Science.gov

Sample records for active fiber composite

  1. Enhanced-performance active fiber composites

    NASA Astrophysics Data System (ADS)

    Gentilman, Richard L.; McNeal, Kelley; Schmidt, Gerald E.; Pizzochero, Alessandro E.; Rossetti, George A., Jr.

    2003-08-01

    Active fiber composites (AFCs) find applications in a variety of industrial, commercial, and aerospace markets as both actuators and sensors. Among the key attributes of AFCs relative to conventional monolithic piezoceramic actuators are high strain energy density, unidirectional response, conformability, and robustness. Recently, performance enhancements in AFCs have been demonstrated through the use of a modified injection molding process to produce piezoceramic modules with multiple identical fibers of a uniform rectangular cross section. AFC actuators made from Type II PZT fiber modules exhibit free micro-strains of 1830 +/- 30 ppm at a peak-peak E-field drive of 26.1 kV/cm, and show exceptional part-to-part uniformity. In addition, AFCs made from injection molded PMN-PT fiber modules show a low-field d33 of 650 pm/V. The successful incorporation of PMN-PT materials into AFCs also demonstrates the viability of using highly textured ceramic PMN-PT piezofibers, for which even larger increases in strain response are expected.

  2. Activated carbon fiber composite material and method of making

    DOEpatents

    Burchell, Timothy D.; Weaver, Charles E.; Chilcoat, Bill R.; Derbyshire, Frank; Jagtoyen, Marit

    2000-01-01

    An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.

  3. Activated carbon fiber composite material and method of making

    DOEpatents

    Burchell, Timothy D.; Weaver, Charles E.; Chilcoat, Bill R.; Derbyshire, Frank; Jagtoyen, Marit

    2001-01-01

    An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.

  4. Active Structural Fibers for Multifunctional Composite Materials

    DTIC Science & Technology

    2014-05-06

    1. Lin, Y., Zhi, Z. and Sodano, 2012, “Barium Titanate and Barium Strontium Titanate Coated Carbon Fibers for Multifunctional Structural Capacitors...Multifunctional Structural Capacitors Consisting of Barium Titanate and Barium Strontium Titanate Coated Carbon Fibers, 18 th International Conference on... Strontium Titanate Coated SiC Fibers,” Electronic Materials and Applications 2011, Jan. 19 th –21 st Orlando, FL (Invited). 9. Lin, Y., Shaffer

  5. Activation and Micropore Structure Determination of Activated Carbon-Fiber Composites

    SciTech Connect

    Jagtoyen, M.; Derbyshire, F.

    1999-04-23

    Previous work focused on the production of carbon fiber composites and subsequently activating them to induce adsorbent properties. One problem related to this approach is the difficulty of uniformly activating large composites. In order to overcome this problem, composites have been made from pre-activated fibers. The loss of surface area upon forming the composites after activation of the fibers was investigated. The electrical resistivity and strength of these composites were compared to those made by activation after forming. It was found that the surface area is reduced by about 35% by forming the composite from pre-activated fibers. However, the properties of the activated sample are very uniform: the variation in surface area is less than {+-}0.5%. So, although the surface area is somewhat reduced, it is believed that making composites from pre-activated fibers could be useful in applications where the BET surface area is not required to be very high. The strength of the composites produced from pre-activated fibers is lower than for composites activated after forming when the carbon burnoff is below 45%. For higher burnoffs, the strength of composites made with pre-activated fibers is as good or better. In both cases, there is a dramatic decrease in strength when the fiber:binder ratio is reduced below 4:1. The electrical resistivity is slightly higher for composites made from pre-activated fibers than for composites that are activated after forming, other parameters being constant (P-200 fibers, similar carbon burnoffs). For both types of composite the resistivity was also found to increase with carbon burnoff. This is attributed to breakage of the fiber causing shorter conductive paths. The electrical resistivity also increases when the binder content is lowered, which suggests that there are fewer solid contact points between the fibers.

  6. Activation and micropore structure of carbon-fiber composites

    SciTech Connect

    Jagtoyen, M.; Derbyshire, F.; Kimber, G.

    1997-12-01

    Rigid, high surface area activated carbon fiber composites have been produced with high permeabilities for environmental applications in gas and water purification. The project involves a collaboration between the Oak Ridge National Laboratory (ORNL) and the Center for Applied Energy Research (CAER), University of Kentucky. The main focus of recent work has been to find a satisfactory means to uniformly activate large samples of carbon fiber composites to produce controlled pore structures. Processes have been developed using activation in steam and CO{sub 2}, and a less conventional method involving oxygen chemisorption and subsequent heat treatment. Another objective has been to explore applications for the activated composites in environmental applications related to fossil energy production.

  7. The performance of integrated active fiber composites in carbon fiber laminates

    NASA Astrophysics Data System (ADS)

    Melnykowycz, M.; Brunner, A. J.

    2011-07-01

    Piezoelectric elements integrated into fiber-reinforced polymer-matrix laminates can provide various functions in the resulting adaptive or smart composite. Active fiber composites (AFC) composed of lead zirconate titanate (PZT) fibers can be used as a component in a smart material system, and can be easily integrated into woven composites. However, the impact of integration on the device and its functionality has not been fully investigated. The current work focuses on the integration and performance of AFC integrated into carbon-fiber-reinforced plastic (CFRP) laminates, focusing on the strain sensor performance of the AFC-CFRP laminate under tensile loading conditions. AFC were integrated into cross-ply CFRP laminates using simple insertion and interlacing of the CFRP plies, with the AFC always placed in the 90° ply cutout area. Test specimens were strained to different strain levels and then cycled with a 0.01% strain amplitude, and the resulting signal from the AFC was monitored. Acoustic emission monitoring was performed during tensile testing to provide insight to the failure characteristics of the PZT fibers. The results were compared to those from past studies on AFC integration; the strain signal of AFC integrated into CFRP was much lower than that for AFC integrated into woven glass fiber laminates. However, the profiles of the degradations of the AFC signal resulting from the strain were nearly identical, showing that the PZT fibers fragmented in a similar manner for a given global strain. The sensor performance recovered upon unloading, which is attributed to the closure of cracks between PZT fiber fragments.

  8. Active fiber composites for the generation of Lamb waves.

    PubMed

    Birchmeier, M; Gsell, D; Juon, M; Brunner, A J; Paradies, R; Dual, J

    2009-01-01

    Active fiber composites (AFC) are thin and conformable transducer elements with orthotropic material properties, since they are made of one layer of piezoelectric ceramic fibers. They are suitable for applications in structural health monitoring systems (SHM) with acoustic non-destructive testing methods (NDT). In the presented work the transfer behavior of an AFC as an emitter of transient elastic waves in plate-like structures is investigated. The wave field emitted by an AFC surface bonded on an isotropic plate was simulated with the finite-difference method. The model includes the piezoelectric element and the plate and allows the simulation of the elastic wave propagation. For comparison with the model experiments using a laser interferometer for non-contact measurements of particle velocities at different points around the AFC on the surface of the plate were performed. Transfer functions defined as the ratio of the electric voltage excitation signal and the resulting surface velocity at a specific point are separately determined for the two fundamental Lamb wave modes. In order to take the orthotropic behavior of the AFC into account the transfer functions are determined for several points around the AFC. Results show that the AFC is capable to excite the fundamental symmetric and antisymmetric Lamb wave mode. The antisymmetric mode is mainly radiated in the direction of the piezoelectric fibers, while the symmetric mode is spread over a larger angle. The amplitudes of the emitted waves depend on the frequency of the excitation as well as on the geometric dimensions of the transducer.

  9. Activation and micropore structure determination of activated carbon-fiber composites

    SciTech Connect

    Jagtoyen, M.; Derbyshire, F.; Kimber, G.

    1997-09-05

    Rigid, high surface area activated carbon fiber composites have been produced with high permeabilities for environmental applications in gas and water purification. These novel monolithic adsorbents can be produced in single pieces to a given size and shape. The project involves a collaboration between the Oak Ridge National Laboratory (ORNL) and the Center for Applied Energy Research (CAER), University of Kentucky. The carbon fiber composites are produced at the ORNL and activated at the CAER using different methods, with the aims of producing a uniform degree of activation, and of closely controlling pore structure and adsorptive properties. The main focus of the present work has been to find a satisfactory means to uniformly activate large samples of carbon fiber composites and produce controlled pore structures. Several environmental applications have been explored for the activated carbon fiber composites. One of these was to evaluate the activated composites for the separation of CH{sub 4}-CO{sub 2} mixtures, and an apparatus was constructed specifically for this purpose. The composites were further evaluated in the cyclic recovery of volatile organics. The activated carbon fiber composites have also been tested for possible water treatment applications by studying the adsorption of sodium pentachlorophenolate, PCP.

  10. Active vibration control of basic structures using macro fiber composites

    NASA Astrophysics Data System (ADS)

    Yi, Guo; Wang, Jinming; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2011-03-01

    In the modern naval battle, as the anti-detection technique developing fleetly, enhancing submarine's hidden ability is becoming more and more important. However, in view of the worse control effect at low-frequency and weak adjustability to external influence, conventional passive vibration control can't satisfy the modern naval rigorous demands. Fortunately, active vibration control technology not only monitors the structure's real-time vibration, but also has more remarkable control effects and superior suitability. At the present time, it has a primary application in the vibration damping of ship engineering. In addition, due to functional materials rapidly developing, with the coming of piezoelectric composite materials, the advanced active control techniques have more applicability, lager damp amplitude and wider applied field, which basing on the piezoelectric-effect and inverse- piezoelectric-effect of piezoelectric materials. Especially, in the end of nineties, NASA had successfully manufactured the excellent macro fiber composite (MFC), which assembles actuating and sensing abilities. Comparing with the conventional piezoelectric ceramic materials, it provides the required durability, excellent flexibility, higher electromechanical coupling factors and stronger longitudinal actuating force by using interdigital electrodes. On the basis of the application of cantilever beam' active vibration control by using MFC actuators, this paper started with the mechanical characteristics of its actuating and sensing equations, and then investigated its piezoelectric feedback scale factor when equipped on the honeycomb aluminous panel. Finally, in order to validate the theoretical analysis method, the vibration control experiment of cantilever beam and honeycomb aluminous panel are built and tested with different activating force. The experimental results verify that MFC used in submarine structures' active vibration control are feasible and effective.

  11. Using Plasma-Activated High Performance Fibers with Nanocrystalline Structure in Producing New Reinforced Composite Materials

    NASA Astrophysics Data System (ADS)

    Kudinov, V.; Korneeva, N.

    2008-08-01

    A wet-pull-out method for investigation of interaction between the high performance polyethylene (HPPE) fiber and polymer matrix is discussed. The paper concerns a cold plasma technique for improving the bond of the HPPE fibers to the matrices and the fibers impregnation with the matrix. Controlled parameters are pull-out force and the height of the matrix capillary lifting along the fiber both in air and in vacuum, in combination with plasma activation of the fibers. The method allows one to estimate the wetting and impregnation of multi-filament fiber with the matrix and simultaneously measure the joint strength. Coupled action of plasma treatment and vacuum impregnation of the fibers improves the joint strength by a factor of 3. Plasma activated HPPE fibers impregnated in air show the value of shear strength τ of 4 Kg/mm2. To understand the effect of treatment initial and plasma-activated fibers were used to fabricate composite materials (CM). The properties and failure modes were compared to those of CM reinforced with untreated fibers. The failure mode of CM reinforced with plasma-activated fibers points to a high strength of the bond between the fibers and the matrix.

  12. Active vertical tail buffeting suppression based on macro fiber composites

    NASA Astrophysics Data System (ADS)

    Zou, Chengzhe; Li, Bin; Liang, Li; Wang, Wei

    2016-04-01

    Aerodynamic buffet is unsteady airflow exerting forces onto a surface, which can lead to premature fatigue damage of aircraft vertical tail structures, especially for aircrafts with twin vertical tails at high angles of attack. In this work, Macro Fiber Composite (MFC), which can provide strain actuation, was used as the actuator for the buffet-induced vibration control, and the positioning of the MFC patches was led by the strain energy distribution on the vertical tail. Positive Position Feedback (PPF) control algorithm has been widely used for its robustness and simplicity in practice, and consequently it was developed to suppress the buffet responses of first bending and torsional mode of vertical tail. However, its performance is usually attenuated by the phase contributions from non-collocated sensor/actuator configuration and plants. The phase lag between the input and output signals of the control system was identified experimentally, and the phase compensation was considered in the PPF control algorithm. The simulation results of the amplitude frequency of the closed-loop system showed that the buffet response was alleviated notably around the concerned bandwidth. Then the wind tunnel experiment was conducted to verify the effectiveness of MFC actuators and compensated PPF, and the Root Mean Square (RMS) of the acceleration response was reduced 43.4%, 28.4% and 39.5%, respectively, under three different buffeting conditions.

  13. Functional characteristics of the rat jaw muscles: daily muscle activity and fiber type composition.

    PubMed

    Kawai, Nobuhiko; Sano, Ryota; Korfage, Joannes A M; Nakamura, Saika; Tanaka, Eiji; van Wessel, Tim; Langenbach, Geerling E J; Tanne, Kazuo

    2009-12-01

    Skeletal muscles have a heterogeneous fiber type composition, which reflects their functional demand. The daily muscle use and the percentage of slow-type fibers have been shown to be positively correlated in skeletal muscles of larger animals but for smaller animals there is no information. The examination of this relationship in adult rats was the purpose of this study. We hypothesized a positive relationship between the percentage of fatigue-resistant fibers in each muscle and its total duration of use per day. Fourteen Wistar strain male rats (410-450 g) were used. A radio-telemetric device was implanted to record muscle activity continuously from the superficial masseter, deep masseter, anterior belly of digastric and anterior temporalis muscles. The degree of daily muscle use was quantified by the total duration of muscle activity per day (duty time) exceeding specified levels of the peak activity (2, 5, 20 and 50%). The fiber type composition of the muscles was examined by the myosin heavy chain content of the fibers by means of immunohistochemical staining. At lower activity levels (exceeding 2 and 5% of the peak activity), the duty time of the anterior belly of digastric muscle was significantly (P < 0.01) longer than those of the other muscles. The anterior belly of digastric muscle also contained the highest percentage of slow-type fibers (type I fiber and hybrid fiber co-expressing myosin heavy chain I + IIA) (ca. 11%; P < 0.05). By regression analysis for all four muscles, an inter-muscular comparison showed a positive relationship between the duty time (exceeding 50% of the peak activity) and the percentage of type IIX fibers (P < 0.05), which demonstrate intermediate physiological properties relative to type IIA and IIB fibers. For the jaw muscles of adult male rats, the variations of fiber type composition and muscle use suggest that the muscle containing the largest amounts of slow-type fibers (the anterior belly of digastric muscle) is mainly

  14. Active control of geometrically nonlinear vibrations of functionally graded laminated composite plates using piezoelectric fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Panda, Satyajit; Ray, M. C.

    2009-08-01

    This paper deals with the geometrically nonlinear dynamic analysis of functionally graded (FG) laminated composite plates integrated with a patch of active constrained layer damping (ACLD) treatment. The constraining layer of the ACLD treatment is considered to be made of the piezoelectric fiber reinforced composite (PFRC) material. Each layer of the substrate FG laminated composite plate is made of fiber-reinforced composite material in which the fibers are longitudinally aligned in the plane parallel to the top or bottom surface of the layer and the layer is assumed to be graded in the thickness direction by way of varying the fiber orientation angle across its thickness according to a power-law. The novelty of the present work is that, unlike the traditional laminated composite plates, the FG laminated composite plates are constructed in such a way that the continuous variation of material properties and stresses across the thickness of the plates is achieved. The constrained viscoelastic layer of the ACLD treatment is modeled using the Golla-Hughes-McTavish (GHM) method. Based on the first-order shear deformation (FSDT) theory, a finite element model has been developed to model the open-loop and closed-loop nonlinear dynamics of the overall FG laminated composite plates. Both symmetric and asymmetric FG laminated composite plates are considered as the substrate plates for presenting the numerical results. The analysis suggests the potential use of the ACLD treatment with its constraining layer made of the PFRC material for active control of geometrically nonlinear forced vibrations of FG laminated composite plates. The effect of piezoelectric fiber orientation in the active constraining PFRC layer on the damping characteristics of the overall FG plates is also investigated.

  15. Carbon fibers: Thermochemical recovery from advanced composite materials and activation to an adsorbent

    NASA Astrophysics Data System (ADS)

    Staley, Todd Andrew

    This research addresses an expanding waste disposal problem brought about by the increasing use of advanced composite materials, and the lack of technically and environmentally viable recycling methods for these materials. A thermochemical treatment process was developed and optimized for the recycling of advanced composite materials. Counter-current gasification was employed for the treatment of carbon fiber reinforced-epoxy resin composite wastes. These materials were treated, allowing the reclamation of the material's valuable components. As expected in gasification, the organic portion of the waste was thermochemically converted to a combustible gas with small amounts of organic compounds that were identified by GC/MS. These compounds were expected based on data in the literature. The composites contain 70% fiber reinforcement, and gasification yielded approximately 70% recovered fibers, representing nearly complete recovery of fibers from the waste. Through SEM and mechanical testing, the recovered carbon fibers were found to be structurally and mechanically intact, and amenable to re-use in a variety of applications, some of which were identified and tested. In addition, an application was developed for the carbon fiber component of the waste, as an activated carbon fiber adsorbent for the treatment of wastewaters. This novel class of adsorbent was found to have adsorption rates, for various organic molecules, up to a factor of ten times those of commercial granular activated carbon, and adsorption capacities similar to conventional activated carbons. Overall, the research addresses an existing environmental waste problem, employing a thermochemical technique to recycle and reclaim the waste. Components of the reclaimed waste material are then employed, after further modification, to address other existing and potential environmental waste problems.

  16. Hybrid matrix fiber composites

    DOEpatents

    Deteresa, Steven J.; Lyon, Richard E.; Groves, Scott E.

    2003-07-15

    Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites include two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.

  17. Continuous Fiber Ceramic Composites

    SciTech Connect

    2002-09-01

    Fiber-reinforced ceramic composites demonstrate the high-temperature stability of ceramics--with an increased fracture toughness resulting from the fiber reinforcement of the composite. The material optimization performed under the continuous fiber ceramic composites (CFCC) included a series of systematic optimizations. The overall goals were to define the processing window, to increase the robustinous of the process, to increase process yield while reducing costs, and to define the complexity of parts that could be fabricated.

  18. Micromechanical analysis of constitutive properties of active piezoelectric structural fiber (PSF) composites

    NASA Astrophysics Data System (ADS)

    Ng, Kenny; Dai, Qingli

    2011-04-01

    Recent studies showed that the active piezoelectric structural fiber (PSF) composites may achieve significant and simultaneous improvements in sensing/actuating, stiffness, fracture toughness and vibration damping. These characteristics can be very important in the application of civil, mechanical and aerospace structures. The PSF is fabricated by coating the piezoceramic onto the silicon carbide core fiber with electrophoretic deposition (EPD) process to overcome the fragile nature of the monolithic piezoelectric materials. The PSF composite laminates are made of longitudinally poled PSFs that are unidirectionally deployed in the polymer binding matrix. The PSF laminate transducer has electrical inputs/outputs that are delivered through a separate etched interdigital electrode layer. This study analyzed the electromechanical properties with the generalized dilute scheme for active PSF composite laminate by considering multiinclusions. The well-known Mori-Tanaka approach was used to evaluate the concentration tensor in the multi-inclusion micromechanics model. To accurately predict the transverse properties, the extended role of mixtures were applied by considering the inclusions' geometry and shape. The micromechanical finite element modeling was also conducted with representative volume element (RVE) to compare with the micromechanics analysis on the electromechanical properties. The micromechanics analysis and finite element micromechanical modeling were conducted with varied fiber geometry dimensions and volume fractions. These comparison studies indicate the combined micromechanics models with the generalized dilute scheme can effectively predict the electro-elastic properties of multi-inclusion PSF composites.

  19. Adsorption properties and photocatalytic activity of TiO2/activated carbon fiber composite

    NASA Astrophysics Data System (ADS)

    Yao, Shuhua; Song, Shuangping; Shi, Zhongliang

    2014-06-01

    Photocatalysts of titanium dioxide (TiO2) and TiO2/activated carbon fiber (TiO2/ACF) composite were prepared by sol-gel method, followed by calcining the pure TiO2 sols and the TiO2/ACF sols at 500°C for 2 h in a N2 atmosphere, respectively. These photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and N2 adsorption-desorption isotherms measurement. Batch experiments were conducted to study the adsorption property of TiO2/ACF composite using methylene blue as adsorbate. The adsorption data obtained from different batch experiments were analyzed using pseudo-second-order kinetic model, the experimental data can be adequately described by the pseudo-second-order equation. The photodecomposition behavior of TiO2/ACF was investigated in aqueous solution using methylene blue as target pollutant. It was found that methylene blue could be removed rapidly from water by TiO2/ACF, the photocatalytic decomposition was obviously improved when the photocatalyst was used. Kinetics analysis revealed that the photocatalytic decomposition reaction can be described well by a first-order rate equation.

  20. Pitch-based activated carbon fibers: The effect of precursor composition on pore structure

    NASA Astrophysics Data System (ADS)

    Tekinalp, Halil Levent

    Although researchers have previously investigated the effect of precursor differences on the final properties of activated carbon fibers (ACFs), those precursors were not well-characterized. In particular, detailed information about their molecular composition and anisotropy was not available. In this study, seven oligomeric fractions, each of well-defined composition and molecular weight (mol wt) distribution, were isolated from a commercially produced isotropic petroleum pitch (i.e., Marathon M-50) and used for the production of ACFs. Four of these precursors of varying oligomeric composition were fully isotropic and three contained different levels of mesophase, so that the effects of molecular composition and molecular order were successfully isolated from each other. After the precursors were melt-spun into fibers and stabilized, they were processed by so-called "direct activation", whereby carbonization and activation occurred simultaneously. Separate carbonization tests were also carried out in order to separate out the effects of carbonization vs. activation. Carbonization weight loss was found to be higher for fibers prepared from lower average mol wt (480--550 Da) precursors. The presence of mesophase per se did not affect weight loss during carbonization. On the other hand, activation weight loss (˜28 percent) was found to be essentially independent of precursor mol wt for all isotropic fibers. (Activation weight loss for mesophase-containing fibers was much lower.) The micropore volume of the ACFs was found to increase with decreasing precursor mol wt. However, the ratio of pores smaller than 7 A (i.e., the desired pore size for hydrogen storage) to the total pore volume (3.9--30 A) was found to be essentially constant for all isotropic precursors, suggesting that a similar activation mechanism occurred for all of these materials, with both new pore formation and pore widening proceeding at similar rates. For mesophase-containing precursors, on the

  1. Activation and Micropore Structure Determination of Carbon-Fiber Composite Molecular Sieves

    SciTech Connect

    Jagtoyen, M.

    1995-01-01

    The progress of research in the development of novel, rigid, monolithic adsorbent carbon fiber composites is described. Carbon fiber composites am produced at ORNL and activated at the CAER using steam or CO{sub 2} under different conditions, with the aims of producing a uniform degree of activation through the material, and of closely controlling pore structure and adsorptive properties. The principal focus of the work to date has been to produce materials with narrow porosity far use in gas separations. Carbon fiber composites are prepared at ORNL, usually in plate or tubular form, by vacuum molding from water slurries containing phenolic resin and chopped isotropic petroleum pitch fibers. The composites are activated at the CAER in steam or CO{sub 2} using samples of dimensions up to 1.5 x 4 x 12 cm that are cut from the original plates. One of the objectives is to produce uniformly activated composites, which is especially critical when attempting to active large monoliths. It has been found that there are appreciable variations in the density and permeability of the as-formed composites that must relate to the forming technique. These variations are expected to exert some influence on the rate and extent of reaction and surface area development. In attempting to uniformly activate the composites, two reactor configurations have been investigated. In the more successful arrangement, steam ''is introduced at several points along the length of the composite. A reduction in steam partial pressure from 95vol% to 44vol% significantly improved the uniformity of surface area distribution. Activation with CO{sub 2} was still better, which is attributed to the much slower reaction rate than with steam. Measurements of composite dimensions have shown that there is an overall shrinkage during activation. A direct correlation is found between dimensional shrinkage and burnoff, and is similar for a and steam activation. The causes of the shrinkage are not yet clear. At

  2. Integration and reliability of active fiber composite (AFC) sensors/actuators in carbon/epoxy laminates

    NASA Astrophysics Data System (ADS)

    Melnykowycz, Mark M.; Belloli, Alberto; Ermanni, Paolo; Barbezat, Michel

    2006-03-01

    In the current study Active Fiber Composites (AFC) utilizing Lead-Zirconate-Titanate (PZT) fibers with Kapton (R) screen printed interdigitated electrodes (IDE) were integrated into carbon fiber reinforced plastic (CFRP) laminates to investigate integration issues associated with smart structures and host laminate integrity. To aid in this goal surrogate or "dummy" AFC (DAFC) using a composite core and Kapton (R) outer layers (to match the longitudinal mechanical and interface properties of the AFC) were employed. These DAFC were used in place of real AFC to expedite test specimen manufacture and evaluation. This allowed efficient investigation of the impact of an integrated AFC-like inclusion on laminate mechanical integrity. Laminates with integrated AFC were additionally tested with signal monitoring to assess AFC health during the test. Investigation into laminate failure was accomplished via a finite element model of the system which was created in ANSYS to investigate failure in the composite plies. Tsai-Wu failure criterion was calculated to investigate laminate failure characteristics. Integration of AFC into CFRP laminates degraded laminate strength by 13.3% using insertion integration and 7.8% using the interlacing integration technique. The finite element model showed that interlacing integration enabled distribution of critical forces over the entire laminate while insertion integration led to critical forces concentrating over the integration region.

  3. Probabilistic Fiber Composite Micromechanics

    NASA Technical Reports Server (NTRS)

    Stock, Thomas A.

    1996-01-01

    Probabilistic composite micromechanics methods are developed that simulate expected uncertainties in unidirectional fiber composite properties. These methods are in the form of computational procedures using Monte Carlo simulation. The variables in which uncertainties are accounted for include constituent and void volume ratios, constituent elastic properties and strengths, and fiber misalignment. A graphite/epoxy unidirectional composite (ply) is studied to demonstrate fiber composite material property variations induced by random changes expected at the material micro level. Regression results are presented to show the relative correlation between predictor and response variables in the study. These computational procedures make possible a formal description of anticipated random processes at the intra-ply level, and the related effects of these on composite properties.

  4. Temperature and time dependence of the electro-mechanical properties of flexible active fiber composites

    NASA Astrophysics Data System (ADS)

    Ben Atitallah, H.; Ounaies, Z.; Muliana, A.

    2016-04-01

    Active fiber composites (AFCs) are comprised of piezoelectric fibers embedded in a polymeric matrix. AFCs use interdigitated electrodes, which produce electric field lines parallel to the fiber direction, thus taking advantage of the larger d 33 piezoelectric coefficient. The polymer volume content of the AFCs is generally more than 50%; since polymers tend to have behaviors affected by their viscoelastic characteristics especially at elevated temperatures, it is necessary to understand the thermo-electro-mechanical behavior of AFCs at different loading rates. In this study, mechanical, electrical and electromechanical properties of AFCs were measured at different isothermal temperatures, namely 25 °C, 50 °C and 75 °C and at different loading rates. The measurements of all the properties of AFCs were done along the fiber direction. It was found that at higher temperatures, the modulus and tensile strength decreased for all strain rates and the strain at failure increased. The remnant polarization increased with decrease in frequency and increase in temperature; however, the coercive field decreased with temperature and was not affected by the frequency. Due to the viscoelastic behavior of the epoxy, the piezoelectric coefficient d 33 increased at higher temperature and lower frequency. It was also noted that this coefficient is dependent on the magnitude of the electric field.

  5. Active rigidization of carbon-fiber reinforced polymer composites for ultra-lightweight space structures

    NASA Astrophysics Data System (ADS)

    Sarles, Stephen A.; Leo, Donald J.

    2006-03-01

    An active approach for initiating rigidization in carbon-fiber reinforced polymer (CFRP) thermosets links controllable mechanical stiffening to inherent electrical resistivity. With direct applications toward the rigidization of ultra-lightweight, inflatable space structures, temperature-controlled resistive heating is used to create oncommand rigidization. As required by the on-orbit conditions in space, flexible, rigidizable structures demand stable and space-survivable materials that incorporate techniques for providing shape control and structural stiffening. Methods currently employed to achieve a mechanical hardening include many passive techniques: UV curing, sub-T g hardening, and hydro-gel evaporation. The benefits of a passive system (simplicity, energy efficiency) are offset by their inherent lack of control, which can lead to long curing times and weak spots due to uneven curing. In efforts to significantly reduce the transition time of the composite from a structurally-vulnerable state to a fully-rigidized shape and to increase control of the curing process, an active approach is taken. Specifically, temperature-controlled internal resistive heating initiates thermoset curing in a coated carbon fiber composite to form an electrically-controlled, thermally-activated material. Through controlled heating, this research examines how selective temperature control can be used to prescribe matrix consolidation and material rigidization on two different thermosetting resins, U-Nyte Set 201A and 201B. Feedback temperature control, based on a PID control algorithm, was applied to the process of resistive heating. Precise temperature tracking (less than 1.1°C RMS or +/-3.3% error) was achieved for controlled sample heating. Using samples of the thermoset-coated carbon-fiber tow, composite hardening through resistive heating occurred in 24 minutes and required roughly 1 W-hr/inch of electrical energy. The rigidized material was measured to be 14-21 times stiffer

  6. Adaptive control of radiated noise from a cylindrical shell using active fiber composite actuators

    NASA Astrophysics Data System (ADS)

    Goddu, Gregory; McDowell, Donald; Bingham, Brian S.

    2000-06-01

    This paper describes the application of Active Fiber Composite (AFC) actuators, a hybrid piezoelectric device, to the reduction of acoustic radiation from a cylindrical shell by active control methods. AFCs were developed to provide a mechanically robust method for large-area, orthotropic actuation and sensing in active structures. The actuation layer is formed by small diameter piezoelectric fibers that are unidirectionally aligned and imbedded in a resin matrix system. By the nature of its structure, an AFC actuator allows use of the primary piezoelectric effect in the plane of the composite. A cylindrical shell testbed is used for this experiment due to the predominance of this structure, and the resulting general interest, within the field of underwater acoustics. To control acoustic radiation from the cylindrical shell, the AFC actuators, placed at optimal locations determined using numerical models, are used to generate a strain field that counteracts the strain associated with acoustically efficient shell motions. Using an end-mounted accelerometer as the error measurement, an adaptive LMS algorithm is used to minimize the error signal in real-time. Experimental are supplied to validate both the device and the methodology in a complex, real-world environment.

  7. [Research on treatment of high salt wastewater by the graphite and activated carbon fiber composite electrodes].

    PubMed

    Zhou, Gui-Zhong; Wang, Zhao-Feng; Wang, Xuan; Li, Wen-Qian; Li, Shao-Xiang

    2014-05-01

    High salinity wastewater is one of the difficulties in the field of wastewater treatment. As a new desalination technology, electrosorption technology has many advantages. This paper studied a new type of carbon-based electrodes, the graphite and activated carbon fiber composite electrodes. And the influencing factors of electrosorption and its desalination effect were investigated. The electrosorption device had optimal desalination effect when the voltage was 1. 6 V, the retention time was 60 min and the plate spacing was 1 cm. The graphite and activated carbon fiber composite electrodes were used to treat the black liquor of refined cotton and sodium copper chlorophyll wastewater to investigate its desalination effect. When the electrodes were used to treat the black liquor of refined cotton after acid treatment, the removal rate of conductivity and COD reached 58. 8% and 75. 6% respectively when 8 pairs of electrodes were used. And when the electrode was used to treat the sodium copper chlorophyll wastewater, the removal rate of conductivity and COD reached higher than 50. 0% and 13. 5% respectively when 6-8 pairs of electrodes were used.

  8. Integration of active fiber composite (AFC) sensors/actuators into glass/epoxy laminates

    NASA Astrophysics Data System (ADS)

    Melnykowycz, Mark M.; Kornmann, Xavier; Huber, Christian; Brunner, Andreas J.; Barbezat, Michel

    2005-05-01

    In the current study Active Fiber Composites (AFC) utilizing Lead-Zirconate-Titanate (PZT) fibers with Kapton screen printed interdigitated electrodes (IDE) were integrated into orthotropic glass fiber reinforced plastic (GFRP) laminates to investigate integration issues associated with smart structures and host laminate integrity. To aid in this goal surrogate or "Dummy" AFC (DAFC) were designed using a GFRP core and Kapton outer layers to match the longitudinal mechanical and interface properties of the AFC. These DAFC were used in place of real AFC to expedite test specimen manufacture and evaluation. This allowed efficient investigation of the impact of an integrated AFC-like inclusion on laminate mechanical integrity. Two integration techniques, cutout and simple insertion were investigated using DAFC, with little difference seen between the integrity of laminates prepared using these two methods. Using this testing scheme the influence of device placement in relation to position extending away from the laminate symmetric axis was found to have an effect on laminate integrity in tensile loading. As the DAFC were placed far from the laminate symmetry axis, the ultimate tensile strength and strain of the laminates decreased in a linear manner while the Young's modulus of the laminates remained constant. Similar trends were observed with integrated AFC specimens. The performance of integrated AFC was characterized using monotonic cyclic tensile loading with increasing strain levels. A transition region was observed between strains of 0.05%-0.50%, with a dramatic decrease in AFC sensitivity from a maximum to minimum value.

  9. Carbon Fiber Composites

    NASA Technical Reports Server (NTRS)

    1997-01-01

    HyComp(R), Inc. development a line of high temperature carbon fiber composite products to solve wear problems in the harsh environment of steel and aluminum mills. WearComp(R), self-lubricating composite wear liners and bushings, combines carbon graphite fibers with a polyimide binder. The binder, in conjunction with the fibers, provides the slippery surface, one that demands no lubrication, yet wears at a very slow rate. WearComp(R) typically lasts six to ten times longer than aluminum bronze. Unlike bronze, WearComp polishes the same surface and imparts a self-lube film for years of service. It is designed for continuous operation at temperatures of 550 degrees Fahrenheit and can operate under high compressive loads.

  10. Activated carbon fibers/poly(lactic-co-glycolic) acid composite scaffolds: preparation and characterizations.

    PubMed

    Shi, Yanni; Han, Hao; Quan, Haiyu; Zang, Yongju; Wang, Ning; Ren, Guizhi; Xing, Melcolm; Wu, Qilin

    2014-10-01

    The present work is a first trial to introduce activated carbon fibers (ACF) with high adsorption capacity into poly(lactic-co-glycolic) acid (PLGA), resulting in a novel kind of scaffolds for tissue engineering applications. ACF, prepared via high-temperature processing of carbon fibers, are considered to possess bioactivity and biocompatibility. The ACF/PLGA composite scaffolds are prepared by solvent casting/particulate leaching method. Increments in both pore quantity and quality over the surface of ACF as well as a robust combination between ACF and PLGA matrix are observed via scanning electron microscopy (SEM). The high adsorption capacity of ACF is confirmed by methylene blue solution absorbency test. The surfaces of ACF are affiliated with many hydrophilic groups and characterized by Fourier transform infrared spectroscopy. Furthermore, the SEM images show that cells possess a favorable spreading morphology on the ACF/PLGA scaffolds. Besides, vivo experiments are also carried out to evaluate the histocompatibility of the composite scaffolds. The results show that ACF have the potential to become one of the most promising materials in biological fields.

  11. Carbon fiber composites inspection and defect characterization using active infrared thermography: numerical simulations and experimental results.

    PubMed

    Fernandes, Henrique; Zhang, Hai; Figueiredo, Alisson; Ibarra-Castanedo, Clemente; Guimarares, Gilmar; Maldague, Xavier

    2016-12-01

    Composite materials are widely used in the aeronautic industry. One of the reasons is because they have strength and stiffness comparable to metals, with the added advantage of significant weight reduction. Infrared thermography (IT) is a safe nondestructive testing technique that has a fast inspection rate. In active IT, an external heat source is used to stimulate the material being inspected in order to generate a thermal contrast between the feature of interest and the background. In this paper, carbon-fiber-reinforced polymers are inspected using IT. More specifically, carbon/PEEK (polyether ether ketone) laminates with square Kapton inserts of different sizes and at different depths are tested with three different IT techniques: pulsed thermography, vibrothermography, and line scan thermography. The finite element method is used to simulate the pulsed thermography experiment. Numerical results displayed a very good agreement with experimental results.

  12. Natural Fiber Composites: A Review

    SciTech Connect

    Westman, Matthew P.; Fifield, Leonard S.; Simmons, Kevin L.; Laddha, Sachin; Kafentzis, Tyler A.

    2010-03-07

    The need for renewable fiber reinforced composites has never been as prevalent as it currently is. Natural fibers offer both cost savings and a reduction in density when compared to glass fibers. Though the strength of natural fibers is not as great as glass, the specific properties are comparable. Currently natural fiber composites have two issues that need to be addressed: resin compatibility and water absorption. The following preliminary research has investigated the use of Kenaf, Hibiscus cannabinus, as a possible glass replacement in fiber reinforced composites.

  13. Photocatalytic oxidation of arsenite by a composite of titanium dioxide and activated carbon fiber.

    PubMed

    Yao, Shuhua; Jia, Yongfeng; Shi, Zhongliang; Zhao, Shanlin

    2010-01-01

    Preoxidation process is usually needed in the treatment of arsenic-containing drinking water because arsenite (i.e. As[III]) is less easily removed by adsorption. Nano-scale titanium dioxide is an efficient photocatalyst for arsenite oxidation but its application in water treatment is limited due to the difficulty of separation or packed-bed application of the tiny particles. This study synthesized a composite photocatalyst by loading titanium dioxide onto activated carbon fiber (TiO(2)/ACF). The effects of calcination temperature, photocatalyst dosage, pH, initial concentration of As(III) and common anions on the oxidation of As(III) were studied. Photocatalytic oxidation of As(III) took place in minutes and followed first-order kinetics. 0.80 mg L(-1) of As(III) could be entirely oxidized to As(V) within 30 min in the presence of 3.0 g L(-1) photocatalyst and under UV-light irradiation. The oxidation of As(III) occurred in a wide range of pH as examined from 2 to 10 with the oxidation efficiency increasing markedly with pH. The presence of phosphate and silicate significantly decreased As(III) oxidation at pH 7, while the effect of sulfate and chloride was small.

  14. Composite Fiber Hazards

    DTIC Science & Technology

    1990-12-01

    34L boton Ion a tungsten boride core, and appear more like fine wires ,tin fibers. The fibers are combined with an epoxy matrix to form a prepreg j i...a 8-hour TWA Recommended Exposure Limit (REL) for fibrous glass of 3 fibers/cm3 for fibers with length >10 Jim and diameter ɛ.5 pm, and total

  15. EXPLORATORY INVESTIGATION OF GLASSMETAL COMPOSITE FIBERS.

    DTIC Science & Technology

    GLASS , FIBERS , COMPOSITE MATERIALS, COMPOSITE MATERIALS, BERYLLIUM, COPPER, DRAWING(FORMING), MELTING, ZIRCONIUM COMPOUNDS, OXIDES, BORON COMPOUNDS, NITRIDES, TEST METHODS, ENCAPSULATION, FIBER METALLURGY.

  16. Fiber composite flywheel rim

    DOEpatents

    Davis, Donald E.; Ingham, Kenneth T.

    1987-01-01

    A flywheel 2 comprising a hub 4 having at least one radially projecting disc 6, an annular rim 14 secured to said disc and providing a surface circumferential to said hub, a first plurality of resin-impregnated fibers 22 wound about said rim congruent to said surface, and a shell 26 enclosing said first plurality of fibers and formed by a second plurality of resin-impregnated fibers wound about said rim tangentially to said surface.

  17. Fiber composite flywheel rim

    DOEpatents

    Davis, D.E.; Ingham, K.T.

    1987-04-28

    A flywheel comprising a hub having at least one radially projecting disc, an annular rim secured to said disc and providing a surface circumferential to said hub, a first plurality of resin-impregnated fibers wound about said rim congruent to said surface, and a shell enclosing said first plurality of fibers and formed by a second plurality of resin-impregnated fibers wound about said rim tangentially to said surface. 2 figs.

  18. Microstructural design of fiber composites

    NASA Astrophysics Data System (ADS)

    Chou, Tsu-Wei

    The optimum performance design of composite microstructures is discussed. The forces driving progress in fiber composites are examined, and recent developments in the mechanics of laminated composites are surveyed, emphasizing thick laminates, hygrothermal effects, and thermal transient effects. The strength of continuous-fiber composites is discussed, presenting analyses of local load redistribution due to fiber breakages and treatments of statistical tensile strength theories. Modes of failure of laminated composites are examined. Elastic, physical, and viscoelastic properties as well as the strength and fracture behavior of short-fiber composites are studied, and it is shown how the performance of composites can be controlled by selecting material systems and their geometric distributions. 2D textile structural composites based on woven, knitted, and braided preforms are considered, and techniques for analyzing and modeling the thermomechanical behavior of 2D textile composites are presented. Recent developments in the processing of 3D textile preforms are introduced and the processing-microstructure relationship is demonstrated. Finite elastic deformation of flexible composites is addressed.

  19. Impact resistance of fiber composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1982-01-01

    Stress-strain curves are obtained for a variety of glass fiber and carbon fiber reinforced plastics in dynamic tension, over the stress-strain range of 0.00087-2070/sec. The test method is of the one-bar block-to-bar type, using a rotating disk or a pendulum as the loading apparatus and yielding accurate stress-strain curves up to the breaking strain. In the case of glass fiber reinforced plastic, the tensile strength, strain to peak impact stress, total strain and total absorbed energy all increase significantly as the strain rate increases. By contrast, carbon fiber reinforced plastics show lower rates of increase with strain rate. It is recommended that hybrid composites incorporating the high strength and rigidity of carbon fiber reinforced plastic with the high impact absorption of glass fiber reinforced plastics be developed for use in structures subjected to impact loading.

  20. Continuous Fiber Ceramic Composites (CFCC)

    SciTech Connect

    R. A. Wagner

    2002-12-18

    This report summarizes work to develop CFCC's for various applications in the Industries of the Future (IOF) and power generation areas. Performance requirements range from relatively modest for hot gas filters to severe for turbine combustor liners and infrared burners. The McDermott Technology Inc. (MTI) CFCC program focused on oxide/oxide composite systems because they are known to be stable in the application environments of interest. The work is broadly focused on dense and porous composite systems depending on the specific application. Dense composites were targeted at corrosion resistant components, molten aluminum handling components and gas turbine combustor liners. The development work on dense composites led to significant advances in fiber coatings for oxide fibers and matrix densification. Additionally, a one-step fabrication process was developed to produce low cost composite components. The program also supported key developments in advanced oxide fibers that resulted in an improved version of Nextel 610 fiber (commercially available as Nextel 650) and significant progress in the development of a YAG/alumina fiber. Porous composite development focused on the vacuum winding process used to produce hot gas filters and infrared burner components.

  1. Mechanical properties of carbon fiber composites for environmental applications

    SciTech Connect

    Andrews, R.; Grulke, E.

    1996-10-01

    Activated carbon fiber composites show great promise as fixed-bed catalytic reactors for use in environmental applications such as flue gas clean-up and ground water decontamination. A novel manufacturing process produces low density composites from chopped carbon fibers and binders. These composites have high permeability, can be activated to have high surface area, and have many potential environmental applications. This paper reports the mechanical and flow properties of these low density composites. Three point flexural strength tests were used to measure composite yield strength and flexural moduli. Composites containing over 10 pph binder had an adequate yield strength of about 200 psi at activations up to 40% weight loss. The composites were anisotropic, having along-fiber to cross-fiber yield strength ratios between 1.2 and 2.0. The friction factor for flow through the composites can be correlated using the fiber Reynolds number, and is affected by the composite bulk density.

  2. Fiber reinforced PMR polyimide composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.; Winters, W. E.

    1978-01-01

    Commercially obtained PMR-15 polyimide prepregs with S-glass and graphite fiber reinforcements were evaluated along with in-house prepared glass and graphite cloth PMR 2 materials. A novel autoclave approach was conceived and used to demonstrate that both the PMR systems respond to 1.4 MPa (200 psi) autoclave pressures to produce void free composites equivalent to die molded laminates. Isothermal gravimetric analysis and subsequent mechanical property tests indicated that the PMR 2 system was significantly superior in thermo-oxidative stability, and that S-glass reinforcements may contribute to the accelerated degradation of composites at 316 C (600 F) when compared to graphite fiber reinforced composites. Fully reversed bending fatigue experiments were conducted with a type of fixture unused for organic matrix composites. These studies indicated that the graphite fiber composites were clearly superior in fatigue resistance to the glass fiber reinforced material and that PMR matrix composite systems yield performance of the same order as composite materials employing other families of matrices.

  3. Fiber-matrix interfacial adhesion in natural fiber composites

    NASA Astrophysics Data System (ADS)

    Tran, L. Q. N.; Yuan, X. W.; Bhattacharyya, D.; Fuentes, C.; van Vuure, A. W.; Verpoest, I.

    2015-04-01

    The interface between natural fibers and thermoplastic matrices is studied, in which fiber-matrix wetting analysis and interfacial adhesion are investigated to obtain a systematic understanding of the interface. In wetting analysis, the surface energies of the fibers and the matrices are estimated using their contact angles in test liquids. Work of adhesion is calculated for each composite system. For the interface tests, transverse three point bending tests (3PBT) on unidirectional (UD) composites are performed to measure interfacial strength. X-ray photoelectron spectroscopy (XPS) characterization on the fibers is also carried out to obtain more information about the surface chemistry of the fibers. UD composites are examined to explore the correlation between the fiber-matrix interface and the final properties of the composites. The results suggest that the higher interfacial adhesion of the treated fiber composites compared to untreated fiber composites can be attributed to higher fiber-matrix physico-chemical interaction corresponding with the work of adhesion.

  4. Intercalated hybrid graphite fiber composite

    NASA Technical Reports Server (NTRS)

    Gaier, James R. (Inventor)

    1993-01-01

    The invention is directed to a highly conductive lightweight hybrid material and methods of producing the same. The hybrid composite is obtained by weaving strands of a high strength carbon or graphite fiber into a fabric-like structure, depositing a layer of carbon onto the structure, heat treating the structure to graphitize the carbon layer, and intercalating the graphitic carbon layer structure. A laminate composite material useful for protection against lightning strikes comprises at least one layer of the hybrid material over at least one layer of high strength carbon or graphite fibers. The composite material of the present invention is compatible with matrix compounds, has a coefficient of thermal expansion which is the same as underlying fiber layers, and is resistant to galvanic corrosion in addition to being highly conductive. These materials are useful in the aerospace industry, in particular as lightning strike protection for airplanes.

  5. ROLE OF FIBER MODIFICATION IN NATURAL FIBER COMPOSITE PROCESSING

    SciTech Connect

    Fifield, Leonard S.; Denslow, Kayte M.; Gutowska, Anna; Simmons, Kevin L.; Holbery, Jim

    2005-11-03

    The prediction and characterization of the adhesion between fiber, surface treatment, and polymer is critical to the success of large-scale natural fiber based polymer composites in automotive semi-structural application. The two primary factors limiting the use of natural fiber in polymer composites are fiber moisture uptake and fiber degradation during high-temperature processing. In this study, we have developed several fiber surface modification techniques and analyzed the fiber-polymer adhesion of modified fibers to more clearly understand the critical parameters controlling moisture uptake, swelling, and fiber degradation due to interfacial structure. We will present a overview of surface modification techniques we have applied to date for hemp fiber sources, and illustrate a path to characterize surface modification effects on natural fiber adhesion in thermoplastic composites.

  6. Activation and micropore structure determination of carbon-fiber composite molecular sieves. Topical report, 30 March 1994--14 April 1995

    SciTech Connect

    Jagtoyen, M.; Derbyshire, F.; Kimber, G.; Fei, You Qing

    1995-05-19

    Progress in developing novel, rigid, monolithic adsorbent carbon fiber composites is described. Carbon fiber composites are activated using steam or CO{sub 2}, in order to produce uniform activation through the material and to control the pore structure and adsorptive properties. There is an overall shrinkage during activation, which is directly correlated with burnoff; burnoff above 40% results in fracture. Burnoffs higher than 10% does not produce any benefit for separation of CH{sub 4}-CO{sub 2} mixtures. Five samples of CFCMS have been prepared for testing as molecular sieves; all have relatively narrow pore size distributions with average pore diameters around 6A.

  7. Effective Mechanical Properties of Fuzzy Fiber Composites

    DTIC Science & Technology

    2012-03-16

    fibers ’’. Numerical examples of compositesmade of epoxy resin, carbonfibers and carbon nanotubes are presented and the impact of the carbon nanotubes...been developed for carbon fibers [52,29,42,64,62], ceramic fibers [60,9] and glass fibers [2]. Modeling of composites containing CNTs has also...Herein we examine composites where carbon fibers , coated with radially aligned carbon nanotubes, are embedded in a matrix. These enhanced carbon fibers

  8. Carbon fiber content measurement in composite

    NASA Astrophysics Data System (ADS)

    Wang, Qiushi

    Carbon fiber reinforced polymers (CFRPs) have been widely used in various structural applications in industries such as aerospace and automotive because of their high specific stiffness and specific strength. Their mechanical properties are strongly influenced by the carbon fiber content in the composites. Measurement of the carbon fiber content in CFRPs is essential for product quality control and process optimization. In this work, a novel carbonization-in-nitrogen method (CIN) is developed to characterize the fiber content in carbon fiber reinforced thermoset and thermoplastic composites. In this method, a carbon fiber composite sample is carbonized in a nitrogen environment at elevated temperatures, alongside a neat resin sample. The carbon fibers are protected from oxidization while the resin (the neat resin and the resin matrix in the composite sample) is carbonized under the nitrogen environment. The residue of the carbonized neat resin sample is used to calibrate the resin carbonization rate and calculate the amount of the resin matrix in the composite sample. The new method has been validated on several thermoset and thermoplastic resin systems and found to yield an accurate measurement of fiber content in carbon fiber polymer composites. In order to further understand the thermal degradation behavior of the high temperature thermoplastic polymer during the carbonization process, the mechanism and the kinetic model of thermal degradation behavior of carbon fiber reinforced poly (phenylene sulfide) (CPPS) are studied using thermogravimetry analysis (TGA). The CPPS is subjected to TGA in an air and nitrogen atmosphere at heating rates from 5 to 40°C min--1. The TGA curves obtained in air are different from those in nitrogen. This demonstrates that weight loss occurs in a single stage in nitrogen but in two stages in air. To elucidate this difference, thermal decomposition kinetics is analyzed by applying the Kissinger, Flynn-Wall-Ozawa, Coat-Redfern and

  9. Cylindrical Piezoelectric Fiber Composite Actuators

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    The use of piezoelectric devices has become widespread since Pierre and Jacques Curie discovered the piezoelectric effect in 1880. Examples of current applications of piezoelectric devices include ultrasonic transducers, micro-positioning devices, buzzers, strain sensors, and clocks. The invention of such lightweight, relatively inexpensive piezoceramic-fiber-composite actuators as macro fiber composite (MFC) actuators has made it possible to obtain strains and displacements greater than those that could be generated by prior actuators based on monolithic piezoceramic sheet materials. MFC actuators are flat, flexible actuators designed for bonding to structures to apply or detect strains. Bonding multiple layers of MFC actuators together could increase force capability, but not strain or displacement capability. Cylindrical piezoelectric fiber composite (CPFC) actuators have been invented as alternatives to MFC actuators for applications in which greater forces and/or strains or displacements may be required. In essence, a CPFC actuator is an MFC or other piezoceramic fiber composite actuator fabricated in a cylindrical instead of its conventional flat shape. Cylindrical is used here in the general sense, encompassing shapes that can have circular, elliptical, rectangular or other cross-sectional shapes in the planes perpendicular to their longitudinal axes.

  10. Macro-Fiber Composite Based Transduction

    DTIC Science & Technology

    2016-03-01

    Canada); Julliere, B. Source: Smart Materials and Structures, v 16, n 6, p 2315-2322, December 1,2007 Active Shape control - [0/903]T composite...August 1, 2014 Control of a space rigidizable inflatable boom using macro-fiber composite actuators Tarazaga, Pablo A. (Center for Intelligent Material ...Structural Dynamics and Controls Lab., Pennsylvania State University, 157E Hammond Building , University Park, PA 16802, United States); Wang, K.W

  11. Radiation Curing of Natural Fiber Composite

    NASA Astrophysics Data System (ADS)

    Liu, Xueyuan

    This research is a study of the process and feasibility of applying UV to cure natural and recycled fiber composites. The influence of HEMA on the water absorption and mechanical properties of the composites also investigated. Results show that UV curing is feasible in the manufacture of natural and recycle fiber composites. HEMA significantly improved the water resistance of the composite. HEMA-treated natural and recycled fiber composites have better bending strength after water impregnation, than non-treated composites.

  12. Resin/graphite fiber composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.; Jones, R. J.; Vaughan, R. W.

    1972-01-01

    High temperature resin matrices suitable for use in advanced graphite fiber composites for jet engine applications were evaluated. A series of planned, sequential screening experiments with resin systems in composite form were performed to reduce the number of candidates to a single A-type polyimide resin that repetitively produced void-free, high strength and modulus composites acceptable for use in the 550 F range for 1000 hours. An optimized processing procedure was established for this system. Extensive mechanical property studies characterized this single system, at room temperature, 500 F, 550 F and 600 F, for various exposure times.

  13. Pipeline Structural Health Monitoring Using Macro-fiber Composite Active Sensors

    SciTech Connect

    Thien, Andrew B.

    2006-01-10

    The United States economy is heavily dependent upon a vast network of pipeline systems to transport and distribute the nation's energy resources. As this network of pipelines continues to age, monitoring and maintaining its structural integrity remains essential to the nation's energy interests. Numerous pipeline accidents over the past several years have resulted in hundreds of fatalities and billions of dollars in property damages. These accidents show that the current monitoring methods are not sufficient and leave a considerable margin for improvement. To avoid such catastrophes, more thorough methods are needed. As a solution, the research of this thesis proposes a structural health monitoring (SHM) system for pipeline networks. By implementing a SHM system with pipelines, their structural integrity can be continuously monitored, reducing the overall risks and costs associated with current methods. The proposed SHM system relies upon the deployment of macro-fiber composite (MFC) patches for the sensor array. Because MFC patches are flexible and resilient, they can be permanently mounted to the curved surface of a pipeline's main body. From this location, the MFC patches are used to monitor the structural integrity of the entire pipeline. Two damage detection techniques, guided wave and impedance methods, were implemented as part of the proposed SHM system. However, both techniques utilize the same MFC patches. This dual use of the MFC patches enables the proposed SHM system to require only a single sensor array. The presented Lamb wave methods demonstrated the ability to correctly identify and locate the presence of damage in the main body of the pipeline system, including simulated cracks and actual corrosion damage. The presented impedance methods demonstrated the ability to correctly identify and locate the presence of damage in the flanged joints of the pipeline system, including the loosening of bolts on the flanges. In addition to damage to the actual

  14. Fiber reinforced composite resin systems.

    PubMed

    Giordano, R

    2000-01-01

    The Targis/Vectris and Sculpture/FibreKor systems were devised to create a translucent maximally reinforced resin framework for fabrication of crowns, bridges, inlays, and onlays. These materials are esthetic, have translucency similar to castable glass-ceramics such as OPC and Empress, and have fits that are reported to be acceptable in clinical and laboratory trials. These restorations rely on proper bonding to the remaining tooth structure; therefore, careful attention to detail must be paid to this part of the procedure. Cementation procedures should involve silane treatment of the cleaned abraded internal restoration surface, application of bonding agent to the restoration as well as the etched/primed tooth, and finally use of a composite resin. Each manufacturer has a recommended system which has been tested for success with its resin system. These fiber reinforced resins are somewhat different than classical composites, so not all cementation systems will necessarily work with them. Polishing of the restoration can be accomplished using diamond or alumina impregnated rubber wheels followed by diamond paste. The glass fibers can pose a health risk. They are small enough to be inhaled and deposited in the lungs, resulting in a silicosis-type problem. Therefore, if fibers are exposed and ground on, it is extremely important to wear a mask. Also, the fibers can be a skin irritant, so gloves also should be worn. If the fibers become exposed intraorally, they can cause gingival inflammation and may attract plaque. The fibers should be covered with additional composite resin. If this cannot be accomplished, the restoration should be replaced. The bulk of these restorations are formed using a particulate filled resin, similar in structure to conventional composite resins. Therefore, concerns as to wear resistance, color stability, excessive expansion/contraction, and sensitivity remain until these materials are proven in long-term clinical trials. They do hold the

  15. Mechanical properties of carbon fiber composites for environmental applications

    SciTech Connect

    Andrews, R.; Grulke, E.; Kimber, G.

    1996-12-31

    Activated carbon fiber composites show great promise as fixed-bed catalytic reactors for use in environmental applications such as flue gas clean-up and ground water decontamination. A novel manufacturing process produces low density composites from chopped carbon fibers and binders. These composites have high permeability, can be activated to have high surface area, and have many potential environmental applications. This paper reports the mechanical and flow properties of these low density composites. Three point flexural strength tests were used to measure composite yield strength and flexural moduli. Composites containing over 10 pph binder had an adequate yield strength of about 200 psi at activations up to 40% weight loss. The composites were anisotropic, having along-fiber to cross-fiber yield strength ratios between 1.2 and 2.0. The pressure drop of air through the composites correlated with the gas velocity, and showed a dependence on sample density.

  16. Optimal Topology and Experimental Evaluation of Piezoelectric Materials for Actively Shunted General Electric Polymer Matrix Fiber Composite Blades

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.; Duffy, Kirsten; Kauffman, Jeffrey L.; Kray, Nicholas

    2012-01-01

    NASA Glenn Research Center, in collaboration with GE Aviation, has begun the development of a smart adaptive structure system with piezoelectric (PE) transducers to improve composite fan blade damping at resonances. Traditional resonant damping approaches may not be realistic for rotating frame applications such as engine blades. The limited space in which the blades reside in the engine makes it impossible to accommodate the circuit size required to implement passive resonant damping. Thus, a novel digital shunt scheme has been developed to replace the conventional electric passive shunt circuits. The digital shunt dissipates strain energy through the load resistor on a power amplifier. General Electric (GE) designed and fabricated a variety of polymer matrix fiber composite (PMFC) test specimens. Investigating the optimal topology of PE sensors and actuators for each test specimen has revealed the best PE transducer location for each target mode. Also a variety of flexible patches, which can conform to the blade surface, have been tested to identify the best performing PE patch. The active damping control achieved significant performance at target modes. This work has been highlighted by successful spin testing up to 5000 rpm of subscale GEnx composite blades in Glenn s Dynamic Spin Rig.

  17. Optimal topology and experimental evaluation of PE materials for actively shunted GE polymer matrix fiber composite blades

    NASA Astrophysics Data System (ADS)

    Choi, Benjamin B.; Duffy, Kirsten; Kauffman, Jeffrey L.; Kray, Nicholas

    2012-04-01

    NASA Glenn Research Center (GRC), in collaboration with GE Aviation, has begun the development of a smart adaptive structure system with piezoelectric transducers to improve composite fan blade damping at resonances. Traditional resonant damping approaches may not be realistic for rotating frame applications such as engine blades. The limited space in which the blades reside in the engine makes it impossible to accommodate the circuit size required to implement passive resonant damping. Thus, we have developed a novel digital shunt scheme to replace the conventional electric passive shunt circuits. The digital shunt dissipates strain energy through the load capacitor on a power amplifier. GE designed and fabricated a variety of polymer matrix fiber composite (PMFC) test specimens. We investigated the optimal topology of PE sensors and actuators for each test specimen to discover the best PE transducer location for each target mode. Also a variety of flexible patches, which can conform to the blade surface, have been tested to identify the best performing piezoelectric patch. The active damping control achieved significant performance at target modes. This work has been highlighted by successful spin testing up to 5,000 rpm of subscale GEnx composite blades in GRC's Dynamic Spin Rig.

  18. Resin/graphite fiber composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.

    1974-01-01

    Techniques were developed that provided thermo-oxidatively stable A-type polyimide/graphite fiber composites using the approach of in situ polymerization of monomeric reactants directly on reinforcing fibers, rather than employing separately prepared prepolymer varnish. This was accomplished by simply mixing methylene dianiline and two ester-acids and applying this solution to the fibers for subsequent molding. Five different formulated molecular weight resins were examined, and an optimized die molding procedure established for the 1500 formulated molecular weight system. Extensive ultrasonic inspection of composites was successfully utilized as a technique for monitoring laminate quality. Composite mechanical property studies were conducted with this polyimide resin at room temperature and after various time exposures in a thermo-oxidative environment at 561 K (550 F), 589 K (600 F) and 617 K (650 F). It was determined that such composites have a long term life in the temperature range of 561 K to 589 K. The final phase involved the fabrication and evaluation of a series of demonstration airfoil specimens.

  19. Multi-Fiber Composites

    NASA Technical Reports Server (NTRS)

    Novak, R. C.

    1976-01-01

    Resin matrix composites having improved resistance to foreign object damage in gas turbine engine fan blade applications were developed. Materials evaluated include epoxy matrix graphite/glass and boron/glass hybrids, thermoplastic matrix boron/glass hybrids, and superhybrids consisting of graphite/epoxy, boron/aluminum, and titanium alloy sheets. Static, pendulum impact, and ballistic impact test results are reported for all materials. Superhybrid blade like specimens are shown to be capable of withstanding relatively severe ballistic impacts from gelatin spheres without fracture. The effects of ply configuration and projectile angle of incidence on impact behavior are described. Predictions of surface strains during ballistic impact are presented and shown to be in reasonable agreement with experimental measurements.

  20. Measurement of fiber orientation in short-fiber composites

    SciTech Connect

    Gonzalez, L.M.; Cumbrera, F.L.; Sanchez-Bajo, F.; Pajares, A. . Dept. de Fisica)

    1994-03-01

    The degree of fiber orientation in short-fiber composites plays an important role in determining many properties of these materials. In order to predict the toughening of a composite by using fiber reinforcements, the authors must consider the orientation of fibers as described probabilistically by the distribution function f([psi]), where [psi] is the angle which each fiber makes with the normal to the crack face. Here, a method for the characterization of the fiber orientation is built up in successive steps. In a first step the measurements of a planar array of fibers is afforded by extracting the important statistical information contained in a calculated Fraunhofer diffraction pattern of the fiber distribution. Subsequently, a method is proposed allowing us to derive the relevant f([psi]) distribution from the two-dimensional characterization of two orthogonal plane sections of the composite.

  1. Robust, Brillouin Active Embedded Fiber-Is-The-Sensor System in Smart Composite Structures

    NASA Technical Reports Server (NTRS)

    Yu, Chung

    1996-01-01

    Extensive review of our proposed sensing scheme, based mainly on the forward Guided Acoustic Wave Brillouin Scattering (GAWBS) with backward stimulated Brillouin scattering (sBs) as an auxiliary scheme for system fault tolerance has been completed during this project period. This preliminary study is conducted for a number of reasons. The most significant reasons lie in the essential capability of the system to measure temperature and pressure. These two measurands have been proposed to be sensed by sBs in our proposal. Temperature and pressure/strain are important measurands in structural monitoring, so that the effectiveness of sensing by sBs needs to be further examined. It has been pointed out initially that sBs shift will be dependent on temperature and pressure/strain simultaneously. The shift versus temperature or strain is linear. Now, the question is how can these two measurands be separated when sBs is used to sense an environment, in which both temperature and strain are changing simultaneously. Typical sBs shift plotted versus strain and varying temperature is shown in Fig. 1. As is clear, a fiber initially stressed will relax with rising temperature. This is verified by a displacement to the right with rising temperature of the sBs shift vs strain curves in the figure. A way to circumvent this ambiguity is by employing two fibers, one pre-stressed and the other is a free fiber. The latter will measure temperature and subtracting data in the latter fiber from those of the former will give us net strain readings. This is a laborious approach, since it involves the use of two identical fibers, and this is hard to accomplish, especially when many sensors are needed. Additional multiplexing of the data stream for data subtraction becomes a necessity.

  2. Machining fiber-reinforced composites

    NASA Astrophysics Data System (ADS)

    Komanduri, Ranga

    1993-04-01

    Compared to high tool wear and high costs of tooling of fiber-reinforced composites (FRCs), noncontact material-removal processes offer attractive alternative. Noncontact machining methods can also minimize dust, noise, and extensive plastic deformation and consequent heat generation associated with conventional machining of FRCs, espacially those with an epoxy matrix. The paper describes the principles involved in and the details of machining of FRCs by laser machining, water jet-cutting and abrasive water jet-cutting, and electrical discharge machining of composites, as well as the limitations of each method.

  3. Active constrained layer damping of geometrically nonlinear vibrations of functionally graded plates using piezoelectric fiber-reinforced composites

    NASA Astrophysics Data System (ADS)

    Panda, Satyajit; Ray, M. C.

    2008-04-01

    In this paper, a geometrically nonlinear dynamic analysis has been presented for functionally graded (FG) plates integrated with a patch of active constrained layer damping (ACLD) treatment and subjected to a temperature field. The constraining layer of the ACLD treatment is considered to be made of the piezoelectric fiber-reinforced composite (PFRC) material. The temperature field is assumed to be spatially uniform over the substrate plate surfaces and varied through the thickness of the host FG plates. The temperature-dependent material properties of the FG substrate plates are assumed to be graded in the thickness direction of the plates according to a power-law distribution while the Poisson's ratio is assumed to be a constant over the domain of the plate. The constrained viscoelastic layer of the ACLD treatment is modeled using the Golla-Hughes-McTavish (GHM) method. Based on the first-order shear deformation theory, a three-dimensional finite element model has been developed to model the open-loop and closed-loop nonlinear dynamics of the overall FG substrate plates under the thermal environment. The analysis suggests the potential use of the ACLD treatment with its constraining layer made of the PFRC material for active control of geometrically nonlinear vibrations of FG plates in the absence or the presence of the temperature gradient across the thickness of the plates. It is found that the ACLD treatment is more effective in controlling the geometrically nonlinear vibrations of FG plates than in controlling their linear vibrations. The analysis also reveals that the ACLD patch is more effective for controlling the nonlinear vibrations of FG plates when it is attached to the softest surface of the FG plates than when it is bonded to the stiffest surface of the plates. The effect of piezoelectric fiber orientation in the active constraining PFRC layer on the damping characteristics of the overall FG plates is also discussed.

  4. Fiber composite materials technology development

    SciTech Connect

    Chiao, T.T.

    1980-10-23

    The FY1980 technical accomplishments from the Lawrence Livermore National laboratory (LLNL) for the Fiber Composite Materials Technology Development Task fo the MEST project are summarized. The task is divided into three areas: Engineering data base for flywheel design (Washington University will report this part separately), new materials evaluation, and time-dependent behavior of Kevlar composite strands. An epoxy matrix was formulated which can be used in composites for 120/sup 0/C service with good processing and mechanical properties. Preliminary results on the time-dependent properties of the Kevlar 49/epoxy strands indicate: Fatigue loading, as compared to sustained loading, drastically reduces the lifetime of a Kevlar composie; the more the number of on-off load cycles, the less the lifetime; and dynamic fatigue of the Kevlar composite can not be predicted by current damage theories such as Miner's Rule.

  5. Microstructural characterization of fiber-reinforced composites

    SciTech Connect

    Summerscales, J.

    1998-12-31

    In the past 50 years, great progress has been made in developing artificial fiber-reinforced composite materials, generally using filaments with microscopic diameters. An array of reinforcement forms can be used in commercial applications--with the microstructure being a critical factor in realizing the required properties in a material. This book comprehensively examines the application of advanced microstructural characterization techniques to fiber-reinforced composites. Its contents include: (1) flexible textile composite microstructure; (2) 3-D confocal microscopy of glass fiber-reinforced composites; (3) geometric modeling of yarn and fiber assemblies; (4) characterization of yarn shape in woven fabric composites; (5) quantitative microstructural analysis for continuous fiber composites; (6) electron microscopy of polymer composites; (7) micromechanics of reinforcement using laser raman spectroscopy; and (8) acoustic microscopy of ceramic fiber composites.

  6. Dimensionally Stable Graphite-Fiber/Glass Composites

    NASA Technical Reports Server (NTRS)

    Harris, Robert; Bergen, George J.; Studer, Philip A.

    1992-01-01

    Method of making composites of glass matrices reinforced by graphite fibers provides for control of proportions, orientations, and distributions of fibers in matrices and for fused bonds between fibers and matrices. Enables fabrication of composites of high specific strength and dimensional stability. Method particularly suitable for making low-thermal-expansion platforms for optical instruments.

  7. Resin/graphite fiber composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.

    1974-01-01

    Processing techniques were developed for the fabrication of both polyphenylquinoxaline and polyimide composites by the in situ polymerization of monomeric reactants directly on the graphite reinforcing fibers, rather than using previously prepared prepolymer varnishes. Void-free polyphenylquinoxaline composites were fabricated and evaluated for room and elevated flexure and shear properties. The technology of the polyimide system was advanced to the point where the material is ready for commercial exploitation. A reproducible processing cycle free of operator judgment factors was developed for fabrication of void-free composites exhibiting excellent mechanical properties and a long time isothermal life in the range of 288 C to 316 C. The effects of monomer reactant stoichiometry and process modification on resin flow were investigated. Demonstration of the utility and quality of this polyimide system was provided through the successful fabrication and evaluation of four complex high tip speed fan blades.

  8. Performance of brazed graphite, carbon-fiber composite, and TZM materials for actively cooled structures; Qualification tests

    SciTech Connect

    Smid, I. ); Croessmann, C.D.; Watson, R.D. ); Linke, J. ); Cardella, A.; Bolt, H,. ); Reheis, N.; Kny, E. )

    1991-07-01

    The divertor of a near-term fusion device has to withstand high heat fluxes, heat shocks, and erosion caused by the plasma. Furthermore, it has to be maintainable through remote techniques. Above all, a good heat removal capability across the interface (low-Z armor/heat sink) plus overall integrity after many operational cycles are needed. To meet all these requirements, an active metal brazing technique is applied to bond graphite and carbon-fiber composite materials to a heat sink consisting of a Mo-41Re coolant tube through a TZM body. Plain brazed graphite and TZM tiles are tested for their fusion-relevant properties. The interfaces appear undamaged after thermal cycling when the melting point of the braze joint is not exceeded and when the graphite armor is {gt}4 mm thick. High heat flux tests are performed on three actively cooled divertor targets. The braze joints show no sign of failure after exposure to thermal loads {approximately}25% higher than the design value surface heat flux of 10 MW/m{sup 2}.

  9. FIBER-REINFORCED METALLIC COMPOSITE MATERIALS.

    DTIC Science & Technology

    COMPOSITE MATERIALS), (*FIBER METALLURGY, TITANIUM ALLOYS , NICKEL ALLOYS , REINFORCING MATERIALS, TUNGSTEN, WIRE, MOLYBDENUM ALLOYS , COBALT ALLOYS , CHROMIUM ALLOYS , ALUMINUM ALLOYS , MECHANICAL PROPERTIES, POWDER METALLURGY.

  10. Carbon fiber reinforced thermoplastic composites for future automotive applications

    NASA Astrophysics Data System (ADS)

    Friedrich, K.

    2016-05-01

    After a brief introduction to polymer composite properties and markets, the state of the art activities in the field of manufacturing of advanced composites for automotive applications are elucidated. These include (a) long fiber reinforced thermoplastics (LFT) for secondary automotive components, and (b) continuous carbon fiber reinforced thermosetting composites for car body applications. It is followed by future possibilities of carbon fiber reinforced thermoplastic composites for e.g. (i) crash elements, (ii) racing car seats, and (iii) production and recycling of automotive fenders.

  11. Carbon-fiber composite molecular sieves for gas separation

    SciTech Connect

    Jagtoyen, M.; Derbyshire, F.

    1996-08-01

    This report describes continuing work on the activation and characterization of formed carbon fiber composites. The composites are produced at the Oak Ridge National Laboratory (ORNL) and activated at the Center for Applied Energy Research (CAER) using steam, CO{sub 2}, or O{sub 2} at different conditions of temperature and time, and with different furnace configurations. The general aims of the project are to produce uniformly activated samples with controlled pore structures for specialist applications such as gas separation and water treatment. In previous work the authors reported that composites produced from isotropic pitch fibers weighing up to 25g can be uniformly activated through the appropriate choice of reaction conditions and furnace configurations. They have now succeeded in uniformly activating composites of dimensions up to 12 x 7 x 6 cm, or up to about 166 gram - a scale-up factor of about six. Part of the work has involved the installation of a new furnace that can accommodate larger composites. Efforts were made to achieve uniform activation in both steam and CO{sub 2}. The authors have also succeeded in producing materials with very uniform and narrow pore size distributions by using a novel method involving low temperature oxygen chemisorption in combination with heat treatment in N{sub 2} at high temperatures. Work has also started on the activation of PAN based carbon fibers and fiber composites with the aim of producing composites with wide pore structures for use as catalyst supports. So far activation of the PAN fiber composites supplied by ORNL has been difficult which is attributed to the low reactivity of the PAN fibers. As a result, studies are now being made of the activation of the PAN fibers to investigate the optimum carbonization and activation conditions for PAN based fibers.

  12. [Classification and the composition of food fibers].

    PubMed

    Bezhanidze, I Z; Alasaniia, N Sh; Kontselidze, L A; Kharazi, N A; Bezhanidze, N V

    2009-06-01

    Fiber promotes the contractions that keep food moving through the intestine. Also, high-fiber foods expand the inside walls of the colon and eases the passage of waste. The food and fiber research was conducted. In the article, the classification and the composition of food fibers are presented. Multifunctional properties of food fiber in the process of digestion are discussed. The physiological value of food fibers for the human organism is stressed. Diets high in fiber during the entire life are recommended. If a person can't consume enough fiber in diet alone, certain stool softening and bulking agents are recommended. They can be very useful in preventing and treating digestive tract disorders. The analysis of high fiber food sources and world production and consumption of food fiber is also presented.

  13. Carbon-fiber composite molecular sieves for gas separation

    SciTech Connect

    Jagtoyen, M.; Derbyshire, F.; Kimber, G.; Fei, Y.Q.

    1995-08-01

    The progress of research in the development of novel, rigid, monolithic adsorbent carbon fiber composites is described. Carbon fiber composites are produced at ORNL and activated at the CAER using steam or CO{sub 2} under different conditions, with the aims of producing a uniform degree of activation through the material, and of closely controlling pore structure and adsorptive properties The principal focus of the work to date has been to produce materials with narrow porosity for use in gas separations.

  14. The optimal fiber volume fraction and fiber-matrix property compatibility in fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Pan, Ning

    1992-01-01

    Although the question of minimum or critical fiber volume fraction beyond which a composite can then be strengthened due to addition of fibers has been dealt with by several investigators for both continuous and short fiber composites, a study of maximum or optimal fiber volume fraction at which the composite reaches its highest strength has not been reported yet. The present analysis has investigated this issue for short fiber case based on the well-known shear lag (the elastic stress transfer) theory as the first step. Using the relationships obtained, the minimum spacing between fibers is determined upon which the maximum fiber volume fraction can be calculated, depending on the fiber packing forms within the composites. The effects on the value of this maximum fiber volume fraction due to such factors as fiber and matrix properties, fiber aspect ratio and fiber packing forms are discussed. Furthermore, combined with the previous analysis on the minimum fiber volume fraction, this maximum fiber volume fraction can be used to examine the property compatibility of fiber and matrix in forming a composite. This is deemed to be useful for composite design. Finally some examples are provided to illustrate the results.

  15. High-Performance Synthetic Fibers for Composites

    DTIC Science & Technology

    1992-04-01

    required wastewater treatment . In short, this new process can easily produce the current standard high-quality precursor fiber, but it also has the...FMI Composites LTD); Formation of fibergLass\\preform for composite coupling shaft; Undulating ribbon structure of graphene layers for a PAN-based c...ongoing research and development in areas that are of general importance to fiber science and technology (surface properties and treatments , fiber-matrix

  16. FIBER ORIENTATION IN INJECTION MOLDED LONG CARBON FIBER THERMOPLASTIC COMPOSITES

    SciTech Connect

    Wang, Jin; Nguyen, Ba Nghiep; Mathur, Raj N.; Sharma, Bhisham; Sangid, Michael D.; Costa, Franco; Jin, Xiaoshi; Tucker III, Charles L.; Fifield, Leonard S.

    2015-03-23

    A set of edge-gated and center-gated plaques were injection molded with long carbon fiber-reinforced thermoplastic composites, and the fiber orientation was measured at different locations of the plaques. Autodesk Simulation Moldflow Insight (ASMI) software was used to simulate the injection molding of these plaques and to predict the fiber orientation, using the anisotropic rotary diffusion and the reduced strain closure models. The phenomenological parameters of the orientation models were carefully identified by fitting to the measured orientation data. The fiber orientation predictions show very good agreement with the experimental data.

  17. Synergetic effect between adsorption and photodegradation on nanostructured TiO2/activated carbon fiber felt porous composites for toluene removal.

    PubMed

    Li, Min; Lu, Bin; Ke, Qin-Fei; Guo, Ya-Jun; Guo, Ya-Ping

    2017-03-15

    The low quantum efficiency and limited adsorption efficiency of TiO2 makes it only fit for the removal of VOCs with low concentrations. Herein, we for the first time fabricated nanostructured TiO2/activated carbon fiber felt (TiO2/ACFF) porous composites by the in situ deposition of TiO2 microspheres on the carbon fibers in ACFF. Interestingly, the TiO2 microspheres exhibit hierarchical nanostructures constructed by nanocrystals as building blocks. The TiO2/ACFF porous composites possess excellent adsorption and photodegradation properties for toluene because of the synergetic effects between the nanostructured TiO2 and ACFF. The adsorption efficiencies of the TiO2/ACFF porous composites reach approximately 98% at the toluene concentration (<1150ppm) and approximately 77% even at the high concentration of 6900ppm. Moreover, the ACFF in the TiO2/ACFF porous composites significantly enhances photocatalytic property for toluene by hindering the recombination of electron-hole pairs, reducing the TiO2 band gap energy (Eg) to 2.95eV and accelerating toluene adsorption. At the toluene concentrations of 230ppm and 460ppm, the photocatalytic oxidation efficiency of toluene into CO2 arrives at 100% and 81.5%, respectively. Therefore, the TiO2/ACFF porous composites with synergetic adsorption and photocatalytic activities have great potentials for toluene removal.

  18. Nickel coated graphite fiber conductive composites

    SciTech Connect

    Evans, R.E.; Hall, D.E.; Luxon, B.A.

    1986-07-01

    Nickel coated graphite (NCG) fiber, consisting of a thin continuous plating of high purity nickel over an aerospace-grade graphite core, offers performance added features by combining the lightweight and high structural reinforcement of graphite fiber with the thermal and electrical conductivity of nickel. These NCG filaments, which are composite constructions in their own right, can be processed and impregnated with thermosetting or thermoplastic resins in the same manner that graphite fiber tows are processed and impregnated to produce roving, tape or fabric prepreg. Therefore, NCG fibers can be readily integrated into structural laminate assemblies using established composites-manufacturing practices.

  19. Carbon fiber composite molecular sieves

    SciTech Connect

    Burchell, T.D.; Rogers, M.R.

    1997-12-01

    Monolithic adsorbents based on isotropic pitch fibers have been developed jointly by ORNL and the University of Kentucky, Center for Applied Energy Research. The monoliths are attractive for gas separation and storage applications because of their unique combination of physical properties and microporous structure. Currently at ORNL the monoliths are produced in billets that are 10 cm in diameter and 25 cm in length. The monolithic adsorbent material is being considered for guard bed applications on a natural gas (NG) powered device. In order for the material to be successful in this application, one must attain a uniform activation to modest micropore volumes throughout the large monoliths currently being produced. Here the authors report the results of a study directed toward attaining uniform activation in these billets.

  20. Anisotropic fiber alignment in composite structures

    DOEpatents

    Graham, Alan L.; Mondy, Lisa A.; Guell, David C.

    1993-01-01

    High strength material composite structures are formed with oriented fibers to provide controlled anisotropic fibers. Fibers suspended in non-dilute concentrations (e.g., up to 20 volume percent for fibers having an aspect ratio of 20) in a selected medium are oriented by moving an axially spaced array of elements in the direction of desired fiber alignment. The array elements are generally perpendicular to the desired orientation. The suspension medium may also include sphere-like particles where the resulting material is a ceramic.

  1. NATURAL FIBER OR GLASS REINFORCED POLYPROPYLENE COMPOSITES?

    SciTech Connect

    Lorenzi, W.; Di Landro, L.; Casiraghi, A.; Pagano, M. R.

    2008-08-28

    Problems related to the recycle of conventional composite materials are becoming always more relevant for many industrial fields. Natural fiber composites (NFC) have recently gained much attention due to their low cost, environmental gains (eco-compatibility), easy disposal, reduction in volatile organic emissions, and their potential to compete with glass fiber composites (GFC). Interest in natural fibers is not only based over ecological aspects. NFC have good mechanical performances in relation to their low specific weight and low price. A characterization of mechanical properties, dynamic behavior, and moisture absorption is presented.

  2. Carbon fiber composite molecular sieves

    SciTech Connect

    Burchell, T.D.; Rogers, M.R.; Williams, A.M.

    1996-06-01

    The removal of CO{sub 2} is of significance in several energy applications. The combustion of fossil fuels, such as coal or natural gas, releases large volumes of CO{sub 2} to the environment. Several options exist to reduce CO{sub 2} emissions, including substitution of nuclear power for fossil fuels, increasing the efficiency of fossil plants and capturing the CO{sub 2} prior to emission to the environment. All of these techniques have the attractive feature of limiting the amount of CO{sub 2} emitted to the atmosphere, but each has economic, technical, or societal limitations. In the production of natural gas, the feed stream from the well frequently contains contaminants and diluents which must be removed before the gas can enter the pipeline distribution system. Notable amongst these diluent gasses is CO{sub 2}, which has no calorific value. Currently, the pipeline specification calls for <2 mol % CO{sub 2} in the gas. Gas separation is thus a relevant technology in the field of energy production. A novel separation system based on a parametric swing process has been developed that utilizes the unique combination of properties exhibited by our carbon fiber composite molecular sieve (CFCMS).

  3. Direct Piezoelectricity of Soft Composite Electrospun Fibers

    NASA Astrophysics Data System (ADS)

    Varga, Michael; Morvan, Jason; Diorio, Nick; Buyuktanir, Ebru; Harden, John; West, John; Jakli, Antal

    2013-03-01

    Recently soft fiber mats electrospun from solutions of Barium Titanate (BT) ferroelectric ceramics particles and poly lactic acid (PLA) were found to have large (d33 1nm/V) converse piezoelectric signals offering a myriad of applications ranging from active implants to smart textiles. Here we report direct piezoelectric measurements (electric signals due to mechanical stress) of the BT/PLA composite fiber mats at various BT concentrations. A testing apparatus was designed and constructed solely for these measurements involving AC stresses provided by a speaker in 10Hz-10kHz frequency range. The piezoelectric constant d33 ~1nC/N was found to be in agreement with the prior converse piezoelectric measurements. The largest signals were obtained with 6% BT/PLA composites, probably because the BT particles at higher concentrations could not be dispersed homogeneously. Importantly the direct piezoelectric signal is large enough to power a small LCD by simply pressing a 0.2mm thick 2 cm2 area mat by a finger. We expect to use these mats in active Braille cells and in liquid crystal writing tablets.

  4. Second generation PMR polyimide/fiber composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.

    1979-01-01

    A second generation polymerization monomeric reactants (PMR) polyimdes matrix system (PMR 2) was characterized in both neat resin and composite form with two different graphite fiber reinforcements. Three different formulated molecular weight levels of laboratory prepared PMR 2 were examined, in addition to a purchased experimental fully formulated PMR 2 precurser solution. Isothermal aging of graphite fibers, neat resin samples and composite specimens in air at 316 C were investigated. Humidity exposures at 65 C and 97 percent relative humidity were conducted for both neat resin and composites for eight day periods. Anaerobic char of neat resin and fire testing of composites were conducted with PMR 15, PMR 2, and an epoxy system. Composites were fire tested on a burner rig developed for this program. Results indicate that neat PMR 2 resins exhibit excellent isothermal resistance and that PMR 2 composite properties appear to be influenced by the thermo-oxidative stability of the reinforcing fiber.

  5. Fiber Reinforced Composites for Insulation and Structures

    NASA Technical Reports Server (NTRS)

    Broughton, Roy M., Jr.

    2005-01-01

    The work involves two areas: Composites, optimum fiber placement with initial construction of a pressure vessel, and the general subject of insulation, a continual concern in harsh thermal environments. Insulation

  6. Process for preparing composite articles from composite fiber blends

    NASA Technical Reports Server (NTRS)

    McMahon, Paul E. (Inventor); Chung, Tai-Shung (Inventor); Ying, Lincoln (Inventor)

    1989-01-01

    A composite article is prepared by forming a continuous tow of continuous carbon fibers, forming a continuous tow of thermoplastic polymer fibers, uniformly and continuously spreading the thermoplastic polymer fibers to a selected width, uniformly and continuously spreading the carbon fiber tow to a width that is essentially the same as the selected width for the thermoplastic polymer fiber tow, intermixing the tows intimately, uniformly and continuously, in a relatively tension-free state, continuously withdrawing the intermixed tow and applying the tow to a mold and heating the tow.

  7. Prestressed Carbon Fiber Composite Overwrapped Gun Tube

    DTIC Science & Technology

    2008-10-15

    DD-MM-YYYY) 15-10-2008 2. REPORT TYPE FINAL 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE PRESTRESSED CARBON FIBER COMPOSITE...mismatch between the steel substrate and the composite jacket causing a gap, and the lack of favorable prestress in the jacket. Dealing with these...eliminated, and a favorable prestress has been achieved. A 120mm barrel has been manufactured using this process with IM7 fibers in a PEEK matrix and

  8. Plastic matrix composites with continuous fiber reinforcement

    SciTech Connect

    1991-09-19

    Most plastic resins are not suitable for structural applications. Although many resins are extremely tough, most lack strength, stiffness, and deform under load with time. By mixing strong, stiff, fibrous materials into the plastic matrix, a variety of structural composite materials can be formed. The properties of these composites can be tailored by fiber selection, orientation, and other factors to suit specific applications. The advantages and disadvantages of fiberglass, carbon-graphite, aramid (Kevlar 49), and boron fibers are summarized.

  9. FIBER-TEX 1992: The Sixth Conference on Advanced Engineering Fibers and Textile Structures for Composites

    NASA Technical Reports Server (NTRS)

    Buckley, John D. (Editor)

    1993-01-01

    The FIBER-TEX 1992 proceedings contain the papers presented at the conference held on 27-29 Oct. 1992 at Drexel University. The conference was held to create a forum to encourage an interrelationship of the various disciplines involved in the fabrication of materials, the types of equipment, and the processes used in the production of advanced composite structures. Topics discussed were advanced engineering fibers, textile processes and structures, structural fabric production, mechanics and characteristics of woven composites, and the latest requirements for the use of textiles in the production of composite materials and structures as related to global activities focused on textile structural composites.

  10. Active PZT fibers: a commercial production process

    NASA Astrophysics Data System (ADS)

    Strock, Harold B.; Pascucci, Marina R.; Parish, Mark V.; Bent, Aaron A.; Shrout, Thomas R.

    1999-07-01

    Lead Zirconate Titanate (PZT) active fibers, from 80 to 250 micrometers in diameter, are produced for the AFOSR/DARPA funded Active Fiber Composites Consortium (AFCC) Program and commercial customers. CeraNova has developed a proprietary ceramics-based technology to produce PZT mono-filaments of the required purity, composition, straightness, and piezoelectric properties for use in active fiber composite structures. CeraNova's process begins with the extrusion of continuous lengths of mono-filament precursor fiber from a plasticized mix of PZT-5A powder. The care that must be taken to avoid mix contamination is described using illustrations form problems experiences with extruder wear and metallic contamination. Corrective actions are described and example microstructures are shown. The consequences of inadequate lead control are also shown. Sintered mono- filament mechanical strength and piezoelectric properties data approach bulk values but the validity of such a benchmark is questioned based on variable correlation with composite performance measures. Comb-like ceramic preform structures are shown that are being developed to minimize process and handling costs while maintaining the required mono-filament straightness necessary for composite fabrication. Lastly, actuation performance data are presented for composite structures fabricated and tested by Continuum Control Corporation. Free strain actuation in excess of 2000 microstrain are observed.

  11. Fiber composition of the human corpus callosum.

    PubMed

    Aboitiz, F; Scheibel, A B; Fisher, R S; Zaidel, E

    1992-12-11

    The densities of fibers of different sizes were calculated in ten regions of the corpus callosum of twenty human brains (ten females, ten males). Light microscopic examination revealed a consistent pattern of regional differentiation of fiber types in the corpus callosum. Thin fibers are most dense in the anterior corpus callosum (genu), and decrease in density posteriorly towards the posterior midbody, where they reach a minimum. Towards the posterior corpus callosum (splenium), the density of thin fibers increases again, but in the posterior pole of the callosum the density decreases locally. Large-diameter fibers show a pattern complementary to that of thin fibers, having a peak of density in the posterior midbody and a local increase of density in the posterior pole of the corpus callosum. Across subjects, the overall density of callosal fibers had no significant correlation with callosal area and an increased callosal area indicated an increased total number of fibers crossing through. Considering different fiber sizes, this was only true for small diameter fibers, whose large majority is believed to interconnect association cortex. No sex differences in fiber composition of the corpus callosum were found.

  12. Durability of pulp fiber-cement composites

    NASA Astrophysics Data System (ADS)

    Mohr, Benjamin J.

    Wood pulp fibers are a unique reinforcing material as they are non-hazardous, renewable, and readily available at relatively low cost compared to other commercially available fibers. Today, pulp fiber-cement composites can be found in products such as extruded non-pressure pipes and non-structural building materials, mainly thin-sheet products. Although natural fibers have been used historically to reinforce various building materials, little scientific effort has been devoted to the examination of natural fibers to reinforce engineering materials until recently. The need for this type of fundamental research has been emphasized by widespread awareness of moisture-related failures of some engineered materials; these failures have led to the filing of national- and state-level class action lawsuits against several manufacturers. Thus, if pulp fiber-cement composites are to be used for exterior structural applications, the effects of cyclical wet/dry (rain/heat) exposure on performance must be known. Pulp fiber-cement composites have been tested in flexure to examine the progression of strength and toughness degradation. Based on scanning electron microscopy (SEM), environmental scanning electron microscopy (ESEM), energy dispersive spectroscopy (EDS), a three-part model describing the mechanisms of progressive degradation has been proposed: (1) initial fiber-cement/fiber interlayer debonding, (2) reprecipitation of crystalline and amorphous ettringite within the void space at the former fiber-cement interface, and (3) fiber embrittlement due to reprecipitation of calcium hydroxide filling the spaces within the fiber cell wall structure. Finally, as a means to mitigate kraft pulp fiber-cement composite degradation, the effects of partial portland cement replacement with various supplementary cementitious materials (SCMs) has been investigated for their effect on mitigating kraft pulp fiber-cement composite mechanical property degradation (i.e., strength and toughness

  13. Effects of hydrogen peroxide pretreatment and heat activation of silane on the shear bond strength of fiber-reinforced composite posts to resin cement

    PubMed Central

    Shin, Tae-Bong; Lee, Joo-Hee; Ahn, Kang-Min; Kim, Tae-Hyung

    2016-01-01

    PURPOSE To evaluate the effects of hydrogen peroxide pretreatment and heat activation of silane on the shear bond strength of fiber-reinforced composite posts to resin cement. MATERIALS AND METHODS The specimens were prepared to evaluate the bond strength of epoxy resin-based fiber posts (D.T. Light-Post) to dual-curing resin cement (RelyX U200). The specimens were divided into four groups (n=18) according to different surface treatments: group 1, no treatment; group 2, silanization; group 3, silanization after hydrogen peroxide etching; group 4, silanization with warm drying at 80℃ after hydrogen peroxide etching. After storage of the specimens in distilled water at 37℃ for 24 hours, the shear bond strength (in MPa) between the fiber post and resin cement was measured using a universal testing machine. The fractured surface of the fiber post was examined using scanning electron microscopy. Data were analyzed using one-way ANOVA and post-hoc analysis with Tukey's HSD test (α=0.05). RESULTS Silanization of the fiber post (Group 2) significantly increased the bond strength in comparison with the non treated control (Group 1) (P<.05). Heat drying after silanization also significantly increased the bond strength (Group 3 and 4) (P<.05). However, no effect was determined for hydrogen peroxide etching before applying silane agent (Group 2 and 3) (P>.05). CONCLUSION Fiber post silanization and subsequent heat treatment (80℃) with warm air blower can be beneficial in clinical post cementation. However, hydrogen peroxide etching prior to silanization was not effective in this study. PMID:27141252

  14. Electrospun Fibers for Composites Applications

    DTIC Science & Technology

    2014-02-01

    from Applied Poleramic, Inc.) for dynamic mechanical analysis (DMA) experiments, and vacuum-assisted transfer molding ( VARTM ) was evaluated. The flow...of resin in the VARTM process led to localized disruption of the fiber mats (e.g., bunching of fibers), reducing the yield of the final part. The

  15. Fiber release characteristics of graphite hybrid composites

    NASA Technical Reports Server (NTRS)

    Henshaw, J.

    1980-01-01

    The paper considers different material concepts that can be fabricated of hybridized composites which demonstrate improved graphite fiber retention capability in a severe fire without significant reduction to the composite properties. More than 30 panels were fabricated for mechanical and fire tests, the details and results of which are presented. Methods of composite hybridization investigated included the addition of oxidation resistant fillers to the resin, mechanically interlocking the graphite fibers by the use of woven fabrics, and the addition of glass fibers and glass additives designed to melt and fuse the graphite fibers together. It is concluded that a woven fabric with a serving of glass around each graphite tow is by far the superior of those evaluated: not only is there a coalescing effect in each graphite layer, but there is also a definite adhesion of each layer to its neighbor.

  16. [Fiber-reinforced composite in fixed prosthodontics].

    PubMed

    Pilo, R; Abu Rass, Z; Shmidt, A

    2010-07-01

    Fiber reinforced composite (FRC) is composed of resin matrix and fibers filler. Common types of fibers: polyethylene, carbon and glass. Fibers can be continuous and aligned, discontinuous and aligned, discontinuous and randomly oriented. The architecture of the fibers is unidirectional, woven or braided. The two main types are: dry fibers or impregnated. Inclusion of fibers to resin composite increased its average flexural strength in 100-200 MPa. FRC can be utilized by the dentist in direct approach (splinting, temporary winged bridge) or indirect approach (laboratory made fixed partial denture). Laboratory fixed partial denture (FPD) is made from FRC substructure and Hybrid/Microfill particulate composite veneer. Main indications: interim temporary FPD or FPD in cases of questionable abutment teeth, in aesthetic cases where All Ceram FPD is not feasible. Retention is attained by adhesive cementation to minimally prepared teeth or to conventionally prepared teeth; other options are inlay-onlay bridges or hybrid bridges. Contraindications are: poor hygiene, inability to control humidity, parafunction habits, and more than two pontics. Survival rate of FRC FPD over 5 years is 75%, lower compared to porcelain fused to metal FPD which is 95%. Main reasons for failure are: fracture of framework and delamination of the veneer. Part of the failures is repairable.

  17. Simulations of carbon fiber composite delamination tests

    SciTech Connect

    Kay, G

    2007-10-25

    Simulations of mode I interlaminar fracture toughness tests of a carbon-reinforced composite material (BMS 8-212) were conducted with LSDYNA. The fracture toughness tests were performed by U.C. Berkeley. The simulations were performed to investigate the validity and practicality of employing decohesive elements to represent interlaminar bond failures that are prevalent in carbon-fiber composite structure penetration events. The simulations employed a decohesive element formulation that was verified on a simple two element model before being employed to perform the full model simulations. Care was required during the simulations to ensure that the explicit time integration of LSDYNA duplicate the near steady-state testing conditions. In general, this study validated the use of employing decohesive elements to represent the interlaminar bond failures seen in carbon-fiber composite structures, but the practicality of employing the elements to represent the bond failures seen in carbon-fiber composite structures during penetration events was not established.

  18. Composite-fiber hazards. Final report

    SciTech Connect

    Seibert, J.F.

    1990-12-01

    This report reviews potential health hazards from carbon/graphite and boron composite materials used in aircraft. Carbon and boron fibers are used as reinforcement in an epoxy matrix to form composite material aircraft parts. There is increasing concern over the potential health effects of these fibers released during sanding and grinding of composite parts in structural repair shops, and during clean up operations following aircraft accidents involving fire and/or breakage of composite parts. With the demise of the term 'CORKER,' hazards from carbon composite materials were deemphasized. However, the CORKER annotation only addressed the electrical shorting hazards from airborne fibers following a fire and did not examine in detail potential health effects. Maintenance workers fear that carbon fibers are carcinogens. A review of the current literature on carbon fiber indicates it is relatively inert. Industrial hygiene evaluations should include sampling for total dust and comparing the levels to the ACGIH TLV for nuisance dust. Occupational health efforts should focus on problems with contact dermatitis from the resins systems and toxic effects of resin hardeners.

  19. Stability of Glass Fiber-Plastic Composites

    DTIC Science & Technology

    1974-11-01

    differs between the two main sources ( Owens - Corning and Ferro Corporation) from which samples were obtained for this research program. However...according to published work by Humphrey (8) of Owens - Corning , the approximate composition of S-glass (994) is 65% S1Ü2, 25% A1203 and 10% MgO. From the...fibers. S-glass fibers furnished by both Owens - Corning and Ferro Cor- poration were utilized and the results analyzed using scanning electron 34

  20. 25 MHz ultrasonic transducers with lead-free piezoceramic, 1-3 PZT fiber-epoxy composite, and PVDF polymer active elements.

    PubMed

    Jadidian, Bahram; Hagh, Nader Marandian; Winder, Alan A; Safari, Ahmad

    2009-02-01

    This paper presents the fabrication and characterization of single-element ultrasonic transducers whose active elements are made of lead-free piezoceramic, 1-3 PZT/polymer composite and PVDF film. The lead free piezoelectric KNNLT- LS(K(0.44)Na(0.52)Li(0.04))(Nb(0.84)Ta(0.10)S(0.06)b)O(3) powders and ceramics were prepared under controlled humidity and oxygen flow rate during sintering. Due to its moderate longitudinal piezoelectric charge coefficient (175 pC/N) and k(t) of 0.50, the KNN-LT-LS composition may be a good candidate for high frequency transducer applications. PZT fibers with 25 microm diameter formed by the viscose suspension spinning process were incorporated into epoxy to fabricate 1-3 composites with the averaged k(t) = 0.64 and d(33) = 400 pC/N. Using KNN-LS-LT ceramic, 1-3 PZT fiber composite, and PVDF film, 3 different unfocused single element transducers with center frequencies of 25 MHz were fabricated. The acoustic characterization of the transducers demonstrated that wideband and low insertion loss could be obtained employing KNN-LS-LT ceramic. The -6 dB bandwidth and insertion loss were 70% and -21 dB, respectively. In comparison, the insertion loss of the ceramic transducer was much smaller than those made with 1-3 composite and PVDF film. This was attributed to closer electrical impedance match to 50 ohm and higher thickness coupling coefficient of the ceramic transducer.

  1. Nano polypeptide particles reinforced polymer composite fibers.

    PubMed

    Li, Jiashen; Li, Yi; Zhang, Jing; Li, Gang; Liu, Xuan; Li, Zhi; Liu, Xuqing; Han, Yanxia; Zhao, Zheng

    2015-02-25

    Because of the intensified competition of land resources for growing food and natural textile fibers, there is an urgent need to reuse and recycle the consumed/wasted natural fibers as regenerated green materials. Although polypeptide was extracted from wool by alkaline hydrolysis, the size of the polypeptide fragments could be reduced to nanoscale. The wool polypeptide particles were fragile and could be crushed down to nano size again and dispersed evenly among polymer matrix under melt extrusion condition. The nano polypeptide particles could reinforce antiultraviolet capability, moisture regain, and mechanical properties of the polymer-polypeptide composite fibers.

  2. Fiber Reinforced Composite Materials Used for Tankage

    NASA Technical Reports Server (NTRS)

    Cunningham, Christy

    2005-01-01

    The Nonmetallic Materials and Processes Group is presently working on several projects to optimize cost while providing effect materials for the space program. One factor that must be considered is that these materials must meet certain weight requirements. Composites contribute greatly to this effort. Through the use of composites the cost of launching payloads into orbit will be reduced to one-tenth of the current cost. This research project involved composites used for aluminum pressure vessels. These tanks are used to store cryogenic liquids during flight. The tanks need some type of reinforcement. Steel was considered, but added too much weight. As a result, fiber was chosen. Presently, only carbon fibers with epoxy resin are wrapped around the vessels as a primary source of reinforcement. Carbon fibers are lightweight, yet high strength. The carbon fibers are wet wound onto the pressure vessels. This was done using the ENTEC Filament Winding Machine. It was thought that an additional layer of fiber would aid in reinforcement as well as containment and impact reduction. Kevlar was selected because it is light weight, but five times stronger that steel. This is the same fiber that is used to make bullet-proof vests trampolines, and tennis rackets.

  3. Longitudinal decline of lower extremity muscle power in healthy and mobility-limited older adults: influence of muscle mass, strength, composition, neuromuscular activation and single fiber contractile properties

    PubMed Central

    Reid, Kieran F.; Pasha, Evan; Doros, Gheorghe; Clark, David J.; Patten, Carolynn; Phillips, Edward M.; Frontera, Walter R.; Fielding, Roger A.

    2013-01-01

    Purpose This longitudinal study examined the major physiological mechanisms that determine the age-related loss of lower extremity muscle power in two distinct groups of older humans. We hypothesized that after ~ 3 years of follow-up, mobility-limited older adults (mean age: 77.2 ± 4, n = 22, 12 females) would have significantly greater reductions in leg extensor muscle power compared to healthy older adults (74.1 ± 4, n = 26, 12 females). Methods Mid-thigh muscle size and composition were assessed using computed tomography. Neuromuscular activation was quantified using surface electromyography and vastus lateralis single muscle fibers were studied to evaluate intrinsic muscle contractile properties. Results At follow-up, the overall magnitude of muscle power loss was similar between groups: mobility-limited: −8.5% vs. healthy older: −8.8%, P > 0.8. Mobility-limited elders had significant reductions in muscle size (−3.8%, P< 0.01) and strength (−5.9%, P< 0.02), however, these parameters were preserved in healthy older (P ≥ 0.7). Neuromuscular activation declined significantly within healthy older but not in mobility-limited participants. Within both groups, the cross sectional areas of type I and type IIA muscle fibers were preserved while substantial increases in single fiber peak force ( > 30%), peak power (> 200%) and unloaded shortening velocity (>50%) were elicited at follow-up. Conclusion Different physiological mechanisms contribute to the loss of lower extremity muscle power in healthy older and mobility-limited older adults. Neuromuscular changes may be the critical early determinant of muscle power deficits with aging. In response to major whole muscle decrements, major compensatory mechanisms occur within the contractile properties of surviving single muscle fibers in an attempt to restore overall muscle power and function with advancing age. PMID:24122149

  4. Composite PLA scaffolds reinforced with PDO fibers for tissue engineering.

    PubMed

    Cont, Liana; Grant, David; Scotchford, Colin; Todea, Milica; Popa, Catalin

    2013-02-01

    Novel composite scaffolds were produced using long continuous bidirectional fibers embedded in an electrospun matrix, with the aim of using them in soft tissue engineering applications. The fibers are of polydioxanone and the matrix of polylactic acid. The novel manufacturing method consists of direct electrospinning performed on both sides of a collector that supports the already arranged fibers. The scaffolds were tested in vitro using 3T3 mouse fibroblasts as-obtained or functionalized with biotin or poly (dopamine). Functionalization did not significantly affect cells attachment, metabolic activity, or proliferation, but poly (dopamine) was proven to be effective in inducing hydrophilicity to the surface.

  5. Potential release of fibers from burning carbon composites. [aircraft fires

    NASA Technical Reports Server (NTRS)

    Bell, V. L.

    1980-01-01

    A comprehensive experimental carbon fiber source program was conducted to determine the potential for the release of conductive carbon fibers from burning composites. Laboratory testing determined the relative importance of several parameters influencing the amounts of single fibers released, while large-scale aviation jet fuel pool fires provided realistic confirmation of the laboratory data. The dimensions and size distributions of fire-released carbon fibers were determined, not only for those of concern in an electrical sense, but also for those of potential interest from a health and environmental standpoint. Fire plume and chemistry studies were performed with large pool fires to provide an experimental input into an analytical modelling of simulated aircraft crash fires. A study of a high voltage spark system resulted in a promising device for the detection, counting, and sizing of electrically conductive fibers, for both active and passive modes of operation.

  6. Thermoforming continuous fiber-reinforced thermoplastic composites

    SciTech Connect

    Wu, Xiang.

    1990-01-01

    In this research the forming process was first decomposed into basic deformation elements with simple geometries, and models were then developed for these elements. A series-parallel model was developed for predicting the upper and lower bounds of composite shear modulus at forming temperature based on the fiber content, fiber distribution, and matrix shear modulus. A shear-flexure model was proposed to describe the initial load-deflection behavior of thermoplastic composites in bending. A ply buckling model was developed which included the contributions from both a surface tension term and a ply buckling term.

  7. Effects of Fiber Coating Composition on Mechanical Behavior of Silicon Carbide Fiber-Reinforced Celsian Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Elderidge, Jeffrey I.

    1998-01-01

    Celsian matrix composites reinforced with Hi-Nicalon fibers, precoated with a dual layer of BN/SiC by chemical vapor deposition in two separate batches, were fabricated. Mechanical properties of the composites were measured in three-point flexure. Despite supposedly identical processing, the composite panels fabricated with fibers coated in two batches exhibited substantially different mechanical behavior. The first matrix cracking stresses (sigma(sub mc)) of the composites reinforced with fibers coated in batch 1 and batch 2 were 436 and 122 MPa, respectively. This large difference in sigma(sub mc) was attributed to differences in fiber sliding stresses(tau(sub friction)), 121.2+/-48.7 and 10.4+/-3.1 MPa, respectively, for the two composites as determined by the fiber push-in method. Such a large difference in values of tau(sub friction) for the two composites was found to be due to the difference in the compositions of the interface coatings. Scanning Auger microprobe analysis revealed the presence of carbon layers between the fiber and BN, and also between the BN and SiC coatings in the composite showing lower tau(sub friction). This resulted in lower sigma(sub mc) in agreement with the ACK theory. The ultimate strengths of the two composites, 904 and 759 MPa, depended mainly on the fiber volume fraction and were not significantly effected by tau(sub friction) values, as expected. The poor reproducibility of the fiber coating composition between the two batches was judged to be the primary source of the large differences in performance of the two composites.

  8. Vibration control of pre-twisted rotating composite thin-walled beams with piezoelectric fiber composites

    NASA Astrophysics Data System (ADS)

    Choi, Seung-Chan; Park, Jae-Sang; Kim, Ji-Hwan

    2007-02-01

    Rotating composite beam structures like blades are applied in many fields of aerospace and mechanical engineering. In this research, bending vibration control of the pre-twisted rotating composite thin-walled beam is studied. The formulation is based on single cell composite beam including a warping function, centrifugal force, Coriolis acceleration, pre-twist angle and piezoelectric effect. A negative velocity feedback control algorithm is applied to realize the adaptive capability of the beam. Using a finite-element method, numerical simulations show that macro-fiber composite (MFC) actuators which are piezoelectric fiber composites and PVDF sensors can generate active vibration control effect. Relations between active vibration control effect and design parameters of beams such as rotating speeds, pre-twist angles and fiber orientations in a host structure are investigated in detail. Besides, a case study conformed that the effective damping performance can be obtained by suitable arrangement and distribution of the sensor and actuator pairs.

  9. Multifunctional Carbon Nanotube Fiber Composites

    DTIC Science & Technology

    2007-11-02

    coagulant. The second process (patent pending) is novel in that it directly results polymer-free nanotube fibers without using a super acid spinning...chemical and electrochemical stability, hydrophobicity and viscosity . The generic structure, chemical name and abbreviations for the most common ions...modification procedure involved the electrochemical infiltration of small amounts of the polypyrrole/p-toluene sulphonate (PPy/PTS) conducting polymer

  10. A dispersion flattened tellurite composite holey fiber

    NASA Astrophysics Data System (ADS)

    Liao, Meisong; Duan, ZhongChao; Gao, Weiqing; Yan, Xin; Suzuki, Takenobu; Ohishi, Yasutake

    2012-02-01

    Highly nonlinear tellurite holey fiber can be transparent from visible to 5 μm. Its nonlinearity can be higher than highly nonlinear silica fiber by more than one order of magnitude. However, the dispersion of tellurite holey fiber is difficult to tailor because of the difficulties in fabrication. Tellurite glass shows a low viscosity at the fiber drawing temperature. Moreover the viscosity decreases sharply with increasing temperature. Tellurite holey fiber with a complex microstructure could be subject to heavy deformation during fabrication process. So far most tellurite highly nonlinear holey fibers just have a simple structure which results in an unflattened dispersion. It cancels the advantage of high nonlinearity greatly in practical applications. In this work we try to develop a dispersion flattened tellurite composite holey fiber (TCHF). The holey structure of the TCHF is composed of only one ring of holes, so the heavy deformation, which probably occurs for tellurite complex microstructured fiber during the fabrication process, can be avoided. Since the holey structure is simple, to improve the flexibility in tailoring dispersion, we use two kinds of tellurite glasses which have different refractive-indices to design and fabricate the TCHF. The holes are formed by two tellurite glasses. The fiber can be fabricated by a simple rod-in-tube method. By using this structure the dispersion is engineered to be the most flattened for the highly nonlinear soft glass fiber within 1.5-1.6 μm. More than one octave supercontinuum generation, mainly broadened by self phase modulation, is demonstrated by using the fabricated TCHF.

  11. Silkworm cocoons inspire models for random fiber and particulate composites

    SciTech Connect

    Chen Fujia; Porter, David; Vollrath, Fritz

    2010-10-15

    The bioengineering design principles evolved in silkworm cocoons make them ideal natural prototypes and models for structural composites. Cocoons depend for their stiffness and strength on the connectivity of bonding between their constituent materials of silk fibers and sericin binder. Strain-activated mechanisms for loss of bonding connectivity in cocoons can be translated directly into a surprisingly simple yet universal set of physically realistic as well as predictive quantitative structure-property relations for a wide range of technologically important fiber and particulate composite materials.

  12. Silkworm cocoons inspire models for random fiber and particulate composites

    NASA Astrophysics Data System (ADS)

    Chen, Fujia; Porter, David; Vollrath, Fritz

    2010-10-01

    The bioengineering design principles evolved in silkworm cocoons make them ideal natural prototypes and models for structural composites. Cocoons depend for their stiffness and strength on the connectivity of bonding between their constituent materials of silk fibers and sericin binder. Strain-activated mechanisms for loss of bonding connectivity in cocoons can be translated directly into a surprisingly simple yet universal set of physically realistic as well as predictive quantitative structure-property relations for a wide range of technologically important fiber and particulate composite materials.

  13. Durability of Cement Composites Reinforced with Sisal Fiber

    NASA Astrophysics Data System (ADS)

    Wei, Jianqiang

    understanding of degradation mechanisms, two approaches are proposed to mitigate the degradation of sisal fiber in the cement matrix. In order to relieve the aggressive environment of hydrated cement, cement substitution by a combination of metakaolin and nanoclay, and a combination of rice husk ash and limestone are studied. Both metakaolin and nanoclay significantly optimize the cement hydration, while the combination of these two supplementary cementitious materials validates their complementary and synergistic effect at different stages of aging. The presented approaches effectively reduce the calcium hydroxide content and the alkalinity of the pore solution, thereby mitigating the fiber degradation and improving both the initial mechanical properties and durability of the fiber-cement composites. The role of rice husk ash in cement modification is mainly as the active cementitious supplementary material. In order to improve the degradation resistance of sisal fiber itself, two novel, simple, and economical pretreatments of the fibers (thermal and sodium carbonate treatment) are investigated. Both thermal treatment and Na 2CO3 treatment effectively improve the durability of sisal fiber-reinforced concrete. The thermal treatment achieves improvement of cellulose's crystallization, which ensures the initial strength and improved durability of sisal fiber. A layer consisting of calcium carbonate sediments, which protects the internals of a fiber from the strong alkali pore solution, is formed and filled in pits and cavities on the Na2CO3 treated sisal fiber's surface.

  14. Dynamic mechanical analysis of fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Reed, K. E.

    1979-01-01

    Dynamic mechanical and thermal properties were determined for unidirectional epoxy/glass composites at various fiber orientation angles. Resonant frequency and relative logarithmic decrement were measured as functions of temperature. In low angle and longitudinal specimens a transition was observed above the resin glass transition temperature which was manifested mechanically as an additional damping peak and thermally as a change in the coefficient of thermal expansion. The new transition was attributed to a heterogeneous resin matrix induced by the fiber. The temperature span of the glass-rubber relaxation was found to broaden with decreasing orientation angle, reflecting the growth of fiber contribution and exhibiting behavior similar to that of Young's modulus. The change in resonant frequency through the glass transition was greatest for samples of intermediate fiber angle, demonstrating behavior similar to that of the longitudinal shear modulus.

  15. Tensile failure criteria for fiber composite materials

    NASA Technical Reports Server (NTRS)

    Rosen, B. W.; Zweben, C. H.

    1972-01-01

    The analysis provides insight into the failure mechanics of these materials and defines criteria which serve as tools for preliminary design material selection and for material reliability assessment. The model incorporates both dispersed and propagation type failures and includes the influence of material heterogeneity. The important effects of localized matrix damage and post-failure matrix shear stress transfer are included in the treatment. The model is used to evaluate the influence of key parameters on the failure of several commonly used fiber-matrix systems. Analyses of three possible failure modes were developed. These modes are the fiber break propagation mode, the cumulative group fracture mode, and the weakest link mode. Application of the new model to composite material systems has indicated several results which require attention in the development of reliable structural composites. Prominent among these are the size effect and the influence of fiber strength variability.

  16. Continuous fiber-reinforced titanium aluminide composites

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.; Brindley, P. K.; Froes, F. H.

    1991-01-01

    An account is given of the fabrication techniques, microstructural characteristics, and mechanical behavior of a lightweight, high service temperature SiC-reinforced alpha-2 Ti-14Al-21Nb intermetallic-matrix composite. Fabrication techniques under investigation to improve the low-temperature ductility and environmental resistance of this material system, while reducing manufacturing costs to competitive levels, encompass powder-cloth processing, foil-fiber-foil processing, and thermal-spray processing. Attention is given to composite microstructure problems associated with fiber distribution and fiber-matrix interfaces, as well as with mismatches of thermal-expansion coefficient; major improvements are noted to be required in tensile properties, thermal cycling effects, mechanical damage, creep, and environmental effects.

  17. Damping characteristics of damaged fiber composite components

    NASA Technical Reports Server (NTRS)

    Eberle, K.

    1986-01-01

    Defects in fiber composite components produce changes with respect to the vibrational characteristics of the material. These changes can be recognized in the form of a frequency shift or an alteration of the damping process. The present investigation is concerned with questions regarding the possibility of a utilization of the changes in suitable defect-detecting inspection procedures. A description is given of a method for measuring the damping characteristics of a specimen. This method provides a spectrum of the damping coefficients of the sample as a basis for a comprehensive evaluation of the damping behavior. The correlation between defects and change in the damping characteristics is demonstrated with the aid of results obtained in measurements involving specimens of carbon-fiber composites and a component consisting of glass-fiber-reinforced plastics.

  18. CARBON FIBER COMPOSITES IN HIGH VOLUME

    SciTech Connect

    Warren, Charles David; Das, Sujit; Jeon, Dr. Saeil

    2014-01-01

    Vehicle lightweighting represents one of several design approaches that automotive and heavy truck manufacturers are currently evaluating to improve fuel economy, lower emissions, and improve freight efficiency (tons-miles per gallon of fuel). With changes in fuel efficiency and environmental regulations in the area of transportation, the next decade will likely see considerable vehicle lightweighting throughout the ground transportation industry. Greater use of carbon fiber composites and light metals is a key component of that strategy. This paper examines the competition between candidate materials for lightweighting of heavy vehicles and passenger cars. A 53-component, 25 % mass reduction, body-in-white cost analysis is presented for each material class, highlighting the potential cost penalty for each kilogram of mass reduction and then comparing the various material options. Lastly, as the cost of carbon fiber is a major component of the elevated cost of carbon fiber composites, a brief look at the factors that influence that cost is presented.

  19. Fiber reinforced thermoplastic resin matrix composites

    NASA Technical Reports Server (NTRS)

    Jones, Robert J. (Inventor); Chang, Glenn E. C. (Inventor)

    1989-01-01

    Polyimide polymer composites having a combination of enhanced thermal and mechanical properties even when subjected to service temperatures as high as 700.degree. F. are described. They comprise (a) from 10 to 50 parts by weight of a thermoplastic polyimide resin prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane and (b) from 90 to 50 parts by weight of continuous reinforcing fibers, the total of (a) and (b) being 100 parts by weight. Composites based on polyimide resin formed from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane and pyromellitic dianhydride and continuous carbon fibers retained at least about 50% of their room temperature shear strength after exposure to 700.degree. F. for a period of 16 hours in flowing air. Preferably, the thermoplastic polyimide resin is formed in situ in the composite material by thermal imidization of a corresponding amide-acid polymer prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane. It is also preferred to initially size the continuous reinforcing fibers with up to about one percent by weight of an amide-acid polymer prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane. In this way imidization at a suitable elevated temperature results in the in-situ formation of a substantially homogeneous thermoplastic matrix of the polyimide resin tightly and intimately bonded to the continuous fibers. The resultant composites tend to have optimum thermo-mechanical properties.

  20. Method of forming composite fiber blends

    NASA Technical Reports Server (NTRS)

    McMahon, Paul E. (Inventor); Chung, Tai-Shung (Inventor); Ying, Lincoln (Inventor)

    1989-01-01

    The instant invention involves a process used in preparing fibrous tows which may be formed into polymeric plastic composites. The process involves the steps of (a) forming a tow of strong filamentary materials; (b) forming a thermoplastic polymeric fiber; (c) intermixing the two tows; and (d) withdrawing the intermixed tow for further use.

  1. Advanced fiber-composite hybrids--A new structural material

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Lark, R. F.; Sullivan, T. L.

    1974-01-01

    Introduction of metal foil as part of matrix and fiber composite, or ""sandwich'', improves strength and stiffness for multidirectional loading, improves resistance to cyclic loading, and improves impact and erosion resistance of resultant fiber-composite hybrid structure.

  2. Carbonized asphaltene-based carbon-carbon fiber composites

    DOEpatents

    Bohnert, George; Lula, James; Bowen, III, Daniel E.

    2016-12-27

    A method of making a carbon binder-reinforced carbon fiber composite is provided using carbonized asphaltenes as the carbon binder. Combinations of carbon fiber and asphaltenes are also provided, along with the resulting composites and articles of manufacture.

  3. Colored and functional silver nanoparticle-wool fiber composites.

    PubMed

    Kelly, Fern M; Johnston, James H

    2011-04-01

    Silver nanoparticles utilizing the surface plasmon resonance effect of silver have been used to color merino wool fibers as well as imparting antimicrobial and antistatic properties to them to produce a novel silver nanoparticle-wool composite material. This is accomplished by the reduction of silver ions in solution by trisodium citrate (TSC) in the presence of merino wool fibers or fabrics. The silver metal nanoparticles simultaneously bind to the amino acids of the keratin protein in the wool fibers using TSC as the linker. The colors of the resulting merino wool-silver nanoparticle composites range from yellow/brown to red/brown and then to brown/black, because of the surface plasmon resonance effect of silver, and are tuned by controlling the reduction of silver ions to silver nanoparticles to give the required particle size on the fiber surface. In addition to the surface plasmon resonance optical effects, the silver nanoparticle-wool composites exhibit effective antimicrobial activity, thus inhibiting the growth of microbes and also an increase in the electrical conductivity, imparting antistatic properties to the fibers. Therefore, silver nanoparticles function as a simultaneous colorant and antimicrobial and antistatic agent for wool. Chemical and physical characterizations of the silver nanoparticle-merino wool composite materials have been carried out using scanning electron microscopy, transmission electron microscopy, energy-dispersive spectroscopy, synchrotron radiation X-ray diffraction, atomic absorption spectroscopy, X-ray photoelectron spectroscopy, direct-current electrical conductivity measurements, wash-fast and rub-fast tests, and antimicrobial tests.

  4. Manufacturing of Nanocomposite Carbon Fibers and Composite Cylinders

    NASA Technical Reports Server (NTRS)

    Tan, Seng; Zhou, Jian-guo

    2013-01-01

    Pitch-based nanocomposite carbon fibers were prepared with various percentages of carbon nanofibers (CNFs), and the fibers were used for manufacturing composite structures. Experimental results show that these nanocomposite carbon fibers exhibit improved structural and electrical conductivity properties as compared to unreinforced carbon fibers. Composite panels fabricated from these nanocomposite carbon fibers and an epoxy system also show the same properties transformed from the fibers. Single-fiber testing per ASTM C1557 standard indicates that the nanocomposite carbon fiber has a tensile modulus of 110% higher, and a tensile strength 17.7% times higher, than the conventional carbon fiber manufactured from pitch. Also, the electrical resistance of the carbon fiber carbonized at 900 C was reduced from 4.8 to 2.2 ohm/cm. The manufacturing of the nanocomposite carbon fiber was based on an extrusion, non-solvent process. The precursor fibers were then carbonized and graphitized. The resultant fibers are continuous.

  5. Fiber networks amplify active stress

    PubMed Central

    Ronceray, Pierre; Broedersz, Chase P.

    2016-01-01

    Large-scale force generation is essential for biological functions such as cell motility, embryonic development, and muscle contraction. In these processes, forces generated at the molecular level by motor proteins are transmitted by disordered fiber networks, resulting in large-scale active stresses. Although these fiber networks are well characterized macroscopically, this stress generation by microscopic active units is not well understood. Here we theoretically study force transmission in these networks. We find that collective fiber buckling in the vicinity of a local active unit results in a rectification of stress towards strongly amplified isotropic contraction. This stress amplification is reinforced by the networks’ disordered nature, but saturates for high densities of active units. Our predictions are quantitatively consistent with experiments on reconstituted tissues and actomyosin networks and shed light on the role of the network microstructure in shaping active stresses in cells and tissue. PMID:26921325

  6. Fiber Optic Thermal Detection of Composite Delaminations

    NASA Technical Reports Server (NTRS)

    Wu, Meng-Chou; Winfree, William P.

    2011-01-01

    A recently developed technique is presented for thermographic detection of delaminations in composites by performing temperature measurements with fiber optic Bragg gratings. A single optical fiber with multiple Bragg gratings employed as surface temperature sensors was bonded to the surface of a composite with subsurface defects. The investigated structure was a 10-ply composite specimen with prefabricated delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The data obtained from grating sensors were analyzed with thermal modeling techniques of conventional thermography to reveal particular characteristics of the interested areas. Results were compared and found to be consistent with the calculations using numerical simulation techniques. Also discussed are methods including various heating sources and patterns, and their limitations for performing in-situ structural health monitoring.

  7. Fiber Optic Thermal Health Monitoring of Composites

    NASA Technical Reports Server (NTRS)

    Wu, Meng-Chou; Winfree, William P.; Moore, Jason P.

    2010-01-01

    A recently developed technique is presented for thermographic detection of flaws in composite materials by performing temperature measurements with fiber optic Bragg gratings. Individual optical fibers with multiple Bragg gratings employed as surface temperature sensors were bonded to the surfaces of composites with subsurface defects. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The data obtained from grating sensors were analyzed with thermal modeling techniques of conventional thermography to reveal particular characteristics of the interested areas. Results were compared with the calculations using numerical simulation techniques. Methods and limitations for performing in-situ structural health monitoring are discussed.

  8. Machining of fiber-reinforced composite laminates

    NASA Astrophysics Data System (ADS)

    Won, Myong-Shik

    As fiber-reinforced composite laminates are becoming considerably popular in a wide range of applications, the necessity for machining such materials is increasing rapidly. Due to their microscopical inhomogeneity, anisotropy, and highly abrasive nature, composite laminates exhibit some peculiar types of machining damage. Consequently, the machining of composite laminates requires a different approach from that used for metals and offers a challenge from both an academic and application point of view. In the present work, the drilling of composite laminated plates and the edge trimming of tubular composite laminates were investigated through theoretical analyses and their experimental verification. First, a drilling process model using linear elastic fracture mechanics and classical plate bending theory was developed to predict the critical thrust value responsible for the onset of delamination during the drilling of composite laminates with pre-drilled pilot holes. Experiments using stepped drills, which can utilize the effectiveness of such pilot holes, were conducted on composite laminates. Reasonably good agreement was found between the results of the process model and the tests. Second, the development of a model-based intelligent control strategy for the efficient drilling of composite laminates was explored by experiments and analyses. In this investigation, mathematical models were created to relate the drilling forces to cutting parameters and to identify the different process stages. These models predicted the degree of thrust force regulation to prevent delamination. Third, the edge trimming of thin-walled tubular composite laminates was modeled and analyzed for estimating the critical cutting force at the initiation of longitudinal cracking. A series of full-scale edge trimming tests were conducted on tubular composite specimens to assess the current approach and to obtain basic machining data for various composite laminates. The present study provides

  9. Compressive strength of continuous fiber unidirectional composites

    NASA Astrophysics Data System (ADS)

    Thompson, Ronald H.

    Dow and Rosen's work in 1965 formed an intellectual framework for compressive strength of unidirectional composites. Compressive strength was explained in terms of micro-buckling, in which filaments are beams on an elastic foundation. They made simplifying assumptions, with a two dimensional idealization and linearized material properties. This study builds on their model, recognizing that the shear mode of instability drives unidirectional compressive strength. As a necessary corollary, the predictive methods developed in this study emphasize correct representation of composite shear stiffness. Non-linear effects related to matrix material properties, fiber misalignment, three dimensional representation, and thermal prestrains are taken into account. Four work streams comprise this study: first, development of a closed form analytical model; second, empirical methods development and model validation; third, creation and validation of a unit cell finite element model; and fourth, a patent application that leverages knowledge gained from the first three work streams. The analytical model characterizes the non-linearity of the matrix both with respect to shear and compressive loading. This improvement on existing analyses clearly shows why fiber modulus affects composite shear instability. Accounting for fiber misalignment in the model and experimental characterization of the fiber misalignment continuum are important contributions of this study. A simple method of compressive strength measurement of a small diameter monofilament glass-resin composite is developed. Sample definition and preparation are original, and necessary technologies are easily assessable to other researchers in this field. This study shows that glass fiber composites have the potential for high compressive strength. This potential is reached with excellent fiber alignment and suitable matrix characteristics, and results are consistent with model predictions. The unit cell three dimensional

  10. Cotton fibers nano-TiO{sub 2} composites prepared by as-assembly process and the photocatalytic activities

    SciTech Connect

    Xia, J.H.; Hsu, C.T.; Qin, D.D.

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► TiO{sub 2} nanoparticles self-assemble process under the assistant of carboxylic group. ► The carboxylic group was introduced by displacement reaction. ► The loading amount of nano-TiO{sub 2} was depended on the displacement degree of C-6-OH. ► UV–Vis experiments showed these fibers had efficient photocatalysis. ► The degradation reaction Rhodamine 6G under UV light obeys zero-order rate law. -- Abstract: This paper describes photocatalytic cotton fibers produced by a TiO{sub 2} nanoparticle self-assembly process with the assistance of carboxylic groups. The carboxylic group was introduced by a displacement reaction, the molecular structure of the glucose unit was studied by utilizing solid {sup 13}C NMR. The appearance of the prepared fibers was observed by scanning electron microscopy, it was found that nano-TiO{sub 2} coated uniformly on the fiber surface. The loading amount of nano-TiO{sub 2} was depended on the displacement degree of C-6-OH. UV–Vis experiments showed these coated fibers undergo photocatalysis efficiently. The degradation reaction of Rhodamine 6G under UV light obeys the zero-order rate law.

  11. Graphite Fluoride Fiber Composites For Heat Sinking

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh; Long, Martin; Stahl, Mark

    1989-01-01

    Graphite fluoride fiber/polymer composite materials consist of graphite fluoride fibers in epoxy, polytetrafluoroethylene, or polyimide resin. Combines high electrical resistivity with high thermal conductivity and solves heat-transfer problems of many electrical systems. Commercially available in powder form, for use as dry lubricant or cathode material in lithium batteries. Produced by direct fluorination of graphite powder at temperature of 400 to 650 degree C. Applications include printed-circuit boards for high-density power electronics, insulators for magnetic-field cores like those found in alternators and transformers, substrates for thin-film resistors, and electrical-protection layers in aircraft de-icers.

  12. Telescoping cylindrical piezoelectric fiber composite actuator assemblies

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)

    2010-01-01

    A telescoping actuator assembly includes a plurality of cylindrical actuators in a concentric arrangement. Each cylindrical actuator is at least one piezoelectric fiber composite actuator having a plurality of piezoelectric fibers extending parallel to one another and to the concentric arrangement's longitudinal axis. Each cylindrical actuator is coupled to concentrically-adjacent ones of the cylindrical actuators such that the plurality of cylindrical actuators can experience telescopic movement. An electrical energy source coupled to the cylindrical actuators applies actuation energy thereto to generate the telescopic movement.

  13. Liquid crystal polyester-carbon fiber composites

    NASA Technical Reports Server (NTRS)

    Chung, T. S.

    1984-01-01

    Liquid crystal polymers (LCP) have been developed as a thermoplastic matrix for high performance composites. A successful melt impregnation method has been developed which results in the production of continuous carbon fiber (CF) reinforced LCP prepreg tape. Subsequent layup and molding of prepreg into laminates has yielded composites of good quality. Tensile and flexural properties of LCP/CF composites are comparable to those of epoxy/CF composites. The LCP/CF composites have better impact resistance than the latter, although epoxy/CF composites possess superior compression and shear strength. The LCP/CF composites have good property retention until 200 F (67 % of room temperature value). Above 200 F, mechanical properties decrease significantly. Experimental results indicate that the poor compression and shear strength may be due to the poor interfacial adhesion between the matrix and carbon fiber as adequate toughness of the LCP matrix. Low mechanical property retention at high temperatures may be attributable to the low beta-transition temperature (around 80 C) of the LCP matrix material.

  14. Molecular Mechanisms Regulating Muscle Fiber Composition Under Microgravity

    NASA Technical Reports Server (NTRS)

    Rosenthal, Nadia A.

    1999-01-01

    upstream targets for the effects of weightlessness. In the past year we have determined that the expression of E Proteins is restricted to specific fiber types by post-transcriptional mechanisms. By far, the most prevalent mechanism of cellular control for achieving post-transcriptional regulation of gene expression is selective proteolysis -through the ubiquitin -proteasome pathway. Steady-state levels of HEB message are similar in all fast and slow skeletal muscle fiber types, yet the protein is restricted to Type IIX fibers. HEB appears to be a nodal point for regulating fiber-specific transcription, as expression of the transcription factor is regulated at the post-transcriptional level. It is not clear at present whether the regulation is at the level of protein synthesis or degradation. We are now poised to evaluate the biological role of ubiquitination in fiber specific-gene expression by controlling the post-transcriptional expression of E Proteins. The use of metabolic labelling and pharmacological inhibitors of the ubiquitin pathway will be used to identify the mode of regulation of the Type IIX expression pattern. The potential role of specific kinases in effecting the restriction of HEB expression will be examined by using both inhibitors and activators. The results of these studies will provide the necessary information to evaluate the biological role of E proteins in controlling fiber type transitions, and in potentially attenuating the atrophic effects of microgravity conditions. We have also recently shown that ectopic expression of the HEB protein transactivates the Type IIX-specific skeletal a-actin reporter. The 218 bp skeletal a-actin promoter drives transgene expression solely in mature Type IIX fibers. A mouse also carrying the transgene MLCI/HEB (which ectopically expresses the E Protein HEB in Type IIB fibers) forces expression of the skeletal a-actin reporter gene in Type IIB fibers. We can now dissect the composition of this fiber-specific cis

  15. Composite structural materials. [fiber reinforced composites for aircraft structures

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberly, S. E.

    1981-01-01

    Physical properties of fiber reinforced composites; structural concepts and analysis; manufacturing; reliability; and life prediction are subjects of research conducted to determine the long term integrity of composite aircraft structures under conditions pertinent to service use. Progress is reported in (1) characterizing homogeneity in composite materials; (2) developing methods for analyzing composite materials; (3) studying fatigue in composite materials; (4) determining the temperature and moisture effects on the mechanical properties of laminates; (5) numerically analyzing moisture effects; (6) numerically analyzing the micromechanics of composite fracture; (7) constructing the 727 elevator attachment rib; (8) developing the L-1011 engine drag strut (CAPCOMP 2 program); (9) analyzing mechanical joints in composites; (10) developing computer software; and (11) processing science and technology, with emphasis on the sailplane project.

  16. Fiber-optically sensorized composite wing

    NASA Astrophysics Data System (ADS)

    Costa, Joannes M.; Black, Richard J.; Moslehi, Behzad; Oblea, Levy; Patel, Rona; Sotoudeh, Vahid; Abouzeida, Essam; Quinones, Vladimir; Gowayed, Yasser; Soobramaney, Paul; Flowers, George

    2014-04-01

    Electromagnetic interference (EMI) immune and light-weight, fiber-optic sensor based Structural Health Monitoring (SHM) will find increasing application in aerospace structures ranging from aircraft wings to jet engine vanes. Intelligent Fiber Optic Systems Corporation (IFOS) has been developing multi-functional fiber Bragg grating (FBG) sensor systems including parallel processing FBG interrogators combined with advanced signal processing for SHM, structural state sensing and load monitoring applications. This paper reports work with Auburn University on embedding and testing FBG sensor arrays in a quarter scale model of a T38 composite wing. The wing was designed and manufactured using fabric reinforced polymer matrix composites. FBG sensors were embedded under the top layer of the composite. Their positions were chosen based on strain maps determined by finite element analysis. Static and dynamic testing confirmed expected response from the FBGs. The demonstrated technology has the potential to be further developed into an autonomous onboard system to perform load monitoring, SHM and Non-Destructive Evaluation (NDE) of composite aerospace structures (wings and rotorcraft blades). This platform technology could also be applied to flight testing of morphing and aero-elastic control surfaces.

  17. MICROMECHANICS IN CONTINOUS GRAPHITE FIBER/EPOXY COMPOSITES DURING CREEP

    SciTech Connect

    C. ZHOU; ET AL

    2001-02-01

    Micro Raman spectroscopy and classic composite shear-lag models were used to analyze the evolution with time of fiber and matrix strain/stress around fiber breaks in planar model graphite fiber-epoxy matrix composites. Impressive agreements were found between the model predictions and the experimental results. The local matrix creep leads to an increase in the load transfer length around the break under a constant load. This increases the chance of fiber breakage in the neighboring intact fibers.

  18. Interlayer toughening of fiber composite flywheel rotors

    DOEpatents

    Groves, Scott E.; Deteresa, Steven J.

    1998-01-01

    An interlayer toughening mechanism to mitigate the growth of damage in fiber composite flywheel rotors for long application. The interlayer toughening mechanism may comprise one or more tough layers composed of high-elongation fibers, high-strength fibers arranged in a woven pattern at a range from 0.degree. to 90.degree. to the rotor axis and bound by a ductile matrix material which adheres to and is compatible with the materials used for the bulk of the rotor. The number and spacing of the tough interlayers is a function of the design requirements and expected lifetime of the rotor. The mechanism has particular application in uninterruptable power supplies, electrical power grid reservoirs, and compulsators for electric guns, as well as electromechanical batteries for vehicles.

  19. Interlayer toughening of fiber composite flywheel rotors

    DOEpatents

    Groves, S.E.; Deteresa, S.J.

    1998-07-14

    An interlayer toughening mechanism is described to mitigate the growth of damage in fiber composite flywheel rotors for long application. The interlayer toughening mechanism may comprise one or more tough layers composed of high-elongation fibers, high-strength fibers arranged in a woven pattern at a range from 0{degree} to 90{degree} to the rotor axis and bound by a ductile matrix material which adheres to and is compatible with the materials used for the bulk of the rotor. The number and spacing of the tough interlayers is a function of the design requirements and expected lifetime of the rotor. The mechanism has particular application in uninterruptable power supplies, electrical power grid reservoirs, and compulsators for electric guns, as well as electromechanical batteries for vehicles. 2 figs.

  20. FIBER-TEX 1992: The Sixth Conference on Advanced Engineering Fibers and Textile Structures for Composites

    SciTech Connect

    Buckley, J.D.

    1993-08-01

    The FIBER-TEX 1992 proceedings contain the papers presented at the conference held on 27-29 Oct. 1992 at Drexel University. The conference was held to create a forum to encourage an interrelationship of the various disciplines involved in the fabrication of materials, the types of equipment, and the processes used in the production of advanced composite structures. Topics discussed were advanced engineering fibers, textile processes and structures, structural fabric production, mechanics and characteristics of woven composites, and the latest requirements for the use of textiles in the production of composite materials and structures as related to global activities focused on textile structural composites. Separate abstracts have been prepared for articles from this report.

  1. Luminescent composite polymer fibers: in situ synthesis of silver nanoclusters in electrospun polymer fibers and application.

    PubMed

    Gao, Wenran; Wang, Xumei; Xu, Weiqing; Xu, Shuping

    2014-09-01

    The purpose of this study is to prepare multifunctional polymer fibers. We report a simple and controllable method for in situ synthesis of Ag nanoclusters (NCs) in electrospun polymer fibers via a photochemical reaction. The prepared composite polymer fibers emit pink luminescence and the luminescence property can be optimized by pH and Ag(I) precursor concentration. The as-prepared Ag NCs in electrospun polymer fibers were mainly Ag2-5 with a quantum yield of 6.81% and a lifetime of 2.29 ns. The in situ growth of Ag NCs avoids excessive surface modifications which may cause the aggregation of Ag NCs in many ex situ assembly methods. The combination of Ag NCs with polymer fibers greatly improves the stability of Ag NCs and broadens their applications. The storage of Ag NCs becomes facilitative due to the formation of bulky mat. Furthermore, these luminescence composite polymer fibers show strong antibacterial activity against Staphylococcus aureus (S. aureus).

  2. Pendulum impact resistance of tungsten fiber/metal matrix composites.

    NASA Technical Reports Server (NTRS)

    Winsa, E. A.; Petrasek, D. W.

    1972-01-01

    The impact properties of copper, copper-10 nickel, and a superalloy matrix reinforced with tungsten fibers were studied. In most cases the following increased composite impact strength: increased fiber or matrix toughness, decreased fiber-matrix reaction, increased test temperature, hot working and heat treatment. Notch sensitivity was reduced by increasing fiber or matrix toughness. The effect of fiber content depended on the relative toughness of the fibers and matrix. Above 530 K a 60 volume per cent superalloy matrix composite had a greater impact strength than a turbine blade superalloy, whereas below 530 K a hot worked 56 volume per cent composite had a greater impact strength than the superalloy.

  3. Tensile properties of ceramic matrix fiber composites

    SciTech Connect

    Shin, D.W.; Auh, K.H.; Tanaka, Hidehiko

    1995-11-01

    The mechanical properties of various 2D ceramic matrix fiber composites were characterized by tension testing, using the gripping and alignment techniques developed in this work. The woven fabric composites used for the test had the basic combinations of Al{sub 2}O{sub 3} fabric/Al{sub 2}O{sub 3}, SiC fabric/SiC, and SiC monofilament uniweave fabric/SiC. Tension testing was performed with strain gauge and acoustic emission instrumentation to identify the first-matrix cracking stress and assure a valid alignment. The peak tensile stresses of these laminate composites were about one-third of the flexural strengths. The SiC monofilament uniweave fabric (14 vol%)/SiC composites showed a relatively high peak stress of 370 MPa in tension testing.

  4. RADIATION EFFECTS ON EPOXY CARBON FIBER COMPOSITE

    SciTech Connect

    Hoffman, E

    2008-05-30

    Carbon fiber-reinforced bisphenol-A epoxy matrix composite was evaluated for gamma radiation resistance. The composite was exposed to total gamma doses of 50, 100, and 200 Mrad. Irradiated and baseline samples were tested for tensile strength, hardness and evaluated using FTIR (Fourier transform infrared) spectroscopy and DSC (differential scanning calorimetry) for structural changes. Scanning electron microscopy was used to evaluate microstructural behavior. Mechanical testing of the composite bars revealed no apparent change in modulus, strain to failure, or fracture strength after exposures. However, testing of only the epoxy matrix revealed changes in hardness, thermal properties, and FTIR results with increasing gamma irradiation. The results suggest the epoxy within the composite can be affected by exposure to gamma irradiation.

  5. Continuous unidirectional fiber reinforced composites: Fabrication and testing

    NASA Technical Reports Server (NTRS)

    Weber, M. D.; Spiegel, F. X.; West, Harvey A.

    1994-01-01

    The study of the anisotropic mechanical properties of an inexpensively fabricated composite with continuous unidirectional fibers and a clear matrix was investigated. A method has been developed to fabricate these composites with aluminum fibers and a polymer matrix. These composites clearly demonstrate the properties of unidirectional composites and cost less than five dollars each to fabricate.

  6. Use of Carbon Fiber Composite Molecular Sieves for Air Separation

    SciTech Connect

    Baker, Frederick S; Contescu, Cristian I; Gallego, Nidia C; Burchell, Timothy D

    2005-09-01

    A novel adsorbent material, 'carbon fiber composite molecular sieve' (CFCMS), has been developed by the Oak Ridge National Laboratory. Its features include high surface area, large pore volume, and a rigid, permeable carbon structure that exhibits significant electrical conductivity. The unique combination of high adsorptive capacity, permeability, good mechanical properties, and electrical conductivity represents an enabling technology for the development of novel gas separation and purification systems. In this context, it is proposed that a fast-cycle air separation process that exploits a kinetic separation of oxygen and nitrogen should be possible using a CFCMS material coupled with electrical swing adsorption (ESA). The adsorption of O{sub 2}, N{sub 2}, and CO{sub 2} on activated carbon fibers was investigated using static and dynamic techniques. Molecular sieving effects in the activated carbon fiber were highlighted by the adsorption of CO{sub 2}, a more sensitive probe molecule for the presence of microporosity in adsorbents. The kinetic studies revealed that O2 was more rapidly adsorbed on the carbon fiber than N{sub 2}, and with higher uptake under equilibrium conditions, providing the fiber contained a high proportion of very narrow micropores. The work indicated that CFCMS is capable of separating O{sub 2} and N{sub 2} from air on the basis of the different diffusion rates of the two molecules in the micropore network of the activated carbon fibers comprising the composite material. In response to recent enquires from several potential users of CFCMS materials, attention has been given to the development of a viable continuous process for the commercial production of CFCMS material. As part of this effort, work was implemented on characterizing the performance of lignin-based activated carbon fiber, a potentially lower cost fiber than the pitch-based fibers used for CFCMS production to date. Similarly, to address engineering issues, measurements were

  7. Improved fiber retention by the use of fillers in graphite fiber/resin matrix composites

    NASA Technical Reports Server (NTRS)

    Gluyas, R. E.; Bowles, K. J.

    1980-01-01

    A variety of matrix fillers were tested for their ability to prevent loss of fiber from graphite fiber/PMR polyimide and graphite fiber/epoxy composites in a fire. The fillers tested included powders of boron, boron carbide lime glass, lead glass, and aluminum. Boron was the most effective and prevented any loss of graphite fiber during burning. Mechanical properties of composites containing boron filler were measured and compared to those of composites containing no filler.

  8. Optical fiber sensor having an active core

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio Oliveira (Inventor); Rogowski, Robert S. (Inventor)

    1993-01-01

    An optical fiber is provided. The fiber is comprised of an active fiber core which produces waves of light upon excitation. A factor ka is identified and increased until a desired improvement in power efficiency is obtained. The variable a is the radius of the active fiber core and k is defined as 2 pi/lambda wherein lambda is the wavelength of the light produced by the active fiber core. In one embodiment, the factor ka is increased until the power efficiency stabilizes. In addition to a bare fiber core embodiment, a two-stage fluorescent fiber is provided wherein an active cladding surrounds a portion of the active fiber core having an improved ka factor. The power efficiency of the embodiment is further improved by increasing a difference between the respective indices of refraction of the active cladding and the active fiber core.

  9. Passive Impact Damage Detection of Fiber Glass Composite Panels

    DTIC Science & Technology

    2013-12-19

    PASSIVE IMPACT DAMAGE DETECTION OF FIBER GLASS COMPOSITE PANELS. By BRUNO ZAMORANO-SENDEROS A dissertation...COVERED 04-11-2012 to 10-12-2013 4. TITLE AND SUBTITLE PASSIVE IMPACT DAMAGE DETECTION OF FIBER GLASS COMPOSITE PANELS 5a. CONTRACT NUMBER 5b...process. .................................... 31 Figure 3-8 Sensor attached to the fiber glass fabric

  10. Effect of kenaf fiber age on PLLA composite properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The age of the kenaf (Hibiscus cannabinus L.) fiber dictates its pore architecture. The impact of increasing age of plant fiber on the corresponding composite can impact material selection for enhanced composite performance. Bast fibers stems of kenaf, a warm season tropical herbaceous annual plant ...

  11. Fabrication of Composite Material Using Gettou Fiber by Injection Molding

    NASA Astrophysics Data System (ADS)

    Setsuda, Roy; Fukumoto, Isao; Kanda, Yasuyuki

    This study investigated the mechanical properties of composite using gettou (shell ginger) fiber as reinforcement fabricated from injection molding. Gettou fiber is a natural fiber made from gettou, a subtropical plant that is largely abundant in Okinawa, Japan. We used the stem part of gettou plant and made the gettou fiber by crushing the stem. The composite using gettou fiber contributed to low shrinkage ratio, high bending strength and high flexural modulus. The mechanical strength of composite using long gettou fiber showed higher value than composite using short gettou fiber. Next, because gettou is particularly known for its anti-mold characteristic, we investigated the characteristic in gettou plastic composite. The composite was tested against two molds: aspergillius niger and penicillium funiculosum. The 60% gettou fiber plastic composite was found to satisfy the JISZ2801 criterion. Finally, in order to predict the flexural modulus of composite using gettou fiber by Halpin-Tsai equation, the tensile elastic modulus of single gettou fiber was measured. The tendency of the experimental results of composite using gettou fiber was in good agreement with Halpin-Tsai equation.

  12. Synthesis of carbon fibers and activated carbon fibers from coal liquids

    SciTech Connect

    Fei, Y.Q.; Derbyshire, F.; Jagtoyen, M.; Kimber, G.

    1994-12-31

    The production and application of low-cost, general purpose carbon fibers and activated fibers are emerging technologies with exciting potential, although at present their cost is too high to find widespread use. Production and R and D have been limited and to data, only a small range of precursors has been studied: petroleum pitches, coal extracts and coal tar pitches. Both processing costs and the properties of the fiber products are dependent on the nature of the starting material. Commercial precursors have been limited to the pitches produced from high temperature pyrolysis or cracking processes and are similar in composition and molecular structure. Suitable coal-based precursors can be produced with a wide range of composition, and at moderate cost, by methods such as low temperature carbonization, solvent extraction, hydropyrolysis and mild coal liquefaction. It is of interest to investigate the synthesis of carbon fibers and activated carbon fibers from precursors of different origins to elucidate the influence of precursor materials on fiber formation and processing, and their structure and properties. It is also of practical importance to understand the relationships between the type of starting materials (for example, coals) and the processing methods, and the properties of fiber precursors that can be produced from them. In the present study, the authors describe the synthesis of carbon fibers and activated carbon fibers from the products of the first stage of coal liquefaction.

  13. [Fiber reinforced composite posts: literature review].

    PubMed

    Frydman, G; Levatovsky, S; Pilo, R

    2013-07-01

    FRC (Fiber-reinforced composite) posts have been used since the beginning of the 90s with the introduction of carbon fiber posts. Fiber posts are widely used to restore endodontically treated teeth that have insufficient coronal tooth structure. Many in vitro and in vivo studies have shown the advantage of using FRC over prefabricated and cast metal post especially indicated in narrow root canals which are prone to vertically root fracture. The most frequent failure of FRC is debonding of a post at the resin cement/dentin interface. Bonding to dentin may be achieved by using etch-and-rinse and self-etch adhesives. The bond strength formed by self-adhesive cements is noticeably lower in comparison to the bond strength formed with resin cements applied in combination with etch-and-rinse adhesives. In an attempt to maximize resin bonding to fiber posts, several surface treatments have been suggested. Sandblasting with alumina particles results in an increased surface roughness and surface area without affecting the integrity of the post as long as it is applied by 50 microm alumina particles at 2.5 bars for maximally 5 seconds at a distance of 30 mm. The efficiency of post salinization is controversial and its contribution to the retention is of minor importance. Hydrofluoric acid has recently been proposed for etching glass fiber posts but this technique produced substantial damage to the glass fibers and affected the integrity of the post. Delayed cementation of fiber post (at least 24h post endodontic treatment) resulted in higher retentive strengths in comparison to immediate cementation and the best results were obtained when the luting agent was brought into the post space with lentulo spirals or specific syringes. The resin cement film thickness also influences the pullout strengths of fiber-reinforced posts .The highest bond strength values were obtained when the cement layer oversized the post spaces but not larger than 0.3 mm. The use of core build

  14. Process of Making Boron-Fiber Reinforced Composite Tape

    NASA Technical Reports Server (NTRS)

    Belvin, Harry L. (Inventor); Cano, Roberto J. (Inventor); Johnston, Norman J. (Inventor); Marchello, Joseph M. (Inventor)

    2002-01-01

    The invention is an apparatus and method for producing a hybrid boron reinforced polymer matrix composition from powder pre-impregnated fiber tow bundles and a linear array of boron fibers. The boron fibers are applied onto the powder pre-impregnated fiber tow bundles and then are processed within a processing component having an impregnation bar assembly. After passing through variable-dimension forming nip-rollers, the powder pre-impregnated fiber tow bundles with the boron fibers become a hybrid boron reinforced polymer matrix composite tape. A driving mechanism pulls the powder pre-impregnated fiber tow bundles with boron fibers through the processing line of the apparatus and a take-up spool collects the formed hybrid boron-fiber reinforced polymer matrix composite tape.

  15. Core-shell N-doped active carbon fiber@graphene composites for aqueous symmetric supercapacitors with high-energy and high-power density

    NASA Astrophysics Data System (ADS)

    Xie, Qinxing; Bao, Rongrong; Xie, Chao; Zheng, Anran; Wu, Shihua; Zhang, Yufeng; Zhang, Renwei; Zhao, Peng

    2016-06-01

    Graphene wrapped nitrogen-doped active carbon fibers (ACF@GR) of a core-shell structure were successfully prepared by a simple dip-coating method using natural silk as template. Compared to pure silk active carbon, the as-prepared ACF@GR composites exhibit high specific surface area in a range of 1628-2035 m2 g-1, as well as superior energy storage capability, an extremely high single-electrode capacitance of 552.8 F g-1 was achieved at a current density of 0.1 A g-1 in 6 M KOH aqueous electrolyte. The assembled aqueous symmetric supercapacitors are capable of deliver both high energy density and high power density, for instance, 17.1 Wh kg-1 at a power density of 50.0 W kg-1, and 12.2 Wh kg-1 at 4.7 kW kg-1 with a retention rate of 71.3% for ACF@GR1-based supercapacitor.

  16. Composite Solid Electrolyte Containing Li+- Conducting Fibers

    NASA Technical Reports Server (NTRS)

    Appleby, A. John; Wang, Chunsheng; Zhang, Xiangwu

    2006-01-01

    Improved composite solid polymer electrolytes (CSPEs) are being developed for use in lithium-ion power cells. The matrix components of these composites, like those of some prior CSPEs, are high-molecular-weight dielectric polymers [generally based on polyethylene oxide (PEO)]. The filler components of these composites are continuous, highly-Li(+)-conductive, inorganic fibers. PEO-based polymers alone would be suitable for use as solid electrolytes, were it not for the fact that their room-temperature Li(+)-ion conductivities lie in the range between 10(exp -6) and 10(exp -8) S/cm, too low for practical applications. In a prior approach to formulating a CSPE, one utilizes nonconductive nanoscale inorganic filler particles to increase the interfacial stability of the conductive phase. The filler particles also trap some electrolyte impurities. The achievable increase in conductivity is limited by the nonconductive nature of the filler particles.

  17. Fiber-matrix interfaces in ceramic composites

    SciTech Connect

    Besmann, T.M.; Stinton, D.P.; Kupp, E.R.; Shanmugham, S.; Liaw, P.K.

    1996-12-31

    The mechanical properties of ceramic matrix composites (CMCs) are governed by the relationships between the matrix, the interface material, and the fibers. In non-oxide matrix systems compliant pyrolytic carbon and BN have been demonstrated to be effective interface materials, allowing for absorption of mismatch stresses between fiber and matrix and offering a poorly bonded interface for crack deflection. The resulting materials have demonstrated remarkable strain/damage tolerance together with high strength. Carbon or BN, however, suffer from oxidative loss in many service environments, and thus there is a major search for oxidation resistant alternatives. This paper reviews the issues related to developing a stable and effective interface material for non-oxide matrix CMCs.

  18. Fiber/matrix adhesion in graphite/PEKK composites

    NASA Technical Reports Server (NTRS)

    Bucher, R. A.; Hinkley, J. A.

    1992-01-01

    Experiments with poly ether ketone ketone (PEKK) resin and AS-4, IM-7, and G30-500 fibers showed excellent correlation between resin/fiber contact angle and composite transverse flexural strength as measures of resin/fiber interfacial strength. Both tests indicate the strongest interface for G30-500/PEKK followed by IM-7/PEKK and AS-4/PEKK. Also discussed are fiber effects on interlaminar fracture and on the in situ crystallization of the matrix during composite fabrication.

  19. Development of silicon nitride composites with continuous fiber reinforcement

    SciTech Connect

    Starr, T.L.; Mohr, D.L.; Lackey, W.J.; Hanigofsky, J.A.

    1993-10-01

    The composites were fabricated using ultrafine Si powders prepared by attritor milling; the powders exhibits full conversion to Si nitride in < 3 h at {le} 1200 C (these conditions reduce degradation of the fibers compared to conventional). Effects of processing conditions on fiber properties and the use of fiber coatings to improve stability during processing as well as change the fiber-matrix interfacial properties were investigated. A duplex carbon-silicon carbide coating, deposited by CVD, reduced fiber degradation in processing, and it modified the fiber-matrix adhesion. Si nitride matrix composites were fabricated using reaction sintering, forming laminates, filament-wound plates, and tubes. In each case, an attritor milled Si powder slurry is infiltrated into ceramic fiber preforms or tows, which are then assembled to form a 3-D structure for reaction sintering. The resulting composites have properties comparable to chemical vapor infiltration densified composites, with reasonable strengths and graceful composite fracture behavior.

  20. Natural Fiber Composite Retting, Preform Manufacture and Molding (Project 18988/Agreement 16313)

    SciTech Connect

    Simmons, Kevin L.; Howe, Daniel T.; Laddha, Sachin; Fifield, Leonard S.

    2009-12-31

    Plant-based natural fibers can be used in place of glass in fiber reinforced automotive composites to reduce weight, cost and provide environmental benefits. Current automotive applications use natural fibers in injection molded thermoplastics for interior, non-structural applications. Compression molded natural fiber reinforced thermosets have the opportunity to extend natural fiber composite applications to structural and semi-structural parts and exterior parts realizing further vehicle weight savings. The development of low cost molding and fiber processing techniques for large volumes of natural fibers has helped in understanding the barriers of non-aqueous retting. The retting process has a significant effect on the fiber quality and its processing ability that is related to the natural fiber composite mechanical properties. PNNL has developed a compression molded fiber reinforced composite system of which is the basis for future preforming activities and fiber treatment. We are using this process to develop preforming techniques and to validate fiber treatment methods relative to OEM provided application specifications. It is anticipated for next fiscal year that demonstration of larger quantities of SMC materials and molding of larger, more complex components with a more complete testing regimen in coordination with Tier suppliers under OEM guidance.

  1. Carbide coated fibers in graphites-aluminum composites. [(fabrication of metal matrix composites)

    NASA Technical Reports Server (NTRS)

    Imprescia, R. J.; Levinson, L. S.; Reiswig, R. D.; Wallace, T. C.; Williams, J. M.

    1976-01-01

    Research activities are described for a NASA-supported program at the Los Alamos Scientific Laboratory to develop graphite fiber-aluminum matrix composites. A chemical vapor deposition apparatus was constructed for continuously coating graphite fibers with TiC. As much as 150 meters of continuously coated fibers were produced. Deposition temperatures were varied from 1365 K to about 1750 K, and deposition time from 6 to 150 seconds. The 6 sec deposition time corresponded to a fiber feed rate of 2.54 m/min through the coater. Thin, uniform, adherent TiC coats, with thicknesses up to approximately 0.1 micrometer were produced on the individual fibers of Thornel 50 graphite yarns without affecting fiber strength. Although coat properties were fairly uniform throughout a given batch, more work is needed to improve the batch-to-batch reproducibility. Samples of TiC-coated Thornel 50 fibers were infiltrated with an aluminum alloy and hot-pressed in vacuum to produce small composite bars for flexure testing. Strengths as high as 90% of the rule-of-mixtures strength were achieved. Results of the examination of the fracture surfaces indicate that the bonding between the aluminum and the TiC-coated fibers is better than that achieved in a similar, commercially infiltrated material made with fibers having no observable surface coats. Several samples of Al-infiltrated, TiC-coated Thornel 50 graphite yarns, together with samples of the commercially infiltrated, uncoated fibers, were heated for 100 hours at temperatures near the alloy solidus. The TiC-coated samples appear to undergo less reaction than do the uncoated samples. Photomicrographs are shown.

  2. Metal matrix coated fiber composites and the methods of manufacturing such composites

    DOEpatents

    Weeks, Jr., Joseph K.; Gensse, Chantal

    1993-01-01

    A fiber coating which allows ceramic or metal fibers to be wetted by molten metals is disclosed. The coating inhibits degradation of the physical properties caused by chemical reaction between the fiber and the coating itself or between the fiber and the metal matrix. The fiber coating preferably includes at least a wetting layer, and in some applications, a wetting layer and a barrier layer between the fiber and the wetting layer. The wetting layer promotes fiber wetting by the metal matrix. The barrier layer inhibits fiber degradation. The fiber coating permits the fibers to be infiltrated with the metal matrix resulting in composites having unique properties not obtainable in pure materials.

  3. Method of producing a hybrid matrix fiber composite

    DOEpatents

    Deteresa, Steven J.; Lyon, Richard E.; Groves, Scott E.

    2006-03-28

    Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites comprised of two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.

  4. Initial evaluation of continuous fiber reinforced NiAl composites

    NASA Technical Reports Server (NTRS)

    Noebe, R. D.; Bowman, R. R.; Eldridge, J. I.

    1990-01-01

    NiAl is being evaluated as a potential matrix material as part of an overall program to develop and understand high-temperature structural composites. Currently, continuous fiber composites have been fabricated by the powder cloth technique incorporating either W(218) or single crystal Al2O3 fibers as reinforcements in both binary NiAl and a solute strengthened NiAl(.05 at. pct Zr) matrix. Initial evaluation of these composite systems have included: fiber push-out testing to measure matrix/fiber bond strengths, bend testing to determine strength as a function of temperature and composite structure, and thermal cycling to establish the effect of matrix and fiber properties on composite life. The effect of matrix/fiber bond strength and matrix strength on several composite properties will be discussed.

  5. Smart damping of laminated fuzzy fiber reinforced composite shells using 1-3 piezoelectric composites

    NASA Astrophysics Data System (ADS)

    Kundalwal, S. I.; Kumar, R. Suresh; Ray, M. C.

    2013-10-01

    This paper deals with the investigation of active constrained layer damping (ACLD) of smart laminated continuous fuzzy fiber reinforced composite (FFRC) shells. The distinct constructional feature of a novel FFRC is that the uniformly spaced short carbon nanotubes (CNTs) are radially grown on the circumferential surfaces of the continuous carbon fiber reinforcements. The constraining layer of the ACLD treatment is considered to be made of vertically/obliquely reinforced 1-3 piezoelectric composite materials. A finite element (FE) model is developed for the laminated FFRC shells integrated with the two patches of the ACLD treatment to investigate the damping characteristics of the laminated FFRC shells. The effect of variation of the orientation angle of the piezoelectric fibers on the damping characteristics of the laminated FFRC shells has been studied when the piezoelectric fibers are coplanar with either of the two mutually orthogonal vertical planes of the piezoelectric composite layer. It is revealed that radial growth of CNTs on the circumferential surfaces of the carbon fibers enhances the attenuation of the amplitude of vibrations and the natural frequencies of the laminated FFRC shells over those of laminated base composite shells without CNTs.

  6. Tensile Strength of Natural Fiber Reinforced Polyester Composite

    NASA Astrophysics Data System (ADS)

    Ismail, Al Emran; Awang, Muhd. Khairudin; Sa'at, Mohd Hisham

    2007-05-01

    Nowadays, increasing awareness of replacing synthetic fiber such as glass fiber has emerged due to environmental problems and pollutions. Automotive manufacturers also seek new material especially biodegradable material to be non-load bearing application parts. This present work discussed on the effect of silane treatment on coir fiber reinforced composites. From the results of tensile tests, fibers treated with silane have attained maximum material stiffness. However, to achieve maximum ultimate tensile strength and strain at failure performances, untreated fibers work very well through fiber bridging and internal friction between fiber and polymeric matrix. Scanning electron microscope (SEM) observations have coincided with these results.

  7. Improved fiber retention by the use of fillers in graphite fiber/resin matrix composites

    NASA Technical Reports Server (NTRS)

    Gluyas, R. E.; Bowles, K. J.

    1980-01-01

    A potential problem in the use of graphite fiber reinforced resin matrix composites is the dispersal of graphite fiber during accidental fires. Airborne electrically conductive fibers originating from burning composites could enter and cause shorting in electrical equipment located in surrounding areas. A variety of matrix fillers have been tested for their ability to prevent loss of fiber from graphite fiber/PMR polyimide and graphite fiber/epoxy composites in a fire. The fillers tested included powders of boron, boron carbide (B4C), lime glass, lead glass, and aluminum. Of these fillers, boron was the most effective and prevented any loss of graphite fiber during burning. Mechanical properties of composites containing boron filler were measured and compared to those of composite containing no filler.

  8. The effect of fiber architecture on the mechanical properties of carbon/carbon fiber composites

    SciTech Connect

    Neumeister, J.; Jansson, S.; Leckie, F.

    1996-02-01

    The mechanical performance of carbon-fiber matrix composites with different fiber architectures is investigated for various loading modes. All the composites were fabricated from nominally equal constituents and identical consolidation processes, leaving as the only variables, the variations caused by the different fiber weave structures. The fiber architecture drastically affects both composite strength and deformation characteristics. Some systems are almost linear up to a final brittle failure while others exhibit a pronounced non-linearity prior to failure. It is found that the composite tensile strength is dictated by both fiber volume and fraction and weave architecture. The weaving can have a beneficial effect in spite of introducing new fiber flaws and stress concentrations, because it causes the composite to be less flaw sensitive. These features are addressed analytically by considering the statistical aspects of the fiber strength and the formation of critical defects.

  9. Application of Conductive Carbon Nanotube Fibers and Composites: Gas Sensor

    DTIC Science & Technology

    2013-05-01

    Application of Conductive Carbon Nanotube Fibers and Composites: Gas Sensor by Padraig G. Moloney and Enrique V. Barrera ARL-CR-0714 May...2013 Application of Conductive Carbon Nanotube Fibers and Composites: Gas Sensor Padraig G. Moloney and Enrique V. Barrera Dept. of...From - To) June 2011 to April 2012 4. TITLE AND SUBTITLE Application of Conductive Carbon Nanotube Fibers and Composites: Gas Sensor 5a

  10. Carbon Fiber Foam Composites and Methods for Making the Same

    NASA Technical Reports Server (NTRS)

    Leseman, Zayd Chad (Inventor); Atwater, Mark Andrew (Inventor); Phillips, Jonathan (Inventor)

    2014-01-01

    Exemplary embodiments provide methods and apparatus of forming fibrous carbon foams (FCFs). In one embodiment, FCFs can be formed by flowing a fuel rich gas mixture over a catalytic material and components to be encapsulated in a mold to form composite carbon fibers, each composite carbon fiber having a carbon phase grown to encapsulate the component in situ. The composite carbon fibers can be intertwined with one another to form FCFs having a geometry according to the mold.

  11. Composite impact strength improvement through a fiber/matrix interphase

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.; Winters, W. E.

    1975-01-01

    Research was conducted to improve the impact strength and toughness of fiber/resin composites by means of a fiber coating interphase. Graphite fiber/epoxy resin composites were fabricated with four different fiber coating systems introduced in a matrix-fiber interphase. Two graphite fibers, a high strength and a high modulus type, were studied with the following coating systems: chemical vapor deposited boron, electroless nickel, a polyamide-imide resin and a thermoplastic polysulfone resin. Evaluation methods included the following tests: Izod, flexure, shear fracture toughness, longitudinal and transverse tensile, and transverse and longitudinal compression. No desirable changes could be effected with the high strength fiber, but significant improvements in impact performance were observed with the polyamide-imide resin coated high modulus fiber with no loss in composite modulus.

  12. Nano-Fiber Reinforced Enhancements in Composite Polymer Matrices

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2009-01-01

    Nano-fibers are used to reinforce polymer matrices to enhance the matrix dependent properties that are subsequently used in conventional structural composites. A quasi isotropic configuration is used in arranging like nano-fibers through the thickness to ascertain equiaxial enhanced matrix behavior. The nano-fiber volume ratios are used to obtain the enhanced matrix strength properties for 0.01,0.03, and 0.05 nano-fiber volume rates. These enhanced nano-fiber matrices are used with conventional fiber volume ratios of 0.3 and 0.5 to obtain the composite properties. Results show that nano-fiber enhanced matrices of higher than 0.3 nano-fiber volume ratio are degrading the composite properties.

  13. Molecular Mechanisms Regulating Muscle Fiber Composition Under Microgravity

    NASA Technical Reports Server (NTRS)

    Rosenthal, Nadia A.

    1999-01-01

    upstream targets for the effects of weightlessness. In the past year we have determined that the expression of E Proteins is restricted to specific fiber types by post-transcriptional mechanisms. By far, the most prevalent mechanism of cellular control for achieving post-transcriptional regulation of gene expression is selective proteolysis -through the ubiquitin -proteasome pathway. Steady-state levels of HEB message are similar in all fast and slow skeletal muscle fiber types, yet the protein is restricted to Type IIX fibers. HEB appears to be a nodal point for regulating fiber-specific transcription, as expression of the transcription factor is regulated at the post-transcriptional level. It is not clear at present whether the regulation is at the level of protein synthesis or degradation. We are now poised to evaluate the biological role of ubiquitination in fiber specific-gene expression by controlling the post-transcriptional expression of E Proteins. The use of metabolic labelling and pharmacological inhibitors of the ubiquitin pathway will be used to identify the mode of regulation of the Type IIX expression pattern. The potential role of specific kinases in effecting the restriction of HEB expression will be examined by using both inhibitors and activators. The results of these studies will provide the necessary information to evaluate the biological role of E proteins in controlling fiber type transitions, and in potentially attenuating the atrophic effects of microgravity conditions. We have also recently shown that ectopic expression of the HEB protein transactivates the Type IIX-specific skeletal a-actin reporter. The 218 bp skeletal a-actin promoter drives transgene expression solely in mature Type IIX fibers. A mouse also carrying the transgene MLCI/HEB (which ectopically expresses the E Protein HEB in Type IIB fibers) forces expression of the skeletal a-actin reporter gene in Type IIB fibers. We can now dissect the composition of this fiber-specific cis

  14. Fiber-Reinforced-Foam (FRF) Core Composite Sandwich Panel Concept for Advanced Composites Technologi

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Fiber-Reinforced-Foam (FRF) Core Composite Sandwich Panel Concept for Advanced Composites Technologies Project - Preliminary Manufacturing Demonstration Articles for Ares V Payload Shroud Barrel Acreage Structure

  15. Fabricating fiber-reinforced composite posts.

    PubMed

    Manhart, Jürgen

    2011-03-01

    Endodontic posts do not increase the strength of the remaining tooth structure in endodontically treated teeth. On the contrary, depending on the post design employed (tapered versus parallel-sided), the root can be weakened relative to the amount of tooth removed during preparation. In many cases, if there has been a high degree of damage to the clinical crown, conservative preparation for an anatomic tapered (biomimetic) post with the incorporation of a ferrule on solid tooth structure is necessary to protect the reaming root structure as well as for the long-term retention of the composite resin core and the definitive restoration. Adhesively luted endodontic posts reinforced with glass or quartz fiber lead to better homogeneous tension distribution when loaded than rigid metal or zirconium oxide ceramic posts. Fiber-reinforced posts also possess advantageous optical properties over metal or metal oxide post systems. The clinician should realize that there are admittedly substantial differences in the mechanical loading capacity of the different fiber-reinforced endodontic posts and should be aware of such differences in order to research and select a suitable post system for use.

  16. Fiber shape effects on metal matrix composite behavior

    NASA Technical Reports Server (NTRS)

    Brown, H. C.; Lee, H.-J.

    1992-01-01

    The effects of different fiber shapes on the behavior of metal matrix composites is computationally simulated. A three-dimensional finite element model consisting of a group of nine unidirectional fibers in a three by three unit cell array of a SiC/Ti-15-3 metal matrix composite is used in the analysis. The model is employed to represent five fiber shapes that include a circle, an ellipse, a kidney, and two different cross shapes. The distribution of stresses and the composite material properties, such as moduli, coefficients of thermal expansion, and Poisson's ratios, are obtained from the finite element analysis using the various fiber shapes. Comparisons of these results are used to determine the sensitivity of the composite behavior to the different fiber shapes. In general, fiber dominated properties are not affected by fiber geometry and matrix dominated properties are only moderately affected.

  17. Graphite fiber reinforced glass matrix composites for aerospace applications

    NASA Technical Reports Server (NTRS)

    Prewo, K. M.; Bacon, J. F.; Dicus, D. L.

    1979-01-01

    The graphite fiber reinforced glass matrix composite system is described. Although this composite is not yet a mature material, it possesses low density, attractive mechanical properties at elevated temperatures, and good environmental stability. Properties are reported for a borosilicate glass matrix unidirectionally reinforced with 60 volume percent HMS graphite fiber. The flexural strength and fatigue characteristics at room and elevated temperature, resistance to thermal cycling and continuous high temperature oxidation, and thermal expansion characteristics of the composite are reported. The properties of this new composite are compared to those of advanced resin and metal matrix composites showing that graphite fiber reinforced glass matrix composites are attractive for aerospace applications.

  18. Fiber Reinforced Composite Cores and Panels

    NASA Technical Reports Server (NTRS)

    Day, Stephen W. (Inventor); Campbell, G. Scott (Inventor); Tilton, Danny E. (Inventor); Stoll, Frederick (Inventor); Sheppard, Michael (Inventor); Banerjee, Robin (Inventor)

    2013-01-01

    A fiber reinforced core panel is formed from strips of plastics foam helically wound with layers of rovings to form webs which may extend in a wave pattern or may intersect transverse webs. Hollow tubes may replace foam strips. Axial rovings cooperate with overlying helically wound rovings to form a beam or a column. Wound roving patterns may vary along strips for structural efficiency. Wound strips may alternate with spaced strips, and spacers between the strips enhance web buckling strength. Continuously wound rovings between spaced strips permit folding to form panels with reinforced edges. Continuously wound strips are helically wrapped to form annular structures, and composite panels may combine both thermoset and thermoplastic resins. Continuously wound strips or strip sections may be continuously fed either longitudinally or laterally into molding apparatus which may receive skin materials to form reinforced composite panels.

  19. Composites with improved fiber-resin interfacial adhesion

    NASA Technical Reports Server (NTRS)

    Cizmecioglu, Muzaffer (Inventor)

    1989-01-01

    The adhesion of fiber reinforcement such as high modulus graphite to a matrix resin such as polycarbonate is greatly enhanced by applying a very thin layer, suitably from 50 Angstroms to below 1000 Angstroms, to the surface of the fiber such as by immersing the fiber in a dilute solution of the matrix resin in a volatile solvent followed by draining to remove excess solution and air drying to remove the solvent. The thin layer wets the fiber surface. The very dilute solution of matrix resin is able to impregnate multifilament fibers and the solution evenly flows onto the surface of the fibers. A thin uniform layer is formed on the surface of the fiber after removal of the solvent. The matrix resin coated fiber is completely wetted by the matrix resin during formation of the composite. Increased adhesion of the resin to the fibers is observed at fracture. At least 65 percent of the surface of the graphite fiber is covered with polycarbonate resin at fracture whereas uncoated fibers have very little matrix resin adhering to their surfaces at fracture and epoxy sized graphite fibers exhibit only slightly higher coverage with matrix resin at fracture. Flexural modulus of the composite containing matrix resin coated fibers is increased by 50 percent and flexural strength by 37 percent as compared to composites made with unsized fibers.

  20. Fiber networks amplify active stress

    NASA Astrophysics Data System (ADS)

    Lenz, Martin; Ronceray, Pierre; Broedersz, Chase

    Large-scale force generation is essential for biological functions such as cell motility, embryonic development, and muscle contraction. In these processes, forces generated at the molecular level by motor proteins are transmitted by disordered fiber networks, resulting in large-scale active stresses. While fiber networks are well characterized macroscopically, this stress generation by microscopic active units is not well understood. I will present a comprehensive theoretical study of force transmission in these networks. I will show that the linear, small-force response of the networks is remarkably simple, as the macroscopic active stress depends only on the geometry of the force-exerting unit. In contrast, as non-linear buckling occurs around these units, local active forces are rectified towards isotropic contraction and strongly amplified. This stress amplification is reinforced by the networks' disordered nature, but saturates for high densities of active units. I will show that our predictions are quantitatively consistent with experiments on reconstituted tissues and actomyosin networks, and that they shed light on the role of the network microstructure in shaping active stresses in cells and tissue.

  1. Tungsten fiber reinforced copper matrix composites: A review

    NASA Technical Reports Server (NTRS)

    Mcdanels, David L.

    1989-01-01

    Tungsten fiber reinforced copper matrix (W/Cu) composites have served as an ideal model system with which to analyze the properties of metal matrix composites. A series of research programs were conducted to investigate the stress-strain behavior of W/Cu composites; the effect of fiber content on the strength, modulus, and conductivity of W/Cu composites; and the effect of alloying elements on the behavior of tungsten wire and of W/Cu composites. Later programs investigated the stress-rupture, creep, and impact behavior of these composites at elevated temperatures. Analysis of the results of these programs as allows prediction of the effects of fiber properties, matrix properties, and fiber content on the properties of W/Cu composites. These analyses form the basis for the rule-of-mixtures prediction of composite properties which was universally adopted as the criteria for measuring composite efficiency. In addition, the analyses allows extrapolation of potential properties of other metal matrix composites and are used to select candidate fibers and matrices for development of tungsten fiber reinforced superalloy composite materials for high temperature aircraft and rocket engine turbine applications. The W/Cu composite efforts are summarized, some of the results obtained are described, and an update is provided on more recent work using W/Cu composites as high strength, high thermal conductivity composite materials for high heat flux, elevated temperature applications.

  2. Mechanical properties of non-woven glass fiber geopolymer composites

    NASA Astrophysics Data System (ADS)

    Rieger, D.; Kadlec, J.; Pola, M.; Kovářík, T.; Franče, P.

    2017-02-01

    This experimental research focuses on mechanical properties of non-woven glass fabric composites bound by geopolymeric matrix. This study investigates the effect of different matrix composition and amount of granular filler on the mechanical properties of final composites. Matrix was selected as a metakaolin based geopolymer hardened by different amount of potassium silicate activator. The ceramic granular filler was added into the matrix for investigation of its impact on mechanical properties and workability. Prepared pastes were incorporated into the non-woven fabrics by hand roller and final composites were stacked layer by layer to final thickness. The early age hardening of prepared pastes were monitored by small amplitude dynamic rheology approach and after 28 days of hardening the mechanical properties were examined. The electron microscopy was used for detail description of microstructural properties. The imaging methods revealed good wettability of glass fibers by geopolymeric matrix and results of mechanical properties indicate usability of these materials for constructional applications.

  3. Investigation of Polymer Resin/Fiber Compatibility in Natural Fiber Reinforced Composite Automotive Materials

    SciTech Connect

    Fifield, Leonard S.; Huang, Cheng; Simmons, Kevin L.

    2010-01-01

    Natural fibers represent a lower density and potentially lower cost alternative to glass fibers for reinforcement of polymers in automotive composites. The high specific modulus and strength of bast fibers make them an attractive option to replace glass not only in non-structural automotive components, but also in semi-structural and structural components. Significant barriers to insertion of bast fibers in the fiber reinforced automotive composite market include the high moisture uptake of this lignocellulosic material relative to glass and the weak inherent interface between natural fibers and automotive resins. This work seeks to improve the moisture uptake and resin interfacing properties of natural fibers through improved fundamental understanding of fiber physiochemical architecture and development of tailored fiber surface modification strategies.

  4. Hybrid Polyvinyl Alcohol and Cellulose Fiber Pulp Instead of Asbestos Fibers in Cement-Based Composites

    NASA Astrophysics Data System (ADS)

    Shokrieh, M. M.; Mahmoudi, A.; Shadkam, H. R.

    2015-05-01

    The Taguchi method was used to determine the optimum content of a four-parameters cellulose fiber pulp, polyvinyl alcohol (PVA) fibers, a silica fume, and bentonite for cement-based composite sheets. Then cement composite sheets from the hybrid of PVA and the cellulose fiber pulp were manufactured, and their moduli of rapture were determined experimentally. The result obtained showed that cement composites with a hybrid of PVA and cellulose fiber pulp had a higher flexural strength than cellulose-fiber- reinforced cement ones, but this strength was rather similar to that of asbestos-fiber-reinforced cement composites. Also, using the results of flexural tests and an analytical method, the tensile and compressive moduli of the hybrid of PVA and cement sheet were calculated. The hybrid of PVA and cellulose fiber pulp is proposed as an appropriate alternative for substituting asbestos in the Hatschek process.

  5. Glass fiber addition strengthens low-density ablative compositions

    NASA Technical Reports Server (NTRS)

    Chandler, H. H.

    1974-01-01

    Approximately 15% of E-glass fibers was added to compositions under test and greatly improved char stability. Use of these fibers also reduced thermal strains which, in turn, minimized char shrinkage and associated cracks, subsurface voids, and disbonds. Increased strength allows honeycomb core reinforcement to be replaced by equivalent amount of glass fibers.

  6. Monitoring fiber stress during curing of single fiber glass- and graphite-epoxy composites

    SciTech Connect

    Madhukar, M.S.; Kosuri, R.P.; Bowles, K.J.

    1994-11-01

    The difference in thermal expansion characteristics of epoxy matrices and graphite fibers can produce significant residual stresses in the fibers during curing of composite materials. Tests on single fiber glass-epoxy and graphite-epoxy composite specimens were conducted in which the glass and graphite fibers were preloaded in tension, and the epoxy matrix was cast around the fibers. The fiber tension was monitored while the matrix was placed around the fiber and subjected to the temperature-time curing cycle. Two mechanisms responsible for producing stress in embedded fibers were identified as matrix thermal expansion and contraction and matrix cure shrinkage. A simple analysis based on the change in fiber tension during the curing cycle was conducted to estimate the produced stresses. Experimental results on single fiber glass- and graphite-epoxy composites show that the fiber was subjected to significant tensile stresses when the temperature was raised from the first to the second dwell period. When initial fiber pretension is about 60 percent of the fiber failure load, these curing-induced stresses can cause tensile fracture of the embedded fiber.

  7. Numerical approach of the injection molding process of fiber-reinforced composite with considering fiber orientation

    SciTech Connect

    Nguyen Thi, T. B. E-mail: yokoyama@kit.ac.jp; Yokoyama, A. E-mail: yokoyama@kit.ac.jp; Ota, K. E-mail: katsuhiro-kodama@toyobo.jp E-mail: yumiko-isogai@toyobo.jp E-mail: chisato-nonomura@toyobo.jp; Kodama, K. E-mail: katsuhiro-kodama@toyobo.jp E-mail: yumiko-isogai@toyobo.jp E-mail: chisato-nonomura@toyobo.jp; Yamashita, K. E-mail: katsuhiro-kodama@toyobo.jp E-mail: yumiko-isogai@toyobo.jp E-mail: chisato-nonomura@toyobo.jp; Isogai, Y. E-mail: katsuhiro-kodama@toyobo.jp E-mail: yumiko-isogai@toyobo.jp E-mail: chisato-nonomura@toyobo.jp; Furuichi, K. E-mail: katsuhiro-kodama@toyobo.jp E-mail: yumiko-isogai@toyobo.jp E-mail: chisato-nonomura@toyobo.jp; Nonomura, C. E-mail: katsuhiro-kodama@toyobo.jp E-mail: yumiko-isogai@toyobo.jp E-mail: chisato-nonomura@toyobo.jp

    2014-05-15

    One of the most important challenges in the injection molding process of the short-glass fiber/thermoplastic composite parts is being able to predict the fiber orientation, since it controls the mechanical and the physical properties of the final parts. Folgar and Tucker included into the Jeffery equation a diffusive type of term, which introduces a phenomenological coefficient for modeling the randomizing effect of the mechanical interactions between the fibers, to predict the fiber orientation in concentrated suspensions. Their experiments indicated that this coefficient depends on the fiber volume fraction and aspect ratio. However, a definition of the fiber interaction coefficient, which is very necessary in the fiber orientation simulations, hasn't still been proven yet. Consequently, this study proposed a developed fiber interaction model that has been introduced a fiber dynamics simulation in order to obtain a global fiber interaction coefficient. This supposed that the coefficient is a sum function of the fiber concentration, aspect ratio, and angular velocity. The proposed model was incorporated into a computer aided engineering simulation package C-Mold. Short-glass fiber/polyamide-6 composites were produced in the injection molding with the fiber weight concentration of 30 wt.%, 50 wt.%, and 70 wt.%. The physical properties of these composites were examined, and their fiber orientation distributions were measured by micro-computed-tomography equipment μ-CT. The simulation results showed a good agreement with experiment results.

  8. Monitoring Fiber Stress During Curing of Single Fiber Glass- and Graphite-Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Madhukar, Madhu S.; Kosuri, Ranga P.; Bowles, Kenneth J.

    1994-01-01

    The difference in thermal expansion characteristics of epoxy matrices and graphite fibers can produce significant residual stresses in the fibers during curing of composite materials. Tests on single fiber glass-epoxy and graphite-epoxy composite specimens were conducted in which the glass and graphite fibers were preloaded in tension, and the epoxy matrix was cast around the fibers. The fiber tension was monitored while the matrix was placed around the fiber and subjected to the temperature-time curing cycle. Two mechanisms responsible for producing stress in embedded fibers were identified as matrix thermal expansion and contraction and matrix cure shrinkage. A simple analysis based on the change in fiber tension during the curing cycle was conducted to estimate the produced stresses. Experimental results on single fiber glass- and graphite-epoxy composites show that the fiber was subjected to significant tensile stresses when the temperature was raised from the first to the second dwell period. When initial fiber pretension is about 60 percent of the fiber failure load, these curing-induced stresses can cause tensile fracture of the embedded fiber.

  9. Influence of Laser Activated Irrigation with two Erbium Lasers on Bond Strength of Inidividually Formed Fiber Reinforced Composite Posts to Root Canal Dentin

    PubMed Central

    Parčina, Ivana; Miletić, Ivana; Ionescu, Andrei C.; Brambilla, Eugenio; Gabrić, Dragana; Baraba, Anja

    2016-01-01

    Objective The aim of this in vitro study was to investigate the effect of laser activated irrigation (LAI) using two erbium lasers on bond strength of individually formed fiber-reinforced composite (FRC) posts to root canal dentin. Materials and methods Twenty-seven single-rooted human teeth were endodontically treated and after post space preparation divided into three groups (n=9 per group), according to the pre-treatment of post space preparation: 1) Conventional syringe irrigation (CSI) and saline; 2) Er.YAG photon-induced photoacoustic streaming (PIPS) technique and saline; 3) Er,Cr:YSGG activated irrigation with RFT2 tip. Two specimens from each group were used for SEM analysis. The remaining specimens (n=7 per group) received individually formed FRC post, everStick POST, luted with self-adhesive cement, G-CEM LinkAce. After cementation, the roots were perpendicularly sectioned into 1 mm thin sections and a push-out test was carried out (0.5 mm/min). The data were calculated as megapascals and were log transformed and statistically analysed using one-way ANOVA at the level of significance set at 5%. Results In the control group, the smear layer was still present. In the Er:YAG group, the smear layer was removed. In the Er,Cr:YSGG group, the smear layer was partially removed. The Er,Cr:YSGG group achieved the highest bond strength values, followed by the control group and then the Er:YAG group, but no statistically significant difference was found in bond strength values in the tested group of post space pretreatment (p=0.564). Conclusions LAI using two erbium lasers, with PIPS or RFT2 tip, did not affect the bond strength of individually formed FRC posts to root canal dentin. PMID:28275279

  10. Computational simulation of intermingled-fiber hybrid composite behavior

    NASA Technical Reports Server (NTRS)

    Mital, Subodh K.; Chamis, Christos C.

    1992-01-01

    Three-dimensional finite-element analysis and a micromechanics based computer code ICAN (Integrated Composite Analyzer) are used to predict the composite properties and microstresses of a unidirectional graphite/epoxy primary composite with varying percentages of S-glass fibers used as hydridizing fibers at a total fiber volume of 0.54. The three-dimensional finite-element model used in the analyses consists of a group of nine fibers, all unidirectional, in a three-by-three unit cell array. There is generally good agreement between the composite properties and microstresses obtained from both methods. The results indicate that the finite-element methods and the micromechanics equations embedded in the ICAN computer code can be used to obtain the properties of intermingled fiber hybrid composites needed for the analysis/design of hybrid composite structures. However, the finite-element model should be big enough to be able to simulate the conditions assumed in the micromechanics equations.

  11. Interfacial reactions in titanium/SCS fiber composites during fabrication

    NASA Technical Reports Server (NTRS)

    Warrier, S. G.; Lin, R. Y.

    1993-01-01

    The objectrive of the study was to determine the effect of titanium concentration and different pyrocarbon fiber coatings on the morphology and the extent of fiber-matrix reactions in Ti/SiC composites fabricated by rapid infrared forming (RIF). It is found that the extent of fiber-matrix reactions in Ti/SiC composites fabricated by the RIF technique is noticeably affected by both an increase in Ti content and by the processing temperature. Uncoated SiC fibers extensively react with the titanium alloy matrix at 1200 C, whereas no reaction occurs when coated SiC fibers are used.

  12. Study of Natural Fiber Breakage during Composite Processing

    NASA Astrophysics Data System (ADS)

    Quijano-Solis, Carlos Jafet

    Biofiber-thermoplastic composites have gained considerable importance in the last century. To provide mechanical reinforcement to the polymer, fibers must be larger than a critical aspect ratio (length-to-width ratio). However, biofibers undergo breakage in length or width during processing, affecting their final aspect ratio in the composites. In this study, influence on biofiber breakage by factors related to processing conditions, fiber morphology and the flow type was investigated through: a) experiments using an internal mixer, a twin-screw extruder (TSE) or a capillary rheometer; and b) a Monte Carlo computer simulation. Composites of thermomechanical fibers of aspen or wheat straw mixed with polypropylene were studied. Internal mixer experiments analyzed wheat straw and two batches of aspen fibers, named AL and AS. AL fibers had longer average length. Processing variables included the temperature, rotors speed and fiber concentration. TSE experiments studied AL and AS fiber composites under various screws speeds, temperatures and feeding rates of the polymer and fibers. Capillary rheometers experiments determined AL fiber breakage in shear and elongational flows for composites processed at different concentrations, temperatures, and strain rates. Finally, the internal mixer experimental results where compared to Monte Carlo simulation predictions. The simulation focused on fiber length breakage due to fiber-polymer interactions. Internal mixer results showed that final fiber average length depended almost solely on processing conditions while final fiber average width depended on both processing conditions and initial fiber morphology. In the TSE, processing conditions as well as initial fiber length influenced final average length. TSE results showed that the fiber concentration regime seems to influence the effect of processing variables on fiber breakage. Capillary rheometer experiments demonstrated that biofiber breakage happens in both elongational and

  13. Plasma-grafting polymerization on carbon fibers and its effect on their composite properties

    NASA Astrophysics Data System (ADS)

    Zhang, Huanxia; Li, Wei

    2015-11-01

    Interfacial adhesion between matrix and fibers plays a crucial role in controlling the performance of composites. Carbon fibers have the major constraint of chemical interness and hence have limited adhesion with the matrix. Surface treatment of fibers is the best solution to this problem. In this work, carbon fibers were activated by plasma and grafting polymerization. The grafting ratio of polymerization was obtained by acid-base titration. The chemical and physical changes induced by the treatments on carbon fiber surface was examined using contact angle measurements, X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) technique. The interfacial adhesion of CF/EP (carbon fiber/epoxy) composites were analyzed by a single fiber composite (SFC) for filament fragmentation test. Experimental results show that the grafting rate was not only the function of the plasma-treat time but also the concentration of the grafting polymerization. The oxygen-containing groups (such as Csbnd O, Cdbnd O, and Osbnd Cdbnd O) and the interfacial shear strength (IFSS) of the plasma-grafting carbon fiber increased more significantly than the carbon fiber without plasma treatment grafted with MAH. This demonstrates that the surfaces of the carbon fiber samples are more active, hydrophilic, and rough after plasma-grafting treatments using a DBD operating in ambient argon mixture with oxygen. With DBD (dielectric barrier discharges) operating in ambient argon mixture with oxygen, the more active, hydrophilic, and rough surface was obtained by the plasma-grafting treatments.

  14. Fatigue strength of woven kenaf fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Ismail, A. E.; Aziz, M. A. Che Abdul

    2015-12-01

    Nowadays, green composites provide alternative to synthetic fibers for non-bearing and load-bearing applications. According to literature review, lack of information is available on the fatigue performances especially when the woven fiber is used instead of randomly oriented fibers. In order to overcome this problem, this paper investigates the fatigue strength of different fiber orientations and number of layers of woven kenaf fiber reinforced composites. Four types of fiber orientations are used namely 0°, 15°, 30° and 45°. Additionally, two numbers of layers are also considered. It is revealed that the fatigue life has no strong relationship with the fiber orientations. For identical fiber orientations, the fatigue life can be predicted considerably using the normalized stress. However as expected, the fatigue life enhancement occur when the number of layer is increased.

  15. Some features of the fabrication of multilayer fiber composites by explosive welding

    NASA Technical Reports Server (NTRS)

    Kotov, V. A.; Mikhaylov, A. N.; Cabelka, D.

    1985-01-01

    The fabrication of multilayer fiber composites by explosive welding is characterized by intense plastic deformation of the matrix material as it fills the spaces between fibers and by high velocity of the collision between matrix layers due to acceleration in the channels between fibers. The plastic deformation of the matrix layers and fiber-matrix friction provide mechanical and thermal activation of the contact surfaces, which contributes to the formation of a bond. An important feature of the process is that the fiber-matrix adhesion strength can be varied over a wide range by varying the parameters of impulsive loading.

  16. Surface grafting of Kevlar fibers for improved interfacial properties of fiber-reinforced composites

    SciTech Connect

    Ravichandran, Vasudha.

    1991-01-01

    Matrix-specific chemical modification of the Kevlar fiber surfaces was carried out with the aim of enhancing adhesion, through covalent bonding, to selected thermoset matrix resins such as vinyl ester, unsaturated polyester and epoxy. A two-step grafting method, involving initial metalation followed by subsequent substitution, was used to graft vinyl and epoxy terminated groups onto Kevlar fiber surfaces. The physical changes in fiber surface were characterized by scanning-electron microscopy and surface area measurement and the chemical changes due to grafting were measured by contact angle measurement and neutron activation analysis; high concentrations of double bonds and epoxy groups were measured. The change in interfacial sear strength due to the surface grafting was measured by means of a single fiber pull out test. The results show a nearly twofold increase in the interfacial shear strength due to vinyl terminated grafts in the case of Kevlar/vinyl ester and Kevlar/polyester composites. Kevlar fibers containing the epoxy functionality on the surface had enhanced adhesion to epoxy matrix resin.

  17. Studies on natural fiber reinforced polymer matrix composites

    NASA Astrophysics Data System (ADS)

    Patel, R. H.; Kapatel, P. M.; Machchhar, A. D.; Kapatel, Y. A.

    2016-05-01

    Natural fiber reinforced composites show increasing importance in day to days applications because of their low cost, lightweight, easy availability, non-toxicity, biodegradability and environment friendly nature. But these fibers are hydrophilic in nature. Thus they have very low reactivity and poor compatibility with polymers. To overcome these limitations chemical modifications of the fibers have been carried out. Therefore, in the present work jute fibers have chemically modified by treating with sodium hydroxide (NaOH) solutions. These treated jute fibers have been used to fabricate jute fiber reinforced epoxy composites. Mechanical properties like tensile strength, flexural strength and impact strength have been found out. Alkali treated composites show better properties compare to untreated composites.

  18. Fiber release from impacted graphite reinforced epoxy composites

    NASA Technical Reports Server (NTRS)

    Babinsky, T. C.

    1980-01-01

    Carbon fibers released from composites by aircraft fires and crashes can cause electrical shorts and consequent equipment damage. This report investigates less vigorous release mechanisms than that previously simulated by explosive burn/blast tests. When AS/3501-6 composites are impacted by various head and weight configurations of a pendulum impactor, less than 0.2 percent by weight of the original sample is released as single fibers. Other fiber release mechanisms studied were air blasts, constant airflow, torsion, flexural, and vibration of composite samples. The full significance of the low single fiber release rates found here is to be evaluated by NASA in their aircraft vulnerability studies.

  19. Process for preparing tows from composite fiber blends

    NASA Technical Reports Server (NTRS)

    McMahon, Paul (Inventor); Chung, Tai-Shung (Inventor); Ying, Lincoln (Inventor)

    1989-01-01

    A continuous, substantially uniform tow useful in forming composite molded articles is prepared by forming a continuous tow of continuous carbon fibers, forming a continuous tow of thermoplastic polymer fibers to a selected width, uniformly and continuously spreading the carbon fiber two to a width that is essentially the same as the selected width for the thermoplastic polymer fiber tow, intermixing the tows intimately, uniformly and continuously, in a relatively tension-free state, and continuosuly withdrawing the intermixed tow.

  20. Properties study of cotton stalk fiber/gypsum composite

    SciTech Connect

    Li Guozhong; Yu Yanzhen; Zhao Zhongjian; Li Jianquan; Li Changchun

    2003-01-01

    This manuscript addresses treating cotton stalk fiber surface with styrene acrylic emulsion, which improves the interfacial combined state of cotton stalk fiber/gypsum composite effectively and improves its mechanical properties notably. Mixes less slag, ordinary Portland cement, etc., to modify gypsum base. The electron microscope was utilized to analyze and research on the effect on composite properties of the abovementioned mixtures.

  1. Directed Biosynthesis of Oriented Crystalline Cellulose for Advanced Composite Fibers

    DTIC Science & Technology

    2012-05-03

    Cellulose for Advanced Composite Fibers 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Hugh...properties will allow the synthesis of composites possessing improved strength and functionality will be investigated. The bacterial cellulose fibers will

  2. Effect of diameter of glass fibers on flexural properties of fiber-reinforced composites.

    PubMed

    Obukuro, Motofumi; Takahashi, Yutaka; Shimizu, Hiroshi

    2008-07-01

    This study investigated the effect of the diameter of glass fibers on the flexural properties of fiber-reinforced composites. Bar-shaped test specimens of highly filled fiber-reinforced composites (FRCs) and FRC of 30 vol% fiber content were made from a light-cured dimethacrylate monomer liquid (mixture of urethane dimethacrylate and triethylene glycol dimethacrylate) with silanized E-glass fibers (7, 10, 13, 16, 20, 25, 30, and 45 microm in diameter). Flexural strength and elastic modulus were measured. The flexural strength of the highly filled FRCs increased with increasing fiber diameter. In particular, the strengths of highly filled FRCs with 20-, 25-, 30-, and 45-microm-diameter fibers was significantly higher than the others (p<0.05). The flexural strength of FRC of 30 vol% fiber content increased with increasing fiber diameter, except for the FRC with 45-microm-diameter fibers; FRCs with 20-, 25-, and 30-microm-diameter fibers were significantly stronger than the others (p<0.05). Therefore, it was revealed that the diameter of glass fibers significantly affected the flexural properties of fiber-reinforced composites.

  3. Hybrid composites that retain graphite fibers on burning

    NASA Technical Reports Server (NTRS)

    House, E. E.

    1980-01-01

    A laboratory scale program was conducted to determine fiber release tendencies of graphite reinforced/resinous matrix composites currently used or projected for use in civil aircraft. In the event of an aircraft crash and burn situation, there is concern that graphite fibers will be released from the composites once the resin matrix is thermally decomposed. Hybridizing concepts aimed at preventing fiber release on burning were postulated and their effectiveness evaluated under fire, impact, and air flow during an aircraft crash.

  4. Fuzzy Fiber Sensors for Structural Composite Health Monitoring (Preprint)

    DTIC Science & Technology

    2011-12-01

    submitted to Composite Science and Technology. 14. ABSTRACT Fibers used in composite materials can be coated with carbon nanotubes in a configuration...to provide a self-diagnosing function. Schulte’s group has reported that measuring changes in electrical resistance of carbon fiber reinforced...panels, 12″ × 12″, were fabricated with IM7/977-2 prepreg unidirectional carbon fiber tape. Three panels each were prepared with unidirectional [0]8 or

  5. Carbon fiber composites for cryogenic filament-wound vessels

    NASA Technical Reports Server (NTRS)

    Larsen, J. V.; Simon, R. A.

    1972-01-01

    Advanced unidirectional and bidirectional carbon fiber/epoxy resin composites were evaluated for physical and mechanical properties over a cryogenic to room temperature range for potential application to cryogenic vessels. The results showed that Courtaulds HTS carbon fiber was the superior fiber in terms of cryogenic strength properties in epoxy composites. Of the resin systems tested in ring composites, CTBN/ERLB 4617 exhibited the highest composite strengths at cryogenic temperatures, but very low interlaminar shear strengths at room temperature. Tests of unidirectional and bidirectional composite bars showed that the Epon 828/Empol 1040 resin was better at all test temperatures. Neither fatigue cycling nor thermal shock had a significant effect on composite strengths or moduli. Thermal expansion measurements gave negative values in the fiber direction and positive values in the transverse direction of the composites.

  6. Polyester composites reinforced with corona-treated fibers from pine, eucalyptus and sugarcane bagasse

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study aims to evaluate plant fibers that were surface activated with NaOH and corona discharge before incorporating in ortho unsaturated polyester-based fiber composites. It demonstrates the potential use of lignocellulosic particles, especially eucalyptus that presented the higher values for a...

  7. Renewable agricultural fibers as reinforcing fillers in plastics: Mechanical properties of kenaf fiber-polypropylene composites

    SciTech Connect

    Sanadi, A.R.; Caulfield, D.F.; Jacobson, R.E.; Rowell, R.M. |

    1995-05-01

    Kenaf (Hibiscus cannabinus) is a fast growing annual growth plant that is harvested for its bast fibers. These fibers have excellent specific properties and have potential to be outstanding reinforcing fillers in plastics. In these experiments, the fibers and polypropylene (PP) were blended in a thermokinetic mixer and then injection molded, with the fiber weight fractions varying to 60%. A maleated polypropylene was used to improve the interaction and adhesion between the nonpolar matrix and the polar lignocellulosic fibers. The specific tensile and flexural moduli of a 50% by weight (39% by volume) of kenaf-PP composite compare favorably with a 40% by weight of glass fiber-PP injection-molded composite. These results suggest that kenaf fibers are a viable alternative to inorganic/mineral-based reinforcing fibers as long as the right processing conditions are used and they are used in applications where the higher water absorption is not critical.

  8. Renewable agricultural fibers as reinforcing fillers in plastics: Mechanical properties of Kenaf fiber-polpyropylene composites

    SciTech Connect

    Sanadi, A.R.; Caulfield, D.F.; Jacobson, R.E.

    1995-12-01

    Kenaf (Hibiscus Cannabinus) is a fast growing annual growth plant that is harvested for its bast fibers. These fibers have excellent specific properties and have potential to be outstanding reinforcing fillers in plastics. In our experiments, the fibers and polypropylene (PP) were blended in a thermokinetic mixer and then injection molded, with the fiber weight fractions varying to 60%. A maleated polypropylene was used to improve the interaction and adhesion between the non-polar matrix and the polar lignocellulosic fibers. The specific tensile and flexural moduli of a 50 % by volume (39 % by volume) of kenaf-PP composites compares favorably with a 40 % by weight of glass fiber-PP injection molded composites, These results suggest that kenaf fibers are a viable alternative to inorganic/mineral based reinforcing fibers as long as the right processing conditions are used and for applications where the higher water absorption is not critical.

  9. Fabrication and evaluation of low fiber content alumina fiber/aluminum composites

    NASA Technical Reports Server (NTRS)

    Hack, J. E.; Strempek, G. C.

    1980-01-01

    The mechanical fabrication of low volume percent fiber, polycrystalline alumina fiber reinforced aluminum composites was accomplished. Wire preform material was prepared by liquid-metal infiltration of alumina fiber bundles. The wires were subsequently encapsulated with aluminum foil and fabricated into bulk composite material by hot-drawing. Extensive mechanical, thermal and chemical testing was conducted on preform and bulk material to develop a process and material data base. In addition, a preliminary investigation of mechanical forming of bulk alumina fiber reinforced aluminum composite material was conducted.

  10. Nondestructive Evaluation of Fiber Reinforced Composites. A State-of-the-Art Survey. Volume 1. NDE of Graphite Fiber-Reinforced Plastic Composites. Part 1. Radiography and Ultrasonics

    DTIC Science & Technology

    1982-03-01

    composites (Ref. 1) and by the can be large, and secondary operations can be mini- Army on glass fiber reinforced composites (Ref. 2). This mized. Composites...structural characteristics of ceramic materials, and updates of carbon/carbon com- composites. posites and glass fiber reinforced composites. Because of...the large amount of literature available on graphite While glass fiber reinforced plastic composites fiber reinforced composites, this particular volume

  11. Oxidation-resistant interfacial coatings for continuous fiber ceramic composites

    SciTech Connect

    Stinton, D.P.; Besmann, T.M.; Bleier, A.; Shanmugham, S.; Liaw, P.K.

    1995-08-01

    Continuous fiber ceramic composites mechanical behavior are influenced by the bonding characteristics between the fiber and the matrix. Finite modeling studies suggest that a low-modulus interfacial coating material will be effective in reducing the residual thermal stresses that are generated upon cooling from processing temperatures. Nicalon{trademark}/SiC composites with carbon, alumina and mullite interfacial coatings were fabricated with the SiC matrix deposited using a forced-flow, thermal gradient chemical vapor infiltration process. Composites with mullite interfacial coatings exhibited considerable fiber pull-out even after oxidation and have potential as a composite system.

  12. Surface characterization of LDEF carbon fiber/polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Grammer, Holly L.; Wightman, James P.; Young, Philip R.; Slemp, Wayne S.

    1995-01-01

    XPS (x-ray photoelectron spectroscopy) and SEM (scanning electron microscopy) analysis of both carbon fiber/epoxy matrix and carbon fiber/polysulfone matrix composites revealed significant changes in the surface composition as a result of exposure to low-earth orbit. The carbon 1s curve fit XPS analysis in conjunction with the SEM photomicrographs revealed significant erosion of the polymer matrix resins by atomic oxygen to expose the carbon fibers of the composite samples. This erosion effect on the composites was seen after 10 months in orbit and was even more obvious after 69 months.

  13. Interface Characterization in Fiber-Reinforced Polymer-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Naya, F.; Molina-Aldareguía, J. M.; Lopes, C. S.; González, C.; LLorca, J.

    2017-01-01

    A novel methodology is presented and applied to measure the shear interface strength of fiber-reinforced polymers. The strategy is based in fiber push-in tests carried out on the central fiber of highly-packed fiber clusters with hexagonal symmetry, and it is supported by a detailed finite element analysis of the push-in test to account for the influence of hygrothermal residual stresses, fiber constraint and fiber anisotropy on the interface strength. Examples of application are presented to determine the shear interface strength in carbon and glass fiber composites reinforced with either thermoset or thermoplastic matrices. In addition, the influence of the environment (either dry or wet conditions) on the interface strength in C/epoxy composites is demonstrated.

  14. Resin impregnation process for producing a resin-fiber composite

    NASA Technical Reports Server (NTRS)

    Palmer, Raymond J. (Inventor); Moore, William E. (Inventor)

    1994-01-01

    Process for vacuum impregnation of a dry fiber reinforcement with a curable resin to produce a resin-fiber composite, by drawing a vacuum to permit flow of curable liquid resin into and through a fiber reinforcement to impregnate same and curing the resin-impregnated fiber reinforcement at a sufficient temperature and pressure to effect final curing. Both vacuum and positive pressure, e.g. autoclave pressure, are applied to the dry fiber reinforcement prior to application of heat and prior to any resin flow to compact the dry fiber reinforcement, and produce a resin-fiber composite of reduced weight, thickness and resin content, and improved mechanical properties. Preferably both a vacuum and positive pressure, e.g. autoclave pressure, are also applied during final curing.

  15. Estimating rock and slag wool fiber dissolution rate from composition.

    PubMed

    Eastes, W; Potter, R M; Hadley, J G

    2000-12-01

    A method was tested for calculating the dissolution rate constant in the lung for a wide variety of synthetic vitreous silicate fibers from the oxide composition in weight percent. It is based upon expressing the logarithm of the dissolution rate as a linear function of the composition and using a different set of coefficients for different types of fibers. The method was applied to 29 fiber compositions including rock and slag fibers as well as refractory ceramic and special-purpose, thin E-glass fibers and borosilicate glass fibers for which in vivo measurements have been carried out. These fibers had dissolution rates that ranged over a factor of about 400, and the calculated dissolution rates agreed with the in vivo values typically within a factor of 4. The method presented here is similar to one developed previously for borosilicate glass fibers that was accurate to a factor of 1.25. The present coefficients work over a much broader range of composition than the borosilicate ones but with less accuracy. The dissolution rate constant of a fiber may be used to estimate whether disease would occur in animal inhalation or intraperitoneal injection studies of that fiber.

  16. Fiber shape effects on metal matrix composite behavior

    NASA Technical Reports Server (NTRS)

    Brown, H. C.; Lee, H.-J.; Chamis, C. C.

    1992-01-01

    The effects of different fiber shapes on the behavior of a SiC/Ti-15 metal matrix composite is computationally simulated. A three-dimensional finite element model consisting of a group of nine unidirectional fibers is used in the analysis. The model is employed to represent five different fiber shapes: a circle, an ellipse, a kidney, and two different cross shapes. The distribution of microstresses and the composite material properties, such as moduli, coefficients of thermal expansion, and Poisson's ratios, are obtained from the finite element analysis for the various fiber shapes. Comparisons of these results are used to determine the sensitivity of the composite behavior to the different fiber shapes and assess their potential benefits. No clear benefits result from different fiber shapes though there are some increases/decreases in isolated properties.

  17. Fabrication of Gelatin-Based Electrospun Composite Fibers for Anti-Bacterial Properties and Protein Adsorption.

    PubMed

    Gao, Ya; Wang, Yingbo; Wang, Yimin; Cui, Wenguo

    2016-10-21

    A major goal of biomimetics is the development of chemical compositions and structures that simulate the extracellular matrix. In this study, gelatin-based electrospun composite fibrous membranes were prepared by electrospinning to generate bone scaffold materials. The gelatin-based multicomponent composite fibers were fabricated using co-electrospinning, and the composite fibers of chitosan (CS), gelatin (Gel), hydroxyapatite (HA), and graphene oxide (GO) were successfully fabricated for multi-function characteristics of biomimetic scaffolds. The effect of component concentration on composite fiber morphology, antibacterial properties, and protein adsorption were investigated. Composite fibers exhibited effective antibacterial activity against Staphylococcus aureus and Escherichia coli. The study observed that the composite fibers have higher adsorption capacities of bovine serum albumin (BSA) at pH 5.32-6.00 than at pH 3.90-4.50 or 7.35. The protein adsorption on the surface of the composite fiber increased as the initial BSA concentration increased. The surface of the composite reached adsorption equilibrium at 20 min. These results have specific applications for the development of bone scaffold materials, and broad implications in the field of tissue engineering.

  18. Fabrication of Gelatin-Based Electrospun Composite Fibers for Anti-Bacterial Properties and Protein Adsorption

    PubMed Central

    Gao, Ya; Wang, Yingbo; Wang, Yimin; Cui, Wenguo

    2016-01-01

    A major goal of biomimetics is the development of chemical compositions and structures that simulate the extracellular matrix. In this study, gelatin-based electrospun composite fibrous membranes were prepared by electrospinning to generate bone scaffold materials. The gelatin-based multicomponent composite fibers were fabricated using co-electrospinning, and the composite fibers of chitosan (CS), gelatin (Gel), hydroxyapatite (HA), and graphene oxide (GO) were successfully fabricated for multi-function characteristics of biomimetic scaffolds. The effect of component concentration on composite fiber morphology, antibacterial properties, and protein adsorption were investigated. Composite fibers exhibited effective antibacterial activity against Staphylococcus aureus and Escherichia coli. The study observed that the composite fibers have higher adsorption capacities of bovine serum albumin (BSA) at pH 5.32–6.00 than at pH 3.90–4.50 or 7.35. The protein adsorption on the surface of the composite fiber increased as the initial BSA concentration increased. The surface of the composite reached adsorption equilibrium at 20 min. These results have specific applications for the development of bone scaffold materials, and broad implications in the field of tissue engineering. PMID:27775645

  19. Microscopic and macroscopic instabilities in hyperelastic fiber composites

    NASA Astrophysics Data System (ADS)

    Slesarenko, Viacheslav; Rudykh, Stephan

    2017-02-01

    In this paper, we study the interplay between macroscopic and microscopic instabilities in 3D periodic fiber reinforced composites undergoing large deformations. We employ the Bloch-Floquet analysis to determine the onset of microscopic instabilities for composites with hyperelastic constituents. We show that the primary mode of buckling in the fiber composites is determined by the volume fraction of fibers and the contrast between elastic moduli of fiber and matrix phases. We find that for composites with volume fraction of fibers exceeding a threshold value, which depends on elastic modulus contrast, the primary buckling mode corresponds to the long wave or macroscopic instability. However, composites with a lower amount of fibers experience microscopic instabilities corresponding to wavy or helical buckling shapes. Buckling modes and critical wavelengths are shown to be highly tunable by material composition. A comparison between the instability behavior of 3D fiber composites and laminates, subjected to uniaxial compression, reveals the significant differences in critical strains, wavelengths, and transition points from macro- to microscopic instabilities in these composites.

  20. Creep behavior of tungsten fiber reinforced niobium metal matrix composites

    NASA Technical Reports Server (NTRS)

    Grobstein, T. L.

    1989-01-01

    Tungsten fiber reinforced niobium metal matrix composites were evaluated for use in space nuclear power conversion systems. The composite panels were fabricated using the arc-spray monotape technique at the NASA Lewis Research Center. The creep behavior of W/Nb composite material was determined at 1400 and 1500 K in vacuum over a wide range of applied loads. The time to reach 1 percent strain, the time to rupture, and the minimum creep rate were measured. The W/Nb composites exceeded the properties of monolithic niobium alloys significantly even when compared on a strength to density basis. The effect of fiber orientation on the creep strength also was evaluated. Kirkendall void formation was observed at the fiber/matrix interface; the void distribution differed depending on the fiber orientation relative to the stress axis. A relationship was found between the fiber orientation and the creep strength.

  1. Composite submarine cable containing optical fibers and pilot pairs

    NASA Astrophysics Data System (ADS)

    Matsuo, T.; Kobayashi, K.; Aoto, K.; Higashimoto, T.; Amano, Y.

    1986-11-01

    Demands for composite cables containing optical fibers and multi pairs have been increasing for an economical and a systematical point of view. In reply to such demands, we have developed and manufactured a composite submarine cable containing 8 GI type fibers and 50 pairs of 0.9 mm copper conductors. This paper describes the construction of the composite cable and the loss characteristics of the optical fibers against various mechanical forces due to the armouring process and the installation and also describes the evaluation of the life time of the optical fibers determined by various tensions and remained stress in fibers. We confirm the reliability of the newly developed composite submarine cable for an actual use.

  2. Glass matrix composites. I - Graphite fiber reinforced glass

    NASA Technical Reports Server (NTRS)

    Prewo, K. M.; Bacon, J. F.

    1978-01-01

    An experimental program is described in which graphite fibers of Hercules HMS and HTS, Thornel 300, and Celanese DG-12 were used to reinforce, both uniaxially and biaxially, borosilicate pyrex glass. Composite flexural strength distribution, strength as a function of test temperature, fracture toughness and oxidative stability were determined and shown to be primarily a function of fiber type and the quality of fiber-matrix bond formed during composite fabrication. It is demonstrated that the graphite fiber reinforced glass system offers unique possibilities as a high performance structural material.

  3. Investigation of fatigue strength of multilayer advanced fiber composites

    NASA Technical Reports Server (NTRS)

    Thornton, H. R.; Kozik, T. J.

    1974-01-01

    The analytical characterization of a multilayer fiber composite plate (without hole) was accomplished for both static and dynamic loading conditions using the finite difference technique. Thornel 300/5208 composites with and without holes were subjected to static and tensile fatigue testing. Five (5) fiber orientations were submitted to test. Tensile fatigue testing also included three (3) loading conditions and two (2) frequencies. The low-cycle test specimens demonstrated a shorter tensile fatigue life than the high-cycle test specimens. Failure surfaces demonstrated effect of testing conditions. Secondary failure mechanisms, such as: delamination, fiber breakage, and edge fiber delamination were present. Longitudinal delamination between plies also occurred in these specimens.

  4. Effects of short glass fibers on the mechanical properties of glass fiber fabric/PVC composites

    NASA Astrophysics Data System (ADS)

    Park, Su Bin; Lee, Joon Seok; Kim, Jong Won

    2017-03-01

    Fiber-reinforced composites using glass fiber and polyvinylchloride (PVC) have been used widely as architectural materials, electrical applications, automotive sector, and packing materials because of their reasonable price, chemical resistance, and dimensional stability. On the other hand, most of the composites are short fiber-reinforced PVC composites. In particular, in the case of fabric reinforced composites, undulated regions exist where there is only resin due to the characteristics of the weave construction, which causes a decrease in strength. In this paper, PVC was reinforced with chopped glass fibers with different lengths and contents to produce glass fiber fabric/PVC composites. The physical properties of the composites, such as thickness, density, volume fraction (V f), and void content (V c) were identified. The mechanical properties, including tensile strength, flexural strength, and interlaminar shear strength (ILSS) were also identified. A cross section of the composites was observed by scanning electron microscopy. Compared to the fabric reinforced composite without chopped glass fiber, the tensile strength was increased by 3.90% (from 316.15 MPa to 328.48 MPa at 5 wt.% chopped fibers with 3 mm length), flexural strength was increased by 7.15% (from 87.07 MPa to 93.30 MPa at 10 wt.% chopped fibers with 2 mm length), and ILSS was increased by 8.71% (from 7.34 MPa to 7.98 MPa at 10 wt.% chopped fibers with 1 mm length). Therefore, the critical fiber aspect ratio of chopped fiber works differently on each of the three mechanical properties.

  5. Ohmic heating of composite candidate graphite-fiber/coating combinations

    NASA Technical Reports Server (NTRS)

    Abel, Phillip B.

    1993-01-01

    Graphite fibers were heated in a vacuum to test the adhesion of deposited films at elevated temperatures. Copper-clad fibers and fibers with bilayer coatings were resistance heated by a direct-current power supply. Where possible, peak temperatures were measured with a long-focal-length optical pyrometer. Fiber surface wetting or nonwetting behavior could be clearly observed after this relatively quick and simple procedure. These results are discussed in the context of creating composites of graphite fibers in a copper matrix.

  6. Natural Kenaf Fiber Reinforced Composites as Engineered Structural Materials

    NASA Astrophysics Data System (ADS)

    Dittenber, David B.

    The objective of this work was to provide a comprehensive evaluation of natural fiber reinforced polymer (NFRP)'s ability to act as a structural material. As a chemical treatment, aligned kenaf fibers were treated with sodium hydroxide (alkalization) in different concentrations and durations and then manufactured into kenaf fiber / vinyl ester composite plates. Single fiber tensile properties and composite flexural properties, both in dry and saturated environments, were assessed. Based on ASTM standard testing, a comparison of flexural, tensile, compressive, and shear mechanical properties was also made between an untreated kenaf fiber reinforced composite, a chemically treated kenaf fiber reinforced composite, a glass fiber reinforced composite, and oriented strand board (OSB). The mechanical properties were evaluated for dry samples, samples immersed in water for 50 hours, and samples immersed in water until saturation (~2700 hours). Since NFRPs are more vulnerable to environmental effects than synthetic fiber composites, a series of weathering and environmental tests were conducted on the kenaf fiber composites. The environmental conditions studied include real-time outdoor weathering, elevated temperatures, immersion in different pH solutions, and UV exposure. In all of these tests, degradation was found to be more pronounced in the NFRPs than in the glass FRPs; however, in nearly every case the degradation was less than 50% of the flexural strength or stiffness. Using a method of overlapping and meshing discontinuous fiber ends, large mats of fiber bundles were manufactured into composite facesheets for structural insulated panels (SIPs). The polyisocyanurate foam cores proved to be poorly matched to the strength and stiffness of the NFRP facesheets, leading to premature core shear or delamination failures in both flexure and compressive testing. The NFRPs were found to match well with the theoretical stiffness prediction methods of classical lamination

  7. Monitoring Damage Propagation in Glass Fiber Composites Using Carbon Nanofibers.

    PubMed

    Al-Sabagh, Ahmed; Taha, Eman; Kandil, Usama; Nasr, Gamal-Abdelnaser; Reda Taha, Mahmoud

    2016-09-10

    In this work, we report the potential use of novel carbon nanofibers (CNFs), dispersed during fabrication of glass fiber composites to monitor damage propagation under static loading. The use of CNFs enables a transformation of the typically non-conductive glass fiber composites into new fiber composites with appreciable electrical conductivity. The percolation limit of CNFs/epoxy nanocomposites was first quantified. The electromechanical responses of glass fiber composites fabricated using CNFs/epoxy nanocomposite were examined under static tension loads. The experimental observations showed a nonlinear change of electrical conductivity of glass fiber composites incorporating CNFs versus the stress level under static load. Microstructural investigations proved the ability of CNFs to alter the polymer matrix and to produce a new polymer nanocomposite with a connected nanofiber network with improved electrical properties and different mechanical properties compared with the neat epoxy. It is concluded that incorporating CNFs during fabrication of glass fiber composites can provide an innovative means of self-sensing that will allow damage propagation to be monitored in glass fiber composites.

  8. Monitoring Damage Propagation in Glass Fiber Composites Using Carbon Nanofibers

    PubMed Central

    Al-Sabagh, Ahmed; Taha, Eman; Kandil, Usama; Nasr, Gamal-Abdelnaser; Reda Taha, Mahmoud

    2016-01-01

    In this work, we report the potential use of novel carbon nanofibers (CNFs), dispersed during fabrication of glass fiber composites to monitor damage propagation under static loading. The use of CNFs enables a transformation of the typically non-conductive glass fiber composites into new fiber composites with appreciable electrical conductivity. The percolation limit of CNFs/epoxy nanocomposites was first quantified. The electromechanical responses of glass fiber composites fabricated using CNFs/epoxy nanocomposite were examined under static tension loads. The experimental observations showed a nonlinear change of electrical conductivity of glass fiber composites incorporating CNFs versus the stress level under static load. Microstructural investigations proved the ability of CNFs to alter the polymer matrix and to produce a new polymer nanocomposite with a connected nanofiber network with improved electrical properties and different mechanical properties compared with the neat epoxy. It is concluded that incorporating CNFs during fabrication of glass fiber composites can provide an innovative means of self-sensing that will allow damage propagation to be monitored in glass fiber composites. PMID:28335298

  9. Mechanical Properties in a Bamboo Fiber/PBS Biodegradable Composite

    NASA Astrophysics Data System (ADS)

    Ogihara, Shinji; Okada, Akihisa; Kobayashi, Satoshi

    In recent years, biodegradable plastics which have low effect on environment have been developed. However, many of them have lower mechanical properties than conventional engineering plastics. Reinforcing them with a natural fiber is one of reinforcing methods without a loss of their biodegradability. In the present study, we use a bamboo fiber as the reinforcement and polybutylenesuccinate (PBS) as the matrix. We fabricate long fiber unidirectional composites and cross-ply laminate with different fiber weight fractions (10, 20, 30, 40 and 50wt%). We conduct tensile tests to evaluate the mechanical properties of these composites. In addition, we measure bamboo fiber strength distribution. We discuss the experimentally-obtained properties based on the mechanical properties of the constituent materials. Young's modulus and tensile strength in unidirectional composite and cross-ply laminate increase with increasing fiber weight fraction. However, the strain at fracture showed decreasing tendency. Young's modulus in fiber and fiber transverse directions are predictable by the rules of mixture. Tensile strength in fiber direction is lower than Curtin's prediction of strength which considers distribution of fiber strength. Young's modulus in cross-ply laminate is predictable by the laminate theory. However, analytical prediction of Poisson's ratio in cross-ply laminate by the laminate theory is lower than the experimental results.

  10. Electrospun Nanofiber Coating of Fiber Materials: A Composite Toughening Approach

    NASA Technical Reports Server (NTRS)

    Kohlman, Lee W.; Roberts, Gary D.

    2012-01-01

    Textile-based composites could significantly benefit from local toughening using nanofiber coatings. Nanofibers, thermoplastic or otherwise, can be applied to the surface of the fiber tow bundle, achieving toughening of the fiber tow contact surfaces, resulting in tougher and more damage-resistant/tolerant composite structures. The same technique could also be applied to other technologies such as tape laying, fiber placement, or filament winding operations. Other modifications to the composite properties such as thermal and electrical conductivity could be made through selection of appropriate nanofiber material. Control of the needle electric potential, precursor solution, ambient temperature, ambient humidity, airflow, etc., are used to vary the diameter and nanofiber coating morphology as needed. This method produces a product with a toughening agent applied to the fiber tow or other continuous composite precursor material where it is needed (at interfaces and boundaries) without interfering with other composite processing characteristics.

  11. A comparison of fiber effects on polymer matrix composite oxidation

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.

    1991-01-01

    A number of thermo-oxidative stability studies addressing the effects of fiber reinforcement on composite thermal stability and influence of geometry on the results of aging studies were performed at NASA-Lewis. The information presented herein, a compilation of some results from these studies, shows the influence of the reinforcement fibers on the oxidative degradation of various PMR-15 composites. Reinforcement of graphite and ceramics were studied and three composite oxidation mechanisms were observed. One was a dominant attack of the reinforcement fiber, the second was the aggressive oxidation of the matrix material, and the third was interfacial degradation.

  12. Simulations of Fiber Distribution Effects in Fiber-Reinforced Cement Composites

    SciTech Connect

    Bolander, John E.; Lim, Yun Mook

    2008-02-15

    This paper describes a lattice model for coupled moisture transport/stress analyses of fiber-reinforced cement composites (FRCC). Each fiber, and its interface with the matrix material, is explicitly represented within the three-dimensional material volume. This enables the direct study of fiber orientation and distribution effects on composite performance. Realistic, nonuniform fiber distributions can be specified as model input. Basic applications of the model are presented, with emphasis toward simulating the durability mechanics of FRCC exposed to drying environments. The modeling of functionally graded FRCC is an obvious potential extension of this work.

  13. Simulations of Fiber Distribution Effects in Fiber-Reinforced Cement Composites

    NASA Astrophysics Data System (ADS)

    Bolander, John E.; Lim, Yun Mook

    2008-02-01

    This paper describes a lattice model for coupled moisture transport/stress analyses of fiber-reinforced cement composites (FRCC). Each fiber, and its interface with the matrix material, is explicitly represented within the three-dimensional material volume. This enables the direct study of fiber orientation and distribution effects on composite performance. Realistic, nonuniform fiber distributions can be specified as model input. Basic applications of the model are presented, with emphasis toward simulating the durability mechanics of FRCC exposed to drying environments. The modeling of functionally graded FRCC is an obvious potential extension of this work.

  14. High-performance fiber/epoxy composite pressure vessels

    NASA Technical Reports Server (NTRS)

    Chiao, T. T.; Hamstad, M. A.; Jessop, E. S.; Toland, R. H.

    1978-01-01

    Activities described include: (1) determining the applicability of an ultrahigh-strength graphite fiber to composite pressure vessels; (2) defining the fatigue performance of thin-titanium-lined, high-strength graphite/epoxy pressure vessel; (3) selecting epoxy resin systems suitable for filament winding; (4) studying the fatigue life potential of Kevlar 49/epoxy pressure vessels; and (5) developing polymer liners for composite pressure vessels. Kevlar 49/epoxy and graphite fiber/epoxy pressure vessels, 10.2 cm in diameter, some with aluminum liners and some with alternation layers of rubber and polymer were fabricated. To determine liner performance, vessels were subjected to gas permeation tests, fatigue cycling, and burst tests, measuring composite performance, fatigue life, and leak rates. Both the metal and the rubber/polymer liner performed well. Proportionately larger pressure vessels (20.3 and 38 cm in diameter) were made and subjected to the same tests. In these larger vessels, line leakage problems with both liners developed the causes of the leaks were identified and some solutions to such liner problems are recommended.

  15. Temperature and moisture effects on selected properties of wood fiber-cement composites

    SciTech Connect

    Blankenhorn, P.R.; Silsbee, M.R.; Blankenhorn, B.D.; DiCola, M.; Kessler, K.

    1999-05-01

    The effects of moisture cycling on the dimensional stability and temperature cycling on the compressive strength of treated wood fiber-cement composites were investigated. The Kraft softwood fibers and the hardwood fibers were treated with an aqueous acrylic emulsion or alkylalkoxysilane prior to manufacturing into wood fiber-cement composites. Moisture cycling results indicated that the treated fiber-cement composites were more resistant to deterioration than the neat cement specimens. The alkylalkoxysilane-treated fiber-cement composites resisted deterioration more than the acrylic emulsion-treated fiber-cement composites. Treated hardwood fiber-cement composites were more resistant than the treated Kraft fiber-cement composites. The effects of temperature cycling on the compressive strength values produced similar results. The treated fibers were more resistant to deterioration than the neat element. The alkylalkoxysilane-treated Kraft and hardwood fiber-cement composites had higher average compressive strength values than the acrylic emulsion-treated wood fiber-cement composites.

  16. Fiber optic ultrasound transducers with carbon/PDMS composite coatings

    NASA Astrophysics Data System (ADS)

    Mosse, Charles A.; Colchester, Richard J.; Bhachu, Davinder S.; Zhang, Edward Z.; Papakonstantinou, Ioannis; Desjardins, Adrien E.

    2014-03-01

    Novel ultrasound transducers were created with a composite of carbon nanotubes (CNTs) and polydimethylsiloxane (PDMS) that was dip coated onto the end faces of optical fibers. The CNTs were functionalized with oleylamine to allow for their dissolution in xylene, a solvent of PDMS. Ultrasound pulses were generated by illuminating the composite coating with pulsed laser light. At distances of 2 to 16 mm from the end faces, ultrasound pressures ranged from 0.81 to 0.07 MPa and from 0.27 to 0.03 MPa with 105 and 200 μm core fibers, respectively. Using an optical fiber hydrophone positioned adjacent to the coated 200 µm core optical fiber, ultrasound reflectance measurements were obtained from the outer surface of a sheep heart ventricle. The results of this study suggest that ultrasound transducers that comprise optical fibers with CNT-PDMS composite coatings may be suitable for miniature medical imaging probes.

  17. In situ composite cure monitoring using infrared transmitting optical fibers

    NASA Technical Reports Server (NTRS)

    Young, Philip R.; Druy, Mark A.; Stevenson, W. A.; Compton, David A. C.

    1988-01-01

    The development of infrared-transmitting optical fibers as sensors for monitoring the cure of advanced composite materials is reported. Fourier transform infrared spectra are presented which were remotely sensed during the cure of a high performance polyimide resin and a graphite/polyimide matrix prepreg using an 0.1 mm O.D. x 3 m chalcogenide optical fiber. A discussion of the fiber and sensor element, absorption mechanism and potential applications is presented.

  18. Oxygen Reactivity of a Carbon Fiber Composite

    SciTech Connect

    Marshall, Theron Devol; Pawelko, Robert James; Anderl, Robert Andrew; Smolik, Galen Richard

    2002-09-01

    Carbon Fiber Composites (CFCs) are often suggested as armor material for the first wall of a fusion plasma chamber due to carbon's low atomic number, high thermal conductivity, and high melting point. However, carbon is chemically reactive in air and will react with ingress air during a Loss of Vacuum Accident and release tritium fuel that has been retained in the carbon. Tritium mobilization and carbon monoxide generation via CFC oxidation are both safety concerns. This paper discusses chemical reactivity experiments that were performed using the state-of-the-art 3-dimensional NB31 CFC produced by SNECMA and a laminar reaction gas of Ar–21 vol% O2. Oxidation reaction rates were measured for CFC temperatures of 525, 600, 700, 800, 900, and 1000 °C and a 100 standard cubic centimeters per minute (sccm) Ar–O2 flow rate. Experiments were also performed at CFC temperatures of 700 and 1000 °C and a 1000 sccm Ar–O2 flow rate. Mass spectral analyses of the exhaust reaction gas suggested that carbon monoxide was the primary reaction at the CFC surface and carbon dioxide was readily produced in the exiting reaction gas. The measured reaction rates compare well with the literature and were used to produce a CFC oxidation curve that is recommended for use in fusion safety analyses.

  19. A Model for Fiber Length Attrition in Injection-Molded Long-Fiber Composites

    SciTech Connect

    TuckerIII, Charles L.; Phelps, Jay H; El-Rahman, Ahmed Abd; Kunc, Vlastimil

    2013-01-01

    Long-fiber thermoplastic (LFT) composites consist of an engineering thermoplastic matrix with glass or carbon reinforcing fibers that are initially 10 to 13 mm long. When an LFT is injection molded, flow during mold filling orients the fibers and degrades the fiber length. Fiber orientation models for injection molding are well developed, and special orientation models for LFTs have been developed. Here we present a detailed quantitative model for fiber length attrition in a flowing fiber suspension. The model tracks a discrete fiber length distribution (FLD) at each spatial node. Key equations are a conservation equation for total fiber length, and a breakage rate equation. The breakage rate is based on buckling of fibers due to hydrodynamic forces, when the fibers are in unfavorable orientations. The FLD model is combined with a mold filling simulation to predict spatial and temporal variations in fiber length distribution in a mold cavity during filling. The predictions compare well to experiments on a glassfiber/ PP LFT molding. Fiber length distributions predicted by the model are easily incorporated into micromechanics models to predict the stress-strain behavior of molded LFT materials. Author to whom correspondence should be addressed; electronic mail: ctucker@illinois.edu 1

  20. NDE Elastic Properties of Fiber-Reinforced Composite Materials

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.

    1995-01-01

    Fiber-reinforced composites are increasingly replacing metallic alloys as structural materials for primary components of fracture-critical structures. This trend is a result of the growing understanding of material behavior and recognition of the desirable properties of composites. A research program was conducted on NDE methods for determining the elastic properties of composites.

  1. Fuselage structure using advanced technology fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Robinson, R. K.; Tomlinson, H. M. (Inventor)

    1982-01-01

    A fuselage structure is described in which the skin is comprised of layers of a matrix fiber reinforced composite, with the stringers reinforced with the same composite material. The high strength to weight ratio of the composite, particularly at elevated temperatures, and its high modulus of elasticity, makes it desirable for use in airplane structures.

  2. Polyimide fiber-glass composite resists high temperatures

    NASA Technical Reports Server (NTRS)

    Gilwee, W. J.; Rosser, R. W.; Parker, J. A.

    1973-01-01

    Composites synthesized from bismaleimide have superior strength and oxidation resistance at elevated temperatures when compared with similar composites prepared with epoxy or silicon polymers of similar cost. Polyimide synthesis technique and processing method yield essentially void-free fiber-glass reinforced composites.

  3. Narrowband random lasing in a Bismuth-doped active fiber

    PubMed Central

    Lobach, Ivan A.; Kablukov, Sergey I.; Skvortsov, Mikhail I.; Podivilov, Evgeniy V.; Melkumov, Mikhail A.; Babin, Sergey A.; Dianov, Evgeny M.

    2016-01-01

    Random fiber lasers operating via the Rayleigh scattering (RS) feedback attract now a great deal of attention as they generate a high-quality unidirectional laser beam with the efficiency and performance comparable and even exceeding those of fiber lasers with conventional cavities. Similar to other random lasers, both amplification and random scattering are distributed here along the laser medium being usually represented by a kilometers-long passive fiber with Raman gain. However, it is hardly possible to utilize normal gain in conventional active fibers as they are usually short and RS is negligible. Here we report on the first demonstration of the RS-based random lasing in an active fiber. This became possible due to the implementation of a new Bi-doped fiber with an increased amplification length and RS coefficient. The realized Bi-fiber random laser generates in a specific spectral region (1.42 μm) exhibiting unique features, in particular, a much narrower linewidth than that in conventional cavity of the same length, in agreement with the developed theory. Lasers of this type have a great potential for applications as Bi-doped fibers with different host compositions enable laser operation in an extremely broad range of wavelengths, 1.15–1.78 μm. PMID:27435232

  4. Narrowband random lasing in a Bismuth-doped active fiber.

    PubMed

    Lobach, Ivan A; Kablukov, Sergey I; Skvortsov, Mikhail I; Podivilov, Evgeniy V; Melkumov, Mikhail A; Babin, Sergey A; Dianov, Evgeny M

    2016-07-20

    Random fiber lasers operating via the Rayleigh scattering (RS) feedback attract now a great deal of attention as they generate a high-quality unidirectional laser beam with the efficiency and performance comparable and even exceeding those of fiber lasers with conventional cavities. Similar to other random lasers, both amplification and random scattering are distributed here along the laser medium being usually represented by a kilometers-long passive fiber with Raman gain. However, it is hardly possible to utilize normal gain in conventional active fibers as they are usually short and RS is negligible. Here we report on the first demonstration of the RS-based random lasing in an active fiber. This became possible due to the implementation of a new Bi-doped fiber with an increased amplification length and RS coefficient. The realized Bi-fiber random laser generates in a specific spectral region (1.42 μm) exhibiting unique features, in particular, a much narrower linewidth than that in conventional cavity of the same length, in agreement with the developed theory. Lasers of this type have a great potential for applications as Bi-doped fibers with different host compositions enable laser operation in an extremely broad range of wavelengths, 1.15-1.78 μm.

  5. Narrowband random lasing in a Bismuth-doped active fiber

    NASA Astrophysics Data System (ADS)

    Lobach, Ivan A.; Kablukov, Sergey I.; Skvortsov, Mikhail I.; Podivilov, Evgeniy V.; Melkumov, Mikhail A.; Babin, Sergey A.; Dianov, Evgeny M.

    2016-07-01

    Random fiber lasers operating via the Rayleigh scattering (RS) feedback attract now a great deal of attention as they generate a high-quality unidirectional laser beam with the efficiency and performance comparable and even exceeding those of fiber lasers with conventional cavities. Similar to other random lasers, both amplification and random scattering are distributed here along the laser medium being usually represented by a kilometers-long passive fiber with Raman gain. However, it is hardly possible to utilize normal gain in conventional active fibers as they are usually short and RS is negligible. Here we report on the first demonstration of the RS-based random lasing in an active fiber. This became possible due to the implementation of a new Bi-doped fiber with an increased amplification length and RS coefficient. The realized Bi-fiber random laser generates in a specific spectral region (1.42 μm) exhibiting unique features, in particular, a much narrower linewidth than that in conventional cavity of the same length, in agreement with the developed theory. Lasers of this type have a great potential for applications as Bi-doped fibers with different host compositions enable laser operation in an extremely broad range of wavelengths, 1.15–1.78 μm.

  6. Ductility of nonmetallic hybrid fiber composite reinforcement for concrete

    NASA Astrophysics Data System (ADS)

    Tepfers, R.; Tamužs, V.; Apinis, R.; Vilks, U.; Modniks, J.

    1996-03-01

    Reinforcing units, FRP, of unidirectional fiber composites for concrete have elastic behavior up to tensile failure. For safety reasons an elongation of 3% at maximum load is usually required for the reinforcement. Ductile behavior with the necessary elongation and stress hardening could be obtained with braided fiber strands around a core of foam plastic, thin glass fiber cylindrical shell, or unidirectional carbon fibers. Braids around a porous core reveal the ductility when epoxy resin breaks up and collapse of core enables the braids to rotate. The same seems to happen at that cross section, where carbon fiber core breaks in tension. The best result is obtained using a cylindrical glass fiber reinforced core shell surrounded with aramid fiber braid.

  7. Carbide coated fibers in graphite-aluminum composites

    NASA Technical Reports Server (NTRS)

    Imprescia, R. J.; Levinson, L. S.; Reiswig, R. D.; Wallace, T. C.; Williams, J. M.

    1975-01-01

    Thin, uniform coats of titanium carbide, deposited on graphite fibers by chemical vapor deposition with thicknesses up to approximately 0.1 microns were shown to improve fiber strength significantly. For greater thicknesses, strength was degraded. The coats promote wetting of the fibers and infiltration of the fiber yarns with aluminum alloys, and act as protective barriers to inhibit reaction between the fibers and the alloys. Chemical vapor deposition was used to produce silicon carbide coats on graphite fibers. In general, the coats were nonuniform and were characterized by numerous surface irregularities. Despite these irregularities, infiltration of these fibers with aluminum alloys was good. Small graphite-aluminum composite samples were produced by vacuum hot-pressing of aluminum-infiltrated graphite yarn at temperatures above the metal liquidus.

  8. Morphology and properties of recycled polypropylene/bamboo fibers composites

    SciTech Connect

    Phuong, Nguyen Tri; Guinault, Alain; Sollogoub, Cyrille; Chuong, Bui

    2011-05-04

    Polypropylene (PP) is among the most widely used thermoplastics in many industrial fields. However, like other recycled polymers, its properties usually decrease after recycling process and sometimes are degraded to poor properties level for direct re-employment. The recycled products, in general, need to be reinforced to have competitive properties. Short bamboo fibers (BF) have been added in a recycled PP (RPP) with and without compatibilizer type maleic anhydride polypropylene (MAPP). Several properties of composite materials, such as helium gas permeability and mechanical properties before and after ageing in water, were examined. The effects of bamboo fiber content and fiber chemical treatment have been also investigated. We showed that the helium permeability increases if fiber content is higher than 30% because of a poor adhesion between untreated bamboo fiber and polymer matrix. The composites reinforced by acetylated bamboo fibers show better helium permeability due to grafting of acetyl groups onto cellulose fibers surface and thus improves compatibility between bamboo fibers and matrix, which has been shown by microscopic observations. Besides, mechanical properties of composite decrease with ageing in water but the effect is less pronounced with low bamboo fiber content.

  9. Morphology and properties of recycled polypropylene/bamboo fibers composites

    NASA Astrophysics Data System (ADS)

    Phuong, Nguyen Tri; chuong, Bui; Guinault, Alain; Sollogoub, Cyrille

    2011-05-01

    Polypropylene (PP) is among the most widely used thermoplastics in many industrial fields. However, like other recycled polymers, its properties usually decrease after recycling process and sometimes are degraded to poor properties level for direct re-employment. The recycled products, in general, need to be reinforced to have competitive properties. Short bamboo fibers (BF) have been added in a recycled PP (RPP) with and without compatibilizer type maleic anhydride polypropylene (MAPP). Several properties of composite materials, such as helium gas permeability and mechanical properties before and after ageing in water, were examined. The effects of bamboo fiber content and fiber chemical treatment have been also investigated. We showed that the helium permeability increases if fiber content is higher than 30% because of a poor adhesion between untreated bamboo fiber and polymer matrix. The composites reinforced by acetylated bamboo fibers show better helium permeability due to grafting of acetyl groups onto cellulose fibers surface and thus improves compatibility between bamboo fibers and matrix, which has been shown by microscopic observations. Besides, mechanical properties of composite decrease with ageing in water but the effect is less pronounced with low bamboo fiber content.

  10. Development of Ceramic Fibers for Reinforcement in Composite Materials

    NASA Technical Reports Server (NTRS)

    Gates, L. E.; Lent, W. E.; Teague, W. T.

    1961-01-01

    Refinements of the vertical arc fiberizing apparatus resulted in its ability to fiberize very different refractory glasses having wide ranges of properties. Although the apparatus, was originally designed as a laboratory research tool for the evaluation of many compositions daily, up to one quarter pound of fibers of a single composition could be produced in an 8-hour day. Fibers up to six and a half feet long were produced with the apparatus. Studies were conducted of two methods of fiberizing refractory glasses requiring rapid freezing from the melt. The first method consisted of fiberizing droplets of molten glass passing through an annular nozzle. The second method consisted of reconstructing the annular nozzle in. the shape of a horseshoe to achieve a shorter delay in blasting a molten droplet from the tip of a rod. Both methods were judged feasible for producing fibers of glasses requiring rapid freezing. The first method would be more amenable to volume fiber production. Studies of induction heating for fiber formation did not lead to its designation as a very efficient heating method. Problems. remain to be solved, in the design of a suitable susceptor for a higher heating rate, in protecting the susceptor from oxidation with an inert gas, in contamination of the melt from a refractory crucible, and in the protective radiation shielding of the induction concentrator coil. It is not considered practical to continue studies of this heating method. In the course of this program 151 refractory glass compositions were evaluated for fiber, forming characteristics. Of the various types of materials studied, the following showed promise in producing acceptable refractory fibers: sIlica- spinel (magnesium aluminate), silica- spinel-zirconia, silica-zirconia, silica-zinc spinel, aluminum phosphate glasses, and fluoride glasses. Compositions which did not produce acceptable fibers were high zirconia materials, barium spinels, and calcium aluminates. Improvements in

  11. Effect of Carbon Nanotubes Upon Emissions From Cutting and Sanding Carbon Fiber-Epoxy Composites

    PubMed Central

    Heitbrink, William A.; Lo, Li-Ming

    2015-01-01

    Carbon nanotubes (CNTs) are being incorporated into structural composites to enhance material strength. During fabrication or repair activities, machining nanocomposites may release CNTs into the workplace air. An experimental study was conducted to evaluate the emissions generated by cutting and sanding on three types of epoxy-composite panels: Panel A containing graphite fibers, Panel B containing graphite fibers and carbon-based mat, and Panel C containing graphite fibers, carbon-based mat, and multi-walled CNTs. Aerosol sampling was conducted with direct-reading instruments, and filter samples were collected for measuring elemental carbon (EC) and fiber concentrations. Our study results showed that cutting Panel C with a band saw did not generate detectable emissions of fibers inspected by transmission electron microscopy but did increase the particle mass, number, and EC emission concentrations by 20% to 80% compared to Panels A and B. Sanding operation performed on two Panel C resulted in fiber emission rates of 1.9×108 and 2.8×106 fibers per second (f/s), while no free aerosol fibers were detected from sanding Panels A and B containing no CNTs. These free CNT fibers may be a health concern. However, the analysis of particle and EC concentrations from these same samples cannot clearly indicate the presence of CNTs, because extraneous aerosol generation from machining the composite epoxy material increased the mass concentrations of the EC. PMID:26478716

  12. Effect of Carbon Nanotubes Upon Emissions From Cutting and Sanding Carbon Fiber-Epoxy Composites.

    PubMed

    Heitbrink, William A; Lo, Li-Ming

    2015-08-01

    Carbon nanotubes (CNTs) are being incorporated into structural composites to enhance material strength. During fabrication or repair activities, machining nanocomposites may release CNTs into the workplace air. An experimental study was conducted to evaluate the emissions generated by cutting and sanding on three types of epoxy-composite panels: Panel A containing graphite fibers, Panel B containing graphite fibers and carbon-based mat, and Panel C containing graphite fibers, carbon-based mat, and multi-walled CNTs. Aerosol sampling was conducted with direct-reading instruments, and filter samples were collected for measuring elemental carbon (EC) and fiber concentrations. Our study results showed that cutting Panel C with a band saw did not generate detectable emissions of fibers inspected by transmission electron microscopy but did increase the particle mass, number, and EC emission concentrations by 20% to 80% compared to Panels A and B. Sanding operation performed on two Panel C resulted in fiber emission rates of 1.9×10(8) and 2.8×10(6) fibers per second (f/s), while no free aerosol fibers were detected from sanding Panels A and B containing no CNTs. These free CNT fibers may be a health concern. However, the analysis of particle and EC concentrations from these same samples cannot clearly indicate the presence of CNTs, because extraneous aerosol generation from machining the composite epoxy material increased the mass concentrations of the EC.

  13. Effect of carbon nanotubes upon emissions from cutting and sanding carbon fiber-epoxy composites

    NASA Astrophysics Data System (ADS)

    Heitbrink, William A.; Lo, Li-Ming

    2015-08-01

    Carbon nanotubes (CNTs) are being incorporated into structural composites to enhance material strength. During fabrication or repair activities, machining nanocomposites may release CNTs into the workplace air. An experimental study was conducted to evaluate the emissions generated by cutting and sanding on three types of epoxy-composite panels: Panel A containing graphite fibers, Panel B containing graphite fibers and carbon-based mat, and Panel C containing graphite fibers, carbon-based mat, and multi-walled CNTs. Aerosol sampling was conducted with direct-reading instruments, and filter samples were collected for measuring elemental carbon (EC) and fiber concentrations. Our study results showed that cutting Panel C with a band saw did not generate detectable emissions of fibers inspected by transmission electron microscopy but did increase the particle mass, number, and EC emission concentrations by 20-80 % compared to Panels A and B. Sanding operation performed on two Panel C resulted in fiber emission rates of 1.9 × 108 and 2.8 × 106 fibers per second (f/s), while no free aerosol fibers were detected from sanding Panels A and B containing no CNTs. These free CNT fibers may be a health concern. However, the analysis of particle and EC concentrations from these same samples cannot clearly indicate the presence of CNTs, because extraneous aerosol generation from machining the composite epoxy material increased the mass concentrations of the EC.

  14. Biodegradable/Compostable Composites From Ligno-Cellulosic Fibers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The increased importance of renewable resources for raw materials and recyclabi1ity/biodegradability of the product at the end of the useful life are demanding a shift from petroleum-based synthetics to agro-based natural fibers in automotive interiors. Natural fiber composites can contribute greatl...

  15. Carbon Fiber Reinforced Glass Matrix Composites for Space Based Applications.

    DTIC Science & Technology

    1987-08-31

    Nardone , "Carbon Fiber Reinforced Glass Matrix Composites for Space Based Applications", Office of Naval Research Contract N00014-85-C-0332, Report R86... Nardone and K M. Prewo, "Tensile Performance of Carbon Fiber Reinforced Glass", J. Mater. Sci. accepted for publication, 1987. 27. R. F. Cooper and K

  16. Continuous, linearly intermixed fiber tows and composite molded article thereform

    NASA Technical Reports Server (NTRS)

    McMahon, Paul E. (Inventor); Chung, Tai-Shung (Inventor); Ying, Lincoln (Inventor)

    2000-01-01

    The instant invention involves a process used in preparing fibrous tows which may be formed into polymeric plastic composites. The process involves the steps of (a) forming a carbon fiber tow; (b) forming a thermoplastic polymeric fiber tow; (c) intermixing the two tows; and (d) withdrawing the intermixed tow for further use.

  17. Fabrication of polytetrafluoroethylene/carbon fiber composites using radiation crosslinking

    NASA Astrophysics Data System (ADS)

    Oshima, Akihiro; Udagawa, Akira; Tanaka, Shigeru

    2001-07-01

    A fabrication method for fiber-reinforced plastic (FRP) composites based on carbon fibers and polytetrafluoroethylene (PTFE) which was crosslinked by electron beam (EB) irradiation under specific conditions was studied. Though the fabricated composite showed high mechanical properties compared with a ready-made PTFE composite (non-crosslinked PTFE with 5˜20 wt% filler), mechanical properties of laminated panels were a bit poor compared with those of usual FRP. It was found that the toughness of the PTFE matrix is poor in the composite. On the other hand, the one-ply sheet of carbon fibers and crosslinked PTFE composite showed good mechanical properties for sheet-shape materials. The wettability of the obtained crosslinked PTFE composite is hardly changed by crosslinking and reinforcement.

  18. SURFACE MORPHOLOGY OF CARBON FIBER POLYMER COMPOSITES AFTER LASER STRUCTURING

    SciTech Connect

    Sabau, Adrian S; Chen, Jian; Jones, Jonaaron F.; Alexandra, Hackett; Jellison Jr, Gerald Earle; Daniel, Claus; Warren, Charles David; Rehkopf, Jackie D.

    2015-01-01

    The increasing use of Carbon Fiber Polymer Composite (CFPC) as a lightweight material in automotive and aerospace industries requires the control of surface morphology. In this study, the composites surface was prepared by ablating the resin in the top fiber layer of the composite using an Nd:YAG laser. The CFPC specimens with T700S carbon fiber and Prepreg - T83 resin (epoxy) were supplied by Plasan Carbon Composites, Inc. as 4 ply thick, 0/90o plaques. The effect of laser fluence, scanning speed, and wavelength was investigated to remove resin without an excessive damage of the fibers. In addition, resin ablation due to the power variation created by a laser interference technique is presented. Optical property measurements, optical micrographs, 3D imaging, and high-resolution optical profiler images were used to study the effect of the laser processing on the surface morphology.

  19. Creep behavior of tungsten fiber reinforced niobium metal matrix composites

    NASA Technical Reports Server (NTRS)

    Grobstein, Toni L.

    1992-01-01

    Tungsten fiber reinforced niobium metal matrix composites were evaluated for use in space nuclear power conversion systems. The composite panels were fabricated using the arc-spray monotape technique at the NASA Lewis Research Center. The creep behavior of W/Nb composite material was determined at 1400 and 1500 K in vacuum over a wide range of applied loads. The time to reach 1 percent strain, the time to rupture, and the minimum creep rate were measured. The W/Nb composites exceeded the properties of monolithic niobium alloys significantly even when compared creep strength also was evaluated. Kirkendall void formation was observed at the fiber/matrix interface; the void distribution differed depending the fiber orientation relative to the stress axis. A relationship was found between the fiber orientation and the creep strength.

  20. A Simulation Study of Electrical Fiber Composite Conductivity

    NASA Astrophysics Data System (ADS)

    Mezdour, D.; Sahli, S.

    2008-11-01

    Percolation concept has been used in this study to estimate the amount of conductive fibers embedded in polymeric matrix, necessary to establish conduction in this kind of composites. The resistance of composite materials is calculated by simulating composite samples with different size, containing conductive fibers with various lengths Calculation is based on detecting conductive pathways through the insulating matrix, these pathways are assumed to be resistances in parallel. Electrical resistance curves showed a percolative behavior of the samples versus volume fraction of filler. Lower conduction thresholds are obtained for fiber aspect ratio of 20 and sample size of 100. The electrical resistivity and the conduction thresholds of the carbon fiber reinforced polycarbonate composites have been characterized. Simulation results are in good agreement with an experimental result found in the literature.

  1. Vibration analysis and optimization of sandwich composite with curvilinear fibers

    NASA Astrophysics Data System (ADS)

    Honda, S.; Narita, Y.

    2016-09-01

    The present paper develops a shell element based on the refined zigzag theory (RZT) and applies it to the vibration analysis and optimization problem of the composite sandwich plate composed of CFRP skins and soft-cores. The RZT accepts large differences in layer stiffness, and requires less calculation effort than the layer-wise or three-dimensional theories. Numerical results revealed that the present method predicts vibration characteristics of composite sandwich plates with soft-core accurately. Then, shapes of reinforcing fibers in CFRP composite skins are optimized to maximize fundamental frequencies. As an optimizer, the particle swarm optimization (PSO) approach is employed since curvilinear fiber shapes are defined by continuous design variables. Obtained results showed that the composite sandwich with optimum curvilinear fiber shapes indicates higher fundamental frequencies compared with straight fibers.

  2. Producing Fiber Reinforced Composites Having Dense Ceramic Matrices

    NASA Technical Reports Server (NTRS)

    Behrendt, Donald R. (Inventor); Singh, Mrityunjay (Inventor)

    1999-01-01

    A fiber preform is partially infiltrated with a ceramic material. A porous solid polymer is formed by reaction forming the infiltrated preform which is then pyrolized. Microporous carbon in the composite matrix is converted into silicon carbide.

  3. Carbon fiber composite characterization in adverse thermal environments.

    SciTech Connect

    Gomez-Vasquez, Sylvia; Brown, Alexander L.; Hubbard, Joshua A.; Ramirez, Ciro J.; Dodd, Amanda B.

    2011-05-01

    The behavior of carbon fiber aircraft composites was studied in adverse thermal environments. The effects of resin composition and fiber orientation were measured in two test configurations: 102 by 127 millimeter (mm) test coupons were irradiated at approximately 22.5 kW/m{sup 2} to measure thermal response, and 102 by 254 mm test coupons were irradiated at approximately 30.7 kW/m{sup 2} to characterize piloted flame spread in the vertically upward direction. Carbon-fiber composite materials with epoxy and bismaleimide resins, and uni-directional and woven fiber orientations, were tested. Bismaleimide samples produced less smoke, and were more resistant to flame spread, as expected for high temperature thermoset resins with characteristically lower heat release rates. All materials lost approximately 20-25% of their mass regardless of resin type, fiber orientation, or test configuration. Woven fiber composites displayed localized smoke jetting whereas uni-directional composites developed cracks parallel to the fibers from which smoke and flames emanated. Swelling and delamination were observed with volumetric expansion on the order of 100% to 200%. The purpose of this work was to provide validation data for SNL's foundational thermal and combustion modeling capabilities.

  4. Photoconductivity of activated carbon fibers

    SciTech Connect

    Kuriyama, K.; Dresselhaus, M.S. )

    1990-08-01

    The photoconductivity is measured on a high-surface-area disordered carbon material, namely activated carbon fibers, to investigate their electronic properties. Measurements of decay time, recombination kinetics and temperature dependence of the photoconductivity generally reflect the electronic properties of a material. The material studied in this paper is a highly disordered carbon derived from a phenolic precursor, having a huge specific surface area of 1000--2000m{sup 2}/g. Our preliminary thermopower measurements suggest that this carbon material is a p-type semiconductor with an amorphous-like microstructure. The intrinsic electrical conductivity, on the order of 20S/cm at room temperature, increases with increasing temperature in the range 30--290K. In contrast with the intrinsic conductivity, the photoconductivity in vacuum decreases with increasing temperature. The recombination kinetics changes from a monomolecular process at room temperature to a biomolecular process at low temperatures. The observed decay time of the photoconductivity is {approx equal}0.3sec. The magnitude of the photoconductive signal was reduced by a factor of ten when the sample was exposed to air. The intrinsic carrier density and the activation energy for conduction are estimated to be {approx equal}10{sup 21}/cm{sup 3} and {approx equal}20meV, respectively. The majority of the induced photocarriers and of the intrinsic carriers are trapped, resulting in the long decay time of the photoconductivity and the positive temperature dependence of the conductivity. 54 refs., 11 figs., 3 tabs.

  5. Photoconductivity of Activated Carbon Fibers

    DOE R&D Accomplishments Database

    Kuriyama, K.; Dresselhaus, M. S.

    1990-08-01

    The photoconductivity is measured on a high-surface-area disordered carbon material, namely activated carbon fibers, to investigate their electronic properties. Measurements of decay time, recombination kinetics and temperature dependence of the photoconductivity generally reflect the electronic properties of a material. The material studied in this paper is a highly disordered carbon derived from a phenolic precursor, having a huge specific surface area of 1000--2000m{sup 2}/g. Our preliminary thermopower measurements suggest that this carbon material is a p-type semiconductor with an amorphous-like microstructure. The intrinsic electrical conductivity, on the order of 20S/cm at room temperature, increases with increasing temperature in the range 30--290K. In contrast with the intrinsic conductivity, the photoconductivity in vacuum decreases with increasing temperature. The recombination kinetics changes from a monomolecular process at room temperature to a biomolecular process at low temperatures. The observed decay time of the photoconductivity is {approx equal}0.3sec. The magnitude of the photoconductive signal was reduced by a factor of ten when the sample was exposed to air. The intrinsic carrier density and the activation energy for conduction are estimated to be {approx equal}10{sup 21}/cm{sup 3} and {approx equal}20meV, respectively. The majority of the induced photocarriers and of the intrinsic carriers are trapped, resulting in the long decay time of the photoconductivity and the positive temperature dependence of the conductivity.

  6. In Vitro Evaluation of Veneering Composites and Fibers on the Color of Fiber-Reinforced Composite Restorations

    PubMed Central

    Hasani Tabatabaei, Masoomeh; Hasani, Zahra; Ahmadi, Elham

    2014-01-01

    Objective: Color match between fiber-reinforced composite (FRC) restorations and teeth is an imperative factor in esthetic dentistry. The purpose of this study is to evaluate the influence of veneering composites and fibers on the color change of FRC restorations. Materials and Methods: Glass and polyethylene fibers were used to reinforce a direct microhybrid composite (Z250, 3M ESPE) and a microfilled composite (Gradia Indirect, GC). There were eight experimental groups (n=5 disks per group). Four groups were used as the controls (non-FRC control) and the others were used as experimental groups. CIELAB parameters (L*, a* and b*) of specimens were evaluated against a white background using a spectrophotometer to assess the color change. The color difference (ΔE*) and color coordinates were (L*, a* and b*) analyzed by two-way ANOVA and Tukey’s test. Results: Both types of composite and fiber influenced the color parameters (ΔL*, Δa*). The incorporation of fibers into the composite in the experimental groups made them darker than the control groups, except in the Gradia Indirect+ glass fibers group. Δb* is affected by types of fibers only in direct fiber reinforced composite. No statistically significant differences were recognized in ΔE* among the groups (p>0.05). Conclusion: The findings of the present study suggest that the tested FRC restorations exhibited no difference in color in comparison with non-FRC restoration. Hence, the types of veneering composites and fibers did not influence the color change (ΔE*) of FRC restorations. PMID:25584060

  7. Metal matrix coated fiber composites and the methods of manufacturing such composites

    DOEpatents

    Weeks, J.K. Jr.; Gensse, C.

    1993-09-14

    A fiber coating which allows ceramic or metal fibers to be wetted by molten metals is disclosed. The coating inhibits degradation of the physical properties caused by chemical reaction between the fiber and the coating itself or between the fiber and the metal matrix. The fiber coating preferably includes at least a wetting layer, and in some applications, a wetting layer and a barrier layer between the fiber and the wetting layer. The wetting layer promotes fiber wetting by the metal matrix. The barrier layer inhibits fiber degradation. The fiber coating permits the fibers to be infiltrated with the metal matrix resulting in composites having unique properties not obtainable in pure materials. 8 figures.

  8. Recent advancement in optical fiber sensing for aerospace composite structures

    NASA Astrophysics Data System (ADS)

    Minakuchi, Shu; Takeda, Nobuo

    2013-12-01

    Optical fiber sensors have attracted considerable attention in health monitoring of aerospace composite structures. This paper briefly reviews our recent advancement mainly in Brillouin-based distributed sensing. Damage detection, life cycle monitoring and shape reconstruction systems applicable to large-scale composite structures are presented, and new technical concepts, "smart crack arrester" and "hierarchical sensing system", are described as well, highlighting the great potential of optical fiber sensors for the structural health monitoring (SHM) field.

  9. Ceramic fiber reinforced glass-ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P. (Inventor)

    1993-01-01

    A slurry of BSAS glass powders is cast into tapes which are cut to predetermined sizes. Mats of continuous chemical vapor deposition (CVD)-SiC fibers are alternately stacked with these matrix tapes. This tape-mat stack is warm-pressed to produce a 'green' composite which is heated to burn out organic constituents. The remaining interim material is then hot-pressed to form a BSAS glass-ceramic fiber-reinforced composite.

  10. A novel basalt fiber-reinforced polylactic acid composite for hard tissue repair.

    PubMed

    Chen, Xi; Li, Yan; Gu, Ning

    2010-08-01

    A basalt fiber (BF) was, for the first time, introduced into a poly(l-lactic acid) (PLLA) matrix as innovative reinforcement to fabricate composite materials for hard tissue repair. Firstly, BF/PLLA composites and pure PLLA were produced by the methods of solution blending and freeze drying. The results showed that basalt fibers can be uniformly dispersed in the PLLA matrix and significantly improve the mechanical properties and hydrophilicity of the PLLA matrix. The presence of basalt fibers may retard the polymer degradation rate and neutralize the acid degradation from PLLA. Osteoblasts were cultured in vitro to evaluate the cytocompatibility of the composite. An MTT assay revealed that osteoblasts proliferated well for 7 days and there was little difference found in their viability on both PLLA and BF/PLLA films, which was consistent with the alkaline phosphatase (ALP) activity results. A fluorescent staining observation showed that osteoblasts grew well on the composites. SEM images displayed that osteoblasts tended to grow along the fiber axis. The formation of mineralized nodules was observed on the films by Alizarin red S staining. These results suggest that the presence of basalt fibers does not noticeably affect osteoblastic behavior and the designed composites are osteoblast compatible. It is concluded that basalt fibers, as reinforcing fibers, may have promising applications in hard tissue repair.

  11. Nitrile crosslinked polyphenyl-quinoxaline/graphite fiber composites

    NASA Technical Reports Server (NTRS)

    Alston, W. B.

    1976-01-01

    Studies were performed to reduce the 600 F thermoplasticity of polyphenylquinoxaline (PPQ) matrix resins by introducing crosslinking by the reaction of terminal nitrile groups. Seven solvents and solvent mixtures were studied as the crosslinking catalysts and used to fabricate crosslinked PPQ/HMS graphite fiber composites. The room temperature and 600 F composite mechanical properties after short time and prolonged 600 F air exposure and the 600 F composite weight loss were determined and compared to those properties of high molecular weight, linear PPQ/HMS graphite fiber composites.

  12. Fiber reinforced composites in prosthodontics – A systematic review

    PubMed Central

    Nayar, Sanjna; Ganesh, R.; Santhosh, S.

    2015-01-01

    Fiber-reinforced composite (FRC), prostheses offer the potential advantages of optimized esthetics, low wear of the opposing dentition and the ability to bond the prosthesis to the abutment teeth, thereby compensating for less-than-optimal abutment tooth retention and resistance form. These prostheses are composed of two types of composite materials: Fiber-composites to build the substructure and hybrid or micro fill particulate composites to create the external veneer surface. This article reviews the various types of FRCs and its mechanical properties. PMID:26015717

  13. The assessment of metal fiber reinforced polymeric composites

    NASA Technical Reports Server (NTRS)

    Chung, Wenchiang R.

    1990-01-01

    Because of their low cost, excellent electrical conductivity, high specific strength (strength/density), and high specific modulus (modulus/density) short metal fiber reinforced composites have enjoyed a widespread use in many critical applications such as automotive industry, aircraft manufacturing, national defense, and space technology. However, little data has been found in the study of short metal fibrous composites. Optimum fiber concentration in a resin matrix and fiber aspect ratio (length-to-diameter ratio) are often not available to a user. Stress concentration at short fiber ends is the other concern when the composite is applied to a load-bearing application. Fracture in such composites where the damage will be initiated or accumulated is usually difficult to be determined. An experimental investigation is therefore carefully designed and undertaken to systematically evaluate the mechanical properties as well as electrical properties. Inconel 601 (nickel based) metal fiber with a diameter of eight microns is used to reinforce commercially available thermoset polyester resin. Mechanical testing such as tensile, impact, and flexure tests along with electrical conductivity measurements is conducted to study the feasibility of using such composites. The advantages and limitations of applying chopped metal fiber reinforced polymeric composites are also discussed.

  14. Real time sensing of structural glass fiber reinforced composites by using embedded PVA - carbon nanotube fibers

    NASA Astrophysics Data System (ADS)

    Alexopoulos, N.; Poulin, P.; Bartholome, C.; Marioli-Riga, Z.

    2010-06-01

    Polyvinyl alcohol - carbon nanotube (PVA-CNT) fibers had been embedded to glass fiber reinforced polymers (GFRP) for the structural health monitoring of the composite material. The addition of the conductive PVA-CNT fiber to the nonconductive GFRP material aimed to enhance its sensing ability by means of the electrical resistance measurement method. The test specimen’s response to mechanical load and the in situ PVA-CNT fiber’s electrical resistance measurements were correlated for sensing and damage monitoring purposes. The embedded PVA-CNT fiber worked as a sensor in GFRP coupons in tensile loadings. Sensing ability of the PVA-CNT fibers was also demonstrated on an integral composite structure. PVA-CNT fiber near the fracture area of the structure recorded very high values when essential damage occurred to the structure. A finite element model of the same structure was developed to predict axial strains at locations of the integral composite structure where the fibers were embedded. The predicted FEA strains were correlated with the experimental measurements from the PVA-CNT fibers. Calculated and experimental values were in good agreement, thus enabling PVA-CNT fibers to be used as strain sensors.

  15. A comparison of tensile properties of polyester composites reinforced with pineapple leaf fiber and pineapple peduncle fiber

    NASA Astrophysics Data System (ADS)

    Juraidi, J. M.; Shuhairul, N.; Syed Azuan, S. A.; Intan Saffinaz Anuar, Noor

    2013-12-01

    Pineapple fiber which is rich in cellulose, relatively inexpensive, and abundantly available has the potential for polymer reinforcement. This research presents a study of the tensile properties of pineapple leaf fiber and pineapple peduncle fiber reinforced polyester composites. Composites were fabricated using leaf fiber and peduncle fiber with varying fiber length and fiber loading. Both fibers were mixed with polyester composites the various fiber volume fractions of 4, 8 and 12% and with three different fiber lengths of 10, 20 and 30 mm. The composites panels were fabricated using hand lay-out technique. The tensile test was carried out in accordance to ASTM D638. The result showed that pineapple peduncle fiber with 4% fiber volume fraction and fiber length of 30 mm give highest tensile properties. From the overall results, pineapple peduncle fiber shown the higher tensile properties compared to pineapple leaf fiber. It is found that by increasing the fiber volume fraction the tensile properties has significantly decreased but by increasing the fiber length, the tensile properties will be increased proportionally. Minitab software is used to perform the two-way ANOVA analysis to measure the significant. From the analysis done, there is a significant effect of fiber volume fraction and fiber length on the tensile properties.

  16. Fiber: composition, structures, and functional properties.

    PubMed

    Sims, Ian M; Monro, John A

    2013-01-01

    Kiwifruit dietary fiber consists of cell-wall polysaccharides that are typical of the cell walls of many dicotyledonous fruits, being composed of pectic polysaccharides, hemicelluloses, and cellulose. The kiwifruit pectic polysaccharides consist of homo- and rhamnogalacturonans with various neutral, (arabino)-galactan side chains, while the hemicelluloses are mostly xyloglucan and xylan. The proportions of pectic polysaccharide, hemicellulose, and cellulose in both green 'Hayward' and 'Zespri® Gold' are similar and are little affected by in vitro exposure to gastric and small intestinal digestion. The hydration properties of the kiwifruit-swelling and water retention capacity-are also unaffected by foregut digestion, indicating that the functional properties of kiwifruit fiber survive in the foregut. However, in the hindgut, kiwifruit fiber is fermented, but whole kiwifruit consumed in association with slowly fermented fiber leads to distal displacement of fermentation, indicating that hindgut benefits of kiwifruit may result from its interaction with other dietary sources of fiber.

  17. The prospects for composites based on boron fibers

    NASA Technical Reports Server (NTRS)

    Naslain, R.

    1978-01-01

    The fabrication of boron filaments and the production of composite materials consisting of boron filaments and organic or metallic matrices are discussed. Problem involving the use of tungsten substrates in the filament fabrication process, the protection of boron fibers with diffusion barrier cladings, and the application of alloy additives in the matrix to lessen the effects of diffusion are considered. Data on the kinetics of the boron fiber/matrix interaction at high temperatures, and the influence of the fiber/matrix interaction on the mechanical properties of the composite are presented.

  18. Mechanical Properties of Continuous Fiber Reinforced Zirconium Diboride Matrix Composites

    NASA Technical Reports Server (NTRS)

    Stuffle, Kevin; Creegan, Peter; Nowell, Steven; Bull, Jeffrey D.; Rasky, Daniel J. (Technical Monitor)

    1995-01-01

    Continuous fiber reinforced zirconium diboride matrix composites, SCS-9a-(RBSiCZrB2)matrix, are being developed for leading edge, rocket nozzle and turbine engine applications. Recently, the composite materials have been characterized for tensile properties to 1250 C, the highest temperature tested. The tensile properties are fiber dominated as the matrix is microcracked on fabrication, but favorable failure characteristic are observed. Compression and shear mechanical testing results will be reported if completed. The effects of fiber volume fraction and matrix density on mechanical properties will be discussed. The target applications of the materials will be discussed. Specific testing being performed towards qualification for these applications will be included.

  19. Ultra-high modulus organic fiber hybrid composites

    NASA Technical Reports Server (NTRS)

    Champion, A. R.

    1981-01-01

    An experimental organic fiber, designated Fiber D, was characterized, and its performance as a reinforcement for composites was investigated. The fiber has a modulus of 172 GPa, tensile strength of 3.14 GPa, and density of 1.46 gm/cu cm. Unidirectional Fiber D/epoxy laminates containing 60 percent fiber by volume were evaluated in flexure, shear, and compression, at room temperature and 121 C in both the as fabricated condition and after humidity aging for 14 days at 95 percent RH and 82 C. A modulus of 94.1 GPa, flexure strength of 700 MPa, shear strength of 54 MPa, and compressive strength of 232 MPa were observed at room temperature. The as-fabricated composites at elevated temperature and humidity aged material at room temperature had properties 1 to 20 percent below these values. Combined humidity aging plus evaluated temperature testing resulted in even lower mechanical properties. Hybrid composite laminates of Fiber D with Fiber FP alumina or Thornel 300 graphite fiber were also evaluated and significant increases in modulus, flexure, and compressive strengths were observed.

  20. Composition of Muscle Fiber Types in Rat Rotator Cuff Muscles.

    PubMed

    Rui, Yongjun; Pan, Feng; Mi, Jingyi

    2016-10-01

    The rat is a suitable model to study human rotator cuff pathology owing to the similarities in morphological anatomy structure. However, few studies have reported the composition muscle fiber types of rotator cuff muscles in the rat. In this study, the myosin heavy chain (MyHC) isoforms were stained by immunofluorescence to show the muscle fiber types composition and distribution in rotator cuff muscles of the rat. It was found that rotator cuff muscles in the rat were of mixed fiber type composition. The majority of rotator cuff fibers labeled positively for MyHCII. Moreover, the rat rotator cuff muscles contained hybrid fibers. So, compared with human rotator cuff muscles composed partly of slow-twitch fibers, the majority of fast-twitch fibers in rat rotator cuff muscles should be considered when the rat model study focus on the pathological process of rotator cuff muscles after injury. Gaining greater insight into muscle fiber types in rotator cuff muscles of the rat may contribute to elucidate the mechanism of pathological change in rotator cuff muscles-related diseases. Anat Rec, 299:1397-1401, 2016. © 2016 Wiley Periodicals, Inc.

  1. Novel Carbon Nanotube/Cellulose Composite Fibers As Multifunctional Materials.

    PubMed

    Qi, Haisong; Schulz, Björn; Vad, Thomas; Liu, Jianwen; Mäder, Edith; Seide, Gunnar; Gries, Thomas

    2015-10-14

    Electroconductive fibers composed of cellulose and carbon nanotubes (CNTs) were spun using aqueous alkaline/urea solution. The microstructure and physical properties of the resulting fibers were investigated by scanning electron microscopy, Raman microscopy, wide-angle X-ray diffraction, tensile tests, and electrical resistance measurements. We found that these flexible composite fibers have sufficient mechanical properties and good electrical conductivity, with volume resistivities in the range of about 230-1 Ohm cm for 2-8 wt % CNT loading. The multifunctional sensing behavior of these fibers to tensile strain, temperature, environmental humidity, and liquid water was investigated comprehensively. The results show that these novel CNT/cellulose composite fibers have impressive multifunctional sensing abilities and are promising to be used as wearable electronics and for the design of various smart materials.

  2. The transport properties of activated carbon fibers

    SciTech Connect

    di Vittorio, S.L. . Dept. of Materials Science and Engineering); Dresselhaus, M.S. . Dept. of Electrical Engineering and Computer Science Massachusetts Inst. of Tech., Cambridge, MA . Dept. of Physics); Endo, M. . Dept. of Electrical Engineering); Issi, J-P.; Piraux, L.

    1990-07-01

    The transport properties of activated isotropic pitch-based carbon fibers with surface area 1000 m{sup 2}/g have been investigated. We report preliminary results on the electrical conductivity, the magnetoresistance, the thermal conductivity and the thermopower of these fibers as a function of temperature. Comparisons are made to transport properties of other disordered carbons. 19 refs., 4 figs.

  3. Solvent recovery improved with activated carbon fibers

    SciTech Connect

    Not Available

    1982-11-01

    A non-woven net of activated carbon fibers as absorbing media, representing a major advancement in vapor recovery technology, is presented. The carbon fiber exhibits mass transfer coefficients for adsorption description of up to 100 times that of conventional systems.

  4. The Transport Properties of Activated Carbon Fibers

    DOE R&D Accomplishments Database

    di Vittorio, S. L.; Dresselhaus, M. S.; Endo, M.; Issi, J-P.; Piraux, L.

    1990-07-01

    The transport properties of activated isotropic pitch-based carbon fibers with surface area 1000 m{sup 2}/g have been investigated. We report preliminary results on the electrical conductivity, the magnetoresistance, the thermal conductivity and the thermopower of these fibers as a function of temperature. Comparisons are made to transport properties of other disordered carbons.

  5. The Mechanical Properties and Microstructure Characters of Hybrid Composite Geopolymers-Pineapple Fiber Leaves (PFL)

    NASA Astrophysics Data System (ADS)

    Amalia, N.; Hidayatullah, S.; Nurfadilla; Subaer

    2017-03-01

    The objective of this research is to study the influence of organic fibers on the mechanical properties and microstructure characters of hybrid composite geopolymers-pineapple fibers (PFL). Geopolymers were synthesized by using alkali activated of class C-fly ash added manually with short pineapple fiber leaves (PFL) and then cured at 60°C for 1 hour. The resulting composites were stored in open air for 28 days prior to mechanical and microstructure characterizations. The samples were subjected to compressive and flexural strength measurements, heat resistance as well as acid attack (1M H2SO4 solution). The microstructure of the composites were examined by using Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS). The measurement showed that the addition of pineapple fibers was able to improve the compressive and flexural strength of geopolymers. The resulting hybrid composites were able to resist fire to a maximum temperature of 1500°C. SEM examination showed the presence of good bond between geopolymer matrix and pineapple fibers. It was also found that there were no chemical constituents of geopolymers leached out during acid liquid treatment. It is concluded that hybrid composite geopolymers-pineapple fibers are potential composites for wide range applications.

  6. Thermo-oxidative stability studies of Celion 6000/PMR-15 unidirectional composites, PMR-15, and Celion 6000 fiber

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.; Nowak, Gregory

    1988-01-01

    Experimental results on the influence of the thermooxidative resistance characteristics of the fiber and matrix resin on the thermal stability of isothermally aged Celion 6000/PMR-15 matrix resin composites are presented. SEM studies reveal that extreme oxidative erosion of the graphite fiber occurs at elevated temperatures in the presence of the polyimide matrix. The activation energy of oxidation of the composite was shown to be greater than those of the fiber and the matrix resin.

  7. Carbon Fiber Reinforced Ceramic Composites for Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Freedman, Marc (Technical Monitor); Shivakumar, Kunigal N.

    2003-01-01

    Fiber reinforced ceramic composites are materials of choice for gas turbine engines because of their high thermal efficiency, thrust/weight ratio, and operating temperatures. However, the successful introduction of ceramic composites to hot structures is limited because of excessive cost of manufacturing, reproducibility, nonuniformity, and reliability. Intense research is going on around the world to address some of these issues. The proposed effort is to develop a comprehensive status report of the technology on processing, testing, failure mechanics, and environmental durability of carbon fiber reinforced ceramic composites through extensive literature study, vendor and end-user survey, visits to facilities doing this type of work, and interviews. Then develop a cooperative research plan between NASA GRC and NCA&T (Center for Composite Materials Research) for processing, testing, environmental protection, and evaluation of fiber reinforced ceramic composites.

  8. High surface area, low weight composite nickel fiber electrodes

    NASA Technical Reports Server (NTRS)

    Johnson, Bradley A.; Ferro, Richard E.; Swain, Greg M.; Tatarchuk, Bruce J.

    1993-01-01

    The energy density and power density of light weight aerospace batteries utilizing the nickel oxide electrode are often limited by the microstructures of both the collector and the resulting active deposit in/on the collector. Heretofore, these two microstructures were intimately linked to one another by the materials used to prepare the collector grid as well as the methods and conditions used to deposit the active material. Significant weight and performance advantages were demonstrated by Britton and Reid at NASA-LeRC using FIBREX nickel mats of ca. 28-32 microns diameter. Work in our laboratory investigated the potential performance advantages offered by nickel fiber composite electrodes containing a mixture of fibers as small as 2 microns diameter (Available from Memtec America Corporation). These electrode collectors possess in excess of an order of magnitude more surface area per gram of collector than FIBREX nickel. The increase in surface area of the collector roughly translates into an order of magnitude thinner layer of active material. Performance data and advantages of these thin layer structures are presented. Attributes and limitations of their electrode microstructure to independently control void volume, pore structure of the Ni(OH)2 deposition, and resulting electrical properties are discussed.

  9. FIBER-TEX 1991: The Fifth Conference on Advanced Engineering Fibers and Textile Structures for Composites

    SciTech Connect

    Buckley, J.D.

    1992-10-01

    This document is a compilation of papers presented at a joint NASA/North Carolina State University/DoD/Clemson University/Drexel University conference on Fibers, Textile Technology, and Composites Structures held at the College of Textiles Building on Centennial Campus of North Carolina State University, Raleigh, North Carolina on October 15-17, 1991. Conference papers presented information on advanced engineering fibers, textile processes and structures, structural fabric production, mechanics and characteristics of woven composites, pultruded composites, and the latest requirements for the use of textiles in the production of composite materials and structures. Separate abstracts have been prepared for papers in this report.

  10. FIBER-TEX 1991: The Fifth Conference on Advanced Engineering Fibers and Textile Structures for Composites

    NASA Technical Reports Server (NTRS)

    Buckley, John D. (Editor)

    1992-01-01

    This document is a compilation of papers presented at a joint NASA/North Carolina State University/DoD/Clemson University/Drexel University conference on Fibers, Textile Technology, and Composites Structures held at the College of Textiles Building on Centennial Campus of North Carolina State University, Raleigh, North Carolina on October 15-17, 1991. Conference papers presented information on advanced engineering fibers, textile processes and structures, structural fabric production, mechanics and characteristics of woven composites, pultruded composites, and the latest requirements for the use of textiles in the production of composite materials and structures.

  11. Fungal degradation of fiber-reinforced composite materials

    NASA Technical Reports Server (NTRS)

    Gu, J. D.; Lu, C.; Mitchell, R.; Thorp, K.; Crasto, A.

    1997-01-01

    As described in a previous report, a fungal consortium isolated from degraded polymeric materials was capable of growth on presterilized coupons of five composites, resulting in deep penetration into the interior of all materials within five weeks. Data describing the utilization of composite constituents as nutrients for the microflora are described in this article. Increased microbial growth was observed when composite extract was incubated with the fungal inoculum at ambient temperatures. Scanning electron microscopic observation of carbon fibers incubated with a naturally developed population of microorganisms showed the formation of bacterial biofilms on the fiber surfaces, suggesting possible utilization of the fiber chemical sizing as carbon and energy sources. Electrochemical impedance spectroscopy was used to monitor the phenomena occurring at the fiber-matrix interfaces. Significant differences were observed between inoculated and sterile panels of the composite materials. A progressive decline in impedance was detected in the inoculated panels. Several reaction steps may be involved in the degradation process. Initial ingress of water into the resin matrix appeared to be followed by degradation of fiber surfaces, and separation of fibers from the resin matrix. This investigation suggested that composite materials are susceptible to microbial attack by providing nutrients for growth.

  12. Fabrication of Fiber-Reinforced Celsian Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Setlock, John A.

    2000-01-01

    A method has been developed for the fabrication of small diameter, multifilament tow fiber reinforced ceramic matrix composites. Its application has been successfully demonstrated for the Hi-Nicalon/celsian system. Strong and tough celsian matrix composites, reinforced with BN/SiC-coated Hi-Nicalon fibers, have been fabricated by infiltrating the fiber tows with the matrix slurry, winding the tows on a drum, cutting and stacking of the prepreg tapes in the desired orientation, and hot pressing. The monoclinic celsian phase in the matrix was produced in situ, during hot pressing, from the 0.75BaO-0.25SrO-Al2O3-2SiO2 mixed precursor synthesized by solid state reaction from metal oxides. Hot pressing resulted in almost fully dense fiber-reinforced composites. The unidirectional composites having approx. 42 vol% of fibers exhibited graceful failure with extensive fiber pullout in three-point bend tests at room temperature. Values of yield stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01 percent, respectively, and ultimate strengths of 900 +/- 60 MPa were observed. The Young's modulus of the composites was measured to be 165 +/- 5 GPa.

  13. Hollow polycaprolactone composite fibers for controlled magnetic responsive antifungal drug release.

    PubMed

    Wang, Baolin; Zheng, Hongxia; Chang, Ming-Wei; Ahmad, Zeeshan; Li, Jing-Song

    2016-09-01

    Hollow magnetic fibers for trigger based drug release were synthesized using one-step co-axial electrospinning (COX-ES). This was achieved by encapsulating the antifungal active 'ketoconazole' (KCZ) and iron oxide (Fe3O4) nanoparticles (NPs) in composite form within the core shell polymeric matrix material (polycaprolactone, PCL) during the COX-ES process. Dimethyl silicone oil was used as the inner core (liquid) of co-flowing solutions, which subsequently perfused out of the two-phase electrospun microstructures to form hollow fibers. Resulting drug-loaded magnetic hollow fibers were characterized using optical microscopy, scanning electron microscopy and Fourier Transform Infra-Red. The tensile strength and magnetization properties of composite fibers were also assessed. KCZ drug concentration in electrospinning solutions strongly influenced resulting fiber morphology, drug loading efficiency and release. Expedited drug release during a slow-sustained phase was demonstrated through the application of an auxiliary magnetic field. Variations in tensile strength (∼1.3-6.3MPa) were due to composite fiber components compromising polymer chain integrity. In-vitro cell studies (using human cervical carcinoma cell lines) demonstrated fiber biocompatibility. The present study demonstrates the potential application of magnetic hollow fibers for controlled treatment of fungal infections and antimicrobial indications.

  14. SIZE EFFECTS IN THE TENSILE STRENGTH OF UNIDIRECTIONAL FIBER COMPOSITES

    SciTech Connect

    M. SIVASAMBU; ET AL

    1999-08-01

    Monte Carlo simulation and theoretical modeling are used to study the statistical failure modes in unidirectional composites consisting of elastic fibers in an elastic matrix. Both linear and hexagonal fiber arrays are considered, forming 2D and 3D composites, respectively. Failure is idealized using the chain-of-bundles model in terms of {delta}-bundles of length {delta}, which is the length-scale of fiber load transfer. Within each {delta}-bundle, fiber load redistribution is determined by local load-sharing models that approximate the in-plane fiber load redistribution from planar break clusters as predicted from 2D and 3D shear-lag models. As a result these models are 1D and 2D, respectively. Fiber elements have random strengths following either the Weibull or the power-law distribution with shape and scale parameters {rho} and {sigma}{sub {delta}}, respectively. Simulations of {delta}-bundle failure, reveal two regimes. When fiber strength variability is low (roughly {rho} > 2) the dominant failure mode is by growing clusters of fiber breaks up to instability. When this variability is high (roughly 0 < {rho} < 1) cluster formation is suppressed by a dispersed fiber failure mode. For these two cases, closed-form approximations to the strength distribution of a {delta}-bundle are developed under the local load-sharing model and an equal load-sharing model of Daniels, respectively. The results compare favorably with simulations on {delta}-bundles with up to 1500 fibers. The location of the transition in terms of {rho} is affected by the upper tail properties of the fiber strength distributions as well as the number of fibers.

  15. Aligning carbon fibers in micro-extruded composite ink

    NASA Astrophysics Data System (ADS)

    Mahajan, Chaitanya G.

    Direct write processes include a wide range of additive manufacturing techniques with the ability to fabricate structures directly onto planar and non-planar surfaces. Most additive manufacturing techniques use unreinforced polymers to produce parts. By adding carbon fiber as a reinforcing material, properties such as mechanical strength, electrical conductivity, and thermal conductivity can be enhanced. Carbon fibers can be long and continuous, or short and discontinuous. The strength of carbon fiber composite parts is greatly increased when the fibers are preferentially aligned. This research focuses on increasing the strength of additively manufactured parts reinforced using discontinuous carbon fibers that have been aligned during the micro extrusion process. A design of experiments (DOE) approach was used to identify significant process parameters affecting fiber alignment. Factors such as the length of carbon fibers, nozzle diameter, fiber loading fraction, air pressure, translational speed and standoff distance were considered. A two dimensional Fast Fourier Transform (2D FFT) was used to quantify the degree of fiber alignment in the extruded composite inks. ImageJ software supported by an oval profile plugin was used with micrographs of printed samples to obtain the carbon fiber alignment values. The optimal value for the factors was derived by identifying the significant main and interaction effects. Based on the results of the DOE, tensile test samples were printed with fibers aligned parallel and perpendicular to the tensile axis. A standard test method for tensile properties of plastic revealed that the extruded parts with fibers aligned along the tensile axis were better in tensile strength and modulus.

  16. The dynamic response of carbon fiber-filled polymer composites

    NASA Astrophysics Data System (ADS)

    Dattelbaum, D. M.; Gustavsen, R. L.; Sheffield, S. A.; Stahl, D. B.; Scharff, R. J.; Rigg, P. A.; Furmanski, J.; Orler, E. B.; Patterson, B.; Coe, J. D.

    2012-08-01

    The dynamic (shock) responses of two carbon fiber-filled polymer composites have been quantified using gas gun-driven plate impact experimentation. The first composite is a filament-wound, highly unidirectional carbon fiber-filled epoxy with a high degree of porosity. The second composite is a chopped carbon fiber- and graphite-filled phenolic resin with little-to-no porosity. Hugoniot data are presented for the carbon fiber-epoxy (CE) composite to 18.6 GPa in the through-thickness direction, in which the shock propagates normal to the fibers. The data are best represented by a linear Rankine-Hugoniot fit: Us = 2.87 + 1.17 ×up(ρ0 = 1.536g/cm3). The shock wave structures were found to be highly heterogeneous, both due to the anisotropic nature of the fiber-epoxy microstructure, and the high degree of void volume. Plate impact experiments were also performed on a carbon fiber-filled phenolic (CP) composite to much higher shock input pressures, exceeding the reactants-to-products transition common to polymers. The CP was found to be stiffer than the filament-wound CE in the unreacted Hugoniot regime, and transformed to products near the shock-driven reaction threshold on the principal Hugoniot previously shown for the phenolic binder itself. [19] On-going research is focused on interrogating the direction-dependent dyanamic response and dynamic failure strength (spall) for the CE composite in the TT and 0∘ (fiber) directions.

  17. Lifetimes of fiber composites under sustained tensile loading

    NASA Technical Reports Server (NTRS)

    Chiao, T. T.; Sherry, R. J.; Chiao, C. C.

    1977-01-01

    A description is presented of the test techniques which have been used to apply sustained uniaxial tensile loading to fiber/epoxy composites. The fiber types used include S-glass, aramid, graphite, and beryllium wire. The applied load vs lifetime data for four composite materials are presented in graphs. Attention is given to a statistical analysis of data, a performance comparison of various composites, the age effect on the strength of composites, the applicability of the lifetime data to complex composites, and aspects of accelerated test method development. It is found that the lifetime of a composite under a sustained load varies widely. Depending on the composite system, the minimum life typically differs from the maximum life by a factor of 100 to 1000. It is in this connection recommended that a use of average life data should be avoided in serious design calculations.

  18. Effects of fiber, matrix, and interphase on carbon fiber composite compression strength

    NASA Technical Reports Server (NTRS)

    Nairn, John A.; Harper, Sheila I.; Bascom, Willard D.

    1994-01-01

    The major goal of this project was to obtain basic information on compression failure properties of carbon fiber composites. To do this, we investigated fiber effects, matrix effects, and fiber/matrix interface effects. Using each of nine fiber types, we prepared embedded single-fiber specimens, single-ply specimens, and full laminates. From the single-fiber specimens, in addition to the standard fragmentation test analysis, we were able to use the low crack density data to provide information about the distribution of fiber flaws. The single-ply specimens provided evidence of a correlation between the size of kink band zones and the quality of the interface. Results of the laminate compression experiments mostly agreed with the results from single-ply experiments, although the ultimate compression strengths of laminates were higher. Generally, these experiments showed a strong effect of interfacial properties. Matrix effects were examined using laminates subjected to precracking under mixed-mode loading conditions. A large effect of precracking conditions on the mode 1 toughness of the laminates was found. In order to control the properties of the fiber/matrix interface, we prepared composites of carbon fiber and polycarbonate and subjected these to annealing. The changes in interfacial properties directly correlated with changes in compression strength.

  19. Fabrication of sisal fibers/epoxy composites with liquid crystals polymer grafted on sisal fibers

    NASA Astrophysics Data System (ADS)

    Luo, Q. Y.; Lu, S. R.; Song, L. F.; Li, Y. Q.

    2016-07-01

    In this word, microcrystalline cellulose fibers (MCFs), extracted from sisal fibers, were treated with function end-group hyperbranched liquid crystals (HLP). This work brought some insights into the successful surface modification in epoxy composite with HLP. The HLP-MCFs/epoxy composites are studied systematically. The HLP - MCFs/epoxy composites were studied by Fourier transform infrared spectroscopy (FT-IR), polarizing microscope (POM), X-ray photoelectron spectroscopy (XPS) and mechanical properties analysis. The results reveal that the reinforcement of EP composites was carried out by adding HLP-MCFs. In particular, with 1.0 wt% filler loading, the flexural strength, tensile strength, impact strength and flexural modulus of the HLP-MCFs/EP composites were increased by 60%, 69%, 130%, and 192%, respectively. It anticipates that our current work exploits more efficient methods to overcome the few nature fiber/polymer (NPC) adhesion in the interface region and provides implications for the engineering applications of the development of NPC.

  20. SiC Fiber-Reinforced Celsian Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    2003-01-01

    Celsian is a promising matrix material for fiber-reinforced composites for high temperature structural applications. Processing and fabrication of small diameter multifilament silicon carbide tow reinforced celsian matrix composites are described. Mechanical and microstructural properties of these composites at ambient and elevated temperatures are presented. Effects of high-temperature exposures in air on the mechanical behavior of these composites are also given. The composites show mechanical integrity up to 1100 C but degrade at higher temperatures in oxidizing atmospheres. A model has been proposed for the degradation of these composites in oxidizing atmospheres at high temperatures.

  1. Continuous Fiber Ceramic Composite (CFCC) Program: Gaseous Nitridation

    SciTech Connect

    R. Suplinskas G. DiBona; W. Grant

    2001-10-29

    Textron has developed a mature process for the fabrication of continuous fiber ceramic composite (CFCC) tubes for application in the aluminum processing and casting industry. The major milestones in this project are System Composition; Matrix Formulation; Preform Fabrication; Nitridation; Material Characterization; Component Evaluation

  2. An Assessment of Self-Healing Fiber Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G., Jr.

    2012-01-01

    Several reviews and books have been written concerning self-healing polymers over the last few years. These have focused primarily on the types of self-healing materials being studied, with minor emphasis given to composite properties. The purpose of this review is to assess the self-healing ability of these materials when utilized in fiber reinforced composites

  3. Optimization of interfacial properties of carbon fiber/epoxy composites via a modified polyacrylate emulsion sizing

    NASA Astrophysics Data System (ADS)

    Yuan, Xiaomin; Zhu, Bo; Cai, Xun; Liu, Jianjun; Qiao, Kun; Yu, Junwei

    2017-04-01

    The adhesion behavior of epoxy resin to carbon fibers has always been a challenge, on account of the inertness of carbon fibers and the lack of reactive functional groups. In this work, a modified polyacrylate sizing agent was prepared to modify the interface between the carbon fiber and the epoxy matrix. The surface characteristics of carbon fibers were investigated to determine chemical composition, morphology, wettability, interfacial phase analysis and interfacial adhesion. Sized carbon fibers featured improved wettability and a slightly decreased surface roughness due to the coverage of a smooth sizing layer, compared with the unsized ones. Moreover, the content of surface activated carbon atoms increased from 12.65% to 24.70% and the interlaminar shear strength (ILSS) of carbon fiber/epoxy composites raised by 14.2%, indicating a significant improvement of chemical activity and mechanical property. SEM images of the fractured surface of composites further proved that a gradient interfacial structure with increased thicknesses was formed due to the transition role of the sizing. Based on these results, a sizing mechanism consisting of chemical interaction bonding and physical force absorption was proposed, which provides an efficient and feasible method to solve the poor adhesion between carbon fiber and epoxy matrix.

  4. Fiber-Reinforced Reactive Nano-Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Zhong, Wei-Hong

    2011-01-01

    An ultra-high-molecular-weight polyethylene/ matrix interface based on the fabrication of a reactive nano-epoxy matrix with lower surface energy has been improved. Enhanced mechanical properties versus pure epoxy on a three-point bend test include: strength (25 percent), modulus (20 percent), and toughness (30 percent). Increased thermal properties include higher Tg (glass transition temperature) and stable CTE (coefficient of thermal expansion). Improved processability for manufacturing composites includes faster wetting rates on macro-fiber surfaces, lower viscosity, better resin infusion rates, and improved rheological properties. Improved interfacial adhesion properties with Spectra fibers by pullout tests include initial debonding force of 35 percent, a maximum pullout force of 25 percent, and energy to debond at 65 percent. Improved mechanical properties of Spectra fiber composites (tensile) aging resistance properties include hygrothermal effects. With this innovation, high-performance composites have been created, including carbon fibers/nano-epoxy, glass fibers/nano-epoxy, aramid fibers/ nano-epoxy, and ultra-high-molecularweight polyethylene fiber (UHMWPE).

  5. Carbon Fiber Reinforced Ceramic Composites for Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Shivakumar, Kunigal; Argade, Shyam

    2003-01-01

    This report presents a critical review of the processing techniques for fabricating continuous fiber-reinforced CMCs for possible applications at elevated temperatures. Some of the issues affecting durability of the composite materials such as fiber coatings and cracking of the matrix because of shrinkage in PIP-process are also examined. An assessment of the potential inexpensive processes is also provided. Finally three potential routes of manufacturing C/SiC composites using a technology that NC A&T developed for carbon/carbon composites are outlined. Challenges that will be encountered are also listed.

  6. Friction and wear behavior of graphite fiber reinforced polymide composites

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.; Sliney, H. E.

    1977-01-01

    The friction and wear rate characteristics of 50/50 (weight percent) graphite fiber polyimide composites were studied by sliding metallic hemispherically tipped riders against disks made from the composites. Two different polyimides and two different graphite fibers were evaluated. Also studied were such variables as the effect of moisture in an air atmosphere; the effect of temperature; and the effect of different sliding speeds. In general, wear to the the metallic riders was negligible, and composite wear increased at a constant rate as a function of number of sliding cycles.

  7. Puncture-Healing Thermoplastic Resin Carbon-Fiber-Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Gordon, Keith L. (Inventor); Siochi, Emilie J. (Inventor); Grimsley, Brian W. (Inventor); Cano, Roberto J. (Inventor); Czabaj, Michael W. (Inventor)

    2015-01-01

    A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.

  8. Direct piezoelectric responses of soft composite fiber mats

    NASA Astrophysics Data System (ADS)

    Varga, M.; Morvan, J.; Diorio, N.; Buyuktanir, E.; Harden, J.; West, J. L.; Jákli, A.

    2013-04-01

    Recently soft fiber mats electrospun from solutions of Barium Titanate (BT) ferroelectric ceramics particles and polylactic acid (PLA) were found to have large (d33 ˜ 1 nm/V) converse piezoelectric signals offering a myriad of applications ranging from active implants to smart textiles. Here, we report direct piezoelectric measurements (electric signals due to mechanical stress) of the BT/PLA composite fiber mats at several BT concentrations. A homemade testing apparatus provided AC stresses in the 50 Hz-1.5 kHz-frequency range. The piezoelectric constant d33 ˜ 0.5 nC/N and the compression modulus Y ˜ 104-105 Pa found are in agreement with the prior converse piezoelectric and compressibility measurements. Importantly, the direct piezoelectric signal is large enough to power a small LCD by simple finger tapping of a 0.15 mm thick 2-cm2 area mat. We propose using these mats in active Braille cells and in liquid crystal writing tablets.

  9. The effects of embedded piezoelectric fiber composite sensors on the structural integrity of glass-fiber-epoxy composite laminate

    NASA Astrophysics Data System (ADS)

    Konka, Hari P.; Wahab, M. A.; Lian, K.

    2012-01-01

    Piezoelectric fiber composite sensors (PFCSs) made from micro-sized lead zirconate titanate (PZT) fibers have many advantages over the traditional bulk PZT sensors for embedded sensor applications. PFCSs as embedded sensors will be an ideal choice to continuously monitor the stress/strain levels and health conditions of composite structures. PFCSs are highly flexible, easily embeddable, have high compatibility with composite structures, and also provides manufacturing flexibility. This research is focused on examining the effects of embedding PFCS sensors (macro-fiber composite (MFC) and piezoelectric fiber composite (PFC)) on the structural integrity of glass-fiber-epoxy composite laminates. The strengths of composite materials with embedded PFCSs and conventional PZT sensors were compared, and the advantages of PFCS sensors over PZTs were demonstrated. Initially a numerical simulation study is performed to understand the local stress/strain field near the embedded sensor region inside a composite specimen. High stress concentration regions were observed near the embedded sensor corner edge. Using PFCS leads to a reduction of 56% in longitudinal stress concentration and 38% in transverse stress concentration, when compared to using the conventional PZTs as embedded sensors. In-plane tensile, in-plane tension-tension fatigue, and short beam strength tests are performed to evaluate the strengths/behavior of the composite specimens containing embedded PFCS. From the tensile test it is observed that embedding PFCS and PZT sensors in the composite structures leads to a reduction in ultimate strength by 3 and 6% respectively. From the fatigue test results it is concluded that both embedded PFCS and PZT sensors do not have a significant effect on the fatigue behavior of the composite specimens. From the short beam strength test it is found that embedding PFCS and PZT sensors leads to a reduction in shear strength by 7 and 15% respectively. Overall the pure PZT sensors

  10. Dynamic viscoelasticities for short fiber-thermoplastic elastomer composites

    SciTech Connect

    Guo, Wuyun; Ashida, Michio . Graduate School of Science and Technology)

    1993-11-20

    Dynamic moduli, E[prime] and E[double prime], and loss tangent tan [delta] were investigated for thermoplastic elastomers (TPEs), styrene-isoprene-styrene copolymers (SISs), styrene-butadiene-styrene copolymer (SBS), and Hytrel and composites reinforced by poly(ethylene terephthalate) (PET) short fibers. The styrenic TPEs have a typical rubbery behavior and the Hytrel TPE has medial characteristics between rubber and plastic. Both E[prime] and E[double prime] of the composites depended on the matrix as well as the fiber loading and fiber length. Based on the viewpoint of different extensibility between the fiber and the matrix elastomer, a triblock model was considered for estimating the storage modulus of the short fiber-TPE composites as follows: E[sub c] = [alpha] V[sub f]E[sub f] + [beta](1 [minus] V[sub f])E[sub m], where [alpha] and [beta] are the effective deformation coefficients for the fiber and the matrix elastomer, respectively. They can be quantitatively represented by modulus ratio M (= E[sub m]/E[sub f]) and fiber length L: [alpha] = (L[sup n] + k)M/(L[sup n]M + k), [beta] = (1 [minus] [alpha]V[sub f])/(1 [minus] V[sub f]), where the constants n and k are obtained experimentally. When k = 0.0222 and n = 0.45, E[sub c] of the TPE composites agreed well with the prediction of the proposed model. The relaxation spectrum of the composites showed a distinct main peak ascribed to the matrix elastomer, but no peak to the PET fiber.

  11. Modelling of dimensional stability of fiber reinforced composite materials

    NASA Technical Reports Server (NTRS)

    Hahn, H. T.; Hosangadi, A.

    1982-01-01

    Various methods of predicting the expansion and diffusion properties of composite laminates are reviewed. The prediction equations for continuous fiber composites can be applied to SMC composites as the effective fiber aspect ratio in the latter is large enough. The effect of hygrothermal expansion on the dimensional stability of composite laminates was demonstrated through the warping of unsymmetric graphite/epoxy laminates. The warping is very sensitive to the size of the panel, and to the moisture content which is in turn sensitive to the relative humidity in the environment. Thus, any long term creep test must be carried out in a humidity-controlled environment. Environmental effects in SMC composites and bulk polyester were studied under seven different environments. The SMC composites chosen are SMC-R25, SMC-R40, and SMC-R65.

  12. Factors Controlling Stress Rupture of Fiber-Reinforced Ceramic Composites

    NASA Technical Reports Server (NTRS)

    DiCarlo, J. A.; Yun, H. M.

    1999-01-01

    The successful application of fiber-reinforced ceramic matrix composites (CMC) depends strongly on maximizing material rupture life over a wide range of temperatures and applied stresses. The objective of this paper is to examine the various intrinsic and extrinsic factors that control the high-temperature stress rupture of CMC for stresses below and above those required for cracking of the 0 C plies (Regions I and II, respectively). Using creep-rupture results for a variety of ceramic fibers and rupture data for CMC reinforced by these fibers, it is shown that in those cases where the matrix carries little structural load, CMC rupture conditions can be predicted very well from the fiber behavior measured under the appropriate test environment. As such, one can then examine the intrinsic characteristics of the fibers in order to develop design guidelines for selecting fibers and fiber microstructures in order to maximize CMC rupture life. For those cases where the fiber interfacial coatings are unstable in the test environment, CMC lives are generally worse than those predicted by fiber behavior alone. For those cases where the matrix can support structural load, CMC life can even be greater provided matrix creep behavior is properly controlled. Thus the achievement of long CMC rupture life requires understanding and optimizing the behavior of all constituents in the proper manner.

  13. Compressive elastic modulus of natural fiber based binary composites

    NASA Astrophysics Data System (ADS)

    Widayani, Susanah, Y.; Utami, L. S.; Khotimah, S. N.; Viridi, S.

    2012-06-01

    The composites made of bamboo apus fiber - epoxy resin and charcoal - tapioca starch with several compositions have been synthesized. Bamboo fiber powder as the rest of cutting process was refined and filtered by mesh 40 before used. Epoxy resin 1021A and hardener 1021B has been used as resin. The synthesis of epoxy resin-based composites was carried out via simple mixing method by adding adequate 70% ethanol solution before drying. The 100 mesh-filtered dry charcoal was mixed with tapioca mixture before it was pressed and dried to produce briquette composites. To study the compressive elastic modulus of the composites, pressure tests using Mark 10 Pressure Test Machine have been carried out. It was found that all the composites show maximum compressive elastic modulus at certain component compositions. The maximum elastic modulus for bamboo fiber-epoxy resin, charcoal - epoxy resin and charcoal-tapioca starch were observed at 52.9%, 56.3%, and 25.0% of mass fraction of bamboo fiber, charcoal and tapioca starch, respectively.

  14. Fatigue strengths of particulate filler composites reinforced with fibers.

    PubMed

    Bae, Ji-Myung; Kim, Kyoung-Nam; Hattori, Masayuki; Hasegawa, Koji; Yoshinari, Masao; Kawada, Eiji; Oda, Yutaka

    2004-06-01

    The aim of this study was to evaluate the dynamic fatigue strengths at 10(5) cycles and the strains of particulate filler composite resins with and without reinforcing fibers. An UHMWPE (Ribbond), a polyaromatic polyamide fiber (Fibreflex), and three glass fibers (GlasSpan, FibreKor, Vectris Frame) were used to reinforce the particulate filler composite resins. The fatigue properties were measured in three-point bending mode using a servohydraulic universal testing machine at a frequency of 5 Hz, until failure occurred or 10(5) cycles had been completed. The fatigue strengths at 10(5) cycles were determined by the staircase method. The fractured aspects of specimens were evaluated by an optical and scanning electron microscope. The fatigue strengths of particulate filler composite resins were 49-57 MPa, and those of fiber-reinforced were 90-209 MPa. Unidirectional glass fibers showed higher reinforcing effects on the fatigue strengths of composite resins. The strain of UHMWPE-reinforced composite was largest.

  15. Resistivity of pristine and intercalated graphite fiber epoxy composites

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Hambourger, Paul D.; Slabe, Melissa E.

    1991-01-01

    Laminar composites were fabricated from pristine and bromine intercalated Amoco P-55, P-75, and P-100 graphite fibers and Hysol-Grafil EAG101-1 film epoxy. The thickness and r.f. eddy current resistivity of several samples were measured at grid points and averaged point by point to obtain final values. Although the values obtained this way have high precision (less than 3 percent deviation), the resistivity values appear to be 20 to 90 percent higher than resistivities measured on high aspect ratio samples using multi-point techniques, and by those predicted by theory. The temperature dependence of the resistivity indicates that the fibers are neither damaged nor deintercalated by the composite fabrication process. The resistivity of the composites is a function of sample thickness (i.e., resin content). Composite resistivity is dominated by fiber resistivity, so lowering the resistivity of the fibers, either through increased graphitization or intercalation, results in a lower composite resistivity. A modification of the simple rule of mixtures model appears to predict the conductivity of high aspect ratio samples measured along a fiber direction, but a directional dependence appears which is not predicted by the theory. The resistivity of these materials is clearly more complex than that of homogeneous materials.

  16. Resistivity of pristine and intercalated graphite fiber epoxy composites

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Hambourger, Paul D.; Slabe, Melissa E.

    1989-01-01

    Laminar composites were fabricated from pristine and bromine intercalated Amoco P-55, P-75, and P-100 graphite fibers and Hysol-Grafil EAG101-1 film epoxy. The thickness and r.f. eddy current resistivity of several samples were measured at grid points and averaged point by point to obtain final values. Although the values obtained this way have high precision (less than 3 percent deviation), the resistivity values appear to be 20 to 90 percent higher than resistivities measured on high aspect ratio samples using multi-point techniques, and by those predicted by theory. The temperature dependence of the resistivity indicates that the fibers are neither damaged nor deintercalated by the composite fabrication process. The resistivity of the composites is a function of sample thickness (i.e., resin content). Composite resistivity is dominated by fiber resistivity, so lowering the resistivity of the fibers, either through increased graphitization or intercalation, results in a lower composite resistivity. A modification of the simple rule of mixtures model appears to predict the conductivity of high aspect ratio samples measured along a fiber direction, but a directional dependence appears which is not predicted by the theory. The resistivity of these materials is clearly more complex than that of homogeneous materials.

  17. Variable percolation threshold of composites with fiber fillers under compression

    NASA Astrophysics Data System (ADS)

    Lin, Chuan; Wang, Hongtao; Yang, Wei

    2010-07-01

    The piezoresistant effect in conducting fiber-filled composites has been studied by a continuum percolation model. Simulation was performed by a Monte Carlo method that took into account both the deformation-induced fiber bending and rotation. The percolation threshold was found to rise with the compression strain, which explains the observed positive piezoresistive coefficients in such composites. The simulations unveiled the effect of the microstructure evolution during deformation. The fibers are found to align perpendicularly to the compression direction. As the fiber is bended, the effective length in making a conductive network is shortened. Both effects contribute to a larger percolation threshold and imply a positive piezoresistive coefficient according the universal power law.

  18. Electrospinning of Continuous Carbon Naonofiber-Filled Composite Fibers

    NASA Astrophysics Data System (ADS)

    Aboutalebi, Seyed Hamed; Gholamvand, Zahra; Keyanpour-Rad, Mansoor

    In order to translate the superior properties of carbon nanofibers (CNFs) to macro-scale structures, an electrospinning route capable of placing CNFs into a continuous nano-scale composite fibril is introduced. In this work, composite fibers were produced by electrospinning solution of polyacrylonitrile (PAN) with carbon nanofibers dispersed in dimethylformamide (DMF), which is an effective solvent for carbon nanofibers. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) demonstrated rough and globular surfaces on the CNF containing fibers. Raman spectra confirmed the presence of CNFs in the polymer fibers prepared employing the electrospinning method. Raman observation served as the direct evidence of successful filling of PAN fibers with CNFs and complemented the results obtained by SEM and AFM studies.

  19. Graphite-Fiber-Reinforced Glass-Matrix Composite

    NASA Technical Reports Server (NTRS)

    Prewo, K. M.; Dicus, D. L.

    1982-01-01

    G/GI structural composite material made of graphite fibers embedded in borosilicate glass exhibit excellent strength, fracture toughness, and dimensional stability at elevated temperatures. It is made by passing graphite-fiber yarn through slurry containing suspension of fine glass particles in carrier liquid and winding on drum to produce prepegged uniaxial tape. After drying, tapes are cut into appropriate lengths and laid up in graphite die in desired stacking scheme. Stack is consolidated by hot pressing in furnace.

  20. Thermomechanical fatigue cracking in fiber reinforced metal-matrix composites

    NASA Astrophysics Data System (ADS)

    Bao, G.; McMeeking, R. M.

    1995-09-01

    A theoretical model is developed for thermomechanical fatigue cracking in fiber reinforced metal-matrix composites. Interfacial debonding is assumed to occur readily, allowing fibers to slide relative to the matrix resisted by a uniform shear stress. The fibers therefore bridge any matrix crack which develops. The crack bridging traction law is obtained, including the effect of thermal expansion mismatch between the fiber and the matrix and a temperature dependence of the frictional shear stress. Any combination of thermal and mechanical cycling is considered as long as the slip zone along the fiber increases in length monotonically during each increment of cycling. However, for clarity, the results are presented in terms of in-phase and out-of-phase cycling of the thermal and mechanical loads at the same frequency. For each case, the stress distributions in the bridging zone as well as the stress intensity factors at the crack tip are computed for relevant regimes of the thermal and mechanical loading conditions. Predictions are made of the matrix fatigue crack growth under combined thermal and mechanical loading conditions. It is found that when the thermal expansion coefficient of the fiber is less than that of the matrix, a significant increase in the crack growth rate results in out-of-phase thermomechanical fatigue. On the other hand, there is decreased tendency for fibers to fail in this case. For in-phase thermomechanical fatigue, the crack growth rate is reduced but the stress in the fiber is larger than that due to mechanical loading alone, resulting in an increased tendency for fiber failure. The implications for life prediction for fiber reinforced metal-matrix composites are discussed.

  1. Development of Coconut Trunk Fiber Geopolymer Hybrid Composite for Structural Engineering Materials

    NASA Astrophysics Data System (ADS)

    Amalia, F.; Akifah, N.; Nurfadilla; Subaer

    2017-03-01

    A research on the influence of coconut fiber trunk on mechanical properties based on fly ash has been conducted. The aims of this study was to examine the mechanical properties of geopolymer composites by varrying the concentration of coconut trunk fiber. Geopolymer synthesized by alkali activated (NaOH+H2O+Na2O.3SiO2) and cured at the temperature 700C for one hour. Specimens were synthesized into 5 different mass of fiber 0 g, 0.25 g, 0.50 g, 0.75 g, and 1.00 g keeping fly ash constant. The highest compressive strength was 89.44 MPa for specimen added with 0.50 g of fiber. The highest flexural strength was 7.64 MPa for the same sample. The interfacial transition zone (ITZ) between the matrix of geopolymers and coconut fiber was conducted by using Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS). The chemical composition of the specimen was examined by using X-Ray Diffraction (XRD). The thermal properties of coconut fiber trunk was analyzed using Differential Scanning Calorimetry (DSC). It was found that coconut fiber was able to improve the mechanical and microstructure properties of geopolymers composites.

  2. Modeling of Euclidean braided fiber architectures to optimize composite properties

    NASA Technical Reports Server (NTRS)

    Armstrong-Carroll, E.; Pastore, C.; Ko, F. K.

    1992-01-01

    Three-dimensional braided fiber reinforcements are a very effective toughening mechanism for composite materials. The integral yarn path inherent to this fiber architecture allows for effective multidirectional dispersion of strain energy and negates delamination problems. In this paper a geometric model of Euclidean braid fiber architectures is presented. This information is used to determine the degree of geometric isotropy in the braids. This information, when combined with candidate material properties, can be used to quickly generate an estimate of the available load-carrying capacity of Euclidean braids at any arbitrary angle.

  3. Method of Manufacturing Carbon Fiber Reinforced Carbon Composite Valves

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor)

    1998-01-01

    A method for forming a carbon composite valve for internal combustion engines is discussed. The process includes the steps of braiding carbon fiber into a rope thereby forming a cylindrically shaped valve stem portion and continuing to braid said fiber while introducing into the braiding carbon fiber rope a carbon matrix plug having an outer surface in a net shape of a valve head thereby forming a valve head portion. The said carbon matrix plug acting as a mandrel over which said carbon fiber rope is braided, said carbon fiber rope and carbon matrix plug forming a valve head portion suitable for mating with a valve seat; cutting said braided carbon valve stem portion at one end to form a valve tip and cutting said braided carbon fiber after said valve head portion to form a valve face and thus provide a composite valve preform; and densifying said preform by embedding the braided carbon in a matrix of carbon to convert said valve stem portion to a valve stem and said valve head portion to a valve head thereby providing said composite valve.

  4. Continuous fiber ceramic composites for energy related applications. Final report

    SciTech Connect

    1998-04-07

    The US Department of Energy has established the Continuous Fiber Ceramic Composites (CFCC) program to develop technology for the manufacture of CFCC`s for use in industrial applications where a reduction in energy usage or emissions could be realized. As part of this program, the Dow Chemical Company explored the manufacture of a fiber reinforced/self reinforced silicon nitride for use in industrial chemical processing. In Dow`s program, CFCC manufacturing technology was developed around traditional, cost effective, tape casting routes. Formulations were developed and coupled with unique processing procedures which enabled the manufacture of tubular green laminates of the dimension needed for the application. An evaluation of the effect of various fibers and fiber coatings on the properties of a fiber reinforced composites was also conducted. Results indicated that fiber coatings could provide composites exhibiting non-catastrophic failure and substantially improved toughness. However, an evaluation of these materials in industrial process environments showed that the material system chosen by Dow did not provide the required performance improvements to make replacement of current metallic components with CFCC components economically viable.

  5. Rheology and composition of processed citrus fiber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While fibrous byproducts are abundant in supply, using them in food products in such a way to not degrade taste or texture can be challenging. Citrus fibers have been shown to have high water holding and viscous properties. However, to better incorporate dried orange pulp into foods, their propert...

  6. Composite Living Fibers for Creating Tissue Constructs Using Textile Techniques

    PubMed Central

    Akbari, Mohsen; Tamayol, Ali; Laforte, Veronique; Annabi, Nasim; Najafabadi, Alireza Hassani

    2014-01-01

    The fabrication of cell-laden structures with anisotropic mechanical properties while having a precise control over the distribution of different cell types within the constructs is important for many tissue engineering applications. Automated textile technologies for making fabrics allow simultaneous control over the color pattern and directional mechanical properties. The use of textile techniques in tissue engineering, however, demands the presence of cell-laden fibers that can withstand the mechanical stresses during the assembly process. Here, the concept of composite living fibers (CLFs) in which a core of load bearing synthetic polymer is coated by a hydrogel layer containing cells or microparticles is introduced. The core thread is drawn sequentially through reservoirs containing a cell-laden prepolymer and a crosslinking reagent. The thickness of the hydrogel layer increases linearly with to the drawing speed and the prepolymer viscosity. CLFs are fabricated and assembled using regular textile processes including weaving, knitting, braiding, winding, and embroidering, to form cell-laden structures. Cellular viability and metabolic activity are preserved during CLF fabrication and assembly, demonstrating the feasibility of using these processes for engineering functional 3D tissue constructs. PMID:25411576

  7. Composite Living Fibers for Creating Tissue Constructs Using Textile Techniques.

    PubMed

    Akbari, Mohsen; Tamayol, Ali; Laforte, Veronique; Annabi, Nasim; Najafabadi, Alireza Hassani; Khademhosseini, Ali; Juncker, David

    2014-07-09

    The fabrication of cell-laden structures with anisotropic mechanical properties while having a precise control over the distribution of different cell types within the constructs is important for many tissue engineering applications. Automated textile technologies for making fabrics allow simultaneous control over the color pattern and directional mechanical properties. The use of textile techniques in tissue engineering, however, demands the presence of cell-laden fibers that can withstand the mechanical stresses during the assembly process. Here, the concept of composite living fibers (CLFs) in which a core of load bearing synthetic polymer is coated by a hydrogel layer containing cells or microparticles is introduced. The core thread is drawn sequentially through reservoirs containing a cell-laden prepolymer and a crosslinking reagent. The thickness of the hydrogel layer increases linearly with to the drawing speed and the prepolymer viscosity. CLFs are fabricated and assembled using regular textile processes including weaving, knitting, braiding, winding, and embroidering, to form cell-laden structures. Cellular viability and metabolic activity are preserved during CLF fabrication and assembly, demonstrating the feasibility of using these processes for engineering functional 3D tissue constructs.

  8. BASIC PROPERTIES OF REFERENCE CROSSPLY CARBON-FIBER COMPOSITE

    SciTech Connect

    Corum, J.M.

    2001-01-11

    This report provides basic in-air property data and correlations-tensile, compressive, shear, tensile fatigue, and tensile creep-for a reference carbon-fiber composite being characterized as a part of the Durability of Carbon-Fiber Composites Project at Oak Ridge National Laboratory. The overall goal of the project, which is sponsored by the Department of Energy's Office of Advanced Automotive Materials and is closely coordinated with the Advanced Composites Consortium, is to develop durability-based design guidance for polymeric composites for automotive structural applications. The composite addressed here is a {+-}45{degree} crossply consisting of continuous Thornel T300 fibers in a Baydur 420 IMR urethane matrix. Basic tensile, compressive, and shear properties are tabulated for the temperature range from {minus}40 to 120 C. Fatigue response at room-temperature and 120 C are presented, and creep and creep rupture at room temperature only are reported. In all cases, two fiber orientations--0/90{degree} and {+-}45{degree}--relative to the specimen axes are addressed. The properties and correlations presented are interim in nature. They are intended as a baseline for planning a full durability test program on this reference composite.

  9. Mechanical characterization of coir/palmyra waste fiber hybrid composites

    NASA Astrophysics Data System (ADS)

    Arumugaprabu, V.; Uthayakumar, M.; Cardona, F.; Sultan, M. T. H.

    2016-10-01

    In the present days, the utilization of palmyra fiber in automotive and aerospace applications has increased drastically due to its high strength and low weight. This research focuses on the development of composite materials using palmyra waste and coir fiber with polyester as a matrix. The mechanical properties such as tensile, flexural and impact strength of composites were investigated. Palmyra waste fiber and coir fiber with relative varying weight percentage in the ratio of 50:50, 40:60, 30:70 and 20:80 had been considered for the study. The composites were prepared by the compression moulding method. In addition, the prepared composites were subjected to moisture studies for 24 hours, 48 hours and 72 hours to know the composite resistance to water absorption. The results showed an increase in all the mechanical properties from the addition of palmyra waste. After analysing the results obtained from the study, a suitable application in the automobile and aerospace industries is suggested for the new developed composite.

  10. Ageing characteristics of aluminium alloy aluminosilicate discontinuous fiber reinforced composites

    SciTech Connect

    Nath, D.; Singh, V.

    1999-03-05

    Development of continuous fiber reinforced metal matrix composites is aimed at providing high specific strength and stiffness needed for aerospace and some critical high temperature structural applications. Considerable efforts have been made, during the last decade, to improve the strength of age-hardening aluminium alloy matrix composites by suitable heat treatment. It has also been well established that age-hardenable aluminium alloy composites show accelerated ageing behavior because of enhanced dislocation density at the fiber/matrix interface resulting from thermal expansion mismatch between ceramic fiber and the metal matrix. The accelerated ageing of aluminium alloy composites either from dislocation density or the residual stress, as a result of thermal expansion mismatch is dependent on the size of whisker and particulate. Investigations have also been made on the effect of volume fraction of particulate on the ageing behavior of aluminium alloys. The present investigation is concerned with characterization of age-hardening behavior of an Al-Si-Cu-Mg(AA 336) alloy alumino-silicate discontinuous fiber-reinforced composites (referred to as aluminium MMCs in the present text) being developed for automotive pistons. An effort is made to study the effect of volume fraction of the reinforcement on age-hardening behavior of this composite.

  11. Lamb Wave Assessment of Fiber Volume Fraction in Composites

    NASA Technical Reports Server (NTRS)

    Seale, Michael D.; Smith, Barry T.; Prosser, W. H.; Zalameda, Joseph N.

    1998-01-01

    Among the various techniques available, ultrasonic Lamb waves offer a convenient method of examining composite materials. Since the Lamb wave velocity depends on the elastic properties of a material, an effective tool exists to evaluate composites by measuring the velocity of these waves. Lamb waves can propagate over long distances and are sensitive to the desired in-plane elastic properties of the material. This paper discusses a study in which Lamb waves were used to examine fiber volume fraction variations of approximately 0.40-0.70 in composites. The Lamb wave measurements were compared to fiber volume fractions obtained from acid digestion tests. Additionally, a model to predict the fiber volume fraction from Lamb wave velocity values was evaluated.

  12. Thermal shock behavior of fiber-reinforced composites

    SciTech Connect

    Wang, H.; Singh, R.N.; Beecher, S.C.; Dinwiddie, R.B.

    1995-02-01

    The thermal shock behavior of three types of continuous fiber-reinforced ceramic composites (Nextel{trademark} or Nicalon{trademark} fiber-reinforced chemical vapor infiltrated or polymer-derived SiC matrix composites) was studied using the water quench technique. The thermal shock induced damage was characterized by both destructive and nondestructive techniques. As compared with monolithic ceramics, the continuous fiber-reinforced ceramic composites were capable of preventing catastrophic failure caused by thermal shock and were able to retain a significant portion of their original strength at {Delta}{Tau} = 1000{degrees}C. The nondestructive techniques involved measuring the thermal diffusivity by the flash technique and determining the Young`s modulus by the dynamic resonance method. It has been demonstrated that these nondestructive techniques can detect damage induced by thermal shock and are more sensitive in detecting damage in the early stage than the conventional destructive technique of measuring the retained strength.

  13. Engineered Polymer Composites Through Electrospun Nanofiber Coating of Fiber Tows

    NASA Technical Reports Server (NTRS)

    Kohlman, Lee W.

    2013-01-01

    Toughening and other property enhancements of composite materials are typically implemented by-modifying the bulk properties of the constituents, either the fiber or matrix materials. This often leads to difficulties in processing and higher material costs. Many composites consist of tows or yarns (thousands of individual fibers) that are either filament wound or processed into a fabric by weaving or braiding. The matrix material can be added to the tow or fabric before final processing, resulting in a prepreg material, or infused into the fiber material during final processing by a variety of methods. By using a direct electrospun deposition method to apply thermoplastic nanofiber to the surface of the tows, the tow-tow interface in the resulting composite can be modified while using otherwise conventional materials and handling processes. Other materials of interest could also be incorporated into the electrospun precursor.

  14. Characterization of aerosols and fibers emitted from composite materials combustion.

    PubMed

    Chivas-Joly, C; Gaie-Levrel, F; Motzkus, C; Ducourtieux, S; Delvallée, A; De Lagos, F; Nevé, S Le; Gutierrez, J; Lopez-Cuesta, J-M

    2016-01-15

    This work investigates the aerosols emitted during combustion of aircraft and naval structural composite materials (epoxy resin/carbon fibers and vinyl ester/glass fibers and carbon nanotubes). Combustion tests were performed at lab-scale using a modified cone calorimeter. The aerosols emitted have been characterized using various metrological devices devoted to the analysis of aerosols. The influence of the nature of polymer matrices, the incorporation of fibers and carbon nanotubes as well as glass reinforcements on the number concentration and the size distribution of airborne particles produced, was studied in the 5 nm-10 μm range. Incorporation of carbon fibers into epoxy resin significantly reduced the total particle number concentration. In addition, the interlaced orientation of carbon fibers limited the particles production compared to the composites with unidirectional one. The carbon nanotubes loading in vinyl ester resin composites influenced the total particles production during the flaming combustion with changes during kinetics emission. Predominant populations of airborne particles generated during combustion of all tested composites were characterized by a PN50 following by PN(100-500).

  15. Electromagnetic interference shielding effectiveness of polypropylene/conducting fiber composites

    NASA Astrophysics Data System (ADS)

    Lee, Pyoung-Chan; Kim, Bo-Ram; Jeoung, Sun Kyoung; Kim, Yeung Keun

    2016-03-01

    Electromagnetic released from the automotive electronic parts is harmful to human body. Electromagnetic interference (EMT) shielding refers to the reflection and/or adsorption of electromagnetic radiation by a material, which thereby acts as a shield against the penetration of the radiation through the shield. Polypropylene (PP)/conductive micro fiber composites containing various fiber contents and fiber length were injection-molded. The effect of fiber content and length on electrical properties of the composites was studied by electrical resistivity and EMT shielding measurements. The through-plane electrical conductivity and dielectric permittivity were obtained by measuring dielectric properties. The EMT shielding effectiveness (SE) was investigated by using S-parameter in the range of 100 ~ 1500 MHz. Reflection, absorption and multiple-reflection are the EMT attenuation mechanisms. From the measurement of S-Parameters, the absorption coefficient, reflection coefficient, and the shielding efficiency of the materials were calculated. The EMT SE of PP/conducing fiber composites is 40 dB over a wide frequency range up to 1.5 GHz, which is higher than that of PP/talc composite used automotive parts, viz. 0 dB.

  16. Properties of fiber composites for advanced flywheel energy storage devices

    SciTech Connect

    DeTeresa, S J; Groves, S E

    2001-01-12

    The performance of commercial high-performance fibers is examined for application to flywheel power supplies. It is shown that actual delivered performance depends on multiple factors such as inherent fiber strength, strength translation and stress-rupture lifetime. Experimental results for recent stress-rupture studies of carbon fibers will be presented and compared with other candidate reinforcement materials. Based on an evaluation of all of the performance factors, it is concluded that carbon fibers are preferred for highest performance and E-glass fibers for lowest cost. The inferior performance of the low-cost E-glass fibers can be improved to some extent by retarding the stress-corrosion of the material due to moisture and practical approaches to mitigating this corrosion are discussed. Many flywheel designs are limited not by fiber failure, but by matrix-dominated failure modes. Unfortunately, very few experimental results for stress-rupture under transverse tensile loading are available. As a consequence, significant efforts are made in flywheel design to avoid generating any transverse tensile stresses. Recent results for stress-rupture of a carbon fiber/epoxy composite under transverse tensile load reveal that these materials are surprisingly durable under the transverse loading condition and that some radial tensile stress could be tolerated in flywheel applications.

  17. Effect of Architecture on the Resistivity of Carbon Fiber Polymer Composites

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Opaluch, Amanda

    2005-01-01

    The electrical resistivity of carbon fiber laminar composites can be tailored by weave direction, fiber composition, resin composition, applied pressure, and fiber fraction. Although the weave direction was only found to be important in the case of high aspect ratio composites, the other factors were found to influence the resistivity generally. Most intriguing, the resistivity of composites with lamina of different fiber compositions follows a parallel resistor model. This opens the door for higher performance, lower cost composites to be fabricated from these mixed fiber composites.

  18. Effects of Fiber/Matrix Interface and its Composition on Mechanical Properties of Hi Nicalon/Celsian Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Eldridge, Jeffrey I.

    1998-01-01

    Fiber-reinforced ceramic matrix composites (CMC) are prospective candidate materials for high temperature structural applications in aerospace, energy conservation, power generation, nuclear, petrochemical, and other industries. At NASA Lewis, we are investigating celsian matrix composites reinforced with various types of silicon carbide fibers. The objective of the present study was to investigate the effects of fiber/matrix interface and its composition on the mechanical properties of silicon carbide (Hi-Nicalon) fiber-reinforced celsian matrix composites.

  19. Muscle growth and fiber type composition in hind limb muscles during postnatal development in pigs.

    PubMed

    Wank, Veit; Fischer, Martin S; Walter, Bernd; Bauer, Reinhard

    2006-01-01

    Rapid postnatal development in pigs is reflected by differentiation in skeletal muscle. This process depends on muscle function and demands, but a comprehensive overview of individual developmental characteristics of quickly growing leg muscles in pigs is still missing. This study focused on the development of 10 hind limb muscles in pigs. To determine these changes in mass, fiber type patterns and fiber diameters were analyzed 0, 2, 4, 7, 14, 28, 42, 56 and 400 days after birth. Generally, the proportion of slow fibers increased from birth to 8 weeks. Thereafter, only minor changes in muscle fiber type composition were observed. The majority of the muscles contained less then 10% slow-twitch fibers at birth, increasing to between 12 (Musculus vastus lateralis) and 38% (M. gastrocnemius medialis) in adult pigs. By contrast, postural muscles already had 20-30% slow fibers at birth, and this contribution increased up to 65% in adults (i.e. M. vastus intermedius). From birth to the 2nd week, only in slow fibers could activity of oxidative enzymes be detected. A differentiation of fast-twitch fibers into subtypes with high (comparable to type IIA) and low oxidative metabolism (equivalent to type IIB) occurred between the 2nd and 4th week of life. The ratio between type II fibers with high and low oxidative enzyme activity did not change markedly through development in any muscle, although there was a trend towards an increasing proportion of type IIA fibers in the soleus. In the majority of the muscles investigated, the fast-twitch fibers with low oxidative metabolism (IIB) obtained the largest cross-sectional area. In contrast, at birth no remarkable differences in the diameter of fast and slow fibers were found. The rapid increase in muscle mass compared to body mass reflects the high performance in meat production of the cross pig investigated.

  20. Ultrasonic nondestructive evaluation of impact-damaged graphite fiber composite

    NASA Technical Reports Server (NTRS)

    Williams, J. H., Jr.; Lampert, N. R.

    1980-01-01

    Unidirectional Hercules AS/3501-6 graphite fiber epoxy composites were subjected to repeated controlled low-velocity drop weight impacts in the laminate direction. The degradation was ultrasonically monitored using through-thickness attenuation and a modified stress wave factor (SWF). There appears to be strong correlations between the number of drop-weight impacts, the residual tensile strength, the through-thickness attenuation, and the SWF. The results are very encouraging with respect to the NDE potential of both of these ultrasonic parameters to provide strength characterizations in virgin as well as impact-damaged fiber composite structures.

  1. High strain-rate model for fiber-reinforced composites

    SciTech Connect

    Aidun, J.B.; Addessio, F.L.

    1995-07-01

    Numerical simulations of dynamic uniaxial strain loading of fiber-reinforced composites are presented that illustrate the wide range of deformation mechanisms that can be captured using a micromechanics-based homogenization technique as the material model in existing continuum mechanics computer programs. Enhancements to the material model incorporate high strain-rate plastic response, elastic nonlinearity, and rate-dependent strength degradation due to material damage, fiber debonding, and delamination. These make the model relevant to designing composite structural components for crash safety, armor, and munitions applications.

  2. Engineered Polymer Composites Through Electrospun Nanofiber Coating of Fiber Tows

    NASA Technical Reports Server (NTRS)

    Kohlman, Lee W.; Bakis, Charles; Williams, Tiffany S.; Johnston, James C.; Kuczmarski, Maria A.; Roberts, Gary D.

    2014-01-01

    Composite materials offer significant weight savings in many aerospace applications. The toughness of the interface of fibers crossing at different angles often determines failure of composite components. A method for toughening the interface in fabric and filament wound components using directly electrospun thermoplastic nanofiber on carbon fiber tow is presented. The method was first demonstrated with limited trials, and then was scaled up to a continuous lab scale process. Filament wound tubes were fabricated and tested using unmodified baseline towpreg material and nanofiber coated towpreg.

  3. Impetus of composite mechanics on test methods for fiber composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1978-01-01

    The impetus of composite mechanics on composite test methods and/or on interpreting test results is described by using examples from composite micromechanics, composite macromechanics and laminate theory. The specific examples included contributions such as criteria for selecting resin matrices for improved composite strength, the 10 deg off-axis tensile test, criteria for configuring hybrids and superhybrids for improved impact resistance and the reduced bending rigidities concept for buckling and vibration analyses.

  4. Pressure variation assisted fiber extraction and development of high performance natural fiber composites and nanocomposites

    NASA Astrophysics Data System (ADS)

    Markevicius, Gediminas

    It is believed, that due to the large surface areas provided by the nano scale materials, various composite properties could be enhanced when such particles are incorporated into a polymer matrix. There is also a trend of utilizing natural resources or reusing and recycling materials that are already available for the fabrication of the new composite materials. Cellulose is the most abundant natural polymer on the planet, and therefore it is not surprising to be of interest for composite fabrication. Basic structures of cellulose, comprised of long polysaccharide chains, are the building blocks of cellulose nano fibers. Nano fibers are further bound into micro fibrils and macro fibers. Theoretically pure cellulose nano fibers have tremendous strengths, and therefore are some of the most sought after nano particles. The fiber extraction however is a complex task. The ultrasound, which creates pressure variation in the medium, was employed to extract nano-size cellulose particles from microcrystalline cellulose (MCC). The length and the intensity of the cavitations were evaluated. Electron microscopy studies revealed that cellulose nanoparticles were successfully obtained from the MCC after ultrasound treatment of just 30 minutes. Structure of the fractionated cellulose was also analyzed with the help of X-ray diffraction, and its thermal properties were evaluated with the help of differential scanning calorimetry (DSC). Ultrasound treatment performed on the wheat straw, kenaf, and miscanthus particles altered fiber structure as a result of the cavitation. The micro fibers were generated from these materials after they were subjected to NaOH treatment followed by the ultrasound processing. The potential of larger than nano-sized natural fibers to be used for composite fabrication was also explored. The agricultural byproducts, such as wheat or rice straw, as well as other fast growing crops as miscanthus or kenaf, are comprised of three basic polymers. Just like in

  5. Strong, damage tolerant oxide-fiber/oxide matrix composites

    NASA Astrophysics Data System (ADS)

    Bao, Yahua

    Electrophoretic deposition (EPD) is an easy and cost effective method to fabricate fiber-reinforced green composites. Non-conductive Nextel(TM) 720 fibers were successfully coated with a transient, conductive polypyrrole submicron surface layer for use directly as an electrode in EPD processing. However, electric-field shielding limits particle infiltration into the conductive fiber bundles and they mostly deposit on the outer surface of the fiber bundle. When the bundle is large, central cavities exist after deposition. The EPD cell was modified for electrophoretic infiltration deposition (EPID). Non conductive fibers were laid on an electrode and charged particles in an ethanol suspension are driven there through by an electric field, infiltrate and deposit on the electrode to then build up into the fiber preform and fill the voids therein. Dense, uniform, green fiber composites were successfully fabricated via constant current EPID. The EPID process is modeled as capillary electrophoretic infiltration. The process consists of two steps: particle electrophoresis outside the capillaries and electrophoretic infiltration inside the capillaries. Due to the zero net flow of the ethanol across the capillary cross-section, there is no electro-osmotic flow contribution to the deposition rate. Hamaker's law was extended to the EPID process, i.e., the deposition yield is proportional to the electric field inside the capillaries. The total deposition yield is controlled by the slow step of the process, i.e., the rate of electrophoresis in the open suspension outside the capillaries. AlPO4 was proposed as a weak layer between oxide fibers and oxide matrix in fiber-reinforced ceramic matrix composites (CMC's). AlPO 4 nano particles were synthesized by chemical co-precipitation of Al 3+ and HPO42- with urea at 95°C. The solution pH basic region and amorphous AlPO4 precipitated of narrow size distribution with a mean particle size 50nm. Nextel 720 fibers were pretreated with

  6. Prestressed Carbon Fiber Composite Overwrapped Gun Tube

    DTIC Science & Technology

    2006-11-01

    Organic Fiberglass 105mm (No Pre-stress) – Titanium Jacketed 120mm ( Swage Pre-stress) – Metal Matrix Composite 120mm ( Swage Pre-stress) – Organic...Composite 120mm ( Swage Pre-stress) – Organic Thermoset 105mm MRAAS (Lay-up Tailoring – No Pre-stress) – Electromagnetic Railgun Tubes – E-Beam and Tape

  7. Structure and Properties of Short Areca Fiber Reinforced Maize PF Composites

    NASA Astrophysics Data System (ADS)

    Kumar, G. C. Mohan

    2009-05-01

    Mechanical properties of the fibers extracted from the areca are determined and compared with the other known natural fiber coir. Further these Areca fibers were chemically treated and the effect of this treatment on fiber strength is studied. Areca fiber composite laminates were prepared with randomly distributed fibers in Maize stalk fine fiber and Phenol Formaldehyde. Composite laminates were prepared with different proportions of phenol formaldehyde and fibers. Tensile test, moisture absorption test, and biodegradable tests on these laminates were carried out. Properties of these areca-reinforced phenol formaldehyde composite laminates were analyzed and reported.

  8. Actively Q-switched Raman fiber laser

    NASA Astrophysics Data System (ADS)

    Kuznetsov, A. G.; Podivilov, E. V.; Babin, S. A.

    2015-03-01

    A new scheme providing actively Q-switched operation of a Raman fiber laser (RFL) has been proposed and tested. The RFL consists of a 1 km single-mode fiber with a switchable loop mirror at one end and an angled cleaved output end. An 1080 nm pulse with microsecond duration is generated at the output by means of acousto-optic switching of the mirror at ~30 kHz in the presence of 6 W backward pumping at 1030 nm. In the proposed scheme, the generated pulse energy is defined by the pump energy distributed along the passive fiber, which amounts to 30 μJ in our case. The available pump energy may be increased by means of fiber lengthening. Pulse shortening is also expected.

  9. Actively mode-locked Raman fiber laser.

    PubMed

    Yang, Xuezong; Zhang, Lei; Jiang, Huawei; Fan, Tingwei; Feng, Yan

    2015-07-27

    Active mode-locking of Raman fiber laser is experimentally investigated for the first time. An all fiber connected and polarization maintaining loop cavity of ~500 m long is pumped by a linearly polarized 1120 nm Yb fiber laser and modulated by an acousto-optic modulator. Stable 2 ns width pulse train at 1178 nm is obtained with modulator opening time of > 50 ns. At higher power, pulses become longer, and second order Raman Stokes could take place, which however can be suppressed by adjusting the open time and modulation frequency. Transient pulse evolution measurement confirms the absence of relaxation oscillation in Raman fiber laser. Tuning of repetition rate from 392 kHz to 31.37 MHz is obtained with harmonic mode locking.

  10. Carbide coated fibers in graphite-aluminum composites

    NASA Technical Reports Server (NTRS)

    Imprescia, R. J.; Levinson, L. S.; Reiswig, R. D.; Wallace, T. C.; Williams, J. M.

    1975-01-01

    The NASA-supported program at the Los Alamos Scientific Laboratory (LASL) to develop carbon fiber-aluminum matrix composites is described. Chemical vapor deposition (CVD) was used to uniformly deposit thin, smooth, continuous coats of TiC on the fibers of graphite tows. Wet chemical coating of fibers, followed by high-temperature treatment, was also used, but showed little promise as an alternative coating method. Strength measurements on CVD coated fiber tows showed that thin carbide coats can add to fiber strength. The ability of aluminum alloys to wet TiC was successfully demonstrated using TiC-coated graphite surfaces. Pressure-infiltration of TiC- and ZrC-coated fiber tows with aluminum alloys was only partially successful. Experiments were performed to evaluate the effectiveness of carbide coats on carbon as barriers to prevent reaction between alluminum alloys and carbon. Initial results indicate that composites of aluminum and carbide-coated graphite are stable for long periods of time at temperatures near the alloy solidus.

  11. Novel graphene/carbon nanotube composite fibers for efficient wire-shaped miniature energy devices.

    PubMed

    Sun, Hao; You, Xiao; Deng, Jue; Chen, Xuli; Yang, Zhibin; Ren, Jing; Peng, Huisheng

    2014-05-01

    Novel nanostructured composite fibers based on graphene and carbon nanotubes are developed with high tensile strength, electrical conductivity, and electrocatalytic activity. As two application demonstrations, these composite fibers are used to fabricate flexible, wire-shaped dye-sensitized solar cells and electrochemical supercapacitors, both with high performances, for example, a maximal energy conversion efficiency of 8.50% and a specific capacitance of ca. 31.50 F g(-1). These miniature wire-shaped devices are further shown to be promising for flexible and portable electronic facilities.

  12. Impact strength on fiber-reinforced hybrid composite

    NASA Astrophysics Data System (ADS)

    Firdaus, S. M.; Nurdina; Azmil Ariff, M.

    2013-12-01

    Acrylonitrile-Butadiene-Styrene (ABS) has been well known composite in automotive players to have light weight with high impact strength material compared to sheet metal material which has high impact strength but heavy in weight. In this project, the impact strength properties of fabricated pure ABS were compared to the eight samples of hybrid ABS composite with different weight percentages of short fibers and particle sizes of ground rubber. The objective was to improve the impact strength in addition of short fibers and ground rubber particles. These samples were then characterized using an un-notched Izod impact test. Results show that the increasing of filler percentage yielded an adverse effect on the impact strength of the hybrid composite. The effect of the ground rubber particulate sizes however are deemed to be marginal than the effect of varying filler percentage based on the collected impact strength data from all physically tested hybrid composites.

  13. A small-scale test for fiber release from carbon composites. [pyrolysis and impact

    NASA Technical Reports Server (NTRS)

    Gilwee, W. J., Jr.; Fish, R. H.

    1980-01-01

    A test method was developed to determine relative fiber loss from pyrolyzed composites with different resins and fiber construction. Eleven composites consisting of woven and unwoven carbon fiber reinforcement and different resins were subjected to the burn and impact test device. The composites made with undirectional tape had higher fiber loss than those with woven fabric. Also, the fiber loss was inversely proportional to the char yield of the resin.

  14. The effect of bromination of carbon fibers on the coefficient of thermal expansion of graphite fiber-epoxy composites

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.; Maciag, C.

    1987-01-01

    To examine the effect of bromination of carbon fibers on the coefficient of thermal expansion (CTE) of carbon fiber epoxy composites, several pristine and brominated carbon fiber-epoxy composite samples were subjected to thermomechanical analysis. The CTE's of these samples were measured in the uniaxial and transverse directions. The CTE was dominated by the fibers in the uniaxial direction, while it was dominated by the matrix in the transverse directions. Bromination had no effect on the CTE of any of the composites. In addition, the CTE of fiber tow was measured in the absence of a polymer matrix, using an extension probe. The results from this technique were inconclusive.

  15. Carbide coated fibers in graphite-aluminum composites

    NASA Technical Reports Server (NTRS)

    Imprescia, R. J.; Levinson, L. S.; Reiswig, R. D.; Wallace, T. C.; Williams, J. M.

    1975-01-01

    The study of protective-coupling layers of refractory metal carbides on the graphite fibers prior to their incorporation into composites is presented. Such layers should be directly wettable by liquid aluminum and should act as diffusion barriers to prevent the formation of aluminum carbide. Chemical vapor deposition was used to uniformly deposit thin, smooth, continuous coats of ZrC on the carbon fibers of tows derived from both rayon and polyacrylonitrile. A wet chemical coating of the fibers, followed by high-temperature treatment, was used, and showed promise as an alternative coating method. Experiments were performed to demonstrate the ability of aluminum alloys to wet carbide surfaces. Titanium carbide, zirconium carbide and carbide-coated graphite surfaces were successfully wetted. Results indicate that initial attempts to wet surfaces of ZrC-coated carbon fibers appear successful.

  16. Graded Activation in Frog Muscle Fibers

    PubMed Central

    Costantin, L. L.; Taylor, S. R.

    1973-01-01

    The membrane potential of frog single muscle fibers in solutions containing tetrodotoxin was controlled with a two-electrode voltage clamp. Local contractions elicited by 100-ms square steps of depolarization were observed microscopically and recorded on cinefilm. The absence of myofibrillar folding with shortening to striation spacings below 1.95 µm served as a criterion for activation of the entire fiber cross section. With depolarizing steps of increasing magnitude, shortening occurred first in the most superficial myofibrils and spread inward to involve axial myofibrils as the depolarization was increased. In contractions in which the entire fiber cross section shortened actively, both the extent of shortening and the velocity of shortening at a given striation spacing could be graded by varying the magnitude of the depolarization step. The results provide evidence that the degree of activation of individual myofibrils can be graded with membrane depolarization. PMID:4540418

  17. Determination of Mechanical Characteristics of Unidirectional Fiber Composites

    NASA Astrophysics Data System (ADS)

    Egorikhina, E.; Bogovalov, S. V.; Tronin, I. V.

    Methods of determination of effective mechanical properties of unidirectional fiber composites are discussed. These are mixture rule, Halpin-Tsai and Hashin-Rosen methods. Comparison of analytical calculations of the mechanical characteristics of the composites with numerical results obtained by the SYSPLY package are used to specify analytic equations defining the characteristics in frameworks of each method. The field of application of each method is discussed.

  18. Process Optimization of Bismaleimide (BMI) Resin Infused Carbon Fiber Composite

    NASA Technical Reports Server (NTRS)

    Ehrlich, Joshua W.; Tate, LaNetra C.; Cox, Sarah B.; Taylor, Brian J.; Wright, M. Clara; Faughnan, Patrick D.; Batterson, Lawrence M.; Caraccio, Anne J.; Sampson, Jeffery W.

    2013-01-01

    Engineers today are presented with the opportunity to design and build the next generation of space vehicles out of the lightest, strongest, and most durable materials available. Composites offer excellent structural characteristics and outstanding reliability in many forms that will be utilized in future aerospace applications including the Commercial Crew and Cargo Program and the Orion space capsule. NASA's Composites for Exploration (CoEx) project researches the various methods of manufacturing composite materials of different fiber characteristics while using proven infusion methods of different resin compositions. Development and testing on these different material combinations will provide engineers the opportunity to produce optimal material compounds for multidisciplinary applications. Through the CoEx project, engineers pursue the opportunity to research and develop repair patch procedures for damaged spacecraft. Working in conjunction with Raptor Resins Inc., NASA engineers are utilizing high flow liquid infusion molding practices to manufacture high-temperature composite parts comprised of intermediate modulus 7 (IM7) carbon fiber material. IM7 is a continuous, high-tensile strength composite with outstanding structural qualities such as high shear strength, tensile strength and modulus as well as excellent corrosion, creep, and fatigue resistance. IM7 carbon fiber, combined with existing thermoset and thermoplastic resin systems, can provide improvements in material strength reinforcement and deformation-resistant properties for high-temperature applications. Void analysis of the different layups of the IM7 material discovered the largest total void composition within the [ +45 , 90 , 90 , -45 ] composite panel. Tensile and compressional testing proved the highest mechanical strength was found in the [0 4] layup. This paper further investigates the infusion procedure of a low-cost/high-performance BMI resin into an IM7 carbon fiber material and the

  19. Durability/life of fiber composites in hygrothermomechanical environments

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1981-01-01

    Statistical analysis and multiple regression were used to determine and quantify the significant hygrothermomechanical variables which infuence the tensile durability/life (cycle loading, fatigue) of boron-fiber/epoxy-matrix (B/E) and high-modulus-fiber/epoxy-matrix (HMS/E) composites. The use of the multiple regression analysis reduced the variables from fifteen, assumed initially, to six or less with a probability of greater than 0.999. The reduced variables were used to derive predictive models for compression an intralaminar shear durability/life of B/E and HMS/E composites assuming isoparametric fatigue behavior. The predictive models were subsequently generalized to predict the durability/life of graphite-fiber-r generalized model is of simple form, predicts conservative values compared with measured data and should be adequate for use in preliminary designs.

  20. Compressive strength of fiber-reinforced composite materials

    NASA Technical Reports Server (NTRS)

    Davis, J. G., Jr.

    1975-01-01

    Results of an experimental and analytical investigation of the compressive strength of unidirectional boron-epoxy composite material are presented. Observation of fiber coordinates in a boron-epoxy composite indicates that the fibers contain initial curvature. Combined axial compression and torsion tests were conducted on boron-epoxy tubes and it was shown that the shear modulus is a function of axial compressive stress. An analytical model which includes initial curvature in the fibers and permits an estimate of the effect of curvature on compressive strength is proposed. Two modes of failure which may result from the application of axial compressive stress are analyzed - delamination and shear instability. Based on tests and analysis, failure of boron-epoxy under axial compressive load is due to shear instability.

  1. Flexural analysis of palm fiber reinforced hybrid polymer matrix composite

    NASA Astrophysics Data System (ADS)

    Venkatachalam, G.; Gautham Shankar, A.; Raghav, Dasarath; Santhosh Kiran, R.; Mahesh, Bhargav; Kumar, Krishna

    2015-07-01

    Uncertainty in availability of fossil fuels in the future and global warming increased the need for more environment friendly materials. In this work, an attempt is made to fabricate a hybrid polymer matrix composite. The blend is a mixture of General Purpose Resin and Cashew Nut Shell Liquid, a natural resin extracted from cashew plant. Palm fiber, which has high strength, is used as reinforcement material. The fiber is treated with alkali (NaOH) solution to increase its strength and adhesiveness. Parametric study of flexure strength is carried out by varying alkali concentration, duration of alkali treatment and fiber volume. Taguchi L9 Orthogonal array is followed in the design of experiments procedure for simplification. With the help of ANOVA technique, regression equations are obtained which gives the level of influence of each parameter on the flexure strength of the composite.

  2. Abrasive waterjet machining of fiber reinforced composites: A review

    NASA Astrophysics Data System (ADS)

    Kalla, D. K.; Dhanasekaran, P. S.; Zhang, B.; Asmatulu, R.

    2012-04-01

    Machining of fiber reinforced polymer (FRP) composites is a major secondary manufacturing activity in the aircraft and automotive industries. Traditional machining of these composites is difficult due to the high abrasiveness nature of their reinforcing constituents. Almost all the traditional machining processes involve in the dissipation of heat into the workpiece which can be resulted in damage to workpiece and rapid wear of the cutting tool. This serious issue has been overcome by water jetting technologies. Abrasive waterjet machining (AWJM) is a nontraditional method and one of the best options for machining FRPs. This paper presents a review of the ongoing research and development in AWJM of FRPs, with a critical review of the physics of the machining process, surface characterization, modeling and the newer application to the basic research. Variable cutting parameters, limitations and safety aspects of AWJM and the noise related issues due to high flow rate of water jet will be addressed. Further challenges and scope of the future development in AWJM are also presented in detail.

  3. Graphite fiber textile preform/copper matrix composites

    SciTech Connect

    Gilatovs, G.J.; Lee, B.; Bass, L.

    1995-08-01

    Graphite fiber reinforced/copper matrix composites have sufficiently high thermal conduction to make them candidate materials for critical heat transmitting and rejection components. The term textile composites arises because the preform is braided from fiber tows, conferring three-dimensional reinforcement and near net shape. The principal issues investigated in the past two years have centered on developing methods to characterize the preform and fabricated composite and on braidability. It is necessary to have an analytic structural description for both processing and final property modeling. The structure of the true 3-D braids used is complex and has required considerable effort to model. A structural mapping has been developed as a foundation for analytic models for thermal conduction and mechanical properties. The conductivity has contributions both from the copper and the reinforcement. The latter is accomplished by graphitization of the fibers, the higher the amount of graphitization the greater the conduction. This is accompanied by an increase in the fiber modulus, which is desirable from a stiffness point of view but decreases the braidability; the highest conductivity fibers are simply too brittle to be braided. While a number of preforms have been fabricated, one other complication intervenes; graphite and copper are immiscible, resulting in a poor mechanical bond and difficulties in infiltration by molten copper. The approach taken is to utilize a proprietary fiber coating process developed by TRA, of Salt Lake City, Utah, which forms an itermediary bond. A number of preforms have been fabricated from a variety of fiber types and two sets of these have been infiltrated with OFHC copper, one with the TRA coating and one without. Mechanical tests have been performed using a small-scale specimen method and show the coated specimens to have superior mechanical properties.

  4. Graphite fiber textile preform/copper matrix composites

    NASA Technical Reports Server (NTRS)

    Gilatovs, G. J.; Lee, Bruce; Bass, Lowell

    1995-01-01

    Graphite fiber reinforced/copper matrix composites have sufficiently high thermal conduction to make them candidate materials for critical heat transmitting and rejection components. The term textile composites arises because the preform is braided from fiber tows, conferring three-dimensional reinforcement and near net shape. The principal issues investigated in the past two years have centered on developing methods to characterize the preform and fabricated composite and on braidability. It is necessary to have an analytic structural description for both processing and final property modeling. The structure of the true 3-D braids used is complex and has required considerable effort to model. A structural mapping has been developed as a foundation for analytic models for thermal conduction and mechanical properties. The conductivity has contributions both from the copper and the reinforcement. The latter is accomplished by graphitization of the fibers, the higher the amount of graphitization the greater the conduction. This is accompanied by an increase in the fiber modulus, which is desirable from a stiffness point of view but decreases the braidability; the highest conductivity fibers are simply too brittle to be braided. Considerable effort has been expended on determining the optimal braidability--conductivity region. While a number of preforms have been fabricated, one other complication intervenes; graphite and copper are immiscible, resulting in a poor mechanical bond and difficulties in infiltration by molten copper. The approach taken is to utilize a proprietary fiber coating process developed by TRA, of Salt Lake City, Utah, which forms an itermediary bond. A number of preforms have been fabricated from a variety of fiber types and two sets of these have been infiltrated with OFHC copper, one with the TRA coating and one without. Mechanical tests have been performed using a small-scale specimen method and show the coated specimens to have superior

  5. Properties of Organic Matrix Short Fiber Composites

    DTIC Science & Technology

    1982-02-01

    reinforced SMC composites ( Owens Corning Fiberglas System) ............... ........................ ... 37 4 Schematic of process used to manufacture XMC...71 Vi F, viii. TLST OF TABLES TABLEPAE 1 Material formulations and densitius of SMC materials (PPG-PPG Industries, OFC- Owens Corning Fiberglas) (refs...Composite Materials, 14 (April 1980) , 142-154. 16 ,. Table 1. Material formulations and densities of SMC materials. (PPG-PPG Industries, OFC- Owens

  6. Properties of foam and composite materials made o starch and cellulose fiber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Composite materials were made of starch and cellulose fibers. Pre-gelatinized starch was effective in dispersing pulp fiber in a starch matrix to form a viscous starch/fiber dough. The starch/fiber dough was a useful feedstock for various composite foam and plastic materials. Viscous blends of star...

  7. Lifetimes of fiber composites under sustained tensile loading

    NASA Technical Reports Server (NTRS)

    Chiao, T. T.; Sherry, R. J.; Chiao, C. C.

    1977-01-01

    Results are presented for a study intended to summarize lifetime data on several fiber/epoxy composite materials subjected to sustained uniaxial tensile loading, to report preliminary results of an accelerated test method for predicting the life of simple composites, and to describe related work in progress on pressure vessels and other filament-wound structures. The lifetime performance of the tested composites was compared by plotting the percent of ultimate strength (applied fiber stress normalized with respect to fiber failure stress in a composite) versus lifetime. In terms of performance in long-term tensile applications, the tested composites are ranked in the following order: graphite/epoxy, Be wire/epoxy, Aramid/epoxy, and S-glass/epoxy. The accelerated test using temperature and stress to simulate the passage of time proves to be encouraging, at least in the case of the Aramid/epoxy composite. The potential of a statistical analysis based on Weibull distribution analyses or a power law relationship is demonstrated.

  8. Fillers for improved graphite fiber retention by polymer matrix composites

    NASA Technical Reports Server (NTRS)

    House, E. E.; Sheppard, C. H.

    1981-01-01

    The results of a program designed to determine the extent to which elemental boron and boron containing fillers added to the matrix resin of graphite/epoxy composites prevent the release of graphite fibers when the composites are exposed to fire and impact conditions are described. The fillers evaluated were boron, boron carbide and aluminum boride. The conditions evaluated were laboratory simulations of those that could exist in the event of an aircraft crash and burn situation. The baseline (i.e., unfilled) laminates evaluated were prepared from commercially available graphite/epoxy. The baseline and filled laminates' mechanical properties, before and after isothermal and humidity aging, also were compared. It was found that a small amount of graphite fiber was released from the baseline graphite/epoxy laminates during the burn and impact conditions used in this program. However, the extent to which the fibers were released is not considered a severe enough problem to preclude the use of graphite reinforced composites in civil aircraft structure. It also was found that the addition of boron and boron containing fillers to the resin matrix eliminated this fiber release. Mechanical properties of laminates containing the boron and boron containing fillers were lower than those of the baseline laminates. These property degradations for two systems: boron (5 micron) at 2.5 percent filler loading, and boron (5 micron) at 5.0 percent filler loading do not appear severe enough to preclude their use in structural composite applications.

  9. Guided waves characterization of bamboo fibers reinforced composites

    NASA Astrophysics Data System (ADS)

    Marchi, L. De; Marzani, A.; Perelli, A.; Testoni, N.; Speciale, N.

    2012-05-01

    In the present study, an inverse procedure based on ultrasonic guided wave propagation is proposed for the bamboo fibers reinforced composites characterization. The procedure consists of an optimization problem in which the discrepancy between the experimental dispersion curves and those predicted through a numerical formulation is minimized.

  10. Elastic/viscoplastic constitutive model for fiber reinforced thermoplastic composites

    NASA Technical Reports Server (NTRS)

    Gates, T. S.; Sun, C. T.

    1991-01-01

    A constitutive model to describe the elastic/viscoplastic behavior of fiber-reinforced thermoplastic composites under plane stress conditions is presented. Formulations are given for quasi-static plasticity and time-dependent viscoplasticity. Experimental procedures required to generate the necessary material constants are explained, and the experimental data is compared to the predicted behavior.

  11. Method of forming composite fiber blends and molding same

    NASA Technical Reports Server (NTRS)

    McMahon, Paul E. (Inventor); Chung, Tai-Shung (Inventor)

    1989-01-01

    The instant invention involves a process used in preparing fibrous tows which may be formed into polymeric plastic composites. The process involves the steps of (a) forming a tow of strong filamentary materials; (b) forming a thermoplastic polymeric fiber; (c) intermixing the two tows; and (d) withdrawing the intermixed tow for further use.

  12. Short fiber-reinforced cementitious composites manufactured by extrusion technology

    NASA Astrophysics Data System (ADS)

    Mu, Bin

    The use of short fibers in the cement-based composites is more preferable due to the simplicity and economic nature in fabrication. The short fiber-reinforced cementitious composite (SFRCC) manufactured by the extrusion method show a great improvement in both strength and toughness as compared to the fiber-reinforced composites made by traditional casting methods. This improvement can be attributed to the achievement of low porosity and good interfacial bond in SFRCC under high shear and compressive stress during the extrusion process. In the present study, products of cylinders, sheets, pipes and honeycomb panels incorporating various mineral admixtures such as slag, silica fume, and metakaolin have been manufactured by the extrusion technology. Two kinds of short fibers, ductile polyvinyl alcohol (PVA) fibers and stronger but less ductile glass fibers, were used as the reinforcement in the products. After the specimens were extruded, tension, bending and impact tests were performed to study the mechanical properties of these products. The rheology test was performed for each mix to determine its viscoelastic properties. In addition, X-ray diffraction (XRD) and scanning electronic microscopy (SEM) technology were employed to get an insight view of the mechanism. A freezing and thawing experiment (ASTM C666) was also carried to investigate the durability of the specimens. Based on these experimental results, the reinforcing behaviors of these two short fibers were investigated. The enhancing effects of silica fume and metakaolin on the extrudates were compared and discussed. Finally, the optimum amount of silica fume and slag was proposed. Since the key point for a successful extrusion is the properly designed rheology which controls both internal and external flow properties of extrudate, a nonlinear viscoelastic model was applied to investigate the rheological behavior of a movable fresh cementitious composite in an extruder channel. The velocity profile of the

  13. LOW-COST COMPOSITES IN VEHICLE MANUFACTURE - Natural-fiber-reinforced polymer composites in automotive applications.

    SciTech Connect

    Holbery, Jim; Houston, Dan

    2006-11-01

    In the last decade, natural fiber composites have experienced rapid growth in the European automotive market, and this trend appears to be global in scale, provided the cost and performance is justified against competing technologies. However, mass reduction, recyclability, and performance requirements can be met today by competing systems such as injection-molded unreinforced thermoplastics; natural fiber composites will continue to expand their role in automotive applications only if such technical challenges as moisture stability, fiber-polymer interface compatibility, and consistent, repeatable fiber sources are available to supply automotive manufacturers. Efforts underway by Tier I and II automotive suppliers to explore hybrid glass-natural fiber systems, as well as applications that exploit such capabilities as natural fiber sound dampening characteristics, could very well have far-reaching effects. In addition, the current development underway of bio-based resins such as Polyhydroxyalkanoate (PHA) biodegradable polyesters and bio-based polyols could provide fully bio-based composite options to future automotive designers. In short, the development of the natural fiber composite market would make a positive impact on farmers and small business owners on a global scale, reduce US reliance on foreign oil, improve environmental quality through the development of a sustainable resource supply chain, and achieve a better CO2 balance over the vehicle?s lifetime with near-zero net greenhouse gas emissions.

  14. An analytical solution for the elastoplastic response of a continuous fiber composite under uniaxial loading

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Won; Allen, David H.

    1990-01-01

    A continuous fiber composite is modelled by a two-element composite cylinder in order to predict the elastoplastic response of the composite under a monotonically increasing tensile loading parallel to fibers. The fibers and matrix are assumed to be elastic-perfectly plastic materials obeying Hill's and Tresca's yield criteria, respectively. Here, the composite behavior when the fibers yield prior to the matrix is investigated.

  15. Tunable Fiber Bragg Grating Ring Lasers using Macro Fiber Composite Actuators

    NASA Technical Reports Server (NTRS)

    Geddis, Demetris L.; Allison, Sidney G.; Shams, Qamar A.

    2006-01-01

    The research reported herein includes the fabrication of a tunable optical fiber Bragg grating (FBG) fiber ring laser (FRL)1 from commercially available components as a high-speed alternative tunable laser source for NASA Langley s optical frequency domain reflectometer (OFDR) interrogator, which reads low reflectivity FBG sensors. A Macro-Fiber Composite (MFC) actuator invented at NASA Langley Research Center (LaRC) was selected to tune the laser. MFC actuators use a piezoelectric sheet cut into uniaxially aligned rectangular piezo-fibers surrounded by a polymer matrix and incorporate interdigitated electrodes to deliver electric fields along the length of the piezo-fibers. This configuration enables MFC actuators to produce displacements larger than the original uncut piezoelectric sheet. The FBG filter was sandwiched between two MFC actuators, and when strained, produced approximately 3.62 nm of wavelength shift in the FRL when biasing the MFC actuators from 500 V to 2000 V. This tunability range is comparable to that of other tunable lasers and is adequate for interrogating FBG sensors using OFDR technology. Three different FRL configurations were studied. Configuration A examined the importance of erbium-doped fiber length and output coupling. Configuration B demonstrated the importance of the FBG filter. Configuration C added an output coupler to increase the output power and to isolate the filter. Only configuration C was tuned because it offered the best optical power output of the three configurations. Use of Plastic Optical Fiber (POF) FBG s holds promise for enhanced tunability in future research.

  16. Multifunctional Hybrid Carbon Nanotube/Carbon Fiber Polymer Composites

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho; Cano, Roberto J.; Ratcliffe, James G.; Luong, Hoa; Grimsley, Brian W.; Siochi, Emilie J.

    2016-01-01

    For aircraft primary structures, carbon fiber reinforced polymer (CFRP) composites possess many advantages over conventional aluminum alloys due to their light weight, higher strengthand stiffness-to-weight ratio, and low life-cycle maintenance costs. However, the relatively low electrical and thermal conductivities of CFRP composites fail to provide structural safety in certain operational conditions such as lightning strikes. Despite several attempts to solve these issues with the addition of carbon nanotubes (CNT) into polymer matrices, and/or by interleaving CNT sheets between conventional carbon fiber (CF) composite layers, there are still interfacial problems that exist between CNTs (or CF) and the resin. In this study, hybrid CNT/CF polymer composites were fabricated by interleaving layers of CNT sheets with Hexcel® IM7/8852 prepreg. Resin concentrations from 1 wt% to 50 wt% were used to infuse the CNT sheets prior to composite fabrication. The interlaminar properties of the resulting hybrid composites were characterized by mode I and II fracture toughness testing (double cantilever beam and end-notched flexure test). Fractographical analysis was performed to study the effect of resin concentration. In addition, multi-directional physical properties like thermal conductivity of the orthotropic hybrid polymer composite were evaluated. Interleaving CNT sheets significantly improved the in-plane (axial and perpendicular direction of CF alignment) thermal conductivity of the hybrid composite laminates by 50 - 400%.

  17. Method of making a continuous ceramic fiber composite hot gas filter

    DOEpatents

    Hill, Charles A.; Wagner, Richard A.; Komoroski, Ronald G.; Gunter, Greg A.; Barringer, Eric A.; Goettler, Richard W.

    1999-01-01

    A ceramic fiber composite structure particularly suitable for use as a hot gas cleanup ceramic fiber composite filter and method of making same from ceramic composite material has a structure which provides for increased strength and toughness in high temperature environments. The ceramic fiber composite structure or filter is made by a process in which a continuous ceramic fiber is intimately surrounded by discontinuous chopped ceramic fibers during manufacture to produce a ceramic fiber composite preform which is then bonded using various ceramic binders. The ceramic fiber composite preform is then fired to create a bond phase at the fiber contact points. Parameters such as fiber tension, spacing, and the relative proportions of the continuous ceramic fiber and chopped ceramic fibers can be varied as the continuous ceramic fiber and chopped ceramic fiber are simultaneously formed on the porous vacuum mandrel to obtain a desired distribution of the continuous ceramic fiber and the chopped ceramic fiber in the ceramic fiber composite structure or filter.

  18. Physico-mechanical properties of chemically treated palm and coir fiber reinforced polypropylene composites.

    PubMed

    Haque, Md Mominul; Hasan, Mahbub; Islam, Md Saiful; Ali, Md Ershad

    2009-10-01

    In this work, palm and coir fiber reinforced polypropylene bio-composites were manufactured using a single extruder and injection molding machine. Raw palm and coir were chemically treated with benzene diazonium salt to increase their compatibility with the polypropylene matrix. Both raw and treated palm and coir fiber at five level of fiber loading (15, 20, 25, 30 and 35 wt.%) was utilized during composite manufacturing. Microstructural analysis and mechanical tests were conducted. Comparison has been made between the properties of the palm and coir fiber composites. Treated fiber reinforced specimens yielded better mechanical properties compared to the raw composites, while coir fiber composites had better mechanical properties than palm fiber ones. Based on fiber loading, 30% fiber reinforced composites had the optimum set of mechanical properties.

  19. Numerical prediction of fiber orientation in injection-molded short-fiber/thermoplastic composite parts with experimental validation

    NASA Astrophysics Data System (ADS)

    Thi, Thanh Binh Nguyen; Morioka, Mizuki; Yokoyama, Atsushi; Hamanaka, Senji; Yamashita, Katsuhisa; Nonomura, Chisato

    2015-05-01

    Numerical prediction of the fiber orientation in the short-glass fiber (GF) reinforced polyamide 6 (PA6) composites with the fiber weight concentration of 30%, 50%, and 70% manufactured by the injection molding process is presented. And the fiber orientation was also directly observed and measured through X-ray computed tomography. During the injection molding process of the short-fiber/thermoplastic composite, the fiber orientation is produced by the flow states and the fiber-fiber interaction. Folgar and Tucker equation is the well known for modeling the fiber orientation in a concentrated suspension. They included into Jeffrey's equation a diffusive type of term by introducing a phenomenological coefficient to account for the fiber-fiber interaction. Our developed model for the fiber-fiber interaction was proposed by modifying the rotary diffusion term of the Folgar-Tucker equation. This model was presented in a conference paper of the 29th International Conference of the Polymer Processing Society published by AIP conference proceeding. For modeling fiber interaction, the fiber dynamic simulation was introduced in order to obtain a global fiber interaction coefficient, which is sum function of the fiber concentration, aspect ratio, and angular velocity. The fiber orientation is predicted by using the proposed fiber interaction model incorporated into a computer aided engineering simulation package C-Mold. An experimental program has been carried out in which the fiber orientation distribution has been measured in 100 x 100 x 2 mm injection-molded plate and 100 x 80 x 2 mm injection-molded weld by analyzed with a high resolution 3D X-ray computed tomography system XVA-160α, and calculated by X-ray computed tomography imaging. The numerical prediction shows a good agreement with experimental validation. And the complex fiber orientation in the injection-molded weld was investigated.

  20. Numerical prediction of fiber orientation in injection-molded short-fiber/thermoplastic composite parts with experimental validation

    SciTech Connect

    Thi, Thanh Binh Nguyen; Morioka, Mizuki; Yokoyama, Atsushi; Hamanaka, Senji; Yamashita, Katsuhisa; Nonomura, Chisato

    2015-05-22

    Numerical prediction of the fiber orientation in the short-glass fiber (GF) reinforced polyamide 6 (PA6) composites with the fiber weight concentration of 30%, 50%, and 70% manufactured by the injection molding process is presented. And the fiber orientation was also directly observed and measured through X-ray computed tomography. During the injection molding process of the short-fiber/thermoplastic composite, the fiber orientation is produced by the flow states and the fiber-fiber interaction. Folgar and Tucker equation is the well known for modeling the fiber orientation in a concentrated suspension. They included into Jeffrey’s equation a diffusive type of term by introducing a phenomenological coefficient to account for the fiber-fiber interaction. Our developed model for the fiber-fiber interaction was proposed by modifying the rotary diffusion term of the Folgar-Tucker equation. This model was presented in a conference paper of the 29{sup th} International Conference of the Polymer Processing Society published by AIP conference proceeding. For modeling fiber interaction, the fiber dynamic simulation was introduced in order to obtain a global fiber interaction coefficient, which is sum function of the fiber concentration, aspect ratio, and angular velocity. The fiber orientation is predicted by using the proposed fiber interaction model incorporated into a computer aided engineering simulation package C-Mold. An experimental program has been carried out in which the fiber orientation distribution has been measured in 100 x 100 x 2 mm injection-molded plate and 100 x 80 x 2 mm injection-molded weld by analyzed with a high resolution 3D X-ray computed tomography system XVA-160α, and calculated by X-ray computed tomography imaging. The numerical prediction shows a good agreement with experimental validation. And the complex fiber orientation in the injection-molded weld was investigated.

  1. Effect of Plasma and Fiber Position on Flexural Properties of a Polyethylene Fiber-Reinforced Composite.

    PubMed

    Spyrides, Silvana M M; Prado, Maíra do; Simão, Renata Antoun; Bastian, Fernando Luis

    2015-10-01

    The aim of this study was to evaluate the effect of plasma treatment using argon and oxygen gases, combined with fiber position on flexural properties of a fiber-reinforced composite. Eleven groups were evaluated, a non-reinforced control group and 10 groups reinforced with InFibra, a woven polyethylene fiber, varying according to the plasma treatment and fiber position. The samples were prepared using a stainless steel two-piece matrix. The three point bending test was performed in an EMIC testing machine. Flexural strength (FS) and flexural deflection (FD) were calculated from initial (IF) and final (FF) failure. Data were evaluated statistically using Kruskal-Wallis and Mann-Whitney tests (p<0.05). For IF, in all groups with fibers placed on the base, the FS and FD values were significantly higher than those positioned away from the base. The highest value of FS was obtained in the group treated with O 3 min (296.2 MPa) and the highest value of FD was obtained in the group treated with 1 min (0.109 mm). For FF the FS and FD values obtained for the groups with fibers positioned away from the base were similar or higher than those placed on the base. The highest FS value was obtained in the group treated with 1 min (317.5 MPa) and the highest FD value was obtained in the group treated with O 3 min (0.177 mm). Plasma treatment influenced FS and FD. Fiber position and plasma treatment affected the flexural properties of a fiber-reinforced composite.

  2. Dynamic fiber debonding and push-out in model composites

    NASA Astrophysics Data System (ADS)

    Bi, Xiaopeng

    2003-10-01

    When a crack propagates in a fiber-reinforced composite material, a substantial part of energy is dissipated in the debonding and sliding of the bridging fibers located behind the advancing crack front. Because of the important effect they have on the fracture toughness of a composite, these processes have been the subject of extensive experimental, analytical and numerical work. However, the vast majority of existing work on this topic has been limited to quasi-static loading situations. The few investigations performed on various composite systems involving higher loading rates seem to indicate that the fiber sliding process presents some unusual and sometimes contradictory rate-dependent characteristics. To enhance the current understanding of dynamic fiber debonding and push-out in model fiber-reinforced composites, a combined experimental and numerical investigation was carried out. A modified split Hopkinson pressure bar was used to perform high-rate fiber push-out experiments on an aluminum/epoxy model composite system. An axisymmetric cohesive/volumetric finite element scheme was developed to simulate the push-out process. Effects of several important parameters such as interfacial strength, interfacial fracture toughness and fiber/matrix friction coefficient were investigated. Interface cohesive properties were extracted by comparison between experimental and numerical results. The comparison between numerics and experiments was made as close as possible by (a) simulating the entire experimental apparatus; (b) using loading directly measured in the experiments as input to the finite element analysis (FEA) code; (c) using measured material properties in the FEA simulations; and (d) accounting for effects such as large deformations, residual stresses (through a quasi-static pre-loading scheme), spontaneous crack formation (through a cohesive failure formulation) and dynamic frictional sliding. Details of the physical process were discussed by numerically

  3. Thermal fatigue of ceramic fiber glass matrix composites

    SciTech Connect

    Zawada, L.P.; Wetherhold, R.C.

    1989-10-01

    The thermal fatigue (TF) of ceramic matrix composites (CMC) introduces stresses within the composite due to the inevitable thermal expansion mismatch of fiber and matrix; this will affect the lifetime and dimensional stability of the composite. A Nicalon/glass composite has been subjected to rapid, controlled TF from 250-700 C and 250-800 C under no load and dead load conditions in order to illustrate a variety of elastic and inelastic cyclic strain conditions. After TF, the surfaces of the composites were characterized using SEM for evidence of thermal damage and microcracking. The composites were then tested for flexural modulus and strength. Results from the mechanical properties tests are present and correlated with observed thermal degradation. 7 refs.

  4. Metal-bonded, carbon fiber-reinforced composites

    DOEpatents

    Sastri, Suri A.; Pemsler, J. Paul; Cooke, Richard A.; Litchfield, John K.; Smith, Mark B.

    1996-01-01

    Metal bonded carbon fiber-reinforced composites are disclosed in which the metal and the composite are strongly bound by (1) providing a matrix-depleted zone in the composite of sufficient depth to provide a binding site for the metal to be bonded and then (2) infiltrating the metal into the matrix-free zone to fill a substantial portion of the zone and also provide a surface layer of metal, thereby forming a strong bond between the composite and the metal. The invention also includes the metal-bound composite itself, as well as the provision of a coating over the metal for high-temperature performance or for joining to other such composites or to other substrates.

  5. Metal-bonded, carbon fiber-reinforced composites

    DOEpatents

    Sastri, S.A.; Pemsler, J.P.; Cooke, R.A.; Litchfield, J.K.; Smith, M.B.

    1996-03-05

    Metal bonded carbon fiber-reinforced composites are disclosed in which the metal and the composite are strongly bound by (1) providing a matrix-depleted zone in the composite of sufficient depth to provide a binding site for the metal to be bonded and then (2) infiltrating the metal into the matrix-free zone to fill a substantial portion of the zone and also provide a surface layer of metal, thereby forming a strong bond between the composite and the metal. The invention also includes the metal-bound composite itself, as well as the provision of a coating over the metal for high-temperature performance or for joining to other such composites or to other substrates. 2 figs.

  6. Thermal properties of poly(3-hydroxybutyrate)/vegetable fiber composites

    NASA Astrophysics Data System (ADS)

    Vitorino, Maria B. C.; Reul, Lízzia T. A.; Carvalho, Laura H.; Canedo, Eduardo L.

    2015-05-01

    The present work studies the thermal properties of composites of poly(3-hydroxybutyrate) (PHB) - a fully biodegradable semi-crystalline thermo-plastic obtained from renewable resources through low-impact biotechno-logical process, biocompatible and non-toxic - and vegetable fiber from the fruit (coconut) of babassu palm tree. PHB is a highly crystalline resin and this characteristic leads to suboptimal properties in some cases. Consequently, thermal properties, in particular those associated with the crystallization of the matrix, are important to judge the suitability of the compounds for specific applications. PHB/babassu composites with 0-50% load were prepared in an internal mixer. Two different types of babassu fibers with two different particle size ranges were compounded with PHB and test specimens molded by compression. Melting and crystallization behavior were studied by differential scanning calorimetry (DSC) at heating/cooling rates between 2 and 30°C/min. Several parameters, including melting point, crystallization temperature, crystallinity, and rate of crystallization, were estimated as functions of load and heating/cooling rates. Results indicate that fibers do not affect the melting process, but facilitate crystallization from the melt. Crystallization temperatures are 30 to 40°C higher for the compounds compared with the neat resin. However, the amount of fiber added has little effect on crystallinity and the degree of crystallinity is hardly affected by the load. Fiber type and initial particle size do not have a significant effect on thermal properties.

  7. Anomaly detection of microstructural defects in continuous fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Bricker, Stephen; Simmons, J. P.; Przybyla, Craig; Hardie, Russell

    2015-03-01

    Ceramic matrix composites (CMC) with continuous fiber reinforcements have the potential to enable the next generation of high speed hypersonic vehicles and/or significant improvements in gas turbine engine performance due to their exhibited toughness when subjected to high mechanical loads at extreme temperatures (2200F+). Reinforced fiber composites (RFC) provide increased fracture toughness, crack growth resistance, and strength, though little is known about how stochastic variation and imperfections in the material effect material properties. In this work, tools are developed for quantifying anomalies within the microstructure at several scales. The detection and characterization of anomalous microstructure is a critical step in linking production techniques to properties, as well as in accurate material simulation and property prediction for the integrated computation materials engineering (ICME) of RFC based components. It is desired to find statistical outliers for any number of material characteristics such as fibers, fiber coatings, and pores. Here, fiber orientation, or `velocity', and `velocity' gradient are developed and examined for anomalous behavior. Categorizing anomalous behavior in the CMC is approached by multivariate Gaussian mixture modeling. A Gaussian mixture is employed to estimate the probability density function (PDF) of the features in question, and anomalies are classified by their likelihood of belonging to the statistical normal behavior for that feature.

  8. Thermostructural tailoring of fiber composite structures

    NASA Technical Reports Server (NTRS)

    Acquaviva, Thomas H.

    1992-01-01

    A significant area of interest in design of complex structures involves the study of multidisciplined problems. The coordination of several different intricate areas of study to obtain a particular design of a structure is a new and pressing area of research. In the past, each discipline would perform its task consecutively using the appropriate inputs from the other disciplines. This process usually required several time-consuming iterations to obtain a satisfactory design. The alternative pursued here is combining various participating disciplines and specified design requirements into a formal structural computer code. The main focus of this research is to develop a multidiscipline structural tailoring method for select composite structures and to demonstrate its application to specific areas. The development of an integrated computer program involves the coupling of three independent computer programs using an excutive module. This module will be the foundation for integrating a structural optimizer, a composites analyzer and a thermal analyzer. With the completion of the executive module, the first step was taken toward the evolution of multidiscipline software in the field of composite mechanics. Through the use of an array of cases involving a variety of objective functions/constraints and thermal-mechanical load conditions, it became evident that simple composite structures can be designed to a combined loads environment.

  9. Biobased composites from glyoxal-phenolic resins and sisal fibers.

    PubMed

    Ramires, Elaine C; Megiatto, Jackson D; Gardrat, Christian; Castellan, Alain; Frollini, Elisabete

    2010-03-01

    Lignocellulosic materials can significantly contribute to the development of biobased composites. In this work, glyoxal-phenolic resins for composites were prepared using glyoxal, which is a dialdehyde obtained from several natural resources. The resins were characterized by (1)H, (13)C, 2D, and (31)P NMR spectroscopies. Resorcinol (10%) was used as an accelerator for curing the glyoxal-phenol resins in order to obtain the thermosets. The impact-strength measurement showed that regardless of the cure cycle used, the reinforcement of thermosets by 30% (w/w) sisal fibers improved the impact strength by one order of magnitude. Curing with cycle 1 (150 degrees C) induced a high diffusion coefficient for water absorption in composites, due to less interaction between the sisal fibers and water. The composites cured with cycle 2 (180 degrees C) had less glyoxal resin coverage of the cellulosic fibers, as observed by images of the fractured interface observed by SEM. This study shows that biobased composites with good properties can be prepared using a high proportion of materials obtained from natural resources.

  10. Radiation Transport Properties of Polyethylene-Fiber Composites

    NASA Technical Reports Server (NTRS)

    Kaul, Raj K.; Barghouty, A. F.; Dahche, H. M.

    2003-01-01

    Composite materials that can both serve as effective shielding materials against cosmic-ray and energetic solar particles in deep space as well as structural materials for habitat and spacecraft remain a critical and mission enabling piece in mission planning and exploration. Polyethylene is known to have excellent shielding properties due to its low density coupled with high hydrogen content. Polyethylene fiber reinforced composites promise to combine this shielding effectiveness with the required mechanical properties of structural materials. Samples of Polyethylene-fiber reinforced epoxy matrix composite 1-5 cm thick were prepared at NASA's Marshall Space Flight Center and tested against 500 MeV/nucleon Fe beam at the HIMAC facility of NIRS in Chiba, Japan. This paper presents measured and calculated results for the radiation transport properties of these samples.

  11. Composite Scaffold of Poly(Vinyl Alcohol) and Interfacial Polyelectrolyte Complexation Fibers for Controlled Biomolecule Delivery

    PubMed Central

    Cutiongco, Marie Francene A.; Choo, Royden K. T.; Shen, Nathaniel J. X.; Chua, Bryan M. X.; Sju, Ervi; Choo, Amanda W. L.; Le Visage, Catherine; Yim, Evelyn K. F.

    2015-01-01

    Controlled delivery of hydrophilic proteins is an important therapeutic strategy. However, widely used methods for protein delivery suffer from low incorporation efficiency and loss of bioactivity. The versatile interfacial polyelectrolyte complexation (IPC) fibers have the capacity for precise spatiotemporal release and protection of protein, growth factor, and cell bioactivity. Yet its weak mechanical properties limit its application and translation into a viable clinical solution. To overcome this limitation, IPC fibers can be incorporated into polymeric scaffolds such as the biocompatible poly(vinyl alcohol) hydrogel (PVA). Therefore, we explored the use of a composite scaffold of PVA and IPC fibers for controlled biomolecule release. We first observed that the permeability of biomolecules through PVA films were dependent on molecular weight. Next, IPC fibers were incorporated in between layers of PVA to produce PVA–IPC composite scaffolds with different IPC fiber orientation. The composite scaffold demonstrated excellent mechanical properties and efficient biomolecule incorporation. The rate of biomolecule release from PVA–IPC composite grafts exhibited dependence on molecular weight, with lysozyme showing near-linear release for 1 month. Angiogenic factors were also incorporated into the PVA–IPC grafts, as a potential biomedical application of the composite graft. While vascular endothelial growth factor only showed a maximum cumulative release of 3%, the smaller PEGylated-QK peptide showed maximum release of 33%. Notably, the released angiogenic biomolecules induced endothelial cell activity thus indicating retention of bioactivity. We also observed lack of significant macrophage response against PVA–IPC grafts in a rabbit model. Showing permeability, mechanical strength, precise temporal growth factor release, and bioinertness, PVA–IPC fibers composite scaffolds are excellent scaffolds for controlled biomolecule delivery in soft tissue

  12. Composite scaffold of poly(vinyl alcohol) and interfacial polyelectrolyte complexation fibers for controlled biomolecule delivery.

    PubMed

    Cutiongco, Marie Francene A; Choo, Royden K T; Shen, Nathaniel J X; Chua, Bryan M X; Sju, Ervi; Choo, Amanda W L; Le Visage, Catherine; Yim, Evelyn K F

    2015-01-01

    Controlled delivery of hydrophilic proteins is an important therapeutic strategy. However, widely used methods for protein delivery suffer from low incorporation efficiency and loss of bioactivity. The versatile interfacial polyelectrolyte complexation (IPC) fibers have the capacity for precise spatiotemporal release and protection of protein, growth factor, and cell bioactivity. Yet its weak mechanical properties limit its application and translation into a viable clinical solution. To overcome this limitation, IPC fibers can be incorporated into polymeric scaffolds such as the biocompatible poly(vinyl alcohol) hydrogel (PVA). Therefore, we explored the use of a composite scaffold of PVA and IPC fibers for controlled biomolecule release. We first observed that the permeability of biomolecules through PVA films were dependent on molecular weight. Next, IPC fibers were incorporated in between layers of PVA to produce PVA-IPC composite scaffolds with different IPC fiber orientation. The composite scaffold demonstrated excellent mechanical properties and efficient biomolecule incorporation. The rate of biomolecule release from PVA-IPC composite grafts exhibited dependence on molecular weight, with lysozyme showing near-linear release for 1 month. Angiogenic factors were also incorporated into the PVA-IPC grafts, as a potential biomedical application of the composite graft. While vascular endothelial growth factor only showed a maximum cumulative release of 3%, the smaller PEGylated-QK peptide showed maximum release of 33%. Notably, the released angiogenic biomolecules induced endothelial cell activity thus indicating retention of bioactivity. We also observed lack of significant macrophage response against PVA-IPC grafts in a rabbit model. Showing permeability, mechanical strength, precise temporal growth factor release, and bioinertness, PVA-IPC fibers composite scaffolds are excellent scaffolds for controlled biomolecule delivery in soft tissue engineering.

  13. Graphite fiber textile preform/copper matrix composites

    NASA Technical Reports Server (NTRS)

    Filatovs, G. J.

    1993-01-01

    This project has the objective of exploring the use of graphite fiber textile preform/copper matrix composites in spacecraft heat transmitting and radiating components. The preforms are to be fabricated by braiding of tows and when infiltrated with copper will result in a 3-D reinforced, near net shape composite with improved specific properties such as lower density and higher stiffness. It is anticipated that the use of textile technology will result in a more robust preform and consequently better final composite; it is hard to anticipate what performance tradeoffs will result, and these will be explored through testing and characterization.

  14. Boron/aluminum graphite/resin advanced fiber composite hybrids

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Lark, R. F.; Sullivan, T. L.

    1975-01-01

    Fabrication feasibility and potential of an adhesively bonded metal and resin matrix fiber-composite hybrid are determined as an advanced material for aerospace and other structural applications. The results show that using this hybrid concept makes possible a composite design which, when compared with nonhybrid composites, has greater transverse strength, transverse stiffness, and impact resistance with only a small penalty on density and longitudinal properties. The results also show that laminate theory is suitable for predicting the structural response of such hybrids. The sequence of fracture modes indicates that these types of hybrids can be readily designed to meet fail-safe requirements.

  15. Method of Fabricating Chopped-Fiber Composite Piston

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor)

    1999-01-01

    A three-dimensional piston molding is fabricated from a mixture of chopped, carbon tow filaments of variable length, which are prepregged with carbonaceous organic resins and/or pitches and molded by conventional molding processes into a near net shape, to form a carbon-fiber reinforced organic-matrix composite part. Continuous reinforcement in the form of carbon-carbon composite tapes or pieces of fabric can be also laid in the mold before or during the charging of the mold with the chopped-fiber mixture, to enhance the strength in the crown and wrist-pin areas. The molded chopped-fiber reinforced organic-matrix composite parts are then pyrolized in an inert atmosphere, to convert the organic matrix materials to carbon. These pyrolized parts are then densified by reimpregnation with resins or pitches, which are subsequently carbonized. Densification is also accomplished by direct infiltration with carbon by vapor deposition processes. Once the desired density has been achieved, the piston molds are machined to final piston dimensions, and piston ring grooves are added. To prevent oxidation and/or to seal the piston surface or near surface, the chopped-fiber piston is coated with ceramic and/or metallic sealants: and/or coated with a catalyst.

  16. Fiber-reinforced bioactive and bioabsorbable hybrid composites.

    PubMed

    Huttunen, Mikko; Törmälä, Pertti; Godinho, Pedro; Kellomäki, Minna

    2008-09-01

    Bioabsorbable polymeric bone fracture fixation devices have been developed and used clinically in recent decades to replace metallic implants. An advantage of bioabsorbable polymeric devices is that these materials degrade in the body and the degradation products exit via metabolic routes. Additionally, the strength properties of the bioabsorbable polymeric devices decrease as the device degrades, which promotes bone regeneration (according to Wolff's law) as the remodeling bone tissue is progressively loaded. The most extensively studied bioabsorbable polymers are poly-alpha-hydroxy acids. The major limitation of the first generation of bioabsorbable materials and devices was their relatively low mechanical properties and brittle behavior. Therefore, several reinforcing techniques have been used to improve the mechanical properties. These include polymer chain orientation techniques and the use of fiber reinforcements. The latest innovation for bioactive and fiber-reinforced bioabsorbable composites is to use both bioactive and bioresorbable ceramic and bioabsorbable polymeric fiber reinforcement in the same composite structure. This solution of using bioactive and fiber-reinforced bioabsorbable hybrid composites is examined in this study.

  17. Rapid Fabrication of Carbide Matrix/Carbon Fiber Composites

    NASA Technical Reports Server (NTRS)

    Williams, Brian E.; Bernander, Robert E.

    2007-01-01

    Composites of zirconium carbide matrix material reinforced with carbon fibers can be fabricated relatively rapidly in a process that includes a melt infiltration step. Heretofore, these and other ceramic matrix composites have been made in a chemical vapor infiltration (CVI) process that takes months. The finished products of the CVI process are highly porous and cannot withstand temperatures above 3,000 F (approx.1,600 C). In contrast, the melt-infiltration-based process takes only a few days, and the composite products are more nearly fully dense and have withstood temperatures as high as 4,350 F (approx.2,400 C) in a highly oxidizing thrust chamber environment. Moreover, because the melt- infiltration-based process takes much less time, the finished products are expected to cost much less. Fabrication begins with the preparation of a carbon fiber preform that, typically, is of the size and shape of a part to be fabricated. By use of low-temperature ultraviolet-enhanced chemical vapor deposition, the carbon fibers in the preform are coated with one or more interfacial material(s), which could include oxides. The interfacial material helps to protect the fibers against chemical attack during the remainder of the fabrication process and against oxidation during subsequent use; it also enables slippage between the fibers and the matrix material, thereby helping to deflect cracks and distribute loads. Once the fibers have been coated with the interfacial material, the fiber preform is further infiltrated with a controlled amount of additional carbon, which serves as a reactant for the formation of the carbide matrix material. The next step is melt infiltration. The preform is exposed to molten zirconium, which wicks into the preform, drawn by capillary action. The molten metal fills most of the interstices of the preform and reacts with the added carbon to form the zirconium carbide matrix material. The zirconium does not react with the underlying fibers because they

  18. Nonlinear laminate analysis for metal matrix fiber composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1981-01-01

    A nonlinear laminate analysis is described for predicting the mechanical behavior (stress-strain relationships) of angleplied laminates in which the matrix is strained nonlinearly by both the residual stress and the mechanical load and in which additional nonlinearities are induced due to progressive fiber fractures and ply relative rotations. The nonlinear laminate analysis (NLA) is based on linear composite mechanics and a piece wise linear laminate analysis to handle the nonlinear responses. Results obtained by using this nonlinear analysis on boron fiber/aluminum matrix angleplied laminates agree well with experimental data. The results shown illustrate the in situ ply stress-strain behavior and synergistic strength enhancement.

  19. Fabrication Routes for Continuous Fiber-Reinforced Ceramic Composites (CFCC)

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.; Bansal, Narottam P.

    1998-01-01

    The primary approaches used for fabrication of continuous fiber-reinforced ceramic composite (CFCC) components have been reviewed. The CFCC fabrication issues related to fiber, interface, and matrix have been analyzed. The capabilities, advantages and limitations of the five matrix-infiltration routes have been compared and discussed. Today, the best fabrication route for the CFCC end-user is not clear and compromises need to be made depending on the details of the CFCC application. However, with time, this problem should be reduced as research continues to develop advanced CFCC constituents and fabrication routes.

  20. Fabrication Routes for Continuous Fiber-Reinforced Ceramic Composites (CFCC)

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.; Bansal, Narottam P.

    1998-01-01

    The primary approaches used for fabrication of continuous fiber-reinforced ceramic composite (CFCC) components have been reviewed. The CFCC fabrication issues related to fiber, interface, and matrix have been analyzed. The capabilities. advantages and limitations of the five matrix-infiltration routes have been compared and discussed. Today. the best fabrication route for the CFCC end-user is not clear and compromises need to be made depending on the details of the CFCC application. However, with time, this problem should be reduced as research continues to develop advanced CFCC constituents and fabrication routes.

  1. ATP consumption and efficiency of human single muscle fibers with different myosin isoform composition.

    PubMed Central

    He, Z H; Bottinelli, R; Pellegrino, M A; Ferenczi, M A; Reggiani, C

    2000-01-01

    Chemomechanical transduction was studied in single fibers isolated from human skeletal muscle containing different myosin isoforms. Permeabilized fibers were activated by laser-pulse photolytic release of 1.5 mM ATP from p(3)-1-(2-nitrophenyl)ethylester of ATP. The ATP hydrolysis rate in the muscle fibers was determined with a fluorescently labeled phosphate-binding protein. The effects of varying load and shortening velocity during contraction were investigated. The myosin isoform composition was determined in each fiber by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. At 12 degrees C large variations (three- to fourfold) were found between slow and fast (2A and 2A-2B) fibers in their maximum shortening velocity, peak power output, velocity at which peak power is produced, isometric ATPase activity, and tension cost. Isometric tension was similar in all fiber groups. The ATP consumption rate increased during shortening in proportion to shortening velocity. At 12 degrees C the maximum efficiency was similar (0.21-0.27) for all fiber types and was reached at a higher speed of shortening for the faster fibers. In all fibers, peak efficiency increased to approximately 0.4 when the temperature was raised from 12 degrees C to 20 degrees C. The results were simulated with a kinetic scheme describing the ATPase cycle, in which the rate constant controlling ADP release is sensitive to the load on the muscle. The main difference between slow and fast fibers was reproduced by increasing the rate constant for the hydrolysis step, which was rate limiting at low loads. Simulation of the effect of increasing temperature required an increase in the force per cross-bridge and an acceleration of the rate constants in the reaction pathway. PMID:10920025

  2. Natural Curaua Fiber-Reinforced Composites in Multilayered Ballistic Armor

    NASA Astrophysics Data System (ADS)

    Monteiro, Sergio Neves; Louro, Luis Henrique Leme; Trindade, Willian; Elias, Carlos Nelson; Ferreira, Carlos Luiz; de Sousa Lima, Eduardo; Weber, Ricardo Pondé; Miguez Suarez, João Carlos; da Silva Figueiredo, André Ben-Hur; Pinheiro, Wagner Anacleto; da Silva, Luis Carlos; Lima, Édio Pereira

    2015-10-01

    The performance of a novel multilayered armor in which the commonly used plies of aramid fabric layer were replaced by an equal thickness layer of distinct curaua fiber-reinforced composites with epoxy or polyester matrices was assessed. The investigated armor, in addition to its polymeric layer (aramid fabric or curaua composite), was also composed of a front Al2O3 ceramic tile and backed by an aluminum alloy sheet. Ballistic impact tests were performed with actual 7.62 caliber ammunitions. Indentation in a clay witness, simulating human body behind the back layer, attested the efficacy of the curaua-reinforced composite as an armor component. The conventional aramid fabric display a similar indentation as the curaua/polyester composite but was less efficient (deeper indentation) than the curaua/epoxy composite. This advantage is shown to be significant, especially in favor of the lighter and cheaper epoxy composite reinforced with 30 vol pct of curaua fiber, as possible substitute for aramid fabric in multilayered ballistic armor for individual protection. Scanning electron microscopy revealed the mechanism associated with the curaua composite ballistic performance.

  3. Fiber composite fan blade impact improvement

    NASA Technical Reports Server (NTRS)

    Graff, J.; Stoltze, L.; Varholak, E. M.

    1976-01-01

    The improved foreign object damage resistance of a metal matrix advanced composite fan blade was demonstrated. The fabrication, whirl impact test and subsequent evaluation of nine advanced composite fan blades of the "QCSEE" type design were performed. The blades were designed to operate at a tip speed of 282 m/sec. The blade design was the spar/shell type, consisting of a titanium spar and boron/aluminum composite airfoils. The blade retention was designed to rock on impact with large birds, thereby reducing the blade bending stresses. The program demonstrated the ability of the blades to sustain impacts with up to 681 g slices of birds at 0.38 rad with little damage (only 1.4 percent max weight loss) and 788 g slices of birds at 0.56 rad with only 3.2 percent max weight loss. Unbonding did not exceed 1.1 percent of the post-test blade area during any of the tests. All blades in the post-test condition were judged capable of operation in accordance with the FAA guidelines for medium and large bird impacts.

  4. Oxidation Kinetics and Strength Degradation of Carbon Fibers in a Cracked Ceramic Matrix Composite

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.

    2003-01-01

    Experimental results and oxidation modeling will be presented to discuss carbon fiber susceptibility to oxidation, the oxidation kinetics regimes and composite strength degradation and failure due to oxidation. Thermogravimetric Analysis (TGA) was used to study the oxidation rates of carbon fiber and of a pyro-carbon interphase. The analysis was used to separately obtain activation energies for the carbon constituents within a C/SiC composite. TGA was also conducted on C/SiC composite material to study carbon oxidation and crack closure as a function of temperature. In order to more closely match applications conditions C/SiC tensile coupons were also tested under stressed oxidation conditions. The stressed oxidation tests show that C/SiC is much more susceptible to oxidation when the material is under an applied load where the cracks are open and allow for oxygen ingress. The results help correlate carbon oxidation with composite strength reduction and failure.

  5. CODIFICATION OF FIBER REINFORCED COMPOSITE PIPING

    SciTech Connect

    Rawls, G.

    2012-10-10

    The goal of the overall project is to successfully adapt spoolable FRP currently used in the oil industry for use in hydrogen pipelines. The use of FRP materials for hydrogen service will rely on the demonstrated compatibility of these materials for pipeline service environments and operating conditions. The ability of the polymer piping to withstand degradation while in service, and development of the tools and data required for life management are imperative for successful implementation of these materials for hydrogen pipeline. The information and data provided in this report provides the technical basis for the codification for fiber reinforced piping (FRP) for hydrogen service. The DOE has invested in the evaluation of FRP for the delivery for gaseous hydrogen to support the development of a hydrogen infrastructure. The codification plan calls for detailed investigation of the following areas: System design and applicable codes and standards; Service degradation of FRP; Flaw tolerance and flaw detection; Integrity management plan; Leak detection and operational controls evaluation; Repair evaluation. The FRP codification process started with commercially available products that had extensive use in the oil and gas industry. These products have been evaluated to assure that sufficient structural integrity is available for a gaseous hydrogen environment.

  6. Preparation and biological properties of PLLA/beta-TCP composites reinforced by chitosan fibers.

    PubMed

    Wang, Jing; Qu, Lijie; Meng, Xiangcai; Gao, Jing; Li, Hongbo; Wen, Guangwu

    2008-06-01

    Chitosan fibers were introduced into a poly(L-lactic acid)/beta-tricalcium phosphate (PLLA/beta-TCP) matrix as reinforcement to prepare scaffold materials for bone tissue engineering with adequate initial strength and a feasible degradation rate. The structure and morphology of the composites were observed by a scanning electron microscope (SEM). The porosity of the composites was tested by Archimedes' method. The mechanical property of the composites was measured. Simulated body fluid (SBF) experiments were conducted to assess the bioactivity of the composites. The chemical components of resultants on surfaces were analyzed by Fourier transform infrared spectroscopy (FTIR). The influence of the addition of chitosan fibers on the pH value, mass loss rate and structure of samples during immersion was also discussed. The results show that the initial compressive strength reaches 16.07 MPa when the composites prepared have a porosity of 36%. With the degradation of chitosan fibers, an interconnected structure is earlier formed in situ throughout the scaffolds, which is favorable for new bone ingrowth. The compressive strength of the composite decreases flatly and still maintains at 5.28 MPa after immersion in SBF for 24 days. Meanwhile, the formation of a layer of bone-like apatites on the surfaces of the samples indicates good biological activity. It is concluded that the composites have a promising prospect as bone tissue engineering materials.

  7. Designing Cure Cycles for Matrix/Fiber Composite Parts

    NASA Technical Reports Server (NTRS)

    Hou, Tan-Hung

    2006-01-01

    A methodology has been devised for designing cure cycles to be used in the fabrication of matrix/fiber composite parts (including laminated parts). As used here, cure cycles signifies schedules of elevated temperature and pressure as functions of time, chosen to obtain desired rates of chemical conversion of initially chemically reactive matrix materials and to consolidate the matrix and fiber materials into dense solids. Heretofore, cure cycles have been designed following an empirical, trial-and-error approach, which cannot be relied upon to yield optimum results. In contrast, the present methodology makes it possible to design an optimum or nearly optimum cure cycle for a specific application. Proper design of a cure cycle is critical for achieving consolidation of a reactive matrix/fiber layup into a void-free laminate. A cure cycle for a composite containing a reactive resin matrix usually consists of a two-stage ramp-and-hold temperature profile. The temperature and the duration of the hold for each stage are unique for a given composite material. The first, lower-temperature ramp-and hold stage is called the B stage in composite- fabrication terminology. At this stage, pressure is not applied, and volatiles (solvents and reaction by-products) are free to escape. The second, higher-temperature stage is for final forced consolidation.

  8. Oxidation Behavior of Carbon Fiber Reinforced Silicon Carbide Composites

    NASA Technical Reports Server (NTRS)

    Valentin, Victor M.

    1995-01-01

    Carbon fiber reinforced Silicon Carbide (C-SiC) composites offer high strength at high temperatures and good oxidation resistance. However, these composites present some matrix microcracks which allow the path of oxygen to the fiber. The aim of this research was to study the effectiveness of a new Silicon Carbide (SiC) coating developed by DUPONT-LANXIDE to enhance the oxidation resistance of C-SiC composites. A thermogravimetric analysis was used to determine the oxidation rate of the samples at different temperatures and pressures. The Dupont coat proved to be a good protection for the SiC matrix at temperatures lower than 1240 C at low and high pressures. On the other hand, at temperatures above 1340 C the Dupont coat did not seem to give good protection to the composite fiber and matrix. Even though some results of the tests have been discussed, because of time restraints, only a small portion of the desired tests could be completed. Therefore, no major conclusions or results about the effectiveness of the coat are available at this time.

  9. Stress Corrosion Cracking in Polymer Matrix Glass Fiber Composites

    NASA Astrophysics Data System (ADS)

    Kosak, Jonathan

    With the use of Polymer Matrix Glass Fiber Composites ever expanding, understanding conditions that lead to failure before expected service life is of increasing importance. Stress Corrosion Cracking (SCC) has proven to be one such example of conditions found in use in high voltage transmission line applications that leads to brittle fracture of polymer matrix composites. SCC has been proven to be the result of acid buildup on the lines due to corona discharges and water buildup. This acid leaches minerals from the fibers, leading to fracture at low loads and service life. In order to combat this problem, efforts are being made to determine which composites have greater resistance to SCC. This study was used to create a methodology to monitor for damage during SCC and classify damage by mechanism type (matrix cracking and fiber breaking) by using 4-point SCC bend testing, 3-point bend testing, a forward predictive model, unique post processing techniques, and microscopy. This would allow a classification in composite resistance to SCC as well as create a methodology for future research in this field. Concluding this study, only matrix cracking was able to be fully classified, however, a methodology was developed for future experimentation.

  10. Planarized fiber-FHD optical composite

    NASA Astrophysics Data System (ADS)

    Holmes, C.; Carpenter, L. G.; Gates, J. C.; Gawith, C. B. E.; Smith, P. G. R.

    2015-03-01

    We demonstrate the fabrication of a mechanically robust planarised fibre-FHD optical composite. Fabrication is achieved through deposition and consolidation of optical grade silica soot on to both an optical fibre and planar substrate. The consolidated silica acts in joining the fibre and planar substrate both mechanically and optically. The concept lends itself to applications where long interaction lengths (order of tens of centimetres) and optical interaction via a planar waveguide are required, such as pump schemes, precision layup of fibre optics and hybrid fibre-planar devices. This paper considers the developments in fabrication process that enable component development.

  11. Electrolytic deposition of PZT on carbon fibers for fabricating multifunctional composites

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Shaffer, J. W.; Sodano, H. A.

    2010-12-01

    Piezoelectric fiber composites (PFCs) have been developed in order to overcome the fragile nature of monolithic piezoelectric materials by embedding piezoceramic inclusions into a polymer matrix. The flexible nature of the polymer matrix protects the piezoelectric fiber from damage or fracture under mechanical loading and allows the composites to be easily conformed to curved surfaces for use in many applications. Although PFCs have many useful properties, they still suffer from several drawbacks, namely the required separate electrodes make it impossible to embed the composites into the host structure, and the relatively low tensile modulus of the piezoelectric inclusion means that it contributes little to structural properties. To resolve the inadequacies of current PFCs, a novel active structural fiber (ASF) was developed that can be embedded into a composite structure to perform sensing and actuation, and provide load bearing functionality. The concept and feasibility of this ASF has been validated by coating a silicon carbide (SiC) fiber with a barium titanate (BaTiO3) shell using electrophoresis deposition techniques. However, lead based ceramics react with SiC fiber during high temperature sintering and thus the use of these highly coupled piezoceramics requires alternative deposition approaches. This paper will introduce a new ASF fabricated by coating a single carbon fiber with a concentric PZT (PbZr0.52Ti0.48O3) shell using electrolytic deposition (ELD). ELD quickly and uniformly coats the fiber and, since the PZT precursor has a low crystallization temperature, the carbon fiber is not exposed to high sintering temperatures which typically degrade the in-plane material properties of the fiber and composite. Carbon fiber has been widely used in industry and studied in academia due to its excellent mechanical properties, while PZT has been extensively used for sensing or actuation because of its high piezoelectric coupling. Crystal structures of the PZT

  12. Fiber-reinforced ceramic composites made by chemical vapor infiltration

    SciTech Connect

    Caputo, A.J.; Lowden, R.A.; Stinton, D.P.

    1985-01-01

    A process was developed for the fabrication of ceramic-fiber-reinforced ceramic-matrix composites by chemical vapor infiltration. The ceramic composites were prepared by making fibrous preforms from multiple layers of SiC cloth and forming the silicon-carbide matrix for each component specimen by infiltrating the fibrous preform by a chemical vapor deposition process. A major goal of the work was achieved when infiltration was accomplished in hours instead of weeks by combining the thermal-gradient and forced-gas-flow techniques. Composites that possessed moderate flexural strength and high strain to failure were produced. In addition, the strength of the composites decreased gradually after the maximum strength was obtained, demonstrating that the composites had the desired high toughness and avoided the typical brittle behavior of monolithic ceramics.

  13. Nondestructive testing of externally reinforced structures for seismic retrofitting using flax fiber reinforced polymer (FFRP) composites

    NASA Astrophysics Data System (ADS)

    Ibarra-Castanedo, C.; Sfarra, S.; Paoletti, D.; Bendada, A.; Maldague, X.

    2013-05-01

    Natural fibers constitute an interesting alternative to synthetic fibers, e.g. glass and carbon, for the production of composites due to their environmental and economic advantages. The strength of natural fiber composites is on average lower compared to their synthetic counterparts. Nevertheless, natural fibers such as flax, among other bast fibers (jute, kenaf, ramie and hemp), are serious candidates for seismic retrofitting applications given that their mechanical properties are more suitable for dynamic loads. Strengthening of structures is performed by impregnating flax fiber reinforced polymers (FFRP) fabrics with epoxy resin and applying them to the component of interest, increasing in this way the load and deformation capacities of the building, while preserving its stiffness and dynamic properties. The reinforced areas are however prompt to debonding if the fabrics are not mounted properly. Nondestructive testing is therefore required to verify that the fabric is uniformly installed and that there are no air gaps or foreign materials that could instigate debonding. In this work, the use of active infrared thermography was investigated for the assessment of (1) a laboratory specimen reinforced with FFRP and containing several artificial defects; and (2) an actual FFRP retrofitted masonry wall in the Faculty of Engineering of the University of L'Aquila (Italy) that was seriously affected by the 2009 earthquake. Thermographic data was processed by advanced signal processing techniques, and post-processed by computing the watershed lines to locate suspected areas. Results coming from the academic specimen were compared to digital speckle photography and holographic interferometry images.

  14. Esthetic considerations when splinting with fiber-reinforced composites.

    PubMed

    Strassler, Howard E; Serio, Cheryl L

    2007-04-01

    The primary reasons for splinting and stabilizing teeth are to connect them for the purpose of replacing missing teeth or as an adjunct to periodontal therapy. Although the restorations must be planned to withstand the functional requirements of occlusion and mastication, esthetic considerations must also be taken into account. The challenge in creating an esthetic result with fiber-reinforced composite splints is that there is limited space in the connector region to create the three-dimensional effect required to give teeth the appearance of individuality. Careful planning in the diagnosis and treatment of the fiber splint is essential to allow for adequate tooth preparation to give the illusion of nonsplinted teeth. When missing teeth are replaced with a fiber-reinforced, direct, fixed partial denture, the pontic must be created to achieve an esthetically pleasing result.

  15. Graphite Fiber Textile Preform/Copper Matrix Composites

    NASA Technical Reports Server (NTRS)

    Filatovs, G. J.; Lee, Bruce; Bass, Lowell

    1996-01-01

    Graphite fiber reinforced/copper matrix composites are candidate materials for critical heat transmitting and rejection components because of their high thermal conduction. The use of textile (braid) preforms allows near-net shapes which confers additional advantages, both for enhanced thermal conduction and increased robustness of the preform against infiltration and handling damage. Issues addressed in the past year center on the determination of the braid structure following infiltration, and the braidability vs. the conductivity of the fibers. Highly conductive fibers eventuate from increased graphitization, which increases the elastic modulus, but lowers the braidability; a balance between these factors must be achieved. Good quality braided preform bars have been fabricated and infiltrated, and their thermal expansion characterized; their analytic modeling is underway. The braided preform of an integral finned tube has been fabricated and is being prepared for infiltration.

  16. Compressive failure of fiber composites under multi-axial loading

    NASA Astrophysics Data System (ADS)

    Basu, Shiladitya; Waas, Anthony M.; Ambur, Damodar R.

    2006-03-01

    This paper examines the compressive strength of a fiber reinforced lamina under multi-axial stress states. An equilibrium analysis is carried out in which a kinked band of rotated fibers, described by two angles, is sandwiched between two regions in which the fibers are nominally straight. Proportional multi-axial stress states are examined. The analysis includes the possibility of bifurcation from the current equilibrium state. The compressive strength of the lamina is contingent upon either attaining a load maximum in the equilibrium response or satisfaction of a bifurcation condition, whichever occurs first. The results show that for uniaxial loading a non-zero kink band angle β produces the minimum limit load. For multi-axial loading, different proportional loading paths show regimes of bifurcation dominated and limit load dominated behavior. The present results are able to capture the beneficial effect of transverse compression in raising the composite compressive strength as observed in experiments.

  17. Compressive Failure of Fiber Composites under Multi-Axial Loading

    NASA Technical Reports Server (NTRS)

    Basu, Shiladitya; Waas, Anthony M.; Ambur, Damodar R.

    2006-01-01

    This paper examines the compressive strength of a fiber reinforced lamina under multi-axial stress states. An equilibrium analysis is carried out in which a kinked band of rotated fibers, described by two angles, is sandwiched between two regions in which the fibers are nominally straight. Proportional multi-axial stress states are examined. The analysis includes the possibility of bifurcation from the current equilibrium state. The compressive strength of the lamina is contingent upon either attaining a load maximum in the equilibrium response or satisfaction of a bifurcation condition, whichever occurs first. The results show that for uniaxial loading a non-zero kink band angle beta produces the minimum limit load. For multi-axial loading, different proportional loading paths show regimes of bifurcation dominated and limit load dominated behavior. The present results are able to capture the beneficial effect of transverse compression in raising the composite compressive strength as observed in experiments.

  18. Thermal Fatigue Limitations of Continuous Fiber Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.; Arya, Vinod K.

    1997-01-01

    The potential structural benefits of unidirectional, continuous-fiber, metal matrix composites (MMC's) are legendary. When compared to their monolithic matrices, MMC's possess superior properties such as higher stiffness and tensile strength, and lower coefficient of thermal expansion in the direction of the reinforcing fibers. As an added bonus, the MMC density will be lower if the fibers are less dense than the matrix matErial they replace. The potential has been demonstrated unequivocally both analytically and experimentally, especially at ambient temperatures. Successes prompted heavily-funded National efforts within the United States (USAF and NASA) and elsewhere to extend the promise of MMC's into the temperature regime wherein creep, stress relaxation, oxidation, and thermal fatigue damage mechanisms lurk. This is the very regime for which alternative high-temperature materials are becoming mandatory, since further enhancement of state- of-the-art monolithic alloys is rapidly approaching a point of diminishing returns.

  19. Lamination residual stresses in fiber composites

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.; Liber, T.

    1975-01-01

    An experimental investigation was conducted to determine the magnitude of lamination residual stresses in angle-ply composites and to evaluate their effects on composite structural integrity. The materials investigated were boron/epoxy, boron/polyimide, graphite/low modulus epoxy, graphite/high modulus epoxy, graphite/polyimide and s-glass/epoxy. These materials were fully characterized. Static properties of laminates were also determined. Experimental techniques using embedded strain gages were developed and used to measure residual strains during curing. The extent of relaxation of lamination residual stresses was investigated. It was concluded that the degree of such relaxation is low. The behavior of angle-ply laminates subjected to thermal cycling, tensile load cycling, and combined thermal cycling with tensile load was investigated. In most cases these cycling programs did not have any measurable influence on residual strength and stiffness of the laminates. In the tensile load cycling tests, the graphite/polyimide shows the highest endurance with 10 million cycle runouts at loads up to 90 percent of the static strength.

  20. Detecting eavesdropping activity in fiber optic networks

    NASA Astrophysics Data System (ADS)

    MacDonald, Gregory G.

    The secure transmission of data is critical to governments, military organizations, financial institutions, health care providers and other enterprises. The primary method of securing in-transit data is though data encryption. A number of encryption methods exist but the fundamental approach is to assume an eavesdropper has access to the encrypted message but does not have the computing capability to decrypt the message in a timely fashion. Essentially, the strength of security depends on the complexity of the encryption method and the resources available to the eavesdropper. The development of future technologies, most notably quantum computers and quantum computing, is often cited as a direct threat to traditional encryption schemes. It seems reasonable that additional effort should be placed on prohibiting the eavesdropper from coming into possession of the encrypted message in the first place. One strategy for denying possession of the encrypted message is to secure the physical layer of the communications path. Because the majority of transmitted information is over fiber-optic networks, it seems appropriate to consider ways of enhancing the integrity and security of the fiber-based physical layer. The purpose of this research is to investigate the properties of light, as they are manifested in single mode fiber, as a means of insuring the integrity and security of the physical layer of a fiber-optic based communication link. Specifically, the approach focuses on the behavior of polarization in single mode fiber, as it is shown to be especially sensitive to fiber geometry. Fiber geometry is necessarily modified during the placement of optical taps. The problem of detecting activity associated with the placement of an optical tap is herein approached as a supervised machine learning anomaly identification task. The inputs include raw polarization measurements along with additional features derived from various visualizations of the raw data (the inputs are

  1. Preparation and characterization of wheat straw fibers for reinforcing application in injection molded thermoplastic composites.

    PubMed

    Panthapulakkal, S; Zereshkian, A; Sain, M

    2006-01-01

    The potential of wheat straw fibers prepared by mechanical and chemical processes as reinforcing additives for thermoplastics was investigated. Fibers prepared by mechanical and chemical processes were characterized with respect to their chemical composition, morphology, and physical, mechanical and thermal properties. Composites of polypropylene filled with 30% wheat straw fibers were prepared and their mechanical properties were also evaluated. The fibers prepared by chemical process exhibited better mechanical, physical and thermal properties. Wheat straw fiber reinforced polypropylene composites exhibited significantly enhanced properties compared to virgin polypropylene. However, the strength properties of the composites were less for chemically prepared fiber filled composites. This was due to the poor dispersion of the fibers under the processing conditions used. These results indicate that wheat straw fibers can be used as potential reinforcing materials for making thermoplastic composites.

  2. Modeling and simulation of continuous fiber-reinforced ceramic composites

    NASA Astrophysics Data System (ADS)

    Bheemreddy, Venkata

    Finite element modeling framework based on cohesive damage modeling, constitutive material behavior using user-material subroutines, and extended finite element method (XFEM), are developed for studying the failure behavior of continuous fiber-reinforced ceramic matrix composites (CFCCs) by the example of a silicon carbide matrix reinforced with silicon carbide fiber (SiC/SiCf) composite. This work deals with developing comprehensive numerical models for three problems: (1) fiber/matrix interface debonding and fiber pull-out, (2) mechanical behavior of a CFCC using a representative volume element (RVE) approach, and (3) microstructure image-based modeling of a CFCC using object oriented finite element analysis (OOF). Load versus displacement behavior during a fiber pull-out event was investigated using a cohesive damage model and an artificial neural network model. Mechanical behavior of a CFCC was investigated using a statistically equivalent RVE. A three-step procedure was developed for generating a randomized fiber distribution. Elastic properties and damage behavior of a CFCC were analyzed using the developed RVE models. Scattering of strength distribution in CFCCs was taken into account using a Weibull probability law. A multi-scale modeling framework was developed for evaluating the fracture behavior of a CFCC as a function of microstructural attributes. A finite element mesh of the microstructure was generated using an OOF tool. XFEM was used to study crack propagation in the microstructure and the fracture behavior was analyzed. The work performed provides a valuable procedure for developing a multi-scale framework for comprehensive damage study of CFCCs.

  3. Fabrication of borassus fruit lignocellulose fiber/PP composites and comparison with jute, sisal and coir fibers.

    PubMed

    Sudhakara, P; Jagadeesh, Dani; Wang, YiQi; Prasad, C Venkata; Devi, A P Kamala; Balakrishnan, G; Kim, B S; Song, J I

    2013-10-15

    Novel composites based on borassus fruit fine fiber (BFF) and polypropylene (PP) were fabricated with variable fiber composition (5, 10, 15 and 20 wt%) by injection molding. Maleated PP (MAPP) was also used as compatibilizer at 5 wt% for effective fiber-matrix adhesion. FTIR analysis confirms the evidence of a chemical bonding between the fiber and polymeric matrix through esterification in presence of MAPP. The tensile and flexural properties were found to increase with 15 and 10 wt% fiber loadings respectively, and decreased thereafter. Coir, jute and sisal fiber composites were also fabricated with 15 wt% fiber loading under the same conditions as used for BFF/PP composites. It was found that the mechanical properties of BFF (15 wt%)/PP composites were equivalent to jute/PP, sisal/PP and superior to coir/PP composites. Jute/PP and sisal/PP composites showed higher water absorption than BFF/PP and coir/PP composites. These results have demonstrated that the BFF/PP composites can also be an alternative material for composites applications.

  4. Mechanical Behavior of Homogeneous and Composite Random Fiber Networks

    NASA Astrophysics Data System (ADS)

    Shahsavari, Ali

    systems with large multiscale heterogeneity, which controls their mechanical behavior. This pronounced heterogeneity leads to a pronounced size and boundary condition effects on their mechanical behavior. To emphasize the source of the size effect, the network heterogeneity is characterized by analyzing the geometry of the network (density distribution), the strain field and the strain energy distribution. It is shown that the heterogeneity of the mechanical fields depends not only on the network topology, but also on the ratio between the bending and axial stiffness of fibers. In this study, the size effect is quantified and the minimum model size needed to eliminate the size effect for a given set of system parameters, is determined. The results are also used for the selection of the size of representative volume elements useful for multiscale models of fiber networks such as the sequential approach. The elastic response of composite random fiber networks in which two types of fibers are used, is studied. This analysis is performed by adding stiff fibers to a relatively softer base while considering two cases: cross-linked and non-cross-linked added fibers. The linear elastic modulus of the network is determined in terms of the system parameters, including the density of added fibers. The results are compared to the case of adding stiff fibers to a homogeneous continuum base. It is shown that there is a threshold of added fiber density, above which the axial stiffens of the base filaments controls the mechanics. In this regime, the elastic response of the composites that have network bases mimics the behavior of those with continuum bases. The results presented in this thesis are relevant for many biological and engineering fibrous materials, including connective tissue, the cellular cytoskeleton, special clothing, consumer products, filters, and dampers. It is shown that the overall behavior of the material is very sensitive to several system parameters (power law

  5. Reinforcing and Toughening Effects of Bamboo Pulp Fiber on Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Fiber Composites.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/bamboo pulp fiber composites were melt-compounded and injection-molded. Tensile, impact and dynamic mechanical properties of the composites were studied. In contrast to many other short natural fiber reinforced biocomposites which demonstrate decre...

  6. Microstructured Optical Fiber Sensors Embedded in a Laminate Composite for Smart Material Applications

    PubMed Central

    Sonnenfeld, Camille; Sulejmani, Sanne; Geernaert, Thomas; Eve, Sophie; Lammens, Nicolas; Luyckx, Geert; Voet, Eli; Degrieck, Joris; Urbanczyk, Waclaw; Mergo, Pawel; Becker, Martin; Bartelt, Hartmut; Berghmans, Francis; Thienpont, Hugo

    2011-01-01

    Fiber Bragg gratings written in highly birefringent microstructured optical fiber with a dedicated design are embedded in a composite fiber-reinforced polymer. The Bragg peak wavelength shifts are measured under controlled axial and transversal strain and during thermal cycling of the composite sample. We obtain a sensitivity to transversal strain that exceeds values reported earlier in literature by one order of magnitude. Our results evidence the relevance of using microstructured optical fibers for structural integrity monitoring of composite material structures. PMID:22163755

  7. Microstructured optical fiber sensors embedded in a laminate composite for smart material applications.

    PubMed

    Sonnenfeld, Camille; Sulejmani, Sanne; Geernaert, Thomas; Eve, Sophie; Lammens, Nicolas; Luyckx, Geert; Voet, Eli; Degrieck, Joris; Urbanczyk, Waclaw; Mergo, Pawel; Becker, Martin; Bartelt, Hartmut; Berghmans, Francis; Thienpont, Hugo

    2011-01-01

    Fiber Bragg gratings written in highly birefringent microstructured optical fiber with a dedicated design are embedded in a composite fiber-reinforced polymer. The Bragg peak wavelength shifts are measured under controlled axial and transversal strain and during thermal cycling of the composite sample. We obtain a sensitivity to transversal strain that exceeds values reported earlier in literature by one order of magnitude. Our results evidence the relevance of using microstructured optical fibers for structural integrity monitoring of composite material structures.

  8. Atmospheric pressure plasma assisted calcination of composite submicron fibers

    NASA Astrophysics Data System (ADS)

    Medvecká, Veronika; Kováčik, Dušan; Tučeková, Zlata; Zahoranová, Anna; Černák, Mirko

    2016-08-01

    The plasma assisted calcination of composite organic/inorganic submicron fibers for the preparation of inorganic fibers in submicron scale was studied. Aluminium butoxide/polyvinylpyrrolidone fibers prepared by electrospinning were treated using low-temperature plasma generated by special type of dielectric barrier discharge, so called diffuse coplanar surface barrier discharge (DCSBD) at atmospheric pressure in ambient air, synthetic air, oxygen and nitrogen. Effect of plasma treatment on base polymer removal was investigated by using Attenuated total reflectance - Fourier transform infrared (ATR-FTIR) spectroscopy. Influence of working gas on the base polymer reduction was studied by energy-dispersive X-ray spectroscopy (EDX) and CHNS elemental analysis. Changes in fibers morphology were observed by scanning electron microscopy (SEM). High efficiency of organic template removal without any degradation of fibers was observed after plasma treatment in ambient air. Due to the low-temperature approach and short exposure time, the plasma assisted calcination is a promising alternative to the conventional thermal calcination. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  9. CO2 Laser Cutting of Glass Fiber Reinforce Polymer Composite

    NASA Astrophysics Data System (ADS)

    Fatimah, S.; Ishak, M.; Aqida, S. N.

    2012-09-01

    The lamination, matrix properties, fiber orientation, and relative volume fraction of matrix of polymer structure make this polymer hard to process. The cutting of polymer composite using CO2 laser could involve in producing penetration energy in the process. Identification of the dominant factors that significantly affect the cut quality is important. The objective of this experiment is to evaluate the CO2 spot size of beam cutting for Glass Fiber Reinforce Polymer Composite (GFRP). The focal length selected 9.5mm which gave smallest focus spot size according to the cutting requirements. The effect of the focal length on the cut quality was investigated by monitoring the surface profile and focus spot size. The beam parameter has great effect on both the focused spot size and surface quality.

  10. A magnetostrictive composite-fiber Bragg Grating sensor.

    PubMed

    Quintero, Sully M M; Braga, Arthur M B; Weber, Hans I; Bruno, Antonio C; Araújo, Jefferson F D F

    2010-01-01

    This paper presents a light and compact optical fiber Bragg Grating sensor for DC and AC magnetic field measurements. The fiber is coated by a thick layer of a magnetostrictive composite consisting of particles of Terfenol-D dispersed in a polymeric matrix. Among the different compositions for the coating that were tested, the best magnetostrictive response was obtained using an epoxy resin as binder and a 30% volume fraction of Terfenol-D particles with sizes ranging from 212 to 300 μm. The effect of a compressive preload in the sensor was also investigated. The achieved resolution was 0.4 mT without a preload or 0.3 mT with a compressive pre-stress of 8.6 MPa. The sensor was tested at magnetic fields of up to 750 mT under static conditions. Dynamic measurements were conducted with a magnetic unbalanced four-pole rotor.

  11. Preliminary evaluation of fiber composite reinforcement of truck frame rails

    NASA Technical Reports Server (NTRS)

    Faddoul, J. R.

    1977-01-01

    The use of graphite fiber/resin matrix composite to effectively reinforce a standard steel truck frame rail is studied. A preliminary design was made and it was determined that the reinforcement weight could be reduced by a factor of 10 when compared to a steel reinforcement. A section of a 1/3 scale reinforced rail was fabricated to demonstrate low cost manufacturing techniques. The scale rail section was then tested and increased stiffness was confirmed. No evidence of composite fatigue was found after 500,000 cycles to a fiber stress of 34,000 psi. The test specimen failed in bending in a static test at a load 50 percent greater than that predicted for a non-reinforced rail.

  12. Matrix-dominated mechanical properties of a fiber composite lamina

    SciTech Connect

    Lyon, R.E.; Schumann, D.L.; DeTeresa, S.J.

    1992-05-18

    Matrix-dominated mechanical properties of unidirectional fiber composite laminae were determined from hoop-wound tube specimens and cylindrical rods fabricated from both wet-filament winding and prepreg material systems. Longitudinal shear modulus and strength as well as transverse Young's modulus, transverse tensile strength, and transverse compressive strength were obtained from a thin-walled tube specimen using a new fixturing design. Lamina properties are presented for several carbon fiber/epoxy composite materials. Longitudinal shear moduli were measured for both tubes and rods in torsion. Results obtained in the linear-elastic regimes above and below the glass transition temperature (Tg) of the matrix phase were compared with micromechanics predictions. Although agreement between predicted and measured shear moduli was reasonable below Tg, large discrepancies were observed when the matrix phase was elastomeric.

  13. Matrix-dominated mechanical properties of a fiber composite lamina

    SciTech Connect

    Lyon, R.E.; Schumann, D.L.; DeTeresa, S.J.

    1992-05-18

    Matrix-dominated mechanical properties of unidirectional fiber composite laminae were determined from hoop-wound tube specimens and cylindrical rods fabricated from both wet-filament winding and prepreg material systems. Longitudinal shear modulus and strength as well as transverse Young`s modulus, transverse tensile strength, and transverse compressive strength were obtained from a thin-walled tube specimen using a new fixturing design. Lamina properties are presented for several carbon fiber/epoxy composite materials. Longitudinal shear moduli were measured for both tubes and rods in torsion. Results obtained in the linear-elastic regimes above and below the glass transition temperature (Tg) of the matrix phase were compared with micromechanics predictions. Although agreement between predicted and measured shear moduli was reasonable below Tg, large discrepancies were observed when the matrix phase was elastomeric.

  14. Environmental effects on the hybrid glass fiber/carbon fiber composites

    NASA Astrophysics Data System (ADS)

    Tsai, Yun-I.

    2009-12-01

    Fiber reinforced polymer composites (FRPCs) have been widely used to replace conventional metals due to the high specific strength, fatigue resistance, and light weight. In the power distribution industry, an advanced composites rod has been developed to replace conventional steel cable as the load-bearing core of overhead conductors. Such conductors, called aluminum conductor composite core (ACCC) significantly increases the transmitting efficiency of existing power grid system without extensive rebuilding expenses, while meeting future demand for electricity. In general, the service life of such overhead conductors is required to be at least 30 years. Therefore, the long-term endurance of the composite core in various environments must be well-understood. Accelerated aging by hygrothermal exposure was conducted to determine the effect of moisture on the glass fiber (GF)/carbon fiber (CF) hybrid composites. The influence of water immersion and humid air exposure on mechanical properties is investigated. Results indicated that immersion in water is the most severe environment for such hybrid GF/CF composites, and results in greater saturation and degradation of properties. When immersed directly in water, the hybrid GF/CF composites exhibit a moisture uptake behavior that is more complex than composite materials reinforced with only one type of fiber. The unusual diffusion behavior is attributed to a higher packing density of fibers at the annular GF/CF interface, which acts as a temporary moisture barrier. Moisture uptake leads to the mechanical and thermal degradation of such hybrid GF/CF composites. Findings presented here indicate that the degradation is a function of exposure temperature, time, and moisture uptake level. Results also indicate that such hybrid GF/CF composites recover short beam shear (SBS) strength and glass transition temperature (Tg) values comparable to pre-aged samples after removal of the absorbed moisture. In the hygrothermal environment

  15. Isothermal and hygrothermal agings of hybrid glass fiber/carbon fiber composite

    NASA Astrophysics Data System (ADS)

    Barjasteh, Ehsan

    New applications of fiber-reinforced polymer composites (FRPCs) are arising in non-traditional sectors of industry, such as civil infrastructure, automotive, and power distribution. For example, composites are being used in place of steel to support high-voltage overhead conductors. In this application, conductive strands of aluminum are wrapped around a solid composite rod comprised of unidirectional carbon and glass fibers in an epoxy matrix, which is commercially called ACCC conductor. Composite-core conductors such as these are expected to eventually replace conventional steel-reinforced conductors because of the reduced sag at high temperatures, lower weight, higher ampacity, and reduced line losses. Despite the considerable advantages in mechanical performance, long-term durability of composite conductors is a major concern, as overhead conductors are expected to retain properties (with minimal maintenance) over a service life that spans multiple decades. These concerns stem from the uncertain effects of long-term environmental exposure, which includes temperature, moisture, radiation, and aggressive chemicals, all of which can be exacerbated by cyclic loads. In general, the mechanical and physical properties of polymer composites are adversely affected by such environmental factors. Consequently, the ability to forecast changes in material properties as a function of environmental exposure, particularly bulk mechanical properties, which are affected by the integrity of fiber-matrix interfaces, is required to design for extended service lives. Polymer composites are susceptible to oxidative degradation at high temperatures approaching but not quite reaching the glass transition temperature ( Tg). Although the fibers are stable at such temperatures, the matrix and especially the fiber-matrix interface can undergo degradation that affects the physical and mechanical properties of the structure over time. Therefore, as a first step, the thermal aging of an

  16. Design study of fiber-composite penetrator cases

    SciTech Connect

    Logan, R.W.; Groves, S.E.; Lyon, R.E.

    1993-10-22

    A design study was conducted to demonstrate the viability of carbon-fiber reinforced epoxy composites as structural case materials for penetrating warheads. The objective was to conduct well-instrumented experimental studies of composite-body penetrators perforating mild steel plates and quantitatively model these plate penetrations using two- and three-dimensional finite element codes over a wide range of velocities and impact conditions in order to develop predictive capability for composite design and for use in tradeoff studies with existing case materials. Understanding of the failure of composite-body penetrators would be demonstrated by a rational design iteration which significantly improved performance. Initial studies utilized existing 1-degree tapered cylindrical carbon fiber/epoxy composite cases fabricated by wet-filament winding. These sharp-tipped, steel-nose, composite penetrators were strain-gaged, piggy-backed with 57 kilograms, and impacted into steel plates in a velocity-boosted droptower at impact velocities ranging from 3 to 18 meters per second. Load, time, and position data were recorded during the impact event as well as the axial and hoop strains in the composite case. Monolithic 4340 hardened steel penetrators with both sharp- and flat-tip 3-caliber ogive noses were also impacted into mild steel plates. Data from the composite-case and steel penetrators were used to calibrate a multiaxial, rate-dependent, flow and failure model for the mild steel plates in NIKE2D. The authors were then able to successfully predict survival and failure of the composite-case penetrators in normal-incidence droptower tests for different target thickness and velocity combinations.

  17. Effect of lightning strike on bromine intercalated graphite fiber/epoxy composites

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Slabe, Melissa E.; Brink, Norman O.

    1991-01-01

    Laminar composites were fabricated from pristine and bromine intercalated pitch based graphite fibers. It was found that laminar composites could be fabricated using either pristine or intercalated graphite fibers using standard fabrication techniques. The intercalated graphite fiber composites had electrical properties which were markedly improved over both the corresponding pitch based and polyacrylonitrile (PAN) based composites. Despite composites resistivities more than an order of magnitude lower for pitch based fiber composites, the lightning strike resistance was poorer than that of the Pan based fiber composites. This leads to the conclusion that the mechanical properties of the pitch fibers are more important than electrical or thermal properties in determining the lightning strike resistance. Based on indicated lightning strike tolerance for high elongation to failure materials, the use of vapor grown, rather than pitch based graphite fibers appears promising.

  18. Thermal conductivity, electrical conductivity and specific heat of copper-carbon fiber composite

    NASA Technical Reports Server (NTRS)

    Kuniya, Keiichi; Arakawa, Hideo; Kanai, Tsuneyuki; Chiba, Akio

    1988-01-01

    A new material of copper/carbon fiber composite is developed which retains the properties of copper, i.e., its excellent electrical and thermal conductivity, and the property of carbon, i.e., a small thermal expansion coefficient. These properties of the composite are adjustable within a certain range by changing the volume and/or the orientation of the carbon fibers. The effects of carbon fiber volume and arrangement changes on the thermal and electrical conductivity, and specific heat of the composite are studied. Results obtained are as follows: the thermal and electrical conductivity of the composite decrease as the volume of the carbon fiber increases, and were influenced by the fiber orientation. The results are predictable from a careful application of the rule of mixtures for composites. The specific heat of the composite was dependent, not on fiber orientation, but on fiber volume. In the thermal fatigue tests, no degradation in the electrical conductivity of this composite was observed.

  19. Active fibers from sol-gel derived granulated silica: state of the art and potential

    NASA Astrophysics Data System (ADS)

    Romano, Valerio; Sandoz, Frederic

    2010-10-01

    In the recent past we have studied the granulated silica method as a versatile and cost effective way of fiber preform production. We have used the sol-gel technology combined with a laser-assisted remelting step to produce high homogeneity Rare Earth or Transition Metal - activated microsized particles for the fiber core. For the fiber cladding pure or index-raised granulated Silica has been employed. Silica glass tubes, appropriately filled with these granular materials, are then drawn to fibers, eventually after an optional quality enhancing vitrification step. The process offers a high degree of compositional flexibility with respect to dopants; it further facilitates to achieve high concentrations even in cases when several dopants are used. By this "rapid preform production" technique, that is also ideally suited for the preparation of microstructured optical fibers, several fibers ranging from broadband emitters, PCFs and large mode area fibers have been produced and will be presented here.

  20. The Comparison and Evaluation of Three Fiber Composite Failure Criteria

    SciTech Connect

    Christensen, R M

    2005-02-08

    Three specific failure criteria for the transversely isotropic fiber composite case will be discussed. All three use the polynomial expansion method. The three criteria are the Tsai-Wu criterion, the Hashin criterion and the Christensen criterion. All three criteria will be given in forms that admit direct and easy comparison, which has not usually been done. The central differences between these three criteria will be discussed, and steps will be taken toward the evaluation of them.

  1. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    SciTech Connect

    Besmann, T.M.; Stinton, D.P.; Matlin, W.M.; Liaw, P.K.

    1996-08-01

    Processing equipment for the infiltration of fiber-reinforced composite tubes is being designed that incorporates improvements over the equipment used to infiltrate disks. A computer-controlled machine-man interface is being developed to allow for total control of all processing variables. Additionally, several improvements are being made to the furnace that will reduce the complexity and cost of the process. These improvements include the incorporation of free standing preforms, cast mandrels, and simpler graphite heating elements.

  2. Rate dependent constitutive models for fiber reinforced polymer composites

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.

    1990-01-01

    A literature survey was conducted to assess the state-of-the-art in rate dependent constitutive models for continuous fiber reinforced polymer matrix composite (PMC) materials. Several recent models which include formulations for describing plasticity, viscoelasticity, viscoplasticity, and rate-dependent phenomenon such as creep and stress relaxation are outlined and compared. When appropriate, these comparisons include brief descriptions of the mathematical formulations, the test procedures required for generating material constants, and details of available data comparing test results to analytical predictions.

  3. Acoustic emission spectral analysis of fiber composite failure mechanisms

    NASA Technical Reports Server (NTRS)

    Egan, D. M.; Williams, J. H., Jr.

    1978-01-01

    The acoustic emission of graphite fiber polyimide composite failure mechanisms was investigated with emphasis on frequency spectrum analysis. Although visual examination of spectral densities could not distinguish among fracture sources, a paired-sample t statistical analysis of mean normalized spectral densities did provide quantitative discrimination among acoustic emissions from 10 deg, 90 deg, and plus or minus 45 deg, plus or minus 45 deg sub s specimens. Comparable discrimination was not obtained for 0 deg specimens.

  4. Carbon fiber composite molecular sieve electrically regenerable air filter media

    DOEpatents

    Wilson, Kirk A.; Burchell, Timothy D.; Judkins, Roddie R.

    1998-01-01

    An electrically regenerable gas filter system includes a carbon fiber composite molecular sieve (CFCMS) filter medium. After a separate medium-efficiency pre-filter removes particulate from the supply airstream, the CFCMS filter sorbs gaseous air pollutants before the air is recirculated to the space. When saturated, the CFCMS media is regenerated utilizing a low-voltage current that is caused to pass through the filter medium.

  5. Carbon fiber composite molecular sieve electrically regenerable air filter media

    DOEpatents

    Wilson, K.A.; Burchell, T.D.; Judkins, R.R.

    1998-10-27

    An electrically regenerable gas filter system includes a carbon fiber composite molecular sieve (CFCMS) filter medium. After a separate medium-efficiency pre-filter removes particulate from the supply air stream, the CFCMS filter sorbs gaseous air pollutants before the air is recirculated to the space. When saturated, the CFCMS media is regenerated utilizing a low-voltage current that is caused to pass through the filter medium. 3 figs.

  6. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    SciTech Connect

    Besmann, T.M.; Matlin, W.M.; Stinton, D.P.; Liaw, P.K.

    1996-06-01

    Processing equipment for the infiltration of fiber-reinforced composite tubes is being designed that incorporates improvements over the equipment used to infiltrate disks. A computer-controlled machine-man interface is being developed to allow for total control of all processing variables. Additionally, several improvements are being made to the furnace that will reduce the complexity and cost of the process. These improvements include the incorporation of free standing preforms, cast mandrels, and simpler graphite heating elements.

  7. Effects of surface treating methods of high-strength carbon fibers on interfacial properties of epoxy resin matrix composite

    NASA Astrophysics Data System (ADS)

    Ma, Quansheng; Gu, Yizhuo; Li, Min; Wang, Shaokai; Zhang, Zuoguang

    2016-08-01

    This paper aims to study the effects of surface treating methods, including electrolysis of anodic oxidation, sizing and heat treatment at 200 °C, on physical and chemical properties of T700 grade high-strength carbon fiber GQ4522. The fiber surface roughness, surface energy and chemical properties were analyzed for different treated carbon fibers, using atom force microscopy, contact angle, Fourier transformed infrared and X-ray photoelectron spectroscopy, respectively. The results show that the adopted surface treating methods significantly affect surface roughness, surface energy and active chemical groups of the studied carbon fibers. Electrolysis and sizing can increase the roughness, surface energy and chemical groups on surface, while heat treatment leads to decreases in surface energy and chemical groups due to chemical reaction of sizing. Then, unidirectional epoxy 5228 matrix composite laminates were prepared using different treated GQ4522 fibers, and interlaminar shear strength and flexural property were measured. It is revealed that the composite using electrolysis and sizing-fiber has the strongest interfacial bonding strength, indicating the important roles of the two treating processes on interfacial adhesion. Moreover, the composite using heat-treating fiber has lower mechanical properties, which is attributed to the decrease of chemical bonding between fiber surface and matrix after high temperature treatment of fiber.

  8. Canna edulis Ker by-product: chemical composition and characteristics of the dietary fiber.

    PubMed

    Juan Zhang; Wang, Zheng-Wu; Shi, Xian-Ming

    2010-08-01

    Canna edulis Ker by-product was recycled and utilized after starch extraction. The chemical composition, physical properties and antioxidant activity of the by-product were investigated. The by-product was mainly composed of dietary fiber (54.84% measured by AOAC method), and the insoluble dietary fiber constituted the major fraction. Then, the chemical composition of dietary fiber was tested using modified AOAC and Englyst methods. The results showed that dietary fiber was comprised of cellulose, hemicelluloses (including xyloglucans, arabinoxylans and glucuronoxylans), pectin and lignin. Moreover, the by-product contained relatively high content of phenolic compounds and exhibited a moderate antioxidant activity. In addition, the by-product showed both high water-holding capacity (12.5 mL/g) and oil-holding capacity (14 mL/g), and its suspension exhibited controllable viscosity. Therefore, the by-product from C. edulis is not only a source of dietary fiber but also a functional ingredient for food industry.

  9. Ultrasonic guided wave monitoring of composite bonded joints using macro fiber composite transducers

    NASA Astrophysics Data System (ADS)

    Matt, Howard; Bartoli, Ivan; Coccia, Stefano; Lanza di Scalea, Francesco; Oliver, Joseph; Kosmatka, John; Park, Gyuhae; Farrar, Charles

    2006-03-01

    The monitoring of adhesively-bonded joints through the use of ultrasonic guided waves is the general topic of this paper. Specifically, composite-to-composite joints representative of the wing skin-to-spar bonds of Unmanned Aerial Vehicles (UAVs) are examined. This research is the first step towards the development of an on-board structural health monitoring system for UAV wings based on integrated ultrasonic sensors. The study investigates two different lay-ups for the wing skin and two different types of bond defects, namely poorly-cured adhesive and disbonded interfaces. The guided wave propagation problem is studied numerically by a semi-analytical finite element method that accounts for viscoelastic damping, and experimentally by utilizing macro fiber composite (MFC) transducers which are inexpensive, flexible, highly robust, and viable candidates for application in on-board monitoring systems. Based upon change in energy transmission, the presence of damage is successfully identified through features extracted in both the time domain and discrete wavelet transform domain. A unique "passive" version of the diagnostic system is also demonstrated experimentally, whereby MFC sensors are utilized for detecting and locating simulated active damage in an aluminum plate. By exploiting the directivity behavior of MFC sensors, a damage location algorithm which is independent of wave speed is developed. Application of this approach in CFRP components may alleviate difficulties associated with damage location in highly anisotropic systems.

  10. Characterization of Nylon 6 Nano Fiber/E-Glass Fiber Reinforced Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Vinod Kumar, T.; Chandrasekaran, M.; Santhanam, V.; Udayakumar, N.

    2017-03-01

    In the paper thermoplastic polymer Nylon-6 is generated in the form of Nanofibers by using an electro spinning method, and concentration of a solution is 4% as a constant then, by varying the process parameters such as flow rate (0.8 ml/hr, 1ml/hr and 1.2 ml/hr) of the solution. The results indicated Nanofibers with 4% concentration and 1 ml/hr produced optimum fibers due to continuous fiber formation. Composites Plates are fabricated by using a Hand lay-up method with different volume fraction (0.5, 1, 2 % v/v) of Nanofibers ratio. Then, the optimum Nanofibers volume ratio (2 % v/v) is reinforced with E-glass fibers and epoxy resin as a matrix. In order to find Nanofibers effect, Mechanical properties like (Tensile, Flexural and Impact) is performed and evaluated.

  11. Surface crack growth in fiber composites

    NASA Technical Reports Server (NTRS)

    Im, J.; Mandell, J. F.; Wang, S. S.; Mcgarry, F. J.

    1976-01-01

    The results of an experimental study of damage extension and failure in glass and graphite/epoxy laminates containing partially through-thickness surface cracks are presented. The laminates studied are divided between those containing four plies, 90/0/0/90, 15/-15/-15/15, and 45/-45/-45/45, and those containing 12-16 plies of the general configurations 0/90, + or - 45, and 0/+ or - 60. Most of the results are for surface cracks of various lengths and several depths. Stable damage extension in laminates containing surface cracks is predominantly delamination between plies, and tends to be much more extensive prior to failure than is the case with through-thickness cracks, resulting in approximately notch-insensitive behavior in most cases. A greater tendency for notch-sensitive behavior is found for 0/90 graphite/epoxy laminates for which stable damage extension is more limited. The rate of damage extension with increasing applied stress depends upon the composite system and ply configuration as well as the crack length and depth. An approximate semiempirical method is presented for estimating the growth rate of large damage-regions.

  12. Embedded Bragg grating fiber optic sensor for composite flexbeams

    NASA Astrophysics Data System (ADS)

    Bullock, Daniel; Dunphy, James; Hufstetler, Gerard

    1993-03-01

    An embedded fiber-optic (F-O) sensor has been developed for translaminar monitoring of the structural integrity of composites, with a view to application in composite helicopter flexbeams for bearingless main rotor hubs. This through-thickness strain sensor is much more sensitive than conventional in-plane embedded F-O sensors to ply delamination, on the basis of a novel insertion technique and innovative Bragg grating sensor. Experimental trials have demonstrated the detection by this means of potential failures in advance of the edge-delamination or crack-propagation effect.

  13. Mechanical Properties Comparing Composite Fiber Length to Amalgam

    PubMed Central

    Petersen, Richard C.; Liu, Perng-Ru

    2016-01-01

    Photocure fiber-reinforced composites (FRCs) with varying chopped quartz-fiber lengths were incorporated into a dental photocure zirconia-silicate particulate-filled composite (PFC) for mechanical test comparisons with a popular commercial spherical-particle amalgam. FRC lengths included 0.5-mm, 1.0 mm, 2.0 mm, and 3.0 mm all at a constant 28.2 volume percent. Four-point fully articulated fixtures were used according to American Standards Test Methods with sample dimensions of 2×2×50 mm3 across a 40 mm span to provide sufficient Euler flexural bending and prevent top-load compressive shear error. Mechanical properties for flexural strength, modulus, yield strength, resilience, work of fracture, critical strain energy release, critical stress intensity factor, and strain were obtained for comparison. Fiber length subsequently correlated with increasing all mechanical properties, p < 1.1×10−5. Although the modulus was significantly statistically higher for amalgam than all composites, all FRCs and even the PFC had higher values than amalgam for all other mechanical properties. Because amalgams provide increased longevity during clinical use compared to the standard PFCs, modulus would appear to be a mechanical property that might sufficiently reduce margin interlaminar shear stress and strain-related microcracking that could reduce failure rates. Also, since FRCs were tested with all mechanical properties that statistically significantly increased over the PFC, new avenues for future development could be provided toward surpassing amalgam in clinical longevity. PMID:27642629

  14. Interphase for ceramic matrix composites reinforced by non-oxide ceramic fibers

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A. (Inventor); Bhatt, Ramakrishna (Inventor); Morscher, Gregory N. (Inventor); Yun, Hee-Mann (Inventor)

    2008-01-01

    A ceramic matrix composite material is disclosed having non-oxide ceramic fibers, which are formed in a complex fiber architecture by conventional textile processes; a thin mechanically weak interphase material, which is coated on the fibers; and a non-oxide or oxide ceramic matrix, which is formed within the interstices of the interphase-coated fiber architecture. During composite fabrication or post treatment, the interphase is allowed to debond from the matrix while still adhering to the fibers, thereby providing enhanced oxidative durability and damage tolerance to the fibers and the composite material.

  15. Thermo-oxidative stability studies of PMR-15 polymer matrix composites reinforced with various continuous fibers

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.

    1990-01-01

    An experimental study was conducted to measure the thermooxidative stability of PMR-15 composites reinforced with various fibers and to observe differences in the way they degrade in air. The fibers studied include graphite and the thermally stable Nicalon and Nextel ceramic fibers. Weight-loss rates for the different composites were assessed as a function of mechanical properties, specimen geometry, fiber sizing, and interfacial bond strength. Differences were observed in rates of weight loss, matrix cracking, geometry dependency, and fiber sizing effects. It was shown that Celion 6000 fiber-reinforced composites do not exhibit a straight-line Arrhenius relationship at temperatures above 316 C.

  16. Thermo-oxidative stability studies of PMR-15 polymer matrix composites reinforced with various fibers

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.

    1990-01-01

    An experimental study was conducted to measure the thermo-oxidative stability of PMR-15 polymer matrix composites reinforced with various fibers and to observe differences in the way they degrade in air. The fibers that were studied included graphite and the thermally stable Nicalon and Nextel ceramic fibers. Weight loss rates for the different composites were assessed as a function of mechanical properties, specimen geometry, fiber sizing, and interfacial bond strength. Differences were observed in rates of weight loss, matrix cracking, geometry dependency, and fiber-sizing effects. It was shown that Celion 6000 fiber-reinforced composites do not exhibit a straight-line Arrhenius relationship at temperatures above 316 C.

  17. Microwave radiation absorbers based on corrugated composites with carbon fibers

    NASA Astrophysics Data System (ADS)

    Bychanok, D. S.; Plyushch, A. O.; Gorokhov, G. V.; Bychanok, U. S.; Kuzhir, P. P.; Maksimenko, S. A.

    2016-12-01

    A complex analysis of the dependence of the absorption coefficient of polymer composites with nonmagnetic carbon inclusions on the real and imaginary parts of the complex permittivity, as well as on the material thickness is performed in frequency range 26-37 GHz. The composites containing 0.2 wt % of carbon fibers have been obtained. It has been experimentally found that the corrugation of the composite surface substantially increases the absorbability (from 63 to 92% at a frequency of 30 GHz and a thickness of 4.50 mm) upon a decrease in the sample mass (by 28%). A method has been proposed for calculating the absorptance of corrugated composites in the microwave range.

  18. Objective Surface Evaluation of Fiber Reinforced Polymer Composites

    NASA Astrophysics Data System (ADS)

    Palmer, Stuart; Hall, Wayne

    2013-08-01

    The mechanical properties of advanced composites are essential for their structural performance, but the surface finish on exterior composite panels is of critical importance for customer satisfaction. This paper describes the application of wavelet texture analysis (WTA) to the task of automatically classifying the surface finish properties of two fiber reinforced polymer (FRP) composite construction types (clear resin and gel-coat) into three quality grades. Samples were imaged and wavelet multi-scale decomposition was used to create a visual texture representation of the sample, capturing image features at different scales and orientations. Principal components analysis was used to reduce the dimensionality of the texture feature vector, permitting successful classification of the samples using only the first principal component. This work extends and further validates the feasibility of this approach as the basis for automated non-contact classification of composite surface finish using image analysis.

  19. Activated carbon fibers and engineered forms from renewable resources

    DOEpatents

    Baker, Frederick S.

    2010-06-01

    A method of producing activated carbon fibers (ACFs) includes the steps of providing a natural carbonaceous precursor fiber material, blending the carbonaceous precursor material with a chemical activation agent to form chemical agent-impregnated precursor fibers, spinning the chemical agent-impregnated precursor material into fibers, and thermally treating the chemical agent-impregnated precursor fibers. The carbonaceous precursor material is both carbonized and activated to form ACFs in a single step. The method produces ACFs exclusive of a step to isolate an intermediate carbon fiber.

  20. Activated carbon fibers and engineered forms from renewable resources

    DOEpatents

    Baker, Frederick S

    2013-02-19

    A method of producing activated carbon fibers (ACFs) includes the steps of providing a natural carbonaceous precursor fiber material, blending the carbonaceous precursor material with a chemical activation agent to form chemical agent-impregnated precursor fibers, spinning the chemical agent-impregnated precursor material into fibers, and thermally treating the chemical agent-impregnated precursor fibers. The carbonaceous precursor material is both carbonized and activated to form ACFs in a single step. The method produces ACFs exclusive of a step to isolate an intermediate carbon fiber.

  1. Design of Active Composites

    DTIC Science & Technology

    2009-03-30

    2007 Month: 12 super elastic grade. This FSMA composite is for use as a new airborne actuator. This report focuses both on modeling and...ferromagnetic SMA composites made of Fe and NiTi of super elastic grade, and the composite exhibited both ferromagnetic and super elastic behavior, these...of an equivalent stress-strain formulation originally proposed and now widely accepted Eshelby’s model. For paramagnetic materials (such as TiNi

  2. Process-induced birefringence variations in fiber optic embedded in composite materials

    NASA Astrophysics Data System (ADS)

    Turpin, M.; Chazelas, J.; Stoppiglia, H.

    The use of embedded fiber optic sensors for the impact detection on woven-composite panels has been developed using interfero-polarimetric measurements. Preliminary results on the study of the process-induced birefringence properties modifications of two different types of specific optical fibers: Hi-Bi 'Bow-Tie' fibers and Side-hole birefringent 'FASE' fibers are discussed.

  3. The biocompatibility and separation performance of antioxidative polysulfone/vitamin E TPGS composite hollow fiber membranes.

    PubMed

    Dahe, Ganpat J; Teotia, Rohit S; Kadam, Sachin S; Bellare, Jayesh R

    2011-01-01

    The extended interaction of blood with certain materials like hemodialysis membranes results in the activation of cellular element as well as inflammatory response. This results in hypersensitive reactions and increased reactive oxygen species, which occurs during or immediately after dialysis. Although polysulfone (Psf) hollow fiber has been commercially used for acute and chronic hemodialysis, its biocompatibility remains a major concern. To overcome this, we have successfully made composite Psf hollow fiber membrane consisting of hydrophilic/hydrophobic micro-domains of Psf and Vitamin E TPGS (TPGS). These were prepared by dry-wet spinning using 5, 10, 15, 20 wt% TPGS as an additive in dope solution. TPGS was successfully entrapped in Psf hollow fiber, as confirmed by ATR-FTIR and TGA. The selective skin was formed at inner side of hollow fibers, as confirmed by SEM study. In vitro biocompatibility and performance of the Psf/TPGS composite membranes were examined, with cytotoxicity, ROS generation, hemolysis, platelet adhesion, contact and complement activation, protein adsorption, ultrafiltration coefficient, solute rejection and urea clearance. We show that antioxidative composite Psf exhibits enhanced biocompatibility, and the membranes show high flux and high urea clearance, about two orders of magnitude better than commercial hemodialysis membranes on a unit area basis.

  4. Bio-composites fabricated by sandwiching sisal fibers with polypropylene (PP)

    NASA Astrophysics Data System (ADS)

    Sosiati, H.; Nahyudin, A.; Fauzi, I.; Wijayanti, D. A.; Triyana, K.

    2016-04-01

    Sisal fibers reinforced polypropylene (PP) composites were successfully fabricated using sandwiching sisal fibers with PP sheets. The ratio of fiber and polymer matrix was 50:50 (wt. %). Untreated short and long sisal fibers, and alkali treated short sisal fibers in 6% NaOH at 100°C for 1 and 3 h were used as reinforcement or fillers. A small amount (3 wt. %) of maleic anhydride grafted polypropylene (MAPP) was added as a coupling agent. Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy were used to characterize the surface morphology and chemical composition of the fibers, respectively. Flexural test of sisal/PP composites was done according to ASTM D 790-02. The results showed that flexural strength of untreated long fiber reinforced composite is much higher than that of the untreated and alkali treated short fibers reinforced composites with and without the addition of MAPP. Alkalization related to fiber surface modification, fiber length/fiber orientation and a composite fabrication technique are important factors in contributing to the fiber distribution within the matrix, the bonding between the fiber and the matrix and the enhancement of flexural strength of the bio-composite.

  5. Low Frequency Electrical and Magnetic Methods for Non-Destructive Analysis of Fiber Dispersion in Fiber Reinforced Cementitious Composites: An Overview

    PubMed Central

    Faifer, Marco; Ferrara, Liberato; Ottoboni, Roberto; Toscani, Sergio

    2013-01-01

    Non-destructive analysis of fiber dispersion in structural elements made of Fiber Reinforced Concrete (FRC) and Fiber Reinforced Cementitious Composites (FRCCs) plays a significant role in the framework of quality control and performance prediction. In this paper, the research activity of the authors in the aforementioned field all over the last lustrum will be reviewed. A method based on the measurement of the inductance of a probe to be placed on the specimen will be presented and its progressive development will be described. Obtained correlation with actual fiber dispersion, as checked by means of destructive methods, as well as with the mechanical performance of the composite will also be presented, in an attempt to address the significance of the method from an engineering application perspective. PMID:23337334

  6. Silicon-doped boron nitride coated fibers in silicon melt infiltrated composites

    DOEpatents

    Corman, Gregory Scot; Luthra, Krishan Lal

    2002-01-01

    A fiber-reinforced silicon-silicon carbide matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is produced. The invention also provides a method for protecting the reinforcing fibers in the silicon-silicon carbide matrix composites by coating the fibers with a silicon-doped boron nitride coating.

  7. Silicon-doped boron nitride coated fibers in silicon melt infiltrated composites

    DOEpatents

    Corman, Gregory Scot; Luthra, Krishan Lal

    1999-01-01

    A fiber-reinforced silicon--silicon carbide matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is produced. The invention also provides a method for protecting the reinforcing fibers in the silicon--silicon carbide matrix composites by coating the fibers with a silicon-doped boron nitride coating.

  8. 21 CFR 878.3500 - Polytetrafluoroethylene with carbon fibers composite implant material.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Polytetrafluoroethylene with carbon fibers... Prosthetic Devices § 878.3500 Polytetrafluoroethylene with carbon fibers composite implant material. (a) Identification. A polytetrafluoroethylene with carbon fibers composite implant material is a porous...

  9. 21 CFR 878.3500 - Polytetrafluoroethylene with carbon fibers composite implant material.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Polytetrafluoroethylene with carbon fibers... Prosthetic Devices § 878.3500 Polytetrafluoroethylene with carbon fibers composite implant material. (a) Identification. A polytetrafluoroethylene with carbon fibers composite implant material is a porous...

  10. 21 CFR 878.3500 - Polytetrafluoroethylene with carbon fibers composite implant material.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Polytetrafluoroethylene with carbon fibers... Prosthetic Devices § 878.3500 Polytetrafluoroethylene with carbon fibers composite implant material. (a) Identification. A polytetrafluoroethylene with carbon fibers composite implant material is a porous...

  11. Properties of indirect composites reinforced with monomer-impregnated glass fiber.

    PubMed

    Tanoue, Naomi; Sawase, Takashi; Matsumura, Hideo; McCabe, John F

    2012-07-01

    Sufficient flexural strength is required for long-term clinical use of fixed partial dentures made with fiber-reinforced composite. The flexural strengths of indirect composite materials reinforced with a monomer-preimpregnated glass fiber material were determined to evaluate the compatibility of the composites to glass fiber material. Four types (microhybrid, nanohybrid, microfilled, and minifilled) of indirect composites and a unidirectional long glass fiber material were selected for investigation. The composites were placed on a fiber plate and polymerized in accordance with the respective manufacturer's instructions. Rectangular bar fiber-composite specimens were machined and the flexural strength was calculated. The flexural strength of each indirect composite was also measured. The microfilled composite with the lowest filler content (70 wt%) exhibited the highest increase ratio using the fiber, although its strength without fiber reinforcement was the lowest (62.1 MPa). The fiber-microhybrid specimen demonstrated the highest mean strength (355.9 MPa), although the filler content of the microhybrid composite was comparatively low (73 wt%). The type of composite material should be considered for the selection of an optimal fiber-composite combination.

  12. Process modifications for improved carbon fiber composites: Alleviation of the electrical hazards problem

    NASA Technical Reports Server (NTRS)

    Ramohalli, K.

    1980-01-01

    Attempts to alleviate carbon-fiber-composite electrical hazards during airplane crash fires through fiber gasification are described. Thermogravimetric and differential scanning calorimetric experiments found several catalysts that caused fibers to combust when composites were exposed to test fires. Composites were tested in the 'Burn-Bang' apparatus and in high voltage electrical detection grid apparatus. In a standard three minute burn test modified composites released no fibers, while state-of-the-art composites released several hundred fiber fragments. Expected service life with and without catalytic modification was studied and electron microscopy and X-ray microanalysis furnished physical appearance and chemical composition data. An acrylic acid polymer fiber coating was developed that wet the carbon fiber surface uniformly with the catalyst, providing a marked contrast with the uneven coats obtained by solution-dipping.

  13. Effects of Fiber/Matrix Interface and its Composition on Mechanical Properties of Hi-Nicalon/Celsian Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Eldridge, Jeffrey I.

    1999-01-01

    To evaluate the effects of fiber coatings on composite mechanical properties. unidirectional celsian matrix composites reinforced with uncoated Hi-Nicalon fibers and those precoated with a dual BN/SiC layer in two separate batches (batch 1 and batch 2) were tested in three-point flexure. The uncoated-fiber reinforced composites showed catastrophic failure with strength of 210+/-35 MPa and a flat fracture surface. In contrast, composites reinforced with coated fibers exhibited graceful failure with extensive fiber pullout and showed significantly higher ultimate strengths, 904 and 759 MPa for the batch 1 and 2 coatings. respectively. Fiber push-in tests and microscopic examination indicated no chemical reaction at the uncoated or coated fiber-matrix interfaces that might be responsible for fiber strength degradation. Instead, the low strength of composite with uncoated fibers was due to degradation of the fiber strength from mechanical damage during composite processing. Despite identical processing, the first matrix cracking stresses (Sigma(sub mc)) of the composites reinforced with fibers coated in batch 1 and batch 2 were quite different, 436 and 122 MPa, respectively. The large difference in Sigma(sub mc) of the coated-fiber composites was attributed to differences in fiber sliding stresses (Tau(sub friction)), 121.2+/-48.7 and 10.4+/-3.1 MPa, respectively. for the two composites as determined by the fiber push-in method. Such a large difference in Tau(sub friction). for the two composites was found to be due to the difference in the compositions of the interface coatings. Scanning Auger microprobe analysis revealed the presence of carbon layers between the fiber and BN. and also between the BN and SiC coatings in the composite showing lower Tau(sub friction). This resulted in lower Sigma(sub mc) in agreement with the ACK theory. The ultimate strengths of the two composites depended mainly on the fiber volume fraction and were not significantly effected by Tau

  14. Monitoring of Structural Integrity of Composite Structures by Embedded Optical Fiber Sensors

    NASA Technical Reports Server (NTRS)

    Osei, Albert J.

    2002-01-01

    advanced structural materials expected to become the mainstay of the current and future generation space structures. Since carbon-epoxy composites are the materials of choice for the current space structures, the initial study is concentrated on this type of composite. The goals of this activity are to use embedded FBG sensors for measuring strain and temperature of composite structures, and to investigate the effects of various parameters such as composite fiber orientation with respect to the optical sensor, unidirectional fiber composite, fabrication process etc., on the optical performance of the sensor. This paper describes an experiment to demonstrate the use of an embedded FBG for measuring strain in a composite material. The performance of the fiber optic sensor is determined by direct comparison with results from more conventional instrumentation.

  15. Rapid Prototyping of Continuous Fiber Reinforced Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, R.; Green, C.; Phillips, T.; Cipriani, R.; Yarlagadda, S.; Gillespie, J.; Effinger, M.; Cooper, K. C.; Gordon, Gail (Technical Monitor)

    2002-01-01

    For ceramics to be used as structural components in high temperature applications, their fracture toughness is improved by embedding continuous ceramic fibers. Ceramic matrix composite (CMC) materials allow increasing the overall operating temperature, raising the temperature safety margins, avoiding the need for cooling, and improving the damping capacity, while reducing the weight at the same time. They also need to be reliable and available in large quantities as well. In this paper, an innovative rapid prototyping technique to fabricate continuous fiber reinforced ceramic matrix composites is described. The process is simple, robust and will be widely applicable to a number of high temperature material systems. This technique was originally developed at the University of Delaware Center for Composite Materials (UD-CCM) for rapid fabrication of polymer matrix composites by a technique called automated tow placement or ATP. The results of mechanical properties and microstructural characterization are presented, together with examples of complex shapes and parts. It is believed that the process will be able to create complex shaped parts at an order of magnitude lower cost than current CVI and PIP processes.

  16. Asymptotic Analysis of Fiber-Reinforced Composites of Hexagonal Structure

    NASA Astrophysics Data System (ADS)

    Kalamkarov, Alexander L.; Andrianov, Igor V.; Pacheco, Pedro M. C. L.; Savi, Marcelo A.; Starushenko, Galina A.

    2016-08-01

    The fiber-reinforced composite materials with periodic cylindrical inclusions of a circular cross-section arranged in a hexagonal array are analyzed. The governing analytical relations of the thermal conductivity problem for such composites are obtained using the asymptotic homogenization method. The lubrication theory is applied for the asymptotic solution of the unit cell problems in the cases of inclusions of large and close to limit diameters, and for inclusions with high conductivity. The lubrication method is further generalized to the cases of finite values of the physical properties of inclusions, as well as for the cases of medium-sized inclusions. The analytical formulas for the effective coefficient of thermal conductivity of the fiber-reinforced composite materials of a hexagonal structure are derived in the cases of small conductivity of inclusions, as well as in the cases of extremely low conductivity of inclusions. The three-phase composite model (TPhM) is applied for solving the unit cell problems in the cases of the inclusions with small diameters, and the asymptotic analysis of the obtained solutions is performed for inclusions of small sizes. The obtained results are analyzed and illustrated graphically, and the limits of their applicability are evaluated. They are compared with the known numerical and asymptotic data in some particular cases, and very good agreement is demonstrated.

  17. Effective dynamic moduli and density of fiber-reinforced composites

    NASA Astrophysics Data System (ADS)

    Caleap, Mihai; Drinkwater, Bruce W.; Wilcox, Paul D.

    2013-01-01

    A multiple scattering theory is developed to predict the effective dynamic material properties of elastic composites in two dimensions. The system consists of circular fibers distributed randomly in an elastic solid. The coherent wave propagation in the elastic composite is analyzed under the quasi-crystalline approximation. The effective medium equivalent to the original composite material is a medium with space and time dispersion, and hence, its parameters are functions of frequency of the incident field. Although the effective medium is homogeneous and isotropic, its effective dynamic moduli and density depend on the type of propagating wave, e.g., they are different for longitudinal and transverse incident waves. However, they coincide in the long-wave region as expected on physical grounds. Furthermore, the effective material properties are found to be complexvalued, in addition to their dynamic nature. For in-plane waves and in the long-wave limit the effective bulk modulus, mass density and shear modulus are independently determined by a set of monopolar, dipolar and quadrupolar scattering coefficients of the embedded fibers alone, respectively. Likewise, for anti-plane waves, the effective mass density and the shear modulus are specified, respectively, in terms of the monopolar and dipolar scattering coefficients of the corresponding fiberscattering problem. The emerging possibility of designing composite materials to form elastic metamaterials is discussed.

  18. Fibers and fibrous materials for the reinforcement of composites with extremal characteristics

    SciTech Connect

    Perepelkin, K.E.

    1992-11-01

    The development of engineering and science, including medicine, is closely related to the creation of new forms of materials, among which fibers and fibrous materials for the reinforcement of composites with extremal characteristics occupy an important position: super strong, superhigh-modulus, heat-stable and heat-resisting, incombustible, fire-resistant, chemically and biologically stable, and other materials. The production of these materials is based on new forms of organic polymers and fibers: polyolefin, aramide, arimide, oxazole, benzimidazole, carbon, and such forms of inorganic polymers as carbide, oxide, nitride, etc. These forms of fibers and fibrous materials, and composites based on them are being produced in many countries throughout the world. In this study, the authors examine the physical bases of the production of fibers and fibrous materials with extremal characteristics, their structure, and properties. The structural conditionality of the mechanical and thermal properties of the materials, as well as the effect of the surrounding medium - temperature, active media - are analyzed. The results of calculation of the theoretical and maximum allowable values of the properties are given. The most promising forms of fibers and fibrous materials, and their application are described. 66 refs., 10 tabs.

  19. Matrix cracking of fiber-reinforced ceramic composites in shear

    NASA Astrophysics Data System (ADS)

    Rajan, Varun P.; Zok, Frank W.

    2014-12-01

    The mechanics of cracking in fiber-reinforced ceramic matrix composites (CMCs) under general loadings remains incomplete. The present paper addresses one outstanding aspect of this problem: the development of matrix cracks in unidirectional plies under shear loading. To this end, we develop a model based on potential energy differences upstream and downstream of a fully bridged steady-state matrix crack. Through a combination of analytical solutions and finite element simulations of the constituent stresses before and after cracking, we identify the dominant stress components that drive crack growth. We show that, when the axial slip lengths are much larger than the fiber diameter and when interfacial slip precedes cracking, the shear stresses in the constituents are largely unaffected by the presence of the crack; the changes that do occur are confined to a 'core' region within a distance of about one fiber diameter from the crack plane. Instead, the driving force for crack growth derives mainly from the axial stresses-tensile in the fibers and compressive in the matrix-that arise upon cracking. These stresses are well-approximated by solutions based on shear-lag analysis. Combining these solutions with the governing equation for crack growth yields an analytical estimate of the critical shear stress for matrix cracking. An analogous approach is used in deriving the critical stresses needed for matrix cracking under arbitrary in-plane loadings. The applicability of these results to cross-ply CMC laminates is briefly discussed.

  20. Graphite Fiber Textile Preform/Cooper Matrix Composites

    NASA Technical Reports Server (NTRS)

    Filatovs, George J.

    1998-01-01

    The purpose of this research was to produce a finned tube constructed of a highly conductive braided graphite fiber preform infiltrated with a copper matrix. In addition, the tube was to be fabricated with an integral geometry. The preform was integral in the sense that the tube and the fin could be braided to yield one continuous part. This composite component is a candidate for situations with high heat transmitting and radiation requirements. A proof-of-concept finned tube was braided and infiltrated with a copper matrix proving that a viable process was developed to fabricate the desired component. Braiding of high conductivity carbon fibers required much trial-and-error and development of special procedures. There are many tradeoffs between braidability and fiber conductivity. To understand the properties and structure of the braided finned tube, an geometric model of the braid structure was derived. This derivation set the basis for the research because knowing the tow orientations helped decipher the thermal as well as the mechanical and conduction tendencies. Infiltration of the fibers into a copper matrix was a complex procedure, and was performed by TRA, of Salt Lake City, Utah, using a proprietary process. Several batches were fabricated with a final, high quality batch serving as a confirming proof-of-concept.

  1. Life Cycle Assessment of Carbon Fiber-Reinforced Polymer Composites

    SciTech Connect

    Das, Sujit

    2011-01-01

    Carbon fiber-reinforced polymer matrix composites is gaining momentum with the pressure to lightweight vehicles, however energy-intensity and cost remain some of the major barriers before this material could be used in large-scale automotive applications. A representative automotive part, i.e., a 30.8 kg steel floor pan having a 17% weight reduction potential with stringent cash performance requirements has been considered for the life cycle energy and emissions analysis based on the latest developments occurring in the precursor type (conventional textile-based PAN vs. renewable-based lignin), part manufacturing (conventional SMC vs. P4) and fiber recycling technologies. Carbon fiber production is estimated to be about 14 times more energy-intensive than conventional steel production, however life cycle primary energy use is estimated to be quite similar to the conventional part, i.e., 18,500 MJ/part, especially when considering the uncertainty in LCI data that exists from using numerous sources in the literature. Lignin P4 technology offers the most life cycle energy and CO2 emissions benefits compared to a conventional stamped steel technology. With a 20% reduction in energy use in the lignin conversion to carbon fiber and free availability of lignin as a by-product of ethanol and wood production, a 30% reduction in life cycle energy use could be obtained. A similar level of life cycle energy savings could also be obtained with a higher part weight reduction potential of 43%.

  2. PMR polyimide/graphite fiber composite fan blades

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.; Winters, W. E.

    1976-01-01

    Ultrahigh speed fan blades, designed in accordance with the requirements of an ultrahigh tip speed blade axial flow compressor, were fabricated from a high strength graphite fiber tow and a PMR polyimide resin. The PMR matrix was prepared by combining three monomeric reactants in methyl alcohol, and the solution was applied directly to the reinforcing fiber for subsequent in situ polymerization. Some of the molded blades were completely finished by secondary bonding of root pressure pads and an electroformed nickel leading edge sheath prior to final machining. The results of the spin testing of nine PMR fan blades are given. Prior to blade fabrication, heat resin tensile properties of the PMR resin were examined at four formulated molecular weight levels. Additionally, three formulated molecular weight levels were investigated in composite form with both a high modulus and a high strength fiber, both as-molded and postcured, in room temperature and 232 C transverse tensile, flexure and short beam shear. Mixed fiber orientation panels simulating potential blade constructions were also evaluated. Flexure tests, short beam shear tests, and tensile tests were conducted on these angle-plied laminates.

  3. Effect of fiber reinforcements on thermo-oxidative stability and mechanical properties of polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.

    1991-01-01

    A number of studies have investigated the thermo-oxidative behavior of polymer matrix composites. Two significant observations have been made from these research efforts: (1) fiber reinforcement has a significant effect on composite thermal stability; and (2) geometric effects must be considered when evaluating thermal aging data. A compilation of some results from these studies is presented, and this information shows the influence of the reinforcement fibers on the oxidative degradation of various polymer matrix composites. The polyimide PMR-15 was the matrix material that was used in these studies. The control composite material was reinforced with Celion 6000 graphite fiber. T-40R graphite fibers, along with some very stable ceramic fibers were selected as reinforcing fibers because of their high thermal stability. The ceramic fibers were Nicalon (silicon carbide) and Nextel 312 (alumina-silica-boron oxide). The mechanical properties of the two graphite fiber composites were significantly different, probably owing to variations in interfacial bonding between the fibers and the polyimide matrix. The Celion 6000/PMR-15 bond is very tight but the T-40/PMR-15 bond is less tight. Three oxidation mechanisms were observed: (1) the preferential oxidation of the Celion 6000 fiber ends at cut surfaces, leaving a surface of matrix material with holes where the fiber ends were originally situated; (2) preferential oxidation of the composite matrix; and (3) interfacial degradation by oxidation. The latter two mechanisms were also observed on fiber end cut surfaces. The fiber and interface attacks appeared to initiate interfiber cracking along these surfaces.

  4. Mullite fiber reinforced reaction bonded Si3N4 composites

    NASA Technical Reports Server (NTRS)

    Saleh, T.; Sayir, A.; Lightfoot, A.; Haggerty, J.

    1996-01-01

    Fracture toughnesses of brittle ceramic materials have been improved by introducing reinforcements and carefully tailored interface layers. Silicon carbide and Si3N4 have been emphasized as matrices of structural composites intended for high temperature service because they combine excellent mechanical, chemical, thermal and physical properties. Both matrices have been successfully toughened with SiC fibers, whiskers and particles for ceramic matrix composite (CMC) parts made by sintering, hot pressing or reaction forming processes. These SiC reinforced CMCs have exhibited significantly improved toughnesses at low and intermediate temperature levels, as well as retention of properties at high temperatures for selected exposures; however, they are vulnerable to attack from elevated temperature dry and wet oxidizing atmospheres after the matrix has cracked. Property degradation results from oxidation of interface layers and/or reinforcements. The problem is particularly acute for small diameter (-20 tim) polymer derived SiC fibers used for weavable toes. This research explored opportunities for reinforcing Si3N4 matrices with fibers having improved environmental stability; the findings should also be applicable to SiC matrix CMCs.

  5. Mechanical Behavior of Electrospun Palmfruit Bunch Reinforced Polylactide Composite Fibers

    NASA Astrophysics Data System (ADS)

    Adeosun, S. O.; Akpan, E. I.; Gbenebor, O. P.; Peter, A. A.; Olaleye, Samuel Adebayo

    2016-01-01

    In this study, the mechanical characteristics of electrospun palm fruit bunch reinforced poly lactic acid (PLA) nanofiber composites using treated and untreated filler was examined. Poly lactic acid-palm fruit bunch-dichloromethane blends were electrospun by varying the concentration of the palm fruit bunch between 0 wt.% and 8 wt.%. A constant voltage of 26 kV was applied, the tip-to-collector distance was maintained at 27.5 cm and PLA-palm fruit bunch-dichloromethane (DCM) concentration of 12.5% (w/v) was used. The results revealed that the presence of untreated palm fruit bunch fillers in the electrospun PLA matrix significantly reduces the average diameters of the fibers, causing the formation of beads. As a result there are reductions in tensile strengths of the fibers. The presence of treated palm fruit bunch fillers in the electrospun PLA matrix increases the average diameters of the fibers with improvements in the mechanical properties. The optimal mechanical responses were obtained at 3 wt.% of the treated palm fruit bunch fillers in the PLA matrix. However, increase in the palm fruit fillers (treated and untreated) in the PLA matrix promoted the formation of beads in the nanofiber composites.

  6. Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide.

    PubMed

    Zhang, Xiaoqing; Fan, Xinyu; Yan, Chun; Li, Hongzhou; Zhu, Yingdan; Li, Xiaotuo; Yu, Liping

    2012-03-01

    The performance of carbon fiber-reinforced composites is dependent to a great extent on the properties of fiber-matrix interface. To improve the interfacial properties in carbon fiber/epoxy composites, we directly introduced graphene oxide (GO) sheets dispersed in the fiber sizing onto the surface of individual carbon fibers. The applied graphite oxide, which could be exfoliated to single-layer GO sheets, was verified by atomic force microscope (AFM). The surface topography of modified carbon fibers and the distribution of GO sheets in the interfacial region of carbon fibers were detected by scanning electron microscopy (SEM). The interfacial properties between carbon fiber and matrix were investigated by microbond test and three-point short beam shear test. The tensile properties of unidirectional (UD) composites were investigated in accordance with ASTM standards. The results of the tests reveal an improved interfacial and tensile properties in GO-modified carbon fiber composites. Furthermore, significant enhancement of interfacial shear strength (IFSS), interlaminar shear strength (ILSS), and tensile properties was achieved in the composites when only 5 wt % of GO sheets introduced in the fiber sizing. This means that an alternative method for improving the interfacial and tensile properties of carbon fiber composites by controlling the fiber-matrix interface was developed. Such multiscale reinforced composites show great potential with their improved mechanical performance to be likely applied in the aerospace and automotive industries.

  7. The Chemical Nature of the Fiber/resin Interface in Composite Materials

    NASA Technical Reports Server (NTRS)

    Diefendorf, R. J.

    1984-01-01

    Carbon fiber/epoxy resin composites are considered. The nature of the fiber structure and the interaction that occurs at the interface between fiber and matrix are emphasized. Composite toughness can be improved by increased axial tensile and compressive strengths in the fibers. The structure of carbon fibers indicates that the fiber itself can fail transversely, and different transverse microstructures could provide better transverse strengths. The higher surface roughness of lower modulus and surface-treated carbon fibers provides better mechanical interlocking between the fiber and matrix. The chemical nature of the fiber surface was determined, and adsorption of species on this surface can be used to promote wetting and adhesion. Finally, the magnitude of the interfacial bond strength should be controlled such that a range of composites can be made with properties varying from relatively brittle and high interlaminar shear strength to tougher but lower interlaminar shear strength.

  8. Effects of Graphene Oxide Modified Sizing Agents on Interfacial Properties of Carbon Fibers/Epoxy Composites.

    PubMed

    Zhang, Qingbo; Jiang, Dawei; Liu, Li; Huang, Yudong; Long, Jun; Wu, Guangshun; Wu, Zijian; Umar, Ahmad; Guo, Jiang; Zhang, Xi; Guo, Zhanhu

    2015-12-01

    A kind of graphene oxide (GO) modified sizing agent was used to improve the interfacial properties of carbon fibers/epoxy composites. The surface topography of carbon fibers was investigated by scanning electron microscopy (SEM). The surface compositions of carbon fibers were determined by X-ray photoelectron spectroscopy (XPS) and the interfacial properties of composites were studied by interlaminar shear strength (ILSS). The results show that the existence of GO increases the content of reactive functional groups on carbon fiber surface. Thus it enhances the interfacial properties of carbon fibers/epoxy composites. When GO loading in sizing agents is 1 wt%, the ILSS value of composite reaches to 96.2 MPa, which is increased by 27.2% while comparing with unsized carbon fiber composites. Furthermore, the ILSS of composites after aging is also increased significantly with GO modified sizing agents.

  9. RADIATION EFFECTS ON EPOXY/CARBON FIBER COMPOSITE

    SciTech Connect

    Hoffman, E; Eric Skidmore, E

    2008-12-12

    The Department of Energy Savannah River Site vitrifies nuclear waste incident to defense programs through its Defense Waste Processing Facility (DWPF). The piping in the DWPF seal pot jumper configuration must withstand the stresses during an unlikely but potential deflagration event, and maintain its safety function for a 20-year service life. Carbon fiber-reinforced epoxy composites (CFR) were proposed for protection and reinforcement of piping during such an event. The proposed CFR materials have been ASME-approved (Section XI, Code Case N-589-1) for post-construction maintenance and is DOT-compliant per 49CFR 192 and 195. The proposed carbon fiber/epoxy composite reinforcement system was originally developed for pipeline rehabilitation and post-construction maintenance in petrochemical, refineries, DOT applications and other industries. The effects of ionizing radiation on polymers and organic materials have been studied for many years. The majority of available data are based on traditional exposures to gamma irradiation at high dose rates ({approx}10,000 Gy/hr) allowing high total dose within reasonable test periods and general comparison of different materials exposed at such conditions. However, studies in recent years have shown that degradation of many polymers are sensitive to dose rate, with more severe degradation often observed at similar or even lower total doses when exposed to lower dose rates. This behavior has been primarily attributed to diffusion-limited oxidation which is minimized during very high dose rate exposures. Most test standards for accelerated aging and nuclear qualification of components acknowledge these limitations. The results of testing to determine the radiation resistance and microstructural effects of gamma irradiation exposure on a bisphenol-A based epoxy matrix composite reinforced with carbon fibers are presented. This work provides a foundation for a more extensive evaluation of dose rate effects on advanced epoxy

  10. Lightning Strike Induced Damage Mechanisms of Carbon Fiber Composites

    NASA Astrophysics Data System (ADS)

    Kawakami, Hirohide

    Composite materials have a wide application in aerospace, automotive, and other transportation industries, because of the superior structural and weight performances. Since carbon fiber reinforced polymer composites possess a much lower electrical conductivity as compared to traditional metallic materials utilized for aircraft structures, serious concern about damage resistance/tolerance against lightning has been rising. Main task of this study is to clarify the lightning damage mechanism of carbon fiber reinforced epoxy polymer composites to help further development of lightning strike protection. The research on lightning damage to carbon fiber reinforced polymer composites is quite challenging, and there has been little study available until now. In order to tackle this issue, building block approach was employed. The research was started with the development of supporting technologies such as a current impulse generator to simulate a lightning strike in a laboratory. Then, fundamental electrical properties and fracture behavior of CFRPs exposed to high and low level current impulse were investigated using simple coupon specimens, followed by extensive parametric investigations in terms of different prepreg materials frequently used in aerospace industry, various stacking sequences, different lightning intensity, and lightning current waveforms. It revealed that the thermal resistance capability of polymer matrix was one of the most influential parameters on lightning damage resistance of CFRPs. Based on the experimental findings, the semi-empirical analysis model for predicting the extent of lightning damage was established. The model was fitted through experimental data to determine empirical parameters and, then, showed a good capability to provide reliable predictions for other test conditions and materials. Finally, structural element level lightning tests were performed to explore more practical situations. Specifically, filled-hole CFRP plates and patch

  11. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation.

    PubMed

    Matsuzaki, Ryosuke; Ueda, Masahito; Namiki, Masaki; Jeong, Tae-Kun; Asahara, Hirosuke; Horiguchi, Keisuke; Nakamura, Taishi; Todoroki, Akira; Hirano, Yoshiyasu

    2016-03-11

    We have developed a method for the three-dimensional (3D) printing of continuous fiber-reinforced thermoplastics based on fused-deposition modeling. The technique enables direct 3D fabrication without the use of molds and may become the standard next-generation composite fabrication methodology. A thermoplastic filament and continuous fibers were separately supplied to the 3D printer and the fibers were impregnated with the filament within the heated nozzle of the printer immediately before printing. Polylactic acid was used as the matrix while carbon fibers, or twisted yarns of natural jute fibers, were used as the reinforcements. The thermoplastics reinforced with unidirectional jute fibers were examples of plant-sourced composites; those reinforced with unidirectional carbon fiber showed mechanical properties superior to those of both the jute-reinforced and unreinforced thermoplastics. Continuous fiber reinforcement improved the tensile strength of the printed composites relative to the values shown by conventional 3D-printed polymer-based composites.

  12. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Ryosuke; Ueda, Masahito; Namiki, Masaki; Jeong, Tae-Kun; Asahara, Hirosuke; Horiguchi, Keisuke; Nakamura, Taishi; Todoroki, Akira; Hirano, Yoshiyasu

    2016-03-01

    We have developed a method for the three-dimensional (3D) printing of continuous fiber-reinforced thermoplastics based on fused-deposition modeling. The technique enables direct 3D fabrication without the use of molds and may become the standard next-generation composite fabrication methodology. A thermoplastic filament and continuous fibers were separately supplied to the 3D printer and the fibers were impregnated with the filament within the heated nozzle of the printer immediately before printing. Polylactic acid was used as the matrix while carbon fibers, or twisted yarns of natural jute fibers, were used as the reinforcements. The thermoplastics reinforced with unidirectional jute fibers were examples of plant-sourced composites; those reinforced with unidirectional carbon fiber showed mechanical properties superior to those of both the jute-reinforced and unreinforced thermoplastics. Continuous fiber reinforcement improved the tensile strength of the printed composites relative to the values shown by conventional 3D-printed polymer-based composites.

  13. Effect of fiber loading on flexural strength of hybrid sisal/hemp-HDPE composites

    NASA Astrophysics Data System (ADS)

    Aggarwal, Lakshya; Sinha, Shishir; Gupta, V. K.

    2015-05-01

    The continuing demand for sustainable materials and increasing environmental concerns have led to intense research in the field of natural fiber reinforced composites. Natural fibers are favored over synthetic fibers as reinforcement due to positive environmental benefits such as raw material utilization at source and easy disposable of the biodegradable fiber. In the present work, we have investigated flexural behavior of hybrid natural fiber reinforced HDPE composites. The matrix comprises of 50-50 ratio of virgin and recycled HDPE and the content of fibers (sisal and hemp) in the composite is varied from 10 to 30%. The natural fibers were mercerized with NaOH solution and chemically treated with maleic anhydride. The flexural specimens were prepared by injection moulding process and the testing was conducted in accordance to ASTM D790 standards. It is revealed that the flexural strength of the hybrid composite increases with the increase in fibers content when compared to specimen containing 100% HDPE.

  14. Boron/aluminum-graphite/resin advanced fiber composite hybrids

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Lark, R. F.; Sullivan, T. L.

    1974-01-01

    An investigation was conducted to determine the fabrication feasibility and to assess the potential of adhesively-bonded metal and resin matrix fiber composite hybrids as an advanced material, for aerospace and other structural applications. The results of fabrication studies and of evaluation of physical and mechanical properties show that using this hybrid concept it is possible to design a composite which, when compared to nonhybrid composites, has improved transverse strength, transverse stiffness, and impact resistance with only a small penalty on density and longitudinal properties. The results also show that laminate theory is suitable for perdicting the structural response of such hybrids. The sequence of fracture modes indicates that these types of hybrids can be readily designed to meet fail-safe requirements.

  15. Dislocation fiber interactions in short fiber reinforced metal matrix composites during creep and during thermal cycling

    SciTech Connect

    Eggeler, G.F.; Earthman, J.C.

    1997-12-22

    Short fiber reinforced metal matrix composites (SFR MMCs) are attractive engineering materials because they exhibit increased strength and wear resistance as compared to the fiber free matrix materials. For example, an aluminum alloy containing 15 volume percent of Al{sub 2}O{sub 3} fibers with average dimensions of 200 {micro}m length and 3 {micro}m diameter exhibits an improved creep strength with respect to the fiber free matrix. In addition to extended periods of isothermal and static creep loading high temperature components are subjected to temperature changes which are associated with thermal stresses. Thermal cycles can be due to start up and shut down events and can also be a consequence of anisothermal operating conditions. In short fiber reinforced aluminum alloys, in the stress and temperature range of interest, dislocation creep governs the deformation behavior of the MMC`s metallic matrix. It is therefore interesting to discuss the role of dislocations during creep and during thermal cycling of SFR MMCs. In the present paper the authors describe some basic dislocation mechanisms near the fiber/matrix-interface (FMI) of SFR MMCs. They first consider dislocation structures which are associated with the processing of SFR MMCs. Then dislocation processes which are associated with (1) static isothermal creep and (2) thermal cycling are discussed. Common and distinct features of the associated dislocation structures in the matrix zone near the FMI are highlighted. The authors then use the insight they have gained to qualitatively understand the role of dislocations in the macroscopic response of a SFR MMC under more complex load profiles.

  16. Modeling and free vibration behavior of rotating composite thin-walled closed-section beams with SMA fibers

    NASA Astrophysics Data System (ADS)

    Ren, Yongsheng; Yang, Shulian; Du, Xianghong

    2012-09-01

    Smart structure with active materials embedded in a rotating composite thin-walled beam is a class of typical structure which is using in study of vibration control of helicopter blades and wind turbine blades. The dynamic behavior investigation of these structures has significance in theory and practice. However, so far dynamic study on the above-mentioned structures is limited only the rotating composite beams with piezoelectric actuation. The free vibration of the rotating composite thin-walled beams with shape memory alloy(SMA) fiber actuation is studied. SMA fiber actuators are embedded into the walls of the composite beam. The equations of motion are derived based on Hamilton's principle and the asymptotically correct constitutive relation of single-cell cross-section accounting for SMA fiber actuation. The partial differential equations of motion are reduced to the ordinary differential equations of motion by using the Galerkin's method. The formulation for free vibration analysis includes anisotropy, pitch and precone angle, centrifugal force and SMA actuation effect. Numerical results of natural frequency are obtained for two configuration composite beams. It is shown that natural frequencies of the composite thin-walled beam decrease as SMA fiber volume and initial strain increase and the decrease in natural frequency becomes more significant as SMA fiber volume increases. The actuation performance of SMA fibers is found to be closely related to the rotational speeds and ply-angle. In addition, the effect of the pitch angle appears to be more significant for the lower-bending mode ones. Finally, in all cases, the precone angle appears to have marginal effect on free vibration frequencies. The developed model can be capable of describing natural vibration behaviors of rotating composite thin-walled beam with active SMA fiber actuation. The present work extends the previous analysis done for modeling passive rotating composite thin-walled beam.

  17. Mechanical properties and fiber type composition of chronically inactive muscles

    NASA Technical Reports Server (NTRS)

    Roy, R. R.; Zhong, H.; Monti, R. J.; Vallance, K. A.; Kim, J. A.; Edgerton, V. R.

    2000-01-01

    A role for neuromuscular activity in the maintenance of skeletal muscle properties has been well established. However, the role of activity-independent factors is more difficult to evaluate. We have used the spinal cord isolation model to study the effects of chronic inactivity on the mechanical properties of the hindlimb musculature in cats and rats. This model maintains the connectivity between the motoneurons and the muscle fibers they innervate, but the muscle unit is electrically "silent". Consequently, the measured muscle properties are activity-independent and thus the advantage of using this model is that it provides a baseline level (zero activity) from which regulatory factors that affect muscle cell homeostasis can be defined. In the present paper, we will present a brief review of our findings using the spinal cord isolation model related to muscle mechanical and fiber type properties.

  18. Fabrication, characterization, and modeling of piezoelectric fiber composites

    NASA Astrophysics Data System (ADS)

    Lin, Xiujuan; Zhou, Kechao; Button, Tim W.; Zhang, Dou

    2013-07-01

    Piezoelectric fiber composites (PFCs) with interdigitated electrodes have attracted increasing interest in a variety of industrial, commercial, and aerospace markets due to their unique flexibility, adaptability, and improved transverse actuation performance. Viscous plastic processing technique was utilized for the fabrication of PFCs with customized feature sizes. The assembly parameters showed great influence on the performance of PFCs, which was verified by the finite element analysis. The cracks were identified in the fibers underneath the electrode finger after several millions cycles due to the stress and electric field concentration. The electrode finger width was an important structural parameter and showed great influence on the actuation performance and the stress distribution in the PFCs. The finite element analysis revealed that wider electrode finger would be beneficial for reducing the risk of materials failure with slight influence on the actuation performance.

  19. Characterization of radar cross section of carbon fiber composite materials

    NASA Astrophysics Data System (ADS)

    Riley, Elliot J.; Lenzing, Erik H.; Narayanan, Ram M.

    2015-05-01

    Carbon fiber composite (CFC) materials have been used for many structural applications for decades. Their electromagnetic properties are also of great interest and are being quantified by recent research. This research explores shielding effectiveness, antenna design, conductivity, reflection, and absorption properties. The work in this paper specifically characterizes the radar cross section (RCS) of CFC structures. Various CFC planar samples were created using a wet layup method and vacuum bagging techniques. These samples were then placed in an anechoic chamber and their RCS values were measured at normal incidence. These measured values were compared to those of aluminum samples made into the same shape as the CFC samples. All of the measurements were made over 7 - 12 GHz frequency range. The RCS of the CFC samples show some interesting results. The fiber direction in the CFC samples had great influence on the RCS. Theories and reasoning for the results are presented and discussed.

  20. In situ cure monitoring of advanced fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Powell, Graham R.; Crosby, Peter A.; Fernando, Gerard F.; France, Chris M.; Spooncer, Ronald C.; Waters, David N.

    1995-04-01

    This paper describes a comparative study of in-situ cure monitoring and cure modelling by three methods: (a) evanescent wave spectroscopy, (b) refractive index change, (c) near- infrared spectroscopy. Optical fibers were embedded into aerospace epoxy resins during the manufacturing process of the composite. The cure characteristics were then tracked in real- time during the processing of the material via evanescent wave interaction. This technique is based upon monitoring of characteristic infrared absorption bands of the resin system to find the concentration of the epoxy and amine hardener as a function of cure time. Hence this technique is suitable for on-line process monitoring and optimization. Results obtained from the optical fiber sensors were used to model the curing behavior of the resin system. The results were compared with near-infrared spectroscopy and differential scanning calorimetry experiments carried out under similar conditions. The feasibility of utilizing refractive index changes to monitor the extent of cure has also been demonstrated.