture area, tsunami generation and may influence the frictional properties of the seismogenic zone at depth.
NASA Astrophysics Data System (ADS)
Marchandon, Mathilde; Vergnolle, Mathilde; Sudhaus, Henriette; Cavalié, Olivier
2018-02-01
In this study, we reestimate the source model of the 1997 Mw 7.2 Zirkuh earthquake (northeastern Iran) by jointly optimizing intermediate-field Interferometry Synthetic Aperture Radar data and near-field optical correlation data using a two-step fault modeling procedure. First, we estimate the geometry of the multisegmented Abiz fault using a genetic algorithm. Then, we discretize the fault segments into subfaults and invert the data to image the slip distribution on the fault. Our joint-data model, although similar to the Interferometry Synthetic Aperture Radar-based model to the first order, highlights differences in the fault dip and slip distribution. Our preferred model is ˜80° west dipping in the northern part of the fault, ˜75° east dipping in the southern part and shows three disconnected high slip zones separated by low slip zones. The low slip zones are located where the Abiz fault shows geometric complexities and where the aftershocks are located. We interpret this rough slip distribution as three asperities separated by geometrical barriers that impede the rupture propagation. Finally, no shallow slip deficit is found for the overall rupture except on the central segment where it could be due to off-fault deformation in quaternary deposits.
NASA Astrophysics Data System (ADS)
Ahmed, Abdulhakim; Doubre, Cécile; Leroy, Sylvie; Kassim, Mohamed; Keir, Derek; Abayazid, Ahmadine; Julie, Perrot; Laurence, Audin; Vergne, Jérome; Alexandre, Nercessian; Jacques, Eric; Khanbari, Khaled; Sholan, Jamal; Rolandone, Frédérique; Al-Ganad, Ismael
2016-05-01
In November 2010, intense seismic activity including 29 events with a magnitude above 5.0, started in the western part of the Gulf of Aden, where the structure of the oceanic spreading ridge is characterized by a series of N115°-trending slow-spreading segments set within an EW-trending rift. Using signals recorded by permanent and temporary networks in Djibouti and Yemen, we located 1122 earthquakes, with a magnitude ranging from 2.1 to 5.6 from 2010 November 1 to 2011 March 31. By looking in detail at the space-time distribution of the overall seismicity, and both the frequency and the moment tensor of large earthquakes, we re-examine the chronology of this episode. In addition, we also interpret the origin of the activity using high-resolution bathymetric data, as well as from observations of seafloor cable damage caused by high temperatures and lava flows. The analysis allows us to identify distinct active areas. First, we interpret that this episode is mainly related to a diking event along a specific ridge segment, located at E044°. In light of previous diking episodes in nearby subaerial rift segments, for which field constraints and both seismic and geodetic data exist, we interpret the space-time evolution of the seismicity of the first few days. Migration of earthquakes suggests initial magma ascent below the segment centre. This is followed by a southeastward dike propagation below the rift immediately followed by a northwestward dike propagation below the rift ending below the northern ridge wall. The cumulative seismic moment associated with this sequence reaches 9.1 × 1017 Nm, and taking into account a very low seismic versus geodetic moment, we estimate a horizontal opening of ˜0.58-2.9 m. The seismic activity that followed occurred through several bursts of earthquakes aligned along the segment axis, which are interpreted as short dike intrusions implying fast replenishment of the crustal magma reservoir feeding the dikes. Over the whole period, the opening is estimated to be ˜1.76-8.8 m across the segment. A striking feature of this episode is that the seismicity remained confined within one individual segment, whereas the adjacent en-echelon segments were totally quiescent, suggesting that the magma supply system of one segment is disconnected from those of the neighbouring segments. Second, we identify activity induced by the first intrusion with epicentres aligned along an N035°E-trending, ˜30 km long at the northwestern end of the active opening segment. This group encompasses more than seven earthquakes with magnitude larger than 5.0, and with strike-slip focal mechanisms consistent with the faults identified in the bathymetry and the structural pattern of the area. We propose that a transform fault is currently in formation which indicates an early stage of the ridge segmentation, at the locus of the trend change of the spreading ridge, which also corresponds to the boundary between a clear oceanic lithosphere and the zone of transform between continental and oceanic crust.
NASA Astrophysics Data System (ADS)
Nabavi, Seyed Tohid; Alavi, Seyed Ahmad; Mohammadi, Soheil; Ghassemi, Mohammad Reza
2018-01-01
The mechanical evolution of transpression zones affected by fault interactions is investigated by a 3D elasto-plastic mechanical model solved with the finite-element method. Ductile transpression between non-rigid walls implies an upward and lateral extrusion. The model results demonstrate that a, transpression zone evolves in a 3D strain field along non-coaxial strain paths. Distributed plastic strain, slip transfer, and maximum plastic strain occur within the transpression zone. Outside the transpression zone, fault slip is reduced because deformation is accommodated by distributed plastic shear. With progressive deformation, the σ3 axis (the minimum compressive stress) rotates within the transpression zone to form an oblique angle to the regional transport direction (∼9°-10°). The magnitude of displacement increases faster within the transpression zone than outside it. Rotation of the displacement vectors of oblique convergence with time suggests that transpression zone evolves toward an overall non-plane strain deformation. The slip decreases along fault segments and with increasing depth. This can be attributed to the accommodation of bulk shortening over adjacent fault segments. The model result shows an almost symmetrical domal uplift due to off-fault deformation, generating a doubly plunging fold and a 'positive flower' structure. Outside the overlap zone, expanding asymmetric basins subside to 'negative flower' structures on both sides of the transpression zone and are called 'transpressional basins'. Deflection at fault segments causes the fault dip fall to less than 90° (∼86-89°) near the surface (∼1.5 km). This results in a pure-shear-dominated, triclinic, and discontinuous heterogeneous flow of the transpression zone.
M≥7 Earthquake rupture forecast and time-dependent probability for the Sea of Marmara region, Turkey
Murru, Maura; Akinci, Aybige; Falcone, Guiseppe; Pucci, Stefano; Console, Rodolfo; Parsons, Thomas E.
2016-01-01
We forecast time-independent and time-dependent earthquake ruptures in the Marmara region of Turkey for the next 30 years using a new fault-segmentation model. We also augment time-dependent Brownian Passage Time (BPT) probability with static Coulomb stress changes (ΔCFF) from interacting faults. We calculate Mw > 6.5 probability from 26 individual fault sources in the Marmara region. We also consider a multisegment rupture model that allows higher-magnitude ruptures over some segments of the Northern branch of the North Anatolian Fault Zone (NNAF) beneath the Marmara Sea. A total of 10 different Mw=7.0 to Mw=8.0 multisegment ruptures are combined with the other regional faults at rates that balance the overall moment accumulation. We use Gaussian random distributions to treat parameter uncertainties (e.g., aperiodicity, maximum expected magnitude, slip rate, and consequently mean recurrence time) of the statistical distributions associated with each fault source. We then estimate uncertainties of the 30-year probability values for the next characteristic event obtained from three different models (Poisson, BPT, and BPT+ΔCFF) using a Monte Carlo procedure. The Gerede fault segment located at the eastern end of the Marmara region shows the highest 30-yr probability, with a Poisson value of 29%, and a time-dependent interaction probability of 48%. We find an aggregated 30-yr Poisson probability of M >7.3 earthquakes at Istanbul of 35%, which increases to 47% if time dependence and stress transfer are considered. We calculate a 2-fold probability gain (ratio time-dependent to time-independent) on the southern strands of the North Anatolian Fault Zone.
Fault segmentation and fluid flow in the Geneva Basin (France & Switzerland)
NASA Astrophysics Data System (ADS)
Cardello, Giovanni Luca; Lupi, Matteo; Makhloufi, Yasin; Do Couto, Damien; Clerc, Nicolas; Sartori, Mario; Samankassou, Elias; Moscariello, Andrea; Gorin, Georges; Meyer, Michel
2017-04-01
The Geneva Basin (GB) is an Oligo-Miocene siliciclastic basin tightened between the Alps and the southern Jura fold-and-thrust belt, whose carbonate reservoir is crossed by faults of uncertain continuity. In the frame of the geothermal exploration of the GB, the associated side risks, i.e., maximum expected earthquake magnitude, and the best suitable geothermal structures need to be determined. The outcropping relieves represent good field analogues of buried structures identified after seismo-stratigraphic analysis. In this frame, we review the regional tectonics to define the i) present-day setting, ii) fault properties and; iii) preferential paths for fluid flow. Field and geophysical data confirmed that during the late Oligocene-early Miocene the Molasse siliciclastic deposits progressively sealed the growing anticlines consisting of Mesozoic carbonates. Those are shaped by a series of fore- and back-thrusts, which we have identified also within the Molasse. As shortening is accommodated by bed-to-bed flexural-slip within shale-rich interlayers, usually having scarce hydraulic inter-connectivity, syn-kinematic mineralization massively concentrates instead within two strike-slip sets. The "wet" faults can be distinguished on the base of: orientation, amount of displacement and fabric. The first set (1) is constituted by left-lateral NNW-striking faults. The most remarkable of those, the Vuache Fault, is about 20 km long, determining a pop-up structure plunging to the SE. Minor structures, up to 5 km long, are the tear-faults dissecting the Salève antiform. In places, those are associated with brittle-ductile transition textures and crack-and-seal mineralization. Set (1) later evolved into discrete and still segmented faulting as it is traced by earthquakes nucleated at less than 5 km of depth (ML 5.3, Epagny 1996). The second set (2) is constituted by W/NW-striking right-lateral faults, up to 10 km long, associated in places with thick polyphase breccia. Cathodoluminescence analysis show that cataclasite mineralization from both the "wet" sets (1) and (2) show fluid evolution through time, possibly from more calcitic to dolomitic composition, testifying for fluids crossing the entire Meso-Cenozoic sequence. Two "dry" fault sets characterized by fault length up to 4 km and N- and NE-strike occur, as they are associated with tightly spaced (5-10 cm) open joints and karstic forms. Locally, a consistent transition from less to well-developed en échelon fracture sets can be recognized both at vertical (plan) and horizontal view. While the study of their arrangement at the plan view leads to a regional fault-evolution model, the horizontal view brings to a more general fault-evolution model in carbonates, where the coalescence of Mode-I veins is associated with larger amount of accumulated displacement. In both views, faulting is the result of strain localization and changing fluid circulation, accompanying the activity of progressively longer and mature faults. In conclusion, our observations show that: 1) faults are segmented in the basin as on the relieves, thus not providing structure capable of giving any earthquake significantly larger than the already measured ones; 2) NNW- and W/NW- striking systems are vein-rich and therefore "wet" whereas N- and NE-striking systems are "dry" although they may work with opposite fluid-flow vertical directivity.
Rupture distribution of the 1977 western Argentina earthquake
Langer, C.J.; Hartzell, S.
1996-01-01
Teleseismic P and SH body waves are used in a finite-fault, waveform inversion for the rupture history of the 23 November 1977 western Argentina earthquake. This double event consists of a smaller foreshock (M0 = 5.3 ?? 1026 dyn-cm) followed about 20 s later by a larger main shock (M0 = 1.5 ?? 1027 dyn-cm). Our analysis indicates that these two events occurred on different fault segments: with the foreshock having a strike, dip, and average rake of 345??, 45??E, and 50??, and the main shock 10??, 45??E, and 80??, respectively. The foreshock initiated at a depth of 17 km and propagated updip and to the north. The main shock initiated at the southern end of the foreshock zone at a depth of 25 to 30 km, and propagated updip and unilaterally to the south. The north-south separation of the centroids of the moment release for the foreshock and main shock is about 60 km. The apparent triggering of the main shock by the foreshock is similar to other earthquakes that have involved the failure of multiple fault segments, such as the 1992 Landers, California, earthquake. Such occurrences argue against the use of individual, mapped, surface fault or fault-segment lengths in the determination of the size and frequency of future earthquakes.
NASA Astrophysics Data System (ADS)
Quattrocchi, F.; Gallo, F.
2017-12-01
The paper review methodologically and historically - in the frame of seismo-geochemical studies in Italy and abroad to select the most "sensitive" sites along active faults, mostly where structural geology is not able to discover "blind" faults or complex fault crossing systems, with maximum fluids-faults interaction. The paper is highlighting the "site specific" case histories and processes helping in networks design, gathered in occasion of strong-moderate earthquakes, gas-burst or groundwater evolution in geothermal-hydrocarbons field during EU projects (i.e., Geochemical Seismic Zonation, 3F-Faults-Fractures-Fluids Corinth). Some concepts are highlighted based on gather experimental data in 25 years: - if the network is in soil gas is necessary a preliminary study on groundwater too, to understand the sectors of shallow aquifers, as "buffer" bodies, more prone to be oversaturated by geogas from depth; a preliminary grid should consider both the CO2-CH4-Rn fluxes, all gas concentrations and isotopes analyses (TDIC, CH4 CO2 , rare gas) case by case described here, mostly where the regional faults are crossing each other and where a carrier gas is acting i.e., CO2. It is very un-correct to install mono-parametric stations, i.e. only Radon to understand the real WRI processes. - if the network is in groundwater is very important a preliminary study before, during and after seismic sequences, to realize where the maximum anomalies (i.e., anomalous animal behavior, temperature increasing, geochemical anomalies, new gas relase) are and will be envisaged, as found for the Umbria-Marche border (the Colfiorito 1997-1998 and the 2016-2017 Norcia-Amatrice seismic sequences), where a deep pore-pressure dominated situation could be constrained by seismo-geochemistry, along "still silent" close fault segments too. if the network is in groundwater is very important a geochemical multidisciplinary approach to constrain the segment length and relative maximum magnitude.
NASA Astrophysics Data System (ADS)
Howe, M.; Moulik, P.; Seeber, L.; Kim, W.; Steckler, M. S.
2012-12-01
The Himalayan and the Burma Arcs converge onto the Indian plate from opposite sides near their syntaxial juncture and have reduced it to a sliver. Both geology and seismicity point to recent internal deformation and high seismogenic potential within this sliver. Large historical earthquakes, including the Great Indian earthquake of 1897 (Mw ~8.1), along with the recent seismicity, suggest that the cratonic blocks in the region are bounded by active faults. The most prominent is the E-W trending Dauki Fault, a deeply-rooted, north-dipping thrust fault, situated between the Shillong massif to the north and the Sylhet Basin to the south. Along the Burma Arc, the subducted seismogenic slab of the Indian plate is continuous north to the syntaxis. Yet the Naga and Tripura segments of the accretionary fold belt, respectively north and south of the easterly extrapolation of the Dauki fault, are distinct. Accretion has advanced far westward into the foredeep of the Dauki structure along the front of the Tripura segment, while it has remained stunted facing the uplifted Shillong massif along the Naga segment. Moreover, the Dauki topographic front can be traced eastwards across the Burma Arc separating the two segments. Recent earthquakes support the hypothesis that the Dauki convergence structure continues below the Burma accretionary belt. Using teleseismic and regional data from the deployment of a local network, we explore the interaction of the Dauki thrust fault with the Burma Arc subduction zone. Preliminary observations include: While seismicity is concentrated in the slab at the eastward extrapolation of the Dauki fault, shallow seismicity is diffuse and does not illuminate the Dauki fault itself. P-axes in moment-tensor solutions of earthquakes within the Indian plate tend to be directed N-S and are locally parallel to the India-Burma boundary, particularly in the slab. T-axes tend to be oriented E-W with a strong tendency to follow the slab down dip. This pattern is remarkably consistent, despite the scattered seismicity, and suggests that the stress in the Indian plate, including the subducted oceanic portion of the plate, is still primarily controlled by the Himalayan collision to the north and down-dip pull by the Burma slab. Moment tensor solutions for some of the shallow earthquakes along the fold belt are consistent with geodetic results, showing partitioning of the oblique India-Burma convergence between belt-parallel dextral faults and belt-normal shortening by thrust faults. Relocations of the events using the double-difference algorithm may provide additional constraints on the geometry of the slab. In addition to the analysis of teleseismic data, a network of six seismic stations was also installed in Bangladesh in the region surrounding Sylhet, south of the Shillong Plateau during 2007-2008. Over 200 regional and local events are detected and located by the Sylhet array. About a dozen events are large enough allowing us to determine focal depths and mechanisms that will augment the catalog of the teleseismic events, providing additional insights into the tectonics in the region.
NASA Astrophysics Data System (ADS)
Livers, A.; Han, L.; Delph, J. R.; White-Gaynor, A. L.; Petit, R.; Hole, J. A.; Stock, J. M.; Fuis, G. S.
2012-12-01
First-arrival refraction data were used to create a seismic velocity model of the upper crust across the actively rifting northern Imperial Valley and its margins. The densely sampled seismic refraction data were acquired by the Salton Seismic Imaging Project (SSIP) , which is investigating rift processes in the northern-most rift segment of the Gulf of California extensional province and earthquake hazards at the southern end of the San Andreas Fault system. A 95-km long seismic line was acquired across the northern Imperial Valley, through the Salton Sea geothermal field, parallel to the five Salton Butte volcanoes and perpendicular to the Brawley Seismic Zone and major strike-slip faults. Nineteen explosive shots were recorded with 100 m seismometer spacing across the valley and with 300-500 m spacing into the adjacent ranges. First-arrival travel times were picked from shot gathers along this line and a seismic velocity model was produced using tomographic inversion. Sedimentary basement and seismic basement in the valley are interpreted to be sediment metamorphosed by the very high heat flow. The velocity model shows that this basement to the west of the Brawley Seismic Zone is at ~4-km depth. The basement shallows to ~2-km depth in the active geothermal field and Salton Buttes volcanic field which locally coincide with the Brawley Seismic Zone. At the eastern edge of the geothermal field, the basement drops off again to ~3.5-km depth. The eastern edge of the valley appears to be fault bounded by the along-strike extension of the Sand Hills Fault, an inactive strike-slip fault. The seismic velocities to the east of the fault correspond to metamorphic rock of the Chocolate Mountains, different from the metamorphosed basement in the valley. The western edge of the valley appears to be fault bounded by the active Superstition Hills Fault. To the west of the valley, >4-km deep valley basement extends to the active Superstition Hills Fault. Basement then shallows westward towards exposures of granitic basement in the Superstition Mountains. The basin between the Superstition Mountains and Coyote Mountains is ~2 km deep.
Geodetic exploration of strain along the El Pilar Fault in northeastern Venezuela
NASA Astrophysics Data System (ADS)
Reinoza, C.; Jouanne, F.; Audemard, F. A.; Schmitz, M.; Beck, C.
2015-03-01
We use Global Navigation Satellite Systems observations in northeastern Venezuela to constrain the El Pilar Fault (EPF) kinematics and to explore the effects of the variable elastic properties of the surrounding medium and of the fault geometry on inferred slip rates and locking depth. The velocity field exhibits an asymmetric velocity gradient on either side of the EPF. We use five different approaches to explore possible models to explain this asymmetry. First, we infer a 1.6 km locking depth using a classic elastic half-space dislocation model. Second, we infer a 1.5 km locking depth and a 0.33 asymmetry coefficient using a heterogeneous asymmetric model, including contrasting material properties on either side of a vertical fault, suggesting that the igneous-metamorphic terranes on the northern side are ~2 times more rigid than the sedimentary southern side. Third, we use a three-dimensional elastostatic model to evaluate the presence of a compliant zone, suggesting a 30% reduction of rigidity in the upper 3 km at the depth of a 1 to 5 km wide fault zone. Fourth, we evaluate the distribution of fault slip, revealing a widespread partial creep pattern in the eastern upper segment, while the upper western segment exhibits a partially locked area, which coincides with the rupture surface of the 1797 and 1929 earthquakes. To supplement these models, we upgrade the previously published displacement simulation method using nonvertical dislocations with data acquired between 2003 and 2013. The localized aseismic displacement pattern associated with creeping or partially creeping fault segments could explain the low level of historic seismicity.
NASA Astrophysics Data System (ADS)
Adriano, Bruno; Fujii, Yushiro; Koshimura, Shunichi; Mas, Erick; Ruiz-Angulo, Angel; Estrada, Miguel
2018-01-01
On September 8, 2017 (UTC), a normal-fault earthquake occurred 87 km off the southeast coast of Mexico. This earthquake generated a tsunami that was recorded at coastal tide gauge and offshore buoy stations. First, we conducted a numerical tsunami simulation using a single-fault model to understand the tsunami characteristics near the rupture area, focusing on the nearby tide gauge stations. Second, the tsunami source of this event was estimated from inversion of tsunami waveforms recorded at six coastal stations and three buoys located in the deep ocean. Using the aftershock distribution within 1 day following the main shock, the fault plane orientation had a northeast dip direction (strike = 320°, dip = 77°, and rake =-92°). The results of the tsunami waveform inversion revealed that the fault area was 240 km × 90 km in size with most of the largest slip occurring on the middle and deepest segments of the fault. The maximum slip was 6.03 m from a 30 × 30 km2 segment that was 64.82 km deep at the center of the fault area. The estimated slip distribution showed that the main asperity was at the center of the fault area. The second asperity with an average slip of 5.5 m was found on the northwest-most segments. The estimated slip distribution yielded a seismic moment of 2.9 × 10^{21} Nm (Mw = 8.24), which was calculated assuming an average rigidity of 7× 10^{10} N/m2.
NASA Astrophysics Data System (ADS)
Holmes, J. J.; Driscoll, N. W.; Kent, G. M.
2016-12-01
The Inner California Borderlands (ICB) is situated off the coast of southern California and northern Baja. The structural and geomorphic characteristics of the area record a middle Oligocene transition from subduction to microplate capture along the California coast. Marine stratigraphic evidence shows large-scale extension and rotation overprinted by modern strike-slip deformation. Geodetic and geologic observations indicate that approximately 6-8 mm/yr of Pacific-North American relative plate motion is accommodated by offshore strike-slip faulting in the ICB. The farthest inshore fault system, the Newport-Inglewood Rose Canyon (NIRC) Fault is a dextral strike-slip system that is primarily offshore for approximately 120 km from San Diego to the San Joaquin Hills near Newport Beach, California. Based on trenching and well data, the NIRC Fault Holocene slip rate is 1.5-2.0 mm/yr to the south and 0.5-1.0 mm/yr along its northern extent. An earthquake rupturing the entire length of the system could produce an Mw 7.0 earthquake or larger. West of the main segments of the NIRC Fault is the San Onofre Trend (SOT) along the continental slope. Previous work concluded that this is part of a strike-slip system that eventually merges with the NIRC Fault. Others have interpreted this system as deformation associated with the Oceanside Blind Thrust fault purported to underlie most of the region. In late 2013, we acquired the first high-resolution 3D Parallel Cable (P-Cable) seismic surveys of the NIRC and SOT faults as part of the Southern California Regional Fault Mapping project aboard the R/V New Horizon. Analysis of these data volumes provides important new insights and constraints on the fault segmentation and transfer of deformation. Based on this new data, we've mapped several small fault strands associated with the SOT that appear to link up with a westward jog in right-lateral fault splays of the NIRC Fault on the shelf and then narrowly radiate southwards. Our observations are that these strands are strike-slip features associated with a dying splay of the NIRC system rather than compressional features associated with a regional thrust.
Beard, Sue; Campagna, David J.; Anderson, R. Ernest
2010-01-01
The Lake Mead fault system is a northeast-striking, 130-km-long zone of left-slip in the southeast Great Basin, active from before 16 Ma to Quaternary time. The northeast end of the Lake Mead fault system in the Virgin Mountains of southeast Nevada and northwest Arizona forms a partitioned strain field comprising kinematically linked northeast-striking left-lateral faults, north-striking normal faults, and northwest-striking right-lateral faults. Major faults bound large structural blocks whose internal strain reflects their position within a left step-over of the left-lateral faults. Two north-striking large-displacement normal faults, the Lakeside Mine segment of the South Virgin–White Hills detachment fault and the Piedmont fault, intersect the left step-over from the southwest and northeast, respectively. The left step-over in the Lake Mead fault system therefore corresponds to a right-step in the regional normal fault system.Within the left step-over, displacement transfer between the left-lateral faults and linked normal faults occurs near their junctions, where the left-lateral faults become oblique and normal fault displacement decreases away from the junction. Southward from the center of the step-over in the Virgin Mountains, down-to-the-west normal faults splay northward from left-lateral faults, whereas north and east of the center, down-to-the-east normal faults splay southward from left-lateral faults. Minimum slip is thus in the central part of the left step-over, between east-directed slip to the north and west-directed slip to the south. Attenuation faults parallel or subparallel to bedding cut Lower Paleozoic rocks and are inferred to be early structures that accommodated footwall uplift during the initial stages of extension.Fault-slip data indicate oblique extensional strain within the left step-over in the South Virgin Mountains, manifested as east-west extension; shortening is partitioned between vertical for extension-dominated structural blocks and south-directed for strike-slip faults. Strike-slip faults are oblique to the extension direction due to structural inheritance from NE-striking fabrics in Proterozoic crystalline basement rocks.We hypothesize that (1) during early phases of deformation oblique extension was partitioned to form east-west–extended domains bounded by left-lateral faults of the Lake Mead fault system, from ca. 16 to 14 Ma. (2) Beginning ca. 13 Ma, increased south-directed shortening impinged on the Virgin Mountains and forced uplift, faulting, and overturning along the north and west side of the Virgin Mountains. (3) By ca. 10 Ma, initiation of the younger Hen Spring to Hamblin Bay fault segment of the Lake Mead fault system accommodated westward tectonic escape, and the focus of south-directed shortening transferred to the western Lake Mead region. The shift from early partitioned oblique extension to south-directed shortening may have resulted from initiation of right-lateral shear of the eastern Walker Lane to the west coupled with left-lateral shear along the eastern margin of the Great Basin.
Quaternary crustal deformation along a major branch of the San Andreas fault in central California
Weber, G.E.; Lajoie, K.R.; Wehmiller, J.F.
1979-01-01
Deformed marine terraces and alluvial deposits record Quaternary crustal deformation along segments of a major, seismically active branch of the San Andreas fault which extends 190 km SSE roughly parallel to the California coastline from Bolinas Lagoon to the Point Sur area. Most of this complex fault zone lies offshore (mapped by others using acoustical techniques), but a 4-km segment (Seal Cove fault) near Half Moon Bay and a 26-km segment (San Gregorio fault) between San Gregorio and Point Ano Nuevo lie onshore. At Half Moon Bay, right-lateral slip and N-S horizontal compression are expressed by a broad, synclinal warp in the first (lowest: 125 ka?) and second marine terraces on the NE side of the Seal Cove fault. This structure plunges to the west at an oblique angle into the fault plane. Linear, joint0controlled stream courses draining the coastal uplands are deflected toward the topographic depression along the synclinal axis where they emerge from the hills to cross the lowest terrace. Streams crossing the downwarped part of this terrace adjacent to Half Moon Bay are depositing alluvial fans, whereas streams crossing the uplifted southern limb of the syncline southwest of the bay are deeply incised. Minimum crustal shortening across this syncline parallel to the fault is 0.7% over the past 125 ka, based on deformation of the shoreline angle of the first terrace. Between San Gregorio and Point Ano Nuevo the entire fault zone is 2.5-3.0 km wide and has three primary traces or zones of faulting consisting of numerous en-echelon and anastomozing secondary fault traces. Lateral discontinuities and variable deformation of well-preserved marine terrace sequences help define major structural blocks and document differential motions in this area and south to Santa Cruz. Vertical displacement occurs on all of the fault traces, but is small compared to horizontal displacement. Some blocks within the fault zone are intensely faulted and steeply tilted. One major block 0.8 km wide east of Point Ano Nuevo is downdropped as much as 20 m between two primary traces to form a graben presently filling with Holocene deposits. Where exposed in the sea cliff, these deposits are folded into a vertical attitude adjacent to the fault plane forming the south-west margin of the graben. Near Point Ano Nuevo sedimentary deposits and fault rubble beneath a secondary high-angle reverse fault record three and possibly six distinct offset events in the past 125 ka. The three primary fault traces offset in a right-lateral sense the shoreline angles of the two lowest terraces east of Point Ano Nuevo. The rates of displacement on the three traces are similar. The average rate of horizontal offset across the entire zone is between 0.63 and 1.30 cm/yr, based on an amino-acid age estimate of 125 ka for the first terrace, and a reasonable guess of 200-400 ka for the second terrace. Rates of this magnitude make up a significant part of the deficit between long-term relative plate motions (estimated by others to be about 6 cm/yr) and present displacement rates along other parts of the San Andreas fault system (about 3.2 cm/yr). Northwestward tilt and convergence of six marine terraces northeast of Ano Nuevo (southwest side of the fault zone) indicate continuous gentle warping associated with right-lateral displacement since early or middle Pleistocene time. Minimum local crustal shortening of this block parallel to the fault is 0.2% based on tilt of the highest terrace. Five major, evenly spaced terraces southeast of Ano Nuevo on the southwest flank of Mt. Ben Lomond (northeast side of the fault zone) rise to an elevation of 240 m, indicating relatively constant uplift (about 0.19 m/ka and southwestward tilt since Early or Middle Pleistocene time (Bradley and Griggs, 1976). ?? 1979.
NASA Astrophysics Data System (ADS)
Chartier, Thomas; Scotti, Oona; Lyon-Caen, Hélène; Boiselet, Aurélien
2017-10-01
Modeling the seismic potential of active faults is a fundamental step of probabilistic seismic hazard assessment (PSHA). An accurate estimation of the rate of earthquakes on the faults is necessary in order to obtain the probability of exceedance of a given ground motion. Most PSHA studies consider faults as independent structures and neglect the possibility of multiple faults or fault segments rupturing simultaneously (fault-to-fault, FtF, ruptures). The Uniform California Earthquake Rupture Forecast version 3 (UCERF-3) model takes into account this possibility by considering a system-level approach rather than an individual-fault-level approach using the geological, seismological and geodetical information to invert the earthquake rates. In many places of the world seismological and geodetical information along fault networks is often not well constrained. There is therefore a need to propose a methodology relying on geological information alone to compute earthquake rates of the faults in the network. In the proposed methodology, a simple distance criteria is used to define FtF ruptures and consider single faults or FtF ruptures as an aleatory uncertainty, similarly to UCERF-3. Rates of earthquakes on faults are then computed following two constraints: the magnitude frequency distribution (MFD) of earthquakes in the fault system as a whole must follow an a priori chosen shape and the rate of earthquakes on each fault is determined by the specific slip rate of each segment depending on the possible FtF ruptures. The modeled earthquake rates are then compared to the available independent data (geodetical, seismological and paleoseismological data) in order to weight different hypothesis explored in a logic tree.The methodology is tested on the western Corinth rift (WCR), Greece, where recent advancements have been made in the understanding of the geological slip rates of the complex network of normal faults which are accommodating the ˜ 15 mm yr-1 north-south extension. Modeling results show that geological, seismological and paleoseismological rates of earthquakes cannot be reconciled with only single-fault-rupture scenarios and require hypothesizing a large spectrum of possible FtF rupture sets. In order to fit the imposed regional Gutenberg-Richter (GR) MFD target, some of the slip along certain faults needs to be accommodated either with interseismic creep or as post-seismic processes. Furthermore, computed individual faults' MFDs differ depending on the position of each fault in the system and the possible FtF ruptures associated with the fault. Finally, a comparison of modeled earthquake rupture rates with those deduced from the regional and local earthquake catalog statistics and local paleoseismological data indicates a better fit with the FtF rupture set constructed with a distance criteria based on 5 km rather than 3 km, suggesting a high connectivity of faults in the WCR fault system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisses, Amy
A high-resolution CHIRP seismic survey of Pyramid Lake, Nevada, located within the northern Walker Lane Deformation Belt, was conducted in summer 2010. Seismic CHIRP data with submeter vertical accuracy, together with piston and gravity cores, were used to calculate Holocene vertical slip rates, relative earthquake timing, and produce the first complete fault map beneath the lake. More than 500 line-kilometers of CHIRP data imaged complex fault patterns throughout the basin. Fault architecture beneath Pyramid Lake highlights a polarity flip, where down-to-the west patterns of sedimentation near the dextral Pyramid Lake fault to the south give way to down-to-the-east geometries tomore » the north within a mostly normal (i.e., Lake Range fault) and transtensional environment. The Lake Range fault predominantly controls extensional deformation within the northern two-thirds of the basin and exhibits varying degrees of asymmetric tilting and divergence due to along-strike segmentation. This observation is likely a combination of fault segments splaying onshore moving the focus of extension away from the lake coupled with some true along-strike differences in slip-rate. The combination of normal and oblique-slip faults in the northern basin gives Pyramid Lake its distinctive “fanning open to the north” tectonic geometry. The dense network of oblique-slip faults in the northwestern region of the lake, in contrast to the well-defined Lake Range fault, are short and discontinuous in nature, and possible represent a nascent shear zone. Preliminary vertical slip-rates measured across the Lake Range and other faults provide new estimates on the extension across the Pyramid Lake basin. A minimum vertical slip rate of ~1.0 mm/yr is estimated along the Lake Range fault, which yields a potential earthquake magnitude range between M6.4 and M7.0. A rapid influx of sediment was deposited shortly after the end of the Tioga glaciation somewhere between 12.5 ka to 9.5 ka and provides a punctuated short-term record of little to no slip on the Lake Range fault. In contrast, for the past 9,500 years, the basin has experienced a decrease in sedimentation rate, but an escalation in earthquake activity on the Lake Range fault, with the potential of 3 or 4 major earthquakes assuming a characteristic offset of 2.5 m per event. Regionally, our CHIRP investigation helps to reveal how strain is partitioned along the boundary between the eastern edge of the Walker Lane Deformation Belt and the northwest Great Basin proper.« less
DuRoss, Christopher B.; Personius, Stephen F.; Crone, Anthony J.; McDonald, Greg N.; Briggs, Richard W.
2012-01-01
Of the five central segments of the Wasatch fault zone (WFZ) having evidence of recurrent Holocene surface-faulting earthquakes, the Brigham City segment (BCS) has the longest elapsed time since its most recent surface-faulting event (~2.1 kyr) compared to its mean recurrence time between events (~1.3 kyr). Thus, the BCS has the highest time-dependent earthquake probability of the central WFZ. We excavated trenches at three sites––the Kotter Canyon and Hansen Canyon sites on the north-central BCS and Pearsons Canyon site on the southern BCS––to determine whether a surface-faulting earthquake younger than 2.1 ka occurred on the BCS. Paleoseismic data for Hansen Canyon and Kotter Canyon confirm that the youngest earthquake on the north-central BCS occurred before 2 ka, consistent with previous north-central BCS investigations at Bowden Canyon and Box Elder Canyon. At Hansen Canyon, the most recent earthquake is constrained to 2.1–4.2 ka and had 0.6–2.5 m of vertical displacement. At Kotter Canyon, we found evidence for two events at 2.5 ± 0.3 ka and 3.5 ± 0.3 ka, with an average displacement per event of 1.9–2.3 m. Paleoseismic data from Pearsons Canyon, on the previously unstudied southern BCS, indicate that a post-2 ka earthquake ruptured this part of the segment. The Pearsons Canyon earthquake occurred at 1.2 ± 0.04 ka and had 0.1–0.8 m of vertical displacement, consistent with our observation of continuous, youthful scarps on the southern 9 km of the BCS having 1–2 m of late Holocene(?) surface offset. The 1.2-ka earthquake on the southern BCS likely represents rupture across the Weber–Brigham City segment boundary from the penultimate Weber-segment earthquake at about 1.1 ka. The Pearsons Canyon data result in a revised length of the BCS that has not ruptured since 2 ka (with time-dependent probability implications), and provide compelling evidence of at least one segment-boundary failure and multi-segment rupture on the central WFZ. Our paleoseismic investigations of the BCS clarify the timing, displacement, and extent of late Holocene earthquakes on the segment, and importantly, confirm the long elapsed time since the most recent earthquake on most of the BCS.
NASA Astrophysics Data System (ADS)
De Novellis, Vincenzo; Castaldo, Raffaele; Solaro, Giuseppe; De Luca, Claudio; Pepe, Susi; Bonano, Manuela; Casu, Francesco; Zinno, Ivana; Manunta, Michele; Lanari, Riccardo; Tizzani, Pietro
2016-04-01
A Mw 7.8 earthquake struck Nepal on 25 April 2015 at 06:11:26 UTC, killing more than 9,000 people, injuring more than 23,000 and producing extensive damages. The main seismic event, known as the Gorkha earthquake, had its epicenter localized at ~82 km NW of the Kathmandu city and the hypocenter at a depth of approximately 15 km. After the main shock event, about 100 aftershocks occurred during the following months, propagating toward the south-east direction; in particular, the most energetic shocks were the Mw 6.7 and Mw 7.3 occurred on 26 April and 12 May, respectively. In this study, we model the causative fault of the earthquake by jointly exploiting surface deformation retrieved by the DInSAR measurements collected through the Sentinel 1-A (S1A) space-borne sensor and the available geological, structural and seismological information. We first exploit the analytical solution performing a back-analysis of the ground deformation detected by the first co-seismic S1A interferogram, computed by exploiting the 17/04/2015 and 29/04/2015 SAR acquisitions and encompassing the main earthquake and some aftershocks, to search for the location and geometry of the fault plane. Starting from these findings and by benefiting from the available geological, structural and seismological data, we carry out a Finite Element (FE)-based 2D modelling of the causative fault, in order to evaluate the impact of the geological structures activated during the seismic event on the distribution of the ground deformation field. The obtained results show that the causative fault has a rather complex compressive structure, dipping northward, formed by segments with different dip angles: 6° the deep segment and 60° the shallower one. Therefore, although the hypocenters of the main shock and most of the more energetic aftershocks are located along the deeper plane, corresponding to a segment of the Main Himalayan Thrust (MHT), the FE solution also indicates the contribution of the shallower ramps, located in correspondence of the Main Boundary and Main Frontal Thrust zone, and that represent the lateral and frontal extent of a rupture along the MHT. This latter finding is supported by several studies, which report that MHT have been already seismically active along different segments characterized by clusters of moderate size earthquake occurred during recent times. Finally, our result, indicating a non-negligible slip along the steep segment of ramp structures, suggests that these structures could control the release of the seismic energy in the next large earthquakes in Central Himalaya. This study has been supported by the Italian Department of Civil Protection.
Post-caldera faulting of the Late Quaternary Menengai caldera, Central Kenya Rift (0.20°S, 36.07°E)
NASA Astrophysics Data System (ADS)
Riedl, Simon; Melnick, Daniel; Mibei, Geoffrey K.; Njue, Lucy; Strecker, Manfred R.
2015-04-01
A structural geological analysis of young caldera volcanoes is necessary to characterize their volcanic activity, assess their geothermal potential, and decipher the spatio-temporal relationships of faults on a larger tectonic scale. Menengai caldera is one of several major Quaternary trachytic caldera volcanoes that are aligned along the volcano-tectonic axis of the Kenya Rift, the archetypal active magmatic rift and nascent plate boundary between the Nubia and Somalia plates. The caldera covers an area of approximately 80 km² and is among the youngest and also largest calderas in the East African Rift, situated close to Nakuru - a densely populated urban area. There is an increasing interest in caldera volcanoes in the Kenya Rift, because these are sites of relatively young volcanic and tectonic activity, and they are considered important sites for geothermal exploration and future use for the generation of geothermal power. Previous studies of Menengai showed that the caldera collapsed in a multi-event, multiple-block style, possibly as early as 29 ka. In an attempt to characterize the youngest tectonic activity along the volcano-tectonic axis in the transition between the Central and Northern Kenya rifts we first used a high-resolution digital surface model, which we derived by structure-from-motion from an unmanned aerial vehicle campaign. This enabled us to identify previously unrecognized normal faults, associated dyke intrusions and volcanic eruptive centers, and transfer faults with strike-slip kinematics in the caldera interior and its vicinity. In a second step we verified these structures at outcrop scale, assessed their relationship with known stratigraphic horizons and dated units, and performed detailed fault measurements, which we subsequently used for fault-kinematic analysis. The most important structures that we mapped are a series of north-northeast striking normal faults, which cross-cut both the caldera walls and early Holocene lake shorelines outside the caldera. These faults have similar strikes as Pleistocene faults that define the left-stepping, north-northeast oriented segments of the volcano-tectonic axis of the inner trough of the Central Kenya Rift. In the center of the caldera, these faults are kinematically linked with oblique-slip and strike-slip transfer faults, similar to other sectors in the Central Kenya Rift. The structural setup of Menengai and the faults to the north and south of the eruptive center is thus compatible with tectono-magmatic activity in an oblique extensional tectonic regime, which reflects the tectonic and seismic activity along a nascent plate boundary.
Slater, L.E.; Burford, R.O.
1979-01-01
A comparison of creepmeter records from nine sites along a 12-km segment of the Calaveras fault near Hollister, California and long-baseline strain changes for nine lines in the Hollister multiwavelength distance-measuring (MWDM) array has established that episodes of large-scale deformation both preceded and accompanied periods of creep activity monitored along the fault trace during 1976. A concept of episodic, deep-seated aseismic slip that contributes to loading and subsequent aseismic failure of shallow parts of the fault plane seems attractive, implying that the character of aseismic slip sensed along the surface trace may be restricted to a relatively shallow (~ 1-km) region on the fault plane. Preliminary results from simple dislocation models designed to test the concept demonstrate that extending the time-histories and amplitudes of creep events sensed along the fault trace to depths of up to 10 km on the fault plane cannot simulate adequately the character and amplitudes of large-scale episodic movements observed at points more than 1 km from the fault. Properties of a 2-3-km-thick layer of unconsolidated sediments present in Hollister Valley, combined with an essentially rigid-block behavior in buried basement blocks, might be employed in the formulation of more appropriate models that could predict patterns of shallow fault creep and large-scale displacements much more like those actually observed. ?? 1979.
Extraction of fault component from abnormal sound in diesel engines using acoustic signals
NASA Astrophysics Data System (ADS)
Dayong, Ning; Changle, Sun; Yongjun, Gong; Zengmeng, Zhang; Jiaoyi, Hou
2016-06-01
In this paper a method for extracting fault components from abnormal acoustic signals and automatically diagnosing diesel engine faults is presented. The method named dislocation superimposed method (DSM) is based on the improved random decrement technique (IRDT), differential function (DF) and correlation analysis (CA). The aim of DSM is to linearly superpose multiple segments of abnormal acoustic signals because of the waveform similarity of faulty components. The method uses sample points at the beginning of time when abnormal sound appears as the starting position for each segment. In this study, the abnormal sound belonged to shocking faulty type; thus, the starting position searching method based on gradient variance was adopted. The coefficient of similar degree between two same sized signals is presented. By comparing with a similar degree, the extracted fault component could be judged automatically. The results show that this method is capable of accurately extracting the fault component from abnormal acoustic signals induced by faulty shocking type and the extracted component can be used to identify the fault type.
NASA Astrophysics Data System (ADS)
Holmes, J. J.; Driscoll, N. W.; Kent, G. M.; Bormann, J. M.; Harding, A. J.
2015-12-01
The Inner California Borderlands (ICB) is situated off the coast of southern California and northern Baja. The structural and geomorphic characteristics of the area record a middle Oligocene transition from subduction to microplate capture along the California coast. Marine stratigraphic evidence shows large-scale extension and rotation overprinted by modern strike-slip deformation. Geodetic and geologic observations indicate that approximately 6-8 mm/yr of Pacific-North American relative plate motion is accommodated by offshore strike-slip faulting in the ICB. The farthest inshore fault system, the Newport-Inglewood Rose Canyon (NIRC) fault complex is a dextral strike-slip system that extends primarily offshore approximately 120 km from San Diego to the San Joaquin Hills near Newport Beach, California. Based on trenching and well data, the NIRC fault system Holocene slip rate is 1.5-2.0 mm/yr to the south and 0.5-1.0 mm/yr along its northern extent. An earthquake rupturing the entire length of the system could produce an Mw 7.0 earthquake or larger. West of the main segments of the NIRC fault complex are the San Mateo and San Onofre fault trends along the continental slope. Previous work concluded that these were part of a strike-slip system that eventually merged with the NIRC complex. Others have interpreted these trends as deformation associated with the Oceanside Blind Thrust fault purported to underlie most of the region. In late 2013, we acquired the first high-resolution 3D P-Cable seismic surveys (3.125 m bin resolution) of the San Mateo and San Onofre trends as part of the Southern California Regional Fault Mapping project aboard the R/V New Horizon. Analysis of these volumes provides important new insights and constraints on the fault segmentation and transfer of deformation. Based on the new 3D sparker seismic data, our preferred interpretation for the San Mateo and San Onofre fault trends is they are transpressional features associated with westward jogs along right lateral fault strands splaying off the NIRC fault. Such a scenario also is consistent with observations from the 3D boomer volume along the shelf and upper slope that images westward stepping faults splaying off the NIRC system.
Schwartz, D.P.; Pantosti, D.; Okumura, K.; Powers, T.J.; Hamilton, J.C.
1998-01-01
Trenching, microgeomorphic mapping, and tree ring analysis provide information on timing of paleoearthquakes and behavior of the San Andreas fault in the Santa Cruz mountains. At the Grizzly Flat site alluvial units dated at 1640-1659 A.D., 1679-1894 A.D., 1668-1893 A.D., and the present ground surface are displaced by a single event. This was the 1906 surface rupture. Combined trench dates and tree ring analysis suggest that the penultimate event occurred in the mid-1600s, possibly in an interval as narrow as 1632-1659 A.D. There is no direct evidence in the trenches for the 1838 or 1865 earthquakes, which have been proposed as occurring on this part of the fault zone. In a minimum time of about 340 years only one large surface faulting event (1906) occurred at Grizzly Flat, in contrast to previous recurrence estimates of 95-110 years for the Santa Cruz mountains segment. Comparison with dates of the penultimate San Andreas earthquake at sites north of San Francisco suggests that the San Andreas fault between Point Arena and the Santa Cruz mountains may have failed either as a sequence of closely timed earthquakes on adjacent segments or as a single long rupture similar in length to the 1906 rupture around the mid-1600s. The 1906 coseismic geodetic slip and the late Holocene geologic slip rate on the San Francisco peninsula and southward are about 50-70% and 70% of their values north of San Francisco, respectively. The slip gradient along the 1906 rupture section of the San Andreas reflects partitioning of plate boundary slip onto the San Gregorio, Sargent, and other faults south of the Golden Gate. If a mid-1600s event ruptured the same section of the fault that failed in 1906, it supports the concept that long strike-slip faults can contain master rupture segments that repeat in both length and slip distribution. Recognition of a persistent slip rate gradient along the northern San Andreas fault and the concept of a master segment remove the requirement that lower slip sections of large events such as 1906 must fill in on a periodic basis with smaller and more frequent earthquakes.
Liu, Yang; Xu, Caijun; Wen, Yangmao; Fok, Hok Sum
2015-01-01
On 28 August 2009, the northern margin of the Qaidam basin in the Tibet Plateau was ruptured by an Mw 6.3 earthquake. This study utilizes the Envisat ASAR images from descending Track 319 and ascending Track 455 for capturing the coseismic deformation resulting from this event, indicating that the earthquake fault rupture does not reach to the earth’s surface. We then propose a four-segmented fault model to investigate the coseismic deformation by determining the fault parameters, followed by inverting slip distribution. The preferred fault model shows that the rupture depths for all four fault planes mainly range from 2.0 km to 7.5 km, comparatively shallower than previous results up to ~13 km, and that the slip distribution on the fault plane is complex, exhibiting three slip peaks with a maximum of 2.44 m at a depth between 4.1 km and 4.9 km. The inverted geodetic moment is 3.85 × 1018 Nm (Mw 6.36). The 2009 event may rupture from the northwest to the southeast unilaterally, reaching the maximum at the central segment. PMID:26184210
Liu, Yang; Xu, Caijun; Wen, Yangmao; Fok, Hok Sum
2015-07-10
On 28 August 2009, the northern margin of the Qaidam basin in the Tibet Plateau was ruptured by an Mw 6.3 earthquake. This study utilizes the Envisat ASAR images from descending Track 319 and ascending Track 455 for capturing the coseismic deformation resulting from this event, indicating that the earthquake fault rupture does not reach to the earth's surface. We then propose a four-segmented fault model to investigate the coseismic deformation by determining the fault parameters, followed by inverting slip distribution. The preferred fault model shows that the rupture depths for all four fault planes mainly range from 2.0 km to 7.5 km, comparatively shallower than previous results up to ~13 km, and that the slip distribution on the fault plane is complex, exhibiting three slip peaks with a maximum of 2.44 m at a depth between 4.1 km and 4.9 km. The inverted geodetic moment is 3.85 × 10(18) Nm (Mw 6.36). The 2009 event may rupture from the northwest to the southeast unilaterally, reaching the maximum at the central segment.
Barka, A.; Akyuz, H.S.; Altunel, E.; Sunal, G.; Cakir, Z.; Dikbas, A.; Yerli, B.; Armijo, R.; Meyer, B.; De Chabalier, J. B.; Rockwell, Thomas; Dolan, J.R.; Hartleb, R.; Dawson, Tim; Christofferson, S.; Tucker, A.; Fumal, T.; Langridge, Rob; Stenner, H.; Lettis, William; Bachhuber, J.; Page, W.
2002-01-01
The 17 August 1999 İzmit earthquake occurred on the northern strand of the North Anatolian fault zone. The earthquake is associated with a 145-km-long surface rupture that extends from southwest of Düzce in the east to west of Hersek delta in the west. Detailed mapping of the surface rupture shows that it consists of five segments separated by releasing step-overs; herein named the Hersek, Karamürsel-Gölcük, İzmit-Sapanca Lake, Sapanca-Akyazi, and Karadere segments from west to east, respectively. The Hersek segment, which cuts the tip of a large delta plain in the western end of the rupture zone, has an orientation of N80°. The N70°-80°E-trending Karamürsel-Gölcük segment extends along the linear southern coasts of the İzmit Gulf between Karamürsel and Gölcük and produced the 470-cm maximum displacement in Gölcük. The northwest-southeast-striking Gölcük normal fault between the Karamürsel-Gölcük and İzmit-Sapanca segments has 2.3-m maximum vertical displacement. The maximum dextral offset along the İzmit-Sapanca Lake segment was measured to be about 3.5 m, and its trend varies between N80°E and east-west. The Sapanca-Akyazi segment trends N75°-85°W and expresses a maximum displacement of 5.2 m. The Karadere segment trends N65°E and produced up to 1.5-m maximum displacement. The Karadere and Sapanca-Akyazi segments form fan-shape or splaying ruptures near their eastern ends where the displacement also diminished.
NASA Astrophysics Data System (ADS)
Malik, Javed N.; Naik, Sambit P.; Sahoo, Santiswarup; Okumura, Koji; Mohanty, Asmita
2017-09-01
The importance of understanding earthquake sources in India and Nepal was underscored by the disastrous 2015 earthquakes of 25 April Gorkha (Mw 7.8) and 12 May Kodari (Mw 7.3, aftershock) in Nepal. The Kumaon-Garhwal segment experienced strong earthquakes in CE 1505 and CE 1803, probably along the Himalayan Frontal Thrust (HFT). Of these, the CE 1505 was the greatest earthquake reported from the region in historical chronicles. However, no surface ruptures related to either of 1505 or 1803 have been identified from the Kumaon-Garhwal segment, and an ambiguity remained about their ruptures dispite recent reports of CE 1505 surface rupture in Western Nepal. We used high-resolution satellite (CARTOSAT-1) data for mapping active fault traces and carried out paleoseismic studies to identify paleo-earthquakes along the HFT. A trench excavated across the Kaladungi Fault (KF), a branching fault of HFT, revealed evidence of at least three earthquakes. Event I (the oldest) occurred between BCE 467 and CE 570; Event II occurred between CE 1294-1587. We infer that the Event II was the most likely historically-reported, great Himalayan earthquake of CE 1505. Event III occurred between CE 1750-1932, and may represent the large magnitude CE 1803 (7.5 > Mw < 8.0) earthquake. Our findings not only help in understanding the frontal fault dynamics, but also may aid seismic hazard evaluation in India and Nepal.
NASA Astrophysics Data System (ADS)
Possee, D.; Keir, D.; Harmon, N.; Rychert, C.; Rolandone, F.; Leroy, S. D.; Stuart, G. W.; Calais, E.; Boisson, D.; Ulysse, S. M. J.; Guerrier, K.; Momplaisir, R.; Prepetit, C.
2017-12-01
Oblique convergence of the Caribbean and North American plates has partitioned strain across an extensive transpressional fault system that bisects Haiti. Most recently the 2010, MW7.0 earthquake ruptured multiple thrust faults in southern Haiti. However, while the rupture mechanism has been well studied, how these faults are segmented and link to deformation across the plate boundary is still debated. Understanding the link between strain accumulation and faulting in Haiti is also key to future modelling of seismic hazards. To assess seismic activity and fault structures we used data from 31 broadband seismic stations deployed on Haiti for 16-months. Local earthquakes were recorded and hypocentre locations determined using a 1D velocity model. A high-quality subset of the data was then inverted using travel-time tomography for relocated hypocentres and 2D images of Vp and Vp/Vs crustal structure. Earthquake locations reveal two clusters of seismic activity, the first delineates faults associated with the 2010 earthquake and the second shows activity 100km further east along a thrust fault north of Lake Enriquillo (Dominican Republic). The velocity models show large variations in seismic properties across the plate boundary; shallow low-velocity zones with a 5-8% decrease in Vp and high Vp/Vs ratios of 1.85-1.95 correspond to sedimentary basins that form the low-lying terrain on Haiti. We also image a region with a 4-5% decrease in Vp and an increased Vp/Vs ratio of 1.80-1.85 dipping south to a depth of 20km beneath southern Haiti. This feature matches the location of a major thrust fault and suggests a substantial damage zone around this fault. Beneath northern Haiti a transition to lower Vp/Vs values of 1.70-1.75 reflects a compositional change from mafic facies such as the Caribbean large igneous province in the south, to arc magmatic facies associated with the Greater Antilles arc in the north. Our seismic images are consistent with the fault system across southern Haiti transitioning from a near vertical strike-slip fault in the west to a major south dipping oblique-slip fault in the east. Seismicity in southern Haiti broadly occurs on the thrust/oblique-slip faults. The results show evidence for significant variations in fault zone structure and kinematics along strike of a major transpressional plate boundary.
Long term fault system reorganization of convergent and strike-slip systems
NASA Astrophysics Data System (ADS)
Cooke, M. L.; McBeck, J.; Hatem, A. E.; Toeneboehn, K.; Beyer, J. L.
2017-12-01
Laboratory and numerical experiments representing deformation over many earthquake cycles demonstrate that fault evolution includes episodes of fault reorganization that optimize work on the fault system. Consequently, the mechanical and kinematic efficiencies of fault systems do not increase monotonically through their evolution. New fault configurations can optimize the external work required to accommodate deformation, suggesting that changes in system efficiency can drive fault reorganization. Laboratory evidence and numerical results show that fault reorganization within accretion, strike-slip and oblique convergent systems is associated with increasing efficiency due to increased fault slip (frictional work and seismic energy) and commensurate decreased off-fault deformation (internal work and work against gravity). Between episodes of fault reorganization, fault systems may become less efficient as they produce increasing off fault deformation. For example, laboratory and numerical experiments show that the interference and interaction between different fault segments may increase local internal work or that increasing convergence can increase work against gravity produced by a fault system. This accumulation of work triggers fault reorganization as stored work provides the energy required to grow new faults that reorganize the system to a more efficient configuration. The results of laboratory and numerical experiments reveal that we should expect crustal fault systems to reorganize following periods of increasing inefficiency, even in the absence of changes to the tectonic regime. In other words, fault reorganization doesn't require a change in tectonic loading. The time frame of fault reorganization depends on fault system configuration, strain rate and processes that relax stresses within the crust. For example, stress relaxation may keep pace with stress accumulation, which would limit the increase in the internal work and gravitational work so that irregularities can persist along active fault systems without reorganization of the fault system. Consequently, steady state behavior, for example with constant fault slip rates, may arise either in systems with high degree of stress-relaxation or occur only within the intervals between episodes of fault reorganization.
Armenia-To Trans-Boundary Fault: AN Example of International Cooperation in the Caucasus
NASA Astrophysics Data System (ADS)
Karakhanyan, A.; Avagyan, A.; Avanesyan, M.; Elashvili, M.; Godoladze, T.; Javakishvili, Z.; Korzhenkov, A.; Philip, S.; Vergino, E. S.
2012-12-01
Studies of a trans-boundary active fault that cuts through the border of Armenia to Georgia in the area of the Javakheti volcanic highland have been conducted since 2007. The studies have been implemented based on the ISTC 1418 and NATO SfP 983284 Projects. The Javakheti Fault is oriented to the north-northwest and consists of individual segments displaying clear left-stepping trend. Fault mechanism is represented by right-lateral strike-slip with normal-fault component. The fault formed distinct scarps, deforming young volcanic and glacial sediments. The maximum-size displacements are recorded in the central part of the fault and range up to 150-200 m by normal fault and 700-900 m by right-lateral strike-slip fault. On both flanks, fault scarps have younger appearance, and displacement size there decreases to tens of meters. Fault length is 80 km, suggesting that maximum fault magnitude is estimated at 7.3 according to the Wells and Coppersmith (1994) relation. Many minor earthquakes and a few stronger events (1088, Mw=6.4, 1899 Mw=6.4, 1912, Mw=6.4 and 1925, Mw=5.6) are associated with the fault. In 2011/2012, we conducted paleoseismological and archeoseismological studies of the fault. By two paleoseismological trenches were excavated in the central part of the fault, and on its northern and southern flanks. The trenches enabled recording at least three strong ancient earthquakes. Presently, results of radiocarbon age estimations of those events are expected. The Javakheti Fault may pose considerable seismic hazard for trans-boundary areas of Armenia and Georgia as its northern flank is located at the distance of 15 km from the Baku-Ceyhan pipeline.
NASA Astrophysics Data System (ADS)
Atekwana, E. A.
2010-12-01
The Okavango Rift Zone (ORZ) is suggested to be a zone of incipient continental rifting occuring at the distal end of the southwestern branch of the East African Rift System (EARS), therefore providing a unique opportunity to investigate neotectonic processes during the early stages of rifting. We used geophysical (aeromagnetic, magnetotelluric), Shuttle Radar Tomography Mission, Digital Elevation Model (SRTM-DEM), and sedimentological data to characterize the growth and propagation of faults associated with continental extension in the ORZ, and to elucidate the interplay between neotectonics and surficial processes. The results suggest that: (1) fault growth occurs by along axis linkage of fault segments, (2) an immature border fault is developing through the process of “Fault Piracy” by fault-linkages between major fault systems, (3) significant discrepancies exits between the height of fault scarps and the throws across the faults compared to their lengths in the basement, (4) utilization of preexisting zones of weakness allowed the development of very long faults (> 25-100 km) at a very early stage of continental rifting, explaining the apparent paradox between the fault length versus throw for this young rift, (5) active faults are characterized by conductive anomalies resulting from fluids, whereas, inactive faults show no conductivity anomaly; and 6) sedimentlogical data reveal a major perturbation in lake sedimentation between 41 ka and 27 ka. The sedimentation perturbation is attributed to faulting associated with the rifting and may have resulted in the alteration of hydrology forming the modern day Okavango delta. We infer that this time period may represent the age of the latest rift reactivation and fault growth and propagation within the ORZ.
NASA Astrophysics Data System (ADS)
Legg, Mark R.; Kohler, Monica D.; Shintaku, Natsumi; Weeraratne, Dayanthie S.
2015-05-01
New mapping of two active transpressional fault zones in the California Continental Borderland, the Santa Cruz-Catalina Ridge fault and the Ferrelo fault, was carried out to characterize their geometries, using over 4500 line-km of new multibeam bathymetry data collected in 2010 combined with existing data. Faults identified from seafloor morphology were verified in the subsurface using existing seismic reflection data including single-channel and multichannel seismic profiles compiled over the past three decades. The two fault systems are parallel and are capable of large lateral offsets and reverse slip during earthquakes. The geometry of the fault systems shows evidence of multiple segments that could experience throughgoing rupture over distances exceeding 100 km. Published earthquake hypocenters from regional seismicity studies further define the lateral and depth extent of the historic fault ruptures. Historical and recent focal mechanisms obtained from first-motion and moment tensor studies confirm regional strain partitioning dominated by right slip on major throughgoing faults with reverse-oblique mechanisms on adjacent structures. Transpression on west and northwest trending structures persists as far as 270 km south of the Transverse Ranges; extension persists in the southern Borderland. A logjam model describes the tectonic evolution of crustal blocks bounded by strike-slip and reverse faults which are restrained from northwest displacement by the Transverse Ranges and the southern San Andreas fault big bend. Because of their potential for dip-slip rupture, the faults may also be capable of generating local tsunamis that would impact Southern California coastlines, including populated regions in the Channel Islands.
McBride, J.H.; Stephenson, W.J.; Williams, R.A.; Odum, J.K.; Worley, D.M.; South, J.V.; Brinkerhoff, A.R.; Keach, R.W.; Okojie-Ayoro, A. O.
2010-01-01
Integrated vibroseis compressional and experimental hammer-source, shear-wave, seismic reflection profiles across the Provo segment of the Wasatch fault zone in Utah reveal near-surface and shallow bedrock structures caused by geologically recent deformation. Combining information from the seismic surveys, geologic mapping, terrain analysis, and previous seismic first-arrival modeling provides a well-constrained cross section of the upper ~500 m of the subsurface. Faults are mapped from the surface, through shallow, poorly consolidated deltaic sediments, and cutting through a rigid bedrock surface. The new seismic data are used to test hypotheses on changing fault orientation with depth, the number of subsidiary faults within the fault zone and the width of the fault zone, and the utility of integrating separate elastic methods to provide information on a complex structural zone. Although previous surface mapping has indicated only a few faults, the seismic section shows a wider and more complex deformation zone with both synthetic and antithetic normal faults. Our study demonstrates the usefulness of a combined shallow and deeper penetrating geophysical survey, integrated with detailed geologic mapping to constrain subsurface fault structure. Due to the complexity of the fault zone, accurate seismic velocity information is essential and was obtained from a first-break tomography model. The new constraints on fault geometry can be used to refine estimates of vertical versus lateral tectonic movements and to improve seismic hazard assessment along the Wasatch fault through an urban area. We suggest that earthquake-hazard assessments made without seismic reflection imaging may be biased by the previous mapping of too few faults. ?? 2010 Geological Society of America.
Delineation of The Sumatra Fault in The Central Part of West Sumatra based on Gravity Method
NASA Astrophysics Data System (ADS)
Saragih, R. D.; Brotopuspito, K. S.
2018-04-01
The Sumatra Fault System is elongated across the Sumatra Island, Indonesia, Southeast Asia including the central part of West Sumatra, Indonesia, Southeast Asia. The Sumatra Fault and subsurface structure on the Central Part of West Sumatra had been analyzed using gravity method. Bouguer anomaly data were obtained from GRDC (Geological Research and Development Centre) maps, Bandung, Indonesia (i.e. without terrain correction). In this study, terrain correction had been applied to these Bouguer data. Bouguer anomaly in a horizontal plane at 3000 meters high and equivalent depth of mass point 7000 meters were obtained using Dampney Method. Residual and regional anomalies were separated using upward continuation method at 8000 meters high. The result of the SVD on residual anomaly shows two negative anomalies on northwest – southeast. The zero miligal per meter square quantity coincides remarkably well with trace faults which is a part of the Sumatra Fault System. Two negative anomalies are located around the Sianok Segment and Sumani Segment.
Bergen, Kristian J.; Shaw, John H.; Leon, Lorraine A.; Dolan, James F.; Pratt, Thomas L.; Ponti, Daniel J.; Morrow, Eric; Barrera, Wendy; Rhodes, Edward J.; Murari, Madhav K.; Owen, Lewis A.
2017-01-01
Slip rates represent the average displacement across a fault over time and are essential to estimating earthquake recurrence for proba-bilistic seismic hazard assessments. We demonstrate that the slip rate on the western segment of the Puente Hills blind thrust fault system, which is beneath downtown Los Angeles, California (USA), has accel-erated from ~0.22 mm/yr in the late Pleistocene to ~1.33 mm/yr in the Holocene. Our analysis is based on syntectonic strata derived from the Los Angeles River, which has continuously buried a fold scarp above the blind thrust. Slip on the fault beneath our field site began during the late-middle Pleistocene and progressively increased into the Holocene. This increase in rate implies that the magnitudes and/or the frequency of earthquakes on this fault segment have increased over time. This challenges the characteristic earthquake model and presents an evolving and potentially increasing seismic hazard to metropolitan Los Angeles.
Preliminary deformation model for National Seismic Hazard map of Indonesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meilano, Irwan; Gunawan, Endra; Sarsito, Dina
Preliminary deformation model for the Indonesia’s National Seismic Hazard (NSH) map is constructed as the block rotation and strain accumulation function at the elastic half-space. Deformation due to rigid body motion is estimated by rotating six tectonic blocks in Indonesia. The interseismic deformation due to subduction is estimated by assuming coupling on subduction interface while deformation at active fault is calculated by assuming each of the fault‘s segment slips beneath a locking depth or in combination with creeping in a shallower part. This research shows that rigid body motion dominates the deformation pattern with magnitude more than 15 mm/year, except inmore » the narrow area near subduction zones and active faults where significant deformation reach to 25 mm/year.« less
The 1999 Izmit, Turkey, earthquake: A 3D dynamic stress transfer model of intraearthquake triggering
Harris, R.A.; Dolan, J.F.; Hartleb, R.; Day, S.M.
2002-01-01
Before the August 1999 Izmit (Kocaeli), Turkey, earthquake, theoretical studies of earthquake ruptures and geological observations had provided estimates of how far an earthquake might jump to get to a neighboring fault. Both numerical simulations and geological observations suggested that 5 km might be the upper limit if there were no transfer faults. The Izmit earthquake appears to have followed these expectations. It did not jump across any step-over wider than 5 km and was instead stopped by a narrower step-over at its eastern end and possibly by a stress shadow caused by a historic large earthquake at its western end. Our 3D spontaneous rupture simulations of the 1999 Izmit earthquake provide two new insights: (1) the west- to east-striking fault segments of this part of the North Anatolian fault are oriented so as to be low-stress faults and (2) the easternmost segment involved in the August 1999 rupture may be dipping. An interesting feature of the Izmit earthquake is that a 5-km-long gap in surface rupture and an adjacent 25° restraining bend in the fault zone did not stop the earthquake. The latter observation is a warning that significant fault bends in strike-slip faults may not arrest future earthquakes.
New Methodologies Applied to Seismic Hazard Assessment in Southern Calabria (Italy)
NASA Astrophysics Data System (ADS)
Console, R.; Chiappini, M.; Speranza, F.; Carluccio, R.; Greco, M.
2016-12-01
Although it is generally recognized that the M7+ 1783 and 1908 Calabria earthquakes were caused by normal faults rupturing the upper crust of the southern Calabria-Peloritani area, no consensus exists on seismogenic source location and orientation. A recent high-resolution low-altitude aeromagnetic survey of southern Calabria and Messina straits suggested that the sources of the 1783 and 1908 earthquakes are en echelon faults belonging to the same NW dipping normal fault system straddling the whole southern Calabria. The application of a newly developed physics-based earthquake simulator to the active fault system modeled by the data obtained from the aeromagnetic survey and other recent geological studies has allowed the production of catalogs lasting 100,000 years and containing more than 25,000 events of magnitudes ≥ 4.0. The algorithm on which this simulator is based is constrained by several physical elements as: (a) an average slip rate due to tectonic loading for every single segment in the investigated fault system, (b) the process of rupture growth and termination, leading to a self-organized earthquake magnitude distribution, and (c) interaction between earthquake sources, including small magnitude events. Events nucleated in one segment are allowed to expand into neighboring segments, if they are separated by a given maximum range of distance. The application of our simulation algorithm to Calabria region provides typical features in time, space and magnitude behaviour of the seismicity, which can be compared with those of the real observations. These features include long-term pseudo-periodicity and clustering of strong earthquakes, and a realistic earthquake magnitude distribution departing from the Gutenberg-Richter distribution in the moderate and higher magnitude range. Lastly, as an example of a possible use of synthetic catalogs, an attenuation law has been applied to all the events reported in the synthetic catalog for the production of maps showing the exceedence probability of given values of peak acceleration (PGA) on the territory under investigation. These maps can be compared with the existing hazard maps that are presently used in the national seismic building regulations.
NASA Astrophysics Data System (ADS)
Moeremans, R. E.; Singh, S. C.
2014-12-01
The Andaman-Nicobar subduction is the northernmost segment of the Sumatra-Andaman subduction zone and marks the western boundary of the Andaman Sea, which is a complex backarc extensional basin. We present the interpretation of a new set of deep seismic reflection data acquired across the Andaman-Nicobar forearc basin, from 8°N to 11°N, to understand the structure and evolution of the forearc basin, focusing on how the obliquity of convergence affects deformation in the forearc, as well as on the Diligent (DF) and Eastern Margin Faults (EMF). Constraining the evolution of this basin, which is strongly related to the collision of India and Eurasia, can help shed light onto present-day deformation processes along this segment of the subduction zone, where convergence is highly oblique and little data is available. We find that he DF is a backthrust and corresponds to the Mentawai (MFZ) and West Andaman Fault (WAF) systems further south, offshore Sumatra. The DF is expressed as a series of mostly landward verging folds and faults, deforming the early to late Miocene sediments. The DF seems to root from the boundary between the accretionary complex and the continental backstop, where it meets the EMF. The EMF marks the western boundary of the forearc basin; it is associated with subsidence and is expressed as a deep piggyback basin, associated with recent Pliocene to Pleistocene subsidence at the western edge of the forearc basin. The eastern edge of the forearc basin is marked by the Invisible Bank (IB), which is thought to be tilted and uplifted continental crustal block. Subsidence along the EMF and uplift and tilting of the IB seem to be related to different opening phases in the Andaman Sea. The sliver Andaman-Nicobar Fault (ANF), which is the active northward extension of the Great Sumatra sliver Fault (GSF), lies to the east of the IB, and marks the boundary between continental crust underlying the forearc basin and crust accreted at the Andaman Sea Spreading Center.
Geophysical study of the East Pacific Rise 15°N-17°N: An unusually robust segment
NASA Astrophysics Data System (ADS)
Weiland, Charles M.; MacDonald, Ken C.
1996-09-01
Bathymetric, side-scan sonar, magnetic and gravity data from the East Pacific Rise (EPR) between 15° and 17°N are used to establish the spreading history and examine melt delivery to an unusually robust spreading segment. The axial ridge between the Orozco transform fault (15°30'N) and the 16°20'N overlapping spreading center (OSC) has an average elevation of 2300 m which is 300 m shallower than typical EPR depths, and its cross-sectional area is double the average value for the northern EPR. The total opening rate is 86 km/Myr, but the inflated segment appears to have spread faster to the east by more than 20% since 0.78 Ma. The orientation of magnetic isochrons and lineaments in the side-scan sonar indicates a ˜3° counterclockwise rotation of the spreading direction since 1.8 Ma (C2) and reflects a change in the Pacific-Cocos plate motion. The side-scan lineaments also show that the percentage of inward facing faults (83%) and the spacing between faults (1.5 km) are consistent with the spreading rate dependence shown by Carbotte and Macdonald [1994]. However, the mean fault length (4.8 km) is 1.5 km shorter than expected for the spreading rate and suggests that extensive off-axis volcanism has draped the faults. Gravity analysis shows that the inflated segment has a ˜12-mGal bull's eye shaped low in residual mantle Bouguer anomaly. We offer several possible end-member models for the anomaly, including a prism of 10% partial melt in the mantle and lower crust or a crustal thickness anomaly of 2.25 km. Kinematic modeling that is based on structure and magnetic data suggests that two large magmatic pulses occurred at approximately 0.8 Ma and 0.3 Ma and have reshaped the plate boundary geometry and inflated the segment.
3D dynamic rupture simulation and local tomography studies following the 2010 Haiti earthquake
NASA Astrophysics Data System (ADS)
Douilly, Roby
The 2010 M7.0 Haiti earthquake was the first major earthquake in southern Haiti in 250 years. As this event could represent the beginning of a new period of active seismicity in the region, and in consideration of how vulnerable the population is to earthquake damage, it is important to understand the nature of this event and how it has influenced seismic hazards in the region. Most significantly, the 2010 earthquake occurred on the secondary Leogâne thrust fault (two fault segments), not the Enriquillo Fault, the major strike-slip fault in the region, despite it being only a few kilometers away. We first use a finite element model to simulate rupture along the Leogâne fault. We varied friction and background stress to investigate the conditions that best explain observed surface deformations and why the rupture did not to jump to the nearby Enriquillo fault. Our model successfully replicated rupture propagation along the two segments of the Leogâne fault, and indicated that a significant stress increase occurred on the top and to the west of the Enriquillo fault. We also investigated the potential ground shaking level in this region if a rupture similar to the Mw 7.0 2010 Haiti earthquake were to occur on the Enriquillo fault. We used a finite element method and assumptions on regional stress to simulate low frequency dynamic rupture propagation for the segment of the Enriquillo fault closer to the capital. The high-frequency ground motion components were calculated using the specific barrier model, and the hybrid synthetics were obtained by combining the low-frequencies ( 1Hz) from the stochastic simulation using matched filtering at a crossover frequency of 1 Hz. The average horizontal peak ground acceleration, computed at several sites of interest through Port-au-Prince (the capital), has a value of 0.35g. Finally, we investigated the 3D local tomography of this region. We considered 897 high-quality records from the earthquake catalog as recorded by temporary station deployments. We only considered events that had at least 6 P and 6 S arrivals, and an azimuthal gap less then 180 degrees, to simultaneously invert for hypocenters and 3D velocity structure in southern Haiti. We used the program VELEST to define a minimum 1D velocity model, which was then used as a starting model in the computer algorithm SIMULPS14 to produce the 3D tomography. Our results show a pronounced low velocity zone across the Logne fault, which is consistent with the sedimentary basin location from the geologic map. We also observe a southeast low velocity zone, which is consistent with a predefined structure in the morphology. Low velocity structure usually correlates with broad zones of deformation, such as the presence of cracks or faults, or from the presence of fluid in the crust. This work provides information that can be used in future studies focusing on how changes in material properties can affect rupture propagation, which is useful to assess the seismic hazard that Haiti and other regions are facing.
Association of earthquakes and faults in the San Francisco Bay area using Bayesian inference
Wesson, R.L.; Bakun, W.H.; Perkins, D.M.
2003-01-01
Bayesian inference provides a method to use seismic intensity data or instrumental locations, together with geologic and seismologic data, to make quantitative estimates of the probabilities that specific past earthquakes are associated with specific faults. Probability density functions are constructed for the location of each earthquake, and these are combined with prior probabilities through Bayes' theorem to estimate the probability that an earthquake is associated with a specific fault. Results using this method are presented here for large, preinstrumental, historical earthquakes and for recent earthquakes with instrumental locations in the San Francisco Bay region. The probabilities for individual earthquakes can be summed to construct a probabilistic frequency-magnitude relationship for a fault segment. Other applications of the technique include the estimation of the probability of background earthquakes, that is, earthquakes not associated with known or considered faults, and the estimation of the fraction of the total seismic moment associated with earthquakes less than the characteristic magnitude. Results for the San Francisco Bay region suggest that potentially damaging earthquakes with magnitudes less than the characteristic magnitudes should be expected. Comparisons of earthquake locations and the surface traces of active faults as determined from geologic data show significant disparities, indicating that a complete understanding of the relationship between earthquakes and faults remains elusive.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cappa, F.; Rutqvist, J.; Yamamoto, K.
2009-05-15
In Matsushiro, central Japan, a series of more than 700,000 earthquakes occurred over a 2-year period (1965-1967) associated with a strike-slip faulting sequence. This swarm of earthquakes resulted in ground surface deformations, cracking of the topsoil, and enhanced spring-outflows with changes in chemical compositions as well as carbon dioxide (CO{sub 2}) degassing. Previous investigations of the Matsushiro earthquake swarm have suggested that migration of underground water and/or magma may have had a strong influence on the swarm activity. In this study, employing coupled multiphase flow and geomechanical modelling, we show that observed crustal deformations and seismicity can have been drivenmore » by upwelling of deep CO{sub 2}-rich fluids around the intersection of two fault zones - the regional East Nagano earthquake fault and the conjugate Matsushiro fault. We show that the observed spatial evolution of seismicity along the two faults and magnitudes surface uplift, are convincingly explained by a few MPa of pressurization from the upwelling fluid within the critically stressed crust - a crust under a strike-slip stress regime near the frictional strength limit. Our analysis indicates that the most important cause for triggering of seismicity during the Matsushiro swarm was the fluid pressurization with the associated reduction in effective stress and strength in fault segments that were initially near critically stressed for shear failure. Moreover, our analysis indicates that a two order of magnitude permeability enhancement in ruptured fault segments may be necessary to match the observed time evolution of surface uplift. We conclude that our hydromechanical modelling study of the Matsushiro earthquake swarm shows a clear connection between earthquake rupture, deformation, stress, and permeability changes, as well as large-scale fluid flow related to degassing of CO{sub 2} in the shallow seismogenic crust. Thus, our study provides further evidence of the important role of deep fluid sources in earthquake fault dynamics and surface deformations.« less
NASA Astrophysics Data System (ADS)
Kattenhorn, S. A.; Muirhead, J.; Dindi, E.; Fischer, T. P.; Lee, H.; Ebinger, C. J.
2013-12-01
The Magadi rift in southern Kenya formed at ~7 Ma within Proterozoic rocks of the Mozambique orogenic belt, parallel to its contact with the Archean Tanzania craton. The rift is bounded to the west by the ~1600-m-high Nguruman border fault. The rift center is intensely dissected by normal faults, most of which offset ~1.4-0.8 Ma lavas. Current E-W extensional velocities are ~2-4 mm/yr. Published crustal tomography models from the rift center show narrow high velocity zones in the upper crust, interpreted as cooled magma intrusions. Local, surface-wave, and SKS-splitting measurements show a rift-parallel anisotropy interpreted to be the result of aligned melt zones in the lithosphere. Our field observations suggest that recent fault activity is concentrated at the rift center, consistent with the location of the 1998 seismic swarm that was associated with an inferred diking event. Fault zones are pervasively mineralized by calcite, likely from CO2-rich fluids. A system of fault-fed springs provides the sole fluid input for Lake Magadi in the deepest part of the basin. Many of these springs emanate from the Kordjya fault, a 50-km-long, NW-SE striking, transverse structure connecting a portion of the border fault system (the NW-oriented Lengitoto fault) to the current locus of strain and magmatism at the rift center. Sampled springs are warm (44.4°C) and alkaline (pH=10). Dissolved gas data (mainly N2-Ar-He) suggests two-component mixing (mantle and air), possibly indicating that fluids are delivered into the fault zone from deep sources, consistent with a dominant role of magmatism to the focusing of strain at the rift center. The Kordjya fault has developed prominent fault scarps (~150 m high) despite being oblique to the dominant ~N-S fault fabric, and has utilized an en echelon alignment of N-S faults to accommodate its motion. These N-S faults show evidence of sinistral-oblique motion and imply a bookshelf style of faulting to accommodate dextral-oblique motion along the Kordjya fault. Fault relationships imply that the NW-SE transverse structures represent recent activity in the rift, and have locally tilted Late Pleistocene sediments. Given the abundance of N-S striking faults in the rift, the tendency for fault activity along transverse features suggests a change in the rifting driving forces that are likely the result of an interplay between strain localization at the rift center, inherited crustal fabric (NW structures in the Mozambique belt), a possible counterclockwise rotation of stress related to interacting rift segments in southern Kenya, and an active hydrothermal fluid regime that facilitates faulting. By connecting the Lengitoto fault to the rift center, the Kordjya fault has effectively caused the Magadi rift to bypass the Nguruman border fault, which has been rendered inactive and thus no longer a contributor to the rifting process.
Coulomb Stress Accumulation along the San Andreas Fault System
NASA Technical Reports Server (NTRS)
Smith, Bridget; Sandwell, David
2003-01-01
Stress accumulation rates along the primary segments of the San Andreas Fault system are computed using a three-dimensional (3-D) elastic half-space model with realistic fault geometry. The model is developed in the Fourier domain by solving for the response of an elastic half-space due to a point vector body force and analytically integrating the force from a locking depth to infinite depth. This approach is then applied to the San Andreas Fault system using published slip rates along 18 major fault strands of the fault zone. GPS-derived horizontal velocity measurements spanning the entire 1700 x 200 km region are then used to solve for apparent locking depth along each primary fault segment. This simple model fits remarkably well (2.43 mm/yr RMS misfit), although some discrepancies occur in the Eastern California Shear Zone. The model also predicts vertical uplift and subsidence rates that are in agreement with independent geologic and geodetic estimates. In addition, shear and normal stresses along the major fault strands are used to compute Coulomb stress accumulation rate. As a result, we find earthquake recurrence intervals along the San Andreas Fault system to be inversely proportional to Coulomb stress accumulation rate, in agreement with typical coseismic stress drops of 1 - 10 MPa. This 3-D deformation model can ultimately be extended to include both time-dependent forcing and viscoelastic response.
Fault-scale controls on rift geometry: the Bilila-Mtakataka Fault, Malawi
NASA Astrophysics Data System (ADS)
Hodge, M.; Fagereng, A.; Biggs, J.; Mdala, H. S.
2017-12-01
Border faults that develop during initial stages of rifting determine the geometry of rifts and passive margins. At outcrop and regional scales, it has been suggested that border fault orientation may be controlled by reactivation of pre-existing weaknesses. Here, we perform a multi-scale investigation on the influence of anisotropic fabrics along a major developing border fault in the southern East African Rift, Malawi. The 130 km long Bilila-Mtakataka fault has been proposed to have slipped in a single MW 8 earthquake with 10 m of normal displacement. The fault is marked by an 11±7 m high scarp with an average trend that is oblique to the current plate motion. Variations in scarp height are greatest at lithological boundaries and where the scarp switches between following and cross-cutting high-grade metamorphic foliation. Based on the scarp's geometry and morphology, we define 6 geometrically distinct segments. We suggest that the segments link to at least one deeper structure that strikes parallel to the average scarp trend, an orientation consistent with the kinematics of an early phase of rift initiation. The slip required on a deep fault(s) to match the height of the current scarp suggests multiple earthquakes along the fault. We test this hypothesis by studying the scarp morphology using high-resolution satellite data. Our results suggest that during the earthquake(s) that formed the current scarp, the propagation of the fault toward the surface locally followed moderately-dipping foliation well oriented for reactivation. In conclusion, although well oriented pre-existing weaknesses locally influence shallow fault geometry, large-scale border fault geometry appears primarily controlled by the stress field at the time of fault initiation.
NASA Astrophysics Data System (ADS)
Lin, Aiming; Sano, Mikako; Wang, Maomao; Yan, Bing; Bian, Di; Fueta, Ryoji; Hosoya, Takashi
2017-07-01
The Mw 6.2 (Mj 6.8) Nagano (Japan) earthquake of 22 November 2014 produced a 9.3-km long surface rupture zone with a thrust-dominated displacement of up to 1.5 m, which duplicated the pre-existing Kamishiro Fault along the Itoigawa-Shizuoka Tectonic Line (ISTL), the plate-boundary between the Eurasian and North American plates, northern Nagano Prefecture, central Japan. To characterize the activity of the seismogenic fault zone, we conducted a paleoseismic study of the Kamishiro Fault. Field investigations and trench excavations revealed that seven morphogenic paleohistorical earthquakes (E2-E8) prior to the 2014 Mw 6.2 Nagano earthquake (E1) have occurred on the Kamishiro Fault during the last ca. 6000 years. Three of these events (E2-E4) are well constrained and correspond to historical earthquakes occurring in the last ca. 1200 years. This suggests an average recurrence interval of ca. 300-400 years on the seismogenic fault of the 2014 Kamishiro earthquake in the past 1200 years. The most recent event prior to the 2014 earthquakes (E1) is E2 and the penultimate and antepenultimate faulting events are E3 and E4, respectively. The penultimate faulting event (E3) occurred during the period of AD 1800-1400 and is associated with the 1791 Mw 6.8 earthquake. The antepenultimate faulting event (E4) is inferred to have occurred during the period of ca. AD 1000-700, likely corresponding to the AD 841 Mw 6.5 earthquake. The oldest faulting event (E8) in the study area is thought to have occurred during the period of ca. 5600-6000 years. The throw rate during the early Holocene is estimated to be 1.2-3.3 mm/a (average, 2.2 mm/a) with an average amount of characteristic offset of 0.7-1.1 m produced by individual event. When compared with active intraplate faults on Honshu Island, Japan, these slip rates and recurrence interval estimated for morphogenic earthquakes on the Kamishiro Fault along the ISTL appear high and short, respectively. This indicates that present activity on this fault is closely related to seismic faulting along the plate boundary between the Eurasian and North American plates.
Lin, Aiming; Sano, Mikako; Wang, Maomao; Yan, Bing; Bian, Di; Fueta, Ryoji; Hosoya, Takashi
2017-01-01
The M w 6.2 (Mj 6.8) Nagano (Japan) earthquake of 22 November 2014 produced a 9.3-km long surface rupture zone with a thrust-dominated displacement of up to 1.5 m, which duplicated the pre-existing Kamishiro Fault along the Itoigawa-Shizuoka Tectonic Line (ISTL), the plate-boundary between the Eurasian and North American plates, northern Nagano Prefecture, central Japan. To characterize the activity of the seismogenic fault zone, we conducted a paleoseismic study of the Kamishiro Fault. Field investigations and trench excavations revealed that seven morphogenic paleohistorical earthquakes (E2-E8) prior to the 2014 M w 6.2 Nagano earthquake (E1) have occurred on the Kamishiro Fault during the last ca. 6000 years. Three of these events (E2-E4) are well constrained and correspond to historical earthquakes occurring in the last ca. 1200 years. This suggests an average recurrence interval of ca. 300-400 years on the seismogenic fault of the 2014 Kamishiro earthquake in the past 1200 years. The most recent event prior to the 2014 earthquakes (E1) is E2 and the penultimate and antepenultimate faulting events are E3 and E4, respectively. The penultimate faulting event (E3) occurred during the period of AD 1800-1400 and is associated with the 1791 M w 6.8 earthquake. The antepenultimate faulting event (E4) is inferred to have occurred during the period of ca. AD 1000-700, likely corresponding to the AD 841 M w 6.5 earthquake. The oldest faulting event (E8) in the study area is thought to have occurred during the period of ca. 5600-6000 years. The throw rate during the early Holocene is estimated to be 1.2-3.3 mm/a (average, 2.2 mm/a) with an average amount of characteristic offset of 0.7-1.1 m produced by individual event. When compared with active intraplate faults on Honshu Island, Japan, these slip rates and recurrence interval estimated for morphogenic earthquakes on the Kamishiro Fault along the ISTL appear high and short, respectively. This indicates that present activity on this fault is closely related to seismic faulting along the plate boundary between the Eurasian and North American plates.
Low strength of deep San Andreas fault gouge from SAFOD core
Lockner, David A.; Morrow, Carolyn A.; Moore, Diane E.; Hickman, Stephen H.
2011-01-01
The San Andreas fault accommodates 28–34 mm yr−1 of right lateral motion of the Pacific crustal plate northwestward past the North American plate. In California, the fault is composed of two distinct locked segments that have produced great earthquakes in historical times, separated by a 150-km-long creeping zone. The San Andreas Fault Observatory at Depth (SAFOD) is a scientific borehole located northwest of Parkfield, California, near the southern end of the creeping zone. Core was recovered from across the actively deforming San Andreas fault at a vertical depth of 2.7 km (ref. 1). Here we report laboratory strength measurements of these fault core materials at in situ conditions, demonstrating that at this locality and this depth the San Andreas fault is profoundly weak (coefficient of friction, 0.15) owing to the presence of the smectite clay mineral saponite, which is one of the weakest phyllosilicates known. This Mg-rich clay is the low-temperature product of metasomatic reactions between the quartzofeldspathic wall rocks and serpentinite blocks in the fault2, 3. These findings provide strong evidence that deformation of the mechanically unusual creeping portions of the San Andreas fault system is controlled by the presence of weak minerals rather than by high fluid pressure or other proposed mechanisms1. The combination of these measurements of fault core strength with borehole observations1, 4, 5 yields a self-consistent picture of the stress state of the San Andreas fault at the SAFOD site, in which the fault is intrinsically weak in an otherwise strong crust.
Low strength of deep San Andreas fault gouge from SAFOD core
Lockner, D.A.; Morrow, C.; Moore, D.; Hickman, S.
2011-01-01
The San Andreas fault accommodates 28-"34-???mm-???yr ????'1 of right lateral motion of the Pacific crustal plate northwestward past the North American plate. In California, the fault is composed of two distinct locked segments that have produced great earthquakes in historical times, separated by a 150-km-long creeping zone. The San Andreas Fault Observatory at Depth (SAFOD) is a scientific borehole located northwest of Parkfield, California, near the southern end of the creeping zone. Core was recovered from across the actively deforming San Andreas fault at a vertical depth of 2.7-???km (ref. 1). Here we report laboratory strength measurements of these fault core materials at in situ conditions, demonstrating that at this locality and this depth the San Andreas fault is profoundly weak (coefficient of friction, 0.15) owing to the presence of the smectite clay mineral saponite, which is one of the weakest phyllosilicates known. This Mg-rich clay is the low-temperature product of metasomatic reactions between the quartzofeldspathic wall rocks and serpentinite blocks in the fault. These findings provide strong evidence that deformation of the mechanically unusual creeping portions of the San Andreas fault system is controlled by the presence of weak minerals rather than by high fluid pressure or other proposed mechanisms. The combination of these measurements of fault core strength with borehole observations yields a self-consistent picture of the stress state of the San Andreas fault at the SAFOD site, in which the fault is intrinsically weak in an otherwise strong crust. ?? 2011 Macmillan Publishers Limited. All rights reserved.
NASA Astrophysics Data System (ADS)
Ghribi, R.; Zaatra, D.; Bouaziz, S.
2018-01-01
The Monastir and Grombalia fault systems consist of three strands that the northern segment corresponds to Hammamet and Grombalia faults. The southern strand represents Monastir Fault also referred to as the Skanes-Khnis Fault. These NW-trends are observed continuously in the major outcropping features of north-eastern Tunisia including both the Cap Bon peninsula and the Sahel domain. Along the Hammamet Fault, the north-eastern strand of Grombalia fault system, left lateral drainage offset of amount 220 m is found in Fawara valley. To the South, the left lateral movement is occurred along the Monastir Fault based on 180 m of Tyrrhenian terrace displacement. Field observations supported by satellite images suggest that the Monastir and Grombalia fault systems appear to slip mostly laterally with components of normal dip slip. Assuming the development of the stream networks during the Riss-Würm interglacial (115000-125000 years) and the age of the Tyrrhenian terrace (121 ± 10 ka), the strike slip rates of the Hammamet and Monastir faults are calculated in the range of 1.5-1.8 mm/yr. There vertical slip rates are estimated to be 0.06 and 0.26 mm/yr, respectively. These data are consistent with the displacement rate in the Pelagian shelf (1-2 mm/yr) but they are below the convergence rate of African-Eurasian plates (8 mm/yr). Our seismotectonics study reveals that a maximum earthquake of Mw = 6.5 could occur every 470 years in the Hammamet fault zone and Mw = 6-every 263 years in the Monastir fault zone.
Machette, Michael N.; Crone, Anthony J.; Personius, Stephen F.; Mahan, Shannon; Dart, Richard L.; Lidke, David J.; Olig, Susan S.
2007-01-01
In 2004, we identified a small parcel of U.S. Forest Service land at the mouth of Willow Creek (about 5 km west of Mona, Utah) that was suitable for trenching. At the Willow Creek site, which is near the middle of the southern strand of the Nephi segment, the WFZ has vertically displaced alluvial-fan deposits >6-7 m, forming large, steep, multiple-event scarps. In May 2005, we dug two 4- to 5-m-deep backhoe trenches at the Willow Creek site, identified three colluvial wedges in each trench, and collected samples of charcoal and A-horizon organic material for AMS (acceleration mass spectrometry) radiocarbon dating, and sampled fine-grained eolian and colluvial sediment for luminescence dating. The trenches yielded a stratigraphic assemblage composed of moderately coarse-grained fluvial and debris-flow deposits and discrete colluvial wedges associated with three faulting events (P1, P2, and P3). About one-half of the net vertical displacement is accommodated by monoclinal tilting of fan deposits on the hanging-wall block, possibly related to massive ductile landslide deposits that are present beneath the Willow Creek fan. The timing of the three surface-faulting events is bracketed by radiocarbon dates and results in a much different fault chronology and higher slip rates than previously considered for this segment of the Wasatch fault zone.
NASA Astrophysics Data System (ADS)
Diehl, Tobias; Singer, Julia; Hetényi, György; Grujic, Djordje; Clinton, John; Giardini, Domenico; Kissling, Edi; Gansser Working Group
2017-08-01
The instrumental record of Bhutan is characterized by a lower seismicity compared to other parts of the Himalayan arc. To understand this low activity and its impact on the seismic hazard, a seismic network was installed in Bhutan for 22 months between 2013 and 2014. Recorded seismicity, earthquake moment tensors and local earthquake tomography reveal along-strike variations in structure and crustal deformation regime. A thickened crust imaged in western Bhutan suggests lateral differences in stresses on the Main Himalayan Thrust (MHT), potentially affecting the interseismic coupling and deformation regime. Sikkim, western Bhutan and its foreland are characterized by strike-slip faulting in the Indian basement. Strain is particularly localized along a NW-SE striking mid-crustal fault zone reaching from Chungthang in northeast Sikkim to Dhubri at the northwestern edge of the Shillong Plateau in the foreland. The dextral Dhubri-Chungthang fault zone (DCF) causes segmentation of the Indian basement and the MHT between eastern Nepal and western Bhutan and connects the deformation front of the Himalaya with the Shillong Plateau by forming the western boundary of the Shillong block. The Kopili fault, the proposed eastern boundary of this block, appears to be a diffuse zone of mid-crustal seismicity in the foreland. In eastern Bhutan we image a seismogenic, flat portion of the MHT, which might be either related to a partially creeping segment or to increased background seismicity originating from the 2009 MW 6.1 earthquake. In western-central Bhutan clusters of micro-earthquakes at the front of the High-Himalayas indicate the presence of a mid-crustal ramp and stress buildup on a fully coupled MHT. The area bounded by the DCF in the west and the seismogenic MHT in the east has the potential for M7-8 earthquakes in Bhutan. Similarly, the DCF has the potential to host M7 earthquakes as documented by the 2011 Sikkim and the 1930 Dhubri earthquakes, which were potentially associated with this structure.
Reassessment of probabilistic seismic hazard in the Marmara region
Kalkan, Erol; Gulkan, Polat; Yilmaz, Nazan; Çelebi, Mehmet
2009-01-01
In 1999, the eastern coastline of the Marmara region (Turkey) witnessed increased seismic activity on the North Anatolian fault (NAF) system with two damaging earthquakes (M 7.4 Kocaeli and M 7.2 D??zce) that occurred almost three months apart. These events have reduced stress on the western segment of the NAF where it continues under the Marmara Sea. The undersea fault segments have been recently explored using bathymetric and reflection surveys. These recent findings helped scientists to understand the seismotectonic environment of the Marmara basin, which has remained a perplexing tectonic domain. On the basis of collected new data, seismic hazard of the Marmara region is reassessed using a probabilistic approach. Two different earthquake source models: (1) the smoothed-gridded seismicity model and (2) fault model and alternate magnitude-frequency relations, Gutenberg-Richter and characteristic, were used with local and imported ground-motion-prediction equations. Regional exposure is computed and quantified on a set of hazard maps that provide peak horizontal ground acceleration (PGA) and spectral acceleration at 0.2 and 1.0 sec on uniform firm-rock site condition (760 m=sec average shear wave velocity in the upper 30 m). These acceleration levels were computed for ground motions having 2% and 10% probabilities of exceedance in 50 yr, corresponding to return periods of about 2475 and 475 yr, respectively. The maximum PGA computed (at rock site) is 1.5g along the fault segments of the NAF zone extending into the Marmara Sea. The new maps generally show 10% to 15% increase for PGA, 0.2 and 1.0 sec spectral acceleration values across much of Marmara compared to previous regional hazard maps. Hazard curves and smooth design spectra for three site conditions: rock, soil, and soft-soil are provided for the Istanbul metropolitan area as possible tools in future risk estimates.
NASA Astrophysics Data System (ADS)
Gutscher, Marc-Andre; Dominguez, Stephane; Mercier de Lepinay, Bernard; Pinheiro, Luis; Babonneau, Nathalie; Cattaneo, Antonio; LeFaou, Yann; Barreca, Giovanni; Micallef, Aaron; Rovere, Marzia
2014-05-01
The relation between deep crustal faults and the origin of Mount Etna, the largest and most active volcano in Europe has long been suspected due to its unusual geodynamic location. Results from a new marine geophysical survey offshore Eastern Sicily reveal the detailed geometry (location, length, dip and orientation) of a two-branched 200-km long, lithospheric scale fault system, long sought for as being the cause of Mount Etna. Using high-resolution bathymetry and seismic profiling, we image a 60-km long, previously unidentified, NW trending fault with evidence of recent displacement at the seafloor, offsetting Holocene sediments. This newly identified fault connects NE of Catania, to a known 40-km long, offshore-onshore fault system dissecting the southeastern flank of Mount Etna, generally interpreted as purely gravitational collapse structures. Geological and morphological field studies together with earthquake focal mechanisms indicate active dextral strike-slip motion along the onshore and shallow offshore portion of this 40 + 60 km long segment. The southern 100 km branch of the fault is associated with a sub-vertical lithospheric scale tear fault showing pure down to the East normal faulting and a 500+m thick elongate basin marked by syn-tectonic Plio-quaternary sediment fill. Together they represent two kinematically distinct strands of the long sought "STEP" (Subduction Tear Edge Propagator) fault, whose expression at depth controls the position of Mount Etna. Both 100-km long branches of the fault system are mechanically capable of generating magnitude 7 earthquakes (e.g. - like the 1693 Catania earthquake, the strongest in Italian history, causing 40,000 deaths). We conclude this deep-rooted lithospheric weakness guides gradual down slope creep of Mount Etna and may lead to long-term catastrophic flank collapse with associated tsunami by large-scale mass wasting.
NASA Astrophysics Data System (ADS)
Smith, D. V.; Blome, C. D.; Smith, B. D.; Clark, A. C.
2009-12-01
Detailed helicopter electromagnetic and magnetic surveys (HEM) were conducted in northern Uvalde and Bexar Counties, Texas, as part of a geologic mapping and hydrologic study being conducted by the U.S. Geological Survey (USGS). The aquifers of the Lower Cretaceous Trinity Group (collectively termed the Trinity aquifer) are an important regional water source in the Hill Country of south-central Texas. Rock units comprising the middle aquifer segment are represented by the lower member of the Glen Rose Formation and the Cow Creek Limestone and Hensel Sandstone members of the Pearsall Formation. The lower Trinity hydrologic segment is composed of the Hosston and Sligo Limestones and is confined by the overlying Hammet Shale. Karst features commonly occur in the Trinity Group because of the dissolution of gypsum- and anhydrite-rich beds. Faults and fractures have not been sufficiently analyzed to evaluate the effects these structures have on inter- and intra-formational groundwater flow. The survey in the north Seco Creek area covers the recharge zone of the Edwards aquifer and part of the catchment zone composed of the upper Trinity segment. These data augment the scant geologic mapping in the area by delineating faults, collapse features, and hydrostratigraphic units. The HEM survey in northern Bexar County covered the Camp Stanley Storage Activity, the Camp Bullis Training Site, parts of the recharge zone of the Edwards aquifer south of the military bases, and part of Cibolo Creek to the north. Basic line spacing was 200 meters using six frequencies. In-fill lines were flown with a spacing of 100 meters in the central part of the study area to better resolve geologic structures and karst features. The data processing took into account high EM interference and cultural noise. Apparent resistivity (ρa) maps are used in interpretation of geologic structures, trends, and in the identification of electrical properties of lithologic units. The ρa maps show the northwest trending faults of the Balcones fault zone as well as oblique trending cross faults. Though many of the major faults had been identified in previous geologic mapping, other possibly significant faults were not recognized from traditional techniques. High resistivities within the Glen Rose Limestone are indicative of more competent lithologies which have a greater limestone content. During the evolution of the groundwater system the limestone units are most likely to have developed secondary porosity conducive to establishing flow paths. In contrast, lower resistivities are associated with clay, marl, and mudstone units which have lower porosity and permeability. Resistivity depth sections along flight lines and 3D visualization of resistive zones define reefal structures in the middle Trinity segment. Detailed hydrogeologic mapping and HEM depth modeling illustrate the approach to be taken in future studies of the Trinity.
The 2016 Mihoub (north-central Algeria) earthquake sequence: Seismological and tectonic aspects
NASA Astrophysics Data System (ADS)
Khelif, M. F.; Yelles-Chaouche, A.; Benaissa, Z.; Semmane, F.; Beldjoudi, H.; Haned, A.; Issaadi, A.; Chami, A.; Chimouni, R.; Harbi, A.; Maouche, S.; Dabbouz, G.; Aidi, C.; Kherroubi, A.
2018-06-01
On 28 May 2016 at 23:54 (UTC), an Mw5.4 earthquake occurred in Mihoub village, Algeria, 60 km southeast of Algiers. This earthquake was the largest event in a sequence recorded from 10 April to 15 July 2016. In addition to the permanent national network, a temporary network was installed in the epicentral region after this shock. Recorded event locations allow us to give a general overview of the sequence and reveal the existence of two main fault segments. The first segment, on which the first event in the sequence was located, is near-vertical and trends E-W. The second fault plane, on which the largest event of the sequence was located, dips to the southeast and strikes NE-SW. A total of 46 well-constrained focal mechanisms were calculated. The events located on the E-W-striking fault segment show mainly right-lateral strike-slip (strike N70°E, dip 77° to the SSE, rake 150°). The events located on the NE-SW-striking segment show mainly reverse faulting (strike N60°E, dip 70° to the SE, rake 130°). We calculated the static stress change caused by the first event (Md4.9) of the sequence; the result shows that the fault plane of the largest event in the sequence (Mw5.4) and most of the aftershocks occurred within an area of increased Coulomb stress. Moreover, using the focal mechanisms calculated in this work, we estimated the orientations of the main axes of the local stress tensor ellipsoid. The results confirm previous findings that the general stress field in this area shows orientations aligned NNW-SSE to NW-SE. The 2016 Mihoub earthquake sequence study thus improves our understanding of seismic hazard in north-central Algeria.
Controls on Early-Rift Geometry: New Perspectives From the Bilila-Mtakataka Fault, Malawi
NASA Astrophysics Data System (ADS)
Hodge, M.; Fagereng, Å.; Biggs, J.; Mdala, H.
2018-05-01
We use the ˜110-km long Bilila-Mtakataka fault in the amagmatic southern East African Rift, Malawi, to investigate the controls on early-rift geometry at the scale of a major border fault. Morphological variations along the 14 ± 8-m high scarp define six 10- to 40-km long segments, which are either foliation parallel or oblique to both foliation and the current regional extension direction. As the scarp is neither consistently parallel to foliation nor well oriented for the current regional extension direction, we suggest that the segmented surface expression is related to the local reactivation of well-oriented weak shallow fabrics above a broadly continuous structure at depth. Using a geometrical model, the geometry of the best fitting subsurface structure is consistent with the local strain field from recent seismicity. In conclusion, within this early-rift, preexisting weaknesses only locally control border fault geometry at subsurface.
NASA Astrophysics Data System (ADS)
Zhou, J.; Wang, X.; Wang, Y.; Min, G.
2013-12-01
1. Introduction The Longmenshan foreland basin developed as a flexural foredeep at western Yangtze Platfrom during the Late Triassic Indosinian orogeny with strong tectonic activity. 2008 Wenchuan earthquake (Mw7.9) happened along the middle segment of the Longmenshan overthrusting belt. 2013 Lushan earthquake (Mw6.6) occurred along the south segment of Longmenshan tectonic zone which belongs to seismic gap during the Wenchuan earthquake. The recent researches ( Yan Zhan etc., 2013; Zhuqi Zhang etc., 2013; Xiwei Xu etc., 2013) indicate that the Lushan earthquake may closely related to the activity of Longmenshan ';s piedmont fault zone while the seismogenic fault and other issues are still controversial. In order to provide an electromagnetic basis in deep earthquake area structure, we detect magnetotelluric(MT) sounding in Lushan earthquake zone to obtain the electrical structure characteristics of Longmenshan's south segment. 2. Data acquisition and processing To research the deep electrical structure of earthquake zone assigning a MT profile through the epicenter which transects the Sichuan platform concave, Longmenshan tectonic belt and Songpan-Ganzi fold system. To analysis the MT data, we carried out the impedance tensor decompositionincluding the swift rotation and bahr method which based on the phase deviation. Ultimately, NLCG method was adopted to inverse MT data. 3. Conclusion The result of MT data discloses deep electrical structure feature of the southern section of Longmenshan overthrusting belt: the burial depth of conductive layer in the upper crust of Songpan-Ganzi plot is larger than that of middle-northern part; there is no conductive zone in Longmenshan high resistance body which connect with the high conductivity layer in the crust of the western section of Songpan-Ganzi plot; there exists a relatively large range of conductive zone in the basin to Longmenshan tectonic belt, which is mostly related to the piedmont of concealed fault zone and resistive intermediate belt at the edge of western basin. Be different form Wenchuan earthquake, Lushan earthquake located in the south of Longmenshan tectonic zone which have a strong connection with the piedmont fault. MT research reveals the difference of the deep electrical structure between the south of Longmenshan tectonic belt and the middle-north belt, from which we can infer that the seismogenic environment are not the same. The epicenter of Lushan earthquake occurred in the east edge of Longmenshan tectonic belt which close to Longmenshan ';s piedmont fault combine with the MT inversion infer that Lushan earthquake has a stronger relationship with Longmenshan ';s piedmont fault. Because of the short term of our work, now further work is ongoing.
Active tectonics of the southeastern Upper Rhine Graben, Freiburg area (Germany)
NASA Astrophysics Data System (ADS)
Nivière, B.; Bruestle, A.; Bertrand, G.; Carretier, S.; Behrmann, J.; Gourry, J.-C.
2008-03-01
The Upper Rhine Graben has two Plio-Quaternary depocentres usually interpreted as resulting from tectonic reactivation. The southern basin, near Freiburg im Breisgau (Germany), contains up to 250 m of sediments. Beneath the younger alluvial deposits related to the current drainage system, a former river network deeply entrenched in the substratum reveals a very low regional base level of early Pleistocene age. The offset of channels at faults allows us to infer a Pleistocene reactivation of the syn-rift fault pattern and the estimation of slip rates. Maximum vertical movements along the faults have not exceeded 0.1 mm/yr since the middle Pleistocene. Current activity is concentrated along the westernmost faults. Morphologic markers indicate late Pleistocene reactivation of the Rhine River fault, and geophysical prospecting suggests a near-surface offset of young sedimentary deposits. The size of the fault segments potentially reactivated suggests that earthquakes with magnitude larger than Mw=6.3 could be expected in the area with a return interval of about 8000 years. Extrapolated to the duration of the Plio-Pleistocene, the strain rate estimates reveal that the tectonic forcing may account for only one-third to one-half of the whole thickness of the Plio-Pleistocene sediments of the basin fill. Thus other processes must be invoked to understand the growth of the Plio-Pleistocene basin. Especially the piracy of the Rhine River to the north during the early Pleistocene could explain these effects.
Numerical Modeling on Co-seismic Influence of Wenchuan 8.0 Earthquake in Sichuan-Yunnan Area, China
NASA Astrophysics Data System (ADS)
Chen, L.; Li, H.; Lu, Y.; Li, Y.; Ye, J.
2009-12-01
In this paper, a three dimensional finite element model for active faults which are handled by contact friction elements in Sichuan-Yunnan area is built. Applying the boundary conditions determined through GPS data, a numerical simulations on spatial patterns of stress-strain changes induced by Wenchuan Ms8.0 earthquake are performed. Some primary results are: a) the co-seismic displacements in Longmen shan fault zone by the initial cracking event benefit not only the NE-direction expanding of subsequent fracture process but also the focal mechanism conversions from thrust to right lateral strike for the most of following sub-cracking events. b) tectonic movements induced by the Wenchuan earthquake are stronger in the upper wall of Longmen shan fault belt than in the lower wall and are influenced remarkably by the northeast boundary faults of the rhombic block. c) the extrema of stress changes induced by the main shock are 106Pa and its spatial size is about 400km long and 100km wide. The total stress level is reduced in the most regions in Longmen shan fault zone, whereas stress change is rather weak in its southwest segment and possibly result in fewer aftershocks in there. d) effects induced by the Wenchuan earthquake to the major active faults are obviously different from each other. e) triggering effect of the Wenchuan earthquake to the following Huili 6.1 earthquake is very weak.
Slip accumulation and lateral propagation of active normal faults in Afar
NASA Astrophysics Data System (ADS)
Manighetti, I.; King, G. C. P.; Gaudemer, Y.; Scholz, C. H.; Doubre, C.
2001-01-01
We investigate fault growth in Afar, where normal fault systems are known to be currently growing fast and most are propagating to the northwest. Using digital elevation models, we have examined the cumulative slip distribution along 255 faults with lengths ranging from 0.3 to 60 km. Faults exhibiting the elliptical or "bell-shaped" slip profiles predicted by simple linear elastic fracture mechanics or elastic-plastic theories are rare. Most slip profiles are roughly linear for more than half of their length, with overall slopes always <0.035. For the dominant population of NW striking faults and fault systems longer than 2 km, the slip profiles are asymmetric, with slip being maximum near the eastern ends of the profiles where it drops abruptly to zero, whereas slip decreases roughly linearly and tapers in the direction of overall Aden rift propagation. At a more detailed level, most faults appear to be composed of distinct, shorter subfaults or segments, whose slip profiles, while different from one to the next, combine to produce the roughly linear overall slip decrease along the entire fault. On a larger scale, faults cluster into kinematically coupled systems, along which the slip on any scale individual fault or fault system complements that of its neighbors, so that the total slip of the whole system is roughly linearly related to its length, with an average slope again <0.035. We discuss the origin of these quasilinear, asymmetric profiles in terms of "initiation points" where slip starts, and "barriers" where fault propagation is arrested. In the absence of a barrier, slip apparently extends with a roughly linear profile, tapered in the direction of fault propagation.
Seismic evidence for change of the tectonic regime in Messinian, northern Marmara Sea, Turkey
NASA Astrophysics Data System (ADS)
Alp, Hakan; Vardar, Denizhan; Alpar, Bedri; Ustaömer, Timur
2018-01-01
New Chirp seismic data collected from the northern margin of the Marmara Sea in June 2015 and previous Sparker seismic profiles recorded in 1999 suggest a change in tectonic regime in Messinian. New tectonic lineaments and fault segments were detected at offshore the Çekmece lagoons region that is located on one of the possible water corridors with the Paratethys. The faults only affect the older seismic unit (U1), which can be best outlined on the Chirp data. The E-W trending fault offshore Avcılar (OAF) borders the northern edge of a tightly folded sedimentary zone. The NNE-SSW trending fault, namely the Büyükçekmece Fault (BF), passing through the Büyükçekmece Bay, follows a buried valley. Its evolution must be related to the development of the Early Miocene - Early Pliocene Thrace-Eskişehir fault zone (TEFZ). BF and OAF indicate old tectonic activities in the region, which continued to the North Anatolian fault becoming the most dominant tectonic element in the region. The upper surface of the stratigraphic unit U1 and its terraces define the thickness of younger deposits (U2), which is thinner in the middle of the shelf. The morphology of the tightly folded zone controls those terraces, which correspond to the Bakırköy Formation and Kıraç member on land. The topmost parts of the terraces must have been eroded during sea level low-stands and cutting of the paleo-valleys. There is no evidence of any tectonic deformation or active fault in the younger seismic unit (U2).
A-Priori Rupture Models for Northern California Type-A Faults
Wills, Chris J.; Weldon, Ray J.; Field, Edward H.
2008-01-01
This appendix describes how a-priori rupture models were developed for the northern California Type-A faults. As described in the main body of this report, and in Appendix G, ?a-priori? models represent an initial estimate of the rate of single and multi-segment surface ruptures on each fault. Whether or not a given model is moment balanced (i.e., satisfies section slip-rate data) depends on assumptions made regarding the average slip on each segment in each rupture (which in turn depends on the chosen magnitude-area relationship). Therefore, for a given set of assumptions, or branch on the logic tree, the methodology of the present Working Group (WGCEP-2007) is to find a final model that is as close as possible to the a-priori model, in the least squares sense, but that also satisfies slip rate and perhaps other data. This is analogous the WGCEP- 2002 approach of effectively voting on the relative rate of each possible rupture, and then finding the closest moment-balance model (under a more limiting set of assumptions than adopted by the present WGCEP, as described in detail in Appendix G). The 2002 Working Group Report (WCCEP, 2003, referred to here as WGCEP-2002), created segmented earthquake rupture forecast models for all faults in the region, including some that had been designated as Type B faults in the NSHMP, 1996, and one that had not previously been considered. The 2002 National Seismic Hazard Maps used the values from WGCEP-2002 for all the faults in the region, essentially treating all the listed faults as Type A faults. As discussed in Appendix A, the current WGCEP found that there are a number of faults with little or no data on slip-per-event, or dates of previous earthquakes. As a result, the WGCEP recommends that faults with minimal available earthquake recurrence data: the Greenville, Mount Diablo, San Gregorio, Monte Vista-Shannon and Concord-Green Valley be modeled as Type B faults to be consistent with similarly poorly-known faults statewide. As a result, the modified segmented models discussed here only concern the San Andreas, Hayward-Rodgers Creek, and Calaveras faults. Given the extensive level of effort given by the recent Bay-Area WGCEP-2002, our approach has been to adopt their final average models as our preferred a-prior models. We have modified the WGCEP-2002 models where necessary to match data that were not available or not used by that WGCEP and where the models needed by WGCEP-2007 for a uniform statewide model require different assumptions and/or logic-tree branch weights. In these cases we have made what are usually slight modifications to the WGCEP-2002 model. This Appendix presents the minor changes needed to accomodate updated information and model construction. We do not attempt to reproduce here the extensive documentation of data, model parameters and earthquake probablilities in the WG-2002 report.
Historic surface slip along the San Andreas Fault near Parkfield, California
Lienkaemper, J.J.; Prescott, W.H.
1989-01-01
The Parkfield Earthquake Prediction Experiment is focusing close attention on the 44-km-long section of the San Andreas fault that last ruptured seismically in 1966 (Ms 6.0). The 20-km-long central segment of the 1966 Parkfield rupture, extending from the mainshock epicenter at Middle Mountain southeastward to Gold Hill, forms a 1- to 2-km salient northeastward away from the dominant N40??W strike. Following the 1966 earthquake afterslip, aseismic slip has been nearly constant. Moderate Parkfield earthquakes have recurred on average every 21 years since 1857, when a great earthquake (M ~ 8) ruptured at least as far north as the southern Parkfield segment. Many measurements of slip have been made near Parkfield since 1966. Nevertheless, much of the history of surface slip remained uncertain, especially the total amount associated with the 1966 event. In 1985 we measured accumulated slip on the four oldest cultural features offset by the fault along the 1966 Parkfield rupture segment. -from Authors
NASA Astrophysics Data System (ADS)
Hakimi Asiabar, Saeid; Bagheriyan, Siyamak
2018-03-01
The Alborz range in northern Iran stretches along the southern coast of the Caspian Sea and finally runs northeast and merges into the Pamir mountains in Afghanistan. Alborz mountain belt is a doubly vergent orogen formed along the northern edge of the Iranian plateau in response to the closure of the Neo-Tethys ocean and continental collision between Arabia and Eurasia. The south Caspian depression—the Alborz basin of Mesozoic age (with W-E trend) in northern Iran—inverted in response to the Arabia-Eurasia collision. Pre-existing extensional faults of the south Caspian-Alborz system preferentially reactivated as contractional faults because of tectonic inversion. These contractional structures tend to run parallel to the trends of pre-existing extensional faults and acquire W and WNW-ESE orientations across the previous accommodation zones that were imposed by the reactivation of adjacent extensional faults with different directions. The NNE to N dipping faults show evidences of reactivation. The Deylaman fault is one of the important faults of western Alborz in Iran and is an example of inversion tectonic style of deformation in the western Alborz mountain range. The Deylaman fault, with an E-W trend, contains three discontinuous fault segments in the area under investigation. These fault segments have evidence of oblique right-lateral reverse motion and links eastward to the dextral Kandavan thrust. The importance of this fault is due to its effect on sedimentation of several rock units from the Jurassic to Neogene in western Alborz; the rock facies on each side of this fault are very different and illustrate different parts of tectonic history.
Incipient fault feature extraction of rolling bearings based on the MVMD and Teager energy operator.
Ma, Jun; Wu, Jiande; Wang, Xiaodong
2018-06-04
Aiming at the problems that the incipient fault of rolling bearings is difficult to recognize and the number of intrinsic mode functions (IMFs) decomposed by variational mode decomposition (VMD) must be set in advance and can not be adaptively selected, taking full advantages of the adaptive segmentation of scale spectrum and Teager energy operator (TEO) demodulation, a new method for early fault feature extraction of rolling bearings based on the modified VMD and Teager energy operator (MVMD-TEO) is proposed. Firstly, the vibration signal of rolling bearings is analyzed by adaptive scale space spectrum segmentation to obtain the spectrum segmentation support boundary, and then the number K of IMFs decomposed by VMD is adaptively determined. Secondly, the original vibration signal is adaptively decomposed into K IMFs, and the effective IMF components are extracted based on the correlation coefficient criterion. Finally, the Teager energy spectrum of the reconstructed signal of the effective IMF components is calculated by the TEO, and then the early fault features of rolling bearings are extracted to realize the fault identification and location. Comparative experiments of the proposed method and the existing fault feature extraction method based on Local Mean Decomposition and Teager energy operator (LMD-TEO) have been implemented using experimental data-sets and a measured data-set. The results of comparative experiments in three application cases show that the presented method can achieve a fairly or slightly better performance than LMD-TEO method, and the validity and feasibility of the proposed method are proved. Copyright © 2018. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Martín-Barajas, Arturo; González-Escobar, Mario; Fletcher, John M.; Pacheco, Martín.; Oskin, Michael; Dorsey, Rebecca
2013-09-01
transition from distributed continental extension to the rupture of continental lithosphere is imaged in the northern Gulf of California across the obliquely conjugate Tiburón-Upper Delfin basin segment. Structural mapping on a 5-20 km grid of seismic reflection lines of Petroleos Mexicanos demonstrates that ~1000% extension is accommodated on a series of NNE striking listric-normal faults that merge at depth into a detachment fault. The detachment juxtaposes a late-Neogene marine sequence over thinned continental crust and contains an intrabasinal divide due to footwall uplift. Two northwest striking, dextral-oblique faults bound both ends of the detachment and shear the continental crust parallel to the tectonic transport. A regional unconformity in the upper 0.5 s (two-way travel time) and crest erosion of rollover anticlines above the detachment indicates inversion and footwall uplift during the lithospheric rupture in the Upper Delfin and Lower Delfin basins. The maximum length of new crust in both Delfin basins is less than 40 km based on the lack of an acoustic basement and the absence of a lower sedimentary sequence beneath a wedge-shaped upper sequence that reaches >5 km in thickness. A fundamental difference exists between the Tiburón-Delfin segment and the Guaymas segment to the south in terms of presence of low-angle normal faults and amount of new oceanic lithosphere, which we attribute to thermal insulation, diffuse upper-plate extension, and slip on low-angle normal faults engendered by a thick sedimentary lid.
NASA Astrophysics Data System (ADS)
Martin, A.; González-Escobar, M.; Fletcher, J. M.; Pacheco, M.; Oskin, M. E.; Dorsey, R. J.
2013-12-01
The transition from distributed continental extension to the rupture of continental lithosphere is imaged in the northern Gulf of California across the obliquely conjugate Tiburón-Upper Delfín basin segment. Structural mapping on a 5-20 km grid of seismic reflection lines of Petroleos Mexicanos (PEMEX) demonstrates that ~1000% extension is accommodated on a series of NNE-striking listric-normal faults that merge at depth into a detachment fault. The detachment juxtaposes a late-Neogene marine sequence over thinned continental crust and contains an intrabasinal divide due to footwall uplift. Two northwest striking, dextral-oblique faults bound both ends of the detachment and shear the continental crust parallel to the tectonic transport. A regional unconformity in the upper 0.5 seconds (TWTT) and crest erosion of rollover anticlines above the detachment indicates inversion and footwall uplift during the lithospheric rupture in the Upper Delfin and Lower Delfin basins. The maximum length of new crust in both Delfin basins is less than 40 km based on the lack of an acoustic basement and the absence of a lower sedimentary sequence beneath a wedge shaped upper sequence that reaches >5 km in thickness. A fundamental difference exists between the Tiburón-Delfin segment and the Guaymas segment to the south in terms of presence of low angle normal faults and amount of new oceanic lithosphere, which we attribute to thermal insulation, diffuse upper-plate extension, and slip on low angle normal faults engendered by a thick sedimentary lid.
NASA Astrophysics Data System (ADS)
Cheloni, D.; Giuliani, R.; D'Agostino, N.; Mattone, M.; Bonano, M.; Fornaro, G.; Lanari, R.; Reale, D.
2015-12-01
The 2012 Emilia sequence (main shocks Mw 6.1 May 20 and Mw 5.9 May 29) ruptured two thrust segments of a ~E-W trending fault system of the buried Ferrara Arc, along a portion of the compressional system of the Apennines that had remained silent during past centuries. Here we use the rupture geometry constrained by the aftershocks and new geodetic data (levelling, InSAR and GPS measurements) to estimate an improved coseismic slip distribution of the two main events. In addition, we use post-seismic displacements, described and analyzed here for the first time, to infer a brand new post-seismic slip distribution of the May 29 event in terms of afterslip on the same coseismic plane. In particular, in this study we use a catalog of precisely relocated aftershocks to explore the different proposed geometries of the proposed thrust segments that have been published so far and estimate the coseismic and post-seismic slip distributions of the ruptured planes responsible for the two main seismic events from a joint inversion of the geodetic data.Joint inversion results revealed that the two earthquakes ruptured two distinct planar thrust faults, characterized by single main coseismic patches located around the centre of the rupture planes, in agreement with the seismological and geological information pointing out the Ferrara and the Mirandola thrust faults, as the causative structures of the May 20 and May 29 main shocks respectively.The preferred post-seismic slip distribution related to the 29 May event, yielded to a main patch of afterslip (equivalent to a Mw 5.6 event) located westward and up-dip of the main coseismic patch, suggesting that afterslip was triggered at the edges of the coseismic asperity. We then use these co- and post-seismic slip distribution models to calculate the stress changes on adjacent fault.
NASA Astrophysics Data System (ADS)
Douilly, Roby; Mavroeidis, George P.; Calais, Eric
2017-10-01
The devastating 2010 Mw 7.0 Haiti earthquake demonstrated the need to improve mitigation and preparedness for future seismic events in the region. Previous studies have shown that the earthquake did not occur on the Enriquillo Fault, the main plate boundary fault running through the heavily populated Port-au-Prince region, but on the nearby and previously unknown transpressional Léogâne Fault. Slip on that fault has increased stresses on the segment of Enriquillo Fault to the east of Léogâne, which terminates in the ˜3-million-inhabitant capital city of Port-au-Prince. In this study, we investigate ground shaking in the vicinity of Port-au-Prince, if a hypothetical rupture similar to the 2010 Haiti earthquake occurred on that segment of the Enriquillo Fault. We use a finite element method and assumptions on regional tectonic stress to simulate the low-frequency ground motion components using dynamic rupture propagation for a 52-km-long segment. We consider eight scenarios by varying parameters such as hypocentre location, initial shear stress and fault dip. The high-frequency ground motion components are simulated using the specific barrier model in the context of the stochastic modeling approach. The broad-band ground motion synthetics are subsequently obtained by combining the low-frequency components from the dynamic rupture simulation with the high-frequency components from the stochastic simulation using matched filtering at a crossover frequency of 1 Hz. Results show that rupture on a vertical Enriquillo Fault generates larger horizontal permanent displacements in Léogâne and Port-au-Prince than rupture on a south-dipping Enriquillo Fault. The mean horizontal peak ground acceleration (PGA), computed at several sites of interest throughout Port-au-Prince, has a value of ˜0.45 g, whereas the maximum horizontal PGA in Port-au-Prince is ˜0.60 g. Even though we only consider a limited number of rupture scenarios, our results suggest more intense ground shaking for the city of Port-au-Prince than during the already very damaging 2010 Haiti earthquake.
NASA Astrophysics Data System (ADS)
Milner, K. R.; Shaw, B. E.; Gilchrist, J. J.; Jordan, T. H.
2017-12-01
Probabilistic seismic hazard analysis (PSHA) is typically performed by combining an earthquake rupture forecast (ERF) with a set of empirical ground motion prediction equations (GMPEs). ERFs have typically relied on observed fault slip rates and scaling relationships to estimate the rate of large earthquakes on pre-defined fault segments, either ignoring or relying on expert opinion to set the rates of multi-fault or multi-segment ruptures. Version 3 of the Uniform California Earthquake Rupture Forecast (UCERF3) is a significant step forward, replacing expert opinion and fault segmentation with an inversion approach that matches observations better than prior models while incorporating multi-fault ruptures. UCERF3 is a statistical model, however, and doesn't incorporate the physics of earthquake nucleation, rupture propagation, and stress transfer. We examine the feasibility of replacing UCERF3, or components therein, with physics-based rupture simulators such as the Rate-State Earthquake Simulator (RSQSim), developed by Dieterich & Richards-Dinger (2010). RSQSim simulations on the UCERF3 fault system produce catalogs of seismicity that match long term rates on major faults, and produce remarkable agreement with UCERF3 when carried through to PSHA calculations. Averaged over a representative set of sites, the RSQSim-UCERF3 hazard-curve differences are comparable to the small differences between UCERF3 and its predecessor, UCERF2. The hazard-curve agreement between the empirical and physics-based models provides substantial support for the PSHA methodology. RSQSim catalogs include many complex multi-fault ruptures, which we compare with the UCERF3 rupture-plausibility metrics as well as recent observations. Complications in generating physically plausible kinematic descriptions of multi-fault ruptures have thus far prevented us from using UCERF3 in the CyberShake physics-based PSHA platform, which replaces GMPEs with deterministic ground motion simulations. RSQSim produces full slip/time histories that can be directly implemented as sources in CyberShake, without relying on the conditional hypocenter and slip distributions needed for the UCERF models. We also compare RSQSim with time-dependent PSHA calculations based on multi-fault renewal models.
NASA Astrophysics Data System (ADS)
Van Dissen, Russ; Little, Tim
2017-04-01
The Mw 7.8 Kaikoura earthquake of 14 November, 2016 (NZDT) was a complex event. It involved ground-surface (or seafloor) fault rupture on at least a dozen onland or offshore faults, and subsurface rupture on a handful of additional faults. Most of the surface ruptures involved previously known (or suspected) active faults, as well as surface rupture on at least two hitherto unrecognised active faults. The southwest to northeast extent of surface fault rupture, as generalised by two straight-line segments, is approximately 180 km, though this is a minimum for the collective length of surface rupture due to multiple overlapping faults with various orientations. Surface rupture displacements on specific faults involved in the Kaikoura Earthquake span approximately two orders of magnitude. For example, maximum surface displacement on the Heaver's Creek Fault is cm- to dm-scale in size; whereas, maximum surface displacement on the nearby Kekerengu Fault is approximately 10-12 m (predominantly in a dextral sense). The Kekerengu Fault has a Late Pleistocene slip-rate rate of 20-26 mm/yr, and is possibly the second fastest slipping onland fault in New Zealand, behind the Alpine Fault. Located in the northeastern South Island of New Zealand, the Kekerengu Fault - along with the Hope Fault to the southwest and the Needles Fault offshore to the northeast - comprise the fastest slipping elements of the Pacific-Australian plate boundary in this part of the country. In January 2016 (about ten months prior to the Kaikoura earthquake) three paleo-earthquake investigation trenches were excavated across pronounced traces of the Kekerengu Fault at two locations. These were the first such trenches dug and evaluated across the fault. All three trenches displayed abundant evidence of past surface fault ruptures (three surface ruptures in the last approximately 1,200 years, four now including the 2016 rupture). An interesting aspect of the 2016 rupture is that two of the trenches received surface fault rupture, and are now dextrally offset by about 9 m, while the third trench did not have any 2016 surface rupture pass through it. In this instance, ground-surface rupture along this trace of the fault died out within tens of metres of the trench. Another salient aspect of the Kaikoura earthquake is that the determined (or estimated) recurrence intervals of the faults that ruptured the ground surface vary by an order of magnitude or more. This strongly implies that the ensemble of faults that ruptured with the Kekerengu Fault in the 2016 earthquake has not always been the same for past earthquakes. Possible reasons for this could include the state of stress at the time of a specific earthquake, the direction of rupture propagation, and whether or not rupture on one fault system cascades into rupture on another as is suspected to have happened in the Kaikoura earthquake.
Duross, Christopher; Hylland, Michael D.; Hiscock, Adam; Personius, Stephen; Briggs, Richard; Gold, Ryan D.; Beukelman, Gregg; McDonald, Geg N; Erickson, Ben; McKean, Adam; Angster, Steve; King, Roselyn; Crone, Anthony J.; Mahan, Shannon
2017-01-01
The Nephi segment of the Wasatch fault zone (WFZ) comprises two fault strands, the northern and southern strands, which have evidence of recurrent late Holocene surface-faulting earthquakes. We excavated paleoseismic trenches across these strands to refine and expand their Holocene earthquake chronologies; improve estimates of earthquake recurrence, displacement, and fault slip rate; and assess whether the strands rupture separately or synchronously in large earthquakes. Paleoseismic data from the Spring Lake site expand the Holocene record of earthquakes on the northern strand: at least five to seven earthquakes ruptured the Spring Lake site at 0.9 ± 0.2 ka (2σ), 2.9 ± 0.7 ka, 4.0 ± 0.5 ka, 4.8 ± 0.8 ka, 5.7 ± 0.8 ka, 6.6 ± 0.7 ka, and 13.1 ± 4.0 ka, yielding a Holocene mean recurrence of ~1.2–1.5 kyr and vertical slip rate of ~0.5–0.8 mm/yr. Paleoseismic data from the North Creek site help refine the Holocene earthquake chronology for the southern strand: at least five earthquakes ruptured the North Creek site at 0.2 ± 0.1 ka (2σ), 1.2 ± 0.1 ka, 2.6 ± 0.9 ka, 4.0 ± 0.1 ka, and 4.7 ± 0.7 ka, yielding a mean recurrence of 1.1–1.3 kyr and vertical slip rate of ~1.9–2.0 mm/yr. We compare these Spring Lake and North Creek data with previous paleoseismic data for the Nephi segment and report late Holocene mean recurrence intervals of ~1.0–1.2 kyr for the northern strand and ~1.1–1.3 kyr for the southern strand. The northern and southern strands have similar late Holocene earthquake histories, which allow for models of both independent and synchronous rupture. However, considering the earthquake timing probabilities and per-event vertical displacements, we have the greatest confidence in the simultaneous rupture of the strands, including rupture of one strand with spillover rupture to the other. Ultimately, our results improve the surface-faulting earthquake history of the Nephi segment and enhance our understanding of how structural barriers influence normal-fault rupture.
NASA Astrophysics Data System (ADS)
Marín-Lechado, C.; Pedrera, A.; Peláez, J. A.; Ruiz-Constán, A.; González-Ramón, A.; Henares, J.
2017-06-01
The tectonic structure of the Guadalquivir foreland basin becomes complex eastward evolving from a single depocenter to a compartmented basin. The deformation pattern within the eastern Guadalquivir foreland basin has been characterized by combining seismic reflection profiles, boreholes, and structural field data to output a 3-D model. High-dipping NNE-SSW to NE-SW trending normal and reverse fault arrays deform the Variscan basement of the basin. These faults generally affect Tortonian sediments, which show syntectonic features sealed by the latest Miocene units. Curved and S-shaped fault traces are abundant and caused by the linkage of nearby fault segments during lateral fault propagation. Preexisting faults were reactivated either as normal or reverse faults depending on their position within the foreland. At Tortonian time, reverse faults deformed the basin forebulge, while normal faults predominated within the backbulge. Along-strike variation of the Betic foreland basin geometry is supported by an increasing mechanical coupling of the two plates (Alborán Domain and Variscan basement) toward the eastern part of the cordillera. Thus, subduction would have progressed in the western Betics, while it would have failed in the eastern one. There, the initially subducted Iberian paleomargin (Nevado-Filábride Complex) was incorporated into the upper plate promoting the transmission of collision-related compressional stresses into the foreland since the middle Miocene. Nowadays, compression is still active and produces low-magnitude earthquakes likely linked to NNE-SSW to NE-SW preexiting faults reactivated with reverse oblique-slip kinematics. Seismicity is mostly concentrated around fault tips that are frequently curved in overstepping zones.
Characterizing the Alpine Fault Strike Slip System Using a Novel Method for Analyzing GPS Data
NASA Astrophysics Data System (ADS)
Haines, A. J.; Dimitrova, L. L.; Wallace, L. M.; Williams, C. A.
2013-12-01
Plate motion across the South Island is dominated by right-lateral strike-slip (38-39 mm/yr total in the direction parallel to the Alpine Fault), with a small convergent component (8-10 mm/yr). The Alpine Fault is the most active fault in the region taking up 27×5 mm/yr in right-lateral strike-slip and ~10 mm/yr in dip-slip. It fails in large >=7 Mw earthquakes with recurrence time of 200-400 years and last ruptured around 1717. A significant component of the plate motion budget must occur on faults other than the Alpine Fault, but this is not fully accounted for in catalogues of known active faults. In the central part of the South Island, low slip rate active faults are not well-expressed due to the rapid erosion of the Southern Alps and deposition of these sediments onto the Canterbury plains; the devastating 2010 Darfield earthquake sequence occurred on such previously unknown faults. We apply a novel inversion technique (Dimitrova et al. 2012, 2013) to dense campaign GPS velocities in the region to solve for the vertical derivatives of horizontal stress (VDoHS) rates which are a substantially higher resolution expression of subsurface sources of ongoing deformation than the GPS velocities or GPS derived strain rates. Integrating the VDoHS rates gives us strain rates. Relationships between the VDoHS and strain rates allow us to calculate the variation in fault slip rate and locking depth for the identified faults; e.g., we estimate along fault variations for locking depth and slip rate for the Alpine Fault in the South Island in good agreement with previous estimates, and provide first estimates for those properties on the smaller, previously-uncharacterized faults which account for as much as 50% of the plate motion depending on location. For the first time, we note that the area between the Alpine Fault and the Main Divide of the Southern Alps is undergoing extensional areal strain, potentially indicative of gravitational collapse of the Southern Alps. The Arthur's Pass section of the Alpine Fault exhibits no shear component in the spatial derivatives of the VDoHS rates, in marked contrast to the Alpine Fault segments just northeast and southwest, suggesting that post-seismic deformation related to the 1994 Arthur's Pass earthquake is masking the signal from the Alpine Fault beneath. We characterize in detail the transfer of slip further north into the Marlborough Fault System, where we find much of the slip on the Alpine Fault passes onto the Kelly and Hope Faults, in accord with previous geological studies.
A new perspective on the significance of the Ranotsara shear zone in Madagascar
NASA Astrophysics Data System (ADS)
Schreurs, Guido; Giese, Jörg; Berger, Alfons; Gnos, Edwin
2010-12-01
The Ranotsara shear zone in Madagascar has been considered in previous studies to be a >350-km-long, intracrustal strike-slip shear zone of Precambrian/Cambrian age. Because of its oblique strike to the east and west coast of Madagascar, the Ranotsara shear zone has been correlated with shear zones in southern India and eastern Africa in Gondwana reconstructions. Our assessment using remote sensing data and field-based investigations, however, reveals that what previously has been interpreted as the Ranotsara shear zone is in fact a composite structure with a ductile deflection zone confined to its central segment and prominent NW-SE trending brittle faulting along most of its length. We therefore prefer the more neutral term “Ranotsara Zone”. Lithologies, tectonic foliations, and axial trace trajectories of major folds can be followed from south to north across most of the Ranotsara Zone and show only a marked deflection along its central segment. The ductile deflection zone is interpreted as a result of E-W indentation of the Antananarivo Block into the less rigid, predominantly metasedimentary rocks of the Southwestern Madagascar Block during a late phase of the Neoproterozoic/Cambrian East African Orogeny (c. 550-520 Ma). The Ranotsara Zone shows significant NW-SE striking brittle faulting that reactivates part of the NW-SE striking ductile structures in the flexure zone, but also extends along strike toward the NW and toward the SE. Brittle reactivation of ductile structures along the central segment of the Ranotsara Zone, confirmed by apatite-fission track results, may have led to the formation of a shallow Neogene basin underlying the Ranotsara plain. The present-day drainage pattern suggests on-going normal fault activity along the central segment. The Ranotsara Zone is not a megascale intracrustal strike-slip shear zone that crosscuts the entire basement of southern Madagascar. It can therefore not be used as a piercing point in Gondwana reconstructions.
Complex Plate Tectonic Features on Planetary Bodies: Analogs from Earth
NASA Astrophysics Data System (ADS)
Stock, J. M.; Smrekar, S. E.
2016-12-01
We review the types and scales of observations needed on other rocky planetary bodies (e.g., Mars, Venus, exoplanets) to evaluate evidence of present or past plate motions. Earth's plate boundaries were initially simplified into three basic types (ridges, trenches, and transform faults). Previous studies examined the Moon, Mars, Venus, Mercury and icy moons such as Europa, for evidence of features, including linear rifts, arcuate convergent zones, strike-slip faults, and distributed deformation (rifting or folding). Yet, several aspects merit further consideration. 1) Is the feature active or fossil? Earth's active mid ocean ridges are bathymetric highs, and seafloor depth increases on either side; whereas, fossil mid ocean ridges may be as deep as the surrounding abyssal plain with no major rift valley, although with a minor gravity low (e.g., Osbourn Trough, W. Pacific Ocean). Fossil trenches have less topographic relief than active trenches (e.g., the fossil trench along the Patton Escarpment, west of California). 2) On Earth, fault patterns of spreading centers depend on volcanism. Excess volcanism reduced faulting. Fault visibility increases as spreading rates slow, or as magmatism decreases, producing high-angle normal faults parallel to the spreading center. At magma-poor spreading centers, high resolution bathymetry shows low angle detachment faults with large scale mullions and striations parallel to plate motion (e.g., Mid Atlantic Ridge, Southwest Indian Ridge). 3) Sedimentation on Earth masks features that might be visible on a non-erosional planet. Subduction zones on Earth in areas of low sedimentation have clear trench -parallel faults causing flexural deformation of the downgoing plate; in highly sedimented subduction zones, no such faults can be seen, and there may be no bathymetric trench at all. 4) Areas of Earth with broad upwelling, such as the North Fiji Basin, have complex plate tectonic patterns with many individual but poorly linked ridge segments and transform faults. These details and scales of features should be considered in planning future surveys of altimetry, reflectance, magnetics, compositional, and gravity data from other planetary bodies aimed at understanding the link between a planet's surface and interior, whether via plate tectonics or other processes.
NASA Astrophysics Data System (ADS)
Kravitz, K.; Furuya, M.; Mueller, K. J.
2013-12-01
The Needles District, in Canyonlands National Park in Utah exposes an array of actively creeping normal faults that accommodate gravity-driven extension above a plastically deforming substrate of evaporite deposits. Previous interferogram stacking and InSAR analysis of faults in the Needles District using 35 ERS satellite scenes from 1992 to 2002 showed line-of-sight deformation rates of ~1-2 mm/yr along active normal faults, with a wide strain gradient along the eastern margin of the deforming region. More rapid subsidence of ~2-2.5 mm/yr was also evident south of the main fault array across a broad platform bounded by the Colorado River and a single fault scarp to the south. In this study, time series analysis was performed on SAR scenes from Envisat, PALSAR, and ERS satellites ranging from 1992 to 2010 to expand upon previous results. Both persistent scatterer and small baseline methods were implemented using StaMPS. Preliminary results from Envisat data indicate equally distributed slip rates along the length of faults within the Needles District and very little subsidence in the broad region further southwest identified in previous work. A phase ramp that appears to be present within the initial interferograms creates uncertainty in the current analysis and future work is aimed at removing this artifact. Our new results suggest, however that a clear deformation signal is present along a number of large grabens in the northern part of the region at higher rates of up to 3-4 mm/yr. Little to no creep is evident along the single fault zone that bounds the southern Needles, in spite of the presence of a large and apparently active fault. This includes a segment of this fault that is instrumented by a creepmeter that yields slip rates on the order of ~1mm/yr. Further work using time series analysis and a larger sampling of SAR scenes will be used in an effort to determine why differences exist between previous and current work and to test mechanics-based modeling of extension in the region.
NASA Astrophysics Data System (ADS)
Howell, S. M.; Ito, G.; Behn, M. D.; Olive, J. A. L.; Kaus, B.; Popov, A.; Mittelstaedt, E. L.; Morrow, T. A.
2016-12-01
Previous two-dimensional (2-D) modeling studies of abyssal-hill scale fault generation and evolution at mid-ocean ridges have predicted that M, the ratio of magmatic to total extension, strongly influences the total slip, spacing, and rotation of large faults, as well as the morphology of the ridge axis. Scaling relations derived from these 2-D models broadly explain the globally observed decrease in abyssal hill spacing with increasing ridge spreading rate, as well as the formation of large-offset faults close to the ends of slow-spreading ridge segments. However, these scaling relations do not explain some higher resolution observations of segment-scale variability in fault spacing along the Chile Ridge and the Mid-Atlantic Ridge, where fault spacing shows no obvious correlation with M. This discrepancy between observations and 2-D model predictions illuminates the need for three-dimensional (3-D) numerical models that incorporate the effects of along-axis variations in lithospheric structure and magmatic accretion. To this end, we use the geodynamic modeling software LaMEM to simulate 3-D tectono-magmatic interactions in a visco-elasto-plastic lithosphere under extension. We model a single ridge segment subjected to an along-axis gradient in the rate of magma injection, which is simulated by imposing a mass source in a plane of model finite volumes beneath the ridge axis. Outputs of interest include characteristic fault offset, spacing, and along-axis gradients in seafloor morphology. We also examine the effects of along-axis variations in lithospheric thickness and off-axis thickening rate. The main objectives of this study are to quantify the relative importance of the amount of magmatic extension and the local lithospheric structure at a given along-axis location, versus the importance of along-axis communication of lithospheric stresses on the 3-D fault evolution and morphology of intermediate-spreading-rate ridges.
Delineation of major geologic structures in Turkey using SIR-B data
NASA Technical Reports Server (NTRS)
Toksoz, M. N.; Pettengill, G. H.; Ford, P.; Gulen, L.
1984-01-01
Shuttle Imaging Radar-B (SIR-B) images of well mapped segments of major faults, such as the North Anatolian Fault (NAF) and East Anatolian Fault (EAF) will be studied to identify the prominent signatures that characterize the fault zones for those specific regions. The information will be used to delineate the unmapped fault zones in areas with similar geological and geomorphological properties. The data obtained from SIR-B images will be compared and correlated with the LANDSAT thematic mapper and seismicity alignments based on well constrained earthquake epicenters.
NASA Astrophysics Data System (ADS)
Bianco, F.; Castellano, M.; Milano, G.; Ventura, G.; Vilardo, G.
1998-06-01
A detailed structural and geophysical study of the Somma-Vesuvius volcanic complex was carried out by integrating mesostructural measurements, focal mechanisms and shear-wave splitting analysis. Fault-slip and focal mechanism analysis indicate that the volcano is affected by NW-SE-, NE-SW-trending oblique-slip faults and by E-W-trending normal faults. Magma chamber(s) responsible for plinian/sub-plinian eruptions (i.e. A.D. 79 and 1631) formed inside the area bounded by E-W-trending normal faults. The post-1631 fissural eruptions (i.e. 1794 and 1861) occurred along the main oblique-slip fault segments. The movements of the Vesuvius faults are mainly related to the regional stress field. A local stress field superposed to the regional one is also present but evidences of magma or gravity induced stresses are lacking. The local stress field acts inside the caldera area being related to fault reactivation processes. The present-day Vesuvius seismic activity is due to both regional and local stress fields. Shear-wave splitting analysis reveals an anisotropic volume due to stress induced cracks NW-SE aligned by faulting processes. Since the depth extent of the anisotropic volume is at least 6 km b.s.l., we deduce the NW-SE-trending oblique-slip fault system represents the main discontinuity on which lies the volcano. This discontinuity is responsible for the morphological lowering of the edifice in its southwestern side.
Earthquake geology along the North Anatoli Fault Zone in the Marmara Sea
NASA Astrophysics Data System (ADS)
McHugh, C. M.; Cormier, M.-H.; Seeber, L.; Cagatay, M. N.; Capotondi, L.; Polonia, A.; Lozefski, G.
2003-04-01
The feasibility of conducting submarine earthquake geology along the North Anatolia Fault Zone (NAFZ) was evaluated from sediment cores and geophysical data (multibeam bathymetry and high-resolution CHIRP) recently collected from the Marmara Sea. We have successfully begun to characterize the Holocene earthquake record of the NAFZ in a small basin along the Ganos fault east of the Gelibolu peninsula, and in Izmit Gulf (west of the Hersek promontory and in the Karamürsel basin). Evidence for seismic activity was derived from mass-wasting and gravity flow deposits including homogenites (deposits >10cm thick containing turbidites with resuspended sediment above) identified from core x-rays, grain size, organic carbon, and mineralogical analyses. Deposits were correlated to the historical earthquake record of the Marmara Sea region by chronology derived from 14C, 210Pb and 137Cs. The basin near Ganos is ideal for the study of earthquake-related activity. It is deep (>50m), bisected by the fault, and isolated from other basins and distal from fluvial and alluvial fan input that may include weather-related events. Yet, its sedimentation rates are very high (>2m/1000 years). Homogenites, have been tentatively correlated to the 1912 Ganos earthquake and to the mid-1960's and mid-1800's Saros Gulf earthquakes. The Ganos earthquake ruptured the entire 50km long segment across the Gelibolu peninsula plus submarine portions on either side. If the timing of these events is correct, it suggests frequent seismic activity for this region. On the Gulf of Izmit, west of Hersek, sandy-mass flows containing soft sediment deformation such as recumbent folds and sand injections have been linked to the 1509 earthquake. Historical records indicate that the segment of the NAFZ in the Hersek Peninsula ruptured during this earthquake and our findings suggest that the rupture may have continued beneath the Izmit Gulf. In the eastern portion of the Karamürsel basin, sandy turbidites have been tentatively correlated to the 17 August 1999 mainshock. The western part of the basin contains several turbidites that have been correlated to large earthquakes that occurred near Izmit in 145, 269, 478 and 740 AD. Mass-wasting and gravity flow deposits are not directly revealing surface ruptures but they can indicate earthquake activity providing a tool to better characterize individual fault strands and assess the long-term record of seismic activity of the NAFZ.
Consequences of Rift Propagation for Spreading in Thick Oceanic Crust in Iceland
NASA Astrophysics Data System (ADS)
Karson, J. A.
2015-12-01
Iceland has long been considered a natural laboratory for processes related to seafloor spreading, including propagating rifts, migrating transforms and rotating microplates. The thick, hot, weak crust and subaerial processes of Iceland result in variations on the themes developed along more typical parts of the global MOR system. Compared to most other parts of the MOR, Icelandic rift zones and transform faults are wider and more complex. Rift zones are defined by overlapping arrays of volcanic/tectonic spreading segments as much as 50 km wide. The most active rift zones propagate N and S away from the Iceland hot spot causing migration of transform faults. A trail of crust deformed by bookshelf faulting forms in their wakes. Dead or dying transform strands are truncated along pseudofaults that define propagation rates close to the full spreading rate of ~20 mm/yr. Pseudofaults are blurred by spreading across wide rift zones and laterally extensive subaerial lava flows. Propagation, with decreasing spreading toward the propagator tips causes rotation of crustal blocks on both sides of the active rift zones. The blocks deform internally by the widespread reactivation of spreading-related faults and zones of weakness along dike margins. The sense of slip on these rift-parallel strike-slip faults is inconsistent with transform-fault deformation. These various deformation features as well as subaxial subsidence that accommodate the thickening of the volcanic upper crustal units are probably confined to the brittle, seismogenic, upper 10 km of the crust. At least beneath the active rift zones, the upper crust is probably decoupled from hot, mechanically weak middle and lower gabbroic crust resulting in a broad plate boundary zone between the diverging lithosphere plates. Similar processes may occur at other types of propagating spreading centers and magmatic rifts.
NASA Astrophysics Data System (ADS)
Estay, N. P.; Yáñez Morroni, G.; Crempien, J. G. F.; Roquer, T.
2017-12-01
Fluid transport through the crust takes place in domains with high permeability. For this reason, fault damage zones are a main feature where fluids may circulate unimpeded, since they have much larger permeability than normal country rocks. With the location of earthquakes, it is possible to infer fault geometry and stress field of the crust, therefore we can determine potential places where fluid circualtion is taking place. With that purpose, we installed a seismic network in an active volcanic-geothermal system, the Liquiñe-Ofqui Fault System (LOFS), located in Puyuhuapi, Southern Andes (44°-45°S). This allowed to link epicentral seismicity, focal mechanisms and surface expression of fluid circulation (hot-springs and volcanos). The LOFS is composed by two NS-striking dextral master faults, and several secondary NE-striking dextral and normal faults. Surface manifestation of fluid circulation in Puyuhuapi area are: 1) six hot-springs, most of them spatially associated with different mapped faults; 2) seven minor eruptive centers aligned over a 10-km-along one of the master NS-striking fault, and; 3) the Melimouyu strato-volcano without any spatial relationship with mapped faults. The network consists of 6 short period seismometers (S31f-2.0a sensor of IESE, with natural frequency of 2Hz), that were installed between July 2016 and August 2017; also 4 permanent broad-band seismometers (Guralp 6TD/ CD 24 sensor) which belong to the Volcano Observatory of Southern Andes (OVDAS). Preliminary results show a correlation between seismicity and surface manifestation of fluid circulation. Seismicity has a heterogeneous distribution: most of the earthquake are concentrated is the master NS-striking fault with fluid circulation manifestations; however along the segments without surface manifestation of fluids do not have seismicity. These results suggest that fluid circulation mostly occur in areas with high seismicity, and thus, the increment in fluid pressure enhances fracturing and earthquake production.
NASA Astrophysics Data System (ADS)
Yu, H.; Harrington, R. M.; Liu, Y.; Lamontagne, M.; Pang, M.
2015-12-01
The Charlevoix Seismic Zone (CSZ), located along the St. Lawrence River (SLR) ~100 km downstream from Quebec City, is the most active seismic zone in eastern Canada with five historic earthquakes of M 6-7 and ~ 200 events/year reported by the Canadian National Seismograph Network. Cataloged earthquake epicenters outline two broad linear zones along the SLR with little shallow seismicity in between. Earthquakes form diffuse clusters between major dipping faults rather than concentrating on fault planes. Detailed fault geometry in the CSZ is uncertain and the effect on local seismicity of a meteorite impact structure that overprints the paleorift faults remains ambiguous. Here we relocate 1639 earthquakes occurring in the CSZ between 01/1988 - 10/2010 using the double-difference relocation method HypoDD and waveforms primarily from 7 local permanent stations. We use the layered SLR north shore velocity model from Lamontagne (1999), and travel time differences based on both catalog and cross-correlated P and S-phase picks. Of the 1639 relocated earthquakes, 1236 (75.4%) satisfied selection criteria of horizontal and vertical errors less than 2 km and 1 km respectively. Cross-sections of relocated seismicity show hypocenters along distinct active fault segments. Earthquakes located beneath the north shore of the SLR are likely correlated with the NW Gouffre fault, forming a ~10 km wide seismic zone parallel to the river, with dip angle changing to near vertical at the northern edge of the impact zone. In contrast, seismicity beneath the SLR forms a diffuse cloud within the impact structure, likely representing a highly fractured volume. It further implies that faults could be locally weak and subject to high pore-fluid pressures. Seismicity outside the impact structure defines linear structures aligning with the Charlevoix fault. Relocated events of M > 4 all locate outside the impact structure, indicating they nucleated on the NE-SW-oriented paleorift faults.