Science.gov

Sample records for active fault zones

  1. Principal fault zone width and permeability of the active Neodani fault, Nobi fault system, Southwest Japan

    NASA Astrophysics Data System (ADS)

    Tsutsumi, A.; Nishino, S.; Mizoguchi, K.; Hirose, T.; Uehara, S.; Sato, K.; Tanikawa, W.; Shimamoto, T.

    2004-02-01

    The internal structure and permeability of the Neodani fault, which was last activated at the time of the 1891 Nobi earthquake (M8.0), were examined through field survey and experiments. A new exposure of the fault at a road construction site reveals a highly localized feature of the past fault deformation within a narrow fault core zone. The fault of the area consists of three zone units towards the fault core: (a) protolith rocks; (b) 15 to 30 m of fault breccia, and (c) 200 mm green to black fault gouge. Within the fault breccia zone, cataclastic foliation oblique to the fault has developed in a fine-grained 2-m-wide zone adjacent to the fault. Foliation is defined by subparallel alignment of intact lozenge shaped clasts, or by elongated aggregates of fine-grained chert fragments. The mean angle of 20°, between the foliation and the fault plane suggests that the foliated breccia accommodated a shear strain of γ<5 assuming simple shear for the rotation of the cataclastic foliation. Previous trench surveys have revealed that the fault has undergone at least 70 m of fault displacement within the last 20,000 years in this locality. The observed fault geometry suggests that past fault displacements have been localized into the 200-mm-wide gouge zone. Gas permeability analysis of the gouges gives low values of the order of 10 -20 m 2. Water permeability as low as 10 -20 m 2 is therefore expected for the fault gouge zone, which is two orders of magnitude lower than the critical permeability suggested for a fault to cause thermal pressurization during a fault slip.

  2. The property of fault zone and fault activity of Shionohira Fault, Fukushima, Japan

    NASA Astrophysics Data System (ADS)

    Seshimo, K.; Aoki, K.; Tanaka, Y.; Niwa, M.; Kametaka, M.; Sakai, T.; Tanaka, Y.

    2015-12-01

    The April 11, 2011 Fukushima-ken Hamadori Earthquake (hereafter the 4.11 earthquake) formed co-seismic surface ruptures trending in the NNW-SSE direction in Iwaki City, Fukushima Prefecture, which were newly named as the Shionohira Fault by Ishiyama et al. (2011). This earthquake was characterized by a westward dipping normal slip faulting, with a maximum displacement of about 2 m (e.g., Kurosawa et al., 2012). To the south of the area, the same trending lineaments were recognized to exist even though no surface ruptures occurred by the earthquake. In an attempt to elucidate the differences of active and non-active segments of the fault, this report discusses the results of observation of fault outcrops along the Shionohira Fault as well as the Coulomb stress calculations. Only a few outcrops have basement rocks of both the hanging-wall and foot-wall of the fault plane. Three of these outcrops (Kyodo-gawa, Shionohira and Betto) were selected for investigation. In addition, a fault outcrop (Nameishi-minami) located about 300 m south of the southern tip of the surface ruptures was investigated. The authors carried out observations of outcrops, polished slabs and thin sections, and performed X-ray diffraction (XRD) to fault materials. As a result, the fault zones originating from schists were investigated at Kyodo-gawa and Betto. A thick fault gouge was cut by a fault plane of the 4.11 earthquake in each outcrop. The fault materials originating from schists were fault bounded with (possibly Neogene) weakly deformed sandstone at Shionohira. A thin fault gouge was found along the fault plane of 4.11 earthquake. A small-scale fault zone with thin fault gouge was observed in Nameishi-minami. According to XRD analysis, smectite was detected in the gouges from Kyodo-gawa, Shionohira and Betto, while not in the gouge from Nameishi-minami.

  3. Fault zone structure and inferences on past activities of the active Shanchiao Fault in the Taipei metropolis, northern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, C.; Lee, J.; Chan, Y.; Lu, C.

    2010-12-01

    The Taipei Metropolis, home to around 10 million people, is subject to seismic hazard originated from not only distant faults or sources scattered throughout the Taiwan region, but also active fault lain directly underneath. Northern Taiwan including the Taipei region is currently affected by post-orogenic (Penglai arc-continent collision) processes related to backarc extension of the Ryukyu subduction system. The Shanchiao Fault, an active normal fault outcropping along the western boundary of the Taipei Basin and dipping to the east, is investigated here for its subsurface structure and activities. Boreholes records in the central portion of the fault were analyzed to document the stacking of post- Last Glacial Maximum growth sediments, and a tulip flower structure is illuminated with averaged vertical slip rate of about 3 mm/yr. Similar fault zone architecture and post-LGM tectonic subsidence rate is also found in the northern portion of the fault. A correlation between geomorphology and structural geology in the Shanchiao Fault zone demonstrates an array of subtle geomorphic scarps corresponds to the branch fault while the surface trace of the main fault seems to be completely erased by erosion and sedimentation. Such constraints and knowledge are crucial in earthquake hazard evaluation and mitigation in the Taipei Metropolis, and in understanding the kinematics of transtensional tectonics in northern Taiwan. Schematic 3D diagram of the fault zone in the central portion of the Shanchiao Fault, displaying regional subsurface geology and its relation to topographic features.

  4. Structural and Lithologic Characteristics of the Wenchuan Earthquake Fault Zone and its Relationship with Seismic Activity

    NASA Astrophysics Data System (ADS)

    Wang, H.; Li, H.; Pei, J.; Li, T.; Huang, Y.; Zhao, Z.

    2010-12-01

    the older earthquake, but rather along the edge of the gouge. According to the gouge statistics of the whole fault zone, seismic events have the obvious tendency towards the foot wall, and the thickness of gouge is proportional to the activity of the fault, indicating that the width of fault zone is directly related to the number and evolution history of earthquakes . Repeated earthquakes maybe the main cause for the formation of the Longmenshan Moutains

  5. Aftershocks illuninate the 2011 Mineral, Virginia, earthquake causative fault zone and nearby active faults

    USGS Publications Warehouse

    Horton, Jr., J. Wright; Shah, Anjana K.; McNamara, Daniel E.; Snyder, Stephen L.; Carter, Aina M

    2015-01-01

    Deployment of temporary seismic stations after the 2011 Mineral, Virginia (USA), earthquake produced a well-recorded aftershock sequence. The majority of aftershocks are in a tabular cluster that delineates the previously unknown Quail fault zone. Quail fault zone aftershocks range from ~3 to 8 km in depth and are in a 1-km-thick zone striking ~036° and dipping ~50°SE, consistent with a 028°, 50°SE main-shock nodal plane having mostly reverse slip. This cluster extends ~10 km along strike. The Quail fault zone projects to the surface in gneiss of the Ordovician Chopawamsic Formation just southeast of the Ordovician–Silurian Ellisville Granodiorite pluton tail. The following three clusters of shallow (<3 km) aftershocks illuminate other faults. (1) An elongate cluster of early aftershocks, ~10 km east of the Quail fault zone, extends 8 km from Fredericks Hall, strikes ~035°–039°, and appears to be roughly vertical. The Fredericks Hall fault may be a strand or splay of the older Lakeside fault zone, which to the south spans a width of several kilometers. (2) A cluster of later aftershocks ~3 km northeast of Cuckoo delineates a fault near the eastern contact of the Ordovician Quantico Formation. (3) An elongate cluster of late aftershocks ~1 km northwest of the Quail fault zone aftershock cluster delineates the northwest fault (described herein), which is temporally distinct, dips more steeply, and has a more northeastward strike. Some aftershock-illuminated faults coincide with preexisting units or structures evident from radiometric anomalies, suggesting tectonic inheritance or reactivation.

  6. Active tectonics west of New Zealand's Alpine Fault: South Westland Fault Zone activity shows Australian Plate instability

    NASA Astrophysics Data System (ADS)

    De Pascale, Gregory P.; Chandler-Yates, Nicholas; Dela Pena, Federico; Wilson, Pam; May, Elijah; Twiss, Amber; Cheng, Che

    2016-04-01

    The 300 km long South Westland Fault Zone (SWFZ) is within the footwall of the Central Alpine Fault (<20 km away) and has 3500 m of dip-slip displacement, but it has been unknown if the fault is active. Here the first evidence for SWFZ thrust faulting in the "stable" Australian Plate is shown with cumulative dip-slip displacements up to 5.9 m (with 3 m throw) on Pleistocene and Holocene sediments and gentle hanging wall anticlinal folding. Cone penetration test (CPT) stratigraphy shows repeated sequences within the fault scarp (consistent with thrusting). Optically stimulated luminescence (OSL) dating constrains the most recent rupture post-12.1 ± 1.7 ka with evidence for three to four events during earthquakes of at least Mw 6.8. This study shows significant deformation is accommodated on poorly characterized Australian Plate structures northwest of the Alpine Fault and demonstrates that major active and seismogenic structures remain uncharacterized in densely forested regions on Earth.

  7. Fault zone hydrogeology

    NASA Astrophysics Data System (ADS)

    Bense, V. F.; Gleeson, T.; Loveless, S. E.; Bour, O.; Scibek, J.

    2013-12-01

    Deformation along faults in the shallow crust (< 1 km) introduces permeability heterogeneity and anisotropy, which has an important impact on processes such as regional groundwater flow, hydrocarbon migration, and hydrothermal fluid circulation. Fault zones have the capacity to be hydraulic conduits connecting shallow and deep geological environments, but simultaneously the fault cores of many faults often form effective barriers to flow. The direct evaluation of the impact of faults to fluid flow patterns remains a challenge and requires a multidisciplinary research effort of structural geologists and hydrogeologists. However, we find that these disciplines often use different methods with little interaction between them. In this review, we document the current multi-disciplinary understanding of fault zone hydrogeology. We discuss surface- and subsurface observations from diverse rock types from unlithified and lithified clastic sediments through to carbonate, crystalline, and volcanic rocks. For each rock type, we evaluate geological deformation mechanisms, hydrogeologic observations and conceptual models of fault zone hydrogeology. Outcrop observations indicate that fault zones commonly have a permeability structure suggesting they should act as complex conduit-barrier systems in which along-fault flow is encouraged and across-fault flow is impeded. Hydrogeological observations of fault zones reported in the literature show a broad qualitative agreement with outcrop-based conceptual models of fault zone hydrogeology. Nevertheless, the specific impact of a particular fault permeability structure on fault zone hydrogeology can only be assessed when the hydrogeological context of the fault zone is considered and not from outcrop observations alone. To gain a more integrated, comprehensive understanding of fault zone hydrogeology, we foresee numerous synergistic opportunities and challenges for the discipline of structural geology and hydrogeology to co-evolve and

  8. Late Quaternary tectonic activity and paleoseismicity of the Eastern Messinia Fault Zone, SW Peloponessus (Messinia, Greece).

    NASA Astrophysics Data System (ADS)

    Valkaniotis, Sotirios; Betzelou, Konstantina; Zygouri, Vassiliki; Koukouvelas, Ioannis; Ganas, Athanassios

    2015-04-01

    The southwestern part of Peloponnesus, Messinia and Laconia, is an area of significant tectonic activity situated near the Hellenic trench. Most of the deformation in this area is accommodated by the Eastern Messinia Fault Zone, bordering the western part of Taygetos Mt range and the west coast of Mani peninsula. The Eastern Messinia Fault Zone (EMFZ) is a complex system of primarily normal faults dipping westwards with a strike of NNW-SSE to N-S direction attaining a total length of more than 100 km from the northern Messinia plain in the north to the southern part of Mani peninsula in the south. The continuity of the EMFZ is disrupted by overlapping faults and relay ramp structures. The central part of the EMFZ, from the town of Oichalia to the city of Kalamata, was investigated by detailed field mapping of fault structures and post-alpine sediment formations together with re-evaluation of historical and modern seismicity. Several fault segments with lengths of 6 to 10 km were mapped, defined and evaluated according to their state of activity and age. Analysis of fault striation measurements along fault planes of the fault zone shows a present regime of WSW-ENE extension, in accordance with focal mechanisms from modern seismicity. Known faults like the Katsareika and Verga faults near the city of Kalamata are interpreted as older-generation faults that are re-activated (e.g. the 1986 Ms 6.0 Kalamata earthquake on Verga Fault) as part of a system of distributed deformation. New fault segments, some of them previously unmapped like the Asprohoma fault to the west of Kalamata, and offshore faults like Kitries and Kourtissa, are being assigned to the EMFZ. Moreover, a paleoseismological trench was excavated in the northern part of Pidima fault segment, one of the most prominent active segments of the central part of the EMFZ, in order to examine the paleoearthquake record of the fault system. A significant number of historical and instrumental earthquakes in the area

  9. Delineation of Active Basement Faults in the Eastern Tennessee and Charlevoix Intraplate Seismic Zones

    NASA Astrophysics Data System (ADS)

    Powell, C. A.; Langston, C. A.; Cooley, M.

    2013-12-01

    Recognition of distinct, seismogenic basement faults within the eastern Tennessee seismic zone (ETSZ) and the Charlevoix seismic zone (CSZ) is now possible using local earthquake tomography and datasets containing a sufficiently large number of earthquakes. Unlike the New Madrid seismic zone where seismicity clearly defines active fault segments, earthquake activity in the ETSZ and CSZ appears diffuse. New arrival time inversions for hypocenter relocations and 3-D velocity variations using datasets in excess of 1000 earthquakes suggest the presence of distinct basement faults in both seismic zones. In the ETSZ, relocated hypocenters align in near-vertical segments trending NE-SW, parallel to the long dimension of the seismic zone. Earthquakes in the most seismogenic portion of the ETSZ delineate another set of near-vertical faults trending roughly E-ESE. These apparent trends and steep dips are compatible with ETSZ focal mechanism solutions. The solutions are remarkably consistent and indicate strike-slip motion along the entire length of the seismic zone. Relocated hypocenter clusters in the CSZ define planes that trend and dip in directions that are compatible with known Iapitan rift faults. Seismicity defining the planes becomes disrupted where the rift faults encounter a major zone of deformation produced by a Devonian meteor impact. We will perform a joint statistical analysis of hypocenter alignments and focal mechanism nodal plane orientations in the ETSZ and the CSZ to determine the spatial orientations of dominant seismogenic basement faults. Quantifying the locations and dimensions of active basement faults will be important for seismic hazard assessment and for models addressing the driving mechanisms for these intraplate zones.

  10. Tsunamigenic potential of Mediterranean fault systems and active subduction zones

    NASA Astrophysics Data System (ADS)

    Petricca, Patrizio; Babeyko, Andrey

    2016-04-01

    Since the North East Atlantic and Mediterranean Tsunami Warning System (NEAMTWS) is under development by the European scientific community, it becomes necessary to define guidelines for the characterization of the numerous parameters must be taken into account in a fair assessment of the risk. Definition of possible tectonic sources and evaluation of their potential is one of the principal issues. In this study we systematically evaluate tsunamigenic potential of up-to-now known real fault systems and active subduction interfaces in the NEAMTWS region. The task is accomplished by means of numerical modeling of tsunami generation and propagation. We have simulated all possible uniform-slip ruptures populating fault and subduction interfaces with magnitudes ranging from 6.5 up to expected Mmax. A total of 15810 individual ruptures were processed. For each rupture, a tsunami propagation scenario was computed in linear shallow-water approximation on 1-arc minute bathymetric grid (Gebco_08) implying normal reflection boundary conditions. Maximum wave heights at coastal positions (totally - 23236 points of interest) were recorded for four hours of simulation and then classified according to currently adopted warning level thresholds. The resulting dataset allowed us to classify the sources in terms of their tsunamigenic potential as well as to estimate their minimum tsunamigenic magnitude. Our analysis shows that almost every source in the Mediterranean Sea is capable to produce local tsunami at the advisory level (i.e., wave height > 20 cm) starting from magnitude values of Mw=6.6. In respect to the watch level (wave height > 50 cm), the picture is less homogeneous: crustal sources in south-west Mediterranean as well as East-Hellenic arc need larger magnitudes (around Mw=7.0) to trigger watch levels even at the nearby coasts. In the context of the regional warning (i.e., source-to-coast distance > 100 km) faults also behave more heterogeneously in respect to the minimum

  11. Palaeoseismological evidence for Holocene activity on the Manisa Fault Zone,Western Anatolia

    NASA Astrophysics Data System (ADS)

    Özkaymak, Ç.; Sözbilir, H.; Uzel, B.; Akyüz, H. S.

    2009-04-01

    Manisa Fault Zone (MFZ) is an active structural discontinuity that is geomorphologically expressed as a trace of north-facing Quaternary fault scarps bounding the southern margin of the Manisa basin which is subsidiary to the Gediz Graben. We note that the present-day fault trace is over 50 km long from Manisa city in the northwest to the Turgutlu town in the southeast. The MFZ consists of two major sections: (i) eastern section that strikes NW-SE direction in the south and bends into an approximately E-W direction around Manisa to the northwest, (ii) an approximately 10-km-long western section that strikes approximately WNW-ESE direction from Manisa city in the east to the Akgedik town in the west. In this study, we present the geologic, geomorphologic, and palaeoseismologic observations indicating Holocene activity on the western section of the fault zone. We identify that the MFZ, at its western end, consists of three fault segments which are en échelon arranged in left step; the fault segments show evidence for linkage and breaching at the relay ramps. One of them is named as the Manastir Fault. In front of this fault, two Holocene colluvial fans older of which is uncorformity bounded are cut and displaced by the syntethic faults. Palaeoseismologic data show that the syntethic fault segments correspond to the surface ruptures of the historical earthquakes. As a result of detailed stratigraphic, sedimentologic and structural observations on the trench walls, some evidences for at least two earthquakes are recorded which are supported by radio-carbon dating. Besides this, an archaic aqueduct that were used to transport water from Emlakdere town, located on the hanging wall of the Manastir Fault, to the basin is cut and displaced by the syntethic fault egments. It is known that this archaic architecture were in use after 11. century by the Ottomans. On the basis of the mentioned data, fault segments which are belong to the western part of the Manisa Fault Zone

  12. Holocene activity of the Rose Canyon fault zone in San Diego, California

    NASA Astrophysics Data System (ADS)

    Lindvall, Scott C.; Rockwell, Thomas K.

    1995-12-01

    The Rose Canyon fault zone in San Diego, California, has many well-expressed geomorphic characteristics of an active strike-slip fault, including scarps, offset and deflected drainages and channel walls, pressure ridges, a closed depression, and vegetation lineaments. Geomorphic expression of the fault zone from Mount Soledad south to Mission Bay indicates that the Mount Soledad strand is the most active. A network of trenches excavated across the Mount Soledad strand in Rose Creek demonstrate a minimum of 8.7 m of dextral slip in a distinctive early to middle Holocene gravel-filled channel that crosses the fault zone. The gravel-filled channel was preserved within and east of the fault but was removed west of the fault zone by erosion or possibly grading during development. Consequently, the actual displacement of the channel could be greater than 8.7 m. Radiocarbon dates on detrital charcoal recovered from the sediments beneath the channel yield a maximum calibrated age of about 8.1±0.2 kyr. The minimum amount of slip along with the maximum age yield a minimum slip rate of 1.07±0.03 mm/yr on this strand of the Rose Canyon fault zone for much of Holocene time. Other strands of the Rose Canyon fault zone, which are east and west of our site, may also have Holocene activity. Based on an analysis of the geomorphology of fault traces within the Rose Canyon fault zone, along with the results of our trenching study, we estimate the maximum likely slip rate at about 2 mm/yr and a best estimate of about 1.5 mm/yr. Stratigraphie evidence of at least three events is present during the past 8.1 kyr. The most recent surface rupture displaces the modern A horizon (topsoil), suggesting that this event probably occurred within the past 500 years. Stratigraphie and structural relationships also indicate the occurrence of a scarp-forming event at about 8.1 kyr, prior to deposition of the gravel-filled channel that was used as a piercing line. A third event is indicated by the

  13. Active Crustal Faults in the Forearc Region, Guerrero Sector of the Mexican Subduction Zone

    NASA Astrophysics Data System (ADS)

    Gaidzik, Krzysztof; Ramírez-Herrera, Maria Teresa; Kostoglodov, Vladimir

    2016-10-01

    This work explores the characteristics and the seismogenic potential of crustal faults on the overriding plate in an area of high seismic hazard associated with the occurrence of subduction earthquakes and shallow earthquakes of the overriding plate. We present the results of geomorphic, structural, and fault kinematic analyses conducted on the convergent margin between the Cocos plate and the forearc region of the overriding North American plate, within the Guerrero sector of the Mexican subduction zone. We aim to determine the active tectonic processes in the forearc region of the subduction zone, using the river network pattern, topography, and structural data. We suggest that in the studied forearc region, both strike-slip and normal crustal faults sub-parallel to the subduction zone show evidence of activity. The left-lateral offsets of the main stream courses of the largest river basins, GPS measurements, and obliquity of plate convergence along the Cocos subduction zone in the Guerrero sector suggest the activity of sub-latitudinal left-lateral strike-slip faults. Notably, the regional left-lateral strike-slip fault that offsets the Papagayo River near the town of La Venta named "La Venta Fault" shows evidence of recent activity, corroborated also by GPS measurements (4-5 mm/year of sinistral motion). Assuming that during a probable earthquake the whole mapped length of this fault would rupture, it would produce an event of maximum moment magnitude Mw = 7.7. Even though only a few focal mechanism solutions indicate a stress regime relevant for reactivation of these strike-slip structures, we hypothesize that these faults are active and suggest two probable explanations: (1) these faults are characterized by long recurrence period, i.e., beyond the instrumental record, or (2) they experience slow slip events and/or associated fault creep. The analysis of focal mechanism solutions of small magnitude earthquakes in the upper plate, for the period between 1995

  14. The northwest trending north Boquerón Bay-Punta Montalva Fault Zone; A through going active fault system in southwestern Puerto Rico

    USGS Publications Warehouse

    Roig‐Silva, Coral Marie; Asencio, Eugenio; Joyce, James

    2013-01-01

    The North Boquerón Bay–Punta Montalva fault zone has been mapped crossing the Lajas Valley in southwest Puerto Rico. Identification of the fault was based upon detailed analysis of geophysical data, satellite images, and field mapping. The fault zone consists of a series of Cretaceous bedrock faults that reactivated and deformed Miocene limestone and Quaternary alluvial fan sediments. The fault zone is seismically active (local magnitude greater than 5.0) with numerous locally felt earthquakes. Focal mechanism solutions suggest strain partitioning with predominantly east–west left-lateral displacements with small normal faults striking mostly toward the northeast. Northeast-trending fractures and normal faults can be found in intermittent streams that cut through the Quaternary alluvial fan deposits along the southern margin of the Lajas Valley, an east–west-trending 30-km-long fault-controlled depression. Areas of preferred erosion within the alluvial fan trend toward the west-northwest parallel to the onland projection of the North Boquerón Bay fault. The North Boquerón Bay fault aligns with the Punta Montalva fault southeast of the Lajas Valley. Both faults show strong southward tilting of Miocene strata. On the western end, the Northern Boquerón Bay fault is covered with flat-lying Holocene sediments, whereas at the southern end the Punta Montalva fault shows left-lateral displacement of stream drainage on the order of a few hundred meters.

  15. Structural Evidence for Fault Reactivation: the Active Priene-Sazli Fault Zone, Söke-Milet Basin, Western Anatolia

    NASA Astrophysics Data System (ADS)

    Sümer, Ö.; Inci, U.; Sözbilir, H.; Uzel, B.

    2009-04-01

    Western Anatolia is located at tha eastern part of the Aegean region that forms one of the most seismically active and rapidly extending regions in the world. One of the most prominent structural component of the Western Anatolia is E-W trending grabens. One of them is the Büyük Menderes Graben (BMG) showing a major change in strike ranging from E-W to NE-SW in its western end. This NE-SW oriented part of the graben is known as the Söke-Milet basin (SMB). The depression is 35 km long and 16 km wide. NW border of the basin is characterized by a morphotectonic structure namely Priene-Sazlı fault zone (PSFZ). The 16 July 1955 Söke-Balat earthquake (M=6.8) was atributed to this fault (Eyidogan and Jackson, 1985; Sengör, 1987; Altunel, 1998). However, field based kinematic studies on the PSFZ are lacking except for Gürer et. al. (2001). In this paper, we studied several reactivated fault segments of the PSFZ that are repeatedly formed under changing stress fields in order to evaluate the kinematic and stress history of the region by using structural relationships between striations and fault-plane related structures. The PSFZ consists of 5 fault segments which are en échelon arranged on the basis of mapping geological structures. The northern segments that strikes NE in the north and bends into an approximately E-W direction around Doganbey to the SW. Each segment is identified as steep opographic scarps ranging in height from a few meters to several hundred meters. Fault segments become to linkage and show breaching of the relay ramps between them. We interpret that such fault patterns have been formed in a region where extension has reactivated on pre-existing structures in an oblique sense. Evidence for this is the presence of three sets of striations each with different orientations on the same slip surface of the studied fault segments. Here, two differently oriented strike-slip slickenlines are postdated by dip-slip striations. Based on our structural

  16. Continuity, segmentation and faulting type of active fault zones of the 2016 Kumamoto earthquake inferred from analyses of a gravity gradient tensor

    NASA Astrophysics Data System (ADS)

    Matsumoto, Nayuta; Yoshihiro, Hiramatsu; Sawada, Akihiro

    2016-10-01

    We analyze Bouguer anomalies in/around the focal region of the 2016 Kumamoto earthquake to examine features, such as continuity, segmentation and faulting type, of the active fault zones related to the earthquake. Several derivatives and structural parameters calculated from a gravity gradient tensor are applied to highlight the features. First horizontal and vertical derivatives, as well as a normalized total horizontal derivative, characterize well the continuous subsurface fault structure along the Futagawa fault zone. On the other hand, the Hinagu fault zone is not clearly detected by these derivatives, especially in the case of the Takano-Shirahata segment, suggesting a difference of cumulative vertical displacement between the two fault zones. The normalized total horizontal derivative and the dimensionality index indicate a discontinuity of the subsurface structure of the Hinagu fault zone, that is, a segment boundary between the Takano-Shirahata and the Hinagu segments. The aftershock distribution does not extend beyond this segment boundary. In other words, this segment boundary controls the southern end of the rupture area of the foreshock. We also recognize normal fault structures dipping to the northwest in some areas of the fault zones from estimations of dip angles.[Figure not available: see fulltext.

  17. Slip Rates of Main Active Fault Zones Through Turkey Inferred From GPS Observations

    NASA Astrophysics Data System (ADS)

    Ozener, H.; Aktug, B.; Dogru, A.; Tasci, L.; Acar, M.; Emre, O.; Yilmaz, O.; Turgut, B.; Halicioglu, K.; Sabuncu, A.; Bal, O.; Eraslan, A.

    2015-12-01

    Active Fault Map of Turkey was revised and published by General Directorate of Mineral Research and Exploration in 2012. This map reveals that there are about 500 faults can generate earthquakes.In order to understand the earthquake potential of these faults, it is needed to determine the slip rates. Although many regional and local studies were performed in the past, the slip rates of the active faults in Turkey have not been determined. In this study, the block modelling, which is the most common method to produce slip rates, will be done. GPS velocities required for block modeling is being compiled from the published studies and the raw data provided then velocity field is combined. To form a homogeneous velocity field, different stochastic models will be used and the optimal velocity field will be achieved. In literature, GPS site velocities, which are computed for different purposes and published, are combined globally and this combined velocity field are used in the analysis of strain accumulation. It is also aimed to develop optimal stochastic models to combine the velocity data. Real time, survey mode and published GPS observations is being combined in this study. We also perform new GPS observations. Furthermore, micro blocks and main fault zones from Active Fault Map Turkey will be determined and homogeneous velocity field will be used to infer slip rates of these active faults. Here, we present the result of first year of the study. This study is being supported by THE SCIENTIFIC AND TECHNOLOGICAL RESEARCH COUNCIL OF TURKEY (TUBITAK)-CAYDAG with grant no. 113Y430.

  18. Faults and associated landslides on the Torrey Pines mesa, an expression of the active Rose Canyon fault zone, La Jolla, California

    SciTech Connect

    Rindell, A.K. )

    1993-04-01

    The Rose Canyon fault zone (RCFZ), San Diego's active NW striking right-lateral wrench, bends to the left at La Jolla, creating a poorly understood zone of transpression. North of La Jolla, continuing investigations along seacliffs and road-cuts have exposed a number of en echelon, NE striking antithetic faults previously interpreted as either E-W striking faults, landslides, and/or Eocene soft-sediment deformations. However, thrust faulting and left-lateral movement, in addition to antithetic strikes, indicates that at least one of these, the Marine Fisheries fault, is associated with the RCFZ. A graben formed by a left-step along this fault has led to land subsidence and engineering problems for the National Marine Fisheries building. In addition, progressive seacliff retreat here and at other locations is partly controlled by fault associated fractures. A cliff-face exposure of the Salk fault reveals diverging fault splays flattening to the near horizontal with movement occurring along bedding planes within the sedimentary section, creating the appearance of landsliding. Classic flower structures have also been found up to 5 km inland, along NE strikes to the shoreline exposures of the Salk and Scripps faults. Faults traces are generally obscured by urbanization and numerous ancient and/or presently active coherent landslides. Although these faults are classified as only potentially active, timing and risk of seismic movement are not well constrained. In addition, record rainfalls in San Diego County have dramatically increased landsliding potential. A well exposed dike, dated at 11 Ma (older than the Pliocene age of the RCFZ), is exposed from the seacliffs offshore towards the RCFZ. It has a significant magnetic anomaly ranging up to 450 gammas and appears to be offset by the Marine Fisheries and Scripps faults. Measuring offsets of this and other reported and suspected offshore dikes may better define total offset from both the RCFZ and antithetic faulting.

  19. Prospecting with ground radar in an active creep-fault zone

    NASA Astrophysics Data System (ADS)

    Ibanez Garduno, Dolores; Lorenzo Cimadevila, Henrique; Alvarez Bejar, Roman; Garduno Monroy, Victor H.

    2000-04-01

    In different places of Morelia, Michoacan, Mexico, there are evidences of four active geologic creep-faults system in. These events have damages (cracking and landslides) in the civil building (Garduno M., et. al, 1998; Garduno M., et. al, 1999; Lermo S., et. al., 1999). In order to find these structures in the first 10 m of depth, region where we have the influence in civil building, we carried out a geophysical study with georadar technique. We made 15 sounding in the fault zone to join the results to preliminar geologic studies in order to improve the security rules in the high risk places. In this work we show the results of three sounds with georadar, as well as the final Bidimensional Model effected with the technique of tracing of ray.

  20. Multilayer stress from gravity and its tectonic implications in urban active fault zone: A case study in Shenzhen, South China

    NASA Astrophysics Data System (ADS)

    Xu, Chuang; Wang, Hai-hong; Luo, Zhi-cai; Ning, Jin-sheng; Liu, Hua-liang

    2015-03-01

    It is significant to identify urban active faults for human life and social sustainable development. The ordinary methods to detect active faults, such as geological survey, artificial seismic exploration, and electromagnetic exploration, are not convenient to be carried out in urban area with dense buildings. It is also difficult to supply information about vertical extension of the deeper faults by these methods. Gravity, reflecting the mass distribution of the Earth's interior, provides an alternative way to detect faults, which is more efficient and convenient for urban active fault detection than the aforementioned techniques. Based on the multi-scale decomposition of gravity anomalies, a novel method to invert multilayer horizontal tectonic stresses is proposed. The inverted multilayer stress fields are further used to infer the distribution and stability of the main faults. In order to validate our method, the multilayer stress fields in the Shenzhen fault zone are calculated as a case study. The calculated stress fields show that their distribution is controlled significantly by the strike of the main faults and can be used to derive depths of the faults. The main faults in Shenzhen may range from 4 km to 20 km in the depth. Each layer of the crust is nearly equipressure since the horizontal tectonic stress has small amplitude. It indicates that the main faults in Shenzhen are relatively stable and have no serious impact on planning and construction of the city.

  1. Active faults in the deformation zone off Noto Peninsula, Japan, revealed by high- resolution seismic profiles

    NASA Astrophysics Data System (ADS)

    Inoue, T.; Okamura, Y.; Murakami, F.; Kimura, H.; Ikehara, K.

    2008-12-01

    Recently, a lot of earthquakes occur in Japan. The deformation zone which many faults and folds have concentrated exists on the Japan Sea side of Japan. The 2007 Noto Hanto Earthquake (MJMA 6.9) and 2007 Chuetsu-oki Earthquake (MJMA 6.8) were caused by activity of parts of faults in this deformation zone. The Noto Hanto Earthquake occurred on 25 March, 2007 under the northwestern coast of Noto Peninsula, Ishikawa Prefecture, Japan. This earthquake is located in Quaternary deformation zone that is continued from northern margin of Noto Peninsula to southeast direction (Okamura, 2007a). National Institute of Advanced Industrial Science and Technology (AIST) carried out high-resolution seismic survey using Boomer and 12 channels short streamer cable in the northern part off Noto Peninsula, in order to clarify distribution and activities of active faults in the deformation zone. A twelve channels short streamer cable with 2.5 meter channel spacing developed by AIST and private corporation is designed to get high resolution seismic profiles in shallow sea area. The multi-channel system is possible to equip on a small fishing boat, because the data acquisition system is based on PC and the length of the cable is short and easy to handle. Moreover, because the channel spacing is short, this cable is very effective for a high- resolution seismic profiling survey in the shallow sea, and seismic data obtained by multi-channel cable can be improved by velocity analysis and CDP stack. In the northern part off Noto Peninsula, seismic profiles depicting geologic structure up to 100 meters deep under sea floor were obtained. The most remarkable reflection surface recognized in the seismic profiles is erosion surface at the Last Glacial Maximum (LGM). In the western part, sediments about 30 meters (40 msec) thick cover the erosional surface that is distributed under the shelf shallower than 100m in depth and the sediments thin toward offshore and east. Flexures like deformation in

  2. Observations of Seafloor Deformation and Methane Venting within an Active Fault Zone Offshore Southern California

    NASA Astrophysics Data System (ADS)

    Anderson, K.; Lundsten, E. M.; Paull, C. K.; Caress, D. W.; Thomas, H. J.; Brewer, P. G.; Vrijenhoek, R.; Lundsten, L.

    2013-12-01

    Detailed mapping surveys of the floor and flanks of the Santa Monica Basin, San Pedro Basin, and San Diego Trough were conducted during the past seven years using an Autonomous Underwater Vehicle (AUV) built and operated by MBARI specifically for seafloor mapping. The AUV collected data provide up to 1 m resolution multibeam bathymetric grids with a vertical precision of 0.15 m. Along with high-resolution multibeam, the AUV also collects chirp seismic reflection profiles. Structures within the uppermost 10-20 m of the seafloor, which in the surveys presented here is composed of recent sediment drape, can typically be resolved in the sub-bottom reflectors. Remotely operated vehicle (ROV) dives allowed for ground-truth observations and sampling within the surveyed areas. The objectives of these dives included finding evidence of recent seafloor deformation and locating areas where chemosynthetic biological communities are supported by fluid venting. Distinctive seafloor features within an active fault zone are revealed in unprecedented detail in the AUV generated maps and seismic reflection profiles. Evidence for recent fault displacements include linear scarps which can be as small as 20 cm high but traceable for several km, right lateral offsets within submarine channels and topographic ridges, and abrupt discontinuities in sub-bottom reflectors, which in places appear to displace seafloor sediments. Several topographic highs that occur within the fault zone appear to be anticlines related to step-overs in these faults. These topographic highs are, in places, topped with circular mounds that are up to 15 m high and have ~30° sloping sides. The crests of the topographic highs and the mounds both have distinctive rough morphologies produced by broken pavements of irregular blocks of methane-derived authigenic carbonates, and by topographic depressions, commonly more than 2 m deep. These areas of distinctive rough topography are commonly associated with living

  3. The Eastern Lower Tagus Valley Fault Zone in central Portugal: Active faulting in a low-deformation region within a major river environment

    NASA Astrophysics Data System (ADS)

    Canora, Carolina; Vilanova, Susana P.; Besana-Ostman, Glenda M.; Carvalho, João; Heleno, Sandra; Fonseca, Joao

    2015-10-01

    Active faulting in the Lower Tagus Valley, Central Portugal, poses a significant seismic hazard that is not well understood. Although the area has been affected by damaging earthquakes during historical times, only recently has definitive evidence of Quaternary surface faulting been found along the western side of the Tagus River. The location, geometry and kinematics of active faults along the eastern side of the Tagus valley have not been previously studied. We present the first results of mapping and paleoseismic analysis of the eastern strand of the Lower Tagus Valley Fault Zone (LTVFZ). Geomorphological, paleoseismological, and seismic reflection studies indicate that the Eastern LTVFZ is a left-lateral strike-slip fault. The detailed mapping of geomorphic features and studies in two paleoseismic trenches show that surface fault rupture has occurred at least six times during the past 10 ka. The river offsets indicate a minimum slip rate on the order of 0.14-0.24 mm/yr for the fault zone. Fault trace mapping, geomorphic analysis, and paleoseismic studies suggest a maximum magnitude for the Eastern LTVFZ of Mw ~ 7.3 with a recurrence interval for surface ruptures ~ 1.7 ka. At least two events occurred after 1175 ± 95 cal yr BP. Single-event displacements are unlikely to be resolved in the paleoseismic trenches, thus our observations most probably represent the minimum number of events identified in the trenches.

  4. On the seismic activity of the Malibu Coast Fault Zone, and other ethical problems in engineering geoscience

    SciTech Connect

    Cronin, V.S. . Geosciences Dept.)

    1992-01-01

    The Malibu Coast Fault Zone (MCFZ) merges eastward with the active Santa Monica, Hollywood, Raymond Hill, Sierra Madre, and Cucamonga Faults of the central Transverse Ranges. West of Point Dume, the MCFZ extends offshore to join the active Santa Cruz Island Fault. Active microearthquake seismicity along the MCFZ trend indicates that it is seismogenic. Focal mechanism solutions for several of these earthquakes indicate thrusting along faults with the same orientation as the MCFZ. The geomorphology of the MCFZ is consistent with the interpretation that the MCFZ is active. Scarps in unconsolidated sands along the continental shelf just south of Malibu indicate recent offset. In the Santa Monica Mountains, late Tertiary and Quaternary marine sedimentary strata are exposed on the hanging-wall side of the MCFZ, indicating active uplift of the Santa Monica Mountains. Given the other indicators of fault activity, the trench studies that must still be undertaken across the MCFZ are more likely to establish the chronology of recent displacement along the MCFZ than to indicate that the fault is not active. It has been suggested that the MCFZ has not yet been formally recognized as an active, seismogenic fault zone because of the expected loss of property value should the MCFZ be designated an active fault. Geoscientists fear being held liable for loss of property value, even though their assessment of fault activity may be scientifically valid. What are the ethical responsibilities of geoscientists involved in seismic risk assessment along the MCFZ Are political or financial considerations valid criteria to use in assessing the activity of a fault These are not abstract questions of geoethics, because the lives and properties of countless people are potentially at risk.

  5. Mantle fault zone beneath Kilauea Volcano, Hawaii.

    PubMed

    Wolfe, Cecily J; Okubo, Paul G; Shearer, Peter M

    2003-04-18

    Relocations and focal mechanism analyses of deep earthquakes (>/=13 kilometers) at Kilauea volcano demonstrate that seismicity is focused on an active fault zone at 30-kilometer depth, with seaward slip on a low-angle plane, and other smaller, distinct fault zones. The earthquakes we have analyzed predominantly reflect tectonic faulting in the brittle lithosphere rather than magma movement associated with volcanic activity. The tectonic earthquakes may be induced on preexisting faults by stresses of magmatic origin, although background stresses from volcano loading and lithospheric flexure may also contribute.

  6. Mantle fault zone beneath Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Wolfe, C.J.; Okubo, P.G.; Shearer, P.M.

    2003-01-01

    Relocations and focal mechanism analyses of deep earthquakes (???13 kilometers) at Kilauea volcano demonstrate that seismicity is focused on an active fault zone at 30-kilometer depth, with seaward slip on a low-angle plane, and other smaller, distinct fault zones. The earthquakes we have analyzed predominantly reflect tectonic faulting in the brittle lithosphere rather than magma movement associated with volcanic activity. The tectonic earthquakes may be induced on preexisting faults by stresses of magmatic origin, although background stresses from volcano loading and lithospheric flexure may also contribute.

  7. Multiscale seismic imaging of active fault zones for hazard assessment: A case study of the Santa Monica fault zone, Los Angeles, California

    USGS Publications Warehouse

    Pratt, T.L.; Dolan, J.F.; Odum, J.K.; Stephenson, W.J.; Williams, R.A.; Templeton, M.E.

    1998-01-01

    High-resolution seismic reflection profiles at two different scales were acquired across the transpressional Santa Monica Fault of north Los Angeles as part of an integrated hazard assessment of the fault. The seismic data confirm the location of the fault and related shallow faulting seen in a trench to deeper structures known from regional studies. The trench shows a series of near-vertical strike-slip faults beneath a topographic scarp inferred to be caused by thrusting on the Santa Monica fault. Analysis of the disruption of soil horizons in the trench indicates multiple earthquakes have occurred on these strike-slip faults within the past 50 000 years, with the latest being 1000 to 3000 years ago. A 3.8-km-long, high-resolution seismic reflection profile shows reflector truncations that constrain the shallow portion of the Santa Monica Fault (upper 300 m) to dip northward between 30?? and 55??, most likely 30?? to 35??, in contrast to the 60?? to 70?? dip interpreted for the deeper portion of the fault. Prominent, nearly continuous reflectors on the profile are interpreted to be the erosional unconformity between the 1.2 Ma and older Pico Formation and the base of alluvial fan deposits. The unconformity lies at depths of 30-60 m north of the fault and 110-130 m south of the fault, with about 100 m of vertical displacement (180 m of dip-slip motion on a 30??-35?? dipping fault) across the fault since deposition of the upper Pico Formation. The continuity of the unconformity on the seismic profile constrains the fault to lie in a relatively narrow (50 m) zone, and to project to the surface beneath Ohio Avenue immediately south of the trench. A very high-resolution seismic profile adjacent to the trench images reflectors in the 15 to 60 m depth range that are arched slightly by folding just north of the fault. A disrupted zone on the profile beneath the south end of the trench is interpreted as being caused by the deeper portions of the trenched strike

  8. Lateral propagation of active normal faults throughout pre-existing fault zones: an example from the Southern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Agosta, Fabrizio; Prosser, Giacomo; Ivo Giano, Salvatore

    2013-04-01

    The main active structures in the Southern Apennines are represented by a set of NW-trending normal faults, which are mainly located in the axial sector of the chain. Evidences arising from neotectonics and seismology show activity of a composite seismic source, the Irpinia - Agri Valley, located across the Campania-Basilicata border. This seismic source is made up of two right-stepping, individual seismic sources forming a relay ramp. Each individual seismic source consists of a series of nearly parallel normal fault segments. The relay ramp area, located around the Vietri di Potenza town, is bounded by two seismic segments, the San Gregorio Magno Fault, to the NW, and the Pergola-Melandro Fault, to the SE. The possible interaction between the two right-stepping fault segments has not been proven yet, since the fault system of the area has never been analyzed in detail. This work is aimed at assessing the geometry of such fault system, inferring the relative age of the different fault sets by studying the crosscutting relationships, characterizing the micromechanics of fault rocks associated to the various fault sets, and understanding the modalities of lateral propagation of the two bounding fault segments. Crosscutting relationships are recognized by combining classical geological mapping with morphotectonic methods. This latter approach, which include the analysis of aerial photographs and field inspection of quaternary slope deposits, is used to identify the most recent structures among those cropping out in the field area. In the relay ramp area, normal faults crosscut different tectonic units of the Apennine chain piled up, essentially, during the Middle to Late Miocene. The topmost unit (only few tens of meter-thick) consists of a mélange containing blocks of different lithologies in a clayish matrix. The intermediate thrust sheet consists of 1-1.5 km-thick platform carbonates of late Triassic-Jurassic age, with dolomites at the base and limestones at the

  9. Late Quaternary Activity and Seismogenic Potential of the Gonave Microplate: Plantain Garden Strike-Slip Fault Zone of Eastern Jamaica

    NASA Astrophysics Data System (ADS)

    Mann, P.; Prentice, C.; King, W.; Demets, C.; Wiggins-Grandison, M.; Benford, B.

    2008-12-01

    At the longitude of Jamaica, Caribbean (Carib)-North America (Noam) plate motion of 19 ± 2 mm/a is carried by two parallel, left-lateral strike-slip faults, the Oriente fault zone, immediately south of Cuba, and the Enriquillo-Plantain Garden fault zone (EPGFZ), which lies 100-150 km further south. It has been postulated that the lithosphere between these faults constitutes an independent Gonave microplate that has formed in response to the ongoing collision between the leading edge of Carib in Hispaniola and the Bahama carbonate platform. GPS measurements in Jamaica and Hispanola is supportive of the microplate hypothesis and indicates that roughly half of Carib-Noam plate motion (8-14 mm/a) is carried by the EPGFZ of southern Hispaniola and eastern Jamaica. This study applies geomorphic and paleoseismic methods as a direct test of the activity and amount of microplate motion carried on the Plantain Garden fault segment of eastern Hispaniola and how this motion is distributed across a large restraining bend that has formed the island of Jamaica since the late Miocene. The EPFZ curves gently to the northeast and forming a steep mountain front to the Blue Mountains restraining bend with elevations up to 2200 m. Geomorphic fault-related features along the mountain front fault zone include left-laterally deflected rivers and streams, but no small scale features indicative of Holocene activity. River and stream deflections range from 0.1 to 0.5 km. We identified and trenched the most active trace of the mountain front fault at the Morant River where the fault is characterized by a 1.5-m-wide sub-vertical fault zone juxtaposing sheared alluvium and fault Cretaceous basement rocks This section is overlain by a 6-m-thick fluvial terrace. Trenching in the unfaulted terrace immediately overlying the fault trace revealed radiocarbon and OSL ages ranging from 20 to 21 ka that are consistent with a prominent unfaulted alluvial fan along the projection of this fault 1.5 km to

  10. Modeling Activity of Very-Low-Frequency Earthquakes in Shallow Subduction Zone Considering Splay Faults and High Pore Pressure Zones

    NASA Astrophysics Data System (ADS)

    Shibazaki, B.; Ito, Y.; Ujiie, K.

    2010-12-01

    Recent observations reveal that very-low-frequency (VLF) earthquakes occur in the shallow subduction zones in the Nankai trough, Hyuganada, and off the coast of Tokachi, Japan (Obara and Ito, 2005; Asano et al., 2008; Obana and Kodaira, 2009). The ongoing super drilling project, Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE), involves sampling the core of seismogenic faults and conducting analyses, experiments, and in-situ borehole measurements at the Nankai trough where VLF earthquakes occur. The data obtained in this project will be used to develop a model of VLF earthquakes that integrates seismological observations, laboratory experimental results, and geological observations. In the present study, first, we perform 2D quasi-dynamic modeling of VLF earthquakes in an elastic half-space on the basis of a rate- and state-dependent friction law. We set a local unstable zone in a shallow stable zone. To explain very low stress drops and short recurrence intervals of VLF earthquakes, the effective stress is assumed to be around 0.2 MPa. The results indicate that VLF earthquakes are unstable slips that occur under high pore pressure conditions. The probable causes for the high pore pressure along the faults of VLF earthquakes are the sediment compaction and dehydration that occur during smectite-to-illite transition in the shallow subduction zone. Then, we model the generation process of VLF earthquakes by considering splay faults and the occurrences of large subduction earthquakes. We set the local unstable zones with high pore pressure in the stable splay fault zones. We assume the long-term average slip velocity of the splay faults, and that the shear stress is accumulated by the delay of the fault slip from the long-term slip motion. Depending on the frictional properties of the shallow splay faults, two types of VLF earthquakes can occur. When the effective stress is low all over the splay faults, the rupture of large earthquakes propagates to the

  11. Faults paragenesis and paleostress state in the zone of actively propagating continental strike-slip on the example of North Khangai fault (Northern Mongolia)

    NASA Astrophysics Data System (ADS)

    Sankov, Vladimir; Parfeevets, Anna

    2014-05-01

    Sublatitudinal North Khangai fault extends from Ubsunuur basin to the eastern part of the Selenga corridor trough 800 km. It is the northern boundary of the massive Mongolian block and limits of the Baikal rift system structures propagation in the south (Logatchev, 2003). Late Cenozoic and present-day fault activity are expressed in the left-lateral displacements of a different order of river valleys and high seismicity. We have carried out studies of the kinematics of active faults and palaeostresses reconstruction in the zone of the dynamic influence of North Khangai fault, the width of which varies along the strike and can exceeds 100 km. The result shows that the fault zone has a longitudinal and a transverse zoning. Longitudinal zonation presented gradual change from west to east regions of compression and transpression regimes (Khan-Khukhey ridge) to strike-slip regime (Bolnay ridge) and strike-slip and transtensive regimes (west of Selenga corridor). Strike-slip zones are represented by linearly concentrated rupture deformations. In contrast, near the termination of the fault the cluster fault deformation formed. Here, from north to south, there are radical changes in the palaeostress state. In the north-western sector (east of Selenga corridor) strike-slip faults, strike-slip faults with normal components and normal faults are dominated. For this sector the stress tensors of extensive, transtension and strike-slip regimes are typical. South-western sector is separated from the north-eastern one by massive Buren Nuruu ridge within which the active faults are not identified. In the south-western sector between the Orkhon and Tola rivers the cluster of NW thrusts and N-S strike-slip faults with reverse component are discovered. The faults are perfectly expressed by NW and N-S scarps in the relief. The most structures dip to the east and north-east. Holocene fault activity is demonstrated by the hanging river valleys and horizontal displacements with amplitudes

  12. Dynamic fracturing by successive coseismic loadings leads to pulverization in active fault zones

    NASA Astrophysics Data System (ADS)

    Aben, F. M.; Doan, M.-L.; Mitchell, T. M.; Toussaint, R.; Reuschlé, T.; Fondriest, M.; Gratier, J.-P.; Renard, F.

    2016-04-01

    Previous studies show that pulverized rocks observed along large faults can be created by single high-strain rate loadings in the laboratory, provided that the strain rate is higher than a certain pulverization threshold. Such loadings are analogous to large seismic events. In reality, pulverized rocks have been subject to numerous seismic events rather than one single event. Therefore, the effect of successive "milder" high-strain rate loadings on the pulverization threshold is investigated by applying loading conditions below the initial pulverization threshold. Single and successive loading experiments were performed on quartz-monzonite using a Split Hopkinson Pressure Bar apparatus. Damage-dependent petrophysical properties and elastic moduli were monitored by applying incremental strains. Furthermore, it is shown that the pulverization threshold can be reduced by successive "milder" dynamic loadings from strain rates of ~180 s-1 to ~90 s-1. To do so, it is imperative that the rock experiences dynamic fracturing during the successive loadings prior to pulverization. Combined with loading conditions during an earthquake rupture event, the following generalized fault damage zone structure perpendicular to the fault will develop: furthest from the fault plane, there is a stationary outer boundary that bounds a zone of dynamically fractured rocks. Closer to the fault, a pulverization boundary delimits a band of pulverized rock. Consecutive seismic events will cause progressive broadening of the band of pulverized rocks, eventually creating a wider damage zone observed in mature faults.

  13. Modeling of fault activation and seismicity by injection directly into a fault zone associated with hydraulic fracturing of shale-gas reservoirs

    DOE PAGES

    Rutqvist, Jonny; Rinaldi, Antonio P.; Cappa, Frédéric; Moridis, George J.

    2015-03-01

    We conducted three-dimensional coupled fluid-flow and geomechanical modeling of fault activation and seismicity associated with hydraulic fracturing stimulation of a shale-gas reservoir. We simulated a case in which a horizontal injection well intersects a steeply dip- ping fault, with hydraulic fracturing channeled within the fault, during a 3-hour hydraulic fracturing stage. Consistent with field observations, the simulation results show that shale-gas hydraulic fracturing along faults does not likely induce seismic events that could be felt on the ground surface, but rather results in numerous small microseismic events, as well as aseismic deformations along with the fracture propagation. The calculated seismicmore » moment magnitudes ranged from about -2.0 to 0.5, except for one case assuming a very brittle fault with low residual shear strength, for which the magnitude was 2.3, an event that would likely go unnoticed or might be barely felt by humans at its epicenter. The calculated moment magnitudes showed a dependency on injection depth and fault dip. We attribute such dependency to variation in shear stress on the fault plane and associated variation in stress drop upon reactivation. Our simulations showed that at the end of the 3-hour injection, the rupture zone associated with tensile and shear failure extended to a maximum radius of about 200 m from the injection well. The results of this modeling study for steeply dipping faults at 1000 to 2500 m depth is in agreement with earlier studies and field observations showing that it is very unlikely that activation of a fault by shale-gas hydraulic fracturing at great depth (thousands of meters) could cause felt seismicity or create a new flow path (through fault rupture) that could reach shallow groundwater resources.« less

  14. Modeling of fault activation and seismicity by injection directly into a fault zone associated with hydraulic fracturing of shale-gas reservoirs

    SciTech Connect

    Rutqvist, Jonny; Rinaldi, Antonio P.; Cappa, Frédéric; Moridis, George J.

    2015-03-01

    We conducted three-dimensional coupled fluid-flow and geomechanical modeling of fault activation and seismicity associated with hydraulic fracturing stimulation of a shale-gas reservoir. We simulated a case in which a horizontal injection well intersects a steeply dip- ping fault, with hydraulic fracturing channeled within the fault, during a 3-hour hydraulic fracturing stage. Consistent with field observations, the simulation results show that shale-gas hydraulic fracturing along faults does not likely induce seismic events that could be felt on the ground surface, but rather results in numerous small microseismic events, as well as aseismic deformations along with the fracture propagation. The calculated seismic moment magnitudes ranged from about -2.0 to 0.5, except for one case assuming a very brittle fault with low residual shear strength, for which the magnitude was 2.3, an event that would likely go unnoticed or might be barely felt by humans at its epicenter. The calculated moment magnitudes showed a dependency on injection depth and fault dip. We attribute such dependency to variation in shear stress on the fault plane and associated variation in stress drop upon reactivation. Our simulations showed that at the end of the 3-hour injection, the rupture zone associated with tensile and shear failure extended to a maximum radius of about 200 m from the injection well. The results of this modeling study for steeply dipping faults at 1000 to 2500 m depth is in agreement with earlier studies and field observations showing that it is very unlikely that activation of a fault by shale-gas hydraulic fracturing at great depth (thousands of meters) could cause felt seismicity or create a new flow path (through fault rupture) that could reach shallow groundwater resources.

  15. Constraining deformation history and recent activity along the Tuz Gölü fault zone, Central Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Krystopowicz, N. J.; Schoenbohm, L. M.; Cosca, M. A.

    2013-12-01

    The 200 km long, dextral, transtensive Tuz Gölü fault zone is a prominent northwest-striking feature in Central Anatolia. It is one of the most significant structures in Central Anatolia in that it lies within the transition zone between the Western Anatolian Extensional Province and the Eastern Anatolian Contractional Province; its study therefore offers valuable insight into how Central Anatolia is affected by lateral extrusion related to collision in the east, and gravitational pull forces associated with subduction in the west. Proposals for the initiation of the Tuz Gölü fault zone range from Cretaceous to Neogene times, and the amount of recent activity along this fault system remains poorly constrained. Furthermore, potential basinward migration of deformation into the Tuz Gölü basin poses the question as to whether or not this fault system is active in the Holocene. Previous work suggests that migration of deformation towards the basin interior may be related to lithospheric-scale processes such as plateau development, microplate extrusion, or the onset of crustal thinning associated with slab-tear propagation in subducting African lithosphere. In this study, we use a combination of paleostress and morpho-tectonic analysis to further delineate the segmentation and present activity of the Tuz Gölü fault zone. Paleostress analysis offers insight into the deformation history of the region as well as the modern-day stress regime. We conducted a morphometric analysis of over 300 drainage basins along the range-front, which reveal variations that characterize the unique development of numerous fault strands in the region. Statistical analysis of hypsometric curves, systematic variation in basin morphology and orientation, as well as changes in mountain-front sinuosity reveal fault segmentation. Additionally, field mapping and Ar-Ar dating of offset lava flows from the Hasan Dag Volcano quantitatively constrain slip-rates in the southeastern portion of the

  16. Active source monitoring at the Wenchuan fault zone: coseismic velocity change associated with aftershock event and its implication

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Ge, Hongkui; Wang, Baoshan; Hu, Jiupeng; Yuan, Songyong; Qiao, Sen

    2014-12-01

    With the improvement of seismic observation system, more and more observations indicate that earthquakes may cause seismic velocity change. However, the amplitude and spatial distribution of the velocity variation remains a controversial issue. Recent active source monitoring carried out adjacent to Wenchuan Fault Scientific Drilling (WFSD) revealed unambiguous coseismic velocity change associated with a local M s5.5 earthquake. Here, we carry out forward modeling using two-dimensional spectral element method to further investigate the amplitude and spatial distribution of observed velocity change. The model is well constrained by results from seismic reflection and WFSD coring. Our model strongly suggests that the observed coseismic velocity change is localized within the fault zone with width of ~120 m rather than dynamic strong ground shaking. And a velocity decrease of ~2.0 % within the fault zone is required to fit the observed travel time delay distribution, which coincides with rock mechanical experiment and theoretical modeling.

  17. An automatic continuous monitoring station for groundwater geochemistry at an active fault zone in SW Taiwan

    NASA Astrophysics Data System (ADS)

    Lai, Chun-Wei; Yang, Tsanyao F.; Fu, Ching-Chou; Hilton, David R.; Liu, Tsung-Kwei; Walia, Vivek; Lai, Tzu-Hua

    2015-04-01

    Previous studies have revealed that gas compositions of fluid samples collected from southwestern Taiwan where many hot springs and mud volcanoes are distributed along tectonic sutures show significant variation prior to and after some disaster seismic events. Such variations, including radon activity, CH4/CO2, CO2/3He and 3He/4He ratios of gas compositions, are considered to be precursors of earthquakes in this area. To validate the relationship between fluid compositions and local earthquakes, a continuous monitoring station has been established at Yun-Shui, which is an artesian well located at an active fault zone in SW Taiwan. It is equipped with a radon detector and a quadrupole mass spectrometer (QMS) for in-situ measurement of the dissolved gas composition. Data is telemetered to Taipei so we are able to monitor variations of gas composition in real time. Furthermore, we also installed a syringe pump apparatus for the retrieval and temporal analysis of helium (SPARTAH) at this station. From the SPARTAH samples, we can obtain detailed time series records of H-O isotopic compositions, DIC concentration and δ13C isotopic ratios, and anion concentration of the water samples at this station. After continuous monitoring for about one year, some anomalies occurred prior to some local earthquakes. It demonstrates that this automated system is feasible for long-term continuous seismo-geochemical research in this area. Keywords: monitoring; geochemistry; isotope; dissolved gases; pre-seismic signal.

  18. Identifying active interplate and intraplate fault zones in the western Caribbean plate from seismic reflection data and the significance of the Pedro Bank fault zone in the tectonic history of the Nicaraguan Rise

    NASA Astrophysics Data System (ADS)

    Ott, B.; Mann, P.

    2015-12-01

    The offshore Nicaraguan Rise in the western Caribbean Sea is an approximately 500,000 km2 area of Precambrian to Late Cretaceous tectonic terranes that have been assembled during the Late Cretaceous formation of the Caribbean plate and include: 1) the Chortis block, a continental fragment; 2) the Great Arc of the Caribbean, a deformed Cretaceous arc, and 3) the Caribbean large igneous province formed in late Cretaceous time. Middle Eocene to Recent eastward motion of the Caribbean plate has been largely controlled by strike-slip faulting along the northern Caribbean plate boundary zone that bounds the northern margin of the Nicaraguan Rise. These faults reactivate older rift structures near the island of Jamaica and form the transtensional basins of the Honduran Borderlands near Honduras. Recent GPS studies suggest that small amount of intraplate motion within the current margin of error of GPS measurements (1-3 mm/yr) may occur within the center of the western Caribbean plate at the Pedro Bank fault zone and Hess Escarpment. This study uses a database of over 54,000 km of modern and vintage 2D seismic data, combined with earthquake data and results from previous GPS studies to define the active areas of inter- and intraplate fault zones in the western Caribbean. Intraplate deformation occurs along the 700-km-long Pedro Bank fault zone that traverses the center of the Nicaraguan Rise and reactivates the paleo suture zone between the Great Arc of the Caribbean and the Caribbean large igneous province. The Pedro Bank fault zone also drives active extension at the 200-km-long San Andres rift along the southwest margin of the Nicaraguan Rise. Influence of the Cocos Ridge indentor may be contributing to reactivation of faulting along the southwesternmost, active segment of the Hess Escarpment.

  19. Establishment of Active Traces of Lower Tagus Valley Fault Zone through an Integrated Approach

    NASA Astrophysics Data System (ADS)

    Besana-Ostman, G. M.; Vilanova, S.; Flor, A.; Canora, C.; Heleno, S.; Domingues, A.; Narciso, J.; Pinheiro, P.; Pinto, L.; Fonseca, J. F.

    2013-05-01

    Despite the occurrence of at least two damaging earthquakes in historical times - the M~7 1531 and the M6 1909 earthquakes - the Lower Tagus Valley Fault Zone (LTVFZ) has only recently been mapped (Besana-Ostman et al., 2012). In addition, a new set of active traces has been identified to the east during recent analysis and field inspections. The major challenges to the identification of active traces within Lower Tagus Valley (LTV) are both the presence of the very dynamic Tagus River (LTR) and the extensive urban and agricultural modifications introduced in the landscape. The detailed reports on the geological effects of the 1909 earthquake, while documenting extensively the secondary, shaking-related effects, provide no indication of surface rupture. The active traces of the northeast-southwest trending left-lateral LTVFZ within the LTV were established through integrated approaches as follows: aerial photo analysis, drainage system and satellite images examination, geomorphic feature identification, field mapping, geomorphic index measurements and trenching. The mapped traces extend to about 80 kilometers long and transect Quaternary and Holocene deposits. The mapped length of the western splay is compatible with an M7.2 earthquake. On the other hand, the newly mapped eastern traces plot almost parallel with the western splay, which may extend southwards to a comparable length. Preliminary analysis of satellite data show some evidence of additional splays located further east and south relative to the LTV. The new active traces suggest that the LTVFZ is a left-stepping left-lateral fault system with a regional NNE-SSW trend. Moreover, its extent and kinematics suggest magnitudes higher than previously assessed for the region. The location of the active traces displays a better correlation with the damage distribution of the historical events. Given the significance and implications of these findings for earthquake hazards assessment in Portugal, further studies

  20. Architecture of small-scale fault zones in the context of the Leinetalgraben Fault System

    NASA Astrophysics Data System (ADS)

    Reyer, Dorothea; Philipp, Sonja L.

    2010-05-01

    local stress field so that it stops many joints. Well developed fracture networks are therefore in most cases limited to single layers. From the data we finally determined the structural indices of the fault zones, that is, the ratios of damage zone and fault zone widths. By their nature structural indices can obtain values from 0 to 1; the values having implications for fault zone permeability. An ideal value of 0 would mean that a fault damage zone is absent. Such fault zones generally have low permeabilities as long as the faults are not active (slipping). A structural index of 1, however, would imply that there is practically no fault core and the fault zone permeability is entirely controlled by the fractures within the damage zone. Our measurements show that the damage zones of normal faults in the Muschelkalk limestone are relatively thick so that their structural indices are relatively high. In contrast to normal faults, reverse and strike-slip faults have smaller indices because of well developed brecciated fault cores. In addition we found that small-scale fault zones with parallel orientations to the major Leinetalgraben fault zones are more likely to have well developed damage zones than those with conjugate or perpendicular orientation. Our field data lead to the hypothesis that fault systems in the North German Basin may generally be surrounded by small-scale fault zones which have high permeabilities if orientated parallel to the major fault and lower permeabilities if conjugate or perpendicularly orientated. However, further studies of fault systems in different geological settings are needed to support or reject this hypothesis. Such studies help to improve the general understanding of fault zones and fault systems and thereby minimise the risk in matters of the exploitation of fault-related geothermal reservoirs.

  1. Reconstruction of fault zone evolution from 40Ar/39Ar white mica, zircon and apatite fission track, and apatite U/Th-He thermochronology: 65 million years of fault activity along the Lavanttal Fault Zone (Eastern Alps)?

    NASA Astrophysics Data System (ADS)

    Kurz, Walter; Woelfler, Andreas; Rabitsch, Robert; Genser, Johann

    2010-05-01

    , and 43.6 ± 2.1 and 34.3 ± 1.8 Ma along the western margin. Single grain ages are variable within fault core rocks and range from 76.5±12.3 to 3.6±1.3 Ma. These samples do not pass the chi-square test and can be decomposed into two age clusters. The dominant age components yield a weighted mean of 56.1±4.3 Ma and 8.6±2.6 Ma. Samples from the fault cores show significantly reduced mean track lengths (MTL). There is a clear relationship between single grain ages, MTL and Dpar values. Therefore the smallest Dpar values are associated with the youngest single grain ages and the shortest MTĹs. Referring to the (U-Th)/He analysis a trend of decreasing ages from the host rock toward the damage zones and fault cores can be observed. The weighted mean age from the host rock is 11.8±3.2, from the damage zones 7.4±1.5 and 6.2±1.3 Ma and 4.7±0.5, 5.7±1.3 and 4.8±2.0 Ma from the fault cores. Thse thermochronoloical ages document that the exhumation and cooling of the Koralm massif was mainly completed at the end of the Cretaceous. Argon release spectra from muscovites in cataclastic shear zones show in parts highly reduced incremental ages. Rejuvenation of zircon fission track ages along the LFZ indicates a first phase of fault activity around 65 Ma and is most probably related to the subsidence evolution of the Central Alpine Gosau basins. Recognition of this displacement event is hampered by the fact that the spatial distribution of Late Cretaceous structural elements coincide frequently with Miocene extrusion-related structures. Fault zones within the Eastern Alps commonly regarded to have formed during the lateral extrusion event in Miocene times may therefore represent reactivated structures that formed during a Late Cretaceous event of orogen extension. Continuous displacement along the LFZ until Pliocene times is indicated by single grain apatite and U/Th-He ages.

  2. Geomorphic Assessment of Activity Levels of the Three Strands of North Anatolian Fault Zone in NW Turkey

    NASA Astrophysics Data System (ADS)

    Gürbüz, E.; Gurbuz, A.

    2014-12-01

    The North Anatolian Fault Zone is a narrow zone along a length of ~900 km and width of 10 km between the Karlıova to the east and Dokurcun Valley to the west. The fault zone splays into three strands around the Dokurcun Valley and forms a wide zone with a length of 400 km and width of 100 km. From the Dokurcun Valley, while the northern strand follows a route along the Lake Sapanca, Izmit Gulf, Marmara Sea and Saroz Gulf and connects to the North Aegean Trough, the middle strand tracks Lake Iznik, Gemlik and Bandırma Bays and southern coasts of the Marmara Sea. Although there is not a consensus on where it branches from the main strand, it is generally accepted that it trails a definite route along the Yenişehir, Bursa, Manyas-Karacabey and Yenice basins, and continues towards the Edremit Gulf in the west. Given the slip rates and seismic activities of the last century, the ranking between these three strands show a decrease from north to south. Among these three strands, the northern one offers significant differences with high values compared to the middle and southern strands. The aim of this study is to compare the differences represented by slip rate and seismicity data with morphometric features of the three strands of North Anatolian Fault Zone that controlled by their activities during the Quaternary period. We have calculated the morphometric values for each of the fault strands in the Marmara Region according to geomorphic indices. Our study presents the middle strand, which has represented the lower activity during the instrumental period, has an important sense of activity.

  3. Ground Motion Simulation for a Large Active Fault System using Empirical Green's Function Method and the Strong Motion Prediction Recipe - a Case Study of the Noubi Fault Zone -

    NASA Astrophysics Data System (ADS)

    Kuriyama, M.; Kumamoto, T.; Fujita, M.

    2005-12-01

    propagation. Moreover, it was clarified that the horizontal velocities by assuming the cascade model was underestimated more than one standard deviation of empirical relation by Si and Midorikawa (1999). The scaling and cascade models showed an approximately 6.4-fold difference for the case, in which the rupture started along the southeastern edge of the Umehara Fault at observation point GIF020. This difference is significantly large in comparison with the effect of different rupture starting points, and shows that it is important to base scenario earthquake assumptions on active fault datasets before establishing the source characterization model. The distribution map of seismic intensity for the 1891 Noubi Earthquake also suggests that the synthetic waveforms in the southeastern Noubi Fault zone may be underestimated. Our results indicate that outer fault parameters (e.g., earthquake moment) related to the construction of scenario earthquakes influence strong motion prediction, rather than inner fault parameters such as the rupture starting point. Based on these methods, we will predict strong motion for approximately 140 to 150 km of the Itoigawa-Shizuoka Tectonic Line.

  4. Recurrent late Quaternary surface faulting along the southern Mohawk Valley fault zone, NE California

    SciTech Connect

    Sawyer, T.L.; Hemphill-Haley, M.A. ); Page, W.D. )

    1993-04-01

    The Mohawk Valley fault zone comprises NW- to NNW-striking, normal and strike-slip( ) faults that form the western edge of the Plumas province, a diffuse transitional zone between the Basin and Range and the northern Sierra Nevada. The authors detailed evaluation of the southern part of the fault zone reveals evidence for recurrent late Pleistocene to possibly Holocene, moderate to large surface-faulting events. The southern Mohawk fault zone is a complex, 6-km-wide zone of faults and related features that extends from near the crest of the Sierra Nevada to the middle of southern Sierra Valley. The fault zone has two distinct and generally parallel subzones, 3 km apart, that are delineated by markedly different geomorphic characteristics and apparently different styles of faulting. Paleoseismic activity of the western subzone was evaluated in two trenches: one across a fault antithetic to the main range-bounding fault, and the other across a splay fault delineated by a 3.7-m-high scarp in alluvium. Stratigraphic relations, soil development, and radiocarbon dates indicate that at least four mid- to late-Pleistocene surface-faulting events, having single-event displacements in excess of 1.6 to 2.6 m, occurred along the splay fault prior to 12 ka. The antithetic fault has evidence of three late Pleistocene events that may correspond to event documented on the splay fault, and a Holocene event that is inferred from youthful scarplets and small closed depressions.

  5. Fault-Zone Maturity Defines Maximum Earthquake Magnitude: The case of the North Anatolian Fault Zone

    NASA Astrophysics Data System (ADS)

    Bohnhoff, Marco; Bulut, Fatih; Stierle, Eva; Martinez-Garzon, Patricia; Benzion, Yehuda

    2015-04-01

    Estimating the maximum likely magnitude of future earthquakes on transform faults near large metropolitan areas has fundamental consequences for the expected hazard. Here we show that the maximum earthquakes on different sections of the North Anatolian Fault Zone (NAFZ) scale with the duration of fault zone activity, cumulative offset and length of individual fault segments. The findings are based on a compiled catalogue of historical earthquakes in the region, using the extensive literary sources that exist due to the long civilization record. We find that the largest earthquakes (M~8) are exclusively observed along the well-developed part of the fault zone in the east. In contrast, the western part is still in a juvenile or transitional stage with historical earthquakes not exceeding M=7.4. This limits the current seismic hazard to NW Turkey and its largest regional population and economical center Istanbul. Our findings for the NAFZ are consistent with data from the two other major transform faults, the San Andreas fault in California and the Dead Sea Transform in the Middle East. The results indicate that maximum earthquake magnitudes generally scale with fault-zone evolution.

  6. Late Quaternary Activity and Seismogenic Potential of the Gonave microplate: South Coast Fault Zone of Southern Jamaica

    NASA Astrophysics Data System (ADS)

    Benford, B.; Mann, P.; Prentice, C.; King, W.; Wiggins-Grandison, M.; Demets, C.; Tikoff, B.

    2008-12-01

    The South Coast fault zone (SCFZ) strikes east-west and forms a scarp as high as 600 m along the southern coast of Jamaica. It has been postulated that this fault acts as a left-lateral, strike-slip 'bypass' fault that truncates the large, right-stepping restraining bend formed between the Plantain Garden fault zone of southeastern Jamaica and the Duanvale-Walton fault zone of northwestern Jamaica. GPS measurements near the SCFZ show anomalously rotated vectors consistent with active left-lateral shear. Anomalous topography along the trace of the SCFZ includes two, doubly plunging anticlines: Kemp's Hill (119 m), an isolated high in the otherwise flat Vere Plain, and Round Hill (333 m), a larger high directly adjacent to the coast. Field work identified the most active trace of the SCFZ in a notch along the north flank of Round Hill; this trace can be extrapolated to the west along the coast and east that locally defines a low scarp in alluvium. Channel profiles constructed for six rivers and streams crossing the projected trace of the SCFZ show convex-upward morphologies, consistent with dominance of tectonic uplift over river downcutting. To better define the subsurface location of the SCFZ beneath the Vere Plain, a gravity survey network consisting of 327 stations and covering an areas of 500 km2 was performed using a Lacoste and Romberg G-meter. Differential GPS allowed centimeter-level elevation control for each station. Gravity corrections (elevation, latitude, instrument drift, and earth tides) were made using QC Tool software, and topographic and terrane corrections were made using both local topographic measurements and high-resolution SRTM data. An ~20 mgal negative gravity anomaly on the otherwise flat gravity field of the Vere Plain corresponds with the projected trace of the SCFZ across the Vere Plain and the locations of one river offset. We interpret that the SCFZ has down-to-the-south throw, which has led to thickening of Quaternary sediments south

  7. Hidden faults in the Gobi Desert (Inner Mongolia, China) - evidence for fault activity in a previously tectonically stable zone

    NASA Astrophysics Data System (ADS)

    Rudersdorf, Andreas; Haedke, Hanna; Reicherter, Klaus

    2013-04-01

    The Gaxun Nur Basin (GNB, also Ejina Basin, Hei River Basin, Ruoshui Basin) north of the Tibetan Plateau and the Hexi Corridor is an endorheic basin bounded by the Bei Shan ranges in the west, the Gobi Altai mountains in the north and the Badain Jaran sand desert in the east. The basin is fed from the south by the braided drainage system of the Hei He (Hei River) and its tributaries, which originate in the Qilian Shan; terminal lakes like the dried Gaxun Nur and Sogo Nur are and have been temporal. The sedimentary succession of up to 300 m comprises intercalations of not only alluvial deposits but also lake sediments and playa evaporites. The basin has been regarded as tectonically inactive by earlier authors; however, the dating of sediments from an earlier drill core in the basin center provided some implications for tectonic activity. Subsequent remote sensing efforts revealed large lineaments throughout the basin which are now considered as possible fault line fingerprints. We investigated well preserved Yardangs (clay terraces) in the northeastern part of the GNB, in the vicinity of the Juyanze (paleo) lake, and found evidence for Holocene active tectonics (seismites). We present a lithological analysis of the relevant sequences and conclusions on the recent tectonic activity within the study area.

  8. Late Cenozoic deformation of the Da'an-Dedu Fault Zone and its implications for the earthquake activities in the Songliao basin, NE China

    NASA Astrophysics Data System (ADS)

    Zhongyuan, Yu; Peizhen, Zhang; Wei, Min; Qinghai, Wei; Limei, Wang; Bin, Zhao; Shuang, Liu; Jian, Kang

    2015-08-01

    The Da'an-Dedu Fault Zone is a major tectonic feature cutting through the Songliao Basin from south to north in NE China. Five earthquakes with magnitudes over 5 that occurred during the past 30 years suggest the fault zone is a seismogenic structure with future seismic potential. The structural pattern, tectonic history, Quaternary activity and seismic potential have previously been unknown due to the Quaternary sedimentary coverage and lack of large historic earthquakes (M > 7). In this paper, we use seismic reflection profiles and drilling from petroleum explorations and shallow-depth seismic reflections to study those problems. The total length of the Da'an-Dedu Fault Zone is more than 400 km; modern seismicity delineates it into 4 segments each with a length of 90-100 km. In cross-section view, the folds and associated faults form a complex structural belt with a width of more than 10 km. Shallow-level seismic reflection across the Da'an-Dedu Fault Zone reveals that the Late Quaternary sediments were folded and faulted, indicating its present tectonic activity. The Da'an-Dedu Fault Zone and Songliao Basin have been subjected to three stages of tectonic evolution: a rifting stage characterized by normal faulting and extension (∼145-112 Ma), a prolonged stage of thermal subsidence (∼112-65 Ma), and a tectonic reversal that has been taking place since ∼65 Ma. Our shallow-level reflection profiles show that the folding and reverse faulting have influenced the Late Quaternary sediments. The seismicity and moderate earthquakes suggest that the tectonic activity persists today. The deformation rate across the Da'an-Dedu Fault Zone, however, is measured to be very slow. In conjunction with the inference that most deformation in NE China may be taken up by the Yilan-Yitong Fault Zone bounding the Songliao Basin to the east, we suggest moderate earthquake potential and thus moderate seismic hazards along the Da'an-Dedu Fault Zone. The geological structures, which

  9. Effects of fluids on faulting within active fault zones - evidence from drill core samples recovered during the San Andreas Fault Observatory at Depth (SAFOD) drilling project

    NASA Astrophysics Data System (ADS)

    Janssen, C.; Wirth, R.; Kienast, M.; Morales, L. G.; Rybacki, E.; Wenk, H.; Dresen, G. H.

    2011-12-01

    textures with maxima around 1.2 m.r.d. and minima around around 0.8 m.r.d., indicating that a majority of crystals are oriented randomly. The dominance of randomly oriented clay particles, characterized by weak fabrics, may influence the mechanical stability of fault zone rocks. Formation of secondary calcite cement reveals fluid-assisted fracture healing. Cathodoluminescence microscopy shows at least three different generations of calcite veins confined to lithoclasts, displaying dissolution seams. Additionally, crack and seal processes in K-feldspar are identified. The calcite grains exhibit different degrees of deformation with evidence for twinning and crystal plasticity.

  10. Study and comparison of the maximum stress directions and main fault orientations in some active zones in Iran

    NASA Astrophysics Data System (ADS)

    Forouhid, Khatereh; Faraji, Atefeh; Ghorashi, Manouchehr

    2010-05-01

    Study and comparison of the maximum stress directions and main fault orientations in some active zones in Iran Khatereh Forouhid, Manouchehr Ghorashi, Atefeh Faraji Institute of Geophysics, Tehran University, Tehran, Iran kforouhid@yahoo.com Farajiatefeh@yahoo.com The Iranian plateau is the widest active zone in Alpine-Himalayan collision system that is located between two stable platforms, the Arabia in southwest and Eurasia in northeast. The convergence of these two platforms towards each other is the main reason for seismicity and different styles of deformation observed in Iran. In this study, the Iranian plateau is divided into 7 regions based on their seismotectonic characteristics. These regions are; Zagros, Makran, East Iran, Alborz, Kopeh Dagh, Central Iran and Azarbayejan (northwest of Iran). In each region, focal mechanism solutions of early and modern instrumental earthquakes (the only source of information suitable to use for stress distribution study in Iran) with magnitudes more than 5.0 and their relations to active faults are considered. By studying each maximum stress direction based on a group of earthquake focal mechanisms and considering main fault orientations, each region is studied individually. According to these data, some of these regions are divided into smaller parts. These sub-divided parts have some characters that make them different from their neighbors in the same region. In this regard, Zagros is studied in detail based on seismotectonic characteristics and divided into three parts, with N-S maximum stress direction (compressional) in one part and two different kind of NE-SW direction in two other. We use this information to investigate the style and distribution of active faulting in the Zagros and the relationships of this activity with shortening of the Arabia-Eurasia collision. It is worth to mention that as the fault slip will almost occur in the direction of maximum resolved shear stress on the fault plane, probably strain

  11. The effects of lateral property variations on fault-zone reactivation by fluid pressurization: Application to CO2 pressurization effects within major and undetected fault zones

    NASA Astrophysics Data System (ADS)

    Jeanne, Pierre; Guglielmi, Yves; Cappa, Frédéric; Rinaldi, Antonio P.; Rutqvist, Jonny

    2014-05-01

    In this study, we performed in situ multidisciplinary analyses of two different fault zones in carbonate formations. One is a seismically active fault zone several kilometers long (the Roccasseira Fault Zone); the other is a small fault zone a few hundred meters long (the GAS Fault Zone). The smaller, "immature" fault zone displays a discontinuous damage zone, because tectonic deformations have been accommodated differently according to the initial properties of the host rock. The larger, "mature" fault zone displays a continuous damage zone caused by the presence of secondary fault cores embedded in a heavily fractured area inside the damage zone. These markedly different fault-zone architectures were reflected in two hydraulic and geomechanical fault models, both generated from a coupled fluid-flow and geomechanical simulator, to examine the impact of hydromechanical property distribution on fault stability when the faults are reactivated by CO2 injection. In the smaller fault zone, marked differences in hydromechanical properties (Young's modulus and permeability) favor fluid accumulation, inducing high pressurization in parts of the damage zone, potentially resulting in small seismic events. On the other hand in the mature fault zone, fluid flows more easily and thus fluid-induced earthquakes may not readily occur, because the fault-zone pressurization is much lower, insufficient for triggering a seismic event.

  12. Geomorphic analysis of the Sierra Cabrera, an active pop-up in the constrictional domain of conjugate strike-slip faults: The Palomares and Polopos fault zones (eastern Betics, SE Spain)

    NASA Astrophysics Data System (ADS)

    Giaconia, Flavio; Booth-Rea, G.; Martínez-Martínez, J. M.; Azañón, J. M.; Pérez-Peña, J. V.

    2012-12-01

    The NNE-SSW sinistral Palomares and the conjugate dextral WNW-ESE striking Polopos fault zones terminate in the Sierra Cabrera antiform. In order to test the Quaternary activity and topographic relief control in the termination of these fault zones, here we present new qualitative and quantitative geomorphic analyses supported by a new structural map of the region. The main mountain fronts of the Cabrera antiform are formed by the North and South Cabrera reverse faults that merge laterally into the Palomares and Polopos faults, respectively. These faults produce knickpoints, stream deflections, complex basin hypsometric curves, high SLk anomalies and highly eroded basins in their proximity. Furthermore, the drainage network shows an S-shaped pattern reflecting progressive anticlockwise rotation related to the sinistral Palomares fault zone. The estimated uplift rates determined by the integration between mountain front sinuosity index and valley floor width to height ratio are larger than those obtained for strike-slip faults in the eastern Betics. These larger uplift rates with our geomorphic and structural dataset indicate that the topographic relief of the Sierra Cabrera antiform is controlled by reverse faults that form a pop-up structure in the constrictional domain between the larger Palomares-Polopos conjugate strike-slip faults. Existing GPS geodetic data suggest that the North and South Cabrera reverse faults probably accommodate a large part of Africa-Iberia convergence in the region.

  13. Active flexural-slip faulting: A study from the Pamir-Tian Shan convergent zone, NW China

    NASA Astrophysics Data System (ADS)

    Li, Tao; Chen, Jie; Thompson, Jessica A.; Burbank, Douglas W.; Yang, Xiaodong

    2015-06-01

    The flexural-slip fault (FSF), a type of secondary fault generated by bed-parallel slip, occurs commonly and plays an important role in accommodating fold growth. Although the kinematics and mechanics of FSFs are well studied, relatively few field observations or geometric models explore its geomorphic expression. In the Pamir-Tian Shan convergent zone, NW China, suites of well-preserved FSF scarps displace fluvial terraces in the Mingyaole and Wulagen folds. Integrating interpretations of Google Earth images, detailed geologic and geomorphic mapping, and differential GPS measurements of terrace surfaces, we summarize geomorphic features that typify these faults and create kinematic models of active flexural-slip faulting. Our study indicates the following: (i) FSF scarps commonly occur near synclinal hinges, irrespective of whether (a) the dip direction of beds on either side of the hinge is unidirectional or in opposite directions, (b) the hinge is migrating or fixed, or (c) the hinge shape is narrow and angular or wide and curved. (ii) Active FSFs are likely to produce higher scarps on steeper beds, whereas lower or no topographic scarps typify gentler beds. (iii) Tilt angles of the terrace surface displaced above FSFs progressively decrease farther away from the hinge, with abrupt changes in slope coinciding with FSF scarps; the changes in tilt angle and scarp height have a predictable geometric relationship. (iv) Active FSFs can accommodate a significant fraction of total slip and play a significant role in folding deformation. (v) Active FSFs may be used to assess seismic hazards associated with active folds and associated blind thrusts.

  14. Preliminary results on the tectonic activity of the Ovacık Fault (Malatya-Ovacık Fault Zone, Turkey): Implications of the morphometric analyses

    NASA Astrophysics Data System (ADS)

    Yazıcı, Müge; Zabci, Cengiz; Sançar, Taylan; Sunal, Gürsel; Natalin, Boris A.

    2016-04-01

    The Anatolian 'plate' is being extruded westward relative to the Eurasia along two major tectonic structures, the North Anatolian and the East Anatolian shear zones, respectively making its northern and eastern boundaries. Although the main deformation is localized along these two structures, there is remarkable intra-plate deformation within Anatolia, especially which are characterized by NE-striking sinistral and NW-striking dextral strike-slip faults (Şengör et al. 1985). The Malatya-Ovacık Fault Zone (MOFZ) and its northeastern member, the Ovacık Fault (OF), is a one of the NE-striking sinistral strike slip faults in the central 'ova' neotectonic province of Anatolia, located close to its eastern boundary. Although this fault zone is claimed to be an inactive structure in some studies, the recent GPS measurements (Aktuǧ et al., 2013) and microseismic activity (AFAD, 2013) strongly suggest the opposite. In order to understand rates and patterns of vertical ground motions along the OF, we studied the certain morphometric analyses such as hypsometric curves and integrals, longitudinal channel profiles, and asymmetry of drainage basins. The Karasu (Euphrates) and Munzur rivers form the main drainage systems of the study area. We extracted all drainage network from SRTM-based Digital Elevation Model with 30 m ground pixel resolution and totally identified 40 sub-drainage basins, which are inhomogeneously distributed to the north and to the south of the OF. Most of these basins show strong asymmetry, which are mainly tilted to SW. The asymmetry relatively decreases from NE to SW in general. The only exception is at the margins of the Ovacık Basin (OB), where almost the highest asymmetry values were calculated. On the other hand, the characteristics of hypsometric curves and the calculated hypsometric integrals do not show the similar systematic spatial pattern. The hypsometric curves with convex-shaped geometry, naturally indicating relatively young morphology

  15. Preliminary results on the tectonic activity of the Ovacık Fault (Malatya-Ovacık Fault Zone, Turkey): Implications of the morphometric analyses

    NASA Astrophysics Data System (ADS)

    Yazıcı, Müge; Zabci, Cengiz; Sançar, Taylan; Sunal, Gürsel; Natalin, Boris A.

    2016-04-01

    The Anatolian 'plate' is being extruded westward relative to the Eurasia along two major tectonic structures, the North Anatolian and the East Anatolian shear zones, respectively making its northern and eastern boundaries. Although the main deformation is localized along these two structures, there is remarkable intra-plate deformation within Anatolia, especially which are characterized by NE-striking sinistral and NW-striking dextral strike-slip faults (Şengör et al. 1985). The Malatya-Ovacık Fault Zone (MOFZ) and its northeastern member, the Ovacık Fault (OF), is a one of the NE-striking sinistral strike slip faults in the central 'ova' neotectonic province of Anatolia, located close to its eastern boundary. Although this fault zone is claimed to be an inactive structure in some studies, the recent GPS measurements (Aktuǧ et al., 2013) and microseismic activity (AFAD, 2013) strongly suggest the opposite. In order to understand rates and patterns of vertical ground motions along the OF, we studied the certain morphometric analyses such as hypsometric curves and integrals, longitudinal channel profiles, and asymmetry of drainage basins. The Karasu (Euphrates) and Munzur rivers form the main drainage systems of the study area. We extracted all drainage network from SRTM-based Digital Elevation Model with 30 m ground pixel resolution and totally identified 40 sub-drainage basins, which are inhomogeneously distributed to the north and to the south of the OF. Most of these basins show strong asymmetry, which are mainly tilted to SW. The asymmetry relatively decreases from NE to SW in general. The only exception is at the margins of the Ovacık Basin (OB), where almost the highest asymmetry values were calculated. On the other hand, the characteristics of hypsometric curves and the calculated hypsometric integrals do not show the similar systematic spatial pattern. The hypsometric curves with convex-shaped geometry, naturally indicating relatively young morphology

  16. Hydraulic structure of a fault zone at seismogenic depths (Gole Larghe Fault Zone, Italian Southern Alps)

    NASA Astrophysics Data System (ADS)

    Bistacchi, Andrea; Mittempergher, Silvia; Di Toro, Giulio; Smith, Steve; Garofalo, Paolo; Vho, Alice

    2016-04-01

    The Gole Larghe Fault Zone (GLFZ, Italian Southern Alps) was exhumed from c. 8 km depth, where it was characterized by seismic activity (pseudotachylytes), but also by hydrous fluid flow (alteration halos and precipitation of hydrothermal minerals in veins and cataclasites). Thanks to glacier-polished outcrops exposing the fault zone over a continuous area > 1 km2, the fault zone architecture has been quantitatively described with an unprecedented detail (Bistacchi 2011, PAGEOPH; Smith 2013, JSG; Mittempergher 2016, this meeting), providing a rich dataset to generate 3D Discrete Fracture Network (DFN) models and simulate the fault zone hydraulic properties. Based on field and microstructural evidence, we infer that the opening and closing of fractures resulted in a toggle-switch mechanism for fluid flow during the seismic cycle: higher permeability was obtained in the syn- to early post-seismic period, when the largest number of fractures was (re)opened by off-fault deformation, then permeability dropped due to hydrothermal mineral precipitation and fracture sealing. Since the fracture network that we observe now in the field is the result of the cumulative deformation history of the fault zone, which probably includes thousands of earthquakes, a fundamental parameter that cannot be directly evaluated in the field is the fraction of fractures-faults that were open immediately after a single earthquake. Postseismic permeability has been evaluated in a few cases in the world thanks to seismological evidences of fluid migration along active fault systems. Therefore, we were able to develop a parametric hydraulic model of the GLFZ and calibrate it, varying the fraction of faults/fractures that were open in the postseismic period, to obtain on one side realistic fluid flow and permeability values, and on the other side a flow pattern consistent with the observed alteration/mineralization pattern. The fraction of open fractures is very close to the percolation threshold

  17. Active Fault Near-Source Zones Within and Bordering the State of California for the 1997 Uniform Building Code

    USGS Publications Warehouse

    Petersen, M.D.; Toppozada, Tousson R.; Cao, T.; Cramer, C.H.; Reichle, M.S.; Bryant, W.A.

    2000-01-01

    The fault sources in the Project 97 probabilistic seismic hazard maps for the state of California were used to construct maps for defining near-source seismic coefficients, Na and Nv, incorporated in the 1997 Uniform Building Code (ICBO 1997). The near-source factors are based on the distance from a known active fault that is classified as either Type A or Type B. To determine the near-source factor, four pieces of geologic information are required: (1) recognizing a fault and determining whether or not the fault has been active during the Holocene, (2) identifying the location of the fault at or beneath the ground surface, (3) estimating the slip rate of the fault, and (4) estimating the maximum earthquake magnitude for each fault segment. This paper describes the information used to produce the fault classifications and distances.

  18. Geomorphic analysis of the Sierra Cabrera, an active pop-up in the constriction domain of conjugate strike-slip faults: the Palomares and Polopos fault zones (eastern Betics, SE Spain)

    NASA Astrophysics Data System (ADS)

    Giaconia, F.; Booth-Rea, G.; Martínez-Martínez, J. M.; Pérez-Peña, V.; Azañón, J. M.

    2012-04-01

    Segments of the Quaternary sinistral Carboneras and Palomares fault zones, striking NE-SW and NNE-SSW, respectively, terminate in the Sierra Cabrera antiform together with the conjugate dextral WNW-ESE striking Polopos fault zone. In the constriction domain between these fault zones a pop-up structure occurs formed by the North and the South Cabrera reverse faults that bound the northern and the southern hillslopes, respectively. In order to test the Quaternary activity and relief control of these fault zones, here we present new qualitative and quantitative geomorphic analyses for the Sierra Cabrera using the following indices: mountain-front sinuosity, valley floor width-to-height ratio, drainage basin asymmetry factor, basin hypsometric curve and integral, and the SLk index. These analyses were performed with the aid of several maps such as the SLk and the minimum bulk erosion map. Qualitative observations carried out on the drainage network highlight the existence of a Late Miocene fold-related drainage network and a following late Miocene to Plio-Quaternary fault-related one. Integrating the mountain-front sinuosity and the valley floor width-to-height ratio for each mountain front we estimated the uplift rates associated to each of them. Fault-related mountain-fronts with a N50-60°E strike have reverse kinematics and uplift rates larger than 0.5 m ky-1 (e.g. North and South Cabrera reverse faults), whereas those with N20-30°E and N90-100°E strikes show oblique strike-slip kinematics and show lower uplift rates, between 0.05 and 0.5 m ky-1 (e.g. the Palomares and the Polopos fault segments). Furthermore, these faults produce knickpoints, complex basin hypsometric curves, high SLk anomalies and highly eroded basins above the fault traces. The estimated uplift rates are larger than those obtained from other authors for strike-slip faults in the eastern Betics that range between 0.1 and 0.05 m ky-1 (e.g. Palomares and southern Carboneras strike-slip fault

  19. Active crustal deformation of the El Salvador Fault Zone (ESFZ) using GPS data: Implications in seismic hazard assessment

    NASA Astrophysics Data System (ADS)

    Staller, Alejandra; Benito, Belen; Jesús Martínez-Díaz, José; Hernández, Douglas; Hernández-Rey, Román; Alonso-Henar, Jorge

    2014-05-01

    El Salvador, Central America, is part of the Chortis block in the northwestern boundary of the Caribbean plate. This block is interacting with a diffuse triple junction point with the Cocos and North American plates. Among the structures that cut the Miocene to Pleistocene volcanic deposits stands out the El Salvador Fault Zone (ESFZ): It is oriented in N90º-100ºE direction, and it is composed of several structural segments that deform Quaternary deposits with right-lateral and oblique slip motions. The ESFZ is seismically active and capable of producing earthquakes such as the February 13, 2001 with Mw 6.6 (Martínez-Díaz et al., 2004), that seriously affected the population, leaving many casualties. This structure plays an important role in the tectonics of the Chortis block, since its motion is directly related to the drift of the Caribbean plate to the east and not with the partitioning of the deformation of the Cocos subduction (here not coupled) (Álvarez-Gómez et al., 2008). Together with the volcanic arc of El Salvador, this zone constitutes a weakness area that allows the motion of forearc block toward the NW. The geometry and the degree of activity of the ESFZ are not studied enough. However their knowledge is essential to understand the seismic hazard associated to this important seismogenic structure. For this reason, since 2007 a GPS dense network was established along the ESFZ (ZFESNet) in order to obtain GPS velocity measurements which are later used to explain the nature of strain accumulation on major faults along the ESFZ. The current work aims at understanding active crustal deformation of the ESFZ through kinematic model. The results provide significant information to be included in a new estimation of seismic hazard taking into account the major structures in ESFZ.

  20. Rock mechanics. Superplastic nanofibrous slip zones control seismogenic fault friction.

    PubMed

    Verberne, Berend A; Plümper, Oliver; de Winter, D A Matthijs; Spiers, Christopher J

    2014-12-12

    Understanding the internal mechanisms controlling fault friction is crucial for understanding seismogenic slip on active faults. Displacement in such fault zones is frequently localized on highly reflective (mirrorlike) slip surfaces, coated with thin films of nanogranular fault rock. We show that mirror-slip surfaces developed in experimentally simulated calcite faults consist of aligned nanogranular chains or fibers that are ductile at room conditions. These microstructures and associated frictional data suggest a fault-slip mechanism resembling classical Ashby-Verrall superplasticity, capable of producing unstable fault slip. Diffusive mass transfer in nanocrystalline calcite gouge is shown to be fast enough for this mechanism to control seismogenesis in limestone terrains. With nanogranular fault surfaces becoming increasingly recognized in crustal faults, the proposed mechanism may be generally relevant to crustal seismogenesis.

  1. Physical modeling of the formation and evolution of seismically active fault zones

    USGS Publications Warehouse

    Ponomarev, A.V.; Zavyalov, A.D.; Smirnov, V.B.; Lockner, D.A.

    1997-01-01

    Acoustic emission (AE) in rocks is studied as a model of natural seismicity. A special technique for rock loading has been used to help study the processes that control the development of AE during brittle deformation. This technique allows us to extend to hours fault growth which would normally occur very rapidly. In this way, the period of most intense interaction of acoustic events can be studied in detail. Characteristics of the acoustic regime (AR) include the Gutenberg-Richter b-value, spatial distribution of hypocenters with characteristic fractal (correlation) dimension d, Hurst exponent H, and crack concentration parameter Pc. The fractal structure of AR changes with the onset of the drop in differential stress during sample deformation. The change results from the active interaction of microcracks. This transition of the spatial distribution of AE hypocenters is accompanied by a corresponding change in the temporal correlation of events and in the distribution of event amplitudes as signified by a decrease of b-value. The characteristic structure that develops in the low-energy background AE is similar to the sequence of the strongest microfracture events. When the AR fractal structure develops, the variations of d and b are synchronous and d = 3b. This relation which occurs once the fractal structure is formed only holds for average values of d and b. Time variations of d and b are anticorrelated. The degree of temporal correlation of AR has time variations that are similar to d and b variations. The observed variations in laboratory AE experiments are compared with natural seismicity parameters. The close correspondence between laboratory-scale observations and naturally occurring seismicity suggests a possible new approach for understanding the evolution of complex seismicity patterns in nature. ?? 1997 Elsevier Science B.V. All rights reserved.

  2. Probable origin of the Livingston Fault Zone

    NASA Astrophysics Data System (ADS)

    Monroe, Watson H.

    1991-09-01

    Most faulting in the Coastal Plain is high angle and generally normal, but the faults in the Livingston Fault Zone are all medium-angle reverse, forming a series of parallel horsts and grabens. Parallel to the fault zone are a number of phenomena all leading to the conclusion that the faults result from the solution of a late Cretaceous salt anticline by fresh groundwater, which then migrated up to the Eutaw and perhaps Tuscaloosa aquifers, causing an anomalous elongated area of highly saline water. The origin of the Livingston Fault Zone and the association of salt water in underlying aquifers is of particular importance at this time in relation to environmental concerns associated with hazardous waste management in the area.

  3. Fault intersections along the Hosgri Fault Zone, Central California

    NASA Astrophysics Data System (ADS)

    Watt, J. T.; Johnson, S. Y.; Langenheim, V. E.

    2011-12-01

    It is well-established that stresses concentrate at fault intersections or bends when subjected to tectonic loading, making focused studies of these areas particularly important for seismic hazard analysis. In addition, detailed fault models can be used to investigate how slip on one fault might transfer to another during an earthquake. We combine potential-field, high-resolution seismic-reflection, and multibeam bathymetry data with existing geologic and seismicity data to investigate the fault geometry and connectivity of the Hosgri, Los Osos, and Shoreline faults offshore of San Luis Obispo, California. The intersection of the Hosgri and Los Osos faults in Estero Bay is complex. The offshore extension of the Los Osos fault, as imaged with multibeam and high-resolution seismic data, is characterized by a west-northwest-trending zone (1-3 km wide) of near vertical faulting. Three distinct strands (northern, central, and southern) are visible on shallow seismic reflection profiles. The steep dip combined with dramatic changes in reflection character across mapped faults within this zone suggests horizontal offset of rock units and argues for predominantly strike-slip motion, however, the present orientation of the fault zone suggests oblique slip. As the Los Osos fault zone approaches the Hosgri fault, the northern and central strands become progressively more northwest-trending in line with the Hosgri fault. The northern strand runs subparallel to the Hosgri fault along the edge of a long-wavelength magnetic anomaly, intersecting the Hosgri fault southwest of Point Estero. Geophysical modeling suggests the northern strand dips 70° to the northeast, which is in agreement with earthquake focal mechanisms that parallel this strand. The central strand bends northward and intersects the Hosgri fault directly west of Morro Rock, corresponding to an area of compressional deformation visible in shallow seismic-reflection profiles. The southern strand of the Los Osos

  4. Fault Zone Architecture and Mineralogy: Implications in Fluid Flow and Permeability in Crustal Scale Fault Zones in the Southern Andes.

    NASA Astrophysics Data System (ADS)

    Roquer, T.; Terrón, E.; Perez-Flores, P.; Arancibia, G.; Cembrano, J. M.

    2014-12-01

    Fluid flow in the upper crust is controlled by the permeability and interconnection of fractures in the fault zones. The permeability within the fault zone is determined by its activity, architecture and, in particular, by the mineralogy of the core and the damage zone. Whereas the permeability structure of a fault zone can be defined by the volume proportion of the core with respect to the damage zone, the relationship between the mineralogy and permeability along fault zones still remains obscure. This work examines structural and mineralogical data to show the relationship between the mineral composition of the fault zone with its permeability in the Liquiñe-Ofqui Fault System (LOFS) and the Arc-oblique Long-lived Fault Systems (ALFS), Southern Chile. The LOFS is an active ca. 1200 km long strike-slip Cenozoic intra-arc structure that strikes NNE in its master traces and NE in its subsidiary traces, with dextral and dextral-normal movement mostly developed in the last 6 My. Although the LOFS and the ALFS cross-cut each other, the ALFS is an apparently older basement fault system where seismic and field evidences record sinistral, sinistral-normal and sinistral-reverse movements. One 22-m-long NE transect was mapped orthogonal to a segment of the ALFS, where host rocks are Miocene andesitic rocks. Structural and XRD sampling were conducted in the core and damage zone. Structural mapping shows a multiple core, NW-striking fault zone with foliated gouge and an asymmetric damage zone, where the hanging wall has significantly higher mesoscopic fracture density than the footwall. The hanging wall is characterized by NW-striking, steeply dipping veins. Preliminary XRD results indicate the presence of homogenously distributed Ca-rich zeolite (mainly laumontite) in the core and the veins of the damage zone, which could indicate that the core acted as a conduit for low-temperature (ca. 220°C) fluids.

  5. Time constraints on faults activity in the Eastern California Shear Zone from U-Pb (SHRIMP-RG) dating of syntectonic opal

    NASA Astrophysics Data System (ADS)

    Nuriel, P.; Maher, K.; Miller, D. M.

    2013-12-01

    Absolute time constraints for fault activity are of fundamental importance in active fault systems. Such constraints are necessary for estimation of long-term slip-rates and earthquake recurrence intervals required for seismic-hazard assessments. Notwithstanding, paleoseismological records are often limited to the past 1 Ma, and important information such as fault initiation and early stage displacement are seldom determined. Here we present a novel methodological approach for direct dating of brittle deformation events over a geological time scale. We use in situ U-Pb SHRIMP-RG (Sensitive High Resolution Ion Microprobe - Reverse Geometry) analyses of opal precipitates in order to constrain the relative and absolute timing of brittle deformation events. The Mojave Desert fault segments within the Eastern California Shear Zone (ECSZ) are ideal faults to investigate the long-term history because of the need for improved constraints on the timing of fault initiation and the observed discrepancy between long-term and short-term estimates for strain accumulation rates in this area. We analyzed fault-related opal samples from ten different fault exposures within the Camp Rock, Cave Mountain, and the Cady fault systems. Millimeter size fragments of fault-related opal, occurring as fault coating, filling or fault-breccia cement, were imaged using cathodoluminescence and backscattering electron microscopy in order to identify distinct phases of opal associated with specific syntectonic microstructures. Sub-samples within each phase are then targeted with multiple SHRIMP-RG analyses (<50 μm in diameter) to allow the construction of 238U/208Pb-206Pb/208Pb and/or Tera-Wasserburg U-Pb isochrons. Of the 50 distinct phases that were identified, 20 were successfully dated and U-Pb age results range from 8.4 to 0.58 Ma. The timing of fault initiation along the Cave Mountain Fault system was previously estimated to be between 15 Ma and 5 Ma. Our results suggest that initial

  6. Effects of fluid-rock interactions on faulting within active fault zones - evidence from fault rock samples retrieved from international drilling projects

    NASA Astrophysics Data System (ADS)

    Janssen, C.; Wirth, R.; Kienast, M.; Yabe, Y.; Sulem, J.; Dresen, G. H.

    2015-12-01

    Chemical and mechanical effects of fluids influence the fault mechanical behavior. We analyzed fresh fault rocks from several scientific drilling projects to study the effects of fluids on fault strength. For example, in drill core samples on a rupture plane of an Mw 2.2 earthquake in a deep gold mine in South Africa the main shock occurred on a preexisting plane of weakness that was formed by fluid-rock interaction (magnesiohornblende was intensively altered to chlinochlore). The plane acted as conduit for hydrothermal fluids at some time in the past. The chemical influence of fluids on mineralogical alteration and geomechanical processes in fault core samples from SAFOD (San Andreas Fault Observatory at Depth) is visible in pronounced dissolution-precipitation processes (stylolites, solution seams) as well as in the formation of new phases. Detrital quartz and feldspar grains are partially dissolved and replaced by authigenic illite-smectite (I-S) mixed-layer clay minerals. Transmission Electron Microscopy (TEM) imaging of these grains reveals that the alteration processes and healing were initiated within pores and small intra-grain fissures. Newly formed phyllosilicates growing into open pore spaces likely reduced the fluid permeability. The mechanical influence of fluids is indicated by TEM observations, which document open pores that formed in-situ in the gouge material during or after deformation. Pores were possibly filled with formation water and/or hydrothermal fluids suggesting elevated fluid pressure preventing pore collapse. Fluid-driven healing of fractures in samples from SAFOD and the DGLab Gulf of Corinth project is visible in cementation. Cathodoluminescence microscopy (CL) reveals different generations of calcite veins. Differences in CL-colors suggest repeated infiltration of fluids with different chemical composition from varying sources (formation and meteoric water).

  7. Spatial analysis of hypocenter to fault relationships for determining fault process zone width in Japan.

    SciTech Connect

    Arnold, Bill Walter; Roberts, Barry L.; McKenna, Sean Andrew; Coburn, Timothy C. (Abilene Christian University, Abilene, TX)

    2004-09-01

    Preliminary investigation areas (PIA) for a potential repository of high-level radioactive waste must be evaluated by NUMO with regard to a number of qualifying factors. One of these factors is related to earthquakes and fault activity. This study develops a spatial statistical assessment method that can be applied to the active faults in Japan to perform such screening evaluations. This analysis uses the distribution of seismicity near faults to define the width of the associated process zone. This concept is based on previous observations of aftershock earthquakes clustered near active faults and on the assumption that such seismic activity is indicative of fracturing and associated impacts on bedrock integrity. Preliminary analyses of aggregate data for all of Japan confirmed that the frequency of earthquakes is higher near active faults. Data used in the analysis were obtained from NUMO and consist of three primary sources: (1) active fault attributes compiled in a spreadsheet, (2) earthquake hypocenter data, and (3) active fault locations. Examination of these data revealed several limitations with regard to the ability to associate fault attributes from the spreadsheet to locations of individual fault trace segments. In particular, there was no direct link between attributes of the active faults in the spreadsheet and the active fault locations in the GIS database. In addition, the hypocenter location resolution in the pre-1983 data was less accurate than for later data. These pre-1983 hypocenters were eliminated from further analysis.

  8. Packaged Fault Model for Geometric Segmentation of Active Faults Into Earthquake Source Faults

    NASA Astrophysics Data System (ADS)

    Nakata, T.; Kumamoto, T.

    2004-12-01

    successfully on the active faults generated the 1943 Tottori earthquake, the Chojagahara-Yoshii fault zone in Chugoku district in southwest Japan, as well as the active fault system in northern Luzon, the Philippines. Thus, we name this conceptual model as _gPackaged Fault Model_h and call the active faults grouped by the model as _gPackaged Faults_h for individual earthquake source faults. Moreover, we come to know that active fault mapping with _gPackaged Fault Model_h in mind enables us to find many new active fault traces (e.g., the Shigenobu fault along the MTL in Japan).

  9. Upper plate deformation and seismic barrier in front of Nazca subduction zone: The Chololo Fault System and active tectonics along the Coastal Cordillera, southern Peru

    NASA Astrophysics Data System (ADS)

    Audin, Laurence; Lacan, Pierre; Tavera, Hernando; Bondoux, Francis

    2008-11-01

    The South America plate boundary is one of the most active subduction zone. The recent Mw = 8.4 Arequipa 2001 earthquake ruptured the subduction plane toward the south over 400 km and stopped abruptly on the Ilo Peninsula. In this exact region, the subduction seismic crisis induced the reactivation of continental fault systems in the coastal area. We studied the main reactivated fault system that trends perpendicular to the trench by detailed mapping of fault related-geomorphic features. Also, at a longer time scale, a recurrent Quaternary transtensive tectonic activity of the CFS is expressed by offset river gullies and alluvial fans. The presence of such extensional fault systems trending orthogonal to the trench along the Coastal Cordillera in southern Peru is interpreted to reflect a strong coupling between the two plates. In this particular case, stress transfer to the upper plate, at least along the coastal fringe, appears to have induced crustal seismic events that were initiated mainly during and after the 2001 earthquake. The seafloor roughness of the subducting plate is usually thought to be a cause of segmentation along subduction zones. However, after comparing and discussing the role of inherited structures within the upper plate to the subduction zone segmentation in southern Peru, we suggest that the continental structure itself may exert some feedback control on the segmentation of the subduction zone and thus participate to define the rupture pattern of major subduction earthquakes along the southern Peru continental margin.

  10. Definition and Paleoseismology of the Active, Left-Lateral Enriquillo-Plantain Garden Fault Zone Based on High-Resolution Chirp Profiles: Lakes Azuey and Mirogoane, Haiti

    NASA Astrophysics Data System (ADS)

    Wang, J.; Mann, P.; von Lignau, A. V.

    2014-12-01

    In July 2014, we obtained a total of 94 km of high-resolution Chirp profiles from the 129 km2, brackish Lake Azuey and 37 km of profiles from the 14 km2, fresh water Lake Mirogoane that both straddle the active trace of the Enriquillo-Plantain Garden fault zone (EPGFZ) of Haiti. 80% of the grid on Azuey and 85% on Mirogoane was dedicated to north-south profiles of the EPGFZ. In Azuey we defined the linear and east-west-striking fault trace in deformed Holocene sediments along with its landfalls west of Lake Azuey in Haiti and east of Lake Azuey in the Dominican Republic. All profiles showed the fault to be a sub-vertical flower structure whose active traces could be traced on Chirp data to a depth of 30 m below the lake floor. Previous workers have suggested that this fault ruptured during a large November, 1751, earthquake with a parallel and elongate felt zone. We hypothesize the most recent break of the fault several meters below the lake floor to have formed during the 1751 event but plan a coring program to precisely constrain the timing of historical and prehistorical events based on syn-faulting colluvial wedges observed on Chirp profiles. Our survey of Mirogoane confirmed its rhomboidal pull-apart structure with the basin center at a depth of 42-8 m making this basin the deepest lake in the Caribbean region. Deformational features include active folds at the lake bottom, large oblique-slip normal faults at an angle to the bounding east-west faults, and 30 m of recognizable stratigraphy. The 7 m of Holocene cored in the basin center in 1988 is observed to be highly deformed and locally folded and overlies with angular unconformity a well stratified and more folded lower basinal unit. Historical events are proposed to have ruptured on or near this segment of the EPGFZ in 1701 and 1770.

  11. An automated continuous system for seismo-geochemical research in an active fault zone in SW Taiwan

    NASA Astrophysics Data System (ADS)

    Yang, T. F.; Hilton, D. R.; Fu, C. C.; Lai, C. W.; Liu, T. K.; Walia, V.; Lai, T. H.

    2014-12-01

    Previous studies have revealed that gas compositions of fluid samples collected from southwestern Taiwan where many hot springs and mud volcanoes are distributed along tectonic sutures show significant variation prior to and after some disaster seismic events [1]. Such variations, including radon activity, CH4/CO2, CO2/3He and 3He/4He ratios of gas compositions, are considered to be precursors of earthquakes in this area. To validate the relationship between fluid compositions and local earthquakes, a continuous monitoring station has been established at Yun-Shuei, which is an artesian well located at an active fault zone in SW Taiwan. It is equipped with a radon detector and a quadrupole mass spectrometer (QMS) for in-situ measurement of the dissolved gas composition. Data is telemetered to Taipei so we are able to monitor variations of gas composition in real time. Furthermore, we also installed a syringe pump apparatus for the retrieval and temporal analysis of helium (SPARTAH) at this station [2]. From the SPARTAH samples, we can obtain detailed time series records of He and anion concentration of the water samples at this station. After continuous measurement for a few months, this automated system has been demonstrated to be feasible for long-term continuous seismo-geochemical research in this area. [1] Yang et al. (2006) PAGEOPH, 163(4), 693-709. [2] Barry et al. (2009) G3, 10(5), DOI: 10.1029/2009GC002422.

  12. Slip compensation at fault damage zones along earthquake surface ruptures

    NASA Astrophysics Data System (ADS)

    Choi, J.; Kim, Y.

    2013-12-01

    to those of the main traces. In contrast, when the L/W < 2, the vertical slip is either increased or decreased as the horizontal slip is decreased, depending on the maturity of the linking zone. Thus, we argue that slip patterns at linking damage zones may be controlled by the LW-ratio of linking damage zones and hence structural maturities of the segmented fault systems. In conclusion, slip patterns at fault damage zones along earthquake surface ruptures are various depending on the maturity of linkage zones and/or the rupture propagation direction. Therefore, the consideration of slip compensation as well as damage structures along surface ruptures must be very useful to understand fault evolution and, hence, to assess seismic hazards around active fault systems.

  13. Fault-Zone Maturity Defines Maximum Earthquake Magnitude

    NASA Astrophysics Data System (ADS)

    Bohnhoff, M.; Bulut, F.; Stierle, E.; Ben-Zion, Y.

    2014-12-01

    Estimating the maximum likely magnitude of future earthquakes on transform faults near large metropolitan areas has fundamental consequences for the expected hazard. Here we show that the maximum earthquakes on different sections of the North Anatolian Fault Zone (NAFZ) scale with the duration of fault zone activity, cumulative offset and length of individual fault segments. The findings are based on a compiled catalogue of historical earthquakes in the region, using the extensive literary sources that exist due to the long civilization record. We find that the largest earthquakes (M~8) are exclusively observed along the well-developed part of the fault zone in the east. In contrast, the western part is still in a juvenile or transitional stage with historical earthquakes not exceeding M=7.4. This limits the current seismic hazard to NW Turkey and its largest regional population and economical center Istanbul. Our findings for the NAFZ are consistent with data from the two other major transform faults, the San Andreas fault in California and the Dead Sea Transform in the Middle East. The results indicate that maximum earthquake magnitudes generally scale with fault-zone evolution.

  14. Kinematics at Death Valley-Garlock fault zone junction

    SciTech Connect

    Abrams, R.B.; Verosub, K.; Finnerty, A.

    1987-08-01

    The Garlock and Death Valley fault zones in southeast California are two active strike-slip faults that come together on the east side of the Avawatz Mountains. The kinematics of this intersection, and the possible continuation of either fault zone, is being investigated using a combination of detailed field mapping, and processing and interpretation of remotely sensed image data from satellite and aircraft platforms. Regional and local relationships are derivable from the thematic Mapper data (30 m resolution), including discrimination and relative age dating of alluvial fans, bedrock mapping, and fault mapping. Aircraft data provide higher spatial resolution data over more limited areas. Hypotheses that are being considered are (1) the Garlock fault extends east of the intersection; (2) the Garlock fault terminates at the intersection and the Death Valley fault continues southeastward; and (3) the Garlock fault has been offset right laterally by the Death Valley fault that continues to the southeast. Preliminary work indicates that the first hypothesis is invalid. Kinematic considerations, image analysis, and field work results favor the third hypothesis. The projected continuation of the Death Valley zone defines the boundary between the Mojave crustal block and the Basin and Range block.

  15. Thermo-mechanical coupling of faults and mantle shear zones

    NASA Astrophysics Data System (ADS)

    Lambert, Valere; Barbot, Sylvain

    2016-04-01

    Paleo-seismological records suggest non-steady and potentially periodic trends in slip rates over time scales of the order of millennia. It is unclear whether the variability of recurrence times is due to fault processes alone or if they are modulated by off-fault deformation. Theoretical and numerical modeling of fault kinematics from geodetic data have enabled an explosion of new findings about the mechanics of the earthquake cycle. However, these models have been mostly confined to processes along the interface of a fault. Therefore many sources of off-fault deformation, such as thermoelasticity and viscoelasticity, cannot yet be accounted for in the earthquake cycle. Here, we couple fault kinematics and viscoelastic deformation within shear zones using the integral method to simulate unified earthquake cycles that combine fault and off-fault processes. We consider the modulation of slip rates along a fault within the brittle layer due to strain in a viscoelastic substrate beneath the brittle-ductile transition. By implementing a thermally-activated rheology accounting for thermal diffusion, we investigate the thermo-mechanical coupling of faults and mantle shear zones and its implications for earthquake recurrence.

  16. Late Quaternary Faulting along the San Juan de los Planes Fault Zone, Baja California Sur, Mexico

    NASA Astrophysics Data System (ADS)

    Busch, M. M.; Coyan, J. A.; Arrowsmith, J.; Maloney, S. J.; Gutierrez, G.; Umhoefer, P. J.

    2007-12-01

    As a result of continued distributed deformation in the Gulf Extensional Province along an oblique-divergent plate margin, active normal faulting is well manifest in southeastern Baja California. By characterizing normal-fault related deformation along the San Juan de los Planes fault zone (SJPFZ) southwest of La Paz, Baja California Sur we contribute to understanding the patterns and rates of faulting along the southwest gulf-margin fault system. The geometry, history, and rate of faulting provide constraints on the relative significance of gulf-margin deformation as compared to axial system deformation. The SJPFZ is a major north-trending structure in the southern Baja margin along which we focused our field efforts. These investigations included: a detailed strip map of the active fault zone, including delineation of active scarp traces and geomorphic surfaces on the hanging wall and footwall; fault scarp profiles; analysis of bedrock structures to better understand how the pattern and rate of strain varied during the development of this fault zone; and a gravity survey across the San Juan de los Planes basin to determine basin geometry and fault behavior. The map covers a N-S swath from the Gulf of California in the north to San Antonio in the south, an area ~45km long and ~1-4km wide. Bedrock along the SJPFZ varies from Cretaceous Las Cruces Granite in the north to Cretaceous Buena Mujer Tonalite in the south and is scarred by shear zones and brittle faults. The active scarp-forming fault juxtaposes bedrock in the footwall against Late Quaternary sandstone-conglomerate. This ~20m wide zone is highly fractured bedrock infused with carbonate. The northern ~12km of the SJPFZ, trending 200°, preserves discontinuous scarps 1-2km long and 1-3m high in Quaternary units. The scarps are separated by stretches of bedrock embayed by hundreds of meters-wide tongues of Quaternary sandstone-conglomerate, implying low Quaternary slip rate. Further south, ~2 km north of the

  17. A neotectonic tour of the Death Valley fault zone, Inyo County

    SciTech Connect

    Wills, C.J.

    1989-09-01

    The Death Valley fault zone has recently been evaluated by the Division of Mines and Geology for zoning under the Alquist-Priolo Special Studies Zones Act of 1972. This act requires the State Geologist to zone for special studies those faults that are sufficiently active and well defined as to constitute a potential hazard to structures from surface faulting or fault creep. The Death Valley fault zone is part of a system of faults that extends over 180 miles (300 km) from Fish Lake Valley in Nevada to the Garlock fault. The northern part of this system, the Northern Death Valley-Furnace Creek fault zone, is an active right-lateral fault zone. The southern part of the system, the Death Valley fault zone, is a right-lateral oblique-slip fault between Furnace Creek and Shoreline Butte. From Shoreline Butte to the Garlock fault, it is a right-lateral strike-slip fault. Landforms along this fault indicate that it is the source of many earthquakes and that it has been active in Holocene time. The heights of the scarps and magnitude of the smallest right-lateral offsets (4 feet; 1.2 m) suggest that the most recent of these events was M 6.5 or larger. The freshness of the geomorphic features and the youth of the offset materials suggest that event occurred late in the Holocene, and that multiple Holocene earthquakes have occurred.

  18. Seismically Articulating Kilauea Volcano's Active Conduits, Rift Zones, and Faults through HVO's Second Fifty Years

    NASA Astrophysics Data System (ADS)

    Okubo, P.; Nakata, J.; Klein, F.; Koyanagi, R.; Thelen, W.

    2011-12-01

    While seismic monitoring of active Hawaiian volcanoes began 100 years ago, the build-up of the U. S. Geological Survey's (USGS) Hawaiian Volcano Observatory (HVO) seismographic network to its current configuration began in 1955, when Jerry Eaton established remote stations that telemetered data via landline to recorders at HVO. With network expansion through the 1960's, earthquake location and cataloging capabilities have evolved to afford a computer processed seismic catalog now spanning fifty years. Location accuracy and catalog completeness to smaller magnitudes have increased. Research and insights developed using HVO's seismic record have exploited the ability to seismically monitor volcanic activity at depth, to identify active regions within the volcanoes on the basis of computed hypocentral locations, to infer regions of magma storage by recognizing different families of volcanic earthquakes, and to forecast volcanic activity in both short and longer term from seismicity patterns. HVO's seismicity catalog was central to calculations of probabilistic seismic hazards. The ability to develop and implement additional analytical and interpretive capabilities has kept pace with improvements in both field and laboratory hardware and software. While the basic capabilities continue as part of HVO's core monitoring, additional interpretive capabilities now include adding details of volcanic and earthquake source regions, and viewing seismic data in juxtaposition with other observatory data streams. As HVO looks to its next century of volcano studies, research and development continue to shape the future. Broadband seismic recording at HVO has enabled extensive study by Chouet, Dawson, and co-workers of the relationship of very-long-period seismic sources beneath Kilauea's summit caldera to magma supply and transport. Recent upgrades have improved the ability to use these data in seismic cataloging and research. Data processing upgrades have bolstered the ability to

  19. Some Recent Laboratory Measurements of Fault Zone Permeability

    NASA Astrophysics Data System (ADS)

    Morrow, C. A.; Lockner, D. A.

    2005-12-01

    The permeability of fault zone material is key to understanding fluid circulation and the role of pore fluids in earthquake generation and rupture dynamics. Permeability results of core samples from several scientific drillholes are presented, including new results from the SAFOD drillsite in California and the Chelungpu Fault in Taiwan. Permeability values at simulated in situ pressures range from 10-18 to 10-23 m2, a broad range reflecting differences in rock type, proximity to the fault (i.e., fault core, damage zone or country rock), and degree of interseismic healing and sealing. In addition to these natural characteristics, stress-relief and thermal cracking damage resulting from core retrieval will tend to increase the permeability of some of the deepest crystalline rock samples, although testing under in situ conditions can reduce these errors. Recently active fault rocks, with an interconnected network of fractures, tend toward the higher end of the permeability range, whereas fault rocks that have had time to heal through hydrothermal processes tend to have lower permeabilities. In addition, the permeability of borehole-derived core samples was found to be more sensitive to applied pressure than equivalent rocks obtained from surface outcrops because of weathering and other processes. Thus, permeability values of surface samples can not be adequately extrapolated to depth, highlighting the importance of deep drilling studies in determining in situ transport properties. Permeability studies also reveal the storage capacity of the fault rocks, an important parameter in the determination of excess fluid pressure potential. Storage capacity was found to be 10-10 to 10-11/Pa in the Chelungpu Fault cores. Typical down-hole permeability measurements are generally 1-2 orders of magnitude higher than laboratory-derived values because they sample joints and fractures in the damage zone that are larger in scale than the core samples. Consequently, most fluid flow at

  20. Characterising the Alpine Fault Damage Zone using Fault Zone Guided Waves, South Westland, New Zealand

    NASA Astrophysics Data System (ADS)

    Eccles, J. D.; Gulley, A.; Boese, C. M.; Malin, P. E.; Townend, J.; Thurber, C. H.; Guo, B.; Sutherland, R.

    2015-12-01

    Fault Zone Guided Waves (FZGWs) are observed within New Zealand's transpressional continental plate boundary, the Alpine Fault, which is late in its typical seismic cycle. Distinctive dispersive seismic coda waves (~7-35 Hz), trapped within the low-velocity fault damage zone, have been recorded on three component 2 Hz borehole seismometers installed within 20 m of the principal slip zone in the shallow (< 150 m deep) DFDP-1 boreholes. Near the central Alpine Fault, known for low background seismicity, FZGW-generating microseismic events are located beyond the catchment-scale strike-slip and thrust segment partitioning of the fault indicating lateral connectivity of the low-velocity zone immediately below the near-surface segmentation. Double-difference earthquake relocation of events using the dense SAMBA and WIZARD seismometer arrays allows spatio-temporal patterns of 2013 events to be analysed and the segmentation and low velocity zone depth extent further explored. Three layer, dispersion modeling of the low-velocity zone indicates a waveguide width of 60-200 m with a 10-40% reduction in S-wave velocity, similar to that inferred for the fault core of other mature plate boundary faults such as the San Andreas and North Anatolian Faults.

  1. Liquefaction and fluidization of lacustrine deposits from Lahaul-Spiti and Ladakh Himalaya: Geological evidences of paleoseismicity along active fault zone

    NASA Astrophysics Data System (ADS)

    Singh, Sandeep; Jain, Arvind K.

    2007-03-01

    Soft-sediment deformational structures are important diagnostic features of paleoseismic studies. These seismites result from local vigorous fluidization and hydroplastic deformation formed during liquefaction as a direct consequence of permanent deformation of ground surface due to earthquakes of large magnitude. The region of eastern Ladakh, Spiti Basin and the upper Sutlej River basin record a concentration of earthquakes in a well defined NE-trending seismic zone sub-parallel to the strike of Leo-Pargil Horst and the Kaurik-Chango Fault Zone. Soft-sediment deformational studies of the fluvial and fluvio-lacustrine sequences near Sumdo village, along Sangla valley of Himachal Pradesh and near Saspol village of Ladakh indicate that the Kaurik-Chango Fault Zone is a seismogenic fault causing liquefaction and fluidization as the consequence of earthquake activity in the past. Thermal Luminescence (TL) date of the deformational structures near the Sumdo village constrains the paleoseismic activities of large magnitude between 90,000 years (third activity) to 26,000 years (last geological evidence) with a recurrence interval of approximately 10,000 years during the Quaternary period.

  2. Significance of brittle deformation in the footwall of the Alpine Fault, New Zealand: Smithy Creek Fault zone

    NASA Astrophysics Data System (ADS)

    Lund Snee, J.-E.; Toy, V. G.; Gessner, K.

    2014-07-01

    The Smithy Creek Fault represents a rare exposure of a brittle fault zone within Australian Plate rocks that constitute the footwall of the Alpine Fault zone in Westland, New Zealand. Outcrop mapping and paleostress analysis of the Smithy Creek Fault were conducted to characterize deformation and mineralization in the footwall of the nearby Alpine Fault, and the timing of these processes relative to the modern tectonic regime. While unfavorably oriented, the dextral oblique Smithy Creek thrust has kinematics compatible with slip in the current stress regime and offsets a basement unconformity beneath Holocene glaciofluvial sediments. A greater than 100 m wide damage zone and more than 8 m wide, extensively fractured fault core are consistent with total displacement on the kilometer scale. Based on our observations we propose that an asymmetric damage zone containing quartz-carbonate-chlorite-epidote veins is focused in the footwall. Damage zone asymmetry likely resulted from the fact that the hanging wall was mostly deformed at greater depth than the footwall, rather than resulting from material contrasts across the fault plane. Kinematic inversions on mineralized fractures within the damage zone suggest veins formed in the current stress regime, from fluids comparable to those now circulating in the footwall. The Smithy Creek Fault zone is therefore a rare exhumed example of the modern footwall hydrothermal system, and of a structure actively accommodating footwall deformation near the Alpine Fault zone. Two significantly less mature, subvertical faults having narrow (20 cm or less) damage zones and similar orientations to nearby strike-slip segments of the Alpine Fault crosscut the mineralized zone at Smithy Creek. We envisage that hydrothermal mineralization strengthened the fault core, causing it to widen as later slip was partitioned into the (now) weaker surrounding damage zone. With progressive alteration, formation of favorably oriented faults became

  3. Complex Faulting within the New Madrid Seismic Zone

    NASA Astrophysics Data System (ADS)

    Deshon, H. R.; Powell, C. A.; Magnani, M.; Bisrat, S. T.

    2010-12-01

    Relative relocations derived using double-difference tomography techniques reveal a complex sequence of faulting within the New Madrid Seismic Zone (NMSZ) and upper Mississippi Embayment. The majority of NMSZ seismicity recorded over the last 30 years occurs along four limbs: 1) a NE-SW trending dextral strike-slip fault, termed the Axial fault, coincident with the central valley of the Cambrian Reelfoot Rift system; 2) the SE-NW trending Reelfoot thrust fault; 3) a E-W trending left lateral strike-slip fault extending off of the northern terminus of the Reelfoot fault, here termed New Madrid west; and 4) a NE-SW dextral strike-slip fault also extending off of the northern terminus of the Reelfoot fault, here termed New Madrid north. Each of these segments is thought to have ruptured during the 1811-1812 large earthquake sequence. A fifth segment, the Bootheel lineament, is marked by 1811-1812 related liquefaction features but appears largely aseismic, though we suggest there are at least five events in the catalog associated with this feature. Geological and geophysical evidence across the embayment suggests that the region is crossed by additional faults at shallow depths (<1-2 km), while seismicity is generally confined to the 3-20 km depth range. Here we present relative relocations derived using catalog and waveform cross-correlation differential times of the 1989-1992 local PANDA network and the 1995-2010 Cooperative New Madrid Seismic Network. We show that the four known seismic lineations exhibit internal complexity. For example, New Madrid north is composed of two parallel faults rather then a single fault, and seismicity associated with the Axial lineation exhibits temporal changes along strike and becomes spatially more diffuse south of the Axial fault/Bootheel lineament intersection. Seismicity along the southern Reelfoot fault does not define a dipping plane consistent with thrust faulting, unlike the northern Reelfoot fault, and is associated with

  4. Geophysical investigation of the Hockai Fault Zone, Eastern Belgium

    NASA Astrophysics Data System (ADS)

    Havenith, Hans-Balder; Nguyen, Frédéric; Halleux, Lucien; Hölz, Sebastian; Camelbeeck, Thierry

    2015-04-01

    In the frame of a regional project evaluating the geothermal potential of the Wallonian Region of Belgium, the Hockai Fault Zone has been identified as one of the most interesting targets. It is a seismically active fault zone that hosted the largest historical earthquake in Northwestern Europe, the M6-6.5 Verviers event in 1692 as well as a swarm of small earthquakes that was recorded in 1989-90. On the surface, the presence of the fault zones is marked by a series of geomorphic features, such as several landslides near the borders in the northern part, repeated NW-SE oriented scarps all along the Eastern border (over a distance of 40 km), river diversions and captures with formation of paleo-valleys. Along the most prominent paleo-valley, the Paleo-Warche Valley crossing the fault zone over a distance of 5 km, a geophysical survey has been organized by several teams to better characterize the shallow (<150 m) subsurface of the fault zone. It included electro-magnetic sounding (frequency-based and TEM), shallow seismics (refraction, walk-away, surface waves analysis), electrical resistivity tomography as well as ambient noise recordings. To support an integrated interpretation of all geophysical results in combination with geomorphic and seismo-tectonic aspects, surface morphology, soundings and profiles were represented in a 3D model. This model clearly reveals low-resistivity and low-velocity zones near the Eastern border of the fault zone, vertically above the hypocenters of the 1989-90 earthquake swarm. Across the structure, low-resistivity zones have a limited extent while they are repeatedly identified all along Eastern border.

  5. Pseudotachylyte-bearing faults and shear zones along the Norumbega fault system in Maine

    NASA Astrophysics Data System (ADS)

    West, D. P.; Price, N. A.; Swanson, M.; Pollock, S. G.

    2012-12-01

    complex pseudotachylyte arrays consisting of literally hundreds of fault veins (up to 2 cm thick) and associated injection veins and reservoir structures characterize several of the well studied fault zones (e.g., Fort Foster). The geometries of these fault zones are generally consistent with strike-slip displacements either in association with synthetic faults or in rare cases left lateral antithetic structures (e.g., Harbor Island). While host rock mineralogies and bulk rock compositions vary amongst these fault zones, the degree of pre-existing layering and the orientation of this layering with respect to the superimposed brittle faults seems to be the dominant control on the nature and complexity of these undeformed pseudotachylyte vein arrays. The Norumbega fault system in Maine preserves numerous highly complex pseudotachylyte-bearing fault zones that formed at a range of depths over a period of nearly 100 million years. Mutually overprinting pseudotachylyte-mylonite zones provide insight into processes occurring at frictional-to-viscous transitional depths beneath active fault zones while the zones of undeformed pseudotachylyte afford insight into more shallow depth brittle processes.

  6. Damage, permeability and sealing processes of an exhumed seismic fault zone; The Gole Larghe Fault Zone, Italian Alps

    NASA Astrophysics Data System (ADS)

    Mitchell, Thomas; Rempe, Marieke; Smith, Steven; Renner, Joerg; Di Toro, Giulio

    2013-04-01

    (~10-21m2). Here the fault-fracture networks were associated with pervasive fluid-rock interaction, defining a c. 200 m wide alteration zone bounded by fluid infiltration fronts with irregular geometry. Fracture density is lower in the damage zones, and partial healing results in higher sample permeabilities (~10-18m2). Laboratory P-wave velocities correlate well with both the architecture and sealing characteristics of the fault zone. P-wave velocities are uniformly high (up to 6km/s) both within and immediately surrounding the central zone, consistent with pervasive sealing of fractures and low sample permeability. In the damage zones P-wave velocities are much lower (3-4km/s) due to the presence of open fractures. Our field and laboratory measurements highlight the close interplay between fracturing, fluid flow, mineralization, and the strength of large fault zones. Importantly, they demonstrate that seismic wave velocities and permeability depend on both fracture density and the degree of fracture sealing, which has implications for the interpretation of active fault zone structure based on geophysical data.

  7. Fracturing and rock pulverization along an exhumed seismogenic fault zone in dolostones: The Foiana Fault Zone (Southern Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Fondriest, Michele; Aretusini, Stefano; Di Toro, Giulio; Smith, Steven A. F.

    2015-07-01

    The Foiana Fault Zone (FFZ) is a major sinistral transpressive fault zone exhumed from < 2 km depth in the Italian Southern Alps. The fault zone crosscuts thick sequences of sedimentary dolostones and shows increasing cumulative throw (0.3-1.8 km) moving from south to north along fault strike. The FFZ consists of variably fractured and fragmented dolostones locally cut by small-displacement (< 0.5 m) faults containing discrete, highly-reflective (so-called "mirror-like") slip surfaces. The mirror-like slip surfaces are typically embedded within fine-grained cataclasite layers up to a few centimeters thick. Preservation of bedding planes in the fragmented dolostones indicates a lack of significant shear strain. Instead, the fragmented dolostones are affected by in-situ shattering from the centimeter down to the micrometer scale, resembling pulverized rocks in crystalline lithologies. Detailed field and aerial structural mapping reveals significant changes in the structure of the FFZ along strike. In particular, the fault zone exhibits large variations in thickness (from c. 100 m in the north to more than 300 m in the south) and changes in mean fault orientation and fault kinematics (from dominant oblique- and strike-slip in the north to dip-slip reverse in the south), together with the reactivation of preexisting anisotropies (i.e. bedding). Overall, the structure of the FFZ, when considered together with possible variable exhumation levels along strike, compares favorably to the predicted damage distribution in three-dimensional earthquake rupture simulations on strike-slip faults, as well as to the characteristics of active seismic sources hosted in carbonate rocks as illuminated by recent seismological studies.

  8. Subsurface geometry and evolution of the Seattle fault zone and the Seattle Basin, Washington

    USGS Publications Warehouse

    ten Brink, U.S.; Molzer, P.C.; Fisher, M.A.; Blakely, R.J.; Bucknam, R.C.; Parsons, T.; Crosson, R.S.; Creager, K.C.

    2002-01-01

    The Seattle fault, a large, seismically active, east-west-striking fault zone under Seattle, is the best-studied fault within the tectonically active Puget Lowland in western Washington, yet its subsurface geometry and evolution are not well constrained. We combine several analysis and modeling approaches to study the fault geometry and evolution, including depth-converted, deep-seismic-reflection images, P-wave-velocity field, gravity data, elastic modeling of shoreline uplift from a late Holocene earthquake, and kinematic fault restoration. We propose that the Seattle thrust or reverse fault is accompanied by a shallow, antithetic reverse fault that emerges south of the main fault. The wedge enclosed by the two faults is subject to an enhanced uplift, as indicated by the boxcar shape of the shoreline uplift from the last major earthquake on the fault zone. The Seattle Basin is interpreted as a flexural basin at the footwall of the Seattle fault zone. Basin stratigraphy and the regional tectonic history lead us to suggest that the Seattle fault zone initiated as a reverse fault during the middle Miocene, concurrently with changes in the regional stress field, to absorb some of the north-south shortening of the Cascadia forearc. Kingston Arch, 30 km north of the Seattle fault zone, is interpreted as a more recent disruption arising within the basin, probably due to the development of a blind reverse fault.

  9. Natural Radiation for Identification and Evaluation of Risk Zones for Affectation of Activated Faults in Aquifer Overexploited.

    NASA Astrophysics Data System (ADS)

    Ramos-Leal, J.; Lopez-Loera, H.; Carbajal-Perez, N.

    2007-05-01

    In basins as Mexico, Michoacán, Guanajuato, Queretaro, Aguascalientes and San Luis Potosi, the existence of faults and fractures have affected the urban infrastructure, lines of conduction of drinkable water, pipelines, etc., that when not being identified and considered, they don't reflect the real impact that these cause also to the aquifer system, modifying the permeability of the means and in occasions they work as preferential conduits that communicate hydraulically potentially to the aquifer with substances pollutants (metals, fertilizers, hydrocarbons, waste waters, etc.) located in the surface. In the Valley of San Luis Potosi, Villa of Reyes, Arista, Ahualulco and recently The Huizache-Matehuala is being strongly affected by faulting and supposedly due cracking to subsidence, however, the regional tectonic could also be the origin of this phenomenon. To know the origin of the faults and affectation to the vulnerability of the aquifer few works they have been carried out in the area. A preliminary analysis indicates that it is possible that a tectonic component is affecting the area and that the vulnerability of the aquifer in that area you this increasing. Before such a situation, it is necessary to carry out the isotopic study of the same one, for this way to know among other things, isotopic characterization, recharge places and addresses of flow of the groundwater; quality of waters and the behavior hydrochemistry with relationship to the faults. High radon values were measured in San Luis Potosi Valley, the natural source of radon could be the riolites and however, these are located to almost a once thousand meters deep for what the migration of the gas is not very probable. The anomalies radiometrics was not correlation with the faults in this case. In some areas like the Valley of Celaya, the origin of the structures and the tectonic activity in the area was confirmed, identifying the structural arrangement of the faulting, the space relationships

  10. The Maradi fault zone: 3-D imagery of a classic wrench fault in Oman

    SciTech Connect

    Neuhaus, D. )

    1993-09-01

    The Maradi fault zone extends for almost 350 km in a north-northwest-south-southeast direction from the Oman Mountain foothills into the Arabian Sea, thereby dissecting two prolific hydrocarbon provinces, the Ghaba and Fahud salt basins. During its major Late Cretaceous period of movement, the Maradi fault zone acted as a left-lateral wrench fault. An early exploration campaign based on two-dimensional seismic targeted at fractured Cretaceous carbonates had mixed success and resulted in the discovery of one producing oil field. The structural complexity, rapidly varying carbonate facies, and uncertain fracture distribution prevented further drilling activity. In 1990 a three-dimensional (3-D) seismic survey covering some 500 km[sup 2] was acquired over the transpressional northern part of the Maradi fault zone. The good data quality and the focusing power of 3-D has enabled stunning insight into the complex structural style of a [open quotes]textbook[close quotes] wrench fault, even at deeper levels and below reverse faults hitherto unexplored. Subtle thickness changes within the carbonate reservoir and the unconformably overlying shale seal provided the tool for the identification of possible shoals and depocenters. Horizon attribute maps revealed in detail the various structural components of the wrench assemblage and highlighted areas of increased small-scale faulting/fracturing. The results of four recent exploration wells will be demonstrated and their impact on the interpretation discussed.

  11. Anisotropy of Resisitiviy Distributions and Fault Rock Microstructures in Fault Zones -Two Case Studies of Hatagawa and Atotsugawa Fault, Japan-

    NASA Astrophysics Data System (ADS)

    Omura, K.

    2015-12-01

    Structure and physical characteristics in a fault zone are not homogeneous. The inhomogeneity should be related to earthquake generation mechanism. However, main features of the inhomogeneity in fault zones are not yet sufficiently understood. It is considered to be effective to compare geophysical data of geophysical survey and/or downhole logging with physical properties, microstructures and mineral compositions of fault rocks in the fault zone. In this presentation, results of the comparisons are introduced in the case of two fault zones; Hatagawa and Atotsugawa fault, in north-east and central Japan, respectively, and factors affecting the inhomogeneity of fault structure are suggested.Anisotropic resistivity measurements in laboratory were compared with microscopic observations of fault rocks recovered from outcrops of Hatagawa fault. In the case of Atotsugawa fault, the anisotropic resistivity profiles by physical survey across the fault zones were compared with microscopic observations and mineral composition analysis of fault rocks provided by drilling into the fault zone. As a result, the anisotropic resistivity profiles are strongly related to foliation structure of fault rocks. It is suggested that fault slip at the earthquake and shear deformation during the earthquake recurrence time develope foliation fabrics of fault rocks, and that the resistivity profile becomes anisotropic progressively in the fault zone.

  12. Complex Rift-Parallel, Strike-Slip Faulting in Iceland: Kinematic Analysis of the Gljúfurá Fault Zone

    NASA Astrophysics Data System (ADS)

    Nanfito, A.; Karson, J. A.

    2009-12-01

    The N-S striking Gljúfurá Fault Zone is an anomalous, dextral, strike-slip fault cutting Tertiary basaltic lavas in west-central Iceland. The fault zone is nearly parallel to structures formed at extinct spreading centers that were active from ~15 to 7 Ma ago in this region, suggesting ridge-parallel strike-slip faulting. The fault zone is well exposed in a river gorge for ~2 km along a well-defined regional lineament. The combined damage zone and fault core are about 50 m wide revealing an especially intense and complex style of deformation compared to other Icelandic fault zones. Basaltic lava flows on either side of the fault zone are cut by numerous closely spaced (10s of cm to m) Riedel shear fractures that grade into a fault core of progressively more intensely fractured lava and strongly altered and mineralized fault breccias, cataclasite and fault gouge. Riedel shears are frequently rotated or bend into the main fault zone. Distinctive bands of fault breccia derived from lava flow interiors, flow tops and dike rock are mapped for tens of meters along strike and reach thicknesses of several meters wide. Breccias contain angular basaltic fragments that range from few meters to millimeters. Fault breccias are typically clast supported with a matix of finely comminuted basalt clasts to clay gouge. 'Jigsaw' breccias are supported by a calcite matrix. Discrete faults and shear fractures show dominantly gently plunging slickenlines and abundant kinematic indicators showing dextral>normal oblique slip. Zeolite and calcite veins show multiple episodes of extension. Local left steps in fault zone are marked by extensional duplex structures with vertical separations of tens of meters bounded by major strike-slip fault strands. The overall architecture of the fault zone in interpreted as an exhumed flower structure. Numerous deformed and undeformed basaltic dikes sub-parallel the deformation structures, suggesting synkinematic intrusion. Some dikes deviate from the

  13. The Bocono Fault Zone, Western Venezuela

    SciTech Connect

    Schubert, C. ); Estevez, R. ); Henneberg, H.G. )

    1993-02-01

    The Bocono Fault Zone, the western part of the Bocono Moron-El Pilar Fault System of the southern Caribbean plate boundary, consists of aligned valleys, linear depressions, pull-apart basins and other morphological features, which extend for about 500 km in a N45[degrees]E direction, between the Tachira depression (Venezuela-Colombia border) and the Caribbean Sea. It crosses obliquely the Cordillera de Merida and cuts across the Caribbean Mountains, two different geologic provinces of Late Tertiary-Quaternary and Late Cretaceous-Early Tertiary age, respectively. Therefore, the maximum age that can be assigned to the Bocono Fault Zone is Late Tertiary (probably Pliocene). A total maximum right-lateral offset rate of 3.3 mm/a. The age of the sedimentary fill o[approximately] the La Gonzalez pull-apart basin suggests that the 7-9 km right-lateral offset necessary to produce it took place in Middle to Late Pleistocene time. The majority of seismic events are well aligned with the main fault trace; minor events are distributed in a belt several kilometers wide. Focal depth is typically 15 km and focal mechanisms indicate an average east-west compression across the zone. Return periods of 135-460 a (Richter M = 8), 45-70 a (M = 7), and 7-15 a (M = 6) have been calculated. Geodetic studies of several sites along the zone indicate compressive and right-lateral components; at Mucubaji the rate of right-lateral displacement observed is about 1 mm every 5 months (15 a of measurements).

  14. The tectonic structure of the Song Ma fault zone, Vietnam

    NASA Astrophysics Data System (ADS)

    Wen, Strong; Yeh, Yu-Lien; Tang, Chi-Cha; Phong, Lai Hop; Toan, Dinh Van; Chang, Wen-Yen; Chen, Chau-Huei

    2015-08-01

    Indochina area is a tectonic active region where creates complex topographies and tectonic structures. In particular, the Song Ma fault zone plays an important role in understanding the mechanism and revolution of the collision between the Indian plate and Eurasian plate. In order to have better understanding the seismotectonic structures of the Song Ma fault zone, a three-year project is proposed to study the seismotectonic structures of crust in this region. The main goal of this project is to deploy temporary broad-band seismic stations around/near the shear zone to record high quality microearthquakes. By using the data recorded by the temporary array and the local seismic network, we are able to conduct seismological studies which include using waveform inversion to obtain precise fault plane solutions of microearthquakes, one-dimensional (1-D) velocity structure of the crust in the region as well as the characteristics of seismogeneric zone. From the results of earthquake relocation and focal mechanisms, we find that the spatial distribution of events occurred in Song Ma fault zone forms in several distinct groups which are well correlated local geological structures and further use to gain insights on tectonic evolution.

  15. Fault zone roughness controls slip stability

    NASA Astrophysics Data System (ADS)

    Harbord, Christopher; Nielsen, Stefan; De Paola, Nicola

    2016-04-01

    Fault roughness is an important control factor in the mechanical behaviour of fault zones, in particular the frictional slip stability and subsequent earthquake nucleation. Despite this, there is little experimental quantification as to the effects of varying roughness upon rate- and state-dependant friction (RSF). Utilising a triaxial deformation apparatus and a novel adaptation of the direct shear methodology to simulate initially bare faults in Westerly Granite, we performed a series of velocity step frictional sliding experiments. Initial root mean square roughnesses (Sq) was varied in the range 6x10-7 - 2.4x10-5 m. We also investigated the effects upon slip stability of normal stress variation in the range σn = 30 - 200 MPa, and slip velocity between 0.1 - 10 μm s-1. A transition from stable sliding to unstable slip (manifested by stick-slip and slow slip events) was observed, depending on the parameter combination, thus covering the full spectrum of fault slip behaviours. At low normal stress (σn = 30MPa) smooth faults (Sq< 1x10-6 m) are conditional unstable (stress drops on slow slip events upon velocity increase), with strongly velocity weakening friction. When normal stress is increased to intermediate values (σn = 100 - 150 MPa), smooth faults (Sq< 1x10-6 m) are fully unstable and generate seismic stick-slip behaviour. However at higher normal stress (σn = 200 MPa) a transition from unstable to stable sliding is observed for smooth faults, which is not expected using RSF stability criteria. At all conditions sliding is stable for rough faults (Sq> 1x10-6 m). We find that instability can develop when the ratio of fault to critical stiffness kf kc > 10, or, alternatively, even when a - b > 0 at σn = 150MPa, suggesting that bare surfaces may not strictly obey the R+S stability condition. Additionally we present white light interferometry and SEM analysis of experimentally deformed samples which provide information about the distribution and physical

  16. On the Origin and Distribution of Fracture Damage Surrounding Strike-Slip Fault Zones

    NASA Astrophysics Data System (ADS)

    Mitchell, T. M.; Faulkner, D. R.

    2006-12-01

    with distance. We believe we have successfully isolated fracture damage which is related to fault tip processes, and the damage zone width scales linearly with the active fault length (proportional to fault displacement), which is consistent with a post- yield fracture mechanics model. Macrofractures are a combination of shear and opening mode, but a significant proportion also occur at a high angle to the main fault trace, which may be related to dynamic loading or hydrofracturing with the greatest principal stress oriented at a high angle to the fault trace. It has been thought that the overall fault structure of large displacement zones is established early in a fault's history. We interpret the microfracture damage surrounding the faults studied accumulated as a result of the initial process zone migration; geometrical irregularities on the fault plane and dynamic loading have also contributed to off-fault damage, although this is less well understood. Early fault damage zone width scales with displacement, and core structure becomes more complex with increased displacement. By separating damage from fault tip processes from dynamic slip induced damage, we can make better estimates of fracture energies related to slip events, and also better understand how fault zone permeability evolves with time.

  17. Rheological Control of Interbedded Siliciclastic Strata on Damage Zone Evolution During Fault Growth

    NASA Astrophysics Data System (ADS)

    Wightman, R. H.; Imber, J.; Healy, D.; Holdsworth, R. E.; McCaffrey, K. J.; Jones, R. R.

    2006-12-01

    Fault damage zones can have a major impact on fluid flow through sub-surface reservoirs. The typical resolution of seismic reflection data is such that faults with throws <15m are not imaged, and those with throws >15 m are imaged as discrete planes, revealing none of the smaller scale architecture of the fault damage zones. Previous field studies show that damage zone width scales with fault throw, which suggests that a relationship exists between fault growth and increasing damage zone width. However, this hypothesis remains largely untested and the factors controlling damage zone evolution are poorly understood. This study develops kinematic models to describe the evolution of damage zones during fault growth. The predictions of these models are tested against quantitative geometric attributes of natural fault damage zones preserved in siliciclastic sand/shale sequences from the Carboniferous Northumberland Basin, NE England. These data, obtained from faults with throws spanning 0.1-20 m, were measured from detailed (cm-resolution) digital outcrop models captured using terrestrial laser scanning techniques. Study locations include areas of active open-cast coal mining that provide good 3D exposure of faults during progressive coal extraction. The damage zones comprise complex arrays of structural elements including: fault splays and oversteps; drag folds; rotated fault-bound blocks; sub-parallel fracture sets and ductile shear zones; cataclasite lenses; and intensely deformed scaly gouge. We propose two complimentary kinematic models to explain the structural relationships observed within these damage zones. The first model predicts the development of cataclasite lenses from fault-bounded blocks in contractional oversteps with increasing fault throw. In this scenario, the damage zone width remains approximately constant, defined by the initial fault separation. The second model describes the space incompatibility that develops between discrete fault planes in

  18. Nature of Subduction Megathrust Faults at the Ryukyu Subduction Zone

    NASA Astrophysics Data System (ADS)

    Arai, R.; Kaiho, Y.; Takahashi, T.; Nakanishi, A.; Fujie, G.; Nakamura, Y.; Miura, S.; Kodaira, S.; Kaneda, Y.

    2015-12-01

    The Ryukyu subduction zone (RSZ) has been intensively examined in terms of seismic coupling along the plate boundary and tsunami potentials. On the contrary to other subduction zones nearby, such as the Nankai Trough and the Japan Trench, the RSZ has lacked clear evidence of great interplate earthquakes (M>8) for the last few hundred years and thus the overall interplate coupling is thought to be weak (Peterson and Seno, 1984). Correspondingly, geodetic observation implies that a possible coupled zone is narrow and limited to a shallow portion of the plate boundary near the trench (Ando et al., 2009). Recent seismic studies show that very low frequency earthquakes (VLFEs) are ubiquitously distributed in the forearc region of the Ryukyu arc, implying a variety of slip behaviors along the subduction faults related to fluid distribution (Nakamura and Sunagawa, 2015). However, these findings were derived from land station network and did not have sufficient resolution near the trench to determine spatial relationship of megathrust faults to the seismic activity. Since 2013 we JAMSTEC have been carrying out marine active- and passive-source seismic experiments in the Ryukyu subduction zone to reveal the fine-scale geometry and nature of subduction faults. Here we present integrated seismological evidence for megathrust fault structure and its relation to VLFEs at the southern Ryukyu Trench. Active-source seismic data consistently reveal that the plate boundary and backstop interface form a 40-km-wide frontal prism where low-velocity sedimentary rocks fill in. We find VLFEs occur around the low-velocity wedge where fluids are distributed as suggested by negative polarity in the reflection data. This forearc structure is also coincident with the source region of Yaeyama earthquake tsunami in 1771 (Nakamura, 2009), the most devastating disaster known in this region. Slow ruptures enhanced by the fluid-rich condition at the plate boundary and/or surrounding faults may be a

  19. Mountain front migration and drainage captures related to fault segment linkage and growth: The Polopos transpressive fault zone (southeastern Betics, SE Spain)

    NASA Astrophysics Data System (ADS)

    Giaconia, Flavio; Booth-Rea, Guillermo; Martínez-Martínez, José Miguel; Azañón, José Miguel; Pérez-Romero, Joaquín; Villegas, Irene

    2013-01-01

    The Polopos E-W- to ESE-WNW-oriented dextral-reverse fault zone is formed by the North Alhamilla reverse fault and the North and South Gafarillos dextral faults. It is a conjugate fault system of the sinistral NNE-SSW Palomares fault zone, active from the late most Tortonian (≈7 Ma) up to the late Pleistocene (≥70 ky) in the southeastern Betics. The helicoidal geometry of the fault zone permits to shift SE-directed movement along the South Cabrera reverse fault to NW-directed shortening along the North Alhamilla reverse fault via vertical Gafarillos fault segments, in between. Since the Messinian, fault activity migrated southwards forming the South Gafarillos fault and displacing the active fault-related mountain-front from the north to the south of Sierra de Polopos; whilst recent activity of the North Alhamilla reverse fault migrated westwards. The Polopos fault zone determined the differential uplift between the Sierra Alhamilla and the Tabernas-Sorbas basin promoting the middle Pleistocene capture that occurred in the southern margin of the Sorbas basin. Continued tectonic uplift of the Sierra Alhamilla-Polopos and Cabrera anticlinoria and local subsidence associated to the Palomares fault zone in the Vera basin promoted the headward erosion of the Aguas river drainage that captured the Sorbas basin during the late Pleistocene.

  20. Structure of a normal seismogenic fault zone in carbonates: The Vado di Corno Fault, Campo Imperatore, Central Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Demurtas, Matteo; Fondriest, Michele; Balsamo, Fabrizio; Clemenzi, Luca; Storti, Fabrizio; Bistacchi, Andrea; Di Toro, Giulio

    2016-09-01

    The Vado di Corno Fault Zone (VCFZ) is an active extensional fault cutting through carbonates in the Italian Central Apennines. The fault zone was exhumed from ∼2 km depth and accommodated a normal throw of ∼2 km since Early-Pleistocene. In the studied area, the master fault of the VCFZ dips N210/54° and juxtaposes Quaternary colluvial deposits in the hangingwall with cataclastic dolostones in the footwall. Detailed mapping of the fault zone rocks within the ∼300 m thick footwall-block evidenced the presence of five main structural units (Low Strain Damage Zone, High Strain Damage Zone, Breccia Unit, Cataclastic Unit 1 and Cataclastic Unit 2). The Breccia Unit results from the Pleistocene extensional reactivation of a pre-existing Pliocene thrust. The Cataclastic Unit 1 forms a ∼40 m thick band lining the master fault and recording in-situ shattering due to the propagation of multiple seismic ruptures. Seismic faulting is suggested also by the occurrence of mirror-like slip surfaces, highly localized sheared calcite-bearing veins and fluidized cataclasites. The VCFZ architecture compares well with seismological studies of the L'Aquila 2009 seismic sequence (mainshock MW 6.1), which imaged the reactivation of shallow-seated low-angle normal faults (Breccia Unit) cut by major high-angle normal faults (Cataclastic Units).

  1. Upper crustal fault zones: Constraining structure and dynamics using electrical conductivity

    NASA Astrophysics Data System (ADS)

    Hoffmann-Rothe, A.; Ritter, O.; Janssen, C.

    2003-04-01

    Upper crustal fault zones, either fossil or active, are often connected with electrical conductivity anomalies. These anomalies depend on properties such as the porosity/permeability of the fault zone material, the fluid content or the state of healing/cementation of the fault-fracture mesh; properties that moreover control the ability of a fault to accumulate strain. Structural heterogeneities caused by the faulting process are therefore believed to either increase or decrease the electrical conductivity in the fault's vicinity. We show results of two combined magnetotelluric and structural studies of large scale strike-slip dominated fault zones. The trench-linked West Fault (WF) in Northern Chile shows a pronounced anomaly of high conductivity confined to the central region of the fault. The zone of high conductivity is approximately 400 m wide and 1.5 km deep. Structural mapping reveals that this conductivity enhancement is closely related to a mesh of faults and fractures ('damage zone') that most likely provides a pathway for fluids. In contrast to this, the Dead Sea Transform Fault (DST) in Jordan shows no obvious evidence of such a fault zone conductor as the DST is expressed as the boundary between two different domains of conductivity on either side of the fault. Correspondingly, a marked macroscopic fault-fracture mesh in the fault core region is not developed. Comparison of the results from the WF with published data from the San Andreas Fault suggests generally a positive correlation of fault activity with geometric extent and conductivity of the fault zone conductor. However, the Dead Sea Transform Fault apparently does not comply with this scheme although it is active. It is possible that intense localisation of deformation caused the formation of a very narrow fault gouge, which cannot be resolved with the MT experiments. This result could suggest that the existence or non-existence of high conductivity in the central parts of large scale strike

  2. Permeability of the San Andreas Fault Zone at Depth

    NASA Astrophysics Data System (ADS)

    Rathbun, A. P.; Song, I.; Saffer, D.

    2010-12-01

    Quantifying fault rock permeability is important toward understanding both the regional hydrologic behavior of fault zones, and poro-elastic processes that affect fault mechanics by mediating effective stress. These include long-term fault strength as well as dynamic processes that may occur during earthquake slip, including thermal pressurization and dilatancy hardening. Despite its importance, measurements of fault zone permeability for relevant natural materials are scarce, owing to the difficulty of coring through active fault zones seismogenic depths. Most existing measurements of fault zone permeability are from altered surface samples or from thinner, lower displacement faults than the SAF. Here, we report on permeability measurements conducted on gouge from the actively creeping Central Deformation Zone (CDZ) of the San Andreas Fault, sampled in the SAFOD borehole at a depth of ~2.7 km (Hole G, Run 4, sections 4,5). The matrix of the gouge in this interval is predominantly composed of particles <10 µm, with ~5 vol% clasts of serpentinite, very fine-grained sandstone, and siltstone. The 2.6 m-thick CDZ represents the main fault trace and hosts ~90% of the active slip on the SAF at this location, as documented by repeated casing deformation surveys. We measured permeability in two different configurations: (1) in a uniaxial pressure cell, in which a sample is placed into a rigid steel ring which imposes a zero lateral strain condition and subjected to axial load, and (2) in a standard triaxial system under isostatic stress conditions. In the uniaxial configuration, we obtained permeabilities at axial effective stresses up to 90 MPa, and in the triaxial system up to 10 MPa. All experiments were conducted on cylindrical subsamples of the SAFOD core 25 mm in diameter, with lengths ranging from 18mm to 40mm, oriented for flow approximately perpendicular to the fault. In uniaxial tests, permeability is determined by running constant rate of strain (CRS) tests up

  3. Seismicity around the Cimandiri fault zone, West Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Febriani, Febty

    2016-02-01

    We analyzed the seismicity activity around the Cimandiri fault zone, West Java, Indonesia by using the earthquake catalogs listed by Indonesian Meteorological Climatological and Geophysical (BMKG) and International Seismological Centre (ISC) from 1973 to 2013 (M>=1 and depth ≤ 0-50 km), along with the focal mechanism data from National Research Institute of Earth Science and Disaster Prevention (NIED) from 2007 to 2014 (M>4; depth ≤ 50 km) and Global CMT catalog from 1976 to 2014 (M=0-10 and depth ≤ 50 km). The result from earthquake catalogs suggest that there are earthquake activities around the Cimandiri fault zone in the recent years, which is also supported by the results of focal mechanism data analysis from NIED data and Global CMT catalog.

  4. Multi-Scale Imaging of the Fault Zone Velocity Structure: Double-difference Tomography, Inversion of Fault Zone Headwaves, and Fault Zone Sensitivity Kernels

    NASA Astrophysics Data System (ADS)

    Allam, Amir A.

    In spite of the close relationship between fault zone structure and earthquake mechanics, fault zone structure at seismogenic depths remains poorly understood. How does localization of the primary slip zone vary with depth? Is there a signature of broad persistent damage zones at seismogenic depths? How does fault zone structure merge with regional structure? To answer these questions, we utilize multiple imaging techniques. We apply high-resolution double-difference tomography to the San Jacinto fault zone, invert for velocity structure along the Hayward fault using fault zone head waves, and use analytical results for idealized geometries to validate sensitivity kernels of fault zone phases for use in adjoint tomographic inversions. Double-difference tomography uses the arrival times of P and S waves to invert simultaneously for compressional velocity, shear wave velocity, and source location in three dimensions. We present results in the southern California plate-boundary area, with a focus on the San Jacinto fault zone, which incorporate arrival times of 247,472 P- and 105,448 S-wave picks for 5493 earthquakes recorded at 139 stations. Starting with a layered 1D model, and continuing in later iterations with various updated initial models, we invert the data for Vp and Vs in a 270 km long, 105 km wide and 35 km deep volume using a spatially variable grid with higher density around the San Jacinto. Our final velocity results show zones of low-velocity and high Vp/Vs ratios associated with various fault strands and sedimentary basins, along with clear velocity contrasts across the San Jacinto. While both features are limited to the upper 10km, the low velocity zones generally have higher amplitude and broader distribution in geometrically complex areas, while the velocity contrasts are more pronounced for Vp than Vs. Along the Hayward fault in the San Francisco Bay region, we identify fault zone head waves at eight stations on the northeastern side of the fault

  5. Style of deformation along the Death Valley-Furnace Creek fault zone and other faults in the southern Walker Lane, Nevada and California

    SciTech Connect

    Noller, J.S. ); Reheis, M.C. )

    1993-04-01

    Quaternary normal and right-lateral faults and associated lineaments in the southern part of the Walker Lane are anomalous with respect to the north-striking normal faults in most of the central Great Basin. The authors identify and characterize many faults and lineaments that were previously unmapped, with the exception of faults in the Death Valley-Furnace Creek fault zone (DVFCFZ) and some faults in and near the Nevada Test Site. Faults and associated lineaments in deposits of late Cenozoic age are distinguished on the basis of age of most recent activity and orientation, and are grouped into two domains. One domain is characterized by northwest-striking faults and lineaments and associated north-striking en echelon structures within the DVFCFZ and the Pahrump fault zone; the other domain is characterized by north- to northeast-striking faults and linearments within a broad region east of the DVFCFZ that narrows southward toward the Pahrump fault zone. Preliminary observations of faults and linearments suggest dominantly right-oblique slip in the first domain and dominantly dip-slip in the second domain. The DVFCFZ is a regional right-lateral strike-slip system that shows changes in style of deformation along strike. Numerous normal faults at the northern end of the DVFCFZ in northern fish Lake Valley and the Volcanic Hills form an extensional right step that links the DVFCFZ with northwest-striking right-lateral faults of the northern part of the Walker Lane. South of this extensional step, the DVFCFZ trends southeast along strike-slip faults from central Fish Lake Valley to the latitude of Furnace Creek. From Furnace Creek, the fault zone apparently steps left to the Pahrump fault zone in the area of Ash Meadows where a complex zone of folds and faults of diverse orientation suggest local compression. This stepover coincides with east-northeast-striking faults that appear to be an extension of the left-lateral Rock Valley fault zone.

  6. Kinematics of the Eastern California shear zone: Evidence for slip transfer from Owens and Saline Valley fault zones to Fish Lake Valley fault zone

    USGS Publications Warehouse

    Reheis, M.C.; Dixon, T.H.

    1996-01-01

    Late Quaternary slip rates and satellite-based geodetic data for the western Great Basin constrain regional fault-slip distribution and evolution. The geologic slip rate on the Fish Lake Valley fault zone (the northwest extension of the Furnace Creek fault zone) increases northward from about 3 to 5 mm/yr, in agreement with modeled geodetic data. The increase coincides with the intersections of the Deep Springs fault, connected to the Owens Valley fault zone, and of other faults connected to the Saline Valley fault. The combined geologic and geodetic data suggest that (1) the northwest-striking faults of the Eastern California shear zone north of the Garlock fault are connected by north- to northeast-striking normal faults that transfer slip in a series of right steps, and (2) the amount and distribution of slip among the many faults of this broad, complex plate boundary have changed through time.

  7. Geophysical investigation of landslides and fault scarps in the Hockai Fault Zone, Belgium

    NASA Astrophysics Data System (ADS)

    Mreyen, Anne-Sophie; Havenith, Hans-Balder; Fernandez-Steeger, Tomas

    2016-04-01

    During several years, a series of geophysical surveys have been carried out in East Belgium to study the seismically active Hockai Fault Zone (HFZ). The most prominent earthquake that occurred in that fault zone is the 1692 Verviers Earthquake with a magnitude of M6-6.5; it is also the largest historical seismic event in NW Europe. The geomorphic impact of the fault zone is expressed by several landslides, NW-SE orientated scarps and paleo-valleys generated by river diversions. The NW part of the HFZ (near Battice, Belgium) is also known as the Graben de la Minerie; here, geophysical measurements confirmed the presence of a series of fault scarps and helped imaging the general basin structure related to vertical offsets of coal seams that had been found during former mining works. In the southern part of the HFZ, the ENE-SWS orientated Paleo-Warche-Valley (that was formed before upstream capturing of the Warche River) crosses the fault zone over a distance of 5 km. The shallow subsurface of this area was further investigated by geophysics to identify fault structures. The work presented here is focused on the SE prolongation of the HFZ (region of Malmedy, Belgium). Two new clear morphological markers unknown before were detected through analysis of a LiDAR-DEM recently published by the Walloon Region. The following geological-geomorphic survey confirmed the presence of a NNW-SSE oriented, 100 m long and 20 m high, scarp and an associated landslide (about 8 ha) with minimum age of 300 years. The landslide was formed in the Poudingue de Malmedy, a local Permian conglomerate lying on top of a quartz-phyllite bedrock. Different geophysical methods were applied to investigate the subsurface: microseismic measurements (H/V method), seismic refraction tomography (combined with surface wave analysis) and electrical resistivity tomography. To establish the structural relationship between the fault scarp and the landslide and to estimate the offset of the Poudingue de

  8. Earthquake ruptures modulated by waves in damaged fault zones

    NASA Astrophysics Data System (ADS)

    Huang, Yihe; Ampuero, Jean-Paul; Helmberger, Don V.

    2014-04-01

    Faults are usually surrounded by damaged zones of lower elastic moduli and seismic wave velocities than their host rocks. If the interface between the damaged rocks and host rocks is sharp enough, earthquakes happening inside the fault zone generate reflected waves and head waves, which can interact with earthquake ruptures and modulate rupture properties such as rupture speed, slip rate, and rise time. We find through 2-D dynamic rupture simulations the following: (1) Reflected waves can induce multiple slip pulses. The rise time of the primary pulse is controlled by fault zone properties, rather than by frictional properties. (2) Head waves can cause oscillations of rupture speed and, in a certain range of fault zone widths, a permanent transition to supershear rupture with speeds that would be unstable in homogeneous media. (3) Large attenuation smears the slip rate function and delays the initial acceleration of rupture speed but does not affect significantly the rise time or the period of rupture speed oscillations. (4) Fault zones cause a rotation of the background stress field and can induce plastic deformations on both extensional and compressional sides of the fault. The plastic deformations are accumulated both inside and outside the fault zone, which indicates a correlation between fault zone development and repeating ruptures. Spatially periodic patterns of plastic deformations are formed due to oscillating rupture speed, which may leave a permanent signature in the geological record. Our results indicate that damaged fault zones with sharp boundaries promote multiple slip pulses and supershear ruptures.

  9. Slip zone structure and processes in seismogenic carbonate faults

    NASA Astrophysics Data System (ADS)

    Bullock, R. J.; De Paola, N.

    2011-12-01

    High velocity rotary shear experiments performed at seismic slip velocities (>1 m/s) have shown that experimental faults are weak; with increasing displacement, friction coefficient values decrease from Byerlee's values (μ = 0.6-0.85) to values of ~0.1. In carbonate rocks, experimental studies have shown that fault lubrication is due to the operation of multiple dynamic weakening mechanisms (e.g., flash heating, thermal pressurization, nanoparticle lubrication), which are thermally activated due to the frictional heat generated along localized slip surfaces during rapid slip. This study has set out to investigate whether evidence for the operation of these weakening mechanisms can be found in naturally occurring carbonate fault zones. Field studies were carried out on the active Gubbio fault zone (1984, Mw = 5.6) in the northern Apennines of Italy. Jurassic-Oligocene carbonates in the footwall are heavily deformed within a fault core of ~15 m thickness, which contains a number of very well exposed, highly localized principal slip surfaces (PSSs). Fault rocks are predominantly breccias and foliated cataclasites. Microstructural analyses of the PSSs reveal that slip is localized within very narrow principal slip zones (PSZs), ranging from 10-85 μm in thickness, with sub-millimetre scale asperities. PSZs are composed of very fine-grained, orange-brown ultracataclasite gouge containing a high proportion of nano-sized particles. The ultracataclasite commonly displays a foliated texture and sub-micron scale zones of extreme shear localization. A broader slip zone, up to 1.5 mm wide and containing multiple slip surfaces, is associated with the most evolved PSSs; it is located on the opposite side of the PSS to the PSZ. Here, the host rock material is heavily fractured, abraded and altered, sometimes with an ultracataclasite matrix. The surrounding wall rock often appears to have a porous texture, and calcite crystals within the slip zone have altered rims with lobate

  10. The width of fault zones in a brittle-viscous lithosphere: Strike-slip faults

    NASA Technical Reports Server (NTRS)

    Parmentier, E. M.

    1991-01-01

    A fault zone in an ideal brittle material overlying a very weak substrate could, in principle, consist of a single slip surface. Real fault zones have a finite width consisting of a number of nearly parallel slip surfaces on which deformation is distributed. The hypothesis that the finite width of fault zones reflects stresses due to quasistatic flow in the ductile substrate of a brittle surface layer is explored. Because of the simplicity of theory and observations, strike-slip faults are examined first, but the analysis can be extended to normal and thrust faulting.

  11. Fault-zone structure and weakening processes in basin-scale reverse faults: The Moonlight Fault Zone, South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Alder, S.; Smith, S. A. F.; Scott, J. M.

    2016-10-01

    The >200 km long Moonlight Fault Zone (MFZ) in southern New Zealand was an Oligocene basin-bounding normal fault zone that reactivated in the Miocene as a high-angle reverse fault (present dip angle 65°-75°). Regional exhumation in the last c. 5 Ma has resulted in deep exposures of the MFZ that present an opportunity to study the structure and deformation processes that were active in a basin-scale reverse fault at basement depths. Syn-rift sediments are preserved only as thin fault-bound slivers. The hanging wall and footwall of the MFZ are mainly greenschist facies quartzofeldspathic schists that have a steeply-dipping (55°-75°) foliation subparallel to the main fault trace. In more fissile lithologies (e.g. greyschists), hanging-wall deformation occurred by the development of foliation-parallel breccia layers up to a few centimetres thick. Greyschists in the footwall deformed mainly by folding and formation of tabular, foliation-parallel breccias up to 1 m wide. Where the hanging-wall contains more competent lithologies (e.g. greenschist facies metabasite) it is laced with networks of pseudotachylyte that formed parallel to the host rock foliation in a damage zone extending up to 500 m from the main fault trace. The fault core contains an up to 20 m thick sequence of breccias, cataclasites and foliated cataclasites preserving evidence for the progressive development of interconnected networks of (partly authigenic) chlorite and muscovite. Deformation in the fault core occurred by cataclasis of quartz and albite, frictional sliding of chlorite and muscovite grains, and dissolution-precipitation. Combined with published friction and permeability data, our observations suggest that: 1) host rock lithology and anisotropy were the primary controls on the structure of the MFZ at basement depths and 2) high-angle reverse slip was facilitated by the low frictional strength of fault core materials. Restriction of pseudotachylyte networks to the hanging-wall of the

  12. The Honey Lake fault zone, northeastern California: Its nature, age, and displacement

    SciTech Connect

    Wagner, D.L.; Saucedo, G.J.; Grose, T.L.T.

    1990-01-01

    The Honey Lake fault zone of northeastern California is composed of en echelon, northwest trending faults that form the boundary between the Sierra Nevada and the Basin Ranges provinces. As such the Honey Lake fault zone can be considered part of the Sierra Nevada frontal fault system. It is also part of the Walker Lane of Nevada. Faults of the Honey Lake zone are vertical with right-lateral oblique displacements. The cumulative vertical component of displacement along the fault zone is on the order of 800 m and right-lateral displacement is at least 10 km (6 miles) but could be considerably more. Oligocene to Miocene (30 to 22 Ma) age rhyolite tuffs can be correlated across the zone, but mid-Miocene andesites do not appear to be correlative indicating the faulting began in early to mid-Miocene time. Volcanic rocks intruded along faults of the zone, dated at 16 to 8 Ma, further suggest that faulting in the Honey Lake zone was initiated during mid-Miocene time. Late Quaternary to Holocene activity is indicated by offset of the 12,000 year old Lake Lahontan high stand shoreline and the surface rupture associated with the 1950 Fort Sage earthquake.

  13. Spatiotemporal evolution of a fault shear stress patch due to viscoelastic interseismic fault zone rheology

    NASA Astrophysics Data System (ADS)

    Sone, Hiroki; Uchide, Takahiko

    2016-08-01

    We conducted numerical studies to explore how shear stress anomalies on fault planes (shear stress patches) evolve spatiotemporally during the interseismic period under the influence of viscoelastic rheology assigned to fault zones of finite thickness. 2-D viscoelastic models consisting of a fault zone and host rock were sheared to simulate shear stress accumulation along fault zones due to tectonic loading. No fault slip along a distinct fault planes is implied in the model, thus all fault shear motion is accommodated by distributed deformation in the viscoelastic fault zone. Results show that magnitudes of shear stress patches evolve not only temporally, but also spatially, especially when the stress anomaly is created by a geometrical irregularity (asperity) along the interface of an elastic host rock and viscoelastic fault zone. Such shear stress anomalies diffuse spatially so that the spatial dimension of the shear stress patch appears to grow over time. Models with varying fault zone viscoelastic properties and varying fault zone viscosity both show that such spatial diffusion of shear stress is enhanced by increasing the contribution of the viscous behavior. The absolute rate at which shear stress patches grow spatially is generally not influenced by the size of the shear stress patch. Therefore shear stress patches with smaller dimensions will appear to grow quicker, in the relative sense, compared to larger stress patches. These results suggest that the minimum dimensions of shear stress patches that can exist along a fault could be governed by the effective viscosity of the fault zone. Therefore patterns of accumulated shear stress could vary along faults when viscous properties are heterogeneous, for instance due to depth or material heterogeneity, which has implications on how earthquake rupture behavior could vary along faults.

  14. Fault Zones from Top to Bottom: A Geophysical Perspective

    NASA Astrophysics Data System (ADS)

    Mooney, W.; Beroza, G.; Kind, R.

    2006-12-01

    Geophysical studies of the Earth's crust, including fault zones, have greatly developed over the past 80 years. Among the first methods to be employed, seismic refraction and reflection profiles were recorded in the North American Gulf Coast to detect salt domes which were known to trap hydrocarbons. Seismic methods continue to be the most important geophysical technique in use today due to the methods' relatively high accuracy, high resolution, and great depth of penetration. However, in the past decade, a much expanded repertoire of seismic and non-seismic techniques have been brought to bear on studies of the Earth's crust and uppermost mantle. Important insights have also been obtained using seismic tomography, measurements of seismic anisotropy, fault zone guided waves, borehole surveys, and geo-electrical, magnetic, and gravity methods. In this paper we briefly review recent geophysical progress in the study of the structure and internal properties of faults zones, from their surface exposures to their lower limit. We focus on the structure of faults within continental crystalline and competent sedimentary rock rather than within the overlying, poorly consolidated sedimentary rocks. We find that 1) The width of the fault damage zone is proportional to total fault offset, 2) Large strike-slip faults have vertical low-velocity, high-conductivity zones, 3) Anomalous fault zone properties undergo temporal "healing" after a large earthquake, and 4) Fault zones can either act as a fluid conduit or an impermeable barrier, depending on composition and history.

  15. High Resolution Seismic Imaging of Fault Zones: Methods and Examples From The San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Catchings, R. D.; Rymer, M. J.; Goldman, M.; Prentice, C. S.; Sickler, R. R.; Criley, C.

    2011-12-01

    Seismic imaging of fault zones at shallow depths is challenging. Conventional seismic reflection methods do not work well in fault zones that consist of non-planar strata or that have large variations in velocity structure, two properties that occur in most fault zones. Understanding the structure and geometry of fault zones is important to elucidate the earthquake hazard associated with fault zones and the barrier effect that faults impose on subsurface fluid flow. In collaboration with the San Francisco Public Utilities Commission (SFPUC) at San Andreas Lake on the San Francisco peninsula, we acquired combined seismic P-wave and S-wave reflection, refraction, and guided-wave data to image the principal strand of the San Andreas Fault (SAF) that ruptured the surface during the 1906 San Francisco earthquake and additional fault strands east of the rupture. The locations and geometries of these fault strands are important because the SFPUC is seismically retrofitting the Hetch Hetchy water delivery system, which provides much of the water for the San Francisco Bay area, and the delivery system is close to the SAF at San Andreas Lake. Seismic reflection images did not image the SAF zone well due to the brecciated bedrock, a lack of layered stratigraphy, and widely varying velocities. Tomographic P-wave velocity images clearly delineate the fault zone as a low-velocity zone at about 10 m depth in more competent rock, but due to soil saturation above the rock, the P-waves do not clearly image the fault strands at shallower depths. S-wave velocity images, however, clearly show a diagnostic low-velocity zone at the mapped 1906 surface break. To image the fault zone at greater depths, we utilized guided waves, which exhibit high amplitude seismic energy within fault zones. The guided waves appear to image the fault zone at varying depths depending on the frequency of the seismic waves. At higher frequencies (~30 to 40 Hz), the guided waves show strong amplification at the

  16. Characteristics of faults and shear zones in deep mines

    USGS Publications Warehouse

    Wallace, R.E.; Morris, H.T.

    1986-01-01

    The characteristics of fault and shear zones to depths of 2.5 km are well documented in deep mines in North America. The characteristics may be summarized as follows. (a) Fault zones usually are irregular, branched, anastomosed, and curved rather than simple and planar. (b) Faults are generally composed of one or more clay or clay-like gouge zones in a matrix of sheared and foliated rock bordered by highly fractured rock. (c) The widths of fault zones appear to be greater when faults have greater displacement, probably as a result of a long history of repeated minor movements. Fault zones with kilometers of displacement tend to be 100 m or more wide, whereas those with only a few hundred meters of displacement commonly are only 1 m or less wide. (d) Some zones represent shear distributed across hundreds of meters without local concentration in a narrow gouge zone. (e) Many fault zones are wet even above the water table, and water moves along them at various rates, but some also serve as subsurface dams, ponding ground water as much as several hundred meters higher on one side than on the other. No striking differences in the characteristics of faults over the vertical range of 2.5 km are documented. ?? 1986 Birkha??user Verlag.

  17. Tectonic creep in the Hayward fault zone, California

    USGS Publications Warehouse

    Radbruch-Hall, Dorothy H.; Bonilla, M.G.

    1966-01-01

    Tectonic creep is slight apparently continuous movement along a fault. Evidence of creep has been noted at several places within the Hayward fault zone--a zone trending northwestward near the western front of the hills bordering the east side of San Francisco Bay. D. H. Radbruch of the Geological Survey and B. J. Lennert, consulting engineer, confirmed a reported cracking of a culvert under the University of California stadium. F. B. Blanchard and C. L. Laverty of the East Bay Municipal Utility District of Oakland studied cracks in the Claremont water tunnel in Berkeley. M. G. Bonilla of the Geological Survey noted deformation of railroad tracks in the Niles district of Fremont. Six sets of tracks have been bent and shifted. L. S. Cluff of Woodward-Clyde-Sherard and Associates and K. V. Steinbrugge of the Pacific Fire Rating Bureau noted that the concrete walls of a warehouse in the Irvington district of Fremont have been bent and broken, and the columns forced out of line. All the deformations noted have been right lateral and range from about 2 inches in the Claremont tunnel to about 8 inches on the railroad tracks. Tectonic creep almost certainly will continue to damage buildings, tunnels, and other structures that cross the narrow bands of active movement within the Hayward fault zone.

  18. Fault zone architecture, San Jacinto fault zone, southern California: evidence for focused fluid flow and heat transfer in the shallow crust

    NASA Astrophysics Data System (ADS)

    Morton, N.; Girty, G. H.; Rockwell, T. K.

    2011-12-01

    We report results of a new study of the San Jacinto fault zone architecture in Horse Canyon, SW of Anza, California, where stream incision has exposed a near-continuous outcrop of the fault zone at ~0.4 km depth. The fault zone at this location consists of a fault core, transition zone, damage zone, and lithologically similar wall rocks. We collected and analyzed samples for their bulk and grain density, geochemical data, clay mineralogy, and textural and modal mineralogy. Progressive deformation within the fault zone is characterized by mode I cracking, subsequent shearing of already fractured rock, and cataclastic flow. Grain comminution advances towards the strongly indurated cataclasite fault core. Damage progression towards the core is accompanied by a decrease in bulk and grain density, and an increase in porosity and dilational volumetric strain. Palygorskite and mixed-layer illite/smectite clay minerals are present in the damage and transition zones and are the result of hydrolysis reactions. The estimated percentage of illite in illite/smectite increases towards the fault core where the illite/smectite to illite conversion is complete, suggesting elevated temperatures that may have reached 150°C. Chemical alteration and elemental mass changes are observed throughout the fault zone and are most pronounced in the fault core. We conclude that the observed chemical and mineralogical changes can only be produced by the interaction of fractured wall rocks and chemically active fluids that are mobilized through the fault zone by thermo-pressurization during and after seismic events. Based on the high element mobility and absence of illite/smectite in the fault core, we expect that greatest water/rock ratios occur within the fault core. These results indicate that hot pore fluids circulate upwards through the fractured fault core and into the surrounding damage zone. Though difficult to constrain, the site studied during this investigation may represent the top

  19. Fault zone structure from topography: signatures of en echelon fault slip at Mustang Ridge on the San Andreas Fault, Monterey County, California

    USGS Publications Warehouse

    DeLong, Stephen B.; Hilley, George E.; Rymer, Michael J.; Prentice, Carol

    2010-01-01

    We used high-resolution topography to quantify the spatial distribution of scarps, linear valleys, topographic sinks, and oversteepened stream channels formed along an extensional step over on the San Andreas Fault (SAF) at Mustang Ridge, California. This location provides detail of both creeping fault landform development and complex fault zone kinematics. Here, the SAF creeps 10–14 mm/yr slower than at locations ∼20 km along the fault in either direction. This spatial change in creep rate is coincident with a series of en echelon oblique-normal faults that strike obliquely to the SAF and may accommodate the missing deformation. This study presents a suite of analyses that are helpful for proper mapping of faults in locations where high-resolution topographic data are available. Furthermore, our analyses indicate that two large subsidiary faults near the center of the step over zone appear to carry significant distributed deformation based on their large apparent vertical offsets, the presence of associated sag ponds and fluvial knickpoints, and the observation that they are rotating a segment of the main SAF. Several subsidiary faults in the southeastern portion of Mustang Ridge are likely less active; they have few associated sag ponds and have older scarp morphologic ages and subdued channel knickpoints. Several faults in the northwestern part of Mustang Ridge, though relatively small, are likely also actively accommodating active fault slip based on their young morphologic ages and the presence of associated sag ponds.

  20. Geometry and kinematics of adhesive wear in brittle strike-slip fault zones

    NASA Astrophysics Data System (ADS)

    Swanson, Mark T.

    2005-05-01

    Detailed outcrop surface mapping in Late Paleozoic cataclastic strike-slip faults of coastal Maine shows that asymmetric sidewall ripouts, 0.1-200 m in length, are a significant component of many mapped faults and an important wall rock deformation mechanism during faulting. The geometry of these structures ranges from simple lenses to elongate slabs cut out of the sidewalls of strike-slip faults by a lateral jump of the active zone of slip during adhesion along a section of the main fault. The new irregular trace of the active fault after this jump creates an indenting asperity that is forced to plow through the adjoining wall rock during continued adhesion or be cut off by renewed motion along the main section of the fault. Ripout translation during adhesion sets up the structural asymmetry with trailing extensional and leading contractional ends to the ripout block. The inactive section of the main fault trace at the trailing end can develop a 'sag' or 'half-graben' type geometry due to block movement along the scallop-shaped connecting ramp to the flanking ripout fault. Leading contractional ramps can develop 'thrust' type imbrication and forces the 'humpback' geometry to the ripout slab due to distortion of the inactive main fault surface by ripout translation. Similar asymmetric ripout geometries are recognized in many other major crustal scale strike-slip fault zones worldwide. Ripout structures in the 5-500 km length range can be found on the Atacama fault system of northern Chile, the Qujiang and Xiaojiang fault zones in western China, the Yalakom-Hozameen fault zone in British Columbia and the San Andreas fault system in southern California. For active crustal-scale faults the surface expression of ripout translation includes a coupled system of extensional trailing ramps as normal oblique-slip faults with pull-apart basin sedimentation and contractional leading ramps as oblique thrust or high angle reverse faults with associated uplift and erosion. The

  1. Active, capable, and potentially active faults - a paleoseismic perspective

    USGS Publications Warehouse

    Machette, M.N.

    2000-01-01

    Maps of faults (geologically defined source zones) may portray seismic hazards in a wide range of completeness depending on which types of faults are shown. Three fault terms - active, capable, and potential - are used in a variety of ways for different reasons or applications. Nevertheless, to be useful for seismic-hazards analysis, fault maps should encompass a time interval that includes several earthquake cycles. For example, if the common recurrence in an area is 20,000-50,000 years, then maps should include faults that are 50,000-100,000 years old (two to five typical earthquake cycles), thus allowing for temporal variability in slip rate and recurrence intervals. Conversely, in more active areas such as plate boundaries, maps showing faults that are <10,000 years old should include those with at least 2 to as many as 20 paleoearthquakes. For the International Lithosphere Programs' Task Group II-2 Project on Major Active Faults of the World our maps and database will show five age categories and four slip rate categories that allow one to select differing time spans and activity rates for seismic-hazard analysis depending on tectonic regime. The maps are accompanied by a database that describes evidence for Quaternary faulting, geomorphic expression, and paleoseismic parameters (slip rate, recurrence interval and time of most recent surface faulting). These maps and databases provide an inventory of faults that would be defined as active, capable, and potentially active for seismic-hazard assessments.

  2. Imaging fault zones using 3D seismic image processing techniques

    NASA Astrophysics Data System (ADS)

    Iacopini, David; Butler, Rob; Purves, Steve

    2013-04-01

    and collecting these into "disturbance geobodies". These seismic image processing methods represents a first efficient step toward a construction of a robust technique to investigate sub-seismic strain, mapping noisy deformed zones and displacement within subsurface geology (Dutzer et al.,2011; Iacopini et al.,2012). In all these cases, accurate fault interpretation is critical in applied geology to building a robust and reliable reservoir model, and is essential for further study of fault seal behavior, and reservoir compartmentalization. They are also fundamental for understanding how deformation localizes within sedimentary basins, including the processes associated with active seismogenetic faults and mega-thrust systems in subduction zones. Dutzer, JF, Basford., H., Purves., S. 2009, Investigating fault sealing potential through fault relative seismic volume analysis. Petroleum Geology Conference series 2010, 7:509-515; doi:10.1144/0070509 Marfurt, K.J., Chopra, S., 2007, Seismic attributes for prospect identification and reservoir characterization. SEG Geophysical development Iacopini, D., Butler, RWH. & Purves, S. (2012). 'Seismic imaging of thrust faults and structural damage: a visualization workflow for deepwater thrust belts'. First Break, vol 5, no. 30, pp. 39-46.

  3. 3D seismic imaging of an active, normal fault zone in southern Apennines (Italy): Clues on fluid-driven microearthquake fracturing

    NASA Astrophysics Data System (ADS)

    Amoroso, O.; Zollo, A.; Virieux, J.

    2012-12-01

    Lagonegro units located in the axial sector is well reproduced by the low P-wave anomalies ranging between 4.0-4.5 km/s. Their eastward extension is just above the Apulian Platform in the depth range between 4.0 and 8.0 km . The seismicity spatial distribution delineates at SE the border of the Irpinia master fault, while at NE it shows a more diffused pattern due to the presence of a system of highly organized, sub-parallel normal faults as it has been inferred from the fault mechanisms and the coherent orientation of the tensional axes. The Vp/Vs ratio shows a large variability ranging from 1.7-1.8 at shallow depths and increasing up to 2-2.2 between 5 km and 12 km depths, where most of present microseismicity occurs. Such high values are a strong proxy for a fluid-saturated state of rock formations and of their inner pore pressure conditions. The evidence for a predominant microearthquake activity confined within the volume of highest Vp/Vs ratio indicates that pore pressure changes induced by fluid flow/diffusion in a highly fractured medium, may be the primary mechanism controlling and driving the background seismic activity along the Irpinia fault zone.

  4. Paleofluid evolution of strike-slip compartmentalized extensional fault zones in the Jabal Qusaybah anticline, Salakh Arc, Oman

    NASA Astrophysics Data System (ADS)

    Balsamo, Fabrizio; Clemenzi, Luca; Storti, Fabrizio; Mozafari, Mahtab; Solum, John; Swennen, Rudy; Taberner, Conxita; Tueckmantel, Christian

    2015-04-01

    The E-W-trending Jabal Qusaybah anticline, developed in layered Cretaceous carbonates, is located at the western termination of the Salakh Arc, Oman Mountains. The anticline is 10 km long and is characterized by a complex fault pattern which mainly includes NE-SW left-lateral strike-slip and N-S extensional fault zones. The N-S striking extensional fault zones are best developed in the central sector of the anticlinal crest, likely due to along-strike outer-arc extension associated with positive fault inversion and salt migration. Extensional fault zones are perpendicular to the fold axis and geometrically confined within major NE-SW left-lateral strike-slip fault zones. They have trace lengths ranging from a few m up to ~800 m, and displacements ranging from a few dm up to ~60 m. Fault zones consist of cataclastic fault cores (~1-15 cm thick) surrounded by vein-dominated damage zones. Overall, fault zones show significant volumes of dilation breccia texture, m-thick infillings of calcite crystals, and cm- to m-thick veins localized at fault tip zones, areas of fault overlap, and zones of interaction between strike-slip and extensional fault segments. By analyzing fault abutting geometries, detailed vein relative chronology, delta13C and delta18O signatures and fluid inclusion data from calcite veins and calcite fault infillings, we propose a model where a deep seated left-lateral strike-slip fault system, active during the growth of the anticline, inhibited the lateral propagation of late-stage transversal extensional fault zones. Our findings show that, in this geological setting, the structural position, rather than fault throw, is the parameter controlling the location of the more dilatant fault segments.

  5. Tectonic Geomorphology of the Hanging Wall Blocks of the Cimandiri Fault Zone, West Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Marliyani, G. I.; Arrowsmith, R.

    2014-12-01

    In areas where regional strain is accommodated by broad zones of short and low slip-rate faults, geomorphic and paleoseismic characterization of faults is difficult because of poor surface expression and long earthquake recurrence intervals. In humid areas, faults can be buried by thick sediments and undetectable until the next earthquake. In Java, despite the frequency of damaging shallow earthquakes, active faults are diffuse and their characterization is challenging. Among them is the ENE-trending Cimandiri fault. Cumulative displacement along the fault produces prominent ENE-oriented ranges with the east side moving relatively upward and to the north. Along its length, the few hundred meter wide fault zone is expressed in the bedrock by numerous NE, E and NW-trending thrust- and strike slip faults and folds. However, it is unclear which of these structures are active, as the diffuse nature of the fault zone has so far stymied conventional paleoseismic study. To address this, we performed a tectonic geomorphology analysis of the fault zone. We used the 30-m resolution SRTM-DEM to construct longitudinal profiles of 601 bedrock rivers along the ranges and calculated the normalized channel steepness index (ksn). Our preliminary results rely on the assumption that ksn is a reasonable proxy for relative rock uplift rate in a region, assuming variations in rock type and climate are insignificant. While the active traces of the Cimandiri fault are obscured, the spatial variation in ksn allows us to delineate 4 discontinuous hanging wall blocks that vary between E and NE striking along the zone. The largest ksn values are along the central-western block (Cibeber area). The longest block is in the central eastern portion of the fault zone and comprises 45 km of the 100 km long fault zone. The fault bifurcates at its eastern termination and steps into the Lembang fault. The distribution of ksn suggests that reverse motion is more dominant than lateral because of a lack of

  6. Surface faulting along the Superstition Hills fault zone and nearby faults associated with the earthquakes of 24 November 1987

    USGS Publications Warehouse

    Sharp, R.V.

    1989-01-01

    The M6.2 Elmore Desert Ranch earthquake of 24 November 1987 was associated spatially and probably temporally with left-lateral surface rupture on many northeast-trending faults in and near the Superstition Hills in western Imperial Valley. Three curving discontinuous principal zones of rupture among these breaks extended northeastward from near the Superstition Hills fault zone as far as 9km; the maximum observed surface slip, 12.5cm, was on the northern of the three, the Elmore Ranch fault, at a point near the epicenter. Twelve hours after the Elmore Ranch earthquake, the M6.6 Superstition Hills earthquake occurred near the northwest end of the right-lateral Superstition Hills fault zone. We measured displacements over 339 days at as many as 296 sites along the Superstition Hills fault zone, and repeated measurements at 49 sites provided sufficient data to fit with a simple power law. The overall distributions of right-lateral displacement at 1 day and the estimated final slip are nearly symmetrical about the midpoint of the surface rupture. The average estimated final right-lateral slip for the Superstition Hills fault zone is ~54cm. The average left-lateral slip for the conjugate faults trending northeastward is ~23cm. The southernmost ruptured member of the Superstition Hills fault zone, newly named the Wienert fault, extends the known length of the zone by about 4km. -from Authors

  7. Smoothing and re-roughening processes: The geometric evolution of a single fault zone

    NASA Astrophysics Data System (ADS)

    Shervais, Katherine A. H.; Kirkpatrick, James D.

    2016-10-01

    The geometry of a fault zone exerts a major control on earthquake rupture processes and source parameters. Observations previously compiled from multiple faults suggest that fault surface shape evolves with displacement, but the specific processes driving the evolution of fault geometry within a single fault zone are not well understood. Here, we characterize the deformation history and geometry of an extraordinarily well-exposed fault using maps of cross-sectional exposures constructed with the Structure from Motion photogrammetric method. The La Quinta Fault, located in southern California, experienced at least three phases of deformation. Multiple layers of ultracataclasite formed during the most recent phase. Crosscutting relations between the layers define the evolution of the structures and demonstrate that new layers formed successively during the deformation history. Wear processes such as grain plucking from one layer into a younger layer and truncation of asperities at layer edges indicate that the layers were slip zones and the contacts between them slip surfaces. Slip surfaces that were not reactivated or modified after they were abandoned exhibit self-affine geometry, preserving the fault roughness from different stages of faulting. Roughness varies little between surfaces, except the last slip zone to form in the fault, which is the smoothest. This layer contains a distinct mineral assemblage, indicating that the composition of the fault rock exerts a control on roughness. In contrast, the similar roughness of the older slip zones, which have comparable mineralogy but clearly crosscut one another, suggests that as the fault matured the roughness of the active slip surface stayed approximately constant. Wear processes affected these layers, so for roughness to stay constant the roughening and smoothing effects of fault slip must have been approximately balanced. These observations suggest fault surface evolution occurs by nucleation of new surfaces and

  8. Development of Hydrologic Characterization Technology of Fault Zones

    SciTech Connect

    Karasaki, Kenzi; Onishi, Tiemi; Wu, Yu-Shu

    2008-03-31

    Through an extensive literature survey we find that there is very limited amount of work on fault zone hydrology, particularly in the field using borehole testing. The common elements of a fault include a core, and damage zones. The core usually acts as a barrier to the flow across it, whereas the damage zone controls the flow either parallel to the strike or dip of a fault. In most of cases the damage zone isthe one that is controlling the flow in the fault zone and the surroundings. The permeability of damage zone is in the range of two to three orders of magnitude higher than the protolith. The fault core can have permeability up to seven orders of magnitude lower than the damage zone. The fault types (normal, reverse, and strike-slip) by themselves do not appear to be a clear classifier of the hydrology of fault zones. However, there still remains a possibility that other additional geologic attributes and scaling relationships can be used to predict or bracket the range of hydrologic behavior of fault zones. AMT (Audio frequency Magneto Telluric) and seismic reflection techniques are often used to locate faults. Geochemical signatures and temperature distributions are often used to identify flow domains and/or directions. ALSM (Airborne Laser Swath Mapping) or LIDAR (Light Detection and Ranging) method may prove to be a powerful tool for identifying lineaments in place of the traditional photogrammetry. Nonetheless not much work has been done to characterize the hydrologic properties of faults by directly testing them using pump tests. There are some uncertainties involved in analyzing pressure transients of pump tests: both low permeability and high permeability faults exhibit similar pressure responses. A physically based conceptual and numerical model is presented for simulating fluid and heat flow and solute transport through fractured fault zones using a multiple-continuum medium approach. Data from the Horonobe URL site are analyzed to demonstrate the

  9. How can fluid overpressures be developed and maintained in crustal fault zones ?

    NASA Astrophysics Data System (ADS)

    LECLÈRE, H.; Cappa, F.; Faulkner, D. R.; Armitage, P. J.; Blake, O. O.; Fabbri, O.

    2013-12-01

    The presence of fluid overpressure in crustal fault zones is known to play a key role on the stability of faults and it has often been invoked to explain the triggering of earthquakes and the apparent weakness of misoriented faults. However, the mechanisms allowing the development and maintenance of fluid overpressures in fault remain unresolved. We investigate how fluid overpressures can be developed and maintained in complex fault zones with hydraulic and elastic heterogeneities. Here we address this question combining geological observations, laboratory experiments and hydromechanical models of an active crustal fault zone in the Ubaye-Argentera area (southeastern France). The fault zone studied is located in the Argentera external crystalline massif and is connected to regional NW-SE steeply-dipping dextral strike-slip faults with an offset of several kilometers. The fault zone cuts through migmatitic gneisses composed of quartz, K-feldspar, plagioclase, biotite and muscovite. It exposes several anastomosing core zones surrounded by damage zones with a pluri-decametric total width. The core zones are made up of centimetric to pluridecimetric phyllosilicate-rich gouge layers while the damage zones are composed of pluri-metric phyllonitic rock derived from mylonite. The determination of fault structure in the field and its hydraulic and mechanical properties in the lab are key aspects to improve our understanding of the role of fluids in fault mechanics and earthquake triggering. Here, the permeability and elastic moduli of the host rock, damage zone and fault core were measured from natural plugs with a diameter of 20 mm and lengths between 26 to 51 mm, using a high-pressure hydrostatic fluid-flow apparatus. Measurements were made with confining pressures ranging from 30 to 210 MPa and using argon pore fluid pressure of 20 MPa. Data show a reduction of the permeability values of one order of magnitude between host rock and fault damage zone and a decrease of 50

  10. Timing of Surface-Rupturing Earthquakes on the Philippine Fault Zone in Central Luzon Island, Philippines

    NASA Astrophysics Data System (ADS)

    Tsutsumi, H.; Daligdig, J. A.; Goto, H.; Tungol, N. M.; Kondo, H.; Nakata, T.; Okuno, M.; Sugito, N.

    2006-12-01

    The Philippine fault zone is an arc-parallel left-lateral strike-slip fault zone related to oblique subduction of the Philippine Sea plate beneath the Philippine island arc. The fault zone extends for about 1300 km from the Luzon Island southward to the Mindanao Island. This fault zone has been seismically active with more than 10 earthquakes greater than M7 in the last century. The July 16, 1990, Luzon earthquake was the largest event that produced 120-km-long surface rupture along the Digdig fault. The coseismic displacement was predominantly left-lateral strike-slip with maximum slip of about 6 m. The Philippine fault zone in the Luzon Island consists of four left-stepping en echelon faults: the San Manuel, San Jose, Digdig, and Gabaldon faults from north to south. Historical documents and geomorphic data suggest that the San Manuel and Gabaldon faults ruptured most recently during historical earthquakes in 1796 and 1645, respectively. However, paleoseismic activities and slip rates for these faults were poorly constrained. In order to reconstruct chronology of surface-rupturing earthquakes, we excavated multiple trenches across these faults in the past three years. We have excavated two sites, San Gregorio and Puncan sites, across the Digdig fault. At the both sites, we identified near vertical fault zones that contain evidence for four surface-rupturing earthquakes during the past 2000 years, including the 1990 rupture. The timing of the penultimate earthquake is constrained to prior to 1400 AD, suggesting that the Digdig fault did not rupture during the 1645 earthquake. The average recurrence interval of the Digdig fault is about 600 years. A left-lateral slip rate of 8-13 mm/yr was obtained for the Digdig fault based on stream offsets and age of alluvial fan at San Juan in the central portion of the fault. For the San Jose fault, we excavated two trenches north of downtown San Jose. The sediments exposed on the trench walls were warped into a monocline by

  11. 3D modeling of fault-zone architecture and hydraulic structure along a major Alpine wrench lineament: the Pusteria Fault

    NASA Astrophysics Data System (ADS)

    Bistacchi, A.; Massironi, M.; Menegon, L.

    2007-05-01

    The E-W Pusteria (Pustertal) line is the eastern segment of the Periadriatic lineament, the > 600 km tectonic boundary between the Europe and Adria-vergent portions of the Alpine Collisional Orogen. The lithospheric-scale Periadriatic lineament is characterized by a transcurrent polyphase activity of Tertiary age, and is marked by an array of calcalkaline to shoshonitic magmatic bodies. At the map scale, the western edge of the Pusteria line is characterized by a complex network of generally transcurrent brittle fault zones, interconnected by a full spectrum of transtensional and transpressional features related to releasing and restraining bands respectively. An older ductile/brittle sinistral activity can be recognized in some segments of the fault thanks to their relationships with a strongly tectonized Oligocene tonalite/diorite body (Mules tonalitic "lamella"), emplaced along the Pusteria line, and minor related dikes. A late dextral activity involved the whole Pusteria Fault network and is consistent with the Eastward escape of a major lithospheric block of the Eastern Alps towards the Pannonian basin. During its polyphase activity, the fault network developed a complex architecture, showing different kinds of damage and core zones. Here we report the first results of a detailed mapping project in which, in addition to a traditional structural geology work, the spatial distribution of fault rocks in core zones and the degree and characteristics of fracturing (e.g. joint spacing and number of joint sets) in damage zones are taken into account. As regards the quantitative characterization of damage zones, a new description schema, partly inspired by engineering geology classifications, is proposed. The results of this work are implemented in a 3D structural model (developed with gOcad), allowing the study of the complex relationships among the various structural, mechanical and lithological parameters which concur in the development of the fault-zone

  12. Distribution of faults in a transition zone: Bimodal faulting in the Pit River region, Shasta County, California

    NASA Astrophysics Data System (ADS)

    Austin, L. J.; Weldon, R. J.; Paulson, K. T.

    2012-12-01

    Northern California marks a zone of transition between oblique subduction in Cascadia, dextral transtension in Walker Lane, and north-south compression of the Klamath Mountains. Because of its unique location, the region between Mt. Shasta and Lassen Peak provides insight into the distribution of deformation in regions of transitional tectonic regimes. In particular, the Pit River region provides several excellent exposures of faults in a diatomite quarry and in larger regional structures. We present information on the distribution, amount of slip, and orientation of local faults, and demonstrate how these data reflect the interaction of multiple regional stress fields. We have measured and compiled the orientations of many small faults to evaluate the distribution of deformation in a complex zone of oblique extension and compression. A ~0.5 km2 diatomite quarry near the Pit River and Lake Britton exposes hundreds of faults with small amounts of displacement. Two main faulting patterns emerge: 1) high angle NW/SE-striking faults characterized by normal, oblique normal, or strike slip kinematic indicators; and 2) lower angle E/W-striking faults with evidence of reverse to oblique reverse motion. We find that the regional landscape reflects a dominant mode of faulting that is NW/SE-striking normal, oblique normal, or strike slip; the Hat Creek and Rocky Ledge faults, each with tens of meters of oblique normal offset, exemplify this. Observations of numerous smaller faults in the diatomite quarry also show a dominant pattern of NW/SE-striking faults. E/W-striking compressional structures are present, but are less abundant. Faults of differing orientations occur together in the quarry and occasionally cross cut one another. Many faults cross but do not offset each other, indicating that they formed simultaneously. Where cross-cutting faults do exhibit offset, the NW/SE-striking faults offset E/W-striking faults, which suggests that NW/SE oriented faults have been

  13. Seismic measurements of the internal properties of fault zones

    USGS Publications Warehouse

    Mooney, W.D.; Ginzburg, A.

    1986-01-01

    The internal properties within and adjacent to fault zones are reviewed, principally on the basis of laboratory, borehole, and seismic refraction and reflection data. The deformation of rocks by faulting ranges from intragrain microcracking to severe alteration. Saturated microcracked and mildly fractured rocks do not exhibit a significant reduction in velocity, but, from borehole measurements, densely fractured rocks do show significantly reduced velocities, the amount of reduction generally proportional to the fracture density. Highly fractured rock and thick fault gouge along the creeping portion of the San Andreas fault are evidenced by a pronounced seismic low-velocity zone (LVZ), which is either very thin or absent along locked portions of the fault. Thus there is a correlation between fault slip behavior and seismic velocity structure within the fault zone; high pore pressure within the pronounced LVZ may be conductive to fault creep. Deep seismic reflection data indicate that crustal faults sometimes extend through the entire crust. Models of these data and geologic evidence are consistent with a composition of deep faults consisting of highly foliated, seismically anisotropic mylonites. ?? 1986 Birkha??user Verlag, Basel.

  14. Continuity of the West Napa Fault Zone Inferred from Aftershock Recordings on Fault-Crossing Arrays

    NASA Astrophysics Data System (ADS)

    Catchings, R.; Goldman, M.; Slad, G. W.; Criley, C.; Chan, J. H.; Fay, R. P.; Fay, W.; Svitek, J. F.

    2014-12-01

    In an attempt to determine the continuity and lateral extent of the causative fault(s) of the 24 August 2014 Mw 6.0 Napa earthquake and possible interconnections with other mapped faults, we recorded aftershocks on three closely spaced (100 m) seismograph arrays that were positioned across the coseismic rupture zone and across mapped faults located north and south of coseismic rupture. Array 1 was located in northwest Napa, between Highway 29 and the intersection of Redwood and Mt. Veeder roads, array 2 was located southwest of Napa, ~1 km north of Cuttings Wharf, and array 3 was located south of San Pablo Bay, within the town of Alhambra. Our intent was to record high-amplitude guided waves that only travel within the causative fault zone and its extensions (Li and Vidale, 1996). Preliminary analysis of seismic data from an M 3.2 aftershock shows high-amplitude (up to 1 cm/s) seismic waves occurred on seismographs within 100 m of mapped surface ruptures and fault zones. Northwest of Napa, the high amplitudes along array 1 coincide with zones of structural damage and wide spread surface ground cracking, and along array 2 near Cuttings Wharf, the high amplitudes occur slightly east of surface ruptures seen along Los Amigas Road. We also observe relatively high-amplitude seismic waves across the Franklin Fault (array 3), approximately 32 km southeast of the mainshock epicenter; this observation suggests the West Napa and the Franklin faults may be continuous or connected. Existing fault maps show that the Franklin Fault extends at least 15 km southward to the Calaveras Fault zone and the West Napa Fault extends at least 25 km north of our array 1. Collectively, the mapped faults, surface ruptures, and guided waves suggest that the West Napa- Franklin Fault zone may extend more than 85 km before it merges with the Calaveras Fault. Assuming a continuous fault zone, the West Napa - Franklin Fault zone may be capable of generating a much larger magnitude earthquake that

  15. Fault zone architecture of a major oblique-slip fault in the Rawil depression, Western Helvetic nappes, Switzerland

    NASA Astrophysics Data System (ADS)

    Gasser, D.; Mancktelow, N. S.

    2009-04-01

    solution seams and veins and in the sandstones of coarse breccia and veins. Later, straight, sharp fault planes cross-cut all these features. In all lithologies, common veins and calcite-cemented fault rocks indicate the strong involvement of fluids during faulting. Today, the southern Rawil depression and the Rhone Valley belong to one of the seismically most active regions in Switzerland. Seismogenic faults interpreted from earthquake focal mechanisms strike ENE-WSW to WNW-ESE, with dominant dextral strike-slip and minor normal components and epicentres at depths of < 15 km. All three Neogene fault sets (2-4) could have been active under the current stress field inferred from the current seismicity. This implies that the same mechanisms that formed these fault zones in the past may still persist at depth. The Rezli fault zone allows the detailed study of a fossil fault zone that can act as a model for processes still occurring at deeper levels in this seismically active region.

  16. The deep structure of the North Anatolian Fault Zone

    NASA Astrophysics Data System (ADS)

    Fichtner, Andreas; Saygin, Erdinc; Taymaz, Tuncay; Cupillard, Paul; Capdeville, Yann; Trampert, Jeannot

    2013-07-01

    Multi-scale full waveform inversion of complete continental- and regional-scale seismograms reveals the crustal and upper-mantle signature of the North Anatolian Fault Zone which shapes the neotectonics of Turkey and the eastern Mediterranean. Within the crust, the fault zone is mostly bounded by several high-velocity blocks, suggesting that it developed along the edges of continental fragments with high rigidity. Below the crust, the surface expression of the eastern and central parts of the North Anatolian Fault Zone correlate with a pronounced low-velocity band that extends laterally over 600 km. Around 100 km depth, the low-velocity band merges into the shallow Anatolian asthenosphere, thereby providing a link to the Kırka-Afyon-Isparta Volcanic Field and the Central Anatolian Volcanics. We interpret the low-velocity band beneath the North Anatolian Fault Zone as the upper-mantle expression of the Tethyan sutures that formed 60-15 Ma ago as a result of Africa-Eurasian convergence. The structurally weak suture facilitated the formation of the younger (less than 10 Ma) crustal fault zone. In this sense, the North Anatolian Fault Zone is not only a crustal feature, but a narrow zone of weakness that extends into the upper mantle.

  17. Central Asia Active Fault Database

    NASA Astrophysics Data System (ADS)

    Mohadjer, Solmaz; Ehlers, Todd A.; Kakar, Najibullah

    2014-05-01

    The ongoing collision of the Indian subcontinent with Asia controls active tectonics and seismicity in Central Asia. This motion is accommodated by faults that have historically caused devastating earthquakes and continue to pose serious threats to the population at risk. Despite international and regional efforts to assess seismic hazards in Central Asia, little attention has been given to development of a comprehensive database for active faults in the region. To address this issue and to better understand the distribution and level of seismic hazard in Central Asia, we are developing a publically available database for active faults of Central Asia (including but not limited to Afghanistan, Tajikistan, Kyrgyzstan, northern Pakistan and western China) using ArcGIS. The database is designed to allow users to store, map and query important fault parameters such as fault location, displacement history, rate of movement, and other data relevant to seismic hazard studies including fault trench locations, geochronology constraints, and seismic studies. Data sources integrated into the database include previously published maps and scientific investigations as well as strain rate measurements and historic and recent seismicity. In addition, high resolution Quickbird, Spot, and Aster imagery are used for selected features to locate and measure offset of landforms associated with Quaternary faulting. These features are individually digitized and linked to attribute tables that provide a description for each feature. Preliminary observations include inconsistent and sometimes inaccurate information for faults documented in different studies. For example, the Darvaz-Karakul fault which roughly defines the western margin of the Pamir, has been mapped with differences in location of up to 12 kilometers. The sense of motion for this fault ranges from unknown to thrust and strike-slip in three different studies despite documented left-lateral displacements of Holocene and late

  18. Deep rock damage in the San Andreas Fault revealed by P- and S-type fault-zone-guided waves

    USGS Publications Warehouse

    Ellsworth, William L.; Malin, Peter E.

    2011-01-01

    Damage to fault-zone rocks during fault slip results in the formation of a channel of low seismic-wave velocities. Within such channels guided seismic waves, denoted by Fg, can propagate. Here we show with core samples, well logs and Fg-waves that such a channel is crossed by the SAFOD (San Andreas Fault Observatory at Depth) borehole at a depth of 2.7 km near Parkfield, California, USA. This laterally extensive channel extends downwards to at least half way through the seismogenic crust, more than about 7 km. The channel supports not only the previously recognized Love-type- (FL) and Rayleigh-type- (FR) guided waves, but also a new fault-guided wave, which we name FF. As recorded 2.7 km underground, FF is normally dispersed, ends in an Airy phase, and arrives between the P- and S-waves. Modelling shows that FF travels as a leaky mode within the core of the fault zone. Combined with the drill core samples, well logs and the two other types of guided waves, FF at SAFOD reveals a zone of profound, deep, rock damage. Originating from damage accumulated over the recent history of fault movement, we suggest it is maintained either by fracturing near the slip surface of earthquakes, such as the 1857 Fort Tejon M 7.9, or is an unexplained part of the fault-creep process known to be active at this site.

  19. Characteristics of the Lithology, Fault-related Rocks and Fault Zone Structures in the TCDP Hole-A

    NASA Astrophysics Data System (ADS)

    Song, S.; Kou, L.; Yeh, E.

    2005-12-01

    Probing a fault zone of recently major activity at depth to study the physical, mechanical and chemical properties is the one of main purposes of the Taiwan Chelungpu-fault Drilling Project (TCDP). We have finished drilling the hole-A which it has the cuttings from 0 to 430 m and cores from 430 to 2003.67 m deep in the end of 2004. Stratigraphically, from surface to 1029 m deep is the Pliocene to Pleistocene Cholan Formation which is dominantly composed of sandstone and sandstone-siltstone alternation with weak to heavy bioturbations. The Pliocene Chinshui Shale occurs from 1029 to 1303 m deep and predominantly consists of siltstone with weak bioturbation. From 1303 to 1712 m deep is the late Miocene to early Pliocene Kueichulin Formation and is dominantly composed of massive sandstone with minor siltstone. Below the 1712 m deep, the Formation is back to the younger Cholan Formation with mollusca-rich thick layered shale and heavy bioturbated sandstone. Four kinds of fault rocks can be identified in the cores. They are the fault breccia, gouge, foliated and non-foliated cataclasites and pseudotachylyte. At least six major fault zones can be found in the cores: FZ1111, FZ1153, FZ1222, FZ1580, FZ1712 and FZ1818. In those fault zones, the FZ1111 may be correlative to the surface rupture of Chi-Chi earthquake,1999, while the FZ1712 may be the Sanyi fault.

  20. Magnetic fabrics induced by dynamic faulting reveal damage zone sizes in soft rocks, Dead Sea basin

    NASA Astrophysics Data System (ADS)

    Levi, T.; Weinberger, R.; Marco, S.

    2014-11-01

    The anisotropy of magnetic susceptibility (AMS) of soft rocks was measured in order to distinguish between the effect of remote and local strain fields, determine the size of the related inelastic damage zone and resolve the fault-plane solutions of past earthquakes. The AMS fabrics were explored next to late Pleistocene syndepositional normal faults (total displacement up to ˜3.5 m) that cross soft lacustrine rocks within the seismically active Dead Sea basin. `Deposition fabrics' prevail meters away from the fault planes and are characterized by scattered maximum and intermediate principal AMS axes. `Deformation fabrics' are detected up to tens of centimetres from the fault planes and are characterized by well-grouped AMS axes, in which one of the principal axes is parallel to the strike of the nearby fault. Variations in the AMS fabrics and magnetic lineations define the size of the inelastic damage zone around the faults. The results demonstrate that the deformation-driven magnetic fabrics and the associated inelastic damage zones are compatible with coseismic dynamic faulting and the effects of the local strain field during earthquakes. Most of the AMS fabrics show a conspicuous similarity to that of the fault-plane solutions, i.e., the principal AMS axes and instantaneous strain ellipsoids are coaxial. These results suggest a novel application of the AMS method for defining the shape and size of the damage zones surrounding dynamic faults and determining the full tensor of the local strain field.

  1. Multi-scale compressional wave velocity structure of the San Gregorio Fault zone

    NASA Astrophysics Data System (ADS)

    Gettemy, G. L.; Tobin, H. J.; Hole, J. A.; Sayed, A. Y.

    2004-03-01

    Understanding fault architecture at multiple scales is crucial to delineate in situ fault zone physical properties and rupture dynamics through modeling and geophysical imaging/monitoring. An exposure of the active large-offset, strike-slip San Gregorio Fault at Moss Beach, CA provides a unique field site to relate the well-mapped fault zone architecture with compressional wave velocity (Vp) structure measured at centimeter to meter scales. Laboratory ultrasonic velocities of fault zone samples, adjusted for fluid-related frequency and structural dispersion, indicate that (i) a seismic velocity reduction of ~30% characterizes the central smectite-rich clay gouge relative to the rocks 100 m away in the relatively undeformed host rocks, and (ii) the across-fault velocity profile trends for the seismic to ultrasonic bandwidth correlate almost exactly to the previously mapped macroscale fault zone structure. These results highlight the value of conducting multiscaled investigations when measuring fault zone properties defined by physical elements at multiple scale lengths.

  2. Deformation Monitoring of AN Active Fault

    NASA Astrophysics Data System (ADS)

    Ostapchuk, A.

    2015-12-01

    The discovery of low frequency earthquakes, slow slip events and other deformation phenomena, new for geophysics, change our understanding of how the energy accumulated in the Earth's crust do release. The new geophysical data make one revise the underlying mechanism of geomechanical processes taking place in fault zones. Conditions for generating different slip modes are still unclear. The most vital question is whether a certain slip mode is intrinsic for a fault or may be controlled by external factors. This work presents the results of two and a half year deformation monitoring of a discontinuity in the zone of the Main Sayanskiy Fault. Main Sayanskiy Fault is right-lateral strike-slip fault. Observations were performed in the tunnel of Talaya seismic station (TLY), Irkutsk region, Russia. Measurements were carried out 70 m away from the entrance of the tunnel, the thickness of overlying rock was about 30 m. Inductive sensors of displacement were mounted at the both sides of a discontinuity, which recorded three components of relative fault side displacement with the accuracy of 0.2 mcm. Temperature variation inside the tunnel didn't exceed 0.5oC during the all period of observations. Important information about deformation properties of an active fault was obtained. A pronounced seasonality of deformation characteristics of discontinuity is observed in the investigated segment of rock. A great number of slow slip events with durations from several hours to several weeks were registered. Besides that alterations of fault deformation characteristics before the megathrust earthquake M9.0 Tohoku Oki 11 March 2011 and reaction to the event itself were detected. The work was supported by the Russian Science Foundation (grant no. 14-17-00719).

  3. Fault zone regulation, seismic hazard, and social vulnerability in Los Angeles, California: Hazard or urban amenity?

    NASA Astrophysics Data System (ADS)

    Toké, Nathan A.; Boone, Christopher G.; Arrowsmith, J. Ramón

    2014-09-01

    Public perception and regulation of environmental hazards are important factors in the development and configuration of cities. Throughout California, probabilistic seismic hazard mapping and geologic investigations of active faults have spatially quantified earthquake hazard. In Los Angeles, these analyses have informed earthquake engineering, public awareness, the insurance industry, and the government regulation of developments near faults. Understanding the impact of natural hazards regulation on the social and built geography of cities is vital for informing future science and policy directions. We constructed a relative social vulnerability index classification for Los Angeles to examine the social condition within regions of significant seismic hazard, including areas regulated as Alquist-Priolo (AP) Act earthquake fault zones. Despite hazard disclosures, social vulnerability is lowest within AP regulatory zones and vulnerability increases with distance from them. Because the AP Act requires building setbacks from active faults, newer developments in these zones are bisected by parks. Parcel-level analysis demonstrates that homes adjacent to these fault zone parks are the most valuable in their neighborhoods. At a broad scale, a Landsat-based normalized difference vegetation index shows that greenness near AP zones is greater than the rest of the metropolitan area. In the parks-poor city of Los Angeles, fault zone regulation has contributed to the construction of park space within areas of earthquake hazard, thus transforming zones of natural hazard into amenities, attracting populations of relatively high social status, and demonstrating that the distribution of social vulnerability is sometimes more strongly tied to amenities than hazards.

  4. Geologic map of the Hayward fault zone, Contra Costa, Alameda, and Santa Clara counties, California: a digital database

    USGS Publications Warehouse

    Graymer, R.W.; Jones, D.L.; Brabb, E.E.

    1995-01-01

    The Hayward is one of three major fault zones of the San Andreas system that have produced large historic earthquakes in the San Francisco Bay Area (the others being the San Andreas and Calaveras). Severe earthquakes were generated by this fault zone in 1836 and in 1868, and several large earthquakes have been recorded since 1868. The Hayward fault zone is considered to be the most probable source of a major earthquake in the San Francisco Bay Area, as much as 28% chance for a magnitude 7 earthquake before the year 2021 (Working Group on California Earthquake Probabilities, 1990). The Hayward fault zone, as described in this work, is a zone of highly deformed rocks, trending north 30 degrees west and ranging in width from about 2 to 10 kilometers. The historic earthquake generating activity has been concentrated in the western portion of the zone, but the zone as a whole reflects deformation derived from oblique right-lateral and compressive tectonic stress along a significant upper crustal discontinuity for the past 10 million or more years. The Hayward fault zone is bounded on the east by a series of faults that demarcate the beginning of one or more structural blocks containing rocks and structures unrelated to the Hayward fault zone. The eastern bounding faults are, from the south, the Calaveras, Stonybrook, Palomares, Miller Creek, and Moraga faults. These faults are not considered to be part of the Hayward fault zone, although they are shown on the map to demarcate its boundary. The western boundary of the zone is less clearly defined, because the alluvium of the San Francisco Bay and Santa Clara Valley basins obscures bedrock and structural relationships. Although several of the westernmost faults in the zone clearly project under or through the alluvium, the western boundary of the fault is generally considered to be the westernmost mapped fault, which corresponds more or less with the margin of thick unconsolidated surficial deposits. The Hayward fault

  5. Fault segment linkage and growth of the Polopos transpressive fault zone and its influence on Pleistocene drainage captures (southeastern Betics).

    NASA Astrophysics Data System (ADS)

    Giaconia, F.; Booth-Rea, G.; Martínez-Martínez, J. M.; Azañón, J. M.; Villegas, I.

    2012-04-01

    The Polopos fault zoneis a dextral-reverse fault-system that developed under Neogene to Quaternary N/S to NNW/SSE convergence between Africa and Iberia. This fault zone is formed by three main fault segments, the North and South Gafarillos dextral strike-slip faults, and the North Alhamilla reverse fault. The whole fault zone with an approximate length of 30 km has an E/W to ESE/WNW orientation and helicoidal geometry that permits the transfer of oblique SE-directed shortening in Sierra Cabrera to NW-directed shortening along the North Alhamilla reverse fault via vertical dextral Gafarillos fault segments, in between. The north Alhamilla reverse fault to the west of the system produces a fault-propagation fold in the hangingwall and an overturned fold in the footwall cutting through early Tortonian turbidites and folded Quaternary alluvial fans at the north Alhamilla mountain front. The Quaternary paleo-topographic surface formed by the alluvial fan has been displaced approximately 100 m by reverse faulting after 400 - 70 ky with a slip rate ranging between 0.25 and 1.4 mm yr-1. The South Gafarillos fault includes several N90°-110°E-striking segments with dextral and reverse-dextral kinematics. This fault cuts through the southeastern limb of the Alhamilla anticline by a fault segment that separates the basement from Messinian sediments, meanwhile other segments in the Nijar basin further south cut through Pleistocene river strath-terraces.. During the late Miocene the locus of dextral displacement occurred along the North Gafarillos fault segment that linked to a reverse fault segment at the northeast of the Sierra Alhamilla . The North Gafarillos fault segment and its associated mountain front was sealed by Messinian reefs. Since the Messinian, recent fault activity migrated towards the south forming the South Gafarillos fault segments. Fault segment migration displaced the active oblique strike-slip-related mountain fronts from the north towards the southeast

  6. Internal structure of fault zones in geothermal reservoirs: Examples from palaeogeothermal fields and potential host rocks

    NASA Astrophysics Data System (ADS)

    Leonie Philipp, Sonja; Reyer, Dorothea; Meier, Silke; Bauer, Johanna F.; Afşar, Filiz

    2014-05-01

    Fault zones commonly have great effects on fluid transport in geothermal reservoirs. During fault slip all the pores and small fractures that meet with the slip plane become interconnected so that the inner part of the fault, the fault core, consisting of breccia or gouge, may suddenly develop a very high permeability. This is evidenced, for example by networks of mineral veins in deeply eroded fault zones in palaeogeothermal fields. Inactive faults, however, may have low permeabilities and even act as flow barriers. In natural and man-made geothermal reservoirs, the orientation of fault zones in relation to the current stress field and their internal structure needs be known as accurately as possible. One reason is that the activity of the fault zone depends on its angle to the principal stress directions. Another reason is that the outer part of a fault zone, the damage zone, comprises numerous fractures of various sizes. Here we present field examples of faults, and associated joints and mineral veins, in palaeogeothermal fields, and potential host rocks for man-made geothermal reservoirs, respectively. We studied several localities of different stratigraphies, lithologies and tectonic settings: (1) 58 fault zones in 22 outcrops from Upper Carboniferous to Upper Cretaceous in the Northwest German Basin (siliciclastic, carbonate and volcanic rocks); (2) 16 fault zones in 9 outcrops in Lower Permian to Middle Triassic (mainly sandstone, limestone and granite) in the Upper Rhine Graben; and (3) 74 fault zones in two coastal sections of Upper Triassic and Lower Jurassic age (mudstones and limestone-marl alternations) in the Bristol Channel Basin, UK. (1) and (2) are outcrop analogues of geothermal reservoir horizons, (3) represent palaeogeothermal fields with mineral veins. The field studies in the Northwest German Basin (1) show pronounced differences between normal-fault zones in carbonate and clastic rocks. In carbonate rocks clear damage zones occur that are

  7. Imaging Faults and Shear Zones Using Receiver Functions

    NASA Astrophysics Data System (ADS)

    Schulte-Pelkum, Vera; Mahan, Kevin H.

    2014-11-01

    The geometry of faults at seismogenic depths and their continuation into the ductile zone is of interest for a number of applications ranging from earthquake hazard to modes of lithospheric deformation. Teleseismic passive source imaging of faults and shear zones can be useful particularly where faults are not outlined by local seismicity. Passive seismic signatures of faults may arise from abrupt changes in lithology or foliation orientation in the upper crust, and from mylonitic shear zones at greater depths. Faults and shear zones with less than near-vertical dip lend themselves to detection with teleseismic mode-converted waves (receiver functions) provided that they have either a contrast in isotropic shear velocity ( V s), or a contrast in orientation or strength of anisotropic compressional velocity ( V p). We introduce a detection method for faults and shear zones based on receiver functions. We use synthetic seismograms to demonstrate common features of dipping isotropic interfaces and contrasts in dipping foliation that allows determination of their strike and depth without making further assumptions about the model. We proceed with two applications. We first image a Laramide thrust fault in the western U.S. (the Wind River thrust fault) as a steeply dipping isotropic velocity contrast in the middle crust near the surface trace of the fault; further downdip and across the range, where basin geometry suggests the fault may sole into a subhorizontal shear zone, we identify a candidate shear zone signal from midcrustal depths. The second application is the use of microstructural data from exhumed ductile shear zones in Scotland and in the western Canadian Shield to predict the character of seismic signatures of present-day deep crustal shear zones. Realistic anisotropy in observed shear fabrics generates a signal in receiver functions that is comparable in amplitude to first-order features like the Moho. Observables that can be robustly constrained without

  8. The internal structure of fault zones in basaltic sequences

    NASA Astrophysics Data System (ADS)

    Holland, M.; Urai, J. L.; Martel, S.

    2005-12-01

    In contrary to most sedimentary rocks that need burial for consolidation, effusive basalts solidify quickly thus imposing a different mechanical behavior at the surface. Extensional stresses due to gravitational failure, caldera collapse or general tectonic forces generate prominent morphologies and large dilatant structures with impacts for hydraulic, mechanical and also bionomic aspects. In this study we present insights of field work on the Koa`e fault zone on Kilauea volcano/Hawai`i combined with the analysis of a scaled analogue model of normal faults in cohesive sequences. The Koa`e fault zone is a 12 km long normal fault zone connecting sections of the two rift zones. Unlike the predominantly mode-I cracks of the rift zones, the Koa`e faults show up to 20 m high sub-vertical fault scarps accompanied with footwall fissures. Open fractures, broken or buckled ramp structures and sub-vertical walls are the key elements in what is considered to be a volcanic growth fault system. Our analogue model visualizes the deformation of brittle flow units on top of a buried fault. The model uses dry hemihydrate powder with a tensional strength of 33 Pa, and a curved yield envelope. Depending on the rock prototype a scaling relationship of 1:5000-40000 is apparent. The faults initiate as sub-vertical mode-I fissuring at the surface propagating downward. Some of the open fissures on the footwall are deactivated; others evolve into faults producing the morphological scarps. A shallow antithetic fracture decouples a surface slap on the hanging wall producing the morphological ramps seen in the field. Its rotation is responsible for cavities and buckling. The internal structure of the shallow faults is open and filled partly with collapsing wall fragments that are progressively milled down at deeper levels. The model implies that normal faults in basalt are largely dilatant systems with a prominent mode-I component up to several meters magnitude. If the insights of the work are

  9. Displacements and segment linkage in strike-slip fault zones

    NASA Astrophysics Data System (ADS)

    Peacock, D. C. P.

    Small-scale, well exposed strike-slip fault zones near Kirkcudbright, Scotland, cut sub-vertical bedding, so that mapped bed separations allow the displacements, linkage and evolution of fault segments to be assessed. Displacement variations along the segments can be related to lithologic variations, conjugate relationships, offsets, segment linkage and fault bends. High displacement gradients at the tips of conjugate and offset faults produce convex-upwards ( E-type) displacement-distance ( d-x) profiles. Contractional fault bends and linkage points are marked by a decrease in fault displacement, producing partially concave-upwards ( D-type) d-x profiles. Where fault displacement gradients are steep, wallrocks are marked by structures such as synthetic faults, normal drag folding, ductile strain and veining, which transfer displacement. The faults studied tend to have lower r/ dMAX ratios (where r = distance between the point of maximum displacement and the fault tip on a particular profile, and dMAX = maximum displacement on the profile) than are shown by normal faults in map view. This may be because r is measured parallel to the displacement direction and/or because of lithologic variations.

  10. The Influence of a Local Fault Zone on High Energy Tremor Occurrence during Longwall Mining of a Coal Seam

    NASA Astrophysics Data System (ADS)

    Wojtecki, Łukasz; Knopik, Małgorzata; Zuberek, Wacław Marian

    2016-08-01

    Underground mining of coal seams in the Upper Silesian Coal Basin in Poland is accompanied by seismic activity of varying magnitude. The investigations which have been performed for several years distinguished high energy mine tremors connected directly with mining or coupled with geological structures, such as large faults. In mined seams, local fault zones occur. Faults in these zones are usually small, with throws comparable with coal seams thicknesses. Local fault zone may be responsible for the occurrence of high energy tremors as well as large faults, as presented in this article. An analysis of source mechanism of high energy tremors generated during longwall mining of the coal seam No. 510, with presence of a local fault zone, in one of the Polish hard coal mines in the Upper Silesian Coal Basin was performed. For this purpose, the seismic moment tensor inversion method was used. In most of foci, the process of shear predominated. Determined nodal plane parameters were correlated with parameters of faults forming the local fault zone. High energy tremors were generated mostly by dislocations on faults of the local fault zone. Weakening of roof rocks in the neighborhood of local fault zone takes an important role too, and was responsible for share of implosion in the focal mechanism.

  11. Porosity variations in and around normal fault zones: implications for fault seal and geomechanics

    NASA Astrophysics Data System (ADS)

    Healy, David; Neilson, Joyce; Farrell, Natalie; Timms, Nick; Wilson, Moyra

    2015-04-01

    Porosity forms the building blocks for permeability, exerts a significant influence on the acoustic response of rocks to elastic waves, and fundamentally influences rock strength. And yet, published studies of porosity around fault zones or in faulted rock are relatively rare, and are hugely dominated by those of fault zone permeability. We present new data from detailed studies of porosity variations around normal faults in sandstone and limestone. We have developed an integrated approach to porosity characterisation in faulted rock exploiting different techniques to understand variations in the data. From systematic samples taken across exposed normal faults in limestone (Malta) and sandstone (Scotland), we combine digital image analysis on thin sections (optical and electron microscopy), core plug analysis (He porosimetry) and mercury injection capillary pressures (MICP). Our sampling includes representative material from undeformed protoliths and fault rocks from the footwall and hanging wall. Fault-related porosity can produce anisotropic permeability with a 'fast' direction parallel to the slip vector in a sandstone-hosted normal fault. Undeformed sandstones in the same unit exhibit maximum permeability in a sub-horizontal direction parallel to lamination in dune-bedded sandstones. Fault-related deformation produces anisotropic pores and pore networks with long axes aligned sub-vertically and this controls the permeability anisotropy, even under confining pressures up to 100 MPa. Fault-related porosity also has interesting consequences for the elastic properties and velocity structure of normal fault zones. Relationships between texture, pore type and acoustic velocity have been well documented in undeformed limestone. We have extended this work to include the effects of faulting on carbonate textures, pore types and P- and S-wave velocities (Vp, Vs) using a suite of normal fault zones in Malta, with displacements ranging from 0.5 to 90 m. Our results show a

  12. Internal Structure of Taiwan Chelungpu Fault Zone Gouges

    NASA Astrophysics Data System (ADS)

    Song, Y.; Song, S.; Tang, M.; Chen, F.; Chen, Y.

    2005-12-01

    Gouge formation is found to exist in brittle faults at all scale (1). This fine-grain gouge is thought to control earthquake instability. And thus investigating the gouge textures and compositions is very important to an understanding of the earthquake process. Employing the transmission electron microscope (TEM) and a new transmission X-ray microscope (TXM), we study the internal structure of fault zone gouges from the cores of the Taiwan Chelungpu-fault Drilling Project (TCDP), which drilled in the fault zone of 1999 Chi-Chi earthquake. This X-ray microscope have installed at beamline BL01B of the Taiwan Light Source, National Synchrotron Radiation Research Center (NSRRC). It provides 2D imaging and 3D tomography at energy 8-11 keV with a spatial resolution of 25-60 nm, and is equipped with the Zernike-phase contrast capability for imaging light materials. In this work, we show the measurements of gouge texture, particle size distribution and 3D structure of the ultracataclasite in fault gouges within 12 cm about 1111.29 m depth. These characterizations in transition from the fault core to damage zone are related to the comminuting and the fracture energy in the earthquake faulting. The TXM data recently shows the particle size distributions of the ultracataclasite are between 150 nm and 900 nm in diameter. We will keep analyzing the characterization of particle size distribution, porosity and 3D structure of the fault zone gouges in transition from the fault core to damage zone to realize the comminuting and fracture surface energy in the earthquake faulting(2-5).The results may ascertain the implication of the nucleation, growth, transition, structure and permeability of the fault zones(6-8). Furthermore, it may be possible to infer the mechanism of faulting, the physical and chemical property of the fault, and the nucleation of the earthquake. References 1) B. Wilson, T. Dewerw, Z. Reches and J. Brune, Nature, 434 (2005) 749. 2) S. E. Schulz and J. P. Evans

  13. Late Cenozoic Reverse Faulting in the Fall Zone, Southeastern Virginia.

    PubMed

    Berquist Jr; Bailey

    1999-11-01

    A set of en-echelon reverse faults cut Paleozoic metamorphosed igneous rocks of the Piedmont and overlying late Cenozoic sediments at the Old Hickory Heavy Mineral Deposit in the Fall Zone of southeastern Virginia. Diorite of the eastern Slate Belt was faulted over nearshore to shore-face deposits of the Pliocene Yorktown Formation. These NW-SE-striking faults experienced oblique dip-slip movement with a maximum displacement of up to 6 m on individual faults. Faults tip out along strike and are overlain by distinct cobble beds, suggesting that sediment deposition and faulting were contemporaneous. Deformation at Old Hickory may have been formed by reactivation of existing Paleozoic structures under a regionally extensive compressional stress field parallel to the modern one. PMID:10517887

  14. Late Cenozoic Reverse Faulting in the Fall Zone, Southeastern Virginia.

    PubMed

    Berquist Jr; Bailey

    1999-11-01

    A set of en-echelon reverse faults cut Paleozoic metamorphosed igneous rocks of the Piedmont and overlying late Cenozoic sediments at the Old Hickory Heavy Mineral Deposit in the Fall Zone of southeastern Virginia. Diorite of the eastern Slate Belt was faulted over nearshore to shore-face deposits of the Pliocene Yorktown Formation. These NW-SE-striking faults experienced oblique dip-slip movement with a maximum displacement of up to 6 m on individual faults. Faults tip out along strike and are overlain by distinct cobble beds, suggesting that sediment deposition and faulting were contemporaneous. Deformation at Old Hickory may have been formed by reactivation of existing Paleozoic structures under a regionally extensive compressional stress field parallel to the modern one.

  15. Talc friction in the temperature range 25°–400 °C: relevance for fault-zone weakening

    USGS Publications Warehouse

    Moore, Diane E.; Lockner, David A.

    2008-01-01

    Talc has a temperature–pressure range of stability that extends from surficial to eclogite-facies conditions, making it of potential significance in a variety of faulting environments. Talc has been identified in exhumed subduction zone thrusts, in fault gouge collected from oceanic transform and detachment faults associated with rift systems, and recently in serpentinite from the central creeping section of the San Andreas fault. Typically, talc crystallized in the active fault zones as a result of the reaction of ultramafic rocks with silica-saturated hydrothermal fluids. This mode of formation of talc is a prime example of a fault-zone weakening process. Because of its velocity-strengthening behavior, talc may play a role in stabilizing slip at depth in subduction zones and in the creeping faults of central and northern California that are associated with ophiolitic rocks.

  16. Faulting processes in active faults - Evidences from TCDP and SAFOD drill core samples

    SciTech Connect

    Janssen, C.; Wirth, R.; Wenk, H. -R.; Morales, L.; Naumann, R.; Kienast, M.; Song, S. -R.; Dresen, G.

    2014-08-20

    The microstructures, mineralogy and chemistry of representative samples collected from the cores of the San Andreas Fault drill hole (SAFOD) and the Taiwan Chelungpu-Fault Drilling project (TCDP) have been studied using optical microscopy, TEM, SEM, XRD and XRF analyses. SAFOD samples provide a transect across undeformed host rock, the fault damage zone and currently active deforming zones of the San Andreas Fault. TCDP samples are retrieved from the principal slip zone (PSZ) and from the surrounding damage zone of the Chelungpu Fault. Substantial differences exist in the clay mineralogy of SAFOD and TCDP fault gouge samples. Amorphous material has been observed in SAFOD as well as TCDP samples. In line with previous publications, we propose that melt, observed in TCDP black gouge samples, was produced by seismic slip (melt origin) whereas amorphous material in SAFOD samples was formed by comminution of grains (crush origin) rather than by melting. Dauphiné twins in quartz grains of SAFOD and TCDP samples may indicate high seismic stress. The differences in the crystallographic preferred orientation of calcite between SAFOD and TCDP samples are significant. Microstructures resulting from dissolution–precipitation processes were observed in both faults but are more frequently found in SAFOD samples than in TCDP fault rocks. As already described for many other fault zones clay-gouge fabrics are quite weak in SAFOD and TCDP samples. Clay-clast aggregates (CCAs), proposed to indicate frictional heating and thermal pressurization, occur in material taken from the PSZ of the Chelungpu Fault, as well as within and outside of the SAFOD deforming zones, indicating that these microstructures were formed over a wide range of slip rates.

  17. Low-velocity fault-zone guided waves: Numerical investigations of trapping efficiency

    USGS Publications Warehouse

    Li, Y.-G.; Vidale, J.E.

    1996-01-01

    Recent observations have shown that shear waves trapped within low-velocity fault zones may be the most sensitive measure of fault-zone structure (Li et al., 1994a, 1994b). Finite-difference simulations demonstrate the effects of several types of complexity on observations of fault-zone trapped waves. Overlying sediments with a thickness more than one or two fault-zone widths and fault-zone step-overs more than one or two fault widths disrupt the wave guide. Fault kinks and changes in fault-zone width with depth leave readily observable trapped waves. We also demonstrate the effects of decreased trapped wave excitation with increasing hypocentral offset from the fault and the effects of varying the contrast between the velocity in the fault zone and surrounding hard rock. Careful field studies may provide dramatic improvements in our knowledge of fault-zone structure.

  18. Large-scale hydraulic structure of a seismogenic fault at 10 km depth (Gole Larghe Fault Zone, Italian Southern Alps)

    NASA Astrophysics Data System (ADS)

    Bistacchi, Andrea; Di Toro, Giulio; Smith, Steve; Mittempergher, Silvia; Garofalo, Paolo

    2014-05-01

    The definition of hydraulic properties of fault zones is a major issue in structural geology, seismology, and in several applications (hydrocarbons, hydrogeology, CO2 sequestration, etc.). The permeability of fault rocks can be measured in laboratory experiments, but its upscaling to large-scale structures is not straightforward. For instance, typical permeability of fine-grained fault rock samples is in the 10-18-10-20 m2 range, but, according to seismological estimates, the large-scale permeability of active fault zones can be as high as 10-10 m2. Solving this issue is difficult because in-situ measurements of large-scale permeability have been carried out just at relatively shallow depths - mainly in oil wells and exceptionally in active tectonic settings (e.g. SAFOD at 3 km), whilst deeper experiments have been performed only in the stable continental crust (e.g. KTB at 9 km). In this study, we apply discrete fracture-network (DFN) modelling techniques developed for shallow aquifers (mainly in nuclear waste storage projects like Yucca Mountain) and in the oil industry, in order to model the hydraulic structure of the Gole Larghe Fault Zone (GLFZ, Italian Southern Alps). This fault, now exposed in world-class glacier-polished outcrops, has been exhumed from ca. 8 km, where it was characterized by a well-documented seismic activity, but also by hydrous fluid flow evidenced by alteration halos and precipitation of hydrothermal minerals in veins and along cataclasites. The GLFZ does not show a classical seal structure that in other fault zones corresponds to a core zone characterized by fine-grained fault rocks. However, permeability is heterogeneous and the permeability tensor is strongly anisotropic due to fracture preferential orientation. We will show with numerical experiments that this hydraulic structure results in a channelized fluid flow (which is consistent with the observed hydrothermal alteration pattern). This results in a counterintuitive situation

  19. Fault pattern at the northern end of the Death Valley - Furnace Creek fault zone, California and Nevada

    NASA Technical Reports Server (NTRS)

    Liggett, M. A. (Principal Investigator); Childs, J. F.

    1974-01-01

    The author has identified the following significant results. The pattern of faulting associated with the termination of the Death Valley-Furnace Creek Fault Zone in northern Fish Lake Valley, Nevada was studied in ERTS-1 MSS color composite imagery and color IR U-2 photography. Imagery analysis was supported by field reconnaissance and low altitude aerial photography. The northwest-trending right-lateral Death Valley-Furnace Creek Fault Zone changes northward to a complex pattern of discontinuous dip slip and strike slip faults. This fault pattern terminates to the north against an east-northeast trending zone herein called the Montgomery Fault Zone. No evidence for continuation of the Death Valley-Furnace Creek Fault Zone is recognized north of the Montgomery Fault Zone. Penecontemporaneous displacement in the Death Valley-Furnace Creek Fault Zone, the complex transitional zone, and the Montgomery Fault Zone suggests that the systems are genetically related. Mercury mineralization appears to have been localized along faults recognizable in ERTS-1 imagery within the transitional zone and the Montgomery Fault Zone.

  20. Origin and formation of carbonaceous material veins in the 2008 Wenchuan earthquake fault zone

    NASA Astrophysics Data System (ADS)

    Liu, Jiang; Li, Haibing; Zhang, Jinjiang; Zhang, Bo

    2016-02-01

    This paper establishes a reference data set of carbonaceous materials (CMs) from the active fault zone of the Longmen Shan fault belt that ruptured in the 2008 Mw7.9 Wenchuan earthquake and presents an application of these data for studies of both other exhumed carbonaceous-rich fault zones and deep-drilling cores. The CMs distributed in the active fault zone are found as narrow veins and located along the slip surfaces. Microstructural observation shows that the carbonaceous material veins (CMVs) are located along slip surfaces in the fault gouge zones. Some CMVs have a cataclastic fabric, and their branches intrude into voids around the slip surfaces. Raman spectra of the CMVs show a wide (full width at half maximum >200 cm-1) D-peak at ~1345 cm-1 (defect peak), which is much lower than the O-peak at ~1595 cm-1 (ordered peak), indicating a metamorphic temperature of zeolite facies or lower than 250 °C. In addition, the stable carbon isotopic compositions (δ13C values) of the CMVs, ranging from -23.4 to -26.4‰, are very similar to that of the kerogen collected from the Late Triassic Xujiahe Formation in Sichuan Basin. Given the data at which it may be formed, the Xujiahe Formation is the most likely origin of CMs for the CMVs, and it seems that some CMVs in the fault zone were crushed and intruded into the voids during coseismic events, possibly driven by an enhanced pore fluid pressure. Since graphitization is suggested as an indicator of transient frictional heating in this area, our study providing a reference data set of CMs would help future CM-rich fault-zone research to retrieve seismic signatures presumably occurring in the Longmen Shan fault zone belt.

  1. Fluid-rock Interaction and Episodic Fluid Flow within the Hurricane Fault-zone

    NASA Astrophysics Data System (ADS)

    Koger, J.; Newell, D. L.

    2015-12-01

    The Hurricane Fault is an active 250-km long, west dipping, Basin and Range bounding normal fault in SW Utah and NW Arizona. Fault rock alteration and mineralization is common in the damage zone along strike, indicating that this structure has influenced past groundwater flow. Multiple Quaternary basaltic centers are located proximal to the fault. This study tests the hypothesis that fault-zone diagenesis is being driven by deeply circulated meteoric groundwater infiltration and associated rock-water interaction that is punctuated by periods of hydrothermal alteration associated with local magmatism. Fault-parallel/oblique fractures and small-offset antithetic and synthetic normal faults have been found within fault-zone rocks. The intensity of fracturing and associated evidence of fluid-rock interaction progressively decreases away from the main fault trace into the footwall. Host rock alteration, hematite mineralized fault surfaces, and calcite and hematite cemented deformation bands and veins are observed. These features are focused in 1 - 2 m wide zones of fracturing with densities of 6 - 18 m-1 located within the footwall damage zone. Host rock alteration in the form of both "bleaching" and oxidation along fractures provides evidence for past redox reactions. Mineralization in deformation bands suggests that some fluid flow and diagenesis was penecontemporaneous with deformation. Laminations and cross-cutting relationships in veins indicate periodic mineralization that could be controlled by episodic fluid flow, or fracturing and degassing leading to calcite precipitation. Stable isotopic results from calcite veins show δ13CPDB values of -7 to 3 ‰ and δ18OPDB values of -19 to -9 ‰. Carbon stable isotope ratios suggest multiple carbon sources such as marine carbonates, organic sedimentary rocks, and mantle derived CO2. Temperature differences in paleofluids and associated fluid-rock interaction may explain the observed range in δ18O values. Fluid

  2. Dissecting Oceanic Detachment Faults: Fault Zone Geometry, Deformation Mechanisms, and Nature of Fluid-Rock Interactions

    NASA Astrophysics Data System (ADS)

    Bonnemains, D.; Escartin, J.; Verlaguet, A.; Andreani, M.; Mevel, C.

    2015-12-01

    To understand the extreme strain localization at long-lived oceanic detachment faults rooting deeply below the axis, we present results of geological investigations at the 13°19'N detachment along the Mid-Atlantic Ridge, conducted during the ODEMAR cruise (Nov-Dec13, NO Pourquoi Pas?) with ROV Victor6000 (IFREMER). During this cruise we investigated and sampled the corrugated fault to understand its geometry, nature of deformation, and links to fluid flow. We identified and explored 7 fault outcrops on the flanks of microbathymetric striations subparallel to extension. These outcrops expose extensive fault planes, with the most prominent ones extending 40-90m laterally, and up to 10 m vertically. These fault surfaces systematically show subhorizontal striations subparallel to extension, and define slabs of fault-rock that are flat and also striated at sample scale. Visual observations show a complex detachment fault zone, with anastomosing fault planes at outcrop scale (1-10 m), with a highly heterogeneous distribution of deformation. We observe heterogeneity in fault-rock nature at outcrop scale. In situ samples from striated faults are primarily basalt breccias with prior green-schist facies alteration, and a few ultramafic fault-rocks that show a complex deformation history, with early schistose textures, brittlely reworked as clasts within the fault. The basalt breccias show variable silicification and associated sulfides, recording important fluid-rock interactions during exhumation. To understand the link between fluid and deformation during exhumation, we will present microstructural observation of deformation textures, composition, and distribution and origin of quartz and sulfides, as well as constraints on the temperature of silicifying fluids from fluid inclusions in quartz. These results allow us to characterize in detail the detachment fault zone geometry, and investigate the timing of silicification relative to deformation.

  3. Paleoseismic results of the east strand of the Lower Tagus Valley Fault Zone, Central Portugal.

    NASA Astrophysics Data System (ADS)

    Canora, Carolina; Vilanova, Susana; Besana-Ostman, Glenda; Heleno, Sandra; Fonseca, Joao; Domingues, Ana; Pinheiro, Patricia; Pinto, Luis

    2014-05-01

    The Lower Tagus Valley Fault Zone (LTVFZ) is a northeast-southwest trending tectonic structure located within the Lower Tagus Valley (LTV), in central Portugal associated with at least two historical events: the 1909 Mw 6.0-6.2 Benavente earthquake and the 1531 Mw 6.9 earthquake. Recent investigations indicate that the relatively linear valley associated with the Lower Tagus River is controlled by active faults in varying geometry and slip rates. Based on mapped traces, LTVFZ is about 80 kilometers long and transects Miocene to Holocene deposit. The east and west strands of the fault zone may have different level of activity based on the variable clarity of mapped morphological expressions. In recent studies new fault strands were identified using aerial photos and field survey on eastern side of LTV. These eastern faults have a trend that almost parallel those active traces previously mapped by Besana-Ostman et al., 2012 on the western side of the valley. Quaternary activity of this fault deforms fluvial terraces and produces morphological features related to left-lateral strike-slip movement like river offsets. In this work we present the results of the first paleoseismic analysis carried out on this strand of the fault. Trenching studies shows that surface rupture events have occurred affecting Tagus fluvial terraces. The geometry of faulting exposed in the trench provides valuable insights into the kinematics of the fault, and provides a preliminary minimum net slip rate. New relative ages of the deformation are established on preliminary trenching results, and recurrence intervals will be determined upon receipt of results of sample processing for C14 dating. The aim of this work is to contribute with new data to parameterize the paleoseismic activity of this active fault in order to be included in the future seismic hazard assessments. Further studies are proposed and underway to characterize the LTVFZ, including high-resolution LIDAR images analysis, more

  4. Geochemical Characterisation of the Alpine Fault Zone from the DFDP Boreholes

    NASA Astrophysics Data System (ADS)

    Menzies, C. D.; Teagle, D. A. H.; Boulton, C. J.; Toy, V.; Townend, J.; Sutherland, R.

    2015-12-01

    The Alpine Fault of the South Island, New Zealand marks the active transpressional boundary between the Australian and Pacific plates. Phase one of the Deep Fault Drilling Project (DFDP1) drilled two holes that sample the Alpine Fault zone (DFDP1A and DFDP1B) in the near surface. Two distinct principal slip zones (PSZ) were recovered in these cores (one in DFDP1A and two in DFDP1B) enabling investigation of chemical and mineralogical changes throughout the fault's hangingwall and footwall rocks. Here we use geochemical analyses to identify fault rock protoliths, alteration styles, and mass changes in the fault zone to test the control of chemical alteration on fault rock material properties and compare with distal parts of the fault zone sampled in the second phase of DFDP (DFDP2). 87Sr/86Sr and 143Nd/144Nd isotopes, and immobile trace element ratios identify protolith lithology contributions. We show that cataclasites above the upper principal slip zone in holes DFDP1A and DFDP1B contain a mixture of hangingwall Alpine Schist and radiogenic granitic and metasedimentary footwall lithologies indicating physical mixing of material up to ~25 m above the PSZ. In DFDP1B between upper and lower PSZs cataclasites distinctly resemble granitic footwall rocks, and below the lower PSZ radiogenic strontium isotope ratios identify porphyroclastic ultramylonite breccias as Australian plate Palaeozoic metasediments. Lithological mixing is overprinted by alteration of primary minerals to clays and infilling of pore spaces and fractures by calcite and chlorite. As proximity to the upper PSZ increases permeability decreases corresponding to an increase in volatile content (LOI). LOI peaks in the PSZ where permeability is lowest and clay content and carbonate cementation are greatest. Local, meteoric-derived spring waters are saturated in secondary minerals documented in the Alpine Fault zone and fault zone secondary mineral δD compositions indicate formation from meteoric waters

  5. Fault roughness evolution with slip (Gole Larghe Fault Zone, Italian Alps)

    NASA Astrophysics Data System (ADS)

    Bistacchi, A.; Spagnuolo, E.; Di Toro, G.; Nielsen, S. B.; Griffith, W. A.

    2011-12-01

    Fault surface roughness is a principal factor influencing fault and earthquake mechanics. However, little is known on roughness of fault surfaces at seismogenic depths, and particularly on how it evolves with accumulating slip. We have studied seismogenic fault surfaces of the Gole Larghe Fault Zone, which exploit precursor cooling joints of the Adamello tonalitic pluton (Italian Alps). These faults developed at 9-11 km and 250-300°C. Seismic slip along these surfaces, which individually accommodated from 1 to 20 m of net slip, resulted in the production of cm-thick cataclasites and pseudotachylytes (solidified melts produced during seismic slip). The roughness of fault surfaces was determined with a multi-resolution aerial and terrestrial LIDAR and photogrammetric dataset (Bistacchi et al., 2011, Pageoph, doi: 10.1007/s00024-011-0301-7). Fault surface roughness is self-affine, with Hurst exponent H < 1, indicating that faults are comparatively smoother at larger wavelengths. Fault surface roughness is inferred to have been inherited from the precursor cooling joints, which show H ≈ 0.8. Slip on faults progressively modified the roughness distribution, lowering the Hurst exponent in the along-slip direction up to H ≈ 0.6. This behaviour has been observed for wavelengths up to the scale of the accumulated slip along each individual fault surface, whilst at larger wavelengths the original roughness seems not to be affected by slip. Processes that contribute to modify fault roughness with slip include brittle failure of the interacting asperities (production of cataclasites) and frictional melting (production of pseudotachylytes). To quantify the "wear" due to these processes, we measured, together with the roughness of fault traces and their net slip, the thickness and distribution of cataclasites and pseudotachylytes. As proposed also in the tribological literature, we observe that wearing is scale dependent, as smaller wavelength asperities have a shorter

  6. Deep Heterogeneous Structure and Earthquake Generating Properties in the Yamasaki Fault Zone Estimated from Dense Seismic Observation

    NASA Astrophysics Data System (ADS)

    Nishigami, K.; Shibutani, T.; Katao, H.; Yamaguchi, S.; Mamada, Y.

    2011-12-01

    The Yamasaki fault zone is a left-lateral, strike-slip active fault with a total length of about 80 km in southwest Japan. We deployed dense seismic observation network, which is composed of 32 stations with average spacing of 5-10 km, around the Yamasaki fault zone. We have been estimating detailed fault structure such as fault dip and shape, segmentation, and possible location of asperities and rupture initiation point, as well as generating properties of earthquakes in the fault zone, through analyses of accurate hypocenter distribution, focal mechanism, 3-D velocity tomography, coda wave inversion, and other waveform analyses. We also deployed a linear seismic array across the fault, composed of 20 stations with about 20 m spacing, in order to delineate the fault-zone structure in more detail using the seismic waves trapped inside the low velocity fault-zone. We also estimated resistivity structure at shallow depth of the fault zone by AMT (audio-frequency magnetotelluric) and MT surveys. In the scattering analysis of coda waves, we used the waveform data of dense temporary stations from 2008 to 2010 and also the routine stations in 2002 and 2003. Fig.1 shows an example of the result, 3-D distribution of relative scattering coefficients estimated around the Yamasaki fault zone. In this analysis, 2,391 waveforms recorded at 60 stations for 121 earthquakes were used. This result shows that microseismicity is high and scattering coefficient is relatively larger in the upper crust along the entire fault zone. The distribution of strong scatterers suggests that the Ohara and Hijima faults, which are the segments in the northwestern part of the Yamasaki fault zone, have almost vertical fault plane from surface to a depth of about 15 km. We will construct a fault structure model and discuss its relation to seismic activity in the Yamasaki fault zone. We used seismic network data operated by Univs., NIED, AIST, and JMA. This study is carried out as a part of the

  7. Deep Structure and Earthquake Generating Properties in the Yamasaki Fault Zone, Southwest Japan, Estimated from Dense Seismic Observation

    NASA Astrophysics Data System (ADS)

    Nishigami, K.; Shibutani, T.; Katao, H.; Yamaguchi, S.; Mamada, Y.

    2012-12-01

    The Yamasaki fault zone is a left-lateral, strike-slip active fault with a total length of about 80 km in southwest Japan. We deployed dense seismic observation network, which is composed of 32 stations with average spacing of 5-10 km, around the Yamasaki fault zone. We have been estimating detailed fault structure such as fault dip and shape, segmentation, and possible location of asperities and rupture initiation point, as well as generating properties of earthquakes in and around the fault zone, through analyses of accurate hypocenter distribution, focal mechanism, 3-D velocity tomography, coda wave inversion, and other waveform analyses. We also deployed a linear seismic array across the fault, composed of 20 stations with about 20 m spacing, in order to delineate the fault-zone structure in more detail using the seismic waves trapped inside the low velocity fault-zone. We also estimated detailed resistivity structure at shallow depth of the fault zone by AMT (audio-frequency magnetotelluric) surveys. In the scattering analysis of seismic coda waves, we used the waveform data of dense temporary stations from 2008 to 2010 and also the routine-stations data in 2002 and 2003, and estimated 3-D distribution of relative scattering coefficients around the Yamasaki fault zone. In this analysis, 3,033 waveforms recorded at 60 stations for 136 earthquakes were used. This result shows that microseismicity is high and scattering coefficient is relatively larger in the upper crust along the entire fault zone. The distribution of strong scatterers suggests that the Ohara and Hijima faults, which are the segments in the northwestern part of the Yamasaki fault zone, have almost vertical fault plane from surface to a depth of about 15 km. We will construct a fault structure model and discuss its relation to seismic activity in the Yamasaki fault zone. We used seismic network data operated by Universities, NIED, AIST, and JMA. This study has been carried out as a part of the

  8. The deep structure of the North Anatolian Fault Zone (Invited)

    NASA Astrophysics Data System (ADS)

    Fichtner, A.; Cupillard, P.; Saygin, E.; Trampert, J.; Taymaz, T.; Capdeville, Y.

    2013-12-01

    Multi-scale full waveform inversion of complete continental- and regional-scale seismograms reveals the crustal and upper-mantle signature of the North Anatolian Fault Zone which shapes the neotectonics of Turkey and the eastern Mediterranean. Within the crust, the fault zone is mostly bounded by several high-velocity blocks, suggesting that it developed along the edges of continental fragments with high rigidity. Below the crust, the surface expression of the eastern and central parts of the North Anatolian Fault Zone correlate with a pronounced low-velocity band that extends laterally over 600 km. Around 100 km depth, the low-velocity band merges into the shallow Anatolian asthenosphere, thereby providing a link to the Kirka-Afyon-Isparta Volcanic Field and the Central Anatolian Volcanics. We interpret the low-velocity band beneath the North Anatolian Fault Zone as the upper-mantle expression of the Tethyan sutures that formed 60-15 Ma ago as a result of Africa-Eurasian convergence. The structurally weak suture facilitated the formation of the younger (less than 10 Ma) crustal fault zone. In this sense, the North Anatolian Fault Zone is not only a crustal feature, but a narrow zone of weakness that extends into the upper mantle. Horizontal slices through the isotropic S velocity, vS, at 20 km (a) and 40 km (b) depth. Indicated are the surface expressions of the North Anatolian Fault Zone (NAFZ). The North Anatolian Fault (NAF) marks the northern boundary of the NAFZ. Dashed rectangles mark regions that are amplified in the two leftmost panels of the figure. Dotted ellipses indicate thin (20-30 km) crust as inferred from receiver function analysis (Vanacore et al., GJI 2013). Key to marked features: ATB: Anatolide-Tauride Block, IZ: Istanbul Zone, KM: Krsehir Massif, SZ: Sakarya Zone. Horizontal slices through the isotropic S velocity, vs, at 70 km and 150 km depth beneath Europe and western Asia. The Anatolian region where shorter-period data have been

  9. Wasatch fault zone, Utah - segmentation and history of Holocene earthquakes

    USGS Publications Warehouse

    Machette, Michael N.; Personius, Stephen F.; Nelson, Alan R.; Schwartz, David P.; Lund, William R.

    1991-01-01

    The Wasatch fault zone (WFZ) forms the eastern boundary of the Basin and Range province and is the longest continuous, active normal fault (343 km) in the United States. It underlies an urban corridor of 1.6 million people (80% of Utah's population) representing the largest earthquake risk in the interior of the western United States. The authors have used paleoseismological data to identify 10 discrete segments of the WFZ. Five are active, medial segments with Holocene slip rates of 1-2 mm a-1, recurrence intervals of 2000-4000 years and average lengths of about 50 km. Five are less active, distal segments with mostly pre-Holocene surface ruptures, late Quaternary slip rates of <0.5 mm a-1, recurrence intervals of ???10,000 years and average lengths of about 20 km. Surface-faulting events on each of the medial segments of the WFZ formed 2-4-m-high scarps repeatedly during the Holocene. Paleoseismological records for the past 6000 years indicate that a major surface-rupturing earthquake has occurred along one of the medial segments about every 395 ?? 60 years. However, between about 400 and 1500 years ago, the WFZ experienced six major surface-rupturing events, an average of one event every 220 years, or about twice as often as expected from the 6000-year record. Evidence has been found that surface-rupturing events occurred on the WFZ during the past 400 years, a time period which is twice the average intracluster recurrence interval and equal to the average Holocene recurrence interval.

  10. Scientific drilling into the San Andreas Fault Zone - an overview of SAFOD's first five years

    USGS Publications Warehouse

    Zoback, Mark; Hickman, Stephen; Ellsworth, William; ,

    2011-01-01

    The San Andreas Fault Observatory at Depth (SAFOD) was drilled to study the physical and chemical processes controlling faulting and earthquake generation along an active, plate-bounding fault at depth. SAFOD is located near Parkfield, California and penetrates a section of the fault that is moving due to a combination of repeating microearthquakes and fault creep. Geophysical logs define the San Andreas Fault Zone to be relatively broad (~200 m), containing several discrete zones only 2–3 m wide that exhibit very low P- and S-wave velocities and low resistivity. Two of these zones have progressively deformed the cemented casing at measured depths of 3192 m and 3302 m. Cores from both deforming zones contain a pervasively sheared, cohesionless, foliated fault gouge that coincides with casing deformation and explains the observed extremely low seismic velocities and resistivity. These cores are being now extensively tested in laboratories around the world, and their composition, deformation mechanisms, physical properties, and rheological behavior are studied. Downhole measurements show that within 200 m (maximum) of the active fault trace, the direction of maximum horizontal stress remains at a high angle to the San Andreas Fault, consistent with other measurements. The results from the SAFOD Main Hole, together with the stress state determined in the Pilot Hole, are consistent with a strong crust/weak fault model of the San Andreas. Seismic instrumentation has been deployed to study physics of faulting—earthquake nucleation, propagation, and arrest—in order to test how laboratory-derived concepts scale up to earthquakes occurring in nature.

  11. Regional stress field around the Taigu fault zone in Shanxi Province, China

    NASA Astrophysics Data System (ADS)

    Li, Bin; Li, Zihong; Sørensen, Mathilde B.; Løvlie, Reidar; Liu, Liqiang; Atakan, Kuvvet

    2015-12-01

    A comprehensive study on regional stress field around the Taigu fault zone in Shanxi Province, China, was performed in this study. To get a better understanding of the present-day stress status in this area, 31 focal mechanisms of M L ≥3 earthquakes since 1965 were compiled, and the best stress tensor was then inverted based on the database. Additionally, magnetic fabrics along the Taigu fault zone were investigated to get an indication of the regional stress field in the past. Our results show that the present-day stress field around the Taigu fault zone is characterized by astable NW-SE extension with a strike-slip component, consistent with the geological surveys and recent GPS data. Results from magnetic fabrics indicate that the orientations of principal stress axes from magnetic fabrics of sedimentary rocks in Neogene coincide to the orientations of principal stress axes from focal mechanisms. The south segment of the Taigu fault displays more complicated magnetic fabrics and more activity of moderate earthquakes. It is connected with the Mianshan west fault and intersects with NW-SE striking Fenyang fault and the north fault of the Lingshi uplift at the south edge of Taiyuan basin. This may be the area needing more attention in terms of seismic risk along the Taigu fault.

  12. A Geophysical Study of the Carcavai Fault Zone, Portugal

    NASA Astrophysics Data System (ADS)

    Carvalho, J.; Ramalho, E.; Dias, R.; Pinto, C.; Ressurreição, R.

    2012-01-01

    The Algarve province is located a few hundred kilometres north of the crossing of the E-W Eurasia-Africa plate boundary in an area of diffuse seismicity and broad deformation. It is characterised by a moderate seismicity, with some important historical and instrumental earthquakes causing loss of lives and significant material damages. The area is affected not only by plate boundary earthquakes but also by moderate to large events generated by local sources. The assessment of onshore local sources is, therefore, of vital importance for an evaluation of the regional seismic hazard. This paper discusses the application of geophysical data to the study of the Carcavai fault zone, an outcropping structure more than 20 km long which is seen to deform sediments of the Plio-Quaternary age. The location of some sectors of the fault zone, as well as the vertical offsets of the structure, are still to be confirmed. In order to estimate these and to study the geometry of the fault zone at depth, geophysical data were acquired together with new geological data. Where the location of the fault was less certain, EM and seismic reflection profiles with coarse spatial sampling were carried out. After the detailed location of the fault zone, seismic reflection profiles with a more dense spatial resolution were acquired. The integrated interpretation of the geological and geophysical data confirmed the presence of a large fault zone. The total fault length is still unknown as its extension offshore is still being studied. Together with estimated values of the throw obtained, this data set has improved understanding the seismic hazard in the area by providing more refined estimates of co-seismic rupture, maximum expected earthquake and return periods.

  13. Kinematic vicissitudes and the spatial distribution of the alteration zone related to the Byobuyama fault, central Japan. (Implication; Influence of another faults.)

    NASA Astrophysics Data System (ADS)

    Katori, T.; Kobayashi, K.

    2015-12-01

    The central Japan is one of the most concentrated area of active faults (Quaternary fault). These are roughly classified into two orthogonally-oriented fault sets of NE-SW and NW-SE strikes. The study area is located in Gifu prefecture, central Japan. In there, the basement rocks are composed mainly of Triassic-Jurassic accretionary prism (Mino belt), Cretaceous Nohi Rhyolite and Cretaceous granitic rocks. Miocene Mizunami G. and Pliocene-Pleistocene Toki Sand and Gravel F. unconformably cover the basement rocks. The Byobuyama fault, 32 km in length, is NE-SW strike and displaces perpendicularly the Toki Sand and Gravel F. by 500 m. The northeastern terminal of the fault has contact with the southern terminal of the Atera fault of NW-SE strike and offset their displacements each other. It is clear that the activity of the Byobuyama fault plays a role of the development of the complicated fault geometry system in the central Japan. In this study, we performed a broad-based investigation along the Byobuyama fault and collected samples. Actually, we observed 400 faults and analyzed 200 fault rocks. Based on these results, we obtained the following new opinion. 1. The Byobuyama fault has experienced following activities that can be divided to 3 stages at least under different stress field. 1) Movement with the sinisterly sense (preserved in cataclasite zone). 2) Dextral movement (preserved in fault gouge zone). 3) Reverse fault movement (due to the aggressive rise of mountains). In addition, the change from Stage 2 to Stage 3 is a continuous. 2. There is a relationship between the distance from the trace of the Byobuyama fault and the combination of alteration minerals included in the fault rocks. 3. In the central part of the Byobuyama fault (CPBF), fault plane trend and combination of alteration minerals shows specific features. The continuous change is considered to mean the presence of factors that interfere with the dextral movement of the Byobuyama fault. What is

  14. Development of Characterization Technology for Fault Zone Hydrology

    SciTech Connect

    Karasaki, Kenzi; Onishi, Tiemi; Gasperikova, Erika; Goto, Junichi; Tsuchi, Hiroyuki; Miwa, Tadashi; Ueta, Keiichi; Kiho, Kenzo; MIyakawa, Kimio

    2010-08-06

    Several deep trenches were cut, and a number of geophysical surveys were conducted across the Wildcat Fault in the hills east of Berkeley, California. The Wildcat Fault is believed to be a strike-slip fault and a member of the Hayward Fault System, with over 10 km of displacement. So far, three boreholes of ~;; 150m deep have been core-drilled and borehole geophysical logs were conducted. The rocks are extensively sheared and fractured; gouges were observed at several depths and a thick cataclasitic zone was also observed. While confirming some earlier, published conclusions from shallow observations about Wildcat, some unexpected findings were encountered. Preliminary analysis indicates that Wildcat near the field site consists of multiple faults. The hydraulic test data suggest the dual properties of the hydrologic structure of the fault zone. A fourth borehole is planned to penetrate the main fault believed to lie in-between the holes. The main philosophy behind our approach for the hydrologic characterization of such a complex fractured system is to let the system take its own average and monitor a long term behavior instead of collecting a multitude of data at small length and time scales, or at a discrete fracture scale and to ?up-scale,? which is extremely tenuous.

  15. Structure of the eastern Seattle fault zone, Washington state: New insights from seismic reflection data

    USGS Publications Warehouse

    Liberty, L.M.; Pratt, T.L.

    2008-01-01

    We identify and characterize the active Seattle fault zone (SFZ) east of Lake Washington with newly acquired seismic reflection data. Our results focus on structures observed in the upper 1 km below the cities of Bellevue, Sammamish, Newcastle, and Fall City, Washington. The SFZ appears as a broad zone of faulting and folding at the southern boundary of the Seattle basin and north edge of the Seattle uplift. We interpret the Seattle fault as a thrust fault that accommodates north-south shortening by forming a fault-propagation fold with a forelimb breakthrough. The blind tip of the main fault forms a synclinal growth fold (deformation front) that extends at least 8 km east of Vasa Park (west side of Lake Sammamish) and defines the south edge of the Seattle basin. South of the deformation front is the forelimb break-through fault, which was exposed in a trench at Vasa Park. The Newcastle Hills anticline, a broad anticline forming the north part of the Seattle uplift east of Lake Washington, is interpreted to lie between the main blind strand of the Seattle fault and a backthrust. Our profiles, on the northern limb of this anticline, consistently image north-dipping strata. A structural model for the SFZ east of Lake Washington is consistent with about 8 km of slip on the upper part of the Seattle fault, but the amount of motion is only loosely constrained.

  16. Mechanical and lithological controls on the development of heterogeneous fault zones: an example from the southern Dead Sea Fault System, Israel

    NASA Astrophysics Data System (ADS)

    Evans, Siân; Holdsworth, Bob; Imber, Jonny; de Paola, Nicola; Marco, Shmuel; Weinberger, Rami

    2014-05-01

    The mechanical weakening processes involved in the development of major crustal fault systems have been widely documented, and it is recognised that clay-bearing fault rocks frequently have a significant influence on fault strength and slip behaviour in the upper crust. It is less well-understood how mechanical processes, such as cataclasis and the mechanical entrainment of fault rock materials along fault zones (e.g. "smearing"), interact with chemical processes, such as clay mineral transformations and phyllonitisation during fault rock development. These processes can combine to form fault zones that may be both lithologically and mechanically heterogeneous, and which may also evolve over time, changing the nature of observed heterogeneities. We present here data from exhumed sections of the southern Dead Sea Fault System, Israel, an active continental transform fault that has accumulated 105 km of sinistral displacement since the mid-Miocene. These faults are estimated to have been active at shallow depths (<5 km, but potentially significantly less. The so-called "fault cores" of these sections are highly heterogeneous and are comprised of material formed by a variety of processes: fault gouges formed by cataclasis; coarser-grained, variably crushed crystalline basement rocks; mechanically entrained highly mobile units, derived from shale in adjacent cover sequence wall rocks; and growth of authegenic mineral phases through alteration and pressure solution. Through operation of grain-size reduction and diffusive mass transfer processes, we see a bulk change from fault rocks dominated by relatively strong phases displaying no obvious fabric, such as feldspars and calcite, through to foliated phyllosilicate-rich (illite, chlorite, smectite) fault rocks which likely have much lower frictional strengths. Mechanically entrained shale that has not undergone significant brittle deformation can also efficiently introduce large volumes of relatively weak material into

  17. High-Resolution Fault Zone Monitoring and Imaging Using Long Borehole Arrays

    NASA Astrophysics Data System (ADS)

    Paulsson, B. N.; Karrenbach, M.; Goertz, A. V.; Milligan, P.

    2004-12-01

    Long borehole seismic receiver arrays are increasingly used in the petroleum industry as a tool for high--resolution seismic reservoir characterization. Placing receivers in a borehole avoids the distortion of reflected seismic waves by the near-surface weathering layer which leads to greatly improved vector fidelity and a much higher frequency content of 3-component recordings. In addition, a borehole offers a favorable geometry to image near-vertically dipping or overturned structure such as, e.g., salt flanks or faults. When used for passive seismic monitoring, long borehole receiver arrays help reducing depth uncertainties of event locations. We investigate the use of long borehole seismic arrays for high-resolution fault zone characterization in the vicinity of the San Andreas Fault Observatory at Depth (SAFOD). We present modeling scenarios to show how an image of the vertically dipping fault zone down to the penetration point of the SAFOD well can be obtained by recording surface sources in a long array within the deviated main hole. We assess the ability to invert fault zone reflections for rock physical parameters by means of amplitude versus offset or angle (AVO/AVA) analyzes. The quality of AVO/AVA studies depends on the ability to illuminate the fault zone over a wide range of incidence angles. We show how the length of the receiver array and the receiver spacing within the borehole influence the size of the volume over which reliable AVO/AVA information could be obtained. By means of AVO/AVA studies one can deduce hydraulic properties of the fault zone such as the type of fluids that might be present, the porosity, and the fluid saturation. Images of the fault zone obtained from a favorable geometry with a sufficient illumination will enable us to map fault zone properties in the surrounding of the main hole penetration point. One of the targets of SAFOD is to drill into an active rupture patch of an earthquake cluster. The question of whether or not

  18. Reconnaissance study of late quaternary faulting along cerro GoDen fault zone, western Puerto Rico

    USGS Publications Warehouse

    Mann, P.; Prentice, C.S.; Hippolyte, J.-C.; Grindlay, N.R.; Abrams, L.J.; Lao-Davila, D.

    2005-01-01

    The Cerro GoDen fault zone is associated with a curvilinear, continuous, and prominent topographic lineament in western Puerto Rico. The fault varies in strike from northwest to west. In its westernmost section, the fault is ???500 m south of an abrupt, curvilinear mountain front separating the 270- to 361-m-high La CaDena De San Francisco range from the Rio A??asco alluvial valley. The Quaternary fault of the A??asco Valley is in alignment with the bedrock fault mapped by D. McIntyre (1971) in the Central La Plata quadrangle sheet east of A??asco Valley. Previous workers have postulated that the Cerro GoDen fault zone continues southeast from the A??asco Valley and merges with the Great Southern Puerto Rico fault zone of south-central Puerto Rico. West of the A??asco Valley, the fault continues offshore into the Mona Passage (Caribbean Sea) where it is characterized by offsets of seafloor sediments estimated to be of late Quaternary age. Using both 1:18,500 scale air photographs taken in 1936 and 1:40,000 scale photographs taken by the U.S. Department of Agriculture in 1986, we iDentified geomorphic features suggestive of Quaternary fault movement in the A??asco Valley, including aligned and Deflected drainages, apparently offset terrace risers, and mountain-facing scarps. Many of these features suggest right-lateral displacement. Mapping of Paleogene bedrock units in the uplifted La CaDena range adjacent to the Cerro GoDen fault zone reveals the main tectonic events that have culminated in late Quaternary normal-oblique displacement across the Cerro GoDen fault. Cretaceous to Eocene rocks of the La CaDena range exhibit large folds with wavelengths of several kms. The orientation of folds and analysis of fault striations within the folds indicate that the folds formed by northeast-southwest shorTening in present-day geographic coordinates. The age of Deformation is well constrained as late Eocene-early Oligocene by an angular unconformity separating folDed, Deep

  19. The Olmsted fault zone, southernmost Illinois: A key to understanding seismic hazard in the northern new Madrid seismic zone

    USGS Publications Warehouse

    Bexfield, C.E.; McBride, J.H.; Pugin, Andre J.M.; Nelson, W.J.; Larson, T.H.; Sargent, S.L.

    2005-01-01

    Geological deformation in the northern New Madrid seismic zone, near Olmsted, Illinois (USA), is analyzed using integrated compressional-wave (P) and horizontally polarized-wave (SH) seismic reflection and regional and dedicated borehole information. Seismic hazards are of special concern because of strategic facilities (e.g., lock and dam sites and chemical plants on the Ohio River near its confluence with the Mississippi River) and because of alluvial soils subject to high amplification of earthquake shock. We use an integrated approach starting with lower resolution, but deeper penetration, P-wave reflection profiles to identify displacement of Paleozoic bedrock. Higher resolution, but shallower penetration, SH-wave images show deformation that has propagated upward from bedrock faults into Pleistocene loess. We have mapped an intricate zone more than 8 km wide of high-angle faults in Mississippi embayment sediments localized over Paleozoic bedrock faults that trend north to northeast, parallel to the Ohio River. These faults align with the pattern of epicenters in the New Madrid seismic zone. Normal and reverse offsets along with positive flower structures imply a component of strike-slip; the current stress regime favors right-lateral slip on northeast-trending faults. The largest fault, the Olmsted fault, underwent principal displacement near the end of the Cretaceous Period 65 to 70 million years ago. Strata of this age (dated via fossil pollen) thicken greatly on the downthrown side of the Olmsted fault into a locally subsiding basin. Small offsets of Tertiary and Quaternary strata are evident on high-resolution SH-wave seismic profiles. Our results imply recent reactivation and possible future seismic activity in a critical area of the New Madrid seismic zone. This integrated approach provides a strategy for evaluating shallow seismic hazard-related targets for engineering concerns. ?? 2005 Elsevier B.V. All rights reserved.

  20. An algorithm for automated identification of fault zone trapped waves

    NASA Astrophysics Data System (ADS)

    Ross, Z. E.; Ben-Zion, Y.

    2015-08-01

    We develop an algorithm for automatic identification of fault zone trapped waves in data recorded by seismic fault zone arrays. Automatic S picks are used to identify time windows in the seismograms for subsequent search for trapped waves. The algorithm calculates five features in each seismogram recorded by each station: predominant period, 1 s duration energy (representative of trapped waves), relative peak strength, arrival delay and 6 s duration energy (representative of the entire seismogram). These features are used collectively to identify stations in the array with seismograms that are statistical outliers. Applying the algorithm to large data sets allows for distinguishing genuine trapped waves from occasional localized site amplification in seismograms of other stations. The method is verified on a test data set recorded across the rupture zone of the 1992 Landers earthquake, for which trapped waves were previously identified manually, and is then applied to a larger data set with several thousand events recorded across the San Jacinto fault zone. The developed technique provides an important tool for systematic objective processing of large seismic waveform data sets recorded near fault zones.

  1. Active tectonics of the Seattle fault and central Puget sound, Washington - Implications for earthquake hazards

    USGS Publications Warehouse

    Johnson, S.Y.; Dadisman, S.V.; Childs, J. R.; Stanley, W.D.

    1999-01-01

    We use an extensive network of marine high-resolution and conventional industry seismic-reflection data to constrain the location, shallow structure, and displacement rates of the Seattle fault zone and crosscutting high-angle faults in the Puget Lowland of western Washington. Analysis of seismic profiles extending 50 km across the Puget Lowland from Lake Washington to Hood Canal indicates that the west-trending Seattle fault comprises a broad (4-6 km) zone of three or more south-dipping reverse faults. Quaternary sediment has been folded and faulted along all faults in the zone but is clearly most pronounced along fault A, the northernmost fault, which forms the boundary between the Seattle uplift and Seattle basin. Analysis of growth strata deposited across fault A indicate minimum Quaternary slip rates of about 0.6 mm/yr. Slip rates across the entire zone are estimated to be 0.7-1.1 mm/yr. The Seattle fault is cut into two main segments by an active, north-trending, high-angle, strike-slip fault zone with cumulative dextral displacement of about 2.4 km. Faults in this zone truncate and warp reflections in Tertiary and Quaternary strata and locally coincide with bathymetric lineaments. Cumulative slip rates on these faults may exceed 0.2 mm/yr. Assuming no other crosscutting faults, this north-trending fault zone divides the Seattle fault into 30-40-km-long western and eastern segments. Although this geometry could limit the area ruptured in some Seattle fault earthquakes, a large event ca. A.D. 900 appears to have involved both segments. Regional seismic-hazard assessments must (1) incorporate new information on fault length, geometry, and displacement rates on the Seattle fault, and (2) consider the hazard presented by the previously unrecognized, north-trending fault zone.

  2. Fault Zone Drainage, Heating and Melting During Earthquake Slip

    NASA Astrophysics Data System (ADS)

    Rempel, A. W.; Rice, J. R.; Jacques, L. M.

    2003-12-01

    soon eliminated (Jacques and Rice, 2002). Then all of the fault-normal stress is supported by pressure in a slurry fluid which, when the normal stress exceeds the least principal stress, can inject into the bordering damage zone. Remaining dissipation in fault slip is dominated by fluid lubrication between the still-solid gouge particles rather than inter-particle friction. The slurry viscosity is thermally activated and reduces dramatically with increasing temperature and decreasing solids fraction. We quantify these effects approximately, and compare our predictions to records of slip behavior as preserved in pseudotachylytes (e.g. Otsuki et al., 2003).

  3. A methodology for incorporating geomechanically-based fault damage zones models into reservoir simulation

    NASA Astrophysics Data System (ADS)

    Paul, Pijush Kanti

    significant improvement in history matching of production and injection data with respect to the base reservoir simulation model (petrophysical model with no damage zones). Analyzing the uncertainty of the damage zone modeling in the reservoir simulation by testing multiple equiprobable models, I found that uncertainty ranges are compact; indicating the robustness of the modeling and implementation techniques and the improved model should better predict the production behavior. In a wellbore stability study of the SAFOD (San Andreas Fault Observatory at Depth) research borehole, I demonstrate that analysis of wellbore failures associated with stress and rock strength heterogeneities in the upper part of the hole led to the accurate prediction of strength and stress at depth, as evidenced by the successful drilling through an active trace of San Andreas Fault (SAF). (Abstract shortened by UMI.)

  4. Hydrothermal alteration in an exhumed crustal fault zone: geochemical mobility in the Caleta Coloso Fault, Atacama Fault System, Northern Chile

    NASA Astrophysics Data System (ADS)

    Arancibia, G.; Fujita, K.; Hoshino, K.; Mitchell, T. M.; Cembrano, J. M.; Gomila, R.; Morata, D.; Faulkner, D. R.; Rempe, M.

    2013-12-01

    Fault zones must be considered as complex and heterogeneous systems, with areas of high permeability that alternate with very low permeability bands. Strike-slip fault zones play an important role in fluid migration in the crust, and exhumed faults can provide insights into the interrelationships of deformation mechanisms, fluid-rock interactions and bulk chemical redistributions. We determined the mineral chemistry and whole-rock geochemistry of the damage zone and fault core of the Caleta Coloso Fault, a complex major crustal scale strike-slip fault in Northern Chile, in order to constrain the physical and chemical conditions of fluids that lead to strong hydrothermal alteration. Caleta Coloso Fault consists of variably altered protocataclasites, cataclasites and discrete bands of ultracataclasite derived from a protolith of Jurassic tonalite. Hydrothermal alteration associated with fault-related fluid flow is characterized by a very low-grade association composed by chlorite, epidote, albite, quartz and calcite. Chlorite thermometry indicates T-values in the range of 284 to 352 °C (average temperature of 323 °C) and no differences in mineral composition or T-values were observed among different cataclastic rock types. Mass balance and volume change calculations document that the major chemical mobility was observed in protocataclasite, whereas cataclasite and ultracataclasite show smaller changes. This suggests that fluid flow and chemical alteration post-dated the faulting, when the protocataclasite was relatively permeable and the cataclasite and ultracataclasite acted as a barrier for fluid flow having a very low permeability due to extreme grain size reduction during cataclasis.

  5. Evaluating Temporal Variations in Fault Slip-Rate and Fault Interaction in the Eastern California Shear Zone

    NASA Astrophysics Data System (ADS)

    Amos, C. B.; Jayko, A.; Burgmann, R.

    2008-12-01

    Delineating spatiotemporal patterns of strain accumulation and release within plate boundaries remains fundamental to our understanding of the dynamics of active crustal deformation. The timescales at which active strain varies or remains constant for individual fault systems, however, are often poorly resolved. The origin of large-magnitude strain transients in the Eastern California shear zone remains enigmatic and underpins the importance of quantifying active deformation at multiple geologic timescales along this tectonic boundary. Here, we focus on the Late Pleistocene- Holocene record of slip on the NW-striking Little Lake fault zone, one of the primary structures responsible for transferring Pacific-North American plate motion between the northern Mojave Desert and the east side of the Sierra Nevada block north of the Garlock fault. Discrepancies between geologic and geodetically determined rates of motion along the Little Lake fault zone in the China Lake-Indian Wells Valley area suggest a potentially complex temporal history of slip on this structure with some slip stepping eastward onto structures bounding the west side of the Coso Range. Preliminary reconstruction of a slip-rate history on the Little Lake fault from multiple generations of displaced Quaternary geomorphic features suggests potential variation in fault-slip rates at timescales of 104- 105 years. Two paleochannel margins on a basalt strath in the Little Lake spillway represent the youngest of these features. Each margin exhibits ~30 m of right-lateral displacement and suggests a minimum slip rate of ~1.4 mm/yr during Holocene-Late Pleistocene time. Additionally, a prominent fluvial escarpment or terrace riser along the east side of Little Lake wash is offset at least ~150 to 700 m, depending on how the initial geometry of this feature is reconstructed. Pending geochronologic constraints on the age of this feature, such an offset potentially suggests higher rates of slip averaged over longer

  6. Ductile shear zones beneath strike-slip faults: Implications for the thermomechanics of the San Andreas fault zone

    USGS Publications Warehouse

    Thatcher, W.; England, P.C.

    1998-01-01

    We have carried out two-dimensional (2-D) numerical experiments on the bulk flow of a layer of fluid that is driven in a strike-slip sense by constant velocities applied at its boundaries. The fluid has the (linearized) conventional rheology assumed to apply to lower crust/upper mantle rocks. The temperature dependence of the effective viscosity of the fluid and the shear heating that accompanies deformation have been incorporated into the calculations, as has thermal conduction in an overlying crustal layer. Two end-member boundary conditions have been considered, corresponding to a strong upper crust driving a weaker ductile substrate and a strong ductile layer driving a passive, weak crust. In many cases of practical interest, shear heating is concentrated close to the axial plane of the shear zone for either boundary condition. For these cases, the resulting steady state temperature field is well approximated by a cylindrical heat source embedded in a conductive half-space at a depth corresponding to the top of the fluid layer. This approximation, along with the application of a theoretical result for one-dimensional shear zones, permits us to obtain simple analytical approximations to the thermal effects of 2-D ductile shear zones for a range of assumed rheologies and crustal geotherms, making complex numerical calculations unnecessary. Results are compared with observable effects on heat flux near the San Andreas fault using constraints on the slip distribution across the entire fault system. Ductile shearing in the lower crust or upper mantle can explain the observed increase in surface heat flux southeast of the Mendocino triple junction and match the amplitude of the regional heat flux anomaly in the California Coast Ranges. Because ductile dissipation depends only weakly on slip rate, faults moving only a few millimeters per year can be important heat sources, and the superposition of effects of localized ductile shearing on both currently active and now

  7. Fault zone amplified waves as a possible seismic hazard along the Calaveras fault in central California

    USGS Publications Warehouse

    Spudich, P.; Olsen, K.B.

    2001-01-01

    The Calaveras fault lies within a low velocity zone (LVZ) 1-2 km wide near Gilroy, California. Accelerographs G06, located in the LVZ 1.2 km from the Calaveras fault, and G07, 4 km from G06, recorded both the M 6.2 1984 Morgan Hill and the M 6.9 1989 Loma Prieta earthquakes. Comparison of the ground motions shows that a large 0.6-1.0 Hz velocity pulse observed at G06 during the Morgan Hill event may be amplified by focussing caused by the LVZ. Such amplified waves might be a mappable seismic hazard, and the zone of increased hazard can extend as much as 1.2 km from the surface trace of the fault. Finite-difference simulations of ground motions in a simplified LVZ model show a zone of amplified motion similar to the observations.

  8. San Andreas fault zone drilling project: scientific objectives and technological challenges

    USGS Publications Warehouse

    Hickman, S.H.; Younker, L.W.; Zoback, M.D.

    1995-01-01

    We are leading a new international initiative to conduct scientific drilling within the San Andreas fault zone at depths of up to 10 km. This project is motivated by the need to understand the physical and chemical processes operating within the fault zone and to answer fundamental questions about earthquake generation along major plate-boundary faults. Through a comprehensive program of coring, fluid sampling, downhole measurements, laboratory experimentation, and long-term monitoring, we hope to obtain critical information on the structure, composition, mechanical behavior and physical state of the San Andreas fault system at depths comparable to the nucleation zones of great earthquakes. The drilling, sampling and observational requirements needed to ensure the success of this project are stringent. These include: 1) drilling stable vertical holes to depths of about 9 km in fractured rock at temperatures of up to 300°C; 2) continuous coring and completion of inclined holes branched off these vertical boreholes to intersect the fault at depths of 3, 6, and 9 km; 3) conducting sophisticated borehole geophysical measurements and fluid/rock sampling at high temperatures and pressures; and 4) instrumenting some or all of these inclined core holes for continuous monitoring of earthquake activity, fluid pressure, deformation and other parameters for periods of up to several decades. For all of these tasks, because of the overpressured clay-rich formations anticipated within the fault zone at depth, we expect to encounter difficult drilling, coring and hole-completion conditions in the region of greatest scientific interest.

  9. Forearc deformation and megasplay fault system of the Ryukyu subduction zone

    NASA Astrophysics Data System (ADS)

    Hsu, S.; Yeh, Y.; Sibuet, J.; Tsai, C.; Doo, W.

    2011-12-01

    A great tsunami caused by a subduction earthquake had struck south Ryukyu islands and killed ~12000 people in 1771. Here we report the existence of a megasplay fault system along the south Ryukyu forearc. Analyses of deep multi-channel seismic reflection profiles indicate that the megasplay fault system is rising from the summit of a ~1 km high mount sitting on a ~5° landward dipping subducted plate interface. The fault system has accumulated large strain as evidenced by the active and widespread normal faults in the inner wedge. The along-trench length of the megasplay fault system is estimated to be ~450 km. The origin of this south Ryukyu megasplay fault system is linked to the subduction of elevated ridges parallel to the fracture zones. In contrast, no similar splay fault system is found in the west of 125. 5°E where the oblique subduction has produced shear zones along the south Ryukyu forearc. We infer that the megasplay fault system is responsible for the 1771 south Ryukyu tsunami. Likewise, after a quiescence of ~240 years, a near-future great earthquake and tsunami is anticipated as the extensional feature is strongly widespread over the south Ryukyu forearc.

  10. The Plio-Pleistocene evolution of the Southern Middle Atlas Fault Zone (SMAFZ) front of Morocco

    NASA Astrophysics Data System (ADS)

    Laville, E.; Delcaillau, B.; Charroud, M.; Dugué, O.; Ait Brahim, L.; Cattaneo, G.; Deluca, P.; Bouazza, A.

    2007-06-01

    The South Middle Atlas front constitutes a northeast-trending shear zone, located north of the Neogene Missour basin and east of the Taza Guercif basin. This paper analyses the Southern Middle Atlas Fault Zone (SMAFZ) deformation since the Pliocene. The set of structures observed suggests that reverse and thrust faulting along the central part of the SMAFZ are combined with left-lateral slip along N S striking faults of its south-western termination and right-lateral faulting along E NE striking faults of the east northeast termination. Thrusts and oblique thrust-related anticlines of the two lateral ramps partly accommodate north-west directed motion of the African plate. The Thrusts probably resulted from rejuvenation of Jurassic normal faults; they were active during the Upper Miocene Pliocene and the Pleistocene. The geometries of positive inversion structures and buttressing effects are clearly dependent on the geometry and sedimentology of the original basin-controlling fault system and on the presence of a décollement level. Field mapping is integrated with Landsat imagery and a digital elevation model to investigate the morphotectonic evolution of the south-eastern range front of the Middle Atlas. Geomorphological features provide significant information on the processes that govern lateral propagation of active anticlines. Both suggest that the deformation front may have been active since Pliocene.

  11. Magnetic fabrics induced by dynamic faulting reveal damage zone sizes in soft rocks, Dead Sea basin

    NASA Astrophysics Data System (ADS)

    Levi, Tsafrir; Weinberger, Rami; Marco, Shmulik

    2015-04-01

    Distinguishing between the effect of remote versus local strain fields, determining the size of the related inelastic damage zone, and resolving the fault-plane solutions of past earthquakes are of fundamental importance to neotectonic reconstructions and paleoseismic studies. In order to shad lights on these issues, we measured the anisotropy of magnetic susceptibility (AMS) of soft rocks within a seismically active region. The AMS fabrics were explored next to late Pleistocene syndepositional normal faults (total displacement up to ~3.5 m) that cross soft lacustrine rocks in the Dead Sea basin. 'Deposition fabrics' prevail meters away from the fault planes and are characterized by scattered maximum and intermediate principal AMS axes. 'Deformation fabrics' are detected up to tens of centimeters from the fault planes and are characterized by well-grouped AMS axes, in which one of the principal axes is parallel to the strike of the nearby fault. Variations in the AMS fabrics and magnetic lineations define the size of the inelastic damage zone around the faults. The results demonstrate that the deformation-driven magnetic fabrics and the associated inelastic deformation zones are compatible with coseismic dynamic faulting and the effects of the local strain field during earthquakes. Most of the AMS fabrics show a conspicuous similarity to that of the fault-plane solutions, i.e. the principal AMS axes and instantaneous strain ellipsoids are coaxial. These results suggest a novel application of the AMS method for defining the shape and size of the damage zones surrounding the paleo- dynamic faults and determining the principal axes of the local strain field.

  12. Fault zone characterization using P- and S-waves

    NASA Astrophysics Data System (ADS)

    Wawerzinek, Britta; Buness, Hermann; Polom, Ulrich; Tanner, David C.; Thomas, Rüdiger

    2014-05-01

    Although deep fault zones have high potential for geothermal energy extraction, their real usability depends on complex lithological and tectonic factors. Therefore a detailed fault zone exploration using P- and S-wave reflection seismic data is required. P- and S-wave reflection seismic surveys were carried out along and across the eastern border of the Leinetal Graben in Lower Saxony, Germany, to analyse the structural setting, different reflection characteristics and possible anisotropic effects. In both directions the P-wave reflection seismic measurements show a detailed and complex structure. This structure was developed during several tectonic phases and comprises both steeply- and shallowly-dipping faults. In a profile perpendicular to the graben, a strong P-wave reflector is interpreted as shallowly west-dipping fault that is traceable from the surface down to 500 m depth. It is also detectable along the graben. In contrast, the S-waves show different reflection characteristics: There is no indication of the strong P-wave reflector in the S-wave reflection seismic measurements - neither across nor along the graben. Only diffuse S-wave reflections are observable in this region. Due to the higher resolution of S-waves in the near-surface area it is possible to map structures which cannot be detected in P-wave reflection seismic, e.g the thinning of the uppermost Jurassic layer towards the south. In the next step a petrophysical analysis will be conducted by using seismic FD modelling to a) determine the cause (lithological, structural, or a combination of both) of the different reflection characteristics of P- and S-waves, b) characterize the fault zone, as well as c) analyse the influence of different fault zone properties on the seismic wave field. This work is part of the gebo collaborative research programme which is funded by the 'Niedersächsisches Ministerium für Wissenschaft und Kultur' and Baker Hughes.

  13. Paleoseismicity and neotectonics of the Cordillera Blanca fault zone, Northern Peruvian Andes.

    USGS Publications Warehouse

    Schwartz, D.P.

    1988-01-01

    The Cordillera Blanca fault zone is a major W dipping normal fault that bounds the W side of a 120- 170-km wide zone of active extension along the crest of the N Peruvian Andes. The fault is approximately 210 km long and exhibits continuous geomorphic evidence of repeated late Pleistocene and Holocene displacements but has not been the source of historical or teleseismically recorded earthquakes. Trenching and mapping of fault scarps provide new information on earthquake recurrence, slip rate, timing of the most recent events and Andean neotectonics. At Quebrada Queroccocha, 55 km from valley fill lacustrine and fluvial deposits are displaced 7.5-8 m. Scarp profiles, tectonic terraces, and trench exposures indicate 5 to 7 scarp-forming earthquakes of 2-3 m per event during the past 11 000-14 000 yrs at this location.-from Author

  14. Late Neogene kinematics of intra-arc oblique shear zones: The Petilia-Rizzuto Fault Zone (Calabrian Arc, Central Mediterranean)

    NASA Astrophysics Data System (ADS)

    van Dijk, J. P.

    1994-10-01

    The kinematics of intra-arc shear zones play a key role in the secondary shaping of orogenic arcs such as the Calabrian Arc (central Mediterranean). Comparison of the Neogene structural development of the Petilia-Rizzuto Fault Zone and the basement structure of the bordering Sila massif reveals that the fault zone is the surface expression of a deep NW-SE trending sinistral crustal oblique shear zone. This shear zone continues over a length of more than 130 km across the northern segment of the Calabrian Arc and shows a post-Eocene sinistral displacement of about 50 km. The late Neogene forearc basin development and syndepositional tectonics along the fault zone are reconstructed in great detail by analyzing the middle Miocene-Recent tectonic sequence stratigraphy. A strike-slip cycle can be recognized whereby the subsequent activity of Riedel shears, tensional faults, and P shears, positive flower structures and principle displacement wrench faults, can accurately be traced in time. Observed phenomena are discussed in terms of the activity of a conjugate system of oblique thrust zones within the growing accretionary complex. The evolution of special types of thrust belt basins is illustrated. These include oblique thin-skinned pull-apart basins, oblique rhomboidal "harmonica" basins, and "detached slab" basins (new terms introduced here), evolving one into the other. A new feature illustrated is the recurrent basin inversion which generated passive roof duplexes through back-shear motion and out-of-sequence thrusting along the wedge. The fault patterns and the style of inversion tectonics imply an E-W directed axis of effective compressive stress in this part of the arc. This resulted from an interaction of (1) local E-W directed compression related to a differential displacement of two parallel segments of the arc (generated by the migration to the southeast of the Calabrian Arc and opening of the Tyrrhenian backarc basin); (2) alternating NW-SE directed

  15. Kinematics and Fault Interaction of the Marmara Segment of the North Anatolian Fault Zone from Fault-Plane Solutions Based on a Refined High Precision Hypocenter Catalogue

    NASA Astrophysics Data System (ADS)

    Wollin, C.; Bohnhoff, M.; Küpperkoch, L.

    2015-12-01

    The North Anatolian Fault Zone (NAFZ) is separating the Eurasian and Anatolian plates representing a right-lateral transform plate boundary accommodating 20-30 mm annual slip. During the last seismic cycle the NAFZ has produced a series of large earthquakes that started in 1939 in Eastern Anatolia and has propagated westward towards the Istanbul-Marmara region. Here an up to 150 km long segment below the Sea of Marmara remains the only NAFZ segment that was not activated since 1766 representing a seismic gap hosting the potential for a magnitude up to 7.5 earthquake.Here we present a hypocenter catalogue for the Marmara section of the NAFZ which is a challenge since the fault is located offshore permitting no long-term on- or near fault stations. Using the Akaike Information Criterion applied on a characteristic function derived from higher order statistics as well as autoregressive forward prediction to automatically pick P- and S-onset times, we consistently analyze extensive waveform data provided by permanent seismic broadband stations of a combined regional seismic network with unprecedented station distribution.The quality of automatically determined travel times is carefully examined by comparing them to manual reference picks which were determined with a scheme emphasizing highest possible consistency and precision. The high accuracy obtained for the travel times results in an improved hypocenter catalog with fewer but well-located events that allow to image the major fault branches of the NAFZ below the Sea of Marmara.The large network aperture with lacking stations immediately above the seismicity along the fault and insufficient azimuthal station density prevents inversion for focal mechanisms of most single events. Therefore we form spatial seismicity clusters and calculate composite fault plane solutions. Resolving fault-zone geometry and kinematics allow to identify the currently active fault branches and to determine the currently ongoing processes

  16. Structural evolution of fault zones in sandstone by multiple deformation mechanisms: Moab fault, southeast Utah

    USGS Publications Warehouse

    Davatzes, N.C.; Eichhubl, P.; Aydin, A.

    2005-01-01

    Faults in sandstone are frequently composed of two classes of structures: (1) deformation bands and (2) joints and sheared joints. Whereas the former structures are associated with cataclastic deformation, the latter ones represent brittle fracturing, fragmentation, and brecciation. We investigated the distribution of these structures, their formation, and the underlying mechanical controls for their occurrence along the Moab normal fault in southeastern Utah through the use of structural mapping and numerical elastic boundary element modeling. We found that deformation bands occur everywhere along the fault, but with increased density in contractional relays. Joints and sheared joints only occur at intersections and extensional relays. In all locations , joints consistently overprint deformation bands. Localization of joints and sheared joints in extensional relays suggests that their distribution is controlled by local variations in stress state that are due to mechanical interaction between the fault segments. This interpretation is consistent with elastic boundary element models that predict a local reduction in mean stress and least compressive principal stress at intersections and extensional relays. The transition from deformation band to joint formation along these sections of the fault system likely resulted from the combined effects of changes in remote tectonic loading, burial depth, fluid pressure, and rock properties. In the case of the Moab fault, we conclude that the structural heterogeneity in the fault zone is systematically related to the geometric evolution of the fault, the local state of stress associated with fault slip , and the remote loading history. Because the type and distribution of structures affect fault permeability and strength, our results predict systematic variations in these parameters with fault evolution. ?? 2004 Geological Society of America.

  17. Late Holocene earthquakes on the Toe Jam Hill fault, Seattle fault zone, Bainbridge Island, Washington

    USGS Publications Warehouse

    Nelson, A.R.; Johnson, S.Y.; Kelsey, H.M.; Wells, R.E.; Sherrod, B.L.; Pezzopane, S.K.; Bradley, L.-A.; Koehler, R. D.; Bucknam, R.C.

    2003-01-01

    Five trenches across a Holocene fault scarp yield the first radiocarbon-measured earthquake recurrence intervals for a crustal fault in western Washington. The scarp, the first to be revealed by laser imagery, marks the Toe Jam Hill fault, a north-dipping backthrust to the Seattle fault. Folded and faulted strata, liquefaction features, and forest soil A horizons buried by hanging-wall-collapse colluvium record three, or possibly four, earthquakes between 2500 and 1000 yr ago. The most recent earthquake is probably the 1050-1020 cal. (calibrated) yr B.P. (A.D. 900-930) earthquake that raised marine terraces and triggered a tsunami in Puget Sound. Vertical deformation estimated from stratigraphic and surface offsets at trench sites suggests late Holocene earthquake magnitudes near M7, corresponding to surface ruptures >36 km long. Deformation features recording poorly understood latest Pleistocene earthquakes suggest that they were smaller than late Holocene earthquakes. Postglacial earthquake recurrence intervals based on 97 radiocarbon ages, most on detrital charcoal, range from ???12,000 yr to as little as a century or less; corresponding fault-slip rates are 0.2 mm/yr for the past 16,000 yr and 2 mm/yr for the past 2500 yr. Because the Toe Jam Hill fault is a backthrust to the Seattle fault, it may not have ruptured during every earthquake on the Seattle fault. But the earthquake history of the Toe Jam Hill fault is at least a partial proxy for the history of the rest of the Seattle fault zone.

  18. Quantifying Morphologic Changes in a Low Gradient River Crossing Southeast Louisiana Fault Zones

    NASA Astrophysics Data System (ADS)

    Fischer, G.; Gasparini, N. M.; Dawers, N. H.

    2011-12-01

    This study investigates the signature of faulting in low gradient, alluvial rivers crossing the Baton Rouge fault zone (BRFZ) and Denham Springs-Scotlandville fault zone (DSSFZ), which encompass a set of East-West striking normal faults in southeast Louisiana. These faults exhibit surface expressions associated with up to a few meters of vertical displacement of Late Pleistocene sediments, but little is known about their activity during the Holocene. Our study aims to quantify geomorphic changes in a number of rivers that cross these fault zones and to use these changes to gain insight into the history of faulting in the region. We hypothesize that fault movement will be evident in patterns of river sinuosity, slope, and width to depth ratio. We focus on four subparallel channels of various discharges that cross either or both the BRFZ and the DSSFZ. Information on local fault scarp heights and channel reaches are extracted by GIS analysis of the LA LiDAR 5 m DEM, as well as flow modeling using the HEC-RAS software program. On the Tickfaw River, we conducted field surveys using differential GPS to record contemporary water surface slopes and channel location. Historic channel features on the Tickfaw are characterized using a series of aerial photographs dating back to 1952. Over the past 50 years, the Tickfaw River has shortened its course through the study area significantly (~4.9%) by means of meander cutoffs. Since 1952, sinuosity (P) has decreased in all of the Tickfaw channel reaches that cross fault segments. Currently, the sinuosity is extremely low (average P = 1.14) where the river crosses the DSSFZ and slightly higher where the river crosses the BRFZ (average P = 1.9). We use the LiDAR data to quantify offset on the faults that the river crosses. These values will be compared with the average lateral migration rate of the river in order to better understand the time scales over which both processes operate. If the faults appear to have little morphologic

  19. Anatomy of a Complex Fault Zone: Land Seismic Reflection Imaging of the Tacoma Fault Zone, Washington State

    NASA Astrophysics Data System (ADS)

    Pape, K.; Liberty, L. M.; Pratt, T. L.

    2005-12-01

    Preliminary interpretations of new land-based seismic reflection images across the Tacoma fault zone in western Washington State document a complex pattern of faulting and folding. The Tacoma fault zone bounds gravity and aeromagnetic anomalies for 50 km across the central Puget Lowland west of the city of Tacoma, and tomography data suggest there is as much as 6 km of post-Eocene uplift of the hanging wall relative to Tacoma basin sediments to the south. We acquired four north-south seismic reflection profiles to define the character and tectonic history of the Tacoma fault zone. The 6-km long Powerline Road profile, located west of Case Inlet, perpendicularly crosses the 4-km-long Catfish Lake scarp discerned from Lidar data and trenching. The profile shows flat-lying strata on the south, but the north part of the profile is dominated by south-dipping Tertiary and older strata that appear to form the limb of an anticline. There appears to be at least one, and likely two faults in the Tertiary and older strata, although it is not clear these faults penetrate the shallowest Pleistocene strata. The 8.5-km long Carney Lake profile is located east of Case Inlet and spans two scarps imaged on Lidar data. This profile shows a similar geometry to the Powerline Road profile, folded and faulted Tertiary and older strata adjacent to flat-lying marine sediments of the Tacoma Basin. The 9-km long Bethel-Burley profile across the east portion of the Tacoma fault near Gig Harbor shows a significantly different reflector geometry than the profiles to the west. The Bethel-Burley profile is dominated by a strong, south-dipping reflection that becomes a prominent arch near the north end of the section. The strength of the reflector suggests that it marks the top of the Eocene basement rocks. South-dipping strata on this profile match those imaged on marine profiles from Carr Inlet. The new seismic reflection data support an interpretation in which the north edge of the Tacoma basin

  20. Fault-related clay authigenesis along the Moab Fault: Implications for calculations of fault rock composition and mechanical and hydrologic fault zone properties

    USGS Publications Warehouse

    Solum, J.G.; Davatzes, N.C.; Lockner, D.A.

    2010-01-01

    The presence of clays in fault rocks influences both the mechanical and hydrologic properties of clay-bearing faults, and therefore it is critical to understand the origin of clays in fault rocks and their distributions is of great importance for defining fundamental properties of faults in the shallow crust. Field mapping shows that layers of clay gouge and shale smear are common along the Moab Fault, from exposures with throws ranging from 10 to ???1000 m. Elemental analyses of four locations along the Moab Fault show that fault rocks are enriched in clays at R191 and Bartlett Wash, but that this clay enrichment occurred at different times and was associated with different fluids. Fault rocks at Corral and Courthouse Canyons show little difference in elemental composition from adjacent protolith, suggesting that formation of fault rocks at those locations is governed by mechanical processes. Friction tests show that these authigenic clays result in fault zone weakening, and potentially influence the style of failure along the fault (seismogenic vs. aseismic) and potentially influence the amount of fluid loss associated with coseismic dilation. Scanning electron microscopy shows that authigenesis promotes that continuity of slip surfaces, thereby enhancing seal capacity. The occurrence of the authigenesis, and its influence on the sealing properties of faults, highlights the importance of determining the processes that control this phenomenon. ?? 2010 Elsevier Ltd.

  1. Fault-related clay authigenesis along the Moab Fault: Implications for calculations of fault rock composition and mechanical and hydrologic fault zone properties

    NASA Astrophysics Data System (ADS)

    Solum, John G.; Davatzes, Nicholas C.; Lockner, David A.

    2010-12-01

    The presence of clays in fault rocks influences both the mechanical and hydrologic properties of clay-bearing faults, and therefore it is critical to understand the origin of clays in fault rocks and their distributions is of great importance for defining fundamental properties of faults in the shallow crust. Field mapping shows that layers of clay gouge and shale smear are common along the Moab Fault, from exposures with throws ranging from 10 to ˜1000 m. Elemental analyses of four locations along the Moab Fault show that fault rocks are enriched in clays at R191 and Bartlett Wash, but that this clay enrichment occurred at different times and was associated with different fluids. Fault rocks at Corral and Courthouse Canyons show little difference in elemental composition from adjacent protolith, suggesting that formation of fault rocks at those locations is governed by mechanical processes. Friction tests show that these authigenic clays result in fault zone weakening, and potentially influence the style of failure along the fault (seismogenic vs. aseismic) and potentially influence the amount of fluid loss associated with coseismic dilation. Scanning electron microscopy shows that authigenesis promotes that continuity of slip surfaces, thereby enhancing seal capacity. The occurrence of the authigenesis, and its influence on the sealing properties of faults, highlights the importance of determining the processes that control this phenomenon.

  2. Apparent stress, fault maturity and seismic hazard for normal-fault earthquakes at subduction zones

    USGS Publications Warehouse

    Choy, G.L.; Kirby, S.H.

    2004-01-01

    The behavior of apparent stress for normal-fault earthquakes at subduction zones is derived by examining the apparent stress (?? a = ??Es/Mo, where E s is radiated energy and Mo is seismic moment) of all globally distributed shallow (depth, ?? 1 MPa) are also generally intraslab, but occur where the lithosphere has just begun subduction beneath the overriding plate. They usually occur in cold slabs near trenches where the direction of plate motion across the trench is oblique to the trench axis, or where there are local contortions or geometrical complexities of the plate boundary. Lower ??a (< 1 MPa) is associated with events occurring at the outer rise (OR) complex (between the OR and the trench axis), as well as with intracrustal events occurring just landward of the trench. The average apparent stress of intraslab-normal-fault earthquakes is considerably higher than the average apparent stress of interplate-thrust-fault earthquakes. In turn, the average ?? a of strike-slip earthquakes in intraoceanic environments is considerably higher than that of intraslab-normal-fault earthquakes. The variation of average ??a with focal mechanism and tectonic regime suggests that the level of ?? a is related to fault maturity. Lower stress drops are needed to rupture mature faults such as those found at plate interfaces that have been smoothed by large cumulative displacements (from hundreds to thousands of kilometres). In contrast, immature faults, such as those on which intraslab-normal-fault earthquakes generally occur, are found in cold and intact lithosphere in which total fault displacement has been much less (from hundreds of metres to a few kilometres). Also, faults on which high ??a oceanic strike-slip earthquakes occur are predominantly intraplate or at evolving ends of transforms. At subduction zones, earthquakes occurring on immature faults are likely to be more hazardous as they tend to generate higher amounts of radiated energy per unit of moment than

  3. Maximum earthquake magnitudes along different sections of the North Anatolian fault zone

    NASA Astrophysics Data System (ADS)

    Bohnhoff, Marco; Martínez-Garzón, Patricia; Bulut, Fatih; Stierle, Eva; Ben-Zion, Yehuda

    2016-04-01

    Constraining the maximum likely magnitude of future earthquakes on continental transform faults has fundamental consequences for the expected seismic hazard. Since the recurrence time for those earthquakes is typically longer than a century, such estimates rely primarily on well-documented historical earthquake catalogs, when available. Here we discuss the maximum observed earthquake magnitudes along different sections of the North Anatolian Fault Zone (NAFZ) in relation to the age of the fault activity, cumulative offset, slip rate and maximum length of coherent fault segments. The findings are based on a newly compiled catalog of historical earthquakes in the region, using the extensive literary sources that exist owing to the long civilization record. We find that the largest M7.8-8.0 earthquakes are exclusively observed along the older eastern part of the NAFZ that also has longer coherent fault segments. In contrast, the maximum observed events on the younger western part where the fault branches into two or more strands are smaller. No first-order relations between maximum magnitudes and fault offset or slip rates are found. The results suggest that the maximum expected earthquake magnitude in the densely populated Marmara-Istanbul region would probably not exceed M7.5. The findings are consistent with available knowledge for the San Andreas Fault and Dead Sea Transform, and can help in estimating hazard potential associated with different sections of large transform faults.

  4. Characteristics of Fault Zones in Volcanic Rocks Near Yucca Flat, Nevada Test Site, Nevada

    SciTech Connect

    Donald Sweetkind; Ronald M. Drake II

    2007-11-27

    During 2005 and 2006, the USGS conducted geological studies of fault zones at surface outcrops at the Nevada Test Site. The objectives of these studies were to characterize fault geometry, identify the presence of fault splays, and understand the width and internal architecture of fault zones. Geologic investigations were conducted at surface exposures in upland areas adjacent to Yucca Flat, a basin in the northeastern part of the Nevada Test Site; these data serve as control points for the interpretation of the subsurface data collected at Yucca Flat by other USGS scientists. Fault zones in volcanic rocks near Yucca Flat differ in character and width as a result of differences in the degree of welding and alteration of the protolith, and amount of fault offset. Fault-related damage zones tend to scale with fault offset; damage zones associated with large-offset faults (>100 m) are many tens of meters wide, whereas damage zones associated with smaller-offset faults are generally a only a meter or two wide. Zeolitically-altered tuff develops moderate-sized damage zones whereas vitric nonwelded, bedded and airfall tuff have very minor damage zones, often consisting of the fault zone itself as a deformation band, with minor fault effect to the surrounding rock mass. These differences in fault geometry and fault zone architecture in surface analog sites can serve as a guide toward interpretation of high-resolution subsurface geophysical results from Yucca Flat.

  5. Characteristics of Fault Zones in Volcanic Rocks Near Yucca Flat, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Sweetkind, Donald S.; Drake II, Ronald M.

    2007-01-01

    During 2005 and 2006, the USGS conducted geological studies of fault zones at surface outcrops at the Nevada Test Site. The objectives of these studies were to characterize fault geometry, identify the presence of fault splays, and understand the width and internal architecture of fault zones. Geologic investigations were conducted at surface exposures in upland areas adjacent to Yucca Flat, a basin in the northeastern part of the Nevada Test Site; these data serve as control points for the interpretation of the subsurface data collected at Yucca Flat by other USGS scientists. Fault zones in volcanic rocks near Yucca Flat differ in character and width as a result of differences in the degree of welding and alteration of the protolith, and amount of fault offset. Fault-related damage zones tend to scale with fault offset; damage zones associated with large-offset faults (>100 m) are many tens of meters wide, whereas damage zones associated with smaller-offset faults are generally a only a meter or two wide. Zeolitically-altered tuff develops moderate-sized damage zones whereas vitric nonwelded, bedded and airfall tuff have very minor damage zones, often consisting of the fault zone itself as a deformation band, with minor fault effect to the surrounding rock mass. These differences in fault geometry and fault zone architecture in surface analog sites can serve as a guide toward interpretation of high-resolution subsurface geophysical results from Yucca Flat.

  6. Scaling of the critical slip distance for seismic faulting with shear strain in fault zones

    USGS Publications Warehouse

    Marone, C.; Kilgore, B.

    1993-01-01

    THEORETICAL and experimentally based laws for seismic faulting contain a critical slip distance1-5, Dc, which is the slip over which strength breaks down during earthquake nucleation. On an earthquake-generating fault, this distance plays a key role in determining the rupture nucleation dimension6, the amount of premonitory and post-seismic slip7-10, and the maximum seismic ground acceleration1,11. In laboratory friction experiments, Dc has been related to the size of surface contact junctions2,5,12; thus, the discrepancy between laboratory measurements of Dc (??? 10-5 m) and values obtained from modelling earthquakes (??? 10-2 m) has been attributed to differences in roughness between laboratory surfaces and natural faults5. This interpretation predicts a dependence of Dc on the particle size of fault gouge 2 (breccia and wear material) but not on shear strain. Here we present experimental results showing that Dc scales with shear strain in simulated fault gouge. Our data suggest a new physical interpretation for the critical slip distance, in which Dc is controlled by the thickness of the zone of localized shear strain. As gouge zones of mature faults are commonly 102-103 m thick13-17, whereas laboratory gouge layers are 1-10 mm thick, our data offer an alternative interpretation of the discrepancy between laboratory and field-based estimates of Dc.

  7. Architectural evolution of the Nojima fault and identification of the activated slip layer by Kobe earthquake

    NASA Astrophysics Data System (ADS)

    Tanaka, Hidemi; Omura, Kentaro; Matsuda, Tatsuo; Ikeda, Ryuji; Kobayashi, Kenta; Murakami, Masaki; Shimada, Koji

    2007-07-01

    Evolutionary history of Nojima Fault zone is clarified by comprehensive examinations of petrological, geophysical, and geochemical characterizations on a fault zone in deep-drilled core penetrating the Nojima Fault. On the basis of the results, we reconstruct a whole depth profile of the architecture of the Nojima Fault and identify the primal slip layer activated by 1995 Kobe earthquake. The deepest part (8- to 12-km depth) of the fault zone is composed of thin slip layers of pseudotachylite (5 to 10 mm thick each, 10 cm in total). Middle depth (4- to 8-km depth) of the fault zone is composed of fault core (6 to 10 m thick), surrounded by thick (100 m thick) damage zone, characterized by zeolite precipitation. The shallow part of the fault zone (1- to 4-km depth) is composed of distributed narrow shear zones, which are characterized by combination of thin (0.5 cm thick each, 10 cm in total) ultracataclasite layers at the core of shear zones, surrounded by thicker (1 to 3 m thick) damage zones associated with carbonate precipitation. An extremely thin ultracataclasite layer (7 mm thick), activated by the 1995 Kobe earthquake, is clearly identified from numerous past slip layers, overprinting one of the shear zones, as evidenced by conspicuous geological and geophysical anomalies. The Nojima Fault zone was 10 to 100 times thicker at middle depth than that of shallower and deeper depths. The thickening would be explained as a combination of physical and chemical effects as follows. (1) Thickening of "fault core" at middle depth would be attributed to normal stress dependence on thickness of the shear zone and (2) an extreme thickening of "damage zone" in middle depth of the crust would result from the weakening of the fault zone due to super hydrostatic fluid pressure at middle depths. The high fluid pressure would result from faster sealing with low-temperature carbonate at the shallower fault zone.

  8. Deep view of the Subduction-Transform Edge Propagator (STEP) fault in the Calabrian Subduction Zone

    NASA Astrophysics Data System (ADS)

    Maesano, Francesco Emanuele; Tiberti, Mara Monica; Basili, Roberto

    2016-04-01

    The Calabrian Subduction Zone plays a key role in the evolution of the central Mediterranean in the framework of the convergence between Africa and Europe. Here, the remnants of the World's oldest oceanic crust form a narrow NW-dipping slab passively subducting beneath the Calabrian Arc. Recently published high-resolution seismic profiles and bathymetric data of the western Ionian Sea highlight the presence of a NNW-SSE faulting system connected with a series of Plio-Pleistocene syn-tectonic basins. These features are correlated with the recent activity of a major NNW-SSE deformation zone confining the active subduction to the SW and interpreted as a Subduction-Transform Edge Propagator (STEP) fault. The goal of this work is to jointly reconstruct the geometry of the STEP fault and the subduction interface in its surroundings. We use multichannel seismic profiles acquired in the southwestern part of the Calabrian accretionary wedge to focus on the STEP fault geometry at depth and to analyse its relationships with shallow deformation features. The quantitative analysis and enhancement of seismic data provided an accurate image of the internal structure of the accretionary wedge at various depths, showing growth strata in the Plio-Pleistocene succession and major discontinuities in the lower crust. Our results depict a main subvertical, slightly east-dipping, lithospheric fault cutting the oceanic crust down to the Moho, and a rich set of associated secondary synthetic and antithetic faults. This picture also provides new insights on the STEP fault propagation mechanism. In addition, the tridimensional correlation of the STEP fault occurrences in various seismic profiles provides a preliminary scheme of its segmentation and highlights the relationships of this master fault with other main structural elements of the Calabrian Arc and Eastern Sicily, including some of the faults deemed to be responsible for major historical earthquakes in the area.

  9. Fault Scarp Detection Beneath Dense Vegetation Cover: Airborne Lidar Mapping of the Seattle Fault Zone, Bainbridge Island, Washington State

    NASA Technical Reports Server (NTRS)

    Harding, David J.; Berghoff, Gregory S.

    2000-01-01

    The emergence of a commercial airborne laser mapping industry is paying major dividends in an assessment of earthquake hazards in the Puget Lowland of Washington State. Geophysical observations and historical seismicity indicate the presence of active upper-crustal faults in the Puget Lowland, placing the major population centers of Seattle and Tacoma at significant risk. However, until recently the surface trace of these faults had never been identified, neither on the ground nor from remote sensing, due to cover by the dense vegetation of the Pacific Northwest temperate rainforests and extremely thick Pleistocene glacial deposits. A pilot lidar mapping project of Bainbridge Island in the Puget Sound, contracted by the Kitsap Public Utility District (KPUD) and conducted by Airborne Laser Mapping in late 1996, spectacularly revealed geomorphic features associated with fault strands within the Seattle fault zone. The features include a previously unrecognized fault scarp, an uplifted marine wave-cut platform, and tilted sedimentary strata. The United States Geologic Survey (USGS) is now conducting trenching studies across the fault scarp to establish ages, displacements, and recurrence intervals of recent earthquakes on this active fault. The success of this pilot study has inspired the formation of a consortium of federal and local organizations to extend this work to a 2350 square kilometer (580,000 acre) region of the Puget Lowland, covering nearly the entire extent (approx. 85 km) of the Seattle fault. The consortium includes NASA, the USGS, and four local groups consisting of KPUD, Kitsap County, the City of Seattle, and the Puget Sound Regional Council (PSRC). The consortium has selected Terrapoint, a commercial lidar mapping vendor, to acquire the data.

  10. Experimental determination of the long-term strength and stability of laterally bounding fault zones in CO2 storage reservoirs based on kinetic modeling of fault zone evolution

    NASA Astrophysics Data System (ADS)

    Samuelson, J. E.; Koenen, M.; Tambach, T.

    2011-12-01

    Long-term sequestration of CO2, harvested from point sources such as coal burning power plants and cement manufactories, in depleted oil and gas reservoirs is considered to be one of the most attractive options for short- to medium-term mitigation of anthropogenic forcing of climate change. Many such reservoirs are laterally bounded by low-permeability fault zones which could potentially be reactivated either by changes in stress state during and after the injection process, and also by alterations in the frictional strength of fault gouge material. Of additional concern is how the stability of the fault zones will change as a result of the influence of supercritical CO2, specifically whether the rate and state frictional constitutive parameters (a, b, DC) of the fault zone will change in such a way as to enhance the likelihood of seismic activity on the fault zone. The short-term influence of CO2 on frictional strength and stability of simulated fault gouges prepared from mixtures of cap rock and reservoir rock has been analyzed recently [Samuelson et al., In Prep.], concluding that CO2 has little influence on frictional constitutive behavior on the timescale of a typical experiment (< 24 hours). Because of the time constraints of experimental work, and the long durations over which CO2 is intended to be sequestered, we have chosen to model the long-term mineralogical alteration of a fault zone with a simple starting mineralogy of 33% quartz, 33% illite, and 33% dolomite by weight using the geochemical modeling program PHREEQC and the THERMODDEM database, assuming instantaneous mixing of the CO2 with the fault gouge. The geochemical modeling predicts that equilibrium will be reached between fault gouge, reservoir brine, and CO2 in approximately 440 years, assuming an average grain-size (davg) of 20 μm, and ~90 years assuming davg =4 μm, a reasonable range of grain-sizes for natural fault gouges. The main change to gouge mineralogy comes from the complete

  11. Palaeopermeability structure within fault-damage zones: A snap-shot from microfracture analyses in a strike-slip system

    NASA Astrophysics Data System (ADS)

    Gomila, Rodrigo; Arancibia, Gloria; Mitchell, Thomas M.; Cembrano, Jose M.; Faulkner, Daniel R.

    2016-02-01

    Understanding fault zone permeability and its spatial distribution allows the assessment of fluid-migration leading to precipitation of hydrothermal minerals. This work is aimed at unraveling the conditions and distribution of fluid transport properties in fault zones based on hydrothermally filled microfractures, which reflect the ''frozen-in'' instantaneous advective hydrothermal activity and record palaeopermeability conditions of the fault-fracture system. We studied the Jorgillo Fault, an exposed 20 km long, left-lateral strike-slip fault, which juxtaposes Jurassic gabbro against metadiorite belonging to the Atacama Fault System in northern Chile. Tracings of microfracture networks of 19 oriented thin sections from a 400 m long transect across the main fault trace was carried out to estimate the hydraulic properties of the low-strain fault damagezone, adjacent to the high-strain fault core, by assuming penny-shaped microfractures of constant radius and aperture within an anisotropic fracture system. Palaeopermeability values of 9.1*10-11 to 3.2*10-13 m2 in the gabbro and of 5.0*10-10 to 1.2*10-13 m2 in the metadiorite were determined, both decreasing perpendicularly away from the fault core. Fracture porosity values range from 40.00% to 0.28%. The Jorgillo Fault has acted as a left-lateral dilational fault-bend, generating large-scale dilation sites north of the JF during co-seismic activity.

  12. Evolution of fault activity reflecting the crustal deformation: Insights from crustal stress and fault orientations in the northeast-southwest Japan

    NASA Astrophysics Data System (ADS)

    Miyakawa, A.; Otsubo, M.

    2015-12-01

    We evaluated fault activity in northeast- southwest Japan based on the regional stress and the fault orientation field for both active faults and inactive faults (here, an inactive fault is a fault which activity has not been identified in Quaternary). The regional stress field was calculated using the stress inversion method [Hardebeck and Michael, 2006] applied to earthquake focal mechanisms in the northeast-southwest Japan. The locations and orientations (i.e., strike and dip, assuming a planar fault geometry) of active faults in the study area were obtained from the Active Fault Database of Japan and inactive faults from a database compiled by Kosaka et al. [2011]. We employed slip tendency analysis [Morris et al., 1996] to evaluate the likelihood of fault slip. The values of the slip tendency is generally higher along active faults than along inactive faults. The difference between the slip tendencies of active and inactive faults reflects the difference in their activities. Furthermore the high slip tendency observed for some inactive faults suggests their high activity. These high slip tendencies imply that they have potential to be active. We propose the temporal evolution from inactive to active faulting during long-term crustal deformation to explain the potential for fault activity along inactive faults. When a region undergoes the transition from inactive to active faulting, potential active faults are observed as inactive faults with a high Part of this findig have been submitted to Tectonics (AGU Journal) (2015-07-27). We will presentate some new findings.slip tendency. The average slip tendency of inactive faults gradually increases from northeast to southwest Japan, because a relatively large number of inactive faults in southwest Japan have a high slip tendency. The representative deformation zones in Japan shows a relationship with the observed spatial variations in the evolution from inactive to active faulting. This study was supported by MEXT

  13. Location and Shallow Structure of the Frijoles Strand of the San Gregorio Fault Zone, Pescadero, California

    NASA Astrophysics Data System (ADS)

    Fox-Lent, C.; Catchings, R. D.; Rymer, M. J.; Goldman, M. R.; Steedman, C. E.; Prentice, C. S.

    2003-12-01

    The San Gregorio fault is one of the principal faults of the San Andreas fault system in the San Francisco Bay area. Located west of the active trace of the San Andreas fault and near the coast, the San Gregorio fault zone consists of at least two northwest-southeast-trending strands, the Coastways and Frijoles faults. Little is known about the slip history on the San Gregorio, and information for the Frijoles fault is especially scarce, as it lies mostly offshore. To better understand the contribution of the San Gregorio fault zone to slip along the San Andreas fault system, we conducted a high-resolution, seismic imaging investigation of the Frijoles fault to locate near-surface, onshore, branches of the fault that may be suitable for paleoseismic trenching. Our seismic survey consisted of a 590-meter-long, east-west-trending, combined seismic reflection and refraction profile across Butano Creek Valley, in Pescadero, California. The profile included 107 shot points and 120 geophones spaced at 5-m increments. Seismic sources were generated by a Betsy Seisgun in 0.3-m-deep holes. Data were recorded on two Geometrics Strataview RX-60 seismographs at a sampling rate of 0.5 ms. Seismic p-wave velocities, determined by inverting first-arrival refractions using tomographic methods, ranged from 900 m/s in the shallow subsurface to 5000 m/s at 200 m depth, with higher velocities in the western half of the profile. Migrated seismic reflection images show clear, planar layering in the top 100-200 meters on the eastern and western ends of the seismic profile. However, to within the shallow subsurface, a 200-m-long zone near the center of the profile shows disturbed stratigraphic layers with several apparent fault strands approaching within a few meters of the surface. The near-surface locations of the imaged strands suggest that the Frijoles fault has been active in the recent past, although further paleoseismic study is needed to detail the slip history of the San Gregorio

  14. A new conceptual model for damage zone evolution with fault growth

    NASA Astrophysics Data System (ADS)

    de Joussineau, G.; Aydin, A.

    2006-12-01

    Faults may either impede or enhance fluid flow in the subsurface, which is relevant to a number of economic issues (hydrocarbon migration and entrapment, formation and distribution of mineral deposits) and environmental problems (movement of contaminants). Fault zones typically comprise a low-permeability core made up of intensely deformed fault rock and a high-permeability damage zone defined by fault-related fractures. The geometry, petrophysical properties and continuity of both the fault core and the damage zone have an important influence on the mechanical properties of the fault systems and on subsurface fluid flow. Information about fault components from remote seismic methods is limited and is available only for large faults (slip larger than 20-100m). It is therefore essential to characterize faults and associated damage zones in field analogues, and to develop conceptual models of how faults and related structures form and evolve. Here we present such an attempt to better understand the evolution of fault damage zones in the Jurassic Aztec Sandstone of the Valley of Fire State Park (SE Nevada). We document the formation and evolution of the damage zone associated with strike-slip faults through detailed field studies of faults of increasing slip magnitudes. The faults initiate as sheared joints with discontinuous pockets of damage zone located at fault tips and fault surface irregularities. With increasing slip (slip >5m), the damage zone becomes longer and wider by progressive fracture infilling, and is organized into two distinct components with different geometrical and statistical characteristics. The first component of the damage zone is the inner damage zone, directly flanking the fault core, with a relatively high fracture frequency and a thickness that scales with the amount of fault slip. Parts of this inner zone are integrated into the fault core by the development of the fault rock, contributing to the core's progressive widening. The second

  15. Variscan granitoids related to shear zones and faults: examples from the Central Sudetes (Bohemian Massif) and the Middle Odra Fault Zone

    NASA Astrophysics Data System (ADS)

    Oberc-Dziedzic, T.; Kryza, R.; Pin, C.

    2015-07-01

    The granitoid intrusions of the Central Sudetes (CS) and of the Middle Odra Fault Zone (MOFZ), NE part of the Bohemian Massif, are both spatially and temporally related to large-scale shear zones and faults (including possible terrane boundaries) that provided effective channels for melt migration. Summarizing common features of the CS and MOFZ granitoids, we have delineated a set of characteristics of the fault-related and shear zone-related granitoids: (1) they are mainly generated by partial melting of crustal sources, with variable contribution (or no contribution) of mantle materials; (2) the sheet-like, steeply inclined, narrow and rather small granitoid intrusions are emplaced within shear zones at mid-crustal level (c. 20 km depth), whereas the larger, flat-lying plutons intrude into the upper crust, outside or above these shear zones; (3) the magmatic foliation and lineation in granitoids of the deeper, sheet-like intrusions are concordant with those in the surrounding metamorphic rocks, suggesting that the solidification of granitoids was coeval with the deformation in the shear zones; instead, the magmatic foliation in the shallower and larger dome-like plutons reflects magma flow; (4) ductile, transcurrent movements along the shear zones postdate medium-pressure regional metamorphism and are accompanied by an increase in the local thermal gradient, as documented by the crystallization of cordierite, andalusite and sillimanite; (5) the increase in the thermal gradient precedes the emplacement of granitoids and their concomitant thermal influence on the country rocks. The granitoids related to the final stages of tectonothermal activity of the shear zones are good-time markers of their evolutionary path.

  16. Earthquake rupture extents and coseismic slips promoted by damaged fault zones

    NASA Astrophysics Data System (ADS)

    Weng, Huihui; Yang, Hongfeng; Zhang, Zhenguo; Chen, Xiaofei

    2016-06-01

    Here we investigate the effects of damage fault zones on rupture propagation by conducting a series of 3-D dynamic rupture simulations on a planar vertical strike-slip fault. We find that damage fault zones can promote rupture extent and increase earthquake potency. The waves reflected from the bottom of shallow damage fault zones can increase shear stress on the fault and thus promote rupture propagation. In addition, the promotional effects increase with the width and depth extent of damage fault zones. The overall effects of the waves reflected from the fault-parallel side boundaries of damage fault zones are unfavorable for rupture propagation. Therefore, rupture propagation is promoted with the increased width of fault zones due to geometrical spreading effects. Moreover, nonground-breaking ruptures may reach the ground surface with the effects of damage fault zones. Furthermore, along-strike segmented fault zones as suggested by observations could also promote ruptures and may lead to preferred rupture directions if epicenters are close to fault zones. The effects of damage fault zones on rupture propagation hold important implications on assessing earthquake risk.

  17. Dynamic rupture simulations on complex fault zone structures with off-fault plasticity using the ADER-DG method

    NASA Astrophysics Data System (ADS)

    Wollherr, Stephanie; Gabriel, Alice-Agnes; Igel, Heiner

    2015-04-01

    zones or branched faults. Studying the interplay of stress conditions and angle dependence of neighbouring branches including inelastic material behaviour and its effects on rupture jumps and seismic activation helps to advance our understanding of earthquake source processes. An application is the simulation of a real large-scale subduction zone scenario including plasticity to validate the coupling of our dynamic rupture calculations to a tsunami model in the framework of the ASCETE project (http://www.ascete.de/). Andrews, D. J. (2005): Rupture dynamics with energy loss outside the slip zone, J. Geophys. Res., 110, B01307. Heinecke, A. (2014), A. Breuer, S. Rettenberger, M. Bader, A.-A. Gabriel, C. Pelties, A. Bode, W. Barth, K. Vaidyanathan, M. Smelyanskiy and P. Dubey: Petascale High Order Dynamic Rupture Earthquake Simulations on Heterogeneous Supercomputers. In Supercomputing 2014, The International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, New Orleans, LA, USA, November 2014. Roten, D. (2014), K. B. Olsen, S.M. Day, Y. Cui, and D. Fäh: Expected seismic shaking in Los Angeles reduced by San Andreas fault zone plasticity, Geophys. Res. Lett., 41, 2769-2777.

  18. [Characteristics of Raman spectra of minerals in the veins of Wenchuan earthquake fault zone].

    PubMed

    Xie, Chao; Zhou, Ben-gang; Liu, Lei; Zhou, Xiao-cheng; Yi, Li; Chen, Zhi; Cui, Yue-ju; Li, Jing; Chen, Zheng-wei; Du, Jian-guo

    2015-01-01

    Quartz in the veins at the Shenxigou section of Wenchuan earthquake fault zone was investigated by micro-Raman spectroscopic measurement, and the distribution of compressive stress in the fault zone was estimated by the frequency shifts of the 464 cm-1 vibrational mode of quartz grains in the veins. It was showed that the 464 cm-1 peak arising from the quartz grains in the veins near the fault plane shifts by 3. 29 cm-1 , and the corresponding compressive stress is 368. 63 MPa, which is significantly lower than the stress accumulation on both sides due to multi-stage events. Stress accumulation increased with moving away from the fault plane in the footwall with the offset of the 464 cm-1 peak arising from the quartz grains in the veins increasing, which can reach 494. 77 MPa at a distance of 21 m with a high offset of 4. 40 cm-1 of the 464 cm-1 peak. The compressive stress gets the maximum value of 519.87 MPa at a distance of 10 m from the fault plane in the hanging wall with the offset of the 464 cm-1 peak arising from the quartz grains in the veins being 4. 62 cm-1, followed by a sudden drop in stress accumulation, and it drops to 359. 59 MPa at a distance of 17 m. Because of moving away from the foult plane at the edge of the foult zone, the stress drops to 359. 59 MPa with a small value of 464 cm-1 peak offset 3. 21 cm-1 at a distance of 27 m from the fault plane in the hanging wall due to the little effect by the fault activity. Therefore, the stress of Wenchuan earthquake fault zone is partially released, but the rest of the stress distribution is uneven, and there is also a high stress accumulation in somewhere in the fault zone, which reflects that the mechanical properties of the rocks in the fault zone have a characteristic of unevenness in space.

  19. [Characteristics of Raman spectra of minerals in the veins of Wenchuan earthquake fault zone].

    PubMed

    Xie, Chao; Zhou, Ben-gang; Liu, Lei; Zhou, Xiao-cheng; Yi, Li; Chen, Zhi; Cui, Yue-ju; Li, Jing; Chen, Zheng-wei; Du, Jian-guo

    2015-01-01

    Quartz in the veins at the Shenxigou section of Wenchuan earthquake fault zone was investigated by micro-Raman spectroscopic measurement, and the distribution of compressive stress in the fault zone was estimated by the frequency shifts of the 464 cm-1 vibrational mode of quartz grains in the veins. It was showed that the 464 cm-1 peak arising from the quartz grains in the veins near the fault plane shifts by 3. 29 cm-1 , and the corresponding compressive stress is 368. 63 MPa, which is significantly lower than the stress accumulation on both sides due to multi-stage events. Stress accumulation increased with moving away from the fault plane in the footwall with the offset of the 464 cm-1 peak arising from the quartz grains in the veins increasing, which can reach 494. 77 MPa at a distance of 21 m with a high offset of 4. 40 cm-1 of the 464 cm-1 peak. The compressive stress gets the maximum value of 519.87 MPa at a distance of 10 m from the fault plane in the hanging wall with the offset of the 464 cm-1 peak arising from the quartz grains in the veins being 4. 62 cm-1, followed by a sudden drop in stress accumulation, and it drops to 359. 59 MPa at a distance of 17 m. Because of moving away from the foult plane at the edge of the foult zone, the stress drops to 359. 59 MPa with a small value of 464 cm-1 peak offset 3. 21 cm-1 at a distance of 27 m from the fault plane in the hanging wall due to the little effect by the fault activity. Therefore, the stress of Wenchuan earthquake fault zone is partially released, but the rest of the stress distribution is uneven, and there is also a high stress accumulation in somewhere in the fault zone, which reflects that the mechanical properties of the rocks in the fault zone have a characteristic of unevenness in space. PMID:25993832

  20. Static versus dynamic fracturing in shallow carbonate fault zones

    NASA Astrophysics Data System (ADS)

    Fondriest, M.; Doan, M. L.; Aben, F. M.; Fusseis, F.; Mitchell, T. M.; Di Toro, G.

    2015-12-01

    Moderate to large earthquakes often nucleate within and propagate through carbonates in the shallow crust, therefore several field and experimental studies were recently aimed to constrain earthquake-related deformation processes within carbonate fault rocks. In particular, the occurrence of thick belts (10-100s m) of low-strain fault-related breccias (average size of rock fragments >1 cm), which is relatively common within carbonate damage zones, was generally interpreted as resulting from the quasi-static growth of fault zones rather than from the cumulative effect of multiple earthquake ruptures. Here we report the occurrence of up to hundreds of meters thick belts of intensely fragmented dolostones along the major transpressive Foiana Fault Zone (Italian Southern Alps) which was exhumed from < 2 km depth. Such dolostones are reduced into fragments ranging from few centimeters down to few millimeters in size with ultrafine-grained layers in proximity to the principal slip zones. Preservation of the original bedding indicates a lack of significant shear strain in the fragmented dolostones which seem to have been shattered in situ. To investigate the origin of the in-situ shattered rocks, the host dolostones were deformed in uniaxial compression both under quasi-static loading (strain rate ~10-3 s-1) and dynamic loading (strain rate >50 s-1). Dolostones deformed up to failure under low-strain rate were affected by single to multiple discrete (i.e. not interconnected) extensional fractures sub-parallel to the loading direction. Dolostones deformed under high-strain rate were shattered above a strain rate threshold of ~200 s-1(strain >1.2%) while they were split in few fragments or were macroscopically intact for lower strain rates. Experimentally shattered dolostones were reduced into a non-cohesive material with most rock fragments a few millimeters in size and elongated parallel to the loading direction. Fracture networks were investigated by X

  1. Brecciation processes in fault zones: Inferences from earthquake rupturing

    NASA Astrophysics Data System (ADS)

    Sibson, Richard H.

    1986-01-01

    Surface-rupture patterns and aftershock distributions accompanying moderate to large shallow earthquakes reveal a residual brittle infrastructure for established crustal fault zones, the complexity of which is likely to be largely scale-invariant. In relation to such an infrastructure, continued displacement along a particular master fault may involve three dominant mechanical processes of rock brecciation: (a) attrition brecciation, from progressive frictional wear along principal slip surfaces during both seismic and aseismic sliding, (b) distributed crush brecciation, involving microfracturing over broad regions when slip on the principal slip surfaces is impeded by antidilational jogs or other obstructions, and (c) implosion brecciation, associated with the sudden creation of void space and fluid-pressure differentials at dilational fault jogs during earthquake rupture propagation. These last, high-dilation breccias are particularly favorable sites for hydrothermal mineral deposition, forming transitory low-pressure channels for the rapid passage of hydrothermal fluids. Long-lived fault zones often contain an intermingling of breccias derived from all three processes.

  2. Heat flow and energetics of the San Andreas fault zone.

    USGS Publications Warehouse

    Lachenbruch, A.H.; Sass, J.H.

    1980-01-01

    Approximately 100 heat flow measurements in the San Andreas fault zone indicate 1) there is no evidence for local frictional heating of the main fault trace at any latitude over a 1000-km length from Cape Mendocino to San Bernardino, 2) average heat flow is high (ca.2 HFU, ca.80 mW m-2) throughout the 550-km segment of the Coast Ranges that encloses the San Andreas fault zone in central California; this broad anomaly falls off rapidly toward the Great Valley to the east, and over a 200-km distance toward the Mendocino Triple Junction to the northwest. As others have pointed out, a local conductive heat flow anomaly would be detectable unless the frictional resistance allocated to heat production on the main trace were less than 100 bars. Frictional work allocated to surface energy of new fractures is probably unimportant, and hydrologic convection is not likely to invalidate the conduction assumption, since the heat discharge by thermal springs near the fault is negligible. -Authors

  3. Post-Caledonian brittle fault zones along the SW Barents Sea Margin: Onshore-offshore margin architecture and fault rock-forming conditions

    NASA Astrophysics Data System (ADS)

    Indrevær, Kjetil; Bergh, Steffen; Stunitz, Holger; Schermer, Elizabeth; Koehl, Jean-Baptiste; Ingebrigtsen, Arild; Hansen, John-Are

    2014-05-01

    The architecture of the SW Barents Sea margin off Northern Norway is, both onshore and offshore, controlled mainly by alternating NNE-SSW and ENE-WSW trending, steeply to moderately dipping, brittle normal fault zones. These fault zones constitute at least two major fault complexes that run partly onshore in Troms, linking major horsts and ridges in the South with offshore basins and fault complexes in the North. At least two major transfer fault systems accommodate changes in fault polarity and lateral segmentation along the margin. The onshore fault activity in Troms is interpreted to have occurred in the Late Permian through Early Triassic, with no major fault movement in the Mesozoic and Cenozoic. However, later Mesozoic fault activity has taken place offshore along the Troms-Finnmark Fault Complex, and both further north and south along the margin. The fault activity in Troms is therefore believed to have migrated progressively west in time, to the Troms-Finnmark Fault Complex. This resulted in a short-tapered margin in the region after final continental break-up at ~55Ma and preserved fault rocks from the Late Permian/Early Triassic stages of rifting onshore. The onshore Late Permian/Early Triassic faulting activity took place during multiple phases, with initial fault movement at minimum P-T conditions of ~300°C and ~240MPa (~10km depth), followed by later fault movement introducing pumpellyite indicating minimum P-T conditions of ~275°C and ~220MPa (~8.5km depth). The studied faults are thought to have acted as fluid conduits, where microstructural evidence suggests that pore pressures locally reached lithostatic levels (240MPa) during faulting. A maximum differential stress of c. 35 MPa prior to-, and during faulting is estimated based on the evidence for lithostatic pore pressure and assuming a typical Mohr-Coloumb failure criterion. Fluid flow is shown to be controlled by healing and precipitation processes through time, with fluid flow localized to

  4. Interseismic deformation and moment deficit along the Manila subduction zone and the Philippine Fault system

    NASA Astrophysics Data System (ADS)

    Hsu, Y. J.; Yu, S. B.; Loveless, J. P.; Bacolcol, T.; Woessner, J.; Solidum, R., Jr.

    2015-12-01

    The Sunda plate converges obliquely with the Philippine Sea plate with a rate of ~100 mm/yr and results in the sinistral slip along the 1300 km-long Philippine fault. Using GPS data from 1998 to 2013 as well as a block modeling approach, we decompose the crustal motion into multiple rotating blocks and elastic deformation associated with fault slip at block boundaries. Our preferred model composed of 8 blocks, produces a mean residual velocity of 3.4 mm/yr at 93 GPS stations. Estimated long-term slip rates along the Manila subduction zone show a gradual southward decrease from 66 mm/yr at the northwest tip of Luzon to 60 mm/yr at the southern portion of the Manila Trench. We infer a low coupling fraction of 11% offshore northwest Luzon and a coupling fraction of 27% near the subduction of Scarborough Seamount. The accumulated strain along the Manila subduction zone at latitudes 15.5°~18.5°N could be balanced by earthquakes with composite magnitudes of Mw 8.7 and Mw 8.9 based on a recurrence interval of 500 years and 1000 years, respectively. Estimates of sinistral slip rates on the major splay faults of the Philippine fault system in central Luzon increase from east to west: sinistral slip rates are 2 mm/yr on the Dalton fault, 8 mm/yr on the Abra River fault, and 12 mm/yr on the Tubao fault. On the southern segment of the Philippine fault (Digdig fault), we infer left-lateral slip of ~20 mm/yr. The Vigan-Aggao fault in northwest Luzon exhibits significant reverse slip of up to 31 mm/yr, although deformation may be distributed across multiple offshore thrust faults. On the Northern Cordillera fault, we calculate left-lateral slip of ~7 mm/yr. Results of block modeling suggest that the majority of active faults in Luzon are fully locked to a depth of 15-20 km. Inferred moment magnitudes of inland large earthquakes in Luzon fall in the range of Mw 7.0-7.5 based on a recurrence interval of 100 years. Using the long-term plate convergence rate between the Sunda plate

  5. On the genetic connection between misorientation and weakness: slip-tendency analysis of exhumed fault zones in the Alps

    NASA Astrophysics Data System (ADS)

    Menegon, L.; Bistacchi, A.; Massironi, M.

    2008-12-01

    Crustal-scale fault zones which show a dip-slip component (either normal or reverse) and have been active for relevant times (e.g. some million years) are very often characterised by an asymmetric distribution of fault rocks, with rocks in the footwall or hangingwall (for normal or reverse faults resp.) showing a transition from relatively higher temperature crystal-plastic deformation mechanisms to low temperature brittle-cataclastic mechanisms. This is the result of progressive exhumation during a deformation continuum and may be predicted with the classic Sibson-Scholz fault zone model. This asymmetric distribution of fault rocks has been verified in exhumed fault zones from the metamorphic core of the Alps (Austroalpine and Penninic domains), such as the extensional Simplon and Brenner detachments, and studied in detail in the Sprechenstein-Mules fault zone (part of the eastern segment of the 700-km-long Periadriatic Fault System). Greenschist facies phyllonites, from a wide shear zone which constitutes the ductile precursor to the Sprechenstein-Mules brittle fault, are exposed at the hangingwall and are characterised by a pervasive SCC' composite foliation, marked by alternating phyllosilicate- and quartz-feldspar-rich layers. Centimetre- to micrometre-scale cataclastic shear zones develop along S, C and C' inherited surfaces. Hence, the hanging wall of the Sprechenstein-Mules fault zone is characterised by a strong mechanical anisotropy, which controls the mode of deformation under brittle conditions. However, given its origin in the plastic-metamorphic environment, this anisotropy is strongly misoriented for reactivation under brittle conditions. To investigate to control exerted by pre-existing ductile foliations on brittle faulting, we applied a development of slip tendency analysis that includes the effect of anisotropy. It shows that, given the mechanical anisotropy and under a realistic palaeo-state of stress, continuing activity along a misoriented and

  6. Geomorphological and Paleoseismological Studies of the Malatya Fault (Malatya-Ovacık Fault Zone, Turkey)

    NASA Astrophysics Data System (ADS)

    Sançar, Taylan; Zabcı, Cengiz; Karabacak, Volkan; Akyüz, Hüsnü Serdar

    2016-04-01

    The Malatya-Ovacık Fault Zone (MOFZ is about 240 km-long sinistral strike-slip tectonic structure within the Anatolian Scholle. Although the MOFZ is claimed to be an inactive structure since 3 Ma (Westaway and Arger, 2001), recent GPS measurements, morphotectonic studies and micro seismicity strongly suggest considerable amount of strain accumulation along this tectonic feature. The GPS-based elastic block model results yield horizontal slip rates of about 1.2 and 1.6 mm/a, for the northeastern and southwestern sections of this fault zone, respectively (Aktuǧ et al., 2013). In order to understand the seismic potential of the southwestern section, Malatya Fault (MF), of the MOFZ, we carried out paleoseismological trenching and morphometric analyses in the frame of the TÜBİTAK project no. 114Y580. The preliminary results of morphometric analyses, including the hypsometric curve and channel longitudinal profiles, suggest that the northernmost part of the MF accommodate more deformation than the southern part, where the fault zone bifurcates into several discrete segments. Relatively high values of hypsometric integral and the shape of hypsometric curves and the longitudinal channel profiles, indicate youthful topography at northern part of the MF. In the northern section of the MF, Kızık Basin is one of the most remarkable fault-related landforms, which is 9 km long and 2 km wide, and is directly controlled by the extensional step-over of the fault segments. On the northern parts of this relatively narrow depression, a linear scarp prolongs between Kızık and Ahlas villages for about 150 m. In summer 2015, we excavated a single trench on this straight lineament, where mostly braided river-related gravels and sands were exposed. Although we could not observe any evidence of surface faulting inside the erosional channel systems, the bedrock has very well-developed shear fabric at the toe of the observed scarp. We sampled the most bottom section of the undeformed

  7. Syn-collisional transform faulting of the Tan-Lu fault zone, East China

    NASA Astrophysics Data System (ADS)

    Zhu, Guang; Liu, Guo Sheng; Niu, Man Lan; Xie, Cheng Long; Wang, Yong Sheng; Xiang, Biwei

    2009-02-01

    Origin of the continental-scale Tan-Lu fault zone (TLFZ), East China, remains controversial. About 550 km sinistral offset of the Dabie orogenic belt (DOB) and Sulu orogenic belt (SOB) is shown along the NE-NNE-striking TLFZ. Syn-collisional, sinistral ductile shear belts in the TLFZ have been identified. Thirteen phengite bulk separates from the mylonites were dated by the 40Ar/39Ar method. They gave cooling ages of the 198-181 Ma for the shear belts along the eastern margin of the DOB and 221-210 Ma from the western margin of the SOB. Distribution of the foreland basin deposits suggests that sinistral offset of the DOB and SOB by the TLFZ took place prior to deposition of the Upper Triassic strata. The marginal structures around the DOB and SOB support syn-collisional faulting, and indicate anticlockwise rotation of the DOB during the displacement. The folding and thrust faulting related to crustal subduction, coeval with the Tan-Lu faulting, is older than the foreland basin deposition related to the orogenic exhumation. Several lines of evidence demonstrate that the TLFZ was developed as a syn-collisional transform fault during latest Middle to earliest Late Triassic time when the DOB and SOB experienced crustal subduction of the South China Block (SCB). Eastward increase of the crustal subduction rates is believed to be responsible for the sinistral transform faulting.

  8. Fault Growth and Propagation and its Effect on Surficial Processes within the Incipient Okavango Rift Zone, Northwest Botswana, Africa (Invited)

    NASA Astrophysics Data System (ADS)

    Atekwana, E. A.

    2010-12-01

    The Okavango Rift Zone (ORZ) is suggested to be a zone of incipient continental rifting occuring at the distal end of the southwestern branch of the East African Rift System (EARS), therefore providing a unique opportunity to investigate neotectonic processes during the early stages of rifting. We used geophysical (aeromagnetic, magnetotelluric), Shuttle Radar Tomography Mission, Digital Elevation Model (SRTM-DEM), and sedimentological data to characterize the growth and propagation of faults associated with continental extension in the ORZ, and to elucidate the interplay between neotectonics and surficial processes. The results suggest that: (1) fault growth occurs by along axis linkage of fault segments, (2) an immature border fault is developing through the process of “Fault Piracy” by fault-linkages between major fault systems, (3) significant discrepancies exits between the height of fault scarps and the throws across the faults compared to their lengths in the basement, (4) utilization of preexisting zones of weakness allowed the development of very long faults (> 25-100 km) at a very early stage of continental rifting, explaining the apparent paradox between the fault length versus throw for this young rift, (5) active faults are characterized by conductive anomalies resulting from fluids, whereas, inactive faults show no conductivity anomaly; and 6) sedimentlogical data reveal a major perturbation in lake sedimentation between 41 ka and 27 ka. The sedimentation perturbation is attributed to faulting associated with the rifting and may have resulted in the alteration of hydrology forming the modern day Okavango delta. We infer that this time period may represent the age of the latest rift reactivation and fault growth and propagation within the ORZ.

  9. Fault-zone guided waves from explosions in the San Andreas fault at Parkfield and Cienega Valley, California

    USGS Publications Warehouse

    Li, Y.-G.; Ellsworth, W.L.; Thurber, C.H.; Malin, P.E.; Aki, K.

    1997-01-01

    Fault-zone guided waves were successfully excited by near-surface explosions in the San Andreas fault zone both at Parkfield and Cienega Valley, central California. The guided waves were observed on linear, three-component seismic arrays deployed across the fault trace. These waves were not excited by explosions located outside the fault zone. The amplitude spectra of guided waves show a maximum peak at 2 Hz at Parkfield and 3 Hz at Cienega Valley. The guided wave amplitude decays sharply with observation distance from the fault trace. The explosion-excited fault-zone guided waves are similar to those generated by earthquakes at Parkfield but have lower frequencies and travel more slowly. These observations suggest that the fault-zone wave guide has lower seismic velocities as it approaches the surface at Parkfield. We have modeled the waveforms as S waves trapped in a low-velocity wave guide sandwiched between high-velocity wall rocks, resulting in Love-type fault-zone guided waves. While the results are nonunique, the Parkfield data are adequately fit by a shallow wave guide 170 m wide with an S velocity 0.85 km/sec and an apparent Q ??? 30 to 40. At Cienega Valley, the fault-zone wave guide appears to be about 120 m wide with an S velocity 0.7 km/sec and a Q ??? 30.

  10. Structural styles of Paleozoic intracratonic fault reactivation: A case study of the Grays Point fault zone in southeastern Missouri, USA

    USGS Publications Warehouse

    Clendenin, C.W.; Diehl, S.F.

    1999-01-01

    A pronounced, subparallel set of northeast-striking faults occurs in southeastern Missouri, but little is known about these faults because of poor exposure. The Commerce fault system is the southernmost exposed fault system in this set and has an ancestry related to Reelfoot rift extension. Recent published work indicates that this fault system has a long history of reactivation. The northeast-striking Grays Point fault zone is a segment of the Commerce fault system and is well exposed along the southeast rim of an inactive quarry. Our mapping shows that the Grays Point fault zone also has a complex history of polyphase reactivation, involving three periods of Paleozoic reactivation that occurred in Late Ordovician, Devonian, and post-Mississippian. Each period is characterized by divergent, right-lateral oblique-slip faulting. Petrographic examination of sidwall rip-out clasts in calcite-filled faults associated with the Grays Point fault zone supports a minimum of three periods of right-lateral oblique-slip. The reported observations imply that a genetic link exists between intracratonic fault reactivation and strain produced by Paleozoic orogenies affecting the eastern margin of Laurentia (North America). Interpretation of this link indicate that right-lateral oblique-slip has occurred on all of the northeast-striking faults in southeastern Missouri as a result of strain influenced by the convergence directions of the different Paleozoic orogenies.

  11. Geomorphological analysis of the Lower Tagus Valley Fault Zone, Central Portugal.

    NASA Astrophysics Data System (ADS)

    Canora-Catalan, Carolina; Besana-Ostman, Glenda; Vilanova, Susana; Fonseca, Joao; Pinto, Luis; Domingues, Ana; Narciso, Joao; Pinheiro, Patricia

    2013-04-01

    The Lower Tagus Valley Fault Zone (LTVFZ) is a northeast-southwest trending tectonic structure located within the Lower Tagus Valley (LTV), in central Portugal associated with at least two historical events: the 1909 Mw 6.0-6.2 Benavente earthquake and the 1531 Mw 6.9 earthquake. Recent investigations indicate that the relatively linear valley associated with the Lower Tagus River is controlled by active faults in varying geometry and slip rates. Based on mapped traces, LTVFZ is about 80 kilometers long and transects Miocene to late Quaternary deposit. The east and west strands of the fault zone may have different level of activity based on the variable clarity of mapped morphological expressions. In this work, new fault strands were identified using aerial photos on eastern side of LTV. These eastern faults has a trend that almost parallel those active traces previously mapped by Besana-Ostman et al., 2012 on the western side of the valley. The newly-mapped faults has left-lateral strike-slip movements and can be separated into two segments based on the kinematic indicators like offsets on river, ridges, and valley together with fluvial terraces displacements. Until this study, no Holocene fault scarps have been identified on the eastern portion of the LTV. Quaternary activity of faults can be assessed by the evaluation of morphometric indexes. In case of LTVFZ, the most characteristic landforms are fault-generated mountain fronts and valleys where the mountain front sinuosity index Smf is measured for fault activity evaluation. Through this morphometric index, mountain fronts are classified into Class I (Smf 1-1.4); active, Class II (Smf 1.4-2.5); intermediate, and Class III (Smf >2.5); inactive. In this paper, the Smf is calculated for the western and eastern sides of LTV as 1.3 and 1.8, respectively. These Smf values indicate that the western mountain front of the LTV corresponds to Class I while the eastern mountain front is Class II. However, considering the

  12. Frictional melting experiments investigate coseismic behaviour of pseudotachylyte-bearing faults in the Outer Hebrides Fault Zone, UK.

    NASA Astrophysics Data System (ADS)

    Campbell, L.; De Paola, N.; Nielsen, S. B.; Holdsworth, R.; Lloyd, G. E. E.; Phillips, R. J.; Walcott, R.

    2015-12-01

    Recent experimental studies, performed at seismic slip rates (≥ 1 m/s), suggest that the friction coefficient of seismic faults is significantly lower than at sub-seismic (< 1 mm/s) speeds. Microstructural observations, integrated with theoretical studies, suggest that the weakening of seismic faults could be due to a range of thermally-activated mechanisms (e.g. gel, nanopowder and melt lubrication, thermal pressurization, viscous flow), triggered by frictional heating in the slip zone. The presence of pseudotachylyte within both exhumed fault zones and experimental slip zones in crystalline rocks suggests that lubrication plays a key role in controlling dynamic weakening during rupture propagation. The Outer Hebrides Fault Zone (OHFZ), UK contains abundant pseudotachylyte along faults cutting varying gneissic lithologies. Our field observations suggest that the mineralogy of the protolith determines volume, composition and viscosity of the frictional melt, which then affects the coseismic weakening behaviour of the fault and has important implications for the magnitudes and distribution of stress drops during slip episodes. High velocity friction experiments at 18 MPa axial load, 1.3 ms-1 and up to 10 m slip were run on quartzo-feldspathic, metabasic and mylonitic samples, taken from the OHFZ in an attempt to replicate its coseismic frictional behaviour. These were configured in cores of a single lithology, or in mixed cores with two rock types juxtaposed. All lithologies produce a general trend of frictional evolution, where an initial peak followed by transient weakening precedes a second peak which then decays to a steady state. Metabasic and felsic single-lithology samples both produce sharper frictional peaks, at values of μ = 0.19 and μ= 0.37 respectively, than the broader and smaller (μ= 0.15) peak produced by a mixed basic-felsic sample. In addition, both single-lithology peaks occur within 0.2 m slip, whereas the combined-lithology sample displays a

  13. Fold-to-fault progression of a major thrust zone revealed in horses of the North Mountain fault zone, Virginia and West Virginia, USA

    USGS Publications Warehouse

    Orndorff, Randall C.

    2012-01-01

    The method of emplacement and sequential deformation of major thrust zones may be deciphered by detailed geologic mapping of these important structures. Thrust fault zones may have added complexity when horse blocks are contained within them. However, these horses can be an important indicator of the fault development holding information on fault-propagation folding or fold-to-fault progression. The North Mountain fault zone of the Central Appalachians, USA, was studied in order to better understand the relationships of horse blocks to hanging wall and footwall structures. The North Mountain fault zone in northwestern Virginia and eastern panhandle of West Virginia is the Late Mississippian to Permian Alleghanian structure that developed after regional-scale folding. Evidence for this deformation sequence is a consistent progression of right-side up to overturned strata in horses within the fault zone. Rocks on the southeast side (hinterland) of the zone are almost exclusively right-side up, whereas rocks on the northwest side (foreland) of the zone are almost exclusively overturned. This suggests that the fault zone developed along the overturned southeast limb of a syncline to the northwest and the adjacent upright limb of a faulted anticline to the southeast.

  14. High-velocity frictional properties and microstructures of clay-rich fault gouge in megasplay fault zone, Nankai subduction zone

    NASA Astrophysics Data System (ADS)

    Ujiie, K.; Tsutsumi, A.

    2010-12-01

    In accretionary margins, a large out-of-sequence fault system (the megasplay fault) commonly branches from the megathrust and intersects the seafloor along the lower slope of the margin. Detailed seismic reflection surveys and theoretical studies have suggested that the propagation of earthquake rupture occurred repeatedly along the megasplay fault during great subduction earthquakes. Recently, IODP Expedition 316 drilled into the shallow portion of the megasplay fault zone in the Nankai subduction zone offshore the Kii Peninsula, southwest Japan and found the evidence for the slip localization and past frictional heating along ~10-mm-thick dark gouges in the microbreccia. Thus, high-velocity frictional properties of the megasplay fault material are crucial for understanding whether the megasplay fault efficiently transfers displacement toward the seafloor and fosters a tsunami genesis during a subduction earthquake. We conducted high-velocity friction experiments on clay-rich fault gouge taken from the Nankai megasplay fault zone at a slip rate of 1.3 m/s and normal stresses of 0.6-2.0 MPa under dry and wet conditions. After the experiments, the microstructures of the fault gouges were examined by optical microscope and SEM. In the dry tests, dehydration of clay minerals occurred by frictional heating, and the slip weakening is related to the fault gouge expansion due to a water phase transition from liquid to vapor. The water is derived from the dehydration of clay minerals by frictional heating. The resulting microstructure in the gouge layer is a random distribution of spherical clay-clast aggregates (CCA) in the optically isotropic, dark matrix. In the wet tests, the slip weakening is caused by pore-fluid pressurization resulting from shear-enhanced compaction of the water-saturated gouge and frictional heating. Compared to the dry tests, the wet tests show smaller dynamic stress drops and slip weakening distance. The steady-state shear stress in the wet tests

  15. Detecting Taiwan's Shanchiao Active Fault Using AMT and Gravity Methods

    NASA Astrophysics Data System (ADS)

    Liu, H.-C.; Yang, C.-H.

    2009-04-01

    Taiwan's Shanchiao normal fault runs in a northeast-southwest direction and is located on the western edge of the Taipei Basin in northern Taiwan. The overburden of the fault is late Quaternary sediment with a thickness of approximately a few tenth of a meter to several hundred meters. No detailed studies of the western side of the Shanchiao fault are available. As Taiwan is located on the Neotectonic Belt in the western Pacific, detecting active faults near the Taipei metropolitan area will provide necessary information for further disaster prevention. It is the responsibility of geologists and geophysicists in Taiwan to perform this task. Examination of the resistivity and density contrasts of subsurface layers permits a mapping of the Shanchiao fault and the deformed Tertiary strata of the Taipei Basin. The audio-frequency magnetotelluric (AMT) method and gravity method were chosen for this study. Significant resistivity and gravity anomalies were observed in the suspected fault zone. The interpretation reveals a good correlation between the features of the Shanchiao fault and resistivity and density distribution at depth. In this observation, AMT and gravity methods provides a viable means for mapping the Shanchiao fault position and studying its features associated with the subsidence of the western side of the Taipei Basin. This study indicates the AMT and gravity methods' considerable potential for accurately mapping an active fault.

  16. Two-dimensional seismic image of the San Andreas Fault in the Northern Gabilan Range, central California: Evidence for fluids in the fault zone

    USGS Publications Warehouse

    Thurber, C.; Roecker, S.; Ellsworth, W.; Chen, Y.; Lutter, W.; Sessions, R.

    1997-01-01

    A joint inversion for two-dimensional P-wave velocity (Vp), P-to-S velocity ratio (Vp/Vs), and earthquake locations along the San Andreas fault (SAF) in central California reveals a complex relationship among seismicity, fault zone structure, and the surface fault trace. A zone of low Vp and high Vp/Vs lies beneath the SAF surface trace (SAFST), extending to a depth of about 6 km. Most of the seismic activity along the SAF occurs at depths of 3 to 7 km in a southwest-dipping zone that roughly intersects the SAFST, and lies near the southwest edge of the low Vp and high Vp/Vs zones. Tests indicate that models in which this seismic zone is significantly closer to vertical can be confidently rejected. A second high Vp/Vs zone extends to the northeast, apparently dipping beneath the Diablo Range. Another zone of seismicity underlies the northeast portion of this Vp/Vs high. The high Vp/Vs zones cut across areas of very different Vp values, indicating that the high Vp/Vs values are due to the presence of fluids, not just lithology. The close association between the zones of high Vp/Vs and seismicity suggests a direct involvement of fluids in the faulting process. Copyright 1997 by the American Geophysical Union.

  17. Detailed Northern Anatolian Fault Zone crustal structure from receiver functions

    NASA Astrophysics Data System (ADS)

    Cornwell, D. G.; Kahraman, M.; Thompson, D. A.; Houseman, G. A.; Rost, S.; Turkelli, N.; Teoman, U.; Altuncu Poyraz, S.; Gülen, L.; Utkucu, M.

    2013-12-01

    We present high resolution images derived from receiver functions of the continental crust in Northern Turkey that is dissected by two fault strands of the Northern Anatolian Fault Zone (NAFZ). The NAFZ is a major continental strike-slip fault system that is comparable in length and slip rate to the San Andreas Fault Zone. Recent large earthquakes occurred towards the western end of the NAFZ in 1999 at Izmit (M7.5) and Düzce (M7.2). As part of the multi-disciplinary Faultlab project, we aim to develop a model of NAFZ crustal structure and locate deformation by constraining variations in seismic properties and anisotropy in the upper and lower crust. The crustal model will be an input to test deformation scenarios in order to match geodetic observations from different phases of the earthquake loading cycle. We calculated receiver functions from teleseismic earthquakes recorded by a rectangular seismometer array spanning the NAFZ with 66 stations at a nominal inter-station spacing of 7 km and 7 additional stations further afield. This Dense Array for North Anatolia (DANA) was deployed from May 2012 until September 2013 and we selected large events (Mw>5.5) from the high quality seismological dataset to analyze further. Receiver functions were calculated for different frequency bands then collected into regional stacks before being inverted for crustal S-wave velocity structure beneath the entire DANA array footprint. In addition, we applied common conversion point (CCP) migration using a regional velocity model to construct a migrated 3D volume of P-to-S converted and multiple energy in order to identify the major crustal features and layer boundaries. We also performed the CCP migration with transverse receiver functions in order to identify regions of anisotropy within the crustal layers. Our preliminary results show a heterogeneous crust above a flat Moho that is typically at a depth of 33 km. We do not observe a prominent step in the Moho beneath the surface

  18. The permeability of fault zones: a case study of the Dead Sea rift (Middle East)

    NASA Astrophysics Data System (ADS)

    Ran, Gabay; Eyal, Shalev; Yoseph, Yechieli; Amir, Sagy; Noam, Weisbrod

    2014-03-01

    Fault zone architecture plays an important role in flow regimes of hydrological systems. Fault zones can act as conduits, barriers, or conduits/barrier systems depending on their spatial architecture. The goal of this study is to determine the fault-zone permeability structure and its effect on the local hydrogeological system in the Dead Sea fault system. Permeability was measured on small-scale outcrop plug samples at four faults along the Dead Sea fault system, and large-scale slug tests in four boreholes, in different parts of the fault, at Yair fault in Israel. The research results show that values in the damage zone are two to five orders of magnitude higher than those of the fault core (~3.5 × 10-10, 1 × 10-15 m2 respectively), resulting in an anisotropic permeability structure for the overall fault zone and preferable flow parallel to the fault. A set of injection tests in the Yair fault damage zone revealed a water-pressure-dependent behavior. The permeability of this zone increases when employing a higher water pressure in the fault fracture-dominated damage zone, due to the reopening of fractures.

  19. Fault zone architecture of the San Jacinto fault zone in Horse Canyon, southern California: A model for focused post-seismic fluid flow and heat transfer in the shallow crust

    NASA Astrophysics Data System (ADS)

    Morton, Nissa; Girty, Gary H.; Rockwell, Thomas K.

    2012-05-01

    We report results of a new study of the architecture of the San Jacinto fault zone in Horse Canyon, California, where stream incision has exposed a nearly continuous outcrop of the fault zone at ~ 0.4 km depth. The fault zone at this location consists of a fault core, transition zone, damage zone, and tonalitic wall rocks. We collected and analyzed samples for their bulk and grain density, geochemical data, clay mineralogy, and textural and modal mineralogy. Progressive deformation within the fault zone is characterized by mode I cracking, subsequent shearing of already fractured rock, and cataclastic flow. Grain comminution advances towards the strongly indurated cataclasite fault core. Damage progression towards the core is accompanied by a decrease in bulk and grain density, and an increase in porosity and dilational volumetric strain. Palygorskite and mixed-layer illite/smectite clay minerals are present in the damage and transition zones and are the result of hydrolysis reactions. The estimated percentage of illite in illite/smectite increases towards the fault core where the illite/smectite to illite conversion is complete, suggesting elevated temperatures that may have reached 150 °C. Chemical alteration and elemental mass changes are observed throughout the fault zone and are most pronounced in the fault core. We conclude that the observed chemical and mineralogical changes can only be produced by the interaction of fractured wall rocks and chemically active fluids that are mobilized through the fault zone by thermo-pressurization during and after seismic events. Based on the high element mobility and absence of illite/smectite in the fault core, we expect that the greatest water/rock ratios occur within the fault core. These results indicate that hot pore fluids circulate upwards through the fractured fault core and into the surrounding damage zone. Though difficult to constrain, we speculate that the site studied during this investigation may represent

  20. Physical and Transport Properties of the carbonate-bearing faults: experimental insights from the Monte Maggio Fault zone (Central Italy)

    NASA Astrophysics Data System (ADS)

    Trippetta, Fabio; Scuderi, Marco Maria; Collettini, Cristiano

    2015-04-01

    Physical properties of fault zones vary with time and space and in particular, fluid flow and permeability variations are strictly related to fault zone processes. Here we investigate the physical properties of carbonate samples collected along the Monte Maggio normal Fault (MMF), a regional structure (length ~10 km and displacement ~500 m) located within the active system of the Apennines. In particular we have studied an exceptionally exposed outcrop of the fault within the Calcare Massiccio formation (massive limestone) that has been recently exposed by new roadworks. Large cores (100 mm in diameter and up to 20 cm long) drilled perpendicular to the fault plane have been used to: 1) characterize the damage zone adjacent to the fault plane and 2) to obtain smaller cores, 38 mm in diameter both parallel and perpendicular to the fault plane, for rock deformation experiments. At the mesoscale two types of cataclastic damage zones can be identified in the footwall block (i) a Cemented Cataclasite (CC) and (ii), a Fault Breccia (FB). Since in some portions of the fault the hangingwall (HW) is still preserved we also collected HW samples. After preliminary porosity measurements at ambient pressure, we performed laboratory measurements of Vp, Vs, and permeability at effective confining pressures up to 100 MPa in order to simulate crustal conditions. The protolith has a primary porosity of about 7 %, formed predominantly by isolated pores since the connected porosity is only 1%. FB samples are characterized by 10% and 5% of bulk and connected porosity respectively, whilst CC samples show lower bulk porosity (7%) and a connected porosity of 2%. From ambient pressure to 100 MPa, P-wave velocity is about 5,9-6,0 km/s for the protolith, ranges from 4,9 km/s to 5,9 km/s for FB samples, whereas it is constant at 5,9 km/s for CC samples and ranges from 5,4 to 5,7 for HW sample. Vs shows the same behaviour resulting in a constant Vp/Vs ratio from 0 to 100 MPa that ranges from 1

  1. Paleoseismological analysis on the basis of precise sea bottom topography and sonic prospecting along the normal fault in the Beppu-Haneyama Fault Zone in Kyushu, Japan

    NASA Astrophysics Data System (ADS)

    Takemura, K.; Haraguchi, T.; Yamada, K.; Yoshinaga, Y.

    2015-12-01

    The subaqueous topography of bays or lakes along the large active faults are influenced by displacement on fault and strong motion related sediments such as land slide, turbidite etc. We carried out precise topographic survey using multi-beam sonic survey, and seismic reflection survey to about 40m deep sediments in Beppu Bay, which is a pull apart basin with normal faults related to right lateral movements of Median Tectonic Line in southwest Japan. In west central Kyushu, long active fault zone named as Beppu - Haneyama Fault zone runs with E-W direction normal fault zone. The southwest boundary of Beppu Bay is a part of Beppu-Haneyama Fault zone and normal fault of pull apart basin. The multi beam sonic data show the characteristic altitude distribution (topography) of steep inclining slope from shore side to the deepest part with 70m below sea level along the coast, and also submarine slidings occurred at off Beppu and off Oita. Within those areas, several blocks of more than 100m has preserved shape and developed to sliding direction. From the viewpoint of sliding topography, sliding movements are thought sector collapse during short interval, and main cause is thought the movement of directly below active fault and related strong seismic motion. The sonic prospecting data show several reflection horizons indicating volcanic ashes and sand seams. Around two submarine sliding deposit areas, continuation of clear reflections are sparse influenced by event sedimentation and thick coarse sediments. 88 m sediment cores from 7 sites (core length: 8m to 20m long per site) from deepest part and submarine sliding area in late July this year (2015) will make clear that construction age of these topography and construction mechanism from lithological characteristics, and comparison to historical record including large earthquake occurred in 1596.

  2. Measuring Transient Signals in Plate Boundary Faults Zones with Strainmeters

    NASA Astrophysics Data System (ADS)

    Hodgkinson, Kathleen; Mencin, Dave; Phillips, David; Henderson, Brent; Gottlieb, Mike; Gallaher, Warren; Johnson, Wade; Pyatt, Chad; Van Boskirk, Elizabeth; Fox, Otina; Mattioli, Glen; Meertens, Chuck

    2014-05-01

    One of the fundamental goals the U.S. National Science Foundation (NSF) funded Earthscope program was to provide a high-quality, continuous geodetic data set that would allow the scientific community to study the evolution of plate boundary zones. Of particular importance was enabling investigation of the role aseismic transient deformation plays in the release of accumulated stress. For example, to allow the comparison of the amount of strain released through Episodic Tremor and Slip (ETS) events to that released in subduction zone earthquakes or, provide the ability to geodetically illuminate the kinematics of fault creep in strike-slip fault zones. The ability to easily integrate these measurements with compatible geophysical data sets was also an essential objective. With goals such as these in mind NSF funded the Plate Boundary Observatory (PBO) to record the continuous deformation field across the western US Plate Boundary. PBO, built and operated by UNAVCO, now consists of over 1100 GPS stations, 76 co-located borehole strain and seismic sites, 6 long baseline strainmeters, Depending on the scientific questions being addressed sites may also have tiltmeter, meteorological, pore pressure and meteorological instrumentation. This presentation will focus on the transient deformation signals recorded by the PBO strainmeter network. PBO strainmeters, which excel in recording signals on the order of nanostrain over hours, have provided unprecedented temporal resolution of aseismic transients such as ETS events in the Cascadia subduction zone, creep signals along the central section of the San Andreas fault system and tsunami generated strain waves. UNAVCO is responsible not only for the ongoing operation of PBO but also the generation of data products associated with each instrument type. In this presentation we will highlight some of the transient signals these instruments have captured, outline the processing steps required to extract these signals data and

  3. Quantitative assessment of landslide susceptibility along the Xianshuihe fault zone, Tibetan Plateau, China

    NASA Astrophysics Data System (ADS)

    Guo, Changbao; Montgomery, David R.; Zhang, Yongshuang; Wang, Ke; Yang, Zhihua

    2015-11-01

    The Xianshuihe fault (XSF) zone is a sinistral-slip fault system on the eastern margin of the Tibetan Plateau, with high Quaternary activity and frequent historic earthquakes. Large landslides along the fault zone have caused substantial damage and are the second-most important regional hazard after earthquakes. A landslide inventory in a 7339-km2 area along the XSF zone documented 415 landslides and evaluated landslide distribution characteristics using frequency ratio (FR) and weight-of-evidence (WOE) models to map landslide susceptibility. A total of 11 variables were analyzed as input variables: slope angle, slope aspect, altitude, planform curvature, topographic wetness index, distance from active faults, lithology, annual rainfall, distance from rivers, distance from roads, and the NDVI of the study area. Among these factors, the distance from active faults, altitude, slope angle, aspect, lithology, and rainfall were the dominant influencing factors. Assessment of six susceptibility mapping schemes with FR and WOE models using the ROC method showed that, while all six of the model schemes produced good results, on the whole, the FR model performed better than the WOE model. The landslide susceptibility map of the FR model with six variables performed as well as the WOE model with the full 11 variables. Inclusion of more variables did not necessarily translate into a better predictive capability. Several factors typically associated with susceptibility to rainfall-triggered landslides-topographic convergence, rainfall, and topographic wetness index-either did not follow expected patterns (rainfall) or were not good general predictors of landslide locations (topographic convergence and wetness index). In contrast, distance to active faults, slope aspect, and topographic divergence were the best predictors as measured by the FR method. This combination points to earthquakes rather than rainfall as the dominant landslide-triggering mechanism in the study area.

  4. Geophysical characterization of transtensional fault systems in the Eastern California Shear Zone-Walker Lane Belt

    NASA Astrophysics Data System (ADS)

    McGuire, M.; Keranen, K. M.; Stockli, D. F.; Feldman, J. D.; Keller, G. R.

    2011-12-01

    The Eastern California Shear Zone (ECSZ) and Walker Lane belt (WL) accommodate ~25% of plate motion between the North American and Pacific plates. Faults within the Mina deflection link the ECSZ and the WL, transferring strain from the Owens Valley and Death Valley-Fish Lake Valley fault systems to the transcurrent faults of the central Walker Lane. During the mid to late Miocene the majority of strain between these systems was transferred through the Silver Peak-Lone Mountain (SPLM) extensional complex via a shallowly dipping detachment. Strain transfer has since primarily migrated north to the Mina Deflection; however, high-angle faults bounding sedimentary basins and discrepancies between geodetic and geologic models indicate that the SPLM complex may still actively transfer a portion of the strain from the ECSZ to the WL on a younger set of faults. Establishing the pattern and amount of active strain transfer within the SPLM region is required for a full accounting of strain accommodation, and provides insight into strain partitioning at the basin scale within a broader transtensional zone. To map the active structures in and near Clayton Valley, within the SPLM region, we collected seismic reflection and refraction profiles and a dense grid of gravity readings that were merged with existing gravity data. The primary goals were to determine the geometry of the high-angle fault system, the amount and sense of offset along each fault set, connectivity of the faults, and the relationship of these faults to the Miocene detachment. Seismic reflection profiles imaged the high-angle basin-bounding normal faults and the detachment in both the footwall and hanging wall. The extensional basin is ~1 km deep, with a steep southeastern boundary, a gentle slope to the northwest, and a sharp boundary on the northwest side, suggestive of another fault system. Two subparallel dip-slip faults bound the southeast (deeper) basin margin with a large lateral velocity change (from ~2

  5. A method for generating volumetric fault zone grids for pillar gridded reservoir models

    NASA Astrophysics Data System (ADS)

    Qu, Dongfang; Røe, Per; Tveranger, Jan

    2015-08-01

    The internal structure and petrophysical property distribution of fault zones are commonly exceedingly complex compared to the surrounding host rock from which they are derived. This in turn produces highly complex fluid flow patterns which affect petroleum migration and trapping as well as reservoir behavior during production and injection. Detailed rendering and forecasting of fluid flow inside fault zones require high-resolution, explicit models of fault zone structure and properties. A fundamental requirement for achieving this is the ability to create volumetric grids in which modeling of fault zone structures and properties can be performed. Answering this need, a method for generating volumetric fault zone grids which can be seamlessly integrated into existing standard reservoir modeling tools is presented. The algorithm has been tested on a wide range of fault configurations of varying complexity, providing flexible modeling grids which in turn can be populated with fault zone structures and properties.

  6. Seismic velocity models for the Denali fault zone along the Richardson Highway, Alaska

    USGS Publications Warehouse

    Brocher, T.M.; Fuis, G.S.; Lutter, W.J.; Christensen, N.I.; Ratchkovski, N.A.

    2004-01-01

    Crustal-scale seismic-velocity models across the Denali fault zone along the Richardson Highway show a 50-km-thick crust, a near vertical fault trace, and a 5-km-wide damage zone associated with the fault near Trans-Alaska Pipeline Pump Station 10, which provided the closest strong ground motion recordings of the 2002 Denali fault earthquake. We compare models, derived from seismic reflection and refraction surveys acquired in 1986 and 1987, to laboratory measurements of seismic velocities for typical metamorphic rocks exposed along the profiles. Our model for the 1986 seismic reflection profile indicates a 5-km-wide low-velocity zone in the upper 1 km of the Denali fault zone, which we interpret as fault gouge. Deeper refractions from our 1987 line image a 40-km wide, 5-km-deep low-velocity zone along the Denali fault and nearby associated fault strands, which we attribute to a composite damage zone along several strands of the Denali fault zone and to the obliquity of the seismic line to the fault zone. Our velocity model and other geophysical data indicate a nearly vertical Denali fault zone to a depth of 30 km. After-shocks of the 2002 Denali fault earthquake and our velocity model provide evidence for a flower structure along the fault zone consisting of faults dipping toward and truncated by the Denali fault. Wide-angle reflections indicate that the crustal thickness beneath the Denali fault is transitional between the 60-km-thick crust beneath the Alaska Range to the south, and the extended, 30-km-thick crust of the Yukon-Tanana terrane to the north.

  7. Loading Rate-Dependent Elastoviscoplasticity in San Andreas Fault Observatory at Depth (SAFOD) Fault Gouge: Implications for Repeating Earthquakes and Fault Zone-Guided Waves

    NASA Astrophysics Data System (ADS)

    Kohli, A. H.; Lockner, D. A.

    2015-12-01

    Deformation experiments on phyllosilicate-rich fault gouges reveal velocity-strengthening behavior and monotonic strength evolution in response to perturbations in slip velocity below ~10-4 ms-1. Fault gouge from the actively creeping zones at the San Andreas Fault Observatory at Depth (SAFOD) exhibits similar monotonic strength evolution and has been described in terms of rate-state friction-velocity dependence and ageing behavior. While these parameters provide phenomenological descriptions of gouge rheology on relatively short timescales, they are commonly applied in numerical simulations of repeating earthquakes within the SAF creeping section, often being adjusted arbitrarily in order to match seismological observations. With first assuming a deformation constitutive law, we performed comprehensive microstructural and mechanical characterization of fault gouge from the SAFOD Central Deforming Zone (CDZ). An in-situ displacement sensor was developed to provide direct measurements of gouge deformation under various loading conditions, including constant and variable strain rate and constant and variable shear stress. Constant and variable strain-rate tests confirm previous observations of low shear strength and reveal viscoplastic deformation below the frictional yield strength. Variable loading rate tests demonstrate an apparent yield stress for viscoplastic behavior at low loading rates, and a transition to elastic behavior with increasing loading rate up to 0.02 MPas-1. The elastic response of the gouge constrains the static shear modulus ~500 MPa, providing a lower bound of ~450 ms-1 for the shear velocity of the SAFOD fault core. Our microstructural and mechanical characterization of the gouge is consistent with the physical interpretation of an elastically perfect elastoviscoplastic solid. Parameterizing this model with our experimental data demonstrates general agreement with the observed loading rate-dependence of the gouge and provides a physical

  8. Toward Explaining Scale-dependent Velocity Structure Across an Exposed Brittle Fault Zone

    NASA Astrophysics Data System (ADS)

    Gettemy, G. L.; Tobin, H. J.; Hole, J. A.; Sayed, A. Y.

    2001-12-01

    The lack of preserved surface exposures of faults generally necessitates the use of remote-sensed data to infer lithostructural architecture of the subsurface of any particular fault, particularly seismic experiments which detail physical properties linked to wave propagation phenomena. The exposure of the San Gregorio Fault at Moss Beach (25 km southwest of San Francisco, CA), however, provides a unique opportunity to examine a preserved active fault zone. We combine two scales of geophysical investigation--high-resolution field velocity tomography, and an extensive laboratory ultrasonic velocity measurement program--to produce a 1D across-fault velocity structure that correlates well with the previously mapped structural domains. The absolute velocities within a given domain are strongly scale dependent, with the laboratory velocities 20-50% greater than the field-scale tomography results. This disparity can potentially be attributed to sampling bias (i.e., the inability to sample and ultrasonically test macroscopically fractured rock near \\textit{in situ} conditions), saturation effects, and frequency dispersion. We investigate the importance of the mesoscopic fracture distribution and depositional heterogeneity on the velocity discrepancies through monte carlo analysis by applying an effective medium theory of multi-scaled fractured rock combined with a propagator matrix algorithm. We parameterize the model by generating a 1D model of the fault zone, incorporating dispersion-adjusted saturated rock velocities and mesoscopic fracture distributions consistent with ultrasonic measurements and field-scale geologic mapping. The results clearly demonstrate that differing elastomechanical parameters must be invoked to explain the velocity discrepancy within the hanging wall (massive mudstone) and foot wall (sandstone with interbedded pebble conglomerate). These results highlight the value of conducting multi-scaled investigations when studying complex fault zone

  9. When did movement begin on the Furnace Creek fault zone

    SciTech Connect

    Reheis, M. )

    1993-04-01

    About 50 km of post-Jurassic right-lateral slip has occurred on the northern part of the Furnace Creek fault zone (FCFZ). The sedimentology, stratigraphy, and structure of Tertiary rocks suggest that movement on the fault began no earlier than 12--8 Ma and possibly as late as 5--4 Ma. Large remnants of erosion surfaces occur on both sides of the FCFZ in the southern White Mountains and Fish Lake Valley and are buried by rhyolite and basalt, mostly 12--10 Ma; the ash flows and welded tuffs were likely erupted from sources at least 40 km to the east. Thus, the area probably had gentle topography, suggesting a lengthy period of pre-late Miocene tectonic stability. On the west side of the FCFZ, Cambrian sedimentary rocks are buried by a fanglomerate with an [sup [minus

  10. Gouge-zone or solid-rock: An experimental view on fault frictional behavior

    NASA Astrophysics Data System (ADS)

    Reches, Z.

    2015-12-01

    Natural faults always include zone(s) of breccia, gouge or cataclasite that localize the slip. In contrast, many rock mechanics experiments are conducted on experimental faults made of rough, solid blocks without fault-rock zones. We experimentally compare the frictional strength of solid experimental faults with fault-zones made of granular material in high-velocity/long-distance runs. The frictional evolution of solid and granular dolomite fault was tested in a rotary apparatus at slip velocity up to 1 m/s and normal stress up to 7 MPa. The granular samples were composed of the 125-250 microns fraction of the crushed dolomite. They were sheared in a confined, rotary cell with continuous monitoring of CO2 and H2O and mechanical data. The tests showed that the granular samples required longer slip-distances and higher velocities to evolve to a frictional strength similar to the solid samples. Yet, both sample types display similar evolution trends, including slip-weakening at velocities above ~0.05 m/s, and drastic velocity-weakening as slip velocity approached 1 m/s. At velocity above 0.3 m/s, a shining principal-slip-zone developed spontaneously with identical microstructure in both solid and granular sample: thickness < 1 micron and sintered, 20-40 nm nano-grains. This development was associated with intense emission of CO2 (Fig. 1). In a similar testing approach and conditions, we tested the friction evolution of granular granite from the San-Andreas fault-zone at Tejon-Pass, CA. These samples remained strong, μ =0.8-0.9, at velocities up to 0.8 m/s and slip-distances up to 3 m, in contrast to known frictional evolution of solid faults made of granite and tonalite. We envision that at the present slip-velocity/normal-stress, the dolomite samples reached a stage of thermally activated phase-transition and associated weakening, whereas the granitic samples were below such transition. Fig. 1. Evolotion of slip-velocity, friction, temperature and CO2 emission in

  11. Laboratory and Numerical Observations of the Spectrum of Fault Slip Behaviors: Implications for Fault Zone Properties

    NASA Astrophysics Data System (ADS)

    Marone, C.

    2015-12-01

    Slow earthquakes, tectonic fault tremor and other modes of quasi-dynamic slip represent an important enigma. In the standard earthquake model, elastic energy is released catastrophically as the fault weakens and dynamic rupture expands at speeds measured in km/s. The spectral content of the resulting seismic waves is understood in terms of a source model based on elastodynamic rupture propagation. However, faults also fail in slow earthquakes and there is no such understanding of rupture dynamics, seismic spectra, or source scaling relations in these cases. The mechanics of slow earthquakes are poorly understood in part because there are few systematic laboratory observations that can be used to identify the underlying mechanics. Here, I summarize and discuss results from numerical models of slow slip using rate/state friction laws and recent lab studies showing slow slip and the full spectrum of stick-slip behaviors. Early lab studies saw slow slip during frictional sliding or in association with dehydration or ductile flow; however, they did not include systematic measurements that could be used to isolate the underlying mechanics. Numerical studies based on rate/state friction also document slow slip and chaotic forms of stick-slip, however they require special conditions including two state variable frictional behavior. Recent lab work sheds new light on slow earthquakes by showing: 1) that repetitive, slow stick-slip can occur if the fault friction-velocity relation becomes positive during slip acceleration, and 2) that slow slip and the full spectrum of fault slip modes can occur if loading stiffness k matches the fault zone critical rheologic stiffness kc given by the frictional weakening rate and the critical frictional distance. These data show that the key control parameter for stress drop, slip speed, and slip duration is the non dimensional stiffness k' = k/kc, with the spectrum of fast to slow slip mode occurring in a narrow range around k'=1. I

  12. Three-dimensional characterization of a crustal-scale fault zone: The Pusteria and Sprechenstein fault system (Eastern Alps)

    NASA Astrophysics Data System (ADS)

    Bistacchi, Andrea; Massironi, Matteo; Menegon, Luca

    2010-12-01

    The characterization and representation of fault zones is of paramount importance for studies of fault and earthquake mechanics, since their rheological and geometric complexity controls seismic/aseismic behaviour and fluid circulation at depth. We present a 3D geological model of a fault system, created by integrating borehole and surface structural data, which allows us to bridge the gap between outcrop-scale descriptions and large-scale geophysical models. The model integrates (i) fault geometry and topology, (ii) fault-rock distribution, and (iii) characterization of fracturing in damage zones at the km scale. The dextral-reverse Pusteria and Sprechenstein-Mules Faults (Italian Eastern Alps) provide an opportunity to study fault rocks and damage distribution as a function of host-rock lithology and fabric, and of fault geometry. A first-order control is exerted by the composition of protoliths (quartzo-feldspathic vs. phyllosilicate-rich) and/or by the presence of an inherited anisotropic fabric (massive vs. foliated), resulting in a marked asymmetry of damage zones. Interestingly, the pervasive foliation typical of some protoliths may explain both this asymmetry and the relative weakness of one of the faults. The importance of geometrical factors is highlighted when the damage zone thickness increases five times in proximity to a km-scale contractional jog. On the other hand, the type of fault rock present within the fault core does not show a direct relationship with damage intensity. In addition, the thickness of damage zones along planar fault segments does not appear to grow indefinitely with displacement, as might be envisaged from some scaling laws. We interpret both of these observations as reflecting the maturity of these large-displacement faults.

  13. Kinematics at the intersection of the Garlock and Death Valley fault zones, California: Integration of TM data and field studies

    NASA Technical Reports Server (NTRS)

    Abrams, Michael; Verosub, Ken; Finnerty, Tony; Brady, Roland

    1987-01-01

    The Garlock and Death Valley fault zones in SE California are two active strike-slip faults coming together on the east side of the Avawatz Mtns. The kinematics of this intersection, and the possible continuation of either fault zone, are being investigated using a combination of field mapping, and processing and interpretation of remotely sensed image data. Regional and local relationships are derivable from Thematic Mapper data (30 m resolution), including discrimination and relative age dating of alluvial fans, bedrock mapping, and fault mapping. Aircraft data provide higher spatial resolution over more limited areas. Hypotheses being considered are: (1) the Garlock fault extends east of the intersection; (2) the Garlock fault terminates at the intersection and the Death Valley fault continues southeastward; and (3) the Garlock fault has been offset right laterally by the Death Valley fault which continues to the southeast. Preliminary work indicates that the first hypothesis is invalid. From kinematic considerations, image analysis, and field work the third hypothesis is favored. The projected continuation of the Death Valley zone defines the boundary between the Mojave crustal block and the Basin and Range block.

  14. High Resolution Seismic Imaging of the Brawley Seismic Fault Zone

    NASA Astrophysics Data System (ADS)

    Goldman, M.; Catchings, R. D.; Rymer, M. J.; Lohman, R. B.; McGuire, J. J.; Sickler, R. R.; Criley, C.; Rosa, C.

    2011-12-01

    In March 2010, we acquired a series of high-resolution P-wave seismic reflection and refraction data sets across faults in the Brawley seismic zone (BSZ) within the Salton Sea Geothermal Field (SSGF). Our objectives were to determine the dip, possible structural complexities, and seismic velocities within the BSZ. One dataset was 3.4 km long trending east-west, and consisted of 334 shots recorded by a 2.4 km spread of 40 hz geophones placed every 10 meters. The spread was initially laid out from the first station at the eastern end of the profile to roughly 2/3 into the profile. After about half the shots, the spread was shifted from roughly 1/3 into the profile to the last station at the western end of the profile. P-waves were generated by Betsy-Seisgun 'shots' spaced every 10 meters. Initial analysis of first breaks indicate near-surface velocities of ~500-600 meters/sec, and deeper velocities of around 2000 meters/sec. Preliminary investigation of shot gathers indicate a prominent fault that extends to the ground surface. This fault is on a projection of the Kalin fault from about 40 m to the south, and broke the surface down to the west with an approximately north-south strike during a local swarm of earthquakes in 2005 and also slipped at the surface in association with the 2010 El Mayor-Cucapah earthquake in Baja California. The dataset is part of the combined Obsidian Creep data set, and provides the most detailed, publicly available subsurface images of fault structures in the BSZ and SSGF.

  15. Scaling Between Fault Length, Damaged Zone Thickness and Width of Secondary Fault Fans Derived from Fracture Mechanics

    NASA Astrophysics Data System (ADS)

    Ampuero, Jean Paul; Mao, Xiaolin

    2016-04-01

    The interaction between earthquakes, fault network geometry and fault zone structure is a key question motivating the integration of dynamic rupture and long-term crustal deformation modeling. Here, we address the scaling between fault structural properties from the perspective of dynamic and quasi-static processes involved in fault system evolution. Faults are surrounded by materials damaged through quasi-static and dynamic processes, forming damaged zones whose thickness and damage intensity may vary as a function of fault maturity and length. In the vicinity (typically less than a few hundred meters) of their principal slip surface, faults develop an "inner damage zone", usually characterized by micro-fracture observations. At a larger scale, faults develop an "outer damage zone" of secondary macroscopic fault branches at their tips, which organize into fans of splay faults. Inner damage zones can significantly affect earthquake ruptures, enhance near-field ground motions and facilitate fluid transport in the crust. Fault zone trapped waves can generate pulse-like rupture and oscillatory rupture speed, facilitate supershear rupture transition and allow for steady rupture propagation at speeds that are unstable or inadmissible in homogeneous media. The effects of a fault damage zone crucially depend on its thickness. Field observations of inner damage zone thickness as a function of cumulated slip show linear scaling at small slip but saturation at large slip, with maximum damage zone thickness of a few hundred meters. We previously developed fracture mechanics theoretical arguments and dynamic rupture simulations with off-fault inelastic deformation that predict saturation of the thickness of co-seismic damage zone controlled by the depth extent of the seismogenic zone. In essence, the stress intensity factor at the front of a rupture, which controls the distance reached by the large off-fault stresses that cause damage, scales with the shortest characteristic

  16. Fluids in the damage zone: Insights from clumped isotope thermometry of fault-hosted carbonate cements

    NASA Astrophysics Data System (ADS)

    Crider, Juliet G.; Hodson, Keith R.; Huntington, Katharine W.

    2015-04-01

    Carbonate cements in fault zone rocks contain both chemical and physical information about the interaction and coevolution of their source fluids with surrounding fault rock. In this work, we present an analysis of textural relationships and isotopic compositions of carbonate cements in sandstone, within a well-characterized upper-crustal fault intersection zone, 'Courthouse Junction' along the Moab Fault in southeast Utah, USA. Structures exposed at the outcrop record several phases of overprinting brittle deformation, including cataclastic deformation bands, fracturing and faulting. Carbonate diagenesis is thought to be a later stage, possibly facilitated by an increase in fault parallel permeability. Calcite is hosted within joints and concretions associated with both deformation-band faults and fracture-based faults. We have used cathodoluminescence, oxygen and carbon isotopes, and clumped isotope paleothermometry to differentiate two populations of calcite cement in the fault intersection zone: cool (

  17. Active faulting and devastating earthquakes in continental China

    NASA Astrophysics Data System (ADS)

    Zhang, P.

    2003-04-01

    The primary pattern of active tectonics in continental China is characterized by relative movements and interactions of tectonic blocks bounded by major active faults. Earthquakes are results of abrupt releases of accumulated strain energy that excesses the threshold of strength of brittle part of the earth’s crust. Boundaries of tectonic blocks are the locations of most discontinuous deformation and highest gradient of stress accumulation, thus are the most likely places for strain energy accumulation and releases, and in turn, devastating earthquakes. Almost all earthquakes of magnitude larger than 8 and 80~90% of earthquakes of magnitude over 7 occur along boundaries of active tectonic blocks. This fact indicates that differential movements and interactions of active tectonic blocks are the primary mechanism for the occurrences of devastating earthquakes. Northeastern margin of Tibetan Plateau consists of two active fault zones, the Haiyuan and the Xiangshan fault zones. Each of the zones can be further divided into several segments. Historical earthquakes during the past 800 years ruptured all of them except one segment, the so-called Tianzhu seismic gap. We have conducted paleoseismological studies on each of the segments of the fault zones. Preliminary results reveal temporal clustering features of long-term paleoearthquake activity along these two fault zones. The 1920 Haiyuan earthquake of magnitude 8.5, for example, ruptured three segments of the fault zone. We dug 19 trenches along different segments of the surface ruptures. There were 3 events along the eastern segment during the past 14000 years, 7 events along the middle segment during the past 9000 years, and 6 events along the western segment during the past 10000 years. These events clearly depict two temporal clusters. The first cluster occurs from 4600 to 6400 years, and the second occurs from 1000 to 2800 years, approximately. Each cluster lasts about 2000 years. Time period between these two

  18. Enriquillo–Plantain Garden fault zone in Jamaica: paleoseismology and seismic hazard

    USGS Publications Warehouse

    Koehler, R.D.; Mann, P.; Prentice, Carol S.; Brown, L.; Benford, B.; Grandison-Wiggins, M.

    2013-01-01

    The countries of Jamaica, Haiti, and the Dominican Republic all straddle the Enriquillo–Plantain Garden fault zone ( EPGFZ), a major left-lateral, strike-slip fault system bounding the Caribbean and North American plates. Past large earthquakes that destroyed the capital cities of Kingston, Jamaica (1692, 1907), and Port-au-Prince, Haiti (1751, 1770), as well as the 2010 Haiti earthquake that killed more than 50,000 people, have heightened awareness of seismic hazards in the northern Caribbean. We present here new geomorphic and paleoseismic information bearing on the location and relative activity of the EPGFZ, which marks the plate boundary in Jamaica. Documentation of a river bank exposure and several trenches indicate that this fault is active and has the potential to cause major destructive earthquakes in Jamaica. The results suggest that the fault has not ruptured the surface in at least 500 yr and possibly as long as 28 ka. The long period of quiescence and subdued geomorphic expression of the EPGFZ indicates that it may only accommodate part of the ∼7–9 mm=yr plate deformation rate measured geodetically and that slip may be partitioned on other undocumented faults. Large uncertainties related to the neotectonic framework of Jamaica remain and more detailed fault characterization studies are necessary to accurately assess seismic hazards.

  19. Development and maintenance of fluid overpressures in crustal fault zones by elastic compaction and implications for earthquake swarms

    NASA Astrophysics Data System (ADS)

    Leclère, Henri; Cappa, Frédéric; Faulkner, Daniel; Fabbri, Olivier; Armitage, Peter; Blake, Oshaine

    2015-06-01

    The ability of crustal faults to compact and to pressurize pore fluids is examined by combining geological observations, petrophysical measurements (permeability, P and S wave velocities, and porosity), and fully coupled hydromechanical modeling. A strike-slip fault located in the Argentera-Mercantour crystalline massif (southwestern French-Italian Alps) was analyzed in the field. This mature fault belongs to a large active fault system characterized by a recurrent seismic swarm activity (Mw < 4) between 2 and 12 km depth. The studied exposure corresponds to a 50 m thick anastomosing fault composed of three types of rock: host-rock gneiss, damage-zone phyllonite, and core zone gouge. Laboratory measurements made at effective pressures ranging from 10 to 190 MPa show that the studied fault differs from the classical model and has a high-porosity, high-permeability, and low-rigidity core zone surrounded by a low-porosity, low-permeability, and high-rigidity damage zone with respect to the host rock. The hydraulic and elastic properties are controlled by different microstructures such as foliation, microcracks, and pores developed during the exhumation history of the massif and the reactivation of inherited low-friction mylonitic foliation. Hydromechanical modeling is then used to investigate the spatio-temporal evolution of the fluid overpressures across the fault zone elements in response to elastic compaction. Models demonstrate that fluid pressure can be developed and maintained temporally in the studied fault zone. This study concludes on the key role played by the hydromechanical properties of faults during compaction and provides an explanation for seismic swarm triggering and maintenance.

  20. Mantle helium along the Newport-Inglewood fault zone, Los Angeles basin, California: A leaking paleo-subduction zone

    NASA Astrophysics Data System (ADS)

    Boles, J. R.; Garven, G.; Camacho, H.; Lupton, J. E.

    2015-07-01

    Mantle helium is a significant component of the helium gas from deep oil wells along the Newport-Inglewood fault zone (NIFZ) in the Los Angeles (LA) basin. Helium isotope ratios are as high as 5.3 Ra (Ra = 3He/4He ratio of air) indicating 66% mantle contribution (assuming R/Ra = 8 for mantle), and most values are higher than 1.0 Ra. Other samples from basin margin faults and from within the basin have much lower values (R/Ra < 1.0). The 3He enrichment inversely correlates with CO2, a potential magmatic carrier gas. The δ13C of the CO2 in the 3He rich samples is between 0 and -10‰, suggesting a mantle influence. The strong mantle helium signal along the NIFZ is surprising considering that the fault is currently in a transpressional rather than extensional stress regime, lacks either recent magma emplacement or high geothermal gradients, and is modeled as truncated by a proposed major, potentially seismically active, décollement beneath the LA basin. Our results demonstrate that the NIFZ is a deep-seated fault directly or indirectly connected with the mantle. Based on a 1-D model, we calculate a maximum Darcy flow rate q ˜ 2.2 cm/yr and a fault permeability k ˜ 6 × 10-17 m2 (60 microdarcys), but the flow rates are too low to create a geothermal anomaly. The mantle leakage may be a result of the NIFZ being a former Mesozoic subduction zone in spite of being located 70 km west of the current plate boundary at the San Andreas fault.

  1. Fluid migration in a cratonic setting: The fluid histories of two fault zones in the eastern midcontinent

    USGS Publications Warehouse

    Ramsey, D.W.; Onasch, C.M.

    1999-01-01

    A combined field, petrographic, fluid inclusion, and stable isotope study was undertaken in two fault zones in the eastern midcontinent of the North American craton in order to determine their fluid histories. Because both the Kentucky River fault zone in central Kentucky and the Bowling Green fault zone in northwest Ohio were active intermittently throughout much of the Paleozoic, it was thought that one or both may record the passage of the late Paleozoic brine migration that affected large portions of the eastern midcontinent. Three fluid events were recognized in calcite veins of the Kentucky River fault zone. Each tapped the same dominantly meteoric, low-salinity fluid reservoir, but at different times as the fault zone was cooling (T(h) 110??to 75??C) at relatively shallow depths (<1.0 km). Although the fluid history of the Bowling Green fault zone also reflects a general cooling (T(h) 115??to 60??C) at a shallow depth (<1.5 km), multiple fluid sources were involved. In the first fluid event, brown calcite was precipitated from a methane-rich, aqueous fluid with an immiscible petroleum phase derived from ascending fluids originating in underlying lower Paleozoic or basement units. The second fluid event is similar to the first except it lacks the petroleum phase which resulted in the precipitation of white, rather than brown, calcite. The third event precipitated calcite from a mixture of vertically and horizontally flowing brines. The youngest event resulted in little or no additional mineralization and is recorded by secondary fluid inclusions in preexisting veins. The fluid source is probably meteoric or seawater. From the characteristics of each fluid event, it is concluded that only the Bowling Green fault zone appears to contain evidence for the late Paleozoic regional brine migration. The Kentucky River fault zone either was bypassed by the brines, had an unfavorable orientation, or did not have any permeability at the time of brine migration.

  2. Active faults of the Baikal depression

    USGS Publications Warehouse

    Levi, K.G.; Miroshnichenko, A.I.; San'kov, V. A.; Babushkin, S.M.; Larkin, G.V.; Badardinov, A.A.; Wong, H.K.; Colman, S.; Delvaux, D.

    1997-01-01

    The Baikal depression occupies a central position in the system of the basins of the Baikal Rift Zone and corresponds to the nucleus from which the continental lithosphere began to open. For different reasons, the internal structure of the Lake Baikal basin remained unknown for a long time. In this article, we present for the first time a synthesis of the data concerning the structure of the sedimentary section beneath Lake Baikal, which were obtained by complex seismic and structural investigations, conducted mainly from 1989 to 1992. We make a brief description of the most interesting seismic profiles which provide a rough idea of a sedimentary unit structure, present a detailed structural interpretation and show the relationship between active faults in the lake, heat flow anomalies and recent hydrothermalism.

  3. Monitoring seismic and silent faulting along the Atacama Fault System and its relation to the subduction zone seismic cycle: A Creepmeter Study in N-CHile

    NASA Astrophysics Data System (ADS)

    Victor, Pia; Ziegenhagen, Thomas; Bach, Christoph; Walter, Thomas; Oncken, Onno

    2010-05-01

    The relationship between crustal forearc faults and subduction zone processes is little understood and therefore the modern seismogenic capacity of these faults cannot be determined. The Atacama Fault System (AFS) is the dominant trench parallel fault in N-Chile with an along strike extent of 1000km. In order to characterize the mode of deformation accumulation and its spatio-temporal distribution, we are continuously monitoring displacement accumulation along active fault branches with a recently installed Creepmeter array. All the installed Creepmeters use 12 mm thick Invar-rod as length standard buried up to 0.7 m depth to reduce the signal to noise ratio, and measure the length standard change across a fault on outcrop scale. The currently deployed 9 sites are designed for displacement detection in the range of 0.001 - 50 mm/yr with a sampling rate of 1/min. The monitored fault branches have been chosen such that 3 Creepmeter sites are located in the Iquique seismic gap of the subduction zone, 5 instruments are located in the segment that recently ruptured in the 2007 Tocopilla earthquake, whereof 2 are located on the Mejillones Peninsula and one is located in the Antofagasta segment that last ruptured in the 1995 Antofagasta Earthquake. This enables us to compare the mode of strain accumulation in different stages of the subduction zone seismic cycle. The first datasets (> 1 yr) show that the instruments both in the Antofagasta and Tocopilla segments display a continuous creep signal equivalent to extensional displacement across the fault zone superimposed by sudden displacement events related to subduction zone earthquakes. The sum of both amounts to 0.02 mm/y - 0.1 mm/y of displacement which is less than predicted by the geological long-term observation. The data from the Chomache Fault located in the Iquique segment shows only a creep signal for the first year after installation with an average extensional displacement rate of 0.05 mm/y. No sudden

  4. Spatiotemporal earthquake clusters along the North Anatolian fault zone offshore Istanbul

    USGS Publications Warehouse

    Bulut, Fatih; Ellsworth, William L.; Bohnhoff, Marco; Aktar, Mustafa; Dresen, Georg

    2011-01-01

    We investigate earthquakes with similar waveforms in order to characterize spatiotemporal microseismicity clusters within the North Anatolian fault zone (NAFZ) in northwest Turkey along the transition between the 1999 ??zmit rupture zone and the Marmara Sea seismic gap. Earthquakes within distinct activity clusters are relocated with cross-correlation derived relative travel times using the double difference method. The spatiotemporal distribution of micro earthquakes within individual clusters is resolved with relative location accuracy comparable to or better than the source size. High-precision relative hypocenters define the geometry of individual fault patches, permitting a better understanding of fault kinematics and their role in local-scale seismotectonics along the region of interest. Temporal seismic sequences observed in the eastern Sea of Marmara region suggest progressive failure of mostly nonoverlapping areas on adjacent fault patches and systematic migration of microearthquakes within clusters during the progressive failure of neighboring fault patches. The temporal distributions of magnitudes as well as the number of events follow swarmlike behavior rather than a mainshock/aftershock pattern.

  5. Stress changes induced at neighbouring faults by the June 2000 earthquakes, South Iceland Seismic Zone

    NASA Astrophysics Data System (ADS)

    Plateaux, Romain; Angelier, Jacques; Bergerat, Françoise; Cappa, Frédéric; Stefansson, Ragnar

    2010-05-01

    The Icelandic rift system belongs to the Mid-Atlantic Ridge and is connected to the offshore Reykjanes and Kolbeinsey ridges by two active transform zones. Plate separation occurs at a rate of nearly 2 cm/yr along the N105°E direction. With respect to the Icelandic Hotspot, westward plate velocities in Iceland are 1.8-2.2 cm/yr for North America and 0-0.4 cm/yr for Eurasia, resulting in a westward displacement of the Icelandic Rift relative to the hotspot. Rift jumps occur when the plate boundary has migrated to a critical point to the west, and a new rift develops above the hotspot apex while the old rift is dying out. The two active transform zones, the Tjörnes Fracture Zone (TFZ) and the South Iceland Seismic Zone (SISZ), resulted from such eastward rift jumps. Our study focuses on the SISZ which is an onland, E-W trending transform zone where N-S trending right-lateral strike-slip faults accommodate left-lateral transform motion as revealed by historical seismicity. During the most recent seismic crisis, in June 2000, two major earthquakes of magnitude (Mw) 6.4 occurred along N-S right-lateral faults in the central segment of the SISZ. The high sensitivity SIL (South Iceland Lowlands) seismic network run by the Icelandic Meteorological Office (IMO) provided a complete record of earthquakes down to magnitude Mw = -1. Here, we present an analysis of this earthquakes sequence in term of stress regimes in order to examine the response of two faults that did not experience significant motion during the earthquakes, and hence to determine how far such fault zones provide information about stress changes in space and time when large earthquakes occur at distance of some tens of kilometres. The faults considered are the Skard and Leirubakki faults, along which large earthquakes and significant displacement occurred in the past Using seismological data recorded from 1991 to 2007, we carried out stress inversion of focal mechanisms of 1,340 earthquakes that affected

  6. Oceanic Transform Fault-Zone Geomorphology in the Gulf of California from High-Resolution Bathymetric Data

    NASA Astrophysics Data System (ADS)

    Hilley, G. E.; Aron, F.; Baden, C. W.; Castillo, C. M.; Johnstone, S. A.; Nevitt, J. M.; McHargue, T.; Paull, C. K.; Sare, R.; Shumaker, L.; Young, H.

    2015-12-01

    We use high-resolution, deep-water bathymetry to examine the structure of, and offset along, transform faults in the Gulf of California. These data provide detailed observations of fault-zone geomorphology of an active transform fault hosted in an area transitioning from continental to oceanic crust. Bathymetric data were collected by an autonomous underwater vehicle deployed by the Monterey Bay Aquarium Research Institute in 2012. Dense ocean-bottom point clouds allowed construction of an ~1-m-resolution digital terrain model, which provides comparable spatial resolution to early airborne laser swath mapping surveys. The data reveal a set of complex, multi-stranded fault zones, whose morphologies suggest a temporal migration of deformation between individual strands contained within an up to 1 km wide zone, similar to complex fault zones observed within continental crust in subaerial environments. Individual fault strands show restraining steps that create positive relief along the ocean floor in their vicinity. Although the depositional nature of these deep-water systems makes identification of offset features challenging, we found a series of offset fans along a fault strand with consistent right-lateral offsets of 17-21 m. These are likely multi-event offsets, given the length of the transform segments and magnitudes of historically recorded earthquakes in the region. The consistency of these multi-event offsets suggests that an external process predating the displacement of the fans, such as seismic shaking due to large earthquakes, may be responsible for the synchroneity of these features. Our study demonstrates that the fault-zone geomorphology of oceanic transform faults in the Gulf of California bears resemblance to that of terrestrial strike-slip faults hosted in continental crust, and that high-resolution, deep water bathymetry can provide information about the earthquake history of these environments.

  7. The use of fluid inclusions to constrain fault zone pressure, temperature and kinematic history: an example from the Alpi Apuane, Italy

    NASA Astrophysics Data System (ADS)

    Hodgkins, Margaret A.; Stewart, Kevin G.

    1994-01-01

    The Alpi Apuane is a tectonic window that exposes ductilely deformed greenschist facies metaigneous and metasedimentary rocks beneath relatively unmetamorphosed, brittlely deformed sedimentary rocks of the Tuscan nappe. The brecciated fault zone, the 'window fault', separating the two tectonic units was originally described as a simple thrust fault, but has recently been interpreted to have been reactivated as a later extensional detachment. Although evidence for extensional faulting is seen above and below the window fault, the amount of extensional displacement along this fault is unclear. Fluid inclusions from veins cementing the fault breccia were used to estimate the pressures and temperatures during the last fault movement. Minimum pressure estimates obtained from these inclusions range from 105 to 240 MPa. Pressure-corrected trapping temperatures for these fluids range from about 300 to 345°C. These pressures and temperatures indicate that the fault was last active at a depth of about 10 km, assuming a geothermal gradient at the time of 31°C km-1. This rules out complete extensional unroofing of the Alpi Apuane by movement along the window fault. Fluid salinities increase abruptly from the footwall into the fault zone. This pattern suggests that fluids rose from the footwall, entered the fault zone and were channeled within it, leaching salt from the overlying evaporite. The lack of quartz veins above the fault zone indicates that these fluids did not circulate into the overlying Tuscan nappe.

  8. Evolution of elastic wave speed during shear-induced damage and healing within laboratory fault zones

    NASA Astrophysics Data System (ADS)

    Kaproth, Bryan M.; Marone, Chris

    2014-06-01

    Earthquake faults fail and restrengthen repeatedly during the seismic cycle. Faults restrengthen via a set of processes known collectively as fault healing, which is well documented in the laboratory but less well understood in tectonic fault zones. Recent observations of fault zone wave speed following earthquakes suggest opportunities to connect laboratory and field observations of fault healing. However, existing laboratory data lack detail necessary to identify specific processes linking elastic wave speed to fault damage and healing. Here we document changes in elastic properties during laboratory seismic cycles, simulated via periods of nonshear and quasistatic fault slip. Experiments were conducted on brine-saturated halite under conditions favoring pressure solution, analogous to healing processes within and at the base of the seismogenic zone. We find that elastic wave speed (V) and amplitude (A) correlate with porosity. For each percent of porosity lost during compaction, VP increases by ~3%, VS by ~2%, AP by ~10%, and AS by ~7%. Moreover, V and A decrease with granular dilation during fault slip. With increasing shear strain, fabric formation dominates the ultrasonic signals. We find that fault strength depends on fault porosity, making VP and VS potential proxies for fault strength evolution. Our data show that a 1% change in VP or VS results in a friction increase of 0.01 or 0.02, respectively. Within natural fault zones, advances in monitoring elastic wave speed may provide critical information on the evolution of fault strength and seismic hazard throughout the seismic cycle.

  9. Neogene Sequence Along the Eskişehir Fault Zone (EFZ), NW Turkey

    NASA Astrophysics Data System (ADS)

    Apaydın Poşluk, Elif; Koral, Hayrettin

    2015-04-01

    This study aims to explore the stratigraphy and structural features of Neogene units located in the Bozüyük (Bilecik) and Oklubalı (Eskişehir) area in southern Marmara, which lies on the collision zone between the Sakarya and Tauride-Anatolide blocks. Pre-Mesozoic marbles, schists and granodiorites, Mesozoic marbles, schists, ophiolitic units and limestones are basement rocks. Cover units include Neogene age formations. From the bottom to top, they are named the Porsuk Formation and the Akpınar Limestone, the İnönü Volcanics and the Ilıca Formation. Paleontological data which could yield a geological age have not been observed in fluvial sediments of the Porsuk Formation and lacustrine deposits of the Akpınar Limestone. The 40K/40Ar dating analyses on trachy-andesite of the overlying İnönü Volcanics have yielded middle Miocene ages (15.0-15.5 Ma), suggesting the underlying sedimentary units namely the Porsuk Formation and the Akpınar Limestone to be lower-middle Miocene in age. Fossils have been discovered in the lacustrine limestone of the Ilıca Formation in Oklubalı (İnönü-Eskişehir) village, and the age is determined to be lower Pliocene. The Eskişehir Fault Zone (EFZ) transects the Neogene formations and Quaternary sediments along an E-W'ly orientation. The Ormangüzle, Bozalan, Kandilli and İnönü Faults are segments observed from the west to east inside the Eskişehir Fault Zone. Some of these faults have NW-SE and others WNW-ESE orientations. The faults in NW-SE directions were effective for the formation of the Neogene sequence based on NE, SE and SW-oriented paleo-flow orientations and abrupt facies changes. The faults with WNW-ESE orientations, as noted in the Çukurhisar earthquake of February 2, 1956 (M=6.4), still keep their seismic activity and have a potential of producing earthquakes. Keywords: Neogene sediments, 40K/40Ar dating, the Eskişehir Fault Zone, active fault, Çukurhisar earthquake

  10. Illuminating Northern California’s Active Faults

    USGS Publications Warehouse

    Prentice, Carol S.; Crosby, Christopher J.; Whitehill, Caroline S.; Arrowsmith, J. Ramon; Furlong, Kevin P.; Philips, David A.

    2009-01-01

    Newly acquired light detection and ranging (lidar) topographic data provide a powerful community resource for the study of landforms associated with the plate boundary faults of northern California (Figure 1). In the spring of 2007, GeoEarthScope, a component of the EarthScope Facility construction project funded by the U.S. National Science Foundation, acquired approximately 2000 square kilometers of airborne lidar topographic data along major active fault zones of northern California. These data are now freely available in point cloud (x, y, z coordinate data for every laser return), digital elevation model (DEM), and KMZ (zipped Keyhole Markup Language, for use in Google EarthTM and other similar software) formats through the GEON OpenTopography Portal (http://www.OpenTopography.org/data). Importantly, vegetation can be digitally removed from lidar data, producing high-resolution images (0.5- or 1.0-meter DEMs) of the ground surface beneath forested regions that reveal landforms typically obscured by vegetation canopy (Figure 2)

  11. Waveform cross-correlation and relocations for seismic events in the San Jacinto Fault Zone

    NASA Astrophysics Data System (ADS)

    Galipchak, E.; Kurzon, I.; Vernon, F.; Pavlis, G. L.; Ben-Zion, Y.

    2012-12-01

    We introduce a new approach for the relocation of local seismic events using waveform cross-correlation and automatic detection algorithm. This approach is developed and implemented for the San Jacinto Fault Zone (SJFZ), where recent cross-correlation and double-difference relocation methods (e.g., Hauksson et al. 2011) account up to ~75% of the seismic events, due to the complex nature of the SJFZ. The fault zone complexity features include a mismatch between the fault traces and seismicity clusters and strong heterogeneity of focal mechanisms. Our goal is to develop an efficient relocation method in which ~90% of the seismic events would be considered. The 'dbxcor' tool of the Antelope software package (e.g., Pavlis & Vernon 2010) is a graphic cross-correlation method involving an active reviewing of the cross-correlation process by a seismic analyst. The method is adjusted here for the analysis of local events from the original algorithm developed mainly for the processing of teleseismic events. The advantage of this approach is that the analyst may keep many of the waveforms that would have been dropped out due to the cross-correlation threshold, thereby increasing the percentage of events considered in the process. Moreover, the method allows an interactive demonstration and identification of different nearby source mechanisms, thus helping to examine the heterogeneity of the fault zone. A pre-request of the cross-correlation algorithm is the existence of arrivals for each waveform in the process. This required tuning a set of efficient automated detectors for grasping the specific nature of seismicity in the SJFZ. Applying such detectors we manage to increase the catalogue by up to 40% of additional events not reviewed previously by analysts. This improvement allows incorporating not only more events into the relocation process, but also additional stations, which were missed by previous automatic or manual picking of P and S arrivals. The relocated events

  12. Variations in the geometry and amount of slip on the Haiyuan (Nanxihaushan) fault zone, China and the surface rupture of the 1920 Haiyuan earthquake

    NASA Astrophysics Data System (ADS)

    Qidong, Deng; Shefa, Chen; Fangnin, Song; Shilong, Zhu; Yipeng, Wang; Weiqi, Zhang; Decheng, Jiao; Burchfiel, B. C.; Molnar, P.; Royden, L.; Peizhen, Zhang

    The Haiyuan earthquake (M = 8.7) of December 16, 1920, in China caused strike-slip displacement along 220 km of the Haiyuan (or Nanxihaushan) Fault Zone, which lies on the northeastern margin of the Qinghai-Xizang (Tibetan) plateau. The Haiyuan fault zone, which strikes 285°-295°, apparently became an active sinistral strike-slip during Pleistocene time. The fault zone is composed of at least eight major subparallel shear fractures, most of which are arranged in a left-stepping pattern, and as many as six pull-apart basins have formed in the central segment of the fault zone. River systems of different ages have been sinistrally offset different amounts. Variations in the sense of vertical motion have occurred along segments of the fault, and pull-apart basins are commonly associated with the areas where normal components on subparallel segments prevail. Relatively young faults with oblique normal slip strike parallel to the overall trend of the fault zone and intersect the major subparallel shear faults with acute angles (10 to 15°). The earthquake fault of 1920 caused slip along the major strike-slip fault segments and along oblique normal faults within pull-apart basins. Thus segments with pure strike-slip and with oblique normal slip, were activated in 1920, each with different surficial features and with different amounts of slip.

  13. Application of electric and electromagnetic prospection methods for the investigation of geological fault zones

    NASA Astrophysics Data System (ADS)

    Schaumann, G.; Günther, T.; Musmann, P.; Grinat, M.

    2012-04-01

    Lower Saxony. Overall aim is the application of a joint strategy for the investigation of fault zones by electric/electromagnetic measurements that are useful for geothermal application prior to or while drilling activities.

  14. Three dimensional elastoplastic response of compliant fault zones to nearby earthquakes: A theoretic study

    NASA Astrophysics Data System (ADS)

    Kang, J.; Duan, B.

    2012-12-01

    Response of compliant fault zone to the nearby dynamic rupture is detected by seismic and InSAR observations. Seismic observations of damage to the Landers fault zone by the Hector Mine earthquake suggest that response of fault zones can be inelastic. Recent two dimensional theoretical studies reveal that inelastic response of fault zones results in distinguished features in the surface residual displacement field that can be detected by InSAR images. In this study, we extend the recent theoretical studies to three dimensions, so that we may compare modeling results with InSAR observations in the future. We use a Drucker-Prager criterion to characterize elastoplastic response of rocks to nearby spontaneous dynamic rupture in an inhomogeneous medium that contains a compliant fault zone. A finite element method is used to simulate dynamic rupture and seismic wave propagations in the model. Preliminary results show that 1) depth dependence of plastic strain within the fault zone may have important effects on the surface deformation field, 2) plastic strain near the Earth's surface within the fault zone can occur in both extensional and compressive quadrants of the rupture, which is different from previous two dimensional studies, and 3) the vertical surface residual displacement is enhanced within the fault zone, while is reduced outside of the fault zone.

  15. From accommodation zones to metamorphic core complexes: Tracking the progressive development of major normal fault systems

    SciTech Connect

    Faulds, J.E. . Dept. of Geology)

    1992-01-01

    The along-strike dimension in rifted continental crust is critical to assessing models of continental extension because individual normal faults or fault systems can potentially be traced from their tips in accommodation zones to their culminations in metamorphic core complexes. Accommodation zones and the linkages between the zones and core complexes have not been thoroughly studied or incorporated extensively into models of continental extension. Regionally extensive, gently dipping normal faults (i.e., detachment faults) that surface in metamorphic core complexes terminate and flip polarity in accommodation zones. Diametrical lateral transport of upper-plate rocks in positively dipping detachment terranes should presumably induce strike-slip faulting on segments of accommodation zones paralleling the extension direction. Most accommodation zones correspond, however, to belts of intermeshing conjugate normal faults with little strike-slip faulting. Normal faults simply terminate along-strike in the zones with little, if any, transfer of slip to strike-slip faults. Decreases in cumulative strain within individual normal fault systems toward some accommodation zones cannot alone account for the lack of strike-slip faulting. These findings pose a serious challenge to generally accepted notions of large-magnitude, lateral motion of parts of detachment terranes. Large-scale lateral translations of rifted continental crust may be governed more by discrete axes of extension than by detachment geometries. The dovetail-like interfingering of conjugate normal fault systems and attendant tilt-block domains observed in some accommodation zones (e.g., Colorado River extensional corridor, US) does suggest, however, that at least some major normal faults projecting into the zones from metamorphic core complexes have listric geometries that flatten out at relatively shallow depths.

  16. Mapping the geothermal potential of fault zones in the sedimentary basins of the Belgian and Netherlands border region.

    NASA Astrophysics Data System (ADS)

    Loveless, Sian; Pluymaekers, Maarten; Lagrou, David; Laenen, Ben; Doornenbal, Hans; De Boever, Eva

    2014-05-01

    Faults often determine the success or failure of low enthalpy geothermal projects. This is due to their prevalence throughout the subsurface and capacity to behave as significant fluid flow pathways or baffles (or both simultaneously). Here we present the methodology and results of an assessment of the capacity of faults in the Belgium and Netherlands border region to impact geothermal potential. This work was completed as part of a crossborder project in the European INTERREG Iva program Flanders-The Netherlands. The geothermal potential of reservoirs and fault zones was mapped across the Belgian provinces of Limburg and Antwerpen, and Dutch provinces of Limburg and Noord-Brabant. The Roer Valley Graben (RVG) and the Campine Basin are the main structural elements within this region. The four most significant reservoir intervals were correlated across the border. These comprise Upper Cretaceous chalk, Lower Triassic sandstones, Upper Carboniferous sandstones and Lower Carboniferous limestones. Mapped faults cutting these intervals were also correlated. Regional-scale maps have been created indicating the likelihood of fault zones to improve geothermal potential in these intervals. The capacity of faults to improve geothermal potential was determined from factors known to increase or decrease fault permeability. Lithology was a primary consideration: Carbonate rocks tend to fracture along fault zones, creating breccia or joints, resulting in an increased permeability. Permeability can be further increased by karst processes, as evidenced at the Venlo geothermal project, Netherlands. Therefore areas with faults in the carbonate reservoirs were considered to have possible potential. Conversely, permeability is likely to decrease in the clastic reservoir units as cataclastic processes dominate. Such faults were not considered to have additional geothermal potential. The timing of fault activity was considered another key variable. Recently deformed faults are more

  17. Characterizing Recent Slip on the Kuikui Fault, a Link Between the Green Valley and Bartlett Springs Fault Zones, Wilson Valley, Northern California.

    NASA Astrophysics Data System (ADS)

    Lienkaemper, J. J.; DeLong, S. B.; McPherson, R. C.; Mielke, J.; Avdievitch, N.; Pickering, A.; Lloyd, C.

    2014-12-01

    The Green Valley and Bartlett Springs faults (GVF-BSF) together form the third largest branch of the dextral San Andreas transform fault system in northern California. Wilson Valley lies at the center of a tectonic pull-apart basin formed in the 2.5-km stepover between the Hunting Creek fault (northernmost section of the GVF) and the Highway-20 section of the BSF. A major regional drainage, Cache Creek flows through this depression and has been offset ~6 km right-laterally by the GVF-BSF during the Quaternary. We recently discovered the Kuikui fault, a dextral-oblique slip fault within the stepover, using high-resolution imagery from LiDAR acquired by USGS in 2011 along major northern California fault zones (ARRA11_USGS, DOI: 10.5069/G9H70CRD, http://dx.doi.org/10.5069/G9H70CRD). The Kuikui fault is ~2-3 km in length and forms steep, well-preserved scarps up to ~2.5 m high. It has only subtle expression of dextral slip, so its ratio of dip slip to strike slip is uncertain. Any evidence of large paleoearthquakes in the Wilson Valley stepover might indicate rupture of either the GVF or the BSF or both together, and timing information could be used to correlate events with other paleoseismic sites on the fault system. Additionally, fault creep has been documented on both the Highway 20 and Hunting Creek fault sections, so that any fault offset on the Kuikui fault might also include some aseismic slip. Because wilderness regulations required manual excavation, several participants from USGS, HSU, other colleagues and volunteers together dug an 8-m long by ≤1 m deep trench by hand to expose faulting in thin layers of alluvium deposited across the Kuikui fault. The youngest, and currently active soil layer is vertically offset by a minimum of 7 cm on a single fault strand. A much broader fault zone suggests larger movement has occurred. This exposure did not allow us to discriminate whether slip occurred as creep or by dynamic rupture. Future additional exposures may

  18. Geodetic Investigation of Compliant Fault Zones on the San Francisco Peninsula segment of the San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Materna, K.; Burgmann, R.

    2015-12-01

    At many places along the San Andreas Fault, geodetic and seismic studies have suggested the presence of near-field compliant fault zones (CFZs). These zones of damaged rock display reduced elastic moduli compared to intact rock, resulting in both higher geodetic strain rates and lower seismic velocities within the fault zones. In this study, we investigate the CFZ surrounding the San Andreas Fault in the San Francisco Peninsula by examining interseismic deformation over the past several decades. We use new and existing survey GPS measurements, as well as older electronic distance measurements, to characterize the deformation of the CFZ. The data come from networks at Black Mountain and Lake San Andreas, both small-aperture geodetic networks on the San Francisco Peninsula with survey GPS occupations spanning at least 15 years. We compare the inferred fault zone properties between the two networks, which are separated by less than 40 kilometers but which represent different geologic boundaries and show different fault ages. We also compare patterns in seismicity between the two regions. The differences in inferred fault parameters between these two regions may be related to differences in fault age and development, giving clues into how CFZs develop over time.

  19. Penetration of Meteoric Fluids to the Seismogenic Zone of the Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Menzies, C. D.; Cox, S.; Boyce, A. J.; Barrie, C. D.; Hathorne, E.; Teagle, D. A.

    2012-12-01

    The Alpine Fault in the South Island of New Zealand marks the transpressional plate boundary between the Australian and Pacific plates. Rapid uplift (~10 mm/yr) on the Alpine Fault has elevated the regional geothermal gradient (>60 °C/km) that together with elevated topography drives geothermal fluid flow in the Southern Alps. Documenting the sources and evolution of fluids as they move through the crust provides insight into the depth of fluid circulation and how this may affect heat transport, crustal strength, and permeability in crustal scale fault zones. Here we compare the chemistry and stable (δD, δ13C, δ18O) and Sr isotopic composition of veins, that record different generations of fluid-rock interaction at a variety of crustal depths in the Plate Boundary Zone, with waters using from active warm springs in the Southern Alps. Vein stable isotope compositions require that meteoric waters are the dominant fluid component, with little evidence for upwelling fluids derived from metamorphic reactions. δD of veins formed from all levels are meteoric-like and provide evidence for the penetration of surface-derived fluids down to the Brittle-Plastic Transition (BPT) at >5 km depth. At shallow levels (<2 km) water/rock ratios are high and fluids retain meteoric δ18O signatures. Fluid chemistries calculated from vein analyses are similar to modern warm springs. At deeper crustal levels, down to the BPT, water/rock ratios are low and fluids have more extensively exchanged oxygen and trace elements with the host rocks. Results from the DFDP-1 stage of drilling through the Alpine Fault Zone have revealed that the Alpine Fault is a hydraulic seal at shallow depths (<140 m). Our study extends the knowledge of the Alpine Fault Zone permeability structure to seismogenic depths. 87Sr/86Sr of hangingwall veins that record fluid-rock interactions in the BPZ show no evidence for fluid exchange with highly radiogenic footwall rocks, indicating that the Alpine Fault is a

  20. The evolution of faults formed by shearing across joint zones in sandstone

    NASA Astrophysics Data System (ADS)

    Myers, Rodrick; Aydin, Atilla

    2004-05-01

    The evolution of strike-slip and normal faults formed by slip along joint zones is documented by detailed field studies in the Jurassic Aztec Sandstone in the Valley of Fire State Park, Nevada, USA. Zones of closely spaced planar sub-parallel joints arranged en échelon are sheared, forming faults. Fracturing occurs as a result of shearing, forming new joints. Later shearing along these joints leads to successively formed small faults and newer joints. This process is repeated through many generations of fracturing with increasing fault slip producing a hierarchical array of structures. Strain localization produced by shearing of joint zones at irregularities in joint traces, fracture intersections, and in the span between adjacent sheared joints results in progressive fragmentation of the weakened sandstone, which leads to the formation of gouge along the fault zone. The length and continuity of the gouge and associated slip surfaces is related to the slip magnitude and fault geometry with slip ranging from several millimeters to about 150 m. Distributed damage in a zone surrounding the gouge core is related to the original joint zone configuration (step sense, individual sheared joint overlaps and separation), shear sense, and slip magnitude. Our evolutionary model of fault development helps to explain some outstanding issues concerning complexities in faulting such as, the variability in development of fault rock and fault related fractures, and the failure processes in faults.

  1. Large mid-Holocene and late Pleistocene earthquakes on the Oquirrh fault zone, Utah

    USGS Publications Warehouse

    Olig, S.S.; Lund, W.R.; Black, B.D.

    1994-01-01

    earthquake was exposed at the Pole Canyon site, and although displacement is not well constrained, the penultimate event colluvial wedge is comparable in size to the most-recent event wedges. Charcoal from a marsh deposit, which overlies the penultimate event colluvium and was deposited during the Bonneville lake cycle transgression, yields an AMS radiocarbon age of 20,370 ?? 120 yr B.P. Multiple charcoal fragments from fluvial deposits faulted during the penultimate event yield an AMS radiocarbon age of 26,200 ?? 200 yr B.P. Indirect stratigraphic evidence for an antepenultimate event was also exposed at Pole Canyon. Charcoal from fluvial sediments overlying the eroded free-face for this event yields an AMS age of 33,950 ?? 1160 yr B.P., providing a minimum limiting age on the antepenultimate event. Ages for the past two events on the Oquirrh fault zone yield a recurrence interval of 13,300 to 22,100 radiocarbon years and estimated slip rates of 0.1 to 0.2 mm/yr. Temporal clustering of earthquakes on the nearby Wasatch fault zone in the late Holocene does not appear to have influenced activity on the Oquirrh fault zone. However, consistent with findings on the Wasatch fault zone and with some other Quaternary faults within the Bonneville basin, we found evidence for higher rates of activity during interpluvial periods than during the Bonneville lake cycle. If a causal relation between rates of strain release along faults and changes in loads imposed by the lake does exist, it may have implications for fault dips and mechanics. However, our data are only complete for one deep-lake cycle (the past 32,000 radiocarbon years), and whether this pattern persisted during the previous Cutler Dam and Little Valley deep-lake cycles is unknown. ?? 1994.

  2. The offshore Palos Verdes fault zone near San Pedro, Southern California

    USGS Publications Warehouse

    Fisher, M.A.; Normark, W.R.; Langenheim, V.E.; Calvert, A.J.; Sliter, R.

    2004-01-01

    High-resolution seismic-reflection data are combined with a variety of other geophysical and geological data to interpret the offshore structure and earthquake hazards of the San Pedro shelf, near Los Angeles, California. Prominent structures investigated include the Wilmington graben, the Palos Verdes fault zone, various faults below the west part of the San Pedro shelf and slope, and the deep-water San Pedro basin. The structure of the Palos Verdes fault zone changes markedly along strike southeastward across the San Pedro shelf and slope. Under the north part of the shelf, this fault zone includes several strands, with the main strand dipping west. Under the slope, the main fault strands exhibit normal separation and mostly dip east. To the southeast near Lasuen Knoll, the Palos Verdes fault zone locally is low angle, but elsewhere near this knoll, the fault dips steeply. Fresh seafloor scarps near Lasuen Knoll indicate recent fault movement. We explain the observed structural variation along the Palos Verdes fault zone as the result of changes in strike and fault geometry along a master right-lateral strike-slip fault at depth. Complicated movement along this deep fault zone is suggested by the possible wave-cut terraces on Lasuen Knoll, which indicate subaerial exposure during the last sea level lowstand and subsequent subsidence of the knoll. Modeling of aeromagnetic data indicates a large magnetic body under the west part of the San Pedro shelf and upper slope. We interpret this body to be thick basalt of probable Miocene age. This basalt mass appears to have affected the pattern of rock deformation, perhaps because the basalt was more competent during deformation than the sedimentary rocks that encased the basalt. West of the Palos Verdes fault zone, other northwest-striking faults deform the outer shelf and slope. Evidence for recent movement along these faults is equivocal, because we lack age dates on deformed or offset sediment.

  3. Characterizing Fault Damage Zones in the Field and Laboratory; Scaling and Physical Properties

    NASA Astrophysics Data System (ADS)

    Faulkner, D. R.; Armitage, P. J.; Blake, O. O.; Mitchell, T. M.

    2011-12-01

    Fault damage zones are a key component of faults as they control the fluid flow, rupture and seismological properties of faults. Fracturing around faults occurs on a range of scales, from small scale (microfracturing) to larger scale (macrofracturing), with varying intensities ranging from background levels to pervasive pulverization of the country rock. Fracturing generally results in permeability increases in crystalline rocks. Fracturing in the damage zone during earthquake rupture leads to energy loss, and pre-existing fracture damage and associated modifications of elastic properties may control rupture properties such as directivity. Despite their importance, the full characterization of the spatial extent of damage zones and their associated physical properties is still at an early stage. Recent field measurements of the width of damage zones suggest that they scale positively with fault displacement, although this relationship is masked by other parameters such as depth of faulting, lithology, mode of faulting and tectonic environment. The well-established exponential decay of fracture damage with distance from the fault likely relates to elastic decay of stress. Determining the physical properties of natural fault damage zones has proved problematic, as fault-related fractures in the damage zones are commonly modified by healing and sealing, and the rocks are generally affected by exhumation. Another approach is to mimic the level of fracture damage on the small scale in laboratory experiments on initially intact rocks. Here, experiments have been completed under triaxial stresses. Variably fractured samples are produced by stress cycling, and the seismic velocity, crack surface area and permeability have been measured. These physical properties can be mapped onto natural fault damage zones by relating the fracture damage in laboratory samples with that in natural faults. The results give insights into the transport properties of faults and the energy

  4. Fluid chemistry in the fault propataion zone in the mid-crust -fluid inclusion chemistry from the Lishan fault, Taiwan-

    NASA Astrophysics Data System (ADS)

    Okamoto, K.; Iijima, C.; Kurosawa, M.; Chan, Y.; Terabayashi, M.

    2011-12-01

    Liberation of CO2-rich gas from fluid preserved in the fault propagation zone would be important phenomena in the earthquake and aftershock process. We have detected that injected fluid in link thrust would cause fault propagation and fault lubrication due to vapor-separation [1]. Recently, one of the authors, Yu-Chang Chan found unusual quartz vein on the great link-thrust, Lishan fault, in Taiwan orogenic belt [1]. The quartz vein is spherical shape and is composed of large crystals. The transparent quartz grains contain large primary fluid inclusions over 100 microns in diameters. The fluid inclusion is classified as three kinds of group. That is, two phase, vapor phase and three phase inclusion. Homogenization temperature is 260 oC and NaCl weight pecent is estimated to be 7.41. In order to measure the fluid chemistry, PIXE analysis was done at Tsukuba University. Analytical procedure is shown in [2]. The result is summarized as follows. 1. Br/Cr ratio is lower than that in seawater. 2. Ti, Cr, and Ni contents are high, suggesting that fluid is related to magma activity. 3. Vapor-phase inclusion contains considerable amount of metal elements (Ti, Zn, Ge, Mn, Ca, Fe, Pb, Rb, and Cu) as well as K, and Br. Fractionation between the vapor and the fluid would be useful tool to detect vapor separation due to fault propagation. References [1] Chan, Y. et al., Terra Nova 17, 439-499 (2005) [2] Kurosawa M. et al.,Island Arc, 19, 17-29 (2010)

  5. Hydromechanical heterogeneities of a mature fault zone: impacts on fluid flow.

    PubMed

    Jeanne, Pierre; Guglielmi, Yves; Cappa, Frédéric

    2013-01-01

    In this paper, fluid flow is examined for a mature strike-slip fault zone with anisotropic permeability and internal heterogeneity. The hydraulic properties of the fault zone were first characterized in situ by microgeophysical (VP and σc ) and rock-quality measurements (Q-value) performed along a 50-m long profile perpendicular to the fault zone. Then, the local hydrogeological context of the fault was modified to conduct a water-injection test. The resulting fluid pressures and flow rates through the different fault-zone compartments were then analyzed with a two-phase fluid-flow numerical simulation. Fault hydraulic properties estimated from the injection test signals were compared to the properties estimated from the multiscale geological approach. We found that (1) the microgeophysical measurements that we made yield valuable information on the porosity and the specific storage coefficient within the fault zone and (2) the Q-value method highlights significant contrasts in permeability. Fault hydrodynamic behavior can be modeled by a permeability tensor rotation across the fault zone and by a storativity increase. The permeability tensor rotation is linked to the modification of the preexisting fracture properties and to the development of new fractures during the faulting process, whereas the storativity increase results from the development of micro- and macrofractures that lower the fault-zone stiffness and allows an increased extension of the pore space within the fault damage zone. Finally, heterogeneities internal to the fault zones create complex patterns of fluid flow that reflect the connections of paths with contrasting properties.

  6. The Lower Tagus Valley Fault Zone and its associated geomorphic features

    NASA Astrophysics Data System (ADS)

    Besana-Ostman, G. M.; Ferreira, H.; Falcão Flor, A. P.; Narciso, J.; Pinheiro, P.; Heleno, S.; Nemser, E. S.; Vilanova, S. P.; Fonseca, J. F.

    2010-12-01

    Portugal and the SW Iberian region have experienced moderate to strong earthquakes in the past ( e.g. 1344, 1531, 1858, and 1909 events). These earthquakes are generally linked with the Lower Tagus Valley Fault Zone (LTV) and its associated splays. However, despite major contention with respect to its activity, the LTV region is one of two regions identified in Portugal with the highest seismic hazard. Thus, to address the very important issues relating to the fault activity of the LTV, several studies were undertaken to identify and characterize the deformation related to this structure, specifically its location and geometry. To ascertain and establish the location of the LTV, topographic maps, aerial photos, and river systems were analyzed together with other remotely-sensed data coupled with numerous field mapping activities. Results from these efforts indicate recent faulting along the LTV with the trace located within the valley that transects major rivers, tributaries and young terraces. The mapped trace is generally very linear, steeply dipping with landforms indicative of left-lateral displacements. Identified geomorphic features include fault scarps, tectonic bulges & depressions and linear valleys. Other field activities include profile measurements across the fault and evaluation of any possible cumulative lateral displacements. Based on the strike changes along the approximately 85km trace under investigation, at least 2 segments have been identified. Thus, considering its location, strike, and sense of displacement, the newly-identified geomorphic features along the Lower Tagus floodplains may be the most probable active trace associated with the LTV. Trench excavations yielded at least one and possibly two earthquake events recorded in the stratigraphic deformations. The new information above about the LTV location together with its possible segments can be essential input for an improved seismic hazards assessment while the data about the extent of

  7. Challenges and perspectives in the geological study of active faults.

    NASA Astrophysics Data System (ADS)

    Rizza, M.

    2011-12-01

    Identification of active faults is important for understanding regional seismicity and seismic hazard. A large part of the world's population lives in areas where destructive earthquakes or tsunamis were recorded in the past. Most of the difficulties in estimating seismic hazard and anticipating earthquakes are due to a lack of knowledge about the location of active faults and their seismic history. Even where active faults are known the characteristics of past earthquakes and the seismic cycle are uncertain and subject to discussion. Investigations carried out on active faults during the past decade, however, have provided new high-quality data and powerful tools to better understand crustal deformation and the recurrence of earthquakes. In morphotectonic studies, the ever-improving resolution of satellites images allows geologists to identify with more certainty the traces of active faults and even earthquake surface ruptures of the past. The advantage of satellite imagery for identifying neotectonic features is it gives access to large areas, sometimes difficult to reach in the field and provides synoptic views. Using the potential of high-resolution imagery and digital elevation models, geologists can produce detailed 3D reconstructions of fault morphology and geometry, including the kinematics of repeated slip. The development of new dating techniques, coupled with paleoseismology and quantitative geomorphology, now allows bracketing the occurrence of paleoearthquakes back to several thousand years, as well as analyzing long time sequences of events. Despite such wealth of new data, however, the work remaining to do is huge. Earthquake forecast (location, timing, magnitude) remains an unsolved problem for the earthquake community at large (seismologists, geodesists, paleoseismologists and modelers). The most important challenges in the next decade will be to increase the efficiency of neotectonic studies to create more complete active fault databases and

  8. In situ stress and fracture permeability along the Stillwater fault zone, Dixie Valley Nevada

    USGS Publications Warehouse

    Hickman, S.H.; Barton, C.A.; Zoback, M.D.; Morin, R.; Sass, J.; Benoit, R.

    1997-01-01

    Borehole televiewer and hydrologic logging and hydraulic fracturing stress measurements were carried out in a 2.7-km-deep geothermal production well (73B-7) drilled into the Stillwater fault zone. Precision temperature and spinner flowmeter logs were also acquired in well 73B-7, with and without simultaneously injecting water into the well. Localized perturbations to well-bore temperature and flow were used to identify hydraulically conductive fractures. Comparison of these data with fracture orientations from the televiewer log indicates that permeable fractures within and adjacent to the Stillwater fault zone are critically stressed, potentially active shear planes in the current west-northwest extensional stress regime at Dixie Valley.

  9. Hydrogeological impact of fault zones on a fractured carbonate aquifer, Semmering (Austria)

    NASA Astrophysics Data System (ADS)

    Mayaud, Cyril; Winkler, Gerfried; Reichl, Peter

    2015-04-01

    Fault zones are the result of tectonic processes and are geometrical features frequently encountered in carbonate aquifer systems. They can hamper the fluid migration (hydrogeological barriers), propagate the movement of fluid (draining conduits) or be a combination of both processes. Numerical modelling of fractured carbonate aquifer systems is strongly bound on the knowledge of a profound conceptual model including geological and tectonic settings such as fault zones. In further consequence, numerical models can be used to evaluate the conceptual model and its introduced approximations. The study was conducted in a fractured carbonate aquifer built up by permomesozoic dolo/limestones of the Semmering-Wechsel complex in the Eastern Alps (Austria). The aquifer has an assumed thickness of about 200 m and dips to the north. It is covered by a thin quartzite layer and a very low permeable layer of quartz-phyllite having a thickness of up to several hundred meters. The carbonate layer crops out only in the southern part of the investigation area, where it receives autogenic recharge. The geological complexity affects some uncertainties related to the extent of the model area, which was determined to be about 15 km². Three vertical fault zones cross the area approximately in a N-S direction. The test site includes an infrastructural pilot tunnel gallery of 4.3 km length with two pumping stations, respectively active since August 1997 and June 1998. The total pumping rate is about 90 l/s and the drawdown data were analysed analytically, providing a hydraulic conductivity of about 5E-05 m/s for the carbonate layer. About 120 m drawdown between the initial situation and situation with pumping is reported by piezometers. This led to the drying up of one spring located at the southern border of the carbonates. A continuum approach using MODFLOW-2005 was applied to reproduce numerically the observed aquifer behaviour and investigate the impact of the three fault zones. First

  10. Pore pressure distribution of a mega-splay fault system in the Nankai Trough subduction zone: Insight into up-dip extent of the seismogenic zone

    NASA Astrophysics Data System (ADS)

    Tsuji, Takeshi; Kamei, Rie; Pratt, R. Gerhard

    2014-06-01

    We use the pore pressure distribution predicted from a waveform tomography (WT) velocity model to interpret the evolution of the mega-splay fault system in the Nankai Trough off Kumano, Japan. To map pore pressure around the mega-splay fault and plate boundary décollement, we integrate the high-resolution WT velocities with laboratory data and borehole well log data using rock physics theory. The predicted pore pressure distribution shows that high pore pressures (close to lithostatic pressure) along the footwall of the mega-splay fault extend seaward to the trough region, and the normalized pore pressure ratio is nearly constant over that extent. This continuity of the overpressured zone indicates that a coseismic rupture can potentially propagate nearly to the trough axis. We interpret a high-pressure belt within an accretionary wedge on the landward side of the present mega-splay fault as evidence of the ancient mega-splay fault. Because the ancient mega-splay fault soles into the active mega-splay fault, the active mega-splay fault may function as a basal detachment fault and is directly connected to the seaward plate boundary décollement.

  11. Slip on 'Weak' Faults by the Rotation of Regional Stress in the Fracture Damage Zone

    NASA Astrophysics Data System (ADS)

    Faulkner, D. R.; Mitchell, T. M.; Healy, D.; Heap, M. J.

    2006-12-01

    The concept of stress rotation within fault zones is important in order to understand the strength of fault zones that are unfavourably oriented with respect to the remotely-applied driving stress. The San Andreas 'stress-heat flow paradox' and slip on low-angle normal faults imply that fault zone weakening must occur. Possible explanations for this weakening include weak fault materials, dynamic slip weakening and elevated pore fluid pressures. Stress rotation within the fault zone must accompany high pore fluid pressures, or effective σ3 will be pushed well into the tensile field, resulting in hydrofracture, pore fluid pressure loss and fault strengthening. Here we show from field observations of a major tectonic fault, laboratory experiments and numerical modelling, that stress rotation is significant within the fractured damage zone surrounding a fault. We characterize the microfracture damage surrounding a major strike-slip fault within the Atacama fault system in northern Chile, which shows an exponential decrease with distance from the fault core. We then relate the microfracture damage to changes in elastic properties as measured in laboratory experiments. The field and laboratory data are then used in a two-dimensional plane strain model to show how the remotely applied stress field is affected as the fault core is approached. We show that greatest principal stress orientations of 80° with respect to the fault plane can be rotated to less than 45° within the damage zone. The damage-induced change in elastic properties provide the necessary stress rotation to allow high pore pressure faulting, without resulting in hydrofracture.

  12. Inferred fluid flow through fault damage zones based on the observation of stalactites in carbonate caves

    NASA Astrophysics Data System (ADS)

    Kim, Young-Seog; Sanderson, David J.

    2010-09-01

    Faults and fractures are important factors that control fluid flow in rock masses in hydrothermal, groundwater, and hydrocarbon systems. In this paper we examine local variations in fluid flow as evidenced by the distribution patterns and sizes of stalactites in fractured limestone. We observe that the size and distribution of stalactites relate to fluid flow and is strongly controlled by the fracture apertures, intersection of fractures, and development of damage zones around a fault. Fault damage zones are the volumes of deformed wall rocks around a fault surface that result from the initiation, propagation, interaction, termination, and build-up of slip along the fault. They are divided into tip-, wall-, and linkage damage zones depending on their location along the fault. The pattern of deformation within a damage zone mainly depends on fault tip modes (mode II or III), the 3-D locations around a fault surface, and the evolutionary stage of the fault. The development of different structures within damage zones gives valuable information about fault initiation and termination, fault propagation and growth, and fluid flow. Stalactites indicate fluid flow variation within a fault in that fluid flow is high in dilational jogs, variable along the main fault traces, and low in contractional jogs. Variation in ore fluid flow within faults is also important in controlling the position of ore shoots in structurally-controlled hydrothermal mineral deposits. Thus, the characteristics of fluid flow in fractured carbonate rocks can be related to patterns of damage around faults. Hence, the mapping of damage zones can be applied to the study of fracture-controlled fluid flow in the fields of petroleum geology, hydrogeology, and ore deposits.

  13. Hydrogeological properties of fault zones in a karstified carbonate aquifer (Northern Calcareous Alps, Austria)

    NASA Astrophysics Data System (ADS)

    Bauer, H.; Schröckenfuchs, T. C.; Decker, K.

    2016-08-01

    This study presents a comparative, field-based hydrogeological characterization of exhumed, inactive fault zones in low-porosity Triassic dolostones and limestones of the Hochschwab massif, a carbonate unit of high economic importance supplying 60 % of the drinking water of Austria's capital, Vienna. Cataclastic rocks and sheared, strongly cemented breccias form low-permeability (<1 mD) domains along faults. Fractured rocks with fracture densities varying by a factor of 10 and fracture porosities varying by a factor of 3, and dilation breccias with average porosities >3 % and permeabilities >1,000 mD form high-permeability domains. With respect to fault-zone architecture and rock content, which is demonstrated to be different for dolostone and limestone, four types of faults are presented. Faults with single-stranded minor fault cores, faults with single-stranded permeable fault cores, and faults with multiple-stranded fault cores are seen as conduits. Faults with single-stranded impermeable fault cores are seen as conduit-barrier systems. Karstic carbonate dissolution occurs along fault cores in limestones and, to a lesser degree, dolostones and creates superposed high-permeability conduits. On a regional scale, faults of a particular deformation event have to be viewed as forming a network of flow conduits directing recharge more or less rapidly towards the water table and the springs. Sections of impermeable fault cores only very locally have the potential to create barriers.

  14. Geodynamics of the Dead Sea Fault: Do active faulting and past earthquakes determine the seismic gaps?

    NASA Astrophysics Data System (ADS)

    Meghraoui, Mustapha

    2014-05-01

    The ~1000-km-long North-South trending Dead Sea transform fault (DSF) presents structural discontinuities and includes segments that experienced large earthquakes (Mw>7) in historical times. The Wadi Araba and Jordan Valley, the Lebanese restraining bend, the Missyaf and Ghab fault segments in Syria and the Ziyaret Fault segment in Turkey display geometrical complexities made of step overs, restraining and releasing bends that may constitute major obstacles to earthquake rupture propagation. Using active tectonics, GPS measurements and paleoseismology we investigate the kinematics and long-term/short term slip rates along the DSF. Tectonic geomorphology with paleoseismic trenching and archeoseismic investigations indicate repeated faulting events and left-lateral slip rate ranging from 4 mm/yr in the southern fault section to 6 mm/yr in the northern fault section. Except for the northernmost DSF section, these estimates of fault slip rate are consistent with GPS measurements that show 4 to 5 mm/yr deformation rate across the plate boundary. However, recent GPS results showing ~2.5 mm/yr velocity rate of the northern DSF appears to be quite different than the ~6 mm/yr paleoseismic slip rate. The kinematic modeling that combines GPS and seismotectonic results implies a complex geodynamic pattern where the DSF transforms the Cyprus arc subduction zone into transpressive tectonics on the East Anatolian fault. The timing of past earthquake ruptures shows the occurrence of seismic sequences and a southward migration of large earthquakes, with the existence of major seismic gaps along strike. In this paper, we discuss the role of the DSF in the regional geodynamics and its implication on the identification of seismic gaps.

  15. Damaged beyond repair? Characterising the damage zone of a fault late in its interseismic cycle, the Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Williams, Jack N.; Toy, Virginia G.; Massiot, Cécile; McNamara, David D.; Wang, Ting

    2016-09-01

    X-ray computed tomography (CT) scans of drill-core, recovered from the first phase of the Deep Fault Drilling Project (DFDP-1) through New Zealand's Alpine Fault, provide an excellent opportunity to study the damage zone of a plate-bounding continental scale fault, late in its interseismic cycle. Documentation of the intermediate-macro scale damage zone structures observed in the CT images show that there is no increase in the density of these structures towards the fault's principal slip zones (PSZs), at least within the interval sampled, which is 30 m above and below the PSZs. This is in agreement with independent analysis using borehole televiewer data. Instead, we conclude the density of damage zone structures to correspond to lithology. We find that 72% of fractures are fully healed, by a combination of clays, calcite and quartz, with an additional 24% partially healed. This fracture healing is consistent with the Alpine Fault's late interseismic state, and the fact that the interval of damage zone sampled coincides with an alteration zone, an interval of extensive fluid-rock interaction. These fractures do not impose a reduction of P-wave velocity, as measured by wireline methods. Outside the alteration zone there is indirect evidence of less extensive fracture healing.

  16. Coupled fragmentation and silicification processes in fault zones.

    NASA Astrophysics Data System (ADS)

    Ord, Alison; Seybold, Lina; Hobbs, Bruce; Kruhl, Jörn; Heuss, Soraya; Blenkinsop, Tom

    2015-04-01

    We explore some possible interactions of mechanical and chemical processes which may have led to the patterns of fragmentation and quartz precipitation observed at the Fountain Range Fault at Fountain Springs. Seybold et al. (this session) describe features which indicate a multiphase fragmentation and quartz precipitation history of the Fountain Range Fault (Mt Isa Inlier, Australia). They infer that intense fragmentation, together with fluid infiltration and quartz crystallization in pore space, led to fine-grained cataclastic and silicified masses, followed by numerous events of quartz-vein formation and, again, cataclasis probably leading to flow of particle-fluid suspensions. They proposed the macro- and microstructures to reflect the interaction of repeated processes of fragmentation, fluid flux, quartz precipitation and cataclastic flow during the long-lasting history of the fault zone. We compare and contrast the patterns arising from the modelled interactions with the observed patterns in a quantitative manner through the application of wavelets. There are all sorts of wavelets, each useful for different patterns. The point is that all of them are localised wave packets of some kind the wavelet is scanned across the image with different magnifications and we look to see how closely the wavelet matches the image at a particular scale. It is a "fabric microscope" that enables one to zoom into the details of any deformation fabric and extract information on the ways in which the geometry of every part of the fabric scales with size. This enables a scalogram to be constructed and from that the singularity spectrum with its many measures of features of the geometry. The wavelet analysis enables us to compare in a quantitative manner the results of numerical modeling based on a coupled damage quartz precipitation model with field observations.

  17. Fault segmentation: New concepts from the Wasatch Fault Zone, Utah, USA

    NASA Astrophysics Data System (ADS)

    DuRoss, Christopher B.; Personius, Stephen F.; Crone, Anthony J.; Olig, Susan S.; Hylland, Michael D.; Lund, William R.; Schwartz, David P.

    2016-02-01

    The question of whether structural segment boundaries along multisegment normal faults such as the Wasatch fault zone (WFZ) act as persistent barriers to rupture is critical to seismic hazard analyses. We synthesized late Holocene paleoseismic data from 20 trench sites along the central WFZ to evaluate earthquake rupture length and fault segmentation. For the youngest (<3 ka) and best-constrained earthquakes, differences in earthquake timing across prominent primary segment boundaries, especially for the most recent earthquakes on the north-central WFZ, are consistent with segment-controlled ruptures. However, broadly constrained earthquake times, dissimilar event times along the segments, the presence of smaller-scale (subsegment) boundaries, and areas of complex faulting permit partial-segment and multisegment (e.g., spillover) ruptures that are shorter (~20-40 km) or longer (~60-100 km) than the primary segment lengths (35-59 km). We report a segmented WFZ model that includes 24 earthquakes since ~7 ka and yields mean estimates of recurrence (1.1-1.3 kyr) and vertical slip rate (1.3-2.0 mm/yr) for the segments. However, additional rupture scenarios that include segment boundary spatial uncertainties, floating earthquakes, and multisegment ruptures are necessary to fully address epistemic uncertainties in rupture length. We compare the central WFZ to paleoseismic and historical surface ruptures in the Basin and Range Province and central Italian Apennines and conclude that displacement profiles have limited value for assessing the persistence of segment boundaries but can aid in interpreting prehistoric spillover ruptures. Our comparison also suggests that the probabilities of shorter and longer ruptures on the WFZ need to be investigated.

  18. Fault segmentation: New concepts from the Wasatch Fault Zone, Utah, USA

    USGS Publications Warehouse

    Duross, Christopher; Personius, Stephen F.; Crone, Anthony J.; Olig, Susan S.; Hylland, Michael D.; Lund, William R.; Schwartz, David P.

    2016-01-01

    The question of whether structural segment boundaries along multisegment normal faults such as the Wasatch fault zone (WFZ) act as persistent barriers to rupture is critical to seismic hazard analyses. We synthesized late Holocene paleoseismic data from 20 trench sites along the central WFZ to evaluate earthquake rupture length and fault segmentation. For the youngest (<3 ka) and best-constrained earthquakes, differences in earthquake timing across prominent primary segment boundaries, especially for the most recent earthquakes on the north-central WFZ, are consistent with segment-controlled ruptures. However, broadly constrained earthquake times, dissimilar event times along the segments, the presence of smaller-scale (subsegment) boundaries, and areas of complex faulting permit partial-segment and multisegment (e.g., spillover) ruptures that are shorter (~20–40 km) or longer (~60–100 km) than the primary segment lengths (35–59 km). We report a segmented WFZ model that includes 24 earthquakes since ~7 ka and yields mean estimates of recurrence (1.1–1.3 kyr) and vertical slip rate (1.3–2.0 mm/yr) for the segments. However, additional rupture scenarios that include segment boundary spatial uncertainties, floating earthquakes, and multisegment ruptures are necessary to fully address epistemic uncertainties in rupture length. We compare the central WFZ to paleoseismic and historical surface ruptures in the Basin and Range Province and central Italian Apennines and conclude that displacement profiles have limited value for assessing the persistence of segment boundaries but can aid in interpreting prehistoric spillover ruptures. Our comparison also suggests that the probabilities of shorter and longer ruptures on the WFZ need to be investigated.

  19. KONOCTI BAY FAULT ZONE, LAKE COUNTY, CALIFORNIA: A REEVALUATION.

    USGS Publications Warehouse

    Thompson, J. Michael

    1984-01-01

    The Konocti Bay Fault Zone (KBFZ), initially regarded by some as a promising liquid-dominated hydrothermal system, has been a disappointment as a geothermal prospect. Five exploratory wells have been drilled in the vicinity of the KBFZ, but none of them are producing thermal fluids; in fact, three have been abandoned. This may be because hydrothermal fluid discharges along the KBFZ are low. The Na-K-Ca and Na-Li geothermometers indicate that the waters discharging around Howard and Seigler Springs may have equilibrated at temperatures above 200 degree C. If boiling has occurred or is occurring, a chloride-enthalpy diagram may be appropriate. Such a diagram for the KBFZ shows that a water in excess of 250 degree C existed or may exist in the area. However, because currently measured temperatures rarely exceed 50 degree C and magnesium concentration in the water is high, very little deep high temperature water may be present. Refs.

  20. Controls on damage zone asymmetry of a normal fault zone: outcrop analyses of a segment of the Moab fault, SE Utah

    NASA Astrophysics Data System (ADS)

    Berg, Silje S.; Skar, Tore

    2005-10-01

    Outcrop data has been used to examine the spatial arrangement of fractures in the damage zones of a segment of the large-scale Moab Fault (45 km in length), SE Utah. The characteristics of the footwall and hanging wall damage zones show pronounced differences in the deformation pattern: (1) there is a well-developed syncline in the hanging wall, as opposed to sub-horizontal bedding of the footwall; (2) the footwall damage zone is sub-divided into an inner zone (0-5 m from fault core) and an outer zone (>5 m) based on differences in deformation band frequency, whereas no clear sub-division can be made in the hanging wall; (3) the hanging wall damage zone is more than three times wider than the footwall damage zone; (4) there is a higher abundance of antithetic fractures and deformation bands in the hanging wall than in the footwall; and (5) the antithetic structures generally have more gentle dips in the hanging wall than in the footwall. The main conclusion is that the structural pattern across the fault zone is strongly asymmetric. The deformation pattern is partly influenced by lithology and/or partly by processes associated with the development of the fault core. We suggest, however, that the most important cause for the asymmetric strain distribution is the development of the hanging wall syncline and the resulting asymmetric stress pattern expected to exist during fault propagation.

  1. CO2/Brine transport into shallow aquifers along fault zones.

    PubMed

    Keating, Elizabeth H; Newell, Dennis L; Viswanathan, Hari; Carey, J W; Zyvoloski, G; Pawar, Rajesh

    2013-01-01

    Unintended release of CO(2) from carbon sequestration reservoirs poses a well-recognized risk to groundwater quality. Research has largely focused on in situ CO(2)-induced pH depression and subsequent trace metal mobilization. In this paper we focus on a second mechanism: upward intrusion of displaced brine or brackish-water into a shallow aquifer as a result of CO(2) injection. Studies of two natural analog sites provide insights into physical and chemical mechanisms controlling both brackish water and CO(2) intrusion into shallow aquifers along fault zones. At the Chimayó, New Mexico site, shallow groundwater near the fault is enriched in CO(2) and, in some places, salinity is significantly elevated. In contrast, at the Springerville, Arizona site CO(2) is leaking upward through brine aquifers but does not appear to be increasing salinity in the shallow aquifer. Using multiphase transport simulations we show conditions under which significant CO(2) can be transported through deep brine aquifers into shallow layers. Only a subset of these conditions favor entrainment of salinity into the shallow aquifer: high aspect-ratio leakage pathways and viscous coupling between the fluid phases. Recognition of the conditions under which salinity is favored to be cotransported with CO(2) into shallow aquifers will be important in environmental risk assessments. PMID:22799449

  2. Imaging the Seattle Fault Zone with high-resolution seismic tomography

    USGS Publications Warehouse

    Calvert, A.J.; Fisher, M.A.

    2001-01-01

    The Seattle fault, which trends east-west through the greater Seattle metropolitan area, is a thrust fault that, around 1100 years ago, produced a major earthquake believed to have had a magnitude greater than 7. We present the first high resolution image of the shallow P wave velocity variation across the fault zone obtained by tomographic inversion of first arrivals recorded on a seismic reflection profile shot through Puget Sound adjacent to Seattle. The velocity image shows that above 500 m depth the fault zone extending beneath Seattle comprises three distinct fault splays, the northernmost of which dips to the south at around 60??. The degree of uplift of Tertiary rocks within the fault zone suggests that the slip-rate along the northernmost splay during the Quaternary is 0.5 mm a-1, which is twice the average slip-rate of the Seattle fault over the last 40 Ma.

  3. Neogene exhumation in the eastern Alaska Range and its relationship to splay fault activity in the Denali fault system

    NASA Astrophysics Data System (ADS)

    Waldien, T.; Roeske, S.; Benowitz, J.; Allen, W. K.; Ridgway, K.

    2015-12-01

    Dextral oblique convergence in the Denali fault system results from subduction zone strain in the Alaska syntaxis that is partitioned into the upper plate. This convergence is accommodated by dextral-reverse oblique slip on segments of the main strand of the Denali fault in the center of the Alaska Range and by splay faults north and south of the Denali fault at the margins of the Alaska Range. Low-temp. thermochronometry applied to basement rocks bounded by faults within the Denali fault system aids stratigraphic data to determine the timing and locations of exhumation in the Alaska Range, which augment regional seismicity studies aimed at resolving modern fault activity in the Denali fault system. The McCallum Creek and Broxson Gulch faults are north-dipping faults that splay southward from the Denali fault near the Delta River and mark the southern margin of the eastern Alaska Range. Apatite fission track thermochronometry on rocks north of the McCallum Creek fault shows rapid cooling in the hanging wall coeval with basin development in the footwall initiating at the Miocene-Pliocene boundary. Apatite fission track and apatite (U-Th)/He ages from plutonic rocks in the hanging wall of the Broxson Gulch fault, west of the McCallum Creek fault, show final cooling in the Miocene, slightly younger than hanging wall cooling associated with the Susitna Glacier thrust further to the west. Neogene low-temp. cooling ages in the hanging walls of the Susitna Glacier thrust, Broxson Gulch, and McCallum Creek faults suggest that these structures have been accommodating convergence in the Denali fault system throughout the Neogene. More recent cooling in the hanging wall of the McCallum Creek compared to the Susitna Glacier thrust suggests that this fault-related exhumation has migrated eastward throughout the Neogene. Convergence on these splay faults south of the Denali fault results in internal contraction of the crust south of the Denali fault, implying that the Southern

  4. Distribution of deformation in a dextral fault-tip damage zone revealed from neotectonic mapping and high-resolution ALSM topography

    NASA Astrophysics Data System (ADS)

    selander, J.; Oskin, M. E.

    2013-12-01

    Fault segmentation and connectivity controls potential earthquake sizes and seismic hazard. Because longer fault ruptures produce larger earthquakes, it is important to understand the processes by which faults lengthen and how strain is distributed into the crust surrounding fault tips. Also, deformation in fault-tip damage zones could contribute to additional seismic hazard via earthquakes on unknown or blind secondary faults, and some strain may accumulate aseismically, reducing overall hazard. To investigate spatial and temporal styles and patterns of deformation at a fault tip, we studied the northwestern Gravel Hills Fault (GHF) in the central Mojave Desert, California. The ~65 km-long GHF is an actively propagating dextral fault that terminates at its northwestern end into a 4 km-long, 7 km-wide, ~200 m deep topographic depression. This fault tip lies 25 km southeast of the Garlock fault, and there are no obvious connections from the northern GHF to the Garlock or other nearby active faults. Field observations and interpretation of new ALSM topographic data collected for this study shows the distribution of deformation along the GHF and beyond the termination of faulting. A set of active en-echelon faults and gentle folds define a 3 km-wide deformation zone that extends 10 km along strike of the GHF. The faults record polyphase histories with initial dip-slip motion transitioning to dextral slip with propagation of the GHF. Analysis of syn-tectonic stratigraphy proximal to the fault tip shows that a depocenter formed and migrated northwest ahead of the GHF, consistent with elastic strain distribution in the crust at the termination of dextral fault rupture. This suggests that a portion of coseismic elastic strain has accumulated permanently in the volume of rock surrounding the tip of the GHF. We interpret our results to infer a spatio-temporal sequence of deformation in the fault-tip damage zone ahead of the GHF: First, long-wavelength (5-10 km) gentle

  5. Fault zone characteristics and basin complexity in the southern Salton Trough, California

    USGS Publications Warehouse

    Persaud, Patricia; Ma, Yiran; Stock, Joann M.; Hole, John A.; Fuis, Gary S.; Han, Liang

    2016-01-01

    Ongoing oblique slip at the Pacific–North America plate boundary in the Salton Trough produced the Imperial Valley (California, USA), a seismically active area with deformation distributed across a complex network of exposed and buried faults. To better understand the shallow crustal structure in this region and the connectivity of faults and seismicity lineaments, we used data primarily from the Salton Seismic Imaging Project to construct a three-dimensional P-wave velocity model down to 8 km depth and a velocity profile to 15 km depth, both at 1 km grid spacing. A VP = 5.65–5.85 km/s layer of possibly metamorphosed sediments within, and crystalline basement outside, the valley is locally as thick as 5 km, but is thickest and deepest in fault zones and near seismicity lineaments, suggesting a causative relationship between the low velocities and faulting. Both seismicity lineaments and surface faults control the structural architecture of the western part of the larger wedge-shaped basin, where two deep subbasins are located. We estimate basement depths, and show that high velocities at shallow depths and possible basement highs characterize the geothermal areas.

  6. Fault zone reverberations from cross-correlations of earthquake waveforms and seismic noise

    NASA Astrophysics Data System (ADS)

    Hillers, Gregor; Campillo, Michel

    2016-03-01

    Seismic wavefields interact with low-velocity fault damage zones. Waveforms of ballistic fault zone head waves, trapped waves, reflected waves and signatures of trapped noise can provide important information on structural and mechanical fault zone properties. Here we extend the class of observable fault zone waves and reconstruct in-fault reverberations or multiples in a strike-slip faulting environment. Manifestations of the reverberations are significant, consistent wave fronts in the coda of cross-correlation functions that are obtained from scattered earthquake waveforms and seismic noise recorded by a linear fault zone array. The physical reconstruction of Green's functions is evident from the high similarity between the signals obtained from the two different scattered wavefields. Modal partitioning of the reverberation wavefield can be tuned using different data normalization techniques. The results imply that fault zones create their own ambiance, and that the here reconstructed reverberations are a key seismic signature of wear zones. Using synthetic waveform modelling we show that reverberations can be used for the imaging of structural units by estimating the location, extend and magnitude of lateral velocity contrasts. The robust reconstruction of the reverberations from noise records suggests the possibility to resolve the response of the damage zone material to various external and internal loading mechanisms.

  7. Fault zone structure and seismic reflection characteristics in zones of slow slip and tsunami earthquakes

    NASA Astrophysics Data System (ADS)

    Bell, Rebecca; Henrys, Stuart; Sutherland, Rupert; Barker, Daniel; Wallace, Laura; Holden, Caroline; Power, William; Wang, Xiaoming; Morgan, Joanna; Warner, Michael; Downes, Gaye

    2015-04-01

    Over the last couple of decades we have learned that a whole spectrum of different fault slip behaviour takes place on subduction megathrust faults from stick-slip earthquakes to slow slip and stable sliding. Geophysical data, including seismic reflection data, can be used to characterise margins and fault zones that undergo different modes of slip. In this presentation we will focus on the Hikurangi margin, New Zealand, which exhibits marked along-strike changes in seismic behaviour and margin characteristics. Campaign and continuous GPS measurements reveal deep interseismic coupling and deep slow slip events (~30-60 km) at the southern Hikurangi margin. The northern margin, in contrast, experiences aseismic slip and shallow (<10-15 km) slow slip events (SSE) every 18-24 months with equivalent moment magnitudes of Mw 6.5-6.8. Updip of the SSE region two unusual megathrust earthquakes occurred in March and May 1947 with characteristics typical of tsunami earthquakes. The Hikurangi margin is therefore an excellent natural laboratory to study differential fault slip behaviour. Using 2D seismic reflection, magnetic anomaly and geodetic data we observe in the source areas of the 1947 tsunami earthquakes i) low amplitude interface reflectivity, ii) shallower interface relief, iii) bathymetric ridges, iv) magnetic anomaly highs and in the case of the March 1947 earthquake v) stronger geodetic coupling. We suggest that this is due to the subduction of seamounts, similar in dimensions to seamounts observed on the incoming Pacific plate, to depths of <10 km. We propose a source model for the 1947 tsunami earthquakes based on geophysical data and find that extremely low rupture velocities (c. 300 m/s) are required to model the observed large tsunami run-up heights (Bell et al. 2014, EPSL). Our study suggests that subducted topography can cause the nucleation of moderate earthquakes with complex, low velocity rupture scenarios that enhance tsunami waves, and the role of

  8. Hydraulic characteristics of fault zones and their impact on groundwater flow

    NASA Astrophysics Data System (ADS)

    Banks, E.; Cook, P. G.

    2014-12-01

    An important source of groundwater recharge to sedimentary basin aquifers is from mountain block recharge and in many instances the rate and direction of groundwater flow is controlled by regional scale fault systems. Vertical faults may act as either barriers to horizontal groundwater flow perpendicular to the fault, conduits to horizontal flow along the fault or a combination of both. Faults can also provide conduits for vertical flow. There are very few evaluations of the impact of fault zones on groundwater flow. This study investigated groundwater flow characteristics across a fault zone between a fractured rock and sedimentary aquifer system. Hydrogeological and hydrogeophysical techniques were used to design a drilling program whereby multi-level observation wells were constructed at 3 field sites either side of the Willunga fault in the Willunga Basin, South Australia, up to 300 metres below ground level. The observed hydraulic gradients across the fault zone were very significant (2.5), with a head difference of 80 metres over a horizontal distance of less than 30 metres. Despite the high hydraulic gradient, calculating the groundwater flux across the fault was more complicated. A 3D numerical model was developed to determine the relative proportion of groundwater flow across the fault and flow parallel to the fault. This model was also used to assess the impact of the fault zone permeability on the hydraulic gradients across the fault and evaluate the mechanisms and behaviour of these conduit-barrier systems to groundwater flow. Groundwater age dating and hydrochemical analyses were conducted to examine and constrain the contributing end members of the different aquifer systems and trace groundwater movement and residence time across the fault zone.

  9. Seismicity and Fault Zone Structure Near the Xinfengjiang Water Reservoir, Guangdong, China

    NASA Astrophysics Data System (ADS)

    Yang, H.; Sun, X.; He, L.; Wang, S.

    2015-12-01

    Xingfengjiang Water Reservoir (XWR) was built in 1958 and the first impoundment was conducted in 1959. Immediately following the reservoir impoundment, a series of earthquakes occurred in the vicinity of the XWR, including the 1962 M6.1 earthquake that occurred ~1 km next to the dam. Numerous small earthquakes take place in this region presently, making it one of the most active seismic zones in Guangdong. To investigate the present seismicity and associated fault zone structure, we deployed a temporary seismic network, including a dense linear array across the Ren-Zi-Shi fault southwest to the reservoir. The temporary network is consisted of 42 stations that are operated in the field for more than one month. Because of the mountainous terrain, it is impossible to deploy broadband sensors. Here we use DDV-5 seismometer with a central frequency of 120Hz-5s that is independent on external GPS and battery. During our deployment, numerous earthquakes were recorded. Preliminary results of travel time analysis have shown the characteristic of low velocity fault zone. More detailed analysis, including relocation of earthquakes, ambient noise cross correlation, and modeling body waves, will be presented.

  10. Induced seismicity and CO2 leakage through fault zones during large-scale underground injection in a multilayered sedimentary system

    NASA Astrophysics Data System (ADS)

    Rinaldi, A.; Rutqvist, J.; Jeanne, P.; Cappa, F.

    2013-12-01

    The importance of geomechanics including the potential for reactivating faults associated with large-scale geologic carbon sequestration operations has recently become more widely recognized. However, not withstanding the potential for triggering notable (felt) seismic events, the potential for buoyancy-driven CO2 to reach potable groundwater and the ground surface is more important from safety and storage-efficiency perspectives. In this context, this work extends previous studies on the geomechanical modeling of fault responses during underground carbon dioxide injection, focusing on short-term integrity of the sealing caprock, and hence of potential leakage of either brine or CO2 to shallow groundwater aquifers during active injection. We account for a stress/strain-dependent permeability and study the leakage through a fault zone as its permeability changes during a reactivation, also causing seismicity. We analyze several scenarios related to the injected amount of CO2 (and hence as a function of the overpressure) both involving minor and major faults, and analyze the profile risks of leakage for different stress/strain permeability coupling functions, as well as increasing the complexity of the fault zone in terms of hydromechanical heterogeneities. We conclude that whereas it is very difficult to predict how much fault permeability could change upon reactivation, this process can have a significant impact on the leakage rate. The presence of hydromechanical heterogeneity influences the pressure diffusion, as well as the effective normal and shear stress evolution. Hydromechanical heterogeneities (i) strengthen the fault zone resulting in earthquake of small magnitude, and (ii) prevent a good fluid migration upward along the fault. We also study the effects of the caprock and aquifer thickness on the resulting induced seismicity and CO2 leakage, both in heterogeneous and homogeneous fault zone. Results show that a thin caprock or aquifer allows smaller events

  11. Finite-frequency sensitivity kernels of seismic waves to fault zone structures

    NASA Astrophysics Data System (ADS)

    Allam, A. A.; Tape, C.; Ben-Zion, Y.

    2015-12-01

    We analyse the volumetric sensitivity of fault zone seismic head and trapped waves by constructing finite-frequency sensitivity (Fréchet) kernels for these phases using a suite of idealized and tomographically derived velocity models of fault zones. We first validate numerical calculations by waveform comparisons with analytical results for two simple fault zone models: a vertical bimaterial interface separating two solids of differing elastic properties, and a `vertical sandwich' with a vertical low velocity zone surrounded on both sides by higher velocity media. Establishing numerical accuracy up to 12 Hz, we compute sensitivity kernels for various phases that arise in these and more realistic models. In contrast to direct P body waves, which have little or no sensitivity to the internal fault zone structure, the sensitivity kernels for head waves have sharp peaks with high values near the fault in the faster medium. Surface wave kernels show the broadest spatial distribution of sensitivity, while trapped wave kernels are extremely narrow with sensitivity focused entirely inside the low-velocity fault zone layer. Trapped waves are shown to exhibit sensitivity patterns similar to Love waves, with decreasing width as a function of frequency and multiple Fresnel zones of alternating polarity. In models that include smoothing of the boundaries of the low velocity zone, there is little effect on the trapped wave kernels, which are focused in the central core of the low velocity zone. When the source is located outside a shallow fault zone layer, trapped waves propagate through the surrounding medium with body wave sensitivity before becoming confined. The results provide building blocks for full waveform tomography of fault zone regions combining high-frequency head, trapped, body, and surface waves. Such an imaging approach can constrain fault zone structure across a larger range of scales than has previously been possible.

  12. Mode-of-Failure Transitions in High Porosity Sedimentary and Ignimbrite Deposits, and Implications for Fault-Zone Structure and Architecture

    NASA Astrophysics Data System (ADS)

    Goodwin, L. B.; Rawling, G. C.; Wilson, J. E.; Tobin, H.

    2001-12-01

    Recent studies have demonstrated that fault-zone deformation processes, and thus structures and fault-zone architecture, vary with the petrophysical properties of the protolith. Factors controlling whether or not open fractures form within a given fault zone are of particular importance to understanding fault-zone impacts on fluid flow. We discuss three examples of mode-of-failure transitions from strike-slip and normal faults in sedimentary and volcanic protoliths. Each example illustrates a mechanism by which porosity was reduced over time, resulting in changes in the mechanical behavior of the faulted material. These temporal variations are recorded by overprinting relationships within fault-zone architectural elements. The Sand Hill normal growth fault cuts poorly lithified sediments of the Rio Grande rift, NM. Architectural elements include a fault core bound by tabular mixed zones, which are in turn bracketed by deformation-band damage zones. The mixed zones have been described in poorly lithified sediments only; they consist of material derived from adjacent beds during slip, which has been disaggregated and tectonically mixed. Structures developed during mixing and particulate flow include foliations defined by compositional bands and aligned grains and attenuated and disarticulated beds. These structures are cut by deformation bands in the footwall mixed zone. We interpret these relationships as recording a transition from bulk particulate flow (in normally consolidated sediment) to localized shear within deformation bands (in overconsolidated sediment) as the footwall of the fault was syntectonically exhumed. Mixed zones are also present in the San Gregorio fault zone, a branch of the San Andreas fault system. The San Gregorio fault was active through sedimentation and lithification of rocks currently exposed along the CA coast. Attenuated and boudinaged beds on the SW side of the fault are cut by fractures and veins. We interpret these features as

  13. Landslide susceptibility mapping for a part of North Anatolian Fault Zone (Northeast Turkey) using logistic regression model

    NASA Astrophysics Data System (ADS)

    Demir, Gökhan; aytekin, mustafa; banu ikizler, sabriye; angın, zekai

    2013-04-01

    The North Anatolian Fault is know as one of the most active and destructive fault zone which produced many earthquakes with high magnitudes. Along this fault zone, the morphology and the lithological features are prone to landsliding. However, many earthquake induced landslides were recorded by several studies along this fault zone, and these landslides caused both injuiries and live losts. Therefore, a detailed landslide susceptibility assessment for this area is indispancable. In this context, a landslide susceptibility assessment for the 1445 km2 area in the Kelkit River valley a part of North Anatolian Fault zone (Eastern Black Sea region of Turkey) was intended with this study, and the results of this study are summarized here. For this purpose, geographical information system (GIS) and a bivariate statistical model were used. Initially, Landslide inventory maps are prepared by using landslide data determined by field surveys and landslide data taken from General Directorate of Mineral Research and Exploration. The landslide conditioning factors are considered to be lithology, slope gradient, slope aspect, topographical elevation, distance to streams, distance to roads and distance to faults, drainage density and fault density. ArcGIS package was used to manipulate and analyze all the collected data Logistic regression method was applied to create a landslide susceptibility map. Landslide susceptibility maps were divided into five susceptibility regions such as very low, low, moderate, high and very high. The result of the analysis was verified using the inventoried landslide locations and compared with the produced probability model. For this purpose, Area Under Curvature (AUC) approach was applied, and a AUC value was obtained. Based on this AUC value, the obtained landslide susceptibility map was concluded as satisfactory. Keywords: North Anatolian Fault Zone, Landslide susceptibility map, Geographical Information Systems, Logistic Regression Analysis.

  14. Logs and Scarp Data from a Paloseismic Investigation of the Surprise Valley Fault Zone, Modoc County, California

    USGS Publications Warehouse

    Personius, Stephen F.; Crone, Anthony J.; Machette, Michael N.; Lidke, David J.; Bradley, Lee-Ann; Mahan, Shannon

    2007-01-01

    This report contains field and laboratory data from a paleoseismic study of the Surprise Valley fault zone near Cedarville, California. The 85-km-long Surprise Valley fault zone forms the western active margin of the Basin and Range province in northeastern California. The down-to-the-east normal fault is marked by Holocene fault scarps along most of its length, from Fort Bidwell on the north to near the southern end of Surprise Valley. We studied the central section of the fault to determine ages of paleoearthquakes and to better constrain late Quaternary slip rates, which we hope to compare to deformation rates derived from a recently established geodetic network in the region (Hammond and Thatcher, 2005; 2007). We excavated a trench in June 2005 across a prominent fault scarp on pluvial Lake Surprise deltaic sediments near the mouth of Cooks Canyon, 4 km north of Cedarville. This site was chosen because of the presence of a well-preserved fault scarp and its development on lacustrine deposits thought to be suitable for luminescence dating. We also logged a natural exposure of the fault in similar deltaic sediments near the mouth of Steamboat Canyon, 11 km south of Cedarville, to better understand the along-strike extent of surface ruptures. The purpose of this report is to present photomosaics, trench, drill hole, and stream exposure logs; scarp profiles; and fault slip, tephrochronologic, radiocarbon, luminescence, and unit description data obtained during this investigation. We do not attempt to use the data presented herein to construct a paleoseismic history of this part of the Surprise Valley fault zone; that history will be the subject of a future report.

  15. Shoreline and Oceano Fault Zones' Intersection Geometry, San Luis Obispo Bay, Offshore South Central Coastal California

    NASA Astrophysics Data System (ADS)

    Hogan, P. J.; Nishenko, S. P.; Greene, H. G.; Bergkamp, B.

    2015-12-01

    As part of the Central Coastal California Seismic Imaging Project, high-resolution 3D low energy marine seismic-reflection data were acquired within San Luis Obispo Bay in 2011 and 2012. Mapping of the sediment-buried bedrock surface using 2D and 3D data clearly reveals that the trace of the Shoreline fault zone bifurcates at Souza Rock. The eastern strand is a reverse fault that trends toward the east-southeast, connecting with the Oceano fault zone onshore. The Shoreline fault is a vertical dextral fault with a very linear geometry that continues south to near the Santa Maria river mouth, and may intersect the Casmalia fault onshore. Both of these fault strands are crossed by Pleistocene low-stand paleochannels eroded into bedrock, and are buried by marine and non-marine sediment. The 3D data show that both the Oceano and Shoreline faults are narrow, well defined fault zones. The reverse slip rate for the Oceano fault (~0.1 mm/y.) falls within published slip rate estimates for the Oceano fault onshore (0.01-0.20 mm/y). The dextral slip rate for the Shoreline fault southeast of Souza Rock is estimated to be 0.06 mm/y. Souza Rock is located on the hanging wall of the Oceano Fault, north of the point of intersection between the Shoreline and Oceano faults. Water depths shoal from 60 m on the surrounding seafloor to 5 m on top of Souza Rock. This structure is interpreted as a structural popup in a restraining bend where the N65°W-trending Oceano fault intersects the N25°W-trending Shoreline fault. The structural geometry near the point of intersection has several minor secondary fault strands, but is remarkably simple.

  16. An Attempt of Hydrogeological Classification of Fault Zones in Karst Areas

    NASA Astrophysics Data System (ADS)

    Bauer, Helene; Decker, Kurt

    2014-05-01

    Around 60% of Vienna`s drinking water originates in the Hochschwab plateau (Eastern Alps, Austria). The hydrogeology (groundwater storage and flow) of the Hochschwab is essentially governed by karstified, large-scale faults. Previous work has shown that faults that formed during the Oligocene/L. Miocene lateral extrusion of the Eastern Alps act as groundwater pathways draining the karst massif preferably in E-W-direction. However, further analysis of flow processes in karstified aquifers requires hydrogeological relevant data from natural fault zones. We investigated E- to ENE- striking strike-slip faults in limestones and dolomites of the Wetterstein Fm. in terms of potential permeability properties that result from structural composition and fault rock content. Using the standard fault core-damage zone model, we analyzed fault rock characteristics and volumes at the fault cores and connective fracture networks surrounding faults in the damage zones. Special attention has been drawn to fracture densities and the spatial extent of fracture networks. Small-scale fractures are generally assumed to carry most of the effective porosity and have a great influence on the permeability of a fault zone. Therefore, we established a classification scheme and measuring method that provides semi-quantitative estimates of the density and abundance of small-scale fractures by using scanning line techniques to quantify the total joint surface in a volume of rock (m² joint surfaces per m³ rock). This easily applicable method allows to generate fracture density data for the entire damage zones (over tens of meters) and thus to enhance the understanding of permeability properties of damage zones. The field based data is supported by effective porosity and permeability measurements of fractured wall rock and fault rock samples. Different fault rock categories turned out to have complex poro/perm properties due to differences in grain sizes, matrix content, cementation and fracturing

  17. Paleoseismology of latest Pleistocene and Holocene fault activity in central Oregon

    SciTech Connect

    Pezzopane, S.K.; Weldon, R.J. II . Dept. of Geological Sciences)

    1993-04-01

    Latest Pleistocene and Holocene fault activity in Oregon concentrates along four zones that splay northward from seismically active faults along the Central Nevada and Eastern California seismic zones. The Central Oregon fault zone is one of these zones, which splays northward from dextral faults of the Walker Lane, stretching across the flanks of several ranges in south-central Oregon along a N20[degree]W trend, and ultimately merges with the Cascade volcanic arc near Newberry volcano. Aerial-photo interpretations and field investigations reveal fault scarps with, on average about 4 m, but in places as much as [approximately]10 m of vertical expression across latest Pleistocene pluvial lake deposits and geomorphic surfaces. Trenches across three different faults in the Central Oregon zone reveal evidence for multiple episodes of faulting in the form of fault-related colluvial deposits and deformed horizons which have been cut by younger fault movements. Trench exposures reveal faults with relatively steep dips and anastomosing traces, which are interpreted locally as evidence for a small oblique-slip component. Vertical offsets measured in the trenches are [approximately]2 m or more for each event. Radiocarbon analyses and preliminary tephra correlations indicate that the exposed deposits are [approximately]30,000 yr in age and younger, and record the decline of latest Pleistocene pluvial lakes. Commonly, reworked or deformed lacustrine deposits and interlayered and faulted colluvial deposits mark the second and third events back, which probably occurred in the Latest Pleistocene, at a time during low to moderate lake levels. If offsets of the past 18,000 yr are representative of the long-term average, then faults along this zone have slip rates of from 0.2 mm/yr to 0.6 mm/yr and recurrence intervals that range from [approximately]4,000 yr to 11,000 yr.

  18. Active faults crossing trunk pipeline routes: some important steps to avoid the disaster

    NASA Astrophysics Data System (ADS)

    Besstrashnov, Vladimir; Strom, Alexander

    2010-05-01

    Trunk pipelines that pass through tectonically active areas connecting oil and gas reservoirs with terminals and refineries cross active faults that can produce large earthquakes. Besides strong motion affecting vast areas, these earthquakes are often associated with surface faulting that provides additional hazard to pipelines. To avoid significant economic losses and environmental pollution, pipelines should be designed to sustain both effects (shaking and direct rupturing) without pipe damage and spill. Special studies aimed to provide necessary input data for the designers should be performed in the course of engineering survey. However, our experience on conducting and review of such studies for several oil and gas trunk pipelines in Russia show urgent need of more strict definition of basic conceptions and approaches used for identification and localization of these potentially hazardous tectonic features. Identification of active faults (fault zones) considered as causative faults - sources of strong motion caused by seismic waves that affect dozens kilometers of pipeline route can be done by use of both direct and indirect evidence of Late Pleistocene - Holocene activity of faults and fault zones. Since strong motion parameters can be considered as constant within the near-field zone, which width in case of large earthquake is up to dozens kilometers, accuracy of active fault location is not so critical and ±1-2 km precision provided by use of indirect evidence is acceptable. In contrast, if one have to identify and characterize zones of potential surface rupturing that require special design of the endangered pipeline section, only direct evidence of such activity can provide reliable input data for crossing design with relevant accuracy of fault location, amount and direction of displacement. Only traces of surface faults displacing Late Pleistocene - Holocene sediments and/or geomorphic features are considered as direct evidence of fault activity. Just

  19. Determining the Through-Going Active Fault Geometry of the Western North Anatolian Fault Through Stress Modeling

    NASA Astrophysics Data System (ADS)

    Karimi, B.; McQuarrie, N.

    2015-12-01

    The North Anatolian Fault (NAF) is a seismically active 1200 km long dextral strike-slip fault part of an east-west trending dextral shear zone (NAF system) between the Anatolian and Eurasian plates. This shear zone widens to the west, complicating potential earthquake rupture paths and highlighting the importance of understanding the geometry of active fault systems. West of the town of Bolu - the NAF bifurcates into the northern and southern strands, which converge and are linked through the Mudurnu Valley, then diverge to border the Marmara Sea. The westward continuation of these two fault traces is marked by further complexities in potential active fault geometry, particularly in the Marmara Sea (northern strand), and the Biga Peninsula (southern strand). We evaluate potential active fault geometries for both strands by comparing stress models of various fault geometries in these regions to a record of focal mechanisms and inferred paleostress from a lineament analysis. For the Marmara region, two of the three possible geometries matched the maximum horizontal stress (σH) orientations determined from a record of focal mechanisms; however, only one represented the northern and southern sidewalls associated with the principal zone of deformation of the developing Marmara basin. This suggests that it is the most likely representation of the active through-going fault geometry in the region. In the Biga Peninsula region, the active geometry of the southern strand has the southern component approaching and intersecting the northern component through a linking feature in a narrow topographic valley. This geometry was selected over two others as it overlaps the σH orientation determined from focal mechanism data and a lineament analysis. Additionally, this geometry does not develop a prominent mis-oriented NE-SW stress feature observed in the model results of the other two geometries, otherwise absent in the focal mechanism data or inferred from a lineament analysis.

  20. Comparing Biases of Fault Zone Permeability Magnitudes and Inferred Conceptual Models - Global Multidisciplinary Compilation and Mapping

    NASA Astrophysics Data System (ADS)

    Scibek, J.

    2015-12-01

    Although fault zones have been studied worldwide, there have been no global mapping, compilation and meta-analysis of interpretations of the fault zone permeability structures and/or methodological biases. To investigate biases in data collection sources we review ~2000 published studies and reports and summarize categorical data from over 600 cases, including ~200 studies with reported fault zone permeability, transmissivity, or diffusivity estimates from the fault damage zone, fault core, whole fault zone, and protolith. The data are categorized into fault zone permeability structures (e.g. barrier, conduit, barrier-conduit, etc.) and are evaluated with respect to the type of fluid flow or permeability observation, the data collection source (e.g. studies in structural geology, hydrogeology, tunneling, mining, engineering, etc.), and on the scale of measurement. Our results show that the combined conduit-barrier fault zone structure is observed in only 15-20% of the cases (but up to 60% of structural geology cases if paleo-conduit studies are included). The barrier structure is observed in ~30% of the faults in structural geology, hydrogeology, and mining studies, and in over 40% petroleum engineering studies, but in less than 10% in tunnel engineering and rarely in geothermal engineering. The barrier nature of faults is detected primarily with qualitative observations (water levels and pressures, water geochemistry), and is difficult to measure in the subsurface. Some hydrogeological observations favour the detection of hydraulic barriers or conduits, but not both equally. Therefore, the frequency of fault zone conceptual models (barriers/conduits) globally or within a region may be a result of measurement bias and not of actual conditions. We also compare reported permeability values at three scales of measurement: matrix permeability, small scale fractured bulk permeability, and whole fault zone permeability. The quantitative permeability anisotropy or scaling

  1. Tectonic controls on fault-zone permeability in a geothermal reservoir at Dixie Valley, Nevada

    USGS Publications Warehouse

    Hickman, Stephen; Zoback, Mark; Benoit, Richard

    1998-01-01

    To determine factors controlling permeability variations within and adjacent to a fault-hosted geothermal reservoir at Dixie Valley, Nevada, we conducted borehole televiewer observations of wellbore failure (breakouts and cooling cracks) together with hydraulic fracturing stress measurements in six wells drilled into the Stillwater fault zone at depths of 2 to 3 km. Measurements in highly permeable wells penetrating the main geothermal reservoir indicate that the local orientation of the least horizontal principal stress, Shmin, is nearly optimal for normal faulting on the Stillwater fault. Hydraulic fracturing tests from these wells further show that the magnitude of Shmin is low enough to lead to frictional failure on the Stillwater and nearby subparallel faults, suggesting that fault slip is responsible for the high reservoir productivity. Similar measurements were conducted in two wells penetrating a relatively impermeable segment of the Stillwater fault zone, located approx. 8 and 20 km southwest of the geothermal reservoir (wells 66-21 and 45-14, respectively). The orientation of Shmin in well 66-21 is near optimal for normal faulting on the nearby Stillwater fault, but the magnitude of Shmin is too high to result in incipient frictional failure. In contrast, although the magnitude of Shmin in well 45-14 is low enough to lead to normal faulting on optimally oriented faults, the orientation of the Stillwater fault near this well is rotated by approx. 40?? from the optimal orientation for normal faulting. This misorientation, coupled with an apparent increase in the magnitude of the greatest horizontal principal stress in going from the producing to nonproducing wells, acts to inhibit frictional failure on the Stillwater fault zone in proximity to well 45-14. Taken together, data from the nonproducing and producing wells thus suggest that a necessary condition for high reservoir permeability is that the Stillwater fault zone be critically stressed for

  2. The Evolution of Deformation-Induced Grain-Boundary Porosity and Dynamic Permeability in Crustal Fault Zones: Insights From the Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Sauer, K. M.; Toy, V.

    2015-12-01

    Fluids and minor phases have an important influence on the bulk rheology of a deforming rock mass, but they are not uniformly distributed at any scale within fault zones. Additionally, exhumed ductile shear zones show little interconnected porosity or static permeability, requiring a dynamic process at depth to allow fluids to access the deforming rock mass. It was recently recognized that reactive fluids interact with high-strain sites to generate cavities on quartz grain boundaries, increasing the grain-scale porosity and dynamic permeability of the rock and allowing for additional fluids to infiltrate the shear zone along interlinking cavities, stimulating further reaction and cavitation. Grain-boundary cavities and fine-grained secondary phases impede grain-boundary mobility and cause a transition in deformation mechanisms from grain-size insensitive dislocation creep to grain-size sensitive creep, which is recognized as a weakening mechanism that promotes strain localisation. At present, it is unclear how the distribution of grain-boundary pores within fault rocks reflects the bulk mineralogy and phase arrangement, which is a function of shear strain. We have used micro-computed x-ray tomography (μ-CT), SEM imaging, and EDS analyses to examine how the distribution of grain-boundary pores varies in relation to the arrangement of secondary phases in exhumed protomylonites, mylonites, and ultramylonites within the actively-deforming Alpine Fault zone, and in samples acquired from the Deep Fault Drilling Project (DFDP). Additionally, EBSD is coupled with µ-CT and EDS analyses to characterise the evolution of microstructures in three dimensions across a finite strain gradient. Here we examine the relationship and competition between grain-boundary cavitation and microstructural processes during deformation in a high-strain shear zone, and discuss the implications of these grain-scale deformation processes on strain localisation and continental fault zone dynamics.

  3. CRUSTAL STRUCTURE OF THE SOUTHERN CALAVERAS FAULT ZONE, CENTRAL CALIFORNIA, FROM SEISMIC REFRACTION INVESTIGATIONS.

    USGS Publications Warehouse

    Blumling, Peter; Mooney, Walter D.; Lee, W.H.K.

    1985-01-01

    A magnitude 5. 7 earthquake on August 6, 1979, within the Calaveras fault zone, near Coyote Lake of west-central California, motivated a seismic-refraction investigation in this area. A northwest-southeast profile along the fault, as well as two fan profiles across the fault were recorded to examine the velocity structure of this region. The analysis of the data reveals a complicated upper crustal velocity structure with strong lateral variations in all directions. Velocities within the fault zone were determined from the fan profiles. Near Anderson Lake, a pronounced delay of first arrivals on the fan records indicates a vertical 1- to 2-km-wide near-surface, low-velocity zone along the fault. Near Coyote Lake, the delays observed in the fan records correlate with two subsurface en-echelon fault planes which have been previously identified from lineations in the seismicity pattern. Refs.

  4. Active fault segments as potential earthquake sources: Inferences from integrated geophysical mapping of the Magadi fault system, southern Kenya Rift

    NASA Astrophysics Data System (ADS)

    Kuria, Z. N.; Woldai, T.; van der Meer, F. D.; Barongo, J. O.

    2010-06-01

    Southern Kenya Rift has been known as a region of high geodynamic activity expressed by recent volcanism, geothermal activity and high rate of seismicity. The active faults that host these activities have not been investigated to determine their subsurface geometry, faulting intensity and constituents (fluids, sediments) for proper characterization of tectonic rift extension. Two different models of extension direction (E-W to ESE-WNW and NW-SE) have been proposed. However, they were based on limited field data and lacked subsurface investigations. In this research, we delineated active fault zones from ASTER image draped on ASTER DEM, together with relocated earthquakes. Subsequently, we combined field geologic mapping, electrical resistivity, ground magnetic traverses and aeromagnetic data to investigate the subsurface character of the active faults. Our results from structural studies identified four fault sets of different age and deformational styles, namely: normal N-S; dextral NW-SE; strike slip ENE-WSW; and sinistral NE-SW. The previous studies did not recognize the existence of the sinistral oblique slip NE-SW trending faults which were created under an E-W extension to counterbalance the NW-SE faults. The E-W extension has also been confirmed from focal mechanism solutions of the swarm earthquakes, which are located where all the four fault sets intersect. Our findings therefore, bridge the existing gap in opinion on neo-tectonic extension of the rift suggested by the earlier authors. Our results from resistivity survey show that the southern faults are in filled with fluid (0.05 and 0.2 Ωm), whereas fault zones to the north contain high resistivity (55-75 Ωm) material. The ground magnetic survey results have revealed faulting activity within active fault zones that do not contain fluids. In addition, the 2D inversion of the four aero-magnetic profiles (209 km long) revealed: major vertical to sub vertical faults (dipping 75-85° east or west); an

  5. Determining fault zone structure and examining earthquake early warning signals using large datasets of seismograms

    NASA Astrophysics Data System (ADS)

    Lewis, Michael Antony

    Seismic signals associated with near-fault waveforms are examined to determine fault zone structure and scaling of earthquake properties with event magnitude. The subsurface structure of faults is explored using fault zone head and/or trapped waves, while various signals from the early parts of seismograms are investigated to find out the extent to which they scale with magnitude. Fault zone trapped waves are observed in three arrays of instruments across segments of the San Jacinto fault. Similarly to previous fault zone trapped wave studies, the low velocity damage zones are found to be 100-200m wide and extend to a depth of ˜3-5km. Observation and modeling indicate that the damage zone was asymmetric around the fault trace. A similar sense of damage asymmetry was observed using detailed geological mapping by Dor et al. (2006) nearby on the San Jacinto fault at Anza. Travel time analysis and arrival time inversions of fault zone head waves were used to produce high resolution images of the fault structure of the San Andreas fault south of Hollister. The contrast of P wave velocities across the fault was found to be ˜50% in the shallow section, lowering to 10-20% below 3 km, with the southwest side having faster velocities. Inversions making use of different subsets of stations suggest that a low velocity damage zone also exists in this area and that it is more prominent on the faster velocity side of the fault. The patterns of damage from these studies of fault zone head waves and trapped waves are consistent (Ben-Zion and Shi, 2005) with the theoretical prediction that earthquake ruptures on these fault sections have statistically-preferred propagation directions. The early parts of P waveforms are examined for signals that have previously been proposed to scale with the final event magnitude. Data from Turkey and a deep South African gold mine show that scaling is present in signals related to the maximum displacement amplitude and frequency content. The high

  6. Preseismic, Postseismic and Slow Faulting in Subduction Zones

    NASA Astrophysics Data System (ADS)

    Melbourne, T. I.; Webb, F. H.; Miller, M. M.

    2002-12-01

    The last several years have witnessed a broad reappraisal of our understanding of the energy budgets of subduction zones. Due primarily to the deployment of continuous geodetic instrumentation along convergent margins worldwide, we now recognize that fault rupture commonly occurs over rates ranging from kilometers per second to millimeters per day. Along with transient postseismic slip, both isolated and episodic slow slip events have now been recorded along convergent margins offshore Japan, Alaska, Mexico, Cascadia and Peru, and thus would appear to constitute a fundamental mode of strain release only observable through geodetic methods. In many instances, postseismic creep along the deeper plate interface is triggered by seismogenic rupture up-dip. Continuous GPS measurements from three earthquakes in México (Mw=8.0,1995), Peru (Mw=8.4,2001) and Japan (Mw=7.7, 1994) show that deep postseismic creep was triggered by local Coulomb stress increases of the order of one half bar produced by their mainshock ruptures. For these three events, afterslip along their primary coseismic asperities is significantly less important than triggered deep creep. Deeper slow faulting does not have to be triggered by adjacent seismogenic rupture. In Cascadia, eight episodic slow slip events since 1991 have been recognized to have an astonishingly regular 14.5-month onset period, the most recent of which began in February of 2002. For these events, time dependent inversion of GPS data map the propagation of creep fronts and show they released moment with magnitudes in excess of Mw=6.5. If they occur throughout the Cascadia interseismic period, then cumulatively they rival the moment release of the infrequent Mw=9.0 megathrust events. Most recently, an 18-hour precursor to an Mw=7.6 aftershock of the 2001 Mw=8.4 Peru earthquake was detected at Arequipa, Peru. This precursor appears as a ~3 cm departure from a continuous time series broken only by the coseismic displacements of the

  7. Fault-related amorphous materials and their influence on the rheological behavior of fault zones (Invited)

    NASA Astrophysics Data System (ADS)

    Pec, M.; Stunitz, H.; Heilbronner, R.; Drury, M. R.

    2013-12-01

    Identification of fault-related amorphous materials in both nature as well as experiment has significantly increased over the last years. Amorphous materials provide new possibilities for our understanding of the rheological behavior of fault zones and the seismic cycle. We performed a series of experiments on granitoid fault rocks under a range of temperatures (T ≈ 300 to 600°C), confining pressures (Pc ≈ 300 to 1500 MPa) and slow displacement rates of (10-8 ms-1 < ddot < 10-6 ms-1). Granitoid powder (d ≤ 200 μm), with 0.2 wt% water added was sheared in a solid medium deformation apparatus to a range of finite shear strains (γ = 0 - 5). Samples reach peak shear strengths of (0.56 GPa < τ < 1.6 GPa) then weaken slightly (10 MPa < τ < 190 MPa) and continue to deform at approximately constant stress. A clear temperature and a weak rate dependence of steady-state stress is observed. Only at the fastest displacement rates (10-6 ms-1), and lowest temperatures (300°C) the samples fail abruptly and audibly shortly after reaching peak strength. Microstructural observations show the development of an S-C-C' fabric with C' slip zones being the dominant feature. At peak strength (γ ≈ 2 - 2.5), deformation partitions in several C' - C slip zones which cover 5-10 vol% of the sample. TEM observations show small, highly strained nanocrystalline fragments with an average grain size of ~ 35 nm surrounded by up to ~90% of TEM-amorphous material (partly amorphous material - PAM). During higher strain deformation (γ > 2.5) some C' - C slip zones continue to accommodate strain and further change their microstructure. Up to 25 vol% of the sample consists of PAM as well as fully TEM-amorphous material (AM). This material shows injection veins, flow structures and contains quartz clasts surrounded by a thin layer of different z-contrast material. At highest stresses (> 1.1 GPa) and lowest temperatures (300°C) stretched bubbles, and bubble trains following the local flow

  8. Ductile creep and compaction: A mechanism for transiently increasing fluid pressure in mostly sealed fault zones

    USGS Publications Warehouse

    Sleep, N.H.; Blanpied, M.L.

    1994-01-01

    A simple cyclic process is proposed to explain why major strike-slip fault zones, including the San Andreas, are weak. Field and laboratory studies suggest that the fluid within fault zones is often mostly sealed from that in the surrounding country rock. Ductile creep driven by the difference between fluid pressure and lithostatic pressure within a fault zone leads to compaction that increases fluid pressure. The increased fluid pressure allows frictional failure in earthquakes at shear tractions far below those required when fluid pressure is hydrostatic. The frictional slip associated with earthquakes creates porosity in the fault zone. The cycle adjusts so that no net porosity is created (if the fault zone remains constant width). The fluid pressure within the fault zone reaches long-term dynamic equilibrium with the (hydrostatic) pressure in the country rock. One-dimensional models of this process lead to repeatable and predictable earthquake cycles. However, even modest complexity, such as two parallel fault splays with different pressure histories, will lead to complicated earthquake cycles. Two-dimensional calculations allowed computation of stress and fluid pressure as a function of depth but had complicated behavior with the unacceptable feature that numerical nodes failed one at a time rather than in large earthquakes. A possible way to remove this unphysical feature from the models would be to include a failure law in which the coefficient of friction increases at first with frictional slip, stabilizing the fault, and then decreases with further slip, destabilizing it. ?? 1994 Birkha??user Verlag.

  9. Fracture systems in normal fault zones crosscutting sedimentary rocks, Northwest German Basin

    NASA Astrophysics Data System (ADS)

    Reyer, Dorothea; Bauer, Johanna F.; Philipp, Sonja L.

    2012-12-01

    Field studies of fracture systems associated with 58 normal fault zones crosscutting sedimentary rocks were performed in the Northwest German Basin. Fracture orientations, densities, apertures and lengths, as well as fault zone structural indices, were analysed separately for fault damage zones and host rocks. The results show a pronounced difference between carbonate and clastic rocks: mainly in carbonate rocks we found presence of clear damage zones, characterized by higher fracture densities than in the host rocks. While the maximum aperture is similar for both units, the percentage of fractures with large apertures is much higher in the damage zones than in the host rocks. Based on laboratory measurements of Young's moduli and field measurements of fracture densities, we calculate effective stiffnesses Ee, that is the Young's moduli of the in situ rock masses, within the normal fault zones. Compared with carbonate rocks, Ee computed for clastic-rock damage zones decreases significantly less due to lower fracture densities. We conclude that normal fault zones in carbonate rocks have more profound effects on enhancing permeability in fluid reservoirs than those in clastic rocks. The results are of great importance for modelling the hydromechanical behaviour of normal fault zones in subsurface fluid reservoirs.

  10. Possible Connections Between the Coronado Bank Fault Zone and the Newport-Inglewood, Rose Canyon, and Palos Verdes Fault Zones Offshore San Diego County, California.

    NASA Astrophysics Data System (ADS)

    Sliter, R. W.; Ryan, H. F.

    2003-12-01

    High-resolution multichannel seismic-reflection and deep-tow Huntec data collected by the USGS were interpreted to map the Coronado Bank fault zone (CBFZ) offshore San Diego County, California. The CBFZ is comprised of several major strands (eastern, central, western) that change in both orientation and degree of deformation along strike. Between Coronado Bank and San Diego, the CBFZ trends N25W and occupies a narrow 7 km zone. Immediately north of La Jolla submarine canyon (LJSC), the easternmost strand changes orientation to almost due north and appears to be offset in a right-lateral sense across the canyon axis. The strand merges with a prominent fault that follows the base of the continental slope in about 600 m water depth. The central portion of the CBFZ is mapped as a negative flower structure and deforms seafloor sediment as far north as 15 km north of LJSC. Farther north, this structure is buried by more than 400 m of basin sediment. Along the eastern edge of the Coronado Bank, the western portion of the CBFZ is characterized by high angle normal faults that dip to the east. North of the Coronado Bank, the western segment follows the western edge of a basement high; it cuts through horizontal basin reflectors and in places deforms the seafloor. We mapped an additional splay of the CBFZ that trends N40W; it is only observed north and west of LJSC. Although the predominant trend of the CBFZ is about N40W, along strike deviations from this orientation of some of the strands indicate that these strands connect with other offshore fault zones in the area. Based on the limited data available, the trend of the CBFZ south of Coronado Bank suggests that it might connect with the Rose Canyon fault zone (RCFZ) that has been mapped in San Diego Bay. North of Coronado Bank, the CBFZ is a much broader fault zone (about 25 km wide) composed of diverging fault strands. The westernmost strand may merge with the western strand of the Palos Verdes fault zone (PVFZ) south of

  11. Structural and Morpho-Tectonic Features of the Golbasi-Turkoglu Segment of East Anatolian Fault Zone

    NASA Astrophysics Data System (ADS)

    Ozsarac, V.; Tekin, B. M.; Kuterdem, N. K.

    2009-04-01

    East Anatolian Fault Zone (EAFZ) is a 580km. long left lateral active strike slip fault and the width of deformation zone is approximately 30km. Six different fault segments with length varying between 50km to 145km. constitutes the EAFZ. Historical and instrumental earthquake data reveals that, Golbasi-Turoglu segment of EAFZ is seismically dormant since last 500 years and also this segment is accepted as a seismic gap on EAFZ which has a potential to pose a seismic risk on nearby settlement areas. This study aims to determine the main active faults in the study area and determination of fault associated land surfaces by using geographic information system tools (GIS), remote sensing analysis and field observations. The study is conducted in two phases. The initial phase can be defined as office work where extensive morphological analysis and data preparation were performed by using GIS software. The second and the last phase of the study consisted of extensive field surveys, data verification. In the first part of the study a 1/25.000 scaled digital elevation models and derived morphological maps and Landsat ETM and SPOT 5 PAN images were analyzed for the study area. Lineaments were also extracted from DEMs and satellite images and analyzed. Those analysis were correlated with field observations and Analgyph images of the fault zone. Main strike slip fault related landforms like alluvial fans, river offsets and landslides were determined from morphological analysis. As the result of this study The active faults of the study area were delineated and mapped. This data is also used in the site selection of trenches for paleoseismological studies. Further steps will be the paleoseismological studies which will put definite outcomes for the seismic hazard evaluation of this segment and nearby region. It is noteworthy that GIS and remote sensing applications in geology, especially in tectonics and geomorphology, proposes practical practical and valuable solutions in

  12. Wide-Angle Seismic Experiment Across the Oeste Fault Zone, Central Andes, Northern Chile.

    NASA Astrophysics Data System (ADS)

    Lorenzo, J. M.; Yáñez, G. A.; Vera, E. E.; Sepúlveda, J.

    2008-12-01

    From December 6-21, 2007, we conducted a 3-component, radio-telemetric, seismic survey along a ~ 15-km wide E-W transect in the Central Andes, at a latitude of ~ 22.41° S, centered north of the city of Calama (68.9° W), Chile. The study area is sandwiched between the Central Depression in the west and the Andean Western Cordillera of Chile. Recording stations, nominally spaced at intervals of either 125 or 250 m collected up to 3.5 s of refracted seismic arrivals at maximum source-receiver offsets exceeding 15 km. Ten shothole sources, spaced 2-6 km apart focused energy on the shallow (0-3 km), crustal, Paleogene-age structures. Preliminary, tomographic inversions of refracted first arrivals show the top of a shallow (< 1km), high- velocity (VP, ~5 km/s) crust, deepening sharply eastward to at least 2 km. At the surface, this central basement step correlates to a regionally extensive (> 600 km), strike-slip fault zone known as the Oeste fault. Turning ray densities suggest the base of the overlying velocity gradient unit (VP, 2-4 km/s) dips inwardly from both east and west directions toward the Oeste fault to depths of almost 1 km. Plate reorganization commencing at least by the latter half of the Oligocene led from oblique to more orthogonal convergence between the South American and the Nazca (Farallon) Plates. We interpret previously mapped, older, minor faults as being generated within the right-lateral, orogen-parallel, Oeste strike-slip fault zone, and postdated by Neogene, N-S striking thrust faults. In this context we also interpret that the spatial distribution of velocity units requires an period of extensional activity that may (1) postdate the transpressional strike slip fault activity of the Neogene, (2) be related to a later releasing bend through the translation and interaction of rigid blocks hidden at depth or even (3) be the consequence of inelastic failure from the result of flexural loading.

  13. Active Strike-Slip Faulting in the Inner Continental Borderland, Southern California: Results From New High-Resolution Seismic Reflection Data

    NASA Astrophysics Data System (ADS)

    Conrad, J. E.; Ryan, H. F.; Sliter, R. W.

    2008-12-01

    The inner Continental Borderland offshore of southern California accommodates about 7 mm/yr of slip between the North American and Pacific plates. Nearly half of this total has previously been thought to be taken up on the Palos Verdes (PV) and Coronado Bank (CB) fault zones, which have been modeled as a single, continuous fault zone in recent seismic hazard assessments for southern California. Although these faults lie roughly on strike with each other, a connection between these faults has not been clearly demonstrated. Newly acquired high-resolution seismic reflection data indicate that the PV fault terminates southwest of Lasuen Knoll in a horsetail splay that becomes progressively buried to the south. The lack of a connection between the PV and CB fault zones implies that a significant amount of slip must be taken up elsewhere in the inner Continental Borderland. Two other significant offshore faults, the San Diego Trough (SDT) and San Pedro Basin (SPB) fault zones, lie about 10-15 km southwest of and sub parallel to the trace of the PV and CB faults. The SDT fault zone extends from south of the Mexican border near Punta Santo Tomas for about 150 km northward to near Crespi Knoll. The SPB fault zone extends northward from off Santa Catalina Island to near Point Dume. The new seismic reflection data reveal a previously unmapped but apparently active fault zone along strike and in the area between the known strands of the SDT and the SPB fault zones. This newly recognized fault links the SDT and SPB faults, forming a continuous, active fault zone that extends about 250 km along the inner Continental Borderland. Although there are no slip rate data available for this fault zone, its overall length, continuity, and active character suggest that a significant portion of the plate motion that occurs offshore is accommodated along the SDT-SPB fault zone, which may pose a more significant seismic hazard than previously recognized.

  14. Interseismic deformation and geologic evolution of the Death Valley Fault Zone

    NASA Astrophysics Data System (ADS)

    Del Pardo, Cecilia; Smith-Konter, Bridget R.; Serpa, Laura F.; Kreemer, Corné; Blewitt, Geoffrey; Hammond, William C.

    2012-06-01

    The Death Valley Fault Zone (DVFZ), located in southeastern California, is an active fault system with an evolved pull-apart basin that has been deforming over the past 6 Myr. We present a study of the interseismic motion and long-term stress accumulation rates to better understand the nature of both past and present-day loading conditions of the DVFZ. Using a 3-D semi-analytic viscoelastic deformation model, combined with geodetic velocities derived from the Mobile Array of GPS for Nevada Transtension (MAGNET) network and the Southern California Earthquake Center (SCEC) Crustal Motion Map version 4 (CMMv4) GPS data, we establish parameters for interseismic slip rate and apparent locking depth for four DVFZ fault segments. Our preferred model provides good fit to the data (1.0 mm/yr and 1.5 mm/yr RMS misfit in the fault-perpendicular and fault-parallel directions, respectively) and yields apparent locking depths between 9.8-17.1 km and strike-slip rates of 3-7 mm/yr for the segments. We also determine subsidence (0.5-0.8 mm/yr) and extension (1.0-1.2 mm/yr) rates in the pull-apart basin region. With these parameters, we construct a DVFZ evolution model for the last 6 Myr that recreates the motion of the fault blocks involved in the formation of the present-day geological structures in Death Valley. Finally, using Coulomb stress accumulation rates derived from our model (0.25-0.49 MPa/100 yr), combined with earthquake recurrence interval estimates of 500 to 2600 years, we assess present-day seismic hazards with calculated moment magnitudes ranging from 6.7-7.7.

  15. Discovery of amorphous carbon veins in the 2008 Wenchuan earthquake fault zone: implications for the fault weakening mechanism

    NASA Astrophysics Data System (ADS)

    Liu, J.; Zhang, J.; Zhang, B.; Li, H.

    2013-12-01

    The 2008 Wenchuan earthquake generated 270- and 80-km-long surface ruptures along Yingxiu-Beichuan fault and Guanxian-Anxian fault, respectively. At the outcrop near Hongkou village, southwest segment of Yingxiu-Beichuan rupture, network black amorphous carbon veins were discovered near fault planes in the 190-m-wide earthquake fault zone. These veins are mainly composed of ultrafine- and fine-grained amorphous carbon, usually narrower than 5mm and injected into faults and cracks as far as several meter. Flowage structures like asymmetrical structures around few stiff rock fragments indicate materials flew when the veins formed. Fluidization of cataclastic amorphous carbon and the powerful driving force in the veins imply high pore pressure built up during earthquakes. High pore pressure solution and graphite reported in the fault gouge (Togo et al., 2011) can lead very low dynamic friction during the Wenchuan earthquake. This deduction hypothesis is in accordance with the very low thermal abnormal measured on the principle fault zone following the Wenchuan earthquake (Mori et al., 2010). Furthermore, network amorphous carbon veins of different generations suggest similar weakening mechanism also worked on historical earthquakes in Longmenshan fault zone. Reference: Brodsky, E. E., Li, H., Mori, J. J., Kano, Y., and Xue, L., 2012, Frictional Stress Measured Through Temperature Profiles in the Wenchuan Scientific Fault Zone Drilling Project. American Geophysical Union, Fall Meeting. San Francisco, T44B-07 Li, H., Xu, Z., Si, J., Pei, J., Song, S., Sun, Z., and Chevalier, M., 2012, Wenchuan Earthquake Fault Scientific Drilling program (WFSD): Overview and Results. American Geophysical Union, Fall Meeting. San Francisco, T44B-01 Mori, J. J., Li, H., Wang, H., Kano, Y., Pei, J., Xu, Z., and Brodsky, E. E., 2010, Temperature measurements in the WFSD-1 borehole following the 2008 Wenchuan earthquake (MW7.9). American Geophysical Union, Fall Meeting. San Francisco, T53E

  16. Vertical tectonic deformation associated with the San Andreas fault zone offshore of San Francisco, California

    USGS Publications Warehouse

    Ryan, H.F.; Parsons, T.; Sliter, R.W.

    2008-01-01

    A new fault map of the shelf offshore of San Francisco, California shows that faulting occurs as a distributed shear zone that involves many fault strands with the principal displacement taken up by the San Andreas fault and the eastern strand of the San Gregorio fault zone. Structures associated with the offshore faulting show compressive deformation near where the San Andreas fault goes offshore, but deformation becomes extensional several km to the north off of the Golden Gate. Our new fault map serves as the basis for a 3-D finite element model that shows that the block between the San Andreas and San Gregorio fault zone is subsiding at a long-term rate of about 0.2-0.3??mm/yr, with the maximum subsidence occurring northwest of the Golden Gate in the area of a mapped transtensional basin. Although the long-term rates of vertical displacement primarily show subsidence, the model of coseismic deformation associated with the 1906 San Francisco earthquake indicates that uplift on the order of 10-15??cm occurred in the block northeast of the San Andreas fault. Since 1906, 5-6??cm of regional subsidence has occurred in that block. One implication of our model is that the transfer of slip from the San Andreas fault to a fault 5??km to the east, the Golden Gate fault, is not required for the area offshore of San Francisco to be in extension. This has implications for both the deposition of thick Pliocene-Pleistocene sediments (the Merced Formation) observed east of the San Andreas fault, and the age of the Peninsula segment of the San Andreas fault.

  17. Vertical tectonic deformation associated with the San Andreas fault zone offshore of San Francisco, California

    NASA Astrophysics Data System (ADS)

    Ryan, H. F.; Parsons, T.; Sliter, R. W.

    2008-10-01

    A new fault map of the shelf offshore of San Francisco, California shows that faulting occurs as a distributed shear zone that involves many fault strands with the principal displacement taken up by the San Andreas fault and the eastern strand of the San Gregorio fault zone. Structures associated with the offshore faulting show compressive deformation near where the San Andreas fault goes offshore, but deformation becomes extensional several km to the north off of the Golden Gate. Our new fault map serves as the basis for a 3-D finite element model that shows that the block between the San Andreas and San Gregorio fault zone is subsiding at a long-term rate of about 0.2-0.3 mm/yr, with the maximum subsidence occurring northwest of the Golden Gate in the area of a mapped transtensional basin. Although the long-term rates of vertical displacement primarily show subsidence, the model of coseismic deformation associated with the 1906 San Francisco earthquake indicates that uplift on the order of 10-15 cm occurred in the block northeast of the San Andreas fault. Since 1906, 5-6 cm of regional subsidence has occurred in that block. One implication of our model is that the transfer of slip from the San Andreas fault to a fault 5 km to the east, the Golden Gate fault, is not required for the area offshore of San Francisco to be in extension. This has implications for both the deposition of thick Pliocene-Pleistocene sediments (the Merced Formation) observed east of the San Andreas fault, and the age of the Peninsula segment of the San Andreas fault.

  18. Cretaceous to Miocene fault zone evolution in the Eastern Alps constrained by multi-system thermochronometry and structural data.

    NASA Astrophysics Data System (ADS)

    Wölfler, Andreas; Frisch, Wolfgang; Danišík, Martin; Fritz, Harald; Wölfler, Anke

    2015-04-01

    Fault zones that display both, ductile and brittle deformation stages offer perfect sites to study the evolution of the earth's crust over a wide range of temperatures and possibly over long time spans. This study combines structural- geo- and thermochronologcial data to evaluate the tectonic evolution of a fault zone to the southeast of the Tauern Window in the Eastern Alps. This fault zone comprises a mylonitic part, the so-called "Main Mylonitic Zone" (MMZ) that has been reworked by brittle faulting, the so-called "Ragga-Teuchl fault" (RTF). Structural data of the MMZ demonstrate ductile deformation with top-to-the NW transport in the Late Cretaceous under greenschist facies conditions. Subsequent SE-directed extension occurred under semi-brittle to brittle conditions during the Late Cretaceous and Paleocene. The Polinik Block to the north of the RTF revealed Late Cretaceous Ar/Ar ages, which reflect cooling subsequent to the thermal peak of Eo-alpine metamorphism. In contrast, the Kreuzeck Block to the south of the RTF shows early Permian Ar/Ar ages that reflect cooling related to both, late Variscan collapse in the late Carboniferous and post-Variscan extension in the Permian. Zircon and apatite fission track ages and thermal history modeling results suggest that the Polinik Block cooled rapidly to near surface temperatures in the middle Miocene. The Kreuzeck Block, in contrast, cooled and exhumed to near surface conditions already in the Oligocene and early Miocene. Thermal history modeling and apatite fission track ages of 23.3±0.8 and 11.5±1.0 suggest that brittle deformation along the RTF occurred in the middle- and late Miocene. Our results demonstrate that one single fault zone may comprise information about the evolution of the Eastern Alps from Late Cretaceous to Miocene time and that low-temperature thermochronology is a viable tool to resolve the timing of brittle faulting and accompanied fluid activity.

  19. Strike-slip movements and thrusting along a transpressive fault zone: The North Giudicarie line (Insubric line, northern Italy)

    NASA Astrophysics Data System (ADS)

    Prosser, Giacomo

    1998-12-01

    This paper analyzes the kinematic evolution and the deformation partitioning within an important transpressive fault zone located in the central part of the Alpine chain. The North Giudicarie line is a NNE trending fault which offsets the dextral Insubric line with an apparent left-lateral displacement of about 70 km. The main fault plane of the North Giudicarie line dips about 35°-45° to the NW. The footwall is characterized by N-S striking strike-slip faults, which reactivate extensional faults of Early Jurassic to Late Cretaceous age. The early deformation history of the North Giudicarie line is revealed by basement-and limestone-mylonites. Shear sense of mylonites indicates on average top-to-the-east thrusting. These movements took place during the late Oligocene-early Miocene, when the Insubric line was active as a right-lateral strike-slip fault. Therefore, in this time span the North Giudicarie line can be interpreted as a dextral transpressive bend of the Insubric line. Mylonites have later been overprinted by brittle faults related to top-to-the-SE thrusting of middle-late Miocene age. During this event the shape of the Insubric line was strongly modified by left-lateral transpression along the Giudicarie fault zone. Deformation was partitioned between prevailing compression along the Giudicarie line and left-lateral strike-slip movements along the N-S striking faults. These faults transferred the strike-slip component of the Giudicarie line into a wider area of the central southern Alps.

  20. Mechanisms of brittle-ductile flow during strain localization along middle crust fault zones -case study from the Hefangkou detachment fault zone, Yunmengshan, North China

    NASA Astrophysics Data System (ADS)

    Liu, Junlai; Guo, Wen; Lai, Yujing

    2016-04-01

    As a typical tectonite from the middle crustal fault zones, S-C mylonite provides important clues on deformation of rocks at the middle-lower crustal level. Microstructural studies and EBSD crystallographic preferred orientation analysis of quartz and biotite have been conducted on the granitic S-C mylonites from the Hefangkou detachment fault zone in Yunmengshan, North China. Through x-ray diffraction experiment, the space groups and cell parameters of fine-grained biotite grains were determined. In the mylonites, deformation of porphyroclastic feldspar grains is dominated by intragranular microfracturing. Bulging recrystallization around the porphyroclasts are popular in the rocks. Quartz grains were dynamically recrystallized via subgrain rotation recrystallization. The recrystallized quartz grains also show oblique foliations due to progressive shearing. Extremely fine biotite grains were derived from large host crystals and are aligned along C foliations. The c- axis fabrics of quartz in oblique foliation possess Y-maxima which demonstrate a prism slip system in the dynamically recrystallized quartz grains. A deformation temperature of ca. 550 -650°C is estimated. The c-axis fabric of quartz grains along the S-foliations progressively change from Y-axis maximum to Z-axis maximum resulted from passive rotation of quartz grains instead of activation of a new slip system within quartz grains during formation of the C-foliations. The {001} of the very fine biotite grains are distributed along a great circle normal to the X direction. The {100} and {010} of the biotite grains, however, are randomly distributed. The microstructural and fabric data suggest that the C-foliations are zones of high strains or narrow channels of brittle-ductile flow. Dynamic recrystallization, frictional slipping, passive grain rotation and channeled flow of extremely fine grains were coevally prevailing during the progressive mylonitization.

  1. Davis Strait and Ungava Fault Zone: First Results From a Recent Geophysical Survey

    NASA Astrophysics Data System (ADS)

    Ehrhardt, A.; Gohl, K.; Neben, S.; Volkmar, D.; Funck, T.; Gerlings, J.

    2008-12-01

    The Davis Strait is a bathymetric high that separates the southern Baffin Bay and the northern Labrador Sea. These basins are the result of Cretaceous and Paleogene rifting and seafloor spreading between the North American plate and Greenland. Being one of the main tectonic features of the Davis Strait, the Ungava Fault Zone is associated with transform motion related to a northward movement of Greenland relative to North America during rifting and seafloor spreading in Baffin Bay and Labrador Sea. The plate tectonic reconstruction of the Davis Strait contributes significantly to the understanding of the geodynamic history of the North-American - Greenland plates, not only the Davis Strait area but also the area of Lancaster Sound and Nares Strait, where it could shed light into the so-called Nares Strait Conflict. It is still under debate whether the spreading between Greenland and Baffin Island was compensated by sinistral transform motion along the proposed Wegener-Fault. Thus Nares Strait (trace of the Wegener Fault) and Lancaster Sound (failed arm rift) are relicts of this scenario. The lack of evidence for transform motion between Greenland and Ellesmere Island contradicts this model and provokes the conflict. As major compression along the Eurekan Fold Belt overprinted the proposed transform motion along the Wegener Fault, the Ungava Fault Zone in the Davis Strait could give the missing information for the plate tectonic reconstruction. The onshore-offshore geology and structural setting of Baffin Island is analysed by recent publications that show an essentially non-volcanic continental margin at Baffin Island that is interrupted by a volcanic-style margin around Cape Dyer. Intensive magmatic activity during the initial opening phase is indicated by widespread seaward-dipping-reflector sequences (SDRS) north of Cape Dyer. On the other hand, the structural setting of the Greenland margin side is unclear. The identification of the corresponding conjugate

  2. Sources, Fluxes, and Effects of Fluids in the Alpine Fault Zone, South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Menzies, C. D.; Teagle, D. A. H.; Niedermann, S.; Cox, S.; Craw, D.; Zimmer, M.; Cooper, M. J.; Erzinger, J.

    2015-12-01

    Historic ruptures on some plate boundary faults occur episodically. Fluids play a key role in modifying the chemical and physical properties of fault zones, which may prime them for repeated rupture by the generation of high pore fluid pressures. Modelling of fluid loss rates from fault zones has led to estimates of fluid fluxes required to maintain overpressure (Faulkner and Rutter, 2001), but fluid sources and fluxes, and permeability evolution in fault zones remain poorly constrained. High mountains in orogenic belts can drive meteoric water to the middle crust, and metamorphic water is generated during rock dehydration. Additionally, fluids from the mantle are transported into the crust when fluid pathways are created by tectonism or volcanism. Here we use geochemical tracers to determine fluid flow budgets for meteoric, metamorphic and mantle fluids at a major compressional tectonic plate boundary. The Alpine Fault marks the transpressional Pacific-Australian plate boundary through South Island of New Zealand, it has historically produced large earthquakes (Mw ~8) and is late in its 329±68 year seismic cycle, having last ruptured in 1717. We present strontium isotope ratios of hot springs and hydrothermal minerals that trace fluid flow paths in and around the Alpine Fault to illustrate that the fluid flow regime is restricted by low cross-fault permeability. Fluid-rock interaction limits cross-fault fluid flow by the precipitating clays and calcite that infill pore spaces and fractures in the Alpine Fault alteration zone. In contrast, helium isotopes ratios measured in hot springs near to the fault (0.15-0.81 RA) indicate the fault acts as a conduit for mantle fluids from below. Mantle fluid fluxes are similar to the San Andreas Fault (<1x10-5 m3m-2/yr) and insufficient to promote fault weakening. The metamorphic fluid flux is of similar magnitude to the mantle flux. The dominant fluid throughout the seismogenic zone is meteoric in origin (secondary mineral

  3. Earthquake behavior of the Enriquillo fault zone, Haiti revealed by interactive terrain visualization

    NASA Astrophysics Data System (ADS)

    Cowgill, E.; Bernardin, T. S.; Oskin, M. E.; Bowles, C. J.; Yikilmaz, M. B.; Kreylos, O.; Elliott, A. J.; Bishop, M. S.; Gold, R. D.; Morelan, A.; Bawden, G. W.; Hamann, B.; Kellogg, L. H.

    2010-12-01

    The Mw 7.0 January 12, 2010 Haiti earthquake ended 240 years of relative quiescence following earthquakes that destroyed Port-au-Prince in 1751 and 1770. We place the 2010 rupture in the context of past earthquakes and future hazards by using remote analysis of airborne LiDAR to observe the topographic expression of active faulting and develop a new conceptual model for the earthquake behavior of the eastern Enriquillo fault zone (EFZ). In this model, the 2010 event occupies a long-lived segment boundary at a stepover within the EFZ separating fault segments that likely ruptured in 1751 and 1770, explaining both past clustering and the lack of 2010 surface rupture. Immediately following the 2010 earthquake, an airborne LiDAR point cloud containing over 2.7 billion point measurements of surface features was collected by the Rochester Inst. of Technology. To analyze these data, we capitalize on the human capacity to visually identify meaningful patterns embedded in noisy data by conducting interactive visual analysis of the entire 66.8 GB Haiti terrain data in a 4-sided, 800 ft3 immersive virtual-reality environment at the UC Davis KeckCAVES using the software tools LiDAR Viewer (to analyze point cloud data) and Crusta (for 3D surficial geologic mapping on DEM data). We discovered and measured landforms displaced by past surface-rupturing earthquakes and remotely characterized the regional fault geometry. Our analysis of the ~50 km long reach of EFZ spanning the 2010 epicenter indicates that geomorphic evidence of active faulting is clearer east of the epicenter than to the west. West of the epicenter, and in the region of the 2010 rupture, the fault is poorly defined along an embayed, low-relief range front, with little evidence of recent surface rupture. In contrast, landform offsets of 6 to 50 m along the reach of the EFZ east of the epicenter and closest to Port-au-Prince attest to repeated recent surface-rupturing earthquakes here. Specifically, we found and

  4. Seismic Fault Zone Rocks from a Subduction Megathrust (Kodiak Is., AK)

    NASA Astrophysics Data System (ADS)

    Meneghini, F.; di Toro, G.; Moore, C. J.; Rowe, C. D.

    2008-12-01

    Subduction megathrusts nucleate some of the largest earthquakes on Earth, including the 1964 Mw9.2 Alaskan earthquake. We describe the fault zone and the fault rocks from the thickest slipping zone ever described in subduction complexes. The aim is to discriminate (microstructurally and chemically) fault rocks produced during seismic slip and to reconstruct the seismic cycle in the fault zone. In the ancient analogue of the active Alaskan subduction complex, cropping out in Kodiak Island, decimeter- thick cohesive black-colored layers are at the core of 10's of meters thick foliated cataclasites. The cataclasites are part of a melange regarded as a paleo-decollement active at 12 - 14 km in depth and 230 - 260 ° C. Each black layer is traced continuously for tens of meters along a single outcrop, and, through structural correlations, across 2 km of section along strike. The black rocks features a complex layering of glass-looking and granular-looking layers. "Glassy" and "granular" layers textures are composed of sub-rounded grains (< 100 micron) of quartz and albite floating in an ultrafine matrix (< 4 micron). In the matrix of glassy-looking layers, tabular microlites of albite are common, showing an oscillatory zoning typical of magmatic rocks that is absent in the cataclasites. "Granular" layers, are more tightly packed, less sorted, enriched in crushed feldspar microlites and depleted in phyllosilicates with respect to the "glassy" layers. XRF and XRPD analyses suggest chemical fractionation between the foliated cataclasites and the black rocks (e.g. enrichment in Na in the black rocks). Crosscutting relationships between granular- and glassy-like layers occur. Alternatively, flow and intrusion structures between the two layers are observed, suggesting that they flowed and deformed in a ductile fashion. Based on these observations, we hypothesize that the black rocks (1) are the result of frictional melting (glassy-looking layers) and fluidization (granular

  5. Shallow seismic trapping structure in the San Jacinto fault zone near Anza, California

    NASA Astrophysics Data System (ADS)

    Lewis, M. A.; Peng, Z.; Ben-Zion, Y.; Vernon, F. L.

    2005-09-01

    We analyse fault zone trapped waves, generated by ~500 small earthquakes, for high-resolution imaging of the subsurface structure of the Coyote Creek, Clark Valley and Buck Ridge branches of the San Jacinto fault zone near Anza, California. Based on a small number of selected trapped waves within this data set, a previous study concluded on the existence of a low-velocity waveguide that is continuous to a depth of 15-20 km. In contrast, our systematic analysis of the larger data set indicates a shallow trapping structure that extends only to a depth of 3-5 km. This is based on the following lines of evidence. (1) Earthquakes clearly outside these fault branches generate fault zone trapped waves that are recorded by stations within the fault zones. (2) A traveltime analysis of the difference between the direct S arrivals and trapped wave groups shows no systematic increase (moveout) with increasing hypocentral distance or event depth. Estimates based on the observed average moveout values indicate that the propagation distances within the low-velocity fault zone layers are 3-5 km. (3) Quantitative waveform inversions of trapped wave data indicate similar short propagation distances within the low-velocity fault zone layers. The results are compatible with recent inferences on shallow trapping structures along several other faults and rupture zones. The waveform inversions also indicate that the shallow trapping structures are offset to the northeast from the surface trace of each fault branch. This may result from a preferred propagation direction of large earthquake ruptures on the San Jacinto fault.

  6. Abrupt along-strike change in tectonic style: San Andreas Fault zone, San Francisco Peninsula

    NASA Astrophysics Data System (ADS)

    Zoback, Mary Lou; Jachens, Robert C.; Olson, Jean A.

    1999-05-01

    Seismicity and high-resolution aeromagnetic data are used to define an abrupt change from compressional to extensional tectonism within a 10- to 15-km-wide zone along the San Andreas fault on the San Francisco Peninsula and offshore from the Golden Gate. This 100-km-long section of the San Andreas fault includes the hypocenter of the Mw = 7.8 1906 San Francisco earthquake as well as the highest level of persistent microseismicity along that ˜470-km-long rupture. We define two distinct zones of deformation along this stretch of the fault using well-constrained relocations of all post-1969 earthquakes based a joint one-dimensional velocity/hypocenter inversion and a redetermination of focal mechanisms. The southern zone is characterized by thrust- and reverse-faulting focal mechanisms with NE trending P axes that indicate "fault-normal" compression in 7- to 10-km-wide zones of deformation on both sides of the San Andreas fault. A 1- to 2-km-wide vertical zone beneath the surface trace of the San Andreas is characterized by its almost complete lack of seismicity. The compressional deformation is consistent with the young, high topography of the Santa Cruz Mountains/Coast Ranges as the San Andreas fault makes a broad restraining left bend (˜10°) through the southernmost peninsula. A zone of seismic quiescence ˜15 km long separates this compressional zone to the south from a zone of combined normal-faulting and strike-slip-faulting focal mechanisms (including a ML = 5.3 earthquake in 1957) on the northernmost peninsula and offshore on the Golden Gate platform. Both linear pseudogravity gradients, calculated from the aeromagnetic data, and seismic reflection data indicate that the San Andreas fault makes an abrupt ˜3-km right step less than 5 km offshore in this northern zone. A similar right-stepping (dilatational) geometry is also observed for the subparallel San Gregorio fault offshore. Persistent seismicity and extensional tectonism occur within the San Andreas

  7. Abrupt along-strike change in tectonic style: San Andreas fault zone, San Francisco Peninsula

    USGS Publications Warehouse

    Zoback, M.L.; Jachens, R.C.; Olson, J.A.

    1999-01-01

    Seismicity and high-resolution aeromagnetic data are used to define an abrupt change from compressional to extensional tectonism within a 10- to 15-km-wide zone along the San Andreas fault on the San Francisco Peninsula and offshore from the Golden Gate. This 100-km-long section of the San Andreas fault includes the hypocenter of the Mw = 7.8 1906 San Francisco earthquake as well as the highest level of persistent microseismicity along that ???470-km-long rupture. We define two distinct zones of deformation along this stretch of the fault using well-constrained relocations of all post-1969 earthquakes based a joint one-dimensional velocity/hypocenter inversion and a redetermination of focal mechanisms. The southern zone is characterized by thrust- and reverse-faulting focal mechanisms with NE trending P axes that indicate "fault-normal" compression in 7- to 10-km-wide zones of deformation on both sides of the San Andreas fault. A 1- to 2-km-wide vertical zone beneath the surface trace of the San Andreas is characterized by its almost complete lack of seismicity. The compressional deformation is consistent with the young, high topography of the Santa Cruz Mountains/Coast Ranges as the San Andreas fault makes a broad restraining left bend (???10??) through the southernmost peninsula. A zone of seismic quiescence ???15 km long separates this compressional zone to the south from a zone of combined normal-faulting and strike-slip-faulting focal mechanisms (including a ML = 5.3 earthquake in 1957) on the northernmost peninsula and offshore on the Golden Gate platform. Both linear pseudo-gravity gradients, calculated from the aeromagnetic data, and seismic reflection data indicate that the San Andreas fault makes an abrupt ???3-km right step less than 5 km offshore in this northern zone. A similar right-stepping (dilatational) geometry is also observed for the subparallel San Gregorio fault offshore. Persistent seismicity and extensional tectonism occur within the San

  8. InSAR measurements around active faults: creeping Philippine Fault and un-creeping Alpine Fault

    NASA Astrophysics Data System (ADS)

    Fukushima, Y.

    2013-12-01

    Recently, interferometric synthetic aperture radar (InSAR) time-series analyses have been frequently applied to measure the time-series of small and quasi-steady displacements in wide areas. Large efforts in the methodological developments have been made to pursue higher temporal and spatial resolutions by using frequently acquired SAR images and detecting more pixels that exhibit phase stability. While such a high resolution is indispensable for tracking displacements of man-made and other small-scale structures, it is not necessarily needed and can be unnecessarily computer-intensive for measuring the crustal deformation associated with active faults and volcanic activities. I apply a simple and efficient method to measure the deformation around the Alpine Fault in the South Island of New Zealand, and the Philippine Fault in the Leyte Island. I use a small-baseline subset (SBAS) analysis approach (Berardino, et al., 2002). Generally, the more we average the pixel values, the more coherent the signals are. Considering that, for the deformation around active faults, the spatial resolution can be as coarse as a few hundred meters, we can severely 'multi-look' the interferograms. The two applied cases in this study benefited from this approach; I could obtain the mean velocity maps on practically the entire area without discarding decorrelated areas. The signals could have been only partially obtained by standard persistent scatterer or single-look small-baseline approaches that are much more computer-intensive. In order to further increase the signal detection capability, it is sometimes effective to introduce a processing algorithm adapted to the signal of interest. In an InSAR time-series processing, one usually needs to set the reference point because interferograms are all relative measurements. It is difficult, however, to fix the reference point when one aims to measure long-wavelength deformation signals that span the whole analysis area. This problem can be

  9. Tectonic activity and structural features of active intracontinental normal faults in the Weihe Graben, central China

    NASA Astrophysics Data System (ADS)

    Rao, Gang; Lin, Aiming; Yan, Bing; Jia, Dong; Wu, Xiaojun

    2014-12-01

    This study examines the tectonic activity and structural features of active normal faults in the Weihe Graben, central China. The Weihe Graben is an area with a high level of historic seismicity, and it is one of the intracontinental systems that developed since Tertiary in the extensional environment around the Ordos Block. Analysis of high-resolution remote-sensing imagery data, field observations, and radiocarbon dating results reveal the following: i) active normal faults are mainly developed within a zone < 500 m wide along the southern border of the eastern part of the Weihe Graben; ii) the active faults that have been identified are characterized by stepwise fault scarps dipping into the graben at angles of 40°-71°; iii) there are numerous discontinuous individual fault traces, ranging in length from a few tens of meters to 450 m (generally < 200 m); iv) fault zone structures, topographic features, and fault striations on the main fault planes indicate almost pure normal-slip; and v) late Pleistocene-Holocene terrace risers, loess, and alluvial deposits have been vertically offset by up to ~ 80 m, with a non-uniform dip-slip rate (throw-rates) ranging from ~ 2.1 to 5.7 mm/yr, mostly 2-3 mm/yr. Our results reveal that active normal faults have been developing in the Weihe Graben under an ongoing extensional environment, probably associated with the pre-existing graben and spreading of the continental crust, and this is in contrast with the Ordos Block and neighboring orogenic regions. These results provide new insights into the nature of extensional tectonic deformation in intracontinental graben systems.

  10. Semi-automatic mapping of fault rocks on a Digital Outcrop Model, Gole Larghe Fault Zone (Southern Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Vho, Alice; Bistacchi, Andrea

    2015-04-01

    A quantitative analysis of fault-rock distribution is of paramount importance for studies of fault zone architecture, fault and earthquake mechanics, and fluid circulation along faults at depth. Here we present a semi-automatic workflow for fault-rock mapping on a Digital Outcrop Model (DOM). This workflow has been developed on a real case of study: the strike-slip Gole Larghe Fault Zone (GLFZ). It consists of a fault zone exhumed from ca. 10 km depth, hosted in granitoid rocks of Adamello batholith (Italian Southern Alps). Individual seismogenic slip surfaces generally show green cataclasites (cemented by the precipitation of epidote and K-feldspar from hydrothermal fluids) and more or less well preserved pseudotachylytes (black when well preserved, greenish to white when altered). First of all, a digital model for the outcrop is reconstructed with photogrammetric techniques, using a large number of high resolution digital photographs, processed with VisualSFM software. By using high resolution photographs the DOM can have a much higher resolution than with LIDAR surveys, up to 0.2 mm/pixel. Then, image processing is performed to map the fault-rock distribution with the ImageJ-Fiji package. Green cataclasites and epidote/K-feldspar veins can be quite easily separated from the host rock (tonalite) using spectral analysis. Particularly, band ratio and principal component analysis have been tested successfully. The mapping of black pseudotachylyte veins is more tricky because the differences between the pseudotachylyte and biotite spectral signature are not appreciable. For this reason we have tested different morphological processing tools aimed at identifying (and subtracting) the tiny biotite grains. We propose a solution based on binary images involving a combination of size and circularity thresholds. Comparing the results with manually segmented images, we noticed that major problems occur only when pseudotachylyte veins are very thin and discontinuous. After

  11. Tectonic evolution of the El Salvador Fault Zone. Insights from analogue experiments.

    NASA Astrophysics Data System (ADS)

    Alonso-Henar, Jorge; Schreurs, Guido; Jesús Martínez-Díaz, José; Álvarez-Gómez, José Antonio

    2014-05-01

    The El Salvador Fault Zone (ESFZ) is an active, c. 150 km long and 20 km wide segmented, dextral strike-slip fault zone within the El Salvador Volcanic Arc striking N90°-100°E. Although several studies have investigated the surface expression of the ESFZ, little is known about its structure at depth and its kinematic evolution. Our analysis of structural field data, remote sensing images and morphometric indices reveals a trenchward migration of the volcanic arc and furthermore suggests that not all structures within the ESFZ can be explained within the current tectonic context, but require a phase of extension or an extensional component of deformation at some stage in the evolution of the ESFZ. Such an extension and trenchward migration of the volcanic arc could be related to subduction roll-back of the Cocos Plate beneath the Chortis Block in Mio-Pliocene times. Such a possible evolution leads to open questions that we address in our research: Is the ESFZ a neo-formed fault zone, i.e. did it form during one phase of strike-slip or transtensional deformation, or do the structures in the ESFZ reflect a two-phase evolution, i.e. an early phase of extension overprinted by a later phase of strike-slip or transtension? Did subduction roll-back occur beneath El Salvador? We carried out analogue model experiments to test whether or not an early phase of extension is required to form the present-day fault pattern in the ESFZ. Analogue modeling is an effective tool in testing various hypotheses, as it allows the experimenter to control specific parameters and to test their influence on the resulting structures. Our experiments suggest that a two-phase tectonic evolution best explains the ESFZ: an early pure extensional phase linked to a segmented volcanic arc is necessary to form the main structures of the ESFZ and can explain the shallow geometry of the fault zone. This extensional phase is followed by a strike-slip dominated regime, which results in inter

  12. Caldecott 4th bore tunnel project: influence of ground water flows and inflows triggered by tectonic fault zones?

    NASA Astrophysics Data System (ADS)

    Neuhuber, G.; G. Neuhuber1, W. Klary1, A. Nitschke1, B. Thapa2, Chris Risden3, T. Crampton4, D. Zerga5

    2011-12-01

    The 4th Bore is a highway tunnel on California State Route 24 currently under construction. The 4th Bore is undertaken by the California State Department of Transportation (CALTRANS) and the Contra Costa County Transportation Commission (CCTC) to alleviate traffic congestion on SR24 connecting the cities of Oakland and Orinda in the San Francisco East Bay Area. The cost for the 4th Bore is estimated at $ 390.8 Mill. The 3,249 ft long 4th Bore tunnel will have excavated dimensions of approximately 40 ft height and 49 ft width. A total of 7 cross passages will run between the 3rd and the new 4th bore. Geology and Hydrogeology: The project is located in the Oakland Berkeley Hills of the SF Bay Area. The Caldecott Tunnels lie within the easterly assemblage of the Hayward fault zone province which consists of a sequence of sedimentary and volcanic rocks that accumulated in the interval between about 16 and 8.4 Ma (Miocene). The basal rocks of these Tertiary deposits consist of deep marine basin sediments of the Monterey Group. These rocks are overlain uncomfortably by an interbedded sequence of terrestrial sediments (Orinda Formation) and volcanic rocks (Moraga Formation). The Tertiary rocks have been folded into large amplitude, NW trending folds that are cut by N trending strike and slip faults. The SF Bay Region, which is crossed by 4 major faults (San Gregorio, San Andreas, Hayward, and Calaveras), is considered one of the more seismically active regions of the world. The active Hayward fault lies 0.9mi to the west of the Caldecott Tunnels and is the closest major fault to the project area. The tunnel is at the moment under top heading construction: West Portal (360ft) and East Portal (1,968.5ft). While major faults typically influence groundwater flow, characterization of such influences is extremely difficult because of the heterogeneity of the hydraulic systems and the different lithological parameters and influences. Four major inactive fault zones striking

  13. Stress orientations in subduction zones and the strength of subduction megathrust faults

    USGS Publications Warehouse

    Hardebeck, Jeanne L.

    2015-01-01

    Subduction zone megathrust faults produce most of the world’s largest earthquakes. Although the physical properties of these faults are difficult to observe directly, their frictional strength can be estimated indirectly by constraining the orientations of the stresses that act on them. A global investigation of stress orientations in subduction zones finds that the maximum compressive stress axis plunges systematically trenchward, consistently making a 45°-60° angle to the subduction megathrust fault. These angles indicate that the megathrust fault is not substantially weaker than its surroundings. Together with several other lines of evidence, this implies that subduction zone megathrusts are weak faults in a low-stress environment. The deforming outer accretionary wedge may decouple the stress state along the megathrust from the constraints of the free surface.

  14. Uranium-series nuclides in the Golden fault, Colorado, U.S.A.: dating latest fault displacement and measuring recent uptake of radionuclides by fault-zone materials

    USGS Publications Warehouse

    Szabo, B. J.; Rosholt, J.N.

    1989-01-01

    Concentrations and isotopic ratios of U, Th and Ra were measured in a fault zone near Golden, Colorado where major displacement occurred between about 190 and 615 ka. Faulting created new surfaces for leaching and provided the pathways for U-rich ground water. Uranium and 230Th, the latter produced by the decay of dissolved 234U, are adsorbed by fault gouge, hematite-stained sand and brecciated sand- and claystones. The observed U enrichment is as much as six times baseline value and the simultaneous enrichment of 230Th is estimated at about ninefold relative to 238U. The adsorption of radionuclides chemically analogous to Th, such as Pu (IV) and Np, and 237Np decay products, on fault-zone materials would contribute to the immobilization of high-level radioactive waste in the vicinity of a repository in the event of leakage from engineered barriers into fractured rock-mass. ?? 1989.

  15. Active faults in the Kashmir Valley

    NASA Astrophysics Data System (ADS)

    Shah, A.

    2012-04-01

    The risk of earthquake is ever increasing in mountains along with rapid growth of population and urbanization. Over half a million people died in the last decade due to earthquakes. The devastations of Sumatra and Thai coasts in 2004, of Kashmir and New Orleans in 2005, of SW Java in 2006, of Sumatra again in 2007, W Sichuan and Myanmar in 2008, of Haiti in 2010, Japan, New Zealand and Turkey in 2011, brought enormous damage. The primary step in this regard could be to establish an earthquake risk model. The Kashmir valley is a NW-SE trending oval-shaped inter-mountain basin. A number of low magnitude earthquakes have recently been reported from the border and few inside the Kashmir valley. A number of active reverse faults were identified in this valley using remote sensing images and active geomorphic features. NE dipping reverse faults uplifted the young alluvial fan at the SW side. An active tectonic environment has been created by these reverse faults; sediment filled streams at NE, and uplifted quaternary deposits at SW. These resulted in an overall tilting of the entire Kashmir valley towards NE. Dating of displaced deposits is required to estimate the total convergence along these faults. Broadly, these faults are because of the convergence of Indian plate beneath the Eurasian plate.

  16. Structure of the Melajo clay near Arima, Trinidad and strike-slip motion in the El Pilar fault zone

    NASA Technical Reports Server (NTRS)

    Robertson, P.; Burke, K.; Wadge, G.

    1985-01-01

    No consensus has yet emerged on the sense, timing and amount of motion in the El Pilar fault zone. As a contribution to the study of this problem, a critical area within the zone in North Central Trinidad has been mapped. On the basis of the mapping, it is concluded that the El Pilar zone has been active in right-lateral strike-slip motion during the Pleistocene. Recognition of structural styles akin to those of the mapped area leads to the suggestion that the El Pilar zone is part of a 300 km wide plate boundary zone extending from the Orinoco delta northward to Grenada. Lateral motion of the Caribbean plate with respect to South America has been suggested to amount to 1900 km in the last 38 Ma. Part of this displacement since the Miocene can be readily accommodated within the broad zone identified here. No one fault system need account for more than a fraction of the total motion and all faults need not be active simultaneously.

  17. The influence of changing plate kinematics on a continental transform fault; the example of the Dead Sea Fault Zone

    NASA Astrophysics Data System (ADS)

    Smit, J.; Brun, J. P.; Cloetingh, S.

    2003-04-01

    The Dead Sea Fault Zone forms the boundary between the Sinai and Arabian plates and links the Red Sea spreading center in the South to the Taurus Mountains in the North. From field observations along the Southern part of the Dead Sea Fault zone (DSFZ) and investigations in the Red Sea area it has been suggested that the Arabian plate moves northward along the DSFZ by a rotation along an Euler pole that for the last 4 Ma years is located at 33°N23°E. It has also been suggested that this Euler pole was located about 5° more to the West during the first episode of movement. This change in motion of the Arabian plate coincides with the initiation of the main subsidence in the Dead Sea basin and the Gulf of Aqaba. The geometry and timing of deformation along the Northern segment of the DSFZ is much less constrained and different models have been proposed for the history of this segment. To study the influence of the change in plate motion on the DSFZ, a series of laboratory experiments has been performed. Special attention is being paid to the influence of rheologies on the system, the development of the fault zones geometry in time and with depth and wether a new rotational pole forces the initiation of a new fault or that the movement is accommodated by trenspression-transtension along the old fault.

  18. Late Cenozoic history and slip rates of the Fish Lake Valley, Emigrant Peak, and Deep Springs fault zones, Nevada and California

    USGS Publications Warehouse

    Reheis, M.C.; Sawyer, T.L.

    1997-01-01

    Several well-dated stratigraphic markers permit detailed assessment of the temporal and spatial variation in slip rates along the interconnected faults of the Fish Lake Valley, Emigrant Peak, and Deep Springs fault zones in west-central Nevada and east-central California. Right-lateral motion on the Fish Lake Valley fault zone apparently began ca. 10 Ma (11.9-8.2 Ma). Associated extensional faulting probably began ca. 5 Ma (6.9-4 Ma) and resulted in the opening of Fish Lake Valley and Deep Springs Valley. The long-term lateral-slip rate for the Fish Lake Valley fault zone since about 10 Ma is 5 mm/yr (3-12 mm/yr). Our preferred lateral-slip rate for the central, most active part of the Fish Lake Valley fault zone decreased from about 6 to 3 mm/yr from the late Miocene to the early Pleistocene, increased to about 11 mm/yr during the middle Pleistocene, and decreased to about 4 mm/yr during the late Pleistocene. Extension may account for some of the change in lateral-slip rate during the Pliocene. The large increase in lateral-slip rate during the middle Pleistocene is circumstantially linked to an increase in vertical-slip rates on the Fish Lake Valley and Deep Springs fault zones at about the time of the eruption of the Bishop ash (0.76 Ma). Vertical-slip rates along the three fault zones are also related to fault strike; vertical rates are highest on north-striking faults and approach zero on northwest-striking faults. The long-lived slip history of the Fish Lake Valley fault zone fits a tectonic model in which the Death Valley-Furnace Creek-Fish Lake Valley fault system is integrated with right-lateral shear on faults of the central Walker Lane and the Eastern California shear zone to accommodate part of the Pacific-North American relative plate motion. Our research demonstrates that the Fish Lake Valley fault zone accounts for about half the rate of 10-12 mm/yr of Pacific-North American plate-boundary shear accommodated within the Basin and Range Province

  19. The San Gabriel mountains bright reflective zone: Possible evidence of young mid-crustal thrust faulting in southern California

    USGS Publications Warehouse

    Ryberg, T.; Fuis, G.S.

    1998-01-01

    During the Los Angeles Region Seismic Experiment (LARSE), a reflection/retraction survey was conducted along a line extending northeastward from Seal Beach, California, to the Mojave Desert, crossing the Los Angeles basin and San Gabriel Mountains. Shots and receivers were spaced most densely through the San Gabriel Mountains for the purpose of obtaining a combined reflection and refraction image of the crust in that area. A stack of common-midpoint (CMP) data reveals a bright reflective zone, 1-s thick, that dominates the stack and extends throughout most of the mid-crust of the San Gabriel Mountains. The top of this zone ranges in depth from 6 s (???18-km depth) in the southern San Gabriel Mountains to 7.5 s (???23-km depth) in the northern San Gabriel Mountains. The zone bends downward beneath the surface traces of the San Gabriel and San Andreas faults. It is brightest between these two faults, where it is given the name San Gabriel Mountains 'bright spot' (SGMBS). and becomes more poorly defined south of the San Gabriel fault and north of the San Andreas fault. The polarity of the seismic signal at the top of this zone is clearly negative, and our analysis suggests it represents a negative velocity step. The magnitude of the velocity step is approximately 1.7 km/s. In at least one location, an event with positive polarity can be observed 0.2 s beneath the top of this zone, indicating a thickness of the order of 500 m for the low-velocity zone at this location. Several factors combine to make the preferred interpretation of this bright reflective zone a young fault zone, possibly a 'master' decollement. (1) It represents a significant velocity reduction. If the rocks in this zone contain fluids, such a reduction could be caused by a differential change in fluid pressure between the caprock and the rocks in the SGMBS; near-lithostatic fluid pressure is required in the SGMBS. Such differential changes are believed to occur in the neighborhood of active fault

  20. Seismic imaging of deformation zones associated with normal fault-related folding

    NASA Astrophysics Data System (ADS)

    Lapadat, Alexandru; Imber, Jonathan; Iacopini, David; Hobbs, Richard

    2016-04-01

    Folds associated with normal faulting, which are mainly the result of fault propagation and linkage of normal fault segments, can exhibit complex deformation patterns, with multiple synthetic splay faults, reverse faults and small antithetic Riedel structures accommodating flexure of the beds. Their identification is critical in evaluating connectivity of potential hydrocarbon reservoirs and sealing capacity of faults. Previous research showed that seismic attributes can be successfully used to image complex structures and deformation distribution in submarine thrust folds. We use seismic trace and coherency attributes, a combination of instantaneous phase, tensor discontinuity and semblance attributes to identify deformation structures at the limit of seismic resolution, which accommodate seismic scale folding associated with normal faulting from Inner Moray Firth Basin, offshore Scotland. We identify synthetic splay faults and reverse faults adjacent to the master normal faults, which are localized in areas with highest fold amplitudes. This zone of small scale faulting is the widest in areas with highest fault throw / fold amplitude, or where a bend is present in the main fault surface. We also explore the possibility that changes in elastic properties of the rocks due to deformation can contribute to amplitude reductions in the fault damage zones. We analyse a pre-stack time-migrated 3D seismic data-set, where seismic reflections corresponding to a regionally-continuous and homogeneous carbonate layer display a positive correlation between strain distribution and amplitude variations adjacent to the faults. Seismic amplitude values are homogeneously distributed within the undeformed area of the footwall, with a minimum deviation from a mean amplitude value calculated for each seismic line. Meanwhile, the amplitude dimming zone is more pronounced (negative deviation increases) and widens within the relay zone, where sub-seismic scale faults, which accommodate

  1. Tectonic history of the northern Nabitah fault zone, Arabian Shield, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Quick, J.E.; Bosch, Paul S.

    1990-01-01

    Based on the presence of similar lithologies, similar structure, and analogous tectonic setting, the Mother Lode District in California is reviewed as a model for gold occurrences near the Nabitah fault zone in this report.

  2. An Inexpensive Device for Modelling Strike-Slip and Oblique-Slip Fault Zones.

    ERIC Educational Resources Information Center

    Larter, Richard C. L.; Allison, Iain

    1983-01-01

    Describes construction/use of a device to simulate structures produced in fault zones of dominantly strike-dip motion. Apparatus modifications allow simulation of transtension and transpression as well as pure strike-slip fault motion. Illustrates formation of several structures using the apparatus, comparing them with natural examples. Includes…

  3. Shallow, old, and hydrologically insignificant fault zones in the Appalachian orogen

    NASA Astrophysics Data System (ADS)

    Malgrange, Juliette; Gleeson, Tom

    2014-01-01

    The permeability of fault zones impacts diverse geological processes such as hydrocarbon migration, hydrothermal fluid circulation, and regional groundwater flow, yet how fault zones affect groundwater flow at a regional scale (1-10 km) is highly uncertain. The objective of this work is to determine whether faults affect regional patterns of groundwater flow, by using radioactive radon and chloride to quantify groundwater discharge to lakes underlain by faults and not underlain by faults. We sampled lakes overlying the Paleozoic Appalachian fold and thrust belt in the Eastern Townships in Québec, and compared our results to a previous study in a crystalline watershed in the Canadian Shield. The field data was analyzed with an analytical geochemical mixing model. The uncertainties of model parameters were assessed in a sensitivity analysis using Monte Carlo simulation, and the difference between lakes tested with statistical analysis. While the model results indicate non-negligible groundwater discharge for most of the lakes in the Paleozoic orogen, the difference between the groundwater discharge rate into the lakes located on faults and the other lakes is not statistically significant. However, the groundwater discharge rate to lakes in the Paleozoic orogeny is significantly higher than lakes that overlay crystalline bedrock, which is consistent with independent estimates of permeability. The rate of groundwater discharge is not significantly enhanced or diminished around the thrust fault zones, suggesting that in a regional scale, permeability of fault zones is not significantly different from the bedrock permeability at shallow depth in this old, tectonically- inactive orogen.

  4. The Longriqu fault zone, eastern Tibetan Plateau: Segmentation and Holocene behavior

    NASA Astrophysics Data System (ADS)

    Ansberque, Claire; Bellier, Olivier; Godard, Vincent; Lasserre, Cécile; Wang, Mingming; Braucher, Régis; Talon, Brigitte; Sigoyer, Julia; Xu, Xiwei; Bourlès, Didier L.

    2016-03-01

    The dextral Longriba fault system (LFS), ~300 km long and constituting of two fault zones, has recently been recognized as an important structure of the eastern Tibetan plateau (Sichuan province), as it accommodates a significant amount of the deformation induced by the ongoing Indo-Asian collision. Although previous paleoseismological investigations highlighted its high seismogenic potential, no systematic quantification of the dextral displacements along the fault system has been undertaken so far. As such information is essential to appraise fault behavior, we propose here a first detailed analysis of the segmentation of the Longriqu fault, the northern fault zone of the LFS, and an offset inventory of morphological features along the fault, using high-resolution Pleiades satellite images. We identify six major segments forming a mature fault zone. Offsets inventory suggests a characteristic coseismic displacement of ~4 m. Two alluvial fans, with minimum ages of 6.7 and 13.2 ka, respectively displaced by 23 ± 7 m and 40 ± 5 m, give an estimate of the maximal horizontal slip rate on the Longriqu fault of 3.2 ± 1.1 mm yr-1. As a result, a minimum ~1340 year time interval between earthquakes is expected.

  5. The Sundance fault: A newly recognized shear zone at Yucca Mountain, Nevada

    SciTech Connect

    Spengler, R.W.; Braun, C.A.; Martin, L.G.; Weisenberg, C.W.

    1994-12-31

    Ongoing detailed mapping at a scale of 1:240 of structural features within the potential repository area indicates the presence of several previously unrecognized structural features. Minor north-trending west-side-down faults occur east and west of the Ghost Dance fault and suggest a total width of the Ghost Dance fault system of nearly 366 m (1200 ft). A zone of near-vertical N30{degrees}-40{degrees} W-trending faults, at least 274 m (900 ft) wide, has been identified in the northern part of our study area and may traverse across the potential repository area. On the basis of a preliminary analysis of available data, we propose to name this zone the {open_quotes}Sundance fault system{close_quotes} and the dominant structure, occurring near the middle of the zone, the {open_quotes}Sundance fault{close_quotes}. Some field relations suggest left-stepping deflections of north-trending faults along a pre-existing northwest-trending structural fabric. Other field observations suggest that the {open_quotes}Sundance fault system{close_quotes} offsets the Ghost Dance fault system in an apparent right lateral sense by at least 52 m (170 ft). Additional detailed field studies are needed to better understand structural complexities at Yucca Mountain.

  6. The Sundance fault: A newly recognized shear zone at Yucca Mountain, Nevada

    SciTech Connect

    Spengler, R.W.; Braun, C.A.; Martin, L.G.; Weisenberg, C.W.

    1994-04-01

    Ongoing detailed mapping at a scale of 1:240 of structural features within the potential repository area indicates the presence of several previously unrecognized structural features. Minor north-trending west-side-down faults occur east and west of the Ghost Dance fault and suggest a total width of the Ghost Dance fault system of nearly 366 m (1200 ft). A zone of near-vertical N30{degrees} {minus} 40{degrees}W {minus} trending faults, at least 274 m (900 ft) wide, has been identified in the northern part of our study area and may traverse across the proposed repository area. On the basis of a preliminary analysis of available data, we propose to name this zone the ``Sundance fault system`` and the dominant structure, occurring near the middle of the zone, the ``Sundance fault.`` Some field relations suggest left-stepping deflections of north-trending faults along a preexisting northwest-trending structural fabric. Other field observations suggest that the ``Sundance fault system`` offsets the Ghost Dance fault system in an apparent right lateral sense by at least 52 m (170 ft). Additional detailed field studies, however, are needed to better understand structural complexities at Yucca Mountain.

  7. Weak ductile shear zone beneath a major strike-slip fault: Inferences from earthquake cycle model constrained by geodetic observations of the western North Anatolian Fault Zone

    NASA Astrophysics Data System (ADS)

    Yamasaki, Tadashi; Wright, Tim J.; Houseman, Gregory A.

    2014-04-01

    GPS data before and after the 1999 İzmit/Düzce earthquakes on the North Anatolian Fault Zone (Turkey) reveal a preseismic strain localization within about 25 km of the fault and a rapid postseismic transient. Using 3-D finite element calculations of the earthquake cycle in an idealized model of the crust, comprising elastic above Maxwell viscoelastic layers, we show that spatially varying viscosity in the crust can explain these observations. Depth-dependent viscosity without lateral variations can reproduce some of the observations but cannot explain the proximity to the fault of maximum postseismic velocities. A localized weak zone beneath the faulted elastic lid satisfactorily explains the observations if the weak zone extends down to midcrustal depths, and the ratio of relaxation time to earthquake repeat time ranges from ~0.005 to ~0.01 (for weak-zone widths of ~24 and 40 km, respectively) in the weakened domain and greater than ~1.0 elsewhere, corresponding to viscosities of ~1018 ± 0.3 Pa s and greater than ~1020 Pa s. Models with sharp weak-zone boundaries fit the data better than those with a smooth viscosity increase away from the fault, implying that the weak zone may be bounded by a relatively abrupt change in material properties. Such a change might result from lithological contrast, grain size reduction, fabric development, or water content, in addition to any effects from shear heating. Our models also imply that viscosities inferred from postseismic studies primarily reflect the rheology of the weak zone and should not be used to infer the mechanical properties of normal crust.

  8. Hydrothermal fault zone mapping using seismic and electrical measurements

    NASA Astrophysics Data System (ADS)

    Onacha, Stephen Alumasa

    This dissertation presents a new method of using earthquakes and resistivity data to characterize permeable hydrothermal reservoirs. The method is applied to field examples from Casa Diablo in the Long Valley Caldera, California; Mt. Longonot, Kenya; and Krafla, Iceland. The new method has significant practical value in the exploration and production of geothermal energy. The method uses P- and S-wave velocity, S-wave polarization and splitting magnitude, resistivity and magnetotelluric (MT) strike directions to determine fracture-porosity and orientation. The conceptual model used to characterize the buried, fluid-circulating fault zones in hydrothermal systems is based on geological and fracture models. The method has been tested with field earthquake and resistivity data; core samples; temperature measurements; and, for the case of Krafla, with a drilled well. The use of resistivity and microearthquake measurements is based on theoretical formulation of shared porosity, anisotropy and polarization. The relation of resistivity and a double porosity-operator is solved using a basis function. The porosity-operator is used to generate a correlation function between P-wave velocity and resistivity. This correlation is then used to generate P-wave velocity from 2-D resistivity models. The resistivity models are generated from magnetotelluric (MT) by using the Non-Linear Conjugate Gradient (NLCG) inversion method. The seismic and electrical measurements used come from portable, multi station microearthquake (MEQ) monitoring networks and multi-profile, MT and transient electromagnetic (TEM) observation campaigns. The main conclusions in this dissertation are listed below: (1) Strong evidence exists for correlation between MT strike direction and anisotropy and MEQ S-wave splitting at sites close to fluid-filled fracture zones. (2) A porosity operator generated from a double porosity model has been used to generate valid P-wave velocity models from resistivity data. This

  9. Model for episodic flow of high-pressure water in fault zones before earthquakes

    USGS Publications Warehouse

    Byerlee, J.

    1993-01-01

    In this model for the evolution of large crustal faults, water originally from the country rock saturates the porous and permeable fault zone. During shearing, the fault zone compacts and water flows back into the country rock, but the flow is arrested by silicate deposition that forms low permeability seals. The fluid will be confined to seal-bounded fluid compartments of various sizes and porosity that are not hydraulically connected with each other. When the seal between two compartments is ruptured, an electrical streaming potential will be generated by the sudden movement of fluid from the high-pressure compartment to the low-pressure compartment. During an earthquake the width of the fault zone will increase by failure of the geometric irregularities on the fault. This newly created, porous and permeable, wider fault zone will fill with water, and the process described above will be repeated. Thus, the process is episodic with the water moving in and out of the fault zone, and each large earthquake should be preceded by an electrical and/or magnetic signal. -from Author

  10. Improved characterization of fault zones by quantitative integration of seismic and production data

    NASA Astrophysics Data System (ADS)

    Ali, Aamir; Shahraini, Ali; Jakobsen, Morten

    2011-06-01

    This paper proposes a method for the parameterization and characterization of fault facies models including a fault core and a fault damage zone containing either fractures or deformation bands, typically associated with carbonate and sandstone reservoirs, respectively. We represent the faulted reservoir models with a relatively small number of parameters and focus on the inverse problem; that is, how to estimate transmissibility of the fault core and the parameters of the fractures or deformation bands that determine the effective stiffness and permeability tensors in the damage zone. Our workflow is based on a consistent stiffness-permeability model for the fractured or composite porous media in the damage zone, and a Bayesian (Monte Carlo Markov chain) method of inversion, which provides information about uncertainties as well as the most likely values of the model parameters. For simplicity, we have assumed that the damage zone consists of a single set of fractures or deformation bands that are parallel with the (vertical) fault core, but the forward modelling part of our workflow can easily be extended to deal with more complex situations involving multiple sets of fractures and/or deformation bands that are characterized by different shapes and orientations. The results of our numerical experiments suggest that one can indeed obtain an improved characterization of fault zones by quantitative integration of seismic AVAZ and production data using the workflow presented in this paper.

  11. Neogene extension and volcanism in the Kunlun fault zone Northern Tibet

    NASA Astrophysics Data System (ADS)

    Jolivet, M.; Brunel, M.; Seward, D.; Malavieille, J.; Roger, F.; Leyreloup, A.; Arnaud, N.

    2003-04-01

    Significant extensional features have been described in Tibet, especially in the southern part of the plateau. The data presented here have been gathered in the Jingyu basin and describe transtensional features affecting the Tibetan plateau on its northern margin. West of 91^o E, the lithospheric strike-slip Kunlun Fault is divided into several segments in a complex pattern involving large relay zones. Some of those segments join at the edge of small-scale, E-W elongated pull-apart basins filled with Quaternary sediments. Magmatic activity, shown by large basaltic lava flows and small basaltic volcanic cones is often associated with the basins. There are no clear relationships between the rifts described further to the south (Yin et al., 1999) and this new type of extensional structures. The Jingyu basin started to form during the Miocene when SW-NE compression and E-W strike-slip faulting were replaced by localised E-W extension and strike-slip faulting. We propose that this change in the deformation pattern corresponds in age with the onset of continental subduction underneath the Kunlun Ranges. We suggest that initiation of this subduction could be responsible for the relaxation of the SW-NE directed constraints in the Bayan Har -- Songpan Garze terrane, allowing localised extension along the Kunlun Fault. Thermochronologic, sedimentary and tectonic data imply that E-W strike-slip movements in the western Kunlun Ranges started at least in Late Eocene times. This in turn might indicate that the Kunlun Fault, which was though to be younger than 10 Ma, is much older (Kidd and Molnar, 1988; Yin et al., 1999). Finally we show for the first time the relation between faulting and extrusive magmatism in North Tibet. If the shoshonites found in North Tibet were associated with the intracontinental subduction underneath the Kunlun Range, then the age of initiation of this subduction would probably have to be revised to account for the 15 Ma old lava flows in the Jingyu

  12. Subsurface structure along the eastern marginal fault zone of Yokote Basin by Seismic reflection profiling studies, Northeast Japan

    NASA Astrophysics Data System (ADS)

    Kagohara, K.; Imaizumi, T.; Echigo, T.; Miyauchi, T.; Sato, H.

    2005-12-01

    Typical reverse faults, which are known as Senya earthquake faults appeared along the western foot of the Mahiru Mountains, associated with The Rikuu Earthquake (Mj7.2) of 1896 in Northeast Japan. Eastern marginal fault zone of the Yokote Basin consist of four main surface ruptures, about 35 km long, Obonai fault, Shiraiwa fault, Ota fault and Senya fault, depending on their continuity and strike (Matsuda et al., 1980). We carried out the seismic reflection profiling across these faults (Kawaguchi03 Seismic line, Unjono04 Seismic line and Kotaki05 Seismic line) to clarify the subsurface structure of these reverse fault system based on the data of tectonic geomorphology and structural geology and furthermore, to discuss the timing of migration of the thrusting from the range front to the basin margin. The seismic source was mini-vibrator trucks, with 20seconds of 10-100Hz signals at 10m or 5m intervals. The sweep signals were recorded by a digital telemetry system (GDAPS-4a) with 10 Hz geophones. The obtained seismic reflection data were processed by conventional Common mid-point (CMP) methods, including post-stack migration and depth conversion. The resulting seismic reflection profile reveals a thrust structure beneath these areas. At the Center of Senya hills there are two thrusts and one high angle reverse fault (1997 Seismic Line). Senya fault is an active frontal emergent thrust with flat and ramp structure. Although, the high angle reverse fault, located along the foot of the range is a short-cut branching fault from the Senya fault in the central part of the Senya hill (Sato et al., 1998), in the Unjono04 seismic line, the depth of the flat and ramp structure gradually shallow in the north part of the Senya hill, where the flexure scarp accompanied with antithetic faults formed on the fluvial terraces. In the Kawaguchi03 seismic line, the concealed fault, 0.5km below the surface, branched from the master Ota fault, form a flexure scarplet on the alluvial fan

  13. Hydrological and Hydrochemical Characterization of Fault Zones in Crystalline Media: Implications for Groundwater Fluxes

    NASA Astrophysics Data System (ADS)

    Roques, C.; Aquilina, L.; Bour, O.; Dewandel, B.

    2014-12-01

    Fault zones are heterogeneities that may greatly influence groundwater flow in crystalline regions. The quantification of fluxes, the origin of water and geochemical processes associated to groundwater flow in such context remain not well understood. This study mainly concerns a large-scale multidisciplinary field experiments performed on a specific site in Brittany (Saint-Brice en Coglès, France) where a permeable fault zone was identified at depth (200 m). The main objectives here are to constrain both fluxes dynamic and water sources involved during different seasonal regimes. We demonstrate that the fault zone allows the discharge of regional groundwater at the watershed outlet. Using specific hydro-geophysical measurements (Heat Pulse Flow Meter), we estimate a natural discharge rate between 150 and 200 m3/d. The fault zone presents different geochemical signatures related to changes in hydrologic regime. They are linked to transient fluxes enhancement from different reservoirs. During the low hydrologic regimes, water with high resident time flows along the fault zone, with a contribution of inter-glacial origin (recharge temperature of 7°C deduced from noble gases interpretation). Water trapped in a low-permeability domain is mobilized to the fault zone and/or large-scale circulation loops are involved. During the high hydrologic regimes, modern water predominantly ensures the recharge of the system at a local scale. Results are compared to regional observations in the Armoricain Massif in order to establish mechanisms responsible for recharge and migration of groundwater at the basement scale.

  14. 3D insight into fault geometries, deformation, and fluid-migration within the Hosgri Fault Zone offshore central California: Results from high-resolution 3D seismic data

    NASA Astrophysics Data System (ADS)

    Kluesner, J.; Brothers, D. S.; Johnson, S. Y.; Watt, J. T.

    2015-12-01

    High-resolution 3D seismic P-Cable data and advanced seismic attribute analyses were used to detect and interpret complex strike-slip fault geometries, deformation patterns, and fluid-pathways across a portion of the Hosgri Fault Zone (HFZ) offshore central California. Combination of the fault attribute results with structural analysis provides 3D insight into the geometry and internal structure of restraining and releasing bends, step-over zones, fault convergence zones, and apparent paired fault bends. The 3D seismic volume covers a 13.7 km2 region along the HFZ offshore of Point Sal and was collected in 2012 as part of the PG&E Central California Seismic Imaging Project (PG&E, 2014). Application of the fault attribute workflow isolated and delineated fault strands within the 3D volume. These results revealed that the northern and southern edges of the survey region are characterized by single fault strands that exhibit an approximate 6° change in strike across the 3D volume. Between these single faults strands is a complex network of fault splays, bends, stepovers, and convergence zones. Structural analysis reveals that the southern portion of the HFZ in the region is characterized by transtensional deformation, whereas transpressional-related folding dominates the central and northern portions of the HFZ. In the central region, convergence of the Lions Head Fault from the southeast results in an apparent impinging block, leading to development of a "paired fault bend" to the west. Combination of the fault and "chimney" attribute results indicates a strong connection between faults and fluid-migration pathways. Fluid-pathways are concentrated along discrete faults in the transtensional zones, but appear to be more broadly distributed amongst fault bounded anticlines and structurally controlled traps in the transpressional zones.

  15. Spatial variability of time-constant slip rates on the San Jacinto fault zone, southern California

    NASA Astrophysics Data System (ADS)

    Blisniuk, K.; Oskin, M. E.; Sharp, W. D.; Meriaux, A. B.; Rockwell, T. K.; Fletcher, K.; Owen, L. A.

    2011-12-01

    In southern California, the San Andreas (SAF) and San Jacinto fault (SJF) zones account for 70-80% of the relative dextral motion between the Pacific and North American plates, with some studies suggesting that the SJF zone may be the dominant structure. However, few slip rate measurements are available for the SJF zone, making it difficult to evaluate the partitioning of deformation across the plate boundary. To more reliably constrain the late Quaternary slip history of the SJF zone, we measured the displacement of well-preserved alluvial fans along the Clark and Coyote Creek fault strands of the SJF zone using field mapping and high-resolution LiDAR topographic data, and dated the fans using U-series on pedogenic carbonate clast-coatings and in situ cosmogenic 10Be. Our results from four sites along the Clark fault strand and two sites along the Coyote Creek fault strand indicate that late Quaternary slip rates have fluctuated along their length but have remained constant since the late Pleistocene. Slip rates along the Clark fault strand over the past 50-30 kyr decrease southward over a distance of ~60 km from ~13 mm/yr at Anza, to 8.9 ± 2.0 mm/yr at Rockhouse Canyon, and 1.5 ± 0.4 mm/yr near the SE end of the Santa Rosa Mountains, probably due to transfer of slip from the Clark fault strand to the Coyote Creek fault strand and nearby zones of distributed deformation. Slip rates of up to ~14 to 18 mm/yr summed across the southern SJF zone suggest that since the latest Pleistocene, the SJF zone may rival the southern SAF zone in accommodating deformation across the Pacific-North America Plate boundary.

  16. Structure and kinematics of the Livingstone Mountains border fault zone, Nyasa (Malawi) Rift, southwestern Tanzania

    NASA Astrophysics Data System (ADS)

    Wheeler, Walter H.; Karson, Jeffrey A.

    Reconnaissance mapping of the Livingstone Mountains border fault zone (LMBFZ) at the northern end of the Nyasa (Malawi) Rift in SW Tanzania constrains the geometry and movement history of this typical rift border fault. The fault is a narrow zone of complex brittle deformation, striking 320°, that overprints and reactivates an older ductile shear zone. Long, straight, NW-trending border fault segments are offset by minor NE-trending faults. These two orthogonal fault sets integrate along strike to produce an overall curved fault trace that is concave towards a major depositional basin in the rift. A typical section through the fault zone shows an E to W progression from gneissic country rock through ductilely deformed country rock, into a zone overprinted by closely spaced fractures and grading into an intensely fractured, massive, flinty, aphanitic mylonite band at the lakeshore. Pseudotachylite veins, probably generated during seismic movement on the border fault, are common within and near the aphanitic mylonite. Slickensides indicate dextral oblique-slip, whereas shear belts and rolled porphyroclasts with complex tails in the older ductile shear zone indicate sub-horizontal sinistral motion. The adjacent rift basin is typical of other East African Rift Basins, and contains at least 4 km of Recent to perhaps Mesozoic sediment. Whereas the minimum net slip on the LMBFZ, in the dominant slickenside direction, is on the order of 10 km, regional geologic considerations suggest that dominantly strike-slip motion preceded the oblique-slip phase that produced the LMBFZ and the adjacent rift basin.

  17. Towards "realistic" fault zones in a 3D structure model of the Thuringian Basin, Germany

    NASA Astrophysics Data System (ADS)

    Kley, J.; Malz, A.; Donndorf, S.; Fischer, T.; Zehner, B.

    2012-04-01

    3D computer models of geological architecture are evolving into a standard tool for visualization and analysis. Such models typically comprise the bounding surfaces of stratigraphic layers and faults. Faults affect the continuity of aquifers and can themselves act as fluid conduits or barriers. This is one reason why a "realistic" representation of faults in 3D models is desirable. Still so, many existing models treat faults in a simplistic fashion, e.g. as vertical downward projections of fault traces observed at the surface. Besides being geologically and mechanically unreasonable, this also causes technical difficulties in the modelling workflow. Most natural faults are inclined and may change dips according to rock type or flatten into mechanically weak layers. Boreholes located close to a fault can therefore cross it at depth, resulting in stratigraphic control points allocated to the wrong block. Also, faults tend to split up into several branches, forming fault zones. Obtaining a more accurate representation of faults and fault zones is therefore challenging. We present work-in-progress from the Thuringian Basin in central Germany. The fault zone geometries are never fully constrained by data and must be extrapolated to depth. We use balancing of serial, parallel cross-sections to constrain subsurface extrapolations. The structure sections are checked for consistency by restoring them to an undeformed state. If this is possible without producing gaps or overlaps, the interpretation is considered valid (but not unique) for a single cross-section. Additional constraints are provided by comparison of adjacent cross-sections. Structures should change continuously from one section to another. Also, from the deformed and restored cross-sections we can measure the strain incurred during deformation. Strain should be compatible among the cross-sections: If at all, it should vary smoothly and systematically along a given fault zone. The stratigraphic contacts and

  18. Fault zone identification in the eastern part of the Persian Gulf based on combined seismic attributes

    NASA Astrophysics Data System (ADS)

    Mirkamali, M. S.; Keshavarz FK, N.; Bakhtiari, M. R.

    2013-02-01

    Faults, as main pathways for fluids, play a critical role in creating regions of high porosity and permeability, in cutting cap rock and in the migration of hydrocarbons into the reservoir. Therefore, accurate identification of fault zones is very important in maximizing production from petroleum traps. Image processing and modern visualization techniques are provided for better mapping of objects of interest. In this study, the application of fault mapping in the identification of fault zones within the Mishan and Aghajari formations above the Guri base unconformity surface in the eastern part of Persian Gulf is investigated. Seismic single- and multi-trace attribute analyses are employed separately to determine faults in a vertical section, but different kinds of geological objects cannot be identified using individual attributes only. A mapping model is utilized to improve the identification of the faults, giving more accurate results. This method is based on combinations of all individual relevant attributes using a neural network system to create combined attributes, which gives an optimal view of the object of interest. Firstly, a set of relevant attributes were separately calculated on the vertical section. Then, at interpreted positions, some example training locations were manually selected in each fault and non-fault class by an interpreter. A neural network was trained on combinations of the attributes extracted at the example training locations to generate an optimized fault cube. Finally, the results of the fault and nonfault probability cube were estimated, which the neural network applied to the entire data